
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 10/07/2015 Page i

Access® 2016

Bible

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 10/07/2015 Page iii

Access® 2016

BIBLE

Michael Alexander
Dick Kusleika

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 10/07/2015 Page iv

Access® 2016 Bible

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-08654-3
ISBN: 978-1-119-08659-8 (ebk)
ISBN: 978-1-119-08669-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY
NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE
PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD
BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEB SITE IS REFERRED TO IN THIS WORK AS A CITATION
AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES
LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN
AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within
the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download this
material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley
.com.

Library of Congress Control Number: 2015952618

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written permission.
Microsoft and Access are registered trademarks of Microsoft Corporation. All other trademarks are the property
of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in
this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

ffi rs.indd 10/07/2015 Page v

To my family. —Mike

To Matt, Jared, and Ben. —Dick

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 10/07/2015 Page vi

www.allitebooks.com

http://www.allitebooks.org

About the Authors
Michael Alexander is a Microsoft Certifi ed Application Developer (MCAD) and author of
several books on advanced business analysis with Microsoft Access and Microsoft Excel. He
has more than 15 years of experience consulting and developing Microsoft Offi ce solutions.
Mike has been named a Microsoft MVP for his ongoing contributions to the Excel commu-
nity. In his spare time, he runs a free tutorial site, www.datapigtechnologies.com,
where he shares Excel and Access tips.

Dick Kusleika has been awarded as a Microsoft MVP for 12 consecutive years and has been
working with Microsoft Offi ce for more than 20 years. Dick develops Access- and Excel-
based solutions for his clients and has conducted training seminars on Offi ce products in
the United States and Australia. Dick also writes a popular Excel-related blog at www
.dailydoseofexcel.com.

www.allitebooks.com

http://www.datapigtechnologies.com
http://www.dailydoseofexcel.com
http://www.allitebooks.org

ffi rs.indd 10/07/2015 Page viii

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 10/07/2015 Page ix

Senior Acquisitions Editor
Stephanie McComb

Project Editor
John Sleeva

Technical Editor
Doug J. Steele

Production Manager
Kathleen Wisor

Senior Production Editor
Christine O’Connor

Manager of Content Development &
Assembly
Mary Beth Wakefield

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

Professional Technology & Strategy
Director
Barry Pruett

Business Manager
Amy Knies

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader
Nancy Carrasco

Indexer
Johnna VanHoose Dinse

Cover Designer
Wiley

Cover Image
iStockphoto.com/Aleksander

Credits

xi

ffi rs.indd 10/07/2015 Page xi

Acknowledgments

O
ur deepest thanks to the professionals at John Wiley & Sons for all the hours of work
put into bringing this book to life. Thanks also to Doug Steele for suggesting numer-
ous improvements to the examples and text in this book. Finally, a special thank you

goes out to our families for putting up with all the time spent locked away on this project.

xiii

ffi rs.indd 10/07/2015 Page xiii

Introduction ...xxxix

Part I: Access Building Blocks . 1
Chapter 1: An Introduction to Database Development ... 3
Chapter 2: Getting Started with Access ... 19

Part II: Understanding Access Tables . 31
Chapter 3: Creating Access Tables .. 33
Chapter 4: Understanding Table Relationships ... 89
Chapter 5: Working with Access Tables ...131
Chapter 6: Importing and Exporting Data ...171
Chapter 7: Linking to External Data ...209

Part III: Working with Access Queries . 235
Chapter 8: Selecting Data with Queries ...237
Chapter 9: Using Operators and Expressions in Access ..267
Chapter 10: Going Beyond Select Queries ..309

Part IV: Analyzing Data in Access . 349
Chapter 11: Transforming Data in Access ..351
Chapter 12: Working with Calculations and Dates ..375
Chapter 13: Performing Conditional Analyses ..401
Chapter 14: The Fundamentals of Using SQL ..421
Chapter 15: Subqueries and Domain Aggregate Functions ..441
Chapter 16: Running Descriptive Statistics in Access ...467

Part V: Working with Access Forms and Reports . 483
Chapter 17: Creating Basic Access Forms ...485
Chapter 18: Working with Data on Access Forms ..525
Chapter 19: Working with Form Controls ...557
Chapter 20: Presenting Data with Access Reports ..591
Chapter 21: Advanced Access Report Techniques ...649

Contents at a Glance

xiv

ffi rs.indd 10/07/2015 Page xiv

Part VI: Access Programming Fundamentals . 695
Chapter 22: Using Access Macros ..697
Chapter 23: Using Access Data Macros ..733
Chapter 24: Getting Started with Access VBA ..751
Chapter 25: Mastering VBA Data Types and Procedures ..795
Chapter 26: Understanding the Access Event Model ...839
Chapter 27: Debugging Your Access Applications ...861

Part VII: Advanced Access Programming Techniques 895
Chapter 28: Accessing Data with VBA ...897
Chapter 29: Advanced Data Access with VBA ...941
Chapter 30: Customi zing the Ribbon ..959
Chapter 31: Preparing Your Access Application for Distribution999

Part VIII: Access and Windows SharePoint Services 1045
Chapter 32: Integrating Access with SharePoint .. 1047
Chapter 33: Deploying Access Applications to SharePoint ... 1063

Index .. 1091

xv

ftoc.indd 10/07/2015 Page xv

Contents

Introduction . xxxix

Part I: Access Building Blocks 1

Chapter 1: An Introduction to Database Development . 3

The Database Terminology of Access ... 3
Databases .. 3
Tables .. 5
Records and fi elds .. 5
Values .. 6

Relational Databases ... 6
Access Database Objects .. 7

Tables .. 8
Queries .. 8
Data-entry and display forms .. 8
Reports .. 9
Macros and VBA .. 9
Planning for Database Objects ... 10

A Five-Step Design Method .. 10
Step 1: The overall design—from concept to reality 10
Step 2: Report design ...11
Step 3: Data design ... 12
Step 4: Table design .. 13
Step 5: Form design .. 17

Chapter 2: Getting Started with Access . 19

The Access Welcome Screen .. 19
How to Create a Blank Desktop Database ... 21
The Access 2016 Interface .. 23

The Navigation pane ... 23
Custom .. 24
Object Type ... 25
Tables and Related Views .. 25
Created Date .. 25

xvi

Contents

ftoc.indd 10/07/2015 Page xvi

Modifi ed Date .. 25
The Ribbon .. 26
The Quick Access toolbar... 28

Part II: Understanding Access Tables 31

Chapter 3: Creating Access Tables . 33

Table Types ... 33
Object tables .. 34
Transaction tables .. 34
Join tables ... 34

Creating a New Table ... 34
Designing tables ... 36
Using the Design tab ...41

Primary Key ...41
Insert Rows ... 42
Delete Rows ... 42
Property Sheet... 42
Indexes ... 42

Working with fi elds .. 42
Naming a fi eld ... 43
Specifying a data type ... 44
Entering a fi eld description .. 50
Specifying data validation rules ... 50

Creating tblCustomers ..51
Using AutoNumber fi elds ..51
Completing tblCustomers ..51

Changing a Table Design .. 52
Inserting a new fi eld .. 52
Deleting a fi eld ... 52
Changing a fi eld location .. 53
Changing a fi eld name .. 53
Changing a fi eld size... 53
Handling data conversion issues .. 54
Assigning fi eld properties ... 55

Common properties .. 55
Format .. 56
Input Mask .. 62
Caption ... 65
Validation Rule and Validation Text ... 65
Required ... 67
AllowZeroLength .. 67
Indexed .. 68

xvii

Contents

ftoc.indd 10/07/2015 Page xvii

Understanding tblCustomers Field Properties .. 70
Setting the Primary Key .. 73

Choosing a primary key .. 73
Creating the primary key ...74
Creating composite primary keys ..74

Indexing Access Tables .. 75
The importance of indexes ...76
Multiple-fi eld indexes ... 78
When to index tables .. 80

Printing a Table Design ... 81
Saving the Completed Table ... 83
Manipulating Tables .. 83

Renaming tables ... 83
Deleting tables ... 84
Copying tables in a database ... 84
Copying a table to another database .. 85

Adding Records to a Database Table .. 85
Understanding Attachment Fields .. 86

Chapter 4: Understanding Table Relationships . 89

Building Bulletproof Databases .. 90
Data Normalization and Denormalization .. 92

First normal form ... 93
Second normal form .. 96

Identifying entities ... 96
Less obvious entities .. 99
Breaking the rules ..101

Third normal form ...101
Denormalization ..103

Table Relationships ..104
Connecting the data ..105
One-to-one ..108
One-to-many ...109
Many-to-many ... 111

Integrity Rules ..113
No primary key can contain a null value ...115
All foreign key values must be matched by corresponding

primary keys ..115
Keys ...116

Deciding on a primary key ... 117
Looking at the benefi ts of a primary key ...119
Designating a primary key ...120

Single-fi eld versus composite primary keys ...120
Natural versus surrogate primary keys ..121
Creating primary keys ...122

xviii

Contents

ftoc.indd 10/07/2015 Page xviii

Creating relationships and enforcing referential integrity122
Specifying the join type between tables ...124
Enforcing referential integrity ...126

Viewing all relationships ..128
Deleting relationships ..129
Following application-specifi c integrity rules ..129

Chapter 5: Working with Access Tables . 131

Understanding Datasheets ..132
Looking at the Datasheet Window ...134

Moving within a datasheet ...134
Using the Navigation buttons ...135
Examining the Datasheet Ribbon ..135

Views ...136
Clipboard ...136
Sort & Filter ...136
Records ..137
Find ...137
Window ..137
Text Formatting ..137

Opening a Datasheet ..138
Entering New Data ...138

Saving the record ..140
Understanding automatic data-type validation ..141
Knowing how properties affect data entry...142

Standard text data entry ...142
Date/Time data entry ..143
Number/Currency data entry with data validation143
OLE object data entry ..143
Long Text fi eld data entry ...144

Navigating Records in a Datasheet ...145
Moving between records ...145
Finding a specifi c value ...146

Changing Values in a Datasheet ...148
Manually replacing an existing value ..148
Changing an existing value ..149

Using the Undo Feature ..150
Copying and Pasting Values ..151
Replacing Values ..152
Adding New Records ...153
Deleting Records ..153
Displaying Records ...154

Changing the fi eld order ..154
Changing the fi eld display width ..156
Changing the record display height ..157

www.allitebooks.com

http://www.allitebooks.org

xix

Contents

ftoc.indd 10/07/2015 Page xix

Changing display fonts ..158
Displaying cell gridlines and alternate row colors ..159
Aligning data in columns ...161
Hiding and unhiding columns ..161
Freezing columns ..162
Saving the changed layout ...162
Saving a record ...163

Sorting and Filtering Records in a Datasheet ..163
Sorting your records with QuickSort ...163
Filtering a selection ...164
Filtering by form ...167

Aggregating Data ...168
Printing Records ..169
Previewing Records ..170

Chapter 6: Importing and Exporting Data . 171

How Access Works with External Data ..171
Types of external data ...172
Ways of working with external data ..172

When to link to external data ..173
When to import external data .. 174
When to export internal data ...175

Options for Importing and Exporting ...175
Importing External Data ...177

Importing from another Access database ...177
Importing from an Excel spreadsheet ..180
Importing a SharePoint list ..184
Importing data from text fi les ..185

Delimited text fi les ...185
Fixed-width text fi les ..188

Importing and exporting XML documents ..192
Importing and exporting HTML documents ..195
Importing Access objects other than tables ...197
Importing an Outlook folder ...199

Exporting to External Formats ..200
Exporting objects to other Access databases ..201
Exporting through ODBC drivers ...201
Exporting to Word ...204

Merging data into Word ...204
Publishing to PDF or XPS ..206

Chapter 7: Linking to External Data . 209

Linking External Data ..210
Identifying linked tables ...211
Limitations of linked data..213

xx

Contents

ftoc.indd 10/07/2015 Page xx

Linking to other Access database tables ..214
Linking to ODBC data sources ...217
Linking to non-database data ...217

Linking to Excel ...217
Linking to HTML fi les ..220
Linking to text fi les ..222

Working with Linked Tables ..224
Setting view properties ..224
Setting relationships ...225
Optimizing linked tables ..225
Deleting a linked table reference ..226
Viewing or changing information for linked tables226
Refreshing linked tables ..227

Splitting a Database ...228
The benefi ts of splitting a database ..228
Knowing where to put which objects ...231
Using the Database Splitter add-in ..232

Part III: Working with Access Queries 235

Chapter 8: Selecting Data with Queries . 237

Introducing Queries ...238
What queries can do ..238
What queries return ..239

Creating a Query ..240
Adding fi elds to your queries ...243

Adding a single fi eld ...243
Adding multiple fi elds ...243

Running your query ..245
Working with Query Fields ..246

Selecting a fi eld in the QBE grid ...246
Changing fi eld order ..246
Resizing columns in the QBE grid ...247
Removing a fi eld ...248
Inserting a fi eld ..248
Hiding a fi eld ..248
Changing the sort order of a fi eld ...249

Adding Criteria to Your Queries ...250
Understanding selection criteria...250
Entering simple string criteria ...251
Entering other simple criteria ..252

Printing a Query’s Recordset ...254
Saving a Query ..254
Creating Multi-Table Queries ...254

xxi

Contents

ftoc.indd 10/07/2015 Page xxi

Viewing table names ..256
Adding multiple fi elds..257
Recognizing the limitations of multi-table queries257
Overcoming query limitations ..258

Updating a unique index (primary key) ..258
Replacing existing data in a query with a one-to-many relationship258
Updating fi elds in queries ..259

Working with the Table Pane ..259
Looking at the join line ...259
Moving a table ..260
Removing a table ...260
Adding more tables ..260

Creating and Working with Query Joins ...261
Understanding joins ..261
Leveraging ad hoc table joins ...263
Specifying the type of join ..264
Deleting joins ...266

Chapter 9: Using Operators and Expressions in Access . 267

Introducing Operators ..267
Types of operators ...268

Mathematical operators ...268
Comparison operators ..271
String operators ..273
Boolean (logical) operators ..277
Miscellaneous operators ..279

Operator precedence ..281
The mathematical precedence ..281
The comparison precedence ...282
The Boolean precedence ..282

Using Operators and Expressions in Queries ..282
Using query comparison operators ..283
Understanding complex criteria ..284
Using functions in select queries ..288
Referencing fi elds in select queries ...288

Entering Single-Value Field Criteria ...288
Entering character (Text or Memo) criteria ..289
The Like operator and wildcards ...290
Specifying non-matching values ...293
Entering numeric criteria ...294
Entering true or false criteria ...295
Entering OLE object criteria ...296

Using Multiple Criteria in a Query ...296
Understanding an Or operation ...297
Specifying multiple values with the Or operator ..297

xxii

Contents

ftoc.indd 10/07/2015 Page xxii

Using the Or cell of the QBE pane ..297
Using a list of values with the In operator ...299
Using And to specify a range ..299
Using the Between...And operator ..301
Searching for null data ..301

Entering Criteria in Multiple Fields ..302
Using And and Or across fi elds in a query ..303
Specifying Or criteria across fi elds of a query ..304
Using And and Or together in different fi elds ..306
A complex query on different lines ...306

Chapter 10: Going Beyond Select Queries . 309

Aggregate Queries ..309
Creating an aggregate query ...309
About aggregate functions ...313

Group By ..313
Sum, Avg, Count, StDev, Var ...315
Min, Max, First, Last ...315
Expression, Where ...315

Action Queries ...318
Make-table queries ..318
Delete queries ...321
Append queries ...324
Update queries ..330

Crosstab Queries ..333
Creating a crosstab query using the Crosstab Query Wizard333
Creating a crosstab query manually ..340

Using the query design grid to create your crosstab query340
Customizing your crosstab queries ...343

Optimizing Query Performance ...345
Normalizing your database design ..346
Using indexes on appropriate fi elds ...346
Optimizing by improving query design ..347
Compacting and repairing your database regularly348

Part IV: Analyzing Data in Access 349

Chapter 11: Transforming Data in Access . 351

Finding and Removing Duplicate Records ...351
Defi ning duplicate records ..352
Finding duplicate records ...353
Removing duplicate records ..356

Common Transformation Tasks ..359
Filling in blank fi elds ..359

xxiii

Contents

ftoc.indd 10/07/2015 Page xxiii

Concatenating ...360
Concatenating fi elds ..360
Augmenting fi eld values with your own text362

Changing case ...363
Removing leading and trailing spaces from a string365
Finding and replacing specifi c text ...366
Adding your own text in key positions within a string.................................367
Parsing strings using character markers ..370

Query 1 ..372
Query 2 ..372

Chapter 12: Working with Calculations and Dates . 375

Using Calculations in Your Analyses ..375
Common calculation scenarios ..376

Using constants in calculations ..376
Using fi elds in calculations ..376
Using the results of aggregation in calculations377
Using the results of one calculation as an expression in another378
Using a calculation as an argument in a function378

Constructing calculations with the Expression Builder380
Common calculation errors ...384

Understanding the order of operator precedence384
Watching out for null values ..385
Watching the syntax in your expressions ..387

Using Dates in Your Analyses ..388
Simple date calculations ..388
Advanced analysis using functions ...389

The Date function ...389
The Year, Month, Day, and Weekday functions393
The DateAdd function ...395
Grouping dates into quarters ...396
The DateSerial function ...398

Chapter 13: Performing Conditional Analyses . 401

Using Parameter Queries ...401
How parameter queries work ..403
Ground rules of parameter queries ..403
Working with parameter queries ...404

Working with multiple parameter conditions404
Combining parameters with operators...404
Combining parameters with wildcards ..405
Using parameters as calculation variables ...406
Using parameters as function arguments ..407

Using Conditional Functions ...410
The IIf function ..410

xxiv

Contents

ftoc.indd 10/07/2015 Page xxiv

Using IIf to avoid mathematical errors .. 411
Saving time with IIf ..412
Nesting IIf functions for multiple conditions414
Using IIf functions to create crosstab analyses....................................415

The Switch function ..416
Comparing the IIf and Switch functions .. 417

Chapter 14: The Fundamentals of Using SQL . 421

Understanding Basic SQL ..421
The SELECT statement ..422

Selecting specifi c columns ...423
Selecting all columns ..423

The WHERE clause ...424
Making sense of joins ..424

Inner joins ...424
Outer joins ...425

Getting Fancy with Advanced SQL Statements ..426
Expanding your search with the Like operator ...426
Selecting unique values and rows without grouping428
Grouping and aggregating with the GROUP BY clause428
Setting the sort order with the ORDER BY clause..429
Creating aliases with the AS clause ...429

Creating a column alias ...429
Creating a table alias ..429

Showing only the SELECT TOP or SELECT TOP PERCENT429
Top values queries explained ...430
The SELECT TOP statement ...431
The SELECT TOP PERCENT statement ...432

Performing action queries via SQL statements ...432
Make-table queries translated ..432
Append queries translated ...432
Update queries translated ..433
Delete queries translated ...433

Creating crosstabs with the TRANSFORM statement433
Using SQL-Specifi c Queries ..433

Merging datasets with the UNION operator ..434
Creating a table with the CREATE TABLE statement436
Manipulating columns with the ALTER TABLE statement436

Adding a column with the ADD clause ..437
Altering a column with the ALTER COLUMN clause437
Deleting a column with the DROP COLUMN clause437
Dynamically adding primary keys with the ADD CONSTRAINT clause437

Creating pass-through queries ..438

xxv

Contents

ftoc.indd 10/07/2015 Page xxv

Chapter 15: Subqueries and Domain Aggregate Functions . 441

Enhancing Your Analyses with Subqueries ...442
Why use subqueries? ..443
Subquery ground rules ...443
Creating subqueries without typing SQL statements 444
Using IN and NOT IN with subqueries ..447
Using subqueries with comparison operators ...447
Using subqueries as expressions ...448
Using correlated subqueries ...449

Uncorrelated subqueries ..450
Correlated subqueries ..450
Using a correlated subquery as an expression451

Using subqueries within action queries ...452
A subquery in a make-table query ..452
A subquery in an append query ..452
A subquery in an update query ..453
A subquery in a delete query ...453

Domain Aggregate Functions ..455
Understanding the different domain aggregate functions457

DSum ...457
DAvg ..457
DCount ...457
DLookup ...457
DMin and DMax ...457
DFirst and DLast ...457
DStDev, DStDevP, DVar, and DvarP ..458

Examining the syntax of domain aggregate functions458
Using no criteria ...458
Using text criteria ..458
Using number criteria ...459
Using date criteria ..459

Using domain aggregate functions ..460
Calculating the percent of total ...460
Creating a running count ..461
Using a value from the previous record ...463

Chapter 16: Running Descriptive Statistics in Access . 467

Basic Descriptive Statistics ...468
Running descriptive statistics with aggregate queries468
Determining rank, mode, and median ...469

Ranking the records in your dataset ...469
Getting the mode of a dataset ..470
Getting the median of a dataset ...472

xxvi

Contents

ftoc.indd 10/07/2015 Page xxvi

Pulling a random sampling from your dataset .. 474
Advanced Descriptive Statistics ..476

Calculating percentile ranking ...476
Determining the quartile standing of a record ...478
Creating a frequency distribution ...480

Part V: Working with Access Forms and Reports 483

Chapter 17: Creating Basic Access Forms . 485

Formulating Forms ...486
Creating a new form ..487

Using the Form command ..487
Using the Form Wizard ..489

Looking at special types of forms ...491
Navigation forms ..491
Multiple-items forms ...494
Split forms ...495
Datasheet forms ..496

Resizing the form area ...497
Saving your form ...497

Working with Controls ..498
Categorizing controls ...498
Adding a control ...501

Using the Controls group ...501
Using the fi eld list ..502

Selecting and deselecting controls ..505
Selecting a single control ..506
Selecting multiple controls ..507
Deselecting controls ..507

Manipulating controls ..507
Resizing a control ...507
Sizing controls automatically ...509
Moving a control ...509
Aligning controls ..510
Modifying the appearance of a control ...512
Grouping controls ...513
Changing a control’s type ..515
Copying a control ..515
Deleting a control ...515
Reattaching a label to a control ...516

Introducing Properties ... 517
Displaying the Property Sheet ..518
Getting acquainted with the Property Sheet ..519

xxvii

Contents

ftoc.indd 10/07/2015 Page xxvii

Changing a control’s property setting..520
Naming control labels and their captions ..521

Chapter 18: Working with Data on Access Forms . 525

Using Form View ..526
Looking at the Home tab of the Ribbon ...526

The Views group ..528
The Clipboard group ..528
The Sort & Filter group ..529
The Records group ...529
The Find group ...529
The Window group ..529
The Text Formatting group ..530

Navigating among fi elds ...530
Moving among records in a form ...531

Changing Values in a Form ..531
Knowing which controls you can’t edit ..532
Working with pictures and OLE objects ..533
Entering data in the Long Text fi eld..534
Entering data in the Date fi eld ...535
Using option groups ...536
Using combo boxes and list boxes ...536
Switching to Datasheet view ..537
Saving a record ...538

Printing a Form ...538
Working with Form Properties ...539

Changing the title bar text with the Caption property..................................540
Creating a bound form ...541
Specifying how to view the form ..542
Removing the Record Selector ..543
Looking at other form properties ..543

Adding a Form Header or Footer ..550
Working with Section Properties ...550

The Visible property ..551
The Height property ..551
The Back Color property ...551
The Special Effect property ..551
The Display When property ..552
The printing properties ..552

Changing the Layout ..552
Changing a control’s properties ...552
Setting the tab order ...553
Modifying the format of text in a control ..554
Using the Field List to add controls ...554

Converting a Form to a Report ..556

xxviii

Contents

ftoc.indd 10/07/2015 Page xxviii

Chapter 19: Working with Form Controls . 557

Setting Control Properties ..558
Customizing default properties ...559
Looking at common controls and properties ..560

The Text Box control ...560
The Command Button control ...562
The Combo Box and List Box controls ...562
The Check Box and Toggle Button controls ..564
The Option Group control ...564
The Web Browser control ..564

Creating a Calculated Control ..565
Working with Subforms ..565
Form Design Tips ..567

Using the Tab Stop property ...567
Tallying check boxes ..567
Setting up combo boxes and list boxes ..568

Tackling Advanced Forms Techniques ..570
Using the Page Number and Date/Time controls ...570
Using the Image control ...571
Morphing a control ..572
Using the Format Painter ...573
Offering more end-user help ... 574
Adding background pictures ... 574
Limiting the records shown on a form ...576

Using the Tab Control ...577
Using Dialog Boxes to Collect Information..579

Designing the query ..580
Setting up the command buttons ..581
Adding a default button ...581
Setting a Cancel button ...582
Removing the control menu ...582

Designing a Form from Scratch ..582
Creating the basic form ..583
Creating a subform ..584
Adding the subform ...584
Changing the form’s behavior ...587

Setting the form properties ...587
Looking up values during data entry ..587
Saving the record ..588

Changing the form’s appearance ...589

www.allitebooks.com

http://www.allitebooks.org

xxix

Contents

ftoc.indd 10/07/2015 Page xxix

Chapter 20: Presenting Data with Access Reports . 591

Introducing Reports ...592
Identifying the different types of reports ...592

Tabular reports ...592
Columnar reports ..592
Mailing label reports ...595

Distinguishing between reports and forms ..595
Creating a Report, from Beginning to End ..596

Defi ning the report layout ...596
Assembling the data ..596
Creating a report with the Report Wizard ..597

Creating a new report ..597
Selecting the grouping levels ...598
Defi ning the group data ..599
Selecting the sort order ...600
Selecting summary options..601
Selecting the layout ..602
Opening the report design ...602
Adjusting the report’s layout ...603
Choosing a theme ...604
Creating new theme color schemes ...606
Using the Print Preview window ..608
Publishing in alternate formats ...610
Viewing the report in Design view .. 611

Printing or viewing the report ...612
Printing the report ...612
Viewing the report ..612

Saving the report ..614
Banded Report Design Concepts ..614

The Report Header section ... 617
The Page Header section .. 617
The Group Header section ...618
The Detail section ...618
The Group Footer section..619
The Page Footer section ...619
The Report Footer section ..619

Creating a Report from Scratch ...620
Creating a new report and binding it to a query ...621
Defi ning the report page size and layout ...622
Placing controls on the report ..625
Resizing a section ...626

xxx

Contents

ftoc.indd 10/07/2015 Page xxx

Modifying the appearance of text in a control627
Working with Text Box controls ..627

Adding and using Text Box controls ...628
Entering an expression in a Text Box control628
Sizing a Text Box control or Label control ...629
Deleting and cutting attached labels from Text Box controls630
Pasting labels into a report section ..631
Moving Label and Text Box controls ...631
Modifying the appearance of multiple controls633

Changing Label and Text Box control properties ..634
Growing and shrinking Text Box controls ..636
Sorting and grouping data ...637

Creating a group header or footer ...637
Sorting data within groups ..638

Removing a group ...639
Hiding a section ...639
Sizing a section ..640
Moving controls between sections ..640

Adding page breaks ...641
Improving the Report’s Appearance ...642

Adjusting the page header ...643
Creating an expression in the group header ...644
Creating a report header ..645

Chapter 21: Advanced Access Report Techniques . 649

Grouping and Sorting Data ..650
Grouping alphabetically ...650
Grouping on date intervals ...655
Hiding repeating information ...656
Hiding a page header ...660
Starting a new page number for each group ...661

Formatting Data ...662
Creating numbered lists ...662
Creating bulleted lists ..666
Adding emphasis at run time ...669
Avoiding empty reports ...671
Inserting vertical lines between columns ..672
Adding a blank line every n records ..674
Even-odd page printing..676
Using different formats in the same text box ..678
Centering the title ...679
Aligning control labels ..679
Micro-adjusting controls ..679

Adding Data ..680

xxxi

Contents

ftoc.indd 10/07/2015 Page xxxi

Adding more information to a report ..680
Adding the user’s name to a bound report ...681

Adding Even More Flexibility ...682
Displaying all reports in a combo box ..682
Fast printing from queried data ..684
Using snaking columns in a report ..684
Exploiting two-pass report processing ...691
Assigning unique names to controls ...693

Part VI: Access Programming Fundamentals 695

Chapter 22: Using Access Macros . 697

An Introduction to Macros ..698
Creating a macro ...698
Assigning a macro to an event..701

Understanding Macro Security ..702
Enabling sandbox mode ...702
The Trust Center ..705

Multi-Action Macros ...706
Submacros ...709
Conditions ...713

Opening reports using conditions ...713
Multiple actions in conditions ..716

Temporary Variables ...716
Enhancing a macro you’ve already created ...716
Using temporary variables to simplify macros ..718
Using temporary variables in VBA ...720

Error Handling and Macro Debugging ...721
The OnError action ..723
The MacroError object ..725
Debugging macros ...726

Embedded Macros ...727
Macros versus VBA Statements ..729

Choosing between macros and VBA ...730
Converting existing macros to VBA ...730

Chapter 23: Using Access Data Macros . 733

Introducing Data Macros ...734
Understanding Table Events ..735

“Before” events ...735
“After” events ...737

Using the Macro Designer for Data Macros ..738
Understanding the Action Catalog ...740

xxxii

Contents

ftoc.indd 10/07/2015 Page xxxii

Program fl ow ...740
Data blocks ...740
Data actions .. 741

Creating Your First Data Macro ..743
Managing Macro Objects ... 747

Collapsing and expanding macro items .. 747
Moving macro items ...748
Saving a macro as XML ...748

Recognizing the Limitations of Data Macros ... 749

Chapter 24: Getting Started with Access VBA . 751

Introducing Visual Basic for Applications ...752
Understanding VBA Terminology ...754
Starting with VBA Code Basics ..755
Creating VBA Programs ...755

Modules and procedures ...756
Modules ...759
Procedures and functions ..760

Working in the code window ..763
White space ..764
Line continuation ...764
Multi-statement lines ..766
IntelliSense ..766
Compiling procedures ..769
Saving a module ...770

Understanding VBA Branching Constructs ...770
Branching ...771

The If keyword ...771
The Select Case...End Select statement ...774

Looping ..776
The Do...Loop statement ..777
The For...Next statement ...778

Working with Objects and Collections ..780
An object primer ...780
Properties and methods ...782

Properties ..782
Methods ...782

The With statement ...782
The For Each statement ..784

Exploring the Visual Basic Editor ...785
The Immediate window ..786
The Project Explorer ..787
The Object Browser ..788
VBE options ..789

xxxiii

Contents

ftoc.indd 10/07/2015 Page xxxiii

The Editor tab of the Options dialog box ...789
The Project Properties dialog box ...791

Chapter 25: Mastering VBA Data Types and Procedures . 795

Using Variables ..796
Naming variables ...797
Declaring variables ..798

The Dim keyword ..801
The Public keyword ...802
The Private keyword ...803

Working with Data Types ..803
Comparing implicit and explicit variables ..806
Forcing explicit declaration ..807
Using a naming convention with variables ..808
Understanding variable scope and lifetime ..810

Examining scope ...810
Determining a variable’s lifetime ...812
Deciding on a variable’s scope ..813

Using constants ..814
Declaring constants ..814
Using a naming convention with constants ...815
Eliminating hard-coded values ...816

Working with arrays ..817
Fixed arrays ...817
Dynamic arrays ...820
Array functions ..821

Understanding Subs and Functions..824
Understanding where to create a procedure ...825
Calling VBA procedures ..825
Creating subs ..826

Creating Functions ...830
Handling parameters ...831
Calling a function and passing parameters ..832
Creating a function to calculate sales tax ..834

Simplifying Code with Named Arguments ..836

Chapter 26: Understanding the Access Event Model . 839

Programming Events ..840
Understanding how events trigger VBA code..840
Creating event procedures ..841

Identifying Common Events ..843
Form event procedures ...844

Essential form events ..844
Form mouse and keyboard events ...845
Form data events ..846

xxxiv

Contents

ftoc.indd 10/07/2015 Page xxxiv

Control event procedures..847
Report event procedures ..849
Report section event procedures ...850

Paying Attention to Event Sequence ..852
Looking at common event sequences ...852
Writing simple form and control event procedures854

Opening a form with an event procedure ..855
Running an event procedure when closing a form856
Using an event procedure to confi rm record deletion858

Chapter 27: Debugging Your Access Applications . 861

Organizing VBA Code ..862
Testing Your Applications ...863

Testing functions ..864
Compiling VBA code ...867

Traditional Debugging Techniques ...870
Using MsgBox ..870
Using Debug.Print ...874

Using the Access Debugging Tools ...876
Running code with the Immediate window ..876
Suspending execution with breakpoints ..877
Looking at variables with the Locals window ...883
Setting watches with the Watches window ..884
Using conditional watches..886
Using the Call Stack window ..888

Trapping Errors in Your Code ...889
Understanding error trapping ...889

On Error Resume Next..889
On Error Goto 0 ...891
On Error Goto Label ...891
The Resume keyword ...891

The Err object ...892
Including error handling in your procedures ..893

Part VII: Advanced Access Programming Techniques 895

Chapter 28: Accessing Data with VBA Code . 897

Working with Data ...897
Understanding ADO Objects ..901

The ADO Connection object ..902
The ADO Command object ...905
The ADO Recordset object ...908

Navigating recordsets ..909
Understanding CursorType ...911

xxxv

Contents

ftoc.indd 10/07/2015 Page xxxv

Detecting the recordset end or beginning ...912
Counting records ...913

Understanding DAO Objects ..914
The DAO DBEngine object ...916
The DAO Workspace object ..916
The DAO Database object ..916
The DAO TableDef object ..917
The DAO QueryDef object ..919
The DAO Recordset object ...921
The DAO Field objects (recordsets) ..922

Writing VBA Code to Update a Table ..924
Updating fi elds in a record using ADO ...925
Updating a calculated control ...930

Recalculating a control when updating or adding a record930
Checking the status of a record deletion ...932
Eliminating repetitive code ...934

Adding a new record ..935
Deleting a record ...935
Deleting related records in multiple tables...936

Chapter 29: Advanced Data Access with VBA . 941

Adding an Unbound Combo Box to a Form to Find Data ...941
Using the FindRecord method ...944
Using a bookmark ..946

Filtering a Form ...949
With code ...949
With a query ...951

Creating a parameter query ...952
Creating an interactive fi lter dialog box ...955
Linking the dialog box to another form ..957

Chapter 30: Customi zing the Ribbon . 959

The Ribbon Hierarchy ...959
Controls for Access Ribbons ..960

SplitButton ..961
Menu ...962
Gallery ...962
Button ...962
ToggleButton ..963
ComboBox ..963
CheckBox ...964

Special Ribbon features ..964
SuperTips ...964
Collapsing the Ribbon ...965

xxxvi

Contents

ftoc.indd 10/07/2015 Page xxxvi

Editing the Default Ribbon ...965
Working with the Quick Access Toolbar ..968
Developing Custom Ribbons ..971

The Ribbon creation process ...971
Using VBA callbacks ..972

Creating a Custom Ribbon ... 974
Step 1: Design the Ribbon and build the XML ... 974
Step 2: Write the callback routines ...977
Step 3: Create the USysRibbons table ..978
Step 4: Add XML to USysRibbons ...979
Step 5: Specify the custom Ribbon property ..981

The Basic Ribbon XML ..983
Adding Ribbon Controls ..985

Specifying imageMso ...985
The Label control ...985
The Button control ..987
Separators...988
The CheckBox control ..989
The DropDown control ..990
The SplitButton Control ...993

Attaching Ribbons to Forms and Reports ...994
Removing the Ribbon Completely ..996

Chapter 31: Preparing Your Access Application for Distribution 999

Defi ning the Current Database Options .. 1000
Application options ... 1000

Application Title ... 1000
Application Icon ... 1001
Display Form .. 1002
Display Status Bar ... 1002
Document Window Options .. 1002
Use Access Special Keys ... 1003
Compact on Close .. 1004
Remove Personal Information from File Properties on Save................. 1004
Use Windows-Themed Controls on Forms ... 1004
Enable Layout View ... 1004
Enable Design Changes for Tables in Datasheet View 1005
Check for Truncated Number Fields... 1005
Picture Property Storage Format .. 1005

Navigation options .. 1006
The Display Navigation Pane check box .. 1006
The Navigation Options button ... 1006

Ribbon and toolbar options .. 1007
Ribbon Name .. 1008
Shortcut Menu Bar .. 1008

xxxvii

Contents

ftoc.indd 10/07/2015 Page xxxvii

Allow Full Menus ... 1008
Allow Default Shortcut Menus .. 1008

Name AutoCorrect Options .. 1008
Developing the Application ... 1009

Building to a specifi cation ... 1009
Creating documentation ... 1011

Documenting the code you write .. 1011
Documenting the application ... 1012

Testing the application before distribution ... 1013
Polishing Your Application ... 1015

Giving your application a consistent look and feel 1015
Adding common professional components .. 1016

A splash screen ... 1016
An application switchboard ... 1018
An About box ... 1018
The status bar .. 1020
A progress meter ... 1021

Making the application easy to start ... 1027
Bulletproofi ng an Application ... 1029

Using error trapping on all Visual Basic procedures 1029
Maintaining usage logs ... 1030

Separating tables from the rest of the application...................................... 1033
Building bulletproof forms ... 1033
Validating user input ... 1034
Using the /runtime option ... 1034
Encrypting or encoding a database ... 1036

Removing a database password .. 1037
Protecting Visual Basic code ... 1038

Securing the Environment ..1040
Setting startup options in code .. 1041
Disabling startup bypass .. 1041
Setting property values ... 1042
Getting property values ...1044

Part VIII: Access and Windows SharePoint Services 1045

Chapter 32: Integrating Access with SharePoint . 1047

Introducing SharePoint .. 1047
Understanding SharePoint Sites ..1048

SharePoint Documents ... 1049
SharePoint lists ... 1049

Sharing Data between Access and SharePoint ... 1051
Linking to SharePoint lists .. 1051
Importing SharePoint lists ... 1054

xxxviii

Contents

ftoc.indd 10/07/2015 Page xxxviii

Exporting Access tables to SharePoint ... 1055
Moving Access tables to SharePoint .. 1058

Using SharePoint Templates .. 1060

Chapter 33: Deploying Access Applications to SharePoint . 1063

Understanding Web Publishing with Access ... 1064
Understanding Access Services ... 1065
Why SharePoint? ... 1066

Examining the Limitations of Access Web Applications 1067
Limitations of Access Services .. 1068
Transactional limitations ... 1069

Publishing a Custom Access Application to SharePoint .. 1070
Preparing the Access data model .. 1070
Initializing and confi guring the custom web application 1073

Reviewing and editing table views ... 1076
Adding a validation rule to a table ... 1077
Adding events to a table ... 1080
Creating your own queries and views .. 1082
A fi nal word on confi guring your web application1084

Launching and managing your web application ... 1085

Index . 1091

www.allitebooks.com

http://www.allitebooks.org

xxxix

fl ast.indd 10/06/2015 Page xxxix

Introduction

W
elcome to Access 2016 Bible, your personal guide to the most pow erful desktop database
management system available today.

If you’ve picked up this book, you’ve probably already recognized that Microsoft Access can
help you manage your data in ways that no other application can. Even the king of applications,
Microsoft Excel, can’t do what Access can. Now, it may seem silly to compare Access (a database
management application) with Excel (a spreadsheet application), but there is no doubt that Excel
is being used every day to manage and analyze large amounts of data in all kinds of organizations.
Indeed, you may be opening this book because you need to get past the limitations of Excel.

Access is an excellent (many would say logical) next step for the analyst who faces an ever-increasing
data pool. Access takes very few performance hits with larger datasets. It has no predetermined row
limitations. And it can effectively manage the relationships between disparate data tables. In addi-
tion, Access comes with tools that help you build your own distributable applications.

Today, when we have more data than ever and more demands for complex data analysis, power
analysts need to add some tools to their repertoire in order to get away from being simply “spread-
sheet mechanics.” That’s why this book is such an important step in the evolution of your skillset.
Throughout this book, not only will you get an introduction to Access, but you’ll also learn various
ways in which you can use Access to improve your daily data management and analysis.

Is This Book for You?
This book contains everything you need in order to learn Access 2016 to a mid-advanced level. The
book starts off with database basics and builds, chapter by chapter.

This book is designed to enhance the skillset of users at all levels (beginning, intermediate, and
even advanced users of Access). Start at the beginning if you’re new to Access. If you’re already
familiar with Access and comfortable building Access applications, you may want to start with the
later parts of this book.

If you’re new to the world of database management, this book has everything you need to get
started with Access 2016. It also offers advanced topics for reference and learning. Beginning
developers should pay particular attention to Part I, where we cover the essential skills necessary
for building successful and effi cient databases. Your ability as a database designer is constantly
judged by how well the applications you build perform and how well they handle data entrusted to
them by their users.

xl

fl ast.indd 10/06/2015 Page xl

Introduction

If you’ve been working an earlier version of Access, this book is for you. Although you may
already be familiar with the workings of Access, every new version has changes not only
in features, but also in the mechanics of how certain actions are performed. This book will
help you navigate through all these changes.

If you want to learn the basics of Visual Basic for Applications (VBA) programming, you’ll
fi nd what you need in this book. Although the topic of VBA is a rich one that deserves its
own book, this book offers a robust set of chapters that will get you started leveraging VBA
to enhance your Access databases. Part VI of this book explains the nuts and bolts—with a
lot of gritty technical details—of writing VBA procedures and building Access applications
around the code you add to your databases.

Conventions Used in This Book
We use the following conventions in this book:

 ■ When you’re instructed to press a key combination (press and hold down one key
while pressing another key), the key combination is separated by a plus sign. For
example, Ctrl+Esc indicates that you must hold down the Ctrl key and press the Esc
key; then release both keys.

 ■ Point the mouse refers to moving the mouse so that the mouse pointer is on a
specifi c item. Click refers to pressing the left mouse button once and releasing it.
Double-click refers to pressing the left mouse button twice in rapid succession and
then releasing it. Right-click refers to pressing the right mouse button once and
releasing it. Drag refers to pressing and holding down the left mouse button while
moving the mouse.

 ■ We use italics for new terms and for emphasis.

 ■ We use bold for material that you need to type directly into the computer.

How This Book Is Organized
This book is divided into nine parts:

 ■ Part I: Access Building Blocks: Part I provides a solid understanding of the basic
elements of databases, introduces you to the keywords of database management,
and teaches you how to plan tables and work with Access data types. In this part,
you’ll also get your fi rst look into Access and the Access interface.

 ■ Part II: Understanding Access Tables: In Part II, you get the skills you need to
build Access tables, manage relationships between tables, and link to disparate
data sources like Excel fi les, text fi les, SQL Server, and other Access databases.

xli

fl ast.indd 10/06/2015 Page xli

Introduction

 ■ Part III: Working with Access Queries: Part III introduces you to some of the
basic analytical tools available in Access. Here, you’ll explore the Query Builder, as
well as techniques to create both simple and advanced analytical outputs from your
Access tables. We cover query basics, aggregate queries, action queries, and cross-
tab queries.

 ■ Part IV: Analyzing Data in Access: Part IV demonstrates many of the advanced
techniques that truly bring data analysis to the next level. Here, you’ll explore how
to transform your data via queries, create custom calculations, perform conditional
analysis, build powerful subqueries, and apply statistical analysis to your queries.

 ■ Part V: Working with Access Forms and Reports: Part V focuses on building forms
and reports using Access. Here, we cover the basics of turning data into slick-
looking user interfaces and PDF-style Access reports. You’ll also explore how to
enhance the look and feel of your Access applications via advanced form controls.

 ■ Part VI: Access Programming Fundamentals: In Part VI, you’ll take the next step
and dive into programming. The chapters in this part start you with Access mac-
ros, take you into VBA fundamentals, and eventually work up to leveraging VBA to
improve your Access database. This part helps you understand the complex object
and event models that drive Access applications and how to construct the VBA code
necessary to take advantage of this rich programming environment.

 ■ Part VII: Advanced Access Programming Techniques: Part VII turns your atten-
tion to automation and integration, showing you how your reporting mechanisms
can be enhanced by leveraging other programs and platforms. In these chapters,
you’ll not only learn the fundamental skills required to become more profi cient in
VBA, but you’ll also discover many insider tricks to apply to your Access application
development projects. You’ll also explore advanced techniques, such as customizing
the Access 2016 Ribbon.

 ■ Part VIII: Access and Windows SharePoint Services: In Part VIII, we cover
the topic of Microsoft Windows SharePoint Services. Here, you’ll discover the
extended Microsoft SharePoint integration capabilities in Access that allow you
to publish Access tables, forms, and reports on SharePoint sites. Although some-
what limited when compared with strictly Access applications, publishing Access
objects to the SharePoint platform provides a powerful way of sharing Access
data with remote users.

How to Use This Book
Although each chapter is an integral part of the book as a whole, each chapter can also
stand on its own and has its own example fi les, available on the book’s website. You can
read the book in any order you want, skipping from chapter to chapter and from topic to
topic. This book’s index is particularly thorough; you can refer to the index to fi nd the
location of a particular topic you’re interested in.

xlii

fl ast.indd 10/06/2015 Page xlii

Introduction

What’s on the Website
The examples demonstrated throughout this book can be found on this book’s website.
The URL is www.wiley.com/go/access2016bible.

Getting Additional Help with Access
As you experiment with the new functions and tools you learn here in this book, you may sometimes
need an extra push in the right direction. The fi rst place you should look is Access’s Help system. The
Help system in Access isn’t perfect. To a new user, the Help system may seem like a clunky add-in that
returns a perplexing list of topics that has nothing to do with the original topic being searched. The
truth is, however, once you learn how to use the Access Help system effectively, it’s often the fastest
and easiest way to get extra help on a topic.

Following are some tips that will help you get the most out of Access’s Help system:

 ■ Location matters when asking for help. You may remember the Help system in older
versions of Access being a lot more user-friendly and more effective than newer versions
of Access. Well, rest assured that you aren’t just imagining it. The fact is, Microsoft funda-
mentally changed the mechanics of the Access Help system.

In Access 2016, there are actually two Help systems: one providing help on Access features
and another providing help on VBA programming topics. Instead of doing a global search
with your criteria, Access throws your search criteria only against the Help system that is
relevant to your current location. This essentially means that the help you get is determined
by the area of Access in which you’re working. So, if you need help on a topic that involves
VBA programming, you’ll need to be in the VBA Editor while performing your search. On
the other hand, if you need help on building a query, it’s best to be in the Query Design
view. This will ensure that your keyword search is performed on the correct Help system.

 ■ Online help is better than offline help. When you search for help on a topic, Access checks
to see if you’re connected to the Internet. If you are, Access returns help results based on
online content from Microsoft’s website. If you aren’t, Access uses the Help fi les that are
locally stored with Microsoft Offi ce. One way to maximize the help you get in Access is to
use the online help. Online help is generally better than offl ine help because the content
you fi nd with online help is often more detailed and includes updated information, as well
as links to other resources not available offl ine.

 ■ Diversify your knowledge base with online resources. Familiarize yourself with a handful
of websites and forums dedicated to Access. These resources can serve as supplemental
help, not only for basic Access topics, but also to give you situation-specifi c tips and tricks.
The following list of sites should get you started.

http://www.wiley.com/go/access2016bible

xliii

fl ast.indd 10/06/2015 Page xliii

Introduction

 ■ www.allenbrowne.com

 ■ www.microsoft.com/office/community/en-us/default.mspx

 ■ www.mvps.org/access

 ■ www.utteraccess.com

These sites are free to use and are particularly helpful when you need an extra push in the
right direction.

http://www.allenbrowne.com
http://www.microsoft.com/office/community/en-us/default.mspx
http://www.mvps.org/access
http://www.utteraccess.com

c01.indd 10/07/2015 Page 1

Part I

Access Building Blocks

E
ach part of this book builds on previ-
ous parts, and the chapters in each
part contain examples that draw on

techniques explained in previous parts and
chapters. As a developer, your applications
will benefi t from the skills you acquire by
reading the chapters and practicing the
examples contained in this book.

But everyone has to start somewhere when
approaching a new discipline, and Part I
of this book presents the essential skills
necessary for anyone to succeed at database
development with Access. The topics cov-
ered in this part explain the concepts and
techniques that are necessary to success-
fully use database environments and give
you the skills necessary to normalize data
and plan and implement effective tables.

If you’re already familiar with the concepts
involved in database design, you may want
to skim these chapters. If you’re new to the
world of databases, spend some time here
gaining a thorough understanding of these
important topics.

IN THIS PART

Chapter 1
An Introduction to Database Development

Chapter 2
Getting Started with Access

3

c01.indd 10/07/2015 Page 3

CHAP T ER

1
An Introduction to Database
Development

IN THIS CHAPTER

Examining the differences between databases, tables, records, fi elds, and values

Discovering why multiple tables are used in a database

Exploring Access database objects

Designing a database system

D
atabase development is unlike most other ways you work with computers. Unlike Microsoft
Word or Excel, where the approach to working with the application is relatively intuitive,
good database development requires prior knowledge. You have to learn a handful of funda-

mentals, including database terminology, basic database concepts, and database best practices.

Throughout this chapter, we cover the fundamentals of database development.

 If your goal is to get right into Access, you might want to skip to Chapter 2.

The Database Terminology of Access
Access follows most, but not all, traditional database terminology. The terms database, table, record,
field, and value indicate a hierarchy from largest to smallest. These same terms are used with virtu-
ally all database systems.

Databases
Generally, the word database is a computer term for a collection of information concerning a
certain topic or business application. Databases help you organize this related information in a
logical fashion for easy access and retrieval.

4

Part I: Access Building Blocks

c01.indd 10/07/2015 Page 4

Some older database systems used the term database to describe individual tables; current use of database applies

to all elements of a database system.

Databases aren’t only for computers. There are also manual databases; we sometimes refer
to these as manual filing systems or manual database systems. These fi ling systems usually
consist of people, papers, folders, and fi ling cabinets—paper is the key to a manual data-
base system. In manual database systems, you typically have in and out baskets and some
type of formal fi ling method. You access information manually by opening a fi le cabinet,
taking out a fi le folder, and fi nding the correct piece of paper. Users fi ll out paper forms for
input, perhaps by using a keyboard to input information that’s printed on forms. You fi nd
information by manually sorting the papers or by copying information from many papers
to another piece of paper (or even into an Excel spreadsheet). You may use a spreadsheet or
calculator to analyze the data or display it in new and interesting ways.

An Access database is nothing more than an automated version of the fi ling and retrieval
functions of a paper fi ling system. Access databases store information in a carefully defi ned
structure. Access tables store a variety of different kinds of data, from simple lines of text
(such as name and address) to complex data (such as pictures, sounds, or video images).
Storing data in a precise format enables a database management system (DBMS) like Access
to turn data into useful information.

Tables serve as the primary data repository in an Access database. Queries, forms, and
reports provide access to the data, enabling a user to add or extract data, and presenting
the data in useful ways. Most developers add macros or Visual Basic for Applications (VBA)
code to forms and reports to make their Access applications easier to use.

A relational database management system (RDBMS), such as Access, stores data in related
tables. For example, a table containing employee data (names and addresses) may be related
to a table containing payroll information (pay date, pay amount, and check number).

Queries allow the user to ask complex questions (such as “What is the sum of all paychecks
issued to Jane Doe in 2012?”) from these related tables, with the answers displayed as
onscreen forms and printed reports.

One of the fundamental differences between a relational database and a manual fi ling sys-
tem is that, in a relational database system, data for a single person or item may be stored
in separate tables. For example, in a patient management system, the patient’s name,
address, and other contact information is likely to be stored in a different table from the
table holding patient treatments. In fact, the treatment table holds all treatment informa-
tion for all patients, and a patient identifi er (usually a number) is used to look up an indi-
vidual patient’s treatments in the treatment table.

In Access, a database is the overall container for the data and associated objects. It’s more
than the collection of tables, however—a database includes many types of objects, includ-
ing queries, forms, reports, macros, and code modules.

www.allitebooks.com

http://www.allitebooks.org

5

Chapter 1: An Introduction to Database Development

c01.indd 10/07/2015 Page 5

1

As you open an Access database, the objects (tables, queries, and so on) in the database are
presented for you to work with. You may open several copies of Access at the same time and
simultaneously work with more than one database, if needed.

Many Access databases contain hundreds or even thousands of tables, forms, queries, reports,
macros, and modules. With a few exceptions, all the objects in an Access 2016 database reside
within a single fi le with an extension of ACCDB or ACCDE. Access databases can also have an
extension of MDB or MDE. Databases with these extensions are backward-compatible with
Access 2003 and prior versions.

Tables
A table is just a container for raw information (called data), similar to a folder in a manual
fi ling system. Each table in an Access database contains information about a single topic,
such as employees or products, and the data in the table is organized into rows and columns.

 In Chapters 3 and 4, you learn the very important rules governing relational table design and how to

incorporate those rules into your Access databases. These rules and guidelines ensure that your appli-

cations perform well while protecting the integrity of the data contained within your tables.

In Access, a table is an entity. As you design and build Access databases, or even when
working with an existing Access application, you must think of how the tables and other
database objects represent the physical entities managed by your database and how the
entities relate to one another.

After you create a table, you can view the table in a spreadsheet-like form, called a
datasheet, comprising rows and columns (known as records and fields, respectively—see the
following section, “Records and fi elds”). Although a datasheet and a spreadsheet are super-
fi cially similar, a datasheet is a very different type of object.

 Chapter 5 discusses Access datasheets and the differences between datasheets and spreadsheets.

You can fi nd much more about fi elds and fi eld properties in Chapter 3.

Records and fi elds
A datasheet is divided into rows (called records) and columns (called fields), with the fi rst
row (the heading on top of each column) containing the names of the fi elds in the database.

Each row is a single record containing fi elds that are related to that record. In a manual
system, the rows are individual forms (sheets of paper), and the fi elds are equivalent to the
blank areas on a printed form that you fi ll in.

Each column is a fi eld that includes many properties that specify the type of data con-
tained within the fi eld, and how Access should handle the fi eld’s data. These properties
include the name of the fi eld (Company) and the type of data in the fi eld (Text). A fi eld may
include other properties as well. For example, the Address fi eld’s Size property tells Access
the maximum number of characters allowed for the address.

6

Part I: Access Building Blocks

c01.indd 10/07/2015 Page 6

When working with Access, the term field is used to refer to an attribute stored in a record. In many other database

systems, including Microsoft SQL Server, column is the expression you’ll hear most often in place of field. Field and

column mean the same thing. The terminology used relies somewhat on the context of the database system underly-

ing the table containing the record.

Values
At the intersection of a record and a fi eld is a value—the actual data element. For example,
if you have a fi eld called Company, a company name entered into that fi eld would represent
one data value. Certain rules govern how data is contained in an Access table.

 See Chapters 3 and 4 for more on these rules.

Relational Databases
Access is a relational database management system. Access data is stored in related tables,
where data in one table (such as Customers) is related to data in another table (such as
Orders). Access maintains the relationships between related tables, making it easy to
extract a customer and all the customer’s orders, without losing any data or pulling order
records not owned by the customer.

Multiple tables simplify data entry and reporting by decreasing the input of redundant
data. By defi ning two tables for an application that uses customer information, for exam-
ple, you don’t need to store the customer’s name and address every time the customer pur-
chases an item.

After you’ve created the tables, they need to be related to each other. For example, if
you have a Customers table and a Sales table, you can relate the two tables using a com-
mon fi eld between them. In this case, Customer Number would be a good fi eld to have in
both tables. This will allow you to see sales in the Sales table where the Customer Number
matches the Customers table.

The benefi t of this model is that you don’t have to repeat key attributes about a customer
(like customer name, address, city, state, zip) each time you add a new record to the Sales
table. All you need is the customer number. When a customer changes address, for example,
the address changes only in one record in the Customers table.

7

Chapter 1: An Introduction to Database Development

c01.indd 10/07/2015 Page 7

1

Separating data into multiple tables within a database makes a system easier to maintain
because all records of a given type are within the same table. By taking the time to prop-
erly segment data into multiple tables, you experience a signifi cant reduction in design and
work time. This process is known as normalization.

 You can read about normalization in Chapter 4.

Why Create Multiple Tables?
The prospect of creating multiple tables almost always intimidates beginning database users. Most
often, beginners want to create one huge table that contains all the information they need—for example,
a Customers table with all the sales placed by the customer and the customer’s name, address, and
other information. After all, if you’ve been using Excel to store data so far, it may seem quite reason-
able to take the same approach when building tables in Access.

A single large table for all customer information quickly becomes diffi cult to maintain. You have to input
the customer information for every sale a customer makes (repeating the name and address information
over and over in every row). The same is true for the items purchased for each sale when the customer
has purchased multiple items as part of a single purchase. This makes the system more ineffi cient and
prone to data-entry mistakes. The information in the table is ineffi ciently stored—certain fi elds may
not be needed for each sales record, and the table ends up with a lot of empty fi elds.

You want to create tables that hold a minimum of information while still making the system easy to use
and fl exible enough to grow. To accomplish this, you need to consider making more than one table,
with each table containing fi elds that are related only to the focus of that table. Then, after you create
the tables, you can use other Access database objects to link them and create meaningful views and
reports. We’ll dive into those topics in the next section.

Access Database Objects
If you’re new to databases (or even if you’re an experienced database user), you need to
understand a few key concepts before starting to build Access databases. The Access data-
base contains six types of top-level objects, which consist of the data and tools that you
need to use Access:

 ■ Table: Holds the actual data

 ■ Query: Searches for, sorts, and retrieves specifi c data

 ■ Form: Lets you enter and display data in a customized format

 ■ Report: Displays and prints formatted data

8

Part I: Access Building Blocks

c01.indd 10/07/2015 Page 8

 ■ Macro: Automates tasks without programming

 ■ Module: Contains programming statements written in the VBA (Visual Basic for
Applications) programming language

Tables
As you’ve discovered earlier in this chapter, tables serve as the primary data repository in
an Access database. You interact with tables through a special kind of object called a data-
sheet. Although not a permanent database object, a datasheet displays a table’s content
in a row-and-column format, similar to an Excel worksheet. A datasheet displays a table’s
information in a raw form, without transformations or fi ltering. The Datasheet view is the
default mode for displaying all fi elds for all records.

You can scroll through the datasheet using the directional keys on your keyboard. You can
also display related records in other tables while in a datasheet. In addition, you can make
changes to the displayed data.

Queries
Queries extract information from a database. A query selects and defi nes a group of records
that fulfi ll a certain condition. Most forms and reports are based on queries that combine,
fi lter, or sort data before it’s displayed. Queries are often called from macros or VBA proce-
dures to change, add, or delete database records.

An example of a query is when a person at the sales offi ce tells the database, “Show me all
customers, in alphabetical order by name, who are located in Massachusetts and bought
something over the past six months” or “Show me all customers who bought Chevrolet car
models within the past six months and display them sorted by customer name and then by
sale date.”

Instead of asking the question in plain English, a person uses the query by example (QBE)
method. When you enter instructions into the Query Designer window and run the query,
the query translates the instructions into Structured Query Language (SQL) and retrieves
the desired data.

 Chapter 8 discusses the Query Designer window and building queries.

Data-entry and display forms
Data-entry forms help users get information into a database table quickly, easily, and accu-
rately. Data-entry and display forms provide a more structured view of the data than what
a datasheet provides. From this structured view, database records can be viewed, added,
changed, or deleted. Entering data through the data-entry forms is the most common way
to get the data into the database table.

9

Chapter 1: An Introduction to Database Development

c01.indd 10/07/2015 Page 9

1

Data-entry forms can be used to restrict access to certain fi elds within the table. Forms can
also be enhanced with data validation rules or VBA code to check the validity of your data
before it’s added to the database table.

Most users prefer to enter information into data-entry forms rather than into Datasheet
views of tables. Forms often resemble familiar paper documents and can aid the user with
data-entry tasks. Forms make data entry easy to understand by guiding the user through
the fi elds of the table being updated.

Read-only forms are often used for inquiry purposes. These forms display certain fi elds
within a table. Displaying some fi elds and not others means that you can limit a user’s
access to sensitive data while allowing access to other fi elds within the same table.

Reports
Reports present your data in PDF-style formatting. Access allows for an extraordinary
amount of fl exibility when creating reports. For instance, you can confi gure a report to list
all records in a given table (such as a Customers table), or you can have the report contain
only the records meeting certain criteria (such as all customers living in Arizona). You do
this by basing the report on a query that selects only the records needed by the report.

Reports often combine multiple tables to present complex relationships among different
sets of data. An example is printing an invoice. The Customers table provides the customer’s
name and address (and other relevant data) and related records in the sales table to print
the individual line-item information for each product ordered. The report also calculates the
sales totals and prints them in a specifi c format. Additionally, you can have Access output
records into an invoice report, a printed document that summarizes the invoice.

Macros and VBA
Just as Excel has macros and VBA programming functionality, Microsoft Access has its equiv-
alents. This is where the true power and fl exibility of Microsoft Access data analysis resides.
Whether you are using them in custom functions, batch analysis, or automation, macros and
VBA modules can add a customized fl exibility that is hard to match using any other means.
For example, you can use macros and VBA to automatically perform redundant analyses and
recurring analytical processes, leaving you free to work on other tasks. Macros and VBA also
allow you to reduce the chance of human error and to ensure that analyses are preformed the
same way every time. Starting in Chapter 22, you will explore the benefi ts of macros and VBA,
and learn how you can use them to schedule and run batch analysis.

When you design your database tables, keep in mind all the types of information that you want to print. Doing so

ensures that the information you require in your various reports is available from within your database tables.

10

Part I: Access Building Blocks

c01.indd 10/07/2015 Page 10

Planning for Database Objects
To create database objects, such as tables, forms, and reports, you fi rst complete a series of
design tasks. The better your design is, the better your application will be. The more you think
through your design, the faster and more successfully you can complete any system. The design
process is not some necessary evil, nor is its intent to produce voluminous amounts of docu-
mentation. The sole intent of designing an object is to produce a clear-cut path to follow as you
implement it.

A Five-Step Design Method
The fi ve design steps described in this section provide a solid foundation for creating
database applications—including tables, queries, forms, reports, macros, and simple VBA
modules.

The time you spend on each step depends entirely on the circumstances of the database
you’re building. For example, sometimes users give you an example of a report they want
printed from their Access database, and the sources of data on the report are so obvious
that designing the report takes a few minutes. Other times, particularly when the users’
requirements are complex or the business processes supported by the application require a
great deal of research, you may spend many days on Step 1.

As you read through each step of the design process, always look at the design in terms of
outputs and inputs.

Step 1: The overall design—from concept to reality
All software developers face similar problems, the fi rst of which is determining how to meet
the needs of the end user. It’s important to understand the overall user requirements before
zeroing in on the details.

For example, your users may ask for a database that supports the following tasks:

 ■ Entering and maintaining customer information (name, address, and fi nancial
history)

 ■ Entering and maintaining sales information (sales date, payment method, total
amount, customer identity, and other fi elds)

 ■ Entering and maintaining sales line-item information (details of items purchased)

 ■ Viewing information from all the tables (sales, customers, sales line items, and
payments)

 ■ Asking all types of questions about the information in the database

 ■ Producing a monthly invoice report

11

Chapter 1: An Introduction to Database Development

c01.indd 10/07/2015 Page 11

1

 ■ Producing a customer sales history

 ■ Producing mailing labels and mail-merge reports

When reviewing these eight tasks, you may need to consider other peripheral tasks that
weren’t mentioned by the user. Before you jump into designing, sit down and learn how the
existing process works. To accomplish this, you must do a thorough needs analysis of the
existing system and how you might automate it.

Prepare a series of questions that give insight to the client’s business and how the client
uses his data. For example, when considering automating any type of business, you might
ask these questions:

 ■ What reports and forms are currently used?

 ■ How are sales, customers, and other records currently stored?

 ■ How are billings processed?

As you ask these questions and others, the client will probably remember other things
about the business that you should know.

A walkthrough of the existing process is also helpful to get a feel for the business. You
may have to go back several times to observe the existing process and how the employ-
ees work.

As you prepare to complete the remaining steps, keep the client involved—let the users
know what you’re doing and ask for input on what to accomplish, making sure it’s within
the scope of the user’s needs.

Step 2: Report design
Although it may seem odd to start with reports, in many cases, users are more interested
in the printed output from a database than they are in any other aspect of the application.
Reports often include every bit of data managed by an application. Because reports tend
to be comprehensive, they’re often the best way to gather important information about a
database’s requirements.

When you see the reports that you’ll create in this section, you may wonder, “Which comes
fi rst, the chicken or the egg?” Does the report layout come fi rst, or do you fi rst determine
the data items and text that make up the report? Actually, these items are considered at
the same time.

It isn’t important how you lay out the data in a report. The more time you take now, how-
ever, the easier it will be to construct the report. Some people go so far as to place grid-
lines on the report to identify exactly where they want each bit of data to be.

12

Part I: Access Building Blocks

c01.indd 10/07/2015 Page 12

Step 3: Data design
The next step in the design phase is to take an inventory of all the information needed by
the reports. One of the best methods is to list the data items in each report. As you do so,
take careful note of items that are included in more than one report. Make sure that you
keep the same name for a data item that is in more than one report because the data item
is really the same item.

For example, you can start with all the customer data you’ll need for each report, as shown
in Table 1.1.

TABLE 1.1 Customer-Related Data Items Found in the Reports

Customers Report Invoice Report

Customer Name Customer Name

Street Street

City City

State State

ZIP Code ZIP Code

Phone Numbers Phone Numbers

E-Mail Address

Web Address

Discount Rate

Customer Since

Last Sales Date

Sales Tax Rate

Credit Information (four fi elds)

As you can see by comparing the type of customer information needed for each report,
there are many common fi elds. Most of the customer data fi elds are found in both reports.
Table 1.1 shows only some of the fi elds that are used in each report—those related to cus-
tomer information. Because the related row and fi eld names are the same, you can easily
make sure that you have all the data items. Although locating items easily isn’t critical
for this small database, it becomes very important when you have to deal with large tables
containing many fi elds.

After extracting the customer data, you can move on to the sales data. In this case,
you need to analyze only the Invoice report for data items that are specifi c to the sales.
Table 1.2 lists the fi elds in the report that contain information about sales.

13

Chapter 1: An Introduction to Database Development

c01.indd 10/07/2015 Page 13

1

TABLE 1.2 Sales Data Items Found in the Reports

Invoice Report Line Item Data

Invoice Number Product Purchased

Sales Date Quantity Purchased

Invoice Date Description of Item Purchased

Payment Method Price of Item

Salesperson Discount for Each Item

Discount (overall for sale)

Tax Location

Tax Rate

Product Purchased (multiple lines)

Quantity Purchased (multiple lines)

Description of Item Purchased (multiple lines)

Price of Item (multiple lines)

Discount for each item (multiple lines)

Payment Type (multiple lines)

Payment Date (multiple lines)

Payment Amount (multiple lines)

Credit Card Number (multiple lines)

Expiration Date (multiple lines)

As you can see when you examine the type of sales information needed for the report, a
few items (fi elds) are repeating (for example, the Product Purchased, Quantity Purchased,
and Price of Item fi elds). Each invoice can have multiple items, and each of these items
needs the same type of information—number ordered and price per item. Many sales have
more than one purchased item. Also, each invoice may include partial payments, and it’s
possible that this payment information will have multiple lines of payment information, so
these repeating items can be put into their own grouping.

You can take all the individual items that you found in the sales information group in the
preceding section and extract them to their own group for the invoice report. Table 1.2
shows the information related to each line item.

Step 4: Table design
Now for the diffi cult part: You must determine which fi elds are needed for the tables that
make up the reports. When you examine the multitude of fi elds and calculations that make
up the many documents you have, you begin to see which fi elds belong to the various

14

Part I: Access Building Blocks

c01.indd 10/07/2015 Page 14

tables in the database. (You already did much of the preliminary work by arranging the
fi elds into logical groups.) For now, include every fi eld you extracted. You’ll need to add
others later (for various reasons), although certain fi elds won’t appear in any table.

It’s important to understand that you don’t need to add every little bit of data into the
database’s tables. For example, users may want to add vacation and other out-of-offi ce days
to the database to make it easy to know which employees are available on a particular day.
However, it’s very easy to burden an application’s initial design by incorporating too many
ideas during the initial development phases. Because Access tables are so easy to modify
later, it’s probably best to put aside noncritical items until the initial design is complete.
Generally speaking, it’s not diffi cult to accommodate user requests after the database
development project is under way.

After you’ve used each report to display all the data, it’s time to consolidate the data by
purpose (for example, grouped into logical groups) and then compare the data across those
functions. To do this step, fi rst look at the customer information and combine all its different
fi elds to create a single set of data items. Then do the same thing for the sales information and
the line-item information. Table 1.3 compares data items from these groups of information.

TABLE 1.3 Comparing the Data Items

Customer Data Invoice Data Line Items Payment Information

Customer Company
Name

Invoice Number Product Purchased Payment Type

Street Sales Date Quantity Purchased Payment Date

City Invoice Date Description of Item
Purchased

Payment Amount

State Discount (overall for
this sale)

Price of Item Credit Card Number

ZIP Code Tax Rate Discount for Each Item Expiration Date

Phone Numbers
(two fi elds)

Taxable?

E-Mail Address

Web Address

Discount Rate

Customer Since

Last Sales Date

Sales Tax Rate

Credit Information
(four fi elds)

www.allitebooks.com

http://www.allitebooks.org

15

Chapter 1: An Introduction to Database Development

c01.indd 10/07/2015 Page 15

1

Consolidating and comparing data is a good way to start creating the individual table, but
you have much more to do.

As you learn more about how to perform a data design, you also learn that the customer
data must be split into two groups. Some of these items are used only once for each cus-
tomer, while other items may have multiple entries. An example is the Sales column—the
payment information can have multiple lines of information.

You need to further break these types of information into their own columns, thus separat-
ing all related types of items into their own columns—an example of the normalization part
of the design process. For example, one customer can have multiple contacts with the com-
pany or make multiple payments toward a single sale. Of course, we’ve already broken the
data into three categories: customer data, invoice data, and line item details.

Keep in mind that one customer may have multiple invoices, and each invoice may have
multiple line items on it. The invoice-data category contains information about individual
sales and the line-items category contains information about each invoice. Notice that
these three columns are all related; for example, one customer can have multiple invoices,
and each invoice may require multiple line items.

The relationships between tables can be different. For example, each sales invoice has one
and only one customer, while each customer may have multiple sales. A similar relationship
exists between the sales invoice and the line items of the invoice.

Database table relationships require a unique fi eld in both tables involved in a relationship.
A unique identifi er in each table helps the database engine to properly join and extract
related data.

Only the Sales table has a unique identifi er (Invoice Number), which means that you need
to add at least one fi eld to each of the other tables to serve as the link to other tables—for
example, adding a Customer ID fi eld to the Customers table, adding the same fi eld to the
Invoice table, and establishing a relationship between the tables through Customer ID in
each table. The database engine uses the relationship between customers and invoices to
connect customers with their invoices. Relationships between tables are facilitated through
the use of key fi elds.

 We cover creating and understanding relationships and the normalization process in Chapter 4.

With an understanding of the need for linking one group of fi elds to another group, you
can add the required key fi elds to each group. Table 1.4 shows two new groups and link
fi elds created for each group of fi elds. These linking fi elds, known as primary keys and
foreign keys, are used to link these tables together.

16

Part I: Access Building Blocks

c01.indd 10/07/2015 Page 16

The fi eld that uniquely identifi es each row in a table is the primary key. The correspond-
ing fi eld in a related table is the foreign key. In our example, Customer ID in the Customers
table is a primary key, while Customer ID in the Invoices table is a foreign key.

Let’s assume a certain record in the Customers table has 12 in its Customer ID fi eld. Any
record in the Invoices table with 12 as its Customer ID is “owned” by customer 12.

TABLE 1.4 Tables with Keys

Customers Data Invoice Data Line Items Data Sales Payment Data

Customer ID Invoice ID Invoice ID Invoice ID

Customer Name Customer ID Line Number Payment Type

Street Invoice Number Product Purchased Payment Date

City Sales Date Quantity Purchased Payment Amount

State Invoice Date Description of Item
Purchased

Credit Card Number

ZIP Code Payment Method Price of Item Expiration Date

Phone Numbers
(two fi elds)

Salesperson Discount for Each Item

E-Mail Address Tax Rate

Web Address

Discount Rate

Customer Since

Last Sales Date

Sales Tax Rate

With the key fi elds added to each table, you can now fi nd a fi eld in each table that links
it to other tables in the database. For example, Table 1.4 shows Customer ID in both the
Customers table (where it’s the primary key) and the Invoice table (where it’s a foreign key).

You’ve identifi ed the three core tables for your system, as refl ected by the fi rst three col-
umns in Table 1.4. This is the general, or fi rst, cut toward the fi nal table designs. You’ve
also created an additional fact table to hold the sales payment data. Normally, payment
details (such as the credit card number) are not part of a sales invoice.

Taking time to properly design your database and the tables contained within it is arguably
the most important step in developing a database-oriented application. By designing your
database effi ciently, you maintain control of the data, eliminating costly data-entry mis-
takes and limiting your data entry to essential fi elds.

17

Chapter 1: An Introduction to Database Development

c01.indd 10/07/2015 Page 17

1

Although this book is not geared toward teaching database theory and all its nuances, this
is a good place to briefl y describe the art of database normalization. You’ll read the details
of normalization in Chapter 4, but in the meantime you should know that normalization is
the process of breaking data down into constituent tables. Earlier in this chapter you read
about how many Access developers add dissimilar information, such as customers, invoice
data, and invoice line items, into one large table. A large table containing dissimilar data
quickly becomes unwieldy and hard to keep updated. Because a customer’s phone number
appears in every row containing that customer’s data, multiple updates must be made when
the phone number changes.

Step 5: Form design
After you’ve created the data and established table relationships, it’s time to design your
forms. Forms are made up of the fi elds that can be entered or viewed in Edit mode. Generally
speaking, your Access screens should look a lot like the forms used in a manual system.

When you’re designing forms, you need to place three types of objects onscreen:

 ■ Labels and text-box data-entry fields: The fi elds on Access forms and reports are
called controls.

 ■ Special controls (command buttons, multiple-line text boxes, option buttons,
list boxes, check boxes, business graphs, and pictures).

 ■ Graphical objects to enhance the forms (colors, lines, rectangles, and three-
dimensional effects).

Ideally, if the form is being developed from an existing printed form, the Access data-entry
form should resemble the printed form. The fi elds should be in the same relative place on
the screen as they are in the printed counterpart.

Labels display messages, titles, or captions. Text boxes provide an area where you can type
or display text or numbers that are contained in your database. Check boxes indicate a con-
dition and are either unchecked or checked. Other types of controls available with Access
include command buttons, list boxes, combo boxes, option buttons, toggle buttons, and
option groups.

 Starting with Part V, we cover in detail the topic of creating forms.

19

c02.indd 09/25/2015 Page 19

 CHAP T ER

2
Getting Started with Access

IN THIS CHAPTER

Looking at the Access welcome screen

Creating a database from scratch

Opening a new database

Getting acquainted with the Access interface

I
n this chapter, you’ll gain an understanding of the major components of the user interface. If
you haven’t used Access since the release of Microsoft Offi ce 2003, you may be surprised at the
changes to the user interface.

The Access Welcome Screen
If you open Access 2016 via Windows (Start ➪ All Programs ➪ Microsoft Offi ce 2016 ➪ Access 2016),
you’ll see the default welcome screen shown in Figure 2.1. The welcome screen gives you several
options for opening an existing Access database or creating a new database.

If you open an Access database directly from Windows Explorer (by double-clicking it), you won’t see the welcome

screen. Instead, you’ll go directly to the database interface covered later in this chapter.

In the upper-left corner of the welcome screen, you’ll notice the Recent section. The fi les listed
here are databases that you’ve previously opened through Access 2016. You can click any of the
database fi les listed there to open them.

Access does not distinguish existing databases from deleted databases when populating the Recent section. This

means you could see a database in the Recent list that you know for a fact you’ve deleted. Clicking an already

deleted database in the Recent list will simply activate an error message stating that Access could not fi nd the

database.

20

Part I: Access Building Blocks

c02.indd 09/25/2015 Page 20

FIGURE 2.1

The Access welcome screen provides a number of ways to start working with Access.

Search online for a

template

Open a

predefined template

Start a new web

application

Start a new desktop

application

Open an existing

database

Recently opened

databases

Below the Recent section, you’ll see the Open Other Files hyperlink. Click this link to
browse for and open databases on your computer or network.

At the top of the welcome screen, you can search for Access database templates online. These
templates are typically starter databases that have various purposes. Microsoft makes them
available free of charge.

In the center of the welcome screen, you’ll see various predefi ned templates that you can
click on to download and use. Microsoft established the online templates repository as
a way to provide people with the opportunity to download partially or completely built
Access applications. The template databases cover many common business requirements,
such as inventory control and sales management. You may want to take a moment to
explore the online templates, but they aren’t covered in this book.

21

Chapter 2: Getting Started with Access

c02.indd 09/25/2015 Page 21

2

In the center of the welcome screen, you’ll also see two commands: Custom Web App and
Blank Desktop Database. These two options allow you to create a database from scratch.
If your aim is to create a new Access database that will be used on a PC (either yours or
your users’), choose Blank Desktop Database. If you’ll eventually be publishing your Access
application via SharePoint, choose the Custom Web App database.

 We cover custom web apps in Part VIII of this book.

How to Create a Blank Desktop Database
To create a new blank database, you can click the Blank Desktop Database option on the
 welcome screen (refer to Figure 2.1). When you do, the dialog box shown in Figure 2.2
appears, allowing you to specify the name and location of your database.

The default location of the new database will be your Documents folder. If you want to use a different folder, click

the Browse button (it looks like a Windows Explorer folder) to the right of the File Name box to browse to the location

you want to use.

You can also permanently tell Access to start with your own custom default location by clicking the File tab, choosing

Options, and then changing the Default database folder setting (found on the General tab).

FIGURE 2.2

Enter the name of the new database in the File Name box.

When the new database is created, Access automatically opens it for you. In Figure 2.3,
notice that Access opens the new database with a blank table already added to the data-
base, ready to be fi lled in with fi elds and other design details.

22

Part I: Access Building Blocks

c02.indd 09/25/2015 Page 22

FIGURE 2.3

Your new database is created.

Access File Formats
Since Access 2007, the default fi le format for Access database fi les has been ACCDB instead of MDB.
It’s worth a moment of your time to understand why this changed and how it affects how Access 2016
works with older Access database fi les.

Since its inception, Access has used a database engine named Jet (an acronym for Joint Engine
Technology). With Access 2007, the Access development team wanted to add signifi cant new features
to Access, such as multivariable and attachment fi elds. Because the new features were so signifi cant,
they couldn’t retrofi t Jet with the code necessary to support the new features. As a result, Microsoft
developed an entirely new database engine, the Access Connectivity Engine (ACE).

Access 2016 supports several fi le formats, including the following:

 ■ Access 2007–2016 ACCDB

 ■ Access 2002–2003 MDB

 ■ Access 2000 MDB

If you are unfortunate enough to work in an environment where Access 2003 is still being used, you will
need to stick with the Access 2002–2003 MDB format for compatibility purposes. In that same light,
if you are using older databases that use database replication or user-level security, you will need
to stick with the MDB formats. Access ACCDB fi les do not support replication or user-level security.

In Access 2016, you can open older Access 2002–2003 and Access 2000 MDB fi les and make any desired
changes to them, but you’ll only be able to use features specifi c to those versions. Some of the new
Access features won’t be available, particularly those features that rely on the ACE database engine.

You can convert a database saved in a previous format by opening the database in Access 2016, choosing
File ➪ Save As, and then, in the Save As dialog box, choosing any one of the different Access formats.

23

Chapter 2: Getting Started with Access

c02.indd 09/25/2015 Page 23

2

The Access 2016 Interface
After you create or open a new database, the Access screen will look similar to Figure 2.4.
Across the top of the screen is the Access Ribbon. On the left, you see the Navigation pane.
These two components make up the bulk of the Access interface. In addition, you have at
your disposal the Quick Access toolbar, which you can customize with the commands you
use most frequently.

FIGURE 2.4

The Access interface starts with the Ribbon at the top and the Navigation pane at the left.

The Access Ribbon

The Navigation pane

The Navigation pane
The Navigation pane, at the left of the screen, is your primary navigation aid when work-
ing with Access. The Navigation pane shows queries, forms, reports, and other Access object
types. It can also display a combination of different types of objects.

Click the drop-down list in the Navigation pane’s title bar to reveal the navigation options
(see Figure 2.5).

The navigation options are divided into two categories: Navigate To Category and Filter
By Group. First, you choose an option under Navigate To Category, and then you choose

24

Part I: Access Building Blocks

c02.indd 09/25/2015 Page 24

an option under Filter By Group. The Filter By Group options you’re presented with depend
on the Navigate To Category option you select. We cover each of the Navigate To Category
options in the following sections, along with the corresponding Filter By Group options.

FIGURE 2.5

Choosing an alternate display for the Navigation pane.

Custom

The Custom option creates a new tab in the Navigation pane. This new tab is titled Custom
Group 1 by default and contains objects that you drag and drop into the tab’s area. Items
added to a custom group still appear in their respective object type views described in the
next section.

When you select Custom, the Filter by Group category is populated with all the custom
groups you’ve previously created. You can use the Filter by Group category to fi lter to any
of the created custom groups.

Custom groups are a great way to group dissimilar objects (like tables, queries, and forms) that are functionally

related. For example, you could create a Customers custom group and add all the database objects related to

 customer activities. Items contained in a custom group can appear in other groups as well.

www.allitebooks.com

http://www.allitebooks.org

25

Chapter 2: Getting Started with Access

c02.indd 09/25/2015 Page 25

2

Object Type

The Object Type option is most similar to previous versions of Access.

When you select Object Type, you have the following options under Filter by Group:

 ■ Tables

 ■ Queries

 ■ Forms

 ■ Reports

 ■ All Access Objects

By default, the Navigation pane shows all objects in the current database. Select All Access
Objects when you’ve been working with one of the fi ltered view and want to see every
object in the database.

Tables and Related Views

The Tables and Related Views option requires a bit of explanation. Access tries very hard to
keep the developer informed of the hidden connections between objects in the database.
For example, a particular table may be used in a number of queries or referenced from a
form or report. Selecting Tables and Related Views allows you to understand which objects
are affected by each table.

When you select Tables and Related View, the Filter by Group category is populated with the
Tables in your database. Clicking each object in the Filter by Group category will fi lter the
list to that object and all the other dependent and precedent objects related to it.

Created Date

This option groups the database objects by the created date. This setting is useful when
you need to know when an object was created.

When you select Created Date, you have the following options under Filter by Group:

 ■ Today

 ■ Yesterday

 ■ Last Week

 ■ Two Weeks Ago

 ■ Older

Modified Date

This option groups the database objects by the modifi ed date. This setting is useful when
you need to know when an object was modifi ed.

26

Part I: Access Building Blocks

c02.indd 09/25/2015 Page 26

When you select Modifi ed Date, you have the following options under Filter by Group:

 ■ Today

 ■ Yesterday

 ■ Last Week

 ■ Two Weeks Ago

 ■ Older

Tabbed Windows
A common complaint among some developers with earlier versions of Access was the fact that when
multiple objects were simultaneously opened in the Access environment, the objects would often
overlap and obscure each other, making it more diffi cult to navigate between the objects.

Microsoft has added a tabbed document interface to Access, preventing objects from obscuring other
objects that are open at the same time. In the accompanying fi gure, multiple objects are open (one
query and four tables). As you can see, all open objects are visible and presented in a tab layout. You
can simply select a tab associated with an object, and the object is brought to the top.

Don’t like the new tabbed windows confi guration? You can go back to the old overlapping windows by choosing

File ➪ Options. In the Access Options dialog box, select the Current Database tab, and change the Document Window

Options from Tabbed Documents to Overlapping Windows. You’ll have to close and reopen your database to have the

change take effect.

The Ribbon
The Ribbon occupies the top portion of the main Access screen. Starting with Access 2007,
the Ribbon replaced the menus and toolbars seen in previous versions of Access.

27

Chapter 2: Getting Started with Access

c02.indd 09/25/2015 Page 27

2

The Ribbon is divided into fi ve tabs, each containing any number of controls and commands
(refer to Figure 2.5):

 ■ File: When you click the File tab, the Offi ce Backstage view opens. Backstage view
contains a number of options for creating databases, opening databases, saving
databases, and confi guring databases. We delve deeper into the Offi ce Backstage
view in the nearby sidebar.

 ■ Home: The theme of the Home tab is “frequently used.” Here, you fi nd generally
unrelated commands that are repeatedly called upon during the course of working
with Access. For example, there are commands for formatting, copying and pasting,
sorting, and fi ltering.

 ■ Create: The Create tab contains commands that create the various objects in Access.
This tab is where you’ll spend most of your time. Here, you can initiate the creation
of tables, queries, forms, reports, and macros. As you read this book, you’ll be using
the Create tab all the time.

 ■ External Data: The External Data tab is dedicated to integrating Access with other
sources of data. On this tab, you fi nd commands that allow you to import and export
data, establish connections to outside databases, and work with SharePoint or other
platforms.

 ■ Database Tools: The Database Tools tab contains the commands that deal with
the inner workings of your database. Here, you fi nd tools to create relationships
between tables, analyze the performance of your database, document your data-
base, and compact and repair your database.

In addition to the standard fi ve tabs on the Access Ribbon, you’ll also see contextual
tabs. Contextual tabs are special types of tabs that appear only when a particular object is
selected. For example, when you’re working with the Query Builder, you’ll see the Query
Tools Design tab, as shown in Figure 2.6.

FIGURE 2.6

Contextual tabs contain commands that are specifi c to whichever object is active.

28

Part I: Access Building Blocks

c02.indd 09/25/2015 Page 28

Office Backstage View
Offi ce Backstage view (shown in the accompanying fi gure) is the gateway to a number of options for
creating, opening, or confi guring Access databases. You get to Backstage view by clicking the File tab
on the Ribbon (see the preceding section).

The Backstage options include activities that are used infrequently when you’re working within the main
Access window, but that are necessary for saving, printing, or maintaining Access databases. Putting
these options into the Backstage area means they don’t have to appear anywhere on the Ribbon as
you’re working with Access.

We cover the Backstage commands in the chapters that follow.

The Quick Access toolbar
The Quick Access toolbar (shown in Figure 2.7) is a customizable toolbar that allows you
to add commands that are most important to your daily operations. By default, the Quick
Access toolbar contains three commands: Save, Undo, and Redo.

If you click the drop-down arrow next to the Quick Access toolbar, you’ll see that many
more commands are available (see Figure 2.8). Place a check mark next to any of these
options to add it to the Quick Access toolbar.

29

Chapter 2: Getting Started with Access

c02.indd 09/25/2015 Page 29

2

FIGURE 2.7

The Quick Access toolbar is located above the Ribbon.

Quick Access toolbar

FIGURE 2.8

Commands you can add to the Quick Access toolbar.

You’re not limited to the commands shown in this drop-down list. You can add all kinds of
commands. To add a command to the Quick Access toolbar, follow these steps:

 1. Click the drop-down arrow next to the Quick Access toolbar, and select the
More Commands option. The Quick Access tab of the Access Options dialog box
(shown in Figure 2.9) appears.

 2. In the Choose Commands From drop-down list on the left, select All Commands.

 3. From the alphabetical list of commands, select the one you’re interested in and
click the Add button.

30

Part I: Access Building Blocks

c02.indd 09/25/2015 Page 30

 4. When you’re done, press OK.

FIGURE 2.9

Adding more commands to the Quick Access toolbar.

To change the order of the icons on the Quick Access toolbar, select the Quick Access tab of the Access Options

dialog box (refer to Figure 2.9). The list on the right shows all the commands that are currently in the Quick Access

toolbar. You can click each command and click the up and down arrow buttons on the right to move the command up

or down in the list. This will change the order of the comman ds.

c03.indd 10/07/2015 Page 31

Part II

Understanding Access

Tables

T
he topics covered in this Part II
explain the techniques for creating and
managing Access database tables, the

core of any application you build in Access.

These chapters go well beyond simply
describing how to build tables. Here, you
learn fundamental concepts that are key to
using the capabilities documented in the
remaining parts of this book.

Chapter 3 lays the foundation by defi n-
ing tables and their component parts.
In Chapter 4, you learn the importance
of table relationships and how to effec-
tively build and manage the relationships
between the tables in your database.
Chapter 5 demonstrates the techniques to
effectively sort, fi lter, and work with your
raw tables and datasheets. Finally, Chapters
6 and 7 explain how you can reach out-
side your database and create tables from
imported or linked external data sources.

IN THIS PART

Chapter 3
Creating Access Tables

Chapter 4
Understanding Table Relationships

Chapter 5
Working with Access Tables

Chapter 6
Importing and Exporting Data

Chapter 7
Linking to External Data

33

c03.indd 10/07/2015 Page 33

CHAP T ER

3
Creating Access Tables

IN THIS CHAPTER

Creating a new table

Modifying the design of a table

Working with fi eld properties

Specifying the primary key

Adding indexes

Documenting a table’s design

Saving a new table

Working with tables

Adding data to a table

Using attachment fi elds

I
n this chapter, you learn how to create a new Access database and its tables. You establish the
database container to hold your tables, forms, queries, reports, and code that you build as you
learn Access. Finally, you create the actual tables used by the Collectible Mini Cars database.

This chapter uses the examples in the database named Chapter03.accdb. If you haven’t yet downloaded this fi le

from the book’s website, please do so now.

Table Types
To Access, a table is always just a table. But to your Access application, different tables serve
 different purposes. A database table fi ts into one of three types: object, transaction, or join.
Knowing what type of table you’re creating helps to determine how you create it.

ON THE WEB

34

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 34

Object tables
Object tables are the most common. Each record of this type of table holds information that
relates to a real-world object. A customer is a real-world object, and a record in a table named
tblCustomers holds information about that customer. The fi elds in an object table refl ect the
characteristics of the object they represent. A City fi eld describes one characteristic of the
customer—namely, the actual city where the customer is. When creating an object table,
think about the characteristics of that object that make it unique or that are important.

Transaction tables
The next most common type of table is a transaction table. Each record of a transaction
table holds information about an event. Placing an order for a book is an example of an
event. To hold the details of all the orders, you might have a table named tblBookOrders.
Transaction tables almost always have a Date/Time fi eld because when the event happened
is usually an important piece of information to record. Another common type of fi eld is a
fi eld that refers to an object table, such as a reference to the customer in tblCustomers that
placed the order. When creating a transaction table, think about the information created
by the event and who was involved.

Join tables
Join tables are the easiest to design and are vitally important to a well-designed database.
Usually relating two tables is a simple process: A customer orders a book, for instance, and
you can easily relate that order to that customer. But sometimes the relationship isn’t so
clear. A book may have many authors. And an author may have many books. When this
relationship exists, called a many-to-many relationship, a join table sits in the middle of
the two tables. A join table usually has a name that refl ects the association, such as
tblAuthorBook. A join table generally has only three fi elds: a unique fi eld to identify each
record, a reference to one side of the association, and a reference to the other side of an
association.

Creating a New Table
Creating database tables is as much art as it is science. Acquiring a good working knowl-
edge of the user’s requirements is a fundamental step for any new database project.

 Chapter 4 covers the details of applying database design rules to the creation of Access tables.

In this chapter, I show you the steps required to create basic Access tables. In the following
sections, you’ll study the process of adding tables to an Access database, including the rela-
tively complex subject of choosing the proper data type to assign to each fi eld in a table.

www.allitebooks.com

http://www.allitebooks.org

35

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 35

3

It’s always a good idea to plan tables fi rst, before you use the Access tools to add tables to
the database. Many tables, especially small ones, really don’t require a lot of forethought
before adding them to the database. After all, not much planning is required to design a
table holding lookup information, such as the names of cities and states. However, more
complex entities, such as customers and products, usually require considerable thought and
effort to implement properly.

Although you can design the table without any forethought as you create it in Access, care-
fully planning a database system is a good idea. You can make changes later, but doing so
wastes time; generally, the result is a system that’s harder to maintain than one that you’ve
planned well from the beginning.

In the following sections, I explore the new, blank table added to the Chapter03.accdb data-
base. It’s important to understand the steps required to add new tables to an Access database.

The Importance of Naming Conventions
Most Access developers eventually adopt a naming convention to help identify database objects. Most
naming conventions are relatively simple and involve nothing more than adding a prefi x indicating an
object’s type to the object’s name. For example, an employees form might be named frmEmployees.

As your databases grow in size and complexity, establishing a naming convention for the objects in
your databases becomes more valuable. Even with the Perform Name AutoCorrect option turned
on (click the File button and choose Options ➪ Current Database ➪ Name AutoCorrect Options),
Access only corrects the most obvious name changes. Changing the name of a table breaks virtually
every query, form, and report that uses the information from that table. Your best defense is to adopt
reasonable object names, use a naming convention early on as you begin building Access databases,
and stick with the naming convention throughout the project.

Access imposes very few restrictions on the names assigned to database objects. Therefore, it’s
entirely possible to have two distinctly different objects (for example, a form and a report, or a table
and a macro) with the same name. (You can’t, however, have a table and a query with the same name,
because tables and queries occupy the same namespace in the database.)

Although simple names like Contacts and Orders are adequate, as a database grows in size and
complexity, you might be confused about which object a particular name refers to. For example, later
in this book, you’ll read about manipulating database objects through code and macros. When work-
ing with Visual Basic for Applications (VBA), the programming language built into Access, there must
be no ambiguity or confusion between referenced objects. Having both a form and a report named
Contacts might be confusing to you and your code.

The simplest naming convention is to prefi x object names with a three- or four-character string indi-
cating the type of object carrying the name. Using this convention, tables are prefi xed with tbl and
queries with qry. The generally accepted prefi xes for forms, reports, macros, and modules are frm,
rpt, mcr, and bas or mod, respectively.

Continues

36

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 36

In this book, most compound object names appear in camel case: tblBookOrders, tblCustomers, and
so on. Most people fi nd camel-case names easier to read and remember than names that appear in
all-uppercase or all-lowercase characters (such as TBLBOOKORDERS or tblbookorders).

Also, at times, we use informal references for database objects. For example, the formal name of the
table containing contact information in the previous examples is tblContacts. An informal reference
to this table might be “the Contacts table.”

In most cases, your users never see the formal names of database objects. One of your challenges as
an application developer is to provide a seamless user interface that hides all data-management and
data-storage entities that support the user interface. You can easily control the text that appears in the
title bars and surfaces of the forms, reports, and other user-interface components to hide the actual
names of the data structures and interface constituents.

Access allows table names up to 64 characters. Take advantage of this to give your tables, queries,
forms, and reports descriptive, informative names. There is no reason why you should confi ne a table
name to BkOrd when tblBookOrders is handled just as easily and is much easier to understand.

Descriptive names can be carried to an extreme, of course. There’s no point in naming a form
frmUpdateContactInformation if frmUpdateInfo does just as well. Long names are more easily mis-
spelled or misread than shorter names, so use your best judgment when assigning names.

Although Access lets you use spaces in database object names, you should avoid spaces at all costs.
Spaces don’t add to readability and can cause major headaches, particularly when upsizing to client/
server environments or using OLE automation with other applications. Even if you don’t anticipate
extending your Access applications to client/server or incorporating OLE or DDE automation into your
applications, get into the habit of not using spaces in object names.

Finally, you can use some special characters, like an underscore, in your table names. Some developers
use an underscore to separate words in a table name as part of a larger naming convention. Unless you
use a specifi c convention that includes special characters, you should avoid them.

Designing tables
Designing a table is a multistep process. By following the steps in order, your table design
can be created readily and with minimal effort:

 1. Create the new table.

 2. Enter field names, data types, properties, and (optionally) descriptions.

 3. Set the table’s primary key.

 4. Create indexes for appropriate fields.

 5. Save the table’s design.

continued

37

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 37

3

Generally speaking, some tables are never really fi nished. As users’ needs change or the
business rules governing the application change, you might fi nd it necessary to open an
existing table in Design view. This book, like most books on Access, describes the process
of creating tables as if every table you ever work on is brand new. The truth is, however,
that most of the work that you do on an Access application is performed on existing objects
in the database. Some of those objects you’ve added yourself, while other objects may have
been added by another developer at some time in the past. However, the process of main-
taining an existing database component is exactly the same as creating the same object
from scratch.

A quick note about modifying tables once they’re built: Adding a new fi eld to a table almost never causes problems.

Existing queries, forms, reports, and even VBA code will continue using the table as before. These objects won’t

reference the new fi eld because the fi eld was added after their creation. The new fi eld will not be automatically

added to existing objects, but you can add the new fi eld where needed in your application, and everything works as

expected.

The trouble comes when you remove or rename a fi eld in a table. Even with AutoCorrect turned on, Access won’t

update fi eld name references in VBA code, in control properties, and in expressions throughout the database.

Changing an existing fi eld (or any other database object, for that matter) is always a bad idea. You should always

strive to provide your tables, fi elds, and other database objects with good, strong, descriptive names when you add

them to the database, instead of planning to go back later and fi x them.

Many Access developers routinely turn off AutoCorrect. (Use the File tab to access the Backstage, select Options,

and then select Current Database. In the Name AutoCorrect Options, make sure Track name AutoCorrect info

is unchecked.) The AutoCorrect feature negatively affects performance because it constantly watches for name

changes in an application and takes corrective action when needed. Furthermore, because AutoCorrect never

quite corrects all the names in an application, there is always more work to perform when you change the name of

a database object.

Begin by selecting the Create tab on the Ribbon at the top of the Access screen. The Create
tab (shown in Figure 3.1) contains all the tools necessary to create not only tables, but also
forms, reports, and other database objects.

The following examples use the Chapter03.accdb database found on this book’s website.

 ON THE WEB

38

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 38

FIGURE 3.1

The Create tab contains tools necessary for adding new objects to your Access database.

There are two main ways to add new tables to an Access database, both of which are
invoked from the Tables group on the Create tab:

 ■ Clicking the Table button: Adds a table in Datasheet view to the database with
one AutoNumber fi eld named ID

 ■ Clicking the Table Design button: Adds a table in Design view to the database

For this example, I’ll be using the Table Design button, but fi rst, let’s take a look at the
Table button.

Clicking the Table button adds a new table to the Access environment. The new table
appears in Datasheet view in the area to the right of the Navigation Pane. The new table is
shown in Figure 3.2. Notice that the new table appears in Datasheet view, with an ID col-
umn already inserted and a Click to Add column to the right of the ID fi eld.

FIGURE 3.2

The new table in Datasheet view.

The Click to Add column is intended to permit users to quickly add fi elds to a table. All
you have to do is begin entering data in the new column. You assign the fi eld a name by
right-clicking the fi eld’s heading, selecting Rename Field, and entering a name for the
fi eld. In other words, building an Access table can be very much like creating a spread-
sheet in Excel.

39

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 39

3

In previous versions of Access, this approach was usually referred to as “creating a table in Datasheet view.”

Once you’ve added the new column, the tools on the Fields tab of the Ribbon (shown in
Figure 3.3) allow you to set the specifi c data type for the fi eld, along with its formatting,
validation rules, and other properties.

FIGURE 3.3

Field design tools are located on the Fields tab of the Ribbon.

The second method of adding new tables is to click the Table Design button in the Tables
group on the Create tab. Access opens a new table in Design view, allowing you to add fi elds
to the table’s design. Figure 3.4 shows a new table’s design after a few fi elds have been
added. Table Design view provides a somewhat more deliberate approach to building Access
tables.

FIGURE 3.4

A new table added in Design view.

40

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 40

The Table Designer is quite easy to understand, and each column is clearly labeled. At the
far left is the Field Name column, where you input the names of fi elds you add to the table.
You assign a data type to each fi eld in the table and (optionally) provide a description for
the fi eld. Data types are discussed in detail later in this chapter.

For this exercise, you create the Customers table for the Collectible Mini Cars application.
The basic design of this table is outlined in Table 3.1. I cover the details of this table’s
design in the “Creating tblCustomers” section, later in this chapter.

TABLE 3.1 The Collectible Mini Cars Customers Table

Field Name Data Type Description

CustomerID AutoNumber Primary key

Company Short Text Contact’s employer or other affi liation

Address Short Text Contact’s address

City Short Text Contact’s city

State Short Text Contact’s state

ZipCode Short Text Contact’s zip code

Phone Short Text Contact’s phone

Fax Short Text Contact’s fax

Email Short Text Contact’s e-mail address

WebSite Short Text Contact’s web address

OrigCustomerDate DateTime Date the contact fi rst purchased something from
Collectible Mini Cars

CreditLimit Currency Customer’s credit limit in dollars

CurrentBalance Currency Customer’s current balance in dollars

CreditStatus Short Text Description of the customer’s credit status

LastSalesDate DateTime Most recent date the customer purchased some-
thing from Collectible Mini Cars

TaxRate Number (Double) Sales tax applicable to the customer

DiscountPercent Number (Double) Customary discount provided to the customer

Notes Long Text Notes and observations regarding this customer

Active Yes/No Whether the customer is still buying or selling to
Collectible Mini Cars

The Short Text fi elds in the preceding table use the default 255 character Field Size. While it’s
unlikely that anyone’s name will occupy 255 characters, there’s no harm in providing for very
long names. Access only stores as many characters as are actually entered into a text fi eld. So,
allocating 255 characters doesn’t actually use 255 characters for every name in the database.

41

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 41

3

Looking once again at Figure 3.4, you see that the Table Design window consists of two areas:

 ■ The field entry area: Use the fi eld entry area, at the top of the window, to enter
each fi eld’s name and data type. You can also enter an optional description.

 ■ The field properties area: The area at the bottom of the window is where the
fi eld’s properties are specifi ed. These properties include fi eld size, format, input
mask, and default value, among others. The actual properties displayed in the
properties area depend upon the data type of the fi eld. You learn much more
about these properties in the “Assigning fi eld properties” section, later in this
chapter.

You can switch between the upper and lower areas of the Table Designer by clicking the mouse when the pointer is in

the desired pane or by pressing F6. The F6 key cycles through all open panes, such as the Navigation pane and the

Property search, so you may have to press it multiple times to get where you’re going.

Using the Design tab
The Design tab of the Access Ribbon (shown in Figure 3.5) contains many controls that
assist in creating a new table defi nition.

FIGURE 3.5

The Design tab of the Ribbon.

The controls on the Design tab affect the important table design considerations. Only a
few of the controls shown in Figure 3.5 are described in the following sections. You’ll learn
much more about the other buttons in the “Creating tblCustomers” section, later in this
chapter, and in subsequent chapters of this book.

Primary Key

Click this button to designate which of the fi elds in the table you want to use as the table’s
primary key. Traditionally, the primary key appears at the top of the list of fi elds in the
table, but it could appear anywhere within the table’s design. Primary keys are discussed in
detail in the “Setting the Primary Key” section later in this chapter.

42

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 42

To move a fi eld, simply left-click the selector to the left of the fi eld’s name to highlight the fi eld in the Table Designer,

and drag the fi eld to its new position.

Insert Rows

Although it makes little difference to the database engine, many developers are fussy
about the sequence of fi elds in a table. Many of the wizards in Access display the fi elds in
the same order as the table. Keeping an address fi eld above a city fi eld, for example, can
make development easier.

 Composite keys, consisting of multiple fi elds combined as a single key, are discussed in detail in

Chapter 4.

Clicking the Insert Rows button inserts a blank row just above the position occupied by
the mouse cursor. For example, if the cursor is currently in the second row of the Table
Designer, clicking the Insert Row button inserts an empty row in the second position,
moving the existing second row to the third position.

Delete Rows

Clicking the Delete Rows button removes a row from the table’s design.

Access doesn’t ask you to confi rm the deletion before actually removing the row.

Property Sheet

Clicking the Property Sheet button opens the Property Sheet for the entire table (shown in
Figure 3.6). These properties enable you to specify important table characteristics, such as
a validation rule to apply to the entire table, or an alternate sort order for the table’s data.

Indexes

Indexes are discussed in much more detail in the “Indexing Access Tables” section, later in
this chapter. Clicking the Indexes button opens the Indexes dialog box, which enables you
to specify the details of indexes on the fi elds in your table.

Working with fi elds
You create fi elds by entering a fi eld name and a fi eld data type in the upper entry area of
the Table Design window. The (optional) Description property can be used to indicate the
fi eld’s purpose. The description appears in the status bar at the bottom of the screen during

43

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 43

3

data entry and may be useful to people working with the application. After entering each
fi eld’s name and data type, you can further specify how each fi eld is used by entering prop-
erties in the property area.

FIGURE 3.6

The Property Sheet.

Naming a field

A fi eld name should be descriptive enough to identify the fi eld to you as the developer, to
the user of the system, and to Access. Field names should be long enough to quickly identify
the purpose of the fi eld, but not overly long. (Later, as you enter validation rules or use the
fi eld name in a calculation, you’ll want to save yourself from typing long fi eld names.)

To enter a fi eld name, position the pointer in the fi rst row of the Table Design window
under the Field Name column. Then type a valid fi eld name, observing these rules:

 ■ Field names can be from 1 to 64 characters in length.

 ■ Field names can include letters, numbers, and special characters, except period (.),
exclamation point (!), accent grave (`), and brackets ([]).

 ■ Field names can include spaces. Spaces should be avoided in fi eld names for some of
the same reasons you avoid them in table names.

 ■ Field names can’t include a period (.), exclamation point (!), brackets ([]), or accent
grave (`).

 ■ You can’t use low-order ASCII characters—for example Ctrl+J or Ctrl+L (ASCII values
0 through 31).

 ■ You can’t start with a blank space.

44

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 44

You can enter fi eld names in uppercase, lowercase, or mixed case. If you make a mistake
while typing the fi eld name, position the cursor where you want to make a correction
and type the change. You can change a fi eld name at any time, even if the table con-
tains data.

Access is not case sensitive, so the database itself doesn’t care whether you name a table tblCustomers or

TblCustomers. Choosing uppercase, lowercase, or mixed case characters is entirely your decision and should be

aimed at making your table names descriptive and easy to read.

After your table is saved, if you change a fi eld name that is also used in queries, forms, or reports, you have to

change it in those objects as well. One of the leading causes of errors in Access applications stems from chang-

ing the names of fundamental database objects, such as tables and fi elds, but neglecting to make all the changes

required throughout the database. Overlooking a fi eld name reference in the control source of a control on the form

or report, or deeply embedded in VBA code somewhere in the application, is far too easy.

Specifying a data type

When you enter a fi eld, you must also decide what type of data each of your fi elds will hold.
In Access, you can choose any of several data types. The available data types are shown in
Table 3.2.

TABLE 3.2 Data Types Available in Microsoft Access

Data Type Type of Data Stored Storage Size

Short Text Alphanumeric characters 255 characters or fewer

Long Text Alphanumeric characters 1GB of characters or less

Number Numeric values 1, 2, 4, or 8 bytes; 16 bytes for
Replication ID (GUID)

Date/Time Date and time data 8 bytes

Currency Monetary data 8 bytes

AutoNumber Automatic number increments 4 bytes; 16 bytes for Replication ID
(GUID)

Yes/No Logical values: Yes/No, True/False 1 bit (0 or –1)

OLE Object Pictures, graphs, sound, video Up to 1GB (disk space limitation)

www.allitebooks.com

http://www.allitebooks.org

45

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 45

3

Data Type Type of Data Stored Storage Size

Hyperlink Link to an Internet resource 1GB of characters or less

Attachment A special fi eld that enables you to
attach external fi les to an Access
database

Varies by attachment

Lookup Wizard Displays data from another table Generally 4 bytes

Figure 3.7 shows the Data Type drop-down list used to select the data type for the fi eld you
just created.

FIGURE 3.7

The Data Type drop-down list.

One of these data types must be assigned to each of your fi elds. Some of the data types
have addition options, such as Field Size for Short Text fi elds and Number fi elds.

Here are the basic questions to consider when choosing the data type for new fi elds in
your tables:

 ■ What is the data type? The data type should refl ect the data stored in the fi eld.
For example, you should select one of the numeric data types to store numbers
like quantities and prices. Don’t store data like phone numbers or Social Security
numbers in numeric fi elds, however; your application won’t be performing numeric
operations like addition or multiplication on phone numbers. Instead, use text
fi elds for common data, such as Social Security numbers and phone numbers.

46

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 46

Numeric fi elds never store leading zeros. Putting a zip code such as 02173 into a numeric fi eld means only the last

four digits (2173) are actually stored.

 ■ What are the storage requirements of the data type you’ve selected? Although
you can use the Long Integer data type in place of Integer or Byte, the storage
requirements of a Long Integer (4 bytes) are twice that of Integer. This means that
twice as much memory is required to use and manipulate the number and twice
as much disk space is required to store its value. Whenever possible, use Byte or
Integer data types for simple numeric data.

 ■ Will you want to sort or index the field? Because of their binary nature, Long
Text and OLE Object fi elds can’t be sorted or indexed. Use Long Text fi elds sparingly.
The overhead required to store and work with Long Text fi elds is considerable.

 ■ What is the impact of the data type on sorting requirements? Numeric data sorts
differently from sorting text data. Using the numeric data type, a sequence of num-
bers will sort as expected: 1, 2, 3, 4, 5, 10, 100. The same sequence stored as text data
will sort like this: 1, 10, 100, 2, 3, 4, 5. If it’s important to sort text data in a numeric
sequence, you’ll have to fi rst apply a conversion function to the data before sorting.

If it’s important to have text data representing numbers to sort in the proper order, you might want to prefi x the

numerals with zeros (001, 002, and so on). Then the text values will sort in the expected order: 001, 002, 003, 004,

005, 010, 100.

 ■ Is the data text or date data? When working with dates, you’re almost always
better off storing the data in a Date/Time fi eld than as a Short Text fi eld. Text
values sort differently from dates (dates are stored internally as numeric values),
which can upset reports and other output that rely on chronological order.

Don’t be tempted to store dates in one Date/Time fi eld and time in another Date/
Time fi eld. The Date/Time fi eld is specifi cally designed to handle both dates and
times, and, as you’ll see throughout this book, it’s quite easy to display only the
date or time portion of a Date/Time value.

A Date/Time fi eld is also meant to store a discrete date and time, and not a time
interval. If keeping track of durations is important, you could use two Date/Time
fi elds—one to record the start and the other at the end of a duration—or one Long
Integer fi eld to store the number of elapsed seconds, minutes, hours, and so forth.

 ■ What reports will be needed? You won’t be able to sort or group Long Text or OLE
data on a report. If it’s important to prepare a report based on Long Text or OLE
data, add a Tag fi eld like a date or sequence number, which can be used to provide
a sorting key, to the table.

47

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 47

3

Short Text

The Short Text data type holds information that is simply characters (letters, numbers, punc-
tuation). Names, addresses, and descriptions are all text data, as are numeric data that are not
used in a calculation (such as telephone numbers, Social Security numbers, and zip codes).

Although you specify the size of each Short Text fi eld in the property area, you can enter
no more than 255 characters of data in any Short Text fi eld. Access uses variable length
fi elds to store text data. If you designate a fi eld to be 25 characters wide and you use only
5 characters for each record, then only enough room to store 5 characters is used in your
database.

You’ll fi nd that the ACCDB database fi le might quickly grow quite large, but text fi elds are
usually not the cause. However, it’s good practice to limit Short Text fi eld widths to the
maximum you believe is likely for the fi eld. Names can be quite tricky because fairly long
names are common in some cultures. However, it’s a safe bet that a postal code will be
fewer than 12 characters, while a U.S. state abbreviation is always 2 characters. By limiting
a Short Text fi eld’s width, you also limit the number of characters users can enter when the
fi eld is used in a form.

Long Text

The Long Text data type holds a variable amount of data up to 1GB. Long Text fi elds use
only as much memory as necessary for the data stored. So, if one record uses 100 charac-
ters, another requires only 10, and yet another needs 3,000, you use only as much space as
each record requires.

You don’t specify a fi eld size for the Long Text data type. Access allocates as much space as
necessary for the data.

In versions prior to Access 2013, the Short Text data type was called simply Text, and the Long Text data type was

called Memo. If you’re working in previous versions, you’ll need to refer to the old data type names. The properties

and limitations of those data types did not change; only the name has.

Number data type

The Number data type enables you to enter numeric data—that is, numbers that will be
used in mathematical calculations or represent scalar quantities such as inventory counts.
(If you have data that will be used in monetary calculations, you should use the Currency
data type, which performs calculations without rounding errors.)

The exact type of numeric data stored in a number fi eld is determined by the Field Size
property. Table 3.3 lists the various numeric data types, their maximum and minimum
ranges, the decimal points supported by each numeric data type, and the storage (bytes)
required by each numeric data type.

48

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 48

TABLE 3.3 Numeric Field Settings

Field Size Setting Range Decimal Places Storage Size

Byte 0 to 255 None 1 byte

Integer –32,768 to 32,767 None 2 bytes

Long Integer –2,147,483,648 to 2,147,483,647 None 4 bytes

Double –1.797 × 10308 to 1.797 × 10308 15 8 bytes

Single –3.4 × 1038 to 3.4 × 1038 7 4 bytes

Replication ID N/A N/A 16 bytes

Decimal –9.999 x 1027 to 9.999 x 1027 15 8 bytes

Many errors are caused by choosing the wrong numeric type for number fi elds. For example, notice that the maxi-

mum value for the Integer data type is 32,767. We once saw a database that ran perfectly for several years and then

started crashing with overfl ow errors. It turned out that the overfl ow was caused by a particular fi eld being set to

the Integer data type, and when the company occasionally processed very large orders, the 32,767 maximum was

exceeded.

Be aware that overfl ow may occur simply by adding two numbers together or by performing any mathematical opera-

tion that results in a value too large to be stored in a fi eld. Some of the most diffi cult bugs occur only when circum-

stances (such as adding or multiplying two numbers) cause an overfl ow condition at run time.

Design your tables very conservatively and allow for larger values than you ever expect
to see in your database. This is not to say that using the Double data type for all numeric
fi elds is a good idea. The Double data type is very large (8 bytes) and might be somewhat
slow when used in calculations or other numeric operations. Instead, the Single data type
is probably best for most fl oating-point calculations, and Long Integer is a good choice
where decimal points are irrelevant.

Date/Time

The Date/Time data type is a specialized number fi eld for holding dates or times (or dates and
times). When dates are stored in a Date/Time fi eld, it’s easy to calculate days between dates
and other calendar operations. Date data stored in Date/Time fi elds sort and fi lter properly as
well. The Date/Time data type holds dates from January 1, 100, to December 31, 9999.

Currency

The Currency data type is another specialized number fi eld. Currency numbers are not
rounded during calculations and preserve 15 digits of precision to the left of the decimal
point and 4 digits to the right. Because Currency fi elds use a fi xed decimal point position,
they’re faster in numeric calculations than doubles.

49

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 49

3

AutoNumber

The AutoNumber fi eld is another specialized Number data type. When an AutoNumber
fi eld is added to a table, Access automatically assigns a long integer (32-bit) value to the
fi eld (beginning at 1) and increments the value each time a record is added to the table.
Alternatively (determined by the New Values property), the value of the AutoNumber fi eld is
a random integer that is automatically inserted into new records.

Only one AutoNumber fi eld can appear in a table. Once assigned to a record, the value of an
AutoNumber fi eld can’t be changed programmatically or by the user. AutoNumber fi elds are
stored as a Long Integer data type and occupy 4 bytes. AutoNumber fi elds can accommodate
up to 4,294,967,296 unique numbers—more than adequate as the primary key for most tables.

An AutoNumber fi eld is not guaranteed to generate a continuous, unbroken set of sequential numbers. For example,

if the process of adding a new record is interrupted (such as the user pressing the Esc key while entering the new

record’s data) an AutoNumber fi eld will “skip” a number. AutoNumber fi elds should not be used to provide a stream

of sequential numbers. Instead, sequential numbers can be easily added to a table through a data macro (data mac-

ros are explained in Chapter 22) or VBA code.

When you create a relationship between two tables and one of the fi elds in that relationship is an AutoNumber fi eld,

the other fi eld should be made a Long Integer data type to prevent overfl ow errors. Creating relationships between

tables is explained in Chapter 4.

Yes/No

Yes/No fi elds accept only one of two possible values. Internally stored as -1 (Yes) or 0 (No),
the Yes/No fi eld is used to indicate yes/no, on/off, or true/false. A Yes/No fi eld occupies a
single bit of storage.

OLE Object

The OLE Object fi eld stores OLE data, highly specialized binary objects such as Word docu-
ments, Excel spreadsheets, sound or video clips, and images. The OLE object is created by
an application that Windows recognizes as an OLE server and can be linked to the parent
application or embedded in the Access table. OLE objects can be displayed only in bound
object frames in Access forms and reports. OLE fi elds can’t be indexed.

Attachment

The Attachment data type was introduced in Access 2007. In fact, the Attachment data
type is one of the reasons Microsoft changed the format of the Access data fi le. The older
MDB format is unable to accommodate attachments.

50

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 50

The Attachment data type is relatively complex, compared to the other types of Access
fi elds, and it requires a special type of control when displayed on Access forms. For details
on this interesting type of fi eld, turn to “Understanding Attachment Fields,” later in this
chapter.

Hyperlink

The Hyperlink data type fi eld holds combinations of text and numbers stored as text and
used as a hyperlink address. It can have up to three parts:

 ■ The text that appears in a control (usually formatted to look like a clickable link).

 ■ The address—The path to a fi le or web page.

 ■ Any sub-address within the fi le or page. An example of a sub-address is a picture on
a web page. Each part of the hyperlink’s address is separated by the pound sign (#).

Access hyperlinks can even point to forms and reports in other Access databases. This
means that you can use a hyperlink to open a form or report in an external Access database
and display the form or report on the user’s computer.

Lookup Wizard

The Lookup Wizard data type inserts a fi eld that enables the end user to choose a value
from another table or from the results of a SQL statement. The values may also be presented
as a combo box or list box. At design time, the Lookup Wizard leads the developer through
the process of defi ning the lookup characteristics when this data is assigned to a fi eld.

As you drag an item from the Lookup Wizard fi eld list, a combo box or list box is automati-
cally created on the form. The list box or combo box also appears on a query datasheet that
contains the fi eld.

Entering a field description

The fi eld description is completely optional; you use it only to help you remember a fi eld’s
uses or to let another developer understand the fi eld’s purpose. Often, you don’t use the
Description column at all, or you use it only for fi elds whose purpose is not obvious. If
you enter a fi eld description, it appears in the status bar whenever you use that fi eld in
Access—in the datasheet or in a form. The fi eld description can help clarify a fi eld whose
purpose is ambiguous or give the user a more complete explanation of the appropriate
values for the fi eld during data entry.

Specifying data validation rules

The last major design decision concerns data validation, which becomes important as users
enter data. You want to make sure that only good data (data that passes certain defi ned
tests) gets into your system. You have to deal with several types of data validation. You
can test for known individual items, stipulating that the Gender fi eld can accept only the

51

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 51

3

values Male, Female, or Unknown, for example. Or you can test for ranges, specifying that
the value of Weight must be between 0 and 1,500 pounds. You’ll read more about validation
rules in the “Validation Rule and Validation Text” section, later in this chapter.

Creating tblCustomers
Working with the different data types, you should be ready to create the fi nal working copy
of tblCustomers.

Using AutoNumber fi elds
Access gives special considerations to AutoNumber fi elds. You can’t change a previously
defi ned fi eld from another type to AutoNumber if any data has been added to the table. If
you try to change an existing fi eld to an AutoNumber, you’ll see an error that says:

Once you enter data in a table, you can't change the data type of any
field to AutoNumber, even if you haven't yet added data to that field.

You’ll have to add a new AutoNumber fi eld and begin working with it instead of changing
an existing fi eld to AutoNumber.

Only one AutoNumber fi eld can be added to an Access table. Generally speaking, it’s better to use AutoNumber fi elds

where their special characteristics are needed by an application.

Completing tblCustomers
With tblCustomers in Design view, you’re ready to fi nalize its design. Table 3.1, shown ear-
lier in this chapter, lists the fi eld defi nitions for tblCustomers. Enter the fi eld names and
data types as shown in Table 3.1. The next few pages explain how to change existing fi elds
(which includes rearranging the fi eld order, changing a fi eld name, and deleting a fi eld).

Here are the steps for adding fi elds to a table structure:

 1. Place the cursor in the Field Name column in the row where you want the field
to appear.

 2. Enter the field name and press Enter or Tab to move to the Data Type column.

 3. Select the field’s data type from the drop-down list in the Data Type column.

 4. If desired, add a description for the field in the Description column.

52

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 52

Repeat each of these steps to create each of the data entry fi elds for tblCustomers. You can
press the down arrow (↓) key to move between rows, or use the mouse and click on any row.
Pressing F6 switches the focus from the top to the bottom of the Table Design window, and
vice versa.

Changing a Table Design
Even the best planned table may require changes from time to time. You might fi nd that
you want to add another fi eld, remove a fi eld, change a fi eld name or data type, or simply
rearrange the order of the fi eld names.

Although a table’s design can be changed at any time, special considerations must be given
to tables containing data. Be careful of making changes that damage data in the table,
such as making text fi elds smaller or changing the Field Size property of Number fi elds. You
can always add new fi elds to a table without problems, but changing existing fi elds might
be an issue. And, with very few exceptions, it’s almost always a bad idea to change a fi eld’s
name after a table has been put into use in an application.

Inserting a new fi eld
To insert a new fi eld, in the Table Design window, place your cursor on an existing fi eld,
right-click on a fi eld in the table’s design surface, and select Insert ➪ Rows, or just click
the Insert Rows button in the Ribbon. A new row is added to the table, and existing fi elds
are pushed down. You can then enter a new fi eld defi nition. Inserting a fi eld doesn’t dis-
turb other fi elds or existing data. If you have queries, forms, or reports that use the table,
you might need to add the fi eld to those objects as well.

Deleting a fi eld
There are three ways to delete a fi eld. While the table is in Design view:

 ■ Select the fi eld by clicking the row selector and then press Delete.

 ■ Right-click the selected fi eld and choose Delete Rows from the shortcut menu.

 ■ Select the fi eld and click the Delete Rows button from the Tools group on the
Design tab of the Ribbon.

When you delete a fi eld containing data, you’ll see a warning that you’ll lose data in the
table for the selected fi eld. If the table contains data, make sure that you want to elimi-
nate the data for that fi eld (column). You’ll also have to delete the same fi eld from queries,
forms, reports, macros, and VBA code that use the fi eld name.

53

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 53

3

If you try to delete a fi eld that’s part of a relationship (a primary or secondary key fi eld), Access informs you that you

can’t delete the fi eld until you remove the relationship in the Relationships window.

Table relationships and the Relationships window are discussed in Chapter 4.

If you delete a fi eld, you must also fi x all references to that fi eld throughout Access.
Because you can use a fi eld name in forms, queries, reports, and even table data validation,
you must examine your system carefully to fi nd any instances in which you might have
used the specifi c fi eld name.

Changing a fi eld location
The order of your fi elds, as entered in the table’s Design view, determines the left-to-right
column sequence in the table’s Datasheet view. If you decide that your fi elds should be
rearranged, click on a fi eld selector and use the mouse to drag the fi eld to its new location.

Changing a fi eld name
You change a fi eld’s name by selecting the fi eld’s name in the Table Design window and
entering a new name. Access updates the table design automatically. As long as you’re
creating a new table, this process is easy. For existing tables that are referenced elsewhere
in your application, changing the fi eld name can cause problems, as discussed in the
“Designing tables” section earlier in this chapter.

Changing a fi eld size
Making a fi eld size larger is simple in a table design. You simply increase the Field Size
property for text fi elds or specify a different fi eld size for number fi elds. You must pay
attention to the decimal-point property in number fi elds to make sure you don’t select a
new size that supports fewer decimal places than you currently have.

When you want to make a fi eld size smaller, make sure that none of the data in the table is larger than the new fi eld

width. Choosing a smaller fi eld size may result in data loss.

Remember that each text fi eld uses only the number of characters actually entered in the fi eld. You should still try to

make your fi elds only as large as the largest value so that Access can stop someone from entering a value that might

not fi t on a form or report.

54

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 54

Handling data conversion issues
If, in spite of your best efforts, it becomes necessary to change the data type of a fi eld con-
taining data, you might suffer data loss as the data-type conversion occurs. You should be
aware of the effects of a data-type conversion on existing data:

 ■ Any data type to AutoNumber: Can’t be done. The AutoNumber fi eld type must be
created fresh in a new fi eld.

 ■ Short Text to Number, Currency, Date/Time, or Yes/No: In most cases, the con-
version will be made without damaging the data. Inappropriate values are auto-
matically deleted. For instance, a Text fi eld containing “January 28, 2012” will be
faithfully converted to a Date/Time fi eld. If, however, you change a fi eld contain-
ing “January 28, 2012” to a Yes/No data type, its value will be deleted.

 ■ Long Text to Short Text: A straightforward conversion with no corruption of data.
Any text longer than the fi eld size specifi ed for the Short Text fi eld is truncated
and lost.

 ■ Number to Short Text: No loss of information. The number value is converted to
text using the General Number format.

 ■ Number to Currency: Because the Currency data type uses a fi xed decimal point,
some precision may be lost as the number is truncated.

 ■ Date/Time to Short Text: No loss of information. Date and time data are converted
to text with the General Date format.

 ■ Currency to Short Text: No loss of information. The currency value is converted to
text without the currency symbol.

 ■ Currency to Number: Simple, straightforward conversion. Some data may be lost as
the currency value is converted to fi t the new number fi eld. For example, when con-
verting Currency to Long Integer, the decimal portion is truncated (cut off).

 ■ AutoNumber to Short Text: Conversion occurs without loss of data, except in a
case where the width of the text fi eld is inadequate to hold the entire AutoNumber
value. In this case, the number is truncated.

 ■ AutoNumber to Number: Simple, straightforward conversion. Some data may be
lost as the AutoNumber value is converted to fi t the new number fi eld. For exam-
ple, an AutoNumber larger than 32,767 will be truncated if it is converted to an
Integer fi eld.

 ■ Yes/No to Short Text: Simple conversion of Yes/No value to text. No loss of
information.

The OLE Object data type cannot be converted to any other type of data.

55

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 55

3

Assigning fi eld properties
The fi eld properties built into Access tables are powerful allies that can help you man-
age the data in your tables. In most cases, the fi eld property is enforced by the database
engine, which means the property is consistently applied wherever the fi eld’s value is used.
For example, if you’ve set the Default Value property in the table design, the default value
is available in the table’s Datasheet view, on forms, and in queries.

In fact, fi eld properties are among the many differences between Access tables and Excel
worksheets. Understanding fi eld properties is just one of several skills necessary to begin
using Access tables to store data, rather than Excel worksheets.

Each fi eld data type has its own set of properties. For example, Number fi elds have a
Decimal Places property, and Text fi elds have a Text Align property. Although many data
types share a number of properties (such as Name) in common, there are enough different
fi eld properties to make it easy to become confused or to incorrectly use the properties. The
following sections discuss some of the more important and frequently used fi eld properties.

The following sections include many references to properties, and property settings in the Access Table Designer.

The formal name for a property (such as DefaultValue) never contains a space, while the property’s expression in

the Table Designer usually contains a space for readability (Default Value). These relative minor differences become

important when referencing properties in expressions, VBA code, and macros. When making a formal reference to a

property in code or a macro, always use the spaceless version of the property’s name, not the property reference you

see in the Access user interface.

Common properties

Here’s a list of all the general properties (note that they may not all be displayed, depend-
ing on which data type you chose):

 ■ Field Size: When applied to Short Text fi elds, limits the size of the fi eld to the
specifi ed number of characters (1–255). The default is 255.

 ■ New Values: Applies to AutoNumber fi elds. Allows specifi cation of Increment or
Random type.

 ■ Format: Changes the way data appears after you enter it (uppercase, dates, and
so on). There are many different types of formats that may be applied to Access
data. Many of these differences are explained in the “Format” section, later in this
chapter.

 ■ Input Mask: Used for data entry into a predefi ned format (phone numbers, zip
codes, Social Security numbers, dates, customer IDs). Applicable to both Number
and Text data types.

56

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 56

 ■ Decimal Places: Specifi es the number of decimal places for the Currency and the
Single, Double, and Decimal Number data types.

 ■ Caption: Optional label for form and report fi elds. Access uses the Caption property
instead of the fi eld name when creating a control on a form or report.

 ■ Default Value: The value automatically provided for new data entry into the fi eld.
This value can be any value appropriate for the fi eld’s data type. A default is no
more than an initial value; you can change it during data entry. To specify a
default value, simply enter the desired value into the DefaultValue property setting.
A default value can be an expression, as well as a number or a text string.

Because the Default Value for Number and Currency data types is set to 0 by default, these fi elds are set automati-

cally to 0 when you add a new record. In many situations, such as medical test results and many fi nancial applica-

tions, 0 is not an appropriate default value for numeric fi elds. Be sure to verify that 0 is an appropriate default value

in your Access applications.

 ■ Validation Rule: Ensures that data entered into the fi eld conforms to some busi-
ness rule, such as “greater than zero,” “date must occur after January 1, 2000,”
and so on.

 ■ Validation Text: The message displayed when data fails validation.

 ■ Required: Specifi es whether you must enter a value into a fi eld.

 ■ Allow Zero Length: Determines whether you may enter an empty string (“”) into a
Short Text or Long Text fi eld to distinguish it from a null value.

 ■ Indexed: Speeds up data access and (if desired) limits data to unique values.
Indexing is explained in greater detail later in this chapter.

 ■ Unicode Compression: Used for multilanguage applications. Requires about twice the
data storage but enables Offi ce documents, including Access reports, to be displayed
correctly no matter what language or symbols are used. Generally speaking, Unicode
is of no value unless the application is likely to be used in Asian environments.

 ■ IME Mode: Also known as the Kanji conversion mode property, this is used to show
whether the Kanji mode is maintained when the control is lost. The setting has no
relevance in English or European-language applications.

 ■ IME Sentence Mode: Used to determine the Sequence mode of fi elds of a table or
controls of a form that switch when the focus moves in or out of the fi eld. The set-
ting has no relevance in English or European-language applications.

Format

The Format property specifi es how the data contained in table fi elds appears whenever the
data is displayed or printed. When set at the table level, the format is in effect throughout
the application. There are different format options for each data type.

57

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 57

3

Access provides built-in format option for most fi eld data types. The exact format used to
display fi eld values is infl uenced by the Region and Language settings in the Control Panel.

The Format property affects only the way a value is displayed and not the value itself or
how the value is stored in the database.

If you elect to build a custom format, construct a string in the fi eld’s Format property box.
There are a number of different symbols you use for each data type. Access provides global
format specifi cations to use in any custom format:

 ■ (space): Displays spaces as characters.

 ■ “SomeText”: Displays the text between the quotes as literal text.

 ■ ! (exclamation point): Left-aligns the display.

 ■ * (asterisk): Fills empty space with the next character.

 ■ \ (backslash): Displays the next character as literal text. Use the backslash to dis-
play characters that otherwise have special meaning to Access.

 ■ [color]: Displays the output in the color (black, blue, green, cyan, red, magenta,
yellow, or white) indicated between the brackets.

The Format property takes precedence when both a format and an input mask have been
defi ned.

Number and Currency field formats

There is a wide variety of valid formats for Number and Currency fi elds. You can use one of
the built-in formats or construct a custom format of your own:

 ■ General Number: The number is displayed in the format in which it was entered.
(This is the default format for numeric data fi elds.)

 ■ Currency: Add a thousands separator (usually a comma), add a decimal point with
two digits to the right of the decimal, and enclose negative numbers in parentheses.
A Currency fi eld value is shown with the currency symbol (such as a dollar sign or
euro sign) specifi ed by the Region and Language settings in the Control Panel.

 ■ Fixed: Always display at least one digit to the left and two digits to the right of
the decimal point.

 ■ Standard: Use the thousands separator with two digits to the right of the
decimal point.

 ■ Percent: The number value is multiplied by 100 and a percent sign is added to the
right. Percent values are displayed with two decimal places to the right of the
decimal point.

 ■ Scientific: Scientifi c notation is used to display the number.

 ■ Euro: Prefi xes the euro currency symbol to the number.

58

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 58

The built-in numeric formats are summarized in Table 3.4.

TABLE 3.4 Numeric Format Examples

Format Type Number as Entered Number as Displayed Format Defi ned

General 987654.321 987654.321 #.###

Currency 987654.321 $987,654.32 $#,##0.00;($#,##0.00)

Euro 987654.321 €987,654.32 €#,##0.00; (€#,##0.00)

Fixed 987654.321 987654.32 #.##

Standard 987654.321 987,654.32 #,##0.00

Percent .987 98.70% #.##%

Scientifi c 987654.321 9.88E+05 0.00E+00

All the previous formats are the default formats based on setting the Decimal Places prop-
erty to AUTO. The exact format applied also depends on the Field Size and Region and
Language settings in the Control Panel.

Custom numeric formats

Custom formats are created by combining a number of symbols to create a format. The sym-
bols used with Number and Currency fi elds are listed here:

 ■ . (period): Specifi es where the decimal point should appear.

 ■ , (comma): The thousands separator.

 ■ 0 (zero): A placeholder for 0 or a digit.

 ■ # (pound sign): A placeholder for nothing or a digit.

 ■ $ (dollar sign): Displays the dollar sign character.

 ■ % (percent sign): Multiplies the value by 100 and adds a percent sign.

 ■ E– or e–: Uses scientifi c notation to display the number. Uses a minus sign to indi-
cate a negative exponent and no sign for positive exponents.

 ■ E+ or e+: Uses scientifi c notation to display the number. Uses a plus sign to indi-
cate a positive exponent.

You create custom formats by composing a string made up of one to four sections separated
by semicolons. Each section has a different meaning to Access:

 ■ First section: The format for positive values

 ■ Second section: The format for negative values

 ■ Third section: The format for zero values

 ■ Fourth section: The format for null values

59

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 59

3

Each section is a combination of a numeric formatting string and an optional color specifi -
cation. Here’s an example of a custom format:

0,000.00[Green];(0,000.00)[Red];"Zero";"—"

This format specifi es showing the number with zeros in all positions (even if the number
is less than 1,000), using the comma thousands separator, enclosing negative numbers in
parentheses, using "Zero" to indicate zero values, and using a dash for null values.

Built-in Date/Time formats

The following are the built-in Date/Time formats. Note that these examples are based on
the “English (United States)” Region and Language settings in the Control Panel.

 ■ General Date: If the value contains a date only, don’t display a time value, and vice
versa. Dates are displayed in the built-in Short Date format (m/d/yyyy), while time
data is displayed in the Long Time format.

 ■ Long Date: Thursday, November 12, 2015

 ■ Medium Date: 12-Nov-15

 ■ Short Date: 11/12/2015

 ■ Long Time: 5:34:23 PM

 ■ Medium Time: 5:34 PM

 ■ Short Time: 17:34

Date and time formats are infl uenced by the Region and Language settings in the Control Panel.

Custom Date/Time formats

Custom formats are created by constructing a specifi cation string containing the following
symbols:

 ■ : (colon): Separates time elements (hours, minutes, seconds)

 ■ / (forward slash): Separates date elements (days, months, years)

 ■ c: Instructs Access to use the built-in General Date format

 ■ d: Displays the day of the month as one or two digits (1–31)

 ■ dd: Displays the day of the month using two digits (01–31)

 ■ ddd: Displays the day of the week as a three-character abbreviation (Sun, Mon, Tue,
Wed, Thu, Fri, Sat)

 ■ dddd: Uses the full name of the day of the week (Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday)

 ■ ddddd: Uses the built-in Short Date format

 ■ dddddd: Uses the built-in Long Date format

60

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 60

 ■ w: Uses a number to indicate the day of the week

 ■ ww: Shows the week of the year

 ■ m: Displays the month of the year using one or two digits

 ■ mm: Displays the month of the year using two digits (with a leading zero if necessary)

 ■ mmm: Displays the month as a three-character abbreviation (Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)

 ■ mmmm: Displays the full name of the month (for example, January)

 ■ q: Displays the date as the quarter of the year

 ■ y: Displays the day of the year (1 through 366)

 ■ yy: Displays the year as two digits (for example, 15)

 ■ yyyy: Displays the year as four digits (2015)

 ■ h: Displays the hour using one or two digits (0–23)

 ■ hh: Displays the hour using two digits (00–23)

 ■ n: Displays the minutes using one or two digits (0–59)

 ■ nn: Displays the minutes using two digits (00–59)

 ■ s: Displays the seconds using one or two digits (0–59)

 ■ ss: Displays the seconds using two digits (00–59)

 ■ ttttt: Uses the built-in Long Time format

 ■ AM/PM: Uses a 12-hour format with uppercase AM or PM

 ■ am/pm: Uses a 12-hour format with lowercase am or pm

 ■ A/P: Uses a 12-hour format with uppercase A or P

 ■ a/p: Uses a 12-hour format with lowercase a or p

Short Text and Long Text field formats

When applied to Short Text fi elds, formats help clarify the data contained within the fi elds.
tblCustomers uses several formats. The State text fi eld has a > in the Format property to
display the data entry in uppercase. The Active fi eld has a Yes/No format with lookup
Display Control property set to Text Box.

Short Text and Long Text fi elds are displayed as plain text by default. If a particular
format is to be applied to Short Text or Long Text fi eld data, use the following symbols to
construct the format:

 ■ @: A character or space is required.

 ■ &: A character is optional (not required).

 ■ <: Force all characters to their lowercase equivalents.

 ■ >: Force all characters to their uppercase equivalents.

61

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 61

3

The custom format may contain as many as three different sections, separated by
semicolons:

 ■ First section: Format for fi elds containing text

 ■ Second section: Format for fi elds containing zero-length strings

 ■ Third section: Format for fi elds containing null values

If only two sections are given, the second section applies to both zero-length strings and
null values. For example, the following format displays None when no string data is con-
tained in the fi eld and Unknown when a null value exists in the fi eld. Otherwise, the simple
text contained in the fi eld is displayed:

@;"None";"Unknown"

Several examples of custom text formats using the “English (United States)” Regional
Settings are presented in Table 3.5.

TABLE 3.5 Format Examples

Format Specifi ed Data as Entered Formatted Data as Displayed

> Adam Smith ADAM SMITH

< Adam Smith adam smith

@@-@@ Adam Ad-am

&-@@ Ad -Ad

@;”Empty” “” Empty

@;”Empty” Null Empty

Yes/No field formats

A Yes/No fi eld displays Yes, No, True, False, On, or Off, depending on the value stored
in the fi eld and the setting of the Format property for the fi eld. Access predefi nes these
rather obvious format specifi cations for the Yes/No fi eld type:

 ■ Yes/No: Displays Yes or No

 ■ True/False: Displays True or False

 ■ On/Off: Displays On or Off

Yes, True, and On all indicate the same “positive” value, while No, False, and Off indicate
the opposite (“negative”) value.

Access stores Yes/No data in a manner different from what you might expect. The Yes data
is stored as –1, whereas No data is stored as 0. You’d expect it to be stored as 0 for No and

62

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 62

1 for Yes, but this isn’t the case. Without a format setting, Access will display –1 or 0, and
it will be stored and displayed that way.

Regardless of the format set, you can enter data into a Yes/No fi eld using any of the words
in the built-in formats or as numbers. To enter No, you can enter False, No, Off, or 0. To
enter Yes, you can enter True, Yes, On, or any number other than zero. If you enter a
number other than 0 or –1, Access converts it to –1.

You’re also able to specify a custom format for Yes/No fi elds. For example, assume you’ve
got a table with a fi eld that indicates whether the employee has attended an orientation
meeting. Although a yes or no answer is appropriate, you might want to get a little fancy
with the fi eld’s display. By default, a check box is used to indicate the value of the Yes/No
fi eld (checked means Yes). To customize the appearance of the Yes/No fi eld, set its Format
property according to the following pattern:

;"Text for Yes values";"Text for No values"

Notice the placeholder semicolon at the front of this string. Also, notice that each text ele-
ment must be surrounded by quotes. In the case of the employee table, you might use the
following Format property specifi er:

;"Attendance OK";"Must attend orientation"

You must also set the Yes/No fi eld’s Display Control property to Text Box in order to change
the default check box display to text.

Hyperlink field format

Access also displays and stores hyperlink data in a manner different from what you would
expect. The format of this type is comprised of up to three parts, separated by pound signs (#):

 ■ Display Text: The text that is displayed as a hyperlink in the fi eld or control

 ■ Address: The path to a fi le (UNC) or page (URL) on the Internet

 ■ Sub-Address: A specifi c location within a fi le or page

The Display Text property is the text that is visible in the fi eld or control, while the address
and sub-address are hidden. In the following example, “Microsoft MSN Home Page” is the
displayed text, while http://www.msn.com is the hyperlink’s address.

Microsoft MSN Home Page#http://www.msn.com

Input Mask

The Input Mask property makes it easier for users to enter the data in the correct format.
An input mask limits the way the user inputs data into the application. For example, you
can restrict entry to only digits for phone numbers, Social Security numbers, and employee
IDs. An input mask for a Social Security number might look like “000-00-0000.” This mask

http://www.msn.com
http://www.msn.com

63

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 63

3

requires input into every space, restricts entry to digits only, and does not permit charac-
ters or spaces.

A fi eld’s input mask is applied anywhere the fi eld appears (query, form, report).

The Input Mask property value is a string containing as many as three semicolon-separated
sections:

 ■ First section: Contains the mask itself, comprised of the symbols shown later.

 ■ Second section: Tells Access whether to store the literal characters included in the
mask along with the rest of the data. For example, the mask might include dashes
to separate the parts of the Social Security number, while a phone number might
include parentheses and dashes. Using a zero tells Access to store the literal char-
acters as part of the data while 1 tells Access to store only the data itself.

 ■ Third section: Defi nes the “placeholder” character that tells the user how many
characters are expected in the input area. Many input masks use pound signs (#) or
asterisks (*) as placeholders.

The following characters are used to compose the input mask string:

 ■ 0: A digit is required, and plus (+) and minus (–) signs are not permitted.

 ■ 9: A digit is optional, and plus (+) and minus (–) signs are not permitted.

 ■ #: Optional digit or space. Spaces are removed when the data is saved in the table.
Plus and minus signs are allowed.

 ■ L: A letter from A to Z is required.

 ■ ?: A letter from A to Z is optional.

 ■ A: A character or digit is required.

 ■ a: A character or digit is optional.

 ■ &: Permits any character or space (required).

 ■ C: Permits any character or space (optional).

 ■ . (period): Decimal placeholder.

 ■ , (comma): Thousands separator.

 ■ : (colon): Date and time separator.

 ■ ; (semicolon): Separator character.

 ■ – (dash): Separator character.

 ■ / (forward slash): Separator character.

 ■ < (less-than sign): Converts all characters to lowercase.

 ■ > (greater-than sign): Converts all characters to uppercase.

64

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 64

 ■ ! (exclamation point): Displays the input mask from right to left. Characters fi ll
the mask from right to left.

 ■ \ (back slash): Displays the next character as a literal.

The same masking characters are used on a fi eld’s Property Sheet in a query or form.

An input mask is ignored when importing data or adding data to a table with an action query.

An input mask is overridden by the Format property assigned to a fi eld. In this case, the
input mask is in effect only as data is entered and reformatted according to the Format
when the entry is complete.

The Input Mask Wizard

Although you can manually enter an input mask, you can easily create an input mask for Text
or Date/Time type fi elds with the Input Mask Wizard. When you click the Input Mask prop-
erty, a Builder button (three periods) appears in the property’s input box. Click the Builder
button to start the wizard. Figure 3.8 shows the fi rst screen of the Input Mask Wizard.

FIGURE 3.8

The Input Mask Wizard for creating input masks for Text fi eld types.

The Input Mask Wizard shows not only the name of each predefi ned input mask, but also
an example for each name. You can choose from the list of predefi ned masks. Click in the
Try It text box and enter a test value to see how data entry will look. After you choose an
input mask, the next wizard screen enables you to refi ne the mask and specify the place-
holder symbol (perhaps a # or @). Another wizard screen enables you to decide whether
to store special characters (such as the dashes in a Social Security number) with the
data. When you complete the wizard, Access adds the input mask characters in the fi eld’s
Property Sheet.

65

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 65

3

You can create your own Input Mask properties for Text and Date/Time fi elds by simply clicking the Edit List button

in the Input Mask Wizard, and entering a descriptive name, input mask, placeholder character, and sample data con-

tent. Once created, the new mask will be available the next time you use the Input Mask Wizard.

Enter as many custom masks as you need. You can also determine the international set-
tings so that you can work with multiple country masks. A custom input mask you create in
one database is available in other databases.

Caption

The Caption property determines what appears in the default label attached to a control cre-
ated by dragging the fi eld from the fi eld list onto a form or report. The caption also appears
as the column heading in Datasheet view for tables or queries that include the fi eld.

Be careful using the Caption property. Because the caption text appears as the column heading in Datasheet view,

you might be misled by a column heading in a query’s Datasheet view. When the fi eld appears in a query, you don’t

have immediate access to the fi eld’s properties, so you must be aware that the column heading is actually deter-

mined by the Caption property and may not refl ect the fi eld’s name. To be even more confusing, the caption assigned

in the table’s Design view and the caption assigned in a fi eld’s Property Sheet in the Query Design view are different

properties and can contain different text.

Captions can be as long as 2,048 characters, more than adequate for all but the most ver-
bose descriptions.

Validation Rule and Validation Text

The Validation Rule property establishes requirements for input into the fi eld. Enforced by
the ACE database engine, the Validation Rule ensures that data entered into the table con-
forms to the requirements of the application.

Validation properties are a great way to enforce business rules, such as ensuring that a
product is not sold for zero dollars, or requiring that an employee review date come after
her hire date. And, like other fi eld properties, validation rules are enforced wherever the
fi eld is used in the application.

The value of the Validation Rule property is a string containing an expression that is used
to test the user’s input. The expression used as a fi eld’s Validation Rule property can’t con-
tain user-defi ned functions or any of the Access domain or aggregate functions (DCount,
DSum, and so on). A fi eld’s Validation Rule property can’t reference forms, queries, or
other tables in the application. (These restrictions don’t apply to validation rules applied
to controls on a form, however.) Field validation rules can’t reference other fi elds in the

66

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 66

table, although a rule applied to a record in a table can reference fi elds in the same table (a
record-level validation rule is set in the table’s Property Sheet, rather than in an individual
fi eld).

The Validation Text property contains a string that is displayed in a message box when the
user’s input doesn’t satisfy the requirements of the Validation Rule property. The maximum
length of the Validation Text property value is 255 characters.

When using the Validation Rule property, you should always specify a Validation Text value
to avoid triggering the generic message box Access displays when the rule is violated. Use
the Validation Text property to provide users with a helpful message that explains accept-
able values for the fi eld. Figure 3.9 shows the message box displayed when the value speci-
fi ed by the Validation Rule attached to the CreditLimit fi eld is exceeded.

FIGURE 3.9

A data-validation warning box appears when the user enters a value in the fi eld that does not
match the rule specifi ed in the design of the table.

The Validation Rule property doesn’t apply to check boxes, option buttons, or toggle but-
tons within an option group on a form. The option group itself has a Validation Rule prop-
erty that applies to all the controls within the group.

Validation properties are often used to ensure that certain dates fall after other dates (for
example, an employee’s retirement date must fall after his starting date), that nonnegative
numbers are entered for values such as inventory quantities, and that entries are restricted
to different ranges of numbers or text.

Dates used in Access expressions, such as a Validation Rule property, are surrounded,
or delimited, by pound signs (#). If you want to limit the LastSalesDate data entry to
dates between January 1, 2015, and December 31, 2016, enter Between #1/1/2015# And
#12/31/2016#.

If you want to limit the upper end to the current date, you can enter a different set of dates, such as Between

#1/1/2013# And Date(). Date() is a built-in VBA function that returns the current date; it’s completely accept-

able as part of a validation rule or other expression.

67

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 67

3

When a fi eld is dragged onto a form, the Validation Rule property of the new control is not
set to the fi eld’s Validation Rule. Unless you enter a new Validation Rule value in the con-
trol’s Property Sheet, Access enforces the rule set at the table level.

Field and control Validation Rule properties are enforced when the focus leaves the table
fi eld or form control. Validation Rule properties applied to both a fi eld and a control bound
to the fi eld are enforced for both entities. The table-level rule is applied as data is edited
on the bound control and as focus leaves the control.

You can’t create table-level Validation Rule properties for linked “foreign” tables, such as
FoxPro, Paradox, or dBASE. Apply Validation Rule properties to controls bound to fi elds in
linked foreign tables.

Required

The Required property instructs Access to require input into the fi eld. When set to Yes,
input is required in the fi eld within a table or in a control on a form bound to the fi eld. The
value of a required fi eld can’t be Null.

The Required property is invalid for AutoNumber fi elds. By default, all AutoNumber fi elds
are assigned a value as new records are created.

The Access database engine enforces the Required property. An error message is gener-
ated if the user tries to leave a Text Box control bound to a fi eld with its Required prop-
erty set to Yes.

The Required property can be used in conjunction with the AllowZeroLength property to
determine when the value of a fi eld is unknown or doesn’t exist.

AllowZeroLength

The AllowZeroLength property specifi es whether you want a zero-length string ("") to be a
valid entry for a Short Text or Long Text fi eld. AllowZeroLength accepts the following values:

 ■ Yes: A zero-length string is a valid entry.

 ■ No: The table will not accept zero-length strings, and instead inserts a Null value
into the fi eld when no valid text data is supplied.

Combining the AllowZeroLength and Required properties enables you to differentiate
between data that doesn’t exist (which you’ll probably want to represent as a zero-length
string) and data that is unknown (which you’ll want to store as a null value). In some cases,
you’ll want to store the proper value in the Short Text or Long Text fi eld.

An example of data that doesn’t exist is the case of a customer who doesn’t have an e-mail
address. The e-mail address fi eld should be set to an empty (zero-length) string, indicating
that you know the user doesn’t have an e-mail address. Another customer who is entirely

68

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 68

new to the company should have a null value in the e-mail address fi eld, indicating that
you don’t know whether the customer has an e-mail address.

An input mask can help your application’s users distinguish when a fi eld contains a null
value. For example, the input mask could be set to display No email when the fi eld con-
tains a zero-length string and Unknown when the value is null.

The Required property determines whether a null value is accepted by the fi eld, while the
AllowZeroLength property permits zero-length strings in the fi eld. Together, these indepen-
dent properties provide the means to determine whether a value is unknown or absent for
the fi eld.

The interaction between Required and AllowZeroLength can be quite complicated. Table
3.6 summarizes how these two properties combine to force the user to input a value, or to
insert either a null or zero-length string into a fi eld.

TABLE 3.6 Required and AllowZeroLength Property Combinations

AllowZeroLength Required Data Entered by User Value Stored in Table

No No Null Null

No No Space Null

No No Zero-length string Disallowed

Yes No Null Null

Yes No Space Null

Yes No Zero-length string Zero-length string

No Yes Null Disallowed

No Yes Space Disallowed

No Yes Zero-length string Disallowed

Yes Yes Null Disallowed

Yes Yes Space Zero-length string

Yes Yes Zero-length string Zero-length string

Indexed

The Indexed property tells Access that you want to use a fi eld as an index in the table.
Indexed fi elds are internally organized to speed up queries, sorting, and grouping opera-
tions. If you intend to frequently include a certain fi eld in queries (for example, the
employee ID or Social Security number) or if the fi eld is frequently sorted or grouped on
reports, you should set its Indexed property to Yes.

69

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 69

3

The valid settings for the Indexed property are as follows:

 ■ No: The fi eld is not indexed (default).

 ■ Yes (Duplicates OK): The fi eld is indexed and Access permits duplicate values in
the column. This is the appropriate setting for values such as names, where it’s
likely that names like Smith will appear more than once in the table.

 ■ Yes (No Duplicates): The fi eld is indexed and no duplicates are permitted in the
column. Use this setting for data that should be unique within the table, such as
Social Security numbers, employee IDs, and customer numbers.

Indexes are discussed in more detail later in this chapter.

In addition to the primary key, you can index up to 31 other fi elds to provide optimum
performance. Keep in mind that each index extracts a small performance hit as new records
are added to the table. Access dynamically updates the indexing information each time a
new record is added. If a table includes an excessive number of indexes, a noticeable delay
might occur as each new record is added.

The Indexed property is set in the fi eld’s Property Sheet or on the table’s Property Sheet.
You must use the table’s Property Sheet to set multifi eld indexes. Multifi eld indexes are dis-
cussed later in this chapter.

The AutoIndex option

The Access Options dialog box (File ➪ Options ➪ Object Designers) contains an entry
(AutoIndex on Import/Create) that directs Access to automatically index certain fi elds as
they’re added to a table’s design. By default, fi elds that begin or end with ID, key, code, or
num (for example, EmployeeID or TaskCode) are automatically indexed as the fi eld is cre-
ated. Every time a new record is added to the table, the fi eld’s value is added to the fi eld’s
index. If there are other fi eld name patterns you’d like Access to automatically index, add
new values to the Auto Index on Import/Create checkbox on the Object Designers tab in the
Access Options dialog box (see Figure 3.10).

FIGURE 3.10

The Table Design View area on the Options screen contains a box for setting the AutoIndex
on Import/Create options.

70

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 70

When to index

Generally speaking, you should index fi elds that are frequently searched or sorted.
Remember that indexes slow down certain operations, such as inserting records and some
action queries.

Long Text and OLE Object fi elds can’t be indexed. It would be impossible for Access to main-
tain an index on these complex data types.

An index should not be used if a fi eld contains very few unique values. For example, you
won’t see a signifi cant benefi t from indexing a fi eld containing a person’s sex or a Yes/No
fi eld. Because there is a limited range of values in such fi elds, Access easily sorts the data
in these fi elds.

Use a multiple-fi eld index in situations where sorts are often simultaneously performed on
multiple fi elds (for example, fi rst and last names). Access will have a much easier time sort-
ing such a table.

Understanding tblCustomers Field Properties
After you enter the fi eld names, data types, and fi eld descriptions, you may want to
go back and further refi ne each fi eld. Every fi eld has properties, and these are different
for each data type. In tblCustomers, you must enter properties for several data types.
Figure 3.11 shows the property area for the fi eld named CreditLimit. Notice that there are
two tabs on the property box: General and Lookup.

FIGURE 3.11

The property area for the Currency fi eld named CreditLimit.

Figure 3.11 shows ten properties available for the CreditLimit Currency fi eld. Other types, such as Number, Date/

Time, Short Text, or Yes/No, show more or fewer options.

71

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 71

3

Pressing F6 switches between the fi eld entry grid and the Field Properties pane. (You
may have to press F6 several times before you reach the desired pane.) You can also move
between panes by clicking the desired pane. Some properties display a list of possible val-
ues, along with a downward-pointing arrow when you move the pointer into the fi eld. When
you click the arrow, the values appear in a drop-down list.

The Field Properties pane of the Table Design window has a second tab: the Lookup tab.
After clicking this tab, you may see a single property, the Display Control property. This
property is used for Short Text, Number, and Yes/No fi elds.

Figure 3.12 shows the Lookup Property window for the Active Yes/No fi eld where Display
Control is the only property. This property has three choices: Check Box, Text Box, and
Combo Box. Choosing one of these determines which control type is used when a particu-
lar fi eld is added to a form. Generally, all controls are created as text boxes except Yes/No
fi elds, which are created as check boxes by default. For Yes/No data types, however, you
may want to use the Text Box setting to display Yes/No, True/False, or another choice that
you specifi cally put in the format property box.

FIGURE 3.12

The Lookup tab for a Yes/No fi eld.

 You learn about combo boxes in Chapter 19.

If you’re working with Short Text fi elds instead of a Yes/No fi eld and know a certain Short
Text fi eld can only be one of a few combinations, select the combo box choice for the dis-
play control. Figure 3.13 shows the Lookup tab when combo box has been selected as the
display control for the Credit Status fi eld. There are only two acceptable values for Credit
Status: OK and Not OK. These two values (separated by a semicolon) are specifi ed as the
combo box’s Row Source, and the Row Source Type is set to Value List.

72

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 72

FIGURE 3.13

Setting up a combo box as the display control for Credit Status.

Values displayed for this field

Combo box is selected

Although Figure 3.13 shows a combo box using a value list for its items, you could also
specify a query or SQL statement as the combo box’s Row Source.

Figure 3.14 shows how the Credit Status fi eld appears when tblCustomers is displayed as a
datasheet. The user can select only OK or Not OK as the credit status, and the same combo
box appears when the fi eld is added to an Access form.

FIGURE 3.14

Using a combo box as a lookup control to restrict user input on a fi eld.

The properties for a Lookup fi eld are different for each data type. The Yes/No data type fi elds
differ from Text fi elds or Number fi elds. Because a Lookup fi eld is really a combo box, the
standard properties for a combo box are displayed when you select a Lookup fi eld data type.

73

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 73

3

Setting the Primary Key
Every table should have a primary key—one fi eld or a combination of fi elds with a unique
value for each record. (This principle is called entity integrity in the world of database
management.) In tblCustomers, the CustomerID fi eld is the primary key. Each customer has
a unique CustomerID value so that the database engine can distinguish one record from
another. CustomerID 17 refers to one and only one record in the Contacts table. If you don’t
specify a primary key (unique value fi eld), Access can create one for you.

Choosing a primary key
Without the CustomerID fi eld, you’d have to rely on another fi eld or combination of fi elds
for uniqueness. You couldn’t use the Company fi eld because two customers could easily
have the same company name. In fact, you couldn’t even use the Company and City fi elds
together (in a multifi eld key), for the same reason—it’s entirely possible that two custom-
ers with the same name exist in the same city. You need to come up with a fi eld or combi-
nation of fi elds that makes every record unique.

The easiest way to solve this problem is to add an AutoNumber fi eld to serve as the table’s
primary key. The primary key in tblCustomers is CustomerID, an AutoNumber fi eld.

If you don’t designate a fi eld as a primary key, Access can add an AutoNumber fi eld and
designate it as the table’s primary key. AutoNumber fi elds make very good primary keys
because Access creates the value for you, the number is never reused within a table, and
you can’t change the value of an AutoNumber fi eld.

Good primary keys:

 ■ Uniquely identify each record.

 ■ Cannot be null.

 ■ Must exist when the record is created.

 ■ Must remain stable. (Never change a primary key value once it’s established.)

 ■ Should be simple and contain as few attributes as possible.

In addition to uniquely identifying rows in a table, primary keys provide other benefi ts:

 ■ A primary key is always an index.

 ■ An index maintains a presorted order of one or more fi elds that can greatly speed
up queries, searches, and sort requests.

 ■ When you add new records to your table, Access checks for duplicate data and
doesn’t allow any duplicates for the primary key fi eld.

 ■ By default, Access displays a table’s data in the order of its primary key.

74

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 74

By designating a fi eld such as CustomerID as the primary key, data is displayed in a mean-
ingful order. In our example, because the CustomerID fi eld is an AutoNumber, its value is
assigned automatically by Access in the order that a record is put into the system.

The ideal primary key is, then, a single fi eld that is immutable and guaranteed to be unique
within the table. For these reasons, the Collectible Mini Cars database uses the AutoNumber
fi eld exclusively as the primary key for all tables.

Creating the primary key
The primary key can be created in any of three ways. With a table open in Design view:

 ■ Select the fi eld to be used as the primary key and click the Primary Key button
(the key icon) in the Tools group on the Design tab of the Ribbon.

 ■ Right-click the fi eld and select Primary Key from the shortcut menu.

 ■ Save the table without creating a primary key, and allow Access to automatically
create an AutoNumber fi eld.

After you designate the primary key, a key icon appears in the gray selector area to the left
of the fi eld’s name to indicate that the primary key has been created.

Creating composite primary keys
You can designate a combination of fi elds to be used as a table’s primary key. Such keys
are often referred to as composite primary keys. As indicated in Figure 3.15, select the fi elds
that you want to include in the composite primary key; then click the key icon on the Tools
tab of the Ribbon. To create a primary key from fi elds that are not next to each other, hold
down Ctrl while selecting the fi elds.

Composite primary keys are primarily used when the developer strongly feels that a pri-
mary key should be comprised of data that occurs naturally in the database. There was a
time when all developers were taught that every table should have a natural primary key
(data that occurs naturally in the table).

Composite primary keys are seldom used these days because developers have come to
realize that data is highly unpredictable. Even if your users promise that a combination of
certain fi elds will never be duplicated in the table, things have a way of turning out differ-
ently from planned. Using a surrogate primary key (a key fi eld that does not naturally occur
in the table’s data, such as an Employee ID), such as an AutoNumber, separates the table’s
design from the table’s data. The problem with natural primary keys is that, eventually,
given a large enough data set, the values of fi elds chosen as the table’s primary key are
likely to be duplicated.

75

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 75

3

FIGURE 3.15

Creating a composite primary key.

Furthermore, when using composite keys, maintaining relationships between tables
becomes more complicated because the fi elds comprising the primary key must be dupli-
cated in all the tables containing related data. Using composite keys simply adds to the
complexity of the database without adding stability, integrity, or other desirable features.

Indexing Access Tables
Data is rarely, if ever, entered into tables in a meaningful order. Usually, records are added
to tables in random order (with the exception of time-ordered data). For example, a busy
order-entry system will gather information on a number of different customer orders in a
single day. Most often, this data will be used to report orders for a single customer for bill-
ing purposes or for extracting order quantities for inventory management. The records in
the Orders table, however, are in chronological order, which is not necessarily helpful when
preparing reports detailing customer orders. In that case, you’d rather have data entered in
customer ID order.

To further illustrate this concept, consider the Rolodex card fi le many people use to store
names, addresses, and phone numbers. Assume for a moment that the cards in the fi le were
fi xed in place. You could add new cards, but only to the end of the card fi le. This limita-
tion would mean that “Jones” might follow “Smith,” which would in turn be followed by
“Baker.” In other words, there is no particular order to the data stored in this fi le.

76

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 76

An unsorted Rolodex like this would be very diffi cult to use. You’d have to search each
and every card looking for a particular person, a painful and time-consuming process. Of
course, this isn’t how you use address card fi les. When you add a card to the fi le, you insert
it into the Rolodex at the location where it logically belongs. Most often, this means insert-
ing the card in alphabetical order, by last name, into the Rolodex.

Records are added to Access tables as described in the fi xed card fi le example earlier. New
records are always added to the end of the table, rather than in the middle of the table
where they may logically belong. However, in an order-entry system, you’d probably want
new records inserted next to other records on the same customer. Unfortunately, this isn’t
how Access tables work. The natural order of a table is the order in which records were added
to the table. This order is sometimes referred to as entry order or physical order to emphasize
that the records in the table appear in the order in which they were added to the table.

Using tables in natural order is not necessarily a bad thing. Natural order makes perfect
sense if the data is rarely searched or if the table is very small. Also, there are situations
where the data being added to the table is highly ordered to start with. If the table is used
to gather sequential data (like readings from an electric meter) and the data will be used in
the same sequential order, there is no need to impose an index on the data.

But for situations where natural order doesn’t suffi ce, Access provides indexing to help you
fi nd and sort records faster. You specify a logical order for the records in a table by creating
an index on that table. Access uses the index to maintain one or more internal sort orders
for the data in the table. For example, you may choose to index the LastName fi eld that will
frequently be included in queries and sorting routines.

Access uses indexes in a table as you use an index in a book: To fi nd data, Access looks up
the data’s location in the index. Most often, your tables will include one or more simple
indexes. A simple index is one that involves a single fi eld in the table. Simple indexes may
arrange the table’s records in ascending or descending order. Simple indexes are created by
setting the fi eld’s Indexed property to one of the following values:

 ■ Yes (Duplicates OK)

 ■ Yes (No Duplicates)

By default, Access fi elds are not indexed, but it’s hard to imagine a table that doesn’t
require some kind of index. The next section discusses why indexing is important to use in
Access tables.

The importance of indexes
Microsoft’s data indicates that more than half of all tables in Access databases contain no
indexes. This number doesn’t include the tables that are improperly indexed—it includes
only those tables that have no indexes at all. It appears that a lot of people don’t appreciate
the importance of indexing the tables in an Access database.

77

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 77

3

As a demonstration of the power and value of indexes, this book’s website includes a database named

IndexTest.accdb. This database includes two identical tables containing approximately 355,000 random

words. One table is indexed on the Word fi eld, and the other is not. A small form (shown in Figure 3.16) lets you query

either the indexed or unindexed table and shows the number of milliseconds the search takes.

Figure 3.16 frmIndexTest provides a quick and easy way to verify the importance of indexes.

The buttons run each test ten times and display the results in the list box below the but-
ton. The indexed table consistently fi nds a word in ten to 30 milliseconds, while the unin-
dexed search takes between 300 and 350 milliseconds. Displaying the results you see in
Figure 3.16 takes almost no time at all and doesn’t contribute to the overall time required
to run the query. It goes without saying that the actual time required to run a query
depends very much on the computer’s hardware, but performance enhancements of 500 per-
cent and more are not at all uncommon when adding an index to a fi eld.

Because an index means that Access maintains an internal sort order on the data contained
in the indexed fi eld, you can see why query performance is enhanced by an index. You
should index virtually every fi eld that is frequently involved in queries or is frequently
sorted on forms or reports.

Without an index, Access must search each and every record in the database looking for
matches. This process is called a table scan and is analogous to searching through each and
every card in a Rolodex fi le to fi nd all the people who work for a certain company. Until you
reach the end of the deck, you can’t be sure you’ve found every relevant card in the fi le.

 ON THE WEB

78

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 78

As mentioned earlier in this chapter, a table’s primary key fi eld is always indexed. This is
because the primary key is used to locate records in the table. Indexing the primary key
makes it much easier for Access to fi nd the required tables in either the current table or a
foreign table related to the current table. Without an index, Access has to search all records
in the related table to make sure it has located all the related records.

The performance losses due to unindexed tables can have a devastating effect on the overall performance of an

Access application. Anytime you hear a complaint about the performance of an application, consider indexing as a

possible solution.

Multiple-fi eld indexes
Multiple-fi eld indexes (also called composite indexes) are easy to create. In Design view,
click the Indexes button on the Design tab of the Ribbon. The Indexes dialog box (shown in
Figure 3.17) appears, allowing you to specify the fi elds to include in the index.

FIGURE 3.17

Multiple-fi eld (composite) indexes can enhance performance.

Primary key index

Composite index

Enter a name for the index (CityState in Figure 3.17) and tab to the Field Name column. Use
the drop-down list to select the fi elds to include in the index. In this example, City and
State are combined as a single index. Any row appearing immediately below this row that
does not contain an index name is part of the composite index. Access considers both these
fi elds when creating the sort order on this table, speeding queries and sorting operations
that include both the City and State fi elds.

79

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 79

3

The order of the fi elds in a composite index is important. The CityState index described in this chapter will be used by

Access when only the City is provided in a query, but it will provide no benefi t when only the State is provided.

As many as ten fi elds can be included in a composite index. As long as the composite
index is not used as the table’s primary key, any of the fi elds in the composite index
can be empty.

Figure 3.18 shows how to set the properties of an index. The cursor is placed in the row
in the Indexes dialog box containing the name of the index. Notice the three properties
appearing in the bottom half of the Indexes dialog box.

FIGURE 3.18

It’s easy to set the properties of an index.

The index properties are quite easy to understand (these properties apply to single-fi eld
and composite indexes equally):

 ■ Primary: When set to Yes, Access uses this index as the table’s primary key. More
than one fi eld can be designated as the primary key, but keep the rules governing
primary keys in mind, particularly those requiring each primary key value to be
unique and that no fi eld in a composite primary key can be empty. The default for
the Primary property is No.

 ■ Unique: When set to Yes, the index must be unique within a table. A Social
Security number fi eld is a good candidate for a unique index because the applica-
tion’s business rules may require one and only one instance of a Social Security
number in the table. In contrast, a last name fi eld should not be uniquely indexed,
because many last names, like Smith and Jones, are very common, and having a
unique index on the last name fi eld will only cause problems.

80

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 80

When applied to composite keys, the combination of fi eld values must be unique—
each fi eld within the composite key can duplicate fi elds found within the table.

 ■ Ignore Nulls: If a record’s index fi eld contains a null value (which happens in a
composite index only if all fi elds in the composite index are null) the record’s index
won’t contribute anything to the overall indexing. In other words, unless a record’s
index contains some kind of value, Access doesn’t know where to insert the record
in the table’s internal index sort lists. Therefore, you might want to instruct Access
to ignore a record if the index value is null. By default, the Ignore Nulls property
is set to No, which means Access inserts records with a Null index value into the
indexing scheme along with any other records containing Null index values.

You should test the impact of the index properties on your Access tables and use the prop-
erties that best suit the data handled by your databases.

A fi eld can be both the primary key for a table and part of a composite index. You should
index your tables as necessary to yield the highest possible performance without worrying
about over-indexing or violating some arcane indexing rules. For example, in a database
such as Collectible Mini Cars, the invoice number in tblSales is frequently used in forms and
reports and should be indexed. In addition, there are many situations in which the invoice
number is used in combinations with other fi elds, such as the sales date or salesperson ID.
You should consider adding composite indexes combining the invoice number with sales
date, and salesperson ID, to the sales table.

When to index tables
Depending on the number of records in a table, the extra overhead of maintaining an index
may not justify creating an index beyond the table’s primary key. Though data retrieval is
somewhat faster than it is without an index, Access must update index information when-
ever you enter or change records in the table. In contrast, changes to nonindexed fi elds
do not require extra fi le activity. You can retrieve data from nonindexed fi elds as easily
(although not as quickly) as from indexed fi elds.

Generally, it’s best to add secondary indexes when tables are quite large and when index-
ing fi elds other than the primary key speeds up searches. Even with large tables, however,
indexing can slow performance if the records in tables will be changed often or new records
will be added frequently. Each time a record is changed or added, Access must update all
indexes in the table.

Given all the advantages of indexes, why not index everything in the table? What are the
drawbacks of indexing too many fi elds? Is it possible to over-index tables?

First, indexes increase the size of the Access database somewhat. Unnecessarily indexing a
table that doesn’t really require an index eats up a bit of disk space for each record in the
table. More important, indexes extract a performance hit for each index on the table every

81

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 81

3

time a record is added to the table. Because Access automatically updates indexes each time
a record is added (or removed), the internal indexing must be adjusted for each new record.
If you have ten indexes on a table, Access makes ten adjustments to the indexes each time
a new record is added or an existing record is deleted, causing a noticeable delay on large
tables (particularly on slow computers).

Sometimes changes to the data in records cause adjustments to the indexing scheme. This
is true if the change causes the record to change its position in sorting or query activi-
ties. Therefore, if you’re working with large, constantly changing data sets that are rarely
searched, you may choose not to index the fi elds in the table, or to minimally index by
indexing only those few fi elds that are likely to be searched.

As you begin working with Access tables, you’ll probably start with the simplest one-fi eld
indexes and migrate to more complex ones as your familiarity with the process grows.
Keep in mind, however, the trade-offs between greater search effi ciency and the overhead
incurred by maintaining a large number of indexes on your tables.

It’s also important to keep in mind that indexing does not modify the physical arrangement
of records in the table. The natural order of the records (the order in which the records were
added to the table) is maintained after the index is established.

A compact and repair cycle on an Access database forces Access to rebuild the indexes in all the tables, and physi-

cally rearranges tables in primary key order in the ACCDB fi le. The maintenance operations ensure that your Access

databases operate at maximum effi ciency. See Chapter 31 for more on the Compact and Repair utility.

Printing a Table Design
You can print a table design by clicking the Database Documenter button in the
Analyze group on the Database Tools tab of the Ribbon. The Analyze group contains a
number of tools that make it easy to document your database objects. When you click
the Database Documenter button, the Documenter dialog box appears, letting you
select objects to print. In Figure 3.19, tblCustomers is selected on the Tables tab of the
Documenter dialog box.

You can also set various options for printing. When you click the Options button, the Print
Table Defi nition dialog box (shown in Figure 3.20) appears, enabling you to select which
information from the Table Design to print. You can print the various fi eld names, all their
properties, the indexes, and even network permissions.

82

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 82

FIGURE 3.19

The Documenter dialog box.

FIGURE 3.20

Printing options in the Print Table Defi nition dialog box.

Don’t select too many options in the Print Table Defi nition dialog box. Printing every detail of a table’s design can

take many pages to output. It’s probably best to print just a few items for a table, and add to the options when

necessary.

After you select the options you want, Access generates a report. You can view the report
in a Print Preview window or send it to a printer. You may want to save the report within
the database as part of the application’s documentation.

The Database Documenter creates a table of all the objects and object properties you specify. You can use this utility

to document such database objects as forms, queries, reports, macros, and modules.

83

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 83

3

Saving the Completed Table
You can save the completed table design by choosing File ➪ Save or by clicking the Save
button on the Quick Access toolbar in the upper-left corner of the Access environment. If
you’re saving the table for the fi rst time, Access asks for its name. Table names can be up
to 64 characters long and follow standard Access object naming conventions: They may
include letters and numbers, can’t begin with a number, and can’t include punctuation. You
can also save the table when you close it.

If you’ve saved this table before and want to save it with a different name, choose File
➪ Save As ➪ Save Object As, click the Save As button, and enter a different table name.
This action creates a new table design and leaves the original table with its original name
untouched. If you want to delete the old table, select it in the Navigation pane and press
the Delete key.

Manipulating Tables
As you add many tables to your database, you may want to use them in other databases
or make copies of them as backups. In many cases, you may want to copy only the table’s
design and not include all the data in the table. You can perform many table operations in
the Navigation pane, including:

 ■ Renaming tables

 ■ Deleting tables

 ■ Copying tables in a database

 ■ Copying a table to another database

You perform these tasks by direct manipulation or by using menu items.

Renaming tables
Rename a table by right-clicking its name in the Navigation pane and selecting Rename
from the shortcut menu. After you change the table name, it appears in the Tables list,
which re-sorts the tables in alphabetical order.

If you rename a table, you must change the table name in any objects in which it was previously referenced, including

queries, forms, and reports.

84

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 84

Deleting tables
Delete a table by right-clicking its name in the Navigation pane and selecting Delete from
the shortcut menu or by selecting the table in the Navigation pane and pressing the Delete
key. Like most delete operations, you have to confi rm the delete by clicking Yes in a confi r-
mation box.

Be aware that holding down the Shift key while pressing the Delete key deletes the table (or any other database

object, for that matter) without confi rmation. You’ll fi nd the Shift+Delete key combination useful for removing items

but also dangerous if not carefully applied.

Copying tables in a database
The copy and paste options in the Clipboard group on the Home tab allow you to copy any
table in the database. When you paste the table back into the database, the Paste Table As
dialog box appears, asking you to choose from three options:

 ■ Structure Only: Clicking the Structure Only button creates a new, empty table with
the same design as the copied table. This option is typically used to create a tempo-
rary table or an archive table to which you can copy old records.

 ■ Structure and Data: When you click Structure and Data, a complete copy of the
table design and all its data is created.

 ■ Append Data to Existing Table: Clicking the Append Data to Existing Table
button adds the data of the selected table to the bottom of another table. This
option is useful for combining tables, such as when you want to add data from a
monthly transaction table to a yearly history table.

Follow these steps to copy a table:

 1. Right-click the table name in the Navigation pane and choose Copy from the
shortcut menu, or click the Copy button in the Clipboard group on the Home tab.

 2. Choose Paste from the shortcut menu, or click the Paste button in the
Clipboard group on the Home tab. The Paste Table As dialog box appears (see
Figure 3.21).

 3. Enter the name of the new table. When you’re appending data to an existing table
(see the next step), you must type the name of an existing table.

 4. Choose one of the Paste options—Structure Only, Structure and Data, or Append
Data to Existing Table—from the Paste Table As dialog box.

 5. Click OK to complete the operation.

85

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 85

3

FIGURE 3.21

Pasting a table opens the Paste Table As dialog box.

Copying a table to another database
Just as you can copy a table within a database, you can copy a table to another database.
There are many reasons why you may want to do this. Maybe you share a common table
among multiple systems, or maybe you need to create a backup copy of your important
tables within the system.

When you copy tables to another database, the relationships between tables are not copied.
Access copies only the table design and the data to the other database. The method for
copying a table to another database is essentially the same as for copying a table within a
database:

 1. Right-click the table name in the Navigation pane and choose Copy from
the shortcut menu, or click the Copy button in the Clipboard group on the
Home tab.

 2. Open the other Access database and choose Edit Paste from the shortcut menu,
or click the Copy button in the Clipboard group on the Home tab. The Paste
Table As dialog box appears.

 3. Enter the name of the new table.

 4. Choose one of the Paste options: Structure Only, Structure and Data, or Append
Data to Existing Table.

 5. Click OK to complete the operation.

Adding Records to a Database Table
Adding records to a table is as simple as clicking the table in the Navigation pane to
open the table in Datasheet view. Once the table is opened, enter values for each fi eld.
Figure 3.22 shows adding records in Datasheet view to the table.

You can enter information into all fi elds except CustomerID. AutoNumber fi elds automati-
cally provide a number for you.

86

Part II: Understanding Access Tables

c03.indd 10/07/2015 Page 86

FIGURE 3.22

Using Datasheet view to add records to a table.

Although you can add records directly into the table through the Datasheet view, it isn’t
the recommended way. Adding records using forms is better because code behind a form
can dynamically provide default values (perhaps based on data already added to the form)
and communicate with the user during the data entry process.

 Part V of this book discusses building forms to enter data.

Understanding Attachment Fields
Microsoft recognizes that database developers must deal with many different types of data.
Although the traditional Access data types (Text, Currency, OLE Object, and so on) are able
to handle many different types of data, until recently there was no way to accommodate
complete files as Access data without performing some transformation on the fi le (such as
conversion to OLE data).

Since Access 2010, Access has included the Attachment data type, enabling you to bring
entire fi les into your Access database as “attachments” to a table. When you click an
attachment fi eld, a small Attachments dialog box (shown in Figure 3.23) appears, enabling
you to locate fi les to attach to the table.

The Add button in Figure 3.23 opens the familiar Choose File dialog box, enabling you
to search for one or more fi les to attach to the fi eld. The selected fi les are added to the
list you see in Figure 3.23. Notice also that the Attachments dialog box includes but-
tons for removing attachments from the fi eld, and for saving attachments back to the
computer’s disk.

87

Chapter 3: Creating Access Tables

c03.indd 10/07/2015 Page 87

3

FIGURE 3.23

Managing attachments in an Attachment fi eld.

The signifi cant thing to keep in mind about the Attachment data type is that a single
attachment fi eld in a table can contain multiple fi les of different types. It’s entirely pos-
sible to store a Word document, several audio or video clips, and a number of photographs,
within a single attachment fi eld.

Obviously, because the attached data is incorporated into the database, the ACCDB fi le will quickly grow if many

attachments are added. You should use the Attachment data type only when its benefi ts outweigh the burden it

places on an Access applicati on.

89

c04.indd 10/07/2015 Page 89

 CHAP T ER

4
Understanding Table
Relationships

IN THIS CHAPTER

Understanding bulletproof database design

Normalizing database data

Looking at common table relationships

Understanding integrity rules

Adding key fi elds to tables

W
e’ve already covered one of the most basic assumptions about relational database systems—
that data is spread across a number of tables that are related through primary and foreign
keys. Although this basic principle is easy to understand, it can be much more diffi cult to

understand why and when data should be broken into separate tables.

Because the data managed by a relational database such as Access exists in a number of different
tables, there must be some way to connect the data. The more effi ciently the database performs
these connections, the better and more fl exible the database application as a whole will function.

Although databases are meant to model real-world situations, or at least manage the data involved
in real-world situations, even the most complex situation is reduced to a number of relationships
between pairs of tables. As the data managed by the database becomes more complex, you may
need to add more tables to the design. For example, a database to manage employee affairs for a
company will include tables for employee information (name, Social Security number, address, hire
date, and so on), payroll information, benefi ts programs the employee belongs to, and so on.

This chapter uses a variety of data from different business situations, including Northwind Traders
(the traditional Access example database), a small bookstore, and the Collectible Mini Cars applica-
tion used in other chapters of this book. Each dataset has somewhat different objectives from the
others and is used to emphasize different aspects of relational theory. All the tables described in
this chapter are contained in the Chapter04.accdb database.

90

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 90

When working with the actual data, however, you concentrate on the relationship between
two tables at a time. You might create the Employees and Payroll tables fi rst, connecting
these tables with a relationship to make it easy to fi nd all the payroll information for an
employee.

This chapter uses a variety of data from the database named Chapter04.accdb. If you haven’t already down-

loaded it, you’ll need to do so now. If you’re following the examples, you can use the tables in this database or create

the tables yourself in another database.

Building Bulletproof Databases
In Chapters 1, 2, and 3, you saw examples of common relationships found in many Access
databases. By far the most common type of table relationship is the one-to-many. The
Collectible Mini Cars application has many such relationships: Each record in the Customers
table is related to one or more records in the Sales table. (Each contact may have purchased
more than one item through Collectible Mini Cars.)

 We cover one-to-many relationships in detail in the “Table Relationships” section later in this chapter.

You can easily imagine an arrangement that would permit the data contained in the
Customers and Sales tables to be combined within a single table. All that would be needed
is a separate row for each order placed by each of the contacts. As new orders come in, new
rows containing the customer and order information would be added to the table.

The Access table shown in Figure 4.1, tblCustomersAndOrders, is an example of such an
arrangement. In this fi gure, the OrderID column contains the order number placed by the
contact (the data in this table has been sorted by CustomerID to show how many orders
have been placed by each contact). The table in Figure 4.1 was created by combining data
from the Customers and Orders tables in the Northwind Traders sample database and is
included in the Chapter04.accdb database fi le on this book’s website.

Notice the OrderID column to the right of the CompanyName column. Each contact (like
Alfreds Futterkiste) has placed a number of orders. Columns to the far right in this table
(beyond the right edge of the fi gure) contain more information about each contact, includ-
ing address and phone numbers, while columns beyond the company information contain
the specifi c order information. In all, this table contains 24 different fi elds.

The design shown in Figure 4.1 is what happens when a spreadsheet application such as
Excel is used for database purposes. Because Excel is entirely spreadsheet oriented, there
is no provision for breaking up data into separate tables, encouraging users to keep every-
thing in one massive spreadsheet.

 ON THE WEB

91

Chapter 4: Understanding Table Relationships

c04.indd 10/07/2015 Page 91

4

FIGURE 4.1

 An Access table containing contact and orders data.

Such an arrangement has several problems:

 ■ The table quickly becomes unmanageably large. The Northwind Traders Contacts
table contains 11 different fi elds, while the Orders table contains 14 more. One
fi eld, OrderID, overlaps both tables. Each time an order is placed, all 24 data fi elds
in the combined table would be added for each record added to the table, including
a lot of data (such as the Contact Name and Contact Title) not directly relevant to
an order.

 ■ Data is diffi cult to maintain and update. Making simple changes to the data in
the large table—for example, changing a contact’s phone or fax number—involves
searching through all records in the table and changing every occurrence of the
phone number. It’s easy to make an erroneous entry or miss one or more instances.
The fewer records needing changes, the better off the user will be.

 ■ A monolithic table design is wasteful of disk space and other resources.
Because the combined table contains a huge amount of redundant data (for
example, a contact’s address is repeated for every sale), a large amount of hard disk
space is consumed by the redundant information. In addition to wasted disk space,
network traffi c, computer memory, and other resources would be poorly utilized.

92

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 92

A much better design—the relational design—moves the repeated data into a separate
table, leaving a fi eld in the fi rst table to serve as a reference to the data in the second
table. The additional fi eld required by the relational model is a small price to pay for the
effi ciencies gained by moving redundant data out of the table.

A second huge advantage of normalizing data and applying strict database design rules
to Access applications is that the data becomes virtually bulletproof. In an appropriately
designed and managed database, users are ensured that the information displayed on
forms and reports truly refl ects the data stored in the underlying tables. Poorly designed
databases are prone to data corruption, which means that records are sometimes “lost” and
never appear on forms and reports, even though users added the data to the application, or
the wrong data is returned by the application’s queries. In either case, the database can’t
be trusted because users are never sure that what they’re seeing in forms and reports is
correct.

Users tend to trust what they see on the screen and printed on paper. Imagine the problems
that would occur if a customer were never billed for a purchase or inventory were incor-
rectly updated. Nothing good can come from a weak database design. As database develop-
ers, we’re responsible for making sure the applications we design are as strong and resilient
as possible. Following proper data normalization rules can help us achieve that goal.

Data Normalization and Denormalization
The process of splitting data across multiple tables is called normalizing the data. There are
several stages of normalization; the fi rst through the third stages are the easiest to under-
stand and implement and are generally suffi cient for the majority of applications. Although
higher levels of normalization are possible, they’re usually ignored by all but the most
experienced and fastidious developers.

To illustrate the normalization process, I’ll use a little database that a book wholesaler
might use to track book orders placed by small bookstores in the local area. This database
must handle the following information:

 ■ The dates on which the books were ordered

 ■ The customers who placed the orders

 ■ The quantity of each book ordered

 ■ The title of each book ordered

Although this dataset is very simple, it’s typical of the type of data you might manage with
an Access database application, and it provides a valid demonstration of normalizing a set
of data.

93

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 93

First normal form
The initial stage of normalization, called first normal form (1NF), requires that the table
conform to the following rule:

Each fi eld of a table must contain only a single value, and the table must not
contain repeating groups of data.

A table is meant to be a two-dimensional storage object, and storing multiple values within
a fi eld or permitting repeating groups within the table implies a third dimension to the
data. Figure 4.2 shows the fi rst attempt at building a table to manage bookstore orders
(tblBookOrders1). Notice that some bookstores have ordered more than one book. A value
like 7 Cookie Magic in the BookTitle fi eld means that the contact has ordered seven cop-
ies of the cookbook titled Cookie Magic. Storing both a quantity and the item’s name in the
same cell is just one of several ways that this table violates fi rst normal form.

FIGURE 4.2

An unnormalized tblBookOrders table.

The table in Figure 4.2 is typical of a flat-file approach to building a database. Data in a fl at-
fi le database is stored in two dimensions (rows and columns) and neglects the third dimen-
sion (related tables) possible in a relational database system such as Access.

Notice how the table in Figure 4.2 violates the fi rst rule of normalization. Many of the
records in this table contain multiple values in the BookTitle fi eld. For example, the book
titled Smokin’ Hams appears in records 7 and 8. There is no way for the database to handle
this data easily—if you want to cross-reference the books ordered by the bookstores, you’d
have to parse the data contained in the BookTitle fi eld to determine which books have been
ordered by which contacts.

94

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 94

A slightly better design is shown in Figure 4.3 (tblBookOrders2). The books’ quantities and
titles have been separated into individual columns. Each row still contains all the data for
a single order. This arrangement makes it somewhat easier to retrieve quantity and title
information, but the repeating groups for quantity and title (the columns Quant1, Title1,
Quant2, Title2, and so on) continue to violate the fi rst rule of normalization. (The row
height in Figure 4.3 has been adjusted to make it easier to see the table’s arrangement.)

FIGURE 4.3

Only a slight improvement over the previous design.

The design in Figure 4.3 is still clumsy and diffi cult to work with. The columns to hold the
book quantities and titles are permanent features of the table. The developer must add
enough columns to accommodate the maximum number of books that could be purchased
on a single order. For example, let’s assume that the developer anticipates that no book-
store will ever order more than 50 books at a time. This means that 100 columns are added
to the table (two columns—Quantity and Title—are required for each book title ordered). If
a bookstore orders a single book, 98 columns would sit empty in the table, a very wasteful
and ineffi cient situation.

Based on the design shown in Figure 4.3, it would be exceedingly diffi cult to query
tblBookOrders2 to get the sales fi gure for a particular book. The quantity sold for any book
is scattered all over the table, in different rows and different columns, making it very dif-
fi cult to know where to look for a book’s sales data.

95

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 95

Also, if any book order exceeds 50 books, the table has to be redesigned to accommodate
the additional columns needed by the order. Of course, the user might add a second row for
the order, making the data in the table more diffi cult to work with than intended.

Figure 4.4 shows tblBookOrders3, a new table created from the data in Figure 4.3 in
fi rst normal form. Instead of stacking multiple book orders within a single record, in
tblBookOrders3 each record contains a single book ordered by a customer. More records are
required, but the data is handled much more easily. First normal form is much more effi -
cient because the table contains no unused fi elds. Every fi eld is meaningful to the table’s
purpose.

FIGURE 4.4

First normal form at last!

The table in Figure 4.4 contains the same data as shown in Figure 4.2 and Figure 4.3. The
new arrangement, however, makes it much easier to work with the data. For example, que-
ries are easily constructed to return the total number of a particular book ordered by con-
tacts, or to determine which titles have been ordered by a particular bookstore.

Your tables should always be in fi rst normal form. Make sure each cell of the table contains a single value, don’t mix

values within a cell, and don’t have repeating groups (as you saw in Figure 4.3).

96

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 96

The table design optimization is not complete at this point, however. Much remains to be
done with the BookOrders data and the other tables in this application. In particular, the
table shown in Figure 4.4 contains redundant information. The book titles are repeated
each time customers order the same book, and the order number and order date are
repeated for all the rows for an order.

A more subtle issue is the fact that the OrderID can no longer be used as the table’s primary
key. Because the OrderID is duplicated for each book title in an order, it can’t be used to
identify individual records in the table. Instead, the OrderID fi eld is now a key fi eld for the
table and can be used to locate all the records relevant to a particular order. The next step
of optimization corrects this situation.

Second normal form
A more effi cient design results from splitting the data in tblBookOrders into multiple tables
to achieve second normal form (2NF). The second rule of normalization states the following:

Data not directly dependent on the table’s primary key is moved into another
table.

This rule means that a table should contain data that represents a single entity. Because
we’re gradually turning one unnormalized table into normalized data, tblBookOrders3
doesn’t have a primary key. We’ll ignore that fact for the time being and think of each row
in a table as an entity. All the data in that row that isn’t an integral part of the entity is
moved to a different table. In tblBookOrders3, neither the Customer fi eld nor the Title fi eld
is integral to the order and should be moved to a different table.

Identifying entities

But aren’t customers integral to an order? Yes, they are. However, the data that’s stored
in tblBookOrders3 in the Customer fi eld is the customer’s name. If the customer were to
change names, it would not fundamentally change the order. Similarly, while the book is
integral to the order, the book’s title is not.

To remedy this situation, we need separate tables for customers and books. First, create a
new table named tblBookStores, as shown in Figure 4.5.

To create tblBookStores follow these steps:

 1. Click Table Design on the Create tab of the Ribbon.

 2. Add an AutoNumber fi eld named BookStoreID.

 3. Click Primary Key on the Table Tools Design tab of the Ribbon.

 4. Add a Short Text fi eld named StoreName.

 5. Set the length of StoreName to 50.

 6. Save the table as tblBookStores.

97

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 97

You can imagine that we want to store some more information about customers, such as
their mailing addresses and phone numbers. For now, we’re getting our data into 2NF by
moving data that isn’t integral to an order to its own table.

FIGURE 4.5

Moving customer data to its own table.

Next create a table for books by following these steps:

 1. Click Table Design on the Create tab of the Ribbon.

 2. Add an AutoNumber fi eld named BookID.

 3. Click Primary Key on the Table Tools Design tab of the Ribbon.

 4. Add a Short Text fi eld named BookTitle.

 5. Save the table as tblBooks.

The customer and the book are still integral to the order (just not the name and title)
and we need a way to relate the tables to each other. While the customer may change
names, the customer can’t change the BookStoreID because we created it and we control it.
Similarly, the publisher may change the book’s title but not the BookID. The primary keys
of tblBookStores and tblBooks are reliable pointers to the objects they identify, regardless
of what other information may change.

Figure 4.6 shows our three tables, but instead of a customer name and a book title,
tblBookOrder3 now contains the primary key of its related record in both tblBookStores
and tblBooks. When the primary key of one table is used as a fi eld in another table, it’s
called a foreign key.

98

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 98

FIGURE 4.6

The fi rst step in making our table 2NF.

Before we split out the customer data to its own table, if Uptown Books changed its name
to Uptown Books and Periodicals, we would have to identify all the rows in tblBookOrders3
that had a customer of Uptown Books and change the fi eld’s value for each row identifi ed.

Overlooking an instance of the customer’s name during this process is called an update
anomaly and results in records that are inconsistent with the other records in the database.
From the database’s perspective, Uptown Books and Uptown Books and Periodicals are two
completely different organizations, even if we know that they’re the same store. A query
to retrieve all the orders placed by Uptown Books and Periodicals will miss any records that
still have Uptown Books in the Customer fi eld because of the update anomaly.

Another advantage of removing the customer name from the orders table is that the name
now exists in only one location in the database. If Uptown Books changes its name to
Uptown Books and Periodicals, we now only have to change its entry in the tblBookStores
table. This single change is refl ected throughout the database, including all forms and
reports that use the customer name information.

Identifying separate entities and putting their data into separate tables is a great fi rst step
to achieving second normal form. But we’re not quite done. Our orders table still doesn’t

99

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 99

have a unique fi eld that we can use as the primary key. The OrderID fi eld has repeating val-
ues that provide a clue that there is more work to be done to achieve 2NF.

Less obvious entities

Customers and books are physical objects that are easy to identify as separate entities. The
next step is a little more abstract. Our orders table, now called tblBookOrders4, still con-
tains information about two separate, but related, entities. The order is one entity, and the
order details (the individual lines on the order) are entities all their own.

The fi rst three records of tblBookOrders4, shown in Figure 4.6, contain the same OrderID,
OrderDate, and BookStoreID. These three fi elds are characteristics of the order as a whole,
not of each individual line on the order. The Quantity and BookID fi elds contain different
values in those three fi rst records. Quantity and BookID are characteristics of a particular
line on the order.

Values that repeat in multiple records, like OrderID in tblBookOrders2 shown in Figure 4.6, are an indication that your

data is not yet in second normal form. Some data, like foreign keys, is meant to repeat. Other data, like dates and

quantities, repeats naturally and is not indicative of a problem.

The last step to get our order data into second normal form is to put the information inte-
gral to the order as a whole into a separate table from the information for each line on the
order. Create a new table named tblBookOrderDetails with the fi elds BookOrderDetailID,
Quantity, and BookID. BookOrderDetailID is an AutoNumber fi eld that will serve as the pri-
mary key, and BookID is a foreign key fi eld that we use to relate the two tables. Figure 4.7
shows our new orders table, tblBookOrders5, and our new details table, tblBookOrderDetails.

The OrderID fi eld in tblBookOrders5 was deleted and a new AutoNumber fi eld named OrderID
was created. Now that we have a unique fi eld in the orders table, we can set OrderID as
the primary key. All the data in each record of tblBookOrders5 directly relates to an order
entity. Or, in 2NF language, all the data is directly dependent on the primary key.

The OrderID fi eld in tblBookOrderDetails is a foreign key that is used to relate the two
tables together. Figure 4.7 shows that the fi rst three records in tblBookOrderDetails show
an OrderID of 1 that maps to the fi rst record of tblBookOrders5.

All the fi elds in tblBookOrderDetails are directly dependent on the primary key
BookOrderDetailID. The quantity from the fi rst record, 10, relates directly to that line item
on the order. It only relates to the order as a whole indirectly, just as the quantities from

100

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 100

the next two records, 5 and 7, do. That indirect relationship is created by including the
OrderID foreign key in the record.

FIGURE 4.7

We have achieved second normal form.

The original table, tblBookOrders1, contained data about several different entities in
each record. Through a series of steps, we split the data into four tables—tblBookOrders5,
tblBookOrderDetails, tblCustomers, and tblBooks—each of which contains data about one
entity. Our data is fi nally in the second normal form.

Breaking a table into individual tables, each of which describes some aspect of the data, is
called decomposition. Decomposition is a very important part of the normalization process.
Even though the tables appear smaller than the original table (refer to Figure 4.2), the data
contained within the tables is the same as before.

A developer working with the bookstore tables is able to use queries to recombine the data
in the four tables in new and interesting ways. It’d be quite easy to determine how many
books of each type have been ordered by the different customers, or how many times a
particular book has been ordered. When coupled with a table containing information such

101

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 101

as book unit cost, book selling price, and so on, the important fi nancial status of the book
wholesaler becomes clear.

Notice also that the number of records in tblBookOrders5 has been reduced. This is one of
several advantages to using a relational database. Each table contains only as much data as
is necessary to represent the entity (in this case, a book order) described by the table. This
is far more effi cient than adding duplicate fi eld values (refer to Figure 4.2) for each new
record added to a table.

Breaking the rules

From time to time, you might fi nd it necessary to break the rules. For example, let’s assume
that the bookstores are entitled to discounts based on the volume of purchases over the
last year. Strictly following the rules of normalization, the discount percentage should be
included in the tblBookStores table. After all, the discount is dependent on the customer,
not on the order.

But maybe the discount applied to each order is somewhat arbitrary. Maybe the book whole-
saler permits the salespeople to cut special deals for valued customers. In this case, you
might want to include a Discount column in the table containing book orders information,
even if it means duplicating information in many records. You could store the traditional
discount as part of the customer’s record in tblBookStores, and use it as the default value
for the Discount column but permit the salesperson to override the discount value when a
special arrangement has been made with the customer.

In fact, it only appears that this breaks the second normal form. The default discount is
directly dependent on the customer. The actual discount given is directly dependent on the
order. A similar situation might exist with shipping addresses. A customer may have most
of their orders shipped to them, but occasionally they may want to have an order shipped
directly to their customer. The customer’s shipping address directly relates to the customer,
and the address where the order was actually shipped relates directly to the order. Values
in object tables that serve as default values in transaction tables are common in large
databases.

 See Chapter 3 for a discussion of object tables and transaction tables.

Third normal form
The last step of normalization, called third normal form (3NF), requires removing all fi elds
that can be derived from data contained in other fi elds in the table or other tables in the
database. For example, let’s say the sales manager insists that you add a fi eld to contain
the total number of books in an order in the Orders table. This information, of course,
would be calculated from the Quantity fi eld in tblBookOrderDetails.

102

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 102

It’s not really necessary to add the new OrderTotal fi eld to the Orders table. Access
easily calculates this value from data that is available in the database. The only advantage
of storing order totals as part of the database is to save the few milliseconds required for
Access to retrieve and calculate the information when the calculated data is needed by a
form or report.

Removing calculated data maintains the integrity of the data in your database. Figure 4.7
shows three records in tblBookOrderDetails that relate to the order with OrderID of 1. Summing
the Quantity fi eld, you can see that 22 books were ordered. If there were an OrderTotal fi eld
and the total were incorrectly entered as 33 instead of 22, the data would be inconsistent. A
report showing total books ordered using the OrderTotal fi eld would show a different number
than a report based on the Details table.

Depending on the applications you build, you might fi nd good reasons to store calculated
data in tables, particularly if performing the calculations is a lengthy process, or if the
stored value is necessary as an audit check on the calculated value printed on reports. It
might be more effi cient to perform the calculations during data entry (when data is being
handled one record at a time) instead of when printing reports (when many thousands of
records are manipulated to produce a single report).

As you’ll read in the “Denormalization” section later in this chapter, there are some good
reasons why you might choose to include calculated fi elds in a database table. As you’ll read
in this section, most often the decision to denormalize is based on a need to make sure the
same calculated value is stored in the database as is printed on a report.

Although higher levels of normalization are possible, you’ll fi nd that, for most database applications, third normal

form is more than adequate. At the very least, you should always strive for fi rst normal form in your tables by moving

redundant or repeating data to another table.

More on Anomalies
This business about update anomalies is important to keep in mind. The whole purpose of normalizing
the tables in your databases is to achieve maximum performance with minimum maintenance effort.

Three types of errors can occur from an unnormalized database design. Following the rules outlined
in this chapter will help you avoid the following pitfalls:

 ■ Insertion anomaly: An error occurs in a related table when a new record is added to another
table. For example, let’s say you’ve added the OrderTotal fi eld described in the previous

103

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 103

section. After the order has been processed, the customer calls and changes the number of
books ordered or adds a new book title to the same order. Unless you’ve carefully designed
the database to automatically update the calculated OrderTotal fi eld, the data in that fi eld
will be in error as the new data is inserted into the table.

If insertion anomalies are a problem in your applications, you may be able to use macros
(see Chapter 22) to help synchronize the data in your tables when changes are made.

 ■ Deletion anomaly: A deletion anomaly causes the accidental loss of data when a record
is deleted from a table. Let’s assume that the tblBookOrders3 table contains the name,
address, and other contact information for each bookstore. Deleting the last remaining
record containing a particular customer’s order causes the customer’s contact information
to be unintentionally lost. Keeping the customer contact information in a separate table
preserves and protects that data from accidental loss. Avoiding deletion anomalies is one
good reason not to use cascading deletes in your tables. (See the “Table Relationships”
section later in this chapter for more on cascading deletes.)

 ■ Update anomaly: Storing data that is not dependent on the table’s primary key causes you
to have to update multiple rows anytime the independent information changes. Keeping
the independent data (such as the bookstore information) in its own table means that only
a single instance of the information needs to be updated.

Denormalization
After hammering you with all the reasons why normalizing your databases is a good idea,
let’s consider when you might deliberately choose to denormalize tables or use unnormal-
ized tables.

Generally speaking, you normalize data in an attempt to improve the performance of your
database. For example, in spite of all your efforts, some lookups will be time consuming.
Even when using carefully indexed and normalized tables, some lookups require quite a bit
of time, especially when the data being looked up is complicated or there’s a large amount
of it.

Similarly, some calculated values may take a long time to evaluate. You may fi nd it more
expedient to simply store a calculated value than to evaluate the expression on the fl y. This
is particularly true when the user base is working on older, memory-constrained, or slow
computers.

Another common reason for denormalizing data is to provide the ability to exactly repro-
duce a document as it was originally produced. For example, if you need to reprint an
invoice from a year ago but the customer’s name has changed in the last year, reprinting
the invoice will show the new name in a perfectly normalized database. If there are busi-
ness reasons that dictate the invoice be reproducible precisely, the customer’s name may
need to be stored in the invoice record at the time the invoice is created.

104

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 104

Be aware that most steps to denormalize a database schema result in additional program-
ming time required to protect the data and user from the problems caused by an unnormal-
ized design. For example, in the case of the calculated OrderTotal fi eld, you must insert
code that calculates and updates this fi eld whenever the data in the fi elds underlying this
value changes. This extra programming, of course, takes time to implement and time to
process at run time.

Make sure that denormalizing the design does not cause other problems. If you know you’ve deliberately denormal-

ized a database design and you’re having trouble making everything work (particularly if you begin to encounter any

of the anomalies discussed in the previous section), look for workarounds that permit you to work with a fully normal-

ized design.

Finally, always document whatever you’ve done to denormalize the design. It’s entirely
possible that you or someone else will be called in to provide maintenance or to add new
features to the application. If you’ve left design elements that seem to violate the rules of
normalization, your carefully considered work may be undone by another developer in an
effort to “optimize” the design. The developer doing the maintenance, of course, has the
best of intentions, but he may inadvertently re-establish a performance problem that was
resolved through subtle denormalization.

One thing to keep in mind is that denormalization is almost always done for reporting
purposes, rather than simply to maintain data in tables. Consider a situation in which a
customer has been given a special discount that doesn’t correspond to his traditional dis-
count. It may be very useful to store the actual amount invoiced to the customer, instead
of relying on the database to calculate the discount each time the report is printed. Storing
the actual amount ensures that the report always refl ects the amount invoiced to the cus-
tomer, instead of reporting a value that depends on other fi elds in the database that may
change over time.

Table Relationships
Many people start out using a spreadsheet application like Excel to build a database.
Unfortunately, a spreadsheet stores data as a two-dimensional worksheet (rows and col-
umns) with no easy way to connect individual worksheets together. You must manually
connect each cell of the worksheet to the corresponding cells in other worksheets—a
tedious process at best.

Two-dimensional storage objects like worksheets are called flat-file databases because they
lack the three-dimensional quality of relational databases. Figure 4.8 shows an Excel work-
sheet used as a fl at-fi le database.

105

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 105

FIGURE 4.8

An Excel worksheet used as a fl at-fi le database.

The problems with fl at-fi le databases should be immediately apparent from viewing
Figure 4.8. Notice that the employee information is duplicated in multiple rows of the work-
sheet. Each time a payroll check is issued to an employee, a new row is added to the work-
sheet. Obviously, this worksheet would rapidly become unmanageably large and unwieldy.

Consider the amount of work required to make relatively simple changes to the data in
Figure 4.8. For example, changing an employee’s title requires searching through numerous
records and editing the data contained within individual cells, creating many opportunities
for errors.

Through clever programming in the Excel VBA language, it would be possible to link the
data in the worksheet shown in Figure 4.8 with another worksheet containing paycheck
detail information. It would also be possible to programmatically change data in individual
rows. But such Herculean efforts are needless when you harness the power of a relational
database such as Access.

Connecting the data
A table’s primary key uniquely identifi es the records in a table. In a table of employee
data, the employee’s Social Security number, a combination of fi rst and last names, or an
employee ID might be used as the primary key. Let’s assume the employee ID is selected
as the primary key for the Employees table. When the relationship to the Payroll table is
formed, the EmployeeID fi eld is used to connect the tables together. Figure 4.9 shows this
sort of arrangement (see the “One-to-many” section later in this chapter).

106

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 106

Some of the issues related to using natural keys (such as Social Security number) are dis-
cussed in the “Natural versus surrogate primary keys” section later in this chapter.

FIGURE 4.9

The relationship between the Employees and Payroll tables is an example of a typical one-to-
many relationship.

Related records

Although you can’t see the relationship in Figure 4.9, Access knows it’s there because a
formal relationship has been established between tblEmployees and tblPayroll. (This pro-
cess is described in the “Creating relationships and enforcing referential integrity” section
later in this chapter.) Because of the relationship between these tables, Access is able to
instantly retrieve all the records from tblPayroll for any employee in tblEmployees.

The relationship example shown in Figure 4.9, in which each record of tblEmployees is
related to several records in tblPayroll, is the most common type found in relational data-
base systems, but it’s by no means the only way that data in tables is related. This book,

107

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 107

and most books on relational databases such as Access, discuss the three basic types of
relationships between tables:

 ■ One-to-one

 ■ One-to-many

 ■ Many-to-many

Figure 4.10 shows most of the relationships in the Collectible Mini Cars database.

FIGURE 4.10

Most of the Collectible Mini Cars table relationships.

Notice that there are several one-to-many relationships between the tables (for example,
tblSales-to-tblSalesLineItems, tblProducts-to-tblSalesLineItems, and tblCustomers-to-tbl-
Sales). The relationship that you specify between tables is important. It tells Access how to
fi nd and display information from fi elds in two or more tables. The program needs to know
whether to look for only one record in a table or look for several records on the basis of the
relationship. tblSales, for example, is related to tblCustomers as a many-to-one relationship.
This is because the focus of the Collectible Mini Cars system is on sales. This means that
there will always be only one customer related to every sales record. That is, many sales can
be associated with a single customer. In this case, the Collectible Mini Cars system is actu-
ally using tblCustomers as a lookup table.

108

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 108

Relationships can be very confusing—they depend upon the focus of the system. For example, when working with

tblCustomers and tblSales, you can always create a query that has a one-to-many relationship to tblSales from

tblCustomers. Although the system is concerned with sales (invoices), sometimes you’ll want to produce reports or

views that are customer related instead of invoice related. Because one customer can have more than one sale, there

will always be one record in tblCustomers and at least one record in tblSales. In fact, there could be many related

records in tblSales. So, Access knows to fi nd only one record in the Customers table and to look for any records in

the Sales table (one or more) that have the same customer number.

One-to-one
A one-to-one relationship between tables means that for every record in the fi rst table, one
and only one record exists in the second table. Figure 4.11 illustrates this concept.

FIGURE 4.11

A one-to-one relationship.

Pure one-to-one relationships are not common in relational databases. In most cases, the
data contained in the second table is included in the fi rst table. As a matter of fact, one-
to-one relationships are generally avoided because they violate the rules of normalization.
Following the rules of normalization, data should not be split into multiple tables if the

109

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 109

data describes a single entity. Because a person has one and only one birth date, the birth
date should be included in the table containing a person’s other data.

There are times, however, when storing certain data along with other data in the table isn’t
a good idea. For example, consider the situation illustrated in Figure 4.11. The data con-
tained in tblSecurityIDs is confi dential. Normally, you wouldn’t want anyone with access to
the public customer information (name, address, and so on) to have access to the confi den-
tial security code that the customer uses for purchasing or billing purposes. If necessary,
tblSecurityIDs could be located on a different disk somewhere on the network, or even
maintained on removable media to protect it from unauthorized access.

Another instance of a one-to-one relationship is a situation known as subtyping. For exam-
ple, your database may contain a Customers table and a Vendors table. If both your custom-
ers and vendors are businesses, a lot of the information for both entities may be similar.
In that case, you may prefer to have a Companies table that contains all the data that is
similar, such as CompanyName, Address, and TaxIdentifi cationNumber. Then your Customers
and Vendors table would contain a reference to the Companies table and include additional
fi elds that are particular to customers and vendors, respectively. The customer and vendor
entities are subtypes of the companies and related one-to-one.

A common situation for one-to-one relationships is when data is being transferred or
shared among databases. Perhaps the shipping clerk in an organization doesn’t need to see
all of a customer’s data. Instead of including irrelevant information—such as job titles,
birth dates, alternate phone numbers, and e-mail addresses—the shipping clerk’s database
contains only the customer’s name, address, and other shipping information. A record in
the Customers table in the shipping clerk’s database has a one-to-one relationship with the
corresponding record in the master Customers table located on the central computer some-
where within the organization. Although the data is contained within separate ACCDB fi les,
the links between the tables can be live (meaning that changes to the master record are
immediately refl ected in the shipping clerk’s ACCDB fi le).

One-to-many
A far more common relationship between tables in a relational database is the one-to-many.
In one-to-many relationships, each record in the fi rst table (the parent) is related to one or
more records in the second table (the child). Each record in the second table is related to
one and only one record in the fi rst table.

Without a doubt, one-to-many relationships are the most common type encountered in
relational database systems. Examples of one-to-many situations abound:

 ■ Customers and orders: Each customer (the “one” side) has placed several orders
(the “many” side), but each order is sent to a single customer.

 ■ Teacher and student: Each teacher has many students, but each student has a
single teacher (within a particular class, of course).

110

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 110

 ■ Employees and paychecks: Each employee has received several paychecks, but
each paycheck is given to one and only one employee.

 ■ Patients and appointments: Each patient has zero or more doctor appointments,
but each appointment is for one patient.

As we discuss in the “Creating relationships and enforcing referential integrity” section
later in this chapter, Access makes it very easy to establish one-to-many relationships
between tables. A one-to-many relationship is illustrated in Figure 4.12. This fi gure, using
tables from the Northwind Traders database, clearly demonstrates how each record in the
Customers table is related to several different records in the Orders table. An order can be
sent to only a single customer, so all requirements of one-to-many relationships are ful-
fi lled by this arrangement.

FIGURE 4.12

The Northwind Traders database contains many examples of one-to-many relationships.

Although the records on the “many” side of the relationship illustrated in Figure 4.12 are
sorted by the Customer fi eld in alphabetical order, there is no requirement that the records
in the “many” table be arranged in any particular order.

111

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 111

Although parent-child is the most common expression used to explain the relationship between tables related in a

one-to-many relationship, you may hear other expressions used, such as master-detail, applied to this design. The

important thing to keep in mind is that the intent of referential integrity is to prevent lost records on the “many”

side of the relationship. Referential integrity guarantees that there will never be an orphan (a child record without a

matching parent record). As you work with related tables, it’s important to keep in mind which table is on the “one”

side and which is on the “many” side.

Notice how diffi cult it would be to record all the orders for a customer if a separate table
were not used to store the order’s information. The fl at-fi le alternative discussed earlier
in this section requires much more updating than the one-to-many arrangement shown in
Figure 4.12. Each time a customer places an order with Northwind Traders, a new record is
added to the Orders table. In a one-to-many arrangement, only the CustomerID (for exam-
ple, AROUT) is added to the Orders table. The CustomerID is a foreign key that relates the
order back to the Customers table. Keeping the customer information is relatively trivial
because each customer record appears only once in the Customers table.

Many-to-many
You’ll come across many-to-many situations from time to time. In a many-to-many arrange-
ment, each record in both tables can be related to zero, one, or many records in the other
table. An example is shown in Figure 4.13. Each student in tblStudents can belong to more
than one club, while each club in tblClubs has more than one member.

As indicated in Figure 4.13, many-to-many relationships are somewhat more diffi cult to
understand because they can’t be directly modeled in relational database systems like
Access. Instead, the many-to-many relationship is broken into two separate one-to-many
relationships, joined through a linking table (called a join table). The join table has one-to-
many relationships with both of the tables involved in the many-to-many relationship. This
principle can be a bit confusing at fi rst, but close examination of Figure 4.13 soon reveals
the beauty of this arrangement.

In Figure 4.13, you can see that Jeffrey Walker (StudentID 12) belongs to both the
Horticulture and Photography clubs (ClubID = 2 and ClubID = 3), an example of one stu-
dent belonging to many clubs. You can also see that the French club (ClubID = 4) has Barry
Williams and David Berry (StudentIDs 7 and 9), an example of one club having many stu-
dents. Each student belongs to multiple clubs, and each club contains multiple members.

112

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 112

FIGURE 4.13

A database of students and the clubs they belong to is an example of a many-to-many rela-
tionship.

Because of the additional complication of the join table, many-to-many relationships are
often considered more diffi cult to establish and maintain. Fortunately, Access makes such
relationships quite easy to establish, if a few rules are followed. These rules are explained
in various places in this book. For example, in order to update either side of a many-to-
many relationship (for example, to change club membership for a student), the join table
must contain the primary keys of both tables joined by the relationship.

Many-to-many relationships are quite common in business environments:

 ■ Lawyers to clients (or doctors to patients): Each lawyer may be involved in several
cases, while each client may be represented by more than one lawyer on each case.

 ■ Patients and insurance coverage: Many people are covered by more than one
insurance policy. For example, if you and your spouse are both provided medical
insurance by your employers, you have multiple coverage.

 ■ Video rentals and customers: Over a year’s time, each video is rented by several
people, while each customer rents more than one video during the year.

 ■ Magazine subscriptions: Most magazines have circulations measured in the thou-
sands or millions. Most people subscribe to more than one magazine at a time.

113

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 113

The Collectible Mini Cars database has a many-to-many relationship between tblCustomers
and tblSalesPayments, linked through tblSales. Each customer might have purchased more
than one item, and each item might be paid for through multiple payments. In addition to
joining contacts and sales payments, tblSales contains other information, such as the sale
date and invoice number. The join table in a many-to-many relationship often contains
information regarding the joined data.

As shown in Figure 4.13 join tables can contain information other than the primary keys of
the tables they join. The tblStudentToClubJoin table includes a fi eld to record the date that
the related student joined the related club.

Integrity Rules
Access permits you to apply referential integrity rules that protect data from loss or corrup-
tion. Referential integrity means that the relationships between tables are preserved during
updates, deletions, and other record operations. The relational model defi nes several rules
meant to enforce the referential integrity requirements of relational databases. In addition,
Access contains its own set of referential integrity rules that are enforced by the ACE data-
base engine.

Imagine a payroll application that contained no rules regulating how data in the database
is used. It would be possible to issue payroll checks that aren’t linked to an employee, for
instance. From a business perspective, issuing paychecks to “phantom” employees is a very
serious situation. Eventually, the issue will be noticed when the auditors step in and notify
management of the discrepancy.

Referential integrity operates strictly on the basis of the tables’ key fi elds. Referential
integrity means that the database engine checks each time a key fi eld (whether primary
or foreign) is added, changed, or deleted. If a change to a value in a key fi eld invalidates a
relationship, it is said to violate referential integrity. Tables can be set up so that referen-
tial integrity is automatically enforced.

Figure 4.14 illustrates a relationship between a Customers table and a Sales table.
tblCustomers is related to tblSales through the CustomerID fi eld. The CustomerID fi eld in
tblCustomers is the primary key, while the CustomerID fi eld in tblSales is a foreign key. The
relationship connects each customer with a sales invoice. In this relationship, tblCustomers
is the parent table, while tblSales is the child table.

Orphaned records are very bad in database applications. Because sales information is almost
always reported as which products were sold to which customers, a sales invoice that is
not linked to a valid customer will not be discovered under most circumstances. It’s easy
to know which products were sold to Fun Zone, but given an arbitrary sales record, it may
not be easy to know that there is no valid customer making the purchase. In Figure 4.14,

114

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 114

the invoice records related to Fun Zone are indicated by boxes drawn around the data in
tblSales.

FIGURE 4.14

A typical database relationship.

Because the referential integrity rules are enforced by the Access database engine, data
integrity is ensured wherever the data appear in the database: in tables, queries, or forms.
Once you’ve established the integrity requirements of your applications, you don’t have to
be afraid that data in related tables will become lost or disorganized.

We can’t overemphasize the need for referential integrity in database applications. Many
developers feel that they can use VBA code or user interface design to prevent orphaned
records. The truth is that, in most databases, the data stored in a particular table may be
used in many different places within the application, or even in other applications that
use the data. Also, given the fact that many database projects extend over many years, and
among any number of developers, it’s not always possible to recall how data should be pro-
tected. By far, the best approach to ensuring the integrity of data stored in any database
system is to use the power of the database engine to enforce referential integrity.

115

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 115

The general relational model referential integrity rules ensure that records contained in
relational tables are not lost or confused. For obvious reasons, it’s important that the pri-
mary keys connecting tables be protected and preserved. Also, changes in a table that
affect other tables (for example, deleting a record on the “one” side of a one-to-many rela-
tionship) should be rippled to the other tables connected to the fi rst table. Otherwise, the
data in the two tables will quickly become unsynchronized.

No primary key can contain a null value
The fi rst referential integrity rule states that no primary key can contain a null value.
A null value is one that simply does not exist. The value of a fi eld that has never been
assigned a value (even a default value) is null. No row in a database table can have null in
its primary key because the main purpose of the primary key is to guarantee uniqueness of
the row. Obviously, null values cannot be unique and the relational model would not work
if primary keys could be null. Access will not allow you to set a fi eld that already contains
null values as the primary key.

Furthermore, Access can’t evaluate a null value. Because a null value doesn’t exist, it can’t
be compared with any other value. It isn’t larger or smaller than any other value; it simply
doesn’t exist. Therefore, a null value can’t be used to look up a record in a table or to form a
relationship between two tables.

Access automatically enforces the fi rst referential integrity rule. As you add data to tables,
you can’t leave the primary key fi eld empty without generating a warning (one reason the
AutoNumber fi eld works so well as a primary key). Once you’ve designated a fi eld in an
Access table as the primary key, Access won’t let you delete the data in the fi eld, nor will it
allow you to change the value in the fi eld so that it duplicates a value in another record.

When using a composite primary key made up of several fi elds, all the fi elds in the
composite key must contain values. None of the fi elds is allowed to be empty. The combina-
tion of values in the composite primary key must be unique.

All foreign key values must be matched by corresponding
primary keys
The second referential integrity rule says that all foreign key values must be matched by
corresponding primary keys. This means that every record in a table on the “many” (or
child) side of a one-to-many relationship must have a corresponding record in the table on
the “one” (or parent) side of the relationship. A record on the “many” side of a relationship
without a corresponding record on the “one” side is said to be orphaned and is effectively
removed from the database schema. Identifying orphaned records in a database can be very
diffi cult, so you’re better off avoiding the situation in the fi rst place.

116

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 116

The second rule means the following:

 ■ Rows cannot be added to a “many” side table (the child) if a corresponding
record does not exist on the “one” side (the parent). If a child record contains a
ParentID fi eld, the ParentID value must match an existing record in the parent table.

 ■ The primary key value in a “one” side table cannot be changed if the change
would create orphaned child records.

 ■ Deleting a row on the “one” side must not orphan corresponding records on the
“many” side.

For example, in the sales example, the foreign key in each record in tblSales (the “many”
side) must match a primary key in tblCustomers. You can’t delete a record in tblCustomers
(the “one” side) without deleting the corresponding records in tblSales.

One of the curious results of the rules of referential integrity is that it’s entirely possible
to have a parent record that isn’t matched by any child records. Intuitively, this makes
sense. A company may certainly have employees who haven’t yet been issued paychecks. Or
the Collectible Mini Cars company may hire a new employee who hasn’t made any sales yet.
Eventually, of course, most parent records are matched by one or more child records, but
this condition is not a requirement of relational databases.

As you’ll see in the next section, Access makes it easy to specify the integrity rules you
want to employ in your applications. You should be aware, however, that not using the ref-
erential integrity rules means that you might end up with orphaned records and other data
integrity problems.

Keys
When you create database tables, like those created in Chapter 3, you should assign each
table a primary key. This key is a way to make sure that the table records contain only one
unique value; for example, you may have several contacts named Michael Heinrich, and you
may even have more than one Michael Heinrich (for example, father and son) living at the
same address. So, in a case like this, you have to decide how you can create a record in the
Customers database that will let you identify each Michael Heinrich separately.

Uniquely identifying each record in a table is precisely what a primary key fi eld does. For
example, using Collectible Mini Cars as an example, the CustomerID fi eld (a unique number
that you assign to each customer placing an order) is the primary key in tblCustomers—
each record in the table has a different CustomerID number. (No two records have the same
number.) This is important for several reasons:

 ■ You don’t want to have two records in tblCustomers for the same customer, because
this can make updating the customer’s record virtually impossible.

 ■ You want assurance that each record in the table is accurate so that the informa-
tion extracted from the table is accurate.

117

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 117

 ■ You don’t want to make the table (and its records) any larger than necessary.
Adding redundant or duplicate fi elds and records just complicates the database
without adding value.

The ability to assign a single, unique value to each record makes the table clean and reli-
able. This is known as entity integrity. By having a different primary key value in each
record (such as the CustomerID in tblCustomers), you can tell two records (in this case, cus-
tomers) apart, even if all other fi elds in the records are the same. This is important because
you can easily have two individual customers with a common name, such as Fred Smith, in
your table.

Theoretically, you could use the customer’s name and address, but two people named Fred
D. Smith could live in the same town and state, or a father and son (Fred David Smith and
Fred Daniel Smith) could live at the same address. The goal of setting primary keys is to
create individual records in a table that guarantees uniqueness.

If you don’t specify a primary key when creating Access tables, Access asks whether you
want one. If you say yes, Access uses the AutoNumber data type to create a primary key
for the table. An AutoNumber fi eld is automatically inserted each time a record is added to
the table, and it can’t be changed once its value has been established. Furthermore, once
an AutoNumber value has appeared in a table, the value will never be reused, even if the
record containing the value is deleted and the value no longer appears in the table. In fact,
because an AutoNumber fi eld is added to a new record before any of the other data, if the
new row is not saved for some reason, the new AutoNumber is never used in the table at all.

Deciding on a primary key
As you learned earlier, a table normally has a fi eld (or combination of fi elds)—the primary
key for that table—which makes each record unique. The primary key is an identifi er that
is often a text, numeric, or AutoNumber data type. To determine the contents of this ID
fi eld, you specify a method for creating a unique value for the fi eld. Your method can be as
simple as letting Access automatically assign an AutoNumber value or using the fi rst letter
of the real value you’re tracking along with a sequence number (such as A001, A002, A003,
B001, B002, and so on). The method may rely on a random set of letters and numbers for the
fi eld content (as long as each fi eld has a unique value) or a complicated calculation based
on information from several fi elds in the table.

However, there is no reason why the primary key value has to be meaningful to the applica-
tion. A primary key exists in a table solely to ensure uniqueness for each row and to pro-
vide an anchor for table relationships. Many Access developers routinely use AutoNumber
fi elds as primary keys simply because they meet all the requirements of a primary key
without contributing to an application’s complexity.

In fact, meaningful primary keys can cause confusion as the data in the table changes. For
example, if the primary key for a table of employee information is the fi rst letter of the
employee’s last name plus a sequential number, then Jane Doe might have an EmployeeID
of D001. If Jane were to get married and change her last name, her EmployeeID would no

118

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 118

longer be consistent with the data in her record. Her EmployeeID may still be unique, but it
may also cause confusion if someone were to rely on that data.

Table 4.1 lists the Collectible Mini Cars tables and describes one possible plan for deriving
the primary key values in each table. As this table shows, it doesn’t take a great deal of
work (or even much imagination) to derive a plan for key values. Any rudimentary scheme
with a good sequence number always works. Access automatically tells you when you try to
enter a duplicate key value. To avoid duplication, you can simply add the value of 1 to the
sequence number.

TABLE 4.1 Deriving the Primary Key

Table Possible Derivation of Primary Key Value

tblCustomers Companies: AutoNumber fi eld assigned by Access

tblSales Invoice Number: AutoNumber fi eld

tblSalesLineItems Invoice Number (from Sales) and an AutoNumber fi eld

tblProducts Product Number, entered by the person putting in a new product

tblSalesPayments Invoice Number (from Sales) and an AutoNumber fi eld

tblSalesperson Sales Person ID: AutoNumber fi eld

tblCategories Category of Items: Entered by the person putting in a new record

Even though it isn’t diffi cult to use logic (implemented, perhaps, though VBA code) to
generate unique values for a primary key fi eld, by far the simplest and easiest approach is
to use AutoNumber fi elds for the primary keys in your tables. The special characteristics of
the AutoNumber fi eld (automatic generation, uniqueness, the fact that it can’t be changed,
and so on) make it the ideal candidate for primary keys. Furthermore, an AutoNumber
value is nothing more than a 4-byte integer value, making it very fast and easy for the
database engine to manage. For all these reasons, the Collectible Mini Cars exclusively uses
AutoNumber fi elds as primary keys in its tables.

AutoNumber fi elds are guaranteed to be unique, but they are not guaranteed to be sequential. There are a number

of reasons why gaps in AutoNumbers can be introduced, such as deleting records, and you should never rely on

AutoNumbers being sequential.

You may be thinking that all these sequence numbers make it hard to look up informa-
tion in your tables. Just remember that, in most case, you never look up information by
an ID fi eld. Generally, you look up information according to the purpose of the table. In

119

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 119

tblCustomers, for example, you would look up information by customer name—last name,
fi rst name, or both. Even when the same name appears in multiple records, you can look at
other fi elds in the table (zip code, phone number) to fi nd the correct customer. Unless you
just happen to know the customer ID number, you’ll probably never use it in a search for
information.

Looking at the benefi ts of a primary key
Have you ever placed an order with a company for the fi rst time and then decided the next
day to increase your order? When you call the people at the order desk, they may ask you
for your customer number. You tell them that you don’t know your customer number. Next,
they ask you for some other information—generally, your zip code and last name. Then, as
they narrow down the list of customers, they ask your address. Once they’ve located you in
their database, they can tell you your customer number. Some businesses use phone num-
bers or e-mail addresses as starting points when searching for customer records.

 Primary and foreign keys are discussed in Chapter 1, but because these concepts are so important in

database applications, they’re covered again in this chapter.

Database systems usually have more than one table, and the tables are related in some
manner. For example, in the Collectible Mini Cars database, tblCustomers and tblSales are
related to each other through the CustomerID fi eld. Because each customer is one person or
organization, you only need one record in tblCustomers.

Each customer can make many purchases, however, which means you need to set up a
second table to hold information about each sale—tblSales. Again, each invoice is one sale
(on a specifi c day at a specifi c time). CustomerID is used to relate the customer to the sales.

A foreign key in the child table (the CustomersID fi eld in the tblSales table) is related to the
primary key in the parent table (CustomerID in tblCustomers).

Besides being a common link fi eld between tables, the primary key fi eld in an Access data-
base table has the following advantages:

 ■ Primary key fi elds are always indexed, greatly speeding up queries, searches, and
sorts that involve the primary key fi eld.

 ■ Access forces you to enter a value (or automatically provides a value, in the case of
AutoNumber fi elds) every time you add a record to the table. You’re guaranteed that
your database tables conform to the rules of referential integrity.

 ■ As you add new records to a table, Access checks for duplicate primary key values
and prevents duplicates entries, thus maintaining data integrity.

 ■ By default, Access displays your data in primary key order.

120

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 120

An index is a special internal fi le that is created to put the records in a table in some specifi c order. For example,

the primary key fi eld in tblCustomers is an index that puts the records in order by CustomerID fi eld. Using an indexed

table, Access uses the index to quickly fi nd records within the table.

Designating a primary key
From the preceding sections, you’re aware that choosing a table’s primary key is an impor-
tant step toward bulletproofi ng a database’s design. When properly implemented, primary
keys help stabilize and protect the data stored in your Access databases. As you read the
following sections, keep in mind that the cardinal rule governing primary keys is that the
values assigned to the primary key fi eld within a table must be unique. Furthermore, the
ideal primary key is stable.

Single-field versus composite primary keys

Sometimes, when an ideal primary key doesn’t exist within a table as a single value, you
may be able to combine fi elds to create a composite primary key. For example, it’s unlikely
that a fi rst name or last name alone is enough to serve as a primary key, but by combining
fi rst and last names with birth dates, you may be able to come up with a unique combina-
tion of values to serve as the primary key. As you’ll see in the “Creating relationships and
enforcing referential integrity” section later in this chapter, Access makes it very easy to
combine fi elds as composite primary keys.

There are several practical considerations when using composite keys:

 ■ None of the fi elds in a composite key can be null.

 ■ Sometimes composing a composite key from data naturally occurring within
the table can be diffi cult. Sometimes records within a table differ by one or two
fi elds, even when many other fi elds may be duplicated within the table.

 ■ Each of the fi elds can be duplicated within the table, but the combination of
composite key fi elds cannot be duplicated.

However, as with so many other issues in database design, composite keys have a number
of issues:

 ■ Composite keys tend to complicate a database’s design. If you use three fi elds in
a parent table to defi ne the table’s primary key, the same three fi elds must appear
in every child table.

 ■ Ensuring that a value exists for all the fi elds within a composite key (so that
none of the fi elds is null) can be quite challenging.

121

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 121

Most developers avoid composite keys unless absolutely necessary. In many cases, the problems associated with

composite keys greatly outweigh the minimal advantage of using composite keys generated from data within the

record.

Natural versus surrogate primary keys

Many developers maintain that you should use only natural primary keys. A natural primary
key is derived from data already in the table, such as a Social Security number or employee
number. If no single fi eld is enough to uniquely identify records in the table, these devel-
opers suggest combining fi elds to form a composite primary key.

However, there are many situations where no “perfect” natural key exists in database
tables. Although a fi eld like SocialSecurityNumber may seem to be the ideal primary key,
there are a number of problems with this type of data:

 ■ The value is not universal. Not everyone has a Social Security number.

 ■ The value may not be known at the time the record is added to the database.
Because primary keys can never be null, provisions must be made to supply some
kind of “temporary” primary key when the Social Security number is unknown,
and then other provisions must be made to fi x up the data in the parent and child
tables once the value becomes known.

 ■ Values such as Social Security number tend to be rather large. A Social Security
number is at least nine characters, even omitting the dashes between groups of
numbers. Large primary keys unnecessarily complicate things and run more slowly
than smaller primary keys.

 ■ Legal and privacy issues inhibit its use. A Social Security number is considered
“personally identifi able information” and (in the United States) its use is limited
under the Social Security Protection Act of 2005.

By far the largest issue is that adding a record to a table is impossible unless the primary key value is known at

the time the record is committed to the database. Even if temporary values are inserted until the permanent value

is known, the amount of fi x-up required in related tables can be considerable. After all, unless Cascade Update is

enabled on the relationship, you can’t change the value of a primary key if related child records exist in other tables.

Although an AutoNumber value does not naturally occur in the table’s data, because of the
considerable advantages of using a simple numeric value that is automatically generated
and cannot be deleted or changed, in most cases an AutoNumber is the ideal primary key
candidate for most tables.

122

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 122

Creating primary keys

A primary key is created by opening a table in Design view, selecting the fi eld(s) that you
want to use as a primary key, and clicking the Primary Key button on the Table Tools
Design tab of the Ribbon. If you’re specifying more than one fi eld to create a composite key,
hold down the Ctrl key while using the mouse to select the fi elds before clicking on the
Primary Key button.

 Setting a table’s primary key is covered in detail in Chapter 3.

Creating relationships and enforcing referential integrity
The Relationships window lets you establish the relationships and referential integrity
rules that you want to apply to the tables involved in a relationship. Creating a permanent,
managed relationship that ensures referential integrity between Access tables is easy:

 1. Select Database Tools ➪ Relationships. The Relationships window appears.

 2. Click the Show Table button on the Ribbon, or right-click the Relationships
window and select Show Table from the shortcut menu. The Show Table dialog
box (shown in Figure 4.15) appears.

FIGURE 4.15

Double-click a table name to add it to the Relationships window.

123

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 123

 3. Add tblBookOrders5 and tblBookOrderDetails to the Relationships window
(double-click each table in the Show Table dialog box, or select each table and
click the Add button).

 4. Create a relationship by dragging the primary key fi eld in the “one” table and
dropping it on the foreign key in the “many” table. Alternatively, drag the for-
eign key fi eld and drop it on the primary key fi eld.

For this example, drag OrderID from tblBookOrders5 and drop it on OrderID in
tblBookOrderDetails. Access immediately opens the Edit Relationships dialog box
(shown in Figure 4.16) to enable you to specify the details about the relationship
you intend to form between the tables. Notice that Access recognizes the relation-
ship between tblBookOrders5 and tblBookOrderDetails as a one-to-many.

 5. Specify the referential details you want Access to enforce in the database. In
Figure 4.16, notice the Cascade Delete Related Records check box. If this check box
is left unchecked, Access won’t permit you to delete records in tblBookOrders5 (the
“one” table) until all the corresponding records in tblBookOrderDetails (the “many”
table) are fi rst deleted. With this box checked, deletions across the relationship
“cascade” automatically. Cascading deletes can be a dangerous operation because
the deletions in the “many” table occur without confi rmation.

FIGURE 4.16

You enforce referential integrity in the Edit Relationships dialog box.

 6. Click the Create button. Access draws a line between the tables displayed in the
Relationships window, indicating the type of relationship. In Figure 4.17, the 1
symbol indicates that tblBookOrders5 is the “one” side of the relationship while the
infi nity symbol (∞) designates tblBookOrderDetails as the “many” side.

124

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 124

FIGURE 4.17

A one-to-many relationship between tblBookOrders5 and tblBookOrderDetails.

Specifying the join type between tables

The right side of the Edit Relations window has four buttons:

 ■ Create: The Create button returns you to the Relationships window with the
changes specifi ed.

 ■ Cancel: The Cancel button cancels the current changes and returns you to the
Relationships window.

 ■ Join Type: The Join Type button opens the Join Properties dialog box.

 ■ Create New: The Create New button lets you specify an entirely new relationship
between the two tables and fi elds.

By default, when you process a query on related tables, Access returns only records that
appear in both tables. Considering the payroll example from the “Integrity Rules” sec-
tion earlier in this chapter, this means that you would see only employees who have valid
paycheck records in the paycheck table. You wouldn’t see any employees who haven’t yet
received a paycheck. Such a relationship is sometimes called an inner join because the only
records that appear are those that exist on both sides of the relationship.

However, the inner join is not the only type of join supported by Access. Click the Join
Type button to open the Join Properties dialog box. The alternative settings in the Join
Properties dialog box allow you to specify that you prefer to see all the records from either
the parent table or child table, regardless of whether they’re matched on the other side.
(It’s possible to have an unmatched child record as long as the foreign key in the child
table is null.) Such a join (called an outer join) can be very useful because it accurately
refl ects the state of the data in the application.

125

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 125

In the case of the Collectible Mini Cars example, seeing all the customers, regardless of
whether they have records in the Sales table, is what you’re shooting for. To specify an
outer join connecting customers to sales, perform these steps:

 1. From the Relationships window, add tblCustomers and tblSales.

 2. Drag the CustomerID from one table and drop it on the other. The Edit
Relationships dialog box appears.

 3. Click the Join Type button. The Join Properties dialog box (shown in Figure
4.18) appears.

 4. Select the Include ALL Records from ‘tblCustomers’ and Only Those Records
from ‘tblSales’ Where the Joined Fields Are Equal option button.

FIGURE 4.18

The Join Properties dialog box, used to set up the join properties between tblCustomers
and tblSales. Notice that it specifi es all records from the Contacts table.

 5. Click OK. You’re returned to the Edit Relationships dialog box.

 6. Click Create. You’re returned to the Relationships window. The Relationships win-
dow should now show an arrow going from the Contacts table to the Sales table. At
this point, you’re ready to set referential integrity between the two tables on an
outer join relationship.

To change an existing relationship, double-click the line in the Relationships window for the relationship you’d like to

change. The Edit Relationships dialog box appears, and you can change referential integrity and join type settings.

Given the join properties shown in Figure 4.18, any time the Customers and Sales tables are
involved in a query, all the customer records are returned by default, even if a customer
hasn’t yet placed any orders. This setting should give a more complete impression of the
company’s customer base instead of restricting the returned records to customers who’ve
placed orders.

126

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 126

Establishing a join type for every relationship in your database isn’t absolutely necessary.
In the following chapters, you’ll see that you can specify outer joins for each query in your
application. Many developers choose to use the default inner join for all the relationships in
their databases and to adjust the join properties on each query to yield the desired results.

Enforcing referential integrity

After using the Edit Relationships dialog box to specify the relationship, to verify the table
and related fi elds, and to specify the type of join between the tables, you should set refer-
ential integrity between the tables. Select the Enforce Referential Integrity check box in
the lower portion of the Edit Relationships dialog box to indicate that you want Access to
enforce the referential integrity rules on the relationship between the tables.

If you choose not to enforce referential integrity, you can add new records, change key fi elds, or delete related

records without warnings about referential integrity violations—thus, making it possible to change critical fi elds and

damaging the application’s data. With no integrity active, you can create tables that have orphans (Sales without a

Customer). With normal operations (such as data entry or changing information), referential integrity rules should be

enforced.

Enforcing referential integrity also enables two other options that you may fi nd useful—
cascading updates and cascading deletes. These options are near the bottom of the Edit
Relationships dialog box (refer to Figure 4.16).

You might fi nd, when you select Enforce Referential Integrity and click the Create button (or the OK button if you’ve

reopened the Edit Relationships window to edit a relationship), that Access won’t allow you to create a relationship

and enforce referential integrity. The most likely reason for this behavior is that you’re asking Access to create a rela-

tionship that violates referential integrity rules, such as a child table with orphans in it. In such a case, Access warns

you by displaying a dialog box similar to the one shown in Figure 4.19. The warning happens in this example because

there are some records in the Sales table with no matching value in the Salesperson table. This means that Access

can’t enforce referential integrity between these tables because the data within the tables already violates the rules.

To solve any confl icts between existing tables, you can create a Find Unmatched query by using the Query Wizard to

fi nd the records in the “many” table that violate referential integrity. Then you can convert the Unmatched query to a

Delete query to delete the offending records or add the appropriate value to the SalespersonID fi eld.

You could remove the offending records, return to the Relationships window, and set
referential integrity between the two tables. Whether it’s appropriate to clean up data by

127

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 127

deleting records depends entirely on the business rules governing the application. Deleting
orders just because referential integrity can’t be enforced would be considered a bad idea in
most environments.

FIGURE 4.19

A dialog box warning that referential integrity can’t be enforced because of integrity
violations.

Choosing the Cascade Update Related Fields option

If you specify Enforce Referential Integrity in the Edit Relationships dialog box, Access
enables the Cascade Update Related Fields check box. This option tells Access that, as a
user changes the contents of a related fi eld (the primary key fi eld in the primary table—
CustomerID, for example), the new CustomerID is rippled through all related tables.

If the primary key fi eld in the primary table is a related fi eld between several tables, the Cascade Update Related

Fields option must be selected for all related tables or it won’t work.

Generally speaking, however, there are very few reasons why the value of a primary
key may change. The example I give in the “Connecting the data” section earlier in this
chapter, of a missing Social Security number, is one case where you may need to replace
a temporary Social Security number with the permanent Social Security number after
employee data has been added to the database. However, when using an AutoNumber or
another surrogate key value, there is seldom any reason to have to change the primary key
value once a record has been added to the database. In fact, an Autonumber primary key
cannot be changed.

Choosing the Cascade Delete Related Records option

The Cascade Delete Related Records option instructs Access to delete all related child
records when a parent record is deleted. Although there are instances in which this option
can be quite useful, as with so many other options, cascading deletes comes with a number
of warnings.

128

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 128

For example, if you’ve chosen Cascade Delete Related Records and try to delete a particu-
lar customer (who moved away from the area), Access fi rst deletes all the related records
from the child tables—Sales and SalesLineItems—and then deletes the customer record.
In other words, Access deletes all the records in the sales line items for each sale for each
customer—the detail items of the sales, the associated sales records, and the customer
record—with one step.

Perhaps you can already see the primary issue associated with cascading deletes. If all of a
customer’s sales records are deleted when the customer record is deleted, you have no way
of properly reporting sales for the period. You couldn’t, for instance, reliably report on the
previous year’s sales fi gures because all the sales records for “retired” customers have been
deleted from the database. Also, in this particular example, you would lose the opportunity
to report on sales trends, product category sales, and a wide variety of other uses of the
application’s data.

It would make much more sense to use an Active fi eld (Yes/No data type) in the Customers
table to indicate which customers are still active. It would be quite easy to include the
Active fi eld in queries where only current customers are needed (Active = Yes), and ignore
the Active fi eld in queries where all sales (regardless of the customer’s active status) are
required.

To use the Cascade Delete Related Records option, you must specify Cascade Delete Related Records for all the

table’s relationships in the database. If you don’t specify this option for all the tables in the chain of related tables,

Access won’t cascade deletions.

In general, it’s probably not a good idea to enable cascading deletes in a database. It’s far
too easy to accidentally delete important data. Consider a situation where a user acciden-
tally deletes a customer, wiping out the customer’s entire sales history, including pay-
ments, shipping, backorders, promotions, and other activities. There are very few situations
where users should be permitted to delete many different types of data as a single action.

Viewing all relationships
With the Relationships window open, click All Relationships on the Relationship Tools
Design tab of the Ribbon to see all the relationships in the database. If you want to sim-
plify the view you see in the Relationships window, you can “hide” a relationship by delet-
ing the tables you see in the Relationships window. Click a table, press the Delete key,
and Access removes the table from the Relationships window. Removing a table from the
Relationships window doesn’t delete any relationships between the table and other tables
in the database.

129

Chapter 4: Understanding Table Relationships

4

c04.indd 10/07/2015 Page 129

When building database tables, make sure that the Required property of the foreign key
fi eld in the related table (in the case of tblBookOrders5 and tblBookOrderDetails, the for-
eign key is OrderID in tblBookOrderDetails) is set to Yes. This action forces the user to enter
a value in the foreign key fi eld, providing the relationship path between the tables.

The relationships formed in the Relationships window are permanent and are managed by
Access. When you form permanent relationships, they appear in the Query Design window
by default as you add the tables. (Queries are discussed in detail in Part III.) Even without
permanent relationships between tables, you form temporary relationships any time you
include multiple tables in the Query Design window.

Deleting relationships
During the design phase, even in meticulously planned designs, table structures change,
which may necessitate deleting and re-establishing some of the relationsips. The
Relationships window is simply a picture of the relationships between tables. If you open
the Relationships window, click each of the tables in the relationship, and press the Delete
key, you delete the picture of the tables in the relationship, but not the relationship itself.
You must fi rst click the line connecting the tables and press Delete to delete the relation-
ship, and then delete each of the table pictures to completely remove the relationship.

Following application-specifi c integrity rules
In addition to the referential integrity rules enforced by the ACE Database Engine, you
can establish a number of business rules that are enforced by the applications you build
in Access. In many cases, your clients or users will tell you the business rules that must
be enforced by the application. It’s up to you as the developer to compose the Visual Basic
code, table design, fi eld properties, and so on that implement the business rules expected
by your users.

Typical business rules include items such as the following:

 ■ The order-entry clerk must enter his ID number on the entry form.

 ■ Quantities can never be less than zero.

 ■ The unit selling price can never be less than the unit cost.

 ■ The order ship date must come after the order date.

Most often, these rules are added to a table at design time. Enforcing such rules goes a long
way toward preserving the value of the data managed by the database. For example, in
Figure 4.20, the ValidationRule property of the Quantity fi eld (>=0) ensures that the quan-
tity can’t be a negative number. If the inventory clerk tries to put a negative number into
the Quantity fi eld, an error message box pops up containing the validation text: Must not
be a negative number.

130

Part II: Understanding Access Tables

c04.indd 10/07/2015 Page 130

FIGURE 4.20

A simple validation rule goes a long way toward preserving the database’s integrity.

You can also establish a table-wide validation rule using the Validation Rule property
on the table’s Property Sheet that provides some protection for the data in the table.
Unfortunately, only one rule can be created for the entire table, making it diffi cult to pro-
vide specifi c validation text for all possible violations.

The Validation Rule property has some limitations. For instance, you can’t use user-defi ned
functions in a rule. Also, you can’t reference other fi elds, data in other records, or other
tables in your rules. Validation rules prevent user entry rather than provide warnings that
the user can bypass. If you need to provide a warning but still allow the user to continue,
you shouldn’t use a validation rule.

You can read examples of using VBA to enforce business rules throughout this book .

131

c05.indd 09/29/2015 Page 131

CHAP T ER

5
Working with Access Tables

IN THIS CHAPTER

Understanding datasheets

Looking at the Datasheet window

Opening a datasheet

Entering new data

Navigating records

Changing values in a datasheet

Using the Undo feature

Copying and pasting values in a datasheet

Replacing values in a datasheet

Adding records to a datasheet

Deleting records from a datasheet

Displaying records in a datasheet

Sorting and fi ltering records

Aggregating data

Printing records

I
n this chapter, you’ll use a datasheet to enter data into an Access table and display the data
many different ways. Using Datasheet view allows you to see many records at once, in the famil-
iar spreadsheet-style format. In this chapter, you’ll work with tblContacts and tblProducts to

add, change, and delete data, as well as learn about different features available in Datasheet view.

This chapter uses the database named Chapter05.accdb. If you haven’t already downloaded it from this book’s

website, you’ll need to do so now.

ON THE WEB

132

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 132

Understanding Datasheets
Using a datasheet is just one of the ways to view data in Access. A datasheet is visually
similar to a spreadsheet in that it displays data as a series of rows and columns. Figure 5.1
shows a typical Datasheet view of a table. Each row represents a single record, and each
column represents a single fi eld in the table. Scroll up or down in the datasheet to see the
rows (records) that don’t fi t on the screen; scroll left or right to see the columns (fi elds)
that don’t fi t.

FIGURE 5.1

A typical Datasheet view. Each row represents a single record in the table; each column
represents a single fi eld (like Description or ModelYear) in the table.

Horizontal scroll bar Vertical scroll bar

Scroll bar thumb

Scroll tip

Many of the behaviors described in this chapter apply equally to Access forms. Most Access forms display data from

a single record at a time, and interacting with the data on such a form is much like working with data in a single row

of a datasheet.

133

Chapter 5: Working with Access Tables

c05.indd 09/29/2015 Page 133

5

Datasheets are completely customizable, which allows you to view data in many ways.
Changing the font size, column widths, and row heights makes more or less of the data
fi t on the screen. Rearranging the order of the rows and/or columns lets you organize the
records and fi elds logically. Locking columns makes them stay in position as you scroll to
other parts of the datasheet, and hiding columns makes them disappear. Filtering the data
hides records that don’t match specifi c criteria.

Datasheet view displays data from a number of different data sources: tables, queries, and forms displayed as

datasheets. Depending on the data source, some of the datasheet behaviors described in this chapter may not work

exactly as described. This is particularly true when the underlying data source is a query or form. With these data

sources, you might frequently fi nd the datasheet is read only.

A Quick Review of Records and Fields
A table is a container for storing related information—patient records, a card list (birthday, holiday),
birthday reminders, payroll information, and so on. Each table has a formal structure comprised of
fi elds, each with a unique name to identify and describe the stored information and a specifi c data
type—text, numeric, date, time, and so on—to limit what users enter in these fi elds. When displayed
in a datasheet (a two-dimensional sheet of information), Access displays these fi elds in columns.

The table is comprised of records that hold information about a single entity (like a single customer
or a single product). One record is made up of information stored in the fi elds of the table structure.
For example, if a table has three fi elds—name, address, and phone number—then the fi rst record only
has one name, one address, and one phone number in it. The second record also has one name, one
address, and one phone number in it.

A datasheet is an ideal way of looking at many of the table’s records at once. A single record appears
as a row in the datasheet; each row contains information for that specifi c record. The fi elds appear as
columns in the datasheet; each column contains an individual fi eld’s contents. This row-and-column
format lets you see lots of data at once.

134

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 134

Looking at the Datasheet Window
The datasheet arranges the records initially by primary key and arranges the fi elds by
the order in the table design. At the top of the Access window, you see the title bar
(displaying the database fi lename), the Quick Access toolbar, and the Ribbon. At the bot-
tom of the Access window, you see the status bar, which displays information about the
datasheet. For example, it might contain fi eld description information, error messages,
warnings, or a progress bar.

Generally, error messages and warnings appear in dialog boxes in the center of the screen
rather than in the status bar. If you need help understanding the meaning of a button in
the toolbar, move the mouse so that it’s hovering over the button, and a tooltip appears
with a one- or two-word explanation.

The right side of the Datasheet window contains a scroll bar for moving vertically between
records. As you scroll between records, a scroll tip (shown in Figure 5.1) tells you precisely
where the scroll bar takes you. The size of the scroll bar “thumb” (the small rectangle on
the scroll bar) gives you a proportional look at how many of the total number of records are
being displayed. The bottom of the Datasheet window also contains a scroll bar for moving
among fi elds (left to right). The Navigation buttons for moving between records also appear
in the bottom-left corner of the Datasheet window.

Moving within a datasheet
You easily move within the Datasheet window using the mouse to indicate where you want
to change or add to your data—just click a fi eld within a record. In addition, the ribbons,
scroll bars, and Navigation buttons make it easy to move among fi elds and records. Think of
a datasheet as a spreadsheet without the row numbers and column letters. Instead, columns
have fi eld names, and rows are unique records that have identifi able values in each cell.

Table 5.1 lists the navigational keys you use for moving within a datasheet.

TABLE 5.1 Navigating in a Datasheet

Navigational Direction Keystrokes

Next fi eld Tab

Previous fi eld Shift+Tab

First fi eld of current record Home

Last fi eld of current record End

Next record Down arrow (↓)

Previous record Up arrow (↑)

135

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 135

First fi eld of fi rst record Ctrl+Home

Last fi eld of last record Ctrl+End

Scroll up one page PgUp

Scroll down one page PgDn

Using the Navigation buttons
The Navigation buttons (shown in Figure 5.2) are the six controls located at the bottom of
the Datasheet window, which you click to move between records. The two leftmost controls
move you to the fi rst record or the previous record in the datasheet, respectively. The three
rightmost controls position you on the next record, last record, or new record in the data-
sheet, respectively. If you know the record number (the row number of a specifi c record),
you can click the record-number box, enter a record number, and press Enter.

FIGURE 5.2

The Navigation buttons of a datasheet.

Previous

Next

New record

First Last

Record number box

If you enter a record number greater than the number of records in the table, an error message appears stating that

you can’t go to the specifi ed record.

Examining the Datasheet Ribbon
The Datasheet Ribbon (shown in Figure 5.3) provides a way to work with the datasheet.
The Home Ribbon has some familiar objects on it, as well as some new ones. This section

136

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 136

provides an overview of the groups on the Ribbon; the individual commands are described
in more detail later in this chapter.

FIGURE 5.3

The Datasheet Ribbon’s Home tab.

Sort & Filter group Records group Datasheet Formatting button

Advanced Filter Options button

Filter by Selection button

 We explain the Ribbon in Chapter 30.

Views

The Views group allows you to switch between Datasheet view and Design view. You can see
both choices by clicking the View command’s downward-pointing arrow. Clicking Design
View permits you to make changes to the object’s design (table, query, and so on). Clicking
Datasheet View returns you to the datasheet.

Clipboard

The Clipboard group contains the Cut, Copy, and Paste commands. These commands work
like the commands in other applications (such as Word and Excel). The Paste command’s
down arrow gives you three choices: Paste, Paste Special, and Paste Append. Paste Special
gives you the option of pasting the contents of the Clipboard in different formats (text,
CSV, records, and so on). Paste Append pastes the contents of the Clipboard as a new
record—as long as a row with a similar structure was copied to the Clipboard.

Sort & Filter

The Sort & Filter group lets you change the order of the rows, as well as limit the rows
being displayed, based on the criteria you want.

137

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 137

Records

The Records group lets you save, delete, or add a new record to the datasheet. It also con-
tains commands to show totals, check spelling, freeze and hide columns, and change the
row height and cell width.

Find

The Find group lets you fi nd and replace data and go to specifi c records in the datasheet.
Use the Select command to select a record or all records.

Window

The Window group includes two buttons that help you control the items (forms, reports,
tables, and so on) that are open in the main Access window:

 ■ Size to Fit Form: The Size to Fit Form button resizes the form in the window to fi t
the size set when the form was created. By default, Access forms have a sizeable
border, which means the user might drag the form to a new size. The Size to Fit
Form button restores a form to the size specifi ed at design time.

 ■ Switch Windows: The Switch Windows button lets you choose a different open
window to work with. A form or report needed by the user might be under another
form or report, and the Switch Windows button provides a quick way to select
which object is on top of the other objects in the Access main window.

Text Formatting

The Text Formatting group lets you change the look of text fi elds in the datasheet. Use
these commands to change the font, size, bold, italic, color, and so on. Selecting a font
attribute (such as bold) applies the attribute to all fi elds in the datasheet. (See the Note
just below this paragraph for the only exception to this rule.) Use the Align Left, Align
Right, and Align Center commands to justify the data in the selected column. Click the
Gridlines command to toggle gridlines on and off. Use the Alternate Fill/Back Color com-
mand to change the colors of alternating rows or to make them all the same.

The controls in the text formatting group behave differently when the currently selected fi eld in the datasheet hap-

pens to be the Long Text data type. When a Long Text fi eld is selected, you can change the font attributes (bold,

underline, italics, and so on) of individual characters and words in the fi eld, but only if the Text Format property is set

to Rich Text. The Text Format property (which applies only to the Long Text data type) is set to Plain Text by default.

138

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 138

Opening a Datasheet
Follow these steps to open a datasheet from the Database window:

 1. Using the Chapter05.accdb database from this book’s website, click Tables in
the Navigation pane.

 2. Double-click the table name you want to open (in this example, tblProducts).

An alternative method for opening the datasheet is to right-click tblProducts and select
Open from the pop-up menu.

If you’re in any of the design windows, click the Datasheet View command in the View group of the Ribbon to view

your data in a datasheet.

Entering New Data
All the records in your table are visible when you fi rst open it in Datasheet view. If you just
created your table, the new datasheet doesn’t contain any data. Figure 5.4 shows an empty
datasheet and a portion of the Fields tab of the Ribbon. When the datasheet is empty, the
fi rst row contains an asterisk (*) in the record selector, indicating it’s a new record.

FIGURE 5.4

An empty datasheet. Notice that the fi rst record is blank and has an asterisk in the
record selector.

Field propertiesNew record indicator Formatting group

Validation rulesAdd & Delete group

139

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 139

The Table Tools tab group of the Ribbon includes virtually all the tools needed to build a
complete table. You can specify the data type, default formatting, indexing, fi eld and
table validation, and other table construction tasks from the controls in the Table Tools
tab group.

The New row appears at the bottom of the datasheet when the datasheet already contains
records. Click the New Record command in the Record group of the Ribbon, or click the New
Record button in the group of navigation buttons at the bottom of the datasheet to move
the cursor to the New row—or simply click on the last row, which contains the asterisk.
The asterisk turns into a pencil when you begin entering data, indicating that the record
is being edited. A new row—containing an asterisk—appears below the one you’re
entering data into. The new record pointer always appears in the last row of the datasheet.
Figure 5.5 shows adding a new record to tblProducts.

FIGURE 5.5

Entering a new record into the Datasheet view of tblProducts.

New rowEdit indicator Edited cell

To add a new record to the open Datasheet view of tblProducts, follow these steps:

 1. Click the New button in the Records group of the Home tab of the Ribbon.

 2. Type in values for all fi elds of the table, moving between fi elds by pressing the
Enter key or the Tab key.

140

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 140

When adding or editing records, you might see three different record pointers:

 ■ Record being edited: A pencil icon

 ■ Record is locked (multiuser systems): A padlock icon

 ■ New record: An asterisk icon

If the record contains an AutoNumber fi eld, Access shows the name (New) in the fi eld. You can’t enter a value in this

type of fi eld; instead, simply press the Tab or Enter key to skip the fi eld. Access automatically puts the number in

when you begin entering data.

Saving the record
Moving to a different record saves the record you’re editing. Tabbing through all the fi elds,
clicking on the Navigation buttons, clicking Save in the Record group of the Ribbon, and
closing the table all write the edited record to the database. You’ll know the record is saved
when the pencil disappears from the record selector.

To save a record, you must enter valid values into each fi eld. The fi elds are validated for
data type, uniqueness (if indexed for unique values), and any validation rules that you’ve
entered into the Validation Rule property. If your table has a primary key that’s not an
AutoNumber fi eld, you’ll have to make sure you enter a unique value in the primary key
fi eld to avoid the error message shown in Figure 5.6. One way to avoid this error message
while entering data is to use an AutoNumber fi eld as the table’s primary key.

FIGURE 5.6

The error message Access displays when attempting to save a record with a duplicate pri-
mary key value entered into the new record. Use an AutoNumber fi eld as your primary key to
avoid this error.

The Undo button in the Quick Access toolbar reverses changes to the current record and to the last saved record.

After you change a second record, you can’t undo a previously saved record.

141

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 141

You can save the record to disk without leaving the record by pressing Shift+Enter.

Now you know how to enter, edit, and save data in a new or existing record. In the next
section, you learn how Access validates your data as you make entries into the fi elds.

Understanding automatic data-type validation
Access validates certain types of data automatically. Therefore, you don’t have to enter any
data validation rules for these data types when you specify table properties. The data types
that Access automatically validates include:

 ■ Number/Currency

 ■ Date/Time

 ■ Yes/No

Access validates the data type when you move off the fi eld. When you enter a letter into a
Number or Currency fi eld, you don’t initially see a warning not to enter these characters.
However, when you tab out of or click on a different fi eld, you get a warning like the one
shown in Figure 5.7. This particular warning lets you choose to enter a new value or change
the column’s data type to Text. You’ll see this message if you enter other inappropriate
characters (symbols, letters, and so on), enter more than one decimal point, or enter a num-
ber too large for the specifi ed numeric data type.

FIGURE 5.7

The warning Access displays when entering data that doesn’t match the fi eld’s data type.
Access gives you a few choices to correct the problem.

142

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 142

Access validates Date/Time fi elds for valid date or time values. You’ll see a warning similar
to the one shown in Figure 5.7 if you try to enter a date such as 14/45/05, a time such as
37:39:12, or an invalid character in a Date/Time fi eld.

Yes/No fi elds require that you enter one of these defi ned values:

 ■ Yes: Yes, True, On, –1, or a number other than 0 (which displays as –1)

 ■ No: No, False, Off, or 0

Of course, you can defi ne your own acceptable values in the Format property for the fi eld,
but generally these values are the only acceptable ones. If you enter an invalid value, the
warning appears with the message to indicate an inappropriate value.

The default value of a Yes/No fi eld’s Display Control is Check Box. Displaying a check box in Yes/No fi elds prevents

users from entering invalid data.

Knowing how properties affect data entry
Because fi eld types vary, you use different data-entry techniques for each type. In the
“Saving the record” section earlier in this chapter, you learned that some data-type valida-
tion is automatic. Designing tblContacts, however, means entering certain user-defi ned
format and data validation rules. The following sections examine the types of data entry.

Standard text data entry

The fi rst fi eld—ContactID—in tblContacts is an AutoNumber fi eld, while other fi elds in
the table are Short Text fi elds. After skipping ContactID, you simply enter a value in each
fi eld and move on. The ZipCode fi eld uses an input mask (00000\-9999;0;) for data entry.
The Phone and Fax fi elds also use an input mask (!\(999”) “000\-0000;0;_). A 0 in an input
mask represents a required numeric entry. A 9 in an input mask represents an optional
numeric entry. The ZipCode input mask requires the fi rst fi ve digits, but the plus 4 portion
is optional. Short Text fi elds accept any characters, unless you restrict them with an
input mask.

To enter multiple lines in a Short Text or Long Text fi eld, press Ctrl+Enter to add a new line. This is useful, for exam-

ple, in large text strings for formatting a multiple-line address fi eld.

143

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 143

Date/Time data entry

The OrigCustDate and LastSalesDate fi elds in tblContacts are Date/Time data types, which
both use a Short Date format (3/16/2015). However, you could have defi ned the format as
Medium Date (16-Mar-15) or Long Date (Monday, March 16, 2015). Using either of these for-
mats simply means that no matter how you type in the date—using month and year; day,
month, and year; or month, day, and year—the date always displays in the specifi ed format
(short date [3/16/2015], medium date [16-Mar-15], or long date [Monday, March 16, 2015]).
Therefore, if you type 3/16/15 or 16 Mar 15, Access displays the value in the specifi ed
format as you leave the fi eld. Dates are actually stored in the database without any format-
ting, so the format you select for a fi eld doesn’t affect how the data is stored.

Formats affect only the display of the data. They don’t change storage of data in the table.

In general, it isn’t a good idea to apply an input mask on Date/Time data. Microsoft Access does a more than

adequate job of validating date and time values. You’re far more likely to encounter data entry problems with an input

mask on a date-containing control than you are to avoid trouble by using an input mask.

Number/Currency data entry with data validation

The CreditLimit fi eld in tblContacts has a validation rule assigned to it. It has a Validation
Rule property to limit the amount of credit to $250,000. If the rule is violated, a dialog
box appears with the validation text entered for the fi eld. If you want to allow a contact to
have more than $250,000 of credit, change the validation rule in the table design.

The exact currency character used by Access (in this case, the dollar sign) is determined by
the regional options set in the Region and Language Settings of the Control Panel.

OLE object data entry

You can enter Object Linking and Embedding (OLE) object data into a datasheet, even
though you don’t see the object. An OLE Object fi eld holds many different item types,
including:

 ■ Bitmap pictures

 ■ Sound fi les

 ■ Business graphs

 ■ Word or Excel fi les

144

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 144

Any object that an OLE server supports can be stored in an Access OLE Object fi eld. OLE
objects are generally entered into a form so you can see, hear, or use the value. When OLE
objects appear in datasheets, you see text that tells what the object is (for example, you
may see Bitmap Image in the OLE Object fi eld). You can enter OLE objects into a fi eld in
two ways:

 ■ By pasting from the Clipboard

 ■ By right-clicking on the OLE Object fi eld and selecting Insert Object from the
pop-up menu

Long Text field data entry

The Features fi eld in tblProducts is a Long Text data type. This type of fi eld allows up to
1GB of text for each fi eld. As you enter text into a Long Text fi eld, you see only a few char-
acters at a time—the rest of the string scrolls out of sight. Pressing Shift+F2 displays a
Zoom window with a scroll bar (see Figure 5.8) that lets you see more characters at a time.
Click the Font button at the bottom of the window to view all the text in a different font
or size. (The font in Figure 5.8 has been enlarged considerably over the 8-point default font
size for the Zoom window.)

FIGURE 5.8

The Zoom window. Notice that you can see all of the fi eld’s data event at a larger font size.

When you fi rst display text in the Zoom window, all the text is selected. You can deselect
the text by clicking anywhere in the window. If you accidentally delete all the text or
change something you didn’t want to, click Cancel to exit back to the datasheet with the
fi eld’s original data.

145

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 145

Use the Zoom window (Shift+F2) when designing Access objects (tables, forms, reports, queries) to see text that

normally scrolls out of view.

Navigating Records in a Datasheet
Wanting to make changes to records after you’ve entered them is not unusual. You might
need to change records because you receive new information that changes existing values
or because you discover errors in existing values.

When you decide to edit data in a table, the fi rst step is to open the table, if it isn’t already
open. From the list of tables in the Navigation pane, double-click tblProducts to open it in
Datasheet view. If you’re already in Design view for this table, click the Datasheet View
button to switch views.

When you open a datasheet in Access that has related tables, a column with a plus sign (+)
is added to indicate the related records, or subdatasheets. Click a row’s plus sign to open
the subdatasheet for the row.

Moving between records
You can move to any record by scrolling through the records and positioning your cursor on
the desired record. With a large table, scrolling through all the records might take a while,
so you’ll want to use other methods to get to specifi c records quickly.

Use the vertical scroll bar to move between records. The scroll bar arrows move one record
at a time. To move through many records at a time, drag the scroll box or click the areas
between the scroll thumb and the scroll bar arrows.

Watch the scroll tips when you use scroll bars to move to another area of the datasheet. Access doesn’t update the

record number box until you click a fi eld.

Use the fi ve Navigation buttons (refer to Figure 5.2) to move between records. You simply click
these buttons to move to the desired record. If you know the record number (the row number
of a specifi c record), click the record number box, enter a record number, and press Enter.

146

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 146

Also, use the Go To command in the Find group of the Ribbon to navigate to the First,
Previous, Next, Last, and New records.

Finding a specifi c value
Although you can move to a specifi c record (if you know the record number) or to a specifi c
fi eld in the current record, usually you’ll want to fi nd a certain value in a record. You can
use one of these methods for locating a value in a fi eld:

 ■ Select the Find command (a pair of binoculars) from the Find group of the Ribbon.

 ■ Press Ctrl+F.

 ■ Use the Search box at the bottom of the Datasheet window.

The fi rst two methods display the Find and Replace dialog box (shown in Figure 5.9). To
limit the search to a specifi c fi eld, place your cursor in the fi eld you want to search before
you open the dialog box. Change the Look In combo box to Current Document to search the
entire table for the value.

FIGURE 5.9

The Find and Replace dialog box. The fastest way to activate it is to simply press Ctrl+F.

If you highlight the entire record by clicking the record selector (the small gray box next to the record), Access auto-

matically searches through all fi elds.

The Find and Replace dialog box lets you control many aspects of the search. Enter the
value you want to search for in the Find What combo box, which contains a list of recently
used searches. You can enter a specifi c value or choose to use wildcard characters. Table 5.2
lists the wildcard characters available in the Find dialog box.

147

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 147

TABLE 5.2 Wildcard Characters

Character Description Example

* (asterisk) Matches any number of characters Ford* fi nds Ford Mustang

? (question mark) Matches any single character F?rd fi nds Ford

[] (brackets) Matches one of a list of characters 19[67]1 fi nds 1961 and 1971

! (exclamation point) With brackets, excludes a list of
characters

19[!67]1 fi nds 1951 but not
1961

- (hyphen) With brackets, matches a range of
characters

196[2–8] fi nds 1962 to 1968

(hash) Matches one number 1:## fi nds 1:18 but not 1:9

You can combine wildcard characters for more robust searches. For example, 196[!2–8] will
fi nd 1961 and 1969, but nothing in between.

The Match drop-down list contains three choices:

 ■ Any Part of Field: If you select Any Part of Field, Access searches to see whether
the value is contained anywhere in the fi eld. This search fi nds Ford anywhere in
the fi eld, including values like Ford Mustang, 2008 Ford F-150, and Ford Galaxy 500.

 ■ Whole Field: The default is Whole Field, which fi nds fi elds containing exactly what
you’ve entered. For example, the Whole Field option fi nds Ford only if the value in
the fi eld being searched is exactly Ford, and nothing else.

 ■ Start of Field: A search for Ford using the Start of Field option searches from the
beginning of the fi eld and returns all the rows containing Ford as the fi rst four
characters of the description.

In addition to these combo boxes, you can use two check boxes at the bottom of the Find
and Replace dialog box:

 ■ Match Case: Match Case determines whether the search is case sensitive. The
default is not case sensitive (not checked). A search for SMITH fi nds smith, SMITH,
or Smith. If you check the Match Case check box, you must then enter the search
string in the exact case of the fi eld value. (The data types Number, Currency, and
Date/Time don’t have any case attributes.)

If you’ve checked Match Case, Access doesn’t use the value Search Fields As
Formatted (the second check box), which limits the search to the actual values dis-
played in the table. (If you format a fi eld for display in the datasheet, you should
check the box.)

 ■ Search Fields As Formatted: The Search Fields As Formatted check box, the
selected default, fi nds only text that has the same pattern of characters as the text

148

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 148

specifi ed in the Find What box. Clear this box to fi nd text regardless of the format-
ting. For example, if you’re searching the Cost fi eld for a value of $16,500, you must
enter the comma if Search Fields as Formatted is checked. Uncheck this box to
search for an unformatted value (16500).

Checking Search Fields As Formatted may slow the search process.

The search begins when you click the Find Next button. If Access fi nds the value, the cur-
sor highlights it in the datasheet. To fi nd the next occurrence of the value, click the Find
Next button again. The dialog box remains open so that you can fi nd multiple occurrences.
Choose one of three search direction choices (Up, Down, or All) in the Search drop-down
list to change the search direction. When you fi nd the value that you want, click Close to
close the dialog box.

Use the search box at the bottom of the Datasheet window (refer to Figure 5.1) to quickly
search for the fi rst instance of a value. When using the search box, Access searches the
entire datasheet for the value in any part of the fi eld. If you enter FORD in the search box,
the datasheet moves to the closest match as you type each letter. First, it fi nds a fi eld with
F as the fi rst character, then it fi nds FO, and so on. Once it fi nds the complete value, it
stops searching. To fi nd the next instance, press the Enter key.

Changing Values in a Datasheet
If the fi eld that you’re in has no value, you can type a new value into the fi eld. When you
enter new values into a fi eld, follow the same rules as for a new record entry.

Manually replacing an existing value
Generally, you enter a fi eld with either no characters selected or the entire value selected.
If you use the keyboard (Tab or Arrow keys) to enter a fi eld, you select the entire value.
(You know that the entire value is selected when it’s displayed in reverse video.) When you
begin to type, the new content replaces the selected value automatically.

When you click in a fi eld, the value is not selected. To select the entire value with the
mouse, use any of these methods:

 ■ Click just to the left of the value when the cursor is shown as a large plus sign.

 ■ Click to the left of the value, hold down the left mouse button, and drag the mouse
to select the whole value.

 ■ Click in the fi eld and press F2.

149

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 149

You may want to replace an existing value with the value from the fi eld’s Default Value property. To do so, select

the value and press Ctrl+Alt+Spacebar. To replace an existing value with that of the same fi eld from the preceding

record, press Ctrl+’ (apostrophe). Press Ctrl+; (semicolon) to place the current date in a fi eld.

Pressing Ctrl+– (minus sign) deletes the current record.

Changing an existing value
If you want to change an existing value instead of replacing the entire value, use the
mouse and click in front of any character in the fi eld to activate Insert mode; the existing
value moves to the right as you type the new value. If you press the Insert key, your entry
changes to Overstrike mode; you replace one character at a time as you type. Use the arrow
keys to move between characters without disturbing them. Erase characters to the left by
pressing Backspace, or to the right of the cursor by pressing Delete.

Table 5.3 lists editing techniques.

TABLE 5.3 Editing Techniques

Editing Operation Keystrokes

Move the insertion point within a fi eld. Press the right-arrow (→) and left-arrow (←)
keys.

Insert a value within a fi eld. Select the insertion point and type new data.

Toggle entire fi eld and insertion point. Press F2.

Move insertion point to the beginning of the
fi eld.

Press Ctrl+left-arrow (←) key or press the Home
key.

Move insertion point to the end of the fi eld. Press Ctrl+right-arrow (→) key or press the End
key.

Select the previous character. Press Shift+left-arrow (←) key.

Select the next character. Press Shift+right-arrow (→) key.

Select from the insertion point to the
beginning.

Press Ctrl+Shift+left-arrow (←) key.

Select from the insertion point to the end. Press Ctrl+Shift+right-arrow (→) key.

Replace an existing value with a new value. Select the entire fi eld and type a new value.

Continues

150

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 150

Editing Operation Keystrokes

Replace a value with the value of the previ-
ous fi eld.

Press Ctrl+’ (apostrophe).

Replace the current value with the default
value.

Press Ctrl+Alt+Spacebar.

Insert a line break in a Short Text or Long
Text fi eld.

Press Ctrl+Enter.

Save the current record. Press Shift+Enter or move to another record.

Insert the current date. Press Ctrl+; (semicolon).

Insert the current time. Press Ctrl+: (colon).

Add a new record. Press Ctrl++ (plus sign).

Delete the current record. Press Ctrl+– (minus sign).

Toggle values in a check box or option
button.

Press Spacebar.

Undo a change to the current fi eld. Press Esc or click the Undo button.

Undo a change to the current record. Press Esc or click the Undo button a second
time after you undo the current fi eld.

Fields That You Can’t Edit
Some fi elds cannot be edited, such as:

 ■ AutoNumber fi elds: Access maintains AutoNumber fi elds automatically, calculating the
values as you create each new record. AutoNumber fi elds can be used as the primary key.

 ■ Calculated fi elds: Forms or queries may contain fi elds that are the result of expressions.
These values are not actually stored in your table and are not editable.

 ■ Fields in multiuser locked records: If another user is editing a record, it can be locked and
you can’t edit any fi elds in that record.

Using the Undo Feature
The Undo button on the Quick Access toolbar is often dimmed because there’s nothing to
undo. As soon as you begin editing a record, however, you can use this button to undo the

TABLE 5.3 (continued)

151

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 151

typing in the current fi eld. You can also undo a change with the Esc key; pressing Esc can-
cels any changes to a fi eld that you’re actively editing or cancels the changes to the last
fi eld you edited if you’re not currently editing a fi eld. Pressing Esc twice undoes changes to
the entire current record.

After you type a value into a fi eld, click the Undo button to undo changes to that value.
After you move to another fi eld, you can undo the change to the preceding fi eld’s value by
clicking the Undo button. You can also undo all the changes to an unsaved current record
by clicking the Undo button after you undo a fi eld. After you save a record, you can still
undo the changes by clicking the Undo button. However, after the next record is edited,
changes to the previous record are permanent.

Don’t rely on the Undo command to save you after you edit multiple records. When working in a datasheet, changes

are saved when you move from record to record, and you can undo changes only to the current record.

Copying and Pasting Values
Copying or cutting data to the Clipboard is performed by Microsoft Offi ce or Microsoft
Windows, depending on the type of data; it isn’t a specifi c function of Access. After you
cut or copy a value, you can paste into another fi eld or record by using the Paste command
in the Clipboard group of the Ribbon. You can cut, copy, or paste data from any Windows
application or from one task to another in Access. Using this technique, you can copy
entire records between tables or databases, and you can copy datasheet values to and from
Word and Excel.

The Paste command’s down arrow gives you three choices:

 ■ Paste: Inserts the contents of the Clipboard into one fi eld

 ■ Paste Special: Gives you the option of pasting the contents of the Clipboard in
different formats (text, CSV, records, and so on)

 ■ Paste Append: Pastes the contents of the Clipboard as a new record—provided a
row with a similar structure was copied

Select a record or group of records using the record selector to cut or copy one or more records to the Clipboard.

Then use Paste Append to add them to a table with a similar structure.

152

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 152

Replacing Values
To replace an existing value in a fi eld, you can manually fi nd the record to update or you
can use the Find and Replace dialog box. Display the Find and Replace dialog box using
these methods:

 ■ Select the Replace command from the Find group of the Ribbon.

 ■ Press Ctrl+H.

The Find and Replace dialog box allows you to replace a value in the current fi eld or in the
entire table. Use it to fi nd a certain value and replace it with a new value everywhere it
appears in the fi eld or table.

After the Find and Replace dialog box is active, select the Replace tab and type in the
value that you want to fi nd in the Find What box. After you’ve selected all the remaining
search options (turn off Search Fields As Formatted, for example), click the Find Next but-
ton to fi nd the fi rst occurrence of the value. To change the value of the current found item
(under the cursor), enter a value in the Replace With box and click the Replace button. For
example, Figure 5.10 shows that you want to fi nd the value Mini Vans in the current fi eld
and change it to Minivans.

FIGURE 5.10

The Find and Replace dialog box with the Replace tab showing. In this case, you want to
replace Mini Vans with Minivans.

You can select your search options on the Find tab and then select the Replace tab to con-
tinue the process. However, it’s far easier to simply do the entire process using the Replace
tab. Enter the value you want to fi nd and the value that you want to replace it with. After
you’ve completed the dialog box with all the correct information, select one of the com-
mand buttons on the side:

 ■ Find Next: Finds the next fi eld that has the value in the Find What fi eld.

 ■ Cancel: Closes the form and performs no fi nd and replace.

153

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 153

 ■ Replace: Replaces the value in the current fi eld only. (Note: You must click the Find
Next button fi rst.)

 ■ Replace All: Finds all the fi elds with the Find What value and replaces them with
the Replace With value. Use this if you’re sure that you want to replace all the val-
ues; double-check the Look In box to make sure you don’t replace the values in the
entire datasheet if you don’t want to.

Adding New Records
There are a number of ways to add a record to a datasheet:

 ■ Click the datasheet’s last line, where the record pointer is an asterisk.

 ■ Click the new record Navigation button (the furthest button on the right).

 ■ Click the New command from the Records group of the Ribbon.

 ■ Choose Go To ➪ New from the Find group of the Ribbon.

 ■ Move to the last record and press the down-arrow (↓) key.

 ■ Press Ctrl++ (plus sign).

 ■ Right-click any record selector and choose New Record from the context menu. The
new record is still appended to the bottom regardless of which record’s selector
you click.

Once you move to a new record, enter data into the desired fi elds and save the record.

Deleting Records
To delete records, select one or more records using the record selectors, and then press the
Delete key, click the Delete command in the Records group of the Ribbon, or right-click a
record’s selector. The Delete command’s drop-down list contains the Delete Record com-
mand, which deletes the current record, even if it isn’t selected. When you delete a record,
a dialog box asks you to confi rm the deletion (see Figure 5.11). If you select Yes, the records
are deleted; if you select No or press the Escape key, no changes are made.

The Default value for this dialog box is Yes. Pressing the Enter key automatically deletes the records. If you acciden-

tally erase records using this method, the action can’t be reversed.

154

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 154

FIGURE 5.11

The Delete Record dialog box warns you that you’re about to delete a specifi c number of
records. The default response is Yes (okay to delete), so be careful when deleting records.

If you have relationships set between tables and checked Enforce Referential Integrity—for example, the tblContacts

(Customer) table is related to tblSales—then you can’t delete a parent record (tblContacts) that has related child

records (in tblSales) unless you also check the Cascade Delete check box. Otherwise, you receive an error mes-

sage dialog box that reports: The record can't be deleted or changed because the table
'<tablename>' includes related records.

To select multiple contiguous records, click the record selector of the fi rst record that you
want to select and drag the mouse to the last record that you want to select. Or click to
select the fi rst record, and then hold the Shift key and click on the last record that you
want in the selection.

To select multiple contiguous records with the keyboard, press Shift+Spacebar to select the current record and

Shift+down-arrow (↓) key or Shift+up-arrow (↑) key to extend the selection to neighboring records.

Displaying Records
A number of techniques can increase your productivity when you add or change records.
Change the fi eld order, hide and freeze columns, change row height or column width,
change display fonts, and change the display or remove gridlines to make data entry easier.

Changing the fi eld order
By default, Access displays the fi elds in a datasheet in the same order in which they appear
in the table design. Sometimes, you want to see certain fi elds next to each other in order to
better analyze your data. To rearrange your fi elds, select a column by clicking the column
heading, and then drag the column to its new location (as shown in Figure 5.12).

155

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 155

FIGURE 5.12

Select and drag a column to change the fi eld order.

You can select and drag columns one at a time, or select multiple columns to move at the
same time. Suppose you want ModelYear to appear before Features in the tblProducts data-
sheet. Follow these steps to make this change:

 1. Position the mouse pointer over the ModelYear column heading. The cursor
changes to a down arrow.

 2. Click to select the column. The entire ModelYear column is now highlighted.

 3. Release the mouse button.

 4. Click the mouse button on the column heading again. The pointer changes to an
arrow with a box under it.

 5. Drag the column to the left edge of the datasheet between the Description and
Features fi elds. A thin black column appears between them (refer to Figure 5.12).

 6. Release the mouse button. The column moves in front of the Features fi eld of the
datasheet.

With this method, you can move any individual fi eld or contiguous fi eld selection. To select
multiple fi elds, click and drag the mouse across multiple column headings. Then you can
move the fi elds left or right or past the right or left boundary of the window.

Moving fi elds in a datasheet does not affect the fi eld order in the table design.

156

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 156

Changing the fi eld display width
You can change the field display width (column width) either by specifying the width in a
dialog box (in number of characters) or by dragging the column border. When you hover the
mouse over a column border, the cursor changes to the double-arrow symbol.

To widen a column or to make it narrower, follow these steps:

 1. Place the mouse pointer between two column names on the fi eld separator
line. The mouse pointer turns into a small line with arrows pointing to the left and
right—if you have it in the correct location.

 2. Drag the column border to the left to make the column smaller or to the right
to make it larger.

You can instantly resize a column to the best fi t (based on the longest visible data value) by double-clicking the right

column border after the cursor changes to the double arrow.

Resizing the column doesn’t change the number of characters allowed in the table’s fi eld size. You’re simply changing

the amount of viewing space for the data contained in the column.

Alternatively, you can resize a column by right-clicking the column header and selecting
Field Width from the pop-up menu to display the Column Width dialog box, as shown in
Figure 5.13. Set the Column Width box to the number of characters you want to fi t in the
column or click the Standard Width check box to set the column to its default size. Click
Best Fit to size the column to the widest visible value.

FIGURE 5.13

The Column Width dialog box.

157

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 157

You can hide a column by dragging the right column border to the left until it meets the left column border, or by set-

ting the column width to 0 in the Column Width dialog box. If you do this, you must choose More ➪ Unhide Fields in

the Records group of the Ribbon to redisplay the hidden columns.

Changing the record display height
You might need to increase the row height to accommodate larger fonts or text that uses
multiple lines. Change the record (row) height of all rows by dragging a row’s border to
make the row height larger or smaller.

When you drag a record’s border, the cursor changes to the vertical two-headed arrow you
see at the left edge of Figure 5.14.

FIGURE 5.14

Changing a row’s height. Position the mouse as shown and drag to the desired height.

To increase or decrease a row’s height, follow these steps:

 1. Place the mouse pointer between record selectors of two rows. The cursor
changes to the double-pointing arrow (up and down).

 2. Drag the row border up to shrink all row heights or down to increase all row
heights.

158

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 158

The procedure for changing row height changes the row size for all rows in the datasheet. You can’t have rows with

different heights.

You can also resize rows by choosing More ➪ Row Height in the Records group of the
Ribbon. The Row Height dialog box appears; there you enter the row height in point size.
Check the Standard Height check box to return the rows to their default size.

If you drag a record’s gridline up to meet the gridline immediately above it in the previous record, all rows are hidden.

This also occurs if you set the row height close to 0 (for example, a height of 0.1) in the Row Height dialog box. In

that case, you must use the Row Height dialog box to set the row height to a larger number to redisplay the rows.

Changing display fonts
By default, Access displays all data in the datasheet in the Calibri 11-point Regular font.
Use the commands and drop-down lists in the Text Formatting group of the Ribbon (shown
in Figure 5.15) to change the datasheet’s text appearance.

FIGURE 5.15

Changing the datasheet’s font directly from the Ribbon. Choose font type style, size, and
other font attributes for the entire datasheet.

Font type face

Text alignment

Grid lines

Datasheet

formatting dialog

Font color

Font name Font size

Numbers and bullets

159

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 159

Setting the font display affects the entire datasheet. If you want to see more data on the
screen, you can use a very small font. You can also switch to a higher-resolution display
size if you have the necessary hardware. If you want to see larger characters, you can
increase the font size or click the Bold button.

Displaying cell gridlines and alternate row colors
Normally gridlines appear between fi elds (columns) and between records (rows). You can set
how you want the gridlines to appear using the Gridlines command in the Text Formatting
group of the Ribbon (shown in Figure 5.15). Choose from the following options in the
Gridlines drop-down list:

 ■ Gridlines: Both

 ■ Gridlines: Horizontal

 ■ Gridlines: Vertical

 ■ Gridlines: None

Use the Background Color and Alternate Row Color drop-down lists, also in the Text
Formatting group, to change the background colors of the datasheet. The Background
Color palette changes the color of all the rows in the datasheet. The Alternate Row Color
palette changes the color of the even-numbered rows. When Alternate Row Color is set, the
Background Color palette only affects the odd-numbered rows. To remove coloring from
alternate rows, set Alternate Row Color to No Color.

After changing the gridline settings or alternate row colors, Access will ask whether to save
the changes to the datasheet’s layout. Be sure to click Yes if you want to make the changes
permanent.

The Datasheet Formatting dialog box (shown in Figure 5.16) gives you complete control over
the datasheet’s look. Open this dialog box using the Datasheet Formatting command in the
bottom-right corner of the Text Formatting group of the Ribbon. Use the Flat, Sunken, and
Raised radio buttons under Cell Effect to change the grid to a 3-D look. Click the Horizontal
and Vertical check boxes under Gridlines Shown to toggle which gridlines you want to see.
Change the Background Color, Alternate Background Color, and Gridline Color using the avail-
able color palettes. The sample in the middle of the dialog box shows you a preview of changes.

160

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 160

FIGURE 5.16

Use the Datasheet Formatting dialog box to customize the look of the datasheet.

Use the Border and Line Styles drop-down lists to change the look of the gridlines. You
can change the styles for the Datasheet Border and the Column Header Underline. Choose a
different line style for each of the selections in the fi rst drop-down list. The different line
styles you can select from include:

 ■ Transparent Border

 ■ Solid

 ■ Dashes

 ■ Short Dashes

 ■ Dots

 ■ Sparse Dots

 ■ Dash-Dot

 ■ Dash-Dot-Dot

 ■ Double Solid

Figure 5.17 shows a datasheet with dashes instead of solid lines and a higher contrast
between alternating rows. You can use the various colors and styles to customize the data-
sheet’s look to your liking.

161

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 161

FIGURE 5.17

Different line styles and row colors for the datasheet.

Aligning data in columns
Align the data to the left or right, or center it within a column using the alignment
buttons. Choose alignments different from the default alignments Access chooses based on
a fi eld’s data type (text aligns left, numbers/dates align right). Follow these steps to change
the alignment of the data in a column:

 1. Position the cursor anywhere within the column that you want to change the
alignment.

 2. Click the Align Left, Align Center, or Align Right commands in the Text
Formatting group of the Ribbon (refer to Figure 5.15) to change the alignment
of the column’s data.

Hiding and unhiding columns
Hide columns by dragging the column gridline to the preceding fi eld or by setting the col-
umn width to 0:

 1. Position the cursor anywhere within the column that you want to hide.

 2. Choose More ➪ Hide Fields in the Records group of the Ribbon. The column dis-
appears because the column width is simply set to 0. You can hide multiple columns
by fi rst selecting them and then choosing More ➪ Hide Fields.

162

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 162

After you’ve hidden a column, you can redisplay it by choosing More ➪ Unhide Fields in
the Records group of the Ribbon. A dialog box appears, letting you selectively unhide col-
umns by checking next to each fi eld (see Figure 5.18). Click Close to return to the datasheet
showing the desired columns. You can also use this dialog box to hide one or more columns
by unchecking the check box next to each fi eld you want to hide.

FIGURE 5.18

Hide and unhide columns using the Unhide Columns dialog box.

Freezing columns
When you want to scroll left and right among many columns but want to keep certain
columns from scrolling out of view, choose More ➪ Freeze Fields in the Records group of the
Ribbon. With this command, for example, you can keep the ProductID and Description fi elds
visible while you scroll through the datasheet to fi nd the product’s features. The frozen col-
umns are visible on the far-left side of the datasheet while other fi elds scroll horizontally
out of sight. The fi elds must be contiguous if you want to freeze more than one at a time.
(Of course, you can fi rst move your fi elds to place them next to each other.) When you’re
ready to unfreeze the datasheet columns, simply choose More ➪ Unfreeze All Fields.

When you unfreeze columns, the column doesn’t move back to its original position. You must move it back manually.

Saving the changed layout
When you close the datasheet, you save all your data changes but you might lose all your
layout changes. As you make all these display changes to your datasheet, you probably
won’t want to make them again the next time you open the same datasheet. If you make

163

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 163

any layout changes, Access prompts you to save the changes to the layout when you close
the datasheet. Choose Yes to save the changes. You can also save the layout changes manu-
ally by clicking Save on the Quick Access toolbar.

If you’re following the example, don’t save the changes to tblProducts if you want your screen to match the fi gures in

the rest of this chapter.

Saving a record
Access saves each record when you move off it. Pressing Shift+Enter or selecting Save from
the Records group of the Ribbon saves a record without moving off it. Closing the datasheet
also saves a record.

Sorting and Filtering Records in a Datasheet
The Sort & Filter group of the Ribbon (shown in Figure 5.19) lets you rearrange the order of
the rows and reduce the number of rows. Using the commands in this group, you’ll display
the records you want in the order you want to see them. The following sections demon-
strate how to use these commands.

FIGURE 5.19

The Sort & Filter group lets you change the record order and reduce the number of
visible rows.

Advanced filter

Toggle filter

Apply filter Filter by selection

Sorting your records with QuickSort
Sometimes you might simply want to sort your records in a desired order. The QuickSort
Ribbon commands let you sort selected columns into either ascending or descending order.
To use these commands, click in a fi eld you want to sort by, and then click Ascending or
Descending. The data redisplays instantly in the sorted order. Right-clicking on a column
and selecting either of the Sort buttons also sorts the data. The captions on the right-click
menu change depending on the data type of the fi eld. Short Text fi elds display Sort A to Z

164

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 164

and Sort Z to A, while numeric fi elds display Sort Smallest to Largest and Sort Largest to
Smallest. Some fi elds, such as OLE and Long Text fi elds, can’t be sorted.

To sort your data on the basis of values in multiple fi elds, highlight more than one column:
Highlight a column (see the “Changing the fi eld order” section earlier in this chapter) and
before you release the mouse button, drag the cursor to the right or left. When you select
one of the QuickSort commands, Access sorts the records into major order (by the fi rst
highlighted fi eld) and then into orders within orders (based on subsequent fi elds). If you
need to select multiple columns that aren’t contiguous (next to each other), you can move
them next to each other (see the “Changing the fi eld order” section earlier in this chapter).

To display the records in their original order, use the Remove Sort command in the Sort & Filter group of the Ribbon.

Another way you can select multiple columns is to click on a column header and release the mouse button. Then,

while holding down the Shift key, click and release another column header. All of the columns between the columns

will be selected.

Filtering a selection
Filter by Selection lets you select records on the basis of the current fi eld value. For
example, using tblProducts, place your cursor in a row containing Trucks in the Category
column, press the Selection command in the Sort & Filter group of the Ribbon, and choose
Equals “Trucks.” Access fi lters the datasheet to show only those records where the Category
is trucks.

Access gives you four choices when you click the Selection command:

 ■ Equals “Trucks”

 ■ Does Not Equal “Trucks”

 ■ Contains “Trucks”

 ■ Does Not Contain “Trucks”

The area to the right of the Navigation buttons—at the bottom of the Datasheet window—
tells you whether the datasheet is currently fi ltered; in addition, the Toggle Filter command
on the Ribbon is highlighted, indicating that a fi lter is in use. When you click this com-
mand, it removes the fi lter. The fi lter specifi cation doesn’t go away; it’s simply turned off.
Click the Toggle Filter command again to apply the same fi lter.

165

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 165

Filtering by selection is additive. You can continue to select values, each time pressing the
Selection command.

Right-click the fi eld content that you want to fi lter by and then select from the available menu choices.

If you want to further specify a selection and then see everything that doesn’t match that
selection (for example, where the Make fi eld isn’t Chevrolet), move the cursor to the fi eld
(the Make fi eld where the value is Chevrolet), right-click the datasheet, and then select
Does Not Equal “Chevrolet” from the fi lter options that appear in the right-click shortcut
menu.

When using the Selection command on numeric or date fi elds, select Between from the
available command to enter a range of values. Enter the smallest and largest numbers or
oldest and newest dates to limit the records to values that fall in the desired range.

Imagine using this technique to review sales by salespeople for specifi c time periods
or products. Filtering by selection provides incredible opportunities to drill down into
successive layers of data. Even when you click the Toggle Filter command to redisplay all
the records, Access still stores the query specifi cation in memory. Figure 5.20 shows the
fi ltered datasheet, with the Filter by Select list still open on the Category fi eld.

FIGURE 5.20

Using Filter by Selection. In this case, you see all trucks that are not Mack models.

166

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 166

When a datasheet is fi ltered, each column has an indicator in the column heading letting
you know if a fi lter is applied to that column. Hover the mouse over the indicator to see a
tooltip displaying the fi lter. Click the indicator to specify additional criteria for the column
using the pop-up menu shown in Figure 5.21. Click the column heading’s down-arrow for an
unfi ltered column to display a similar menu.

FIGURE 5.21

Filtering the Make fi eld. Use the column fi lter menu to select criteria for a fi eld.

The menu contains commands to sort the column ascending or descending, clear the fi lter
from the fi eld, select a specifi c fi lter, and check values you want to see in the datasheet.
The available commands change based on the data type of the column. In this case, Text
Filter lets you enter a criterion that fi lters the data based on data you type in.

The check boxes in this menu contain data that appear in the column. In this case, the
choices are: (Select All), (Blanks), and one entry for each Make in the table. The Mack entry
is unchecked in this example. Click (Select All) to see all the records regardless of this fi eld’s
value. Click (Blanks) to see the records that don’t contain data. Select any of the data values
to limit the records where the fi eld contains the selected values. Place a check next to each
Make you’d like to see and remove the check for each Make you want to exclude.

If you want to fi lter data but you can’t fi nd the value that you want to use and you know
the value, click the Text Filters (or Number Filters, Date Filters, and so on) command and
choose one of the available commands (Equals, Does Not Equal, Begins With, and so on) to
display a dialog box where you type in the desired value.

167

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 167

Filtering by form
Filter by Form lets you enter criteria into a single row on the datasheet. Clicking the Filter
by Form button transforms the datasheet into a single row containing a drop-down list
in every column. The drop-down list contains all the unique values for the column. An
Or tab at the bottom of the window lets you specify OR conditions for each group. Choose
Advanced ➪ Filter by Form in the Sort & Filter group of the Ribbon to enter Filter by Form
mode, shown in Figure 5.22.

FIGURE 5.22

Using Filter by Form lets you set multiple conditions for fi ltering at one time. Notice the Or
tab at the bottom of the window.

Select values from the combo boxes or type values you want to search for in the fi eld. If you
want to see records where the Category is Trucks or SUVs, select Trucks from the Category
drop-down list, select the Or tab at the bottom of the window, and then select SUVs from
the Category drop-down list. To see records where Category is SUV and QtyInStock is 1,
select SUV from the Category drop-down and type 1 in QtyInStock. Once you enter the
desired criteria, click the Toggle Filter command to apply the fi lter. (The Toggle Filter
button is shown in Figure 5.19.)

Enter as many conditions as you need using the Or tab. If you need even more advanced
manipulation of your selections, you can choose Advanced ➪ Advanced Filter/Sort from the
Sort & Filter group of the Ribbon to get an actual Query by Example (QBE) screen that you
can use to enter more-complex criteria.

168

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 168

 Chapter 8 discusses queries, and Chapter 9 discusses operators and expressions.

Aggregating Data
Historically, Access datasheets have always borne a close resemblance to Excel worksheets.
Not only do worksheets and datasheets look alike, but in many ways they work alike as
well. As you’ve seen in this chapter, Access datasheets support sorting, searching, freezing
columns, and other features mirrored in Excel worksheets. But, until recently, Access data-
sheets and Excel worksheets had little else in common.

Unlike Excel worksheets, Access datasheets haven’t supported row and column summa-
tion and other types of data aggregation. Beginning with Access 2007, Access datasheets
support a Totals row at the bottom of datasheets. The Totals row is opened by clicking
the Totals button in the Records group on the Home tab of the Ribbon (the Totals button
is marked with a Greek sigma character, much like the AutoSum button in Excel). Each
column in the totals row can be set to a different aggregate calculation (Sum, Average,
Minimum, Maximum, Count, Standard Deviation, or Variance).

To use the Totals row, open a table or form in Datasheet view and click the Totals button in
the Records group (see Figure 5.23) on the Home tab of the Ribbon. Access adds a Totals row
at the bottom of the datasheet, just below the New row.

FIGURE 5.23

 The datasheet Totals row.

169

Chapter 5: Working with Access Tables

5

c05.indd 09/29/2015 Page 169

Clicking a column in the Totals row transforms the datasheet cell to a drop-down list. The
items in the drop-down list are specifi c to the column’s data type. For example, in text col-
umns, the drop-down list shows only None and Count, while a numeric column contains a
full complement of totals calculations (Sum, Average, Count, and so on). DateTime columns
include None, Average, Count, Minimum, and Maximum.

The Totals calculation you choose is dynamic. As you change data in the datasheet or
underlying table, the calculation results displayed in the Totals row are automatically
updated after a very short delay. Recalculating a lot of totals extracts a small performance
penalty, so you might want to hide the Totals row when its special features aren’t needed.

The Totals options you choose for the columns in a datasheet persist. If you close the data-
sheet and re-open it, the Totals row is still there.

To remove the Totals row, open the datasheet and click the Totals button in the Records
group on the Ribbon. Here’s one interesting behavior of the Totals row: If you choose to
remove it, you can restore it later (by clicking the Totals button again). The row is restored
to its original setting.

Printing Records
You can print all the records in your datasheet in a simple row-and-column layout. In
Chapter 20, you learn to produce formatted reports. For now, the simplest way to print is to
click File ➪ Print, and choose one of the Print options as shown in Figure 5.24.

If you choose Print, and not Quick Print or Print Preview, Access shows the Print dialog
box. From the Print dialog box, customize your printout by selecting from several options:

 ■ Print Range: Prints the entire datasheet or only selected pages or records

 ■ Copies: Determines the number of copies to be printed

 ■ Collate: Determines whether multiple copies are collated

You can also change the printer, click the Properties button, and set options for the
selected printer. The Setup button allows you to set margins and print headings.

The printout refl ects all layout options that are in effect when the datasheet is printed.
Hidden columns don’t print. Gridlines print only if the cell gridline properties are on. The
printout also refl ects the specifi ed row height and column width.

Only so many columns and rows can fi t on a page; the printout takes up as many pages as
required to print all the data. Access breaks up the printout as necessary to fi t on each
page. For example, the tblProducts printout might be nine pages—three pages across are

170

Part II: Understanding Access Tables

c05.indd 09/29/2015 Page 170

needed to print all the fi elds in tblProducts, and all the records require three pages in
length. The records of tblContacts might need four pages in length. The number of pages
depends on your layout and your printer.

FIGURE 5.24

The Microsoft Offi ce Print menu.

Previewing Re cords
Although you may have all the information in the datasheet ready to print, you may be
unsure of whether to change the width or height of the columns or rows, or whether to
adjust the fonts to improve your printed output. To preview your print job, click the Print
Preview command under the Print menu to display the Print Preview window. The default
view is the fi rst page in single-page preview. Use the Ribbon commands to select different
views and zoom in and out. Click Print to print the datasheet to the printer. Click the Close
Print Preview command on the right side of the Ribbon to return to Datasheet view.

171

c06.indd 09/28/2015 Page 171

 CHAP T ER

6
Importing and Exporting
Data

IN THIS CHAPTER

Understanding external data

Selecting the import and export options that are right for you

Creating import specifi cations

Exporting to external tables and fi les

I
n this chapter, we show you how to bring data into your Access database from an outside source
by importing. We also show you how to create external fi les from the data by exporting. An
import process adds data to an Access database from some external source, such as an XML fi le.

An export from Access means you create something outside the Access database, like an XML or
Excel fi le containing data stored in Access.

This chapter uses various fi les for importing, plus two Access databases: Chapter06_1.accdb and

Chapter06_2.accdb. Both databases are used for importing and exporting examples. If you haven’t already

downloaded these fi les onto your machine from this book’s website, you’ll need to do so now. The website contains

the two databases and a number of auxiliary fi les in different formats (XLS, XML, TXT, and so on). Be sure to copy

these fi les to your computer.

How Access Works with External Data
Exchanging information between Access and another program is an essential capability in today’s
database world. Information is usually stored in a wide variety of application programs and data
formats. Access, like many other products, has its own native fi le format, designed to support ref-
erential integrity and provide support for rich data types, such as OLE objects. Most of the time,
Access alone is suffi cient for the job. Occasionally, however, you need to move data from one Access
database fi le to another or use data from another program’s format.

 ON THE WEB

172

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 172

Types of external data
Access can use and exchange data among a wide range of applications. For example, you
may need to get data from a Microsoft Excel fi le, a SQL Server, Oracle, or even a text fi le.
Access can move data among several categories of applications, including other Windows
applications, Macintosh applications, database management systems, text fi les, and even
mainframe fi les.

Ways of working with external data
Often, you need to move data from another application or fi le into your Access database, or vice
versa. You might need to get information you already have in an external spreadsheet fi le. You
can reenter all that information by hand or have it automatically imported into your database.

Access has tools that enable you to exchange data with another database or spreadsheet fi le.
In fact, Access can exchange data with many different fi le types, including the following:

 ■ Access database objects (all types)

 ■ Text fi les

 ■ Excel fi les

 ■ ODBC databases (SQL Server, Sybase Server, Oracle Server, and other ODBC-compliant
databases)

 ■ HTML tables, lists, and documents

 ■ XML documents

 ■ Outlook tables

 ■ Microsoft Exchange documents

 ■ SharePoint lists

 ■ Word documents

 ■ Rich Text Format (RTF) documents

Access works with these external data sources in several ways:

 ■ Linking: Linking to data creates a connection to a table in another Access database
or links to the data from a different format. Linking uses the data in the source fi le
format (such as Excel or XML). The linked data remains in its original fi le. The fi le con-
taining the linked data should not be moved, deleted, or renamed; otherwise, Access
won’t be able to locate the data the next time it’s needed. If moving or renaming the
linked data source is unavoidable, Access provides tools for relinking to the source.

 ■ Importing: Importing copies data from a data source, another Access database,
or another application’s database fi le into an Access table. The imported data is
converted to the appropriate Access data type, stored in a table, and managed by
Access from that point on.

173

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 173

 ■ Exporting: Exporting copies data from an Access table into a text fi le, another
Access database, or another application’s fi le. Like importing, changing the source
data does not affect the exported data.

Each method has clear advantages and disadvantages, as covered in the following sections.

 Linking between Access and external data is discussed in Chapter 7.

When to link to external data

Linking in Access enables you to work with the data in another application’s format—thus,
sharing the fi le with the existing application. If you leave data in another database format,
Access can read the data while the original application is still using it. This capability is
useful when you want to work with data in Access that other programs also need to work
with. However, there are limitations as to what you can do with linked data. For example,
you can’t update data in a linked Excel spreadsheet or a linked text fi le. The ability to
work with external data is also useful when you use Access as a front end for a SQL Server
database—you can link to a SQL Server table and directly update the data, without having
to batch-upload it to a SQL Server.

Access databases are often linked to external data so that people can use Access forms to
add and update the external data or to use the external data in Access reports.

You can link to the following types of data in Access:

 ■ Other Access tables (ACCDB, ACCDE, ACCDR, MDB, MDA, MDE)

 ■ Excel spreadsheets

 ■ Outlook folders

 ■ Text fi les

 ■ XML fi les

 ■ HTML documents

 ■ SharePoint lists

 ■ ODBC databases

Access is capable of linking to certain formats (like HTML tables, text fi les, Excel fi les, and XML documents) for read-

only access. You can use and look at tables in HTML or text format; however, the tables can’t be updated and records

can’t be added to them using Access.

A big disadvantage of working with linked tables is that you lose the capability to enforce
referential integrity between tables (unless all the linked tables are in the same external

174

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 174

Access database or all are in some other database management system that supports refer-
ential integrity). Linked tables may exhibit somewhat poorer performance than local tables.
Depending on the source, and the location of the source data, users might experience a
noticeable delay when they open a form or report that is based on linked data.

Performance issues become more pronounced when joining linked and local data in a query.
Because Access is unable to apply optimization techniques to foreign data, many joins are
ineffi cient and require a lot of memory and CPU time to complete. However, Access can
work with many different types of external data, which makes it the ideal platform for
applications requiring these features.

When to import external data

Importing data enables you to bring an external table or data source into a new or exist-
ing Access table. By importing data, Access automatically converts data from the external
format and copies it into Access. You can even import data objects into a different Access
database or Access project from the one that is currently open. If you know that you’ll use
your data in Access only, you should import it. Generally, Access works faster with its own
local tables.

Because importing makes another copy of the data, you might want to delete the old fi le after you import the copy

into Access. Sometimes, however, you’ll want to preserve the old data fi le. For example, the data might be an Excel

spreadsheet still in use. In cases such as this, simply maintain the duplicate data and accept that storing it will

require more disk space (and that the two fi les are going to get out of sync).

One of the principal reasons to import data is to customize it to meet your needs. After a
table has been imported into an Access database, you can work with the new table as if
you’d built it in the current database. With linked tables, on the other hand, you’re greatly
limited in the changes you can make. For example, you can’t specify a primary key or
assign a data entry rule, which means that you can’t enforce integrity against the linked
table. Also, because linked tables point to external fi les, which Access expects to fi nd in a
specifi c location, it can make distributing your application more diffi cult.

Data is frequently imported into an Access database from an obsolete system being replaced
by a new Access application. When the import process is complete, the obsolete application
can be removed from the user’s computer.

If you’ll be importing data from the same source frequently, you can automate the process with a macro or a VBA

procedure. This can be helpful for those times when you have to import data from an external source on a regular

schedule or when you have complex transformations that must be applied to the imported data.

175

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 175

When to export internal data

Exporting data enables you to pass data to other applications. By exporting data, Access
automatically converts data to the external format and copies it to a fi le that can be read
by the external application. As we’ve already mentioned, sometime you have to import
data into Access as opposed to just linking to the external data source if you want to be
able to modify the data. If you still need to be able to work with the modifi ed data in
the external application, you have little choice but to create a new fi le by exporting the
modifi ed data.

A common reason to export data is because you want to share the data with other users
who don’t have Access installed.

Working with Data in Unsupported Programs
Although unsupported formats are rare, you might occasionally need to work with data from a program
that isn’t stored in a supported external database or fi le format. In such cases, the programs usually
can export or convert their data into one of the formats recognized by Access. To use the data in these
programs, export it into a format recognized by Access and then import it into Access.

For example, many applications can export to the XML fi le format. If the XML format is not available,
most programs, even those on different operating systems, can export data to delimited or fi xed-width
text fi les, which you can then import into Access.

Options for Importing and Exporting
Before examining the processes of importing and exporting, let’s take a brief look at the
various options for importing and exporting data with Access.

Access is often described as a “landing pad” for many types of data. This means that Access
can use and exchange data among a wide range of applications. For example, you might
need to get data from SQL Server or Oracle, a text fi le, or even an XML document. Access
can move data among several categories of applications, database engines, and even plat-
forms (mainframes and Macintosh computers).

Open the Chapter06_1.accdb database in Access, and click the External Data tab of the
Ribbon (see Figure 6.1). You’ll see the following groups: Import & Link, Export, and Web
Linked Lists.

176

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 176

FIGURE 6.1

The External Data tab of the Ribbon hints at the variety of external data sources available to
Access.

The Import & Link group includes the following options:

 ■ Saved Imports

 ■ Linked Table Manager

 ■ Excel

 ■ Access

 ■ ODBC Database

 ■ Text File

 ■ XML File

 ■ More: Click this button to open the More drop-down list, which has the following
options:

 ■ SharePoint List

 ■ Data Services

 ■ HTML document

 ■ Outlook folder

The Export group includes the following options:

 ■ Saved Exports

 ■ Excel

 ■ Text File

 ■ XML File

 ■ PDF or XPS

 ■ Email

 ■ Access

 ■ Word Merge

 ■ More: Click this button to open the More drop-down list, which has the following
options:

177

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 177

 ■ Word

 ■ SharePoint List

 ■ ODBC Database

 ■ HTML Document

Obviously, Microsoft has prepared Access well for its role as a “landing pad” for data.

Importing External Data
An import copies external data into an Access database. The external data remains in
its original state, but, after the import, a copy exists within Access. When you import a
fi le (unlike when you link tables), Access converts a copy of the data from an external
source into records in an Access table. The external data source is not changed during the
import. No connection to the external data source is maintained once the import process
is complete.

You can import information to new or existing tables. Every type of data can be imported
to a new table. However, some types of imports—such as spreadsheets and text fi les—don’t
necessarily have a table structure compatible with Access. In those cases, Access will create
a table structure for you. If you want to control the structure of the table, you should cre-
ate the table before importing.

Importing from another Access database
You can import items from a source database into the current database. The objects you
import can be tables, queries, forms, reports, macros, or modules. Import an item into the
current Access database by following these steps:

 1. Open the destination database you want to import into. In this case, open the
Chapter06_1.accdb database.

 2. Select the External Data tab.

 3. Click the Access option in the Import & Link group, and then click the Browse
button to select the filename of the source database (Chapter06_2.accdb).

 4. Select the Import Tables, Queries, Forms, Reports option button and click OK.
The Import Objects dialog box (shown in Figure 6.2) appears. It gives you options
for importing a database object.

When working with an external Access database, you can import any type of object, including tables, queries, forms,

reports, macros, and VBA code modules.

178

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 178

FIGURE 6.2

Many types of Access database objects can be imported from one Access database
into another.

 5. Select a table and click OK. If an object already exists in the destination database,
then a sequential number is added to the name of the imported object, distinguish-
ing it from the original item. For example, if tblDepartments already exists, the
new imported table is named tblDepartments1.

The Get External Data – Save Import Steps dialog box appears, with a very useful
feature that allows you to store the import process as a saved import, as shown in
Figure 6.3.

 6. Provide a name for the import process to make it easy to recall the saved
import’s purpose. You can execute the saved import again at a later date by click-
ing the Saved Imports button in the Import & Link group of the External Data
tab of the Ribbon. From the Manage Data Tasks dialog box (see Figure 6.4), you
can change the name of the saved import, the location of the source fi le, and the
description of the saved import. All other information about the saved import (such
as the destination table name) can’t be changed. If you need to change other infor-
mation, create a new saved import with the proper parameters.

179

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 179

FIGURE 6.3

The Saved Import Steps feature lets you save frequently executed import processes for
future use.

The Manage Data Tasks dialog box includes the Create Outlook Task button to set up the import procedure as a

scheduled Outlook Task. This is a convenient way to automatically execute the import process on a regular schedule.

Each time you run a Saved Import, a new table is created with the imported data. If, for example, you import

tblDepartments, a table named tblDepartments is created. Running the saved import again creates a table named

tblDepartments1. Running the saved import a second time creates a table name tbDepartments2, and so on. Saved

Imports do not replace the originally imported table.

180

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 180

FIGURE 6.4

The Saved Imports feature lets you rerun previous saved import processes.

Importing from an Excel spreadsheet
You can import data from Excel spreadsheets to a new or existing table. The primary rule
when importing Excel data is that each cell in a column must contain the same type of
data. When you’re importing Excel data into a new table, Access guesses at the data type to
assign to each fi eld in the new table based on the fi rst few rows of Excel data (other than
column headings). An import error may occur if any Excel row past the fi rst row contains
incompatible data. In Figure 6.5, the Age column should contain all numeric data, but it
contains an age written out as words. This is likely to cause an error during the import pro-
cess. The data in Row 5 should be changed so that the entire column contains numeric data
(as shown in Figure 6.6).

You can import all the data from an Excel spreadsheet, or just the data from a named range
of cells. Naming a range of cells in your spreadsheet can make importing into Access easier.
Often a spreadsheet is formatted into groups of cells (or ranges). One range may contain a
listing of sales by customer, for example, while another may include total sales for all cus-
tomers, totals by product type, or totals by month purchased. By providing a range name
for each group of cells, you can limit the import to just one section of the spreadsheet data.

181

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 181

FIGURE 6.5

Access can import data from an Excel spreadsheet, but there are some restrictions.

This data will cause import problems.

FIGURE 6.6

Excel worksheet columns should contain consistent data.

All data is now numeric.

182

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 182

To import EMPLIST.xls, follow these steps:

 1. Click the Excel button in the Import & Link group on the External Data tab.

 2. Browse to the Excel file.

 3. Select Import the Source Data into a New Table in the Current Database and
click OK. The fi rst Import Spreadsheet Wizard screen (see Figure 6.7) shows lists of
worksheets or named ranges, and a preview of the data, in the Excel spreadsheet.

FIGURE 6.7

The Import Spreadsheet Wizard.

 4. Select a worksheet or named range and click Next.

 5. On the next screen (shown in Figure 6.8), select the First Row Contains Column
Headings check box and click Next. Normally you don’t want the Excel column
headings stored as fi eld data. Access uses the column headings as the fi eld names
in the new table.

 6. On the next screen (shown in Figure 6.9), you can override the default field
name and data type, remove fields from the import, and create an index on a
field. When you’re done, click Next.

183

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 183

FIGURE 6.8

Does the fi rst row contain column headings?

FIGURE 6.9

You can override any of the default settings Access has chosen.

184

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 184

 7. On the next screen, set a primary key for the new table (see Figure 6.10) and
click Next. A primary key uniquely identifi es each row in a table.

FIGURE 6.10

Specify a primary key for the new table.

Be somewhat wary when choosing a primary key for the imported fi le. The fi eld you choose must conform to the

rules of primary keys: No value can be null and no duplicates are allowed. The purpose of a table’s primary key is

to uniquely identify the rows in the table, so if no column in the Excel spreadsheet is appropriate for this purpose,

it’s probably best to let Access add a default primary key fi eld. The primary key added by Access is always an

AutoNumber and always conforms to data normalization rules.

Primary keys are discussed in Chapters 3 and 4.

 8. Specify the new table’s name and click Finish.

If you import an Excel fi le with the same name as an Excel fi le you’ve already linked, Access will ask if you want to

overwrite the existing fi le. Unless you actually intend to replace the linked table, you must give the newly imported

table a new name.

185

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 185

 9. If you want to, save the import process for later execution. The new table now
appears in the Navigation pane.

Importing a SharePoint list
SharePoint lists are candidate data sources for Access databases. Because SharePoint lists
reside on web servers, SharePoint data is accessible across a network to qualifi ed users. This
gives Access the ability to share data virtually anywhere in the world.

 Part VIII is dedicated to understanding and working with SharePoint Services.

Because SharePoint is deployed on a large number of corporate intranets, Access is likely to
continue as a component in enterprise environments.

Importing data from text fi les
There are many reasons for text fi le output, such as business-to-business (B2B) data trans-
fers. Also, mainframe data is often output as text fi les to be consumed in desktop applica-
tions. Access can import from two different types of text fi les: delimited and fi xed width.
The Access Import Text Wizard assists you in importing or exporting both delimited and
fi xed-width text fi les.

Delimited text files

In delimited text files (sometimes known as comma-delimited text files, comma-separated-values

text files, or tab-delimited text files), each record is on a separate line in the text fi le. The
fi elds on the line contain no trailing spaces, normally use commas or tab characters as fi eld
separators, and might have certain fi elds that are enclosed in qualifying characters (such as
single or double quotation marks). Here’s an example of a comma-delimited text fi le:

1,Davolio,Nancy,5/1/14 0:00:00,4000
2,Fuller,Andrew,8/14/14 0:00:00,6520
3,Leverling,Janet,4/1/14 0:00:00,1056
4,Peacock,Margaret,5/3/15 0:00:00,4000
5,Buchanan,Steven,10/17/15 0:00:00,5000
6,Suyama,Michael,10/17/15 0:00:00,1000
7,King,Robert,1/2/14 0:00:00,1056
8,Callahan,Laura,3/5/14 0:00:00,1056
9,Dodsworth,Joseph,11/15/14 0:00:00,1056

Notice that the fi le has nine records (rows of text) and fi ve fi elds. A comma separates each
fi eld. In this example, text fi elds are not qualifi ed with double quotation marks. Notice also
that the rows are different lengths because of the variable data within each row.

186

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 186

To import a delimited text fi le named ImportDelim.txt, follow these steps:

 1. Open the Chapter06_1.accdb database.

 2. Select the External Data tab.

 3. Click Text File in the Import & Link group.

 4. Browse to the ImportDelim.txt file, select the Import option button, and
click OK. The fi rst screen of the Import Text Wizard (shown in Figure 6.11) appears.
The Import Text Wizard displays the data in the text fi le and lets you choose
between delimited or fi xed width.

FIGURE 6.11

The fi rst screen of the Import Text Wizard.

 5. Select Delimited and click Next. The next screen of the Import Text Wizard
(shown in Figure 6.12) appears. As you can see in Figure 6.12, this screen enables
you to specify the separator used in the delimited fi le. A separator is the character
placed between fi elds in a delimited text fi le. The separator is often a comma or
semicolon, although it can be another character.

187

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 187

FIGURE 6.12

The second Import Text Wizard screen.

 6. Select the delimiter that separates your fields; if an uncommon delimiter is
used, select Other and enter the delimiter in the Other box.

There can be a problem with the separator used if any of the fi elds in the text fi le contains the separator character as

data. For example, if you use a comma to delimit fi elds, and one of the fi elds is Acme Widgets, Inc., Access will have

a problem importing the fi le. The solution is to wrap text fi elds in double quotes (“Acme Widgets, Inc.”) so that the

comma is not misinterpreted as a fi eld separator. This use of double quotes is referred to as the text qualifier. Most

often single- or double-quote marks are used for this purpose and usually resolve issues with special characters con-

tained within data fi elds.

 7. If the first row contains field names for the imported table, select the First
Row Contains Field Names check box. When you’re done with this screen, click
Next. The next few screens are very similar to the steps involved when importing
Excel worksheets. You can change fi eld names, specify a primary key, and save the
import for future use. Save the imported text fi le with a descriptive Access table

188

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 188

name. Access creates the new table, using the text fi le’s name by default. The new
table appears in the Navigation pane.

To specify a fi eld containing no data in a delimited fi le, leave no characters between the commas (not even a space

character). An empty fi eld at the end of a row is indicated by a comma at the end of the line.

Fixed-width text files

Fixed-width text files also place each record on a separate line. However, the fi elds in each
record are fi xed in length. Fields are padded with trailing spaces to maintain spacing
within each line, as shown in Figure 6.13.

FIGURE 6.13

A typical fi xed-width text fi le.

Notice that the fi elds in a fi xed-width text fi le are not separated by delimiters. Instead, they
start at exactly the same position in each record, and each record has exactly the same length.

Text values, such as fi rst and last names, are not surrounded by quotation marks. There is
no need for delimiting text values because each fi eld is a specifi c width. Anything within a
fi eld’s position in a row is considered data and does not require delimiters.

If the Access table being imported has a primary key fi eld, the text fi le cannot have any duplicate primary key values.

If duplicate primary keys are found, the import will report an error and fail to import rows with duplicate primary keys.

To import a fi xed-width text fi le, follow these steps:

 1. Open the Chapter06_1.accdb database.

 2. Select the External Data tab.

189

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 189

 3. Click Text File in the Import & Link group.

 4. Browse to ImportFixed.txt, select the Import option button, and click OK.
The fi rst screen of the Import Text Wizard (refer to Figure 6.11) appears. The Import
Text Wizard displays the data in the text fi le and lets you choose between delim-
ited or fi xed width.

 5. Select Fixed Width and click Next. The next screen of the Import Text Wizard
(shown in Figure 6.14) appears.

FIGURE 6.14

The Import Text Wizard screen for fi xed-width text fi les.

 6. Adjust field widths as needed. Access guesses at the best breaks to use for fi elds,
based on the most consistent spacing across rows. In this case, the fi eld breaks are
very consistent. If necessary, however, use the mouse to grab a dividing line and
move it left or right to change the width of fi elds in the fi le.

To add a new dividing line, single click the mouse within the data area, then move the line to the desired position. To

delete an existing line, double-click the line.

190

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 190

 7. Click the Advanced button at the bottom of the wizard. The Import Specifi cation
dialog box (shown in Figure 6.15) appears. The Import Specifi cation dialog box lets
you change the default formats for dates, times, fi eld names, indexing, and data
types. It also provides an option for skipping fi elds you don’t want to import. (For
detailed information on this dialog box, see the following sidebar.)

FIGURE 6.15

The Import Specifi cation dialog box for importing a fi xed-width text fi le.

 8. Ensure that the Date Order is set to MDY and the Four Digit Years check box is
selected.

 9. Select the Leading Zeros in Dates check box.

 10. Click OK to dismiss the Import Specification dialog box.

 11. Continue through the remaining Import Text Wizard screens.

191

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 191

Using the Import Specification Dialog Box
One advantage of using the Import Specifi cation dialog box is the fact that you can specify the type
of fi le to be imported from or exported to. The Language and Code Page drop-down lists determine
the fundamental type of format. The Code Page drop-down list displays the code pages that are
available for the selected language.

You can also specify the Field Delimiter option for delimited text fi les. Four built-in fi eld-separator
choices (semicolon, tab, space, and comma) are available in this combo box, or you can specify another
character by typing into the combo box, if needed.

You can also specify the text qualifi er used to surround text fi elds. Normally, text fi elds in a delimited
fi le are enclosed by characters such as quotation marks that set the text data apart from other fi elds.
This is useful for specifying numeric data like Social Security and phone numbers as text data rather
than numeric.

The Text Qualifi er drop-down list is actually a combo box, so you can enter a different qualifi er by
typing it in the text area.

When Access imports or exports data, it converts dates to a specifi c format (such as MMDDYY). You can
specify how date fi elds are to be converted, using one of the six choices in the Date Order combo box:

 ■ DMY

 ■ DYM

 ■ MDY

 ■ MYD

 ■ YDM

 ■ YMD

These choices specify the order for each portion of a date. The D is the day of the month (1–31), M is
the calendar month (1–12), and Y is the year. The default date order is set to the U.S. format (month,
day, year). When you work with European dates, the order is often changed to day, month, and year.

You use the Date Delimiter fi eld to specify the date delimiter character. The default is a forward slash
(/), but you can change this to any other delimiter, such as a period. European dates are often sepa-
rated by periods, as in 22.10.2016.

192

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 192

When you import text fi les with Date-type data, you must have a separator between the month, day, and year. Access

reports an error if the fi eld is specifi ed as a Date/Time type and no delimiter is used. When you’re exporting date

fi elds, the separator is not needed.

With the Time Delimiter option, you can specify a separator (usually a colon) between the parts of time values in a

text fi le. To change the separator, simply enter another in the Time Delimiter box.

Select the Four Digit Years check box to specify that the year portion of a date fi eld is formatted with four digits. By

checking this box, you can import dates that include the century (such as in 1981 or 2001). The default is to use

four-digit years.

The Leading Zeros in Dates option specifi es that date values include leading zeros. This means that date formats

include leading zeros (as in 02/04/03), if needed.

Importing and exporting XML documents
Importing XML documents is easy with Microsoft Access. XML is often used to transfer
information between disparate platforms, databases, operating systems, applications, com-
panies, planets, universes—you name it! XML is used for raw data, metadata (data descrip-
tions), and even processing data. It’s safe to say that most Access developers eventually
import or export data in XML format.

Presenting XML in Access needs to be done in an odd way. You could easily import a simple
XML document in your Access database, but the best way to fi nd out how well Access uses
XML is to begin by exporting something into XML.

Follow these steps to export data from Access to an XML fi le:

 1. Open the Chapter06_1.accdb database.

 2. Open tblDepartments in Datasheet view.

 3. Select the External Data tab, and click XML File in the Export section.

 4. Name the XML file tblDepartments.xml, and click OK. The Export XML dialog
box (shown in Figure 6.16) appears.

FIGURE 6.16

The Export XML dialog box.

193

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 193

The Export XML dialog box includes options for specifying advanced options for the XML
export process. Clicking the More Options button opens a dialog box (see Figure 6.17) with
several important XML settings.

FIGURE 6.17

Advanced XML export options.

The data contained in an XML fi le may be relational or hierarchical. For example, a single
XML fi le might contain information on both product categories and the products them-
selves. A schema file is needed for complex XML to be understood by other applications.
Access automatically produces a schema fi le (XSD extension) for data exported in XML for-
mat. Figure 6.18 shows the Schema tab of the Export XML dialog box.

FIGURE 6.18

Exporting XML schema information.

194

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 194

The XML schema fi le includes information such as the data type of each fi eld and the source
table’s primary key and indexes.

A further refi nement of the XML export process is to specify how the XML data should be
presented in an application using the exported data. (The presentation is specifi ed using
HTML conventions.) In most cases, the XML presentation fi le (XSL extension) is not needed,
because the application that is designed to use the XML fi le displays the data as required
by its users. Figure 6.19 shows the Presentation tab of the Export XML dialog box. Notice
that none of the options on this tab is selected by default.

FIGURE 6.19

XML presentation options.

In a text editor, such as Notepad, open tblDepartments.xml. You’ll see the contents of
the XML fi le, as shown in Figure 6.20.

The fi rst two lines of the text fi le defi ne the version of XML that was used and the schema.
The exported data and structure start on the third line. XML is a hierarchy of tags that
defi ne the structure of the data, and each piece of data is within an opening and closing
tag. Each record begins with a tag for the name of the table. In this example <tblDepart-
ments> is the tag that defi nes the table. A few lines down, there is a closing tag,
</tblDepartments>, signifying the end of the record.

XML uses tags to give context to the data. Opening tags defi ne the start of a structure and consist of text between

a less-than symbol (<) and a greater-than symbol (>). Closing tags defi ne the end of the structure. Closing tags are

formatted similarly to opening tags except that a forward slash is included after the less-than symbol (<).

195

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 195

FIGURE 6.20

An exported XML fi le in plain text.

In between these two tags are the fi elds and data for that record. The fi rst fi eld of the fi rst
record is recorded as <DeptNumber>1000</DeptNumber>. An application that under-
stands XML will interpret that line to mean there is a fi eld named DeptNumber and this
record has 1000 in that fi eld. This hierarchy of tags and data continues for each fi eld in the
record and for each record in the table.

Just as Access can export to XML, it can also import it. To import the tblDepartments
.xml fi le that you just exported, follow these steps:

 1. Click on the XML File button on the Import & Link group of the External Data tab.

 2. Browse to tblDepartments.xml and click OK. The Import XML dialog, shown in
Figure 6.21, displays how Access interprets the XML data.

 3. Click OK.

Access converted the well-formed XML into a table. The <tblDepartments> tag determine
what the imported table will be named, the tags within the <tblDepartments> tag and
its closing tag defi ne the fi elds, and the data in between the fi eld tags will become data in
the new table.

Importing and exporting HTML documents
Access enables you to import HTML tables as easily as any other database, Excel spread-
sheet, or text fi le. You simply select an HTML fi le to import and use the HTML Import
Wizard. The HTML Import Wizard works exactly like the other import wizards described
earlier in this chapter.

196

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 196

FIGURE 6.21

Access understands XML data.

And just like demonstrating XML in the previous section, we’ll do an HTML import in
reverse, as well. First, you export a table to generate an HTML fi le, and then you import the
fi le back into Access to create a new table:

 1. Open the Chapter06_1.accdb database and select tblEmployees from the
Navigation bar.

 2. Select the External Data tab, click the More drop-down button in the Export
group, and select HTML Document.

 3. Specify an HTML file as the export destination in the Export – HTML Document
dialog box (see Figure 6.22).

 4. Select your HTML output options and click OK. The HTML export is completed
as soon as you click the OK button. Unless you check Export Data with Formatting
and Layout, no options other than what you see in Figure 6.22 are available when
exporting HTML data.

Exporting data with formatting and layout, an option in the Export – HTML Document dia-
log box, presents additional exporting options. The most important option is that it allows
you to specify an HTML template for your export. An HTML template is a normal HTML fi le,
except that it includes special tags that Access recognizes. These tags instruct Access where
to place certain data when exporting, allowing you to defi ne the other aspects of the HTML
document, such as styling and logos.

197

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 197

FIGURE 6.22

The Export – HTML Document dialog box.

Importing the HTML is much like importing a text fi le shown previously in this chapter. In
fact, the Import HMTL Wizard has most of the same screens and options as the Import Text
Wizard, such as defi ning data types for fi elds and identifying the primary key.

Importing Access objects other than tables
You can import other Access database tables or any other object in another database,
which means you can import an existing table, query, form, report, macro, or module from
another Access database. You can also import custom toolbars and menus.

As a simple demonstration, follow these steps:

 1. Open the Chapter06_1.accdb database.

 2. Select the External Data tab, and in the Import & Link group, click the option
to import from another Access database. The screen in Figure 6.23 appears.
Notice that this dialog box enables you to specify whether to import database
objects or link to tables in an external Access database.

 3. Browse to the Chapter06_2.accdb database and click OK. Figure 6.24 shows
that you can import every type of Access object.

198

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 198

FIGURE 6.23

The same wizard imports objects and links to external Access tables.

FIGURE 6.24

Importing Access objects.

199

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 199

When including tables, queries, forms, reports, macros, or modules—all in the same
import—you can select objects from each tab and then import all the objects at once.

Figure 6.24 shows the Import Objects dialog box with the Options button clicked. Clicking
Options shows the options for importing table relationships, menus, toolbars, and other
Access database objects. Importing (and exporting, for that matter) is an excellent way of
backing up objects prior to making changes to them.

Importing an Outlook folder
An interesting Access import capability is the option to import data directly from Outlook.
Although most people think of Outlook as an e-mail system, it supports a number of impor-
tant business needs, such as scheduling and contact management.

When working with Outlook data, Access doesn’t care whether an imported item is an
e-mail or contact. Access handles all types of Outlook objects with equal ease.

Select Outlook Folder from the More drop-down list in the Import & Link group to open the
initial Outlook Folder import dialog box (shown in Figure 6.25). Access provides options for
importing Outlook data, adding it to an existing Access table, or linking to it from the cur-
rent Access database.

FIGURE 6.25

The initial Outlook import options.

200

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 200

Selecting the import option opens the Import Exchange/Outlook Wizard (shown in Figure
6.26). As shown in this dialog box, Access can import Outlook e-mail, contacts, calendars,
journals, and other folders.

FIGURE 6.26

Importing Outlook objects into Access.

Depending on which item you select in the Import Exchange/Outlook Wizard, the remaining
wizard screens walk you through the process of bringing Outlook data into Access. You can
import Outlook data into a new or existing table, add a primary key, specify data types,
and save the import process for later execution.

Exporting to External Formats
An export copies data from an Access table to some other application or data source, such
as an XML document. The exported result uses the format of the destination data source
and not the format of an Access database. You can copy data from an Access table or query
into a new external fi le. You can export tables to several different sources.

201

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 201

In general, anything imported can also be exported, unless otherwise stated in this chapter.

Exporting objects to other Access databases
When the destination of an export process is an Access database, you can export every type
of Access object (tables, queries, forms, reports, and so on). Unlike importing, which allows
you to import many objects at once, exporting only allows you to export one object at a
time. To export an object to another Access database, follow these generic steps:

 1. Open the source database and select an object to export.

 2. Click the Access button under the Export section of the External Data tab. The
Export – Access Database dialog box appears.

 3. Use the Browse button to locate the destination Access database.

Ensure that the target database is not open when attempting to export to it. If it is, a locking confl ict will occur.

 4. Click OK. The Export dialog box is shown.

Tables can be exported as defi nition and data or defi nition only. When Defi nition Only is selected, the structure

and indexes of the table are exported, but the new table contains no records. Relationships to other tables are not

exported with either option.

If an object already exists in the target database, you’ll be asked whether you want
to replace the object in the target database. If you don’t, you can create a new
object in the target database.

 5. The last step of the wizard enables you to save the export configuration for
future use. This option can be quite handy if you’ll be frequently performing the
same export process.

Exporting through ODBC drivers
Access can export to any Open Database Connectivity (ODBC) compliant database. ODBC
compliant databases come with an ODBC driver that serves as the connection between
Access and the database. Many of the most popular databases, including Access, are ODBC
compliant.

202

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 202

Every ODBC compliant database driver (the connector between Access and the database) is named differently and

requires different information. Refer to the database’s documentation for information specifi c to your database.

To export through an ODBC driver, follow these steps:

 1. Open Chapter06_1.accdb and select an object to export, such as
tblEmployees.

 2. Click More ➪ ODCB Database under the Export group of the External Data tab.
The Export dialog box appears as shown in Figure 6.27.

FIGURE 6.27

Naming the table in an ODBC destination.

 3. Type a name for the table or simply click OK to use the default name.

 4. Select the appropriate driver for your database from the Select Data Source dia-
log box (see Figure 6.28). This example uses SQLite3, a free, open-source, ODBC com-
pliant database. Consult your databases documentation for the name of its driver.

FIGURE 6.28

Selecting the ODBC driver.

203

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 203

 5. Provide the remaining information required by the ODBC driver to complete
the export. The nature of the information needed is highly dependent on the
driver and will be different for different databases. Figure 6.29 shows the SQLite3
ODBC Driver Connect dialog box.

FIGURE 6.29

SQLite3 requires additional information, such as the database name, to make the
connection.

When the export is complete, you can use the new table in the other database. Figure 6.30
shows that tblEmployees was successfully exported to a SQLite3 database.

FIGURE 6.30

The Employees table has successfully exported to a SQLite3 database.

204

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 204

Exporting to Word
Access provides two ways to transfer data to Word: Export to Rich Text Format and Word
Merge. Rich Text Format (RTF) is a plain text fi le with special characters that defi ne the
formatting. Exporting to RTF creates a document with an RTF extension, not a native Word
document (though Word can read RTF, as can WordPad and many other text editors).

Merging data into Word

The real power of exporting to Word is to use the data in Word Merge. With Word Merge, you
can control where your data ends up in the Word document. This is useful for such tasks as
sending letters, addressing envelopes, producing reports, and creating fi le folder labels.

To create fi le folder labels for each department in tblDepartments, follow these steps:

 1. Open tblDepartments in Datasheet view.

 2. Click the Word Merge button in the Export group on the External Data tab.

 3. On the first screen of the Microsoft Word Mail Merge Wizard, shown in
Figure 6.31, select Create a New Document and Then Link the Data to It, and
click OK. Word opens to a new document and the Mail Merge task pane appears on
the right.

FIGURE 6.31

The Microsoft Word Mail Merge Wizard allows you to export data to existing or new
documents.

 4. Follow the Mail Merge wizard for the type of labels you have. On step 3 of the
wizard, shown in Figure 6.32, Microsoft Word has already selected Use an Existing
List and specifi ed tblDepartments as the data source.

205

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 205

FIGURE 6.32

The Departments table from Chapter06_1 is the specifi ed data source.

 5. Arrange the DeptNumber and DeptDescription on the label and template and
complete the merge. Use the Insert Merge Field button on the Mailings Ribbon to
place the fi elds on the label. You can add other text and punctuation, and even
put fi elds on their own lines. Figure 6.33 shows the results of a merge where the
department number and description are separated by a hyphen.

FIGURE 6.33

A completed Word Merge.

206

Part II: Understanding Access Tables

c06.indd 09/28/2015 Page 206

You can import from Word into Access by converting the Word document into a text fi le fi rst. You could even use Word

in combination with Excel to produce a delimited text fi le.

Publishing to PDF or XPS
The PDF and XPS fi le formats were developed to display data as it would appear on a printed
page. Data displayed in these formats is generally not editable. Publishing to PDF or XPS
outputs a relatively small fi le and is useful when you want to share data but don’t want the
other person to be able to change it.

To export tblEmployees to a PDF, follow these steps

 1. Select tblEmployees in the Navigation pane.

 2. Select PDF or XPS from the Export group on the External Data tab of the
Ribbon. The Publish as PDF or XPS dialog box appears.

 3. Select PDF from the Save As Type drop-down list (see Figure 6.34).

FIGURE 6.34

Select PDF or XPS as a fi le format.

 4. Click the Publish button.

207

Chapter 6: Importing and Exporting Data

6

c06.indd 09/28/2015 Page 207

The result, as shown in Figure 6.35, is a PDF fi le that can be opened by many different PDF
reader programs. Most computers have some PDF reader software installed, which makes it a
great format for sharing data you don’t want changed.

FIGURE 6.35

A table published in the PDF fi le format.

209

c07.indd 10/07/2015 Page 209

 CHAP T ER

7
Linking to External Data

IN THIS CHAPTER

Examining the types of external data and methods for working with them

Linking an Access database to external data

Using linked tables

Splitting an Access database

I
n Chapter 6, you learned about the types of external data that you can import to and export from
Access. You also learned when to import and export and when to link. This chapter describes the
methods for using external data in Access through a live, updating link to the data.

This chapter uses the Chapter07.accdb database, as well as several other fi les that you’ll use for linking. If you

haven’t already downloaded these fi les onto your machine from this book’s website, you’ll need to do so now.

Note that, because the point of this chapter is to show how Access works with external data, there
are examples of external data that you need to copy to your machine. Unfortunately, when working
with external data, Access requires an exact path to each fi le—it can’t work with relative paths.
That means that when you copy Chapter07.accdb to your machine, it won’t work until you relink
the various external fi les. We show you how to do that in this chapter. For now, be aware that the
following tables are linked to the fi les indicated:

Table External File Type Filename

ContactsFixed Text File ContactsFixed.txt

Customers Excel 8.0 CollectibleMiniCars.xls

CustomerTypes HTML CustomerTypes.html

Products Excel 8.0 CollectibleMiniCars.xls

tblSales Access Chapter07_Link.accdb

tblSalesLineItems Excel 8.0 tblSalesLineItems.xls

tblSalesPayments Access Chapter07_Link.accdb

ON THE WEB

210

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 210

The data linked to Access applications comes in a variety of formats. There is no practical
way to document every possible type of linking operation in a single chapter. So, this chap-
ter discusses the essential steps required to link to external data and gives a few examples
demonstrating how these processes are performed in Access, instead of fi lling page after
page with examples that may or may not be relevant to your work.

As you’ll soon see, knowledge of the external data format is critical to a successful linking
operation. You must have some notion of the external data format before you can success-
fully import data into your Access application or incorporate the data into an Access data-
base through linking. This chapter points out many of the issues involved if you choose to
link to external data; it’s intended to serve as a guide as you perform these operations in
your Access applications.

Fixing Links
We’ll discuss the Linked Table Manager later in this chapter in detail. For now, follow these steps to fi x
the linked tables in Chapter07.accdb:

 1. Copy the Chapter 07 folder to your computer and make a note of the location.

 2. Open Chapter07.accdb.

 3. Click Linked Table Manager in the Import & Link group on the External Data tab of the
Ribbon. The Linked Table Manager appears.

 4. Click the Select All button and then click OK. You’ll be prompted for the new location for
each of the linked tables.

 5. Using the table of fi lenames provided earlier in this chapter, browse to each fi le. The Linked
Table Manager displays a message that all selected linked tables were successfully refreshed.

Now you can follow along with the examples in this chapter.

Linking External Data
As the database market continues to grow, the need to work with information from many
different sources will escalate. If you have information captured in a SQL Server database
or an old Excel spreadsheet, you don’t want to reenter the information from these sources
into Access. Also, the processes or policies at your company may require that the data live
in these external fi les, and you don’t want to risk having duplicate data that gets out of
sync. Ideally, you want to open an Access table containing the data and use the informa-
tion in its native format, without having to copy it or write a translation program to access
it. In many cases, the capability of accessing information from one database format while
working in another is often an essential starting point for many business projects.

211

Chapter 7: Linking to External Data

c07.indd 10/07/2015 Page 211

7

Using code to copy or translate data from one application format to another is both time-
consuming and costly. The time it takes can mean the difference between success and failure.
Therefore, you want an intermediary between the different data sources in your environment.

Access can simultaneously link to multiple tables contained within other database systems.
After an external fi le is linked, Access stores the link specifi cation and uses the external
data as if it were contained in a local table. Access easily links to other Access database
tables as well as to non-Access database tables that support ODBC. A recommended practice
is to split an Access database into two separate databases for easier use in a multiuser or
client-server environment. Splitting your database in this manner is discussed in detail
later in this chapter.

Identifying linked tables
In the “Ways of working with external data” section in Chapter 6, you saw a list of database
tables and other types of fi les that Access links to. Access displays the names of linked
tables in the object list and uses a special icon to indicate that the table is linked, not
local. An arrow pointing to an icon indicates that the table name represents a link data
source. Figure 7.1 shows several linked tables in the list. (The icon indicates that the fi le is
linked. The icon also indicates which type of fi le is linked to the current Access database.
For example, Excel has an X in a box and HTML tables have a globe symbol.)

FIGURE 7.1

Linked tables in an Access database. Notice that each linked table has an icon indicating its
status as a linked table.

Excel

HTML

Access

After you link an external database table to your Access database, you use it as you
would any other table. For example, Figure 7.2 shows a query using several linked tables:
tblCustomers (a local Access table), tblSales (a linked Access table), tblSaleLineItems (from
an Excel fi le), and Products (from another Excel fi le). As you can see, there’s nothing that
distinguishes the fact that the tables are from external sources—Access treats them no
 differently from any other tables.

212

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 212

FIGURE 7.2

A query using externally linked tables.

This query shows the potential benefi t of linking to a variety of data sources and seam-
lessly displays data from internal and linked tables. Figure 7.3 shows the datasheet
returned by this query. Each column in this datasheet comes from a different data source.

FIGURE 7.3

The Datasheet view of externally linked data.

213

Chapter 7: Linking to External Data

c07.indd 10/07/2015 Page 213

7

Figure 7.3 illustrates an important concept regarding using linked data in Access: Users
won’t know, nor will they care, where the data resides. All they want is to see the data in
a format they expect. Only you, the developer, understand the issues involved in bringing
this data to the user interface (UI). Other than the limitations of linked data (explained in
the next section), users won’t be able to tell the difference between native and linked data.

After you link an external table to an Access database, don’t move the source table to another drive or directory.

Access doesn’t bring the external data fi le into the ACCDB fi le; it maintains the link via the fi lename and fi le path. If

you move the external table, you have to update the link using the Linked Table Manager, explained in the “Viewing or

changing information for linked tables” section, later in this chapter.

Limitations of linked data
Although this chapter describes using linked data as if it existed as native Access tables,
certain operations can’t be performed on linked data. Plus, the prohibited operations
depend, to a certain extent, on the type of data linked to Access.

These limitations are relatively easy to understand. Linked data is never “owned” by
Access. External fi les that are linked to Access are managed by their respective applica-
tions. For example, an Excel worksheet is managed by Excel. It would be presumptive—
and dangerous—for Access to freely modify data in an Excel worksheet. For example,
because many Excel operations depend on the relative positions of rows and columns in
a worksheet, inserting a row into a worksheet might break calculations and other opera-
tions performed by Excel on the data. Deleting a row might distort a named range in the
Excel worksheet, causing similar problems. Because there is no practical way for Access to
understand all the operations performed on an external data fi le by its respective owner,
Microsoft has chosen to take a conservative route and not allow Access to modify data that
might cause problems for the data’s owner.

The following list describes the limitations of linked data:

 ■ Access data: There are no limitations to what you can do with the data in linked
tables. You can’t delete or rename the source table. Nor can you change the fi elds or
data types of the source table.

 ■ Excel data: Existing data in an Excel worksheet can’t be changed, nor can rows be
deleted or new rows be added to a worksheet. Excel data is essentially treated as
read-only by Access.

 ■ Text files: For all practical purposes, data linked to text fi les is treated as read-only
in Access. Although the data can be used in forms and reports, you can’t simply and
easily update rows in a linked text fi le, nor can you delete existing rows in a text
fi le. Oddly enough, you can add new rows to a text fi le; presumably, this is because

214

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 214

new rows won’t typically break existing operations the way that deleting or chang-
ing the contents of an existing row might.

 ■ HTML: HTML data is treated exactly as Excel data. You can’t modify, delete, or add
rows to an HTML table.

 ■ Outlook contacts: Outlook contacts can be displayed in Access forms and reports,
but they can’t be added, deleted, or changed.

 ■ ODBC: ODBC is a data access technology that uses a driver between an Access data-
base and an external database fi le, such as SQL Server or Oracle. Generally speak-
ing, because the linked data source is a database table, you can perform whatever
database operations (modifying, deleting, adding) you would with a native Access
table, provided you’ve defi ned a unique index in Access. (We discuss ODBC data-
base tables in some detail in the “Linking to ODBC data sources” section later in
this chapter.)

Linking to other Access database tables
Access easily incorporates data located in the other Access fi les by linking to those tables.
This process makes it easy to share data among Access applications across the network or
on the local computer. The information presented in this section applies to virtually any
Access data fi le you linked to from an Access database. Later in this chapter, you’ll see
short sections explaining the differences between linking to an Access table and linking to
each of the other types of data fi les recognized by Access.

A common practice among Access developers is splitting an Access database into two pieces. One piece contains

the queries, forms, reports, and other UI components of an application, while the second piece contains the tables

and relationships. There are many advantages to splitting Access databases, including certain performance benefi ts,

as well as easier maintenance. You can read about splitting Access databases later in this chapter. The process of

linking to external Access tables described in this section is an essential part of the split database paradigm.

After you link to another Access table, you use it just as you use any table in the open
database (with the exception that it can’t be used in a relationship to other tables not in
the source database). Follow these steps to link to tblSalesPayments in the Chapter07_
Link.accdb database from the Chapter07.accdb database fi le:

 1. Open Chapter07.accdb.

 2. Select the External Data tab of the Ribbon, and then choose Access as the type
of data you want to link. The Get External Data – Access Database dialog box
(shown in Figure 7.4) appears.

215

Chapter 7: Linking to External Data

c07.indd 10/07/2015 Page 215

7

FIGURE 7.4

Use the Get External Data dialog box to select the type of operation you want to
perform on the external data sources.

 3. Click the Browse button. The File Open dialog box appears.

 4. Locate Chapter07_Link.accdb and click Open. The File Open dialog box closes
and you’re taken back to the Get External Data – Access Database dialog box.

 5. Select the option button for linking and click OK in the Get External Data –
Access Database dialog box. The Link Tables dialog box enables you to select one
or more tables from the selected database (in this case, Chapter07_Link). Figure 7.5
shows the Link Tables dialog box open on Chapter07_Link.accdb.

 6. Select tblSalesPayments and click OK. Double-clicking the table name won’t link
the table—you have to highlight it and then click OK.

After you link tblSalesPayments, Access returns to the object list and shows you the newly
linked table. Figure 7.6 shows tblSalesPayments linked to the current database. Notice the
special icon attached to tblSalesPayments. This icon indicates that this table is linked to
an external data source. Hovering over the linked table with the mouse reveals the linked
table’s data source.

216

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 216

FIGURE 7.5

Use the Link Tables dialog box to select the Access table(s) for linking.

FIGURE 7.6

The Navigation pane with tblSalesPayments added. Hovering over the linked table icon
reveals its source.

217

Chapter 7: Linking to External Data

c07.indd 10/07/2015 Page 217

7

You can link more than one table at a time by selecting multiple tables before you click the OK button in the Link

Tables dialog box. Clicking the Select All button selects all the tables. Once you’ve selected all the tables, you can

click individual selections to unselect them.

Linking to ODBC data sources
One signifi cant advance with regard to data sharing is the establishment of the Open
Database Connectivity (ODBC) standard by Microsoft and other vendors. ODBC is a specifi ca-
tion that software vendors use to create drivers for database products. This specifi cation
lets your Access application work with data in a standard fashion across many different
database platforms. If you write an application conforming to ODBC specifi cations, then
your application will be able to use any other ODBC-compliant back end.

For example, say you create an Access application that uses a SQL Server database back end.
The most common way to accomplish this requirement is to use the SQL Server ODBC driver.
After developing the application, you fi nd that one of your branch offi ces would like to use
the application as well, but they’re using Oracle as a database host. If your application has
conformed closely to ODBC syntax, then you should be able to use the same application with
Oracle by acquiring an Oracle ODBC driver. Not only are vendors supplying drivers for their
own products, but there are now software vendors who only create and supply ODBC drivers.

Linking to non-database data
You can also link to non-database data, such as Excel, HTML, and text fi les. When you
select one of these types of data sources, Access runs a Link Wizard that prompts you
through the process.

Linking to Excel

Here are the main issues to keep in mind when linking to Excel data:

 ■ An Excel workbook fi le might contain multiple worksheets. You must choose which
worksheet within a workbook fi le to link to (unless you’re using named ranges).

 ■ You may link to named ranges within an Excel worksheet. Each range becomes a
separate linked table in Access.

 ■ Excel columns may contain virtually any type of data. Just because you’ve suc-
cessfully linked to an Excel worksheet doesn’t mean that your application will be
able to use all the data contained in the worksheet. Because Excel doesn’t limit the
types of data contained in a worksheet, your application may encounter multiple
types of data within a single column of a linked Excel worksheet. This means that
you may have to add code or provide other strategies for working around the vary-
ing types of data contained in an Excel worksheet.

218

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 218

This book’s website contains an Excel spreadsheet created by exporting the Products table from the Collectible Mini

Cars application. Use this fi le to practice linking to Excel data, keeping in mind that, in practice, the data you’re likely

to encounter in Excel spreadsheets is far more complex and less orderly than the data contained in Products.xls.

Follow these steps to link to the Excel CollectibleMiniCars.xls spreadsheet:

 1. In the Chapter07.accdb database, click the Excel button on the External Data
tab of the Ribbon. The Get External Data – Excel Spreadsheet dialog box (shown in
Figure 7.7) appears.

FIGURE 7.7

The fi rst screen of the Get External Data – Excel Spreadsheet dialog box.

 2. Select Link to the Data Source by Creating a Linked Table, and then click
Browse. The same Get External Data dialog box is used for both import and link
operations, so be sure the correct operation is selected before continuing.

 We cover importing data into Access in Chapter 6.

 ON THE WEB

219

Chapter 7: Linking to External Data

c07.indd 10/07/2015 Page 219

7

 3. Locate and open the Excel file. Select the CollectibleMiniCars spreadsheet fi le
from the File Open dialog box and click Open.

 4. Click OK on the Get External Data - Excel Spreadsheet dialog. The Link
Spreadsheet Wizard (see Figure 7.8) is shown. Notice that the Link Spreadsheet
Wizard contains options for selecting either worksheets or named ranges within
the workbook fi le. In this example, there are three different worksheets (named
Products, Sales, and Customers) within the spreadsheet fi le.

FIGURE 7.8

The main Link Spreadsheet Wizard screen.

 5. Select the Products worksheet. The Link Spreadsheet Wizard walks you through
a number of different screens where you specify details such as First Row Contains
Column Headings and the data type you want to apply to each column in the Excel
worksheet. The last screen of the Link Spreadsheet Wizard asks for the name of the
newly linked table.

 6. Click Finish. The linked table is established and you’re returned to the Access
environment.

220

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 220

As with so many other things in database development, many decisions involved in link-
ing to external data sources are based on how the data is to be used in the application.
Also, the names you provide for fi elds and other details have a direct impact on your
application.

Linking to HTML files

Linking to data contained in HTML documents is not covered in detail in this book because
of the rather severe limitations imposed by Access on this process. For example, Access
is unable to retrieve data from an arbitrary HTML fi le. The data must be presented as an
HTML table, in a row-and-column format, and the data has to be relatively clean (absent
any unusual data or mix of data, such as text, image, and numeric data combined within a
single HTML table).

You’re likely to encounter problems if more than one HTML table appears on the page, or if
the data is presented in a hierarchical fashion (parent and child data).

Linking to arbitrary HTML documents is hit or miss at best. You’re much better off linking to an HTML document spe-

cifi cally prepared as a data source for your Access application than trying to work with arbitrary HTML fi les.

If someone is going to the trouble of creating specialized HTML documents to be used as Access data sources,

producing comma-separated values (CSV) or fi xed-width text fi les is probably a better choice than HTML. CSV fi les,

where the fi elds in each row are separated by commas, are commonly used for moving data from one application to

another. CSV and fi xed-width fi le types are discussed in the next section.

The process of linking HTML data is similar to linking to Excel spreadsheets:

 1. Select the More drop-down list on the External Data tab of the Ribbon, and
then select HTML Document from the list. The Get External Data – HTML
Document dialog box appears.

 2. Select the Link to the Data Source by Creating a Link Table option, and click
Browse. The File Open dialog box appears, enabling you to search for the HTML fi le
you want to link.

From this point on, the process of linking to HTML data is similar to linking to other
types of data fi les, including providing fi eld names and other details of the linked data.
Figure 7.9 shows the fi rst screen of the Link HTML Wizard. Click the Advanced button to
get to the Link Specifi cation screen (shown in Figure 7.10), where you can provide the fi eld
names and other details.

221

Chapter 7: Linking to External Data

c07.indd 10/07/2015 Page 221

7

FIGURE 7.9

The Link HTML Wizard screen showing the data in the HTML fi le.

FIGURE 7.10

The Link Specifi cation screen that is used to name the column headings (fi eld names)
for the linked table.

222

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 222

This book’s website includes a simple HTML fi le named CustomerTypes.html. The data in this fi le may be overly

simplistic, but it gives you the opportunity to practice linking to HTML documents. Because of the wide variety of

ways that data is stored in HTML documents, it isn’t possible to generalize an approach to linking to HTML data.

However, as you gain profi ciency with the ability to link to external data sources, you might fi nd linking to HTML a

valuable addition to your Access skills.

Linking to text files

A far more common situation than linking to HTML fi les is linking to data stored in plain
text fi les. Most applications, including Word and Excel, are able to publish data in a variety
of text formats. The most common formats you’re likely to encounter are:

 ■ Fixed-width: In a fi xed-width text fi le, each line represents one row of a database
table. Each fi eld within a line occupies exactly the same number of characters as
the corresponding fi eld in the lines above and below the current line. For example,
a Last Name fi eld in a fi xed-width text fi le might occupy 20 characters, while a
phone number fi eld may only use 10 or 15 characters. Each data fi eld is padded with
spaces to the right to fi ll out the width allocated to the fi eld. Figure 7.11 shows a
typical fi xed-width fi le open in Notepad.

FIGURE 7.11

A typical fi xed-width text fi le.

 ■ Comma-separated values (CSV): CSV fi les are somewhat more diffi cult to understand
than fi xed width. Each fi eld is separated from the other fi elds by a comma character
(,), and each fi eld occupies as much space as necessary to contain the data. Generally
speaking, there is little blank space between fi elds in a CSV fi le. The advantage of CSV

 ON THE WEB

223

Chapter 7: Linking to External Data

c07.indd 10/07/2015 Page 223

7

fi les is that the data can be contained in a smaller fi le because each fi eld occupies
only as much disk space as necessary to contain the data.

CSV fi les can be diffi cult to read when opened in Notepad. Figure 7.12 shows a typi-
cal CSV text fi le.

FIGURE 7.12

CSV data is more compact than fi xed-width text, but it’s more diffi cult to read.

Text fi les often are used as intermediate data-transfer vehicles between dissimilar applica-
tions. For example, there might be an obsolete data management system in your environ-
ment that’s incompatible with any of the link or import data types in Access. If you’re
lucky, the obsolete system is able to output either fi xed-width or CSV fi les. Linking to or
importing the fi xed-width or CSV fi les might be the best option for sharing data with
the obsolete system. At the very least, much less time is required to link or import the data
than would be involved in re-keying all the information from the obsolete system
into Access.

Follow these steps to link to Contacts_FixedWidth.txt or Contacts_CSV.txt:

 1. Open Chapter07.accdb and select the External Data tab of the Ribbon.

 2. Click the Text File button. The Get External Data – Text File dialog box appears.

 3. Be sure the Link to the Data Source by Creating a Link Table option is selected,
and then click Browse. The File Open dialog box appears.

 4. Locate the text file (either Contacts_FixedWidth.txt or Contacts_CSV
.txt) and click Open.

 5. Click OK on the Get External Data – Text File dialog box. You’ll be taken to the
Link Text Wizard.

224

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 224

Generally speaking, Access makes a pretty good guess at how the data in the fi le is delim-
ited. Linking to text data involves nothing more than clicking Next and verifying that
Access has correctly identifi ed the data in the fi le.

Rather than show or describe each of the dialog boxes in the Link Text Wizard, we suggest that you link to

Contacts_CSV.txt and Contacts_FixedWidth.txt, both included on this book’s website.

As you’ll see when you link to these fi les, about the only input required from you is to provide a name for each of the

fi elds Access fi nds in the text fi les. If you’re lucky, the text fi le includes fi eld names as the fi rst row in the text fi le.

Otherwise, linking to text fi les will likely require that you specify names for each fi eld.

Working with Linked Tables
After you link to an external table from another database, you use it just as you would any
other Access table. You use linked tables with forms, reports, and queries just as you would
native Access tables. When working with external tables, you can modify many of their fea-
tures (for example, setting view properties and relationships, setting links between tables
in queries, and renaming the tables).

One note on renaming linked tables: Providing a different name for the table inside Access
doesn’t change the name of the fi le that’s linked to the application. The name that Access
refers to in a linked table is maintained within the Access application and doesn’t infl uence
the physical table that’s linked.

Setting view properties
Although an external table is used like another Access table, you can’t change the struc-
ture (delete, add, or rearrange fi elds) of an external table. You can, however, set several
properties for the fi elds in a linked table:

 ■ Format

 ■ Decimal places

 ■ Caption

 ■ Input mask

 ■ Unicode compressions

 ■ IME sequence mode

 ■ Display control

To change these properties, open the linked table in Design view. When you open a linked
table in Design view, Access warns you that the design can’t be modifi ed. Figure 7.13 shows

 ON THE WEB

225

Chapter 7: Linking to External Data

c07.indd 10/07/2015 Page 225

7

a warning when the Products table is opened in Design view. Despite that warning, the
above properties can be changed.

FIGURE 7.13

Opening linked tables in Design view comes with a warning.

Setting relationships

Access enables you to set permanent relationships at the table level between linked non-Access tables and native

Access tables through the Relationships Builder. You can’t, however, set referential integrity between linked tables,

or between linked tables and internal tables. Access enables you to create forms and reports based on relation-

ships set up in the Relationships Builder, such as building a SQL statement used as the RecordSource property of a

form or report.

Linking to external Access tables maintains the relationships that might exist between the
external tables. Therefore, when linking to a back-end database, the relationships you’ve
established in the back end, as well as any validation and default values, are recognized
and honored by the front-end database. This is a good thing, because it means that the
rules you’ve defi ned will be enforced regardless of how many front ends are created to use
the tables.

 We discuss relationships in detail in Chapter 4.

Optimizing linked tables
When working with linked tables, Access has to retrieve records from another fi le. This pro-
cess takes time, especially when the table resides on a network or in a SQL database. When
working with external data, optimize performance by observing these basic rules:

 ■ Avoid using functions in query criteria. This is especially true for aggregate
functions, such as DTotal or DCount, which retrieve all records from the linked
table before performing the query operation.

 ■ Limit the number of external records to view. Create a query using criteria that
limit the number of records from an external table. This query can then be used by
other queries, forms, or reports.

226

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 226

 ■ Avoid excessive movement in datasheets. View only the data you need to in a
datasheet. Avoid paging up and down and jumping to the fi rst or last record in very
large tables. (The exception is when you’re adding records to the external table.)

 ■ If you add records to external linked tables, create a form to add records and set
the DataEntry property to True. This makes the form an entry form that starts with
a blank record every time it’s executed. Data entry forms are not pre-populated with
data from the bound table. Using a dedicated data entry form is much more effi cient
than building a normal form, populating it with data from the linked source, and
then moving to the end of the linked data just to add a new record.

Deleting a linked table reference
Deleting a linked table from your database is a simple matter of performing three steps:

 1. In the Navigation Pane, select the linked table you want to delete.

 2. Press the Delete key, or right-click the linked table and select Delete from the
shortcut menu.

 3. Click OK in the Access dialog box to delete the file.

Deleting an external table deletes only its name from the database object list. The actual data is not deleted from its

source location.

Viewing or changing information for linked tables
Use the Linked Table Manager to update the links when you move, rename, or modify
tables, indexes, or relationships associated with linked tables. Otherwise, Access won’t be
able to fi nd the data fi le referenced by the link.

 1. Select the External Data tab of the Ribbon and click the Linked Table Manager
button. The Linked Table Manager (shown in Figure 7.14) appears, enabling you to
locate the data fi les associated with the linked tables in the database.

 2. Click the check box next to a linked table and click OK.

 3. Find the missing file and relink to Access. If all the fi les are already linked cor-
rectly, clicking OK makes Access verify all the linkages associated with all the
selected tables.

 4. If you know all the linked data sources have been moved, select the Always
Prompt for a New Location check box, and then click OK. Access then prompts
you for the new location, and links all the tables as a batch process. You’ll fi nd this
operation much faster than linking one or two tables at a time.

227

Chapter 7: Linking to External Data

c07.indd 10/07/2015 Page 227

7

FIGURE 7.14

The Linked Table Manager enables you to relocate external tables that have been moved.

If the Linked Table Manager is not present on your computer, Access automatically prompts you to locate the original

Offi ce installation fi les so that Access can install the wizard. This might happen if you didn’t instruct Offi ce to install

the Additional Wizards component during the initial installation process.

Refreshing linked tables
The data in linked tables is kept in sync with the source data automatically by Access.
No user intervention is required to have up-to-date data. When a linked table is open in
Datasheet view or otherwise being used, Access attempts to restrict access to the source
data depending on what kind of data it is. For instance, Access locks linked text fi les that
are in use so that you can’t open them in a text editor.

To demonstrate how linked data is synchronized automatically, create a linked table to a
text fi le and edit that text fi le by following these steps:

 1. Click Text File from the Import & Link group on the External Data tab of the
Ribbon.

 2. Create a linked text file from the file named ContactsFixed.txt, a fixed-
length text file. The fi le is well formatted, so Access will guess correctly about
where the fi elds begin. Don’t worry about fi eld names for this exercise.

 3. Open the linked table ContactsFixed. Note that it contains 12 records. If you
attempt to open ContactFixed.txt in a text editor, Windows will tell you that
it’s being used by another process and won’t allow you to open it.

 4. Close the ContactsFixed table.

228

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 228

 5. Add a new row to the text file using your favorite plain text editor, such as
Notepad. Don’t use Word for this process, because you’ll risk saving it in a format
that’s not plain text. Figure 7.15 shows the new ContactsFixed.txt fi le.

FIGURE 7.15

A new row in the text fi le will sync with Access automatically.

 6. Save the file and close the text editor.

 7. In Access, open the ContactsFixed linked table. The linked table now contains a
13th row.

Splitting a Database
There are many great reasons to link tables between Access databases. One of the best, and
most common, reasons is to split the database. Splitting a database means creating two
ACCDB fi les from one. One of the fi les, generally called the back end, contains only tables.
The other fi le, the front end, contains queries, macros, code, and UI elements, such as forms
and reports. The front end also contains links to all the tables in the back end.

The benefi ts of splitting a database
There is at least one extremely good reason why you should consider splitting your Access
databases. Although you can place a single copy of an ACCDB or MDB fi le onto a shared com-
puter on the network, the performance degradation from such a design is considerable.

Using an Access database stored on a remote computer involves much more than
simply moving data from the remote computer to the local machine. All the form, menu,
and Ribbon defi nitions must be transported to the local computer so that Windows can

229

Chapter 7: Linking to External Data

c07.indd 10/07/2015 Page 229

7

“construct” the UI on the local computer’s monitor. The Windows installation on the local
computer must intercept and transmit any keyboard and mouse events to the remote com-
puter so that the proper code will run in response to these events. Finally, the single copy
of Access on the remote computer must fulfi ll all data requests, no matter how trivial or
demanding. The impact of all these actions is compounded by increasing the number of
users working with the same remotely installed copy of the database.

Fortunately, most of these issues disappear when the database application is split into
front-end and back-end components. The local Windows installation handles the UI from
information stored in the front-end database. All code is run on the user’s desktop com-
puter, rather than on the remote machine. Also, the locally installed copy of Access is able
to handle all local data requirements, while only those requests for remote data are passed
on to the back-end database.

Before getting into the details of splitting a database, let’s consider some of the prob-
lems associated with single-fi le databases. To begin with, unlike some other develop-
ment systems, all the objects in an Access database application are stored in a single
fi le, the familiar ACCDB or MDB you work with every day. Many other database systems
like FoxPro for Windows maintain a number of different fi les for each application, usu-
ally one fi le per object (form, table, and so on). Although having to deal with multiple
fi les complicates database development and maintenance somewhat, updating a single
form or query involves nothing more than replacing the related fi le with the updated
form or query fi le.

Updating an Access database object is somewhat more complicated. As you’ve probably dis-
covered, replacing a form or query in an Access database used by a large number of users
can be quite a problem. Replacing a form or other database object often requires hours of
work importing the object into each user’s copy of the database.

A second consideration is the network traffi c inherent in single-fi le Access databases.
Figure 7.16 shows an example of the problem. This fi gure illustrates a common method of
sharing an Access database. The computer in the upper-left corner of the fi gure is the fi le
server and holds the Access database fi le. Assume for a moment that the entire database is
contained within a single ACCDB on the fi le server, and the database has been enabled for
shared data access. Each workstation in Figure 7.16 has a full copy of Access (or the Access
RunTime) installed.

Now, what happens when the user on Workstation C opens the database? The Access instal-
lation on that machine must locate the ACCDB on the fi le server, open that fi le, and start
up the application. This means that any splash forms, queries, and other startup activities
must take place across the network before the user is able to work with the database. Any
time a form is opened or a query is run, the information necessary to fulfi ll the query must
travel across the network, slowing the operation. (In Figure 7.16, the network load is indi-
cated by a thick dashed line.)

230

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 230

FIGURE 7.16

A database kept on a fi le server can generate a large amount of traffi c on the network.

Entire
Access

database

File server

Network cable

Workstation A

Workstation B Workstation C

The situation shown in Figure 7.16 is made even worse when more than one user is using
the same database. In this case, the network traffi c is increased by the queries, opening of
forms, and other operations performed by each additional user’s copy of Access. Imagine
the dashed line getting thicker with each operation across the network.

The split-database model is illustrated in Figure 7.17. Notice that the back-end database
resides on the server while individual copies of the front-end database are placed on each
workstation. Each front-end database contains links to the tables stored in the back-end
ACCDB fi le. The front-end databases also contain the forms, reports, queries, and other
user-interface components of the application.

The network traffi c is reduced in Figure 7.17 because only linking information and data
returned by queries is moved across the network. A user working with the database applica-
tion uses the forms, queries, reports, macros, and code stored in the local front-end ACCDB
fi le. Because the front end is accessed by a single user, response time is much improved
because the local copy of Access is able to instantly open the database and begin the
startup operations. Only when actually running queries does the network traffi c increase.

The second major benefi t of the split database design is that updating the forms, reports,
and other application components requires nothing more than replacing the front-end
database on each user’s computer and reestablishing the links to the table in the back-end
database. In fact, the design in Figure 7.17 supports the notion of customized front ends,
depending on the requirements of the user sitting at each workstation. For example, a
manager sitting at Workstation A might need access to personnel information that is not
available to the people sitting at workstations B and C. In this case, the front-end database

231

Chapter 7: Linking to External Data

c07.indd 10/07/2015 Page 231

7

on Workstation A includes the forms, queries, and other database objects necessary to view
the personnel information.

FIGURE 7.17

A database kept on a fi le server can generate a large amount of traffi c on the network.

File server

Back-end
Access

database

Front-end
Access

database

Front-end
Access

database

Front-end
Access

database

Workstation A

Workstation B Workstation C

Network cable

Knowing where to put which objects
The local ACCDB contains all the UI objects, including forms, reports, queries, macros, and
modules. Keeping the UI components on the local machine dramatically improves perfor-
mance. You don’t need to move forms, queries, or reports across the network—these objects
are much more easily manipulated on the local machine than when accessed across the
network.

All shared tables should be placed in the back-end database kept on the server, along with
all relationships between those tables. The server database is opened in Shared mode, mak-
ing all its objects accessible to multiple users. The tables in the server database are linked
to the front-end ACCDB on each user’s Desktop. (There is no problem with simultaneously
linking the same table to multiple databases.)

Obviously, with more than one person using the data within a table, the possibility exists
that the same record will be edited by multiple users. The Access database engine handles
this problem by locking a record as it’s edited by a user. A lock contention occurs when
more than one user tries to update the same record. Only one user will have “live” access
to the record—all other users will either be locked or have their changes held up until the
record holder is done making changes.

232

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 232

Using the Database Splitter add-in
The Database Splitter helps you split an application into front-end and back-end databases.
This wizard enables you to build and test your database to your heart’s content, and then
lightens the burden of preparing the application for multiuser access.

As an experiment, let’s take a look at splitting the Northwind Traders database into front-
end and back-end ACCDB fi les. You start the Database Splitter by selecting the Database
Tools tab of the Ribbon and then clicking the Access Database button in the Move Data
group. The opening wizard screen (shown in Figure 7.18) explains the actions of the
Database Splitter and suggests that you make a backup of the database before proceeding.

FIGURE 7.18

The Database Splitter is a simple wizard.

The only other information that the Database Splitter requires is where you want to put the
back-end database. Figure 7.19 shows the familiar Explorer-style Create Back-end Database
dialog box that lets you specify the location of the back-end ACCDB fi le. By default, the
back-end database has the same name as the original database with a _be suffi x added to
the name (for example, MyDB_be.accdb).

You can access a network location through a Universal Naming Convention (UNC) path or through a mapped drive. A

UNC path starts with two back slashes, the server name, and the path to the network location. An example of a UNC

path is \\MyServer\MyDatashare\MyFolder\. A mapped drive assigns a letter to a particular UNC path

(such as S:). Mapped drives are unique to each computer, and there is no guarantee that a mapped drive on one

computer will be the same on another. When creating a back-end database, always use a UNC path to link the tables

because UNC paths are the same for all computers on the same network. To use UNC paths, navigate to the network

location through the Network shortcut (called My Network Places in older versions of Windows).

233

Chapter 7: Linking to External Data

c07.indd 10/07/2015 Page 233

7

FIGURE 7.19

Specify the permanent location of the back-end database in the Create Back-end Database
dialog box.

When you click the Split button (refer to Figure 7.19), the Database Splitter creates the
back-end database, exports all tables to it, deletes the tables in the local database, and cre-
ates links to the back-end tables. In other words, the Database Splitter performs precisely
the same steps you’d have to perform manually if the Database Splitter weren’t available.

Be prepared for this process to take a little while, especially on large databases. Because Access has to create the

new database, transfer tables to it, and create the links back to the original database, the splitting process can eas-

ily require more than a few minutes. Don’t worry if the process appears to be taking longer than you expect—you’ll be

well rewarded for your efforts!

Also, keep in mind that the Database Splitter is rather simplistic and tends to ignore system considerations such as

available disk space. Make sure adequate disk space exists on the target machine to accommodate the back-end

database.

Figure 7.20 shows the Access Database Explorer after splitting the Northwind Traders data-
base. The back-end database contains only the tables exported from Northwind.accdb.
Notice that the icons associated with all the tables in Northwind.accdb have been

234

Part II: Understanding Access Tables

c07.indd 10/07/2015 Page 234

changed, indicating that they’re now pointing to copies in the back-end database. You’ll
have to import any local tables from the back-end database before distributing the front
end to the users.

 FIGURE 7.20

The Database Splitter creates links for all tables in the database.

c08.indd 10/07/2015 Page 235

Part III

Working with Access

Queries

T
he chapters in Part III introduce you
to some of the basic analytical tools
and techniques available in Access.

Specifi cally, you get a solid foundation in
building Access queries.

Queries draw various data sources together
and present the combined information in
useful views. They enable you to synthe-
size the raw data in your Access tables into
meaningful analysis.

Chapter 8 starts by exploring the Query
Builder along with techniques to create
simple analytical outputs from your Access
tables. Chapter 9 outlines the various
operators and expressions that can be used
to add complexity to your Access data
analysis. Finally, in Chapter 10, you dive
deeply into more advanced query concepts.
Here, you learn how to go beyond simply
selecting data from your tables and explore
how to aggregate query outputs, how to
perform action queries, and how to create
versatile crosstab queries.

IN THIS PART

Chapter 8
Selecting Data with Queries

Chapter 9
Using Operators and Expressions in Access

Chapter 10
Going Beyond Select Queries

237

c08.indd 10/07/2015 Page 237

CHAP T ER

8
Selecting Data with Queries

IN THIS CHAPTER

Understanding what queries are and what they can do for you

Creating queries

Specifying the fi elds in a query

Displaying a query’s results

Adding and removing fi elds from a query’s design

Sorting a query’s results

Filtering records returned by a query

Printing records returned by a query

Saving a query

Including more than one table in a query

Adding, deleting, and moving tables in a query

Joining tables in a query’s design

Understanding the options for joining tables in a query

Q
ueries are an essential part of any database application. Queries are the tools that enable you
and your users to extract data from multiple tables, combine it in useful ways, and present it
to the user as a datasheet, on a form, or as a printed report.

You may have heard the old cliché, “Queries convert data to information.” To a certain extent, this
statement is true—that’s why it’s a cliché. The data contained within tables is not particularly use-
ful because, for the most part, the data in tables appears in no particular order. Also, in a properly
normalized database, important information is spread out among a number of different tables.
Queries are what draw these various data sources together and present the combined information
in such a way that users can actually work with the data.

238

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 238

The starting database for this walkthrough, Chapter08.accdb, can be downloaded from this book’s website.

Introducing Queries
The word query comes from the Latin word quaerere, which means “to ask or inquire.” Over
the years, the word query has become synonymous with quiz, challenge, inquire, or question.

An Access query is a question that you ask about the information stored in Access tables.
You build queries with the Access query tools. Your query can be a simple question about
data in a single table, or it can be a more complex question about information stored in
several tables. For example, you might ask your database to show you only trucks that were
sold in the year 2012. After you submit the question in the form of a query, Access returns
only the information you requested.

What queries can do
Queries are fl exible. They allow you to look at your data in virtually any way you can
imagine. Most database systems are continually evolving and changing over time. Quite
often, the original purpose of a database is very different from its current use.

Here’s just a sampling of what you can do with Access queries:

 ■ Choose tables. You can obtain information from a single table or from many tables
that are related by some common data. Suppose you’re interested in seeing the cus-
tomer name along with the items purchased by each type of customer. When using
several tables, Access combines the data as a single recordset (a set of records that
meet given criterion).

 ■ Choose fi elds. Specify which fi elds from each table you want to see in the record-
set. For example, you can select the customer name, zip code, sales date, and
invoice number from tblCustomers and tblSales.

 ■ Provide criteria. Record selection is based on selection criteria. For example, you
might want to see records for only a certain category of products.

 ■ Sort records. You might want to sort records in a specifi c order. For example, you
might need to see customer contacts sorted by last name and fi rst name.

 ■ Perform calculations. Use queries to perform calculations such as averages, totals,
or counts of data in records.

 ■ Create tables. Create a brand-new table based on data returned by a query.

 ■ Display query data on forms and reports. The recordset you create from a query
might have just the right fi elds and data needed for a report or form. Basing a

 ON THE WEB

239

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 239

8

report or form on a query means that, every time you print the report or open the
form, you see the most current information contained in the tables.

 ■ Use a query as a source of data for other queries (subquery). You can create
 queries that are based on records returned by another query. This is very useful for
performing ad hoc queries, where you might repeatedly make small changes to the
criteria. In this case, the second query fi lters the fi rst query’s results.

 ■ Make changes to data in tables. Action queries can modify multiple rows in the
underlying tables as a single operation. Action queries are frequently used to
 maintain data, such as updating values in specifi c fi elds, appending new data,
or deleting obsolete information.

What queries return
Access combines a query’s records and, when executed, displays them in Datasheet view
by default. The set of records returned by a query is commonly called (oddly enough) a
recordset. A recordset is a dynamic set of records. The recordset returned by a query is
not stored within the database, unless you’ve directed Access to build a table from
those records.

 You can read much more about Datasheet view in Chapter 5.

When you save a query, only the structure of the query is saved, not the returned records.
That is to say, only the SQL syntax used to build the query is stored.

 We cover the SQL syntax behind queries in Chapter 14.

Consider these benefi ts of not saving the recordset to a physical table:

 ■ A smaller amount of space on a storage device (usually a hard disk) is needed.

 ■ The query uses updated versions of records.

Every time the query is executed, it reads the underlying tables and re-creates the
recordset. Because recordsets themselves are not stored, a query automatically refl ects
any changes to the underlying tables made since the last time the query was executed—
even in a real-time, multiuser environment. Depending on your needs, a query’s record-
set can be viewed as a datasheet, or in a form or report. When a form or report is based
on a query, the query’s recordset is re-created and bound to the form or report each time
it’s opened.

A query’s recordset can also be used in macros and VBA procedures to help drive any
 number of automated tasks.

240

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 240

Creating a Query
After you create your tables and place data in them, you’re ready to work with queries. To
begin a query, select the Create tab on the Ribbon, and click the Query Design button in
the Queries group. This opens the Query Designer shown in Figure 8.1.

Figure 8.1 shows two windows. The underlying window is the Query Designer. Floating
on top of the Query Designer is the Show Table dialog box. The Show Table dialog box is
modal, which means that you must do something in the dialog box before continuing with
the query. Before you continue, you add the tables required for the query. In this case,
tblProducts is highlighted and ready to be added.

FIGURE 8.1

The Show Table dialog box and the query design window.

The Show Table dialog box (refer to Figure 8.1) displays the tables and queries in your data-
base. Double-click tblProducts to add it to the query design, or highlight tblProducts in the
list and click the Add button. Close the Show Table dialog box after adding tblProducts.
Figure 8.2 shows tblProducts added to the query.

To add additional tables to the query, right-click anywhere in the upper portion of the
Query Designer and select Show Table from the shortcut menu that appears. Alternatively,
drag tables from the Navigation pane to the upper portion of the Query Designer. There is
also a Show Table button on the Design tab of the Ribbon.

Removing a table from the Query Designer is easy. Simply right-click the table in the Query
Designer and select Remove Table from the shortcut menu.

241

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 241

8

FIGURE 8.2

The query design window with tblProducts added.

The query design window has three primary views:

 ■ Design view: Where you create the query

 ■ Datasheet view: Displays the records returned by the query

 ■ SQL view: Displays the SQL statement behind a query

The Query Designer consists of two sections:

 ■ The table/query pane (top): This is where tables or queries and their respective fi eld
lists are added to the query’s design. You’ll see a separate fi eld list for each object
to add. Each fi eld list contains the names of all the fi elds in the respective table or
query. You can resize a fi eld list by clicking the edges and dragging it to a different
size. You may want to resize a fi eld list so that all of a table’s fi elds are visible.

 ■ The Query by Example (QBE) design grid (bottom): The QBE grid holds the fi eld
names involved in the query and any criteria used to select records. Each column
in the QBE grid contains information about a single fi eld from a table or query
 contained within the upper pane.

The two window panes are separated horizontally by a pane-resizing scroll bar (refer
to Figure 8.2). You can use the scroll to shift the design grid left or right, or use the
mouse to click and drag the bar up or down to change the relative sizes of the upper and
lower panes.

Switch between the upper and lower panes by clicking the desired pane or by pressing F6.
Each pane has horizontal and vertical scroll bars to help you move around.

242

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 242

You actually build the query by dragging fi elds from the upper pane to the QBE grid.

Figure 8.2 displays an empty QBE grid at the bottom of the Query Designer. The QBE grid
has six labeled rows:

 ■ Field: This is where fi eld names are entered or added.

 ■ Table: This row shows the table the fi eld is from. This is useful in queries with
multiple tables.

 ■ Sort: This row enables sorting instructions for the query.

 ■ Show: This row determines whether to display the fi eld in the returned recordset.

 ■ Criteria: This row consists of the criteria that fi lter the returned records.

 ■ Or: This row is the fi rst of a number of rows to which you can add multiple query
criteria.

You learn more about these rows as you create queries in this chapter.

The Query Tools Design Ribbon (shown in Figure 8.3) contains many buttons specifi c to
building and working with queries. Although each button is explained as it’s used in the
chapters of this book, here are the main buttons:

FIGURE 8.3

The Query Tools Design Ribbon.

 ■ View: Switches between the Datasheet view and Design view in the query design
window. The View drop-down control also enables you to display the underlying
SQL statement behind the query.

 ■ Run: Runs the query. Displays a select query’s datasheet, serving the same func-
tion as selecting Datasheet View from the View button. However, when working
with action queries, the Run button performs the operations (append, make-table,
and so on) specifi ed by the query.

 ■ Select: Clicking the Select button transforms the opened query into a Select query.

 ■ Make Table, Append, Update, Crosstab, and Delete: Each of these buttons speci-
fi es the type of query you’re building. In most cases, you transform a select query
into an action query by clicking one of these buttons.

 ■ Show Table: Opens the Show Table dialog box.

243

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 243

8

The remaining buttons are used for creating more-advanced queries and displaying a
 query’s Property Sheet.

Adding fi elds to your queries
There are several ways to add fi elds to a query. You can add fi elds one at a time, select and
add multiple fi elds, or select all the fi elds in a fi eld list.

Adding a single field

You add a single fi eld in several ways. One method is to double-click the fi eld name in the
table in the top pane of the Query Designer. The fi eld name immediately appears in the fi rst
available column in the QBE pane. Alternatively, drag a fi eld from a table in the top pane of
the Query Designer, and drop it on a column in the QBE grid. Dropping a fi eld between two
fi elds in the QBE grid pushes other fi elds to the right.

In Figure 8.4 you can see that the Cost fi eld was brought into the QBE grid. Once a fi eld is
added, you can simply add the next fi eld you need to see in the query.

FIGURE 8.4

To add fi elds from your table to the QBE grid, simply double-click or drag the fi eld.

Each cell in the Table row of the QBE grid contains a drop-down list of the tables contained
in the upper pane of the Query Designer.

Adding multiple fields

You can add multiple fi elds in a single action by selecting the fi elds from the fi eld list
window and dragging them to the QBE grid. The selected fi elds don’t have to be contigu-
ous (one after the other). Hold down the Ctrl key while selecting multiple fi elds. Figure 8.5
illustrates the process of adding multiple fi elds.

244

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 244

FIGURE 8.5

Selecting multiple fi elds to add to the QBE grid.

The fi elds are added to the QBE grid in the order in which they occur in the table.

You can also add all the fi elds in the table by double-clicking the fi eld list’s header (where
it says tblProducts in Figure 8.6) to highlight all the fi elds in the table. Then drag the high-
lighted fi elds to the QBE grid.

Alternatively, you can click and drag the asterisk (*) from the fi eld list to the QBE grid
(or double-click the asterisk to add it to the QBE grid). Although this action doesn’t add
all the fi elds to the QBE grid, the asterisk directs Access to include all fi elds in the table
in the query.

FIGURE 8.6

Adding the asterisk to the QBE grid selects all fi elds in the table.

245

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 245

8

Unlike selecting all the fi elds, the asterisk places a reference to all the fi elds in a single column. When you drag multi-

ple columns, as in the preceding example, you drag names to the QBE grid. If you later change the design of the table,

you will also have to change the design of the query if you need to use the changed fi elds. The advantage of using the

asterisk for selecting all fi elds is that changes to the underlying tables don’t require changes to the query. The asterisk

means to select all fi elds in the table, regardless of the fi eld names or changes in the number of fi elds in the table.

The downside of using the asterisk to specify all fi elds in a table is that the query, as instructed, returns all the fi elds

in a table, regardless of whether every fi eld is used on a form or report. Retrieving unused data can be an ineffi cient

process. Very often, performance problems can be traced to the asterisk returning many more fi elds than necessary

to a form or report. You also have no control over the order in which the fi elds appear in the datasheet.

Running your query
After selecting the fi elds, run the query by clicking the Run button on the Query Tools
Design Ribbon (see Figure 8.7).

FIGURE 8.7

Click the Run button to display the results of your query.

To return to the QBE grid, you can go up to the Home tab and choose View ➪ Design View.
Alternatively, you can right-click the tab header for the query (as shown in Figure 8.8) and
select Design View.

FIGURE 8.8

Right-click on the queries tab header and select Design View to return to the QBE grid.

246

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 246

Working with Query Fields
Sometimes you’ll want to work with the fi elds you’ve already selected—rearranging their
order, inserting a new fi eld, or deleting an existing fi eld. You may even want to add a fi eld
to the QBE grid without showing it in the datasheet. Adding a fi eld without showing it
enables you to sort on the hidden fi eld or to use the hidden fi eld as criteria.

Selecting a fi eld in the QBE grid
Before you can move a fi eld’s position, you must fi rst select it. To select it, you will work
with the fi eld selector row.

The field selector is the thin gray area at the top of each column in the QBE grid at the
bottom of the Query Designer. Each column represents a fi eld. To select the Category fi eld,
move the mouse pointer until a small selection arrow (in this case, a dark downward arrow)
is visible in the selector row and then click and drag the column. Figure 8.9 shows the
selection arrow above the Category column just before it’s selected.

FIGURE 8.9

Selecting a column in the QBE grid. The pointer changes to a downward-pointing arrow
when you move over the selection row.

Select multiple contiguous fi elds by clicking the fi rst fi eld you want to select, and then dragging across the fi eld

selector bars of the other fi elds.

Changing fi eld order
The left-to-right order in which fi elds appear in the QBE grid determines the order in
which they appear in Datasheet view. You might want to move the fi elds in the QBE grid
to achieve a new sequence of fi elds in the query’s results. With the fi elds selected, you can
move the fi elds on the QBE design by simply dragging them to a new position.

Left-click a fi eld’s selector bar and, while holding down the left mouse button, drag the
fi eld into a new position in the QBE grid.

247

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 247

8

Figure 8.10 shows the Category fi eld highlighted. As you move the selector fi eld to the left,
the column separator between the fi elds ProductID and Description changes (gets wider) to
show you where Category will go.

FIGURE 8.10

Moving the Category fi eld to between ProductID and Description. Notice the QBE fi eld icon
below the arrow near the Description column.

The fi eld order in a query is irrelevant to how the data appears on a form or report. Normally, you’ll arrange the con-

trols on a form or report in response to user requirements.

Resizing columns in the QBE grid
The QBE grid generally shows fi ve or six fi elds in the viewable area of your screen. The
remaining fi elds are viewed by moving the horizontal scroll bar at the bottom of the window.

You might want to shrink some fi elds to be able to see more columns in the QBE grid. You
adjust the column width to make them smaller (or larger) by moving the mouse pointer to the
margin between two fi elds, and dragging the column resizer left or right (see Figure 8.11).

FIGURE 8.11

Resizing columns in the QBE grid.

An easier way to resize columns in the QBE grid is to double-click the line dividing two columns in the grid. Access

auto-sizes the column to fi t the names displayed in the column.

248

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 248

The width of a column in the QBE grid has no effect on how the fi eld’s data is displayed in a
datasheet, form, or report. The column width in the QBE grid is just a convenience to you,
the developer. Also, QBE column width is not preserved when you save and close the query.

Removing a fi eld
Remove a fi eld from the QBE grid by selecting the fi eld and pressing the Delete key. You can
also right-click on a fi eld’s selector bar and choose Cut from the shortcut menu.

Inserting a fi eld
Insert new fi elds in the QBE grid by dragging a fi eld from a fi eld list window in the tables
pane above the QBE grid and dropping it onto a column in the QBE grid. The new column is
inserted to the left of the column on which you dropped the fi eld. Double-clicking a fi eld in
a fi eld list adds the new column at the far-right position in the QBE grid.

Hiding a fi eld
While you’re performing queries, you might want to show only some of the fi elds in the QBE
grid. For example, suppose you’ve chosen FirstName, LastName, Address, City, and State.
Then you decide that you want to temporarily look at the same data, without the State
fi eld. Instead of completely removing the State fi eld, you can simply hide it by unchecking
the Show check box in the State column (see Figure 8.12).

FIGURE 8.12

The Show check box is unchecked for the State fi eld so that fi eld will not show in the results.

A common reason to hide a fi eld in the query is because the fi eld is used for sorting or as
criteria, but its value is not needed in the query. For example, consider a query involving
invoices. For a number of reasons, the users might want to see the invoices sorted by the

249

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 249

8

order date, even though the actual order date is irrelevant for this particular purpose. You
could simply include the OrderDate fi eld in the QBE grid, set the sort order for the OrderDate
fi eld, and uncheck its Show box. Access sorts the data by the OrderDate fi eld even though
the fi eld is not shown in the query’s results.

If you save a query that has an unused fi eld (its Show box is unchecked and no criteria or sort order is applied to the

fi eld), Access eliminates the fi eld from the query as part of the query optimization process. The next time you open

the query, the fi eld won’t be included in the query’s design.

Changing the sort order of a fi eld
When viewing a recordset, you often want to display the data in a sorted order to make
it easier to analyze the data. For example, you may want to review the results from the
tblProducts table sorted by category.

Sorting places the records in alphabetical or numeric order. The sort order can be ascending
or descending. You can sort on a single fi eld or multiple fi elds.

You input sorting directions in the Sort row in the QBE grid. To specify a sort order on a
particular fi eld (such as LastName), perform these steps:

 1. Position the cursor in the Sort cell in the LastName column.

 2. Click the drop-down list that appears in the cell, and select the sort order
(Ascending or Descending) you want to apply. Figure 8.13 shows the QBE grid
with ascending sorts specifi ed for the LastName and FirstName fi elds. Notice the
word Ascending is being shown in the fi elds’ Sort cells.

FIGURE 8.13

An ascending sort has been specifi ed for the LastName and FirstName fi elds.

250

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 250

You can’t sort on a Long Text or an OLE object fi eld.

The left-to-right order in which fi elds appear in the QBE grid is important when sorting on
more than one fi eld. Not only do the fi elds appear in the datasheet in left-to-right order,
but they’re sorted in the same order; this is known as sort order precedence. The leftmost
fi eld containing sort criteria is sorted fi rst, the fi rst fi eld to the right containing sort cri-
teria is sorted next, and so on. In the example shown in Figure 8.13, the LastName fi eld is
sorted fi rst, followed by the FirstName fi eld.

Figure 8.14 shows the results of the query shown in Figure 8.13. Notice that the data is
sorted by LastName and then by FirstName. This is why Ann Bond appears before John
Bond, and John Jones appears before Kevin Jones in the query’s data.

FIGURE 8.14

The order of the fi elds in the QBE grid is critical when sorting on multiple fi elds.

Adding Criteria to Your Queries
Most often users want to work only with records conforming to some criteria. Otherwise,
too many records may be returned by a query, causing serious performance issues. For
example, you might want to look only at customers who haven’t bought any products
within the last six months. Access makes it easy for you to specify a query’s criteria.

Understanding selection criteria
Selection criteria are fi ltering rules applied to data as they’re extracted from the database.
Selection criteria tell Access which records you want to look at in the recordset. A typical
criterion might be “all sellers,” or “only those vehicles that are not trucks,” or “products
with retail prices greater than $75.”

251

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 251

8

Selection criteria limit the records returned by a query. Selection criteria aid the user by
selecting only the records a user wants to see, and ignoring all the others.

You specify criteria in the Criteria row of the QBE grid. You designate criteria as an expres-
sion. The expression can be simple (like “trucks” or “not trucks”), or it can take the form of
complex expressions using built-in Access functions.

Proper use of query criteria is critical to an Access database’s success. In most cases, the
users have no idea what data is stored in a database’s tables and accept whatever they see
on a form or report as truthfully representing the database’s status. Poorly chosen criteria
might hide important information from the application’s users, leading to bad business
decisions or serious business issues later on.

Entering simple string criteria
Character-type criteria are applied to Text-type fi elds. Most often, you’ll enter an example
of the text you want to retrieve. Here is a small example that returns only product records
where the product type is “Cars”:

 1. Add tblProducts and choose the Description, Cost, QtyInStock, and Category
fields.

 2. Type CARS into the Criteria cell under the Category column (see Figure 8.15).
Notice that Access adds double quotes around the value. Unlike many other data-
base systems, Access automatically makes assumptions about what you want.

 3. Run the query. Note that only cars are displayed in the query’s results.

FIGURE 8.15

Specifying Cars as the query’s criteria.

252

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 252

When looking at the results of the query, you may argue that there is no point in display-
ing Cars in every row. In fact, because this query only returns information about cars, the
user can assume that every record references a car, and there’s no need to display a prod-
uct category in the query. Unchecking the Category fi eld’s Show box in the query’s design
removes Category from the datasheet, making the data easier to understand.

You could enter the criteria expression in any of these other ways:

CARS

= CARS

“CARS”

= “Cars”

By default, Access is not case sensitive, so any form of the word cars works just as well as
this query’s criteria.

Figure 8.15 is an excellent example for demonstrating the options for various types of
simple character criteria. You could just as well enter Not Cars in the criteria column, to
return all products that are not cars (trucks, vans, and so on).

Generally, when dealing with character data, you enter equalities, inequalities, or a list of
acceptable values.

This capability is a powerful tool. Consider that you only have to supply an example, and
Access not only interprets it but also uses it to create the query recordset. This is exactly
what Query by Example means: You enter an example and let the database build a query
based on the example.

To erase the criteria in the cell, select the contents and press Delete, or select the contents
and right-click Cut from the shortcut menu that appears.

Entering other simple criteria
You can also specify criteria for Numeric, Date, and Yes/No fi elds. Simply enter the example
data in the criteria fi eld just as you did for text fi elds. In almost every case, Access under-
stands the criteria you enter and adjusts to correctly apply the criteria to the query’s fi elds.

It’s also possible to add more than one criteria to a query. For example, suppose that you
want to look only at contacts who live in Connecticut and have been customers since
January 1, 2010 (where OrigCustDate is greater than or equal to January 1, 2010). This
query requires criteria in both the State and OrigCustDate fi elds. To do this, it’s critical that
you place both examples on the same criteria row. Follow these steps to create this query:

 1. Create a new query starting with tblContacts.

 2. Add OrigCustDate, FirstName, LastName, and State to the QBE grid.

253

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 253

8

 3. Enter ct or CT in the Criteria cell in the State column.

 4. Enter >= 01/01/2010 in the Criteria cell in the OrigCustDate column. Access adds
pound sign characters (#) around the date in the criteria box. Figure 8.16 shows
how the query should look.

 5. Run the query.

FIGURE 8.16

Specifying text and date criteria in the same query.

Access displays records of customers who live in Connecticut and who became customers
after January 1, 2010.

Access uses comparison operators to compare Date fi elds to a value. These operators include
less than (<), greater than (>), equal to (=), or a combination of these operators.

Notice that Access automatically adds pound sign (#) delimiters around the date
value. Access uses these delimiters to distinguish between date and text data. The
pound signs are just like the quote marks Access added to the “Cars” criteria. Because
OrigCustDate is a DateTime fi eld, Access understands what you want and inserts the
proper delimiters for you.

Be aware that Access interprets dates according to the region and language settings in the
Control Panel. For example, in most of Europe and Asia, #5/6/2010# is interpreted as June 5,
2010, while in the United States this date is May 6, 2010. It’s very easy to construct a query
that works perfectly but returns the wrong data because of subtle differences in regional
settings.

 We cover operators and precedence in more detail in Chapter 9.

254

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 254

Printing a Query’s Recordset
After you create your query, you can easily print all the records in the recordset. Although
you can’t specify a type of report, you can print a simple matrix-type report (rows and
 columns) of the recordset created by your query.

You do have some fl exibility when printing a recordset. If you know that the datasheet is
set up just as you want, you can specify some options as you follow these steps:

 1. Run the query you just created for Connecticut customers who’ve been active
since January 1, 2010.

 2. Choose File ➪ Print from the Query Datasheet window’s Ribbon.

 3. Specify the print options that you want in the Print dialog box and click OK.

The printout refl ects all layout options in effect when you print the recordset. Hidden
columns don’t print, and gridlines print only if the Gridlines option is on. The printout
refl ects the specifi ed row height and column width.

Saving a Query
To save your query, click the Save button on the Quick Access toolbar at the top of the
Access screen. Access asks you for the name of the query if this is the fi rst time the query
has been saved.

After saving the query, Access returns you to the mode you were working in. Occasionally,
you’ll want to save and exit the query in a single operation. To do this, click the Close
Window button in the upper-right corner of the Query Designer. Access always asks you to
confi rm saving the changes before it actually saves the query.

Creating Multi-Table Queries
Using a query to get information from a single table is common; often, however, you
need information from several related tables. For example, you might want to obtain a
buyer’s name and product purchased by the customer. This query requires four tables:
tblCustomers, tblSales, tblSalesLineItems, and tblProducts.

 In Chapter 4, you learned the importance of primary and foreign keys and how they link tables together.

You learned how to use the Relationships window to create relationships between tables. Finally, you

learned how referential integrity affects data in tables.

255

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 255

8

After you create the tables for your database and decide how the tables are related to one
another, you’re ready to build multi-table queries to obtain information from several related
tables. A multi-table query presents data as if it existed in one large table.

The fi rst step in creating a multi-table query is to add the tables to the query design window:

 1. Create a new query by clicking the Query Design button on the Create tab of
the Ribbon.

 2. Add tblCustomers, tblSales, tblSalesLineItems, and tblProducts by double-
clicking each table’s name in the Show Table dialog box.

 3. Click the Close button.

You can also add each table by highlighting the table in the list separately and clicking Add.

Figure 8.17 shows the top pane of the query design window (the section in gray) with the
four tables you just added. Because the relationships were set at table level, the join lines
are automatically added to the query.

FIGURE 8.17

The query design window with four tables added. Notice that the join lines are
already present.

You can add more tables at any time by choosing Query ➪ Show Table from the Query Tools Design Ribbon.

Alternatively, you can right-click the design window and select the Show Table option from the context menu.

256

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 256

You add fi elds from more than one table to the query in exactly the same way as you do
when you’re working with a single table. You can add fi elds one at a time, multiple fi elds as
a group, or all the fi elds from a table.

When you select a fi eld that has a common name in multiple tables, Access adds the
table’s name, followed by a period and the fi eld name. For example, if ProductID is a fi eld
found in more than one table used in the query design window (let’s say tblProducts and
tblSalesLineItems), adding the ProductID fi eld from tblSalesLineItems will display that fi eld
in the design grid as tblSalesLineItems.ProductID. This helps you select the correct fi eld
name. Using this method, you can select a common fi eld name from a specifi c table.

The easiest way to select fi elds is still to double-click the fi eld names in the top half of the Query Designer. To do so,

you might have to resize the fi eld list windows to see the fi elds that you want to select.

Viewing table names
When you’re working with multiple tables in a query, the fi eld names in the QBE grid
can become confusing. You might fi nd yourself asking, for example, just which table the
Description fi eld is from.

Access automatically maintains the table name that is associated with each fi eld
displayed in the QBE grid. Figure 8.18 shows the Query Designer with the name of each
table displayed under the fi eld name in the QBE grid.

FIGURE 8.18

The QBE grid with table names displayed. Notice that it shows all four table names.

Source table names

257

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 257

8

Adding multiple fi elds
The process of adding multiple fi elds in a multi-table query is identical to adding multiple
fi elds in a single-table query. When you’re adding fi elds from several tables, you must add
them from one table at a time. The easiest way to do this is to select multiple fi elds and
drag them together down to the QBE grid.

Select multiple contiguous fi elds by clicking the fi rst fi eld of the list and then clicking the
last fi eld while holding down the Shift key. You can also select noncontiguous fi elds in the
list by holding down the Ctrl key while clicking individual fi elds.

Selecting the asterisk (*) does have some drawbacks: You can’t specify criteria on the asterisk column itself. You

have to add an individual fi eld from the table and enter the criterion. You also can’t sort on individual fi elds when

selecting the asterisk. Again, you have to add the individual fi eld from the table in order to apply the needed sorting.

Recognizing the limitations of multi-table queries
When you create a query with multiple tables, there are limits to which fi elds can be
edited. Generally, you can change data in a query’s recordset, and your changes are saved
in the underlying tables. The main exception is a table’s primary key—a primary key value
can’t be edited if referential integrity is in effect and the fi eld is part of a relationship.

There may be instances when you will want to make manual edits to the resulting recordset
of a query. In Access, the records in your tables might not always be updateable. Table 8.1
shows when a fi eld in a table is updateable. As Table 8.1 shows, queries based on one-to-many
relationships are updateable in both tables (depending on how the query was designed).

TABLE 8.1 Rules for Updating Queries

Type of Query or Field Updateable Comments

One table Yes

One-to-one relationship Yes

Results contain Long Text
fi eld

Yes Long Text fi eld updateable if the underlying query
is not based on a many-to-many relationship

Results contain a hyperlink Yes Hyperlink updateable if the underlying query is not
based on a many-to-many relationship

Results contain an OLE
object

Yes OLE object updateable if the underlying query is
not based on a many-to-many relationship

One-to-many relationship Usually Restrictions based on design methodology (see
text)

Continues

258

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 258

Type of Query or Field Updateable Comments

Many-to-one-to-many
relationship

No Can update data in a form or data access page if
Record Type = Recordset

Two or more tables with
no join line

No Must have a join to determine updateability

Crosstab No Creates a snapshot of the data

Totals query (Sum, Avg,
and so on)

No Works with grouped data creating a snapshot

Unique Value property is
Yes

No Shows unique records only in a snapshot

SQL-specifi c queries No Union and pass-through work with ODBC data

Calculated fi elds No Will recalculate automatically

Read-only fi elds No If opened read-only or on read-only drive (CD-ROM)

Permissions denied No Insert, replace, or delete not granted in older MDB
databases that use user-level security.

ODBC tables with no
unique identifi er

No Unique identifi er must exist

Paradox table with no pri-
mary key

No Primary key fi le must exist

Locked by another user No Can’t be updated while a fi eld is locked by another

Overcoming query limitations
Table 8.1 shows that there are times when queries and fi elds in tables are not updateable.
As a general rule, any query that performs aggregate operations or uses an ODBC data
source is not updateable; most other queries can be updated. When your query has more
than one table and some of the tables have a one-to-many relationship, some fi elds might
not be updateable (depending on the design of the query).

Updating a unique index (primary key)

If a query uses two tables involved in a one-to-many relationship, the query must include
the primary key from the “one” table. Access must have the primary key value so that they
can fi nd the related records in the two tables.

Replacing existing data in a query with a one-to-many relationship

Normally, all the fi elds in the “many” table (such as the tblSales table) are updateable in a
one-to-many query. All the fi elds (except the primary key) in the “one” table (tblCustomers)
can be updated. This is suffi cient for most database application purposes. Also, the primary

TABLE 8.1 (continued)

259

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 259

8

key fi eld is rarely changed in the “one” table because it’s the link to the records in the
joined tables.

Updating fields in queries

If you want to add records to both tables of a one-to-many relationship, include the foreign
key from the “many” table and show the fi eld in the datasheet. After doing this, records
can be added starting with either the “one” or “many” table. The “one” table’s primary key
fi eld is automatically copied to the “many” table’s join fi eld.

If you want to add records to multiple tables in a form (covered in Chapters 17 and 18),
remember to include all (or most) of the fi elds from both tables; otherwise, you won’t have a
complete set of the record’s data on your form.

Working with the Table Pane
The upper (table) pane of the Query Designer contains information that’s important to your
query. Understanding the table pane and how to work with fi eld lists is critically important
to building complex queries.

 These lines were predrawn because you already set the relationships between the tables as described

in Chapter 4.

Looking at the join line
A join line connects tables in the Query Designer (refer to Figure 8.17). The join line con-
nects the primary key in one table to the foreign key in another table. The join line repre-
sents the relationship between two tables in the Access database. In this example, a join
line goes from tblSales to tblCustomers, connecting CustomerID in tblCustomers to the
CustomerID fi eld in tblSales. The join line is added by Access because relationships were set
in the Relationship Builder.

If referential integrity is set on the relationship, Access uses a somewhat thicker line for
the join connecting to the table in the Query Designer. A one-to-many relationship is indi-
cated by an infi nity symbol (∞) on the “many” table end of the join line.

Access auto-joins two tables if the following conditions are met:

 ■ Both tables have fi elds with the same name.

 ■ The same-named fi elds are the same data type (text, numeric, and so on). Note that
the AutoNumber data type is the same as Numeric (Long Integer).

 ■ One of the fi elds is a primary key in its table.

260

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 260

After a relationship is created between tables, the join line remains between the two fi elds. As you move through a

table selecting fi elds, the line moves relative to the linked fi elds. For example, if you scroll downward, towards the

bottom of the window in tblCustomers, the join line moves upward with the customer number, eventually stopping at

the top of the table window.

When you’re working with many tables, these join lines can become confusing as they cross
or overlap. As you scroll through the table, the line eventually becomes visible, and the
fi eld it’s linked to becomes obvious.

Moving a table
You can move the fi eld lists around the query editor by grabbing the title bar of a fi eld list
window (where the name of the table is) with the mouse and dragging the fi eld list. You
can also resize a fi eld list by clicking its borders and adjusting the height and width.

Access makes some attempts to save the arrangement when you save and close the query.
Generally speaking, the fi eld lists will appear in the same confi guration the next time you
open the query.

Removing a table
You might need to remove tables from a query. Use the mouse to select the table you want
to remove in the top pane of the query design window and press the Delete key. Or right-
click the fi eld list window and choose Remove Table from the shortcut menu.

Removing a table from a query’s design does not remove the table from the database, of course.

When you remove a table from a query design, join lines to that table are deleted as well. There is no warning or

confi rmation before removal. The table is simply removed from the screen, along with any of the table’s fi elds added

to the QBE grid. Be aware, however, that deleted tables referenced in calculated fi elds will not be removed. The

“phantom” table references may cause errors when you try to run the query.

 Calculated fi elds are discussed in detail in Chapter 12.

Adding more tables
You might decide to add more tables to a query or you might accidentally delete a table and
need to add it back. You accomplish this task by clicking the Show Table button on the Query
Setup group in the Design Ribbon. The Show Table dialog box appears in response to this action.

261

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 261

8

Creating and Working with Query Joins
You’ll often need to build queries that require two or more related tables to be joined to
achieve the desired results. For example, you may want to join an employee table to a
transaction table in order create a report that contains both transaction details and infor-
mation on the employees who logged those transactions. The type of join used will deter-
mine the records that will be output.

Understanding joins
There are three basic types of joins: inner joins, left outer joins, and right outer joins:

 ■ Inner joins: An inner join operation tells Access to select only those records from
both tables that have matching values. Records with values in the joined fi eld
that do not appear in both tables are omitted from the query results. Figure 8.19
represents the inner join operation visually.

FIGURE 8.19

An inner join operation will select only the records that have matching values in both tables.
The arrows point to the records that will be included in the results.

Dim_AccountManagers Dim_Territory

Inner Join

 ■ Left outer joins: A left outer join operation (sometimes called a “left join”) tells
Access to select all the records from the fi rst table regardless of matching and only
those records from the second table that have matching values in the joined fi eld.
Figure 8.20 represents the left join operation visually.

262

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 262

FIGURE 8.20

A left outer join operation will select all records from the fi rst table and only those records
from the second table that have matching values in both tables. The arrows point to the
records that will be included in the results.

Dim_AccountManagers Dim_Territory

Left Join

 ■ Right outer joins: A right outer join operation (sometimes called a “right join”) tells
Access to select all the records from the second table regardless of matching and
only those records from the fi rst table that have matching values in the joined fi eld
(see Figure 8.21).

FIGURE 8.21

A right outer join operation will select all records from the second table and only those
records from the fi rst table that have matching values in both tables. The arrows point to the
records that will be included in the results.

Dim_AccountManagers Dim_Territory

Right Join

263

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 263

8

By default, an Access query returns only records where data exists on both sides of a rela-
tionship (inner join). For example, a query that extracts data from the Contacts table and
the Sales table only returns records where contacts have actually placed sales and will not
show contacts who haven’t yet placed a sale. If a contact record isn’t matched by at least
one sales record, the contact data isn’t returned by the query. This means that, sometimes,
the query might not return all the records you expect.

Although this is the most common join type between tables in a query, users sometimes
want to see all the data in a table regardless of whether those records are matched in
another table. In fact, users often want to specifi cally see records that are not matched on
the other side of the join. Consider a sales department that wants to know all the contacts
that have not made a sale in the last year. You must modify the default query join charac-
teristics in order to process this type of query.

You can create joins between tables in these three ways:

 ■ By creating relationships between the tables when you design the database.

 ■ By selecting two tables for the query that have a fi eld in common that has the
same name and data type in both tables. The fi eld is a primary key fi eld in one
of the tables.

 ■ By modifying the default join behavior.

The fi rst two methods occur automatically in the query design window. Relationships
between tables are displayed in the Query Designer when you add the related tables to a
query. It also creates an automatic join between two tables that have a common fi eld, as
long as that fi eld is a primary key in one of the tables and the Enable Auto Join choice is
selected (by default) in the Options dialog box.

If relationships are set in the Relationship Builder, you might not see the auto-join line if:

 ■ The two tables have a common fi eld, but it isn’t the same name.

 ■ A table isn’t related and can’t be logically related to the other table (for example,
tblCustomers can’t directly join the tblSalesLineItems table).

If you have two tables that aren’t related and you need to join them in a query, use the
query design window. Joining tables in the query design window does not create a perma-
nent relationship between the tables; instead, the join (relationship) applies only to the
tables while the query operates.

Leveraging ad hoc table joins
Figure 8.22 shows a simple query containing tblSales, tblSalesLineItems, tblProducts,
and tblCategories. This is an ad hoc join, formed when the Categories table was added
to the query.

264

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 264

FIGURE 8.22

An ad hoc join between tblProducts and tblCategories.

No direct relationship yet exists between tblProducts and tblCategories. However, Access
found the Category fi eld in both the tables, determined that the Category data type is the
same in both tables, and determined that the Category fi eld in tblCategories is the primary
key. Therefore, Access added an ad hoc join between the tables.

Tables are not joined automatically in a query if they aren’t already joined at the table level, if they don’t have a com-

mon named fi eld for a primary key, or if the AutoJoin option is off.

If Access hasn’t auto-joined tblProducts and tblCategories (perhaps because the Category
fi eld was named differently in the tables), you can easily add an ad hoc join by dragging
the Category fi eld from one table and dropping it on the corresponding fi eld in the
other table.

Specifying the type of join
The problem with most joins is that, by default, they exhibit inner join behavior as the
query executes. In the case of the query in Figure 8.22, if a product record exists that
doesn’t have an assigned category (for example, a car that was never assigned to a cat-
egory), the query doesn’t return any records where a product record isn’t matched by a
category.

The problem is that you can’t even tell records are missing. The only way you’d ever deter-
mine that there should be more records returned by this query is by carefully examining
the sales records, by composing another query that counts all sales, or by performing some
other audit operation.

265

Chapter 8: Selecting Data with Queries

c08.indd 10/07/2015 Page 265

8

You must modify the join characteristics between tblProducts and tblCategories to get an
accurate picture of sales. Carefully right-click on the thin join line between tblProducts and
tblCategories, and select the Join Properties command from the shortcut menu. This action
opens the Join Properties dialog box (see Figure 8.23), enabling you to specify an alternate
join between the tables.

FIGURE 8.23

Selecting an outer join for the query.

In Figure 8.23, the third option (Include All Records from ‘tblProducts’…) has been selected
(the fi rst option is the default). Options 2 and 3 are left outer join and right outer join,
respectively. These options direct Access to retrieve all records from the left (or right) table
involved in the join, regardless of whether those records are matched on the other side of
the join.

Figure 8.24 shows the result of the new join. In the lower-right corner of this fi gure you see
how an outer join appears in the Access Query Designer, while the rest of the fi gure shows
the recordset returned by the query.

FIGURE 8.24

A right outer join corrects the “missing products” problem in Figure 8.22.

266

Part III: Working with Access Queries

c08.indd 10/07/2015 Page 266

Of course, you can easily create joins that make no sense, but when you view the data, it’ll
be pretty obvious that you got the join wrong. If two joined fi elds have no values in com-
mon, you’ll have a datasheet in which no records are selected.

You would never want to create a meaningless join. For example, you wouldn’t want to join
the City fi eld from tblCustomer to the SalesDate fi eld of tblSales. Although Access enables
you to create this join, the resulting recordset will have no records in it.

 Access enables you to create multi-fi eld joins between tables (more than one line can be drawn). The two fi elds must

have data in common; if not, the query won’t fi nd any records to display.

Deleting joins
To delete a join line between two tables, select the join line and press the Delete key. Select
the join line by placing the mouse pointer on any part of the line and clicking once.

 If you delete a join between two tables and the tables remain in the query design window unjoined to any other

tables, the solution will have unexpected results because of the Cartesian product that Access creates from the two

tables. The Cartesian product is effective for only this query. The underlying relationship remains intact.

267

c09.indd 10/07/2015 Page 267

 CHAP T ER

9
Using Operators and
Expressions in Access

IN THIS CHAPTER

Understanding operators in expressions

Creating complex queries

Building queries with simple criteria

Using multiple criteria in a query

Composing complex query criteria

I
n the preceding chapter, you created queries using selected fi elds from one or more tables. You
also sorted the data and set criteria to limit the results of a query. This chapter focuses on
using operators and expressions to calculate information, compare values, and display data in

a different format—using queries to build examples.

This chapter uses queries to demonstrate the use of operators and functions, but the principles in
this chapter’s exercises apply anywhere operators and expressions appear in Access.

The starting database for this walkthrough, Chapter09.accdb, can be downloaded from this book’s website.

Introducing Operators
Operators let you compare values, put text strings together, format data, and perform a wide vari-
ety of tasks. You use operators to instruct Access to perform a specifi c action against one or more
operands. The combination of operators and operands is known as an expression.

ON THE WEB

268

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 268

You’ll see the term evaluate a lot in this chapter. When you present Access with a fi eld, expression, variable, and so

on, Access evaluates the item and (internally) represents the item as a value. It’s very important to compose expres-

sions in such a way that Access evaluates them as we expect. If Access incorrectly evaluates an expression, the

application won’t perform as expected. Understanding how Access evaluates a query’s criteria or an expression used

in VBA code is critically important to success as an Access developer.

You’ll use operators every time you create an equation in Access. For example, operators
specify data validation rules in table properties, create calculated fi elds in forms and
reports, and specify criteria in queries.

Types of operators
Operators can be grouped into the following types:

 ■ Mathematical

 ■ Comparison

 ■ String

 ■ Boolean (logical)

 ■ Miscellaneous

Mathematical operators

Mathematical operators are also known as arithmetic operators, because they’re used for
performing numeric calculations. By defi nition, you use mathematical operators to work
with numbers as operands. When you work with mathematical operators, numbers can be
any numeric data type. The number can be a constant value, the value of a variable, or a
fi eld’s contents. You use these numbers individually or combine them to create complex
expressions.

There are seven basic mathematical operators:

+ Addition

– Subtraction

* Multiplication

/ Division

\ Integer division

^ Exponentiation

Mod Modulo

269

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 269

9

 The mathematical operators discussed in this section are typically used in calculated fi elds. Calculated

fi elds are covered in detail in Chapter 12.

The addition operator: +

If you want to create a calculated fi eld in a query for adding the value of tax to the price,
use an expression similar to the following:

[TaxAmt]+[Price]

The subtraction operator: –

The subtraction operator (–) performs simple subtraction, such as calculating a fi nal
invoice amount by subtracting a discount from the price:

[Price] - ([Price] * [DiscountPercent])

Although parentheses are not mathematical operators, they play an important role in many expressions, as discussed

in the “Operator precedence” section later in this chapter.

The multiplication operator: *

A simple example of when to use the multiplication operator (*) is to calculate the total
price of several items. You could design a query to display the number of items purchased
and the price for each item. Then you could add a calculated fi eld containing the value
of the number of items purchased times the price per item. In this case, the expression
would be:

[Quantity] * [Price]

The division operator: /

Use the division operator (/) to divide two numbers. Suppose, for example, that a pool of
212 people win a $1,000,000 lottery. The expression to determine each individual’s payoff of
$4,716.98 is:

1000000 / 212

Notice that the 1000000 value does not contain commas. Access is not able to perform a mathematical operation

on numeric values containing punctuation.

270

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 270

The integer division operator: \

The integer division operator (\) takes any two numbers (number1 and number2), rounds
them up or down to integers, divides the fi rst by the second (number1 / number2), and then
drops the decimal portion, leaving only the integer value. Here are some examples of how
integer division differs from normal division:

Normal Division Integer Conversion Division

100 / 6 = 16.667 100 \ 6 = 16

100.9 / 6.6 = 19.288 100.9 \ 6.6 = 14

102 / 7 = 14.571 102 \ 7 = 14

Access rounds whole numbers based on a principle known as banker’s rounding or round half to even. Rounding is

always done to the nearest even number: 6.5 becomes 6, and 7.5 becomes 8. This can produce unexpected results

only when the rounded value is exactly midway between two whole numbers. As you’d expect, 6.51 rounds to 7, and

6.49 rounds to 6. Access does this to minimize round-off errors.

The exponentiation operator: ^

The exponentiation operator (^) raises a number to the power of an exponent. Raising a
number simply means multiplying a number by itself. For example, multiplying the value
4 x 4 x 4 (that is, 43) is the same as entering the formula 4^3.

The exponent does not have to be a whole number; it can even be negative. For example,
2^2.1 returns 4.28709385014517, and 4^–2 is 0.0629.

The modulo division operator: Mod

The modulo operator (Mod) takes any two numbers (number1 and number2), rounds them
up or down to integers, divides the fi rst by the second (number1 / number2), and then
returns the remainder. Here are some examples of how modulo division compares to normal
division:

Normal Division Modulo Division Explanation

10 / 5 = 2 10 Mod 5 = 0 10 is evenly divided by 5

10 / 4 = 2.5 10 Mod 4 = 2 10 / 4 = 2 with a remainder of 2

22.24 / 4 = 9.56 22.24 Mod 4 = 2 22 / 4 = 5 with a remainder of 2

22.52 / 4 = 9.63 22.52 Mod 4 = 3 23 / 4 = 5 with a remainder of 3

271

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 271

9

The tricky thing about modulo division is that the returned value is the remainder after
integer division is performed on the operands. The Mod operator is often used to determine
whether a number is even or odd by performing modulo division with 2 as the divisor:

5 Mod 2 = 1
4 Mod 2 = 0

If Mod returns 1, the dividend is odd. Mod returns 0 when the dividend is even.

Comparison operators

Comparison operators compare two values or expressions in an equation. There are six basic
comparison operators:

= Equal

<> Not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

The expressions built from comparison operators always return True, False, or Null.
Null is returned when the expression can’t be evaluated.

As you read the following descriptions, please keep in mind that Access is case insensitive
in most situations. When comparing strings, for example, “CAR,” “Car,” and “car” are the
same to Access.

Access actually returns a numeric value for comparison operator expressions. Access uses –1 to represent True

and 0 to represent False.

If either side of an equation is a null value, the result is always Null.

The equal operator: =

The equal operator (=) returns True if the two expressions are the same. For example,

[Category] = "Car" Returns True if Category is Car; returns False for
any other category.

[SaleDate] = Date() Returns True if the date in SaleDate is today; returns
False for any other date.

272

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 272

The not-equal operator: <>

The not-equal operator (<>) is the opposite of the equal operator. For example,

[Category] <> "Car" Returns True if Category is anything but Car and
False only when Category is Car.

The less-than operator: <

The less-than operator (<) returns a logical True if the left side of the equation is less than
the right side, as in this example:

[Price] < 1000 Returns True if the Price fi eld contains a value of less than
1,000; returns False whenever Price is greater than or
equal to 1,000.

Interestingly, the less-than operator is easily applied to string values (the same is true for
most comparison operators). For example, the following expression is False:

"Man" > "Woman"

Without getting philosophical about the expression, what actually happens is that Access
does a character-by-character comparison of the strings. Because M appears before W in the
alphabet, the word Man is not greater than Woman. The ability to compare strings can be of
signifi cant value when sorting string data or arranging names in a particular order.

Again, because Access string comparisons are not case sensitive, XYZ is not greater than xyz.

You may not get the results you were expecting when doing string-based comparisons on numbers. For instance, 10

will come before 9 because textually, 1 comes before 9.

The less-than-or-equal-to operator: <=

The less-than-or-equal-to operator (<=) returns True if the operand on the left side of the
equation is either less than or equal to the right-side operand, as in this example:

[Price] <= 2500 Returns True if Price equals 2500 or is less than 2500;
returns False for any Price that is more than 2500.

Comparison operators must be composed properly. Access reports an error if you enter =<. The order of the charac-

ters in this operator is important. It must be less than or equal to: <=.

273

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 273

9

The greater-than operator: >

The greater-than operator (>) is the opposite of less than. This operator returns True when
the left-side operand is greater than the operand on the right side. For example:

[TaxRate] > 3.5 Returns True if TaxRate is greater than 3.5; returns False
whenever TaxRate is less than or equal to 3.5

The greater-than-or-equal-to operator: >=

The greater-than-or-equal-to operator (>=) returns True if the left side is greater than or
equal to the right side. For example:

[TaxRate] >= 5 Returns True if TaxRate is 5 or greater; returns False
when TaxRate is less than 5

String operators

Access has three string operators for working with strings. Unlike the mathematical and logi-
cal operators, the string operators are specifi cally designed to work with the string data type:

& Concatenates operands.

Like Operands are similar.

Not Like Operands are dissimilar.

The concatenation operator: &

The concatenation operator joins two strings into a single string. In some ways, concatena-
tion is similar to addition. Unlike addition, however, concatenation always returns a string:

[FirstName] & [LastName]

However, there is no space between the names in the returned string. If [FirstName] is
“Fred” and [LastName] is “Smith,” the returned string is FredSmith. If you want a space
between the names, you must explicitly add a space between the strings, as follows:

[FirstName] & " " & [LastName]

The concatenation operator easily joins a string with a numeric- or date-type value. Using the
& operator eliminates the need for special functions to convert numbers or dates to strings.

Suppose, for example, that you have a number fi eld (HouseNumber) and a text fi eld
(StreetName), and you want to combine both fi elds:

[HouseNumber] & " " & [StreetName]

274

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 274

If HouseNumber is “1600” and StreetName is “Pennsylvania Avenue N.W.,” the returned
string is:

"1600 Pennsylvania Avenue N.W."

Quotes are added around the returned string to clarify the result.

Maybe you want to print the OperatorName and current date at the bottom of a report page.
This can be accomplished with the following:

"This report was printed " & Now() & " by " & [OperatorName]

Notice the spaces after the word printed and before and after the word by. If the date is
March 21, 2012, and the time is 4:45 p.m., this expression looks like:

This report was printed 3/21/12 4:45:40 PM by Jim Rosengren

The addition operator (+) also concatenates two character strings. For example, to combine
FirstName and LastName from tblContacts to display them as a single string, the expres-
sion is:

[FirstName] + " " + [LastName]

Knowing how the concatenation operator works makes maintaining your database expressions easier. If you always

use the concatenation operator (&)—instead of the addition operator (+)—when working with strings, you won’t have

to be concerned with the data types of the concatenation operands. Any expression that uses the concatenation

operator converts all operands to strings for you. Using the addition operator to concatenate strings can sometimes

lead to unpredictable results because Access must decide whether the operands are numbers or strings and act

accordingly. The concatenation operator forces Access to treat the operands as strings and always returns a string

as a result.

Although & and + both serve as concatenation operators, using + might exhibit unexpected
results in some situations. The & operator always returns a string when concatenating two
values. The operands passed to & may be strings, numeric or date/time values, fi eld refer-
ences, and so on, and a string is always returned.

Because it always returns a string, & is often used to prevent Invalid use of null
errors when working with data that might be null. For example, let’s assume a particular
text box on an Access form may or may not contain a value because we can’t be sure the
user has entered anything in the text box. When assigning the contents of the text box to

275

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 275

9

a variable (discussed in Chapter 24), some developers concatenate an empty string to the
text box’s contents as part of the assignment:

MyVariable = txtLastName & ""

& ensures that, even if the text box contains a null value, the variable is assigned a string
and no error is raised.

+, on the other hand, returns a null value when one of the operands is null:

MyVariable = txtLastName + ""

In this case, if txtLastName is truly null, the user may encounter an Invalid use of
null error because the result of the concatenation is null (assuming, once again, that
txtLastName contains a null value).

Most experienced Access developers reserve + for arithmetical operations and always use
& for string concatenation.

The Like and Not Like operators

The Like operator and its opposite, the Not Like operator, compare two string expres-
sions. These operators determine whether one string matches, or doesn’t match, the pattern
of another string. The returned value is True, False, or Null. The Like and Not Like
operators are case insensitive.

The Like operator uses the following syntax:

expression Like pattern

Like looks for the expression in the pattern; if it’s present, the operation returns True.
For example:

[FirstName] Like "John" Returns True if the fi rst name is John.

[LastName] Like "SMITH*" Returns True if the last name is Smith,
Smithson, or any other name beginning with
“Smith,” regardless of capitalization.

[State] Not Like "NY" Returns True for any state other than New York.

If either operand in a Like operation is null, the result is null.

The Like and Not Like operators provides powerful and fl exible tools for string compari-
sons. Wildcard characters extend the fl exibility of the Like operator.

276

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 276

Using Wildcards
The following table shows the fi ve wildcards you can use with the Like operator:

Wildcard Purpose

? A single character (0–9, Aa–Zz)

* Any number of characters (0–n)

Any single digit (0–9)

[list] Any single character in the list

[!list] Any single character not in the list

Both [list] and [!list] can use the hyphen between two characters to signify a range.

Here are some wildcard examples:

[tblContacts].[LastName] Like "Mc*" Returns True for any last name that begins
with “Mc” or “MC,” such as “McDonald,”
“McJamison,” and “MCWilliams.” Anything
that doesn’t start with “Mc” or “MC” returns
False.

[Answer] Like "[A-D]" Returns True if the Answer is A, B, C, D, a, b,
c, or d. Any other character returns False.

"AB1989" Like "AB####" Returns True because the string begins with
“AB” and is followed by four digits.

"AB198" Like "AB####" Returns False because the string begins
with “AB” and is not followed by four digits.

"AB19893" Like "AB####" Returns False because the string begins
with “AB” and is followed by more than four
digits.

[LastName] Not Like "[A,E,WE,O,U]*" Returns True for any last name that does
not begin with a vowel. “Smith” and “Jones”
return True while “Adams” and “O’Malley”
return False.

[City] Like "?????" Returns True for any city that is exactly fi ve
characters long.

If the pattern you’re trying to match contains a wildcard character, you must enclose the wildcard character in brack-

ets. In the following example, the [*] in the pattern treats asterisks in the third position as data:

"AB*Co" Like "AB[*]C*"

Since the asterisk character is enclosed in brackets, it won’t be mistaken for an asterisk wildcard character.

277

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 277

9

Boolean (logical) operators

Boolean operators (also referred to as logical operators) are used to create multiple condi-
tions in expressions. Like comparison operators, these operators always return True,
False, or Null. Boolean operators include the following:

And Returns True when both Expression1 and Expression2 are true.

Or Returns True when either Expression1 or Expression2 is true.

Not Returns True when the Expression is not true.

Xor Returns True when either Expression1 or Expression2 is true, but not both.

Eqv Returns True when both Expression1 and Expression2 are true or both
are false.

Imp Performs bitwise comparisons of identically positioned bits in two numerical
expressions.

The And operator

Use the And operator to perform a logical conjunction of two expressions. The operator
returns True if both expressions are true. The general syntax of And is as follows:

Expression1 And Expression2

For example:

[tblContacts].[State] = "MA" And
[tblContacts].[ZipCode] = "02379"

The logical And operator depends on how the two operands are evaluated by Access. Table
9.1 describes all the possible results when the operands are True or False. Notice that And
returns True only when both operands are true.

TABLE 9.1 And Operator Results

Expression1 Expression2 Expression1 And Expression2

True True True

True False False

True Null Null

False True False

False False False

False Null False

Null True Null

Null False False

Null Null Null

Returns True only if both expres-
sions are true.

278

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 278

The Or operator

The Or operator performs a logical disjunction of two expressions. Or returns True if either
condition is true. The general syntax of Or is as follows:

Expression1 Or Expression2

The following examples show how the Or operator works:

[LastName] = "Casey" Or [LastName] = "Gleason" Returns True if
LastName is either
Casey or Gleason.

[TaxLocation] = "TX" Or [TaxLocation] = "CT" Returns True if
TaxLocation is
either TX or CT.

The Or operator (like And) returns True or False depending on how Access evaluates
its operands. Table 9.2 shows all possible combinations with two operands. Notice that Or
returns False only when both operands are false.

TABLE 9.2 Or Expression Results

Expression1 Expression2 Expression1 Or Expression2

True True True

True False True

True Null True

False True True

False False False

False Null Null

Null True True

Null False Null

Null Null Null

The Not operator

The Not operator negates a numeric or Boolean expression. The Not operator returns
True if the expression is false, and False if the expression is true. The general
syntax of Not is:

Not [numeric|boolean] expression

279

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 279

9

The following examples show how to use the Not operator:

Not [Price] <= 100000 Returns True if Price is greater than
100,000.

If Not (City = "Seattle") Then Returns True for any city that is not
Seattle.

If the operand is null, the Not operator returns Null. Table 9.3 shows all the possible values.

TABLE 9.3 Not Operator Results

Expression Not Expression

True False

False True

Null Null

Miscellaneous operators

Access has three very useful miscellaneous operators:

Between...And Range

In List comparison

Is Reserved word

The Between...And operator

Between...And determines whether an expression’s value falls within a range of values:

expression Between value1 And value2

If the value of the expression falls within value 1 and value 2, or is the same
as value 1 or value 2, the result is True; otherwise, it’s False. Note that the
Between ... And operator is inclusive, the equivalent of >= and <=.

The following examples show how to use the Between...And operator:

[TotalCost] Between 10000 And 19999 Returns True if the
TotalCost is
between 10,000 and
19,999, or equal to
10,000 or 19,999

[SaleDate] Between #1/1/2012# And #12/31/2012# Returns True when
the SaleDate occurs
within the year 2012.

280

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 280

The Between...And operator can also be used with the Not operator to negate the logic:

Not [SaleDate] Between #1/1/2012# And #3/31/2012# Returns True
only when
SaleDate is not
within the fi rst
quarter of 2012.

The In operator

The In operator determines whether an expression’s value is the same as any value within a
list. The general syntax of In is:

Expression In (value1, value2, value3, ...)

If the expression’s value is found within the list, the result is True; otherwise, the result
is False.

The following example uses the In operator as a query’s criteria in the Category column:

In ('SUV','Trucks')

This query displays only those models that are SUVs or trucks.

The In operator is also used in VBA code:

If [tblCustomers].[City] In("Seattle", "Tacoma") Then

In this case the body of the If...Then...Else statement executes only if the City fi eld
is either Seattle or Tacoma.

The return value of the In operator can be negated with Not:

If strCity Not In ("Pittsburgh", "Philadelphia") Then

In this case, the body of the If...Then...Else statement executes only if strCity is not
set to either Pittsburgh or Philadelphia.

The Is operator

The Is operator is generally used with the keyword Null to determine whether the value
of an object is null:

expression Is Null

In the VBA environment, the Is operator can be used to compare various objects to deter-
mine if they represent the same entity.

281

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 281

9

The following example uses the Is operator:

[LastName] Is Null Returns True if the LastName fi eld is null; returns
False if the LastName fi eld contains any value.

It is important to note that the Is operator applies only to objects and object variables,
such as fi elds in tables. The Is operator can’t be used with simple variables such as strings
or numbers.

Operator precedence
When you work with complex expressions that have many operators, Access must determine
which operator to evaluate fi rst, and then which is next, and so forth. Access has a built-in
predetermined order for mathematical, logical, and Boolean operators, known as operator
precedence. Access always follows this order unless you use parentheses to override its default
behavior.

Operations within parentheses are performed before operations outside parentheses. Within
parentheses, Access follows the default operator precedence.

Precedence is determined fi rst according to category of the operator. The operator rank by
order of precedence is:

 1. Mathematical

 2. Comparison

 3. Boolean

Each category contains its own order of precedence, which we explain in the following
sections.

The mathematical precedence

Mathematical operators follow this order of precedence:

 1. Exponentiation

 2. Negation

 3. Multiplication and/or division (left to right)

 4. Integer division

 5. Modulus division

 6. Addition and/or subtraction (left to right)

 7. String concatenation

282

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 282

The comparison precedence

Comparison operators observe this order of precedence:

 1. Equal

 2. Not equal

 3. Less than

 4. Greater than

 5. Less than or equal to

 6. Greater than or equal to

 7. Like

The Boolean precedence

The Boolean operators follow this order of precedence:

 1. Not

 2. And

 3. Or

 4. Xor

 5. Eqv

 6. Imp

Using Operators and Expressions in Queries
One of the most common uses of operators and expressions is when building complex query
criteria. A thorough understanding of how these constructs work can ease the process of
building sophisticated, useful queries. This section deals specifi cally with building query
criteria using operators and expressions. Some of the information in the remainder of this
chapter parallels earlier discussions, but the context is specifi cally query design.

Knowing how to specify criteria is critical to designing and writing effective queries.
Although queries can be used against a single table for a single criterion, many queries
extract information from several tables using more complex criteria.

Because of this complexity, your queries are able to retrieve only the data you need, in the
order that you need it. You might, for example, want to select and display data from the
database to get the following information:

 ■ All buyers of Chevy car or Ford truck models

 ■ All buyers who have purchased something during the past 60 days

283

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 283

9

 ■ All sales for items greater than $90

 ■ The number of customers in each state

 ■ Customers who have made comments or complaints

As your database system evolves, you’ll want to retrieve subsets of information like these
examples. Using operators and expressions, you create complex select queries to limit the
number of records returned by the query. This section discusses select queries that use
operators and expressions. Later, you’ll apply this knowledge when working with forms,
reports, and VBA code.

 Chapter 8 gives an in-depth explanation of working with queries.

Using query comparison operators
When working with select queries, you may need to specify one or more criteria to limit the
scope of information shown. You specify criteria by using comparison operators in equations
and calculations. The categories of operators are mathematical, relational, logical, and string.
In select queries, operators are used in either the Field cell or the Criteria cell of the Query by
Example (QBE) pane.

Table 9.4 shows the most common operators used with select queries.

TABLE 9.4 Common Operators Used in Select Queries

Mathematical Relational Logical String Miscellaneous

* (multiply) = (equal) And & (concatenate) Between…And

/ (divide) <> (not equal) Or Like In

+ (add) > (greater than) Not Not Like Is Null

– (subtract) < (less than) Is Not Null

Using these operators, you can ferret out groups of records like these:

 ■ Product records that include a picture

 ■ A range of records, such as all sales between November and January

 ■ Records that meet both And and Or criteria, such as all records that are cars and
are not either a truck or an SUV

 ■ All records that do not match a value, such as any category that is not a car

284

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 284

When you add criteria to a query, use the appropriate operator with an example of what
you want. In Figure 9.1, the example is Cars. The operator is equal (=). Notice that the
equal sign is not shown in the fi gure because it’s the default operator for select queries.

FIGURE 9.1

The QBE pane shows a simple criterion asking for all models where the category is Cars.

Understanding complex criteria
You build complex query criteria using any combination of the operators shown in Table
9.4. For many queries, complex criteria consist of a series of Ands and Ors, as in these
examples:

 ■ State must be Connecticut or Texas.

 ■ City must be Sunnyville and state must be Georgia.

 ■ State must be MA or MO and city must be Springfi eld.

These examples demonstrate the use of both logical operators: And/Or. Many times, you
can create complex criteria by entering example data in different cells of the QBE pane, as
shown in Figure 9.2. In Figure 9.2, criteria is specifi ed in both the State and Category col-
umns. Within the State column, the criteria specifi es “either California or Arizona,” while
the additional criteria in the Category column adds “not Cars.” When combined, the criteria
in the two columns limit the returned records to those where the customer state is either
California or Arizona, and the product category is not cars.

285

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 285

9

FIGURE 9.2

Using And and Or criteria in a query.

However, using explicit Boolean operators is not the only way to select records based on
multiple criteria. Figure 9.3 demonstrates a common Access technique using complex cri-
teria without entering the operator keywords And/Or at all. In this example, the criteria
“stacked” within a single column specifi es Or. For example, in the State column, the crite-
ria is interpreted as "CA" Or "AZ". The presence of criteria in another column in the QBE
grid implies And. Therefore, the criteria in the Category column is combined with the state
criteria and is interpreted as:

(State = "CA" And Category <> "Cars") Or
(State = "AZ" And Category <> "Cars")

In any case, the queries in Figures 9.2 and 9.3 are equivalent and return the same data.

One confusing aspect about the query in Figure 9.3 is that the criteria in the Category col-
umn must appear twice, once for each value in the State column. If the Category criteria
appeared only once, perhaps in the same row as "AZ" in the State column, the combined
criteria would be interpreted as:

(State = "AZ" and Category <> "Cars") Or (State = "CA")

You learn how to create this type of complex query in the “Entering Criteria in Multiple
Fields” section, later in this chapter.

286

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 286

FIGURE 9.3

Creating complex criteria without using the And/Or operators.

In the QBE pane, enter And criteria in the same row and Or criteria in different rows.

Access takes your graphical query and creates a single SQL SELECT statement to actually
extract the information from your tables. Click the drop-down in the Ribbon’s View group
and select SQL View to change the window’s contents to display the SQL SELECT statement
(shown in Figure 9.4), which Access creates from the fi elds and criteria placed in the QBE
pane in Figure 9.3.

FIGURE 9.4

The SQL view for the query in Figure 9.3. Notice that it contains a single OR and two AND
operators (in the WHERE clause).

The SQL statement in Figure 9.4 has been slightly rearranged by the author for clarifi cation
purposes. When you switch to SQL view in your database, you’ll see one long multi-line
statement with no breaks between sections.

An expression for this query’s criteria is:

287

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 287

9

(tblCustomers.State = "CA" AND tblProducts.Category <> "Cars") OR
(tblCustomers.State = "AZ" AND tblProducts.Category <> "Cars")

You must enter the category criteria (<> "Cars") for each state in the QBE pane, as shown
in Figure 9.3. In the “Entering Criteria in Multiple Fields” section later in this chapter,
you learn to use the And/Or operators in a Criteria cell of the query, which eliminates the
redundant entry of these fi elds.

In this example, you looked for all models that didn’t contain cars in the Category fi eld. To fi nd records that do match

a value, drop the <> operator with the value. For example, enter Cars to fi nd all records with Cars as the category.

You don’t have to use the equal sign in the QBE pane when working with select queries.

The And/Or operators are the most common operators when working with complex cri-
teria. The operators consider two different expressions (one on each side of the And/Or
operators) and then determine whether the expressions are true or false. Then the opera-
tors compare the results of the two expressions against each other for a logical true/false
answer. For example, take the fi rst And statement in the expression given in the preceding
paragraph:

(tblCustomers.State = "CA" AND tblProducts.Category <> "Cars")

The right side of the criteria (tblProducts.Category <> "Cars") evaluates to True if
the Category is anything other than Cars. The And operator compares the logical true/false
from the left and right expressions to return a true/false answer.

A fi eld has a null value when it has no value at all. Null indicates the lack of entry of information in a fi eld. Null is nei-

ther true nor false, nor is it the same as a space character or 0. Null simply has no value. If you never enter a name in

the City fi eld and just skip it, Access leaves the fi eld empty (unless a default value is provided in the table’s design).

This state of emptiness is known as null.

When the result of an And/Or operation is True, the overall condition is true, and the
query displays the records meeting the true condition.

Notice that the result of an And operation is true only when both sides of the expression
are true, whereas the result of an Or operation is true when either side of the expres-
sion is true. In fact, one side can be a null value, and the result of the Or operation will
still be true if the other side is true. This is the fundamental difference between And/Or
operators.

288

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 288

Using functions in select queries
When you work with queries, you might want to use built-in Access functions to display
information. For example, you might want to display items such as:

 ■ The day of the week for sales dates

 ■ All customer names in uppercase

 ■ The difference between two date fi elds

You can display all this information by creating calculated fi elds for the query.

 We discuss calculated fi elds in depth in Chapter 12 (and throughout this book).

Referencing fi elds in select queries
When you reference table names and fi eld names in queries, it is a best practice to enclose
names in square brackets ([]). Access actually requires brackets around any name that con-
tain spaces or punctuation characters. An example of a fi eld name in brackets is:

 [tblSales].[SaleDate] + 30

In this example, 30 days is added to the SaleDate fi eld in tblSales.

If you omit the brackets ([]) around a fi eld name in the QBE grid, Access might place quotes around the fi eld name

and treat it as literal text instead of a fi eld name.

Entering Single-Value Field Criteria
You’ll encounter situations in which you want to limit the query records returned on the
basis of a single fi eld criterion, such as in these queries:

 ■ Customer (buyer) information for customers living in New York

 ■ Sales of truck models

 ■ Customers who bought anything in the month of January

Each of these queries requires a single-value criterion. Simply put, a single-value criterion is
the entry of only one expression in the QBE grid. The expression can be example data, such
as "CA", or a function, such as DatePart("m",[SaleDate]) = 1. Criteria expressions

289

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 289

9

can be specifi ed for virtually any data type: Text, Numeric, Date/Time, and so forth. Even
OLE Object and Counter fi eld types can have criteria specifi ed.

Entering character (Text or Memo) criteria
You use character criteria for Text or Memo data-type fi elds. These are either examples or
patterns of the contents of the fi eld. To create a query that returns customers who live in
New York, for example, follow these steps:

 1. Open a new query in Design view based on tblCustomers and add the
FirstName, LastName, and State fields to the QBE pane.

 2. Click the Criteria cell for State field.

 3. Type NY in the cell. Your query should look like Figure 9.5. Notice that only one
table is open and only three fi elds are selected. Click the Datasheet View button in
the Home Ribbon’s Views group to see this query’s results.

FIGURE 9.5

The query design window showing tblCustomers open.

You don’t have to enter an equal sign before the literal word NY, because this is a select
query. To see all states except New York, you must enter either the <> (not equal) or the
Not operator before NY.

You also don’t have to type quotes around NY. Access assumes that you’re using a literal
string NY and adds the quotes for you automatically.

Special considerations apply when data in the fi eld contains quotation marks. For example,
consider a query to fi nd a person whose name is given as Robert “Bobby” Jones. Ideally, the
contacts table would include a nickname fi eld to capture “Bobby,” but, in the absence of a
nickname fi eld, the data entry clerk may enter the fi rst name as Robert “Bobby,” using the
quotation marks around “Bobby.”

290

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 290

In this case, Access sees the double-quotation characters as data, and you may want to
include the quotes in the criteria. The simplest solution is to use a criteria expression such
as the following:

'Robert "Bobby"'

Notice the single quotes surrounding the criteria string. Access correctly interprets the
single quotes as delimiting characters, and understands that the double quotes within the
single quotes are just data. You shouldn’t use an expression such as the following:

"Robert 'Bobby'"

This is, of course, the opposite use of quotation marks as the previous example. In this
case, Access expects to fi nd single quotes around “Bobby” in the fi rst name fi eld, and no
records will be returned.

The Like operator and wildcards
In previous sections, you worked with literal criteria. You specifi ed the exact fi eld contents
for Access to fi nd, which was NY in the previous example. Access used the literal to retrieve
the records. Sometimes, however, you know only a part of the fi eld contents, or you might
want to see a wider range of records on the basis of a pattern.

For example, you might want to see all product information for items with “convertible” in
the description. Many different makes and models may be convertibles, and there’s no fi eld
where “convertible” will work by itself as the query’s criteria. You’ll need to use wildcards
to make sure you successfully select all records containing “convertible” in the description.

Here’s another example: Suppose you have a buyer who has purchased a couple of red mod-
els in the last year. You remember making a note of it in the Notes fi eld about the color,
but you don’t remember which customer it was. To fi nd these records, you’re required to use
a wildcard search against the Notes fi eld in tblCustomers to fi nd records that contain the
word red.

Use the Like operator in the Criteria cell of a fi eld to perform wildcard searches against
the fi eld’s contents. Access searches for a pattern in the fi eld; you use the question mark
(?) to represent a single character or the asterisk (*) for several characters. In addition
to ? and *, Access uses three other characters for wildcard searches. The table in the
“Using Wildcards” sidebar earlier in this chapter lists the wildcards that the Like opera-
tor can use.

The question mark (?) stands for any single character located in the same position as the
question mark in the example expression. An asterisk (*) stands for any number of char-
acters in the same position in which the asterisk is placed. The pound sign (#) stands for a
single digit (0–9) found in the position occupied by the pound sign. The brackets ([]) and
the list they enclose stand for any single character that matches any one character in the

291

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 291

9

list located within the brackets. Finally, the exclamation point (!) inside the brackets rep-
resents the Not operator for the list—that is, any single character that does not match any
character in the list.

These wildcards can be used alone or in conjunction with each other. They can even be
used multiple times within the same expression.

To create an example using the Like operator, let’s suppose you want to fi nd the
customer who likes red model cars. You know that red is used in one of the Notes fi eld in
tblCustomers. To create the query, follow these steps:

 1. Add tblCustomers, tblSales, tblSalesLineItems, and tblProducts to the query.

 2. Add Company and Notes from tblCustomers, SalesDate from tblSales, and
Description from tblProducts to the QBE pane.

 3. Click the Criteria cell of the Notes field and enter * red * as the criteria. Be sure
to put a space between the fi rst asterisk and the r and the last asterisk and the d—
in other words, put spaces before and after the word red.

In the preceding steps, you put a space before and after the word red. If you didn’t, Access would fi nd all words

that have the word red in them—like aired, bored, credo, fired, geared, restored, and on and on. By placing a space

before and after the word red, Access is being told to look for the word red only.

You may point out that if the Notes fi eld starts with the word Red (as in “Red cars are the customer’s preference”),

Access would not include this record because the word Red is not preceded by a space. You’re right!

You should expect to have to experiment a bit when you build the criteria for your queries. Because the data in your

tables (especially text fi elds) can be unpredictable, you may have to create several queries to capture every scenario.

In this case, you could create a supplemental query with the criteria to "red *" to try to capture this record.

There is, however, one issue with this example. Notice that the criteria ("* red *")
requires a space after the word red. This means that a record containing the following
note will not be returned by this query:

Customer wants any model of car, as long as it’s red!

Because there is no space immediately after red, this record will be missed. The proper cri-
teria to use is:

Like "* red[,.!*]"

The brackets around “ ,.!*” instruct Access to select records when the Notes fi eld ends with
the word red, followed by a space or punctuation character. Obviously, there may be other
characters to consider within the brackets, and you must have a good idea of the variety of
data in the queried fi eld.

292

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 292

When you click outside the Criteria cell, Access automatically adds the Like operator and
the quotation marks around the expression. Your query QBE pane should look like Figure 9.6.

FIGURE 9.6

Using the Like operator in a select query.

After creating this query, click on the Datasheet View command to view the query’s results.
It should look like Figure 9.7.

FIGURE 9.7

The results of using the Like operator with a select query in a Memo fi eld. The query looks
for the word red in the Features fi eld.

If you click the Datasheet View command on the Ribbon, you see that a number of records
match your query’s criteria. The recordset returned by this query includes redundant infor-
mation in the Company and Notes columns, but the redundancy is the result of asking for
this information along with the sales and product data.

293

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 293

9

Access automatically adds the Like operator and quotation marks if you meet these
conditions:

 ■ Your expression contains no spaces.

 ■ You use only the wildcards ?, *, or #.

 ■ You use brackets ([]) inside quotation marks ("").

If you use the brackets without quotation marks, you must supply the Like operator and
the quotation marks.

Using the Like operator with wildcards is the best way to perform pattern searches
through memo fi elds. It’s just as useful in text and date fi elds, as the examples in Table 9.5
demonstrate. Table 9.5 shows several examples that can be used to search records in the
tables of the database.

TABLE 9.5 Using Wildcards with the Like Operator

Expression Field Used In Results of Criteria

Like "Ca*" tblCustomers.LastName Finds all records of contacts whose last
name begins with Ca (for example, Carson
and Casey).

Like "* red *" tblProducts.Features Finds all records where the Features fi elds
starts and ends with any character, and has
red somewhere in the text.

Like "C*" tblSales.PaymentMethod Finds all sales where the payment method
starts with a C.

Like
"## South
Main"

tblCustomers.Address Finds all records of contacts with houses
containing house numbers between 10 and
99 inclusively (for example, 10, 22, 33, 51 on
South Main).

Like "[CDF]*" tblCustomers.City Finds all records of contacts for customers
who live in any city with a name beginning
with C, D, or F.

Like "[!EFG]*" tblCustomers.City Finds all records of contacts who live in any
city with a name beginning with any letter
except E, F, or G.

Specifying non-matching values
To specify a non-matching value, you simply use either the Not or the <> operator in
front of the expression that you don’t want to match. For example, you might want to see

294

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 294

all contacts that have purchased a vehicle, but you want to exclude buyers from New York.
Follow these steps to see how to specify this non-matching value:

 1. Open a new query in Design view and add tblCustomers.

 2. Add Company and State from tblCustomers.

 3. Click in the Criteria cell of State.

 4. Type <> NY in the cell. Access automatically places quotation marks around NY if
you don’t do so before you leave the fi eld. The query should look like Figure 9.8. The
query selects all records except those for customers who live in the state of New York.

FIGURE 9.8

Using the Not operator in criteria.

You can use the Not operator instead of <> in Step 4 of the previous instructions to exclude New York (NY). The

result is the same with either operator. These two operators are interchangeable except with the use of the keyword

Is. You can’t say Is <> Null. Instead, you must say Not Is Null or, more accurately, Is Not Null.

Entering numeric criteria
You use numeric criteria with numeric or currency data-type fi elds. You simply enter the
numbers and the decimal symbol—if required—following the mathematical or comparison
operator (but do not use commas). For example, you might want to see all sales where the
product’s inventory count is less than ten:

 1. Open a new query in Design view, and add tblProducts.

 2. Add ProductID, Description, Make, Model, and QtyInStock from tblProducts to
the QBE grid.

295

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 295

9

 3. Click in the Sort cell for Make and select Ascending from the drop-down list.

 4. Click in the Criteria cell for QtyInStock and enter <10 in the cell. Your query
should look like Figure 9.9. When working with numeric data, Access doesn’t
enclose the expression with quotes, as it does with string criteria.

FIGURE 9.9

Criteria set for products with low inventory.

The criteria applied to numeric fi elds usually include comparison operators, such as less
than (<), greater than (>), or equal to (=). If you want to specify a comparison other than
equal, you must enter the operator as well as the value. Remember that Access defaults to
equal when running a select query. That’s why you needed to specify <10 in the QtyInStock
column in the example shown in Figure 9.9.

Access does not surround the criteria with quotes because QtyInStock is numeric and
requires no delimiter.

Entering true or false criteria
True and false criteria are used with Yes/No type fi elds. The example data that you supply
as criteria must evaluate to true or false. You can also use the Not and the <> operators to
signify the opposite, but the Yes/No data also has a null state that you might want to con-
sider. Access recognizes several forms of true and false.

Thus, instead of typing Yes, you can type any of these in the Criteria: cell: On, True,
Not No, <> No, <No, or –1.

296

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 296

A Yes/No fi eld can have three states: Yes, No, and Null. Null occurs only when no default value was set in a table and

the value has not yet been entered. Checking for Is Null displays only records containing Null in the fi eld, and

checking for Is Not Null always displays all records with Yes or No in the fi eld. After a Yes/No fi eld check box

is checked (or checked and then deselected), it can never be Null. It must be either Yes or No (–1 or 0).

Entering OLE object criteria
You can specify criteria for OLE objects: Is Null or Is Not Null. For example, suppose
you don’t have pictures for all the products and you want to view only those records that
have a picture—that is, those in which the picture is not null. You specify the Is Not
Null criterion for the Picture fi eld of tblProducts.

Although Is Not Null is the correct syntax, you can also use Not Null in the QBE grid, and Access supplies

the Is operator for you.

Using Multiple Criteria in a Query
In previous sections of this chapter, you worked with single-condition criteria on a single
fi eld. As you learned in those sections, you can specify single-condition criteria for any
fi eld type. In this section, you work with multiple criteria based on a single fi eld. For
example, you might be interested in seeing all records in which the buyer comes from New
York, California, or Arizona. Or maybe you want to view the records of all the products sold
during the fi rst quarter of the year 2012.

The QBE pane has the fl exibility to solve these types of problems. You can specify criteria
for several fi elds in a select query. Using multiple criteria, for example, you can determine
which products were sold for the past 90 days. Either of the following expressions could be
used as criteria in the SaleDate fi eld’s criteria:

Between Date() And Date() - 90
Between Date() And DateAdd("d",-90,Date())

Of these, the expression using the DateAdd function is less ambiguous and more specifi c to
the task.

 We delve deeper into the topic of creating calculations with dates in Chapter 12.

297

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 297

9

Understanding an Or operation
You use an Or operator in queries when you want a fi eld to meet either of two conditions.
For example, you might want to see all the records where the customer has an address in
either New York or California. In other words, you want to see all records where a customer
has addresses in NY, in CA, or both. The general expression for this operation is:

[State] = "NY" Or [State] = "CA"

If either side of this expression is true, the resulting answer is also true. To clarify this
point, consider these conditions:

 ■ Customer 1 has an address in NY: The expression is true.

 ■ Customer 2 has an address in CA: The expression is true.

 ■ Customer 3 has an address in NY and CA: The expression is true.

 ■ Customer 4 has an address in CT: The expression is false.

Specifying multiple values with the Or operator
The Or operator is used to specify multiple values for a fi eld. For example, you use the Or
operator if you want to see all records of buyers who live in CT or NJ or NY. To do this, fol-
low these steps:

 1. Open a new query in Design view and add tblCustomers and tblSales.

 2. Add Company and State from tblCustomers and SalesDate from tblSales.

 3. Click in the Criteria cell of State.

 4. Type AZ Or CA Or NY in the cell. Your QBE pane should resemble the one shown
in Figure 9.10. Access automatically places quotation marks around your example
data—AZ, CA, and NY.

Using the Or cell of the QBE pane
Besides using the literal Or operator as a single expression on the Criteria row under the
State fi eld, you can supply individual criteria for the fi eld vertically on separate rows of
the QBE pane, as shown in Figure 9.11.

Access allows up to nine Or cells for each fi eld. If you need to specify more Or conditions, use the Or operator

between conditions (for example, AZ Or CA Or NY Or PA).

298

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 298

Access rearranges the design shown in Figure 9.11 when the query is saved to match the
query in Figure 9.10. In fact, when you open qryFigure_9-11 in the Chapter09.accdb
example database, you’ll see that it is exactly the same as qryFigure_9-10 because of the
way Access rearranged the criteria when qryFigure_9-11 was originally saved. When you
build a query using “vertical” Or criteria, Access optimizes the SQL statement behind the
query by placing all the Or criteria into a single expression.

FIGURE 9.10

Using the Or operator. Notice the two Or operators under the State fi eld—AZ Or CA Or NY.

FIGURE 9.11

Using the Or cell of the QBE pane. You can place criteria vertically in the QBE grid.

299

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 299

9

Using a list of values with the In operator
Another method for specifying multiple values of a single fi eld is using the In operator. The
In operator fi nds a value from a list of values. For example, use the expression
IN(AZ, CA, NY) under the State fi eld in the query used in Figure 9.11. The list of values in
the parentheses becomes an example criterion. Your query should resemble the query shown in
Figure 9.12.

Access automatically adds quotation marks around AZ, CA, and NY.

When you work with the In operator, each value (example data) must be separated from the others by a comma.

FIGURE 9.12

Using the In operator to fi nd all records for buyer state being either AZ, CA, or NY.

Using And to specify a range
The And operator is frequently used in fi elds that have numeric or date/time data types.
It’s seldom used with text data types, although it can be this way in some situations. For
example, you might be interested in viewing all buyers whose names start with the let-
ters d, e, or f. The And operator can be used here (>="D" And <="G"), although the Like
operator is better (Like "[DEF]*") because it’s much easier to understand.

You use the And operator in queries when you want a fi eld to meet two or more conditions
that you specify. For example, you might want to see records of buyers who have purchased
products between October 1, 2012, and March 31, 2013. In other words, the sale had to have
occurred during the last quarter of the year 2012 and the fi rst quarter of 2013. The general
expression for this example is:

(SaleDate >= #10/1/2012#) And (SaleDate <= #3/31/2013#)

300

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 300

Parentheses are included in this example for clarity.

Unlike the Or operation (which has several conditions under which it is true), the And
operation is true only when both sides of the expression are true. To clarify the use of the
And operator, consider these conditions:

 ■ SaleDate (9/22/2012) is not greater than 10/01/2012 but is less than 3/31/2013:
The result is false.

 ■ SaleDate (4/11/2013) is greater than 10/01/2012 but is not less than 3/31/2013:
The result is false.

 ■ SaleDate (11/22/2012) is greater than 10/01/2012 and less than 3/31/2013: The
result is true.

Using an And operator with a single fi eld sets a range of acceptable values in the fi eld.
Therefore, the key purpose of an And operator in a single fi eld is to defi ne a range of
records to be viewed. For example, you can use the And operator to create a range criterion
to display all buyers who have purchased products between October 1, 2012 and March 31,
2013, inclusively. To create this query, follow these steps:

 1. Create a new query using tblCustomers and tblSales.

 2. Add Company from tblCustomers and SaleDate from tblSales.

 3. Click in the Criteria cell of SaleDate.

 4. Type >= #10/1/2012# And <= #3/31/2013# in the cell. The query should resemble
Figure 9.13.

FIGURE 9.13

Using an And operator to specify complex query criteria.

301

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 301

9

Notice the pound signs (#) used to delimit the dates in the expressions on both sides of
the And operator. Access recognizes pound signs as delimiters for date and time values.
Without the pound signs, Access evaluates the date values as numeric expressions (10
divided by 1 divided by 2012, for example).

Using the Between...And operator
You can request a range of records using another method—the Between...And operator.
With Between...And, you can fi nd records that meet a range of values—for example, all
sales where the list price of the product was $50 or $100. Using the previous example, cre-
ate the query shown in Figure 9.14.

FIGURE 9.14

Using the Between...And operator. The results are the same as the query in Figure 9.13.

The operands for the Between...And operator are inclusive. This means that sales on
10/1/2012 and 3/31/2013 are included in the query results.

Searching for null data
A fi eld might have no contents for several reasons. For example, perhaps the value wasn’t
known at the time of data entry, or the person who did the data entry simply forgot to
enter the information, or the fi eld’s information was removed. Access does nothing with
this fi eld. Unless a default value is specifi ed in the table design, the fi eld simply remains
empty. (A fi eld is said to be null when it’s truly empty.)

Logically, null is neither true nor false. A null fi eld is not equivalent to all spaces or to zero.
A null fi eld simply has no value.

302

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 302

What Is a Null Value?
Databases must work with all kinds of information. We’re all familiar with text, numeric, date, and
other types of data, and in most cases, the value is known. For example, we almost certainly know a
new employee’s fi rst and last name, but we may not yet know his middle name. How does a database
represent a value that is unknown and that may, in fact, not exist? That’s where null comes in. By
default, most fi elds in a database table are null until a value is provided. The value may come from a
user entering a value on a form, or it may be provided through the fi eld’s default value property. If we
learn that the employee doesn’t have a middle name, we may enter an empty string ("") in the fi eld
holding the middle name. In this case, an empty string means that there is no middle name. But as
long as the value is unknown, the fi eld is null.

Access lets you work with null value fi elds by means of two special operators:

 ■ Is Null

 ■ Is Not Null

You use these operators to limit criteria based on the null state of a fi eld. Earlier in this
chapter, you learned that a null value can be used to query for products having a picture on
fi le. In the next example, you look for buyers that don’t have the Notes fi eld fi lled in:

 1. Create a new query using tblCustomers and tblSales.

 2. Add Notes and Company from tblCustomers, and SaleDate from tblSales.

 3. Enter Is Null as the criteria in the Notes field.

 4. Uncheck the Show box in the Notes field.

Your query should look like Figure 9.15. Select the Datasheet View command to see the
records that don’t have a value in the Notes fi eld.

You unchecked the Show box because there is no need to display the Notes fi eld in the
query results. The criteria selects only those rows where the Notes fi eld is null, so there is,
quite literally, nothing to see in the Notes fi eld and no reason to display it in the results.

When using the Is Null and Is Not Null operators, you can enter Null or Not Null, and Access automatically

adds the Is to the Criteria fi eld.

Entering Criteria in Multiple Fields
Earlier in this chapter, you worked with single and multiple criteria specifi ed in single
fi elds. In this section, you work with criteria across several fi elds. When you want to limit

303

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 303

9

the records based on several fi eld conditions, you do so by setting criteria in each of the
fi elds that will be used for the scope. Suppose you want to search for all sales of mod-
els to resellers in Kansas. Or suppose you want to search for motorcycle model buyers in
Massachusetts or Connecticut. Or suppose you want to search for all motorcycle buyers in
Massachusetts or trucks in Connecticut. Each of these queries requires placing criteria in
multiple fi elds and on multiple lines.

FIGURE 9.15

Use Is Null to select rows containing fi elds that contain no data.

Using And and Or across fi elds in a query
To use the And operator and the Or operator across fi elds, place your example or pattern
data in the Criteria cells (for the And operator) and the Or cells of one fi eld relative to the
placement in another fi eld. When you want to use And between two or more fi elds, you
place the example or pattern data across the same row in the QBE pane. When you want to
use Or between two fi elds, you place the criteria on different rows in the QBE pane. Figure
9.16 shows the QBE pane and a rather extreme example of this placement.

The query in Figure 9.16 displays a record if a value matches any of the following criteria:

 ■ ModelYear = 1932 And Make = Ford And Model = Coupe (all must be true).

 ■ Color = Green (this can be true even if either or both of the other two lines are
false).

 ■ Category = Cars (this can be true even if either or both of the other two lines are
false).

As long as one of these three criteria is true, the record appears in the query’s results.

304

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 304

FIGURE 9.16

The QBE pane with And/Or criteria between fi elds using the Criteria and Or rows.

Here’s the core SQL statement behind the query in Figure 9.16:

SELECT ModelYear, Make, Model, Color, Category
FROM tblProducts
WHERE ((ModelYear="1932") AND (Make="Ford") AND (Model="Coupe"))
OR (Color="Green")
OR (Category="Cars")

The locations of the parentheses in this SQL statement are signifi cant. One set of parenthe-
ses surrounds the criteria for Field1, Field2, and Field3, while parentheses surround each of
the criteria applied to Field4 and Field5. This means, of course, that ModelYear, Make, and
Model are applied as a group, while Color and Category are included individually.

Specifying Or criteria across fi elds of a query
Although the Or operator isn’t used across fi elds as commonly as the And operator, occa-
sionally Or is very useful. For example, you might want to see records of any models bought
by contacts in Connecticut or you might want to see records on truck models, regardless of
the state the customers live in. To create this query, follow these steps:

 1. Add tblCustomers, tblSales, tblSalesLineItems, and tblProducts to a new query.

 2. Add Company and State from tblCustomers, and Description and Category from
tblProducts.

 3. Enter CT as the criteria for State.

 4. Enter Trucks in the OR cell under Category. Your query should resemble Figure
9.17. Notice that the criteria entered are not in the same row of the QBE pane for
State and Category. When you place criteria on different rows in the QBE grid,
Access interprets this as an Or between the fi elds. This query returns customers
who either live in Connecticut or have bought truck models.

305

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 305

9

FIGURE 9.17

Using the Or operator between fi elds.

Here’s the SQL statement behind the query in Figure 9.17:

SELECT tblCustomers.Company, tblCustomers.State,
tblProducts.Description, tblProducts.Category
FROM tblProducts
INNER JOIN (tblCustomers
INNER JOIN (tblSales INNER JOIN tblSalesLineItems
ON tblSales.InvoiceNumber = tblSalesLineItems.InvoiceNumber)
ON tblCustomers.CustomerID = tblSales.CustomerID)
ON tblProducts.ProductID = tblSalesLineItems.ProductID
WHERE (tblCustomers.State="CT") OR (tblProducts.Category="Trucks")

Notice the placement of parentheses in the WHERE clause. Either condition (State = "CT"
or Category="Trucks") can be true, and the record is returned by the query.

Moving “Trucks” to the same row as “CT” in the QBE grid changes the query’s logic to
return customers who live in Connecticut and have bought truck models. The rearranged
query is shown in Figure 9.18.

Here’s the SQL statement for this minor rearrangement:

SELECT tblCustomers.Company, tblCustomers.State,
tblProducts.Description, tblProducts.Category
FROM tblProducts
INNER JOIN (tblCustomers
INNER JOIN (tblSales INNER JOIN tblSalesLineItems
ON tblSales.InvoiceNumber = tblSalesLineItems.InvoiceNumber)
ON tblCustomers.CustomerID = tblSales.CustomerID)
ON tblProducts.ProductID = tblSalesLineItems.ProductID
WHERE (tblCustomers.State="CT") AND (tblProducts.Category="Trucks")

306

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 306

FIGURE 9.18

A simple rearrangement in the QBE grid results in a very different query.

The difference is signifi cant because the rearrangement is considerably more restrictive
when returning records. Only one record is returned by qryFigure_5-18, while
qryFigure5-17 returns 17 rows.

Using And and Or together in different fi elds
After you’ve worked with And and Or separately, you’re ready to create a query using And
and Or in different fi elds. In the next example, the query displays records for all buyers of
motorcycle models in Connecticut and buyers of truck models in New York:

 1. Use the query from the previous example, emptying the two criteria cells first.

 2. Enter CT in the Criteria row in the State column.

 3. Enter NY in the OR row under CT in QBE grid.

 4. Type Cars as criteria in the Category field.

 5. Enter Trucks under Cars in the Category field. Figure 9.19 shows how the query
should look. Notice that CT and Cars are in the same row; NY and Trucks are in
another row. This query represents two Ands across fi elds, with an Or in each fi eld.

The important thing to notice about this query is that Access returns, essentially, two sets
of data: car model owners in Connecticut and truck model owners in New York. All other
customers and model combinations are ignored.

A complex query on different lines
Suppose you want to view all records of Chevy models bought in the fi rst six months
of 2012 where the buyer lives in Massachusetts or any type of vehicle from buyers in

307

Chapter 9: Using Operators and Expressions in Access

c09.indd 10/07/2015 Page 307

9

California, regardless of when they were bought. In this example, you use two fi elds for set-
ting criteria: tblCustomers.State, tblProducts.Description, and tblSales.SaleDate. Here’s the
expression for setting these criteria:

((tblSales.SaleDate Between #1/1/2012# And #6/30/2012#) And
(tblProducts.Description = Like "*Chev*") And
(tblCustomers.State = "MA")) OR (tblCustomers.State = "CA")

FIGURE 9.19

Using Ands and Ors in a select query.

The query design is shown in Figure 9.20.

FIGURE 9.20

Using multiple Ands and Ors across fi elds. This is a rather complex select query.

308

Part III: Working with Access Queries

c09.indd 10/07/2015 Page 308

 Be aware that Access interprets dates based on the region and language settings in the Control Panel. Those settings

could tell Access to interpret short dates as mm/dd/yyyy or dd/mm/yyyy, depending on the region. Make sure that

you account for these regional differences when working with dates.

Also, keep in mind that Access, by default, interprets two-digit years from 00 to 30 as 2000 to 2030, while all two-

digit years between 31 and 99 are taken to be 1931 to 1999. This is one reason why consistently using four-digit

years during data entry is always a good idea.

309

c10.indd 10/01/2015 Page 309

 CHAP T ER

10
Going Beyond Select Queries

IN THIS CHAPTER

Working with aggregate queries

Using action queries

Creating crosstab queries

Optimizing query performance

R
etrieving and displaying specifi c records with a select query is indeed a fundamental task
when analyzing data in Access. However, it’s just a small portion of what makes up data anal-
ysis. The scope of data analysis is broad and includes grouping and comparing data, updating

and deleting data, performing calculations on data, and shaping and reporting data. Access has
built-in tools and functionalities designed specifi cally to handle each of these tasks.

In this chapter, we give you an in-depth look at the various tools available to you in Access and
how they can help you go beyond select queries.

The starting database for this walkthrough, Chapter10.accdb, can be downloaded from this book’s website.

Aggregate Queries
An aggregate query, sometimes referred to as a group-by query, is a type of query you can build to
help you quickly group and summarize your data. With a select query, you can retrieve records only
as they appear in your data source. But with an aggregate query, you can retrieve a summary snap-
shot of your data that shows you totals, averages, counts, and more.

Creating an aggregate query
To get a fi rm understanding of what an aggregate query does, consider the following scenario:
You’ve just been asked to provide the sum of total revenue by period. In response to this request,
start a query in Design view and bring in the Dim_Dates.Period and Dim_Transactions.LineTotal

ON THE WEB

310

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 310

fi elds, as shown in Figure 10.1. If you run this query as is, you’ll get every record in your
dataset instead of the summary you need.

FIGURE 10.1

Running this query will return all the records in your dataset, not the summary you need.

Here’s a quick reminder on how to start a query in Design view: Go to the Ribbon and select the Create tab. From

there, select Query Design. The Show Table Dialog box opens on top of a blank Query Design view. Select the table(s)

you need to work with.

If you need more information, refer back to Chapter 8 for a quick refresher on the basics of Access queries.

In order to get a summary of revenue by period, you’ll need to activate Totals in your
design grid. To do this, go to the Ribbon and select the Design tab, and then click the
Totals button. As you can see in Figure 10.2, after you’ve activated Totals in your design
grid, you’ll see a new row in your grid called Total. The Total row tells Access which aggre-
gate function to use when performing aggregation on the specifi ed fi elds.

Notice that the Total row contains the words Group By under each fi eld in your grid. This
means that all similar records in a fi eld will be grouped to provide you with a unique data
item. We’ll cover the different aggregate functions in depth later in this chapter.

The idea here is to adjust the aggregate functions in the Total row to correspond with
the analysis you’re trying perform. In this scenario, you need to group all the periods in
your dataset, and then sum the revenue in each period. Therefore, you’ll need to use the
Group By aggregate function for the Period fi eld, and the Sum aggregate function for the
LineTotal fi eld.

311

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 311

10

FIGURE 10.2

Activating Totals in your design grid adds a Total row to your query grid that defaults to
Group By.

Since the default selection for Totals is the Group By function, no change is needed for
the Period fi eld. However, you’ll need to change the aggregate function for the LineTotal
fi eld from Group By to Sum. This tells Access that you want to sum the revenue fi gures
in the LineTotal fi eld, not group them. To change the aggregate function, simply click the
Totals drop-down list under the LineTotal fi eld, shown in Figure 10.3, and select Sum. At
this point, you can run your query.

FIGURE 10.3

Change the aggregate function under the LineTotal fi eld to Sum.

312

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 312

As you can see in Figure 10.4, the resulting table gives a summary of your dataset, showing
total revenue by period.

FIGURE 10.4

After running your query, you have a summary showing your total revenue by period.

Creating Aliases for Your Column Names
Notice that in Figure 10.4, Access automatically changed the name of the LineTotal fi eld to SumOfLineTotal.
This is a common courtesy extended by Access to let you know that the fi gures you see here are a
result of summing the LineTotal fi eld. This renaming may be convenient in some cases, but if you need
to distribute these results to other people, you may want to give the fi eld a better name. This is where
aliases come in handy.

An alias is an alternate name you can give to a fi eld in order to make it easier to read the fi eld’s name
in the query results. There are two methods for creating an alias for your fi eld:

 ■ Method 1: Preface the fi eld with the text you would like to see as the fi eld name, followed
by a colon. The following fi gure demonstrates how you would create aliases to ensure that
your query results have user-friendly column names. Running this query will result in a dataset
with a column called Period and column called Total Revenue.

313

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 313

10

 ■ Method 2: Right-click the fi eld name and select Properties. The Property Sheet dialog box
for Field Properties appears. In this dialog box, enter the desired alias in the Caption input,
as shown in the following fi gure.

Be aware that if you use the Field Properties dialog box to defi ne your alias, there will be no clear indication in either

your query’s Design view or your query’s SQL string that you’re using an alias. This may lead to some confusion for

anyone using your queries. For this reason, it’s generally better to use the fi rst method to defi ne an alias.

About aggregate functions
In the example shown in Figure 10.3, you selected the Sum aggregate function from the
Totals drop-down list. Obviously, you could’ve selected any one of the 12 functions avail-
able. Indeed, you’ll undoubtedly come across analyses where you’ll have to use a few of the
other functions available to you. So, it’s important to know what each one of these aggre-
gate functions means for your data analysis.

Group By

The Group By aggregate function aggregates all the records in the specifi ed fi eld into
unique groups. Here are a few things to keep in mind when using the Group By aggregate
function:

 ■ Access performs the Group By function in your aggregate query before any
other aggregation. If you’re performing a Group By along with another aggregate
function, the Group By function will be performed fi rst. The example shown in
Figure 10.4 illustrates this concept. Access groups the Period fi eld before summing
the LineTotal fi eld.

 ■ Access sorts each group-by field in ascending order. Unless otherwise specifi ed,
any fi eld tagged as a group-by fi eld will be sorted in ascending order. If your query
has multiple group-by fi elds, each fi eld will be sorted in ascending order starting
with the leftmost fi eld.

314

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 314

 ■ Access treats multiple group-by fields as one unique item. To illustrate this
point, create a query that looks similar to the one shown in Figure 10.5. This query
counts all the transactions that were logged in the 201201 period.

FIGURE 10.5

This query returns only one line showing total records for the 201201 period.

Now return to the Query Design view and add ProductID, as shown here in Figure 10.6. This
time, Access treats each combination of Period and Product Number as a unique item. Each
combination is grouped before the records in each group are counted. The benefi t here is
that you’ve added a dimension to your analysis. Not only do you know how many transac-
tions per ProductID were logged in 201201, but if you add up all the transactions, you’ll get
an accurate count of the total number of transactions logged in 201201.

FIGURE 10.6

This query results in a few more records, but if you add up the counts in each group, they’ll
total 503.

315

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 315

10

Sum, Avg, Count, StDev, Var

These aggregate functions all perform mathematical calculations against the records in
your selected fi eld. It’s important to note that these functions exclude any records that are
set to null. In other words, these aggregate functions ignore any empty cells.

 ■ Sum: Calculates the total value of all the records in the designated fi eld or group-
ing. This function will work only with the following data types: AutoNumber,
Currency, Date/Time, and Number.

 ■ Avg: Calculates the average of all the records in the designated fi eld or grouping.
This function will work only with the following data types: AutoNumber, Currency,
Date/Time, and Number.

 ■ Count: Counts the number of entries within the designated fi eld or grouping. This
function works with all data types.

 ■ StDev: Calculates the standard deviation across all records within the designated
fi eld or grouping. This function will work only with the following data types:
AutoNumber, Currency, Date/Time, and Number.

 ■ Var: Calculates the amount by which all the values within the designated fi eld or
grouping vary from the average value of the group. This function will work only
with the following data types: AutoNumber, Currency, Date/Time, and Number.

Min, Max, First, Last

Unlike other aggregate functions, these functions evaluate all the records in the designated
fi eld or grouping and return a single value from the group.

 ■ Min: Returns the value of the record with the lowest value in the designated
fi eld or grouping. This function will work only with the following data types:
AutoNumber, Currency, Date/Time, Number, and Text.

 ■ Max: Returns the value of the record with the highest value in the designated
fi eld or grouping. This function will work only with the following data types:
AutoNumber, Currency, Date/Time, Number, and Text.

 ■ First: Returns the value of the fi rst record in the designated fi eld or grouping.
This function works with all data types.

 ■ Last: Returns the value of the last record in the designated fi eld or grouping.
This function works with all data types.

Expression, Where

One of the steadfast rules of aggregate queries is that every fi eld must have an aggrega-
tion performed against it. However, in some situations you’ll have to use a fi eld as a util-
ity—that is, use a fi eld to simply perform a calculation or apply a fi lter. These fi elds are a
means to get to the fi nal analysis you’re looking for, rather than part of the fi nal analy-
sis. In these situations, you’ll use the Expression function or the Where clause. The

316

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 316

Expression function and the Where clause are unique in that they don’t perform any
grouping action per se.

 ■ Expression: The Expression aggregate function is generally applied when
you’re utilizing custom calculations or other functions in an aggregate query.
Expression tells Access to perform the designated custom calculation on each
individual record or group separately.

 ■ Where: The Where clause allows you to apply a criterion to a fi eld that is not
included in your aggregate query, effectively applying a fi lter to your analysis.

To see the Expression aggregate function in action, create a query in Design view that
looks like the one shown in Figure 10.7. Note that you’re using two aliases in this query:
“Revenue” for the LineTotal fi eld and “Cost” for the custom calculation defi ned here. Using
an alias of “Revenue” gives the sum of LineTotal a user-friendly name.

FIGURE 10.7

The Expression aggregate function allows you to perform the designated custom
calculation on each Period group separately.

Now you can use [Revenue] to represent the sum of LineTotal in your custom calculation.
The Expression aggregate function ties it all together by telling Access that [Revenue]*.33
will be performed against the resulting sum of LineTotal for each individual Period group.
Running this query will return the total Revenue and Cost for each Period group.

To see the Where clause in action, create a query in Design view that looks like the one
shown in Figure 10.8. As you can see in the Total row, you’re grouping ProductID and sum-
ming LineTotal. However, Period has no aggregation selected because you only want to use
it to fi lter out one specifi c period. You’ve entered 201201 in the criteria for Period. If you
run this query as is, you’ll get the following error message:

You tried to execute a query that does not include the speci-
fied expression 'Period' as part of an aggregate function.

317

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 317

10

FIGURE 10.8

Running this query will cause an error message because you have no aggregation defi ned for
Period.

To run this query successfully, click the Totals drop-down list for the Period fi eld and select
Where. At this point, your query should look similar to the one shown here in Figure 10.9.
With the Where clause specifi ed, you can successfully run this query.

FIGURE 10.9

Adding a Where clause remedies the error and allows you to run the query.

318

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 318

Here is one fi nal note about the Where clause. Notice in Figure 10.9 that the check box in the Show row has no check

in it for the Period. This is because fi elds that are tagged with the Where clause can’t be shown in an aggregate

query. Therefore, this check box must remain empty. If you check the Show check box of a fi eld with a Where clause,

you’ll get an error message stating that you can’t display the fi eld for which you entered Where in the Total row.

Action Queries
As we mentioned earlier, in addition to querying data, the scope of data analysis includes
shaping data, changing data, deleting data, and updating data. Access provides action que-
ries as data analysis tools to help you with these tasks. Unfortunately, many people don’t
use these tools; instead, they export small chunks of data to Excel to perform these tasks.
That may be fi ne if you’re performing these tasks as a one-time analysis with a small data-
set. But what do you do when you have to carry out the same analysis on a weekly basis, or
if the dataset you need to manipulate exceeds Excel’s limits? In these situations, it would
be impractical to routinely export data into Excel, manipulate the data, and then re-import
the data back into Access. Using action queries, you can increase your productivity and
reduce the chance of errors by carrying out all your analytical processes within Access.

You can think of an action query the same way you think of a select query. Like a select
query, an action query extracts a dataset from a data source based on the defi nitions and
criteria you pass to the query. The difference is that when an action query returns results
it doesn’t display a dataset; instead, it performs some action on those results. The action it
performs depends on its type.

Unlike select queries, you can’t use action queries as a data source for a form or a report, as they do not return a

dataset that can be read.

There are four types of action queries: make-table queries, delete queries, append queries,
and update queries. Each query type performs a unique action.

Make-table queries
A make-table query creates a new table consisting of data from an existing table. The table
that is created consists of records that have met the defi nitions and criteria of the make-
table query.

In simple terms, if you create a query, and you want to capture the results of your query
in its own table, you can use a make-table query to create a hard table with your query
results. Then you can use your new table in some other analytical process.

319

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 319

10

When you build a make-table query, you have to specify the name of the table that will be made when the make-table

query is run. If you give the new table the same name as an existing table, the existing table will be overwritten. If you

accidentally write over another table with a make-table query, you won’t be able to recover the old table. Be sure that

you name the tables created by your make-table queries carefully to avoid overwriting existing information.

The data in a table made by a make-table query is not, in any way, linked to its source data. This means that the data

in your new table will not be updated when data in the original table is changed.

Let’s say you’ve been asked to provide the marketing department with a list of customers,
along with information on each customer’s sales history. A make-table query will get you
the data you need. To create a make-table query, follow these steps:

 1. Create a query in the Query Design view that looks similar to the one shown in
Figure 10.10.

FIGURE 10.10

Create this query in Design view.

 2. Select the Design tab of the Ribbon, and then click the Make Table button. The
Make Table dialog box (shown in Figure 10.11) appears.

 3. In the Table Name field, enter the name you want to give to your new table.
For this example, type SalesHistory. Be sure not to enter the name of a table that
already exists in your database, because it’ll be overwritten.

320

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 320

FIGURE 10.11

Enter the name of your new table.

 4. Click OK to close the dialog box, and then click the Run command to run your
query. Access throws up the warning message shown in Figure 10.12, letting you
know that you won’t be able to undo this action.

 5. Click Yes to confirm and create your new table.

FIGURE 10.12

Click Yes to run your query.

When your query has fi nished running, you’ll fi nd a new table called SalesHistory
in your Table objects.

Turning Aggregate Query Results into Hard Data
The results of aggregate queries are inherently not updatable. This means you won’t be able to edit
any of the records returned from an aggregate query because there is no relationship between the
aggregated data and the underlying data.

However, you can change your aggregate query into a Make Table query and create a hard table with
your aggregate query’s results. With your new hard table, you’ll be able to edit to your heart’s content.

To illustrate how this works, create the query shown in the following fi gure in Design view. Then change
the query into a make-table query, enter a name for your new table, and run it.

Notice that in the fi gure you defi ned a column with an alias of “Customer.” After the alias, you simply
enter “All” (in quotes). When you run the query, you’ll notice that your new table has a column named

321

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 321

10

Customer in which the value for every record is All. This example illustrates that when running a make-
table query, you can create your own columns on the fl y simply by creating an alias for the column and
defi ning its contents after the colon.

Delete queries
A delete query deletes records from a table based on the defi nitions and criteria you specify.
That is, a delete query affects a group of records that meet a specifi ed criterion that you apply.

Although you can delete records by hand, in some situations using a delete query is more effi -
cient. For example, if you have a very large dataset, a delete query deletes your records faster
than a manual delete can. In addition, if you want to delete certain records based on several
complex criteria, you’ll want to use a delete query. Finally, if you need to delete records from
one table based on a comparison to another table, a delete query is the way to go.

Like all other action queries, you can’t undo the effects of a delete query. However, a delete query is much more

 dangerous than the other action queries because there is no way to remedy accidentally deleted data.

Given the fact that deleted data can’t be recovered, get in the habit of taking one of the
following actions in order to avoid a fatal error:

 ■ Run a select query to display the records you’re about to delete. Then review the
records to confi rm that these records are indeed the ones you want to delete, and
then run the query as a delete query.

 ■ Run a select query to display the records you’re about to delete. Then change the
query into a make-table query. Run the make-table query to make a backup of the

322

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 322

data you’re about to delete. Finally, run the query again as a delete query to delete
the records.

 ■ Make a backup of your database before running your delete query.

Now let’s say the marketing department has informed you that the SalesHistory table you
gave them includes records that they don’t need. They want you to delete all history before
the 201206 Period. A delete query based on the SalesHistory table you created a moment
ago will accomplish this task. To create a delete query, follow these steps:

 1. Bring in the Period field and enter <PD201206 in the Criteria row. Access will
automatically add quotations around your criteria. Your design grid should look
like the one shown in Figure 10.13.

FIGURE 10.13

This query will select all records with a Period earlier than 201206.

 2. Perform a test by running the query.

 3. Review the records that are returned, and take note that 2,781 records meet
your criteria. You now know that 2,781 records will be deleted if you run a delete
query based on these query defi nitions.

 4. Return to Design view.

 5. Select the Design tab of the Ribbon, and then click the Delete button.

 6. Run your query again. Access throws up the message shown in Figure 10.14, tell-
ing you that you’re about to delete 2,781 rows of data and warning you that you
won’t be able to undo this action. This is the number you were expecting to see,
because the test you ran earlier returned 2,781 records.

 7. Because everything checks out, click Yes to confirm and delete the records.

323

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 323

10

FIGURE 10.14

Click Yes to continue with your delete action.

If you’re working with a very large dataset, Access may throw up a message telling you that the undo command won’t

be available because the operation is too large or there isn’t enough free memory. Many people mistakenly interpret

this message as meaning that the operation can’t be done because there isn’t enough memory. But this message is

simply telling you that Access won’t be able to give the option of undoing this change if you choose to continue with

the action. This is applicable to delete queries, append queries, and update queries.

Deleting Records from One Table Based on the
Records from Another Table
You’ll encounter many analyses in which you have to delete records from one table based on the
records from another table. This task is relatively easy. However, many users get stuck on it because
of one simple mistake.

The query in the following fi gure looks simple enough. It’s telling Access to delete all records from the
Customer_ListA table if the customer is found in the Customer_ListB table.

Continues

324

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 324

If you run this query, Access will throw up the message shown in the following fi gure. This message is
asking you to specify which table contains the records you want to delete.

This message stumps many Access users. Unfortunately, this message doesn’t clearly state what you
need in order to remedy the mistake. Nevertheless, the remedy is a simple one: First, clear the query
grid by deleting the CustomerName fi eld. Next, double-click the asterisk (*) in the Customer_ListA
table. This explicitly tells Access that the Customer_ListA table contains the records you want to delete.
The following fi gure demonstrates the correct way to build this query.

Append queries
An append query appends records to a table based on the defi nitions and criteria you
specify in your query. In other words, with an append query, you can add the results of
your query to the end of a table, effectively adding rows to the table.

With an append query, you’re essentially copying records from one table or query and add-
ing them to the end of another table. Append queries come in handy when you need to
transfer large datasets from one existing table to another. For example, if you have a table
called Old Transactions in which you archive your transaction records, you can add the
latest batch of transactions from the New Transactions table simply by using an append
query.

It’s possible that not all the records you think you’re appending to a table actually make it to the table (for the reasons we

list below). Also, you’ll want to be wary of running the same append query more than once, so that data is duplicated.

continued

325

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 325

10

There are generally two reasons why records can get lost during an append process:

 ■ Type conversion failure: This failure occurs when the character type of the source
data doesn’t match that of the destination table column. For example, imagine that
you have a table with a fi eld called Cost. Your Cost fi eld is set as a Text character
type because you have some entries that are tagged as TBD (to be determined),
because you don’t know the cost yet. If you try to append that fi eld to another
table whose Cost fi eld is set as a Number character type, all the entries that have
TBD will be changed to null, effectively deleting your TBD tag.

 ■ Key violation: This violation occurs when you’re trying to append duplicate
records to a fi eld in the destination table that is set as a primary key or is indexed
as No Duplicates. In other words, when you have a fi eld that prohibits duplicates,
Access won’t let you append any record that is a duplicate of an existing record in
that fi eld.

Another hazard of an append query is that the query will simply fail to run. There are two
reasons why an append query will fail:

 ■ Lock violation: This violation occurs when the destination table is open in Design
view or is opened by another user on the network.

 ■ Validation rule violation: This violation occurs when a fi eld in the destination
table has one of the following property settings:

 ■ Required field is set to Yes: If a fi eld in the destination table has been set
to Required Yes and you don’t append data to this fi eld, your append query
will fail.

 ■ Allow Zero Length is set to No: If a fi eld in the destination table has been set
to Zero Length No and you don’t append data to this fi eld, your append query
will fail.

 ■ Validation rule set to anything: If a fi eld in the destination table has a vali-
dation rule and you break the rule with your append query, your append query
will fail. For example, if you have a validation rule for the Cost fi eld in your
destination table set to >0, you can’t append records with a quantity less than
or equal to zero.

Luckily, Access will clearly warn you if you’re about to cause any of these errors. Figure
10.15 demonstrates this warning message, which tells you that you can’t append all the
records due to errors. It also tells you exactly how many records won’t be appended because
of each error. In this case, 5,979 records won’t be appended because of key violations.
You have the option of clicking Yes or No. If you click Yes, the warning is ignored and all
records are appended, minus the records with the errors. If you click No, the query will be
canceled, which means that no records will be appended.

326

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 326

FIGURE 10.15

The warning message tells you that you’ll lose records during the append process.

Keep in mind that like all other action queries, you won’t be able to undo your append query once you’ve pulled the

trigger.

If you can identify the records you recently appended in your destination table, you could technically undo your

append action simply by deleting the newly appended records. This would obviously be contingent upon your provid-

ing yourself with a method of identifying appended records. For example, you could create a fi eld that contains some

code or tag that identifi es the appended records. This code can be anything from a date to a simple character.

Let’s say the marketing department tells you that they made a mistake—they actually
need all the sales history for the 2012 fi scal year. So, they need periods 201201 thru 201205
added back to the SalesHistory report. An append query is in order.

In order to get them what they need, follow these steps:

 1. Create a query in the Query Design view that looks similar to the one shown in
Figure 10.16.

 2. Select the Design tab of the Ribbon, and then click the Append button. The
Append dialog box (shown in Figure 10.17) appears.

 3. In the Table Name field, enter the name of the table to which you would like to
append your query results. In this example, enter SalesHistory.

 4. Once you’ve entered your destination table’s name, click OK. Your query grid
has a new row called Append To under the Sort row (see Figure 10.18). The idea is to
select the name of the fi eld in your destination table where you want to append the
information resulting from your query. For example, the Append To row under the
Period fi eld shows the word Period. This means that the data in the Period fi eld of
this query will be appended to the Period fi eld in the SalesHistory table.

327

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 327

10

FIGURE 10.16

This query selects all records contained in Periods 201201 thru 201205.

FIGURE 10.17

Enter the name of the table to which you want to append your query results.

FIGURE 10.18

In the Append To row, select the name of the fi eld in your destination table where you want
to append the information resulting from your query.

328

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 328

 5. Run your query. Access throws up a message, as shown in Figure 10.19, telling you
that you’re about to append 2,781 rows of data and warning you that you won’t be
able to undo this action.

 6. Click Yes to confirm and append the records.

FIGURE 10.19

Click Yes to continue with your append action.

Adding a Total Row to Your Dataset
Your manager wants you to create a revenue summary report that shows the total revenue for each
account manager in each market. He also wants to see the total revenue for each market. Instead of
giving your manager two separate reports, you can give him one table that has account manager
details and market totals. This is an easy process:

 1. Create a query in the Query Design view that looks similar to the one shown here in
the following fi gure. Note that you’re creating an alias for the LineTotal Field.

329

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 329

10

 2. Change the query into a make-table query and name your table RevenueSummary.

 3. Run this query.

 4. Now use the RevenueSummary table you just created to summarize revenue by
Market; to do this, create a query in the Query Design view that looks similar to the
one shown here in the following fi gure.

Take a moment and look at the query in this fi gure. You’ll notice that you’re making a custom
Product_Category fi eld, fi lling it with “(Total)”. This will ensure that the summary lines you
append to the RevenueSummary table will be clearly identifi able, as they’ll have the word
“Total” in the Product_Category fi eld.

 5. Change the query into an append query and append these results to the RevenueSummary
table.

Now you can open the RevenueSummary table and sort by Market and Product_Category. As you can
see in the following fi gure, you’ve successfully created a table that has a total revenue line for every
product category and a total revenue line for each market, all in one table.

330

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 330

Update queries
The primary reason to use update queries is to save time. There is no easier way to edit
large amounts of data at one time than with an update query. For example, imagine you
have a Customers table that includes customers’ zip codes. If the zip code 32750 has been
changed to 32751, you can easily update your Customers table to replace 32750 with 32751.

As is the case with all other action queries, you must always take precautions to ensure that you aren’t in a situation

where you can’t undo the effects of an update query. To give yourself a way back to the original data in the event of a

misstep, make a backup of your database before running your update query. Alternatively, you can run a select query

to display, and then change the query into a make-table query; run the make-table query to make a backup of the

data you’re about to update; and then run the query again as an update query to delete the records.

Let’s say you’ve just received word that the zip code for all customers in the 33605 zip code
has been changed to 33606. In order to keep your database accurate, you’ll have to update
all the 33605 zip codes in your Dim_Customers table to 33606. Here’s how:

 1. Create a query in the Query Design view that looks similar to the one shown in
Figure 10.20.

FIGURE 10.20

This query will select all customers that are in the 33605 zip code.

 2. Perform a test by running the query.

 3. Review the records that are returned, and take note that six records meet your
criteria. You now know that six records will be updated if you run an update query
based on these query defi nitions.

331

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 331

10

 4. Return to the Design view.

 5. Select the Design tab of the Ribbon, and click the Update button. Your query
grid now has a new row called Update To. The idea is to enter the value to which
you would like to update the current data. In this scenario, shown in Figure 10.21,
you want to update the zip code for the records you’re selecting to 33606.

FIGURE 10.21

In this query, you are updating the zip code for all customers that have a code of
33605 to 33606.

 6. Run the query. Access throws up the message shown in Figure 10.22, telling you
that you’re about to update six rows of data and warning you that you won’t be able
to undo this action. This is the number you were expecting to see, because the test
you ran earlier returned six records.

 7. Since everything checks out, click Yes to confirm and update the records.

FIGURE 10.22

Click Yes to continue with your update action.

332

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 332

Using Expressions in Your Update Queries
You’ll come across situations in which you have to execute record-specifi c updates. That is, you aren’t
updating multiple records with one specifi c value; instead, you’re updating each record individually
based on an expression.

To demonstrate this concept, start a query in Design view based on the SalesHistory table you cre-
ated in the “Make-table queries” section earlier in this chapter. Build your query like the one shown
in the following fi gure.

This query is telling Access to update the Period to the concatenated text “PD” with the value in the
Period fi eld.

After you run this query, all the values in the Period fi eld will have a prefi x of PD. For example, 200801
will be updated to PD200801.

Remember: This is just one example of an expression you can use to update your records. You can use
almost any expression with an update query, ranging from mathematical functions to string operations.

A Word on Updatable Datasets
Not all datasets are updatable. That is, you may have a dataset that Access can’t update for one reason
or another. If your update query fails, you’ll get one of these messages: Operation must use an
updatable query or This recordset is not updatable.

Your update query will fail if any one of the following applies:

 ■ Your query is using a join to another query. To work around this issue, create a temporary
table that you can use instead of the joined query.

 ■ Your query is based on a crosstab query, an aggregate query, a union query, or a sub
query that contains aggregate functions. To work around this issue, create a temporary
table that you can use instead of the query.

333

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 333

10

 ■ Your query is based on three or more tables and there is a many-to-one-to-many
relationship. To work around this issue, create a temporary table that you can use without
the relationship.

 ■ Your query is based on a table where the Unique Values property is set to Yes. To
work around this issue, set the Unique Values property of the table to No.

 ■ Your query is based on a table that’s locked by another user. To work around this issue,
ensure the table is not in Design view or locked by another user.

 ■ Your query is based on a table in a database that is open as read-only or is located on
a read-only drive. To work around this issue, obtain write access to the database or drive.

 ■ Your query is based on a linked ODBC table with no unique index or a paradox table
without a primary key. To work around this issue, add a primary key or a unique index to
the linked table.

 ■ Your query is based on a SQL pass-through query. To work around this issue, create a
temporary table that you can use instead of the query.

Crosstab Queries
A crosstab query is a special kind of aggregate query that summarizes values from a speci-
fi ed fi eld and groups them in a matrix layout by two sets of dimensions, one set down the
left side of the matrix and the other set listed across the top of the matrix. Crosstab que-
ries are perfect for analyzing trends over time or providing a method for quickly identify-
ing anomalies in your dataset.

The anatomy of a crosstab query is simple. You need a minimum of three fi elds in order to
create the matrix structure that will become your crosstab. The fi rst fi eld makes up the row
headings; the second fi eld makes up the column headings; and the third fi eld makes up the
aggregated data in the center of the matrix. The data in the center can represent a Sum,
Count, Average, or any other aggregate function. Figure 10.23 demonstrates the basic
structure of a crosstab query.

There are two methods to create a crosstab query. You can use the Crosstab Query Wizard or
create a crosstab query manually using the query design grid.

Creating a crosstab query using the Crosstab Query Wizard
To use the Crosstab Query Wizard to create a crosstab query, follow these steps:

334

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 334

FIGURE 10.23

The basic structure of a crosstab query.

 1. Select the Create tab of the Ribbon and then click the Query Wizard button.
The New Query dialog box, shown in Figure 10.24, appears.

FIGURE 10.24

Select Crosstab Query Wizard from the New Query dialog box.

 2. Select Crosstab Query Wizard from the selection list, and then click OK.

The fi rst step in the Crosstab Query Wizard is to identify the data source you’ll be
using. As you can see in Figure 10.25, you can choose either a query or a table as
your data source. In this example, you’ll be using the Dim_Transactions table as
your data source.

 3. Select Dim_Transactions and then click the Next button.

The next step is to identify the fi elds you want to use as the row headings.

 4. Select the ProductID field and click the button with the > symbol on it to
move it to the Selected Items list. The dialog box should look like Figure 10.26.
Notice that the ProductID fi eld is shown in the sample diagram at the bottom of
the dialog box.

You can select up to three fi elds to include in your crosstab query as row headings.
Remember that Access treats each combination of headings as a unique item. That
is, each combination is grouped before the records in each group are aggregated.

335

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 335

10

FIGURE 10.25

Select the data source for your crosstab query.

FIGURE 10.26

Select the ProductID fi eld and then click the Next button.

336

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 336

The next step is to identify the fi eld you want to use as the column heading for
your crosstab query. Keep in mind that there can be only one column heading in
your crosstab.

 5. Select the OrderDate field from the field list. Notice in Figure 10.27 that the
sample diagram at the bottom of the dialog box updates to show the OrderDate.

FIGURE 10.27

Select the OrderDate fi eld then click the Next button.

If the fi eld that is being used as a column heading includes data that contains a period (.), an exclamation point (!),

or a bracket ([or]), those characters will be changed to an underscore character (_) in the column heading. This

does not happen if the same data is used as a row heading. This behavior is by design, as the naming convention for

fi eld names in Access prohibits use of these characters.

If your Column Heading is a date fi eld, as the OrderDate is in this example, you’ll
see the step shown in Figure 10.28. In this step, you’ll have the option of specify-
ing an interval to group your dates by.

 6. Select Quarter and notice that the sample diagram at the bottom of the dialog
box updates accordingly.

337

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 337

10

FIGURE 10.28

Select Quarter and then click Next.

You’re almost done. In the second-to-last step, shown in Figure 10.29, you’ll iden-
tify the fi eld you want to aggregate and the function you want to use.

 7. Select the LineTotal field from the Fields list, and then select Sum from the
Functions list. Notice the Yes, Include Row Sums check box. This box is checked
by default to ensure that your crosstab query includes a Total column that contains
the sum total for each row. If you don’t want this column, simply remove the check
from the check box.

If you look at the sample diagram at the bottom of the dialog box, you will get a
good sense of what your fi nal crosstab query will do. In this example, your crosstab
will calculate the sum of the LineTotal fi eld for each ProductID by Quarter.

The fi nal step, shown in Figure 10.30, is to name your crosstab query.

 8. In this example, name your crosstab Product Summary by Quarter. After
you name your query, you have the option of viewing your query or modifying
the design.

 9. In this case, you want to view your query results so simply click the Finish
button.

In just a few clicks, you’ve created a powerful look at the revenue performance of each
product by quarter (see Figure 10.31).

338

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 338

FIGURE 10.29

Select the LineTotal and Sum, and then click the Next button.

FIGURE 10.30

Click Finish to see your query results.

339

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 339

10

FIGURE 10.31

A powerful analysis in just a few clicks.

Turning Your Crosstab Query into Hard Data
You’ll undoubtedly encounter scenarios in which you’ll have to convert your crosstab query into hard
data in order to use the results on other analyses. A simple trick for doing this is to use your saved
crosstab query in a make-table query to create a new table with your crosstab results.

Start by creating a new select query in Design view and add your saved crosstab query. In the follow-
ing fi gure, you’ll notice that you’re using the Product Summary by Quarter crosstab you just created.
Bring in the fi elds you want to include in your new table.

At this point, simply convert your query into a make-table query and run it. After you run your make-
table query, you’ll have a hard table that contains the results of your crosstab.

340

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 340

Creating a crosstab query manually
Although the Crosstab Query Wizard makes it easy to create a crosstab in just a few clicks,
it does have limitations that may inhibit your data analysis efforts:

 ■ You can select only one data source on which to base your crosstab. This means
that if you need to crosstab data residing across multiple tables, you’ll need to take
extra steps to create a temporary query to use as your data source.

 ■ There is no way to filter or limit your crosstab query with criteria from the
Crosstab Query Wizard.

 ■ You’re limited to only three row headings.

 ■ You can’t explicitly define the order of your column headings from the Crosstab
Query Wizard.

The good news is that you can create a crosstab query manually through the query design
grid. Manually creating your crosstab query allows you greater fl exibility in your analysis.

Using the query design grid to create your crosstab query

Here’s how to create a crosstab query using the query design grid:

 1. Create the aggregate query shown in Figure 10.32. Notice that you’re using mul-
tiple tables to get the fi elds you need. One of the benefi ts of creating a crosstab
query manually is that you don’t have to use just one data source—you can use as
many sources as you need in order to defi ne the fi elds in your query.

FIGURE 10.32

Create an aggregate query as shown here.

341

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 341

10

 2. Select the Design tab of the Ribbon and click the Crosstab button. A row called
Crosstab has been added to your query grid (see Figure 10.33). The idea is to defi ne
what role each fi eld will play in your crosstab query.

FIGURE 10.33

Set each fi eld’s role in the Crosstab row.

 3. Under each field in the Crosstab row, select whether the field will be a row
heading, a column heading, or a value.

 4. Run the query to see your crosstab in action.

When building your crosstab in the query grid, keep the following in mind:

 ■ You must have a minimum of one row heading, one column heading, and one
value fi eld.

 ■ You can’t defi ne more than one column heading.

 ■ You can’t defi ne more than one value heading.

 ■ You are not limited to only three row headings.

Creating a Crosstab View with Multiple Value Fields
One of the rules of a crosstab query is that you can’t have more than one value fi eld. However, you
can work around this limitation and analyze more than one metric with the same data groups. To help
demonstrate how this works, create a crosstab query as shown in the following fi gure and save it as
Crosstab-1. Your column heading is a custom fi eld that will give you the region name and the word
Revenue next to it.

Continues

342

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 342

Next, create another crosstab query as shown in the following fi gure and save it as Crosstab-2. Again,
your column heading is a custom fi eld that will give you the region name and the word Transactions
next to it.

Finally, create a select query that will join the two crosstab queries on the row heading. In the example
shown in the following fi gure, the row heading is the Product_Category fi eld. Bring in all the fi elds in
the appropriate order. When you run this query, the result will be an analysis that incorporates both
crosstab queries, effectively giving you multiple value fi elds.

continued

343

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 343

10

Keep in mind that if you have more than one row heading, you’ll have to create a join on each row heading.

Customizing your crosstab queries

As useful as crosstab queries can be, you may fi nd that you need to apply some of your own
customizations in order to get the results you need. In this section, we explain a few of the
ways you can customize your crosstab queries to meet your needs.

Defining criteria in a crosstab query

The ability to fi lter or limit your crosstab query is another benefi t of creating crosstab
queries manually. To defi ne a fi lter for your crosstab query, simply enter the criteria as you
normally would for any other aggregate query. Figure 10.34 demonstrates this concept.

Changing the sort order of your crosstab query column headings

By default, crosstab queries sort their column headings in alphabetical order. For example,
the crosstab query in Figure 10.35 will produce a dataset where the column headings read
this order: Canada, Midwest, North, Northeast, South, Southeast, Southwest, and West.

This may be fi ne in most situations, but if your company headquarters is in California, the
executive management may naturally want to see the West region fi rst. You can specify the
column order of a crosstab query by changing the Column Headings attribute in the Query
Properties.

344

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 344

FIGURE 10.34

You can defi ne a criterion to fi lter your crosstab queries.

FIGURE 10.35

This crosstab query will display all regions as columns in alphabetical order.

To get to the Column Headings attribute:

 1. Open the query in Design view.

 2. Right-click in the gray area above the white query grid and select Properties.
The Query Properties dialog box, shown in Figure 10.36, appears.

 3. Enter the order in which you want to see the column headings by changing the
Column Headings attribute.

345

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 345

10

FIGURE 10.36

The Column Headings attribute is set to have the columns read in this order: West, Canada,
Midwest, North, Northeast, South, Southeast, and Southwest.

Adjusting the Column Headings attribute comes in handy when you’re struggling with showing months in month order

instead of alphabetical order. Simply enter the month columns in the order you want to see them. For example: “Jan”,

“Feb”,“Mar”,“Apr”,“May”,“Jun”, “Jul”,“Aug”,“Sep”,“Oct”,“Nov”,“Dec”.

When working with the Column Headings attribute, keep in mind the following:

 ■ You must enter each column name in quotes and separate each column with commas.

 ■ Accidentally misspelling a column name will result in that column being excluded
from the crosstab results and a dummy column with the misspelled name being
included with no data in it.

 ■ Column names you enter into the Column Headings attribute will show up in the
fi nal results even if no data exists for that column.

 ■ You must enter every column you want to include in your crosstab report.
Excluding a column from the Column Headings attribute will exclude that column
from the crosstab results.

 ■ Clearing the Column Headings attribute will ensure that all columns are displayed
in alphabetical order.

Optimizing Query Performance
When you’re analyzing a few thousand records, query performance is not an issue.
Analytical processes run quickly and smoothly with few problems. However, when you’re
moving and crunching hundreds of thousands of records, performance becomes a huge
issue. There is no getting around the fact that the larger the volume of data, the slower
your queries will run. That said, there are steps you can take to optimize query perfor-
mance and reduce the time it takes to run your large analytical processes.

346

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 346

Understanding the Access Query Optimizer
Most relational database programs have a built-in optimizer to ensure effi cient performance, even in
the face of large volumes of data. Access also has a built-in query optimizer. Have you ever noticed
that when you build a query, close it, and then open it again, Access sometimes shuffl es your criteria
and expressions around? This is because of its built-in query optimizer.

The query optimizer is charged with the task of establishing a query execution strategy. The query
execution strategy is a set of instructions given to the Access database engine (ACE) that tells it how
to run the query in the quickest, most cost-effective way possible. Access’s query optimizer bases its
query execution strategy on the following factors:

 ■ The size of the tables used in the query

 ■ Whether indexes exist in the tables used in the query

 ■ The number of tables and joins used in the query

 ■ The presence and scope of any criteria or expressions used in the query

This execution strategy is created when the query is fi rst run, and it’s recompiled each time you save
a query or compact your database. Once a query execution strategy has been established, the ACE
database engine simply refers to it each time the query is run, effectively optimizing the execution
of the query.

You’ve heard the term garbage in, garbage out, referring to the fact that the results you get out of a
database are only as good as the data you put in. This concept also applies to Access’s query optimizer.
Since Access’s optimization functionality largely depends on the makeup and utility of your tables and
queries, poorly designed tables and queries can limit the effectiveness of Access’s query optimizer.

Normalizing your database design
Many users who are new to Access build one large, fl at table and call it a database. This
structure seems attractive because you don’t have to deal with joins and you only have to
reference one table when you build your queries. However, as the volume of data grows in
a structure such as this one, query performance will take a nosedive.

When you normalize your database to take on a relational structure, you break up your
data into several smaller tables. This has two effects:

 ■ You inherently remove redundant data, giving your query less data to scan.

 ■ You can query only the tables that contain the information you need, preventing
you from scanning your entire database each time you run a query.

Using indexes on appropriate fi elds
Imagine that you have a fi le cabinet that contains 1,000 records that aren’t alphabetized.
How long do you think it would take you to pull out all the records that start with S? You

347

Chapter 10: Going Beyond Select Queries

c10.indd 10/01/2015 Page 347

10

would defi nitely have an easier time pulling out records in an alphabetized fi ling system.
Indexing fi elds in an Access table is analogous to alphabetizing records in a fi le cabinet.

When you run a query in which you’re sorting and fi ltering on a fi eld that hasn’t been
indexed, Access has to scan and read the entire dataset before returning any results. As
you can imagine, on large datasets this can take a very long time. By contrast, queries that
sort and fi lter on fi elds that have been indexed run much more quickly because Access uses
the index to check positions and restrictions.

You can create an index on a fi eld in a table by going into the table’s Design view and
adjusting the Indexed property.

 Refer to Chapter 3 for a refresher on indexes.

Now, before you go out and start creating an index on every fi eld in your database, there is
one caveat to indexing: Although indexes do speed up select queries dramatically, they sig-
nifi cantly slow down action queries such as update, delete, and append. This is because when
you run an action query on indexed fi elds, Access has to update each index in addition to
changing the actual table. To that end, it’s important that you limit the fi elds that you index.

A best practice is to limit your indexes to the following types of fi elds:

 ■ Fields in which you’ll routinely fi lter values using criteria

 ■ Fields that you anticipate using as joins on other tables

 ■ Fields in which you anticipate sorting values regularly

Optimizing by improving query design
You’d be surprised how a few simple choices in query design can improve the performance
of your queries. Take a moment to review some of the actions you can take to speed up
your queries and optimize your analytical processes:

 ■ Avoid sorting or fi ltering fi elds that aren’t indexed.

 ■ Avoid building queries that select * from a table. For example,
SELECT * FROM MyTable forces Access to look up the fi eld names
from the system tables every time the query is run.

 ■ When creating a totals query, include only the fi elds needed to achieve the query’s
goal. The more fi elds you include in the GROUP BY clause, the longer the query will
take to execute.

 ■ Sometimes you need to include fi elds in your query design only to set criteria
against them. Fields that aren’t needed in the fi nal results should be set to “not
shown.” In other words, remove the check from the check box in the Show row of
the query design grid.

348

Part III: Working with Access Queries

c10.indd 10/01/2015 Page 348

 ■ Avoid using open-ended ranges such as > or <. Instead, use the Between...And
statement.

 ■ Use smaller temporary tables in your analytical processes instead of your large core
tables. For example, instead of joining two large tables together, consider creat-
ing smaller temporary tables that are limited to only the relevant records and then
joining those two. You’ll often fi nd that your processes will run faster even with
the extra steps of creating and deleting temporary tables.

 ■ Use fi xed column headings in crosstab queries whenever possible. This way, Access
doesn’t have to take the extra step of establishing column headings in your cross-
tab queries.

 ■ Avoid using calculated fi elds in subqueries or domain aggregate functions.
Subqueries and domain aggregate functions already come with an inherent perfor-
mance hit. Using calculated fi elds in them compounds your query’s performance
loss considerably.

 Subqueries and domain aggregate queries are discussed in detail in Chapter 15.

Compacting and repairing your database regularly
 Over time, your database will change due to the rigors of daily operation. The number of
tables may have increased or decreased; you may have added and removed several tempo-
rary tables and queries; you may have abnormally closed the database once or twice; and
the list goes on. All this action may change your table statistics, leaving your previously
compiled queries with inaccurate query execution plans.

When you compact and repair your database, you force Access to regenerate table statistics
and re-optimize your queries so that they’ll be recompiled the next time the query is exe-
cuted. This ensures that Access will run your queries using the most accurate and effi cient
query execution plans. To compact and repair your database, simply select the Database
Tools tab on the Ribbon and choose the Compact and Repair Database command.

You can set your database to automatically compact and repair each time you close it by
doing the following:

 1. On the Ribbon, select File.

 2. Click Options. The Access Options dialog box appears.

 3. Select Current Database to display the configuration settings for the current
database.

 4. Place a check mark next to Compact on Close and click OK to confirm the
change.

c11.indd 09/28/2015 Page 349

Part IV

Analyzing Data in Access

N
ow that you know how to organize the
data into tables and how to use que-
ries to interact with that data, Part IV

highlights the tools and functionalities in
Access 2016 that can drive more meaningful
data analysis. Indeed, using Access for your
data analysis needs can help you streamline
your analytical processes, increase your pro-
ductivity, and analyze the larger datasets.

Chapter 11 covers data transformation,
providing examples of how to clean and
shape raw data into staging areas. Chapter
12 provides in-depth instruction on how to
create and utilize custom calculations in
analysis; this chapter also shows you how to
work with dates, using them in simple date
calculations. Chapter 13 introduces you to
some conditional analysis techniques that
allow for the addition of business logic into
analytical processes. Chapter 14 explores SQL
syntax and some of the SQL-specifi c queries
that can be leveraged to improve analyt-
ics. Chapter 15 introduces you to powerful
subquery and domain aggregate functional-
ity. Chapter 16 demonstrates many of the
advanced statistical analyses that can be
performed using subqueries and domain
aggregate functions.

IN THIS PART

Chapter 11
Transforming Data in Access

Chapter 12
Working with Calculations and Dates

Chapter 13
Performing Conditional Analyses

Chapter 14
Fundamentals of Using SQL

Chapter 15
Subqueries and Domain Aggregate Functions

Chapter 16
Running Descriptive Statistics in Access

351

c11.indd 09/28/2015 Page 351

CHAP T ER

11
Transforming Data in Access

IN THIS CHAPTER

Finding and removing duplicate records

Filling in blank fi elds

Concatenating

Changing case

Removing leading and trailing spaces

Finding and replacing specifi c text

Padding strings

Parsing strings

D
ata transformation generally entails certain actions that are meant to “clean” your data—
actions such as establishing a table structure, removing duplicates, cleaning text, removing
blanks, and standardizing data fi elds.

You’ll often receive data that is unpolished or raw—that is, the data may have duplicates, there
may be blank fi elds, there may be inconsistent text, and so on. Before you can perform any kind of
meaningful analysis on data in this state, it’s important to go through a process of data transfor-
mation or data cleanup.

In this chapter, we introduce you to some of the tools and techniques in Access that make it easy
for you to clean and massage your data without turning to Excel.

The starting database for this walkthrough, Chapter11.accdb, can be downloaded from this book’s website.

Finding and Removing Duplicate Records
Duplicate records are absolute analysis killers. The effect duplicate records have on your analy-
sis can be far reaching, corrupting almost every metric, summary, and analytical assessment you

ON THE WEB

352

Part IV: Analyzing Data in Access

c11.indd 09/28/2015 Page 352

produce. For this reason, fi nding and removing duplicate records should be your fi rst prior-
ity when you receive a new dataset.

Defi ning duplicate records
Before you jump into your dataset to fi nd and remove duplicate records, it’s important to
consider how you defi ne a duplicate record. To demonstrate this point, look at the table
shown in Figure 11.1, where you see 11 records. Out of the 11 records, how many are
duplicates?

FIGURE 11.1

Are there duplicate records in this table? It depends on how you defi ne one.

If you were to defi ne a duplicate record in Figure 11.1 as a duplication of just SicCode, you
would fi nd 11 duplicate records. Now, if you were to expand your defi nition of a duplicate
record to a duplication of both SicCode and PostalCode, you’d fi nd only two duplicates: the
duplication of PostalCodes 77032 and 77040. Finally, if you were to defi ne a duplicate record
as a duplication of the unique value of SicCode, PostalCode, and CompanyNumber, you
would fi nd no duplicates.

This example shows that having two records with the same value in a column doesn’t nec-
essarily mean that you have a duplicate record. It’s up to you to determine which fi eld or
combination of fi elds will best defi ne a unique record in your dataset.

Once you have a clear idea about which fi eld(s) best make up a unique record in your table,
you can easily test your table for duplicate records by attempting to set them as a primary
or combination key. To demonstrate this test, open the LeadList table in Design view, and
then tag the CompanyNumber fi eld as a primary key. If you try to save this change, you’ll
get the error message shown in Figure 11.2. This message means there is some duplication
of records in your dataset that needs to be dealt with.

 Revisit Chapter 3 to get a refresher on designing tables.

353

Chapter 11: Transforming Data in Access

c11.indd 09/28/2015 Page 353

11

FIGURE 11.2

If you get this error message when trying to set a primary key, you have duplicate records in
your dataset.

Finding duplicate records
If you’ve determined that your dataset does, indeed, contain duplicates, it’s generally
a good idea to fi nd and review the duplicate records before removing them. Giving your
records a thorough review will ensure you don’t mistake a record as a duplicate and remove
it from your analysis. You may fi nd that you’re mistakenly identifying valid records as
duplicates, in which case you’ll need to include another fi eld in your defi nition of what
makes a unique record.

The easiest way to fi nd the duplicate records in your dataset is to run the Find Duplicates
Query Wizard.

 1. Select the Create tab of the Ribbon and click the Query Wizard button. The New
Query dialog box appears (see Figure 11.3).

 2. Select Find Duplicates Query Wizard and then click OK.

FIGURE 11.3

Select the Find Duplicates Query Wizard and then click OK.

354

Part IV: Analyzing Data in Access

c11.indd 09/28/2015 Page 354

 3. Select the particular dataset you will use in your Find Duplicate query (see
Figure 11.4).

FIGURE 11.4

Select the dataset in which you want to fi nd duplicates, and then click Next.

 4. Identify which fi eld, or combination of fi elds, best defi nes a unique record
in your dataset, and then click Next. In the example shown in Figure 11.5, the
CompanyNumber fi eld alone defi nes a unique record.

FIGURE 11.5

Select the fi eld(s) that make up a unique record in your dataset.

355

Chapter 11: Transforming Data in Access

11

c11.indd 09/28/2015 Page 355

 5. Identify any additional fi elds you would like to see in your query (see Figure
11.6), and then click Next.

FIGURE 11.6

Select the fi eld(s) you want to see in your query.

 6. Name your query and click Finish (see Figure 11.7). Your new Find Duplicates
query will immediately open for your review. Figure 11.8 shows the resulting query.
Now that Access has found the records that are repeating, you can remove dupli-
cates simply by deleting the duplicate records.

FIGURE 11.7

Name your query and click Finish.

356

Part IV: Analyzing Data in Access

c11.indd 09/28/2015 Page 356

FIGURE 11.8

Your Find Duplicates query.

The records shown in your Find Duplicates query are not only the duplications. They include one unique record plus

the duplication. For example, in Figure 11.8, notice that there are four records tagged with the CompanyNumber

11145186. Three of the four are duplicates that can be removed, while one should remain as a unique record.

Removing duplicate records
If you’re working with a small dataset, removing the duplicates can be as easy as manually
deleting records from your Find Duplicates query. However, if you’re working with a large
dataset, your Find Duplicates query may result in more records than you care to manually
delete. Believe it when someone tells you that manually deleting records from a 5,000-row
Find Duplicates query is an eyeball-burning experience. Fortunately, there is an alternative
to burning out your eyeballs.

The idea is to remove duplicates en masse by taking advantage of the built-in protections
Access has against duplicate primary keys. To demonstrate this technique, follow these
steps:

 1. Right-click on the LeadList table and select Copy.

 2. Right-click again and select Paste. The Paste Table As dialog box, shown in
Figure 11.9, appears.

 3. Name your new table LeadList_NoDups and select Structure Only from the Paste
Options section. A new empty table that has the same structure as your original is
created.

357

Chapter 11: Transforming Data in Access

11

c11.indd 09/28/2015 Page 357

FIGURE 11.9

Activate the Paste Table As dialog box to copy your table’s structure into a new table called
LeadList_NoDups.

 4. Open your new LeadList_NoDups table in Design view and set the appropri-
ate fi eld or combination of fi elds as primary keys. It’s up to you to determine
which fi eld or combination of fi elds will best defi ne a unique record in your dataset.
As you can see in Figure 11.10, the CompanyNumber fi eld alone defi nes a unique
record; therefore, only the CompanyNumber fi eld will be set as a primary key.

FIGURE 11.10

Set as a primary key the fi eld(s) that best defi nes a unique record.

Pause here a moment and review what you have so far. At this point, you should
have a table called LeadList and a table called LeadList_NoDups. The LeadList_
NoDups table is empty and has the CompanyNumber fi eld set as a primary key.

 5. Create an append query that appends all records from the LeadList table to the
LeadList_NoDups table. When you run the append query, you’ll get a message simi-
lar to the one shown in Figure 11.11.

358

Part IV: Analyzing Data in Access

c11.indd 09/28/2015 Page 358

FIGURE 11.11

Now you can append all records excluding the duplicates.

 Not familiar with append queries? Turn back to Chapter 10 to get an in-depth explanation.

Because the CustomerNumber fi eld in the LeadList_NoDups table is set as the primary key,
Access won’t allow duplicate customer numbers to be appended. In just a few clicks, you’ve
effectively created a table free from duplicates. You can now use this duplicate-free table as
the source for any subsequent analysis!

Be aware that Access makes no fuzzy logical determination to see if records may duplicate. It processes your request

literally. For instance, a simple mistyping of an address or phone number would mean that rows that actually are

duplicates would be allowed. You’ll want to keep this in mind, especially when working with textual fi elds where data

entry is manual.

Removing Duplicates with One Make-Table Query
Here’s a trick that will allow you to remove duplicates by running a make-table query.

 1. Select the Create tab and choose Query Design.

 2. In the Show Table dialog box, select your table that contains duplicates.

 3. On the Query Tools Design tab, select the Properties Sheet command. The Property Sheet
dialog box, shown in the following fi gure, appears.

359

Chapter 11: Transforming Data in Access

11

c11.indd 09/28/2015 Page 359

All you have to do here is change the Unique Values property to Yes. Close the Property Sheet dialog
box and change the query type to a Make Table Query.

Common Transformation Tasks
Besides duplicate records, you’ll fi nd that many of the unpolished datasets that come to
you will require other types of transformation actions. This section covers some of the
more common transformation tasks you’ll have to perform.

Filling in blank fi elds
Often, you’ll have fi elds that contain empty values. These values are considered null—a
value of nothing. Nulls are not necessarily a bad thing. In fact, if used properly, they can
be an important part of a well-designed relational database. That said, you may fi nd that
you need to fi ll in blank fi elds with some logical code that indicates a missing value.

Filling in the null fi elds in your dataset is as simple as running an update query. In the
example shown in Figure 11.12, you’re updating the null values in the DollarPotential fi eld
to zero.

360

Part IV: Analyzing Data in Access

c11.indd 09/28/2015 Page 360

FIGURE 11.12

This query will update the null values in the DollarPotential fi eld to a value of 0.

It’s important to note that there are actually two kinds of blank values: null and empty
string (“”). When fi lling in the blank values of a text fi eld, include the empty string as a
criterion in your update query to ensure that you don’t miss any fi elds. In the example
shown in Figure 11.13, you’re updating the blank values in the Segment fi eld to “Other.”

FIGURE 11.13

This query will update blank values in the Segment fi eld to a value of “Other.”

Concatenating
It’s always amazing to see anyone export data out of Access and into Excel, only to concat-
enate (join two or more character strings end to end) and then re-import the data back into
Access. You can easily concatenate any number of ways in Access with a simple update query.

Concatenating fields

Look at the update query shown in Figure 11.14. In this query, you’re updating the MyTest
fi eld with the concatenated row values of the Type fi eld and the Code fi eld.

361

Chapter 11: Transforming Data in Access

11

c11.indd 09/28/2015 Page 361

FIGURE 11.14

This query concatenates the row values of the Type fi eld and the Code fi eld.

It’s a good idea to create a test fi eld in order to test the effects of your data transformation actions before applying

changes to the real data.

Take a moment to analyze the following query breakdown:

 ■ [Type]: This tells Access to use the row values of the Type fi eld.

 ■ &: The ampersand is a character operator that joins strings together.

 ■ [Code]: This tells Access to use the row values of the Code fi eld.

Figure 11.15 shows the results of this query.

FIGURE 11.15

The MyTest fi eld now contains the concatenated values of the Type fi eld and the Code fi eld.

362

Part IV: Analyzing Data in Access

c11.indd 09/28/2015 Page 362

When running update queries that perform concatenations, make sure the fi eld you’re updating is large enough to

accept the concatenated string. For example, if the length of your concatenated string is 100 characters, and the

fi eld size of the fi eld you’re updating is 50 characters, your concatenated string will be cut short without warning.

Augmenting field values with your own text

You can augment the values in your fi elds by adding your own text. For example, you may
want to concatenate the row values of the Type fi eld and the Code fi eld but separate them
with a colon. The query in Figure 11.16 does just that.

FIGURE 11.16

This query concatenates the row values of the Type fi eld and the Code fi eld and separates
them with a colon.

Take a moment to analyze the following query breakdown:

 ■ [Type]: This tells Access to use the row values of the Type fi eld.

 ■ &: The ampersand is a character operator that joins strings together.

 ■ “: ”: This text will add a colon and a space to the concatenated string.

 ■ &: The ampersand is a character operator that joins strings together.

 ■ [Code]: This tells Access to use the row values of the Code fi eld.

Figure 11.17 shows the results of this query.

When specifying your own text in a query, you must enclose the text in quotes. You can concatenate numeric data

without the quotes.

363

Chapter 11: Transforming Data in Access

11

c11.indd 09/28/2015 Page 363

FIGURE 11.17

The MyTest fi eld now contains the concatenated values of the Type fi eld and the Code fi eld,
separated by a colon.

Changing case
Making sure the text in your database has the correct capitalization may sound trivial,
but it’s important. Imagine you receive a customer table that has an address fi eld where all
the addresses are lowercase. How is that going to look on labels, form letters, or invoices?
Fortunately, for those who are working with tables containing thousands of records, Access
has a few built-in functions that make changing the case of your text a snap.

The LeadList table shown in Figure 11.18 contains an Address fi eld that is in all lowercase
letters.

FIGURE 11.18

The Address fi eld is in all lowercase letters.

To fi x the values in the Address fi eld, you can use the StrConv function, which is a func-
tion that converts a string to a specifi ed case. To use the StrConv function, you must pro-
vide two required arguments: the string to be converted and the conversion type.

StrConv(string to be converted, conversion type,)

364

Part IV: Analyzing Data in Access

c11.indd 09/28/2015 Page 364

The string to be converted is simply the text you’re working with. In a query environment,
you can use the name of a fi eld to specify that you’re converting all the row values of
that fi eld.

The conversion type tells Access whether you want to convert the specifi ed text to all
uppercase, all lowercase, or proper case. A set of constants identifi es the conversion type:

 ■ Conversion type 1: Converts the specifi ed text to uppercase characters.

 ■ Conversion type 2: Converts the specifi ed text to lowercase characters.

 ■ Conversion type 3: Converts the specifi ed text to proper case. That is, the fi rst let-
ter of every word is uppercase.

For example:

StrConv("My Text",1) would be converted to “MY TEXT.”

StrConv("MY TEXT",2) would be converted to “my text.”

StrConv("my text",3) would be converted to “My Text.”

The update query shown in Figure 11.19 will convert the values of the Address fi eld to
proper case.

FIGURE 11.19

This query will convert addresses to proper case.

You can also use the UCase and LCase functions to convert your text to uppercase and lowercase text, respec-

tively. See Access Help for more details on the UCase and LCase functions.

365

Chapter 11: Transforming Data in Access

11

c11.indd 09/28/2015 Page 365

Removing leading and trailing spaces from a string
When you receive a dataset from a mainframe system, a data warehouse, or even a text
fi le, it is not uncommon to have fi eld values that contain leading and trailing spaces. These
spaces can cause some abnormal results, especially when you’re appending values with
leading and trailing spaces to other values that are clean. To demonstrate this, look at the
dataset in Figure 11.20.

This is intended to be an aggregate query that displays the sum of the dollar potential for
California, New York, and Texas. However, the leading spaces are causing Access to group
each state into two sets, preventing you from discerning the accurate totals.

FIGURE 11.20

The leading spaces are preventing an accurate aggregation.

You can easily remove leading and trailing spaces by using the Trim function. Figure 11.21
demonstrates how you would update a fi eld to remove the leading and trailing spaces by
using an update query.

FIGURE 11.21

Simply pass the fi eld name through the Trim function in an update query to remove the
leading and trailing spaces.

366

Part IV: Analyzing Data in Access

c11.indd 09/28/2015 Page 366

Using the LTrim function will remove only the leading spaces, while the RTrim function will remove only the trailing

spaces.

Finding and replacing specifi c text
Imagine that you work in a company called BLVD, Inc. One day, the president of your com-
pany informs you that the abbreviation “blvd” on all addresses is now deemed an infringe-
ment on your company’s trademarked name and must be changed to “Boulevard” as soon as
possible. How would you go about meeting this new requirement? Your fi rst thought may
be to use the built-in Find and Replace functionality that exists in all Offi ce applications.
However, when your data consists of hundreds of thousands of rows, the Find and Replace
function will only be able to process a few thousand records at a time. This clearly would
not be very effi cient.

The Replace function is ideal in a situation like this:

Replace(Expression, Find, Replace[, Start[, Count[, Compare]]])

There are three required arguments in a Replace function and three optional arguments:

 ■ Expression (required): This is the full string you’re evaluating. In a query envi-
ronment, you can use the name of a fi eld to specify that you’re evaluating all the
row values of that fi eld.

 ■ Find (required): This is the substring you need to fi nd and replace.

 ■ Replace (required): This is the substring used as the replacement.

 ■ Start (optional): The position within a substring to begin the search; the default
is 1.

 ■ Count (optional): The number of occurrences to replace; the default is all
occurrences.

 ■ Compare (optional): The kind of comparison to use. You can specify a binary
comparison, a textual comparison, or the default comparison algorithm. See Access
Help for more details.

For example:

Replace("Pear", "P", "B") would return “Bear.”

Replace("Now Here", " H", "h") would return “Nowhere.”

Replace("Microsoft Access", "Microsoft ", "") would return “Access.”

Replace("Roadsign Road", "Road", "Rd",9) would start the replace function
at the ninth character, returning “Roadsign Rd.”

367

Chapter 11: Transforming Data in Access

11

c11.indd 09/28/2015 Page 367

Figure 11.22 demonstrates how you would use the Replace function to meet the require-
ments in this scenario.

FIGURE 11.22

This query fi nds all instances of “blvd” and replaces them with “Boulevard.”

Adding your own text in key positions within a string
When transforming your data, you’ll sometimes have to add your own text in key positions
with a string. For example, in Figure 11.23, you’ll see two fi elds. The Phone fi eld is the raw
phone number received from a mainframe report, while the MyTest fi eld is the same phone
number transformed into a standard format. As you can see, the two parentheses and
the dash were added in the appropriate positions within the string to achieve the correct
format.

FIGURE 11.23

The phone number has been transformed into a standard format by adding the appropriate
characters to key positions with the string.

368

Part IV: Analyzing Data in Access

c11.indd 09/28/2015 Page 368

The edits demonstrated in Figure 11.23 were accomplished using the Right function,
the Left function, and the Mid function in conjunction with each other. The Right,
Left, and Mid functions allow you to extract portions of a string starting from different
positions:

 ■ The Left function returns a specifi ed number of characters starting from the left-
most character of the string. The required arguments for the Left function are
the text you’re evaluating and the number of characters you want returned. For
example, Left("70056-3504", 5) would return fi ve characters starting from
the leftmost character (70056).

 ■ The Right function returns a specifi ed number of characters starting from the
rightmost character of the string. The required arguments for the Right function
are the text you’re evaluating and the number of characters you want returned. For
example, Right("Microsoft", 4) would return four characters starting from
the rightmost character (soft).

 ■ The Mid function returns a specifi ed number of characters starting from a specifi ed
character position. The required arguments for the Mid function are the text you’re
evaluating, the starting position, and the number of characters you want returned.
For example, Mid("Lonely", 2, 3) would return three characters, starting from
the second character, or character number two in the string (one).

In a Mid function, if there are fewer characters in the text being used than the length argument, the entire text will

be returned. For example, Mid("go",1,10000) will return go. As you’ll see later in this chapter, this behavior

comes in handy when you’re working with nested functions.

Figure 11.24 demonstrates how the MyTest fi eld was updated to the correctly formatted
phone number.

Take a moment to analyze the query breakdown:

 ■ "(": This text will add an open parenthesis to the resulting string.

 ■ &: The ampersand is a character operator that joins strings together.

 ■ Left([Phone],3): This function will extract the left 3 characters of the [Phone]
fi eld.

 ■ &: The ampersand is a character operator that joins strings together.

 ■ ")": This text will add a close parenthesis to the resulting string.

 ■ &: The ampersand is a character operator that joins strings together.

 ■ Mid([Phone],4,3): This function will extract the three characters of the [Phone]
fi eld starting from character number four.

369

Chapter 11: Transforming Data in Access

11

c11.indd 09/28/2015 Page 369

 ■ &: The ampersand is a character operator that joins strings together.

 ■ "-": This text will add a dash to the resulting string.

 ■ &: The ampersand is a character operator that joins strings together.

 ■ Right([Phone],4): This function will extract the right four characters of the
[Phone] fi eld.

FIGURE 11.24

This query will update the MyTest fi eld with a properly formatted phone number.

Padding Strings to a Specific Number of Characters
You may encounter a situation where key fi elds are required to be a certain number of characters in
order for your data to be able to interface with peripheral platforms such as ADP payroll systems or
SAP databases.

For example, imagine that the CompanyNumber fi eld must be ten characters long. Those that are
not ten characters long must be padded with enough leading zeros to create a ten-character string.

Number fi elds (fi elds with the Number data type) cannot have padded zeros, as Access will simply
remove them. If you need a number string to have padded zeros, you will need to set the fi eld to have
a Text data type.

The secret to this trick is to add ten zeros to every company number, regardless of the current length,
and then pass them through a Right function that will extract only the right ten characters. For example,
company number 29875764 would fi rst be converted to 000000000029875764; then it would go into
a Right function that extracted only the right ten characters: Right("000000000029875764",10).
This would leave you with 0029875764.

Continues

370

Part IV: Analyzing Data in Access

c11.indd 09/28/2015 Page 370

Although this is essentially two steps, you can accomplish the same thing with just one update query.
The following fi gure demonstrates how this is done. This query fi rst concatenates each company
number with 0000000000, and then passes that concatenated string through a Right function that
extracts only the left ten characters.

The following fi gure shows the results of this query. The CompanyNumber fi eld now contains ten-
character company numbers.

Parsing strings using character markers
Have you ever gotten a dataset where two or more distinct pieces of data were jammed
into one fi eld and separated by commas? For example, in Figure 11.25, you can see that the
values in the ContactName fi eld are strings that represent “Last name, First name, Middle
initial.” You’ll need to parse this string into three separate fi elds.

Although this is not a straightforward undertaking, it can be done with the help of the
InStr function:

InStr(Start, String, Find, Compare)

The InStr function searches for a specifi ed string in another string and returns its posi-
tion number. There are two required arguments in an InStr function and two optional
arguments.

 ■ Start (optional): This is the character number with which to start the search; the
default is 1.

continued

371

Chapter 11: Transforming Data in Access

11

c11.indd 09/28/2015 Page 371

 ■ String (required): This is the string to be searched.

 ■ Find (required): This is the string to search for.

 ■ Compare (optional): This specifi es the type of string comparison. If you specify a
Compare argument, the Start argument becomes not optional.

FIGURE 11.25

You need to parse the values in the ContactName fi eld into three separate fi elds.

For example:

InStr("Alexander, Mike, H",",") would return 10 because the fi rst comma of
the string is character number 10.

InStr(11,"Alexander, Mike, H",",") would return 16 because the fi rst comma
from character number 11 is character number 16.

If the InStr function only returns a number, how can it help you? Well, the idea is to use
the InStr function with the Left, Right, or Mid functions in order to extract a string.
For example, instead of using a hard-coded number in your Left function to pass it the
required length argument, you can use a nested InStr function to return that number. For
example, Left("Alexander, Mike",9) is the same as Left("Alexander, Mike",
Instr("Alexander, Mike", ",")-1).

When you’re nesting an InStr function inside a Left, Right, or Mid function, you may have to add or subtract a

character, depending on what you want to accomplish. For example, Left("Zey, Robert", InStr("Zey,
Robert", ",")) would return "Zey,". Why is the comma included in the returned result? The InStr func-

tion returns 4 because the fi rst comma in the string is the fourth character. The Left function then uses this 4 as a

length argument, effectively extracting the left four characters: "Zey,."

If you want a clean extract without the comma, you’ll have to modify your function to read as follows:

Left("Zey, Robert", InStr("Zey, Robert", ",")-1)

Subtracting 1 from the InStr function would leave you with 3 instead of 4. The Left function then uses this 3 as

the length argument, effectively extracting the left three characters: "Zey."

372

Part IV: Analyzing Data in Access

c11.indd 09/28/2015 Page 372

The easiest way to parse the contact name fi eld, shown in Figure 11.26, is to use two update
queries.

This is a tricky process, so you’ll want to create and work in test fi elds, giving yourself a way back from any mistakes

you may make.

Query 1

The fi rst query, shown in Figure 11.26, will parse out the last name in the ContactName
fi eld and update the Contact_LastName fi eld. It will then update the Contact_FirstName
fi eld with the remaining string.

FIGURE 11.26

This query will update the Contact_LastName and Contact_FirstName fi elds.

If you open the LeadList table, you’ll be able to see the impact of your fi rst update query.
Figure 11.27 shows your progress so far.

Query 2

The second query, shown in Figure 11.28, will update the Contact_FirstName fi eld and the
Contact_MI.

373

Chapter 11: Transforming Data in Access

11

c11.indd 09/28/2015 Page 373

FIGURE 11.27

Check your progress so far.

FIGURE 11.28

This query parses out the fi rst name and the middle initial from the Contact_FirstName fi eld.

After you run your second query, you can open your table and see the results, shown in
Figure 11.29.

FIGURE 11.29

With two queries, you’ve successfully parsed the ContactName fi eld into three separate
fi elds.

c11.indd 09/28/2015 Page 374

375

c12.indd 09/24/2015 Page 375

 CHAP T ER

12
Working with Calculations
and Dates

IN THIS CHAPTER

Using calculations in your analyses

Using dates in your analyses

T
he truth is that few organizations can analyze their raw data at face value. More often than
not, some preliminary analysis with calculations and dates must be carried out before the big-
picture analysis can be performed. As you’ll learn in this chapter, Access provides a wide array

of tools and built-in functions that make working with calculations and dates possible.

The starting database for this walkthrough, Chapter12.accdb, can be downloaded from this book’s website.

When you use the sample database, you’ll be able to open the queries shown in the fi gures. Some of the queries look

a bit different from the screenshots shown here. Don’t be alarmed—Access sometimes shuffl es around criteria and

expressions because of its built-in query optimizer. The query optimizer is charged with the task of structuring the

query in the quickest, most cost-effective way possible.

Using Calculations in Your Analyses
If you’re an Excel user trying to familiarize yourself with Access, one of the questions you undoubt-
edly have is, “Where do the formulas go?” In Excel, you have the fl exibility to enter a calculation via
a formula directly into the dataset you’re analyzing. You can’t do this in Access. So, the question is,
“Where do you store calculations in Access?”

ON THE WEB

376

Part IV: Analyzing Data in Access

c12.indd 09/24/2015 Page 376

As you’ve already learned, things work differently in Access. A best practice when working
in a database environment is to keep your data separate from your analysis. In this light,
you won’t be able to store a calculation (a formula) in your dataset. Now, it’s true that you
can store the calculated results in your tables, but using tables to store calculated results is
problematic for several reasons:

 ■ Stored calculations take up valuable storage space.

 ■ Stored calculations require constant maintenance as the data in your table
changes.

 ■ Stored calculations generally tie your data to one analytical path.

Instead of storing the calculated results as hard data, it’s a better practice to perform cal-
culations in real time, at the precise moment when they’re needed. This ensures the most
current and accurate results and doesn’t tie your data to one particular analysis.

Common calculation scenarios
In Access, calculations are performed using expressions. An expression is a combination of
values, operators, or functions that are evaluated to return a separate value to be used in
a subsequent process. For example, 2+2 is an expression that returns the integer 4, which
can be used in a subsequent analysis. Expressions can be used almost anywhere in Access to
accomplish various tasks: in queries, forms, reports, data access pages, and even tables to
a certain degree. In this section, you’ll learn how to expand your analysis by building real-
time calculations using expressions.

Using constants in calculations

Most calculations typically consist of hard-coded numbers or constants. A constant is a
static value that doesn’t change. For example, in the expression [List_Price]*1.1,
1.1 is a constant; the value of 1.1 will never change. Figure 12.1 demonstrates how a
 constant can be used in an expression within a query.

In this example, you’re building a query that will analyze how the current price for each
product compares to the same price with a 10 percent increase. The expression, entered
under the alias “Increase” will multiply the List_Price fi eld of each record with a con-
stant value of 1.1, calculating a price that is 10 percent over the original value in the
List_Price fi eld.

Using fields in calculations

Not all your calculations will require you to specify a constant. In fact, many of the math-
ematical operations you’ll carry out will be performed on data that already resides in fi elds
within your dataset. You can perform calculations using any fi elds formatted as number or
currency.

377

Chapter 12: Working with Calculations and Dates

c12.indd 09/24/2015 Page 377

12

FIGURE 12.1

In this query, you’re using a constant to calculate a 10 percent price increase.

For instance, in the query shown in Figure 12.2, you aren’t using any constants. Instead,
your calculation will be executed using the values in each record of the dataset. This is
similar to referencing cell values in an Excel formula.

FIGURE 12.2

In this query, you’re using two fi elds in a Dollar Variance calculation.

Using the results of aggregation in calculations

Using the result of an aggregation as an expression in a calculation allows you to perform
multiple analytical steps in one query. In the example in Figure 12.3, you’re running an
aggregate query. This query will execute in the following order:

 1. The query groups your records by market.

 2. The query calculates the count of orders and the sum of revenue for each
market.

 3. The query assigns the aliases you’ve defined respectively (OrderCount and Rev).

 4. The query uses the aggregation results for each branch as expressions in your
AvgDollarPerOrder calculation.

378

Part IV: Analyzing Data in Access

c12.indd 09/24/2015 Page 378

FIGURE 12.3

In this query, you’re using the aggregation results for each market as expressions in your
calculation.

Using the results of one calculation as an expression in another

Keep in mind that you aren’t limited to one calculation per query. In fact, you can use the
results of one calculation as an expression in another calculation. Figure 12.4 illustrates
this concept.

In this query, you’re fi rst calculating an adjusted forecast, and then you’re using the
results of that calculation in another calculation that returns the variance of actual versus
adjusted forecast.

FIGURE 12.4

This query uses the results of one calculation as an expression in another.

Using a calculation as an argument in a function

Look at the query in Figure 12.5. The calculation in this query will return a number with a
fractional part. That is, it will return a number that contains a decimal point followed by
many trailing digits. You would like to return a round number, however, making the result-
ing dataset easier to read.

379

Chapter 12: Working with Calculations and Dates

c12.indd 09/24/2015 Page 379

12

FIGURE 12.5

The results of this calculation will be diffi cult to read because they’ll all be fractional numbers
that have many digits trailing a decimal point. Forcing the results into round numbers will
make for easier reading.

To force the results of your calculation into an integer, you can use the Int function. The
Int function is a mathematical function that will remove the fractional part of a number
and return the resulting integer. This function takes one argument, a number. However,
instead of hard-coding a number into this function, you can use your calculation as the
argument. Figure 12.6 demonstrates this concept.

FIGURE 12.6

You can use your calculation as the argument in the Int function, allowing you to remove the
fractional part from the resulting data.

380

Part IV: Analyzing Data in Access

c12.indd 09/24/2015 Page 380

You can use calculations that result in a numeric value in any function where a numeric value is accepted as an

argument.

Constructing calculations with the Expression Builder
If you aren’t yet comfortable manually creating complex expressions with functions and
calculations, Access provides the Expression Builder. The Expression Builder guides you
through constructing an expression with a few clicks of the mouse. Avid Excel users may
relate the Expression Builder to the Insert Function Wizard found in Excel. The idea is that
you build your expression simply by selecting the necessary functions and data fi elds.

To activate the Expression Builder, click inside the query grid cell that will contain your
expression, right-click, and then select Build, as shown in Figure 12.7.

FIGURE 12.7

Activate the Expression Builder by right-clicking inside the Field row of the query grid and
selecting Build.

You can activate the Expression Builder by right-clicking anywhere you would write expressions, including control

properties in forms, control properties in reports, and fi eld properties in tables, as well as in the query design grid.

As you can see in Figure 12.8, the Expression Builder has four panes to work in. The upper
pane is where you enter the expression. The lower panes show the different objects avail-
able to you. In the lower-left pane you can use the plus icons to expose the database
objects that can be used to build out your expression.

381

Chapter 12: Working with Calculations and Dates

c12.indd 09/24/2015 Page 381

12

FIGURE 12.8

The Expression Builder will display any database object you can use in your expression.

Double-click any of the database objects to drill down to the next level of objects. By
double-clicking the Functions object, for example, you’ll be able to drill into the Built-In
Functions folder where you’ll see all the functions available to you in Access. Figure 12.9
shows the Expression Builder set to display all the available math functions.

FIGURE 12.9

The Expression Builder displays all the functions available to you.

382

Part IV: Analyzing Data in Access

c12.indd 09/24/2015 Page 382

If you’re using a version of Access other than 2016, your Expression Builder will look slightly different from the one

shown in Figure 12.9. However, the basic functionality remains the same.

The idea is that you double-click the function you need and Access will automatically
enter the function in the upper pane of the Expression Builder. In the example shown in
Figure 12.10, the selected function is the Round function. As you can see, the function is
immediately placed in the upper pane of the Expression Builder, and Access shows you the
arguments needed to make the function work. In this case, there are two arguments identi-
fi ed: a Number argument and a Precision argument.

FIGURE 12.10

Access tells you which arguments are needed to make the function work.

If you don’t know what an argument means, simply highlight the argument in the upper
pane and then click the hyperlink at the bottom of the dialog box (see Figure 12.11). A Help
window provides an explanation of the function.

As you can see in Figure 12.12, instead of using a hard-coded number in the Round func-
tion, an expression is used to return a dynamic value. This calculation will divide the
sum of [Dim_Transactions]![LineTotal] by 13. Since the Precision argument is
optional, that argument is left off.

383

Chapter 12: Working with Calculations and Dates

c12.indd 09/24/2015 Page 383

12

FIGURE 12.11

Help fi les are available to explain each function in detail.

FIGURE 12.12

The function here will round the results of the calculation,
([Dim_Transactions]![Line Total])/13.

384

Part IV: Analyzing Data in Access

c12.indd 09/24/2015 Page 384

When you’re satisfi ed with your newly created expression, click OK to insert it into the
query grid. Figure 12.13 shows that the new expression has been added as a fi eld. Note
that the new fi eld has a default alias of Expr1; you can rename this to something more
meaningful.

FIGURE 12.13

Your newly created expression will give you the average revenue per period for all
transactions.

Common calculation errors
No matter which platform you’re using to analyze your data, there’s always the risk of
errors when working with calculations. There is no magic function in Access that will help
you prevent errors in your analysis. However, there are a few fundamental actions you can
take to avoid some of the most common calculation errors.

Understanding the order of operator precedence

You might remember from your algebra days that when working with a complex equation,
executing multiple mathematical operations, the equation does not necessarily evaluate
from left to right. Some operations have precedence over others and therefore must occur
fi rst. The Access environment has similar rules regarding the order of operator precedence.
When you’re using expressions and calculations that involve several operations, each opera-
tion is evaluated and resolved in a predetermined order. It’s important to know the order of
operator precedence in Access. An expression that is incorrectly built may cause errors on
your analysis.

The order of operations for Access is as follows:

 1. Evaluate items in parentheses.

 2. Perform exponentiation (^ calculates exponents).

 3. Perform negation (- converts to negative).

385

Chapter 12: Working with Calculations and Dates

c12.indd 09/24/2015 Page 385

12

 4. Perform multiplication (* multiplies) and division (/ divides) at equal precedence.

 5. Perform addition (+ adds) and subtraction (- subtracts) at equal precedence.

 6. Evaluate string concatenation (&).

 7. Evaluate comparison and pattern matching operators (>, <, =, <>, >=, <=, Like,
Between, Is) at equal precedence.

 8. Evaluate logical operators in the following order: Not, And, Or.

Operations that are equal in precedence are performed from left to right.

How can understanding the order of operations ensure that you avoid analytical errors?
Consider this basic example: The correct answer to the calculation, (20+30)*4, is 200.
However, if you leave off the parentheses—as in 20+30*4—Access will perform the cal-
culation like this: 30*4 = 120 + 20 = 140. The order of operator precedence mandates
that Access perform multiplication before subtraction. Therefore, entering 20+30*4 will
give you the wrong answer. Because the order of operator precedence in Access mandates
that all operations in parentheses be evaluated fi rst, placing 20+30 inside parentheses
ensures the correct answer.

Watching out for null values

A null value represents the absence of any value. When you see a data item in an Access
table that is empty or has no information in it, it is considered null.

If Access encounters a null value, it doesn’t assume that the null value represents zero;
instead, it immediately returns a null value as the answer. To illustrate this behavior, build
the query shown in Figure 12.14.

FIGURE 12.14

To demonstrate how null values can cause calculation errors, build this query in Design view.

386

Part IV: Analyzing Data in Access

c12.indd 09/24/2015 Page 386

Run the query, and you’ll see the results shown in Figure 12.15. Notice that the Variance
calculation for the fi rst record doesn’t show the expected results; instead, it shows a null
value. This is because the forecast value for that record is a null value.

FIGURE 12.15

When any variable in your calculation is null, the resulting answer is a null value.

Looking at Figure 12.15, you can imagine how a null calculation error can wreak havoc on
your analysis, especially if you have an involved analytical process. Furthermore, null cal-
culation errors can be diffi cult to identify and fi x.

That being said, you can avoid null calculation errors by using the Nz function, which
enables you to convert any null value that is encountered to a value you specify:

Nz(variant, valueifnull)

The Nz function takes two arguments:

 ■ variant: The data you’re working with

 ■ valueifnull: The value you want returned if the variant is null

Nz([MyNumberField],0) converts any null value in MyNumberField to zero.

Because the problem fi eld is the Forecast fi eld, you would pass the Forecast fi eld through
the Nz function. Figure 12.16 shows the adjusted query.

As you can see in Figure 12.17, the fi rst record now shows a variance value even though the
values in the Forecast fi eld are null. Note that the Nz function did not physically place a
zero in the null values. The Nz function merely told access to treat the nulls as zeros when
calculating the Variance fi eld.

387

Chapter 12: Working with Calculations and Dates

c12.indd 09/24/2015 Page 387

12

FIGURE 12.16

Pass the Forecast fi eld through the Nz function to convert null values to zero.

FIGURE 12.17

The fi rst record now shows a variance value.

Watching the syntax in your expressions

Basic syntax mistakes in your calculation expressions can also lead to errors. Follow these
basic guidelines to avoid slip-ups:

 ■ If you’re using fi elds in your calculations, enclose their names in square
brackets ([]).

 ■ Make sure you spell the names of the fi elds correctly.

 ■ When assigning an alias to your calculated fi eld, be sure you don’t inadvertently
use a fi eld name from any of the tables being queried.

 ■ Don’t use illegal characters—period (.), exclamation point (!), square brackets ([])
or ampersand (&)—in your aliases.

388

Part IV: Analyzing Data in Access

c12.indd 09/24/2015 Page 388

Using Dates in Your Analyses
In Access, every possible date starting from December 31, 1899, is stored as a positive serial
number. For example, December 31, 1899, is stored as 1; January 1, 1900, is stored as 2; and
so on. This system of storing dates as serial numbers, commonly called the 1900 system, is
the default date system for all Offi ce applications. You can take advantage of this system to
perform calculations with dates.

Simple date calculations
Figure 12.18 shows one of the simplest calculations you can perform on a date. In this
query, you’re adding 30 to each ship date. This will effectively return the order date plus 30
days, giving you a new date.

FIGURE 12.18

You’re adding 30 to each ship date, effectively creating a date that is equal to the ship date
plus 30 days.

To be calculated correctly, dates must reside in a fi eld that is formatted as a Date/Time fi eld. If you enter a date into

a Text fi eld, the date will continue to look like a date, but Access will treat it like a string. The end result is that any

calculation done on dates in this Text-formatted fi eld will fail. Ensure that all dates are stored in fi elds that are for-

matted as Date/Time.

You can also calculate the number of days between two dates. The calculation in
Figure 12.19, for example, essentially subtracts the serial number of one date from the
serial number of another date, leaving you the number of days between the two dates.

389

Chapter 12: Working with Calculations and Dates

c12.indd 09/24/2015 Page 389

12

FIGURE 12.19

In this query, you’re calculating the number of days between two dates.

Advanced analysis using functions
There are 25 built-in date/time functions available in Access 2016. Some of these are func-
tions you’ll very rarely encounter, whereas others you’ll use routinely in your analyses. This
section discusses a few of the basic date/time functions that will come in handy in your
day-to-day analysis.

The Date function

The Date function is a built-in Access function that returns the current system date—in
other words, today’s date. With this versatile function, you never have to hard-code today’s
date in your calculations. That is, you can create dynamic calculations that use the current
system date as a variable, giving you a different result every day. In this section, we look
at some of the ways you can leverage the Date function to enhance your analysis.

Finding the number of days between today and a past date

Imagine that you have to calculate aged receivables. You need to know the current date to
determine how overdue the receivables are. Of course, you could type in the current date by
hand, but that can be cumbersome and prone to error.

To demonstrate how to use the Date function, create the query shown in Figure 12.20.

Using the Date function in a criteria expression

You can use the Date function to fi lter out records by including it in a criteria expression.
For example, the query shown in Figure 12.21 will return all records with an order date
older than 90 days.

390

Part IV: Analyzing Data in Access

c12.indd 09/24/2015 Page 390

FIGURE 12.20

This query returns the number of days between today’s date and each order date.

FIGURE 12.21

No matter what day it is today, this query will return all orders older than 90 days.

Calculating an age in years using the Date function

Imagine that you’ve been asked to provide a list of account managers along with the num-
ber of years they have been employed by the company. To accomplish this task, you have to
calculate the difference between today’s date and each manager’s hire date.

The fi rst step is to build the query shown in Figure 12.22.

When you look at the query results, shown in Figure 12.23, you’ll realize that the calcula-
tion results in the number of days between the two dates, not the number of years.

To fi x this problem, switch back to Design view and divide your calculation by 365.25. Why
365.25? That’s the average number of days in a year when you account for leap years. Figure
12.24 demonstrates this change. Note that your original calculation is now wrapped in
parentheses to avoid errors due to order of operator precedence.

391

Chapter 12: Working with Calculations and Dates

c12.indd 09/24/2015 Page 391

12

FIGURE 12.22

You’re calculating the difference between today’s date and each manager’s hire date.

FIGURE 12.23

This dataset shows the number of days, not the number of years.

FIGURE 12.24

Divide your original calculation by 365.25 to convert the answer to years.

A look at the results, shown in Figure 12.25, proves that you’re now returning the number
of years. All that’s left to do is to strip away the fractional portion of the date using the

392

Part IV: Analyzing Data in Access

c12.indd 09/24/2015 Page 392

Int function. Why the Int function? The Int function doesn’t round the year up or down;
it merely converts the number to a readable integer.

FIGURE 12.25

Your query is now returning years, but you have to strip away the fractional portion of your
answer.

Want to actually round the number of years? You can simply wrap your date calculation in the Round function. See

Access Help for more detail on the Round function.

Wrapping your calculation in the Int function ensures that your answer will be a clean
year without fractions (see Figure 12.26).

FIGURE 12.26

Running this query will return the number of years each employee has been with the
company.

You can calculate a person’s age using the same method. Simply replace the hire date with the date of birth.

393

Chapter 12: Working with Calculations and Dates

c12.indd 09/24/2015 Page 393

12

The Year, Month, Day, and Weekday functions

The Year, Month, Day, and Weekday functions are used to return an integer that repre-
sents their respective parts of a date. All these functions require a valid date as an argu-
ment. For example:

Year(#12/31/2013#) returns 2013.

Month(#12/31/2013#) returns 12.

Day(#12/31/2013#) returns 31.

Weekday(#12/31/2013#) returns 3.

The dates in this chapter correspond to the U.S. English date format: month/day/year. For example, the 5/1/2015

refers to May 1, 2015, not January 5, 2015. We realize this may seem illogical to those of you who are accustomed to

seeing dates in the day/month/year format, but that’s how your humble authors have been trained. We trust you can

make the adjustment while reading this chapter.

The Weekday function returns the day of the week from a date. In Access, weekdays are numbered from 1 to

7, starting with Sunday. Therefore, if the Weekday function returns 4, then the day of the week represented

is Wednesday. If Sunday is not the fi rst day of the week in your part of the world, you can use the optional

FirstDayOfWeek argument. This argument specifi es which day you want to count as the fi rst day of the week.

Enter 1 in this argument to make the fi rst day Sunday, 2 for Monday, 3 for Tuesday, and so on. If this argument is

omitted, the fi rst day is a Sunday by default.

Figure 12.27 demonstrates how you would use these functions in a query environment.

FIGURE 12.27

The Year, Month, Day, and Weekday functions enable you to parse out a part of a date.

394

Part IV: Analyzing Data in Access

c12.indd 09/24/2015 Page 394

An Easy Way to Query Only Workdays
Suppose that you’ve been asked to provide the total amount of revenue generated by product, but
only revenue generated during workdays in calendar year 2013. Workdays are defi ned as days that are
not weekends or holidays.

The fi rst thing you need to accomplish this task is a table that lists all the company holidays in 2013.
The following fi gure shows that a holidays table can be nothing more than one fi eld listing all the dates
that constitute a holiday.

After you’ve established a table that contains all the company holidays, it’s time to build the query.
The following fi gure demonstrates how to build a query that fi lters out non-workdays.

Take a moment to analyze what is going on in the preceding fi gure:

 1. You create a left join from Dim_Transactions to Holidays to tell Access that you want all the
records from Dim_Transactions.

 2. You then use the Is Null criteria under Holidays. This limits the Dim_Transactions table to
only those dates that do not match any of the holidays listed in the Holidays table.

 3. You then create a fi eld called Day Check where you’re returning the weekday of every service
date in the Dim_Transactions table.

 4. You fi lter the newly created Day Check fi eld to fi lter out those weekdays that represent
Saturdays and Sundays (1 and 7).

 5. Finally, you fi lter for only those records whose order dates fall in the year 2013.

395

Chapter 12: Working with Calculations and Dates

c12.indd 09/24/2015 Page 395

12

The DateAdd function

A common analysis for many organizations is to determine on which date a certain bench-
mark will be reached. For example, most businesses want to know on what date an order
will become 30 days past due. Furthermore, what date should a warning letter be sent to
the customer? An easy way to perform these types of analyses is to use the DateAdd func-
tion, which returns a date to which a specifi ed interval has been added:

DateAdd(interval, number, date)

The DateAdd function returns a date to which a specifi ed interval has been added. There
are three required arguments in the DateAdd function.

 ■ interval (required): The interval of time you want to use. The intervals available
are as follows:

 ■ "yyyy": Year

 ■ "q": Quarter

 ■ "m": Month

 ■ "y": Day of year

 ■ "d": Day

 ■ "w": Weekday

 ■ "ww": Week

 ■ "h": Hour

 ■ "n": Minute

 ■ "s": Second

 ■ number (required): The number of intervals to add. A positive number returns a
date in the future, whereas a negative number returns a date in the past.

 ■ date (required): The date value with which you’re working. For example:

DateAdd("ww",1,#11/30/2013#) returns 12/7/2013.

DateAdd("m",2,#11/30/2013#) returns 1/30/2014.

DateAdd("yyyy",-1,#11/30/2013#) returns 11/30/2012.

The query shown in Figure 12.28 illustrates how the DateAdd function can be used in
determining the exact date a specifi c benchmark is reached. You’re creating two new fi elds
with this query: Warning and Overdue. The DateAdd function used in the Warning fi eld
will return the date that is three weeks from the original order date. The DateAdd func-
tion used in the Overdue fi eld will return the date that is one month from the original
order date.

396

Part IV: Analyzing Data in Access

c12.indd 09/24/2015 Page 396

FIGURE 12.28

This query will give you the original order date, the date you should send a warning letter,
and the date on which the order will be 30 days overdue.

Grouping dates into quarters

Why would you need to group your dates into quarters? Most databases store dates rather
than quarter designations. Therefore, if you wanted to analyze data on a quarter-over-
quarter basis, you would have to convert dates into quarters. Surprisingly, there is no date/
time function that allows you to group dates into quarters. There is, however, the Format
function.

The Format function belongs to the Text category of functions and allows you to convert
a variant into a string based on formatting instructions. From the perspective of analyzing
dates, there are several valid instructions you can pass to a Format function:

Format(#01/31/2013#, "yyyy") returns 2013.

Format(#01/31/2013#, "yy") returns 13.

Format(#01/31/2013#, "q") returns 1.

Format(#01/31/2013#, "mmm") returns Jan.

Format(#01/31/2013#, "mm") returns 01.

Format(#01/31/2013#, "d") returns 31.

Format(#01/31/2013#, "w") returns 5.

Format(#01/31/2013#, "ww") returns 5.

Keep in mind that the value returned when passing a date through a Format function is a string that cannot be used

in subsequent calculations.

397

Chapter 12: Working with Calculations and Dates

c12.indd 09/24/2015 Page 397

12

The query in Figure 12.29 shows how you would group all the order dates into quarters and
then group the quarters to get a sum of revenue for each quarter.

FIGURE 12.29

You can group dates into quarters by using the Format function.

If you want to get fancy, you can insert the Format function in a crosstab query, using
Quarter as the column (see Figure 12.30).

FIGURE 12.30

You can also use the Format function in a crosstab query.

As you can see in Figure 12.31, the resulting dataset is a clean look at revenue by product
by quarter.

398

Part IV: Analyzing Data in Access

c12.indd 09/24/2015 Page 398

FIGURE 12.31

You’ve successfully grouped your dates into quarters.

The DateSerial function

The DateSerial function allows you to construct a date value by combining given year,
month, and day components. This function is perfect for converting disparate strings that,
together, represent a date, into an actual date.

DateSerial(Year, Month, Day)

The DateSerial function has three arguments:

 ■ Year (required): Any number or numeric expression from 100 to 9999

 ■ Month (required): Any number or numeric expression

 ■ Day (required): Any number or numeric expression

For example, the following statement would return April 3, 2012.

DateSerial(2012, 4, 3)

So, how is this helpful? Well, now you can put a few twists on this by performing cal-
culations on the expressions within the DateSerial function. Consider some of the
possibilities:

 ■ Get the fi rst day of last month by subtracting 1 from the current month and using
1 as the Day argument:

DateSerial(Year(Date()), Month(Date()) - 1, 1)

 ■ Get the fi rst day of next month by adding 1 to the current month and using 1 as
the Day argument:

DateSerial(Year(Date()), Month(Date()) + 1, 1)

 ■ Get the last day of this month by adding 1 to the current month and using 0 as the
Day argument:

DateSerial(Year(Date()), Month(Date())+1, 0)

399

Chapter 12: Working with Calculations and Dates

c12.indd 09/24/2015 Page 399

12

 ■ Get the last day of next month by adding 2 to the current month and using 0 as
the Day argument:

DateSerial(Year(Date()), Month(Date()) +2, 0)

Passing a 0 to the Day argument will automatically get you the last day of the month specifi ed in the DateSerial

function. It’s worth mentioning that DateSerial is smart enough to work across years. Month(Date()) - 1

will still work correctly in January, and Month(Date()) + 1 will work correctly in December.

401

c13.indd 10/07/2015 Page 401

CHAP T ER

13
Performing Conditional Analyses

IN THIS CHAPTER

Using parameter queries

Using conditional functions

Comparing the IIf and Switch functions

U
ntil now your analyses have been straightforward. You build a query, you add some criteria,
you add a calculation, you save the query, and then you run the query whenever you need
to. What happens, however, if the criteria that governs your analysis changes frequently, or

if your analytical processes depend on certain conditions being met? In these situations, you would
use a conditional analysis: an analysis whose outcome depends on a predefi ned set of conditions.
Barring VBA and macros, there are several tools and functions that enable you to build conditional
analyses; some of these are parameter queries, the IIf function, and the Switch function.

In this chapter, you learn how these tools and functions can help you save time, organize your ana-
lytical processes, and enhance your analyses.

The starting database for this walkthrough, Chapter13.accdb, can be downloaded from this book’s website.

Using Parameter Queries
You’ll fi nd that when building your analytical processes, anticipating every single combination of
criteria that may be needed will often be diffi cult. This is where parameter queries can help.

A parameter query is an interactive query that prompts you for criteria before the query is run. A
parameter query is useful when you need to ask a query different questions using different criteria
each time it’s run. To get a fi rm understanding of how a parameter query can help you, build the
query shown in Figure 13.1. With this query, you want to see all the purchase orders logged during
the 201205 period.

ON THE WEB

402

Part IV: Analyzing Data in Access

c13.indd 10/07/2015 Page 402

FIGURE 13.1

This query has a hard-coded criterion for system period.

Although this query will give you what you need, the problem is that the criterion for sys-
tem period is hard-coded as 201205. That means if you want to analyze revenue for a dif-
ferent period, you essentially have to rebuild the query. Using a parameter query will allow
you to create a conditional analysis—that is, an analysis based on variables you specify
each time you run the query. To create a parameter query, simply replace the hard-coded
criteria with text that you’ve enclosed in square brackets ([]), as shown in Figure 13.2.

FIGURE 13.2

To create a parameter query, replace the hard-coded criteria with text enclosed in square
brackets ([]).

403

Chapter 13: Performing Conditional Analyses

c13.indd 10/07/2015 Page 403

13

Running a parameter query forces the Enter Parameter Value dialog box to open and ask for
a variable. Note that the text you typed inside the brackets of your parameter appears in
the dialog box. At this point, you would simply enter your parameter into a dialog box (see
Figure 13.3).

FIGURE 13.3

The Parameter Value dialog box lets you specify the criteria each time you run your query.

How parameter queries work
When you run a parameter query, Access attempts to convert any text to a literal string by
wrapping the text in quotes. However, if you place square brackets ([]) around the text,
Access thinks that it’s a variable and tries to bind some value to the variable using the fol-
lowing series of tests:

 1. Access checks to see if the variable is a fi eld name. If Access identifi es the variable
as a fi eld name, that fi eld is used in the expression.

 2. If the variable is not a fi eld name, Access checks to see if the variable is a
calculated fi eld. If Access determines the expression is indeed a calculated fi eld, it
simply carries out the mathematical operation.

 3. If the variable is not a calculated fi eld, Access checks to see if the variable is refer-
encing an object such as a control on an open form or open report.

 4. If all else fails, the only remaining option is to ask the user what the variable is, so
Access displays the Enter Parameter Value dialog box, showing the text you entered
in the Criteria row.

Ground rules of parameter queries
As with other functionality in Access, parameter queries come with their own set of ground
rules that you should follow in order to use them properly.

 ■ You must place square brackets ([]) around your parameter. If you don’t, Access
will automatically convert your text into a literal string.

 ■ You can’t use the name of a fi eld as a parameter. If you do, Access will simply
replace your parameter with the current value of the fi eld.

404

Part IV: Analyzing Data in Access

c13.indd 10/07/2015 Page 404

 ■ You can’t use a period (.), an exclamation point (!), square brackets ([]), or an
ampersand (&) in your parameter’s prompt text.

 ■ You must limit the number of characters in your parameter’s prompt text. Entering
parameter prompt text that is too long may result in your prompt being cut off in
the Enter Parameter Value dialog box. Moreover, you should make your prompts as
clear and concise as possible.

If you really want to use a fi eld name in your parameter’s prompt, you can follow the fi eld name with other characters.

For example, instead of using [System_Period], you could use [System_Period: ?]. As you read this,

keep in mind that there is nothing magic about the colon (:) or the question mark (?). Any set of characters will do.

In fact, it may be more useful to provide your users with a sense of how the needed parameter should be formatted—

for example: [System_Period: yyyymm].

Working with parameter queries
The example shown in Figure 13.2 uses a parameter to defi ne a single criterion. Although
this is the most common way to use a parameter in a query, there are many ways to exploit
this functionality. In fact, it’s safe to say that the more innovative you get with your
parameter queries, the more elegant and advanced your impromptu analysis will be. This
section covers some of the different ways you can use parameters in your queries.

Working with multiple parameter conditions

You aren’t in any way limited in the number of parameters you can use in your query.
Figure 13.4 demonstrates how you can utilize more than one parameter in a query. When
you run this query, you’ll be prompted for both a system period and a product ID, allowing
you to dynamically fi lter on two data points without ever having to rewrite your query.

Combining parameters with operators

You can combine parameter prompts with any operator you would normally use in a query.
Using parameters in conjunction with standard operators allows you to dynamically expand
or contract the fi lters in your analysis without rebuilding your query. To demonstrate how
this works, build the query shown in Figure 13.5.

This query uses the BETWEEN...AND operator and the > (greater than) operator to limit
the results of the query based on the user-defi ned parameters. Since there are three param-
eter prompts built into this query, you’ll be prompted for inputs three times: once for a
starting period, once for an ending period, and once for a dollar amount. The number of
records returned depends on the parameters you input. For instance, if you input 201201 as
the starting period, 201203 as the ending period, and 5000 as the dollar amount, you’ll get
1,700 records.

405

Chapter 13: Performing Conditional Analyses

13

c13.indd 10/07/2015 Page 405

FIGURE 13.4

You can employ more than one parameter in a query.

FIGURE 13.5

This query combines standard operators with parameters in order to limit the results.

Combining parameters with wildcards

One of the problems with a parameter query is that if the parameter is left blank when the
query is run, the query will return no records. One way to get around this problem is to
combine your parameter with a wildcard so that if the parameter is blank, all records will
be returned.

406

Part IV: Analyzing Data in Access

c13.indd 10/07/2015 Page 406

To demonstrate how you can use a wildcard with a parameter, build the query shown in
Figure 13.6. When you run this query, it’ll prompt you for a period. Because you’re using
the * wildcard, you have the option of fi ltering out a single period by entering a period
designator into the parameter, or you can ignore the parameter to return all records.

FIGURE 13.6

If the parameter in this query is ignored, the query will return all records thanks to the
wildcard (*).

Using the * wildcard with a parameter also allows users to enter a partial parameter and still get results. Suppose,

for example, that the criteria in your parameter query is:

Like [Enter Lastname] & "*"

Entering “A” as the parameter would return all last names that start with the letter A.

Or, suppose the criteria in your parameter query is:

Like "*" & [Enter Lastname] & "*"

Entering “A” would return all last names that contain the letter A.

Note that this will only return all the records that have an actual value. This will not return records with a null value in

the fi eld. To be able to have null values also returned, you need to use the following:

Like "*" & [Enter Lastname] & "*" or IS NULL

Using parameters as calculation variables

You are not limited to using parameters as criteria for a query; you can use parameters
anywhere you use a variable. In fact, a particularly useful way to use parameters is in
calculations. For example, the query in Figure 13.7 enables you to analyze how a price

407

Chapter 13: Performing Conditional Analyses

13

c13.indd 10/07/2015 Page 407

increase will affect current prices based on the percent increase you enter. When you run
this query, you’ll be asked to enter a percentage by which you want to increase your prices.
Once you pass your percentage, the parameter query uses it as a variable in the calculation.

FIGURE 13.7

You can use parameters in calculations, enabling you to change the calculations variables
each time you run the query.

Using parameters as function arguments

You can also use parameters as arguments within functions. Figure 13.8 demonstrates the
use of the DateDiff function using parameters instead of hard-coded dates. When this
query is run, you’ll be prompted for a start date and an end date. Those dates will then be
used as arguments in the DateDiff function. Again, this allows you to specify new dates
each time you run the query without ever having to rebuild the query.

FIGURE 13.8

You can use parameters as arguments in functions instead of hard-coded values.

Be aware that values you enter into your parameters must fi t into the data type required for the function’s argument.

For example, if you’re using a parameter in a DateDiff function, the variable you assign that parameter must be a

date; otherwise, the function won’t work.

408

Part IV: Analyzing Data in Access

c13.indd 10/07/2015 Page 408

When you run the query in Figure 13.8, you’ll only have to enter the start date and the end date one time, even

though they’re both used in two places in the query. This is because once you assign a variable to a parameter, the

assignment persists to every future instance of that parameter.

If you are prompted more than once for a parameter used more than once in your query, odds are there’s a slight

variation in how the parameter names were typed. Consider copying your parameters to avoid this.

Creating a Parameter Prompt That Accepts Multiple
Entries
The parameter query in the following fi gure enables you to fi lter results dynamically by a variable
period that you specify within the parameter. However, this query does not allow you to see results
for more than one period at a time.

You could use more than one parameter, as shown in the following fi gure. Unlike the query in the pre-
ceding fi gure, this query allows you to include more than one period in your query results. However,
you would still be limited to the number of parameters built into the query (in this case, three).

409

Chapter 13: Performing Conditional Analyses

13

c13.indd 10/07/2015 Page 409

So, how do you allow for any number of parameter entries? The answer is relatively easy. You create a
parameter that is passed through an InStr function to test for a position number. (Feel free to revisit
Chapter 4 to get a refresher on the InStr function.)

The query shown in the following fi gure demonstrates how to do this:

Notice that the parameter is not being used as criteria for the Period fi eld. Instead, it is being used in
an InStr function to test for the position number of the variable you enter into the parameter prompt,
as follows:

InStr([Enter Periods separated by commas],[Period])

Continues

410

Part IV: Analyzing Data in Access

c13.indd 10/07/2015 Page 410

If the InStr function fi nds your variable, it returns a position number; if not, it returns zero. Therefore, you
only want records that return a position number greater than zero (hence, the criteria for the parameter).

When you run this query, the Enter Parameter Value dialog box (shown in the following fi gure) appears.
You can then type in as many variables as you want.

Using Conditional Functions
Parameter queries aren’t the only tools in Access that allow for conditional analysis. Access
also has built-in functions that facilitate value comparisons, data validation, and conditional
evaluation. Two of these functions are the IIf function and the Switch function. These
conditional functions (also called program flow functions) are designed to test for conditions
and provide different outcomes based on the results of those tests. In this section, you’ll
learn how to control the fl ow of your analyses by utilizing the IIf and Switch functions.

The IIf function
The IIf (immediate if) function replicates the functionality of an IF statement for a sin-
gle operation. The IIf function evaluates a specifi c condition and returns a result based on
a true or false determination:

IIf(Expression, TrueAnswer, FalseAnswer)

To use the IIf function, you must provide three required arguments:

 ■ Expression (required): The expression you want to evaluate

 ■ TrueAnswer (required): The value to return if the expression is true

 ■ FalseAnswer (required): The value to return if the expression is false

Think of the commas in an IIf function as THEN and ELSE statements. Consider the following IIf function, for

instance:

IIf(Babies = 2 , "Twins", "Not Twins")

This function literally translates to: If Babies equals 2, then Twins, else Not Twins.

continued

411

Chapter 13: Performing Conditional Analyses

13

c13.indd 10/07/2015 Page 411

Using IIf to avoid mathematical errors

To demonstrate a simple problem where the IIf function comes in handy, build the query
shown in Figure 13.9.

FIGURE 13.9

This query will perform a calculation on the Actual and the Forecast fi elds to calculate a per-
cent to forecast.

When you run the query, you’ll notice that not all the results are clean. As you can see in
Figure 13.10, you’re getting some errors due to division by zero. That is, you’re dividing
actual revenues by forecasts that are zero.

FIGURE 13.10

The errors shown in the results are due to the fact that some revenues are being divided by
zeros.

Although this seems like a fairly benign issue, in a more complex, multilayered analytical
process, these errors could compromise the integrity of your data analysis. To avoid these
errors, you can perform a conditional analysis on your dataset using the IIf function,
evaluating the Forecast fi eld for each record before performing the calculation. If the fore-
cast is zero, you’ll bypass the calculation and simply return a value of zero. If the forecast

412

Part IV: Analyzing Data in Access

c13.indd 10/07/2015 Page 412

is not zero, you’ll perform the calculation to get the correct value. The IIf function would
look like this:

IIf([Forecast]=0,0,[Actual]/[Forecast])

Figure 13.11 demonstrates how this IIf function is put into action.

FIGURE 13.11

This IIf function enables you to test for forecasts with a value of zero and bypass them when
performing your calculation.

As you can see in Figure 13.12, the errors have been avoided.

FIGURE 13.12

The IIf function helped you avoid the division by zero errors.

Saving time with IIf

You can also use the IIf function to save steps in your analytical processes and, ulti-
mately, save time. For example, imagine that you need to tag customers in a lead list as
either large customers or small customers, based on their dollar potential. You decide that

413

Chapter 13: Performing Conditional Analyses

13

c13.indd 10/07/2015 Page 413

you’ll update the MyTest fi eld in your dataset with “LARGE” or “SMALL” based on the rev-
enue potential of the customer.

Without the IIf function, you would have to run the two update queries shown in Figures
13.13 and 13.14 to accomplish this task.

FIGURE 13.13

This query will update the MyTest fi eld to tag all customers that have a revenue potential at
or above $10,000 with the word “LARGE.”

FIGURE 13.14

This query will update the MyTest fi eld to tag all customers that have a revenue potential less
than $10,000 with the word “SMALL.”

Will the queries in Figures 13.13 and 13.14 do the job? Yes. However, you could accomplish
the same task with one query using the IIf function.

414

Part IV: Analyzing Data in Access

c13.indd 10/07/2015 Page 414

The update query shown in Figure 13.15 illustrates how you can use an IIf function as the
update expression.

FIGURE 13.15

You can accomplish the same task in one query using the IIf function.

Take a moment and look at the IIf function being used as the update expression.

IIf([DollarPotential]>=10000,"LARGE","SMALL")

This function tells Access to evaluate the DollarPotential fi eld of each record. If the
DollarPotential fi eld is greater than or equal to 10,000, use the word “LARGE” as the update
value; if not, use the word “SMALL.”

You can use conditional operators (AND, OR, BETWEEN) within your IIf functions to add a layer to your condition

expression. For example, the following function tests for a dollar potential and segment to get a true or false value.

IIf([DollarPotential]>10000 And [Segment]="Metal Fabrication","True","False")

Nesting IIf functions for multiple conditions

Sometimes the condition you need to test for is too complex to be handled by a basic
IF...THEN...ELSE structure. In such cases, you can use nested IIf functions—that is,
IIf functions that are embedded in other IIf functions. Consider the following example:

IIf([VALUE]>100,"A",IIf([VALUE]<100,"C","B"))

This function will check to see if VALUE is greater than 100. If it is, then "A" is returned;
if not (else), a second IIf function is triggered. The second IIf function will check to see
if VALUE is less than 100. If yes, then "C" is returned; if not (else), "B" is returned.

The idea here is that because an IIf function results in a true or false answer, you can
expand your condition by setting the false expression to another IIf function instead of

415

Chapter 13: Performing Conditional Analyses

13

c13.indd 10/07/2015 Page 415

to a hard-coded value. This triggers another evaluation. There is no limit to the number of
nested IIf functions you can use.

Using IIf functions to create crosstab analyses

Many seasoned analysts use the IIf function to create custom crosstab analyses in lieu of
using a crosstab query. Among the many advantages of creating crosstab analyses without
a crosstab query is the ability to categorize and group otherwise unrelated data items.

In the example shown in Figure 13.16, you’re returning the number of account managers
hired before and after 2014. Categorizations this specifi c would not be possible with a
crosstab query.

FIGURE 13.16

This query demonstrates how to create a crosstab analysis without using a crosstab query.

The result, shown in Figure 13.17, is every bit as clean and user-friendly as the results
would be from a crosstab query.

FIGURE 13.17

The resulting dataset gives you a clean crosstab-style view of your data.

416

Part IV: Analyzing Data in Access

c13.indd 10/07/2015 Page 416

Another advantage of creating crosstab analyses without a crosstab query is the ability to
include more than one calculation in your crosstab report. For example, Figure 13.18 illus-
trates a query where the sum of units and revenue will be returned in crosstab format.

FIGURE 13.18

Creating crosstab-style reports using the IIf function allows you to calculate more than one
value.

As you can see in Figure 13.19, the resulting dataset provides a great deal of information
in an easy-to-read format. Because a standard crosstab query does not allow more than one
value calculation (in this case, units and revenue are values), this particular view would
not be possible with a standard crosstab query.

FIGURE 13.19

This analysis would be impossible to create in a standard crosstab query, where multiple
calculations are not allowed.

The Switch function
The Switch function enables you to evaluate a list of expressions and return the value
associated with the expression determined to be true. To use the Switch function, you
must provide a minimum of one expression and one value.

Switch(Expression, Value)

417

Chapter 13: Performing Conditional Analyses

13

c13.indd 10/07/2015 Page 417

 ■ Expression (required): The expression you want to evaluate

 ■ Value (required): The value to return if the expression is true

The power of the Switch function comes in evaluating multiple expressions at one time
and determining which one is true. To evaluate multiple expressions, simply add another
Expression and Value to the function, as follows:

Switch(Expression1, Value1, Expression2, Value2, Expression3, Value3)

When executed, this Switch function evaluates each expression in turn. If an expres-
sion evaluates to true, the value that follows that expression is returned. If more than one
expression is true, the value for the fi rst true expression is returned (and the others are
ignored). Keep in mind that there is no limit to the number of expressions you can evaluate
with a Switch function.

If none of the expressions in your Switch function evaluate as true, the function will return a null value. For exam-

ple, the following function evaluates Count and returns a value based on it:

Switch([Count] < 10, "Low", [Count] > 15, "High")

The problem with this function is that if Count comes in between 10 and 15, you will get a null value because none

of the expressions include those numbers. This may indirectly cause errors in other parts of your analysis.

To avoid this scenario, you can add a “catch-all” expression and provide a value to return if none of your expressions

is determined to be true:

Switch([Count] < 10, "Low", [Count] > 15, "High", True, "Middle")

Adding True as the last expression will force the value "Middle" to be returned instead of a null value if none of

the other expressions evaluates as true.

Comparing the IIf and Switch functions
Although the IIf function is a versatile tool that can handle most conditional analyses,
the fact is that the IIf function has a fi xed number of arguments that limits it to a basic
IF...THEN...ELSE structure. This limitation makes it diffi cult to evaluate complex con-
ditions without using nested IIf functions. Although there is nothing wrong with nest-
ing IIf functions, there are analyses in which the numbers of conditions that need to be
evaluated make building a nested IIf impractical at best.

To illustrate this point, consider this scenario. It’s common practice to classify customers
into groups based on annual revenue or how much they spend with your company. Imagine
that your organization has a policy of classifying customers into four groups: A, B, C, and D
(see Table 13.1).

418

Part IV: Analyzing Data in Access

c13.indd 10/07/2015 Page 418

TABLE 13.1 Customer Classifi cations

Annual Revenue Customer Classifi cation

>= $10,000 A

>=5,000 but < $10,000 B

>=$1,000 but < $5,000 C

<$1,000 D

You’ve been asked to classify the customers in the TransactionMaster table, based on each
customer’s sales transactions. You can actually do this using either the IIf function or the
Switch function.

The problem with using the IIf function is that this situation calls for some hefty nesting.
That is, you’ll have to use IIf expressions within other IIf expressions to handle the easy
layer of possible conditions. Here’s how the expression would look if you opted to use the
IIf function:

IIf([REV]>=10000,"A",IIf([REV]>=5000 And [REV]<10000,"B",
IIf([REV]>1000 And [REV]<5000,"C","D")))

As you can see, not only is it diffi cult to determine what’s going on here, but this is so con-
voluted that the chances of making a syntax or logic error are high.

In contrast to the preceding nested IIf function, the following Switch function is rather
straightforward:

Switch([REV]<1000,"D",[REV]<5000,"C",[REV]<10000,"B",True,"A")

This function tells Access to return a value of "D" if REV is less than 1000. If REV is less
than 5000, a value of "C" is returned. If REV is less than 10000, "B" is returned. If all
else fails, use "A". Figure 13.20 demonstrates how you would use this function in a query.

You may shrewdly notice that those records that are less than 1,000 will also be less than 10,000. So, why don’t all

the records get tagged with a value of B? Remember that the Switch function evaluates your expressions from left

to right and only returns the value of the fi rst expression that evaluates to true.

In this light, you’ll want to sort the expressions in your Switch function accordingly, using an order that is conducive

to the logic of your analysis.

419

Chapter 13: Performing Conditional Analyses

13

c13.indd 10/07/2015 Page 419

FIGURE 13.20

Using the Switch function is sometimes more practical than using nested IIf functions. This
query will classify customers by how much they spend.

When you run the query, you’ll see the resulting dataset shown in Figure 13.21.

FIGURE 13.21

Each customer is conditionally tagged with a group designation based on annual revenue.

421

c14.indd 10/07/2015 Page 421

 CHAP T ER

14
The Fundamentals of Using SQL

IN THIS CHAPTER

Understanding basic SQL

Getting fancy with advanced SQL

Using SQL-specifi c queries

S tructured Query Language (SQL) is the language that relational database management sys-
tems (such as Access) use to perform their various tasks. In order to tell Access to perform
any kind of query, you have to convey your instructions in SQL. Don’t panic—the truth is,

you’ve already been building and using SQL statements, even if you didn’t realize it.

In this chapter, you’ll discover the role that SQL plays in your dealings with Access and learn how
to understand the SQL statements generated when building queries. You’ll also explore some of the
advanced actions you can take with SQL statements, allowing you to accomplish actions that go
beyond the Access user interface. The basics you learn here will lay the foundation for your ability
to perform the advanced techniques you’ll encounter throughout the rest of this book.

The starting database for this walkthrough, Chapter14.accdb, can be downloaded from this book’s website.

Understanding Basic SQL
A major reason your exposure to SQL is limited is that Access is more user friendly than most
people give it credit for being. The fact is, Access performs a majority of its actions in user-friendly
environments that hide the real grunt work that goes on behind the scenes.

For a demonstration of this, build in Design view the query you see in Figure 14.1. In this relatively
simple query, you’re asking for the sum of revenue by period.

ON THE WEB

422

Part IV: Analyzing Data in Access

c14.indd 10/07/2015 Page 422

FIGURE 14.1

Build this relatively simple query in Design view.

Next, select the Design tab on the Ribbon and choose View ➪ SQL View. Access switches
from Design view to the view you see in Figure 14.2.

FIGURE 14.2

You can get to SQL view by selecting View ➪ SQL View.

As you can see in Figure 14.2, while you were busy designing your query in Design view,
Access was diligently creating the SQL statement that allows the query to run. This exam-
ple shows that with the user-friendly interface provided by Access, you don’t necessarily
need to know the SQL behind each query. The question now becomes: If you can run queries
just fi ne without knowing SQL, why bother to learn it?

Admittedly, the convenient query interface provided by Access does make it a bit tempting
to go through life not really understanding SQL. However, if you want to harness the real
power of data analysis with Access, you need to understand the fundamentals of SQL.

The SELECT statement
The SELECT statement, the cornerstone of SQL, enables you to retrieve records from a
dataset. The basic syntax of a SELECT statement is as follows:

SELECT column_name(s)
FROM table_name

423

Chapter 14: The Fundamentals of Using SQL

c14.indd 10/07/2015 Page 423

14

The SELECT statement is always used with a FROM clause. The FROM clause identifi es the
table(s) that make up the source for the data.

Try this: Start a new query in Design view. Close the Show Table dialog box (if it’s open),
select the Design tab on the Ribbon, and choose View ➪ SQL View. In SQL view, type in the
SELECT statement shown in Figure 14.3, and then run the query by selecting Run on the
Design tab of the Ribbon.

FIGURE 14.3

A basic SELECT statement in SQL view.

Congratulations! You’ve just written your fi rst query manually.

You may notice that the SQL statement automatically created by Access in Figure 14.2 has a semicolon at the end of

it. The semicolon is a standard way to end a SQL statement and is required by some database programs. However,

it isn’t necessary to end your SQL statements with a semicolon in Access, because Access will automatically add it

when the query compiles.

Selecting specific columns

You can retrieve specifi c columns from your dataset by explicitly defi ning the columns in
your SELECT statement, as follows:

SELECT AccountManagerID, FullName,[Email Address]
FROM Dim_AccountManagers

Any column in your database with a name that includes spaces or a non-alphanumeric character must be enclosed

within brackets ([]) in your SQL statement. For example, the SQL statement selecting data from a column called

Email Address would be referred to as [Email Address].

Selecting all columns

Using the wildcard (*) allows you to select all columns from a dataset without having to
defi ne every column explicitly.

SELECT * FROM Dim_AccountManagers

424

Part IV: Analyzing Data in Access

c14.indd 10/07/2015 Page 424

The WHERE clause
You can use the WHERE clause in a SELECT statement to fi lter your dataset and condition-
ally select specifi c records. The WHERE clause is always used in combination with an opera-
tor such as: = (equal), <> (not equal), > (greater than), < (less than), >= (greater than or
equal to), <= (less than or equal to), or BETWEEN (within general range).

The following SQL statement retrieves only those employees whose last name is Winston:

SELECT AccountManagerID, [Last Name], [First Name]
FROM Dim_AccountManagers
WHERE [Last Name] = "Winston"

And this SQL statement retrieves only those employees whose hire date is later than May
16, 2012:

SELECT AccountManagerID, [Last Name], [First Name]
FROM Dim_AccountManagers
WHERE HireDate > #5/16/2012#

Notice in the preceding two examples that the word Winston is wrapped in quotes ("Winston") and the date

5/16/2012 is wrapped in pound signs (#5/16/2012#). When referring to a text value in a SQL statement, you

must place quotes around the value; when referring to a date, pound signs must be used.

Making sense of joins
You’ll often need to build queries that require that two or more related tables be joined
to achieve the desired results. For example, you may want to join an employee table to a
transaction table in order to create a report that contains both transaction details and
information on the employees who logged those transactions. The type of join used will
determine the records that will be output.

 For a detailed review of joins, check out Chapter 8.

Inner joins

An inner join operation tells Access to select only those records from both tables that have
matching values. Records with values in the joined fi eld that do not appear in both tables
are omitted from the query results.

425

Chapter 14: The Fundamentals of Using SQL

c14.indd 10/07/2015 Page 425

14

The following SQL statement selects only those records in which the employee numbers in the
AccountManagerID fi eld are in both the Dim_AccountManagers table and the Dim_Territory
table.

SELECT Region, Market,
Dim_AccountManagers.AccountManagerID, FullName
FROM Dim_AccountManagers INNER JOIN Dim_Territory ON
Dim_AccountManagers.AccountManagerID =
Dim_Territory.AccountManagerID

Outer joins

An outer join operation tells Access to select all the records from one table and only the
records from a second table with matching values in the joined fi eld. There are two types
of outer joins: left joins and right joins.

A left join operation (sometimes called an outer left join) tells Access to select all the
records from the fi rst table regardless of matching and only those records from the second
table that have matching values in the joined fi eld.

This SQL statement selects all records from the Dim_AccountManagers table and only those
records in the Dim_Territory table where values for the AccountManagerID fi eld exist in
the Dim_AccountManagers table.

SELECT Region, Market,
Dim_AccountManagers.AccountManagerID, FullName
FROM Dim_AccountManagers LEFT JOIN Dim_Territory ON
Dim_AccountManagers.AccountManagerID =
Dim_Territory.AccountManagerID

A right join operation (sometimes called an outer right join) tells Access to select all the
records from the second table, regardless of matching, and only those records from the
fi rst table that have matching values in the joined fi eld.

This SQL statement selects all records from the Dim_Territory table and only those records
in the Dim_AccountManagers table where values for the AccountManagerID fi eld exist in
the Dim_Territory table.

SELECT Region, Market,
Dim_AccountManagers.AccountManagerID, FullName
FROM Dim_AccountManagers RIGHT JOIN Dim_Territory ON
Dim_AccountManagers.AccountManagerID =
Dim_Territory.AccountManagerID

426

Part IV: Analyzing Data in Access

c14.indd 10/07/2015 Page 426

Notice that in the preceding join statements, table names are listed before each column name separated by a dot

(for example, Dim_AccountManager.AccountManagerID). When you’re building a SQL statement for a

query that utilizes multiple tables, it’s generally a good practice to refer to the table names as well as fi eld names in

order to avoid confusion and errors. Access does this for all queries automatically. You’ll also need to use the square

brackets if the table or fi eld being referenced contains special characters such as spaces.

Getting Fancy with Advanced SQL Statements
You’ll soon realize that the SQL language is quite versatile, allowing you to go far beyond
basic SELECT, FROM, and WHERE statements. In this section, you’ll explore some of the
advanced actions you can accomplish with SQL.

Expanding your search with the Like operator
By itself, the Like operator is no different from the equal (=) operator. For instance, these
two SQL statements will return the same number of records:

SELECT AccountManagerID, [Last Name], [First Name]
FROM Dim_AccountManagers
WHERE [Last Name] = "Winston"
SELECT AccountManagerID, [Last Name], [First Name]
FROM Dim_AccountManagers
WHERE [Last Name] Like "Winston"

The Like operator is typically used with wildcard characters to expand the scope of your
search to include any record that matches a pattern. The wildcard characters that are valid
in Access are as follows:

 ■ *: The asterisk represents any number and type characters.

 ■ ?: The question mark represents any single character.

 ■ #: The pound sign represents any single digit.

 ■ []: The brackets allow you to pass a single character or an array of characters to the
Like operator. Any values matching the character values within the brackets will
be included in the results.

 ■ [!]: The brackets with an embedded exclamation point allow you to pass a single
character or an array of characters to the Like operator. Any values matching the
character values following the exclamation point will be excluded from the results.

Listed in Table 14.1 are some example SQL statements that use the Like operator to select
different records from the same table column.

427

Chapter 14: The Fundamentals of Using SQL

c14.indd 10/07/2015 Page 427

14

TABLE 14.1 Selection Methods Using the Like Operator

Wildcard Character(s)

Used SQL Statement Example Result

* SELECT Field1

FROM Table1

WHERE Field1 Like "A*"

Selects all records where Field1 starts
with the letter A

* SELECT Field1

FROM Table1

WHERE Field1 Like "*A*"

Selects all records where Field1
includes the letter A

? SELECT Field1

FROM Table1

WHERE Field1 Like "???"

Selects all records where the length of
Field1 is three characters long

? SELECT Field1

FROM Table1

WHERE Field1 Like "B??"

Selects all records where Field1 is a
three-letter string that starts with B

SELECT Field1

FROM Table1

WHERE Field1 Like "###"

Selects all records where Field1 is a
number that is exactly three digits
long

SELECT Field1

FROM Table1

WHERE Field1 Like "A#A"

Selects all records where the value in
Field1 is a three-character value that
starts with A, contains one digit, and
ends with A

#, * SELECT Field1

FROM Table1

WHERE Field1 Like "A#*"

Selects all records where Field1 begins
with A and any digit

[], * SELECT Field1

FROM Table1

WHERE Field1 Like
"*[$%!*/]*"

Selects all records where Field1
includes any one of the special charac-
ters shown in the SQL statement

[!], * SELECT Field1

FROM Table1

WHERE Field1 Like
"*[!a-z]*"

Selects all records where the value of
Field1 is not a text value, but a number
value or special character such as the
@ symbol

[!], * SELECT Field1

FROM Table1

WHERE Field1 Like
"*[!0-9]*"

Selects all records where the value of
Field1 is not a number value, but a text
value or special character such as the
@ symbol

428

Part IV: Analyzing Data in Access

c14.indd 10/07/2015 Page 428

Selecting unique values and rows without grouping
The DISTINCT predicate enables you to retrieve only unique values from the selected fi elds
in your dataset. For example, the following SQL statement will select only unique job titles
from the Dim_AccountManagers table, resulting in six records:

SELECT DISTINCT AccountManagerID
FROM Dim_AccountManagers

If your SQL statement selects more than one fi eld, the combination of values from all fi elds
must be unique for a given record to be included in the results.

If you require that the entire row be unique, you could use the DISTINCTROW predicate.
The DISTINCTROW predicate enables you to retrieve only those records for which the entire
row is unique. That is to say, the combination of all values in the selected fi elds does not
match any other record in the returned dataset. You would use the DISTINCTROW predicate
just as you would in a SELECT DISTINCT clause.

SELECT DISTINCTROW AccountManagerID
FROM Dim_AccountManagers

Grouping and aggregating with the GROUP BY clause
The GROUP BY clause makes it possible to aggregate records in your dataset by column
 values. When you create an aggregate query in Design view, you’re essentially using the
GROUP BY clause. The following SQL statement will group the Market fi eld and give you
the count of states in each market:

SELECT Market, Count(State)
FROM Dim_Territory
GROUP BY Market

When you’re using the GROUP BY clause, any WHERE clause included in the query is evalu-
ated before aggregation occurs. However, you may have scenarios when you need to apply
a WHERE condition after the grouping is applied. In these cases, you can use the HAVING
clause.

For instance, this SQL statement will group the records where the value in the Market
fi eld is Dallas, and then only return those customer records where the sum of Revenue is
less than 100. Again, the grouping is done before checking if the sum of Revenue is less
than 100.

SELECT Customer_Name, Sum(Revenue) AS Sales
FROM PvTblFeed
Where Market = "Dallas"
GROUP BY Customer_Name
HAVING (Sum(Revenue)<100)

429

Chapter 14: The Fundamentals of Using SQL

c14.indd 10/07/2015 Page 429

14

Setting the sort order with the ORDER BY clause
The ORDER BY clause enables you to sort data by a specifi ed fi eld. The default sort order is
ascending; therefore, sorting your fi elds in ascending order requires no explicit instruction.
The following SQL statement will sort the resulting records by Last Name ascending and
then First Name ascending:

SELECT AccountManagerID, [Last Name], [First Name]
FROM Dim_AccountManagers
ORDER BY [Last Name], [First Name]

To sort in descending order, you must use the DESC reserved word after each column
you want sorted in descending order. The following SQL statement will sort the resulting
records by Last Name descending and then First Name ascending:

SELECT AccountManagerID, [Last Name], [First Name]
FROM Dim_AccountManagers
ORDER BY [Last Name] DESC, [First Name]

Creating aliases with the AS clause
The AS clause enables you to assign aliases to your columns and tables. There are generally
two reasons you would want to use aliases: Either you want to make column or table names
shorter and easier to read, or you’re working with multiple instances of the same table and
you need a way to refer to one instance or the other.

Creating a column alias

The following SQL statement will group the Market fi eld and give you the count of states in
each market. In addition, the alias State Count has been given to the column containing
the count of states by including the AS clause.

SELECT Market, Count(State) AS [State Count]
FROM Dim_Territory
GROUP BY Market
HAVING Market = "Dallas"

Creating a table alias

This SQL statement gives the Dim_AccountManagers the alias “MyTable.”

SELECT AccountManagerID, [Last Name], [First Name]
FROM Dim_AccountManagers AS MyTable

Showing only the SELECT TOP or SELECT TOP PERCENT
When you run a SELECT query, you’re retrieving all records that meet your defi nitions and
criteria. When you run the SELECT TOP statement, or a top values query, you’re telling
Access to fi lter your returned dataset to show only a specifi c number of records.

430

Part IV: Analyzing Data in Access

c14.indd 10/07/2015 Page 430

Top values queries explained

To get a clear understanding of what the SELECT TOP statement does, build the aggregate
query shown in Figure 14.4.

FIGURE 14.4

Build this aggregate query in Design view. Take note that the query is sorted descending on
the Sum of LineTotal.

On the Query Tools Design tab, click the Property Sheet command. This will activate the
Property Sheet dialog box shown in Figure 14.5. Alternatively, you can use the F4 key on
your keyboard to activate the Property Sheet dialog box.

In the Property Sheet dialog box, change the Top Values property to 25.

FIGURE 14.5

Change the Top Values property to 25.

As you can see in Figure 14.6, after you run this query, only the customers who fall into the
top 25 by sum of revenue are returned. If you want the bottom 25 customers, simply change
the sort order of the LineTotal fi eld to Ascending.

431

Chapter 14: The Fundamentals of Using SQL

c14.indd 10/07/2015 Page 431

14

FIGURE 14.6

Running the query will give you the top 25 customers by revenue.

Access does not break ties. If the 24th, 25th, and 26th customers all have the same total, you’ll actually get 26 rows

back.

The SELECT TOP statement

The SELECT TOP statement is easy to spot. This is the same query used to run the results
in Figure 14.6:

SELECT TOP 25 Customer_Name, Sum(LineTotal) AS SumOfLineTotal
FROM Dim_Customers INNER JOIN Dim_Transactions ON
Dim_Customers.CustomerID = Dim_Transactions.CustomerID
GROUP BY Customer_Name
ORDER BY Sum(LineTotal) DESC

Bear in mind that you don’t have to be working with totals or currency to use a top values
query. In the following SQL statement, you’re returning the ten account managers that
have the earliest hire date in the company, effectively producing a seniority report:

SELECT Top 10 AccountManagerID, [Last Name], [First Name]
FROM Dim_AccountManagers
ORDER BY HireDate ASC

432

Part IV: Analyzing Data in Access

c14.indd 10/07/2015 Page 432

Note the use of the DESC and ASC clauses in the previous SQL statements. When you’re using the SELECT TOP,

it’s important to specify the sort direction accurately because it can make the difference between selecting the big-

gest ten results or the smallest ten results. Keep in mind that you can sort on a fi eld without displaying that fi eld—for

instance, the HireDate fi eld in the previous example.

The SELECT TOP PERCENT statement

The SELECT TOP PERCENT statement works in exactly the same way as SELECT TOP
except the records returned in a SELECT TOP PERCENT statement represent the nth per-
cent of total records rather than the nth number of records. For example, the following SQL
statement will return the top 25 percent of records by revenue:

SELECT TOP 25 PERCENT Customer_Name, Sum(LineTotal) AS SumOfLineTotal
FROM Dim_Customers INNER JOIN Dim_Transactions ON
Dim_Customers.CustomerID = Dim_Transactions.CustomerID
GROUP BY Customer_Name
ORDER BY Sum(LineTotal) DESC

Keep in mind that SELECT TOP PERCENT statements give you only the top or bottom percent of the total num-

ber of records in the returned dataset, not the percent of the total value in your records. For example, the preceding

SQL statement won’t give you only those records that make up 25 percent of the total value in the LineTotal fi eld.

It will give you the top 25 percent of total records in the queried dataset. In other words, if you’d get 5,961 records

using just SELECT, then SELECT TOP 25 PERCENT will return 1,491 rows.

Performing action queries via SQL statements
You may not have thought about it before, but when you build an action query, you’re
building a SQL statement that is specifi c to that action. These SQL statements make it pos-
sible for you to go beyond just selecting records.

Make-table queries translated

Make-table queries use the SELECT...INTO statement to make a hard-coded table that
contains the results of your query. The following example fi rst selects account manager
number, last name, and fi rst name; and then it creates a new table called Employees:

SELECT AccountManagerID, [Last Name], [First Name] INTO Employees
FROM Dim_AccountManagers

Append queries translated

Append queries use the INSERT INTO statement to insert new rows into a specifi ed
table. The following example inserts new rows into the Employees table from the Dim_
AccountManagers table:

433

Chapter 14: The Fundamentals of Using SQL

c14.indd 10/07/2015 Page 433

14

INSERT INTO Employees (AccountManagerID, [Last Name], [First Name])
SELECT AccountManagerID, [Last Name], [First Name]
FROM Dim_AccountManagers

Update queries translated

Update queries use the UPDATE statement in conjunction with SET in order to modify the
data in a dataset. This example updates the List_Price fi eld in the Dim_Products table to
increase prices by 10 percent:

UPDATE Dim_Products SET List_Price = [List_Price]*1.1

Delete queries translated

Delete queries use the DELETE statement to delete rows in a dataset. In this example,
you’re deleting all rows from the Employees table:

DELETE * FROM Employees

Creating crosstabs with the TRANSFORM statement
The TRANSFORM statement allows the creation of a crosstab dataset that displays data in a
compact view. The TRANSFORM statement requires three main components to work:

 ■ The fi eld to be aggregated
 ■ The SELECT statement that determines the row content for the crosstab

 ■ The fi eld that will make up the column of the crosstab (the “pivot fi eld”)

The syntax is as follows:

TRANSFORM Aggregated_Field
SELECT Field1, Field2
FROM Table1
GROUP BY Select Field1, Field2
PIVOT Pivot_Field

For example, the following statement will create a crosstab that shows region and market
on the rows and products on the columns, with revenue in the center of the crosstab.

TRANSFORM Sum(Revenue) AS SumOfRevenue
SELECT Region, Market
FROM PvTblFeed
GROUP BY Region, Market
PIVOT Product_Description

Using SQL-Specifi c Queries
SQL-specifi c queries are essentially action queries that cannot be run through the Access
query grid. These queries must be run either in SQL view or via code (macro or VBA). There
are several types of SQL-specifi c queries, each performing a specifi c action. In this section,
we introduce you to a few of these queries, focusing on those that can be used in Access to
shape and confi gure data tables.

434

Part IV: Analyzing Data in Access

c14.indd 10/07/2015 Page 434

Merging datasets with the UNION operator
The UNION operator is used to merge two compatible SQL statements to produce one read-
only dataset. Consider the following SELECT statement, which produces a dataset (see
Figure 14.7) that shows revenue by region and market.

SELECT Region, Market, Sum(Revenue) AS [Sales]
FROM PvTblFeed
GROUP BY Region, Market

FIGURE 14.7

This dataset shows revenue by region and market.

A second SELECT statement produces a separate dataset (see Figure 14.8) that shows total
revenue by region.

SELECT Region, "Total" AS [Market], Sum(Revenue) AS [Sales]
FROM PvTblFeed
GROUP BY Region

FIGURE 14.8

This dataset shows total revenue by region.

The idea is to bring together these two datasets to create an analysis that will show detail
and totals all in one table. The UNION operator is ideal for this type of work, merging
the results of the two SELECT statements. To use the UNION operator, simply start a new
query, switch to SQL view, and enter the following syntax:

SELECT Region, Market, Sum(Revenue) AS [Sales]
FROM PvTblFeed
GROUP BY Region, Market
UNION

435

Chapter 14: The Fundamentals of Using SQL

c14.indd 10/07/2015 Page 435

14

SELECT Region, "Total" AS [Market], Sum(Revenue) AS [Sales]
FROM PvTblFeed
GROUP BY Region

As you can see, the preceding statement is nothing more than the two SQL statements
brought together with a UNION operator. When the two are merged (see Figure 14.9), the
result is a dataset that shows both details and totals in one table!

FIGURE 14.9

The two datasets have now been combined to create a report that provides summary and
detail data.

When a union query is run, Access matches the columns from both datasets by their position in the SELECT state-

ment. That means two things: Your SELECT statements must have the same number of columns, and the order of

columns in both select statements is important. Access will not make an attempt to match on column names. In

fact, the column names in the two datasets don’t have to match. As long as the columns have matching data types,

Access will output a union of the two tables using the position of each column. The Column names from the fi rst

select statement will be output in the resulting dataset.

Note that the UNION operator effectively performs a SELECT DISTINCT on the resulting datasets. This means

that the UNION statement could very well eliminate duplicate rows where all the values in every fi eld are identical

between the two datasets. If you fi nd that you’re missing records when running a UNION query, consider using the

UNION ALL operator. UNION ALL performs the same function as UNION, except it does not apply the SELECT

DISTINCT, thus does not eliminate duplicate rows.

436

Part IV: Analyzing Data in Access

c14.indd 10/07/2015 Page 436

Creating a table with the CREATE TABLE statement
Often in your analytical processes, you’ll need to create a temporary table in order to group,
manipulate, or simply hold data. The CREATE TABLE statement allows you to do just that
with one SQL-specifi c query.

Unlike a make-table query, the CREATE TABLE statement is designed to create only the
structure or schema of a table. No records are ever returned with a CREATE TABLE state-
ment. This statement allows you to strategically create an empty table at any point in your
analytical process.

The basic syntax for a CREATE TABLE statement is as follows:

CREATE TABLE TableName
(<Field1Name> Type(<Field Size>), <Field2Name> Type(<Field Size>))

To use the CREATE TABLE statement, simply start a new query, switch to SQL view, and
defi ne the structure for your table.

In the following example, a new table called TempLog is created with three fi elds. The fi rst
fi eld is a Text fi eld that can accept 50 characters, the second fi eld is a Text fi eld that can
accept 255 characters, and the third fi eld is a Date fi eld.

CREATE TABLE TempLog
([User] Text(50), [Description] Text, [LogDate] Date)

Notice that in the preceding example, no fi eld size is specifi ed for the second text column. If the fi eld size is omitted,

Access will use the default fi eld size specifi ed for the database.

Manipulating columns with the ALTER TABLE statement
The ALTER TABLE statement provides some additional methods of altering the structure
of a table behind the scenes. There are several clauses you can use with the ALTER TABLE
statement, four of which are quite useful in Access data analysis: ADD, ALTER COLUMN,
DROP COLUMN, and ADD CONSTRAINT.

The ALTER TABLE statement, along with its various clauses, is used much less frequently than the SQL statements

mentioned earlier in this chapter. However, the ALTER TABLE statement comes in handy when your analytical pro-

cesses require you to change the structure of tables on the fl y, helping you avoid any manual manipulations that may

have to be done.

It should be noted that there is no way to undo any actions performed using an ALTER TABLE statement. This obvi-

ously calls for some caution when using this statement.

437

Chapter 14: The Fundamentals of Using SQL

c14.indd 10/07/2015 Page 437

14

Adding a column with the ADD clause

As the name implies, the ADD clause enables you to add a column to an existing table. The
basic syntax is as follows:

ALTER TABLE <TableName>
ADD <ColumnName> Type(<Field Size>)

To use the ADD statement, simply start a new query in SQL view and defi ne the structure
for your new column. For instance, running the example statement shown here will create a
new column called SupervisorPhone that is being added to a table called TempLog:

ALTER TABLE TempLog
ADD SupervisorPhone Text(10)

Altering a column with the ALTER COLUMN clause

When using the ALTER COLUMN clause, you specify an existing column in an existing
table. This clause is used primarily to change the data type and fi eld size of a given
column. The basic syntax is as follows:

ALTER TABLE <TableName>
ALTER COLUMN <ColumnName> Type(<Field Size>)

To use the ALTER COLUMN statement, simply start a new query in SQL view and defi ne
changes for the column in question. For instance, the example statement shown here will
change the fi eld size of the SupervisorPhone fi eld:

ALTER TABLE TempLog
ALTER COLUMN SupervisorPhone Text(13)

Deleting a column with the DROP COLUMN clause

The DROP COLUMN clause enables you to delete a given column from an existing table. The
basic syntax is as follows:

ALTER TABLE <TableName>
DROP COLUMN <ColumnName>

To use the DROP COLUMN statement, simply start a new query in SQL view and defi ne the
structure for your new column. For instance, running the example statement shown here
will delete the column called SupervisorPhone from the TempLog table:

ALTER TABLE TempLog
DROP COLUMN SupervisorPhone

Dynamically adding primary keys with the ADD CONSTRAINT clause

For many analysts, Access serves as an easy to use extract, transform, load (ETL) tool. That
is, Access allows you to extract data from many sources, and then reformat and cleanse
that data into consolidated tables. Many analysts also automate ETL processes with the use
of macros that fi re a series of queries. This works quite well in most cases.

438

Part IV: Analyzing Data in Access

c14.indd 10/07/2015 Page 438

There are, however, instances in which an ETL process requires primary keys to be added
to temporary tables in order to keep data normalized during processing. In these situa-
tions, most people do one of two things: They stop the macro in the middle of processing
to manually add the required primary keys, or they create a permanent table solely for the
purpose of holding a table where the primary keys are already set.

There is a third option, though: The ADD CONSTRAINT clause allows you to dynamically
create the primary keys. The basic syntax is as follows:

ALTER TABLE <TableName>
ADD CONSTRAINT ConstraintName PRIMARY KEY (<Field Name>)

To use the ADD CONSTRAINT clause, simply start a new query in SQL view and defi ne the
new primary key you’re implementing. For instance, the example statement shown here will
apply a compound key to three fi elds in the TempLog table.

ALTER TABLE TempLog
ADD CONSTRAINT ConstraintName PRIMARY KEY (ID, Name, Email)

Creating pass-through queries
A pass-through query sends SQL commands directly to a database server (such as SQL
Server, Oracle, and so on). Often these database servers are known as the back end of the
system, with Access being the client tool or front end. You send the command by using the
syntax required by the particular server.

The advantage of pass-through queries is that the parsing and processing is actually done
on the back-end server, not in Access. This makes them much faster than queries that pull
from linked tables, particularly if the linked table is a very large one.

Here are the steps for building a pass-through query:

 1. On the Create tab of the Ribbon, click the Query Design command.

 2. Close the Show Table dialog box.

 3. Click the Pass-Through command on the Query Tools Design tab. The SQL
design window appears.

 4. Type a SQL statement that is appropriate for the target database system.
Figure 14.10 demonstrates a simple SQL statement.

FIGURE 14.10

To create a pass-through query, you must use the SQL window.

439

Chapter 14: The Fundamentals of Using SQL

c14.indd 10/07/2015 Page 439

14

 5. On the Query Tools Design tab, click the Property Sheet command. The Property
Sheet dialog box (shown in Figure 14.11) appears.

FIGURE 14.11

You must specify an ODBC connection string in the pass-through query’s Property Sheet
dialog box.

 6. Enter the appropriate connection string for your server. This is typically the
ODBC connection string you normally use to connect to your server.

 7. Click Run.

There are a few things you should be aware of when choosing to go the pass-through query
route:

 ■ You’ll have to build the SQL statements yourself. Access provides no help—you
can’t use the QBE to build your statement.

 ■ If the connection string of your server changes, you’ll have to go back into the
properties of the pass-through query and edit the ODBC connection string prop-
erty. Alternatively, if you are using an existing DSN, you can simply edit the DSN
confi guration.

 ■ The results you get from a pass-through are read only. You can’t update or edit the
returned records.

 ■ You can only write queries that select data. This means you can’t write update,
append, delete, or make-table queries.

 ■ Because you’re hard-coding the SQL statements that will be sent to the server,
including dynamic parameters (like a parameter query) is impossible because there
is no way to get your parameters to the server after the SQL statement is sent.

441

c15.indd 09/25/2015 Page 441

CHAP T ER

15
Subqueries and Domain
Aggregate Functions

IN THIS CHAPTER

Enhancing your analyses with subqueries

Using domain aggregate functions

O
ften, you’ll carry out your analyses in layers, each layer of analysis using or building on the
previous layer. This practice of building layers into analytical processes is actually very com-
mon. For instance, when you build a query using another query as the data source, you’re

layering your analysis. When you build a query based on a temporary table created by a make-table
query, you’re also layering your analysis.

All these conventional methods of layering analyses have two things in common:

 ■ They all add a step to your analytical processes. Every query that has to be run in order
to feed another query, or every temporary table that has to be created in order to advance
your analysis, adds yet another task that must be completed before you get your fi nal
results.

 ■ They all require the creation of temporary tables or transitory queries, inundating
your database with table and query objects that lead to a confusing analytical process,
as well as a database that bloats easily. This is where subqueries and domain aggregate
functions can help.

Subqueries and domain aggregate functions allow you to build layers into your analyses within one
query, eliminating the need for temporary tables or transitory queries.

 The topic of subqueries and domain aggregate functions require an understanding of SQL. Most begin-

ning Access users don’t have the foundation in SQL. If you fall into this category, press the pause

button here and review Chapter 14 of this book. There, you’ll get enough of a primer on SQL to con-

tinue this chapter.

442

Part IV: Analyzing Data in Access

c15.indd 09/25/2015 Page 442

The starting database for this walkthrough, Chapter15.accdb, can be downloaded from this book’s website.

Enhancing Your Analyses with Subqueries
Subqueries (sometimes referred to as subselect queries) are select queries that are nested
within other queries. The primary purpose of a subquery is to enable you to use the results
of one query within the execution of another query. With subqueries, you can answer a
multiple-part question, specify criteria for further selection, or defi ne new fi elds to be used
in your analysis.

The query shown in Figure 15.1 demonstrates how a subquery is used in the design grid.
As you look at this, remember that this is one example of how a subquery can be used.
Subqueries are not limited to being used as criteria.

FIGURE 15.1

To use a subquery in Query Design view, simply enter the SQL statement.

If you were to build the query in Figure 15.1 and switch to SQL view, you would see a
SQL statement similar to this one. Can you pick out the subquery? Look for the second
SELECT statement.

SELECT CustomerID, Sum(LineTotal) AS SumOfLineTotal
FROM Dim_Transactions
WHERE CustomerID IN

 ON THE WEB

443

Chapter 15: Subqueries and Domain Aggregate Functions

c15.indd 09/25/2015 Page 443

15

(SELECT [CustomerID] FROM [Dim_Customers] WHERE [State] = "CA")
GROUP BY CustomerID

Subqueries must always be enclosed in parentheses.

The idea behind a subquery is that the subquery is executed fi rst, and the results are used
in the outer query (the query in which the subquery is embedded) as a criterion, an expres-
sion, a parameter, and so on. In the example shown in Figure 15.1, the subquery will fi rst
return a list of branches that belong to the Dallas market. Then the outer query will use
that list as criteria to fi lter out any employee who does not belong to the Dallas market.

Why use subqueries?
Subqueries often run more slowly than a standard query using a join. This is because sub-
queries are either executed against an entire dataset or evaluated multiple times, one time
per each row processed by the outer query. This makes them slow to execute, especially if
you have a large dataset. So, why use them?

Many analyses require multistep processes that use temporary tables or transitory queries.
Although there is nothing inherently wrong with temporary tables and queries, an excess
amount of them in your analytical processes could lead to a confusing analytical process, as
well as a database that bloats easily.

Even though using subqueries comes with a performance hit, it may be an acceptable trade
for streamlined procedures and optimized analytical processes. You’ll even fi nd that as you
become more comfortable with writing your own SQL statements, you’ll use subqueries in
on-the-fl y queries to actually save time.

Subquery ground rules
There are a few rules and restrictions that you must be aware of when using subqueries:

 ■ Your subquery must have, at a minimum, a SELECT statement and a FROM clause in
its SQL string.

 ■ You must enclose your subquery in parentheses.

 ■ Theoretically, you can nest up to 31 subqueries within a query. This number,
however, is based on your system’s available memory and the complexity of your
subqueries.

 ■ You can use a subquery an expression as long as it returns a single value.

 ■ You can use the ORDER BY clause in a subquery only if the subquery is a
SELECT TOP or SELECT TOP PERCENT statement.

444

Part IV: Analyzing Data in Access

c15.indd 09/25/2015 Page 444

 ■ You can’t use the DISTINCT keyword in a subquery that includes the GROUP BY
clause.

 ■ You must implement table aliases in queries in which a table is used in both the
outer query and the subquery.

Creating subqueries without typing SQL statements
You may have the tendency to shy away from subqueries because you feel uncomfortable
writing your own SQL statements. Indeed, many of the SQL statements necessary to
perform the smallest analysis can seem daunting.

Imagine, for example, that you’ve been asked to provide the number of account managers
who have a time in service greater than the average time in service for all account man-
agers. Sounds like a relatively simple analysis, and it is simple when you use a subquery.
But where do you start? Well, you could just write a SQL statement into the SQL view of a
query and run it. But the truth is that not many Access users create SQL statements from
scratch. The smart ones use the built-in functionalities of Access to save time and head-
aches. The trick is to split the analysis into manageable pieces:

 1. Find the average time in service for all account managers by creating the query
shown in Figure 15.2.

FIGURE 15.2

Create a query to fi nd the average time in service for all account managers.

 2. Switch to SQL view (shown in Figure 15.3), and copy the SQL statement.

 3. Create a query that will count the number of account managers by time in
service. Figure 15.4 does just that.

445

Chapter 15: Subqueries and Domain Aggregate Functions

15

c15.indd 09/25/2015 Page 445

FIGURE 15.3

Switch to SQL view and copy the SQL statement.

FIGURE 15.4

Create a query to count the number of employees by time in service.

 4. Right-click in the Criteria row under the TIS_in_Months fi eld and select Zoom.
The Zoom dialog box (shown in Figure 15.5) appears. The Zoom dialog does nothing
more than help you more comfortably work with text that is too long to be easily
seen at one time in the query grid.

 5. With the Zoom dialog box open, paste the SQL statement you copied previously
into to the white input area.

FIGURE 15.5

Paste the fi rst SQL statement you copied into the Criteria row of the TIS_IN_MONTHS fi eld.

446

Part IV: Analyzing Data in Access

c15.indd 09/25/2015 Page 446

Remember that subqueries must be enclosed in parentheses, so you’ll want to enter parentheses around the SQL

statement you just pasted. You’ll also need to make sure you delete all carriage returns that were put in automatically

by Access.

 6. Finish off the query by entering a greater than (>) symbol in front of your sub-
query and change the GROUP BY of the TIS_in_Months row to a WHERE clause.
At this point, your query should look like the one shown in Figure 15.6.

FIGURE 15.6

Running this query will tell you there are 12 account managers that have a time in service
greater than the company average.

Now if you go to the SQL view of the query shown in Figure 15.6, you’ll see the following
SQL statement:

SELECT Count(AccountManagerID) AS MyCount
FROM Dim_AccountManagers
WHERE (((DateDiff("m",[HireDate],Date()))
>(SELECT Avg(DateDiff("m",[HireDate],Date())) AS Avg_TIS_in_Months
FROM Dim_AccountManagers;)));

The beauty is that you didn’t have to type all this syntax. You simply used your knowledge
of Access to piece together the necessary actions that needed to be taken in order to get to
the answer. As you become more familiar with SQL, you’ll fi nd that you can create subque-
ries manually with no problems.

447

Chapter 15: Subqueries and Domain Aggregate Functions

15

c15.indd 09/25/2015 Page 447

Using IN and NOT IN with subqueries
The IN and NOT IN operators enable you to run two queries in one. The idea is that the
subquery will execute fi rst, and then the resulting dataset will be used by the outer query
to fi lter the fi nal output.

The example demonstrated in Figure 15.7 will fi rst run a subquery that will select all cus-
tomers based in California (CA). The outer query will then use the resulting dataset as a
criteria to return the sum of LineTotal for only those customers who match the customer
numbers returned in the subquery.

FIGURE 15.7

This query uses the IN operator with a subquery, allowing you to run two queries in one.

You would use NOT IN to go the opposite way and return the sum of LineTotal for those
customers who don’t match the customer numbers returned in the subquery.

Using subqueries with comparison operators
As its name implies, a comparison operator (=, <, >, <=, >=, <>, and so on) compares two
items and returns True or False. When you use a subquery with a comparison operator,
you’re asking Access to compare the resulting dataset of your outer query to that of the
subquery.

448

Part IV: Analyzing Data in Access

c15.indd 09/25/2015 Page 448

For example, to return all customers who have purchases greater than the average purchase
for all customers, you can use the query shown in Figure 15.8.

FIGURE 15.8

Use comparison operators to compare the resulting dataset of your outer query to the
results of the subquery.

The subquery runs fi rst, giving you the average purchase for all customers. This is a single
value that Access then uses to compare the outer query’s resulting dataset. In other words,
the maximum purchase for each customer is compared to the company average. If a cus-
tomer’s maximum purchase is greater than the company average, it’s included in the fi nal
output; otherwise, it’s excluded.

A subquery that is used with a comparison operator must return a single value.

Using subqueries as expressions
In every example so far, you’ve used subqueries in conjunction with the WHERE clause,
effectively using the results of a subquery as criteria for your outer query. However, you
can also use a subquery as an expression, as long as the subquery returns a single value.

449

Chapter 15: Subqueries and Domain Aggregate Functions

15

c15.indd 09/25/2015 Page 449

The query shown in Figure 15.9 demonstrates how you can use a subquery as an expression
in a calculation.

FIGURE 15.9

You’re using a subquery as an expression in a calculation.

This example uses a subquery to get the average units sold for the entire company; that
subquery will return a single value. You’re then using that value in a calculation to deter-
mine the variance between each market’s average units sold and the average for the com-
pany. The output of this query is shown in Figure 15.10.

FIGURE 15.10

Your query result.

Using correlated subqueries
A correlated query is essentially a subquery that refers back to a column that is in the
outer query. What makes correlated subqueries unique is that whereas standard subqueries
are evaluated one time to get a result, a correlated subquery has to be evaluated multiple

450

Part IV: Analyzing Data in Access

c15.indd 09/25/2015 Page 450

times—once for each row processed by the outer query. To illustrate this point, consider
the following two SQL statements.

Uncorrelated subqueries

The following SQL statement is using an uncorrelated subquery. How can you tell? The sub-
query isn’t referencing any column in the outer query. This subquery will be evaluated one
time to give you the average revenue for the entire dataset.

SELECT MainSummary.Branch_Number,
 (SELECT Avg(Revenue)FROM MainSummary)
 FROM MainSummary

Correlated subqueries

This following SQL statement is using a correlated subquery. The subquery is reaching back
into the outer query and referencing the Branch_Number column, effectively forcing the
subquery to be evaluated for every row that is processed by the outer query. The end result
of this query will be a dataset that shows the average revenue for every branch in the com-
pany. Figure 15.11 shows how the following SQL statement is represented in the query editor.

SELECT MainSummary.Branch_Number,
 (SELECT Avg(Revenue)FROM MainSummary AS M2
 WHERE M2.Branch_Number = MainSummary.Branch_Number) AS AvgByBranch
FROM MainSummary
GROUP BY MainSummary.Branch_Number

FIGURE 15.11

A correlated subquery.

451

Chapter 15: Subqueries and Domain Aggregate Functions

15

c15.indd 09/25/2015 Page 451

Using Aliases with Correlated Subqueries
Notice that in the correlated subquery, you’re using the AS clause to establish a table alias of M2. The
reason for this is that the subquery and the outer query are both utilizing the same table. By giving
one of the tables an alias, you allow Access to distinguish exactly which table you’re referring to in your
SQL statement. Although the alias in this SQL statement is assigned to the subquery, you can just as
easily assign an alias to the table in the outer query.

Note that the character M2 holds no signifi cance. In fact, you can use any text string you like, as long
as the alias and the table name combined do not exceed 255 characters.

To assign an alias to a table in Design view, simply right-click the fi eld list and select Properties, as
shown in the following fi gure.

Next, edit the Alias property to the one you would like to use (see the following fi gure). You’ll know
that it took effect when the name on the Field List changes to your new alias.

Using a correlated subquery as an expression

The example shown in Figure 15.9 used an uncorrelated subquery to determine the variance
between each market’s average units sold and the average units for the company.

452

Part IV: Analyzing Data in Access

c15.indd 09/25/2015 Page 452

You can apply the same type of technique to correlated subqueries. In the query demon-
strated in Figure 15.12, a correlation for each branch number allows you to determine the
variance between each employee’s annual revenue and the average revenue for that employ-
ee’s branch.

FIGURE 15.12

You can use a correlated subquery as part of an expression.

Using subqueries within action queries
Action queries can be fi tted with subqueries just as easily as select queries can. Here are a
few examples of how you would use a subquery in an action query.

A subquery in a make-table query

This example illustrates how to use a subquery in a make-table query to create a new table
containing data for all employees hired after January 1995:

SELECT E1.Employee_Number, E1.Last_Name, E1.First_Name
INTO OldSchoolEmployees
FROM Employee_Master as E1
WHERE E1.Employee_Number IN
 (SELECT E2.Employee_Number
 FROM Employee_Master AS E2
 WHERE E2.Hire_Date <#1/1/1995#)

A subquery in an append query

This example uses a subquery in an append query to add new customers to the
CustomerMaster table from the LeadList:

INSERT INTO CustomerMaster (Customer_Number, Customer_Name, State)
SELECT CompanyNumber,CompanyName,State
FROM LeadList
WHERE CompanyNumber Not In
 (SELECT Customer_Number from CustomerMaster)

453

Chapter 15: Subqueries and Domain Aggregate Functions

15

c15.indd 09/25/2015 Page 453

A subquery in an update query

This example uses a subquery in an update query to increase all prices in the PriceMaster
table by 10% for only the those branches in the South region:

UPDATE PriceMaster SET Price = [Price]*1.1
WHERE Branch_Number In
 (SELECT Branch_Number from LocationMaster WHERE Region = "South")

A subquery in a delete query

This example uses a subquery in a delete query to delete customers from the LeadList table
if they already exist in the CustomerMaster table:

DELETE *
FROM LeadList
WHERE CompanyNumber In
 (SELECT Customer_Number from CustomerMaster)

Getting the Second Quartile of a Dataset
with One Query
You can easily pull out the second quartile of a dataset by using a top values subquery:

 1. Create a top values query that returns the top 25 percent of your dataset. You can
specify that a query is a top values query by right-clicking the gray area above the white
query grid and selecting Properties. In the Property Sheet dialog box, adjust the Top Values
property to return the top nth value you need, as demonstrated in the following fi gure. For
this example, use 25 percent.

 2. Switch to SQL view (shown in the following fi gure), and copy the SQL string.

Continues

454

Part IV: Analyzing Data in Access

c15.indd 09/25/2015 Page 454

 3. Switch back to Design view and paste the SQL statement you just copied into the
Criteria row of the Branch_Number fi eld. To do this, right-click inside the Criteria row of
the Branch_Number fi eld and select Zoom. Then paste the SQL statement inside the Zoom
dialog box, as shown in the following fi gure.

 4. This next part is a little tricky. You need to perform the following edits on the SQL
statement in order to make it work for this situation:

 ■ Because this subquery is a criteria for the Branch_Number fi eld, you only need to select
Branch_Number in the SQL statement; so, you can remove the line Sum(MainSummary
.Revenue) AS SumOfRevenue.

 ■ Delete all carriage returns.

 ■ Place parentheses around the subquery and put the NOT IN operator in front of it all.

At this point, your Zoom dialog box should look like the one shown in the following fi gure.

 5. Switch to Design view. If all went well, you query should look similar to the following fi gure.

continued

455

Chapter 15: Subqueries and Domain Aggregate Functions

15

c15.indd 09/25/2015 Page 455

There you have it. Running this query will return the second quartile in the dataset. To get the third
quartile, simply replace TOP 25 PERCENT in the subquery with TOP 50 PERCENT; to get the fourth
quartile, use TOP 75 PERCENT.

Be sure to check this chapter’s sample fi le to get the completed queries seen here.

Domain Aggregate Functions
Domain aggregate functions enable you to extract and aggregate statistical information
from an entire dataset (a domain). These functions differ from aggregate queries in that
an aggregate query groups data before evaluating the values, whereas a domain aggregate
function evaluates the values for the entire dataset; thus, a domain aggregate function will
never return more than one value. To get a clear understanding of the difference between an
aggregate query and a domain aggregate function, build the query shown in Figure 15.13.

FIGURE 15.13

This query shows you the difference between an aggregate query and a domain aggregate
function.

456

Part IV: Analyzing Data in Access

c15.indd 09/25/2015 Page 456

Run the query to get the results shown in Figure 15.14. You will notice that the Aggregate
Sum column contains a different total for each year, whereas the Domain Sum column (the
domain aggregate function) contains only one total (for the entire dataset).

FIGURE 15.14

You can clearly see the difference between an aggregate query and a domain aggregate
function.

Although the examples in this chapter show domain aggregate functions being used in query expressions, keep in

mind that you can use these functions in macros, modules, or the calculated controls of forms and reports.

The Anatomy of Domain Aggregate Functions
There are 12 different domain aggregate functions, but they all have the same anatomy:

FunctionName("[Field Name]","[Dataset Name]", "[Criteria]")

 ■ FunctionName: This is the name of the domain aggregate function you’re using.

 ■ Field Name (required): This expression identifi es the fi eld containing the data with which
you’re working.

 ■ Dataset Name (required): This expression identifi es the table or query you’re working with;
also known as the domain.

 ■ Criteria (optional): This expression is used to restrict the range of data on which the
domain aggregate function is performed. If no criteria is specifi ed, the domain aggregate
function is performed against the entire dataset.

You can’t use parameters as expressions in domain aggregate functions.

457

Chapter 15: Subqueries and Domain Aggregate Functions

15

c15.indd 09/25/2015 Page 457

Understanding the different domain aggregate functions
There are 12 different domain aggregate functions in Access, each performing a different
operation. In this section, we take a moment to review the purpose and utility of each
function.

DSum

The DSum function returns the total sum value of a specifi ed fi eld in the domain. For
example, DSum("[LineTotal]", "[Dim_Transactions]") would return the total sum
of LineTotal in the Dim_Transactions table.

DAvg

The DAvg function returns the average value of a specifi ed fi eld in the domain. For
example, DAvg("[LineTotal]", "[Dim_Transactions]") would return the average
LineTotal in the Dim_Transactions table.

DCount

The DCount function returns the total number of records in the domain. DCount("*",
"[Dim_Transactions]"), for example, would return the total number of records in the
Dim_Transactions table.

DLookup

The DLookup function returns the fi rst value of a specifi ed fi eld that matches the criteria
you defi ne within the DLookup function. If you don’t supply a criteria, or if the criteria
you supplied doesn’t suffi ciently identify a unique row, the DLookup function returns
a random value in the domain. For example, DLookUp("[Last_Name]","[Employee_
Master]","[Employee_Number]='42620' ") would return the value in the Last_Name
fi eld of the record where the Employee_Number is 42620.

DMin and DMax

The DMin and DMax functions return the minimum and maximum values in the domain,
respectively. DMin("[LineTotal]", "[Dim_Transactions]") would return the
lowest LineTotal in the Dim_Transactions table, whereas DMax("[LineTotal]", "[Dim_
Transactions]") would return the highest LineTotal.

DFirst and DLast

The DFirst and DLast functions return the fi rst and last values in the domain,
 respectively. DFirst("[LineTotal]", "[Dim_Transactions]") would return
the fi rst LineTotal in the Dim_Transactions table, whereas

458

Part IV: Analyzing Data in Access

c15.indd 09/25/2015 Page 458

DLast("[LineTotal]", "[Dim_Transactions]") would return the last. Remember
to use an ORDER BY clause to sort the fi eld used in your DFirst or DLast function; other-
wise, you will get a random value from that fi eld.

DStDev, DStDevP, DVar, and DvarP

You can use the DStDev and DStDevP functions to return the standard deviation across
a population sample and a population, respectively. Similarly, the DVar and the DVarP
functions return the variance across a population sample and a population, respectively.
DStDev("[LineTotal]", "[Dim_Transactions]") would return the standard devia-
tion of all LineTotals in the Dim_Transactions table. DVar ("[LineTotal]", "[Dim_
Transactions]") would return the variance of all LineTotals in the Dim_Transactions.

Examining the syntax of domain aggregate functions
Domain aggregate functions are unique in that the syntax required to make them work
actually varies depending on the scenario. This has led to some very frustrated users who
have given up on domain aggregate functions altogether. This section describes some
general guidelines that will help you in building your domain aggregate functions.

Using no criteria

In this example, you’re summing the values in the LineTotal fi eld from the Dim_
Transactions table (domain). Your fi eld names and dataset names must always be wrapped
in quotes.

DSum("[LineTotal]","[Dim_Transactions]")

Note the use of brackets. Although they are not always required, it’s generally a good practice to use brackets when

identifying a fi eld, a table, or a query.

Using text criteria

In this example, you’re summing the values in the Revenue fi eld from the PvTblFeed table
(domain) where the value in the Branch_Number fi eld is 301316. Note that the Branch_
Number fi eld is formatted as text. When specifying criteria that is textual or a string, your
criteria must be wrapped in single quotes. In addition, your entire criteria expression must
be wrapped in double quotes.

DSum("[Revenue]", "[PvTblFeed]", "[Branch_Number] = '301316' ")

459

Chapter 15: Subqueries and Domain Aggregate Functions

15

c15.indd 09/25/2015 Page 459

You can use any valid WHERE clause in the criteria expression of your domain aggregate functions. This adds a level

of functionality to domain aggregate functions, because they can support the use of multiple columns and logical

operators such as AND, OR, NOT, and so on. An example would be:

DSum("[Field1]", "[Table]", "[Field2] = 'A' OR [Field2] = 'B' AND [Field3] = 2")

If you’re referencing a control inside a form or report, the syntax will change a bit:

DSum("[Revenue]", "[PvTblFeed]", "[Branch_Number] = ' " &
[MyTextControl] & " ' ")

Notice that you’re using single quotes to convert the control’s value to a string. In other
words, if the value of the form control is 301316, then
"[System_Period] = ' " & [MyTextControl] & " ' " is essentially
translated to read
"[System_Period] = '301316' ".

Using number criteria

In this example, you’re summing the values in the LineTotal fi eld from the Dim_
Transactions table (domain) where the value in the LineTotal fi eld is greater than 500.
Notice that you aren’t using the single quotes since the LineTotal fi eld is an actual
number fi eld.

DSum("[LineTotal]", "[Dim_Transactions]", "[LineTotal] > 500 ")

If you’re referencing a control inside a form or report, the syntax will change a bit:

DSum("[LineTotal]", "[Dim_Transactions]", "[LineTotal] >" [MyNumericControl])

Using date criteria

In this example, you’re summing the values in the LineTotal fi eld from the Dim_
Transactions table (domain) where the value in the OrderDate fi eld is 07/05/2013:

DSum("[LineTotal]", "[Dim_Transactions]", "[OrderDate] = #07/05/2013# ")

If you’re referencing a control inside a form or report, the syntax will change a bit:

DSum("[LineTotal]", "[Dim_Transactions]", "[OrderDate] = #" &
[MydateControl] & "#")

Notice that you’re using pound signs to convert the control’s value to a date. In other
words, if the value of the form control is 07/05/2013, then
"[Service_Date] = #" & [MydateControl] & "#" is essentially
translated to read
"[Service_Date] = #07/05/2013#".

460

Part IV: Analyzing Data in Access

c15.indd 09/25/2015 Page 460

Using domain aggregate functions
Like subqueries, domain aggregate functions aren’t very effi cient when it comes to per-
forming large-scale analyses and crunching very large datasets. These functions are better
suited for use in specialty analyses with smaller subsets of data. Indeed, you’ll most often
fi nd domain aggregate functions in environments where the dataset being evaluated is
predictable and controlled (form example, functions, forms, and reports). This is not to say,
however, that domain aggregate functions don’t have their place in your day-to-day data
analysis. This section walks through some examples of how you can use domain aggregate
functions to accomplish some common tasks.

Calculating the percent of total

The query shown in Figure 15.15 will return products by group and the sum of LineTotal
for each product category. This is a worthwhile analysis, but you could easily enhance it by
adding a column that would give you the percent of total revenue for each product.

FIGURE 15.15

You want to add a column that shows the percent of total revenue for each
product category.

To get the percent of the total dollar value that each product makes up, you naturally
would have to know the total dollar value of the entire dataset. This is where a DSum func-
tion can come in handy. The following DSum function will return the total value of the
dataset:

DSum("[LineTotal]","[Dim_Transactions]")

Now you can use this function as an expression in the calculation that will return the
percent of total for each product group. Figure 15.16 demonstrates how.

The result, shown in Figure 15.17, proves that this is a quick and easy way to get both total
by group and percent of total with one query.

461

Chapter 15: Subqueries and Domain Aggregate Functions

15

c15.indd 09/25/2015 Page 461

FIGURE 15.16

Use a DSum function as an expression in a calculation to get percent of total.

FIGURE 15.17

You retrieved both total by group and percent of total with one query.

Creating a running count

The query in Figure 15.18 uses a DCount function as an expression to return the number of
invoices processed on each specifi c invoice day.

Take a moment to analyze what this DCount function is doing:

DCount("[TransactionID]","[Dim_Transactions]","[OrderDate]= #" &
[OrderDate] & "#")

462

Part IV: Analyzing Data in Access

c15.indd 09/25/2015 Page 462

FIGURE 15.18

This query will return all invoice dates and the number of invoices processed on each date.

This DCount function will get the count of invoices where the invoice date equals (=) each
invoice date returned by the query. So, in the context of the query shown in Figure 15.18,
the resulting dataset shows each invoice date and its own count of invoices.

What would happen if you were to alter the DCount function to tell it to return the count
of invoices where the invoice date equals or is earlier than (<=) each invoice date returned
by the query, as follows?

DCount("[TransactionID]","[Dim_Transactions]","[OrderDate]<= #" &
[OrderDate] & "#")

The DCount function would return the count of invoices for each date and the count of
invoices for any earlier date, thereby giving you a running count.

To put this into action, simply replace the = operator in the DCount function with the <=
operator, as shown in Figure 15.19.

FIGURE 15.19

Use the <= operator in your DCount function to return the count of invoice dates that
equals or is less than the date returned by the query.

463

Chapter 15: Subqueries and Domain Aggregate Functions

15

c15.indd 09/25/2015 Page 463

Figure 15.20 shows the resulting running count.

FIGURE 15.20

You now have a running count in your analysis.

You can achieve a running sum instead of a running count by using the DSum function.

Using a value from the previous record

The query in Figure 15.21 uses a DLookup function to return the revenue value from the
previous record. This value is placed into a new column called “Yesterday.”

FIGURE 15.21

This query uses a DLookup to refer to the previous revenue value.

This method is similar to the one used when creating a running sum in that it revolves
around manipulating a comparison operator in order to change the meaning of the domain
aggregate function. In this case, the DLookup searches for the revenue value where the

464

Part IV: Analyzing Data in Access

c15.indd 09/25/2015 Page 464

invoice date is equal to each invoice date returned by the query minus one (-1). If you
subtract one from a date, you get yesterday’s date!

DLookUp("[Revenue]","[TimeSummary]","[OrderDate] = #" & [OrderDate]-1 & "#")

If you add 1, you get the next record in the sequence. However, this trick won’t work with textual fi elds. It only works

with date and numeric fi elds. If you’re working with a table that doesn’t contain any numeric or date fi elds, create an

autonumber fi eld. This will give you a unique numeric identifi er that you can use.

Running the query in Figure 15.21 yields the results shown in Figure 15.22.

FIGURE 15.22

You can take this functionality a step further and perform a calculation for the previous day.

You can enhance this analysis by adding a calculated fi eld that gives you the
dollar variance between today and yesterday. Create a new column and enter
[Revenue]-NZ([Yesterday],0), as shown in Figure 15.23. Note that the Yesterday
fi eld is wrapped in an NZ function in order to avoid errors caused by null fi elds.

FIGURE 15.23

Enhance your analysis by adding a variance between today and yesterday.

465

Chapter 15: Subqueries and Domain Aggregate Functions

15

c15.indd 09/25/2015 Page 465

Figure 15.24 shows the result.

FIGURE 15.24

Another task made possible by domain aggregate functions.

467

c16.indd 09/25/2015 Page 467

 CHAP T ER

16
Running Descriptive
Statistics in Access

IN THIS CHAPTER

Determining rank, mode, and median

Pulling a random sampling from your dataset

Calculating percentile ranking

Determining the quartile standing of a record

Creating a frequency distribution

D
escriptive statistics allow you to present large amounts of data in quantitative summaries that
are simple to understand. When you sum data, count data, and average data, you’re produc-
ing descriptive statistics. It’s important to note that descriptive statistics are used only to

profi le a dataset and enable comparisons that can be used in other analyses. This is different from
inferential statistics, in which you infer conclusions that extend beyond the scope of the data. To
help solidify the difference between descriptive and inferential statistics, consider a customer
survey. Descriptive statistics summarize the survey results for all customers and describe the data
in understandable metrics, while inferential statistics infer conclusions such as customer loyalty
based on the observed differences between groups of customers.

When it comes to inferential statistics, tools like Excel are better suited to handle these types of
analyses than Access. Why? First, Excel comes with a plethora of built-in functions and tools that
make it easy to perform inferential statistics—tools that Access simply does not have. Second,
inferential statistics is usually performed on small subsets of data that can fl exibly be analyzed and
presented by Excel.

Running descriptive statistics, on the other hand, is quite practical in Access. In fact, running
descriptive statistics in Access versus Excel is often the smartest option due to the structure and
volume of the dataset.

468

Part IV: Analyzing Data in Access

c16.indd 09/25/2015 Page 468

The starting database for this walkthrough, Chapter16.accdb, can be downloaded from this book’s website.

Basic Descriptive Statistics
This section discusses some of the basic tasks you can perform using descriptive statistics.

Running descriptive statistics with aggregate queries
At this point in the book, you have run many Access queries, some of which have been aggre-
gate queries. Little did you know that when you ran those aggregate queries, you were actually
creating descriptive statistics. It’s true. The simplest descriptive statistics can be generated
using an aggregate query. To demonstrate this point, build the query shown in Figure 16.1.

FIGURE 16.1

Running this aggregate query will provide a useful set of descriptive statistics.

Similar to the descriptive statistics functionality found in Excel, the result of this query,
shown in Figure 16.2, provides key statistical metrics for the entire dataset.

FIGURE 16.2

Key statistical metrics for the entire dataset.

You can easily add layers to your descriptive statistics. In Figure 16.3, you’re adding the
Branch_Number fi eld to your query. This will give you key statistical metrics for each branch.

 ON THE WEB

469

Chapter 16: Running Descriptive Statistics in Access

c16.indd 09/25/2015 Page 469

16

FIGURE 16.3

Add the Branch_Number fi eld to your query to add another dimension to your analysis.

As you can see in Figure 16.4, you can now compare the descriptive statistics across
branches to measure how they perform against each other.

FIGURE 16.4

You have a one-shot view of the descriptive statistics for each branch.

Determining rank, mode, and median
Ranking the records in your dataset, getting the mode of a dataset, and getting the
median of a dataset are all tasks a data analyst will need to perform from time to time.
Unfortunately, Access doesn’t provide built-in functionality to perform these tasks easily.
This means you’ll have to come up with a way to carry out these descriptive statistics. In
this section, you’ll learn some of the techniques you can use to determine rank, mode, and
median.

Ranking the records in your dataset

You’ll undoubtedly encounter scenarios in which you’ll have to rank the records in your
dataset based on a specifi c metric such as revenue. Not only is a record’s rank useful in
presenting data, but it’s also a key variable when calculating advanced descriptive statis-
tics such as median, percentile, and quartile.

470

Part IV: Analyzing Data in Access

c16.indd 09/25/2015 Page 470

The easiest way to determine a record’s ranking within a dataset is by using a correlated sub-
query. The query shown in Figure 16.5 demonstrates how a rank is created using a subquery.

FIGURE 16.5

This query ranks employees by revenue.

Take a moment to examine the subquery that generates the rank:

(SELECT Count(*)FROM RepSummary AS M1 WHERE [Rev]>[RepSummary].[Rev])+1

This correlated subquery returns the total count of records from the M1 table (this is the
RepSummary table with an alias of M1), where the Rev fi eld in the M1 table is greater
than the Rev fi eld in the RepSummary table. The value returned by the subquery is then
increased by one. Why increase the value by one? If you don’t, the record with the highest
value will return 0 because zero records are greater than the record with the highest value.
The result would be that your ranking starts with zero instead of one. Adding one effec-
tively ensures that your ranking starts with one.

Because this is a correlated subquery, this subquery is evaluated for every record in your dataset, thereby giving you

a different rank value for each record.

Correlated subqueries are covered in detail in Chapter 15.

Figure 16.6 shows the result.

This technique is also useful when you want to create a sequential number fi eld within a query.

Getting the mode of a dataset

The mode of a dataset is the number that appears the most often in a set of numbers. For
instance, the mode for {4, 5, 5, 6, 7, 5, 3, 4} is 5.

471

Chapter 16: Running Descriptive Statistics in Access

c16.indd 09/25/2015 Page 471

16

FIGURE 16.6

You’ve created a Rank column for your dataset.

Unlike Excel, Access doesn’t have a built-in Mode function, so you have to create your own
method of determining the mode of a dataset. Although there are various ways to get the mode
of a dataset, one of the easiest is to use a query to count the occurrences of a certain data item,
and then fi lter for the highest count. To demonstrate this method, follow these steps:

 1. Build the query shown in Figure 16.7. The results, shown in Figure 16.8, don’t
seem very helpful, but if you turn this into a top values query, returning only the
top record, you would effectively get the mode.

FIGURE 16.7

This query groups by the Rev fi eld and then counts the occurrences of each
number in the Rev fi eld. The query is sorted in descending order by Rev.

FIGURE 16.8

Almost there. Turn this into a top values query and you’ll have your mode.

472

Part IV: Analyzing Data in Access

c16.indd 09/25/2015 Page 472

 2. Select the Query Tools Design tab and click the Property Sheet command. The
Property Sheet dialog box for the query appears.

 3. Change the Top Values property to 1, as shown in Figure 16.9. You get one
record with the highest count.

FIGURE 16.9

Set the Top Values property to 1.

As you can see in Figure 16.10, you now have only one Rev fi gure—the one that occurs the
most often. This is your mode.

FIGURE 16.10

This is your mode.

Keep in mind that in the event of a tie, a top values query will show all records. This will effectively give you more

than one mode. In this case, you’ll have to make a manual determination which mode to use.

Getting the median of a dataset

The median of a dataset is the number that is the middle number in the dataset. In other
words, half the numbers have values that are greater than the median, and half have values
that are less than the median. For instance, the median number in {3, 4, 5, 6, 7, 8, 9} is 6
because 6 is the middle number of the dataset.

473

Chapter 16: Running Descriptive Statistics in Access

c16.indd 09/25/2015 Page 473

16

Why can’t you just calculate an average and be done with it? Sometimes, calculating an average on a dataset that

contains outliers can dramatically skew your analysis. For example, if you were to calculate an average on {32, 34,

35, 37, 89}, you would get an answer of 45.4. The problem is that 45.4 doesn’t accurately represent the central ten-

dency of this sampling of numbers. Using a median on this sample makes more sense. The median in this case would

be 35, which is more representative of what’s going on in this data.

Access doesn’t have a built-in Median function, so you have to create your own method of
determining the median of a dataset. An easy way to get the median is to build a query in
two steps:

 1. Create a query that sorts and ranks your records. The query shown in
Figure 16.11 sorts and ranks the records in the RepSummary table.

FIGURE 16.11

The fi rst step in fi nding the median of a dataset is to assign a rank to each record.

 2. Identify the middlemost record in your dataset by counting the total number of
records in the dataset and then dividing that number by two. This will give you
a middle value. The idea is that because the records are now sorted and ranked, the
record that has the same rank as the middle value will be the median. Figure 16.12
shows the subquery that will return a middle value for the dataset. Note that the
value is wrapped in an Int function to strip out the fractional portion of the number.

FIGURE 16.12

The Middle Value subquery counts all the records in the dataset and then divides
that number by 2.

474

Part IV: Analyzing Data in Access

c16.indd 09/25/2015 Page 474

As you can see in Figure 16.13, the middle value is 336. You can go to record 336 to
see the median.

FIGURE 16.13

Go to record 336 to get the median value of the dataset.

If you want to return only the median value, simply use the subquery as a criterion for the
Rank fi eld, as shown in Figure 16.14.

FIGURE 16.14

Using the subquery as a criterion for the Rank fi eld ensures that only the median value is
returned.

Pulling a random sampling from your dataset
Although the creation of a random sample of data doesn’t necessarily fall into the category
of descriptive statistics, a random sampling is often the basis for statistical analysis.

There are many ways to create a random sampling of data in Access, but one of the easiest
is to use the Rnd function within a top values query. The Rnd function returns a random
number based on an initial value. The idea is to build an expression that applies the Rnd
function to a fi eld that contains numbers, and then limit the records returned by setting
the Top Values property of the query.

475

Chapter 16: Running Descriptive Statistics in Access

c16.indd 09/25/2015 Page 475

16

To demonstrate this method, follow these steps:

 1. Start a query in Design view on the Dim_Transactions.

 2. Create a Random ID field, as shown in Figure 16.15, and then sort the field
(either ascending or descending will work).

FIGURE 16.15

Start by creating a Random ID fi eld using the Rnd function with the Customer_
Number fi eld.

The Rnd function won’t work with fi elds that contain text or null values. Strangely enough, though, the Rnd function

will work with fi elds that contain all numerical values even if the fi eld is formatted as a Text fi eld.

If your table is made up of fi elds that contain only text, you can add an AutoNumber fi eld to use with the Rnd func-

tion. Another option is to pass the fi eld containing text through the Len function, and then use that expression in

your Rnd function—for example, Rnd(Len([Mytext])).

 3. Select the Query Tools Design tab and click the Property Sheet command. The
Property Sheet dialog box for the query appears.

 4. Change the Top Values property to 1000, as shown in Figure 16.16.

FIGURE 16.16

Limit the number of records returned by setting the Top Values property of the query.

476

Part IV: Analyzing Data in Access

c16.indd 09/25/2015 Page 476

 5. Set the Show row for the Random ID field to false, and add the fields you will
want to see in your dataset.

 6. Run the query. You will have a completely random sampling of data, as shown in
Figure 16.17.

FIGURE 16.17

Running this query produces a sample of 1,000 random records.

Rerunning the query, switching the view state, or sorting the dataset will result in a different set of random records. If

you want to perform extensive analysis on an established set of random records that won’t change, you’ll need to run

this query as a make-table query in order to create a hard table.

Advanced Descriptive Statistics
When working with descriptive statistics, a little knowledge goes a long way. Indeed, basic
statistical analyses often lead to more advanced statistical analyses. In this section, you
build on the fundamentals you’ve just learned to create advanced descriptive statistics.

Calculating percentile ranking
A percentile rank indicates the standing of a particular score relative to the normal group
standard. Percentiles are most notably used in determining performance on standardized
tests. If a child scores in the 90th percentile on a standardized test, her score is higher
than 90 percent of the other children taking the test. Another way to look at it is to say
that her score is in the top 10 percent of all the children taking the test. Percentiles often
are used in data analysis as a method of measuring a subject’s performance in relation to
the group as a whole—for instance, determining the percentile ranking for each employee
based on annual revenue.

477

Chapter 16: Running Descriptive Statistics in Access

c16.indd 09/25/2015 Page 477

16

Calculating a percentile ranking for a dataset is simply a mathematical operation. The for-
mula for a percentile rank is (Record Count–Rank)/Record Count. The trick is getting all the
variables needed for this mathematical operation.

Follow these steps:

 1. Build the query you see in Figure 16.18. This query will start by ranking each
employee by annual revenue. Be sure to give your new fi eld an alias of “Rank.”

FIGURE 16.18

Start with a query that ranks employees by revenue.

 2. Add a field that counts all the records in your dataset. As you can see in Figure
16.19, you’re using a subquery to do this. Be sure to give your new fi eld an alias of
“RCount.”

FIGURE 16.19

Add a fi eld that returns a total dataset count.

 3. Create a calculated field with the expression (RCount–Rank)/RCount. At this
point, your query should look like the one shown in Figure 16.20.

478

Part IV: Analyzing Data in Access

c16.indd 09/25/2015 Page 478

FIGURE 16.20

The fi nal step is to create a calculated fi eld that will give you the percentile rank for
each record.

 4. Run the query. Sorting on the Rev fi eld will produce the results shown in
Figure 16.21.

FIGURE 16.21

You’ve successfully calculated the percentile rank for each employee.

Again, the resulting dataset enables you to measure each employee’s performance in rela-
tion to the group as a whole. For example, the employee who is ranked 6th in the dataset
is the 99th percentile, meaning that this employee earned more revenue than 99 percent of
the other employees.

Determining the quartile standing of a record
A quartile is a statistical division of a dataset into four equal groups, with each group
making up 25 percent of the dataset. The top 25 percent of a collection is considered to be
the fi rst quartile, whereas the bottom 25 percent is considered to be the fourth quartile.
Quartile standings typically are used for the purposes of separating data into logical group-
ings that can be compared and analyzed individually. For example, if you want to establish
a minimum performance standard around monthly revenue, you could set the minimum to

479

Chapter 16: Running Descriptive Statistics in Access

c16.indd 09/25/2015 Page 479

16

equal the average revenue for employees in the second quartile. This ensures that you have
a minimum performance standard that at least 50 percent of your employees have histori-
cally achieved or exceeded.

Establishing the quartile for each record in a dataset doesn’t involve a mathematical opera-
tion; instead, it’s a question of comparison. The idea is to compare each record’s rank value
to the quartile benchmarks for the dataset. What are quartile benchmarks? Imagine that
your dataset contains 100 records. Dividing 100 by 4 would give you the fi rst quartile
benchmark (25). This means that any record with a rank of 25 or less is in the fi rst quartile.
To get the second quartile benchmark, you would calculate 100/4*2. To get the third, you
would calculate 100/4*3, and so on.

Given that information, you know right away that you’ll need to rank the records in
your dataset and count the records in your dataset. Start by building the query shown in
Figure 16.22. Build the Rank fi eld the same way you did in Figure 16.18. Build the RCount
fi eld the same way you did in Figure 16.19.

FIGURE 16.22

Start by creating a fi eld named Rank that ranks each employee by revenue and a fi eld
named RCount that counts the total records in the dataset.

Once you’ve created the Rank and RCount fi elds in your query, you can use these fi elds in a
Switch function that will tag each record with the appropriate quartile standing. Take a
moment and look at the Switch function you’ll be using:

Switch([Rank]<=[RCount]/4*1,"1st",[Rank]<=[RCount]/4*2,"2nd",
[Rank]<= [RCount]/4*3,"3rd",True,"4th")

This Switch function is going through four conditions, comparing each record’s rank value
to the quartile benchmarks for the dataset.

 For more information on the Switch function, see Chapter 13.

480

Part IV: Analyzing Data in Access

c16.indd 09/25/2015 Page 480

Figure 16.23 demonstrates how this Switch function fi ts into the query. Note that you’re
using an alias of Quartile here.

FIGURE 16.23

Create the quartile tags using the Switch function.

As you can see in Figure 16.24, you can sort the resulting dataset on any fi eld without
compromising your quartile standing tags.

FIGURE 16.24

Your fi nal dataset can be sorted any way without the danger of losing your quartile tags.

Creating a frequency distribution
A frequency distribution is a special kind of analysis that categorizes data based on the
count of occurrences where a variable assumes a specifi ed value attribute. Figure 16.25
illustrates a frequency distribution created by using the Partition function.

With this frequency distribution, you’re clustering employees by the range of revenue dol-
lars they fall in. For instance, 183 employees fall into the 500: 5999 grouping, meaning that
183 employees earn between 500 and 5,999 revenue dollars per employee. Although there

481

Chapter 16: Running Descriptive Statistics in Access

c16.indd 09/25/2015 Page 481

16

are several ways to get the results you see here, the easiest way to build a frequency distri-
bution is to use the Partition function:

Partition(Number, Range Start, Range Stop, Interval)

FIGURE 16.25

This frequency distribution was created using the Partition function.

The Partition function identifi es the range that a specifi c number falls into, indicating
where the number occurs in a calculated series of ranges. The Partition function requires
the following four arguments:

 ■ Number (required): The number you’re evaluating. In a query environment, you
typically use the name of a fi eld to specify that you’re evaluating all the row values
of that fi eld.

 ■ Range Start (required): A whole number that is to be the start of the overall
range of numbers. Note that this number cannot be less than zero.

 ■ Range Stop (required): A whole number that is to be the end of the overall range of
numbers. Note that this number cannot be equal to or less than the Range Start.

 ■ Interval (required): A whole number that is to be the span of each range in the
series from Range Start to Range Stop. Note that this number cannot be less
than one.

To create the frequency distribution you saw in Figure 16.25, build the query shown in
Figure 16.26. As you can see in this query, you’re using a Partition function to specify
that you want to evaluate the Revenue fi eld, start the series range at 500, end the series
range at 100,000, and set the range intervals to 5,000.

You can also create a frequency distribution by group by adding a Group By fi eld to your
query. Figure 16.27 demonstrates this by adding the Branch_Number fi eld.

482

Part IV: Analyzing Data in Access

c16.indd 09/25/2015 Page 482

The result is a dataset (shown in Figure 16.28) that contains a separate frequency distribu-
tion for each branch, detailing the count of employees in each revenue distribution range.

FIGURE 16.26

This simple query creates the frequency distribution shown in Figure 16.25.

FIGURE 16.27

This query will create a separate frequency distribution for each branch number in
your dataset.

 FIGURE 16.28

You’ve successfully created multiple frequency distributions with one query.

c17.indd 10/05/2015 Page 483

Part V

Working with Access Forms

and Reports

F
orms and reports are incredibly power-
ful components of the Access toolset.
Access forms enable you to build user

interfaces on top of database tables, provid-
ing a robust rapid application development
platform for many types of organizations.
Access reports allow you to easily integrate
your database analysis with polished PDF-
style reporting functionality, complete
with grouping, sorting, and conditional
formatting.

Chapters 17–19 show you everything you
need to know in order to turn your simple
database into a viable application with
attractive interfaces that can be used for
viewing, adding, editing, and deleting data.

Chapters 20 and 21 walk you through the
steps for building Access reports, offering
your users a fl exible way of viewing sum-
marized information in the desired level of
detail, while enabling them to print their
information in many different formats.

IN THIS PART

Chapter 17
Creating Basic Access Forms

Chapter 18
Working with Data on Access Forms

Chapter 19
Working with Form Controls

Chapter 20
Presenting Data with Access Reports

Chapter 21
Advanced Access Report Techniques

c17.indd 10/05/2015 Page 484

485

c17.indd 10/05/2015 Page 485

 CHAP T ER

17
Creating Basic Access
Forms

IN THIS CHAPTER

Creating different types of forms

Adding controls to a form

Working with the Property Sheet

F
orms provide the most fl exible way for viewing, adding, editing, and deleting your data.
They’re also used for switchboards (forms with buttons that provide navigation), for dialog
boxes that control the fl ow of the system, and for messages. Controls are the objects on forms,

such as labels, text boxes, buttons, and many others. In this chapter, you learn how to create
different types of forms. We also fi ll you in on the types of controls that are used on a form. This
chapter also discusses form and control properties and how you determine the appearance and
behavior of an Access interface through setting or changing property values.

The forms you add to an Access database are a critical aspect of the application you create. In
most situations, users should not be permitted direct access to tables or query datasheets. It’s far
too easy for a user to delete valuable information or incorrectly input data into the table. Forms
provide a useful tool for managing the integrity of a database’s data. Because forms can contain
VBA code or macros, a form can verify data entry or confi rm deletions before they occur. Also, a
properly designed form can reduce training requirements by helping the user understand what
kind of data is required by displaying a message as the user tabs into a control. A form can pro-
vide default values or perform calculations based on data input by the user or retrieved from a
database table.

In this chapter, you use tblProducts, tblCustomers, and other tables in Chapter17.accdb.

ON THE WEB

486

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 486

Formulating Forms
Use the Forms group on the Create tab of the Ribbon to add forms to your database. The
commands in the Forms group, shown in Figure 17.1, let you create the following different
types of forms and ways to work with Access forms:

FIGURE 17.1

Use the Forms group on the Create tab of the Ribbon to add new forms to your database.

Form Design (Design view)

Form (Layout view)

More Forms

Navigation Form

Form Wizard

Blank Form (Layout view)

 ■ Form: Creates a new form that lets you enter information for one record at a time.
You must have a table, query, form, or report open or selected to use this com-
mand. When you click the Form button with a table or query highlighted in the
Navigation pane, Access binds the new form to the data source and opens the form
in Layout view.

 ■ Form Design: Creates a new blank form and displays it in Design view. The form
isn’t bound to any data source. You must specify a data source (table or query) and
build the form by adding controls from the data source’s fi eld list.

 ■ Blank Form: Instantly creates a blank form with no controls. Like Form Design, the
new form is not bound to a data source, but it opens in Layout view.

 ■ Form Wizard: Access features a simple wizard to help you get started building
forms. The wizard asks for the data source, provides a screen for selecting fi elds to
include on the form, and lets you choose from a number of very basic layouts for
the new form.

 ■ Navigation Form: The Access navigation form is a specialized form intended to
provide user navigation through an application. Navigation forms are discussed in
detail later in this chapter.

 ■ More Forms: The More Forms button in the Forms group drops down a gallery
containing a number of other form types.

487

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 487

17

 ■ Multiple Items: This is a simple tabular form that shows multiple records bound
to the selected data source.

 ■ Datasheet: Creates a form that is displayed as a datasheet.

 ■ Split Form: Creates a split form, which shows a datasheet in the upper, lower,
left, or right area of the form, and a traditional form in the opposite section for
entering information on the record selected in the datasheet.

 ■ Modal Dialog: Provides a template for a modal dialog form. A modal dialog form
(often called a dialog box) stays on the screen until the user provides informa-
tion requested by the dialog or is dismissed by the user.

If any of the terminology in the preceding bullets is new to you, don’t worry—each of these
terms is discussed in detail in this chapter. Keep in mind that the Access Ribbon and its
contents are very context dependent, so every item may not be available when you select
the Create tab.

Creating a new form
Like many other aspects of Access development, Access provides multiple ways of adding
new forms to your application. The easiest is to select a data source, such as a table, and
click the Form command on the Create tab of the Ribbon. Another is to use the Form Wizard
and allow the wizard to guide you through the process of specifying a data source and
other details of the new form.

Using the Form command

Use the Form command in the Forms group of the Ribbon to automatically create a new
form based on a table or query selected in the Navigation pane.

This process was called AutoForm in some previous versions of Access.

To create a form based on tblProducts, follow these steps:

 1. Select tblProducts in the Navigation pane.

 2. Select the Create tab of the Ribbon.

 3. Click the Form command in the Forms group. Access creates a new form contain-
ing all the fi elds from tblProducts displayed in Layout view, shown in Figure 17.2.
Layout view lets you see the form’s data while changing the layout of controls on
the form. (The form shown in Figure 17.2 is included in the Chapter17.accdb
example database as frmProducts_AutoForm.)

488

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 488

FIGURE 17.2

Use the Form command to quickly create a new form with all the fi elds from a table or query.

The new form is opened in Layout view, which is populated with controls, each of which is
bound to a fi eld in the underlying data source. Layout view gives you a good idea how the
controls appear relative to one another, but it provides only limited ability to resize con-
trols or move controls on the form. Right-click the form’s title bar and select Design View to
rearrange controls on the form.

The Form Design button in the Forms group also creates a new form, except that the form
is not automatically bound to a table or query, no controls are added to the form’s design
surface, and the form is opened in Design view. Form Design is most useful when you’re
creating a new form that might not use all the fi elds in the underlying data source, and you
want more control over control placement from the start.

Similarly, the Blank Form option opens a new empty form, but this time in Layout view.
You add controls to the form’s surface from the fi eld list, but you have little control over
control placement. The Blank Form option is most useful for quickly building a form with
bound controls with little need for precise placement. A new blank form can be produced in
less than a minute.

489

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 489

17

Using the Form Wizard

Use the Form Wizard command in the Forms group to create a form using a wizard. The
Form Wizard visually walks you through a series of questions about the form that you want
to create and then creates it for you automatically. The Form Wizard lets you select which
fi elds you want on the form, the form layout (Columnar, Tabular, Datasheet, Justifi ed), and
the form title.

To start the Form Wizard based on tblCustomers, follow these steps:

 1. Select tblCustomers in the Navigation pane.

 2. Select the Create tab of the Ribbon.

 3. Click the Form Wizard button in the Forms group. Access starts the Form Wizard,
shown in Figure 17.3.

FIGURE 17.3

Use the Form Wizard to create a form with the fi elds you choose.

Add selected field Remove all fields

Remove selected fieldAdd all fields

The wizard is initially populated with fi elds from tblCustomers, but you can choose another
table or query with the Tables/Queries drop-down list above the fi eld selection area. Use
the buttons in the middle of the form to add and remove fi elds to the Available Fields and
Selected Fields list boxes.

490

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 490

You can also double-click any fi eld in the Available Fields list box to add it to the Selected Fields list box.

The series of buttons at the bottom of the form let you navigate through the other steps of
the wizard. The types of buttons available here are common to most wizard dialog boxes:

 ■ Cancel: Cancel the wizard without creating a form.

 ■ Back: Return to the preceding step of the wizard.

 ■ Next: Go to the next step of the wizard.

 ■ Finish: End the wizard using the current selections and the default selections for
any steps you don’t complete.

If you click Next or Finish without selecting any fi elds, Access tells you that you must select fi elds for the form before

you can continue.

Clicking Next opens the second wizard dialog box (shown in Figure 17.4) where you specify
the overall layout and appearance of the new form.

FIGURE 17.4

Select the overall layout for the new form.

The Columnar layout is the default layout, but you can also choose the Tabular, Datasheet,
or Justifi ed options. Clicking Next takes you to the last wizard dialog box (shown in
Figure 17.5), where you provide a name for the new form.

491

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 491

17

FIGURE 17.5

Saving the new form.

The main advantage of using the Form Wizard is that it binds the new form to a data source and adds controls for the

selected fi elds. In most cases, however, you still have considerable work to do after the Form Wizard has fi nished.

Looking at special types of forms
When working with Access, the word form can mean any of several different things,
depending on context. This section discusses several different ways that “forms” are used
in Access and presents an example of each usage.

Navigation forms

Navigation forms include a number of tabs that provide instant access to other forms in a
form/subform arrangement. Subforms are forms that are displayed inside another form and
are discussed later in this chapter. The Navigation button on the Ribbon offers a number of
button placement options (shown in Figure 17.6). Horizontal Tabs is the default.

Selecting the Horizontal Tabs placement in the Navigation drop-down list opens the new
navigation form in Design view (see Figure 17.7). The new form includes a row of tabs along
the top and a large area under the tabs for embedding subforms. You type the tab’s label
(like Products) directly into the tab, or add it through the tab’s Caption property. As you
complete the tab’s label, Access adds a new, blank tab to the right of the current tab.

You can drag an existing form into the tab area of a navigation form to add it as a subform.

492

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 492

FIGURE 17.6

The Navigation button provides a number of tab placement options.

FIGURE 17.7

The navigation form features a large area for embedding subforms.

Subform area

Horizontal tabs

493

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 493

17

In Figure 17.7, the Horizontal Tabs option was selected when choosing a navigation form tem-
plate and a tab was named Products, which generates a new Add New tab. The alternatives to
Horizontal Tabs (Vertical Tabs, Left, Vertical Tabs, Right, and so on) are shown in Figure 17.6.

The Product tab’s Property Sheet (shown in Figure 17.8) includes the Navigation Target
Name property for specifying the Access form to use as the tab’s subform. Select a form
from the drop-down list in the Navigation Target Name property, and Access creates the
association to the subform for you.

FIGURE 17.8

Use the Navigation Target Name property to specify the tab’s subform.

Selected tab

Navigation Target Name property

List of all forms in database

The completed navigation form is shown in Figure 17.9. The auto-generated navigation form
makes extravagant use of screen space. There are a number of things that could be done to
enhance this form, such as removing the navigation form’s header section and reducing the
empty space surrounding the subform. frmProducts, shown in Figure 17.9, is included in
the Chapter17.accdb example database.

494

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 494

FIGURE 17.9

A navigation form is a quick and easy way to provide basic navigation features.

If you already know the name of the form you want to add to the navigation form, you can type it in a new tab. For

example, if you type frmProducts in the new tab instead of just Products, frmProducts is automatically added as a

subform. You can edit the tab name to remove the frm prefi x, if you prefer.

Multiple-items forms

Click the More Forms button in the Forms group of the Ribbon and then click the Multiple Items
button to create a tabular form based on a table or query selected in the Navigation pane. A
tabular form is much like a datasheet, but it’s much more attractive than a plain datasheet.

Because the tabular form is an Access form, you can convert the default text box controls on
the form to combo boxes, list boxes, and other advanced controls. Tabular forms display mul-
tiple records at one time, which makes them very useful when you’re reviewing or updating
multiple records. To create a multiple-items form based on tblProducts, follow these steps:

 1. Select tblProducts in the Navigation pane.

 2. Select the Create tab on the Ribbon.

 3. Click the More Forms button and click Multiple Items. Access creates a new multiple-
items form based on tblProducts displayed in Layout view (as shown in Figure 17.10).

495

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 495

17

FIGURE 17.10

Create a multiple-items form when you want to see more than one record at a time.

Split forms

Click the More Forms button in the Form group of the Ribbon and then click the Split Form
button to create a split form based on a table or query selected in the Navigation pane.
The split-form feature gives you two views of the data at the same time, letting you select
a record from a datasheet in the lower section and edit the information in a form in the
upper section.

To create a split form based on tblCustomers, follow these steps:

 1. Select tblCustomers in the Navigation pane.

 2. Select the Create tab of the Ribbon.

 3. Click the More Forms button and click Split Form. Access creates a new split
form based on tblCustomers displayed in Layout view (shown in Figure 17.11).
Resize the form and use the splitter bar in the middle to make the lower section
completely visible.

The Split Form Orientation property (on the Format tab of the form’s Property Sheet)
determines whether the datasheet is on the top, bottom, left, or right of the form
area. The default is as shown in Figure 17.11, with the datasheet area on the bottom.
frmCustomers_SplitForm (shown in Figure 17.11) is included in the Chapter17.accdb
example database.

496

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 496

FIGURE 17.11

Create a split form when you want to select records from a list and edit them in a form. Use
the splitter bar to resize the upper and lower sections of the form.

Datasheet area

Form area

Splitter bar

Datasheet forms

Click the More Forms button in the Forms group of the Ribbon and then click the Datasheet
button to create a form that looks like a table or query’s datasheet. A datasheet form is
useful when you want to see the data in a row and column format, but you want to limit
which fi elds are displayed and editable.

To create a datasheet form based on tblProducts, follow these steps:

 1. Select tblProducts in the Navigation pane.

 2. Select the Create tab of the Ribbon.

 3. Click the More Forms button in the Forms group and then click Datasheet. You
can view any form you create as a datasheet by selecting Datasheet View from the
View drop-down menu on the Ribbon. A datasheet form appears in Datasheet View
by default when you open it.

497

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 497

17

Some forms have their Allow Datasheet View property set to No by default. The View drop-down doesn’t show a

Datasheet View option for those forms. You’ll learn more about form properties in the “Introducing Properties” sec-

tion, later in this chapter.

Resizing the form area
In Design view, the area with gridlines is where you add controls to your form. This is the
size of the form when it’s displayed. Resize the grid area of the form by placing the cursor
on any of the area borders and dragging the border of the area to make it larger or smaller.
Figure 17.12 shows a blank form in Design view being resized.

FIGURE 17.12

Design view of a blank form. Resize the form area by dragging the bottom-right corner.

Form Design surface Sizing cursor

Saving your form
You can save the form at any time by clicking the Save button in the Quick Access
toolbar. When you’re asked for a name for the form, give it a meaningful name (for example,
frmProducts, frmCustomers, or frmProductList.) Once you’ve given the form a name, you
won’t be prompted the next time you click Save.

When you close a form after making changes, Access asks you to save it. If you don’t save
a form, all changes since you opened the form (or since you last clicked Save) are lost. You
should frequently save the form while you work if you’re satisfi ed with the results.

498

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 498

If you’re going to make extensive changes to a form, you might want to make a copy of the form. For example, if you want

to work on the form frmProducts, you can copy and then paste the form in the Navigation pane, giving it a name like

frmProductsOriginal. Later, when you’ve completed your changes and tested them, you can delete the original copy.

Working with Controls
Controls and properties form the basis of forms and reports. It’s critical to understand the
fundamental concepts of controls and properties before you begin to apply them to custom
forms and reports.

Although this chapter is about forms, you’ll learn that forms and reports share many common characteristics, includ-

ing controls and what you can do with them. As you learn about controls in this chapter, you’ll be able to apply nearly

everything you learn when you create reports.

The term control has many defi nitions in Access. Generally, a control is any object on a
form or report, such as a label or text box. These are the same sort of controls used in any
Windows application, such as Access, Excel, web-based HTML forms, or those that are used
in any language, such as .NET, Visual Basic, C++, or C#. Although each language or product
has different fi le formats and different properties, a text box in Access is similar to a text
box in any other Windows product.

You enter data into controls and display data using controls. A control can be bound to a
fi eld in a table (when the value is entered in the control, it’s also saved in some underlying
table fi eld), or data can be unbound and displayed in the form but not saved when the form
is closed. A control can also be an object that doesn’t hold data, such as a line or rectangle.

Some controls that aren’t built into Access are developed separately—these are ActiveX
controls. ActiveX controls extend the basic feature set of Access and are available from a
variety of vendors.

Whether you’re working with forms or reports, essentially the same process is followed to
create and use controls. In this chapter, I explain controls from the perspective of a form.

Categorizing controls
Forms and reports contain many different types of controls. You can add these controls
to forms using the Controls group on the Design tab, shown in Figure 17.13. Hovering the
mouse over the control displays a tooltip telling you what the control is.

499

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 499

17

FIGURE 17.13

The Design tab lets you add and customize controls in a form’s Design view.

Controls group

Field list

Property sheet

Table 17.1 briefl y describes the basic Access controls.

TABLE 17.1 Controls in Access Forms

Control What It Does

Text box Displays and allows users to edit data.

Label Displays static text that typically doesn’t change.

Button Also called a command button. Runs macros or VBA code when clicked.

Tab control Displays multiple pages in a fi le folder type of interface.

Hyperlink Creates a link to a web page, a picture, an e-mail address, or a program.

Option group Holds multiple option buttons, check boxes, or toggle buttons.

Page break Usually used for reports and indicates a physical page break.

Combo box A drop-down list of values. Combo boxes include a text box at the top
for inputting values that are not included in the drop-down list.

Chart Displays data in a graphical format.

Line A graphical line of variable thickness and color, which is used for
separation.

Toggle button This is a two-state button—up or down—which usually uses pictures or
icons instead of text to display different states.

Rectangle A rectangle can be any color or size or can be fi lled in or blank; the rect-
angle is used to group related controls visually.

List box A list of values that is always displayed on the form or report.

Check box A two-state control, shown as a square that contains a check mark if it’s
on and an empty square if it’s off. Before a check box’s value is set, it
appears as a grayed-out square.

Unbound object
frame

Holds an OLE object or embedded picture that isn’t tied to a table fi eld
and can include graphs, pictures, sound fi les, and video.

Continues

500

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 500

Control What It Does

Attachment Manages attachments for the Attachment data type. Attachment fi elds
(see Chapter 3) provide a way to attach external fi les (such as music or
video clips or Word documents) to Access tables.

Option button Also called a radio button, this button is displayed as a circle with a dot
when the option is on.

Subform/subreport Displays another form or report within the main form or report.

Bound object frame Holds an OLE object or embedded picture that is tied to a table fi eld.

Image Displays a bitmap picture with very little overhead.

The Use Control Wizards button, revealed by expanding the Controls group by clicking on the
More button in the lower-right corner of the group, doesn’t add a control to a form. Instead,
the Use Control Wizards button determines whether a wizard is automatically activated when
you add certain controls. The option group, combo box, list box, subform/subreport, bound and
unbound object frame, and command button controls all have wizards to help you when you add
a new control. You can also use the ActiveX Controls button (also found at the bottom of the
expanded Controls group) to display a list of ActiveX controls, which you can add to Access.

There are three basic categories of controls:

 ■ Bound controls: These are controls that are bound to a fi eld in the data source
underlying the form. When you enter a value in a bound control, Access automati-
cally updates the fi eld in the current record. Most of the controls used for data
entry can be bound. Controls can be bound to most data types, including Text,
Date/Time, Number, Yes/No, OLE Object, and Long Text fi elds.

 ■ Unbound controls: Unbound controls retain the entered value, but they don’t update
any table fi elds. You can use these controls for text label display, for controls such as
lines and rectangles, or for holding unbound OLE objects (such as bitmap pictures or
your logo) that are stored not in a table but on the form itself. Very often, VBA code is
used to work with data in unbound controls and directly update Access data sources.

 Turn to Chapter 28 for details on using VBA to manipulate forms and controls and to work with unbound

data.

 ■ Calculated controls: Calculated controls are based on expressions, such
as functions or calculations. Calculated controls are unbound because
they don’t directly update table fi elds. An example of a calculated control is
=[SalePrice] - [Cost]. This control calculates the total of two table fi elds
for display on a form but is not bound to any table fi eld. The value of an unbound
calculated control may be referenced by other controls on the form, or used in an
expression in another control on the form or in VBA in the form’s module.

TABLE 17.1 (continued)

501

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 501

17

Adding a control
You add a control to a form in a number ways:

 ■ By clicking a button in the Controls group on the Design tab of the Ribbon and
drawing a new unbound control on the form: Use the control’s ControlSource
property to bind the new control to a fi eld in the form’s data source.

 ■ By dragging a field from the field list to add a bound control to the form:
Access automatically chooses a control appropriate for the fi eld’s data type and
binds the control to the selected fi eld.

 ■ By double-clicking a field in the field list to add a bound control to the form:
Double-clicking works just like dragging a fi eld from the fi eld list to the form. The
only difference is that, when you add a control by double-clicking a fi eld, Access
decides where to add the new control to the form. Usually the new control is added
to the right of the most recently added control, and sometimes below it.

 ■ By right-clicking a field in the field list and choosing Add Field to View: Right-
clicking places a bound control in the same location as if it were double-clicked.

 ■ By copying an existing control and pasting it to another location on the form:
Copying a control can be done in all the familiar ways: Click Copy on the Home tab
of the Ribbon, right-click the control and choose Copy, or press Ctrl+C. Pasted
controls are bound to the same fi eld as the control that was copied.

Using the Controls group

When you use the buttons in the Controls group to add a control, you decide which type of
control to use for each fi eld. The control you add is unbound (not attached to the data in a
table fi eld) and has a default name such as Text21 or Combo11. After you create the
control, you decide what table fi eld to bind the control to, enter text for the label, and set
any properties. You’ll learn more about setting properties later in this chapter.

You can add one control at a time using the Controls group. To create three different
unbound controls, perform these steps:

 1. With the form created earlier open in Design view, click the Text Box button in
the Controls group.

 2. Move the mouse pointer to the Form Design window, and click and drag the
new control onto the form’s surface in its initial size and position. Notice that
a label control is added when you add a text box.

 3. Click the Option button in the Controls group, and click and drag the new
Option button onto the form’s surface in its initial size and position.

 4. Click the Check Box button in the Controls group and add it to the form, as
you added the other controls. When you’re done, your screen should resemble
Figure 17.14.

502

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 502

FIGURE 17.14

Unbound controls added from the Controls group.

Clicking the Form Design window with a control selected creates a default-size control. If you want to add multiple

controls of the same type, right-click the icon in the Controls group and choose Drop Multiple Controls, and then

draw as many controls as you want on the form. Click the selector control (the arrow) to unlock the control and return

to normal operation.

To remove the grid lines from the form’s detail area, select Grid from the Size/Space control on the Arrange tab of

the Ribbon while the form is in Design view. Most of the fi gures in this section don’t show the grid so the edges of the

controls are easier to see.

Using the field list

The fi eld list displays a list of fi elds from the table or query the form is based on. Open the
fi eld list by clicking the Add Existing Fields button in the Tools group on the Design tab of
the Ribbon (refer to Figure 17.13).

If you created a form using a method that automatically binds the form to a table or query, the
fi eld list for that table or query will be displayed. For this example, we created a form using the
Blank Form button, which does not automatically bind the form to a datasource. In this case,

503

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 503

17

the fi eld list only shows a Show All Tables link. Click the Show All Tables link to get a list of
tables. Then click the plus sign next to tblProducts to show the fi elds in that table.

Drag Model from the fi eld list and drop it onto the form to create a control bound to the
Model fi eld in tblProducts . You can select and drag fi elds one at a time or select multiple
fi elds by using the Ctrl key or Shift key:

 ■ To select multiple contiguous fields, hold down the Shift key and click the fi rst
and last fi elds that you want.

 ■ To select multiple noncontiguous fields, hold down the Ctrl key and click each
fi eld that you want.

You can drag multiple fi elds only to a form that’s already bound to a data source. Access prevents you from selecting

multiple fi elds until at least one fi eld has been added.

By default, the Field List appears docked on the right of the Access window. The Field List
window is movable and resizable and displays a vertical scroll bar if it contains more fi elds than
can fi t in the window. Figure 17.15 shows the Field List undocked and moved on top of the form.

FIGURE 17.15

Click Add Existing Fields in the Tools group to show the Field List.

504

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 504

Most often, dragging a fi eld from the Field List adds a bound text box to the Design
window. If you drag a Yes/No fi eld from the Field List window, Access adds a check box.
Optionally, you can select the type of control by selecting a control from the Controls group
and dragging the fi eld to the Design window.

When you drag fi elds from the Field List window, the fi rst control is placed where you release the mouse button.

Make sure that you have enough space to the left of the control for the labels. If you don’t have enough space, the

labels slide behind the controls.

You gain several distinct advantages by dragging a fi eld from the Field List window:

 ■ The control is automatically bound to the fi eld.

 ■ Field properties inherit table-level formats, status bar text, and data validation
rules and messages.

 ■ The label control and label text are created with the fi eld name as the caption.

 ■ The label control is attached to the fi eld control, so they move together.

Select and drag the Description, Category, RetailPrice, and Cost fi elds from the Field List
window to the form, as shown in Figure 17.16. Double-clicking a fi eld also adds it to the form.

FIGURE 17.16

Drag fi elds from the Field List to add bound controls to the form.

505

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 505

17

You can see four new pairs of controls in the form’s Design view—each pair consists of a
label control and a text box control (Access attaches the label control to the text box
automatically). You can work with these controls as a group or independently, and you
can select, move, resize, or delete them. Notice that each control has a label with a caption
matching the fi eld name, and the text box control displays the bound fi eld name used
in the text box. If you want to resize just the control and not the label, you must work
with the two controls (label and associated text box) separately. You’ll learn about
working with labels attached to controls later in this chapter.

Close the Field List by clicking the Add Existing Fields command in the Tools group of the
Ribbon or by clicking the Close button on the Field List.

In Access, you can change the type of control after you create it; then you can set all the properties for the control.

For example, suppose that you add a fi eld as a text box control and you want to change it to a List Box. Right-click

the control and select Change To from the pop-up menu to change the control type. However, you can change only

from some types of controls to others. You can change almost any type of control to a text box control, while option

button controls, toggle button controls, and check box controls are interchangeable, as are list box and combo box

controls.

In the “Introducing Properties” section, later in this chapter, you learn how to change the
control names, captions, and other properties. Using properties speeds the process of nam-
ing controls and binding them to specifi c fi elds. If you want to see the differences between
bound and unbound controls, switch to Form view using the View command in the View
group of the Ribbon. The Description, Category, RetailPrice, and Cost controls display data
because they’re bound to tblProducts. The other three controls don’t display data because
they aren’t bound to any data source.

As you add controls from the Field List, Access builds the form’s RecordSource property as a SQL statement. The

RecordSource after adding these four fi elds is:

SELECT tblProducts.Model, tblProducts.Description,
 tblProducts.Category, tblProducts.RetailPrice,
 tblProducts.Cost FROM tblProducts;

If we had started with a form bound to a table or query, the RecordSource would have been set to the entire table or

query and would not change as fi elds are added or removed.

Selecting and deselecting controls
After you add a control to a form, you can resize it, move it, or copy it. The fi rst step is to
select one or more controls. Depending on its size, a selected control might show from four
to eight handles (small squares called moving and sizing handles) around the control—at the

506

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 506

corners and midway along the sides. The move handle in the upper-left corner is larger than
the other handles and you use it to move the control. You use the other handles to size the
control. Figure 17.17 displays some selected controls and their moving and sizing handles.

FIGURE 17.17

Selected controls and their moving and sizing handles.

Sizing handles

Moving handle

The Select command (which looks like an arrow) in the Controls group must be chosen in
order for you to select a control. If you use the Controls group to create a single control,
Access automatically reselects the pointer as the default.

Selecting a single control

Select any individual control by clicking anywhere on the control. When you click a con-
trol, the sizing handles appear. If the control has an attached label, the move handle for
the label also appears in the upper-left corner of the control. If you select a label control
that is associated with another control, all the handles for the label control are displayed,
and only the move handle appears in the associated control.

507

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 507

17

Selecting multiple controls

You select multiple controls in these ways:

 ■ By clicking each control while holding down the Shift key

 ■ By dragging the pointer through or around the controls that you want to select

 ■ By clicking and dragging in the ruler to select a range of controls

Figure 17.17 shows the result of selecting the multiple bound controls graphically. When
you select multiple controls by dragging the mouse, a rectangle appears as you drag the
mouse. Be careful to drag the rectangle only through the controls you want to select. Any
control you touch with the rectangle or enclose within it is selected. If you want to select
labels only, make sure that the selection rectangle only touches the labels.

If you fi nd that controls are not selected when the rectangle passes through the control, you may have the global

selection behavior property set to Fully Enclosed. This means that a control is selected only if the selection rectangle

completely encloses the entire control. Change this option by choosing File ➪ Options. Then select Object Designers

in the Access Options dialog box and set the Form/Report design view Selection behavior to Partially Enclosed.

By holding down the Shift or Ctrl key, you can select several noncontiguous controls. This lets you select controls on

totally different parts of the screen. Click the form in Design view and then press Ctrl+A to select all the controls

on the form. Press Shift or Ctrl and click any selected control to remove it from the selection.

Deselecting controls

Deselect a control by clicking an unselected area of the form that doesn’t contain a control.
When you do so, the handles disappear from any selected control. Selecting another control
also deselects a selected control.

Manipulating controls
Creating a form is a multistep process. Once you’ve added controls to your form, you need to
move them to their desired position and properly size them. The Arrange tab of the Ribbon
(shown in Figure 17.18) contains commands used to assist you in manipulating controls.

Resizing a control

You resize controls using any of the smaller handles in the upper, lower, and right edges
of the control. The sizing handles in the control corners let you drag the control larger or
smaller in both width and height—and at the same time. Use the handles in the middle
of the control sides to size the control larger or smaller in one direction only. The top and

508

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 508

bottom handles control the height of the control; the left and right handles change the
control’s width.

FIGURE 17.18

The Arrange tab lets you work with moving and sizing controls, as well as manipulate the
overall layout of the form.

When the mouse pointer touches a corner sizing handle of a selected control, the pointer
becomes a diagonal double arrow. You can then drag the sizing handle until the control
is the desired size. If the mouse pointer touches a side handle in a selected control, the
pointer changes to a horizontal or vertical double-headed arrow. Figure 17.19 shows the
Description control after being resized. Notice the double-headed arrow in the corner of
the Description control.

FIGURE 17.19

Resizing a control.

509

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 509

17

You can resize a control in very small increments by holding the Shift key while pressing the arrow keys (up, down,

left, and right). This technique also works with multiple controls selected. Using this technique, a control changes

by only 1 pixel at a time (or moves to the nearest grid line if Snap to Grid is selected in the Size/Space gallery of the

Arrange tab of the Ribbon).

When you double-click on any of the sizing handles, Access resizes a control to best fi t the
text contained in the control. This feature is especially handy if you increase the font size
and then notice that the text is cut off either at the bottom or to the right. For label con-
trols, note that this best-fi t sizing adjusts the size vertically and horizontally, though text
controls are resized only vertically. This is because when Access is in Form Design mode, it
can’t predict how much of a fi eld to display—the fi eld name and fi eld contents can be radi-
cally different. Sometimes, Access doesn’t correctly resize the label and you must manually
change its size.

Sizing controls automatically

The Size/Space drop-down on the Size and Ordering group of the Arrange tab of the Ribbon
has several commands that help the arrangement of controls:

 ■ To Fit: Adjusts control height for the font of the text they contain

 ■ To Tallest: Makes selected controls the height of the tallest selected control

 ■ To Shortest: Makes selected controls the height of the shortest selected control

 ■ To Grid: Moves all sides of selected controls in or out to meet the nearest points on
the grid

 ■ To Widest: Makes selected controls the width of the widest selected control

 ■ To Narrowest: Makes selected controls the height of the narrowest selected control

You can access many commands by right-clicking after selecting multiple controls. When you right-click on multiple

controls, a shortcut menu displays choices to size and align controls.

Moving a control

After you select a control, you can easily move it, using any of these methods:

 ■ Click the control and hold down the mouse button; the cursor changes to a four-
directional arrow. Drag the mouse to move the control to a new location.

 ■ Click once to select the control and move the mouse over any of the highlighted
edges; the cursor changes to a four-directional arrow. Drag the mouse to move the
control to a new location.

510

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 510

 ■ Select the control and use the arrow keys on the keyboard to move the control.
Using this technique, a control changes by only 1 pixel at a time (or moves to the
nearest grid line if Snap to Grid is selected in the Size/Space gallery on the Arrange
tab of the Ribbon).

Figure 17.20 shows a label control that has been separately moved to the top of the text box
control.

FIGURE 17.20

Moving a control.

Move handle Move cursor

Press Esc before you release the mouse button to cancel a moving or a resizing operation.
After a move or resizing operation is complete, click the Undo button on the Quick Access
toolbar to undo the changes, if needed.

Aligning controls

You might want to move several controls so that they’re all aligned. The Sizing and
Ordering group’s Align gallery on the Arrange tab of the Ribbon contains the following
alignment commands:

 ■ To Grid: Aligns the top-left corners of the selected controls to the nearest grid point

 ■ Left: Aligns the left edge of the selected controls with the leftmost selected control

511

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 511

17

 ■ Right: Aligns the right edge of the selected controls with the rightmost selected control

 ■ Top: Aligns the top edge of the selected controls with the topmost selected control

 ■ Bottom: Aligns the bottom edge of the selected controls with the bottommost
selected control

You can align any number of selected controls by selecting an align command. When you
choose one of the align commands, Access uses the control that’s the closest to the desired
selection as the model for the alignment. For example, suppose that you have three con-
trols and you want to left-align them. They’re aligned on the basis of the control farthest
to the left in the group of the three controls.

Figure 17.21 shows several sets of controls. The fi rst set of controls is not aligned. The label
controls in the middle set of controls have been left-aligned while the text box controls in
the right-side set have been right-aligned.

FIGURE 17.21

An example of unaligned and aligned controls on the grid.

Each type of alignment must be done separately. In this example, you can left-align all the
labels or right-align all the text boxes at once.

By default, Access displays a series of small dots across the entire surface of a form while
it’s in Design view. The grid can assist you in aligning controls. Hide or display the grid by
selecting the Grid command from the Size/Space gallery under the Sizing & Ordering group
on the Arrange tab of the Ribbon. You can also hide or display the ruler using the Ruler
command in the same gallery.

Use the Snap to Grid command in the Size/Space gallery to align controls to the grid as you
draw or place them on a form. This also aligns existing controls to the grid when you move
or resize them.

As you move or resize existing controls, Access lets you move only from grid point to grid
point. When Snap to Grid is off, Access ignores the grid and lets you place a control any-
where on the form or report.

512

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 512

You can temporarily turn off Snap to Grid by pressing the Ctrl key before you create a control (or while sizing or mov-

ing it). You can change the grid’s fineness (number of dots) from form to form by using the Grid X and Grid Y form

properties. (Higher numbers indicate greater fi neness.) You’ll learn more about form properties in Chapter 18.

The Sizing & Ordering group on the Arrange tab of the Ribbon contains commands to adjust
spacing between controls. The spacing commands adjust the distance between controls on
the basis of the space between the fi rst two selected controls. If the controls are across the
screen, use horizontal spacing; if they’re down the screen, use vertical spacing. The spacing
commands are:

 ■ Equal Horizontal: Makes the horizontal space between selected controls equal. You
must select three or more controls in order for this command to work.

 ■ Increase Horizontal: Increases the horizontal space between selected controls by
one grid unit.

 ■ Decrease Horizontal: Decreases the horizontal space between selected controls by
one grid unit.

 ■ Equal Vertical: Makes the vertical space between selected controls equal. You must
select three or more controls in order for this command to work properly.

 ■ Increase Vertical: Increases the vertical space between selected controls by one
grid unit.

 ■ Decrease Vertical: Decreases the vertical space between selected controls by one
grid unit.

Aligning controls aligns only the controls themselves. If you want to align the text within the controls (also known as

justifying the text), you must use the Font group on the Format tab of the Ribbon and click the Left, Right, or Center

buttons.

Modifying the appearance of a control

To modify the appearance of a control, select the control and click commands that modify
that control, such as the options in the Font or Controls group. Follow these steps to change
the text color and font of the Description label:

 1. Click the Description label on the form.

 2. In the Font group on the Format tab of the Ribbon, change Font Size to 14, click
the Bold button, and change Font Color to blue.

 3. Resize the Description label so the larger text fits. You can double-click any of
the sizing handles to autosize the label.

To modify the appearance of multiple controls at once, select the controls and click com-
mands to modify the controls, such as commands in the Font or Controls group. To change

513

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 513

17

the text color and font of the Category, Retail Price, and Cost labels and text boxes, follow
these steps:

 1. Select the three labels and three text boxes by dragging a selection box
through them.

 2. In the Font group on the Format tab of the Ribbon, change the Font Size to 14,
click the Bold button, and change Font Color to blue.

 3. Resize the labels and text boxes so the larger text fits. You can double-click any
of the sizing handles to autosize the controls. As you click the commands, the con-
trols’ appearances change to refl ect the new selections (shown in Figure 17.22). The
fonts in each control increase in size, become bold, and turn blue. Any changes you
make apply to all selected controls.

FIGURE 17.22

Changing the appearance of multiple controls at the same time.

When multiple controls are selected, you can also move the selected controls together.
When the cursor changes to the four-directional arrow, click and drag to move the selected
controls. You can also change the size of all the controls at once by resizing one of the
controls in the selection. All the selected controls increase or decrease by the same num-
ber of units.

Grouping controls

If you routinely change properties of multiple controls, you might want to group them
together. To group controls together, select the controls by holding down the Shift key and

514

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 514

clicking them or dragging the selection box through them. After the desired controls are
selected, select the Group command from the Size/Space gallery on the Arrange tab of the
Ribbon. When one control in a group is selected, all controls in that group are automatically
selected, as shown in Figure 17.23.

FIGURE 17.23

Grouping multiple controls together.

Double-click a control to select just one control in a group. After a single control in the
group is selected, you can click any other control to select it. To reselect the entire group,
click on an empty area of the form, and then click on any control in the group.

To resize the entire group, put your mouse on the side you want to resize. After the double
arrow appears, click and drag until you reach the desired size. Every control in the group
changes in size. To move the entire group, click and drag the group to its new location.
With grouped controls, you don’t have to select all the controls every time you change
something about them.

515

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 515

17

To remove a group, select the group by clicking any fi eld inside the group, and then select
the Ungroup command from the Size/Space gallery of the Arrange tab of the Ribbon.

Changing a control’s type

Although there are times you may want to use a check box to display a Boolean (yes/no) data
type, there are other ways to display the value, such as a toggle button, as shown in Figure
17.24. A toggle button is raised if it’s true and depressed (or at least very unhappy) if it’s false.

FIGURE 17.24

Turn a check box into a toggle button.

Use these steps to turn a check box into a toggle button:

 1. Select the Before label control (just the label control, not the check box).

 2. Press Delete to delete the label control because it isn’t needed.

 3. Right-click the check box, and choose Change To ➪ Toggle Button from the
pop-up menu.

 4. Resize the toggle button and click inside it to get the blinking cursor; then
type After on the button as its caption (shown on the right of Figure 17.24).

Copying a control

You can create copies of any control by copying it to the Clipboard and then pasting the
copies where you want them. If you have a control for which you’ve entered many proper-
ties or specifi ed a certain format, you can copy it and revise only the properties (such as
the control’s name and bound fi eld name) to make it a different control. This capability is
useful with a multiple-page form when you want to display the same values on different
pages and in different locations, or when copying a control from one form to another.

Deleting a control

You can delete a control simply by selecting it in the form’s Design view and pressing the
Delete key on your keyboard. The control and any attached labels will disappear. You can
bring them back by immediately selecting Undo from the Quick Access toolbar (or using the

516

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 516

keyboard shortcut for Undo, Ctrl+Z). You can also select Cut from the Clipboard group on the
Home tab of the Ribbon, or Delete from the Records group on the Home tab of the Ribbon.

You can delete more than one control at a time by selecting multiple controls and press-
ing Delete. You can delete an entire group of controls by selecting the group and pressing
Delete. If you have a control with an attached label, you can delete only the label by
clicking the label itself and then selecting one of the delete methods. If you select the
control, both the control and the label are deleted.

To delete only the label of the Description control, follow the next set of steps (this example
assumes that you have the Description text box control in your Form Design window):

 1. Select the Description label control only.

 2. Press Delete to remove the label from the form.

Reattaching a label to a control

Later in this chapter, in the “Naming control labels and their captions” section, you’ll
learn about the special relationship between a control and its label. By default, Access
controls include a label when the control is added to a form; this label moves around with
the control as you reposition the control on the form. The “Naming control labels and their
captions” section describes these behaviors and how to work with control labels. If you
accidentally delete a label from a control, you can reattach it. To create and then reattach a
label to a control, follow these steps:

 1. Click the Label button on the Controls group.

 2. Place the mouse pointer in the Form Design window. The mouse pointer
becomes a capital A.

 3. Click and hold down the mouse button where you want the control to begin;
drag the mouse to size the control.

 4. Type Description and click outside the control.

 5. Select the Description label control.

 6. Select Cut from the Clipboard group on the Home tab of the Ribbon.

 7. Select the Description text box control.

 8. Select Paste from the Clipboard group on the Home tab of the Ribbon to attach
the label control to the text-box control.

Another way to attach a label to a control is to click the informational icon next to the
label, shown in Figure 17.25. This informational icon lets you know that this label is unas-
sociated with a control. Select the Associate Label with a Control command from the menu,
and then select the control you want to associate the label with.

517

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 517

17

FIGURE 17.25

Associating a label with a control.

Introducing Properties
Properties are named attributes of controls, fi elds, or database objects that are used to
modify the characteristics of a control, fi eld, or object. Examples of these attributes are the
size, color, appearance, or name of an object. A property can also modify the behavior of a
control, determining, for example, whether the control is read-only or editable and visible
or not visible.

Properties are used extensively in forms and reports to change the characteristics of con-
trols. Each control on the form has properties. The form itself also has properties, as does
each of its sections. The same is true for reports; the report itself has properties, as does
each report section and individual control. The label control also has its own properties,
even if it’s attached to another control.

Everything that you do with the Ribbon commands—from moving and resizing controls to
changing fonts and colors—can be done by setting properties. In fact, all these commands
do is change properties of the selected controls.

518

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 518

Displaying the Property Sheet
Properties are displayed in a Property Sheet (sometimes called a Property window). To
display the Property Sheet for the Description text box, follow these steps:

 1. Drag Description, Category, RetailPrice, and Cost from the Field List to the
form’s Design view.

 2. Click the Description text box control to select it.

 3. Click the Property Sheet command in the Tools group on the Design tab of the
Ribbon, or press F4 to display the Property Sheet. The screen should look like
the one shown in Figure 17.26. In Figure 17.26, the Description text box control has
been selected and the Format tab in the Property Sheet is being scrolled to fi nd the
margin properties associated with a text box.

FIGURE 17.26

Change an object’s properties with the Property Sheet.

Properties

Selected control Tabs

519

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 519

17

Because the Property Sheet is a window, it can be undocked, moved, and resized. It does
not, however, have Maximize or Minimize buttons.

Double-click the title bar area of an undocked Property Sheet to return it to its most recent docked location.

There are several ways to display a control’s Property Sheet if it isn’t visible:

 ■ Select a control and click the Property Sheet command in the Tools group on the
Design tab of the Ribbon.

 ■ Double-click the edge of any control.

 ■ Right-click any control and select Properties from the pop-up menu.

 ■ Press F4 while any control is selected.

Getting acquainted with the Property Sheet
With the Property Sheet displayed, click any control in Design view to display the proper-
ties for that control. Select multiple controls to display similar properties for the selected
controls. The vertical scroll bar lets you move among various properties.

The Property Sheet has an All tab that lets you see all the properties for a control. Or you
can choose another tab to limit the view to a specifi c group of properties. The specifi c tabs
and groups of properties are as follows:

 ■ Format: These properties determine how a label or value looks: font, size, color,
special effects, borders, and scroll bars.

 ■ Data: These properties affect how a value is displayed and the data source it’s bound to:
control source, input masks, validation, default value, and other data type properties.

 ■ Event: Event properties are named events, such as clicking a mouse button, adding
a record, pressing a key for which you can defi ne a response (in the form of a call
to a macro or a VBA procedure), and so on.

 ■ Other: Other properties show additional characteristics of the control, such as the
name of the control or the description that displays in the status bar.

 The number of properties available in Access has increased greatly since early versions of Access. The

most important properties are described in various chapters of this book. For a discussion of Event

properties and Event procedures, see Chapter 26.

Figure 17.26 shows the Property Sheet for the Description text box. The fi rst column lists the
property names; the second column is where you enter or select property settings or options.
You can use the combo box near the top of the Property Sheet (displaying Description in
Figure 17.26) to change which control’s properties are shown. The combo box also allows you
to select other objects on the form, like the Detail section, Form Header, or the Form itself.

520

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 520

Changing a control’s property setting
There are many different methods for changing property settings, including the following:

 ■ Enter or select the desired value in a Property Sheet.

 ■ For some properties, double-clicking the property name in the Property Sheet
cycles through all the acceptable values for the property.

 ■ Change a property directly by changing the control itself, such as changing its size.

 ■ Use inherited properties from the bound fi eld or the control’s default properties.

 ■ Enter color selections for the control by using the Ribbon commands.

 ■ Change label text style, size, color, and alignment by using the Ribbon commands.

You can change a control’s properties by clicking a property and typing the desired value.

In Figure 17.27, you see a down arrow and a button with three dots to the right of the
Control Source property entry area. Some properties display a drop-down arrow in the prop-
erty entry area when you click in the area. The drop-down arrow tells you that Access has a
list of values from which you can choose. If you click the down arrow in the Control Source
property, you fi nd that the drop-down list displays a list of all fi elds in the data source—
tblProducts. Setting the Control Source property to a fi eld in a table creates a bound control.

FIGURE 17.27

Setting a control’s Control Source property.

Builder button

Drop-down button

521

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 521

17

Some properties have a list of standard values such as Yes or No; others display varying
lists of fi elds, forms, reports, or macros. The properties of each object are determined by
the control itself and what the control is used for.

A nice feature in Access is the ability to cycle through property choices by repeatedly
double-clicking the choice. For example, double-clicking the Display When property alter-
nately selects Always, Print Only, and Screen Only.

The Builder button contains an ellipsis (...) and opens one of the many builders in Access,
including the Macro Builder, the Expression Builder, and the Code Builder. When you open a
builder and make some selections, the property is fi lled in for you. You’ll learn about build-
ers later in this book.

Each type of object has its own Property Sheet and properties. These include the form
itself, each of the form sections, and each of the form’s controls. Once you’ve displayed the
Property Sheet by clicking Property Sheet on the Form Design Tools Design Ribbon, you can
change what the Property Sheet displays in two ways: By selecting the object on the form
or by choosing the object from the Property Sheet’s combo box. The Property Sheet will
instantly change to show the properties for the selected object.

Naming control labels and their captions
You might notice that each of the data fi elds has a label control and a text box control.
Normally, the label’s Caption property is the same as the text box’s Name property. The text
box’s Name property is usually the same as the table’s fi eld name—shown in the Control
Source property. Sometimes, the label’s Caption is different because a value was entered
into the Caption property for each fi eld in the table.

When creating controls on a form, it’s a good idea to use standard naming conventions
when setting the control’s Name property. Name each control with a prefi x followed by a
meaningful name that you’ll recognize later (for example, txtTotalCost, cboState, lblTitle).
Table 17.2 shows the naming conventions for form and report controls. You can fi nd a
complete, well-established naming convention online at www.xoc.net/standards.

TABLE 17.2 Form/Report Control Naming Conventions

Prefi x Object

frb Bound object frame

cht Chart (graph)

chk Check box

cbo Combo box

cmd Command button

Continues

http://www.xoc.net/standards

522

Part V: Working with Access Forms and Reports

c17.indd 10/05/2015 Page 522

ocx ActiveX custom control

det Detail (section)

gft[n] Footer (group section)

fft Form footer section

fhd Form header section

ghd[n] Header (group section)

hlk Hyperlink

img Image

lbl Label

lin Line

lst List box

opt Option button

grp Option group

pge Page (tab)

brk Page break

pft Page footer (section)

phd Page header (section)

shp Rectangle

rft Report footer (section)

rhd Report header (section)

sec Section

sub Subform/subreport

tab Tab control

txt Text box

tgl Toggle button

fru Unbound object frame

The properties displayed in Figure 17.27 are the specifi c properties for the Description text
box. The fi rst two properties, Name and Control Source, are set to Description.

The Name is simply the name of the fi eld itself. When a control is bound to a fi eld, Access
automatically assigns the Name property to the bound fi eld’s name. Unbound controls are
given names such as Field11 or Button13. However, you can give the control any name
you want.

TABLE 17.2 (continued)

523

Chapter 17: Creating Basic Access Forms

c17.indd 10/05/2015 Page 523

17

With bound controls, the Control Source property is the name of the table fi eld to which
the control is bound. In this example, Description refers to the fi eld with the same name
in tblProducts. An unbound control has no control source, whereas the control source
of a calculated control is the actual expression for the calculation, as in the example
=[SalePrice] - [Cost] .

525

c18.indd 09/30/2015 Page 525

 CHAP T ER

18
Working with Data on
Access Forms

IN THIS CHAPTER

Viewing and modifying data in Form view

Editing form data

Printing Access forms

Understanding form properties

Adding form headers and footers

Adjusting a form’s layout

Adding calculated controls to a form

Converting a form to a report

I
n Chapter 17, you learned about the tools necessary to create and display a form—Design view,
bound and unbound controls, the Field List, and the Controls group on the Ribbon. In this chap-
ter, you learn how to work with data on the form, view and change the form’s properties, and

use Layout view.

An Access application’s user interface is made up of forms. Forms display and change data, accept
new data, and interact with the user. Forms convey a lot of the personality of an application, and a
carefully designed user interface dramatically reduces the training required of new users.

Most often, the data displayed on Access forms is bound (either directly or indirectly) to Access
tables. Changes made to a form’s data affect the data stored in the underlying tables.

In this chapter, you use tblProducts, tblSales, and tblContacts in the Chapter18.accdb database to provide the

data necessary to create the examples.

ON THE WEB

526

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 526

Using Form View
Form view is where you actually view and modify data. The data in Form view is the same
data shown in a table or query’s Datasheet view, just presented a little differently. Form
view presents the data in a user-friendly format, which you create and design.

 For more information on working in Datasheet view, see Chapter 5.

To demonstrate the use of the Form view, follow these steps to create a new form based on
tblProducts:

 1. Select tblProducts in the Navigation pane.

 2. Select the Create tab on the Ribbon.

 3. Click the Form command in the Form group.

 4. Click the Form View button in the Views group of the Home tab to switch from
Layout view to Form view.

Figure 18.1 shows the newly created form displayed in Form view. This view shows the
form’s title bar with its caption and the form header at the top and the navigation controls
at the bottom. The main part of the form in the center of the screen displays your data,
one record at a time.

If the form contains more fi elds than can fi t onscreen at one time, Access automatically displays a horizontal and/

or vertical scroll bar that you can use to see more of the data. You can also see the rest of the data by pressing the

PgDn key. If you’re at the bottom of a form, or the entire form fi ts on the screen without scrolling, and you press

PgDn, you’ll move to the next record.

The status bar at the bottom of the window displays the active fi eld’s Status Bar Text prop-
erty that you defi ned when you created the table (or form). If no Status Bar Text exists
for a fi eld, Access displays “Form View” in the status bar. Generally, error messages and
warnings appear in dialog boxes in the center of the screen (rather than in the status bar).
The navigation controls and search box are found at the bottom of the form’s window, and
the view shortcuts are found in the status bar. These features let you move from record to
record or quickly fi nd data.

Looking at the Home tab of the Ribbon
The Home tab of the Ribbon tab (shown in Figure 18.2) provides a way to work with the
data. The Home tab has some familiar objects on it, as well as some new ones. This section
provides an overview of the Home tab. The individual commands are described in more
detail later in this chapter.

527

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 527

18

FIGURE 18.1

A form in Form view.

Search box

Controls

Record selector

Navigation buttons

Caption Title bar Form header

Keep in mind that the Ribbon and its controls are very context sensitive. Depending on your current task, one of more

of the commands may be grayed out or not visible. Although this behavior can be confusing, Microsoft’s intent is to

simplify the Ribbon as much as possible to allow you to focus on the task at hand, and not have to deal with irrel-

evant commands as you work.

FIGURE 18.2

The Home tab of the Ribbon.

528

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 528

The Views group

At the far left is the Views group, which allows you to switch among the following views,
which you can see by clicking the button’s drop-down arrow.

 ■ Form view: Allows you to manipulate data on the form

 ■ Datasheet view: Shows the data in the row-and-column format

 Turn to Chapter 5 for information on Datasheet view.

 ■ Layout view: Allows you to change the form’s design while viewing data

 ■ Design view: Allows you to make changes to the form’s design

All these commands may not be available on all forms. By setting the form’s properties, you can limit which views are

available. You’ll learn more about form properties in the “Working with Form Properties” section, later in this chapter.

The Clipboard group

The Clipboard group contains the Cut, Copy, Paste, and Format Painter commands. These
commands work like the same commands in other applications (like Word and Excel). The
Clipboard is a resource provided by Windows and shared by virtually all Windows applica-
tions. Items you copy or cut from Excel, for example, can be pasted into Access if the con-
text is appropriate. For example, you could copy a VBA procedure from an Excel worksheet
and paste it into an Access VBA code module because the contexts are the same. But you
can’t copy an Excel spreadsheet and paste it into an Access form in Form view, because
Form view has no way of working with an Excel spreadsheet.

Offi ce has its own Clipboard that works with the Windows Clipboard by storing the copied content in additional, more

Offi ce-centric, formats. Copy an Excel range, and the Offi ce Clipboard will store that range in an Offi ce format. Paste

the range into a form in Design view, for instance, and an OLE control is automatically created.

The Paste command’s drop-down arrow gives you three choices:

 ■ Paste: Inserts whatever item has been copied to the Windows Clipboard into the
current location in Access. Depending on the task you’re working on, the pasted
item might be plain text, a control, a table or form, or some other object.

 ■ Paste Special: Gives you the option of pasting the contents of the Clipboard in dif-
ferent formats (text, CSV, records, and so on).

 ■ Paste Append: Pastes the contents of the Clipboard as a new record—as long as
a record with a similar structure was copied to the Clipboard. Obviously, Paste

529

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 529

18

Append remains disabled for any operation that doesn’t involve copying and
pasting a database table record.

The other controls in the Clipboard group include:

 ■ Cut: Removes the item from its current place in the application and puts it onto the
Windows Clipboard. The item is not destroyed when removed from its current loca-
tion; however, it must be pasted before a second item is copied to the Clipboard.
(A cut or copied item overwrites whatever is on the Clipboard.)

 ■ Copy: Copies the item or object to the Clipboard. Copy can be applied to plain text,
but it also applies to controls on a form or report (with the form or report in Design
view, of course), database records, entire tables, queries, other database objects,
and so on. The Windows Clipboard accepts virtually anything that is copied to it.

 ■ Format Painter: The Format Painter (the icon that looks like a paint brush) is a
special tool to use when working with Access forms and reports in Design view. The
concept of Format Painter is quite simple: You copy the format of an item (such as
its font settings) and paint the formatting onto another item or group of items.

The Format Painter is a huge timesaver when working with many controls on a form or report. Set a control (such as

a Text Box) to look exactly the way you want all the text boxes to look, select the text box, and then click (or double-

click) the Format Painter. Then, as you click on another text box, the fi rst text box’s formatting is applied to the

second text box. Double-clicking the Format Painter “locks” it so that you can paint the format onto multiple items.

(Click once on the Format Painter to unlock it.)

The Sort & Filter group

The Sort & Filter group lets you change the order of the records, and, based on your
criteria, limit the records shown on the form.

The Records group

The Records group lets you save, delete, or add a new record to the form. It also contains
commands to show totals, check spelling, freeze and hide columns, and change the row
height and cell width while the form is displayed in Datasheet view.

The Find group

The Find group lets you fi nd and replace data and go to specifi c records in the datasheet.
Use the Select command to select a record or all records.

The Window group

The Window group contains two controls:

530

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 530

 ■ Size to Fit Form: When you work with a form in Design view, Access “remembers”
the size (height and width) of the form at the moment you save it. When work-
ing with the overlapping windows interface, a user may resize a form by dragging
its borders to a new size and shape. The Size to Fit Form returns the form to the
dimension set at design time.

 ■ Switch Windows: Switch Windows provides a handy way to see all the objects
(forms, reports, tables, and so on) that are currently open in the main Access
windows. You can change to another object by selecting it from the drop-down list
that appears when you click Switch Windows.

When the current database’s Document Window Options option is set to Tabbed Documents, the Home tab does not

contain a Window group. With Tabbed Documents, all open Access objects are accessible through the tab interface,

and the option to switch windows isn’t necessary. To change the Document Window Options, choose File ➪ Options

and set the option in the Current Database area of the Access Options dialog box.

The Text Formatting group

The Text Formatting group lets you change the look of the datasheet in Datasheet view or
Design view. Use these commands to change the font, size, bold, italic, color, and so on. Use
the Align Left, Align Right, and Align Center commands to justify the data in the selected
column. Click the Gridlines option to toggle gridlines on and off. Use Alternate Row Color
to change the colors of alternating rows, or make them all the same. When modifying text
in a Long Text fi eld with the Text Format property set to Rich Text, you can use these com-
mands to change the fonts, colors, and so on.

Navigating among fi elds
Navigating a form is nearly identical to moving around a datasheet. You can easily move
around the form by clicking the control that you want and making changes or additions to
your data. Because the form window displays only as many fi elds as can fi t onscreen, you
need to use various navigational aids to move within your form or between records.

Table 18.1 displays the navigational keys used to move between fi elds within a form.

TABLE 18.1 Navigating in a Form

Navigational Direction Keystrokes

Next fi eld Tab, right-arrow (→) key, down-arrow (↓) key, or Enter

Previous fi eld Shift+Tab, left-arrow (←) key, or up-arrow (↑) key

First fi eld of current record Home

531

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 531

18

First fi eld of fi rst record Ctrl+Home

Last fi eld of current record End

Last fi eld of last record Ctrl+End

Next page PgDn or Next Record

Previous page PgUp or Previous Record

Moving among records in a form
Although you generally use a form to display one record at a time, you still need to move
between records. The easiest way to do this is to use the Navigation buttons, shown in
Figure 18.3.

The Navigation buttons are the six controls located at the bottom-left corner of the Form
window. The two leftmost controls move you to the fi rst record and the previous record in
the form. The three rightmost controls position you on the next record, last record, or new
record in the form. If you know the record number (the row number of a specifi c record),
you can click the Current Record box, enter a record number, and press Enter to go directly
to that record.

FIGURE 18.3

The Navigation buttons of a form.

The record number displayed in the Navigation controls is just an indicator of the current
record’s position in the recordset and may change when you fi lter or sort the records. To the
right of the record number is the total number of records in the current view. The record
count may not be the same as the number of records in the underlying table or query. The
record count changes when you fi lter the data on the form.

Changing Values in a Form
Earlier in this book, you learned datasheet techniques to add, change, and delete data
within a table. These techniques are the same ones you use on an Access form. Table 18.2
summarizes these techniques.

532

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 532

TABLE 18.2 Editing Techniques

Editing Technique Keystrokes

Move insertion point within a control Press the right-arrow (→) and left-arrow (←) keys

Insert a value within a control Select the insertion point and type new data

Select the entire contents of a control Press F2

Replace an existing value with a new value Select the entire fi eld and enter a new value

Replace a value with the value of the pre-
ceding fi eld

Press Ctrl+’ (single quotation mark)

Replace the current value with the default
value

Press Ctrl+Alt+Spacebar

Insert the current date into a control Press Ctrl+; (semicolon)

Insert the current time into a control Press Ctrl+: (colon)

Insert a line break in a Text control Press Ctrl+Enter

Insert a new record Press Ctrl++ (plus sign)

Delete the current record Press Ctrl+– (minus sign)

Save the current record Press Shift+Enter or move to another record

Toggle values in a check box or option
button

Spacebar

Undo a change to the current control Press Esc or click the Undo button

Undo a change to the current record Press Esc or click the Undo button a second
time after you Undo the current control

The right-arrow (→) and left-arrow (←) keys work differently in Navigation mode than they do in Edit mode. The F2

key switches between Navigation mode and Edit mode. The only visual cue for the mode that you’re in is that the

insertion point is displayed in Edit mode. The arrow keys navigate between controls in Navigation mode and are used

to select text in Edit mode.

Knowing which controls you can’t edit
Some controls, including the following, can’t be edited:

 ■ Controls displaying AutoNumber fields: Access maintains AutoNumber fi elds
automatically, calculating the values as you create each new record.

 ■ Calculated controls: Access may use calculated controls in forms or queries.
Calculated values are not actually stored in your table.

533

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 533

18

 ■ Locked or disabled fields: You can set certain form and control properties to pre-
vent changes to the data.

 ■ Controls in multiuser locked records: If another user locks the record, you can’t
edit any controls in that record.

Working with pictures and OLE objects
Object Linking and Embedding (OLE) objects are objects not part of an Access database.
OLE objects commonly include pictures but may be any number of other data types, such
as links to Word documents, Excel spreadsheets, and audio fi les. You can also include video
fi les such as MPG or AVI fi les.

In Datasheet view, you can’t view a picture or an OLE object without accessing the OLE
server (such as Word, Excel, or the Windows Media Player). In Design view, however, you
can size the OLE control area to be large enough to display a picture, chart, or other
OLE objects in Form view. You can also size Text Box controls on forms so that you can
see the data within the fi eld—you don’t have to zoom in on the value, as you do with a
datasheet fi eld.

The Access OLE control supports many types of objects. As with a datasheet, you have two
ways to enter OLE fi elds into a form:

 ■ Copy the object (such as an MP3 fi le) to the Clipboard and paste it from the controls
in the Clipboard group of the Ribbon.

 ■ Right-click the OLE control and click Insert Object from the shortcut menu to
display the Insert Object dialog box, shown in Figure 18.4. Use the Insert Object
dialog box to add a new object to the OLE fi eld, or add an object from an existing
fi le. The Create from File option button adds a picture or other OLE object from an
existing fi le.

FIGURE 18.4

The Insert Object dialog box.

534

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 534

When displaying a picture in an OLE control, set the Size Mode property to control how the
image representing the OLE object is displayed. The settings for this property are:

 ■ Clip: Keeps the image at its original size and cuts off parts of the picture that don’t
fi t in the control.

 ■ Zoom: Fits the image in the control and keeps it in its original proportion, which
may result in extra white space.

 ■ Stretch: Sizes an image to fi t exactly between the frame borders. The stretch
setting may distort the picture.

Entering data in the Long Text fi eld
The Features fi eld in the frmProducts form is a Long Text data type. This type of fi eld
contains up to 1GB of characters. The fi rst three lines of data appear in the text box. When
you click in this text box, a vertical scroll bar appears, allowing you to view all the data in
the control.

Better yet, you can resize the control in the form’s Design view if you want to make it
larger to show more data. Another method for viewing more text in a Long Text fi eld’s text
box, is to press Shift+F2 with the text box selected. A Zoom dialog box is displayed, as
shown in Figure 18.5, allowing you to see more data. The text in the Zoom dialog box is
fully editable. You can add new text or change text already in the control.

FIGURE 18.5

The Zoom dialog box.

Zoom box Field being edited

535

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 535

18

Entering data in the Date fi eld
The SaleDate fi eld in the frmSales_Layout form is a Date/Time data type. This fi eld is
formatted to accept and show date values. When you click in this text box, a Date Picker
icon automatically appears next to it, as shown in Figure 18.6. Click the Date Picker to
display a calendar from which you can choose a date.

FIGURE 18.6

Using the Date Picker control.

Calendar

Date Picker control

If the Date Picker doesn’t appear, switch to Design view and change the control’s Show
Date Picker property to For Dates. Set the Show Date Picker property to Never,as shown in
Figure 18.7, if you don’t want to use the Date Picker.

FIGURE 18.7

Change the Show Date Picker property to Never to disable it.

536

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 536

Using option groups
Option groups let you choose exactly one value from a number of possibilities. Option
groups work best when you have a small number of mutually exclusive choices to select
from. Figure 18.8 shows an option group next to the Follow-Up Date text box. Option groups
most commonly contain option buttons but also work with toggle buttons and check boxes.

FIGURE 18.8

Using an option group to select a mutually exclusive value.

The easiest and most effi cient way to create option groups is with the Option Group Wizard.
You can use it to create option groups with multiple option buttons, toggle buttons, or
check boxes. When you’re through, all your control’s property settings are correctly set. To
create an option group, switch to Design view and select the Option Group button from the
Design tab’s Controls group. Make sure the Use Control Wizards command is selected.

Each element in an option group is assigned a number in its Option Value property. When
an option group is bound to a fi eld, the Option Value is stored in that fi eld when the record
is saved.

When creating an option group for a Yes/No fi eld (which is actually stored as a number), set the Yes value to –1 and

the No value to 0.

Using combo boxes and list boxes
Access has two types of controls—list boxes and combo boxes—for showing lists of data
from which a user can select. The list box always displays as much of the list as possible,
whereas the combo box has to be clicked to open the list. Also, the combo box enables you
to enter a value that is not on the list and takes up less room on the form.

Because combo boxes are a very effi cient use of space on the surface of a form, you may
want to use (for example) a combo box containing values from tblCustomers, as shown in
Figure 18.9. The easiest way to do this is with the Combo Box Wizard. This wizard walks

537

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 537

18

you through the steps of creating a combo box that looks up values in another table. To cre-
ate a combo box, switch to Design view and select the Combo Box command from the Design
tab’s Controls group. Make sure the Use Control Wizards command is selected.

FIGURE 18.9

Using a combo box to select a value from a list.

Drop-down list

Selected item

Combo box

After you create the combo box, examine the Row Source Type, Row Source, Column Count,
Column Heads, Column Widths, Bound Column, List Rows, and List Width properties. Once
you become familiar with setting these properties, you can right-click a text box, choose
Change To ➪ Combo Box, and set the combo box’s properties manually.

Switching to Datasheet view
With a form open, switch to Datasheet view by using one of these methods:

 ■ Click the Datasheet View command in the Home tab’s Views group.

 ■ Click the Datasheet View button in the View Shortcuts section at the bottom-right
of the Access window.

 ■ Right-click the form’s title bar—or any blank area of the form—and choose
Datasheet View from the pop-up menu.

The datasheet is displayed with the cursor on the same fi eld and record that it occupied
while in the form. Moving to another record and fi eld and then redisplaying the form
in Form view causes the form to appear with the cursor on the fi eld occupied in
Datasheet view.

To return to Form view—or any other view—select the desired view from the Views group,
the View Shortcuts, or the pop-up menu.

538

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 538

By default, a new form’s Allow Datasheet View property is set to No. To be able to switch to Datasheet View, set this

property to Yes.

Saving a record
Access automatically saves each record when you move off it. Pressing Shift+Enter or
selecting Save from the Records group on the Ribbon saves a record without moving off it.
Closing the form also saves a record.

Because Access automatically saves changes as soon as you move to another record, you may inadvertently change

the data in the underlying tables. And, because you can undo only the most recent change, there is no easy way to

revert to the record’s previous state.

Printing a Form
You can print one or more records in your form exactly as they appear onscreen. (You learn
how to produce formatted reports in Chapter 20.) The simplest way to print is to use the
keyboard shortcut Ctrl+P to show the Print dialog box. The Print dialog box has several
options to customize your printout.

 ■ Print Range: Prints the entire form or only selected pages or records

 ■ Copies: Determines the number of copies to be printed

 ■ Collate: Determines whether copies are collated

You can also click the Properties button and set options for the selected printer or select a
different printer. The Setup button allows you to set margins and print headings.

Printing a form is like printing anything else. Windows is a WYSIWYG (“What You See Is
What You Get”) environment, so what you see on the form is what you get in the printed
hard copy. If you added page headers or page footers, they would be printed at the top or
bottom of the page. The printout contains any formatting that you specifi ed in the form
(including lines, boxes, and shading) and converts colors to grayscale if you’re using a
black-and-white printer.

The printout includes as many pages as necessary to print all the data. If your form is wider
than a single printer page, you need multiple pages to print your form. Access breaks up
the printout as necessary to fi t on each page.

539

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 539

18

The Print command under the File menu provides additional printing options:

 ■ Quick Print: Prints the active form using the default printer with no opportunity
to change any options

 ■ Print: Shows the Print dialog box

 ■ Print Preview: Shows what the printout will look like based on the current settings

In Print Preview mode, the Print Preview tab of the Ribbon is displayed (and all other tabs are hidden). Use the

Ribbon commands to select different views, change print settings, and zoom in and out. Click Print to print the form

to the printer. Click the Close Print Preview command on the right side of the Ribbon to return to the previous view.

Working with Form Properties
You use form properties to change the way the form is displayed and behaves. Property set-
tings include the form’s background color or picture, the form’s width, and so on. Tables 18.3
through 18.5 cover some of the more important properties. Changing default properties is
relatively easy: You select the property in the Property Sheet and type or select a new value.

The examples in this section use frmProducts from the Chapter18.accdb example database.

The form selector is the area where the rulers meet while the form is in Design view. A small black square appears

when the form is selected, as shown in Figure 18.10.

To set a form’s properties, you have to show the Property Sheet for the form. Switch to
Design or Layout view and display the form’s Property Sheet in one of the following ways:

 ■ Click the form selector so a small black square appears, and then click the Property
Sheet button in the Design tab’s Tools group.

 ■ Click the Property Sheet command in the Design tab’s Tools group, and then select
Form from the drop-down at the top of the Property Sheet.

 ■ Double-click the form selector.

 ■ Right-click the form selector, either of the rulers, or in an empty area of the form
and select Form Properties from the pop-up menu or by pressing F4 while the form
is in Design or Layout view.

 ON THE WEB

540

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 540

FIGURE 18.10

Using the form selector to display the form’s Property Sheet.

Property Sheet

Form selector

By default, the form’s Property Sheet appears docked to the right side of the Access win-
dow. Because the Property Sheet is a window, it can be undocked, moved, and resized. In
Figure 18.10, the Property Sheet has been undocked and dragged to a position overlying
frmProducts. Notice that the Property Sheet window doesn’t have Maximize or Minimize
buttons, sorting capabilities, or searching capabilities.

 Chapter 17 has more information on working with the Property Sheet.

Changing the title bar text with the Caption property
Normally, a form’s title bar shows the name of the form after it’s saved. The form’s Caption
property specifi es the text displayed in the title bar when the form is in Form view. Follow
these steps to change the title bar text:

 1. Click the form selector to make sure the form itself is selected.

 2. Click the Property Sheet button in the Design tab’s Tools group, or press F4 to
open the Property Sheet.

 3. Click the Caption property in the Property Sheet and enter Products in the
property’s text box, as shown in Figure 18.11.

541

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 541

18

FIGURE 18.11

Change the Caption property in the form’s Property Sheet.

Selected object

Caption property Caption property value

 4. Click any other property or press Enter to move off of the Caption property.

 5. Switch to Form view to see the form’s new title bar text. The caption you enter
in the form’s properties overrides the name of the saved form.

Obviously, using a property to change a form’s caption is a trivial exercise. This exercise is designed simply to show

you how easily you manipulate a form’s appearance by changing its properties. As you work your way through this

book, you’ll encounter hundreds of examples of using the design tools provided by Access to enhance your applica-

tion and make them more useful to your users.

Creating a bound form
A bound form is directly connected to a data source, such as a table or query. Bound forms
usually automatically update data in the bound data source when the user moves to a new
record in the form.

542

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 542

To create a bound form, you must specify a data source in the form’s RecordSource property.
In Figure 18.11, the Data tab of the Property Sheet contains the properties controlling what
and how data is displayed on the form. Although not shown here, the Record Source prop-
erty is at the very top of the Property Sheet’s Data tab.

The data source can be one of three choices:

 ■ Table: The name of a table in the current database fi le. The table can be a local
table (stored in the database itself) or can be linked to another Access database or
an external data source such as SQL Server.

 ■ Query: The name of a query that selects data from one or more database tables.

 ■ SQL Statement: A SQL SELECT statement that selects data from a table or query.

When a form is unbound—the Record Source property is blank and the data is obtained
with VBA code—you can’t have bound controls on the form. (Bound controls have their
Control Source property set to a fi eld in a table.)

 For more information on adding bound controls with the Field List, see Chapter 17.

Specifying how to view the form
Access uses several properties to determine how a form is viewed. The Default View
property determines how the data is displayed when the form is initially opened:

 ■ Single Form: Displays one record at a time. Single Form is the default and displays
one record per form page, regardless of the form’s size.

 ■ Continuous Forms: Shows more than one record at a time. Continuous Forms tells
Access to display as many detail records as will fi t onscreen. Figure 18.12 shows a
continuous form displaying fi ve records.

 ■ Datasheet: Row and column view like a spreadsheet or the standard query
Datasheet view.

 ■ Split Form: Provides two views of the data at the same time, letting you select a
record from a datasheet in the upper section and edit the information in the lower
section of the split form.

There are three separate properties to allow the developer to determine if the user can
change the default view. These include Allow Form View, Allow Datasheet View, and Allow
Layout View. The default setting is Yes for Allow Form View and Allow Layout View and

543

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 543

18

No for Allow Datasheet View. If you set the Allow Datasheet View property to Yes, the
Datasheet view commands (in the Views group of the Ribbon, the form’s View Shortcuts,
and right-click pop-up menu) will be available and the data can be viewed as a datasheet. If
you set the Allow Form View property to No, the Form view commands won’t be available.

Removing the Record Selector
The Record Selectors property determines whether the Record Selector (the vertical bar
shown in Figure 18.12 on the left side of a form) is displayed. The Record Selector is impor-
tant in multiple-record forms or datasheets because it points to the current record. A right
arrow in the Record Selector indicates the current record, but changes to a pencil icon when
the record is being edited. Though the Record Selector is important for datasheets, you
probably won’t want it for a single record form. To remove the Record Selector, change the
form’s Record Selectors property to No.

FIGURE 18.12

The Continuous Forms setting of the Default view property shows multiple records at once.

Record selector

Pencil icon

Looking at other form properties
Tables 18.3 through 18.5 list the most commonly used form properties and offer a brief
description of each. You’ll learn more about most of these properties when they’re used in
examples in this chapter and other chapters throughout this book.

544

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 544

TABLE 18.3 Form Format Properties

Property Description Options

Caption Text that is displayed in the
form’s title bar

Up to 2,048 characters

Default View Determines the initial view
when the form is opened

Single Form: One record per page
(default)

Continuous Forms: As many records
per page as will fi t

Datasheet: Row and column view

Split Form: Displays a datasheet in
the upper portion and a form in the
lower portion

Allow Form View Form view allowed Yes/No

Allow Datasheet View Datasheet view allowed Yes/No

Allow Layout View Layout view allowed Yes/No

Scroll Bars Determines whether any
scroll bars are displayed

Neither: No scroll bars are displayed

Horizontal Only: Displays only a hori-
zontal scroll bar

Vertical Only: Displays only a vertical
scroll bar

Both: Displays both horizontal and
vertical scroll bars

Record Selectors Determines whether the
Record Selector is
displayed

Yes/No

Navigation Buttons Determines whether navi-
gation buttons are visible

Yes/No

Dividing Lines Determines whether lines
between form sections are
visible

Yes/No

Auto Resize Automatically resizes form
to display a complete
record

Yes/No

Auto Center Centers form onscreen
when it’s opened

Yes/No

545

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 545

18

Border Style Determines the form’s
border style

None: No border or border elements
(scroll bars, navigation buttons)

Thin: Thin border, not resizable

Sizable: Normal form settings

Dialog: Thick border, title bar only,
cannot be sized; use for dialog boxes

Control Box Determines whether
control menu (Restore,
Move, and Size) is available

Yes/No

Min Max Buttons Specifi es whether the
Min and Max buttons
appear in the form’s title
bar

None: No buttons displayed in
upper-right corner of form

Min Enabled: Displays only Minimize
button

Max Enabled: Displays only
Maximize button

Both Enabled: Displays Minimize and
Maximize buttons

Close Button Determines whether to
display Close button in
upper-right corner and a
close menu item on the
control menu

Yes/No

Width Displays the value of the
width of the form. Width
can be entered or Access
sets it as you adjust the
width of the form.

A number from 0 to 22 inches
(55.87 cm)

Picture Displays the name of the
fi le used as the background
of the entire form

Any valid image fi le name

Picture Type Determines whether the
form’s picture is embed-
ded or linked

Embedded: Picture is embedded in
the form and becomes a part of the
form

Linked: Picture is linked to the form;
Access stores the location of the pic-
ture and retrieves it every time the
form is opened

Shared: Picture is stored by Access
and is available to other objects in
the database

Continues

546

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 546

Property Description Options

Picture Size Mode Determines how the form’s
picture is displayed

Clip: Displays the picture at its actual
size

Stretch: Fits picture to form size
(nonproportional)

Zoom: Fits picture to form size
(proportional), which may result in
the picture not fi tting in one dimen-
sion (height or width)

Stretch Horizontal: Fits picture to
width of form, ignoring height
dimension

Stretch Vertical: Fits picture to height
of form, ignoring width dimension

Picture Alignment Determines the form’s
picture alignment

Top Left: Displays the picture in the
top-left corner of the form

Top Right: Displays the picture in the
top-right corner of the form

Center (default): Centers the picture

Bottom Left: Displays the picture in
the bottom-left corner of the form

Bottom Right: Displays the picture in
the bottom-right corner of the form

Form Center: Centers the picture
horizontally and vertically

Picture Tiling Used when you want to
overlay multiple copies of a
small bitmap (for example,
a single brick can become
a wall)

Yes/No

Grid X Displays setting for number
of points per inch when X
grid is displayed

An number from 1 to 64

Grid Y Displays setting for number
of points per inch when Y
grid is displayed

A number from 1 to 64

Layout for Print Determines whether form
uses screen fonts or printer
fonts

Yes: Printer Fonts

No: Screen Fonts

TABLE 18.3 (continued)

547

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 547

18

Sub-datasheet Height Determines the height of a
sub-datasheet when
expanded

A number from 0 to 22 inches
(55.87 cm)

Sub-datasheet
Expanded

Determines the saved state
of all sub-datasheets in a
table or query

Yes: The saved state of sub-
datasheets is expanded.

No: The saved state of sub-
datasheets is closed.

Palette Source The palette for a form or
report

(Default): Indicates the default
Access color palette

You can also specify other Windows
palette fi les (PAL), ICO, BMP, DB, and
WMF fi les.

Orientation Determines view
orientation

Right-to-Left: Appearance and func-
tionality move from right to left.

Left-to-Right: Appearance and func-
tionality move from left to right.

Moveable Determines whether the
form can be moved

Yes/No

Split Form Orientation Determines the look of a
form in Split Form view

Datasheet on Top: Datasheet
appears at the top of the form.

Datasheet on Bottom: Datasheet
appears at the bottom of the form.

Datasheet on Left: Datasheet
appears to the left of the form.

Datasheet on Right: Datasheet
appears to the right of the form.

Split Form Datasheet Determines whether data
can be edited in the data-
sheet of a Split Form

Allow Edits: Edits are allowed.

Read Only: Data is read-only and
cannot be changed.

Split Form Splitter Bar Determines whether
there’s a splitter bar on a
Split Form

Yes/No

Save Splitter Bar
Position

Determines whether the
position of the Splitter Bar
should be saved

Yes/No

Split Form Size Size of the form part of the
Split Form

Auto to let Access size the form or a
number to set the actual size

Continues

548

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 548

Property Description Options

Split Form Printing Determines which section
of a Split Form to print

Form Only: Prints the form portion

Datasheet Only: Prints the datasheet
section

Navigation Caption Overrides the word Record
in the form’s navigation
buttons

Up to 255 characters

TABLE 18.4 Form Data Properties

Property Description Options

Record Source Specifi es the source of data dis-
played on the form

Unbound: Blank

Bound: The name of a table,
query, or a SQL statement

Filter Used to specify a subset of records
to be displayed when a fi lter is
applied to a form; can be set in the
form properties, with a macro, or
through VBA

Any string that is a valid SQL
WHERE clause without the WHERE
keyword

Filter on Load Applies fi lter at form/report startup Yes/No

Order By Specifi es the fi eld(s) used to order
the data in the view

Any string that is a valid SQL
ORDER BY clause without the
ORDER BY keywords

Order By on Load Applies sort at form/report startup Yes/No

Allow Filters Determines whether a user will be
able to display a fi ltered form

Yes/No

Allow Edits Determines whether a user will be
able to edit data, making the form
editable or read only

Yes/No

Allow Deletions Determines whether a user will be
able to delete records

Yes/No

Allow Additions Determines whether a user will be
able to add records

Yes/No

Data Entry Determines whether form opens to
a new blank record, not showing any
saved records

Yes/No

TABLE 18.3 (continued)

549

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 549

18

Recordset Type Used to determine whether
multi-table forms can be updated

Dynaset: Only default table
fi eld controls can be edited.

Dynaset (Inconsistent Updates):
All tables and fi elds are
editable.

Snapshot: No fi elds are editable
(same as read-only).

Record Locks Used to determine default multiuser
record locking on bound forms

No Locks: Locks record only as
it’s saved

All Records: Locks entire form’s
records while using the form

Edited Record: Locks only
current record during an edit

Fetch Defaults Determines whether default values
should be retrieved.

Yes/No

TABLE 18.5 Form “Other” Properties

Property Description Option Defi nition

Pop Up Form is a pop-up that fl oats above
all other objects.

Yes/No

Modal User must close the form before
doing anything else; disables other
windows; when Pop Up set to Yes,
Modal disables menus and toolbar,
creating a dialog box.

Yes/No

Cycle Determines how Tab works in the
last fi eld of a record

All Records: Tabbing from the last
fi eld of a record moves to the next
record.

Current Record: Tabbing from the
last fi eld of a record moves to the
fi rst fi eld of that record.

Current Page: Tabbing from the last
fi eld of a record moves to the fi rst
fi eld of the current page.

Ribbon Name Name of custom Ribbon to apply
on open

A valid Ribbon name (See
Chapter 30)

Continues

550

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 550

Property Description Option Defi nition

Shortcut Menu Determines whether shortcut
(right-click) menus are available

Yes/No

Shortcut Menu
Bar

Specifi es the name of an alternate
shortcut menu bar

A valid menu bar name

Fast Laser
Printing

Prints rules instead of lines and
rectangles

Yes/No

Tag Allows you to store extra informa-
tion about your form

A string up to 2048 characters long

Has Module Allows you to show if your form has
a class module; setting this prop-
erty to No removes the VBA code
module attached to the form.

Yes/No

Use Default
Paper Size

Uses the default paper size when
printing

Yes/No

Adding a Form Header or Footer
Although the form’s Detail section usually contains the majority of the controls that
display data, there are other sections in a form that you can add:

 ■ Form header: Displayed at the top of each page when viewed and at the top when
the form is printed

 ■ Form footer: Displayed at the bottom of each page when viewed and at the bottom
of the form when the form is printed

The form header and footer remain on the screen, while any controls in the Detail section
can scroll up and down.

You select the header and footer options in the Header/Footer group on the Design tab of
the Ribbon (with the form open in Design view, of course).

Working with Section Properties
The Form properties discussed above apply to the entire form. Each section of the form has
its own set of properties that affect the appearance and behavior of the section. The three
form sections—Detail, Form Header, and Form Footer—share the same properties, with a
few exceptions.

TABLE 18.5 (continued)

551

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 551

18

The Visible property
The Visible property is a Yes/No property that determines if the section is shown or
hidden. All three sections’ visible properties are set to Yes by default. The Detail sec-
tion should remain visible in all but the strangest forms because that’s where most of
the controls will be. The Form Header and Form Footer sections may be hidden if they’re
not needed. Generally, the form header is used to display a title and possibly an image.
Showing the form header on a continuous form helps the user stay oriented while using
the form. The form footer is useful for showing summary or status information, like the
current date and time.

The Height property
The Height property determines how tall the section is. The most common way to change
the Height property is to grab the edge of the section with your mouse and drag up or
down to decrease or increase the height. With the Property Sheet visible, you can see the
Height property value change when you drag the edge and release it in its new location. If
you want a specifi c height, change the Height property value instead of dragging the edge
of the section.

The Back Color property
The Back Color property determines the color of the background of the controls. You can
change the Back Color property by using the drop-down control on the Property Sheet.
Access gives you many different built-in colors to choose from.

There’s also a build button on the Property Sheet that displays the familiar color palette
including Theme Colors and Standard Colors. The More Colors button at the bottom of the
color palette allows you to specify any color you want.

Alternatively, you can type in the color you want. The Back Color property accepts a six-
digit hexadecimal number. Hexadecimal consists of the numbers 0 through 9 and the let-
ters A through F (16 choices in all). You precede the hexadecimal number with a pound sign
(#), such as #000000 for black and #FFFFFF for white. This method of setting Back Color is
useful if you’re trying to match a color and you already know that color’s hexadecimal code.

Many developers prefer to keep the Back Color property of the Detail section to plain white.
It’s important that the color of the Detail section doesn’t distract the user from the purpose
of the form. However, a conservative Back Color can add depth to your form and provide a
consistent brand across all your forms.

The Special Effect property
The Special Effect property can be set to Flat, Raised, or Sunken. Flat is the default value,
and Raised and Sunken provide a beveled effect at the edges of the section.

552

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 552

The Display When property
The Display When property can be set to Always, Screen Only, and Print Only. This allows
you to hide or show a section when printing. You may want to show the Form Header and
Form Footer sections on the screen, but only get the Detail section if the form is printed.
You can achieve this by setting the Display When properties of the Form Header and Form
Footer to Screen Only and then by leaving the Detail section set to the default, Always.

The printing properties
Most of the remaining section properties, such as Auto Height, Can Grow, and Can Shrink,
are more applicable to reports than forms. They allow you to dynamically control the height
of sections based on the data those sections contain. They have no effect on how your form
displays on the screen and are rarely used.

Changing the Layout
In this section, you’ll learn how to change a form’s layout using Layout view. You’ll add, move,
and resize controls, as well as change a few other characteristics while viewing the form’s data.

With a form open in Layout view, select the Arrange tab in the Form Design Tools area of
the Ribbon. The Arrange tab includes controls for selecting a form’s initial layout, includ-
ing the default positions of controls on the form. The Arrange tab is context sensitive. The
view you see in Figure 18.13 is the result of selecting a number of controls on the form. A
somewhat different view may be seen if other controls or form sections (header, footer, and
so on) are selected.

FIGURE 18.13

The Layout tab of the Ribbon for Layout view.

Changing a control’s properties
In previous versions of Access, you had to make changes to the form in Design view. In
Layout view, you can change these properties while looking at data instead of empty con-
trols. Click the Property Sheet command in the Form Layout Tools Design tab’s Tools group
to display the Property Sheet for the selected control.

553

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 553

18

 For more information on changing control properties with the Property Sheet, see Chapter 17.

Setting the tab order
You may notice that when you use the Tab key to move from control to control, the cursor
jumps around the screen. The route taken by the Tab key may seem strange, but that’s the
original order in which the controls were added to the form.

The tab order of the form is the order in which the focus moves from control to control as
you press Tab. The form’s default tab order is always the order in which the controls were
added to the form. Moving controls around on the form means you’ll need to change the
form’s tab order. Even though you may make heavy use of the mouse when designing your
forms, most data-entry people use the keyboard, rather than the mouse, to move from
control to control.

Select Tab Order from the Design tab’s Tools group when you’re in Design view to display the
Tab Order dialog box, shown in Figure 18.14. This dialog box shows the controls in the form
arranged in the current tab order. Controls such as labels, lines, and other non-data con-
trols don’t appear in the Tab Order dialog box.

FIGURE 18.14

The Tab Order dialog box.

554

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 554

The Tab Order dialog box lets you select one or more rows at a time. Multiple contiguous
rows are selected by clicking the fi rst control and dragging to select multiple rows. After
highlighting rows, the selected rows can be dragged to their new positions in the tab order.

The Tab Order dialog box has several buttons at the bottom. Auto Order places the controls
in order from left to right and from top to bottom, according to their position in the
form. This button is a good starting place when the tab order is very disorganized. The OK
button applies the changes to the form, while the Cancel button closes the dialog box with-
out changing the tab order.

Each control has two properties related to the Tab Order dialog box. The Tab Stop property
determines whether pressing the Tab key lands you on the control. The default is Yes.
Changing the Tab Stop property to No removes the control from the tab order. When you set
the tab order, you’re setting the Tab Index property values. Moving the fi elds around in the
Tab Order dialog box changes the Tab Index properties of those (and other) controls.

Modifying the format of text in a control
To modify the formatting of text within a control, select the control by clicking it, and
then select a formatting style to apply to the control. The Format tab of the Ribbon (shown
in Figure 18.15) contains additional commands for changing the format of a control.

FIGURE 18.15

The Format tab of the Ribbon for Layout view.

To change the fonts for the Category control, make sure you’re in Layout view, and then fol-
low these steps:

 1. Select the Category Text Box control by clicking on it.

 2. Change the Font Size to 14, and then click the Bold button in the Format tab’s
Font group. The control may not automatically resize when changing certain font
properties. If you see only a portion of the text box, the control may require
resizing to display all the text.

Using the Field List to add controls
The form’s Field List displays a list of fi elds from the table or query on which the form is
based. Use the Add Existing Fields button on the Design tab to open it if the Field List

555

Chapter 18: Working with Data on Access Forms

c18.indd 09/30/2015 Page 555

18

is not currently visible. Drag fi elds from the Field List to the form’s surface to add bound
controls to the form. Select and drag them one at a time, or select multiple fi elds by using
the Ctrl key or Shift key. The Field List in Layout view works the same as the Field List in
Design view, which is described in detail in Chapter 17.

Click the Add Existing Fields command in the Design tab’s Controls group to display the
Field List, shown in Figure 18.16. By default, the Field List appears docked on the right of
the Access window. This window is movable and resizable and displays a vertical scroll bar
if it contains more fi elds than can fi t in the window.

FIGURE 18.16

Adding fi elds from the Field List in a form’s Layout view.

Access adds a control that’s appropriate for the data type of the bound fi eld. For example,
dragging a text fi eld to the form’s surface adds a text box, while an OLE data fi eld adds a
Bound OLE Object control.

To add fi elds from the Field List to a new form, follow these steps:

 1. Select the Create tab on the Ribbon, and then select the Blank Form command
in the Form group to open a new form in Layout view. The new form is not
bound to any data source.

 2. If the Field List isn’t displayed, select the Design tab of the Ribbon, and then
select Add Existing Fields from the Tools group.

 3. Double click the ProductID and Cost fields in the Field List to add them to
the form.

556

Part V: Working with Access Forms and Reports

c18.indd 09/30/2015 Page 556

You can select noncontiguous fi elds in the list by clicking each fi eld while holding down the Ctrl key. The selected

fi elds can be dragged (as part of the group) to the form’s design surface. However, this technique does not work until

the form is already bound to a data source—that is, until at least one fi eld has been added.

Converting a Form to a Report
 To save a form as a report, open the form in Design view and choose File ➪ Save As. The
entire form is saved as the report. If the form has headers or footers, these are used as the
report’s Header and Footer sections. If the form has page headers or page footers, these are
used as the report’s Page Header and Page Footer sections. You can now use the report in
Design view, adding groups and other features without having to re-create general layout
all over again. You’ll learn more about reports in later chapters .

557

c19.indd 10/05/2015 Page 557

 CHAP T ER

19
Working with Form Controls

IN THIS CHAPTER

Setting properties for Access forms and controls

Creating a calculated control

Using subforms in Access

Reviewing basic techniques for designing forms

Learning advanced Access forms techniques

Working with Tab controls in Access forms

Collecting information with dialog boxes

Creating a form from scratch

U
ser interface is a term you hear frequently in discussions about computer software. In virtu-
ally all applications built with Microsoft Access, the user interface consists of a series of
Access forms. If you intend to develop successful Access applications, you need to under-

stand Access forms inside and out.

This chapter helps you improve your understanding of forms. First, we show you some common
controls and their properties. These controls constitute the building blocks out of which forms are
constructed. We also show you some powerful ways to take advantage of subforms. We devote one
section of the chapter to presenting a grab bag of forms-related programming techniques that will
help you create forms that elicit the best performance from Access and your computer. Then we
present a step-by-step tutorial for creating a form from scratch.

This chapter uses examples in the Chapter19.accdb database and other fi les available for download on this

book’s website.

ON THE WEB

558

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 558

Setting Control Properties
The building blocks of Access forms are known as controls. The Controls group on the Design
tab of the Ribbon contains more than a dozen different types of controls from which you
can build forms, including labels, text boxes, option groups, option buttons, toggle buttons,
check boxes, combo boxes, list boxes, and other controls. This chapter doesn’t discuss every
type of Access form control in detail, but it does document the most commonly used con-
trols found in Access applications.

Each control on an Access form has a set of properties that determines the control’s appear-
ance and behavior. In Design view, you manipulate a control’s property settings through its
Property Sheet. To display the Property Sheet, do one of the following:

 ■ Right-click the object and select Properties from the pop-up menu.

 ■ Select the object and click the Properties button on the Ribbon.

 ■ Press F4 with the object selected.

Once the Property Sheet is open, clicking any other control in the form displays the selected
control’s property settings. Figure 19.1 shows the Property Sheet for the command button
named cmdNew on the Customers form (frmCustomers) in the Chapter19.accdb application.

FIGURE 19.1

The Property Sheet for the cmdNew command button.

559

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 559

19

The form itself also has its own set of properties. If you display the Property Sheet in Design
view before selecting a specifi c control, Access lists the form’s properties in the Property
Sheet, as indicated by the caption “Form” in the Property Sheet’s title bar (see Figure 19.2). To
display the form’s properties in the Property Sheet after fi rst displaying a control’s properties,
click a completely blank area in the form design window (outside the form’s defi ned border).

FIGURE 19.2

The Property Sheet for the Customers form.

Customizing default properties
Whenever you create a control from the Ribbon, the control is created with a default set of
property values. This may seem obvious, but what you may not know is that you can set
many of these default values yourself. For example, if you want all list boxes in your form
to be fl at rather than sunken, it’s more effi cient to change the default SpecialEffect prop-
erty to Flat before you design the form, instead of changing the SpecialEffect property for
every list box individually.

To set control defaults, select a tool in the toolbox and then set properties in the Property
Sheet without adding the control to the form. Notice that the title in the Property Sheet
is “Selection type: Default <ControlType>.” As you set the control’s properties, you’re actu-
ally setting the default properties for that type of control for the current form. Instead of

560

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 560

adding the control to the form, select another control (such as the Select control in the
upper-right corner of the Controls group) to “lock down” the default settings. Then, when
you reselect the control you want, you’ll see that the control’s default properties have been
set the way you wanted. When you save the form, the property defaults you’ve set for the
form’s controls are saved along with the form.

Looking at common controls and properties
In this section, we describe the most common controls needed to build an Access applica-
tion and the properties that control their appearance and behavior. We don’t list every
control or property, but the controls and properties described here will give you a solid
understanding of form development, and many of the properties are shared by other con-
trols. Many properties work together to achieve a specifi c result and the Property Sheet
lists these related properties together.

The Text Box control

The Text Box control is the workhorse of controls when it comes to displaying data. The
data in this control is always a String data type, even when it looks like a number or a
date. The most important properties of the Text Box control determine how data is entered
and displayed.

The Format property

The Format property determines the format of the data displayed. The choices available
under Format are determined by the data type of the underlying fi eld. For instance, Text
Boxes bound to date fi elds show date formats, and Text Boxes bound to numeric fi elds show
numeric formats. Unbound Text Boxes show all available formats.

When an appropriate Format is set, the Decimal Places property controls how many digits
are displayed to the right of the decimal point.

Properties that control appearance

The Back Style and Back Color properties control how the background of the Text Box is
displayed. Setting Back Style to Transparent allows anything underneath the control to
show through. A Back Style of Normal colors the background according to the Back Color
property.

The Border Style, Border Width, and Special Effect properties control how the edges of the
Text Box appear. Set Border Style to Transparent to show no border, or choose one of the
other combinations of solid lines, dashes, and dots. When Border Style is set to something
other than Transparent, the Border Width property controls the thickness of the border.
There are several options for Special Effect that give your Text Boxes a more polished
appearance.

561

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 561

19

Properties that control data appearance

Font Name and Font Size control the font of the data in the Text Box. While these proper-
ties can be set in the Property Sheet, they’re more often set using the Format tab of the
Ribbon.

The Text Align property can be set to General, Left, Center, Right, or Distribute. The
General setting determines the most appropriate alignment for the data type displayed.
Distribute attempts to fi ll the entire width of the Text Box with the data by increasing the
spacing between characters.

The Font Underline and Font Italic properties are Yes/No options that determine if the data
is shown with an underline or in an italicized font, respectively. Bold is the most common
setting for the Font Weight property, but several other options allow a great deal of control
of the boldness of the data.

The Fore Color property controls the color of the font. It’s not simply a color name, how-
ever. It’s actually a number that represents the value of the text color in the control. The
easiest way to set this property is to use the Font Color command on the Format tab of
the Ribbon.

Data entry properties

The Text Format property can be set to Plain Text or Rich Text. Rich Text is a format that
allows you to apply formatting to the characters during data entry. When you enter data in
a Text Box whose Text Format property is set to Rich Text, certain controls on the Ribbon
are enabled that are disabled for Plain Text. The data is stored with HTML tags that defi ne
the formatting that is applied. If you set a bound control’s Text Format property to Rich
Text, make sure the underlying fi eld is also Rich Text.

The Input Mask property can be set to limit how data is entered. There are several built-
in input masks, such as Phone Number and Social Security Number, that can be used to
encourage the user to enter data correctly. You can also create your own input masks—for
instance, if your company uses part numbers that are in a well-defi ned format.

The Default Value property is used to populate a Text Box with a defi ned value when a new
record is created. In addition to hard-coded values, calculations can be used to create a dif-
ferent Default Value depending on the values of other controls.

The Validation Rule and Validation Text properties can be used to ensure that the user
has entered data that is appropriate for the Text Box. For instance, you may want to limit
the entry of a date into a text box to only a certain range of dates. The Validation Rule
property can be set to show a message when data falls outside a range. If a rule is broken,
Validation Text is used to give the user more information about what is expected in the
Text Box.

562

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 562

The Command Button control

Just as the Text Box control is the workhorse of data entry, the Command Button control is
the go-to control for user actions. Command Buttons are used to run macros or VBA code.
Common actions associated with the Command Button are showing another form, navigat-
ing to another record, or automating another Offi ce application.

Properties that control appearance

The Command Button control has many of the same appearance-related properties as the
Text Box. And they work in much the same way. In addition, the Command Button has the
Picture Type and Picture properties that allow you to specify an image to be shown as a
button.

The Hover Color, Hover Fore Color, Pressed Color, and Pressed Fore Color properties control
the appearance of the Command Button when the user hovers over it or when the user
clicks it. They can be used to provide a visual indicator of where the user’s mouse is and
give the user confi dence that the correct button was pressed.

Default action properties

The Default property is a Yes/No property. When set to Yes, the user can press Enter
 anywhere on the form and get the same effect as clicking the Command Button. A
Command Button with the Default property set to Yes is a useful to tool to speed data
entry on a form.

The Cancel property is also a Yes/No property and is closely related to the Default property.
When set to Yes, the user can press Esc anywhere on the form and get the same effect as
clicking the Command Button. Generally, a Command Button designated as Cancel should
perform an action consistent with cancelling the current operation or closing the form.

Only one Command Button can be designated as Default. Similarly, only one Command Button can be designated as

Cancel. Setting either of these properties to Yes will set the property for all other Command Buttons on the form to No.

The Combo Box and List Box controls

The Combo Box and List Box controls are used to display a list to the user to aid in data
entry. The List Box control shows as many items as the size of the control will allow while
the Combo Box must be clicked to display the list. The Combo Box gets its name because it
is intended to be a combination of a Text Box and a List Box. The user can either enter text
directly into the Text Box part of a Combo Box or select an item from the List Box portion.
Properties unique to Combo Boxes and List Boxes control how the data is displayed and
what actions the user can take with the list.

563

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 563

19

List content properties

The Row Source property determines what data is displayed in the list. The list data gen-
erally comes from a Table, Query, or SQL statement. It can also be a list of values typed
directly into Row Source at design time or assigned at run time. The Row Source Type prop-
erty determines what options are available for the Row Source property. When Row Source
Type is set to Value List, the form designer can type a list of values into Row Source.
When Row Source Type is set to Table/Query, Row Source can be a table name, query
name, or SQL statement. The third option for Row Source Type is Field List. When Row
Source Type is set to Field List, Row Source can be a table name, query name, or SQL
statement, just like when it’s set to Table/Query. The difference is that the control will
display a list of the fi eld names rather than the values.

The Bound Column property determines the “value” of the control. List Boxes and Combo
Boxes can show more than one column of data in the list. When two or more columns are
shown, Bound Column determines which column’s data will be stored in the fi eld for bound
controls or saved for later use in unbound controls.

List display properties

The Column Count property determines how many columns exist (but not necessarily dis-
played) in the list. If this property’s value does not equal the number of columns in the
data (defi ned by the Row Source property) some data may not be shown or blank columns
may be shown. The Column Widths property holds a semicolon-delimited list of values that
represent the width of each column. If the property is left blank or if fewer column widths
are entered than specifi ed in Column Count, Access guesses how wide to make the unspeci-
fi ed columns. The Column Heads property is a Yes/No property that determines if column
headings are displayed at the top of the list.

The List Rows property is a number that specifi es how many list items to show. If there
are more list items than specifi ed in List Rows, a vertical scroll bar appears for the user to
scroll down to see more list items. The List Width property determines how wide the list is.
You can use a wide list with a relatively narrow Combo Box as a very effi cient use of space
on your form. List Rows and List Width are not properties associated with the List Box con-
trol. The List Box control shows as many rows as will fi t and is as wide as the control itself.

List selection properties

For Combo Boxes, the Validation Rule, Validation Text, and Input mask properties work the
same as they do for Text Boxes. List Boxes do not have these properties because the user is
restricted to selecting items in the list.

The Limit to List property of the Combo Box control is a Yes/No property. A setting of Yes
forces the user to type or select only values that are in the list, making the Combo Box
work the same as a List Box. A setting of No allows the user to either select an item from
the list or type an unlisted value in the Combo Box.

564

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 564

The Multi Select property that applies to List Boxes determines how the user can select
multiple items in the List Box. A value of None means that multiple selection is not
allowed. A value of Simple means that items are selected or deselected one at a time by
clicking on them. A value of Extended means that items can be selected one at a time by
holding down the Ctrl key and clicking the time or in blocks by holding down the Shift key
and clicking the last item in the block.

The Check Box and Toggle Button controls

The Check Box and Toggle Button controls are most commonly bound to Yes/No fi elds. A
check mark in a Check Box control and a depressed Toggle Button are Yes values. An empty
Check Box and a raised Toggle Button are No values. The Triple State property is unique
to these two controls. When Triple State is set to Yes, the Check Box or Toggle Button can
represent three values: Yes, No, and Null. Triple State is useful when you want to track
whether the user has positively set the fi eld to Yes or No.

The Option Group control

An Option Group isn’t really a control at all. In fact, it’s a group of separate, but related,
controls. The group contains a Frame control and one or more Option Button controls. When
you create an Option Group, you also have the option of using Check Box controls or Toggle
Button controls instead of Option Buttons. Check Boxes and Toggle Buttons that are part of
an Option Group behave differently than the same controls that are not part of an Option
Group. Controls that are part of an Option Group are mutually exclusive—that is, selecting
one of the controls automatically deselects the others in the group.

The Frame Control determines the value that is stored in the database. It has a Control
Source property that identifi es which fi eld it’s bound to. It also has a Default Value property
that works the same as the Default Value property in other types of controls. The option
controls within the Frame don’t have these properties.

The option controls have an Option Value property. This property determines the actual
value that is inherited by the Frame control and eventually stored in a fi eld or saved for
future use. By default, Access assigns the numbers 1, 2, 3, and so on to the option controls
in the order in which they appear in the Frame.

You can change the Option Value property, but be careful not to assign the same number to two different controls.

The Web Browser control

The Web Browser control is a mini web browser on your form. You can use it to display data
that the user completing the form might fi nd useful, like weather or stock prices. The key
property of the Web Browser control is the Control Source property. Control Source takes
a formula of sorts. A proper Control Source value is an equal sign followed by the URL of

565

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 565

19

a website enclosed in double quotes. For example, ="http://www.wiley.com" will dis-
play that web page in the Web Browser control. Generally, the Control Source property is
changed with VBA based on other data entered in the form.

Creating a Calculated Control
Unbound controls may use an expression as their Control Source property. As the form loads,
Access evaluates the expression and populates the control with the value returned by the
expression. The following example demonstrates creating an unbound calculated control:

 1. Select the Create tab of the Ribbon, and then click the Form Design command
in the Forms group. A new form appears in Design view.

 2. If the Field List is not visible, click the Add Existing Fields command on the
Form Design Tools Design tab and click the Show all tables link.

 3. From tblProducts, drag Cost and RetailPrice from the Field List onto the form’s
surface.

 4. Click Text Box in the Controls group, and draw a new text box on the form.

 5. Set the Name property to txtCalculatedProfi t and set its Control Source property
to =[RetailPrice]-[Cost].

 7. Change the Format property to Currency and its Decimal Places to Auto.

 8. Change the label’s Caption property to Net Profi t:.

 9. Switch to Form view to test the expression. Your form should look like Figure 19.3.
txtCalculatedProfi t shows the difference between the RetailPrice and Cost.

FIGURE 19.3

Creating a calculated control.

Working with Subforms
Subforms are indispensable for displaying information from two different tables or queries
on the screen together. Typically, subforms are used where the main form’s record source
has a one-to-many relationship with the subform’s record source—that is, many records in
the subform are associated with one record in the main form.

http://www.wiley.com

566

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 566

Access uses the LinkMasterFields and LinkChildFields properties of the Subform control
to choose the records in the subform that are related to each record in the main form.
Whenever a value in the main form’s link fi eld changes, Access automatically requeries
the subform.

When creating a subform, you might want to display subform aggregate information
in the master form. For example, you might want to display the count of the records in
the subform somewhere on your main form. For an example of this technique, see the
txtItemCount control in frmCustomerSales in Chapter19.accdb. In this case, the Control
Source expression in the txtItemCount control is:

="(" & [subfPurchases].[Form]![txtItemCount] & " items)"

(Note that the equal sign needs to be included.) The result of this expression is shown in
Figure 19.4.

FIGURE 19.4

Aggregate data from a subform can be displayed on the main form.

Before you can put aggregate data in the master form, its value must be found in the sub-
form. Place a text box wherever you want in the subform, and set its Visible property to No
(False) so that it’s hidden. Put an aggregate expression, such as = Count([ProductID]),
into the Control Source property of the hidden control.

567

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 567

19

In the main form, insert a new text box with Control Source set to the following value:

=[Subform1].Form![Name-of-Aggregate-Control]

where Subform1 is the name of the control on the main form that contains the embedded sub-
form and Name-of-Aggregate-Control is the name of the control on the subform that contains
the aggregate data. The name of the control, Subform1 in this example, is not necessarily the
name of the Form object that the control contains. When you add .Form to the name of the
control, you refer to the underlying form and you don’t need to know its object name.

The control on the main form updates each time you change its value in the subform.

Form Design Tips
Following is a grab bag of form design tips that you might fi nd handy. We hope they inspire
you to come up with many more on your own!

Using the Tab Stop property
From time to time, you might place a control on a form that is intended to trigger a fairly
drastic result, such as deleting a record, or printing a long report. If you want to reduce the
risk that the user might activate this control by accident, you might want to make use of
the Tab Stop property, which specifi es whether you can use the Tab key to move the focus
to the control.

For example, suppose you’ve placed a command button named cmdDelete on a form that
deletes the current record. You don’t want the user to click this button by mistake. Modify
the Tab Stop property of cmdDelete to No to remove the button from the form’s tab order
(the default is Yes). A user will have to explicitly click the button to activate it, and the
user won’t be able to accidentally choose it while entering data.

Tallying check boxes
If you ever need to count the number of True values in a Check Box control, consider using
the following expression:

Sum(Abs([CheckBoxControl]))

Abs converts every –1 to 1, and the Sum function adds them up. To count False values, use
the following expression:

Sum([CheckBoxControl] + 1)

Each True value (–1) is converted to 0 and each False value (0) is converted to 1 before
being summed.

568

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 568

Setting up combo boxes and list boxes
Combo boxes and list boxes are powerful tools in your form-building toolbox, but they can
be complicated to set up. When you build combo boxes and list boxes, it’s important to
keep in mind the distinction between Control Source (the table or query fi eld to and from
which the control saves and loads data) and Row Source (the source of the data displayed in
the list). Because combo and list boxes support multiple columns, they allow you to easily
relate data from another table without basing your form on a query that joins the tables.
This technique, which involves a bound Combo Box or List Box control that stores an ID
number but displays names in a list, is used in the Organization combo box in the form
named frmContacts_Northwind in Chapter19.accdb.

For example, suppose you’re creating a form to display information about your clients and
customers (your “contacts”), and you want to identify the organization with which these
contacts are associated. In a well-designed database, you store only an organization ID
number with each contact record, while you store the organization’s name and other infor-
mation in a separate table. You want your form to include a combo box that displays orga-
nization names and addresses in the list but stores organization ID numbers in the fi eld.
(For an example of this technique, see frmContacts_Northwind in Chapter19.accdb.)

To accomplish your design goal, create a multiple-column combo box. Set the Control Source
to the OrgID fi eld (the fi eld in the Contacts table that contains the organization ID number
for each contact person). Set the Row Source Type property of the combo box to Table/
Query. You could base the list on a table, but you want the list of names to be sorted;
instead, set the Row Source property to a query that includes OrgID numbers in the fi rst
fi eld, and organization names sorted ascending in the second fi eld. The best way to do this
is using the Query Builder for the Row Source property to create a SQL statement; alter-
natively, you can create and save a query to provide the list. In frmContacts_Northwind
example (the Organization combo box), the Row Source query is as follows:

SELECT Organizations.OrgID, Organizations.Name,
Organizations.AddressLine1, Organizations.AddressLine2,
Organizations.City, Organizations.State,
Organizations.ZipCode, Organizations.Country
FROM Organizations ORDER BY Organizations.Name

Because you’re interested in seeing all this data listed in the combo box, set the
ColumnCount property to 8. You hide the OrgID column in a minute, but you need it in the
combo box Row Source because it contains the data that’s saved by the control when a row
is selected by the user. This column is identifi ed by the combo box’s BoundColumn property
(set to 1 by default). The bound column containing ID numbers doesn’t have to be visible to
the user. The ColumnWidths property contains a semicolon-separated list of visible column
widths for the columns in the drop-down list. Access uses default algorithms to determine
the widths of any columns for which you don’t explicitly choose a width. If you choose a
width of 0 for any column, that column is effectively hidden from the user on the screen,

569

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 569

19

but it isn’t hidden from the rest of your forms, VBA code, or macros. In this case, you set
the property to the following:

0";1.4";1.2";0.7";0.7";0.3;0.5";0.3"

This indicates to Access that you want the fi rst column to be invisible and sets explicit col-
umn widths for the other columns.

The second column—in this case, the organization name—is the one against which the
user’s text input is matched. The fi rst visible column in the combo box is always used for
this purpose. Figure 19.5 shows the resulting drop-down list. Although this is a rather
extreme example of loading a combo box with data, it effectively illustrates the power of
the Access Combo Box control.

FIGURE 19.5

The drop-down list for the Organizations combo box.

When working with combo boxes, if you set the Limit to List property to Yes, the user is
required to choose from only the entries in the drop-down list. You can then construct an
event procedure for the control’s NotInList event to handle what should happen if a user
enters a value not in the list. You might want to open a form into which the user can enter
new information; or perhaps you want to display a message box that instructs the user
what procedure to follow to add data.

570

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 570

Tackling Advanced Forms Techniques
Access contains many powerful and exciting features in its forms design and user interface
capabilities. As you well know, the forms in your applications are the main component of
the user interface. To a large extent, a user’s perception of an application’s ease of use and
strength is determined by the attractiveness and effectiveness of its user interface. You’ll
be pleased to know that Microsoft has provided Access forms with signifi cant capabilities to
control the user interface. Many of these features have been in Access for a very long time
but haven’t been discovered by many developers.

Using the Page Number and Date/Time controls
Forms often include the current date and time. Many developers add this information to a
form or report with an unbound text box, and the Date() function to return this informa-
tion to the unbound text box. Access simplifi es this process with the Date and Time com-
mand on the Header/Footer group on the Design tab of the Ribbon (see Figure 19.6).

FIGURE 19.6

These commands simplify adding the date to forms and reports.

Figure 19.6 shows the Ribbon when a form is in Design view.

When the Date and Time command is selected, the Date and Time dialog box (shown in
Figure 19.7) appears, asking how you want the date and time formatted. After you make
your selections and click OK, Access adds a form header containing the date and time for-
matted as you requested. If you change your mind about how the date or time should be
formatted, you can always change the Format property of the text box added by this com-
mand. The date and time shown in the header refl ects when the form was opened, not
necessarily the current time.

The Header/Footer group includes other commands for adding a logo (virtually any image
fi le) and a title to the form header area. Using the Header/Footer controls in an applica-
tion gives all the forms a consistent appearance (see Figure 19.8, which is frmDialog in the
sample database).

571

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 571

19

FIGURE 19.7

Tell Access how you want the date to appear.

FIGURE 19.8

The header and footer controls provide a consistent look to your Access forms.

Using the Image control
A subtle and often overlooked performance issue in Access applications occurs when static
images are added to forms. Images are often added to Access forms as OLE objects, which
means that a certain amount of memory and disk space is required to maintain the image’s
connection to its parent application. This overhead is used even when the image is a com-
pany logo or other graphic that will not be changed or edited at run time.

Access simplifi es this process and provides a great deal more fl exibility with the Image
control. The Image control places an image frame onto a form or report but doesn’t burden
the image object with the overhead associated with OLE objects. The Image control accepts

572

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 572

virtually any type of image data type recognized by Windows (BMP, PCX, ICO, DIB, GIF,
WMF, JPG, PNG, TIF, and so on), and enables you to specify the path to the image fi le at run
time in its Picture property. The Image control also accepts image data stored in an Access
table, although it doesn’t provide the fl exibility of in-place editing.

Morphing a control
Surely one of the most frustrating problems when building Access forms is the need to
specify the control type when a control is added to a form. For example, consider the issues
involved when you add a list box to an Access form, specify the Control Source, Row Source
Type, Row Source, and other properties, and then discover there’s not enough room on the
form for the list box. In this case, it seems the only solution is to remove the list box, add
a combo box, and reset all the properties, even though the properties for the combo box are
identical for the list box you just removed.

In Access, you can change a control to any other compatible type. For example, a text box
can be changed to a label, list box, or combo box. Simply right-click the control and select
the Change To command from the shortcut menu to see the options. Figure 19.9 shows the
options for changing a Text Box control.

FIGURE 19.9

Access lets you change the type of a control without losing the properties you’ve already set.

573

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 573

19

The choices you see in the shortcut menu are specifi c for the type of control you’re chang-
ing. For example, an option button can be changed to a check box or toggle button but not
to a text box.

Using the Format Painter
Access includes a Format Painter that functions much like the same feature in Word. When
creating a form, you set the appearance of a control (its border; font; special effects, like
sunken or raised) and then click the Format Painter button on the Font group on the
Design tab of the Ribbon to copy the properties to a special internal buffer. When you click
another control of the same type, the appearance characteristics of the selected control are
transferred to the second control. In Figure 19.10, the format properties of one text box are
about to be “painted” onto the City text box. (The little paint brush adjacent to the mouse
pointer tells you that you’re in Paint mode.)

FIGURE 19.10

The Format Painter makes it easy to “paint” the appearance of a control onto other controls
on a form.

You can lock the Format Painter by double-clicking its button on the Ribbon. Note that not
all properties are painted onto the second control. The size, position, and data properties of
the control are not affected by the Format Painter; only the most basic formatting proper-
ties are infl uenced by the Format Painter.

574

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 574

Offering more end-user help
All Microsoft Offi ce programs feature tooltip help—those little notes that appear when you
hold the mouse cursor over a control or button. (Microsoft calls these prompts control tip help.)

You add tooltips to Access forms by adding the help text to the control’s ControlTip Text
property (see Figure 19.11). By default, the text in a tooltip doesn’t wrap, but you can add
a new line character by pressing Ctrl+Enter in the ControlTip Text property wherever you
want the break to appear.

FIGURE 19.11

Tooltips help make your applications easier to use.

In general, you should use tooltips consistently throughout an application. After your users
become accustomed to tooltips, they expect them on all but the most obvious controls.

Adding background pictures
Attractive forms are always valuable additions to Access applications. It’s diffi cult to add
color or graphics to forms without obscuring the data contained on the form. Access makes
it easy to add a graphic to the background of a form, much as a watermark might appear on
expensive bond paper. The picture can contain a company logo, text, or any other graphic
element. The picture is specifi ed by the form’s Picture property and can be embedded in
the form or linked to an external fi le. If the picture is linked, the graphic displayed on the
form changes anytime the external fi le is edited.

The picture can also be positioned at any of the form’s four corners or centered in the
middle of the form. Although the picture can be clipped, stretched, or zoomed to fi t the

575

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 575

19

dimensions of the form, you can’t modify the picture to make it smaller (other than editing
the image fi le, of course). Figure 19.12 shows a small background picture of an automobile
positioned in the upper-right corner of frmCustomerSales.

FIGURE 19.12

A small BMP fi le has been added to frmCustomerSales as the Picture property.

To add a picture to your form, open the form in Design view and show the Property Sheet.
If the Property Sheet is not already showing the form’s properties, choose Form from the
combo box. Click the builder button for the Picture property to choose which picture to
include on the form. Change the Picture Tiling, Picture Alignment, and Picture Size Mode
properties to display the picture in different ways.

You can even make controls on a form transparent so that the form’s background picture
shows through the controls (see Figure 19.13). In this case (frmEmployees_Background),
the Back Style property of each Label control is set to Transparent, letting the form’s back-
ground picture show through.

It’s easy to overdo the background picture added to Access forms, but, when carefully used,
background pictures can make forms easier for users to understand.

576

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 576

FIGURE 19.13

Transparent controls allow the background picture to show through.

Background pictures added to a form noticeably slow down the form’s appearance on the screen. Generally speak-

ing, you should use a background picture only when the benefi t provided by the picture outweighs the unavoidable

performance degradation caused by the picture’s presence.

Limiting the records shown on a form
Usually, the records that a form shows are determined by the Record Source property. To
show fewer records, change the underlying query or SQL statement. However, sometimes
you want to show a subset of records by default and still allow the user to see all the
records if she chooses.

With the Filter property of the form, you can defi ne a fi lter that limits the records shown.
For example, on a form based on order, you may want to show only orders that haven’t
shipped yet, but still allow the user to see any order. By setting the Filter property to
[Shipped Date] Is Null and setting the Filter On Load property to Yes, the form will
open fi ltered only to records with no Shipped Date. The status bar of the form indicates
that a fi lter is applied, as shown in Figure 19.14.

577

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 577

19

FIGURE 19.14

The status bar indicates that the form has a fi lter applied.

The user can click the Filtered button on the status bar to remove the fi lter and see all
records. The button caption will change to Unfi ltered. Another click of the button reapplies
the fi lter.

Using the Tab Control
A Tab control provides several pages, each accessed through a tab at the top, bottom, or
side of the dialog box. Figure 19.15 shows frmCustomers, a perfect example of a tabbed
Access form. frmCustomers contains a Tab control with three pages, allowing the form to
contain many more controls than possible without the Tab control. Each of the tabs along
the top of the form reveals a different page of the form’s data. Each page contains many
controls. Figure 19.15 shows buttons, labels, and text boxes. Each control on the page
behaves independently of all other controls on the form and can be accessed through Access
VBA code as an independent unit.

As you might guess, the Tab control is fairly complex. It includes its own properties, events,
methods, and object collections. You have to know and understand these items before you
can effectively use the Tab control in your applications.

Developers often use the term tab when referring to the pages of a tabbed dialog box. In this chapter, the terms page

and tab are used interchangeably.

578

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 578

FIGURE 19.15

The Tab control allows a form to host a large amount of data.

A Tab control consists of a number of tabs. From the user interface, the quickest and easi-
est way to add or delete a page is to right-click the control and select the appropriate com-
mand from the shortcut menu (see Figure 19.16).

FIGURE 19.16

The Tab control’s shortcut menu contains relevant commands.

579

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 579

19

The Tab control contains some unique properties, some of which are shown in Table 19.1. Use
these properties to tailor the Tab controls in your applications to suit the needs of your users.

TABLE 19.1 Important Tab Control Properties

Property Description

Caption Applies to each page in the Tab control. Provides the text that appears on
the tab.

MultiRow Applies to the Tab control. Determines whether the tabs appear as a
single row or as multiple rows. You can’t specify how many tabs appear in
each row. Instead, Access adds as many rows as necessary to display all
tabs, given their respective widths.

Style By default, tabs appear as tabs. The alternative (Buttons) forces the tabs
to appear as command buttons.

TabFixedHeight This value determines the height (in inches or centimeters, depending on
the units of measurement settings in the Windows Control Panel) of the
tabs on the control. When the TabFixedHeight is set to 0, the tab height is
determined by the size of the font specifi ed for the Tab control.

TabFixedWidth This value determines the width (in inches or centimeters) of the tabs on
the control. Text that is too wide to fi t on the tab when the TabFixedWidth
value is set is truncated. When the TabFixedWidth is set to 0, the width of
the tab is determined by the font size selected for the Tab control and the
text specifi ed in the tab’s Caption property.

Picture Applies to each page on the Tab control. The Picture property specifi es
an image (BMP, ICO, or built-in picture) to display on the tab.

A Tab control can contain virtually any type of control, including text boxes, combo and
list boxes, option buttons, check boxes, and OLE objects. A Tab control can even include
other Tab controls! Although a form can contain multiple Tab controls, it’s probably not a
good idea to overload the user by putting more than one Tab control on a form. After all,
the reason you use Tab controls in an application is to simplify the form by fi tting multiple
pages of controls within a single control. In most cases, there is no point in challenging the
user with more than one Tab control on a form.

Using Dialog Boxes to Collect Information
The dialog box is one of the most valuable user-interface components in Windows applica-
tions. When properly implemented, dialog boxes provide a way to extend the available
screen space on the computer. Instead of having to place every text box, option button, and
other user input control on the main form, dialog boxes provide a handy way to move some
of these controls to a convenient pop-up device that is on the screen only when needed.

580

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 580

Dialog boxes usually collect a certain type of information, such as font attributes or hard-
copy parameters. Dialog boxes are a valuable way to prefi lter or qualify user input without
cluttering the main form. Or use a dialog box to allow the user to enter query criteria
before running a query that populates a form or report, or to gather information that is
added to a report’s header or footer area.

Although they are forms, dialog boxes typically don’t look like or behave as other forms in
the application do. Dialog boxes often pop up over the user’s work. When properly imple-
mented, dialog boxes also provide a means to simply cancel the query without breaking
anything on the user’s workspace.

A simple query form implemented as a dialog box is shown in Figure 19.8. This simple form
asks for a zip code that is used to query the database for contact information.

The relevant properties of this dialog box are outlined in Table 19.2.

TABLE 19.2 Property Settings for Dialog Forms

Property Setting Purpose

ScrollBars Neither Not needed

NavigationButtons No Not needed

PopUp Yes Keeps the form on top of other forms in the application

Modal Yes Prevents the user from working with another part of the
application until the dialog box is removed

RecordSelectors No Not needed

BorderStyle Dialog Specifi es wide borders that can’t be resized. Also removes
Minimize and Maximize buttons

ShortcutMenu No Not needed

After these changes have been made, you have a form that’s always on top of the user’s
work and won’t leave the screen until the user clicks the Run Query or Cancel button.

There are a couple rules you should follow when constructing dialog boxes. These rules ensure
that your dialog boxes conform to the generally accepted behavior for Windows dialog boxes.

Designing the query
When the user clicks Run Query, Access runs a query named qryDialog. The qryDialog query
has a special criterion that uses the value in the form’s only text box to limit the records
shown. Here’s the SQL statement for qryDialog:

SELECT Contacts.FirstName, Contacts.LastName Contacts.City,
 Contacts.State, Contacts.ZipCode FROM Contacts WHERE
 (((Contacts.ZipCode)=[Forms]![frmDialog]![tbxZipCode]));

581

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 581

19

The WHERE clause references txtZipCode, a special type of parameter query. (See Chapter 13
for more on parameter queries.) The parameter uses a special syntax to reference a control on
a form. As long as the form is open, the query can retrieve that value and insert it as criteria
for the query. If the form is not open, Access won’t understand what [Forms]![frmDialog]
means, and it will prompt you for a value as if it were a standard parameter query.

Setting up the command buttons
When a command button is added to a form, Access presents a wizard to help you defi ne
the actions for the button. The Run Query action was selected for the Run Query button, as
shown in Figure 19.17.

FIGURE 19.17

Assigning an action to a command button.

On the next screen of the wizard, qryDialog was selected as the query to run. Now when the
button is pressed, that query will execute and use the form’s text box as a criterion.

The Cancel button was similarly set up, except that Close Form was selected from the Form
Operations category on the wizard.

Adding a default button
There should be a button on the form that’s automatically selected if the user presses the
Enter key while the dialog box is open. The default button doesn’t have to be selected by
the user to be triggered; Access automatically fi res the default button’s Click event as the
user presses the Enter key.

For example, the user enters 22152 in the Zip Code text box and presses Enter. Unless a
default button is specifi ed, the input cursor simply moves to the next control. If you’ve

582

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 582

designated the Run Query button as the dialog box’s default, Access interprets the Enter
key press as a Click event for the Run Query button.

Set the Run Query’s Default property to Yes to make it the default for this dialog box. Only
one button on a form can have its Default property set to Yes—if you move to the Cancel
button and set its Default property to Yes, Access silently changes the Run Query’s Default
property to No.

Normally, the designated default button is on the left of the form. If you’ve arranged the
command buttons vertically on a form, the top button should be the default.

You should select a button that won’t cause trouble if accidentally triggered as the default
for a form. For example, to avoid the risk of losing data, it’s probably not a good idea to set
a button that performs a delete action query as the default. In this case, you might decide
to make the Cancel button the default.

Setting a Cancel button
The Cancel button on a form is automatically selected if the user presses the Esc key while
the form is open. In most cases, you simply want the dialog box to disappear if the user
hits the Esc key while the dialog box is open.

Set a button’s Cancel property to designate it as the form’s Cancel button. In this example,
cmdCancel has been designated as the dialog box’s Cancel button. As with the default but-
ton, only one button on a form can be the Cancel button. Access triggers the Cancel but-
ton’s On Click event whenever the user presses the Esc key.

Removing the control menu
After you’ve designated default and Cancel buttons, you have no need for the control menu
button in the upper-left corner of the form. Set the form’s Control Box property to No to
hide the control menu button. When the control menu box is removed, the user will have to
use the Cancel or Run Query buttons to remove the form from the screen.

Designing a Form from Scratch
In this section, you’ll create an invoice entry form from scratch and apply much of what
you learned from this chapter and previous chapters. The main focus of this form will be to
record sales, so tblSales will provide many of the fi elds you use.

583

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 583

19

Creating the basic form
To create the form, follow these steps:

 1. On the Create tab of the Ribbon, click Form Design.

 2. On the Form Design Tools Design tab, click Add Existing Fields. The Field List
dialog box appears.

 3. From tblSales, double-click InvoiceNumber, SaleDate, InvoiceDate, CustomerID,
SalespersonID, PaymentMethod, and TaxRate to add them to the form. Don’t
worry about the placement of these controls just yet. At this point, your form
should look similar to Figure 19.18.

 4. Save the form as frmInvoiceEntry.

FIGURE 19.18

Placing controls on a new form.

Your new form, frmInvoiceEntry, is a working form that’s bound to tblSales. You can view
the form in Form view and cycle through all the records in tblSales. It’s nice to get some-
thing working so quickly, but you have some work to do to make it user friendly. The most
glaring omission is that there’s no way to identify the product being sold. Also, entering

584

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 584

CustomerID and SalespersonID would require the user to have an outstanding memory
(or very few customers and salespeople). Note that the frmInvoiceEntry form included in
Chapter19.accdb is the fi nal version of the form and has a few more features than the
form at this stage.

Creating a subform
Next, you’ll add a subform so the user can enter products and quantities. The best way to
add a subform is to create the form to be used as a subform on its own prior to adding it to
the main form. To create the subform, follow these steps:

 1. From the Create tab on the Ribbon, click Form Design to create a new form.

 2. From the tblSalesLineItems table, add the SalesLineItemID, InvoiceNumber,
ProductID, Quantity, DiscountPercent, and Selling Price fields to the subform.
This subform will be displayed as a datasheet on the main form, so it’s not impor-
tant that this form look pretty. It is important that the fi elds are in the order you
want them to appear in the datasheet.

 3. Right-click on the ProductID text box and choose Combo Box from the Change
To menu. This converts the ProductID control to a combo box so the user can select
a product more easily.

 4. Change the Row Source property of ProductID to the following SQL statement:
SELECT ProductID, Description FROM tblProducts ORDER BY Description;

 5. Change the Column Count property to 2, the Column Widths property to
0";1", and the Bound Column property to 1. The Column Widths property
determines how wide the columns are in the drop-drown list. By setting the
fi rst column width to zero, the fi rst column is hidden. The Bound Column prop-
erty determines which fi eld is stored in the table. In this case, the fi rst fi eld
(ProductID) is stored in the table. This is a very typical way to select values on a
form. The user sees the user-friendly Description fi eld, but the database-friendly
ProductID fi eld is stored.

 6. Change the label from ProductID to Product.

 7. Change the Default View property of the Form to Datasheet. That’s the view
you’ll want when you display the subform on the main form.

 8. Save the form as sfrmInvoiceEntryLines, and compare what you have to
Figure 19.19.

Adding the subform
To add the subform to the main form, follow these steps:

 1. Open frmInvoiceEntry in Design view.

 2. Draw a Subform/Subreport control across the bottom of the form. The SubForm
Wizard will appear as shown in Figure 19.20.

585

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 585

19

FIGURE 19.19

A subform for invoice lines.

FIGURE 19.20

Selecting an existing form as a subform.

 3. Choose Use an Existing Form and select sfrmInvoiceEntryLines, and then
click Next.

 4. On the next screen of the SubForm, choose the first option for linking the
forms, as shown in Figure 19.21.

 5. Keep the default name on the final screen of the wizard and click Finish.

 6. Delete the label that was automatically created for the subform.

586

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 586

FIGURE 19.21

Linking a subform to a main form.

When you add a subform, Access does a good job of guessing how the main form and subform are linked. In the

fourth step and in Figure 19.21, you accepted the guess that Access made for the link. That step of the wizard actu-

ally sets two properties of the subform: Link Master Fields and Link Child Fields.

The Link Master Fields property contains the name of the fi eld on the main form that links to the subform. Similarly,

the Link Child Fields property contains the name of the fi eld on the subform. In the example in this section, both

properties contain the fi eld InvoiceNumber. InvoiceNumber is a fi eld on both the main form and the subform that ties

the two together.

If Access guesses wrong, you can easily change these properties by typing in the proper fi eld names or by clicking the

build button next to one of the properties and selecting the proper fi elds from a list.

Now that you’ve added a subform to your main form, you have a rather messy-looking form.
Don’t worry—we’re going to spruce it up. The subform displays inside the main form in
Design view even though we’ll be displaying it in Datasheet view when we show the main
form. The subform is fully editable while inside the main form.

In general, the best way to create a form in Access is to follow three steps:

 1. Add all the controls and subforms you want to the form.

 2. Set the form and control properties that affect the behavior of the form.

 3. Position the controls on the form and set the properties that affect the
appearance of the form.

You can do the second two steps in the opposite order, but you’ll fi nd it easier to save
fi ne-tuning the form’s appearance until after you have the form working correctly.

587

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 587

19

Changing the form’s behavior
The next step in the form design is to get the form working properly. You need to change
some properties of the form and its controls to get the desired behavior.

Setting the form properties

Change the following form properties to the values given:

 ■ Caption: New Invoice Entry

 ■ Allow Datasheet View: No

 ■ Allow Layout View: No

 ■ Record Selectors: No

 ■ Navigation Buttons: No

 ■ Control Box: No

 ■ Data Entry: Yes

 ■ Cycle: Current Record

These are typical property settings for a data entry form. The purpose of the form is to enter a
new invoice, so hiding the record navigation aspects of the form makes sense. The Data Entry
property ensures that the form shows a new record when it’s opened. Setting the Cycle prop-
erty to Current Record disables the default behavior of moving to the next record when the
user leaves the last fi eld. By disabling that behavior, you can control when the record is saved.

Looking up values during data entry

On the subform, we converted the ProductID text box to a combo box so that the user
would be selecting from a list of descriptions rather than a list of numbers. On the
main form, there are more fi elds where we can use the same technique: CustomerID,
SalespersonID, PaymentMethod, and TaxRate. In these cases, it’ll be easier for the user
entering the invoice to select from a name or other description rather than an ID. To con-
vert the CustomerID text box into a combo box, follow these steps:

 1. Right-click on the CustomerID text box and choose Combo Box from the Change
To menu.

 2. Change the Row Source property to SELECT CustomerID, Company FROM
tblCustomers ORDER BY Company;.

 3. If necessary, change the Limit To List property to Yes.

 4. Change the Column Count property to 2 and the Column Widths property to
0";1".

Change the properties of the other controls similarly. The Row Source property of each
control is shown in Table 19.3. Be sure to change the Column Count property based on the
number of fi elds returned in the SQL statement.

588

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 588

TABLE 19.3 Row Source Properties

Control Name Row Source Property

Customer ID SELECT CustomerID, Company FROM tblCustomers
ORDER BY Company;

SalespersonID SELECT SalespersonID, SalespersonName FROM tblSalesperson
ORDER BY SalespersonName;

Payment Method SELECT PaymentType FROM tblPaymentType;

Tax Rate SELECT TaxLocation, TaxRate from tblTaxRates ORDER BY TaxRate DESC;

The CustomerID and SalespersonID fi elds store a foreign key from another table just
as ProductID did on the subform. The PaymentMethod and TaxRate fi elds are a little
different. For example, the PaymentMethod control doesn’t store a foreign key to
tblPaymentType. Instead, it stores text, and tblPaymentType simply stores common
payment types. Similarly, tblTaxRates stores some common tax rates to choose from. For
both PaymentMethod and TaxRate, change the Limit to List property to No so the user can
enter whatever value is appropriate.

Note also that the value from tblTaxRates that we want to store in the tblSales table is
from the second column. To store the proper value, change the Bound Column property of
TaxRate to 2. Since the PaymentMethod only has one column and you want to show both
columns for TaxRate, leave the ColumnWidths property blank for both controls. When
ColumnWidths is blank, Access displays all columns and chooses a width that’s best for
the data.

Saving the record

The last area of form behavior is saving the record. Earlier, you set the Cycle property to
Current Record to prevent the record from changing when the user leaves the last fi eld. You
can control the fl ow of the form through command buttons. To create a command button to
save the record, follow these steps:

 1. From the Controls group of the Design tab of the Ribbon, select the Button
control and place it on the form.

 2. On the Command Button Wizard’s first screen, select Record Navigation and Go
to Next Record, and then click Next.

 3. On the next screen of the wizard, check the Show All Pictures check box and
choose the Save Record picture, and then click Next.

 4. On the last screen of the wizard, name the button cmdSave and click Finish.

Using a Command Button to go to the next record automatically saves the current record. It
provides a more familiar interface to saving than simply leaving the last fi eld. It also dis-
plays a new, empty record ready for more data entry.

589

Chapter 19: Working with Form Controls

c19.indd 10/05/2015 Page 589

19

You should also provide a way for the user to cancel entering the invoice. Add another com-
mand button to the form and choose Undo Record from the Record Operations group in the
wizard. Choose the default picture for Undo and name the button cmdCancel.

Finally, you’ll need to add a button that allows the user to close the form. You set the
Control Box property to No so that the X at the top right of the form is hidden. Add a but-
ton to the form that uses the Close Form action from the Form Operations category. Name
the button cmdClose.

Changing the form’s appearance
The last step is to make the form pretty. On the main form, change the width and place-
ment of the controls and position the command buttons near the bottom right. On the sub-
form, make the width of the SalesLineItemID and InvoiceNumber columns zero by dragging
the right border of each column all the way to the left. To drag the border of these columns,
you’ll need to view the form in Form view or Layout view. Figure 19.22 shows the placement
of the controls.

FIGURE 19.22

Controls placed on a form.

590

Part V: Working with Access Forms and Reports

c19.indd 10/05/2015 Page 590

Finally, change the tab order of the controls on the form. Click the Tab Order control on the
Design tab of the Ribbon to show the Tab Order dialog box, as shown in Figure 19.23. Once
the tab order is set, change the Tab Stop property of the InvoiceNumber control to No. The
invoice number is an AutoNumber fi eld, so the user has no business in there.

 FIGURE 19.23

Setting the tab order of controls.

591

c20.indd 10/06/2015 Page 591

 CHAP T ER

20
Presenting Data with
Access Reports

IN THIS CHAPTER

Looking at the different types of Access reports

Creating reports with the Report Wizard

Creating a report from scratch

Improving a report’s appearance

I
t’s hard to underestimate the importance of reports in database applications. Many people who
never work with an Access application in person use reports created by Access. A lot of mainte-
nance work on database projects involves creating new and enhancing existing reports. Access is

well known and respected for its powerful reporting features.

Reports provide the most fl exible way of viewing and printing summarized information. They dis-
play information with the desired level of detail, while enabling you to view or print your informa-
tion in many different formats. You can add multilevel totals, statistical comparisons, and pictures
and graphics to a report.

In this chapter, you learn to use the Report Wizard as a starting point. You also learn how to create
reports and what types of reports you can create with Access.

In this chapter, you create new reports using the Report Wizard and by creating a blank report without using a wizard.

You use tables created in previous chapters. The Chapter20.accdb database fi le on the book’s website contains

the completed reports described in this chapter.

ON THE WEB

592

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 592

Introducing Reports
Reports present a customized view of your data. Report output is viewed onscreen or
printed to provide a hard copy of the data. Very often, reports provide summaries of the
information contained in the database. Data can be grouped and sorted in any order and
can be used to create totals that perform statistical operations on data. Reports can include
pictures and other graphics as well as memo fi elds in a report. If you can think of a report
you want, Access probably supports it.

Identifying the different types of reports
Three basic types of reports are used by most businesses:

 ■ Tabular reports: Print data in rows and columns with groupings and totals.
Variations include summary and group/total reports.

 ■ Columnar reports: Print data and can include totals and graphs.

 ■ Mailing label reports: Create multicolumn labels or snaked-column reports.

Tabular reports

Tabular reports are similar to a table displaying data in rows and columns. Figure 20.1 is a
typical tabular report (rptProductsSummary) displayed in Print Preview.

Unlike forms or datasheets, tabular reports often group data by one or more fi elds. Often,
tabular reports calculate and display subtotals or statistical information for numeric fi elds
in each group. Some reports include page totals and grand totals. You can even have mul-
tiple snaked columns so that you can create directories (such as telephone books). These
types of reports often use page numbers, report dates, or lines and boxes to separate infor-
mation. Reports may have color and shading and display pictures, business graphs, and
memo fi elds. A special type of summary tabular report can have all the features of a detail
tabular report but omit record details.

Columnar reports

Columnar reports generally display one or more records per page, but they do so verti-
cally. Columnar reports display data very much as a data entry form does, but they’re used
strictly for viewing data and not for entering it. Figure 20.2 shows part of a columnar
report (rptProducts) in Print Preview.

Another type of columnar report displays one main record per page (like a business form)
but can show many records within embedded subreports. An invoice is a typical example.
This type of report can have sections that display only one record and at the same time
have sections that display multiple records from the “many” side of a one-to-many
relationship—and even include totals.

593

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 593

20

FIGURE 20.1

A tabular report (rptProductsSummary) displayed in Print Preview.

FIGURE 20.2

A columnar report showing report controls distributed throughout the entire page.

594

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 594

Figure 20.3 shows an invoice report (rptInvoice) from the Collectible Mini Cars database
system in Report view.

FIGURE 20.3

An invoice report (rptInvoice).

In Figure 20.3, the information in the top portion of the report is on the “main” part of the
report, whereas the product details near the bottom of the fi gure are contained in a subre-
port embedded within the main report.

595

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 595

20

Mailing label reports

Mailing labels (shown in Figure 20.4) are also a type of report. Access includes a Label
Wizard to help you create this type of report. The Label Wizard enables you to select from
a long list of label styles. Access accurately creates a report design based on the label style
you select. You can then open the report in Design mode and customize it as needed.

FIGURE 20.4

rptCustomerMailingLabels, a typical mailing label report.

Distinguishing between reports and forms
The main difference between reports and forms is the intended output. Whereas forms are
primarily for data entry and interaction with the users, reports are for viewing data (either

596

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 596

onscreen or in hard-copy form). Calculated fi elds can be used with forms to display an
amount based on other fi elds in the record. With reports, you typically perform calculations
on groups of records, a page of records, or all the records included in the report. Anything
you can do with a form—except input data—can be duplicated by a report. In fact, you can
save a form as a report and then refi ne it in the Report Design window.

Creating a Report, from Beginning to End
The report process begins with your desire to view data, but in a way that differs from a
form or datasheet display. The purpose of the report is to transform raw data into a mean-
ingful set of information. The process of creating a report involves several steps:

 1. Define the report layout.

 2. Assemble the data.

 3. Create the report with the Access Report Wizard.

 4. Print or view the report.

 5. Save the report.

Defi ning the report layout
You should begin by having a general idea of the layout of your report. You can defi ne the
layout in your mind, on paper, or interactively using the Report Designer. When laying out
a report, consider how the data should be sorted (for example, chronologically or by name),
how the data should be grouped (for example, by invoice number or by week), and how the
size of the paper used to print the report will constrain the data.

An Access report often is expected to duplicate an existing paper report or form used by the application’s consumers.

Assembling the data
After you have a general idea of the report layout, assemble the data needed for the report.
Access reports use data from two primary sources:

 ■ A single database table

 ■ A recordset produced by a query

You can join many tables in a query and use the query’s recordset as the record source for
your report. A query’s recordset appears to an Access report as if it were a single table.

597

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 597

20

As you learned in Chapter 8, you use queries to specify the fi elds, records, and sort order
of the records stored in tables. Access treats a recordset’s data as if it were a single table
(for processing purposes) in datasheets, forms, and reports. When the report is run, Access
matches data from the recordset or table against the bound controls specifi ed in the report
and uses the data available at that moment to produce the report.

Reports don’t follow the sort order specifi ed in an underlying query. Reports are sorted at the report level. It’s a

waste of time to sort data in a query that is used solely to populate a report because the data is re-sorted and

rearranged by the report itself.

In the following example, you use data from tblProducts to create a relatively simple tabu-
lar report.

Creating a report with the Report Wizard
Access enables you to create virtually any type of report. Some reports, however, are easier
to create than others, especially when the Report Wizard is used as a starting point. Like
form wizards, the Report Wizard gives you a basic layout for your report, which you can
then customize.

The Report Wizard simplifi es laying out controls by stepping you through a series of ques-
tions about the report that you want to create. In this chapter, you use the Report Wizard
to create tabular and columnar reports.

Creating a new report

The Ribbon contains several commands for creating new reports for your applications. The
Create tab of the Ribbon includes the Reports group, which contains several options such
as Report, Labels, and Report Wizard. For this exercise, click the Report Wizard button. The
fi rst screen of the Report Wizard (shown in Figure 20.5) appears.

In Figure 20.5, tblProducts has been selected as the data source for the new report. You can
do this by selecting table tblProducts in the Navigation tab before clicking on the Report
Wizard button, or by selecting tblProducts from the Tables/Queries drop-down list. Under
the Tables/Queries drop-down list is a list of available fi elds. When you click a fi eld in this
list and click the right-pointing arrow, the fi eld moves from the Available Fields list to
the report’s Selected Fields list. For this exercise, select Product ID, Category, Description,
QtyInStock, and RetailPrice.

Double-clicking any fi eld in the Available Fields list adds it to the Selected Fields list. You can also double-click any

fi eld in the Selected Fields list to remove it from the box.

598

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 598

FIGURE 20.5

The fi rst screen of the Report Wizard after selecting a data source and fi elds.

Candidate fields Selected fields

You’re limited to selecting fi elds from the original record source you started with. You can
select fi elds from other tables or queries by using the Tables/Queries drop-down list in the
Report Wizard. As long as you’ve specifi ed valid relationships so that Access properly links
the data, these fi elds are added to your original selection and you use them on the report.
If you choose fi elds from unrelated tables, a dialog box asks you to edit the relationship
and join the tables. Or you can return to the Report Wizard and remove the fi elds.

After you’ve selected your data, click Next to go to the next wizard dialog box.

Selecting the grouping levels

The next dialog box enables you to choose which fi eld(s) to use for grouping data.
Figure 20.6 shows the Category fi eld selected as the data grouping fi eld for the report. The
fi eld selected for grouping determines how data appears on the report, and the grouping
fi elds appear as group headers and footers in the report.

Groups are most often used to combine data that is logically related. One example is group-
ing all products by product category. Another example is choosing to group on CustomerID
so that each customer’s sales history appears as a group on the report. You use the report’s
group headers and footers to display the customer name and any other information specifi c
to each customer.

The Report Wizard lets you specify as many as four group fi elds for your report. You use the
Priority buttons to change the grouping order on the report. The order you select for the
group fi elds is the order of the grouping hierarchy.

599

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 599

20

Select the Category fi eld as the grouping fi eld and click the > button to specify a grouping based
on category values. Notice that the picture changes to show Category as a grouping fi eld, as
shown in Figure 20.6. Each of the other fi elds (ProductID, Description, QtyInStock, RetailPrice,
and SalesPrice) selected for the report will appear in the Category group’s details section.

FIGURE 20.6

Specifying the report’s grouping.

Defining the group data

After you select the group fi eld(s), click the Grouping Options button at the bottom of the
dialog box to display the Grouping Options dialog box, which enables you to further defi ne
how you want groups displayed on the report.

For example, you can choose to group by only the fi rst character of the grouping fi eld. This
means that all records with the same fi rst character in the grouping fi eld are grouped. If you
group a customers table on CustomerName, and then specify grouping by the fi rst character
of the CustomerName fi eld, a group header and footer appears for all customers whose name
begins with the same character. This specifi cation groups all customer names beginning with
the letter A, another group for all records with customer names beginning with B, and so on.

The Grouping Options dialog box enables you to further defi ne the grouping. This selection
can vary in importance, depending on the data type.

The Grouping Intervals list box displays different values for various data types:

 ■ Text: Normal, 1st Letter, 2 Initial Letters, 3 Initial Letters, 4 Initial Letters,
5 Initial Letters

600

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 600

 ■ Numeric: Normal, 10s, 50s, 100s, 500s, 1000s, 5000s, 10000s, 50000s, 100000s

 ■ Date: Normal, Year, Quarter, Month, Week, Day, Hour, Minute

Normal means that the grouping is on the entire fi eld. In this example, use the entire
Category fi eld.

Notice that the grouping options simplify creating reports grouped by calendar months,
quarters, years, and so on. This means that you can easily produce reports showing sales,
payroll, or other fi nancial information needed for business reporting.

If you displayed the Grouping Options dialog box, click the OK button to return to the Grouping
Levels dialog box, and then click the Next button to move to the Sort Order dialog box.

Selecting the sort order

By default, Access automatically sorts grouped records in an order meaningful to the group-
ing fi eld(s). For example, after you’ve chosen to group by Category, Access arranges the
groups in alphabetical order by Category. However, you can’t be sure of the order of the
records within the group, so it’s a good idea to specify a sort within each group. For exam-
ple, your users might want to see the product records sorted by Retail Price in descending
order so that the most expensive products appear near the top for each category group.

In this example, Access sorts data by the Category fi eld. As Figure 20.7 shows, the data is
also sorted by Description within each group.

FIGURE 20.7

Selecting the fi eld sorting order.

601

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 601

20

Sort fi elds are selected by the same method you use for selecting grouping fi elds. You can
select sorting fi elds that haven’t been chosen for grouping. The fi elds chosen in this dialog
box affect only the sorting order in the data displayed in the report’s Detail section. Select
ascending or descending sort by clicking the button to the right of each sort fi eld.

Selecting summary options

Near the bottom of the sorting screen of the Report Wizard is a Summary Options but-
ton. Clicking this button displays the Summary Options dialog box (shown in Figure 20.8),
which provides additional display options for numeric fi elds. All the numeric and currency
fi elds selected for the report are displayed and may be summed. Additionally, you can dis-
play averages, minimums, and maximums.

FIGURE 20.8

Selecting the summary options.

You can also decide whether to show or hide the data in the report’s Detail section. If you
select Detail and Summary, the report shows the detail data, whereas selecting Summary
Only hides the Detail section and shows only totals in the report.

Finally, checking the Calculate Percent of Total for Sums box adds the percentage of the
entire report that the total represents below the total in the group footer. For example,
if you have three products and their totals are 15, 25, and 10, respectively, 30%, 50%,
and 20% shows below their total (that is, 50)—indicating the percentage of the total sum
(100%) represented by their sum.

Clicking the OK button in this dialog box returns you to the sorting screen of the Report
Wizard. There you can click the Next button to move to the next wizard screen.

602

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 602

Selecting the layout

The next step in the Report Wizard affects the look of your report. The Layout area enables
you to determine the basic layout of the data. The Layout area provides three layout
choices that tell Access whether to repeat the column headers, indent each grouping, and
add lines or boxes between the detail lines. As you select each option, the picture on the
left changes to show how the choice affects the report’s appearance.

You choose between Portrait (up-and-down) and Landscape (across-the-page) layout for the
report in the Orientation area. Finally, the Adjust the Field Width So All Fields Fit on a Page
check box enables you to cram a lot of data into a little area. (A magnifying glass may be
necessary!)

For this example, choose Stepped and Portrait, as shown in Figure 20.9. Then click the Next
button to move to the next dialog box.

FIGURE 20.9

Selecting the page layout.

Opening the report design

The fi nal Report Wizard screen contains an area for you to enter a title for the report. This
title appears only once, at the very beginning of the report, not at the top of each page.
The report title also serves as the new report’s name. The default title is the name of the
table or query you initially specifi ed as the report’s data source. The report just created in
the Chapter20.accdb example is named rptProducts_Wizard.

603

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 603

20

Next, choose one of the option buttons at the bottom of the dialog box:

 ■ Preview the report

 ■ Modify the report’s design

For this example, leave the default selection intact to preview the report. Click Finish and
the report displays in Print Preview (see Figure 20.10).

FIGURE 20.10

rptProducts_Wizard displayed in Print Preview.

Adjusting the report’s layout

There are a few small issues with the report shown in Figure 20.10. The Access Report
Wizard has chosen the fonts and overall color scheme, which may not be what you had
in mind. Also, the Retail Price column isn’t quite wide enough to show the column
heading.

The Report Wizard displays the new report in Print Preview. Right-click the report’s title
bar and select Layout View from the shortcut menu. The new report in Layout view is
shown in Figure 20.11.

604

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 604

FIGURE 20.11

Layout view is useful for resizing controls in a columnar report.

In Figure 20.11, the Category column has been shrunk to eliminate some wasted space,
the Description column has been widened to the left to fi ll that space, and the remain-
ing columns have been separated so that the column headings show and aren’t all pushed
together. Working with controls in Layout view for a report is identical to working with
them in Layout view for a form. To shrink a column, for example, drag the right edge of the
control to the left.

Choosing a theme

After you adjust the layout, you can use controls in the Themes group on the Design tab of
the Ribbon to change the report’s colors, fonts, and overall appearance. The Themes button
opens a gallery containing several dozen themes (see Figure 20.12).

Themes are an important concept in Access 2016. A theme sets the color scheme, selected
font face, font colors, and font sizes for Access 2016 forms and reports. As you hover the
mouse over the theme icons in the gallery, the report open in Layout view behind the gal-
lery instantly changes to show you how the report would look with the selected theme.

Each theme has a name, like Offi ce, Facet, Organic, and Slice. Theme names are useful
when you want to refer to a particular theme in the application’s documentation or in an
e-mail or other correspondence. Themes are stored in a fi le with a THMX extension, in the
Program Files\Microsoft Office\root\Document Themes 16 folder. Themes
apply to all the Offi ce 2016 documents (Word, Excel, and Access), making it easy to deter-
mine a style to apply to all of a company’s Offi ce output.

605

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 605

20

FIGURE 20.12

Choosing a theme for the report.

Right-click menuThemes gallery

Themes group

Access 2007 users may be wondering what happened to the AutoFormat feature. For a number of reasons, Microsoft

decided to replace AutoFormat with themes in later versions of Offi ce. AutoFormat applied to individual controls,

which meant a lot of work when building a complicated form or report. AutoFormat also tended to be all or nothing,

making it diffi cult to apply an AutoFormat and then alter the colors and fonts of controls on a form or report. Themes

are much more fl exible. They even allow you to save a completed form or report as a new theme (see the Save Current

Theme option at the bottom of the theme gallery in Figure 20.12). There was no way to create a custom AutoFormat

in Access 2007.

As the right-click menu in Figure 20.12 indicates, you can apply the selected theme just
to the current report (Apply Theme to this Object Only), all reports (Apply Theme to All
Matching Objects), or all forms and reports in the application (Make This Theme the
Database Default). There’s even an option to add the theme as a button to the Quick Access
toolbar, an extremely useful option for selectively applying the theme to other objects in
the database.

606

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 606

It’s tempting to try out every reporting style and option when building Access forms and reports. Unfortunately, when

you carry this too far, your Access application may end up looking like a scrapbook of design ideas rather than being

a valuable business tool. Professional database developers tend to use a minimum of form and report styles and use

them consistently throughout an application. Be considerate of your users and try not to overwhelm them with a lot of

different colors, fonts, and other user interface and reporting styles.

For the purposes of this exercise, the Wisp theme was selected for the new products report.

Creating new theme color schemes

Access 2016 provides several default themes, with each theme consisting of a set of complemen-
tary colors, fonts, and font characteristics. In addition, you can set up entirely new color and
font themes and apply them to your forms and reports. Creating a custom color theme is a great
way to apply a company’s corporate color scheme to the forms and reports in an application.

With a form or report open in Design view, follow these steps:

 1. Click the Colors button in the Themes group on the Design tab of the Ribbon.
The color theme list opens.

 2. Select the Customize Colors command at the bottom of the list of color themes.
The Create New Theme Colors dialog box (shown in Figure 20.13) appears, showing
the currently selected color theme.

FIGURE 20.13

Setting up a custom color theme.

607

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 607

20

Modifying a color theme requires a considerable amount of work. As you can see
from Figure 20.13, each color theme includes 12 different colors. Each of the 12
buttons on the Create New Theme Colors dialog box opens a color palette (shown
in Figure 20.14) where you select a theme element’s color, such as the color for the
Text/Background – Light 2 element.

FIGURE 20.14

Selecting a theme element’s color.

 3. When the color customization is complete, assign a name for the custom color
theme and click Save. When you close the Create New Theme Colors dialog box,
you’ll see that the custom color theme has been applied to the form or report cur-
rently open in Design view. If you want to apply the new color theme to all the
forms or reports in the application, open the color theme list, right-click the name
of a custom color theme at the top of the list (see Figure 20.15), and select Apply
Color Scheme to All Matching Objects. If you have a report open in Design view, the
theme will be applied to all reports in the application. If, on the other hand, you
have a form open in Design view, all the forms in the application receive the new
color theme.

Even after applying a color theme, you can adjust the colors of individual items on a report
(or form, for that matter). Open the report in Design view, select the item to change, and
choose its new color(s) in the Property Sheet.

608

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 608

FIGURE 20.15

Applying a color theme to all matching objects in an application.

Although not described or shown here, a similar dialog box is available (Create New Theme
Fonts) in the Fonts drop-down list in the Themes group on the Design tab. The Create New
Theme Fonts dialog box enables you to set up a custom font theme (heading and body
fonts, and so on) to apply to forms and reports. Creating custom fonts themes works just
like adding your own color themes to an application. Save the theme with a name you’ll
recognize, and apply the font theme to forms and reports as needed.

Using the Print Preview window

Figure 20.16 shows the Print Preview window in a zoomed view of rptProducts_Wizard. To
open a report in Print Preview, right-click on the report in the Navigation pane and choose
Print Preview. This view displays your report with the actual fonts, shading, lines, boxes,
and data that will be used on the report when printed to the default Windows printer.
Clicking the left mouse button on the report’s surface toggles the view between a zoomed
view and an entire page view.

609

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 609

20

FIGURE 20.16

Displaying rptProducts_Wizard in the zoomed preview mode.

The Ribbon transforms to display controls relevant to viewing and printing the report. The
Print Preview tab of the Ribbon includes controls for adjusting the size, margins, page ori-
entation (Portrait or Landscape), and other printing options. The print options are stored
with the report when you save the report’s design. The Print Preview tab also includes
a Print button for printing the report, and another button for closing Print Preview and
returning to the report’s previous view (Design, Layout, or Report view).

You can move around the page by using the horizontal and vertical scroll bars, or use
the Page controls (at the bottom-left corner of the window) to move from page to page. The
Page controls include navigation buttons to move from page to page or to the fi rst or
last page of the report. You can also go to a specifi c page of the report by entering a value
in the text box between the Previous Page and Next Page controls.

610

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 610

Right-clicking the report and selecting the Multiple Pages option, or using the controls in
the Zoom group on the Print Preview tab of the Ribbon, lets you view more than one page
of the report in a single view. Figure 20.17 shows a view of the report in the Print Preview’s
two-page mode. Use the navigation buttons (in the lower-left section of the Print Preview
window) to move between pages, just as you would to move between records in a datasheet.
The Print Preview window has a toolbar with commonly used printing commands.

FIGURE 20.17

Displaying multiple pages of a report in Print Preview’s page preview mode.

If, after examining the preview, you’re satisfi ed with the report, click the Print button on
the toolbar to print the report. If you’re dissatisfi ed with the design, select the Close Print
Preview button to switch to the Report Design window and make further changes.

Publishing in alternate formats

An important feature of the Print Preview tab is the ability to output the Access report in a
number of common business formats, including PDF, XPS (XML Paper Specifi cation), HTML,
and other formats.

611

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 611

20

Clicking the PDF or XPS button in the Data group on the Print Preview tab of the Ribbon
opens the Publish as PDF or XPS dialog box (shown in Figure 20.18). This dialog box pro-
vides options for outputting in standard PDF format or in a condensed version (for use in a
web context). You also specify the destination folder for the exported fi le.

FIGURE 20.18

Access 2016 provides powerful options for publishing reports.

The PDF or XPS view of an Access report is indistinguishable from the report when viewed
in Access. Either format is common in many business environments these days.

Viewing the report in Design view

Right-clicking the report’s title bar and selecting Design View opens the report in Design
view. As shown in Figure 20.19, the report design refl ects the choices you made using the
Report Wizard.

612

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 612

FIGURE 20.19

The report in Design view.

Return to the Print Preview mode by clicking Print Preview on the right-click menu or by
choosing Print Preview in the Views group.

Printing or viewing the report
The fi nal step in the process of creating a report is printing or viewing it.

Printing the report

There are several ways to print your report:

 ■ Choose File ➪ Print in the main Access window (with a report highlighted in
the Navigation pane). The standard Print dialog box appears. You use this dialog
box to select the print range, number of copies, and print properties.

 ■ Click the Print button on the Print Preview tab of the Ribbon. The report is
immediately sent to the default printer without displaying a Print dialog box.

Viewing the report

You can view a report in four different views: Design, Report, Layout, and Print Preview.
The Design and Layout views are used to build a report and are similar to Design and
Layout views for forms. Most of the work in this chapter is done in Design view.

613

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 613

20

You begin working with a new report by selecting a table or query to serve as the new
report’s data source. Click the Report button on the Create tab of the Ribbon. By default,
the new report appears in Layout view, as shown in Figure 20.20.

FIGURE 20.20

Layout view of a new report based on tblProducts.

Layout view enables you to see the relative positions of the controls on the report’s surface,
as well as the margins, page headers and footers, and other report details.

The main constraint of Layout view is that you can’t make fi ne adjustments to a report’s
design unless you put the report in Design view. Layout view is primarily intended to allow
you to adjust the relative positions of controls on the report and is not meant for moving
individual controls around on the report.

While in Layout view, you can also right-click any control and select Properties from the
shortcut menu. The Property Sheet allows you to modify the settings for the selected
control.

614

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 614

Figure 20.21 shows the Ribbon while a report is open in Layout view. Not surprisingly, the
options on the Ribbon are mostly involved with adjusting the appearance of the controls on
the report.

FIGURE 20.21

The Ribbon while a report is open in Layout view.

Saving the report
Save the report design at any time by choosing File ➪ Save, File ➪ Save As, or File ➪ Export
from the Report Design window, or by clicking the Save button on the Quick Access toolbar.
The fi rst time you save a report (or any time you select Save As or Export), a dialog box
enables you to select or type a name.

You might fi nd it useful to save a copy of a report before beginning maintenance work on the report. Reports tend

to be pretty complicated, and it’s easy to make a mistake on a report’s design and not remember how to return the

report to its previous state. A backup provides a valuable safeguard against accidental loss of a report’s design.

Banded Report Design Concepts
Access reports support a banded approach to design. The banded report design is an impor-
tant concept and must be mastered by Access developers. In an Access report, data is pro-
cessed one record at a time. Individual fi elds may be placed in different places on a report
and can even appear more than once in a report, if needed.

Many fi rst-time Access developers are confused by a report’s appearance in Design view.
Some people expect to see a “page” that is decorated by adding fi elds in a large design
surface, much like how forms are built. However, because Access processes report data one
record at a time, Design view is meant to help you specify how each row is laid out on the
printed page. In addition, Design view shows you elements such as a page’s header and
footer, as well as areas occupied by group headers and footers. Each area occupied by con-
trols plays a vital role in the report’s appearance when printed.

615

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 615

20

Reports are divided into sections, known as bands in most report-writing software packages.
(In Access, these are simply called sections.) Access processes each record in the underlying
dataset, processing each section in order and deciding (for each record) whether to process
fi elds or text in that section. For example, the report footer section is processed only after
the last record is processed in the recordset.

Figure 20.22 shows rptProductsSummary in Print Preview. Notice that the data on the
report is grouped by Category (Cars, Trucks, and so on). Each group has a group header con-
taining the category name. Each group also has a footer displaying summary information
for the category. The page header contains column descriptions (Product ID, Description,
and so on). The group footer that ends each group contains summary data for several col-
umns in each group.

FIGURE 20.22

A portion of rptProductsSummary, a grouped report containing summary data.

Page number

Group footer Category totals

Page headerGroup header

616

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 616

The following Access sections are available:

 ■ Report header: Prints only at the beginning of the report; used for the title page

 ■ Page header: Prints at the top of each page

 ■ Group header: Prints before the fi rst record of a group is processed

 ■ Detail: Prints each record in the table or recordset

 ■ Group footer: Prints after the last record of a group is processed

 ■ Page footer: Prints at the bottom of each page

 ■ Report footer: Prints only at the end of a report after all records are processed

Figure 20.23 shows rptProductSummary open in Design view. As you can see, the report is
divided into as many as seven sections. The group section displays data grouped by catego-
ries, so you see the sections Category Header and Category Footer. Each of the other sec-
tions is also named based on where it displays on the report.

FIGURE 20.23

rptProductSummary in Design view.

Group footer Page footer Report footer

Report headerPage header

Details section

Group header

617

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 617

20

You can place any type of text or Text Box controls in any section, but Access processes the
data one record at a time. It also takes certain actions (based on the values of the group
fi elds or current section of the page being processed) to make the bands or sections active.
The example in Figure 20.23 is typical of a report with multiple sections. As you learned,
each section in the report has a different purpose and different triggers.

Page and report headers and footers are added as pairs. To add one without the other, remove any controls in the

section you don’t want and resize the section to a height of 0 or set its Visible property to No.

If you remove a header or footer section, you also lose the controls in those sections.

The Report Header section
Controls in the Report Header section are printed only once, at the beginning of the report.
A common use of a Report Header section is as a cover page or a cover letter or for informa-
tion that needs to be communicated only once to the user of the report.

You can also have controls in the Report Header section print on a page that is separate
from the rest of the report, which enables you to create a title page and include a graphic
or picture in the Report Header. The Force New Page property in the Report Header section
can be set to After Section to place the information in the report header in a separate page.

Only data from the fi rst record can be placed in a report header.

The Page Header section
Controls in the Page Header section normally print at the top of every page. If a report
header on the fi rst page is not on a page of its own, the information in the Page Header
section prints just below the report header information. Typically, page headers contain
column headers in group/total reports. Page headers often contain a title for the report
that appears on every page.

The Page Header section shown in Figure 20.23 contains a horizontal line below the Label
controls. Each Label control can be moved or sized individually. You can also change spe-
cial effects (such as color, shading, borders, line thickness, font type, and font size) for
each control.

618

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 618

Both the Page Header and Page Footer sections can be set to one of four settings (found in
the Report’s properties, not the section properties):

 ■ All Pages: The section (either page header or page footer) prints on every page.

 ■ Not with Rpt Hdr: The section does not print on the page with the report header.

 ■ Not with Rpt Ftr: The report footer is forced onto its own page when either Page
Header or Page Footer is set to Not with Rpt Ftr. The section with this setting does
not print on that page.

 ■ Not with Rpt Hdr/Ftr: The report footer is forced onto its own page. The section
does not print on that page, nor does it print on the page with the report header.

The Group Header section
A Group Header section normally displays the name of the group, such as Trucks or
Motorcycles. Access knows that all the records in a group have been displayed in a Detail
section when the group name changes. In this example, the detail records are all about
individual products. The Category control in the Category Header tells you that the prod-
ucts within the group belong to the indicated category (Trucks or Motorcycles). Group
Header sections immediately precede Detail sections.

You can have multiple levels of group headers and footers. In this report, for example, the
data is only for categories. However, in some reports you might have groups of information
with date values. You could group your sections by year or by month and year, and within
those sections by another group such as category.

To set group-level properties such as Group On, Group Interval, Keep Together, or something other than the default,

you must fi rst set the Group Header and Group Footer property (or both) to Yes for the selected fi eld or expression.

You learn about these later in the chapter.

The Detail section
The Detail section processes every record in the data and is where each value is printed.
The Detail section frequently contains calculated fi elds such as profi t that is the result of a
mathematical expression. In this example, the Detail section simply displays information
from the tblProduct table except for the last control. The profi t is calculated by subtracting
the cost from the RetailPrice.

You can tell Access whether you want to display a section in the report by changing the section’s Visible property in

the Report Design window. Turning off the display of the Detail section (or excluding selected group sections) dis-

plays a summary report with no detail or with only certain groups displayed.

619

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 619

20

The Group Footer section
You use the Group Footer section to calculate summaries for
all the detail records in a group. In the Products Summary report, the expression
= Sum([RetailPrice] - [Cost]) adds a value calculated from all the records
within a category. The value of this Text Box control is automatically reset to 0
every time the group changes.

 You learn more about expressions in Chapter 9 and summary text boxes in Chapter 21.

You can change the way summaries are calculated by changing the Running Sum property of the text box in the

Report Design window. A Running Sum of No will only show the value of the current record and is the default setting.

A value of Over Group will accumulate the amounts for that control over every record in the group. A value of Over All

accumulates the values for that control over every record in the report.

The Page Footer section
The Page Footer section usually contains page numbers or control totals. In very large reports,
such as when you have multiple pages of detail records with no summaries, you might want
page totals, as well as group totals. For the Products Summary Report, the page number is
printed by combining some literal text and the built-in page number controls. These controls
show Page x of y, where x is the current page number and y is the total number of pages in the
report. A Text Box control with the following expression in the Control Source property can be
used to display page-number information that keeps track of the page number in the report:

="Page: " & [Page] & " of " & [Pages]

You can also print the date and the time the report was printed. You can see the
page number text box in the Page Footer section in Figure 20.23. The Page Footer in
rptProductsSummary also contains the current date and time at the left side of the Page
Footer section.

The Report Footer section
The Report Footer section is printed once at the end of the report after all the detail
records and group footer sections are printed. Report footers typically display grand totals
or other statistics (such as averages or percentages) for the entire report. The report footer
for the Products Summary report uses the expression = Sum with each of the numeric fi elds
to sum the amounts.

When there is a report footer, the Page Footer section is printed after the report footer.

620

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 620

The report writer in Access is a two-pass report writer, capable of preprocessing all records
to calculate the totals (such as percentages) needed for statistical reporting. This capabil-
ity enables you to create expressions that calculate percentages as Access processes those
records that require foreknowledge of the grand total.

Creating a Report from Scratch
Fundamental to all reports is the concept that a report is another way to view records in
one or more tables. It’s important to understand that a report is bound to either a single
table or a query that brings together data from one or more tables. When you create a
report, you must select which fi elds from the query or table you want to see in your report.
Unless you want to view all the records from a single table, bind your report to a query.
Even if you’re accessing data from a single table, using a query lets you create your report
on the basis of a particular search criterion and sorting order. If you want to access data
from multiple tables, you have almost no choice but to bind your report to a query. In the
examples in this chapter, all the reports are bound to queries (even though it’s possible to
bind a report to a table).

It may be obvious, but it bears mentioning that the data in a printed report is static and
only refl ects the state of data in the database at the moment the report is printed. For this
reason, every report should have a “printed” date and time somewhere on the report (often
in the report header or footer area) to document exactly when the report was printed.

Access lets you create a report without fi rst binding it to a table or query, but you’ll have no bound controls on the

report. This capability can be used to work out page templates with common text headers or footers, such as page

numbering or the date and time, which can serve as models for other reports. You can add controls later by changing

the underlying control source of the report.

Throughout the rest of this chapter, you learn the tasks necessary to create the Product
Display report (a part of a page is shown in Figure 20.24). In these sections, you design the
basic report, assemble the data, and place the data in the proper positions.

As with almost every task in Access, there are many ways to create a report without wizards. It is important, however,

to follow some type of methodology, because creating a good report involves a fairly consistent approach. You should

create a checklist that is a set of tasks that will result in a good report every time. As you complete each task, check

it off your list. When you’re done, you’ll have a great-looking report. The following section outlines this approach.

621

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 621

20

FIGURE 20.24

The Product Display report.

Creating a new report and binding it to a query
The fi rst step is to create a new, empty report and bind it to tblProducts. Creating a blank
report is quite easy:

 1. Select the Create tab of the Ribbon.

 2. Click the Blank Report button in the Reports group. Access opens a blank report
in Layout view, and either positions a Field List dialog box on top of the new
report (see Figure 20.25) or docks the Field List on the right side of the application
window.

At this point, you have two different paths for adding controls to the report:
Continue working in Layout view or switch to Design view. Each of these
techniques has advantages, but for the purposes of this exercise, we’ll use Design
view because it better demonstrates the process of building Access reports.

622

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 622

FIGURE 20.25

A blank report in Layout view.

 3. Right-click the report’s title bar, and select Design view from the shortcut menu.
The Report window transforms to the traditional Access banded Report Designer,
as shown in Figure 20.26. This fi gure also shows the Field List open on tblProducts,
allowing you to add fi elds from the list to the appropriate section on the new report.

In Figure 20.26, the Description fi eld has been dragged onto the Detail section of the report.

Defi ning the report page size and layout
As you plan your report, consider the page-layout characteristics, as well as the kind
of paper and printer you want to use for the output. As you make these decisions, you
use several dialog boxes and properties to make adjustments. These specifi cations work
together to create the desired output.

623

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 623

20

FIGURE 20.26

Building the new report in Design view.

Select the Page Setup tab of the Ribbon to select the report’s margins, orientation, and
other overall characteristics. Figure 20.27 shows a portion of the Access screen with the
Page Setup tab selected and the Margins option open.

FIGURE 20.27

Setting a report’s margins.

624

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 624

Notice that the Page Setup tab includes options for setting the paper size, the report’s
orientation (Portrait or Landscape), its margins, and other details. Dropping down either
the Size or Margins option reveals a gallery containing common settings for each of these
options.

rptProductDisplay is to be a portrait report, which is taller than it is wide. You want to
print on letter size paper (x 11 inches), and you want the left, right, top, and bot-
tom margins all set to 0.25 inch. In Figure 20.27 notice that the Narrow margins option is
selected, which specifi es exactly 0.25 inch for all four margin settings.

If the margins you need for your particular report are not shown in the Margins
options, click Page Setup in the Page Layout group to open the Page Setup dialog box.
This dialog box enables you to specify the margins, orientation, and other page-layout
specifi cations.

To set the right border for the Product Display report to inches, follow these steps:

 1. Click the right edge of the report body (where the white page meets the gray
background). The mouse pointer changes to a double-headed arrow.

 2. Drag the edge to the -inch mark.

Your units of measure may be different, depending on the regional settings in the Control Panel.

If the ruler isn’t displayed in the Report Designer, click Ruler from the Size/Space drop
down on the Arrange tab.

You can also change the Width property in the Property window for the report.

If you run your report and every other page is blank, it’s a sign that the width of your report exceeds the width of your

page. To fi x this problem, decrease the left and right margin size or reduce the report’s width. Sometimes, when you

move controls around, you accidentally make the report width larger than you originally intended. For example, in

a portrait report, if your left margin plus report width plus right margin is greater than inches, you’ll see blank

pages. If you’re unable to reduce the report’s width, it’s because there are controls in the way. Locate the offending

controls and move or resize them.

625

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 625

20

Placing controls on the report
Access takes full advantage of drag-and-drop capabilities of Windows. The method for plac-
ing controls on a report is no exception:

 1. Click the Add Existing Fields button in the Tools group on the Design tab of the
Ribbon. The Field List window appears.

 2. Choose a control in the Toolbox if you want to use something other than the
default control types for the fields.

 3. Select each field that you want on your report and then drag them to the
appropriate section of the Report Design window. Select multiple fi elds by hold-
ing down the Ctrl key as you click fi elds in the Field List. Depending on whether
you choose one or several fi elds, the mouse pointer changes shape to represent your
selection as you drag fi elds onto the report.

The fi elds appear in the detail section of the report, as shown in Figure 20.28. Notice that
for each fi eld you dragged onto the report, there are two controls. When you use the drag-
and-drop method of placing fi elds, Access automatically creates a Label control with the
fi eld name attached to the Text Box control to which the fi eld is bound.

FIGURE 20.28

The report with several fi elds added.

626

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 626

Access always creates a Bound Object Frame control for an OLE-type object found in a table, such as for the Picture_

Small fi eld in Figure 20.28. Also notice that the Detail section automatically resizes itself to fi t all the controls. Note

that the Text Box control above the Bound Object Frame control is different from the other Text Box controls because

it is bound to a Long Text fi eld.

Controls are needed for the customer information in the page header section. Before you do
this, however, you must resize the page header to leave room for a title you’ll add later.

Resizing a section
To make room on the report for the title information in the page header, you must resize it.
You resize by using the mouse to drag the bottom of the section you want to resize.
The mouse pointer turns into a vertical double-headed arrow as it’s positioned over the
bottom of a report section. Drag the section border up or down to make the section smaller
or larger.

Resize the Page Header section to make it about inch high by dragging the
bottom margin of the page header downward. Use the Controls group on the Design tab of
the Ribbon to drag labels to the report. Add two labels to the Page Header section, and
enter Product Display as the Caption property of one label, and Collectible Mini Cars for
the other.

The labels you just added are unattached; they aren’t related to any other controls on the
report. When you drag a fi eld from the Field List, Access adds not only a text box to contain
the fi eld’s data, but also a label to provide an identifi er for the text box. Labels that you
drag from the Controls group on the Ribbon are unattached and not related to text boxes or
any other control on the report.

You may notice the Page Header section expanding to accommodate the Label controls that
you dragged into the section. All the fi elds needed for the Product Display report are now
placed in their appropriate sections.

To create a multiple-line label entry, press Ctrl+Enter to force a line break where you want it in the control.

If you enter a caption that is longer than the space in the Property window, the contents scroll as you type. Otherwise,

open a Zoom box that gives you more space to type by pressing Shift+F2.

627

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 627

20

Modifying the appearance of text in a control

To modify the appearance of the text in a control, select the control and select a format-
ting style to apply to the label by clicking the appropriate button on the Format tab.

To make the titles stand out, follow these steps to modify the appearance of label text:

 1. Click the newly created report heading Product Display label in the Report
Header section.

 2. Select the Format tab of the Ribbon, and click the Bold button in the Font
group.

 3. From the Font Size drop-down list, select 18.

 4. Repeat for the Collectible Mini Cars label, using a 12 pt font and Bold. The size
of the labels may not fi t their displayed text. To tighten the display or to display
all the text when a label isn’t big enough, double-click any of the sizing handles,
and Access chooses an appropriate size for the label.

Figure 20.29 shows these labels added, resized, and formatted in the report’s Page Header
section.

FIGURE 20.29

Adding unbound labels to the report.

Working with Text Box controls
So far, you’ve added controls bound to fi elds in the tables and unbound Label controls used
to display titles in your report. There is another type of Text Box control that is typically
added to a report: unbound text boxes that are used to hold expressions such as page num-
bers, dates, or a calculation.

628

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 628

Adding and using Text Box controls

In reports, Text Box controls serve two purposes:

 ■ They enable you to display stored data from a particular fi eld in a query or table.

 ■ They display the result of an expression.

Expressions can be calculations that use other controls as their operands, calculations that
use Access functions (either built in or user defi ned), or a combination of the two.

Entering an expression in a Text Box control

Expressions enable you to create a value that is not already in a table or query. They can
range from simple functions (such as a page number) to complex mathematical computations.

 Chapter 9 discusses expressions in greater detail.

A function is a small program that, when run, returns a single value. The function can be
one of many built-in Access functions or it can be user defi ned.

The following steps show you how to use an unbound Text Box control to add a page num-
ber to your report:

 1 Click in the middle of the Page Footer section, and resize the page footer so
that it’s inch in height.

 2. Drag a Text Box control from the Controls group on the Design tab of the
Ribbon and drop it into the Page Footer area. Make the text box about three-
quarters of the height of the Page Footer section and about inch wide.

 3. Select the text box’s attached label and change its contents to say Page:.

 4. Select the Text Box control (it says “Unbound”) and enter = Page directly into
the text box. Alternatively, you could open the Property Sheet (press F4) and enter
= [Page] as the text box’s ControlSource property.

 5. Drag the new Text Box control until it’s near the right edge of the report’s
page, as shown in Figure 20.30. You may want to also move the text box’s label so
that it’s positioned close to the text box. The upper-left handle on the label moves
the label independently of the text box.

You can always check your result by clicking the Print Preview button on the toolbar and zooming in on the Page

Footer section to check the page number.

629

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 629

20

FIGURE 20.30

Adding a page-number expression in a Text Box control.

Sizing a Text Box control or Label control

You select a control by clicking it. Depending on the size of the control, from three to
seven sizing handles appear—one on each corner except the upper-left corner and one on
each side. Moving the mouse pointer over one of the sizing handles changes the mouse
pointer to a double-headed arrow. When the pointer changes, click the control and drag it
to the size you want. Notice that, as you drag, an outline appears indicating the size the
Label control will be when you release the mouse button.

If you double-click any of the sizing handles, Access resizes a control to best fi t for text in
the control. This feature is especially handy if you increase the font size and then notice
that the text no longer fi ts the control.

Note that, for Label controls, the best-fit sizing resizes both vertically and horizontally,
although text controls resize only vertically. The reason for this difference is that in Report
Design mode, Access doesn’t know how much of a fi eld’s data you want to display. Later on,
the fi eld’s name and contents might be radically different. Sometimes Label controls are not
resized correctly, however, and have to be adjusted manually.

You can also choose Arrange ➪ Size/Space ➪ To Fit to change the size of the Label control’s text automatically.

Before continuing, you should check how the report is progressing. You should also save the
report frequently as you make changes to it. You could send a single page to the printer,
but it’s probably easier to view the report in Print Preview. Right-click the report’s title bar,
and select Print Preview from the shortcut menu. Figure 20.31 shows a print preview of the
report’s current appearance. The page header information is at the very top of the page,
and the fi rst product record appears below the header.

630

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 630

FIGURE 20.31

A print preview of the report so far.

Controls in page header

Controls in detail section

As you move the mouse over the print preview, the cursor changes to a magnifying glass.
Click any portion of the view to zoom in so that you can closely examine the report’s lay-
out. Only one record per page appears on the report because of the vertical layout. In the
next section, you move the controls around and create a more horizontal layout.

Deleting and cutting attached labels from Text Box controls

To create a more horizontal report, you must move the text-box labels from the Detail sec-
tion to the Page Header section and reposition the Text Box controls to a tabular layout.
Once moved, these controls appear as headings above each column of data and are repeated
on each page of the report.

You can easily delete one or more attached controls in a report. Simply select the desired
controls and press Delete. However, if you want to move the label to the Page Header sec-
tion (instead of simply deleting it), you can cut the label instead of deleting it. When
removing attached controls, there are three choices:

631

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 631

20

 ■ Delete only the Label control.

 ■ Cut the Label control to the Clipboard.

 ■ Delete or cut the Label control and the Text Box control.

Oddly enough, you can’t simply drag a label from the Detail section to the page header.
Dragging an attached label from the Detail section drags its text box along with it. You
must cut the label from the Detail section and paste it into the Page Header section.

If you select the Label control and cut it by pressing Ctrl+X, only the Label control is
removed. If you select the Text Box control and cut or delete it, the Label and Text Box con-
trols are removed. To cut an attached Label control (in this case, the label attached to the
Description text box), follow these steps:

 1. Click the Close Print Preview button on the Ribbon to exit Print Preview mode.

 2. Select the Description label in the Detail section.

 3. Press Ctrl+X (Cut). After you’ve cut the label, you may want to place it somewhere
else. In this example, place it in the Page Header section.

Pasting labels into a report section

It’s as easy to cut labels from controls placed in the Detail section and paste them into the
page header as it is to delete the labels and create new ones in the page header. Regardless,
you now paste the label you cut in the previous steps:

 1. Click anywhere in or on the Page Header section.

 2. Press Ctrl+V (Paste). The Description label appears in the page header.

 3. Repeat for the Quantity in Stock and Cost labels. If you accidentally selected the
data Text Box control and both controls are cut or deleted, click the Undo toolbar
button, or press Ctrl+Z, to undo the action.

If you want to delete only the Text Box control and keep the attached Label control, right-click the Label control and

select Copy from the shortcut menu. Next, to delete the Text Box control and the Label control, select the Text Box

control and press the Delete key. Finally, right-click anywhere on the form and select Paste from the shortcut menu

to paste only the copied Label control to the report.

Moving Label and Text Box controls

Before discussing how to move Label and Text Box controls, it’s important to review a few
differences between attached and unattached controls. When an attached label is created
automatically with a Text Box control, it’s called a compound control. In a compound con-
trol, whenever one control in the set is moved, the other control moves along with it. This
means that moving either the label or the text box also moves the related control.

632

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 632

To move both controls in a compound control, select either of the pair of controls with the
mouse. As you move the mouse pointer over either of the objects, the pointer turns into a
hand. Click the controls and drag them to their new location. As you drag, an outline for
the compound control moves with your pointer.

To move only one of the controls in a compound control, drag the desired control by its
moving handle (the large square in the upper-left corner of the control). When you click a
compound control, it looks like both controls are selected, but if you look closely, you see
that only one of the two controls (Text Box or Label) is selected (as indicated by the pres-
ence of both moving and sizing handles). The unselected control displays only a moving
handle. A pointing fi nger indicates that you’ve selected the move handles and can now
move one control independently of the other. To move either control individually, select the
control’s move handle and drag it to its new location.

To move a label that isn’t attached, simply click any border (except where there is a handle) and drag it.

To make a group selection, click with the mouse pointer anywhere outside a starting point
and drag the pointer through (or around) the controls you want to select. A gray, outlined
rectangle appears, showing the extent of the selection. When you release the mouse but-
ton, all controls the rectangle surrounds are selected. You can then drag the group of con-
trols to a new location.

The Select Behavior option (choose File ➪ Options ➪ Object Designers ➪ Form/Report design view ➪ Selection

Behavior) determines how controls are selected with the mouse. You can enclose them fully (the rectangle must com-

pletely surround the selection) or partially (the rectangle must touch only the control), which is the default.

Make sure you also resize all the controls as shown in the fi gure. Change the size and shape
of the Features Long Text fi eld and the OLE picture fi eld Picture. The OLE picture fi eld dis-
plays as a rectangle with no fi eld name in Design view. (It’s the bottommost control above
the footer in Figure 20.32.)

Place all the controls in their proper position to complete the report layout. Figure 20.32
shows one possible layout of the controls. You make a series of group moves by selecting
several controls and positioning them close to where you want them. Then, if needed, you
can fi ne-tune their position by dragging individual controls.

Use Figure 20.32 as a guide to placing controls on the report.

633

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 633

20

FIGURE 20.32

Rearranging the controls on the report.

At this point, you’re about halfway done. The screen should look something like Figure 20.32.
Remember that these screenshots are taken with the Windows screen resolution set to 1,680
x 1050. If you’re using a lower resolution, or you have large fonts turned on in the Windows
Display Properties (in the Control Panel), you have to scroll the screen to see the entire report.

These steps complete the rough design for this report. There are still properties, fonts, and
sizes to change. When you make these changes, you have to move controls around again.
Use the designs in Figure 20.32 only as a guideline. How it looks to you, as you refi ne the
look of the report in the Report window, determines the fi nal design.

Modifying the appearance of multiple controls

The next step is to apply bold formatting to all the Label controls in the Page Header sec-
tion directly above the section separator. The following steps guide you through modifying
the appearance of text in multiple Label controls:

 1. Select all Label controls in the bottom of the Page Header section by clicking
them one at a time while holding down the Shift key. Alternatively, click in

634

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 634

the vertical ruler immediately to the left of the labels in the Page Header. Access
selects all controls to the right of where you clicked in the vertical ruler. There are
four Label controls to select (refer to Figure 20.32).

Alternatively, you can drag a bounding box around the Label controls in the page
header.

 2. Click the Bold button on the toolbar. After you make the fi nal modifi cations,
you’re fi nished, except for fi xing the picture control. To do this, you need to
change properties, which you do in the next section.

This may seem to be an enormous number of steps because the procedures were designed to show you how laying

out a report design can be a slow process. Remember, however, that when you click away with the mouse, you don’t

realize how many steps you’re doing as you visually design the report layout. With a WYSIWYG (What You See Is What

You Get) layout tool like the Access Report Designer, you might need to perform many tasks, but it’s still easier and

faster than programming. Figure 20.32 shows the fi nal version of the design layout as seen in this chapter. In the

next section, you continue to improve this report layout.

Changing Label and Text Box control properties
To change the properties of a Text Box or Label control, you need to display the control’s
Property Sheet. If it isn’t already displayed, perform one of these actions to display it:

 ■ Double-click the border of the control (anywhere except a sizing handle or move handle).

 ■ Select a control and press F4.

 ■ Right-click the control with the mouse and select Properties.

 ■ Press F4 to open the Properties window, and use the drop-down list at the top of
the window to select the form or control on the form.

The Property Sheet enables you to look at and edit a control’s property settings. Using
tools on the Format tab of the Ribbon, such as the formatting windows and text-formatting
buttons, also changes the property settings of a control. Clicking the Bold button in the
Format tab, for example, sets the control’s Font Weight property to Bold. It’s usually easier
and more intuitive to use the controls on the Format tab of the Ribbon, but many proper-
ties are not accessible through the Ribbon. Plus, objects often have more options available
through the Property Sheet.

The Size Mode property of an OLE object (bound object frame), with its options of Clip, Stretch,
and Zoom, is a good example of a property that is available only through the Property Sheet.

The Image control, which is a bound object frame, presently has its Size Mode property
set to Zoom, which is the default. With Size Mode set to Clip, the picture is displayed in
its original size and Access either cuts off the picture at the edge of its control or shows
extra space around the image. With Size Mode set to Stretch, the image will fi t the control
frame but may be distorted if the control frame has a different aspect ratio than the image.

635

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 635

20

A Size Mode of Zoom keeps the image’s aspect ratio and fi ts the image inside the control
frame. You may fi nd that extra space is shown around the image, but it’s usually a good
trade-off so the image isn’t distorted.

You might consider changing the Border Style property to Transparent. When set to
Transparent, no boxes are drawn around the picture and the picture blends into the report’s
surface. Finally, delete the label bound to the Image control.

The labels for Features and Pictures aren’t needed because a user will surely know what
data is being presented without them. Select each label and press the Delete key to remove
them. Next, reposition the Image control to the right of the Feature control.

These steps complete the changes to your report so far. A print preview of the fi rst few records
appears in Figure 20.33. If you look at the pictures, notice how the picture is properly displayed
and the product’s Features text box now appears across the bottom of each Detail section.

FIGURE 20.33

The report displayed in Print Preview.

636

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 636

Growing and shrinking Text Box controls
When you print or print-preview controls that can have variable text lengths, Access pro-
vides options for enabling a control to grow or shrink vertically, depending on the exact
contents of a record. The Can Grow and Can Shrink properties determine whether a Text Box
control resizes its vertical dimension to accommodate the amount of text contained in its
bound fi eld. Although these properties are usable for any text control, they’re especially
helpful for Text Box controls.

Table 20.1 explains the acceptable values for these two properties.

TABLE 20.1 Text Box Control Values for Can Grow and Can Shrink

Property Value Description

Can Grow Yes If the data in a record uses more lines than the control is defi ned to
display, the control resizes to accommodate additional lines.

Can Grow No If the data in a record uses more lines than the control is defi ned to
display, the control does not resize. Rather, it truncates the data in the
control.

Can Shrink Yes If the data in a record uses fewer lines than the control is defi ned to
display, the control resizes to eliminate blank space. The Can Shrink
property of all controls in the section must be set to Yes before the
section can shrink.

Can Shrink No If the data in a record uses fewer lines than the control is defi ned to
display, the control does not resize to eliminate blank space.

To change the Can Grow settings for a Text Box control, follow these steps:

 1. Select the Features Text Box control.

 2. Display the Property window.

 3. Click the Can Grow property, click the arrow, and select Yes.

The Can Grow and Can Shrink properties are also available for report sections. Use a section’s Property Sheet to

modify these values. Setting a report section’s Can Grow and Can Shrink affects only the section, not the controls

contained within the section. However, you must set the section’s Can Grow to Yes to allow the control within the sec-

tion to grow. If the section’s Can Grow is not set, the control can only expand as far as the section’s border permits.

The report is starting to look good, but you may want to see groups of like data together
and determine specifi c orders of data. To do this, you use sorting and grouping.

637

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 637

20

Sorting and grouping data
You can often make the data on the report more useful to users by grouping the data in
informative ways. Suppose that you want to list your products fi rst by category and then
by description within each category. To do this, you use the Category and Description fi elds
to group and sort the data.

Creating a group header or footer

Grouping on a fi eld in the report’s data adds two new sections—Group Header and Group
Footer—to the report. In the following steps, you use the group header to display the name
of the product category above each group of records. You won’t use the Category group
footer in this example because there are no totals by category or other reasons to use a
group footer.

Follow these steps to create a Category group header:

 1. Click the Group & Sort button in the Grouping & Totals group on the Design tab
of the Ribbon. The Group, Sort, and Total pane appears at the bottom of the screen.

 2. Click the Add a Group button in the Group, Sort, and Total area.

 3. Select Category from the Field List. Access adds Group on Category with A on top
in the Group, Sort, and Total area. Access adds Category Header and Category Footer
sections to the report’s design as soon as you select the Category fi eld for grouping.
The Category Header section appears between the Page Header and Detail sections.
If you defi ne a group footer, it appears below the Detail section, and above the Page
Footer area. If a report has multiple groupings, each subsequent group becomes
the one closest to the Detail section. The groups defi ned fi rst are farthest from the
Detail section.

The Group Properties pane (displayed when you click the More button on the group) dis-
plays a sentence with each option separated by a comma. The options are drop-down lists
or clickable text for setting the property. The options sentence for the Category group con-
tains these choices:

 ■ Group on Category: Determines the fi eld on which to group. You can change this
fi eld even after you’ve set the group fi eld by selecting a different fi eld from the
drop down.

 ■ With A on top: Determines the sort order. In this case it’s alphabetical. Select With
Z on top to reverse the sort.

 ■ By entire value: Groups are separated based on the value in the fi eld. You can also
group on the fi rst character of the fi eld, the fi rst two characters of the fi eld, or any
number of characters that you type into the Characters box in the drop down.

 ■ With no totals: Determines what totals are displayed in the group header or footer.
You can select which fi eld to total and the type of total to display.

638

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 638

 ■ With title: Allows you to specify a title for the group.

 ■ With a header section: Displays the group header section. Choose “without a
header section” to hide the header.

 ■ Without a footer section: Hides the group footer section. Choose “with a footer
section” to display the footer.

 ■ Do not keep together on one page: Allows the group to be continued on the next
page if there is too much information for the current page. Choose “keep whole
group together on one page” to start a new page when there is too much informa-
tion for the current page. Choose “keep header and fi rst record together on one
page” to start a new page only when there isn’t enough room for the fi rst record.

Click the Less button to hide these options once set. The options above are shown for a
grouping on the Category fi eld, which is a text fi eld. Other fi eld types have some of the
same options and some different options. Date fi elds show these options:

 ■ From oldest to newest: Instead of “with A on top” as with text fi elds, date fi elds are
sorted from oldest to newest. Choose “from newest to oldest” to reverse the sort.

 ■ By quarter: Allows you to group by the entire date, by day, by week, by month, by
quarter, by year, or by a custom date or time increment.

The other date fi eld options are the same as for text fi elds and are not repeated. Numeric
fi elds show these options:

 ■ From smallest to largest: Determines the numeric sort. Choose “from largest to
smallest” to reverse the order.

 ■ By entire value: Group by each numeric value individually or by 5s, 10s, 100s,
1,000s, or by a custom interval.

Sorting data within groups
Sorting enables you to determine the order in which the records are viewed on the report,
based on the values in one or more controls. This order is important when you want to
view the data in your tables in a sequence other than that of your input. For example, new
products are added to tblProducts as they’re needed on an invoice. The physical order of the
database refl ects the date and time a product is added. Yet, when you think of the prod-
uct list, you probably expect it to be in alphabetical order by Product ID, and you want to
sort it by Description or the cost of the product. By sorting in the report itself, you don’t
have to worry about the order of the data. Although you can sort the data in the table by
the primary key or in a query by any fi eld you want, there are good reasons to do it in the
report. This way, if you change the query or table, the report is still in the correct order.

In the case of the products report, you want to display the records in each category group
sorted by description. Follow these steps to defi ne a sort order based on the Description
fi eld within the Category grouping:

639

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 639

20

 1. Click the Grouping button on the Design tab of the Ribbon to display the
Group, Sort, and Total area, if it isn’t already open. You should see that the
Category group already exists in the report.

 2. Click the Add a Sort button in the Group, Sort, and Total area.

 3. Select Description in the Field List. Notice that Sort by defaults to “with A on top.”

 4. Close the Group, Sort, and Total area by clicking the X in the upper-right
corner. The Group, Sort, and Total section should now look like Figure 20.34.

FIGURE 20.34

The Group, Sort, and Total area completed.

Although you used a fi eld in this example, you can also sort (and group) with an expres-
sion. To enter an expression, click the Add a Sort or Add a Group button in the Group, Sort,
and Total area, and then click the Expression button at the bottom of the Field List. The
Expression Builder dialog box opens, enabling you to enter any valid Access expression,
such as in = [RetailPrice]-[Cost].

To change the sort order for fi elds in the Field/Expression column, simply click the drop-
down arrow to the right of the With A on Top button (see Figure 20.34) to display the Sort
Order list. Select “with Z on top” from the sort options that appear.

Removing a group

To remove a group, display the Group, Sort, and Total area, select the group or sort specifi er
to delete, and then press the Delete key. Any controls in the group header or footer will be
removed.

Hiding a section

Access also enables you to hide headers and footers so that you can break data into groups
without having to view information about the group itself. You can also hide the Detail sec-
tion so that you see only a summary report. To hide a section, follow these steps:

 1. Click the section you want to hide.

 2. Display the section’s Property Sheet.

 3. Click the Visible property and select No from the drop-down list in the prop-
erty’s text box.

640

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 640

Sections are not the only objects in a report that can be hidden; controls also have a Visible property. This property

can be useful for expressions that trigger other expressions.

Sizing a section

Now that you’ve created the group header, you might want to put some controls in the section,
move some controls around, or even move controls between sections. Before you start manipu-
lating controls within a section, you should make sure the section is the proper height.

To modify the height of a section, drag the top border of the section below it. For example,
if you have a report with a page header, Detail section, and a page footer, change the
height of the Detail section by dragging the top of the Page Footer section’s border. You can
make a section larger or smaller by dragging the bottom border of the section.

For this example, change the height of the group header section to inch by following
these steps:

 1. Move your mouse pointer to the bottom of the Category Header section. The
pointer changes to a horizontal line split by two vertical arrows.

 2. Select the top of the Detail section (which is also the bottom of the Category
Header section).

 3. Drag the selected band lower until three dots appear in the vertical ruler (")
and release the mouse button when you have the band positioned. The gray line
indicates where the top of the border will be when you release the mouse button.

Moving controls between sections

You now want to move the Category control from the Detail section to the Category Header
section. You can move one or more controls between sections simply by dragging the con-
trol with your mouse from one section to another or by cutting it from one section and
pasting it to another section:

 1. Select the Category control in the Detail section and drag it up to the Category
Header section, as shown in Figure 20.35. You should now perform the following
steps to complete the report design.

 2. Delete the Category label from the group header.

 3. Set the Border Style property of the Category control and all the controls in the
Page Header to Transparent.

 4. Change the font size, bold, and font color of the Category control to visually
distinguish it from the records below it. Figure 20.35 shows the placement of the
controls on the completed report design.

641

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 641

20

FIGURE 20.35

Completing the Group Header section.

Access names the group header and footer sections automatically. To change this name, select the group header in

the Property Sheet and change the Name property to something more appropriate. For example, change the Name

property from GroupHeader0 to CategoryHeader so that it’s easier to identify.

Adding page breaks
Access enables you to force page breaks based on groups. You can also insert forced breaks
within sections, except in Page Header and Page Footer sections.

In some report designs, it’s best to have each new group begin on a different page. You can
achieve this effect easily by using the Force New Page property of a group section, which
enables you to force a page break every time the group value changes.

The four Force New Page property settings are:

 ■ None: No forced page break (the default)

 ■ Before Section: Starts printing the current section at the top of a new page every
time there is a new group

642

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 642

 ■ After Section: Starts printing the next section at the top of a new page every time
there is a new group

 ■ Before & After: Combines the effects of Before Section and After Section

To force a page break before the Category group:

 1. Click anywhere in the Category header, or click the Category Header bar above
the section.

 2. Display the Property Sheet and select Before Section in the Force New Page
property’s drop-down list.

Alternatively, you can set the Force New Page property to After Section in the Category Footer section.

Sometimes, you want to force a page break—but not on the basis of a grouping. For
example, you might want to split a report title across several pages. The solution is to use
the Page Break control from the Controls group of the Ribbon. Drag the Page Break control
and drop it on the report where you want a page break to occur each time the page prints.

Be careful not to split a control and show it over two pages. Place page breaks above or below controls without over-

lapping them.

Improving the Report’s Appearance
As you near completion of testing your report design, you should also test the printing of
your report. Figure 20.36 shows the fi rst page of the Product Display report. There are a
number of things still to do to complete the report.

The report is pretty boring and plain. If your goal is to just look at the data, this report is
done. However, you need to do more before you’re really done.

Although the report has good, well-organized data, it isn’t of professional quality. To make a
report more visually appealing, you generally add a few graphic elements like lines and rect-
angles, and possibly some special effects such as shadows or sunken areas. You want to make
sure sections have distinct areas separate from each other using lines or colors. Make sure
controls aren’t touching each other (because text might eventually touch if a value is long
enough). Make sure text is aligned with other text above or below and to the right or left.

643

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 643

20

FIGURE 20.36

The report is pretty plain and uninteresting at this point.

Adjusting the page header
The page header contains several large labels positioned far apart from each other. The col-
umn headers are small and just hanging there. They could be made one font size larger. The
entire page header should be separated from the Detail section by a horizontal line.

If you wanted to add some color to your report, you could make the report name a dif-
ferent color. Be careful not to use too many colors unless you have a specifi c theme in
mind, though. Most serious business reports use one or two colors, and rarely more than
three with the exception of graphs and charts. Furthermore, colors are not much use when
printed on most laser printers.

Figure 20.37 shows these changes. The Product Display label has been changed to a blue
background color with white foreground text. This is done by fi rst selecting the control
and then selecting Blue for the background. They’ve also been placed under each other and
left aligned. The rectangle around each of the controls was also properly sized by double-
clicking each control’s sizing handles.

644

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 644

FIGURE 20.37

Adjusting controls in the page header.

The next step is to add a nice thick line separating the Page Header section from the
Category Group Header section:

 1. Select the Line tool in the Controls group of the Ribbon.

 2. Drag a line below the Description and QtyInStock labels, as shown in
Figure 20.37.

 3. Select the line and change the Border Width property to 2 pt on the line’s prop-
erty window.

Creating an expression in the group header
Figure 20.37 also shows that the Category fi eld has been replaced by an expression. If you
place the value of the category in the Group Header section, it looks out of place and may
not be readily identifi able. Most data values should have some type of label to identify
what they are.

The expression ="Category: " & [Category] displays Category: followed by a space
and the value of the Category fi eld (such as Category: Cars) in the text box. The &

645

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 645

20

symbol (the concatenation operator) joins strings. Make sure you leave a space after the
colon or the value won’t be separated from the label. The text control has been bolded and
underlined, and the font point size has been increased as well.

You may fi nd that Access complains about a circular reference on the Category text box
after you change the control’s ControlSource. This happens because the name of the control
is Category, and the text box is bound to a fi eld named Category. Access doesn’t understand
that [Category] in the expression you entered as the ControlSource actually refers to the
fi eld, not the text box. (A text box’s value can’t be based on the text box’s contents—that’s
the defi nition of circular reference.) The solution is to rename the text box to txtCategory to
distinguish it from its bound fi eld.

When you create a bound control, it uses the name of the data fi eld as the default control name. Using the control in

an expression without changing the name of your control, causes circular references. You must manually rename the

control to something other than the original fi eld name. This is another reason why a simple naming convention, such

as prefi xing text boxes with txt, is such a good idea. You’ll avoid a lot of nagging problems by adopting a naming con-

vention for the controls on your Access reports.

Follow these steps to complete the expression and rename the control:

 1. Select the Category control in the Category Group Header section and display
the property window for the control.

 2. Change the ControlSource property to ="Category: " & [Category].

 3. Change the Name property to txtCategory.

The fi nal formatting step for the Category Header is to change the Border Style property
of the txtCategory control to Transparent. You have visually distinguished this control by
changing the font, and a border is unnecessary.

Creating a report header
The Report Header section is printed only once for the entire report. The report header
is the logical place to put things such as the report’s title, a logo, and the print date and
time. Having this information in the report header makes it easy for any user of the report
to know exactly what’s in the report and when the report was printed.

With the report open in Design view, the Ribbon includes a Design tab. Within the Header/
Footer group on the Design tab are a number of controls that help you add important fea-
tures to the report’s header and footer.

For example, click the Logo button, and Access opens the Insert Picture dialog box (shown
in Figure 20.38) for browsing to an image fi le to insert as the report’s logo. Virtually any
image fi le (JPG, GIF, BMP, and so on) is a candidate for inclusion as the report’s logo.

646

Part V: Working with Access Forms and Reports

c20.indd 10/06/2015 Page 646

FIGURE 20.38

Browsing to an image fi le to use as the report’s logo.

The Title button in the Header/Footer group adds the report’s name as the report header’s
title, and positions the edit cursor within the title label to make it easy for you to adjust
the report’s title.

Finally, the Date and Time button opens the Date and Time dialog box (shown in Figure
20.39). Specify the date and time format you’d like to use for the Date control by selecting
the Date and Time control in the Header/Footer group on the Design tab of the Ribbon.

The completed report in Print Preview is shown in Figure 20.40. The report header in this
fi gure was created in less than a minute using the tools built into Access 2016.

 As you close the report, Access will prompt you to save the report if you have not yet
done so.

647

Chapter 20: Presenting Data with Access Reports

c20.indd 10/06/2015 Page 647

20

FIGURE 20.39

Specifying the date and time format.

FIGURE 20.40

The completed report in Print Preview.

649

c21.indd 10/06/2015 Page 649

CHAP T ER

21
Advanced Access Report
Techniques

IN THIS CHAPTER

Organizing reports to present the data in a logical manner

Producing more attractive reports

Providing additional information about the report

Learning other approaches to enhance your presentation

B
ack in the bad old days, most computer-generated reports were printed on pulpy, green-bar
paper in strict tabular (row-and-column) format. Users were expected to further process the
data to suit their particular needs—often a time-consuming process that involved manually

summarizing or graphing the data.

Things have changed. Visually oriented businesspeople want useful, informative reports produced
directly from their databases. No one wants to spend time graphing data printed in simple tabular
format anymore. Today, users want the software to do much of the work for them. This means that
reporting tools such as Access must be able to produce the high-quality, highly readable reports
users demand.

Because Access is a Windows application, you have all the Windows facilities at your disposal:
TrueType fonts, graphics, and a graphical interface for report design and preview. In addition,
Access reports feature properties and an event model (although with fewer events than you saw on
forms) for customizing report behavior. You can use the Visual Basic language to add refi nement
and automation to the reports you build in Access.

In this chapter, we provide some general principles and design techniques to keep in mind as you
build Access reports. These principles will help make your reports more readable and informative.

 See Chapter 20 for information on the the basic process of building Access reports

650

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 650

All the examples in this chapter can be found in the Chapter21.accdb sample database on this book’s website.

Please note that many of the fi gures in this chapter appear with the report Design view grid turned off to make the

report design details easier to see.

This chapter uses data from the Northwind Traders example database. The Northwind data is ideally suited for the

example report described in this chapter and is a good model for most Access databases. The techniques described

in the following sections should be adaptable to any well-designed database without too much trouble.

Grouping and Sorting Data
To be most useful, the data on a report should be well organized. Grouping data that’s simi-
lar can reduce the amount of data presented, which makes it easier to fi nd specifi c data.
As you’ll see in this section, the Access Report Builder offers a fair degree of fl exibility in
this regard.

 Grouping and sorting was introduced in Chapter 20. This section expands on that information and pro-

vides more examples.

Grouping alphabetically
Data is often displayed with too much granularity to be useful. A report displaying every sale
made by every employee arranged in a tabular format can be diffi cult to read. Anything you
do to reduce the overload of tabular reports can make the data more meaningful.

The Group, Sort, and Total pane (which is opened by clicking the Group & Sort button in the
Grouping & Totals group on the Design tab) controls how data is grouped on Access reports.
Sorting alphabetically arranges the records in alphabetical order based on the fi rst char-
acter of the company name, while grouping by company name creates a separate group for
each company.

Clicking the Add a Group button below the Sorting and Grouping area opens a list from
which you choose a fi eld to use for grouping data on the report. In Figure 21.1, both
CompanyName and OrderDate have been selected, with CompanyName being grouped fi rst
and then OrderDate sorted within the company groups.

 ON THE WEB

651

Chapter 21: Advanced Access Report Techniques

c21.indd 10/06/2015 Page 651

21

FIGURE 21.1

Alphabetical grouping is easy.

Typically, data is grouped on the entire contents of a fi eld or combination of fi elds. Simple
grouping on the CompanyName fi eld means that all records for Bottom Dollar Markets
appear together as a group and all the records for Ernst Handel appear together as another
group. You can, however, override the default and group based on prefix characters by
changing the Group On property in the Group, Sort, and Total dialog box.

Notice the More button in the CompanyName sorting bar in Figure 21.1. Clicking the More
button reveals the sorting details you want to apply to the CompanyName fi eld (see Figure
21.2). By default, text fi elds such as CompanyName are sorted alphabetically by the fi eld’s
entire contents. You can change this behavior to alter how Access applies grouping to the
fi eld’s data (see Figure 21.3).

FIGURE 21.2

Many options are available for grouping and sorting.

FIGURE 21.3

Modifying a text-based grouping.

652

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 652

When you select by fi rst character, the GroupInterval property tells Access how many char-
acters to consider when grouping on prefi x characters. In this case, the grouping interval
is set to 1, meaning, “Consider only the first character when grouping.” You could choose
to group by the fi rst character, the fi rst two characters, or any number of characters in the
fi eld, depending on your requirements.

Notice also that the CompanyName fi eld is set to ascending sort (with A on top), which
causes alphabetic grouping starting at names beginning with A and progressing to names
beginning with Z. With this combination of properties, all companies starting with A will
be grouped together, those beginning with B will be in another group, and so on.

The report for this example (rptSalesJanuarayAlpha1, shown in Figure 21.4) shows pur-
chases during the month of January, sorted by customer name. The order date, the order ID,
and the employee fi lling the order are shown across the page. The result of the sorting and
grouping specifi cation in Figure 21.1 is shown in Figure 21.4.

FIGURE 21.4

A rearrangement of the data shown in Figure 21.13, later in this chapter.

It’s important to note that the data shown in Figure 21.4 is identical to the data shown in
Figure 21.13. In fact, the same record source (qrySalesJanuary, shown in Figure 21.11 later
in this chapter) is used for both of these reports. Often, a data rearrangement yields useful
information. For example, you can easily see that Bottom-Dollar Market placed three orders

653

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 653

in January, one with salesperson Steven Buchanan, one with Robert King, and one with
Nancy Davolio.

Let’s assume you want to refi ne the rptSalesJanuaryAlpha1 report by labeling the groups
with the letters of the alphabet. That is, all customers beginning with A (Antonio Moreno
Tagueria and Around the Horn) are in one group, all customers beginning with B (Blondel
père et fi ls, Bon app’, and Bottom-Dollar Market) are in one group, and so on. Within each
group, the company names are sorted in alphabetical order. The sales to each customer are
further sorted by order date.

To emphasize the alphabetical grouping, a text box containing the fi rst character for each
group has been added to the report (see rptSalesJanuaryAlpha2 in Figure 21.5). Although
the dataset in this example is rather small, in large reports such headings can be useful.

FIGURE 21.5

An alphabetic heading for each customer group makes the rptSalesJanuaryAlpha2 report
easier to read.

Adding the text box containing the alphabetic character is easy:

 1. Right-click the report’s title bar and choose Design View.

 2. Choose Group & Sort from the Design tab of the Ribbon. The Group, Sort, and
Total task pane appears.

654

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 654

 3. Add a Group for CompanyName.

 4. Click More, and ensure that With a Header Section is selected. This action adds
a band for a group based on the CompanyName information (see Figure 21.6).

 5. Select By First Character instead of the default By Entire Value.

 6. Expand the CompanyName group header and add an unbound text box to the
CompanyName group header.

 7. Set the text box’s Control Source property to the following expression:
=Left$([CompanyName],1)

 8. Set the other text box properties (Font, Font Size, and so on) appropriately.

 9. While you’re grouping on the fi rst character of the company name, you still
need to ensure that company names are sorted correctly. Click Add a Sort and
select the CompanyName fi eld again. Click More to ensure that the entire fi eld is
going to be sorted, and that no header section will be added.

 10. Finally, add a sort for OrderDate so that multiple orders for the same company
are in order. When you’re done, the report in Design view should appear as shown
in Figure 21.6.

FIGURE 21.6

rptSalesJanuaryAlpha2 in Design view.

655

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 655

Notice the CompanyName group header that was added by the Group Header setting in the
Group, Sort, and Total pane. The unbound text box in the CompanyName Header displays
the expression used to fi ll it.

This little trick works because all the rows within a CompanyName group have the fi rst
character in common. Using the Left$() function to peel off the fi rst character and use
it as the text in the text box in the group header provides an attractive, useful heading for
the CompanyName groups.

Grouping on date intervals
Many reports require grouping on dates or date intervals (day, week, or month). For exam-
ple, Northwind Traders may want a report of January sales grouped on a weekly basis so
that week-to-week patterns emerge.

Fortunately, the Access report engine includes just such a feature. An option in the Group,
Sort, and Total task pane enables you to quickly and easily group report data based on
dates or date intervals. Just as we grouped data based on prefi x characters in an earlier
example, we can group on dates using the group’s GroupOn property. Figure 21.7 shows
the January sales report grouped by each week during the month. This report is named
rptSalesJanuaryByWeek.

FIGURE 21.7

The January sales data grouped by each week during the month.

656

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 656

This report is easy to set up. Open the Group, Sort, and Total task pane again and establish
a group for the OrderDate fi eld. Set the OrderDate GroupHeader option to Yes and select the
the Group On drop-down list (shown in Figure 21.8). Notice that Access is smart enough
to present Group On options (Year, Quarter, Month, Week, and so on) that make sense for
Date/Time fi elds like OrderDate. Selecting Week from this list instructs Access to sort
the data on the OrderDate, grouped on a week-by-week basis. Note, though, that you still
need to sort by the entire value of the OrderDate to ensure that they’re in sequential order
within the week.

FIGURE 21.8

OrderDate is a Date/Time fi eld, so the grouping options are relevant for date and time data.

The label at the top of the group identifying the week (the fi rst one reads
Week beginning 1/1/12:) is the product of the following expression in an unbound
text box in the OrderDate group header:

="Week beginning " & [OrderDate] & ":"

See the Design view of rptSalesJanuaryByWeek in Figure 21.9. Notice the unbound text
box in the OrderDate group header. This text box contains the value of the order date that
Access used to group the data in the OrderDate grouping.

Hiding repeating information
An easy improvement to tabular reports is to reduce the amount of repeated information on
the report. Figure 21.10 shows a typical tabular report (rptTabularBad) produced by Access,
based on a simple query of the Northwind Traders data.

657

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 657

FIGURE 21.9

The Design view of rptSalesJanuaryByWeek. Notice the expression in the OrderDate group
header.

FIGURE 21.10

Simple tabular reports can be confusing and boring.

658

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 658

The report in Figure 21.10 was produced with the Access Report Wizard, selecting the tabu-
lar report format and all defaults. The query underlying this report selects data from the
Customers, Orders, and Employees tables in Chapter21.accdb and is shown in Figure
21.11. Notice that the data returned by this query is restricted to the month of January
2012. Also, the fi rst and last names of employees are concatenated as the Name fi eld.

FIGURE 21.11

The simple query underlying rptTabularBad.

The query in Figure 21.11 (qrySalesJanuary) is used as the basis of several examples in
this chapter.

You can signifi cantly improve the report in Figure 21.10 simply by hiding repeated infor-
mation in the Detail section. As soon as Andrew Fuller’s name is given, there’s no need to
repeat it for every sale that Andrew made in January 2012. The way the data is arranged
on rptTabularBad, you have to search for where one employee’s sales data ends and another
employee’s data begins.

659

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 659

Making the change to hide the repeated values is very easy:

 1. Open the report in Design view.

 2. In the Detail section, select the EmployeeName fi eld containing the employee’s
fi rst and last names.

 3. Open the Property Sheet for the Name fi eld (see Figure 21.12).

FIGURE 21.12

The default property values sometimes lead to unsatisfactory results.

 4. Change the Hide Duplicates property to Yes. The default is No, which directs
Access to display every instance of every fi eld.

 5. Put the report back to Print Preview mode and enjoy the new report layout
(shown in Figure 21.13). The report shown in Figure 21.13 is rptTabularGood.

Distinguishing the sales fi gures for individual employees in Figure 21.13 is much easier
than it is when the repeating information is printed on the report. Notice that no fancy
programming or report design was required. A simple property-value change resulted
in a much more readable and useful report. (Mainframe report designers working with

660

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 660

traditional report writers would kill for a report as good looking as the one shown in
Figure 21.13!)

FIGURE 21.13

Much better! Hide that repeating information.

The Hide Duplicates property applies only to records that appear sequentially on the report.
As soon as Access has placed a particular Name value on the report, the name won’t be
repeated in records immediately following the current record. In Figure 21.13, the records
are sorted by the EmployeeName fi eld, so all records for an employee appear sequentially as
a group. If the report were sorted by another fi eld (for example, OrderID or OrderDate), the
Hide Duplicates property set on the Name fi eld would apply only to those instances where
the employee’s name coincidentally appeared sequentially in multiple records on the report.

The Hide Duplicates property can be applied to multiple controls within a report. As long as
you understand that Hide Duplicates only hides subsequent duplicate values within a detail
section, you should be able to achieve the results you expect. (Note, though, that you may
occasionally run into unexpected results if only one of the multiple fi elds changes.)

Hiding a page header
Sometimes you need to display a page header or footer on just the fi rst page of a report. An
example is a terms and conditions clause in the header of the fi rst page of an invoice. You

661

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 661

want the terms and conditions to appear only on the fi rst page of the invoice but not on
subsequent pages.

 Some of the examples in this chapter use Visual Basic for Applications (VBA). VBA is discussed more

fully in Chapters 24–29.

Add an unbound Text Box control to the report with its ControlSource property set to the
expression =HideHeader(). Delete the text box’s label. The HideHeader() function
returns a null string, making the textbox invisible.

You can’t actually set the control’s Visible property to No; if you did, the control wouldn’t be able to respond to

events.

The HideHeader() function is as follows:

Function HideHeader() As String

 'Set the visible property of the header
 Me.Section("PageHeader0").Visible = False
 HideHeader = vbNullString

End Function

The invisible text box can be placed virtually anywhere on the fi rst page but is most logi-
cally located in the page footer. The assumption is that, because the page header is the fi rst
item printed on the page, you’ll always get the fi rst page header. Once the page footer con-
taining the invisible text box has been processed, the page header’s Visible property will be
set to False, and the page header will not be seen on any other pages in the report.

Starting a new page number for each group
Sometimes a report will contain a number of pages for each group of data. You might want
to reset page numbering to 1 as each group prints so that each group’s printout will have
its own page-numbering sequence. For example, assume you’re preparing a report with sales
data grouped by region. Each region’s sales may require many pages to print, and you’re
using the ForceNewPage property to ensure that grouped data doesn’t overlap on any page.
But how do you get the page numbering within each group to start at 1?

The report’s Page property, which you use to print the page number on each page of a
report, is a read/write property. This means that you can reset Page at any time as the
report prints. Use the group header’s Format event to reset the report’s Page property to 1.
Every time a group is formatted, Page will be reset to 1 by the following code:

Private Sub GroupHeader0_Format(Cancel As Integer, FormatCount As Integer)
 Me.Page = 1
End Sub

662

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 662

Use the Page property to display the current page number in the page header or footer as
usual. For example, include the following expression in an unbound text box in the page
footer:

= "Page " & [Page]

The report named rptResetPageEachGroup is included in Chapter21.accdb and shows
this technique. Unfortunately, it’s not nearly as easy to count the pages within a group so
that you could put a “Page x of y” in the page footer, where y is the number of pages within
the group.

Formatting Data
In addition to sorting and grouping data, you can make reports more useful by formatting
them to highlight specifi c information. Numbering the entries or using bullets can make
things stand out, as can using lines or spaces to separate parts of the report. Ensuring that
the elements on the report are positioned in a consistent manner is important as well; you
might have all the necessary data in a report, but poor presentation can leave a very nega-
tive impression on the users. The techniques discussed in this section will help you produce
reports that are more professional looking.

Creating numbered lists
By default, the items contained on an Access report are not numbered. They simply appear
in the order dictated by the settings in the Group, Sort, and Total task pane.

Sometimes it would be useful to have a number assigned to each entry on a report or within
a group on a report. You might need a number to count the items in a list or uniquely iden-
tify items in the list. For example, an order details report might contain an item number for
each item ordered, plus a fi eld for items ordered, showing how many things were ordered.

The Access Running Sum feature provides a way to assign a number to each item in a list
on an Access report. For example, the Northwind Traders sales management has asked for
a report showing the sum of all purchases by each customer during the month of January,
sorted in descending order so that the top purchaser appears at the top. Oh, yes—and they
want a number assigned to each line in the report to provide a ranking for the Northwind
customers.

What an assignment! The query to implement this request is shown in Figure 21.14
(qryCustomerPurchasesJanuary). This query sums the purchases by each customer for the
month of January 2012. Because the Purchases column is sorted in descending order, the
customers buying the most product will appear at the top of the query results set. The

663

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 663

OrderDate fi eld is not included in the query results and is used only as the query’s selection
criterion (notice the Where in the Total row).

FIGURE 21.14

An interesting query that sums data and sorts the query results in descending order of
the sum.

Although you could do much of this work at run time using VBA to programmatically sum
the values returned by the query or a SQL statement in the report’s RecordSource property,
you should always let the Access query engine perform aggregate functions. All Access
queries are optimized when you save the query. You’re guaranteed that the query will
run as fast as possible—much faster than a fi lter based on a SQL statement in a report’s
RecordSource property.

The Access Query Builder’s aggregate functions perform fl awlessly. Furthermore, ACE will perform the aggregate

function exactly the same way every time the query is run. There is no reason you should be tempted to manually sum

data when the query will do it for you.

The basic report (rptUnNumberedList) prepared from the data provided by
qryCustomerPurchasesJanuary is shown in Figure 21.15. All sorting options have been
removed from the Group, Sort, and Total dialog box to permit the records to arrange them-
selves as determined by the query.

664

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 664

FIGURE 21.15

A straightforward report (rptUnNumberedList) produced with data from
qryCustomerPurchasesJanuary.

Adding a Ranking column to the simple report you see in Figure 21.15 is not diffi cult.
Although the information that’s shown in Figure 21.15 is useful, it’s not what the user
asked for.

To add a Ranking column to the report, use the RunningSum property of an unbound text
box to sum its own value over each item in the report. When the RunningSum property is
set to Over Group, Access adds 1 to the value in this text box for each record displayed in
the Detail section of the report (RunningSum can also be used within a group header or
footer). The alternate setting (Over All) instructs Access to add 1 each time the text box
appears in the entire report. Add an unbound text box to the left of the CompanyName
text box on the report, with an appropriate header in the Page Header area. Set the
RecordSource property for the text box to =1 and the RunningSum property to Over All.
Figure 21.16 shows how the Rank text box is set up on rptNumberedList.

 Chapter 20 discuss how to move labels from the Detail section to another section.

When this report (rptNumberedList) is run, the Rank column is fi lled with the running sum
calculated by Access (see Figure 21.17). Once again, the data in this report is the same as
in other report examples. The main difference is the amount of manipulation done by the
query before the data arrives at the report and the additional information provided by the
running sum.

665

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 665

FIGURE 21.16

The value in the unbound text box named txtRank will be incremented by 1 for each record in
the report.

FIGURE 21.17

The Running Sum column provides a ranking for each customer in order of purchases during
January.

666

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 666

Reports can contain multiple running sum fi elds. You could, for example, keep a running
sum to show the number of items packed in each box of a multiple-box order while another
running sum counts the number of boxes. The running sum starts at zero, hence the need
to initialize it to 1 in the Control Source property on the Property Sheet.

You can also assign a running sum within each group by setting the RunningSum property
of the unbound text box to Over Group instead of Over All. In this case, the running sum
will start at zero for each group. So, be sure to set the ControlSource property of a group’s
running sum to 1.

Creating bulleted lists
You can add bullet characters to a list instead of numbers, if you want. Instead of using
a separate fi eld for containing the bullet, however, you can simply concatenate the bullet
character to the control’s RecordSource property—a much easier solution. Access will “glue”
the bullet character to the data as it’s displayed on the report, eliminating alignment prob-
lems that might occur with a separate unbound text box.

The design of rptBullets is shown in Figure 21.18. Notice the bullet character in the
txtCompanyName text box as well as in the Property Sheet for this text box.

FIGURE 21.18

The bullet character is added to the ControlSource property of the txtCompanyName
text box.

667

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 667

The bullet is added by exploiting a Windows feature. Position the text insertion charac-
ter in the RecordSource property for the CompanyName fi eld, hold down the Alt key, and
type 0149. Windows inserts the standard Windows bullet character, which you see in the
Property Sheet. Looking at Figure 21.18, you can see that the bullet character is inserted
correctly into the text box on the report. The expression you use in the ControlSource prop-
erty is the following:

= "•" & Space$(2) & [CompanyName]

where the bullet is inserted by the Alt+0149 trick.

You can produce the same effect by using the following expression in the text box:

= Chr(149) & Space$(2) & [CompanyName]

This expression concatenates the bullet character—returned by Chr(149)—with the data
in the CompanyName fi eld.

This particular trick only works if the character set (such as Arial) assigned to the control (Label or Text Box) includes

a bullet character as the 149th ASCII character. Not all fonts accessible by Access applications include a bullet char-

acter, but popular typefaces such as Arial do tend to include this character.

The report now appears as shown in Figure 21.19. You can increase the number in the
Space$() function to pad the white space between the bullet and the text. Because the
bullet character and CompanyName fi eld have been concatenated together in the text box,
they’ll be displayed in the same typeface. Also, adding the bullet character to the text box
containing the company name guarantees that the spacing between the bullet and fi rst
character of the company name will be consistent in every record. When using propor-
tionally spaced fonts such as Arial, it can sometimes be diffi cult to get precise alignment
between report elements. Concatenating data in a text box eliminates spacing problems
introduced by proportionally spaced characters. Note, though, that if the amount of text in
the text box exceeds a single row, subsequent rows will not be indented.

You might want to add other special characters to the control. For a complete display of the
characters available in the font you’ve chosen for the Text Box control, run Charmap
.exe, the Windows Character Map application (see Figure 21.20). Be sure to select the font
you’ve chosen for the Text Box control. The only constraint on the characters you use on an
Access report is that the font used in the text boxes on the report must contain the speci-
fi ed characters. Not all Windows TrueType character sets include all the special characters,
like bullets.

668

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 668

FIGURE 21.19

Use a Windows feature to insert the bullet in front of the CompanyName fi eld.

FIGURE 21.20

Charmap is a useful tool for exploring Windows font sets.

669

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 669

Charmap is quite easy to use. Select a font from the drop-down list at the top of the
dialog box, and the main area fi lls with the font’s default character set. Some character
sets are incredibly large. For example, the Arial Unicode MS font includes more than 53,000
different characters, including traditional and simplifi ed Chinese, Japanese Kanji, and
Korean Hangul character sets.

Most characters in a Windows font are accessible through the Chr$() function. The page
footer of rptBullets includes a text box fi lled with characters specifi ed by the Chr$()
function. For example, the smiley face character in the Wingdings font is specifi ed with
Chr$(74). Some of the characters displayed by Charmap are identifi ed only by their
hexidecimal values. If the decimal value is not given, the hexidecimal value can be
used with Chr$() by using the CLng() function to convert the hex value to integer:
Chr$(CLng("&H00A9")) displays the familiar copyright symbol (©) when used to set the
contents of a control set to the Arial font.

Adding emphasis at run time
You might add a number of hidden controls to your reports to reduce the amount of clut-
ter and unnecessary information. You can hide and show controls based on the value of
another control. You hide a control, of course, by setting its Visible property to False (or
No) at design time. Only when the information contained in the control is needed do you
reset the Visible property to True.

An example might be a message to the Northwind Traders customers that a certain item has
been discontinued and inventory is shrinking. It’s silly to show this message for every item
in the Northwind catalog; including the number of units in stock, in conjunction with a
message that a particular item has been discounted, might encourage buyers to stock up on
the item.

Figure 21.21 shows rptPriceList in Print Preview mode. (You may have to right-click
on the report name and select Print Preview from the context menu.) Notice that the
Guarana Fantastica beverage product appears in italics, the price is bold italics, and the
Only 20 units in stock! message appears to the right of the product information.

Figure 21.22 reveals part of the secret behind this technique. The visible unit price text
box is actually unbound. This is the text box used to display the unit price to the user.
Another text box is bound to the UnitPrice fi eld in the underlying recordset, but it’s
hidden by setting its Visible property to No. Just to the left of the hidden UnitPrice fi eld
is a hidden check box representing the Discontinued fi eld. txtMessage, which contains the
Only x units in stock! message, is also hidden.

670

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 670

FIGURE 21.21

Can you tell Guarana Fantastica is on sale?

FIGURE 21.22

rptPriceList in Design view reveals how this effect is implemented.

671

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 671

Use the Detail section’s Format event to switch the Visible property of txtMessage to True
whenever txtDiscontinued contains a true value. The code is quite simple:

Private Sub Detail1_Format(Cancel As Integer, _
 FormatCount As Integer)

 Me.txtProductName.FontItalic = Me.Discontinued.Value
 Me.txtPrice.FontItalic = Me.Discontinued.Value
 Me.txtPrice.FontBold = Me.Discontinued.Value

 'Cut price in half for discontinued
 Me.txtPrice = Me.UnitPrice * IIf(Me.Discontinued.Value, 0.5, 1)
 Me.txtMessage.Visible = Me.Discontinued.Value

End Sub

In this procedure, Me is a shortcut reference to the report. You must explicitly turn off the
italics, bold, and other font characteristics when the product is not discontinued; other-
wise, once a discontinued product has been printed, all products following the discontin-
ued product will print with the special font attributes. The font characteristics you set in
a control’s Property Sheet are just the initial settings for the control. If you change any of
those properties at run time, they stay changed until modifi ed again. Similarly, txtMessage
must be hidden after it’s been displayed by setting its Visible property to False, or in this
case the value of Discontinued.

Avoiding empty reports
If Access fails to fi nd valid records to insert into the Detail section of a report, all you’ll see
is a blank Detail section when the report is printed. To avoid this problem, attach code to
the report’s NoData event that displays a message and cancels the print event if no records
are found.

The NoData event is triggered when Access tries to build a report and fi nds no data in the
report’s underlying recordset. Using NoData is easy:

Private Sub Report_NoData(Cancel As Integer)

 MsgBox "There are no records for this report."
 Cancel = True

End Sub

The Cancel = True statement instructs Access to stop trying to show the report. The
user will see the dialog box shown in Figure 21.23 and will avoid getting a report that can’t
be printed. (Open rptEmpty in Chapter21.accdb for this example.)

672

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 672

FIGURE 21.23

Inform the user that there are no records to print.

Because the NoData event is tied to the report itself, don’t look for it in any of the report’s
sections. Simply add this code as the report’s NoData event procedure, and your users will
never wonder why they’re looking at a blank report.

Inserting vertical lines between columns
You can easily add a vertical line to a report section whose height is fi xed (like a group
header or footer). Adding a vertical line to a section that can grow in height (like a Detail
section on a grouped report) is more diffi cult. It’s really diffi cult to get a vertical line
between columns of a report (see rptVerticalLines in Figure 21.24). If you simply add a ver-
tical line to the right side of a section of a snaking columns report, the line will appear to
the right of the rightmost column on the page. You have to be able to specify where verti-
cal lines will appear on the printed page.

Reports using snaking columns are discussed in the “Adding Even More Flexibility” section
later in this chapter.

Although you add most controls at design time, sometimes you have to explicitly draw a
control as the report is prepared for printing. The easiest approach in this case is to use the
report’s Line method to add the vertical line at run time. The following subroutine, trig-
gered by the Detail section’s Format event, draws a vertical line 3 inches from the left
printable margin of the report:

Private Sub Detail_Format(Cancel As Integer, FormatCount As Integer)
 Dim X1 as Single
 X1 = 3.5 * 1440
 Me.Line (X1, 0)-(X1, 32767)
End Sub

The syntax of the Line method is as follows:

object.Line (X1, Y1) - (X2, Y2)

The Line method requires four arguments. These arguments (X1, X2, Y1, and Y2) specify
the top and bottom (or left and right, depending on your perspective) coordinates of the

673

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 673

line. Notice that all calculated measurements on a report must be specifi ed in twips. (There
are 1,440 twips per inch or 567 twips per centimeter.) In this case, X1 and X2 are the same
value, and we’re forcing the line to start at the very top of the Detail section (0) and to
extend downward for 32,767 twips.

FIGURE 21.24

Vertical lines in rptVerticalLines help segregate data.

You might wonder why we’re using 32,767 as the Y2 coordinate for the end of the line.
Access will automatically “clip” the line to the height of the Detail section. Because the
Line control doesn’t contain data, Access won’t expand the Detail section to accommodate
the line you’ve drawn in code. Instead, Access draws as much of the 32,767-twip line as
needed to fi ll the Detail section, and then it stops. The maximum value for Y2 is 32,767.

The same procedure could be used to draw horizontal lines for each section on the report.
In the report example (rptVerticalLines) in the database accompanying this chapter
(Chapter21.accdb), we’ve added Line controls to the report instead. Using the Line con-
trol when the height of the report section is fi xed (for example, in the group header and
footer) is simply faster than drawing the line for each of these sections.

674

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 674

When a report is double-clicked in the Object Navigation pane, it opens in Report view by default. To see certain

techniques, like the vertical line technique, you must switch to Print Preview view.

Adding a blank line every n records
Detail sections chock-full of dozens or hundreds of records can be diffi cult to read. It’s easy
to lose your place when reading across columns of fi gures and when the rows are crowded
together on the page. Wouldn’t it be nice to insert a blank row every fourth or fi fth
record in a Detail section? It’s much easier to read a single row of data in a report
(rptGapsEvery5th in Chapter21.accdb) where the records have been separated by white
space every fi fth record (see Figure 21.25).

FIGURE 21.25

Using white space to break up tabular data can make it easier to read.

Access provides no way to insert a blank row in the middle of a Detail section. You can,
however, trick Access into inserting white space in the Detail section now and then with a
little bit of programming and a couple of hidden controls.

675

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 675

Figure 21.26 reveals the trick behind the arrangement you see in Figure 21.25. An empty,
unbound text box named txtSpacer is placed below the fi elds containing data in the Detail
section. To the left of txtSpacer is another unbound text box named txtCounter.

FIGURE 21.26

This report trick uses hidden unbound text boxes in the Detail section.

Set the properties in Table 21.1 for txtSpacer, txtCounter, and the Detail sections.

TABLE 21.1 Properties for the “Blank Line” Example

Control Property Value

txtSpacer Visible Yes

CanShrink Yes

txtCounter Visible No

RunningSum Over All

ControlSource =1

Detail1 CanShrink Yes

These properties effectively hide the unbound txtSpacer and txtCounter controls, and per-
mit these controls and the Detail section to shrink as necessary when the txtSpacer Text
Box control is empty. Even though txtSpacer is visible to the user, Access shrinks it to 0
height if it contains no data. The txtCounter control never needs any space because its
Visible property is set to No, hiding it from the user.

676

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 676

The last step is to enter the following code as the Detail section’s Format event procedure:

Private Sub Detail1_Format(Cancel As Integer, _
 FormatCount As Integer)

 If Me.txtCounter.Value Mod 5 = 0 Then
 Me.txtSpacer.Value = Space$(1)
 Else
 Me.txtSpacer.Value = Null
 End If

End Sub

The Format event occurs as Access begins to format the controls within the
Detail section. The value in txtCounter is incremented each time a record is added to the
Detail section. The Mod operator returns whatever number is left over when the value
in txtCounter is divided by 5. When txtCounter is evenly divisible by 5, the result of the
txtCounter Mod 5 expression is 0, which causes a space character to be assigned to
txtSpacer. In this situation, because txtSpacer is no longer empty, Access increases the
height of the Detail section to accommodate txtSpacer, causing the “empty” space every
fi fth record to be printed in the Detail section. You never actually see txtSpacer because all
it contains is an empty space character.

txtCounter can be placed anywhere within the Detail section of the report. Make txtSpacer
as tall as you want the blank space to be when it’s revealed on the printout.

Even-odd page printing
If you’ve ever prepared a report for two-sided printing, you may have encountered the need
for knowing whether the data is being printed on the even side of the page or the odd side
of the page. Most users prefer the page number to be located near the outermost edge of
the paper. On the odd-numbered page, the page number should appear on the right edge of
the page, while on the even-numbered side, the page number must appear on the left side
of the page. How, then, do you move the page number from side to side?

Assuming the page number appears in the Page Footer section of the report, you can use
the page footer’s Format event to determine whether the current page is even or odd, and
align the text to the left or right side of the text box accordingly.

The basic design of rptEvenOdd is shown in Figure 21.27. Notice that the Width property of
txtPageNumber is set to the same as the report header. Also, the TextAlign property is set
to Right. The Format event will determine whether the text is aligned to the right or left,
so setting TextAlign to Right is a bit arbitrary.

677

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 677

FIGURE 21.27

txtPageNumber is the same width as the report.

The Page Footer Format event procedure adjusts the TextAlign property of txtPageNumber
to shift the page number all the way to the left or right side of the text box depending on
whether the page is even or odd.

Private Sub PageFooter1_Format(Cancel As Integer, _
 FormatCount As Integer)

 Const byALIGN_LEFT As Byte = 1
 Const byALIGN_RIGHT As Byte = 3

 If Me.Page Mod 2 = 0 Then
 Me.txtPageNumber.TextAlign = byALIGN_LEFT
 Else
 Me.txtPageNumber.TextAlign = byALIGN_RIGHT
 End If

End Sub

In this event procedure, any time the expression Me.Page Mod 2 is zero (meaning the
page number is even), the TextAlign property is set to Left. On odd-numbered pages,
TextAlign is set to Right.

Like magic, this event procedure causes the Page Number text to move from the right side
on odd-numbered pages to the left side on even-numbered pages (see Figure 21.28).

678

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 678

FIGURE 21.28

txtPageNumber jumps from right to left.

Using different formats in the same text box
On some reports, you may want the format of certain fi elds in a record to change according
to the values in other fi elds on the report. A good example is a journal voucher report in a
multicurrency fi nancial system in which the voucher detail debit or credit amount format
varies according to the number of decimal places used to display the currency value.

Unfortunately, a control in a Detail section of a report can have but a single format
specifi ed in its Property Sheet. Use the following trick to fl exibly set the format
property at run time. The FlexFormat() function, which is stored in MFunctions and
used in rptFlexFormat, uses the lDecimals argument to return a string specifying the
desired format:

Public Function FlexFormat(lDecimals As Long) As String

 FlexFormat = "#,##0." & String(lDecimals, "0")

End Function

The String function returns text that has lDecimal number of characters and all the
characters are 0. If lDecimals is 2, for example, FlexFormat returns "#,##0.00".

Assume that the fi eld to be dynamically formatted has its ControlSource set to
[Amount]. The format of the Amount text box should vary depending on the value of the

679

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 679

CurrDecPlaces fi eld in the same record. CurrDecPlaces is a Long Integer data type. To use
FlexFormat, change the ControlSource property of the Amount text box to the following:

=Format([Amount],FlexFormat([CurrDecPlaces]))

The Amount text box will be dynamically formatted according to the value contained in the
CurrDecPlaces text box. This trick may be generalized to format fi elds other than currency
fi elds. By increasing the number of parameters of the user-defi ned formatting function, the
formatting can be dependent on more than one fi eld, if necessary.

Centering the title
Centering a report title directly in the middle of the page is often diffi cult. The easiest way
to guarantee that the title is centered is to stretch the title from left margin to right mar-
gin, and then click the Center button in the Text Formatting group of the Home tab.

Aligning control labels
Keeping text boxes and their labels properly aligned on reports is sometimes diffi cult.
Because a text box and its label can be independently moved on the report, all too often
the label’s position must be adjusted to bring it into alignment with the text box.

You can eliminate text box labels completely by including the label text as part of the text
box’s record source. Use the concatenation character to add the label text to the text box’s
control source:

= "Product: " & [ProductName]

Now, whenever you move the text box, both the label and the bound record source move as
a unit. The only drawback to this technique is that you must use the same format for the
text box and its label.

Micro-adjusting controls
The easiest way to adjust the size or position of controls on a report in tiny increments is
to hold down either the Shift or Control key and press the arrow key corresponding to
Table 21.2.

TABLE 21.2 Micro-Adjustment Keystroke Combinations

Key Combination Adjustment

Control+Left Arrow Move left

Control+Right Arrow Move right

Control+Up Arrow Move up

Continues

680

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 680

Key Combination Adjustment

Control+Down Arrow Move down

Shift+Left Arrow Reduce width

Shift+Right Arrow Increase width

Shift+Up Arrow Reduce height

Shift+Down Arrow Increase height

Another resizing technique is to position the cursor over any of the sizing handles on a
selected control and double-click. The control automatically “sizes to fi t” the text con-
tained within the control. This quick method can also be used to align not only labels but
also text boxes to the grid.

Adding Data
When you’re looking at data through forms, you can usually assume that the data is cur-
rent. However, with printed reports, you don’t always know if the data is old. Adding little
touches like when the report was printed can help increase the usefulness of a report. This
section shows you some techniques that enable you to add additional information to the
report to let the users know something of its origin.

Adding more information to a report
You probably know that the following expression in an unbound text box prints the current
page and the number of pages contained in the report:

="Page " & [Page] & " of " & [Pages]

Both Page and Pages are report properties that are available at run time and can be
included on the report.

But consider the value of adding other report properties on the report. Most of the report
properties can be added to unbound text boxes as long as the property is enclosed in square
brackets. For the most part, these properties are only of value to you as the developer, but
they may also be useful to your users.

For example, the report’s Name, RecordSource, and other properties are easily added the
same way. Figure 21.29 demonstrates how unbound text boxes can deliver this information
to a report footer or some other place on the report.

TABLE 21.2 (continued)

681

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 681

FIGURE 21.29

rptMoreInfo demonstrates how to add more information to your reports.

The inset in the lower-right part of Figure 21.29 shows the information provided by adding
the four text boxes to this report. Very often, the user is not even aware of the name of a
report—the only text the user sees associated with reports is the text that appears in the
title bar (in other words, the report’s Caption property). If a user is having problems with
a report, it might be helpful to display the information you see in Figure 21.29 in the
report footer.

Adding the user’s name to a bound report
An unbound text box with its ControlSource set to an unresolved reference will cause
Access to pop up a dialog box requesting the information necessary to complete the text
box. For example, an unbound text box with its RecordSource set to the following displays
the dialog box you see in the middle of Figure 21.30 when the report is run:

=[What is your name?]

Access displays a similar Parameter dialog box for each parameter in a parameter query.
The text entered into the text box is then displayed on the report. (rptUserName in
Chapter21.accdb on this book’s companion website demonstrates this technique.)

682

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 682

FIGURE 21.30

Use an unbound text box to capture useful information.

The unbound text box on the report can be referenced by other controls on the report. The
Parameter dialog box appears before the report is prepared for printing, which means that
the data you enter into the dialog box can be used in expressions, calculations, or the VBA
code behind the report.

VBA includes the ENVIRON() function, which can be used to get the user’s name automatically. Use

ENVIRON("USERNAME") in a VBA function and refer to that function in a text box’s ControlSource to display the

user’s name without prompting for it. The username returned by ENVIRON() is easily changed by the user, so don’t

use it where identity is critical.

Adding Even More Flexibility
As you’ve probably discovered by now, reporting in Access is a very large topic. We’ve
included a few additional techniques that will help you make your reports even more fl ex-
ible to users.

Displaying all reports in a combo box
The names of all the top-level database objects are stored in the MSysObjects system table.
You can run queries against MSysObjects just as you can run queries against any other
table in the database. It’s easy to fi ll a combo box or list box with a list of the report
objects in an Access database.

Choose Table/Query as the RowSource Type for the list box and put this SQL statement in
the RowSource of your list box to fi ll the box with a list of all reports in the database:

SELECT DISTINCT [Name] FROM MSysObjects
WHERE [Type] = -32764
ORDER BY [Name];

The -32764 identifi es report objects in MSysObjects, one of the system tables used by
Access. The results are shown in Figure 21.31.

683

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 683

Reports don’t have to be open for this technique to work. MSysObjects knows all the objects in the database, so no

reports will escape detection using this technique.

FIGURE 21.31

frmAllReports displays the reports in Chapter21.accdb.

If you’re using a naming convention for your database objects, use a prefi x to show only the
reports you want. The following code returns only those reports that begin with tmp:

SELECT DISTINCTROW [Name] FROM MSysObjects
WHERE [Type] = -32764 AND Left([Name], 3) = "tmp"
ORDER BY [Name];

Because MSysObjects stores the names of all database objects, you can return the names of
the other top-level database objects as well. Just substitute the –32764 as the type value
in the preceding SQL statement with the Table 21.3 values to return different database
object types.

TABLE 21.3 Access Object Types and Values

Object Type Value

Local Tables 1

Linked tables (except tables linked using ODBC) 6

Linked tables using ODBC 4

Continues

684

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 684

Object Type Value

Forms –32768

Modules –32761

Macros –32766

Queries 5

To view the MSysObjects table, set the Show System Objects setting to Yes in the Navigation
Options dialog box (which you can get to by right-clicking on the Navigation pane’s title
bar, and selecting Navigation Options from the shortcut menu). MSysObjects does not have
to be visible for this trick to work.

Although Microsoft says that MSysObjects and the type values are not supported and are, therefore, prone to

change at any time, Access has used the same type values for many, many years. It’s unlikely Microsoft will drop the

MSysObjects table or change the type values, but this trick is not guaranteed to work indefi nitely.

Fast printing from queried data
A report that is based on a query can take a long time to print. Because reports and forms
can’t share the same recordset, once a user has found the correct record on a form, it’s a
shame to have to run the query over again to print the record on a query. A way to “cache”
the information on the form is to create a table (we’ll call it tblCache) containing all the
fi elds that are eventually printed on the report. Then, when the user has found the cor-
rect record on the form, copy the data from the form to tblCache, and open the report. The
report, of course, is based on tblCache.

The query is run only once to populate the form. Copying the data from the form to
tblCache is a very fast operation, and multiple records can be added to tblCache as needed.
Because the report is now based on a table, it opens quickly and is ready to print as soon as
the report opens.

Using snaking columns in a report
When the data displayed on a report doesn’t require the full width of the page, you may
be able to conserve the number of pages by printing the data as snaking columns, as in a

TABLE 21.3 (continued)

685

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 685

dictionary or phone book. Less space is wasted and fewer pages need to be printed, speed-
ing the overall response of the report. More information is available at a glance and many
people fi nd snaking columns more aesthetically pleasing than simple blocks of data.

For the examples in this section, we need a query that returns more data than we’ve been
using up to this point. Figure 21.32 shows the query used to prepare the sample reports in
this section.

FIGURE 21.32

This query returns more detailed information than we’ve been using.

This query returns the following information: CompanyName, OrderID, OrderDate,
ProductName, UnitPrice, and Quantity for the period from January 1, 2012, to
March 31, 2012.

The initial report design for rptSalesQ1 is shown in Design view in Figure 21.33. This rather
complex report includes a group based on the order ID for each order placed by the com-
pany, as well as a group based on the company itself. This design enables us to summarize
data for each order during the quarter, as well as for the company for the entire quarter.

The same report in Print Preview mode is shown in Figure 21.34. Notice that the report
really doesn’t make good use of the page width available to it. In fact, each record of this
report is only 31

4 inches wide.

686

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 686

FIGURE 21.33

Notice how narrow the records in this report are.

FIGURE 21.34

The report makes poor use of the available page width.

687

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 687

Setting a report to print as snaking columns is actually part of the print setup for the
report, not an attribute of the report itself. With the report in Design view, click on the
Columns button on the Report Design Tools Page Setup tab of the Ribbon to open the
Page Setup dialog box (shown in Figure 21.35) with the Columns tab selected. Change
the Number of Columns property to 2. As you change Number of Columns from 1 to 2, the
Column Layout area near the bottom of the Layout tab becomes active, showing you that
Access has selected the Across, Then Down option to print items across the page fi rst, and
then down the page. Although this printing direction is appropriate for mailing labels, it’s
not what we want for our report. Select the Down, Then Across option to direct Access to
print the report as snaking columns (see Figure 21.35).

FIGURE 21.35

Only a few changes are needed to produce snaking columns.

When working with snaking columns, make sure the proper Column Layout option is
selected. If you neglect to set the Column Layout to Down, Then Across, the snaking col-
umns will be laid out horizontally across the page. This common error can cause a lot of
confusion because the report won’t look as expected (see Figure 21.36). The reports shown
in Figures 21.36 and 21.37 are the same with the exception of the Column Layout setting.

As long as the Same as Detail check box is not checked, Access intelligently adjusts the
Column Spacing and other options to accommodate the number of items across that you’ve
specifi ed for the report. With Same as Detail checked, Access will force the columns to
whatever width is specifi ed for the columns in Design view, which might mean that the
number of columns specifi ed in the Number of Columns parameter won’t fi t on the page.

Figure 21.37 clearly demonstrates the effect of changing the report to a snaking two-
column layout. Before the change, this report required 17 pages to print all the data. After
this change, only nine pages are required.

688

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 688

FIGURE 21.36

The wrong Column Layout setting can be confusing.

FIGURE 21.37

Snaking multiple columns conserve page space and provide more information at a glance.

689

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 689

You may be wondering about the other print options in the Page Setup dialog box (refer to
Figure 21.35). Here is a short description of each of the relevant settings in the Layout tab
of the Page Setup dialog box:

 ■ Number of Columns: Specifi es the number of columns in the report. You should
be aware that Number of Columns affects only the Detail section, Group Header
section, and Group Footer section of the report. The Page Header section and Page
Footer section are not duplicated for each column. When designing a multi-column
report, you must keep the width of the design area narrow enough to fi t on the
page when multiplied by the number of columns you’ve selected. Most often, print-
ing a report in landscape mode helps the width required for more than one column
in a report.

 ■ Row Spacing: Additional vertical space allowed for each detail item. Use this set-
ting if you need to force more space between detail items than the report’s design
allows.

 ■ Column Spacing: Additional horizontal space allowed per column. Use this setting
if you need to force more space between columns in the report than the design
allows.

 ■ Column Size – Same as Detail: The column width and detail height will be the
same as on the report in Design view. This property is useful when you need to
fi ne-tune the column placement on a report (for example, when printing the data
onto preprinted forms). Making adjustments to the report’s design will directly
infl uence how the columns print on paper.

 ■ Column Size – Width and Height: The width and height of a column. These
options are handy when printing onto preprinted forms to ensure that the data
falls where you want it to.

 ■ Column Layout: How the items are to be printed: either Across, Then Down or
Down, Then Across.

In addition to these properties, be sure to take note of the New Row or Col property for the
CompanyName Header section (see Figure 21.38). The values for New Row or Col are None,
Before Section, After Section, Before & After. You use New Row or Col to force Access to, for
example, start a new column immediately after a group footer or detail section has printed
(see Figure 21.39). Depending on your reports and their data, New Row or Col may provide
you with the fl exibility necessary to make reports more readable.

690

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 690

FIGURE 21.38

Headers (and footers) have properties that can be used to control actions when the grouping
value changes.

Keep in mind that the measurement units you see on the Page Setup tab of the Ribbon
are determined by the Windows international settings. For example, in Germany or Japan
where the metric system is used, the units of measure will be centimeters instead of inches.
Also, you must allow for the margin widths set in the Margins gallery, accessed from the
Page Setup tab of the Ribbon (see Figure 21.40).

For example, if you specify a Column Size Width of 3.5” and the left margin is set to 1”,
this means the right edge of the column will actually fall 4 inches from the left physical
edge of the paper, or more than halfway across an 8 -x-11-inch sheet of paper printed in
portrait mode. These settings will not allow two columns, each 3 inches wide, to print on
a standard letter-size sheet of paper. In this case, you might consider reducing the left and
right margins until the 3 -inch columns fi t properly. (Don’t worry about setting the mar-
gins too small to work with your printer. Unless you’re working with a nonstandard printer,
Windows is pretty smart about knowing the printable area available with your printer and
won’t allow you to set margins too small.)

691

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 691

FIGURE 21.39

New Row or Col forces Access to start a column before or after a section.

Exploiting two-pass report processing
In Chapter 20, we mention that Access uses a two-pass approach when formatting and
printing reports. We’ll now explore what this capability means to you and how you can
exploit both passes in your applications.

The main advantage of two-pass reporting is that your reports can include expressions
that rely on information available anywhere in the report. For example, placing a control
with the Sum() function in a header or footer means that Access will use the fi rst pass to
accumulate the data required by the function, and then use the second pass to process the
values in that section before printing them.

Another obvious example is putting an unbound text box in the footer of a report contain-
ing the following expression:

="Page " & [Page] & " of " & [Pages]

692

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 692

FIGURE 21.40

All report page settings must consider the margin widths.

The built-in Pages variable (which contains the total number of pages in the report) isn’t
determined until Access has completed the fi rst pass through the report. On the second
pass, Access has a valid number to use in place of the Pages variable.

The biggest advantage of two-pass reporting is that you’re free to use aggregate functions
that depend on the report’s underlying record source. Group headers and footers can include
information that can’t be known until the entire record source is processed.

There are many situations where aggregate information provides valuable insight into data
analysis. Consider a report that must contain each salesperson’s performance over the last
year measured against the total sales for the sales organization, or a region’s sales fi gures
against sales for the entire sales area. A bookstore might want to know what portion of its
inventory is devoted to each book category.

Figure 21.41 shows such a report. The Number of Customers, Total Sales, and Average
Purchase information at the top of this report (rptSummary) are all part of the report
header. In a one-pass report writer, the data needed to perform these calculations would
not appear until the bottom of the page, after all the records have been processed and
laid out.

693

Chapter 21: Advanced Access Report Techniques

21

c21.indd 10/06/2015 Page 693

A glance at rptSummary in Design view (see Figure 21.42) reveals that the text boxes in the
report header are populated with data derived from these mathematical expressions:

Number of Customers: =Count([CompanyName])
Total Sales: =Format(Sum([Purchases]),"Currency")
Average Purchase: =Format(Sum([Purchases])/ _
 Count([CompanyName]), "Currency")

The Count() and Sum() functions both require information that isn’t available until the
entire report has been processed in the fi rst pass. As long as Access can fi nd the arguments
provided to these functions (CompanyName and Purchases) in the underlying recordset,
the calculations proceed without any action by the user.

FIGURE 21.41

The summary information is part of the report’s header.

Assigning unique names to controls
If you use the Report Wizard or drag fi elds from the Field List when designing your reports,
Access assigns the new text boxes the same names as the fi elds in the recordset underlying

694

Part V: Working with Access Forms and Reports

c21.indd 10/06/2015 Page 694

the report. For example, if you drag a fi eld named Discount from the Field List, both the
Name and ControlSource properties of the text box are set to Discount.

FIGURE 21.42

rptSummary in Design view.

If another control on the report references the text box, or if you change the ControlSource
of the text box to a calculated fi eld, such as:

=IIf([Discount]=0,"N/A",[Discount])

you’ll see #Error when you view the report. This happens because Access can’t distin-
guish between the control named Discount and the fi eld in the underlying recordset named
Discount.

You must change the Name property of the control to something like txtDiscount so that
Access can tell the difference between the control’s name and the underlying fi eld.

c22.indd 10/01/2015 Page 695

Part VI

Access Programming

Fundamentals

P
art VI introduces macro programming
and explains the art and science of
Visual Basic for Applications (VBA).

Few professional-quality Access applica-
tions have been written without liberal use
of either the VBA programming language or
macros, or a combination of both.

With Access 2007, Microsoft began a signifi -
cant effort to enhance macros as a valuable
contributor to Access development. Long
maligned as weaker or inferior to VBA,
macros were often relegated to second-class
citizenship in many Access developer tool-
kits. However, as you’ll read in Chapter 22,
Microsoft introduced embedded macros, an
effi cient technique for automating many
tasks in forms and reports. Chapter 23
takes a look at data macros, which enable
you to perform important data-management
tasks at the table level. This means that
the same tasks (often, business rules) are
enforced even when the table’s data is used
in an Access web application.

Starting with Chapter 24, Part VI turns your
attention to automation with VBA. VBA

provides functionality that goes far beyond
simply opening forms and reports and con-
trolling the user interface. You’ll use VBA
code to validate data, as well as to trans-
form and combine data in new and interest-
ing ways. VBA code is used to import and
export data, respond to user input, and han-
dle the mistakes inevitably made by users.

IN THIS PART

Chapter 22
Using Access Macros

Chapter 23
Using Access Data Macros

Chapter 24
Getting Started with Access VBA

Chapter 25
Mastering VBA Data Types and Procedures

Chapter 26
Understanding the Access Event Model

Chapter 27
Debugging Your Access Applications

697

c22.indd 10/01/2015 Page 697

CHAP T ER

22
Using Access Macros

IN THIS CHAPTER

Getting acquainted with macros

Understanding macro security

Working with multi-action macros

Using submacros for actions that are frequently required

Making decisions with conditions

Using temporary variables

Handling errors and debugging your macros

Understanding embedded macros

Comparing macros to VBA

M
acros have been a part of Access since the beginning. As Access evolved as a development
tool, the Visual Basic for Applications (VBA) programming language became the standard
in automating Access database applications. Macros in versions prior to Access 2007 lacked

variables and error handling, which caused many developers to abandon macros altogether. Access
today has these, which make macros a much more viable alternative to VBA than in previous ver-
sions. If you’re creating a database to be used on the Web, or if you aren’t a VBA guru but you still
want to customize the actions that your application executes, then building structured macros is
the answer.

This chapter uses a database named Chapter22.accdb. If you haven’t already downloaded it from this book’s

website, you’ll need to do so now. This database contains the tables, forms, reports, and macros used in this chapter.

ON THE WEB

698

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 698

An Introduction to Macros
A macro is a tool that allows you to automate tasks in Access. It’s different from Word’s
Macro Recorder, which lets you record a series of actions and play them back later. (It’s also
different from Word in that Word macros are actually VBA code, whereas Access macros are
something very different.) Access macros let you perform defi ned actions and add function-
ality to your forms and reports. Think of macros as a simplifi ed, step-wise programming
language. You build a macro as a list of actions to perform, and you decide when you want
those actions to occur.

Building macros consists of selecting actions from a drop-down list, and then fi lling in the
action’s arguments (values that provide information to the action). Macros let you choose
actions without writing a single line of VBA code. The macro actions are a subset of com-
mands VBA provides. Most people fi nd it easier to build a macro than to write VBA code. If
you’re not familiar with VBA, building macros is a great stepping-stone to learning some of
the commands available to you while providing added value to your Access applications.

Suppose you want to build a main form with buttons that open the other forms in your
application. You can add a button to the form, build a macro that opens another form in
your application, and then assign this macro to the button’s Click event. The macro can
be a stand-alone item that appears in the Navigation pane, or it can be an embedded object
that is part of the event itself (see the “Embedded Macros” section).

Creating a macro
A simple way to demonstrate how to create macros is to build one that displays a message
box that says “Hello World!” To create a new stand-alone macro, click the Macro button on
the Macros & Code group on the Create tab of the Ribbon (shown in Figure 22.1).

FIGURE 22.1

Use the Create tab to build a new stand-alone macro.

Clicking the Macro button opens the macro design window (shown in Figure 22.2). Initially,
the macro design window is almost featureless. The only thing in the Macro window is a
drop-down list of macro actions.

699

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 699

22

FIGURE 22.2

The macro design window displaying the Macro window and Action Catalog.

Macro window Action Catalog

To the right of the Macro window you may see the Action Catalog. There are dozens of
different macro actions, and knowing which action to use for a particular task can be an
issue. The Action Catalog provides a tree view of all available macro actions and helps you
know which action is needed to perform a particular task.

Select MessageBox from the drop-down list in the macro window. The macro window
changes to display an area where you input the arguments (Message, Beep, Type, and
Title) associated with the MessageBox action.

Set the arguments as follows:

 ■ Message: Hello World!

 ■ Beep: No

 ■ Type: None

 ■ Title: A Simple Macro

Your screen should look similar to Figure 22.3. The Message argument defi nes the text that
appears in the message box and is the only argument that is required and has no default.
The Beep argument determines whether a beep is heard when the message box appears.
The Type argument sets which icon appears in the message box: None, Critical, Warning?,
Warning!, or Information. The Title argument defi nes the text that appears in the mes-
sage box’s title bar.

700

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 700

FIGURE 22.3

The Hello World! macro uses the MessageBox action to display a message.

To run the macro, click the Run button in the Tools group of the Design tab of the Ribbon.
(The Run button looks like a big red exclamation point at the far left of the Ribbon.) When
you create a new macro or change an existing macro, you’ll be prompted to save the macro.
In fact, you must save the macro before Access runs it for you. When prompted, click Yes
to save it, provide a name (such as “mcrHelloWorld”), and click OK. The macro runs and
 displays a message box with the arguments you specifi ed (shown in Figure 22.4).

FIGURE 22.4

Running the Hello World! macro displays a message box.

You can also run the macro from the Navigation pane. Close the macro design window and
display the Macros group in the Navigation pane. Double-click the mcrHelloWorld macro to
run it. You’ll see the same message box that displayed when you ran the macro from the
design window.

Notice that the message box always appears right in the middle of the screen and blocks
you from working with Access until you click OK. These are built-in behaviors of the mes-
sage box object and are identical in every regard to a message box displayed from VBA code.

When you’re satisfi ed with the Hello World! macro, click the close button in the upper-right
corner of the macro window to return to the main Access window.

701

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 701

22

Assigning a macro to an event
When you’re creating macros, you probably don’t want end users using the Navigation pane
to run them—or worse, running them from the macro design window. Macros are intended
for you to automate your application without writing VBA code. In order to make an appli-
cation easy to use, assign your macros to an object’s event.

The most common event to which you might assign a macro is a button’s Click event.
Follow these steps to create a simple form with a button that runs mcrHelloWorld:

 1. Select the Create tab on the Ribbon, and then click the Form Design button in
the Forms group.

 2. On the Form Design Tools Design tab of the Ribbon, deselect the Use Control
Wizards option in the Controls group. For this example, you don’t want to use a
wizard to decide what this button does.

 3. Click the Button control and draw a button on the form.

 4. Set the button’s Name property to cmdHelloWorld. Press F4 to open the button’s
Property Sheet if it isn’t visible on the screen.

 5. Set the button’s Caption property to Hello World!.

 6. Click the drop-down list in the button’s On Click event property, and select
mcrHelloWorld from the list (shown in Figure 22.5).

FIGURE 22.5

Set any object’s event property to the macro to trigger that macro when that
event occurs.

That’s all there is to creating and running a macro. Just select the action, set the action
arguments, and assign the macro to an event property.

702

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 702

You aren’t limited to the button’s Click event. If you want a macro to run every time a form loads, set the On Load event

property of the form to the macro’s name. Select the Event tab on any object’s Property Sheet to see the available events.

Historically, there has been quite a bit of confusion about the names of events and their associated event properties.

An event is always an action, such as Click, while its event property is OnClick or On Click. Conceptually,

they’re almost the same thing, but in technical terms, an event (like Click or Open) is an action supported by an

Access object (like a form or command button), and an event procedure (OnClick or OnOpen) is how the event is

attached or bound to the object.

Understanding Macro Security
The Hello World! macro we built in the last section is as harmless as they come. But not
all macros are harmless. You can do almost anything in a macro that you can do in the
Access user interface. Some of those things, like running a delete query, can cause data
loss. Access has built-in a security environment that helps you prevent unwanted, harmful
 macros from being run.

When you run forms, reports, queries, macros, and VBA code in your application, Access uses
the Trust Center to determine which commands may be unsafe and which unsafe commands
you want to run. From the Trust Center’s perspective, macros and VBA code are “macros”
and shouldn’t be trusted by default. Unsafe commands could allow a malicious user to hack
into your hard drive or other resource in your environment. A malicious user could possibly
delete fi les from your hard drive, alter the computer’s confi guration, or generally wreak all
kinds of havoc in your workstation or even throughout your network environment.

Each time a form, report, or other object opens, Access checks its list of unsafe commands.
By default, when Access encounters one of the unsafe commands, it blocks the command
from execution. To tell Access to block these potentially unsafe commands, you must
enable sandbox mode.

Enabling sandbox mode
Sandbox mode allows Access to block any of the commands in the unsafe list it encounters
when running forms, reports, queries, macros, data access pages, and Visual Basic code.
Here’s how to enable it:

 1. Open Access, click the File button, and select Options. The Access Options dialog
box appears.

 2. Select the Trust Center tab, and then click Trust Center Settings. The Trust
Center dialog box appears.

703

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 703

22

 3. Select the Macro Settings tab (shown in Figure 22.6).

 4. Select either Disable All Macros without Notification or Disable All Macros with
Notification.

FIGURE 22.6

Enabling sandbox mode.

 5. Restart Access to apply the security change.

The Macro Settings tab provides four levels of macro security:

 ■ Disable All Macros without Notification: All macros and VBA code are disabled
and the user isn’t prompted to enable them.

 ■ Disable All Macros with Notification: All macros and VBA code are disabled
and the user is prompted to enable them.

 ■ Disable All Macros Except Digitally Signed Macros: The status of the macro’s
digital signature is validated for digitally signed macros. For unsigned macros, a
prompt displays advising the user to enable the macro or to cancel opening the
database.

 ■ Enable All Macros (Not Recommended; Potentially Dangerous Code Can Be
Run): Macros and VBA code are not checked for digital signatures and no warn-
ing displays for unsigned macros.

A digital signature (contained within a digital certificate) is an encrypted secure fi le that
accompanies a macro or document. It confi rms that the author is a trusted source for the
macro or document. Digital signatures are generally implemented within large organiza-
tions that are willing to fund the expense of purchasing and maintaining digital signa-
tures. You, or your organization’s IT department, can obtain a digital certifi cate through
a commercial certifi cation authority, like VeriSign, Inc., or Thawte. Search http://msdn
.microsoft.com for “Microsoft Root Certifi cate Program Members” to obtain information
on how to obtain a digital certifi cate.

http://msdn.microsoft.com

704

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 704

The default, and generally the best choice, is Disable All Macros with Notifi cation. During
the development and maintenance cycles, you’ll want all the code and macros in the appli-
cation to execute without interrupting you with permissions dialog boxes. The next section
describes Trusted Locations. You can put your development database in a trusted location
to avoid having to enable unsigned code, but still be protected from other databases you
may open.

If you or your organization has acquired a digital certifi cate, you can use it to sign your
Access projects:

 1. Open the Access database to digitally sign; then access any module to open the
Visual Basic Editor.

 2. Choose Tools ➪ Digital Signature from the Visual Basic Editor menu. The Digital
Signature dialog box opens, as shown in Figure 22.7.

FIGURE 22.7

Digitally signing an Access project.

 3. Click Choose to display the Select Certificate dialog box and select a certificate
from the list.

 4. Select the certificate to add to the Access project.

 5. Click OK to close the Select Certificate dialog box, and click OK again to close
the Digital Signature dialog box and save the security setting.

Don’t sign your Access project until the application has been thoroughly tested and you don’t expect to make any

further changes to it. Modifying any of the code in the project invalidates the digital signature.

To prevent users from making unauthorized changes to the code in your project, be sure to lock the project and apply

a project password.

705

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 705

22

The Trust Center
The Trust Center is where you can fi nd security and privacy settings for Access. To display
the Trust Center, click the File button and click Options to open the Access Options dialog
box. Select the Trust Center tab, and then click Trust Center Settings.

Here’s a description of each section and what it controls:

 ■ Trusted Publishers: Displays a list of trusted publishers—publishers where you
clicked Trust All Documents from This Publisher when encountering a potentially
unsafe macro—for Offi ce. To remove a publisher from this list, select the publisher
and click Remove. Trusted publishers must have a valid digital signature that
hasn’t expired.

 ■ Trusted Locations: Displays the list of trusted locations on your computer or net-
work. From this section, you can add, remove, or modify folders on your computer
that will always contain trusted fi les. Any fi le in a trusted location can be opened
without being checked by the Trust Center. You can also choose not to allow net-
work locations and to disable all Trusted Locations and accept signed fi les.

 ■ Trusted Documents: When Trusted Documents is selected, the name of the Access
application is added to a special area in the system registry on the user’s computer.
Then, each time the application is used, it is recognized as a trusted document, and
all the macros, code, and other elements of the application are enabled without
interrupting the user’s workfl ow.

 ■ Trusted Add-In Catalogs: Displays the list of trusted Offi ce Web App catalogs.
Web Apps are embedded web applications that extend the features of Access with
content directly from the web or SharePoint websites. Beginning in Access 2016,
Microsoft uses the term Add-ins to refer to Web Apps, though they are not related
to the traditional Add-ins created with VBA. The Trusted Add-In Catalogs section
allows you to add, remove, or modify the SharePoint catalogs you trust.

 ■ Add-ins: Lets you to set up how Access handles add-ins. You can choose whether
add-ins need to be digitally signed from a trusted source and whether to display a
notifi cation for unsigned add-ins. You can also choose to disable all add-ins, which
may impair functionality.

 ■ ActiveX Settings: Lets you set the security level for ActiveX controls.

 ■ Macro Settings: Lets you set the security setting for macros not in a trusted
 location. (For more information on Macro Settings, see the previous section on
sandbox mode.)

 ■ Message Bar: Lets you set whether to display the message bar that warns you
about blocked content, or to never show information about blocked content.

 ■ Privacy Options: Lets you choose how Microsoft Offi ce Online communicates with
your computer. You can set options to use Microsoft Offi ce Online for help, show
featured links at startup, download fi les to determine system problems, and sign up
for the Customer Experience Improvement Program.

706

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 706

Multi-Action Macros
The true power of macros comes from performing multiple actions at the click of a button.
Creating a macro that runs a series of action queries is better than double-clicking each
action query in the Navigation pane—you may forget to run one or you may run them out
of proper sequence.

For this next example, Chapter22.accdb contains two delete queries that remove data
from two different tables: tblContacts_Backup and tblProducts_Backup. Chapter22
.accdb also includes two append queries that copy records from tblContacts and
tblProducts to the backup tables.

The mcrBackupContactsAndProducts macro (also found in the Chapter 22.accdb sample
database) automates the running of these four queries so that we have the ability to back
up the data in the tblContacts table and the tblProducts table.

Table 22.1 shows the macro actions and action arguments for
mcrBackupContactsAndProducts (a portion of which is shown in Figure 22.8).

If all the actions don’t appear in the Action drop-down list, click the Show All Actions command in the Show/Hide

group on the Macro Tools Design tab of the Ribbon. Some macro actions require a trusted database or enabling

macros through your security settings. Also, some macro actions are considered unsafe because they modify data

in the database or perform actions that may cause damage to the application if used incorrectly. Macro actions that

are considered unsafe are indicated by a warning icon (which looks like an inverted yellow triangle containing an

exclamation point) in the macro designer. By default, Access only displays trusted macro actions that run regardless

of the security settings.

FIGURE 22.8

mcrBackupContactsAndProducts archives data from the live tables into the backup tables.

707

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 707

22

TABLE 22.1 mcrBackupContactsAndProducts

Action Action Argument Action Argument Setting

DisplayHourglassPointer Hourglass On Yes

SetWarnings Warnings On No

Echo Echo On No

Status Bar
Text

Step 1: Deleting Data

OpenQuery Query Name qryDeleteContactsBackup

View Datasheet

Data Mode Edit

OpenQuery Query Name qryDeleteProductsBackup

View Datasheet

Data Mode Edit

Echo Echo On No

Status Bar
Text

Step 2: Appending Data

OpenQuery Query Name qryAppendContactsBackup

View Datasheet

Data Mode Edit

OpenQuery Query Name qryAppendProductsBackup

View Datasheet

Data Mode Edit

Echo Echo On Yes

Status Bar
Text

<Leave Blank>

SetWarnings Warnings On Yes

DisplayHourglassPointer Hourglass On No

MessageBox Message Contacts and Products have been
archived.

Beep Yes

Type Information

Title Finished Archiving

708

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 708

The heart of the macro is the four OpenQuery actions that run the four action queries.
qryDeleteContactsBackup and qryDeleteProductsBackup clear the contents of tblContacts_
Backup and tblProducts_Backup so that the current data can be copied into them.
qryAppendContactsBackup and qryAppendProductsBackup append data from tblContacts
and tblProducts into the backup tables.

As you look at Figure 22.8, you will note the warning icons next to a few of the actions in
the macro (specifi cally SetWarnings and Echo). These icons simply indicate that the asso-
ciated actions are potentially unsafe and may require a closer look.

Here’s a closer look at the actions this macro performs:

 ■ DisplayHourglassPointer: This action changes the cursor to an hourglass or a
pointer using the Hourglass On argument. For macros that may take a while to
run, set this argument to Yes at the beginning of the macro and to No at the end
of the macro. Be sure not to forget to set Hourglass off at the conclusion of the
macro; otherwise, the hourglass cursor stays on indefi nitely.

 ■ SetWarnings: This action turns the system messages on or off using the
Warnings On argument. When running action queries, you’ll be prompted to
make sure you want to run the action query, asked whether it’s okay to delete
these 58 records, and then asked again for the next action query. Set Warnings
On to No at the beginning of the macro to turn these messages off. Setting
Warnings On to No has the effect of automatically clicking the default button of
the warning (usually OK or Yes). Don’t forget to set warnings back to Yes at the
end of the macro. Once warnings are turned off, the user won’t get confi rmation
messages from Access on important actions like record deletions until warnings
are re-enabled.

 ■ Echo: In effect, the Echo command “freezes” the screen so that the user isn’t
aware of activities performed by the macro. Set the Echo On argument to No if
you want to hide the results of the macro or Yes if you want to show the results.
Set the Status Bar Text argument to give the user an indication of what’s
happening. This is useful in longer-running macros to know where in the process
the macro is. Be sure to restore the Echo On status to Yes at the end of the macro
so that Access resumes its normal appearance. If Echo On is not set back to Yes,
the user may think the application has “locked up” because of a problem.

 ■ OpenQuery: This action is the heart of the mcrBackupContactsAndProducts
macro. OpenQuery opens a select or crosstab query or runs an action query. The
Query Name argument contains the name of the query to open or run. The View
argument lets you pick the view—Datasheet, Design, Print Preview, and so forth—
for a select or crosstab query. The Data Mode argument lets you choose from Add,
Edit, or Read Only to limit what users can do in a select query. The View and Data
Mode arguments are ignored for action queries.

709

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 709

22

You could easily build this macro just using the four OpenQuery actions, but running it would be cumbersome,

requiring the user to watch the macro run through each query and be ready to confi rm each query action. The

DisplayHourglassPointer, SetWarnings, Echo, and MessageBox actions serve to eliminate the need for user interac-

tion and let the user know when the macro has completed its activity.

Submacros
When automating your application with macros, you might easily get carried away fi ll-
ing the Navigation pane with a bunch of little macros for opening every form and every
report. If you have a series of actions that are performed in a number of places, ideally
you only want one copy, so that you need to make changes only in one place. Submacros
give you that capability: You defi ne the series of actions in one place as a submacro, and
then invoke that submacro wherever it’s needed. Only the submacro object appears in the
Navigation pane, rather than multiple smaller macros.

The macro action drop-down list contains Submacro as an entry. While working on a macro,
selecting Submacro from the action list adds an area to the macro where you can input the
actions associated with the submacro.

Without using submacros, you’d have to create three separate macros to automate a main
menu form with three buttons that open frmContacts, frmProducts, and frmSales. Using
submacros, just create a single top-level macro that contains three submacros. Each of the
submacros opens one form. Only the top-level macro appears in the Navigation pane. Table
22.2 shows the submacro names, the actions, and submacro actions for mcrMainMenu.

TABLE 22.2 mcrMainMenu

Submacro Action Action Argument Action Argument Setting

OpenContacts OpenForm Form Name frmContacts

View Form

Filter Name <Leave Blank>

Where Condition <Leave Blank>

Data Mode <Leave Blank>

Window Mode Normal

OpenProducts OpenForm Form Name frmProducts

View Form

Filter Name <Leave Blank>

Continues

710

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 710

Submacro Action Action Argument Action Argument Setting

Where Condition [ProductID]=3

Data Mode Read Only

Window Mode Dialog

OpenSales OpenForm Form Name frmSales

View Layout

Filter Name qrySales2008

Where Condition <Leave Blank>

Data Mode Edit

Window Mode Icon

Figure 22.9 shows the creation of mcrMainMenu in progress. The developer has selected
Submacro from the Add New Action list, provided a name (OpenContacts) for the
submacro, and fi lled in its properties.

The Add New Action drop-down displays a list of available actions sorted alphabetically. However, the fi rst four

items—Comment, Group, If, and Submacro—are shown at the top of the list rather than in their proper place. These

four items are really program fl ow elements and are separated from the items considered actions.

Next, the developer selected Submacro a second time from the Add New Action list, and
provided OpenProduct as its name. None of the arguments for the second submacro has
been fi lled in.

FIGURE 22.9

Adding a second submacro to a macro.

TABLE 22.2 (continued)

711

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 711

22

The confusing thing about submacros is that you see two Add New Action lists in Figure
22.9. One is at the very bottom of the main macro, while the second is inside the second
submacro. The submacro that is currently being developed (OpenProducts) is enclosed
in a lightly shaded box, while the completed submacro (OpenContacts) at the top of the
main macro is not contained in a box.

In Figure 22.9, notice the small minus sign to the left of Submacro in the fi rst line of the macro. The minus sign is

there to show you that the submacro is currently expanded so that you can see all the steps in the submacro. Clicking

the minus sign collapses the macro to a single line, which lets you view more of the macro and its actions in a single

glance. Several fi gures in this chapter show macros with portions collapsed (identifi able by the small plus sign to the

left), so don’t be confused if portions of a macro illustrated in a fi gure appear to be missing.

To implement a macro using submacros, create a form (frmMainMenu) with three buttons—
in this case, cmdContacts, cmdProducts, and cmdSales. Then set the On Click event prop-
erties of these buttons as follows (see Figure 22.10):

Button Name On Click Event Property

cmdContacts mcrMainMenu.OpenContacts

cmdProducts mcrMainMenu.OpenProducts

cmdSales mcrMainMenu.OpenSales

FIGURE 22.10

The submacro names appear after the macro object in the event property drop-down list.

Submacro

name

Main macro

name

712

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 712

Open frmMainMenu in Form view and click the Contacts button; frmContacts opens and dis-
plays all the records. Click the Products button to display frmProducts, which only displays
one record. Click the Sales button to display frmSales in a minimized state, which displays
the sales made in 2012.

To see why these forms open differently, take a look at the action arguments for the
OpenForm action:

 ■ Form Name: This argument is the name of the form you want the macro to open.

 ■ View: This argument lets you select which view to open the form in: Form,
Design, Print Preview, Datasheet, PivotTable, PivotChart, or Layout. For this
example, frmContacts and frmProducts open in Form view, while frmSales opens
in Layout view.

 ■ Filter Name: This argument lets you select a query or a fi lter saved as a query to
restrict and/or sort the records for the form. For this example, this argument is set
to qrySales2012 for the OpenSales macro. qrySales2012 is a query that outputs all
the fi elds in the table and only displays sales between 1/1/2012 and 12/31/2012.
This query also sorts the records by SaleDate.

 ■ Where Condition: This argument lets you enter a SQL Where clause or expression
that selects records for the form from its underlying table or query. For this exam-
ple, this argument is set to [ProductID]=3 for the OpenProducts submacro,
which only shows one record when you open frmProducts.

 ■ Data Mode: This argument lets you choose the data-entry mode for the form.
Select Add to only allow users to add new records, Edit to allow adding and edit-
ing of records, or Read Only to allow only viewing of records. This setting only
applies to forms opened in Form view or Datasheet view, and overrides settings of
the form’s AllowEdits, AllowDeletions, AllowAdditions, and DataEntry properties.
To use the form’s setting for these properties, leave this argument blank. For this
example, frmProducts opens in read-only mode, while frmContacts and frmSales
allow editing.

 ■ Window Mode: This argument lets you choose the window mode for the form.
Select Normal to use the form’s properties. Select Hidden to open the form with its
Visible property set to No. Select Icon to open the form minimized. Select Dialog
to open the form with its Modal and PopUp properties set to Yes and Border Style
property set to Dialog. For this example, frmContacts opens normally, frmProducts
opens as a dialog box, and frmSales opens minimized.

 For more information on form properties, see Chapter 17.

When you run a macro with submacros from the Navigation pane, only the fi rst submacro executes.

713

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 713

22

If you’re careful in planning your macros, you can create one top-level macro object for
each form or report and use submacros for each action you want to perform in the form or
report. Submacros let you limit the number of macros that appear in the Navigation pane
and make managing numerous macros much easier.

Conditions
Submacros let you put multiple groups of actions in a single macro object, but a condition
specifi es certain criteria that must be met before the macro performs the action. The If
macro action also takes a Boolean expression. If the expression evaluates to False, No, or
0, the action will not execute. If the expression evaluates to any other value, the action
is performed.

Opening reports using conditions
To demonstrate conditions and the If macro action, frmReportMenu (shown in Figure
22.11), contains three buttons and a frame control (fraView) with two option buttons: Print
and Print Preview. Clicking Print sets the frame’s value to 1; clicking Print Preview sets the
frame’s value to 2.

FIGURE 22.11

frmReportMenu uses a frame to select the view in which to open the Contacts, Products, and
Sales reports.

The macro that opens the reports uses submacros, as well as the If macro action. Table 22.3
shows the submacro names, conditions, actions, and action arguments for mcrReportMenu
(a portion of which is shown in Figure 22.12), which opens one of three reports. The Filter
Name and Where Condition arguments are blank for each OpenReport action.

714

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 714

TABLE 22.3 mcrReportMenu

Submacro Name If Macro Action Condition Action

Action

Argument Action Argument Setting

OpenContacts [Forms]![frmReportM
enu]![fraView]=1

OpenReport Report
Name

rptContacts_
Landscape

View Print

Window
Mode

Normal

[Forms]![frmReportM
enu]![fraView]=2

OpenReport Report
Name

rptContacts_
Landscape

View Print Preview

Window
Mode

Normal

OpenProducts [Forms]![frmReportM
enu]![fraView]=1

OpenReport Report
Name

rptProducts

View Print

Window
Mode

Normal

[Forms]![frmReportM
enu]![fraView]=2

OpenReport Report
Name

rptProducts

View Print Preview

Window
Mode

Normal

OpenSales [Forms]![frmReportM
enu]![fraView]=1

OpenReport Report
Name

rptSales_
Portrait

View Print

Window
Mode

Normal

[Forms]![frmReportM
enu]![fraView]=2

OpenReport Report
Name

rptSales_
Portrait

View Print Preview

Window
Mode

Normal

715

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 715

22

FIGURE 22.12

mcrReportMenu uses an If action to open reports in Print or Print Preview view.

To implement this macro, set the On Click event properties of the buttons (cmdContacts,
cmdProducts, and cmdSales) on frmReportMenu as follows:

Button Name On Click Event Property

cmdContacts mcrReportMenu.OpenContacts

cmdProducts mcrReportMenu.OpenProducts

cmdSales mcrReportMenu.OpenSales

The If macro action in mcrReportMenu has two expressions that look at fraView on
 frmReportMenu to determine whether Print or Print Preview is selected:

 ■ [Forms]![frmReportMenu]![fraView]=1: Print view selected

 ■ [Forms]![frmReportMenu]![fraView]=2: Print Preview view selected

If Print is selected on frmReportMenu, the OpenReport action with the View arguments
set to Print executes. If Print Preview is selected on frmReportMenu, the OpenReport
action with the View arguments set to Print Preview executes. This structure is set up for
each submacro in mcrReportMenu.

716

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 716

Multiple actions in conditions
If you want to run multiple actions based on a condition, add multiple actions within the
If and End If actions. Figure 22.13 illustrates this concept.

FIGURE 22.13

Multiple actions within If and End If actions execute as a group.

The If macro action lets you selectively run actions based on other values in your applica-
tion. Use the If macro action to reference controls on forms or reports and other objects
and determine which actions to execute.

Temporary Variables
In previous versions of Access, you could use variables only in VBA code. Macros were
limited to performing a series of actions without carrying anything forward from a
previous action. Beginning with Access 2007, three new macro actions—SetTempVar,
RemoveTempVar, and RemoveAllTempVars—let you create and use temporary variables
in your macros. You can use these variables in conditional expressions to control which
actions execute, or to pass data to and from forms or reports. You can even access these
variables in VBA to communicate data to and from modules.

Enhancing a macro you’ve already created
A simple way to demonstrate how to use variables in macros is to enhance the Hello World!
example created earlier in this chapter (see “Creating a macro”). Table 22.4 shows the macro
actions and action arguments for mcrHelloWorldEnhanced (shown in Figure 22.14).

717

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 717

22

TABLE 22.4 mcrHelloWorldEnhanced

Action Action Argument Action Argument Setting

SetTempVar Name MyName

Expression InputBox("Enter your name.")

MessageBox Message ="Hello " & [TempVars]![MyName] & "."

Beep Yes

Type Information

Title Using Variables

RemoveTempVar Name MyName

FIGURE 22.14

mcrHelloWorldEnhanced uses the SetTempVar action to get a value from the user and
display it in a message box.

Deleting the temporary variable

Using the temporary variable

Setting a temporary variable

The SetTempVar action has two arguments: Name and Expression. The Name argu-
ment (MyName in this example) is simply the name of the temporary variable. The
Expression argument is what you want the value of the variable to be. In this example,
the InputBox() function prompts the user for his name.

The MessageBox action’s Message argument contains the following expression:

="Hello " & [TempVars]![MyName] & "."

718

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 718

This expression concatenates the word Hello with the temporary variable MyName, created
in the SetTempVar action of the macro. When referring to a temporary variable created
with the SetTempVar action, use the following syntax:

[TempVars]![VariableName]

 For more information on string concatenation using the ampersand (&), see Chapter 9.

The RemoveTempVar action removes a single temporary variable from memory—in this
example, MyName. You can have only 255 temporary variables defi ned at one time. These
variables stay in memory until you close the database, unless you remove them with
RemoveTempVar or RemoveAllTempVars. It’s a good practice to remove temporary vari-
ables when you’re done using them.

Using the RemoveAllTempVars action removes all temporary variables created with the SetTempVar action.

Unless you’re sure you want to do this, use the RemoveTempVar action instead.

Temporary variables are global. Once you create a temporary variable, you can use it in
VBA procedures, queries, macros, or object properties. For example, if you remove the
RemoveTempVar action from mcrHelloWorldEnhanced, you can create a text box on a form
and set its Control Source property as follows to display the name the user entered:

=[TempVars]![MyName]

Using temporary variables to simplify macros
Using temporary variables, you can sometimes eliminate steps from a macro. You can get
the form or report name from another control on a form. With a temporary variable, you
eliminate the need for creating a structure of multiple OpenForm or OpenReport actions.
You can also use more than one variable in a macro.

For this example, use frmReportMenuEnhanced (shown in Figure 22.15), which contains
the same fraView shown in Figure 22.12, but adds a combo box (cboReport), which con-
tains a list of reports to run. The Run Command button executes mcrReportMenuEnhanced,
which doesn’t use submacros to decide which report to open.

719

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 719

22

Table 22.5 shows the conditions, actions, and action arguments for
mcrReportMenuEnhanced (shown in Figure 22.16), which opens one of three reports.

FIGURE 22.15

frmReportMenuEnhanced uses a combo box to select which report to open.

TABLE 22.5 mcrReportMenuEnhanced

Condition Action Action Argument Action Argument Setting

SetTempVar Name ReportName

Expression [Forms]![frmReportMenuEnhanc
ed]![cboReport]

SetTempVar Name ReportView

Expression [Forms]![frmReportMenuEnhanc
ed]![fraView]

[TempVars]!
[ReportView]=1

OpenReport Report Name =[TempVars]![ReportName]

View Print

Window Mode Normal

[TempVars]!
[ReportView]=2

OpenReport Report Name =[TempVars]![ReportName]

View Print Preview

Window Mode Normal

RemoveTempVar Name ReportName

RemoveTempVar Name ReportView

The fi rst two SetTempVar actions in mcrReportMenuEnhanced set the values of the
temporary variables—ReportName and ReportView—from cboReport and fraView on frmRe-
portMenuEnhanced. The OpenReport actions use the temporary variables in the Condition
column and for the ReportName argument. When using temporary variables as a setting
for an argument, you must use an equal (=) sign in front of the expression:

=[TempVars]![ReportName]

720

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 720

FIGURE 22.16

mcrReportMenuEnhanced uses temporary variables to open the report in Print or Print
Preview view.

There are still two OpenReport actions in this macro. Certain arguments—such as View—
don’t allow the use of temporary variables in expressions. Because one of your variables is
a setting for the report’s view, you still have to use the Condition column to decide which
view to open the report in.

The last two RemoveTempVar lines remove the temporary variables—ReportName and
ReportView—from memory. Because these variables probably won’t be used later on in the
application, it’s important to remove them.

Using temporary variables in macros gives you far more fl exibility in Access 2016 than in
versions prior to Access 2007. You can use these variables to store values to use later on
in the macro, or anywhere in the application. Just remember that you have only 255 tem-
porary variables to use, so don’t forget to clean up after yourself by removing them from
memory once you’re fi nished using them.

Using temporary variables in VBA
You may start out using macros to automate your application, but over time, you may begin
using VBA code to automate and add functionality to other areas. What do you do with the

721

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 721

22

temporary variables you’ve already implemented with macros? Well, you don’t have to aban-
don them; instead, you can use them directly in your VBA code.

To access a temporary variable in VBA, use the same syntax used in macros:

X = [TempVars]![VariableName]

If you don’t use spaces in your variable names, you can omit the brackets:

X = TempVars!VariableName

Use the previous syntax to assign a new value to an existing temporary variable. The only
difference is to put the temporary variable on the left side of the equation:

TempVars!VariableName = NewValue

Use the TempVars object to create and remove temporary variables in VBA. The TempVars
object contains three methods: Add, Remove, and RemoveAll. To create a new temporary
variable and set its value, use the Add method of the TempVars object as follows:

TempVars.Add "VariableName", Value

Use the Remove method of the TempVars object to remove a single temporary variable
from memory:

TempVars.Remove "VariableName"

When adding or removing temporary variables in VBA, remember to put the temporary variable’s name in quotation

marks.

To remove all the temporary variables from memory, use the RemoveAll method of the
TempVars object as follows:

TempVars.RemoveAll

Any VBA variables you create are available to use in your macros, and vice versa. Any
variables you remove in VBA are no longer available to use in your macros, and vice versa.
Using temporary variables, your macros and VBA code no longer have to be independent
from each other.

Error Handling and Macro Debugging
Prior to Access 2007, if an error occurred in a macro, the macro stopped execution, and your
user saw an ugly dialog box (shown in Figure 22.17) that didn’t really explain what was

722

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 722

going on. If he was unfamiliar with Access, he quickly became disgruntled using the appli-
cation. The lack of error handing in macros is one main reason many developers use VBA
instead of macros to automate their applications.

FIGURE 22.17

Errors in macros cause the macro to cease operation.

A common error that’s easy to demonstrate is the divide-by-zero error. For the next exam-
ple, mcrDivision (shown in Figure 22.18) contains two temporary variables—MyNum and
MyDenom—set with the InputBox() function asking for a numerator and denominator. The
MessageBox action shows the result—[TempVars]![MyNum]/[TempVars]![MyDenom]—
in a message box, and the RemoveTempVar actions remove the variables from memory.

FIGURE 22.18

mcrDivision divides the numerator by the denominator and generates an error when the
denominator is zero.

723

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 723

22

Run the macro and enter 1 for the numerator and 2 for the denominator; the macro runs
and displays a message box saying 1 divided by 2 is 0.5. Run the macro again and
enter 0 in the denominator; a divide-by-zero error occurs and the macro stops running.
Without error handling, the two RemoveTempVar actions won’t run and won’t remove the
temporary variables from memory.

If an error occurs in another macro—such as a string of action queries—any queries after
an error occurs won’t run. Adding error handling to your macros allows you to choose what
to do when an error occurs while a macro’s running.

The OnError action
The OnError action lets you decide what happens when an error occurs in your macro. This
action has two arguments: Go to and Macro Name. The Go to argument has three settings
and the Macro Name argument is used only with one of these settings, described as follows:

 ■ Next: This setting records the details of the error in the MacroError object but
does not stop the macro. The macro continues with the next action.

 ■ Macro Name: This setting stops the current macro and runs the macro in the
Macro Name argument of the OnError action.

 ■ Fail: This setting stops the current macro and displays an error message. This is the
same as not having error handling in the macro.

The VBA equivalents of these settings are as follows:

On Error Resume Next 'Next
On Error GoTo LABELNAME 'Macro Name
On Error GoTo 0 'Fail

The simplest way to add error handling to a macro is to make OnError the fi rst action and
set the Go to argument to Next. This will cause your macro to run without stopping, but
you won’t have any clue which actions ran and which ones didn’t.

Instead, create an error-handling structure. Table 22.6 shows the macro names, actions, and
action arguments for mcrDivisionErrorHandling (shown in Figure 22.19).

TABLE 22.6 mcrDivisionErrorHandling

Submacro Name Action Action Argument Action Argument Setting

OnError Go to Macro Name

Macro Name ErrorHandler

SetTempVar Name MyNum

Expression InputBox("Enter Numerator.")

Continues

724

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 724

Submacro Name Action Action Argument Action Argument Setting

SetTempVar Name MyDenom

Expression InputBox("Enter
Denominator.")

MessageBox Message =[TempVars]![MyNum] & "
divided by " &
[TempVars]![MyDenom] & " is
" & [TempVars]![MyNum]/
[TempVars]![MyDenom]

Beep Yes

Type Information

Title Division Example

RunMacro Macro Name mcrDivisionErrorHandling
.Cleanup

ErrorHandler MessageBox Message ="The following error
occurred: " & [MacroError].
[Description]

Beep Yes

Type Warning?

Title ="Error Number: " &
[MacroError].[Number]

ClearMacroError

RunMacro Macro Name mcrDivisionErrorHandling.
Cleanup

Cleanup RemoveTempVar Name MyNum

RemoveTempVar Name MyDenom

The fi rst OnError action in the macro lets Access know to move to the submacro
ErrorHandler when an error occurs. If an error occurs (by entering 0 as the denomina-
tor), the macro stops and moves to the ErrorHandler submacro. The ErrorHandler
submacro displays a message box—using the MacroError object (described in the next
section) to display the error’s description in the Message and the error’s number in the
Title, using the following expressions:

[MacroError].[Description]
[MacroError].[Number]

After the error handler’s message box, the ClearMacroError action clears the
MacroError object. The RunMacro action moves execution to the macro’s Cleanup sub-
macro. The Cleanup section of the macro removes the temporary variables.

TABLE 22.6 (continued)

725

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 725

22

FIGURE 22.19

mcrDivisionErrorHandling uses the OnError action to display a user-friendly error message
and remove the temporary variables.

Error handler submacro

Specify action after error

Initiate error handler

There’s no Resume functionality in macro error handling. If you want to run additional code after the error-handling

actions, you must use the RunMacro action in the error-handling submacro to run another macro, or place the

actions in the error handler.

The RunMacro action also appears after the MessageBox action in the main section of the
macro. Because you’re using submacros, the macro stops after it reaches the ErrorHandler
submacro. In order to force the cleanup of the temporary variables, use the RunMacro action
to run the Cleanup submacro. Otherwise, you’d have to put the RemoveTempVar actions in
the main section and in the ErrorHandler section of the macro.

The MacroError object
The MacroError object contains information about the last macro error that
occurred. It retains this information until a new error occurs or you clear it with the
ClearMacroError action. This object contains a number of read-only properties you can
access from the macro itself or from VBA. These properties are as follows:

 ■ ActionName: This is the name of the macro action that was running when the
error occurred.

 ■ Arguments: The arguments for the macro action that was running when the error
occurred.

726

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 726

 ■ Condition: This property contains the condition for the macro action that was
running when the error occurred.

 ■ Description: The text representing the current error message—for example,
Divide by Zero or Type Mismatch.

 ■ MacroName: Contains the name of the macro that was running when the error occurred.

 ■ Number: This property contains the current error number—for example, 11 or 13.

Use the MacroError object as a debugging tool or to display messages to the user, who can
then relay that information to you. You can even write these properties to a table to track
the errors that occur in your macros. Use this object within an If action to customize
what actions execute based on the error that occurs. When used in combination with the
OnError action, it gives you additional functionality by handling errors, displaying useful
messages, and providing information to you and the user.

Debugging macros
Trying to fi gure out what’s going on in a macro can be diffi cult. The OnError action and
MacroError object make debugging Access macros easier than in previous versions. There
are other tools and techniques that are useful when debugging macros. Use the following
list as a guideline for troubleshooting macros.

 ■ Single Step: Click the Single Step button in the Tools group on the Macro Tools
Design tab of the Ribbon to turn on Single Step mode. The Macro Single Step dialog
box (shown in Figure 22.20) lets you see the macro name, condition, action name,
arguments, and error number of a macro action before the action executes. From
this dialog box, click Step to execute the action, Stop All Macros to stop the macro
from running, or Continue to fi nish the macro with Single Step mode turned off.

FIGURE 22.20

Use the Macro Single Step dialog box to step through a macro.

727

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 727

22

 ■ MessageBox: Use the MessageBox macro action to display values of variables,
error messages, control settings, or whatever else you want to see while the macro
is running. To see the value of a combo box on a form, set the Message argument
as follows:

[Forms]![frmReportMenuEnhanced]![cboReport]

 ■ StopMacro: Use the StopMacro action to stop the macro from executing. Insert
this action at any point in the macro to stop it at that point. Use this in conjunc-
tion with the debug window to check values.

 ■ Debug window: Use the debug window to look at any values, temporary variables, or
properties of the MacroError object after you stop the macro. Press Ctrl+G to dis-
play the code window after you stop the macro. Just type a question mark (?) and
the name of the variable or expression you want to check the value of, and press
Enter. Here are some examples of expressions to display in the Debug window:

? TempVars!MyNum
? MacroError!Description
? [Forms]![frmReportMenuEnhanced]![cboReport]

These techniques are similar to ones you’d use when debugging VBA code. You can step
through sections of code, pause the code and look at values in the debug window, and
display message boxes to display variables or errors that occur. Granted, you don’t have
all the tools available—such as watching variables and Debug.Print—but at least you
have the new MacroError object to provide the information you need to fi gure out what’s
going wrong.

 For more information on error handling and debugging VBA code see Chapter 27.

Embedded Macros
An embedded macro is stored in an event property and is part of the object to which it
belongs. When you modify an embedded macro, you don’t have to worry about other con-
trols that might use the macro because each embedded macro is independent. Embedded
macros aren’t visible in the Navigation pane and are only accessible from the object’s
Property Sheet.

As an example, let’s say you want to add a command button to a form that opens a report.
You could use a global macro (one that’s in the Navigation pane) to open the report, or you
could add an embedded macro to the command button.

Embedded macros are trusted. They run even if your security settings prevent the run-
ning of code. Using embedded macros allows you to distribute your application as a trusted
application because embedded macros are automatically prevented from performing unsafe
operations.

728

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 728

One big change since Access 2003 is that when you use a wizard to create a button, it no
longer creates an event procedure—it creates an embedded macro. So, if you’re used to run-
ning a wizard and using the wizard’s VBA code for another purpose, you’ll have to abandon
that technique. Using embedded macros instead of code accomplishes two things:

 ■ It allows you to quickly create a distributable application.

 ■ It allows users not familiar with VBA code to customize buttons created with wizards.

Follow these steps to create an embedded macro that opens frmContacts:

 1. Select the Create tab on the Ribbon, and then click the Form Design button in
the Forms group.

 2. On the Form Design Tools Design tab of the Ribbon, deselect the Use Control
Wizards option in the Controls group. For this example, you don’t want to use a
wizard to decide what this button does.

 3. Click the Button control and draw a new button on the form.

 4. Set the button’s Name property to cmdContacts and the Caption property to
Contacts.

 5. Display the Property Sheet for cmdContacts, select the Event tab, and then
click the On Click event property.

 6. Click the builder button — the button with the ellipsis (...). The Choose Builder
dialog box (shown in Figure 22.21) appears.

FIGURE 22.21

Use the builder button in the event property to display the Choose Builder dialog
box to create an embedded macro.

729

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 729

22

 7. Choose Macro Builder and click OK to display the macro window (shown in
Figure 22.22).

FIGURE 22.22

An embedded macro doesn’t have a name. The title bar displays the control and the
event in which the macro is embedded.

 8. Add the OpenForm action to the macro, and then set the Form Name argument
to frmContacts.

 9. Close the embedded macro, and click OK when you’re prompted to save the
changes and update the property. The On Click event property of cmdContacts
now displays [Embedded Macro].

Using an embedded macro has some advantages over using an event procedure containing
VBA code. If you copy the button and paste it on another form, the embedded macro goes
with it. You don’t have to copy the code and paste it as a separate operation. Similarly, if
you cut and paste the button on the same form (for example, moving it onto a tab control),
you don’t have to reattach the code to the button.

Embedded macros offer another improvement to macros in previous versions. If you auto-
mate your application with embedded macros and import a form or report into another
database (or just copy the control within the same database), you don’t have to worry about
importing or copying the associated macros. By using embedded macros, all the automation
moves with the form or report. This makes maintaining and building applications easier.

Macros versus VBA Statements
In Access, macros often offer an ideal way to take care of many details, such as running
reports and forms. You can develop applications and assign actions faster using a macro
because the arguments for the macro actions are displayed with the macro (in the bottom
portion of the macro window). You don’t have to remember complex or diffi cult syntax.

730

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 730

Several actions you can accomplish with VBA statements are better suited for macros. The
following actions tend to be more effi cient when they’re run from macros:

 ■ Using macros against an entire set of records with action queries—for example,
to manipulate multiple records in a table or across tables (such as updating fi eld
values or deleting records)

 ■ Opening and closing forms

 ■ Running reports

The VBA language supplies a DoCmd object that accomplishes many macro actions. Under the surface, DoCmd runs

a macro task to accomplish the same result provided by a macro action. You could, for example, specify DoCmd
.Close to run the Close macro action and close the currently active form.

Choosing between macros and VBA
Although macros sometimes prove to be the solution of choice, VBA is the tool of choice at
other times. You’ll probably want to use VBA rather than macros when you want to:

 ■ Create and use your own functions. In addition to using the built-in functions in
Access, you can create and work with your own functions by using VBA code.

 ■ Use automation to communicate with other Windows applications or to run
system-level actions. You can write code to see whether a fi le exists before you
take some action, or you can communicate with another Windows application (such
as a spreadsheet), passing data back and forth.

 ■ Use existing functions in external Windows Dynamic Link Libraries (DLLs).
Macros don’t enable you to call functions in other Windows DLLs.

 ■ Work with records one at a time. If you need to step through records or move val-
ues from a record to variables for manipulation, code is the answer.

 ■ Create or manipulate objects. In most cases, you’ll fi nd that creating and modify-
ing an object is easiest in that object’s Design view. In some situations, however,
you may want to manipulate the defi nition of an object in code. With a few VBA
statements, you can manipulate virtually any and all objects in a database, includ-
ing the database itself.

 ■ Display a progress meter on the status bar. If you need to display a progress
meter to communicate progress to the user, VBA code is the answer.

Converting existing macros to VBA
After you become comfortable with writing VBA code, you may want to rewrite some of
your application macros as VBA procedures. As you begin this process, you quickly realize

731

Chapter 22: Using Access Macros

c22.indd 10/01/2015 Page 731

22

how mentally challenging the effort can be as you review every macro in your various
macro libraries. You can’t merely cut the macro from the macro window and paste it into
a module window. For each condition, action, and action argument for a macro, you must
analyze the task it accomplishes and then write the equivalent statements of VBA code in
your procedure.

Fortunately, Access provides a feature that converts macros to VBA code automatically. On
the Tools group of the Design tab of the Ribbon, there is a Convert Macro to Visual Basic
button. This option enables you to convert a macro to a module in seconds.

Only macros that appear in the Navigation pane can be converted to VBA. Macros that are embedded in a form or

report must be converted manually.

To try the conversion process, convert the mcrHelloWorldEnhanced macro used earlier in
this chapter. Follow these steps to run the conversion process:

 1. Click the Macros group in the Navigation pane.

 2. Open mcrHelloWorldEnhanced in Design view.

 3. Click the Convert Macros to Visual Basic button on the Design tab. The Convert
Macro dialog box (shown in Figure 22.23) appears.

FIGURE 22.23

The Convert Macro dialog box.

 4. Select the options that include error handling and macro comments, and click
Convert. When the conversion process completes, the Visual Basic Editor (VBE) is
displayed and the Conversion Finished! message box appears.

 5. Click OK to dismiss the message box.

 6. In the VBE, open the Project Explorer from the View menu (Ctrl+R) and double-
click the module named Converted Macro-mcrHelloWorldEnhanced. The code
and Project Explorer are shown in Figure 22.24.

732

Part VI: Access Programming Fundamentals

c22.indd 10/01/2015 Page 732

FIGURE 22.24

The newly converted module.

When you open the VBE for the new module, you can view the procedure created from the
macro. Figure 22.24 shows the mcrHelloWorldEnhanced function that Access created from
the mcrHelloWorldEnhanced macro.

At the top of the function, Access inserts four comment lines for the name of the function.
The Function statement follows the comment lines. Access names the function, using the
macro library’s name (mcrHelloWorldEnhanced).

When you specify that you want Access to include error processing for the conversion,
Access automatically inserts the On Error statement as the fi rst command in the proce-
dure. The On Error statement tells Access to branch to other statements that display an
appropriate message and then exit the function.

The statement beginning with TempVars.Add is the actual code that Access created
from the macro. Each line of the macro is converted into a line of VBA code, including the
TempVars object, the Beep method, and the MsgBox function.

If you’re new to VBA and want to learn code, a good starting point is converting your
macros to modules. Just save your macros and modules, and then look at the VBA code
to become familiar with the syntax. The macro features in Access 2016 make it harder to
decide whether to use macros or VBA.

733

c23.indd 09/25/2015 Page 733

 CHAP T ER

23
Using Access Data Macros

IN THIS CHAPTER

Creating data macros

Understanding table events

Understanding data macro limitations

B
eginning with Access 2007, macros have played a signifi cant role in many Access applica-
tions. For a very long time, macros were considered the poor cousins of VBA statements.
Although in many ways VBA and macros were equivalent in their capabilities, macros have

always been considered inferior to VBA for handling an application’s logic.

The problems with traditional Access macros were considerable:

 ■ Macros existed as separate database objects, so keeping track of the macro’s effect on
a particular form was often difficult. Because there was no direct connection between
a form (or a report, for that matter) and a macro, it was easy to break the macro by delet-
ing or renaming it. VBA code encapsulated within the form’s code module never had this
problem.

 ■ There was no way to trap or handle errors in macros. In versions of Access prior to 2007,
macros would simply stop running and display an error dialog box if something unexpected
happened. These interruptions were not welcomed by users, particularly because there
was, most often, nothing a user could do to correct the problem or prevent it from happen-
ing again. VBA code has always featured strong error handling and could often provide a
default value or instruct the user what to do in the event of a problem.

 ■ Macros were unable to work with code. There was no way for a macro to loop through a
recordset—for example, to sum fi eld values or detect out-of-range data. VBA code is well
suited for data management tasks and includes all the looping constructs necessary to
 iterate over recordsets.

In Access 2016, those concerns are all but a distant memory. Macros now offer error handling and
temporary variables during a macro’s execution. Access 2016 also offers embedded macros. As dis-
cussed in Chapter 22, embedded macros eliminate the objection that macros were always external
to the form or report they serviced. Chapter 22 also demonstrates that macros in Access 2016 allow
for looping and trapping errors.

734

Part VI: Access Programming Fundamentals

c23.indd 09/25/2015 Page 734

This chapter specifi cally covers data macros, which add yet another reason macros in Access
2016 are a more attractive option than ever before.

The starting database for this walkthrough, Chapter23.accdb, can be downloaded from this book’s website.

 If you haven’t done so, you’ll want to explore Chapter 22. There, you’ll get the foundation needed to

better understand the terms and features you’ll see in this chapter.

Introducing Data Macros
A data macro is logic you attach to a table to enforce business rules at the table level. In
some ways, a data macro is similar to a validation rule, except that a validation rule is
rather unintelligent. Validation rules can’t modify data or determine whether corrective
action is needed. Data macros are specifi cally provided to allow you to manage data-
oriented activity at the table level.

Most often, data macros are used to enforce business rules—such as a value can’t be less
than some threshold—or to perform data transformation during data entry. The real value
of data macros is that they’re in effect wherever a table’s data is used, even in web appli-
cations that run on SharePoint. That’s right—data macros work in both desktop and web
applications.

Because data macros work in SharePoint environments, they’re especially useful in Access
web applications. For example, if a data macro is attached to a sales table in your web
application, anytime the sales data is displayed on a web form the data macro is at work,
watching for changes to the data and automatically controlling what happens to the
table’s data.

Data macros are intended to make it easier to ensure consistent data handling throughout
your application, even when your application is running on the web. Because data macros
are applied at the table level, the exact same action happens each time the table’s data is
updated. Although the subset of actions available to data macros is considerably smaller
than standard macros, when carefully crafted and implemented, data macros are a powerful
addition to Access applications.

Data macros are especially handy in split database applications (applications where the tables live in a separate

Access fi le from the forms and reports). Because the macros are attached to the tables, they continue to work even if

someone links to the tables in some other way than the designed front-end application.

 ON THE WEB

735

Chapter 23: Using Access Data Macros

c23.indd 09/25/2015 Page 735

23

Understanding Table Events
There are fi ve different macro-programmable table events: BeforeChange, BeforeDelete,
AfterInsert, AfterUpdate, and AfterDelete.

To see these events in the Ribbon, start up the Chapter23.accdb database and open
tblProducts in Datasheet view. On the Ribbon, you’ll see a Table tab. Select that tab
and you’ll see the events shown in Figure 23.1: BeforeChange, BeforeDelete,
AfterInsert, AfterUpdate, and AfterDelete.

FIGURE 23.1

Every Access table includes fi ve data-oriented events that can be selected when in
Datasheet view.

These events are designated as “before” and “after” events. The “before” events occur
before changes are made to the table’s data, while the “after” events indicate that success-
ful changes have been made.

“Before” events
The “before” events (BeforeChange and BeforeDelete) are very simple and support
only a few macro actions. They support the program fl ow constructs (Comment, Group, and
If) and just the LookupRecord data block. The only macro data actions they provide are
ClearMacroError, OnError, RaiseError, SetLocalVar, and StopMacro.

The BeforeChange event is similar to the BeforeUpdate event attached to forms,
reports, and controls. As its name implies, BeforeChange fi res just before the data in a
table is changed by the user, a query, or VBA code.

BeforeChange gives you a chance to look at new values in the current record and
make changes if needed. By default, references to a fi eld within a BeforeChange or
BeforeDelete data macro automatically refer to the current record.

BeforeChange is an excellent opportunity to validate user input before committing val-
ues to a table. A simple example is shown in Figure 23.2. In this case, the default value of
the Description fi eld in tblProducts_BeforeChange is set to Description. If the user fails to
change the Description fi eld while adding a new record to the table, the BeforeChange
event updates the fi eld to “Please provide description.”

736

Part VI: Access Programming Fundamentals

c23.indd 09/25/2015 Page 736

FIGURE 23.2

Using BeforeChange to update a fi eld.

The BeforeChange event can’t interrupt the user with a message box or stop the record
from updating in the underlying table. All BeforeChange can do is set a fi eld’s value or
set a local macro variable’s value before the record is added or updated in the table.

BeforeChange fi res for both updates to existing records and new record insertions into
the table. Access provides the IsInsert property that tells the macro whether the current
change is the result of inserting a new record or is because a record is being updated.

Figure 23.3 illustrates how IsInsert can be used within an If block to ensure the
BeforeChange fi red as the result of a new record inserted into the table.

FIGURE 23.3

Using IsInsert to determine if BeforeChange fi red as the result of adding a new record.

Figure 23.3 also illustrates that program-fl ow blocks (like If) can be nested. The outer If
block checks the value of IsInsert, while the inner If conditionally sets the Description
fi eld value.

The BeforeDelete event is parallel in almost every regard to BeforeChange, so no
examples are given here. Use BeforeDelete to verify that conditions are appropriate for
deletion. As with BeforeChange, the BeforeDelete event can’t prevent a record’s dele-
tion, but it can set a local variable or raise an error if conditions warrant.

737

Chapter 23: Using Access Data Macros

c23.indd 09/25/2015 Page 737

23

“After” events
The “after” events (AfterChange, AfterInsert, and AfterDelete) are more robust
than their “before” counterparts. Each of these events supports the entire family of data
macro actions (DeleteRecord, SetField, SendEmail, and so on), so it’s likely that
you’ll frequently use these events as the basis of your data macros.

Figure 23.4 shows a typical use of the AfterInsert event. The AfterInsert event fi res
whenever a new record is added to a table. The new record has already been committed to
the table, and AfterInsert is used to update a table named tblProductActivityLog.

FIGURE 23.4

Using AfterInsert to add a record to tblProductActivityLog.

In Figure 23.4, notice that three fi elds (ProductActivity, ProductID, and ProductDescription)
in tblProductActivityLog are being updated as part of a CreateRecord data block. The
ProductID is an AutoNumber fi eld in tblProducts_AfterInsert. The CreateRecord block
has already added the record to the table, so the new record’s ProductID value is available
to this data macro. Therefore, when the SetField macro action updates the ProductID
fi eld in tblProductActivityLog, the new product record’s ID is successfully added to the
log table.

The AfterInsert data macro runs whenever a record is added to the table. Similar data
macros can be added to the table’s AfterUpdate and AfterDelete to log other changes
to the table.

The most useful aspect of the “after” events is that they can use the ForEachRecord
macro block to iterate over recordsets provided by tables or queries. This capability makes
these events ideal for scanning a table for consistency, adding a record to a log table, or
performing some other compute-intensive updates.

738

Part VI: Access Programming Fundamentals

c23.indd 09/25/2015 Page 738

Using the macro designer for Data Macros
Data macros use the same macro designer used to create embedded and user interface mac-
ros. Once you master the macro designer, you’ll use it for all macro development and macro
management. The primary difference is that the Action Catalog (described in the next
 section) contains different actions, depending on the context.

Adding data macros to a table is quite easy. In fact, an Access table doesn’t even have to be
in Design view—you can add data macros to a table displayed as a datasheet, if you like.
The data macros you construct for a table are in effect immediately, so you can easily work
on a macro and observe how well the macro works without compiling or switching between
Design view and Datasheet view.

In the Chapter23.accdb database, start by opening tblProducts in Datasheet view. On
the Ribbon, you’ll select the Table tab to expose table’s data events (see Figure 23.1).

Double-click the After Update command to open the macro designer (shown in Figure 23.5).
Initially, at least, there’s not much to look at.

FIGURE 23.5

The macro designer for the table’s AfterUpdate event.

The large blank area to the left is the macro design area. This is where you place macro
actions. On the right side is the Action Catalog, a hierarchical list of all macro actions
 currently available. The only indication of which table event is being programmed is in the
main Access window caption and in the tab above the macro design area.

739

Chapter 23: Using Access Data Macros

c23.indd 09/25/2015 Page 739

23

With a macro open in the design area, the Ribbon contains several tools you use when
working with the macro. Notice that you can collapse or expand macro sections, save the
macro currently under construction, and close the macro designer.

You’ll notice that the Ribbon you see in Figure 23.6 is exactly the same seen when work-
ing with embedded or standard macros. However, some options are not available to you.
All the items in the Tools group, for example, are grayed out. This is because data macros
don’t provide the option of single-stepping through macro actions or converting to VBA
code. Data macros are intended to be relatively simple, short, and to the point, rather than
large and complex.

Incidentally, if your table is in Design view, you can get to the data macro designer by
selecting the Create Data Macros command from the Design tab (see Figure 23.6).

FIGURE 23.6

Selecting a table event when a table is in Design view.

In either case, the macro designer opens as shown in Figure 23.5. When the Access tabbed
interface is used, the table’s name and selected event appear in the macro designer’s tab. If
the overlapping windows interface is selected, this information appears in the Access main
window’s caption.

In Figure 23.4 and again in Figure 23.6, notice the Named Macro option. A named macro
is just like a data macro attached to a table event. The only difference is that a named
macro is free floating and not specifi cally tied to a particular event. A named macro is
meant to be called from an event macro and typically implements logic that is common to
a table’s fi elds. Consider the business rule described earlier. If more than one data macro
in a table might change a product’s wholesale cost, you might create a named macro to
handle updating the RetailPrice fi eld. The named macro could then be called by any of
the table’s other data macros so that every macro within the table handles the update in
the same way.

740

Part VI: Access Programming Fundamentals

c23.indd 09/25/2015 Page 740

Understanding the Action Catalog
The Action Catalog on the right side of the macro designer serves as the repository of macro
actions you add to your data macros. The contents of the Action Catalog depend entirely on
which table event has been selected, so its appearance varies considerably while you work
with Access macros.

Program fl ow
At the top of the Action Catalog in Figure 23.5 are certain program fl ow constructs you
apply to your macros. When working with data macros, the only program fl ow constructs
available are comments, groups, and If blocks.

Comments help document your macros and should be used if the macro’s logic is not easily
understood. Macro comments are not executable—they’re there simply to provide some text
describing the goings-on in the macro.

A group (also called a macro group) provides a way to wrap a number of macro actions as a
named entity. The group can be independently collapsed, copied, and moved around within
a macro. A macro group is not, however, an executable unit; instead, it’s simply meant to
provide a convenient way to establish a block of macro actions to simplify your view of the
macro in the macro designer.

The If block adds branching logic to a macro. You’ve seen several examples of the VBA
If...Then...Else construct in other chapters, and a macro If is no different.

Data blocks
If you go back and look at Figure 23.5 again, you’ll see Data Blocks under the Program
Flow constructs. Each of the data block constructs includes an area for adding one or more
macro actions. A data block construct performs all the macro actions as part of its opera-
tion. In other words, you typically set up the data block you want to perform (for example,
EditRecord) and then add the actions you want to execute as part of the block.

Data blocks may also be nested. You could, for example, set up a ForEachRecord and then
run the CreateRecord block, adding records to another table with data contained in the
records returned by the ForEachRecord.

The data blocks macro actions are:

 ■ CreateRecord: The CreateRecord action provides a way to add a record to the
current table (which is rarely done) or to another table (which is more typical).
An example of using CreateRecord is building a log of all changes to the
tblProducts table (similar to Figure 23.4). The CreateRecord macro action can
add a new record to a table, populating fi elds in the record with data passed from

741

Chapter 23: Using Access Data Macros

c23.indd 09/25/2015 Page 741

23

the current table. The reason CreateRecord is not often used to add a record to the
current table is that recursion can occur. Adding a new record to the current table
triggers events such as AfterInsert (described in the “‘After’ events” section, ear-
lier in this chapter), which may run the CreateRecord action again and again.

 ■ EditRecord: As its name implies, EditRecord provides a way to change the con-
tent of an existing record in the current, or another, table. EditRecord is ideal for
situations such as adjusting inventory levels when a product is sold or returned or
calculating sales tax or shipping costs when the quantity fi eld has been provided.

 ■ ForEachRecord: The ForEachRecord action is a looping construct. Given the
name of a table or query, ForEachRecord can perform an operation on every
record in the recordset. The action can be an update using the SetField action
(described in the next section), can copy data, or can perform a mathematical oper-
ation on the data in the recordset. The ForEachRecord block has a macro action
included within the block to make it easy to specify the action you want this block
to perform. And you can stack multiple macro actions within the ForEachBlock
to perform more-complex operations.

 ■ LookupRecord: The LookupRecord action is quite simple and easy to under-
stand. LookupRecord returns a record found in a table and provides a macro
action area for specifying the actions you want to perform on the returned record.

The CreateRecord, EditRecord, and ForEachRecord blocks will be available only when you’re building

“after” macro events. This means they’ll be available only when creating AfterInsert, AfterUpdate, and

AfterDelete data macros. The “before” events are meant to be very fast and lightweight, so they don’t provide

for CPU-intensive operations such as adding or editing new records.

Data actions
The next group of actions in the Action Catalog is the Data actions; these are the actions a
data macro can take. You’ve already read that a data macro consists of one or more actions
that are executed as a single unit in response to a table event. You need a good under-
standing of the variety of macro actions available to data macros.

Here are the data macro actions:

Not all these actions are available to every table event. BeforeChange and BeforeDelete (described in the

“’Before’ events” section, earlier in this chapter) support only a subset of these actions because many actions are

computationally intensive (such as updating or adding records), and the “before” events are meant to be very fast

and lightweight.

742

Part VI: Access Programming Fundamentals

c23.indd 09/25/2015 Page 742

 ■ DeleteRecord: As its name implies, DeleteRecord deletes a record in a table
(without confi rmation from the user). Obviously, DeleteRecord must be used
carefully to prevent deleting valuable data from the application. A typical use of
DeleteRecord would be as part of an archiving operation, where data in a table is
copied into another table (perhaps a linked SQL Server table) and then deleted from
the current table.

 ■ CancelRecordChange: EditRecord and CreateRecord both make irrevo-
cable changes to a record. CancelRecordChange, in conjunction with an If
block, allows a data macro to cancel the changes made by EditRecord and
CreateRecord before the changes are committed to the database.

 ■ ExitForEachRecord: The ForEachRecord loops through a recordset returned
from a table or query, enabling the data macro to make changes to the recordset’s
data or scan the data for “interesting” values. There are many situations where a
data macro may need to escape from a ForEachRecord loop before it has run to
the end of its recordset. For example, consider a data macro that searches for a
certain value in a table, and once the value is found, there is no need to continue
the loop. The ExitForEachRecord is typically executed as part of an If block
(also discussed in the next section) and is executed only when a certain condi-
tion is true.

 ■ LogEvent: Every Access 2016 application includes a hidden USysApplicationLog
table (this table is hidden by virtue of the USys prefi x in its name).
USysApplicationLog is used to record data macro errors and can be used to log
other information as well. The LogEvent macro action is specifi cally designed to
add a record to USysApplicationLog anytime you want from a data macro. The only
fi eld in USysApplicationLog that can be written using LogEvent is Description,
a memo type fi eld. The other fi elds in USysApplicationLog (Category, Context,
DataMacroInstanceID, ErrorNumber, ObjectType, and SourceObject) are provided by
the macro itself.

 ■ SendEmail: This macro action, obviously, sends an e-mail using the default
Windows e-mailer (usually Outlook). The arguments for SendEmail are To, CC,
BCC, Subject, and Body. SendEmail is quite useful in certain situations, such
as automatically dispatching an e-mail when an error condition occurs, or when a
product’s inventory level falls below some threshold.

 ■ SetField: The SetField action updates the value of a fi eld in a table. The argu-
ments to SetField include the table and fi eld names and the new value to assign
to the fi eld. SetField is not available to BeforeChange and BeforeDelete
table events.

 ■ SetLocalVar: Access 2016 macros are able to use local variables for passing values
from one part of a macro to another. For example, you might have a macro that
looks up a value in a table and passes the value as a variable to the next macro
action. SetLocalVar is an all-purpose variable declaration and assignment action
that creates a variable and assigns a value to it.

743

Chapter 23: Using Access Data Macros

c23.indd 09/25/2015 Page 743

23

 ■ StopMacro: The StopMacro action interrupts the currently executing macro,
causing it to terminate and exit. Most often used in conjunction with an If data
block, or in the destination of an OnError macro action, there are no arguments to
StopMacro.

 ■ StopAllMacros: This macro action is parallel to StopMacro, except that it
applies to all currently executing macros. Macros may run asynchronously because
table events might launch multiple macros at one time, or a macro might call a
named macro as part of its execution.

 ■ RunDataMacro: This macro action is very simple. Its only argument is the name
of some other data macro that Access runs. RunDataMacro is useful in situations
where a certain data macro performs some task that another data macro fi nds use-
ful. Instead of duplicating the macro’s actions, it’s simpler just to call the macro
and allow it to perform its actions as a single operation.

 ■ OnError: The OnError macro action is the heart of Access macro error handling.
OnError is a directive that tells Access what to do in the event an error occurs
during a macro’s execution. The fi rst argument (GoTo) is required and is set to
either Next, Macro Name, or Fail. Next directs Access to simply ignore the error and
continue execution at the macro action following the action that caused the error.

 ■ Unless another OnError is positioned within the data macro, OnError GoTo
Next tells Access to ignore all errors in the data macro and continue execution
regardless of whatever errors occur. The Macro Name directive names a macro
you want to jump to in the event of an error. The destination of Macro Name is
a named macro, which is just a collection of macro actions not attached to a table
event. The Macro Name destination could be a named macro within the current
table or in another table.

 ■ RaiseError: The RaiseError macro action passes an error up to the user
interface layer. An example is using RaiseError on a BeforeChange event
to validate data before it’s committed to the database. RaiseError passes an
error number and description to the application, adding the error details to
USysApplicationLog.

 ■ ClearMacroError: Once an error has been handled by the RaiseError macro
action or by the OnError GoTo macro action, the ClearMacroError action can
be used to reset the macro error object and prepare Access for the next error.

Creating Your First Data Macro
Now that you have some orientation on the macro designer and the Action Catalog, it’s time
to create your fi rst data macro.

For this walk-through, let’s assume that your company uses a standard markup of 66.66
percent on its products. This means that a product’s wholesale cost is multiplied by 1.6666

744

Part VI: Access Programming Fundamentals

c23.indd 09/25/2015 Page 744

to yield the default selling price of an item. Your company has found that a 66.66 percent
markup provides the margin necessary for you to offer volume discounts, special sales, and
signifi cant discounts to selected buyers while remaining profi table.

The problem to be solved with a data macro is updating the retail price of a product any-
time the product’s cost is changed. Although this could be done quite easily with code or a
macro behind Access forms, consider the issue if there were dozens of different forms where
the product’s cost might be changed. The same code or macro would have to be added in
many different places, contributing to development and maintenance costs. Also, there is
always the chance that one or more forms would not be updated should your company ever
decide on a different approach for setting the default retail price of its products.

Using a data macro attached directly to the tblProducts table, for example, simplifi es devel-
opment and maintenance of the application’s forms and reports. Because the business rule
(multiplying cost by 1.66) is enforced at the data layer, every form, report, and query using
the tblProducts table’s data benefi ts from the data macro.

If you haven’t done so already, open the database for this walkthrough, Chapter23.accdb, which can be down-

loaded from this book’s website.

 1. Open the tblProducts table in Datasheet view.

 2. Select the Table tab on the Ribbon, and choose the BeforeChange event. At
this point, Access will activate the macro designer.

 3. Double-click or drag the Group program flow action onto the macro’s design
surface. Here, you’re creating a new macro group. Give the macro group a name as
shown in Figure 23.7.

FIGURE 23.7

Add a Group to the macro and give it a name.

 4. While in the newly created group, double-click the Comment program flow
action to place a comment onto the macro’s design surface. With this comment,
enter some friendly text describing what you’re doing here (see Figure 23.8).

 ON THE WEB

745

Chapter 23: Using Access Data Macros

c23.indd 09/25/2015 Page 745

23

FIGURE 23.8

Add a Comment describing the actions taken in this macro.

 5. Now double-click the If program flow action to place a new logic check onto
the macro’s design surface. As you can see in Figure 23.9, you’re evaluating the
Cost fi eld to ensure the value is greater than zero. This check will ensure the rest of
the macro only triggers if the conditions you specifi ed are met.

FIGURE 23.9

The If block conditionally executes macro actions based on logic you provide.

You’ll notice that in the lower-right corner of the If block there are options to add an Else or an Else If to the

If block. You can use these options to extend the If block to include other conditions you want to check as part of

the same If block.

 6. If the condition we specified evaluates to true, we want to edit the record. In
that case, double-click the SetField action to add it to the If block. Here, you
need to identify the fi eld you want edited and the value you want to use. Figure
23.10 illustrates that we want to set the [RetailPrice] fi eld to the value returned by
[Cost]*1.66.

746

Part VI: Access Programming Fundamentals

c23.indd 09/25/2015 Page 746

FIGURE 23.10

Adding the SetField action tells Access to change the record if the condition speci-
fi ed is true.

 7. At this point, the logic for our macro is complete. The last step is to click the
Save command to finalize your data macro (see Figure 23.11).

FIGURE 23.11

Click Save to fi nalize the macro and have it take effect.

To test the macro, simply open tblProducts and enter a positive value in the Cost fi eld of
any record (as demonstrated in Figure 23.12). The RetailPrice fi eld will automatically calcu-
late per the actions provided by the BeforeChange data macro you just created.

747

Chapter 23: Using Access Data Macros

c23.indd 09/25/2015 Page 747

23

FIGURE 23.12

Entering a positive cost will now automatically update the RetailPrice fi eld.

Again, this data macro will be in full effect even when edits are made via an Access form in
a desktop database or an Access web application.

Managing Macro Objects
At this point, you should have a solid sense of how the macro designer works. In this sec-
tion, let’s dig deeper and explore some of the options for managing macro objects once
they’re added to a macro’s design.

Collapsing and expanding macro items
Notice in Figure 23.11 that each macro item is accompanied by a collapse/expand button to
the left of its name in the designer. These buttons allow you to view or hide parts of the
macro. In Figure 23.13, you see the same macro with the Group level collapsed.

Collapsing items helps when you need to review large macros and want to see only a subset
of the macro at one time. Note that you can also use the Collapse/Expand commands found
in the Ribbon.

FIGURE 23.13

You can collapse and expand your macro items to simplify the surface of the macro designer.

748

Part VI: Access Programming Fundamentals

c23.indd 09/25/2015 Page 748

Moving macro items
You may fi nd it necessary to change the order of the actions you place in your macro.
Access provides several methods for adjusting the items within the macro designer.

Macro items (blocks, actions, and so on) can be copied and pasted within the macro. Simply
click any given macro item and press Ctrl+C or Ctrl+X to copy or cut the item, respectively,
and then place your cursor in another location within the macro designer and press Ctrl+V.

Alternatively, macro items can be dragged into a new position with the mouse. This process
is a little tricky because it’s very easy to drag the wrong item away from its proper position.
Carefully position the mouse pointer near the top of the target item, click with the mouse,
and drag the item to its new location.

Access also provides the convenient up and down arrows (see Figure 23.14) that allow you
to quickly move any macro item where you need it.

FIGURE 23.14

The order of macro items can be changed by using the up and down arrows next to the
target item, by clicking and dragging items, or by copying and pasting.

Saving a macro as XML
A completely hidden feature of Access data macros is the ability to copy them from the
macro designer and paste them into a text editor as XML. Access internally stores macros as
XML, and copying a macro actually means copying its XML representation.

749

Chapter 23: Using Access Data Macros

c23.indd 09/25/2015 Page 749

23

There are a couple of reasons you may want to save a macro as XML:

 ■ To e-mail the macro to someone.

 ■ To archive it as a backup. Because each table contains only one copy of each event
macro (AfterUpdate, for example) there’s no easy way to set aside a copy of the
macro before embarking on changes to the macro’s logic.

Figure 23.15 shows the XML of the same macro you see in Figure 23.14 pasted into Windows
Notepad.

FIGURE 23.15

Saving a macro as XML.

To get the XML, simply go into the macro designer, press Ctrl+A to select all the actions,
and then press Ctrl+C to copy all the actions. At this point, you can paste into an e-mail
message, Notepad, or some other text editor.

The XML saved in a text fi le can be pasted right into the macro designer surface, and
Access will display it as usual. The paste action works exactly as it does in Word or a plain
text editor. The pasted macro actions appear exactly where the cursor is when the paste is
initiated.

Recognizing the Limitations of Data Macros
As powerful as they are, data macros can’t do everything. For example, data macros have
no user interface at all. Data macros can’t display a message box and can’t open a form or
report. Your ability to communicate with the user interface from a data macro is very lim-
ited, so data macros can’t be used to notify users of problems or changes to data in tables.

750

Part VI: Access Programming Fundamentals

c23.indd 09/25/2015 Page 750

Displaying a user interface (such as a message box) would extract a serious performance
penalty, particularly during bulk updates or inserts. Data macros are meant to run invis-
ibly, with the highest possible performance.

Data macros are attached directly to Access tables and not to individual fi elds. If you have
a situation where more than a few fi elds must be monitored or updated, the macro may
become quite complex. Using the If block construct is a good way to conditionally execute
blocks of macro statements.

The macro designer supports only one macro at a time. You must come to a stopping point
on the current macro before closing it and opening another data macro.

Similarly, the macro designer is modal. You can’t leave the macro designer without closing
and saving (or not saving) the current macro. This restriction makes it diffi cult to view a
table’s data when working on a data macro’s logic. As always, careful planning is a good
idea when considering adding a data macro to a table.

Data macro execution doesn’t occur on the back end in a split-database paradigm. Although
the data macro resides in the table in the back-end database, the data macro is only exe-
cuted in the front end.

Data macros can’t work on multi-value or attachment fi elds. If it’s important to use logic to
control these data types, you must use traditional user interface macros or VBA.

Access 2016 data macros are not supported on linked tables. If the table in an Access data-
base is linked to SQL Server, you can’t write data macros for the table. You must use tradi-
tional user interface macros or VBA code for this purpose.

Data macros can’t call VBA procedures. One of the primary objectives for data macros is to
make them portable to SharePoint when an Access application is upsized to a web applica-
tion. Any calls to VBA procedures are sure to fail because there is no way to convert VBA to
JavaScript in the SharePoint environment.

 Publishing an Access database to the Web is discussed in Chapter 33.

 Data macros don’t support transactions. Every fi eld and record update is executed immedi-
ately, and there’s no way to roll back multiple table changes.

Finally, data macros are not compatible with versions of Access earlier than 2010. Anyone
using Access 2007 (with Service Pack 1 installed) will be able to open and read tables con-
taining data macros, but they will not be able to write to those tables.

751

c24.indd 10/06/2015 Page 751

CHAP T ER

24
Getting Started with Access VBA

IN THIS CHAPTER

Working with VBA

Reviewing VBA terminology

Understanding VBA code basics

Creating your fi rst procedure

Adding branching constructs

Learning looping constructs

Understanding objects and collections

Exploring the Visual Basic Editor

M
ost Access developers use macros now and then. Although macros provide a quick and easy
way to automate an application, writing Visual Basic for Applications (VBA) modules is
the best way to create applications. VBA provides data access, looping and branching, and

other features that macros simply don’t support—or at least not with the fl exibility most develop-
ers want. In this chapter, you learn how to use VBA to extend the power and usefulness of your
applications.

Download the database fi le Chapter24.accdb from this book’s website.

ON THE WEB

752

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 752

The Limitations of Macros
For a number of reasons, this book doesn’t extensively cover Access macro creation. To begin with,
there are so many important topics that we had to choose which topics to cover in detail. Plus, macros
are pretty easy to learn on your own, and they’re well documented in the Access online help. There
are, however, two areas where macros can’t be beat: data macros in tables and embedded macros on
forms and controls. The ability to embed macros in tables and forms make macros much more attrac-
tive than in versions prior to Access 2007.

But, by far, the biggest reason we don’t document macros is that macros are guaranteed to be non-
portable to other applications. You can’t use an Access macro anywhere other than in Access. VBA
code, on the other hand, is very portable to Word, Excel, Outlook, Visio, and even Visual Studio .NET
(with changes).

It’s impossible to tell where an Access application might end up. Very often, Access apps are upsized
and upgraded to SQL Server and Visual Studio .NET. The VBA code in your Access applications is
readily converted to Visual Basic .NET, and many Access procedures can be used (perhaps with a few
changes) in Word or Excel. VBA is a very portable, useful language, and VBA skills are applicable in
many situations other than building Access applications.

We don’t mean to imply that macros have no place in Access applications, or that macros are nec-
essarily inferior to VBA code. Microsoft has issues related to previous versions of Access macros. In
particular, macros in Access 2016 include variables and simple error handling (mostly jumping to a
named location when an error occurs). These updates to the Access macro engine are signifi cant, but,
in the opinion of many Access developers, they aren’t enough to justify using macros instead of VBA
in professional applications.

Introducing Visual Basic for Applications
Visual Basic for Applications (VBA) is the programming language built into Microsoft
Access. VBA is shared among all the Offi ce applications, including Word, Excel, Outlook,
PowerPoint, and even Visio. If you aren’t already a VBA programmer, learning the VBA syn-
tax and how to hook VBA into the Access event model is a defi nite career builder.

VBA is a key element in most professional Access applications. Microsoft provides VBA in
Access because VBA provides signifi cant fl exibility and power to Access database applica-
tions. Without a full-fl edged programming language like VBA, Access applications would
have to rely on the somewhat limited set of actions offered by Access macros. Although
macro programming also adds fl exibility to Access applications, VBA is much easier to work
with when you’re programming complex data-management features or sophisticated user-
interface requirements.

753

Chapter 24: Getting Started with Access VBA

c24.indd 10/06/2015 Page 753

24

 If you want more information on macros, including converting macros to VBA code, turn to Chapter 22.

If you’re new to programming, try not to become frustrated or overwhelmed by the seeming
complexity of the VBA language. As with any new skill, you’re much better off approaching
VBA programming by taking it one step at a time. You need to learn exactly what VBA can
do for you and your applications, along with the general syntax, statement structure, and
how to compose procedures using the VBA language.

This book is chock-full of examples showing you how to use the VBA language to accom-
plish useful tasks. Each of the procedures you see in this book has been tested and verifi ed
to work correctly. If you fi nd that a bit of code in this book doesn’t work as expected, take
the time to ensure that you’ve used the example code exactly as presented in this book.
Often, the most diffi cult problems implementing any programming technique stem from
simple errors, such as misspelling or forgetting to include a comma or parentheses where
required.

What’s in a Name?
The name Visual Basic is a source of endless confusion for people working with Microsoft products.
Microsoft has applied the name Visual Basic to a number of different products and technologies. For
more than a decade, Microsoft marketed a stand-alone product named Visual Basic that was, in many
ways, comparable to and competitive with Access. Visual Basic was folded into Visual Studio in its very
fi rst version. In 1995, Microsoft added the Visual Basic for Applications (VBA) programming language
to Access, Word, and Excel in Microsoft Offi ce (although it was called Access Basic until Access 2000).
The name Visual Basic for Applications was chosen because the VBA syntax is identical in Access,
Word, and Excel.

Although the VBA language used in Access is very similar to Visual Basic .NET, they aren’t exactly
the same. You can do some things with VB .NET that can’t be done with Access VBA, and vice versa.

In this book, the expressions VBA and Visual Basic refer to the programming language built into Access
and should not be confused with the Microsoft VB .NET product.

A programming language is much like a human language. Just as humans use words, sentences, and paragraphs to

communicate with one another, a computer language uses words, statements, and procedures to tell the computer

what you expect it to do. The primary difference between human and computer languages is that a computer lan-

guage follows a strict format. Every word and sentence must be precisely composed because a computer doesn’t

understand context or nuance. Every task must be carefully defi ned for the computer, using the syntax supported by

the programming language.

754

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 754

Understanding VBA Terminology
Before we plunge into our VBA coverage, here’s a review of some basic VBA terminology:

 ■ Keyword: A word that has special meaning in VBA. For example, in the English lan-
guage, the word now simply indicates a point in time. In VBA, Now is the name of a
built-in VBA function that returns the current date and time.

 ■ Statement: A single VBA word or combination of words that constitutes an instruc-
tion to be performed by the VBA engine.

 ■ Procedure: A collection of VBA statements that are grouped together to perform a
certain task. You might, for example, write a complex procedure that extracts data
from a table, combines the data in a particular way, and then displays the data on a
form. Or, you might write three smaller procedures, each of which performs a single
step of the overall process.

There are two types of VBA procedures: subs (subroutines) and functions:

 ■ Subroutines perform a task or tasks and then just go away.

 ■ Functions perform a task and then return a value, such as the result of a
calculation.

 ■ Module: Procedures are stored in modules. If statements are like sentences and
procedures are like paragraphs, then modules are the chapters or documents of the
VBA language. A module consists of one or more procedures and other elements
combined as a single entity within the application.

 ■ Variable: Variables are sometimes tricky to understand. Because Access is a data-
base development tool, it makes sense that VBA code has to have some way of
managing the data involved in the application. A variable is nothing more than a
name applied to represent a data value. In virtually all VBA programs, you create
and use variables to hold values such as customer names, dates, and numeric values
manipulated by the VBA code.

VBA is appropriately defi ned as a language. And just as with any human language, VBA
consists of a number of words, sentences, and paragraphs, all arranged in a specifi c fashion.
Each VBA sentence is a statement. Statements are aggregated as procedures, and procedures
live within modules. A function is a specifi c type of procedure—one that returns a value
when it’s run. For example, Now() is a built-in VBA function that returns the current date
and time, down to the second. You use the Now() function in your application whenever
you need to capture the current date and time, such as when assigning a timestamp value
to a record.

755

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 755

Starting with VBA Code Basics
Each statement in a procedure is an instruction you want Access to perform.

There are literally an infi nite number of different VBA programming statements that could
appear in an Access application. Generally, however, VBA statements are fairly easy to read
and understand. Most often, you’ll be able to understand the purpose of a VBA statement
based on the keywords (such as DoCmd.OpenForm) and references to database objects in
the statement.

Each VBA statement is an instruction that is processed and executed by the VBA language
engine built into Access. Here’s an example of a typical VBA statement that opens a form:

DoCmd.OpenForm "frmMyForm", acNormal

Notice that this statement consists of an action (OpenForm) and a noun (frmMyForm).
Most VBA statements follow a similar pattern of action and a reference either to the object
performing the action or to the object that’s the target of the action.

DoCmd is a built-in Access object that performs numerous tasks for you. Think of DoCmd as
a little robot that can perform many different jobs. The OpenForm that follows DoCmd is
the task you want DoCmd to run, and frmMyForm is the name of the form to open. Finally,
acNormal is a modifi er that tells DoCmd that you want the form opened in its “normal”
view. The implication is that there are other view modes that may be applied to opening
a form; these modes include Design (acDesign) or Datasheet (acFormDS) view, and Print
Preview (acPreview, when applied to reports).

Although this and the following chapters provide only the fundamentals of VBA programming, you’ll learn more than

enough to be able to add advanced features to your Access applications. You’ll also have a good basis for deciding

whether you want to continue studying this important programming language.

Creating VBA Programs
Access has a wide variety of tools that enable you to work with tables, queries, forms, and
reports without ever having to write a single line of code. At some point, you might begin

756

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 756

building more sophisticated applications. You might want to “bulletproof” your applications
by providing more intensive data-entry validation or implementing better error handling.

Some operations can’t be accomplished through the user interface, even with macros. You
might fi nd yourself saying, “I wish I had a way to ...” or “There just has to be a function
that will let me” At other times, you fi nd that you’re continually putting the same for-
mula or expression in a query or fi lter. You might fi nd yourself saying, “I’m tired of typing
this formula into ...” or “Doggone it, I typed the wrong formula in this”

For situations such as these, you need the horsepower of a high-level programming lan-
guage such as VBA. VBA is a modern, structured programming language offering many of
the programming structures available in most programming languages. VBA is extensible
(capable of calling Windows API routines) and can interact through ActiveX Data Objects
(ADO), through Data Access Objects (DAO), and with any Access or VBA data type.

Getting started with VBA programming in Access requires an understanding of its
event-driven environment.

Modules and procedures
In this section, you’ll create a simple procedure. First, we’ll take you through the steps to
create the procedure, including creating a module, inputting the statements, and running
the procedure. Then, we’ll describe each of the elements of the procedure in greater detail.
The procedure you’ll create in this section displays the result of squaring a number.

To create the SquareIt procedure, follow these steps:

 1. Select the Create tab of the Ribbon, and click the Module button. The Visual
Basic Editor (VBE) will open with a blank code pane, as shown in Figure 24.1.

 2. In the code pane, type the following statements:
Sub SquareIt()

 Dim lNumber As Long

 lNumber = 2

 MsgBox lNumber & " squared is " & lNumber ^ 2

End Sub

757

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 757

FIGURE 24.1

Creating a module presents a blank code pane.

The Project Explorer The code pane

 3. Place your cursor anywhere inside the code you just typed and choose Run Sub/
Userform from the Run menu. You should see a message box similar to Figure 24.2.

 4. Click OK to dismiss the message box and return to the VBE.

 5. Choose File ➪ Save and name the module when prompted (see Figure 24.3).

758

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 758

FIGURE 24.2

Running the code displays a message box.

FIGURE 24.3

Saving the database prompts you to save any unsaved modules.

759

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 759

If you followed the preceding steps, you created a procedure and ran it. Congratulations! In
the next several sections, we’ll discuss each of these steps in more detail.

Modules

The fi rst step you performed above was creating a new module. Modules are containers that
hold your procedures. In this example, we created a standard module. The other type of
module you can create is called a class module.

Standard modules

Standard modules are independent from other Access objects, like forms and reports.
Standard modules store code that is used from anywhere within your application. By
default, these procedures are often called global or public because they’re accessible to all
elements of your Access application.

Use public procedures throughout your application in expressions, macros, event
procedures, and other VBA code. To use a public procedure, you simply reference it from
VBA code in event procedures or any other procedure in your application.

Procedures run; modules contain. Procedures are executed and perform actions. Modules, on the other hand, are

simple containers, grouping procedures and declarations together. A module can’t be run; instead, you run the proce-

dures contained within the module.

Standard modules are stored in the Module section of the Navigation pane. Form and report
modules (see the next section) are attached to their hosts and are accessed through the
Form Property Sheet or Report Property Sheet.

Generally speaking, you should group related procedures into modules, such as putting all of an application’s data

conversion routines into a single module. Logically grouping procedures make maintenance much easier because

there is a single place in the application for all the procedures supporting a particular activity. Plus, most modules

contain procedures that are related in some way.

Class modules

The other type of module is called a class module. A class defi nes how an object behaves. You
can create your own classes, called custom classes, but the most common class module you’ll
use is a class module that’s bound to a form or report.

In the above example, you created a standard module using the Ribbon. For class modules
that are bound to a form or report, the module is created automatically by Access whenever
you add VBA code to the form or report.

760

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 760

The most important difference between standard modules and class modules is that class
modules support events. Events respond to user actions and run VBA code that’s contained
within the event procedure.

 The Access event module and event procedures are discussed in Chapter 26.

Module sections

You may have noticed that when you created the module, there was already code in it.
Depending on the options you have set for your environment, Access will insert code into
new modules automatically.

The area above the fi rst procedure in a module is called the declaration section. The
declaration section is used to store options and variables that will apply to every procedure
in the module. Two common option declarations are Option Compare Database and
Option Explicit. Option Compare Database determines how two strings are
compared to each other and directs VBA to use the same comparison method that the
database uses. The other options for comparing strings are Option Compare Text and
Option Compare Binary. Basically, Option Compare Text doesn’t care whether the
letters are uppercase or lowercase and Option Compare Binary does care. It’s a little
more complicated than that, but Option Compare Database is usually the best option.

Option Explicit directs VBA to warn you if you have undeclared variables. By setting
this option, you’re telling VBA that you intend to explicitly declare any variables that
you’ll use. You’ll learn more about declaring variables later.

Everything below the declarations section is known as the procedure section or
code section. This section contains the subprocedures and functions of the module. It’s
important to understand the differences between these two sections because you can’t put
statements that belong in the declaration section into the code section, nor can you put
code in the declaration section. If you do, the VBE will let you know that it’s not allowed.

Procedures and functions

The next step you completed after creating a module to hold your procedure was to create
the procedure itself. It’s a simple procedure that does some simple math and displays the
result. Each statement is structured according to the language’s syntax, meaning that the
spelling of keywords and the order of the words in the statement is important.

Subprocedures

A subprocedure (or sub) is the simplest type of procedure in a VBA project. A subprocedure
is nothing more than a container for VBA statements that typically perform a task such as
opening a form or report or running a query.

Subprocedures have two required statements: Sub procname and End Sub. If those were
the only two statements you had, it would be a pretty uninteresting sub, but it would be

761

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 761

legal. In our example, the procedure is started with the Sub SquareIt() statement. The
procedure ends with the End Sub statement.

When determining the name of your procedure, there are a few rules that you must
follow. The most important rules to remember are that the name must begin with a letter,
can’t contain most punctuation, and can’t be more than 255 characters long. Rules aside,
you should pick names for your procedures that describe what they do in a way that will
be obvious to you when you read them later. Procedure names like GetData() will likely
be hard to understand later, but ReadDataFromEmployeeTable() will be crystal clear.
You probably don’t want to push the 255-character limit on procedure names, but don’t be
afraid to make long, descriptive names.

Variable declaration

The fi rst statement in our simple subprocedure is a variable declaration statement. It starts
with the Dim keyword, which is short for dimension. The variable’s name, lNumber, comes
next. Variable names follow the same rules as procedure names, described in the previous
section. The As keyword follows the name, which is followed by the data type. In this case,
lNumber was declared as a Long Integer data type.

 Variables and data types are discussed extensively in Chapter 25.

Variables hold data that you can use later in your procedure. When you declare a variable
with the Dim keyword, you’re telling VBA to reserve a spot in the computer’s memory to
store that data. The amount of memory that VBA will reserve depends on the data type. In
this example, you told VBA to hold enough memory to store a Long Integer, or 32 bits of
memory.

The As datatype portion of the variable declaration statement is optional. You could
declare lNumber with the statement:

Dim lNumber

When you omit the data type, VBA will determine an appropriate data type when you
assign a value to the variable. That may seem like a handy service VBA is providing, but it’s
not a very good practice. VBA will assign a data type to the variable based on the fi rst time
you use it, but it doesn’t know all the plans you have in mind for that variable. It may end
up assigning a data type that’s too small for what you need. Having VBA assign data types
is also slower than if you assign them as you write the code.

If you’re new to VBA, don’t get too hung up on which data type to use for your variables. Use String for text, Long

for numbers without decimals, Double for numbers with decimals, and Boolean for true/false values. You can get

a lot done with just those four data types.

762

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 762

Variable assignment

By declaring a variable with the Dim statement, you’ve reserved a place in memory where
you can store data for later use. The next line in the procedure stores the number 2 in the
variable lNumber. Here’s what that line looks like in the procedure:

lNumber = 2

Assigning values to variables is easy. There are really only two things you need to
remember:

 ■ You must assign a value that is appropriate for the variable’s data type. In this
case, you’re storing a number without a decimal in a variable declared as Long. If
you tried to store data that isn’t appropriate for the variable’s data type, VBA would
do its best to convert the value into the appropriate data type. If you tried to store
the value 8.26, for example, in a Long variable, VBA would convert it to 8 by trun-
cating the number to remove the decimals. If VBA were unable to convert the data,
you’d get an error.

 ■ The variable name goes on the left of the equal sign, and the value goes on the
right. Everything on the right of the equal sign is evaluated before it’s assigned to
the variable. For this example, there’s not much to evaluate because it’s simply the
number 2. Consider the following statement, which computes the product of two
numbers and assigns it to a variable.

dProduct = 3 * 6.1

In that statement, 3 is multiplied by 6.1, and the result, 18.3, is assigned to the
variable. That’s still pretty straightforward, but consider yet another example.

bIsEqual = dProduct = 18.3

In this statement, bIsEqual is a variable declared as Boolean, and dProduct is
a variable declared as Double. But there are two equal signs. The fi rst equal sign
is the assignment operator—setting a variable equal to a value. Any other equal
signs (there’s only one other, in this case) are comparison operators. Comparison
operators return True or False. If dProduct were equal to 18.3, then bIsEqual
would get the value True. Everything to the right of the fi rst equal sign (the
assignment operator) is evaluated fi rst, and the result is assigned to the variable.

Functions

A function is very similar to a subprocedure, with one major exception: A function returns
a value when it ends. A simple example is the built-in VBA Now() function, which returns
the current date and time. Now() can be used virtually anywhere your application needs to
use or display the current date and time. An example is including Now() in a report header
or footer so that the user knows exactly when the report was printed.

Now() is just one of several hundred built-in VBA functions. As you’ll see throughout this
book, the built-in VBA functions provide useful and very powerful features to your Access
applications.

763

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 763

In addition to built-in functions, you might add custom functions that return values
required by your applications. An example is a data transformation routine that performs
a mathematical operation (such as currency conversion or calculating shipping costs) on an
input value. It doesn’t matter where the input value comes from (table, form, query, and so
on). The function always returns exactly the correct calculated value, no matter where the
function is used.

Within the body of a function, you specify the function’s return value by assigning a value
to the function’s name (and, yes, it does look pretty strange to include the function’s name
within the function’s body). You then can use the returned value as part of a larger expres-
sion. The following function calculates the square footage of a room:

Function SquareFeet(dHeight As Double, _
 dWidth As Double) As Double

 'Assign this function's value:
 SquareFeet = dHeight * dWidth

End Function

This function receives two parameters: dHeight and dWidth. Notice that the function’s
name, SquareFeet, is assigned a value within the body of the function. The function is
declared as a Double data type, so the return value is recognized by the VBA interpreter as
a Double.

The main thing to keep in mind about functions is that they return values. The returned
value is often assigned to a variable or control on a form or report:

dAnswer = SquareFeet(dHeight, dWidth)
Me!txtAnswer = SquareFeet(dHeight, dWidth)

If the function (or subroutine, for that matter) requires information (such as the Height
and Width in the case of the SquareFeet function), the information is passed as argu-
ments within the parentheses in the function’s declaration.

 Arguments (also called parameters) are discussed in more detail in Chapter 25.

Working in the code window
Unlike designing a table or dropping controls in the sections of a report, a module’s code
pane is a very unstructured place to work. VBA code is simply text, and there aren’t a lot of
visual cues to tell you how to write the code or where to put particular pieces of the code.
In this section, we’ll describe some features of the code window and some techniques to
keep your code organized and readable.

764

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 764

White space

In the code already presented in this chapter, you may have noticed some indentation and
some blank lines. In the programming world, this is known as white space. White space con-
sists of spaces, tabs, and blank lines. With very few exceptions, VBA ignores white space.
The following two procedures are identical as far as the VBA compiler is concerned.

Function BMI(dPounds As Double, lHeight As Long) As Double

 BMI = dPounds / (lHeight ^ 2) * 703

End Function

Function BMI(dPounds As Double, lHeight As Long) As Double
BMI = dPounds / (lHeight ^ 2) * 703
End Function

In the fi rst function, a blank line was inserted after the Function statement, and another
blank line was inserted before the End Function statement. Also, a tab was inserted
before the single statement within the procedure. All the white space elements were
removed in the second function. Despite the difference in appearance, the VBA compiler
reads the two functions identically, and the two functions return the same result.

In some programming languages, white space is important and meaningful. That isn’t the
case for VBA. The purpose of white space is to make your code more readable. Different
programmers format their code with white space in different ways. Whatever formatting
conventions you choose to use, the most important thing is to be consistent. Consistency
in formatting will help you read and understand your code more easily, even if you’re read-
ing months or years later.

Line continuation

The VBE window can expand to be as wide as your screen. Sometimes your statements
are so long that they extend beyond the window even when it’s as wide as it can be. VBA
provides a way to continue the current line onto the next line. When used with long state-
ments, this can help make your code more readable. The line continuation characters are a
space followed by an underscore. When the VBA compiler sees a space and an underscore at
the end of the line, it knows that the next line is a continuation of the current one. Figure
24.4 shows a simple procedure with one very long statement. The statement extends beyond
the code pane window, and you must scroll to read it.

765

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 765

FIGURE 24.4

A long statement extends beyond the code window.

Use the line continuation characters to break the long statement into multiple lines. This
will allow you to see the whole statement. The statement in Figure 24.4 could be rewritten
as the following statement:

Function GetDatedFooter() As String

 GetDatedFooter = "This report was printed on " _
 & Format(Now, "dd-mmm-yyyy") & _
 " and changes made to the data after that " & _
 "date won't be reflected."

End Function

766

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 766

The underscore is typically referred to as the line continuation character, but the space that
comes before it is equally important. You need both characters, space and underscore, to
continue a line. The line continuation character can’t be used in the middle of a string.
Notice in the above example that the long string is broken up into four smaller strings and
concatenated together with ampersands. To spread a long string over multiple lines, it must
be broken up so that the line continuation character can be used.

Multi-statement lines

Another way to improve the readability of your code is by putting two or more statements
on one line. VBA uses the colon to separate statements on the same line. If you have a lot
of short statements that are taking up a lot of vertical space in the code pane, you can put
a few of them on the same line to clean up the code. In the following example, many simi-
lar statements are grouped together.

 i = 12: j = 45: k = 32
 l = 87: m = 77: n = 2
 o = 89: p = 64: q = 52

Those nine statements are assigning numbers to nine different variables. If they were writ-
ten out one after the other, they would eat up a lot of the code window. By putting three
statements on each line, less space is wasted. This technique is useful when you have small
statements that are all doing roughly the same operation. If your statements are long or
diverse, it actually hinders the readability of the code and should be avoided.

IntelliSense

Suppose that you know you want to use a specifi c command, but you can’t remember the
exact syntax. Access includes four features (collectively known as IntelliSense) to help
you fi nd the proper keyword and determine the correct parameters as you create each line
of code:

 ■ Complete Word: Any time you’re typing a keyword, you can press Ctrl+spacebar to
get a list of keywords. The list automatically scrolls to the keyword that matches
what you’ve already typed. If there is only one match, you don’t see the list and the
word is simply completed for you. Figure 24.5 shows what happens when you type
“do” and press Ctrl+spacebar.

If you were to type “doc” instead of just “do,” the keyword DoCmd would be com-
pleted rather than a list because there is only one keyword that starts with doc.

 ■ Auto List Members: Auto List Members is a drop-down list that is automatically
displayed when you type the beginning of a keyword that has associated objects,
properties, or methods. For example, if you enter DoCmd.Open, a list of the pos-
sible options displays, as shown in Figure 24.6. Scroll through the list box and press
Enter to select the option you want.

767

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 767

FIGURE 24.5

Complete Word shows a list of keywords.

FIGURE 24.6

Access Auto List Members help in a module.

In this example, the OpenForm method is selected. (Actions associated with an
object are called methods.) After you choose an item in the list, more Auto List
Members help is displayed. Or, if parameters are associated with the keyword, the
other type of module help, Auto Quick Info (see the next bullet), is displayed, as
shown in Figure 24.7.

768

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 768

FIGURE 24.7

Access Auto Quick Info help in a module.

 ■ Auto Quick Info: Auto Quick Info guides you through all the options (called
parameters) for the specifi c item. The bold word (FormName) is the next param-
eter available for the OpenForm method. Figure 24.7 shows that there are many
parameters available for the OpenForm command. The parameters are separated by
commas. As each parameter is entered, the next parameter is highlighted in bold.
The position of parameters is signifi cant; they can’t be rearranged without causing
problems. Press the Esc key to hide Auto List Members help.

Not every parameter is required for every VBA command. Parameters surrounded by
square brackets (such as View in Figure 24.7) are optional. Access provides reason-
able defaults for all optional arguments that are omitted from the statement using
the command.

 ■ Auto Constants: Auto Constants is a drop-down list that displays
when you’re on a parameter that requires a built-in constant. In Figure 24.7, the
Auto Quick Info shows that the second parameter is View and is described as
[View As acFormView = acNormal]. The brackets around the parameter indi-
cate that it’s an optional parameter. acFormView is a family of built-in constants
that you can use for this parameter. The default constant, acNormal, is used if you
omit this parameter. Figure 24.8 shows the list of acFormView constants available.
Simply select the one you want and type a comma. The constant and the comma are
inserted into the statement, and you’re ready for the next parameter.

769

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 769

FIGURE 24.8

Access Auto Constants help in a module.

You can split the code window into two independent edit panes by dragging down the splitter bar (the little horizontal

bar at the very top of the vertical scroll bar at the right edge of the code window). Splitting the window enables simul-

taneous editing of two sections of code. Each section of a split VBA code window scrolls independently, and changes

you make in one pane of a split window show up in the other pane. Double-click the splitter bar to return the window

to its former state, or grab the splitter bar with the mouse and drag it to the top of the code editor window to close

the second edit pane. (Word and Excel feature a similar splitter button, making it very easy to edit different parts of

the same Word document or Excel worksheet.)

Compiling procedures

After code has been written, you should compile it to complete the development process.

The compilation step converts the English-like VBA syntax to a binary format that is easily
executed at run time. Also, during compilation, all your code is checked for incorrect syn-
tax and other errors that will cause problems when the user works with the application.

If you don’t compile your Access applications during the development cycle, Access compiles
the code whenever a user opens the application and begins using it. In this case, errors in
your code might prevent the user from using the application, causing a great deal of incon-
venience to everyone involved.

770

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 770

Compile your applications by choosing Debug ➪ Compile from the VBE’s menu. An error
window appears if the compilation is not successful. Figure 24.9 shows the result of an
unsuccessful compile due to a misspelling of a variable name. It doesn’t tell you that you
misspelled a variable; rather, it reports that it can’t fi nd where you declared a particular
variable. That can mean that you simply forgot to declare it, but it usually means you
spelled it differently in the code from how you spelled it in the declaration statement.

FIGURE 24.9

The compiler reports errors.

Access compiles all procedures in the module, and all modules in the Access database, not just the current proce-

dure and module.

Saving a module

Modules differ from other Access objects in that there isn’t an explicit way to save a newly
created, individual module. New modules that are created don’t display in the Navigation
pane until they’re saved, and the modules that are displayed there open in the VBE when
double-clicked.

Modules are saved by saving the database and responding to the prompts that Access
displays. In the VBE, choose File ➪ Save to save the database. You’ll be prompted to save all
unsaved modules and other unsaved objects. You aren’t prompted to save modules that have
already been saved, even if they’ve been changed. Those modules are simply saved with the
name you provided previously.

Class modules that are attached to a form or report are saved when the form or report is saved.

Understanding VBA Branching Constructs
The real power of any programming language is its capability to make a decision based on a
condition that might be different each time the user works with the application. VBA pro-
vides two ways for a procedure to execute code conditionally: branching and looping.

771

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 771

Branching
Often, a program performs different tasks based on some value. If the condition is true, the
code performs one action. If the condition is false, the code performs a different action. An
application’s capability to look at a value and, based on that value, decide which code to
run is known as branching (or conditional processing).

The procedure is similar to walking down a road and coming to a fork in the road; you can
go to the left or to the right. If a sign at the fork points left for home and right for work,
you can decide which way to go. If you need to go to work, you go to the right; if you need
to go home, you go to the left. In the same way, a program looks at the value of some vari-
able and decides which set of code should be processed.

VBA offers two sets of conditional processing statements:

 ■ If...Then...Else...End If

 ■ Select Case...End Select

The If keyword

The If keyword can be used in a few different ways, but they all check a condition and,
based on the evaluation, perform an action. The condition must evaluate to a Boolean value
(True or False). If the condition is true, the program moves to the line following the If
statement. If the condition is false, the program skips to the statement following the Else
statement, if present, or the End If statement if there is no Else clause.

The If…Then construct

An If statement can take a few different forms. The fi rst form is the If...Then
construct. It is a one line statement where the condition and the action are all in the same
statement. In the following example, the sState variable is set if the sCity variable con-
tains certain data.

If sCity = "Dallas" Then sState = "Texas"

VBA fi rst evaluates sCity = "Dallas" and determines if the conditional is true or false.
If it’s true (that is, if sCity has been assigned the value Dallas), the portion of the state-
ment after the Then keyword is executed. In this case, the sState variable is assigned the
value Texas. If the conditional is false, the program moves on to the next line in the pro-
cedure and the sState variable doesn’t change.

The If…End If construct

The next form is the If...End If construct. This construct, and the ones that follow, are
commonly known as If blocks because they can contain more than one line of code (a block
of code), unlike the If...Then construct that can only execute one line. The previous
example can be rewritten as an If...End If.

If sCity = "Dallas" Then
 sState = "Texas"
End If

772

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 772

This example is exactly the same as the one before it. If the conditional statement is true,
the single line in the If block is executed. The difference is when the conditional is false.
In that case, the program braches to the line immediately following the End If statement
and program execution continues.

The benefi t of the If...End If construct is that you can execute multiple statements
when a conditional is true. In the next example, two variables are assigned values when the
conditional is true.

If sCity = "Dallas" Then
 sState = "Texas"
 dTaxRate = 0.075
End If

If the conditional is true, both statements are executed. Otherwise, the program branches
to the line just below End If and continues executing.

The If...Else...End If construct

In the previous examples, one or more statements are executed when the conditional is
true and nothing happens when the conditional is false. The Else keyword can be included
in an If block to identify statements that should run when the conditional is false.

If sCity = "Dallas" Then
 sState = "Texas"
 dTaxRate = 0.075
Else
 sState = "Michigan"
 dTaxRate = 0.05
End If

When the conditional is true, the fi rst two statements are executed (setting sState to
Texas and dTaxRate to 0.075). Then the program branches to the line below End If
and continues executing. The two statements between Else and End If aren’t executed.

If the conditional is false, however, the program branches to the statement below the Else
statement and skips the fi rst two. It’s very common to see a construct like this that exe-
cutes certain lines of code when a condition is met and certain other lines when it’s not.

You must use an If block to use an Else statement. Else statements do not work with the
fi rst construct (the If...Then construct).

The If…ElseIf...End If construct

The fi nal If construct is yet another If block type of construct. Instead of only one condi-
tional, there are multiple conditionals. The ElseIf statement defi nes as many other condi-
tionals as you need.

If sCity = "Dallas" Then
 sState = "Texas"

773

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 773

 dTaxRate = 0.075
ElseIf sCity = "Detroit" Then
 sState = "Michigan"
 dTaxRate = 0.05
Else
 sState = "Oregon"
 dTaxRate = 0.0625
End If

The program fl ows through an If...ElseIf...EndIf construct much like it does
through the others. If the fi rst conditional is true, the statements in the fi rst section are
executed and the program branches to the line just below the End If. If the fi rst condi-
tional is false, the program branches to the second conditional (the fi rst ElseIf) and tests
that conditional. If none of the conditionals is true, the statements in the Else section are
executed. The Else statement is optional when using ElseIf. If you omit the Else state-
ment and none of the conditionals is true, no statements in the If block are executed.

Nested If statements

Nesting statements refers to putting statements inside a block of other statements. In the
case of If, nesting means that one If block is inside another If block.

If sState = "Michigan" Then
 If sCity = "Detrioit" Then
 dTaxRate = 0.05
 ElseIf sCity = "Kalamazoo" Then
 dTaxRate = 0.045
 Else
 dTaxRate = 0
 End If
End If

The outer If block tests the sState variable. If that condition is true, the inner If block
is executed and the sCity variable is tested. If the conditional in the outer If block is
false, the program branches to the line below the End If statement that matches the If
statement being evaluated. Proper indenting, though not required, is helpful to see which
Else and End If statements go with which If statements.

Boolean values and conditionals

If statements are wonderful, and you’ll see them in almost every piece of code you write.
However, there are two situations in which they’re misused. Consider this code fragment:

If bIsBuyer = True Then
 bIsInPurchasing = True
Else
 bIsInPurchasing = False
End If

774

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 774

This is a simple If...Else...End If construct where the conditional checks to see if
the Boolean variable bIsBuyer is True. Based on the result of that conditional, another
Boolean variable is set to True or False. There’s nothing wrong with the code—it will
compile and run just fi ne—but there is a way to simplify the code and make it more read-
able. First, comparing a Boolean variable to True or False is unnecessary because the
variable already is true or false. The fi rst line can be simplifi ed to:

If bIsBuyer Then

Assuming bIsBuyer is True, then in the fi rst example, the compiler evaluates
bIsBuyer = True, which reduces to True = True, and of course that returns True. In
the simpler example, bIsBuyer is evaluated and returns True. Because bIsBuyer is a
Boolean variable, comparing it to a Boolean value is redundant.

The second simplifi cation step is to remove the If statement altogether. Whenever you’re
setting a Boolean value in an If block, you should consider whether the Boolean value can
be set directly.

bIsInPurchasing = bIsBuyer

This one line of code does the same things as the fi ve lines we started with.
If bIsBuyer is True, bIsInPurchasing will also be True. If bIsBuyer is False,
bIsInPurchasing will also be False. There may be situations in which you need to
set one variable to the opposite of the other. VBA provides the Not keyword to convert
Booleans from True to False and vice versa.

bIsInPurchasing = Not bIsTruckDriver

The variable bIsTruckDriver is evaluated as either true or false and the Not keyword
returns the opposite. If bIsTruckDriver is True, bIsInPurchasing will be assigned
the value False.

When you have many conditions to test, the If...Then...ElseIf...Else conditions
can get rather unwieldy. A better approach is to use the Select Case...End Select
construct.

The Select Case...End Select statement

VBA offers the Select Case statement to check for multiple conditions. Following is the
general syntax of the Select Case statement:

Select Case Expression

 Case Value1
 [Action to take when Expression = Value1]

 Case Value2

775

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 775

 [Action to take when Expression = Value2]

 Case ...

 Case Else
 [Default action when no value matches Expression]

End Select

Notice that the syntax is similar to that of the If...Then statement. Instead of a
Boolean condition, the Select Case statement uses an expression at the very top. Then,
each Case clause tests its value against the expression’s value. When a Case value matches
the expression, the program executes the block of code until it reaches another Case state-
ment or the End Select statement. VBA executes the code for only one matching Case
statement.

If more than one Case statement matches the value of the test expression, only the code for the fi rst match exe-

cutes. If other matching Case statements appear after the fi rst match, VBA ignores them.

Figure 24.10 shows Select...Case used by frmDialogContactPrint to decide which of
several reports to open.

FIGURE 24.10

Using the Select Case statement.

The code in Figure 24.10 shows the expression in the
Select Case is Me![grpTypeOf-Print]. This expression represents a group of option
buttons on the form. When evaluated, it returns a 1, 2, or 3 depending on which option
button is selected. The value in each Case statement is then compared to the expression’s
value and, if there is a match, any statements between the matching Case statement and
the next Case statement (or the End Select statement) are executed.

776

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 776

Using the Case Else statement is optional, but it’s always a good idea. The Case Else
clause is always the last Case statement of Select Case and is executed when none of
the Case values matches the expression at the top of the Select Case statement.

The Case statement can be inequality comparisons by incorporating the Is keyword.

Select Case dTaxRate
 Case Is < 0.03
 MsgBox "Low taxes"
 Case Is > 0.07
 MsgBox "High taxes"
 Case Else
 MsgBox "Average taxes"
End Select

By including the Is keyword, you can make a comparison in the Case statement. In this
example, the dTaxRate variable is evaluated in the Select Case statement. In the fi rst
Case statement, the value is compared to 0.03 and if it’s lower, the code under that Case
statement is executed. If dTaxRate is in between 0.03 and 0.07, the Case Else state-
ment will be executed because neither of the fi rst two Case statements would be true.

The Case statement also accepts multiple values. You can separate multiple values in the
same Case statement with a comma. You can also specify a range of values using the To
keyword. The following example shows both of these techniques:

Select Case dSalesAmt
 Case 0.99, 1.99
 dCommissionPct = 0.1
 Case 2 To 4.99
 dCommissionPct = 0.15
 Case Is >= 5
 dCommissionPct = 0.17
End Select

Looping
Another powerful process that VBA offers is looping, the capability to execute a single
statement or a group of statements over and over. The statement or group of statements is
repeated until some condition is met.

VBA offers two types of looping constructs:

 ■ Do...Loop

 ■ For...Next

777

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 777

Do...Loop constructs are used when you need to repeat a statement or group of state-
ments and you don’t know how many times you need to repeat them. For...Next con-
structs are used when you already know how many times to repeat the statements.

Loops are commonly used to process records within a recordset, change the appearance of
controls on forms, and a number of other tasks that require repeating the same VBA state-
ments multiple times.

The Do...Loop statement

Do...Loop is used to repeat a group of statements while a condition is true or until a con-
dition is true. This statement is one of the most commonly used VBA looping constructs:

Do [While | Until Condition]
 [VBA statements]
 [Exit Do]
 [VBA statements]
Loop

Alternatively, the While (or Until) may appear at the bottom of the construct:

Do
 [VBA statements]
 [Exit Do]
 [VBA statements]
Loop [While | Until Condition]

Notice that Do...Loop has several options. The While clause causes the VBA statements
within the Do...Loop to execute as long as the condition is true. Execution drops out of
the Do...Loop as soon as the condition evaluates to false.

The Until clause works in just the opposite way. The code within the Do...Loop executes
only as long as the condition is false.

Placing the While or Until clause at the top of the Do...Loop means that the loop never
executes if the condition is not met. Placing the While or Until at the bottom of the loop
means that the loop executes at least once because the condition is not evaluated until
after the statements within the loop have executed the fi rst time.

Exit Do immediately terminates the Do...Loop. Use Exit Do as part of a test within
the loop:

Do While Condition1
 [VBA statements]
 If Condition2 Then Exit Do
 [VBA statements]
Loop

778

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 778

Exit Do is often used to prevent endless loops. An endless loop occurs when the condi-
tion’s state (true or false) never changes within the loop.

In case you’re wondering, Condition1 and Condition2 in this example may be the same.
There is no requirement that the second condition be different from the condition used at
the top of the Do...Loop.

Figure 24.11 illustrates how a Do loop may be used. In this particular example, a recordset has
been opened and each record is processed within the Do loop. In this example, the last name
fi eld is printed in the Immediate window, but the data is not modifi ed or used in any way.

FIGURE 24.11

Using the Do...Loop statement.

The While and Until clauses provide powerful fl exibility for processing a Do...Loop in
your code.

The For...Next statement

Use For...Next to repeat a statement block a set number of times. The general format of
For...Next is:

For CounterVariable = Start To End
 [VBA Statements]
 [Exit For]
 [VBA Statements]
Next CounterVariable

The following procedure uses the built-in Beep function to emit a sound a set number of
times. The For...Next loop determines the number of beeps.

Sub BeepWarning()

 Dim lBeep As Long

779

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 779

 Dim lBeepCount As Long

 lBeepCount = 5

 For lBeep = 1 To lBeepCount
 Beep
 Next lBeep

End Sub

In this procedure, lBeep is the counter variable, 1 is the start, and lBeepCount is
the end. When the program reaches the For line, lBeep is set to 1. As long as lBeep
is less than or equal to lBeepCount, the statements inside the For...Next block are
executed. When the Next line is reached, lBeep is increased by one and again compared
to lBeepCount. If lBeep is still less than or equal to lBeepCount, the loop is executed
again. When lBeep becomes greater than lBeepCount, the loop is complete and the
remaining code in the procedure is executed.

An alternate form of For...Next is:

For CounterVariable = Start To End Step StepValue
 [Statement block]
Next CounterVariable

The only difference here is that the StepValue is added to the fi rst statement. The Step
keyword followed by an increment causes the counter variable to be incremented by the
step value each time the loop executes. For example, if Start is 10 and End is 100 and
StepValue is 10, the counter variable starts at 10 and increments by 10 each time the
loop executes. As you saw in the previous example, when Step is omitted, the default is to
increment CounterVariable by 1.

Most of the time, a For...Next loop counts upward, starting at an initial value and
incrementing the counter variable by the amount specifi ed by the step value. In some
cases, however, you might need a loop that starts at a high start value and steps down-
ward to an end value. In this case, use a negative number as the step value. The Step
keyword is required when looping backward. If you omit it, the For statement will see that
CounterVariable is greater than End and the loop won’t be executed.

For Each...Next is a special implementation of For...Next for looping through
collections. For Each...Next is discussed in the next section.

Up until this point, you’ve been working with simple variables such as Booleans, Longs,
and Strings. The following section explains the special syntax to use when working with
objects instead of simple variables.

780

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 780

Working with Objects and Collections
Very often, you have to work with objects such as the controls on a form or a recordset
object containing data extracted from the database. VBA provides several constructs spe-
cifi cally designed to work with objects and collections of objects.

An object primer
Although Access is not object oriented, it’s often referred to as object based. Many of the
things you work with in Access are objects and not just simple numbers and character
strings. Generally speaking, an object is a complex entity that performs some kind of job
within an Access application. Access uses collections to aggregate similar objects as a
single group.

For example, when you build an Access form, you’re actually creating a Form object. As
you add controls to the form, you’re adding them to the form’s Controls collection. Even
though you might add different types of controls (such as buttons and text boxes) to the
form, the form’s Controls collection contains all the controls you’ve added to the form.

You’ll see many, many examples of working with individual objects and collections of
objects in this book. Understanding how objects differ from simple variables is an impor-
tant step to becoming a profi cient Access developer.

Each type of Access object includes its own properties and methods, and shares many other
properties (such as Name) and methods with many other Access objects.

Collections are usually named by taking the name of the objects they contain and making
it plural. The Forms collection contains the Form object. The Reports collection con-
tains the Report object. There are exceptions, however, such as the Controls collection.
While the Controls collection does contain Control objects, each Control object is also
another type of object. A Control object can be a Textbox object, a Combobox object, or
any one of several more specifi c object types.

Collections have just a few properties. These are the two most important properties associ-
ated with Access collections:

 ■ Count: The number of items contained with the collection. A collection with a
Count of 0 is empty. Collections can contain virtually any number of items, but
performance degrades when the Count becomes very large (in excess of 50,000
objects).

 ■ Item: Once you have objects stored in a collection, you need a way to reference
individual objects in the collection. The Item property points to a single item
within a collection.

781

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 781

The following example demonstrates setting a property on just one item in a collection:

MyCollection.Item(9).SomeProperty = Value

or:

MyCollection.Item("ItemName").SomeProperty = Value

where MyCollection is the name assigned to the collection, SomeProperty is the name
of a property associated with the item, and Value is the value assigned to the property.

The Forms and Reports collections are a little unusual in that they only contain Form and Report objects that

are currently open. By contrast, the TableDefs collection contains all the tables in the database regardless of

whether they are open.

This short example demonstrates a few important concepts regarding collections:

 ■ There are different ways to reference the items stored in a collection. In most
cases, each item stored in a collection (such as a form’s Controls collection) has a
name and can be referenced using its name:

MyForm.Controls("txtLastName").FontBold = True

As a consequence, each object’s name within a collection must be unique. You can’t,
for example, have two controls with the same name on an Access form.

The alternate way to reference an object in a collection is with a number that indi-
cates the item’s ordinal position within the collection. The fi rst item added to a col-
lection is item 0 (zero), the second is item 1, and so on.

 ■ Collections have default properties. You may have noticed that the last code frag-
ment didn’t use the Item property to get at the txtLastName control. The Item
property is the default property for most collections and is often omitted. The fol-
lowing two lines of code are the same.

MyForm.Controls.Item(1).Text = "Name"
MyForm.Controls(1).Text = "Name"

 ■ A collection might contain many thousands of objects. Although performance
suffers when a collection contains tens of thousands of objects, a collection is a
handy way to store an arbitrary number of items as an application runs. You’ll see
several examples of using collections as storage devices in this book.

The period that exists between an object and its properties or methods is commonly known as the dot operator. The

dot operator gives you access to an object’s properties and methods.

782

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 782

Properties and methods
Objects have properties and methods. They also have events, which we’ll discuss thoroughly
in Chapter 26.

Properties

Properties let you read and change simple values that are the characteristics of the object.
The Label object has a Caption property. The Caption property is the string that is
displayed in the label. The Label object also has Height and Width properties that
hold numbers determining the object’s size. These are examples of properties that hold
simple values.

Properties can also return other objects. As you’ve seen, the Form object has a Controls
property. But isn’t Controls a collection object? Yes, it is. And for each collection object,
there is a property that returns it. When you write MyForm.Controls.Count, you’re
using the Controls property of MyForm to get access to the Controls collection object.
Fortunately, the Access object model is so well designed that you don’t have to worry about
what is a simple property and what is a property returning an object. When you see two dot
operators in a single statement, you can be sure you’re accessing another object. Typing a
dot operator after a simple value property won’t give you any options.

Methods

You can also access an object’s methods through the dot operator. Methods differ from
properties because they don’t return a value. Methods can generally be put into two
categories:

 ■ Methods that change more than one property at once

 ■ Methods that perform an action external to the object

The fi rst type of method changes two or more properties at once. The CommandButton
object has a method called SizeToFit. The SizeToFit property changes the Height
property, the Width property, or both so that all the text in the Caption property can be
displayed.

The second type of method performs some action outside its parent object. It usually
changes a few properties on the way. The Form object has an Undo method. The Undo
method has to go outside of the form and read the undo stack from Access to determine
what the last action was. When this method is called after a text box is changed, the text
box’s Text property is changed back to its previous value.

The With statement
The With statement enables you to access an object’s properties and methods without typ-
ing the object’s name over and over. Any properties or methods used between With and

783

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 783

End With automatically refer to the object specifi ed in the With statement. Any number
of statements can appear between the With and End With statements, and With state-
ments can be nested. Properties and methods will refer to the object in the innermost With
block that contains them.

For example, consider the code using the following For...Next looping construct. This
code loops through all members of a form’s Controls collection, examining each control.
If the control is a command button, the button’s font is set to 12 point, bold, Times New
Roman:

Private Sub cmdOld_Click()
 Dim i As Integer
 Dim MyControl As Control

 For i = 0 To Me.Controls.Count - 1
 Set MyControl = Me.Controls(i) 'Grab a control
 If TypeOf MyControl Is CommandButton Then
 'Set a few properties of the control:
 MyControl.FontName = "Times New Roman"
 MyControl.FontBold = True
 MyControl.FontSize = 12
 End If
 Next
End Sub

Don’t be confused by the different expressions you see in this example. The heart of this
procedure is the For...Next loop. The loop begins at zero (the start value) and executes
until the i variable reaches the number of controls on the form minus one. (The controls
on an Access form are numbered beginning with zero. The Count property tells you how
many controls are on the form.) Within the loop, a variable named MyControl is pointed
at the control indicated by the i variable. The If TypeOf statement evaluates the exact
type of control referenced by the MyControl variable.

Within the body of the If...Then block, the control’s properties (FontName, FontBold,
and FontSize) are adjusted. You’ll frequently see code such as this when it’s necessary to
manipulate all the members of a collection.

Notice that the control variable is referenced in each of the assignment statements.
Referencing control properties one at a time is a fairly slow process. If the form contains
many controls, this code executes relatively slowly.

An improvement on this code uses the With statement to isolate one member of the
Controls collection and apply a number of statements to that control. The following code
uses the With statement to apply a number of font settings to a single control:

Private Sub cmdWith_Click()
 Dim i As Integer

784

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 784

 Dim MyControl As Control

 For i = 0 To Me.Controls.Count - 1
 Set MyControl = Me.Controls(i) 'Grab a control
 If TypeOf MyControl Is CommandButton Then
 With MyControl
 'Set a few properties of the control:
 .FontName = "Arial"
 .FontBold = True
 .FontSize = 8
 End With
 End If
 Next
End Sub

The code in this example (cmdWith_Click) executes somewhat faster than the previous
example (cmdOld_Click). Once Access has a handle on the control (With MyControl),
it’s able to apply all the statements in the body of the With without having to fetch the
control from the controls on the form as in cmdOld_Click.

In practical terms, however, it’s highly unlikely that you’ll notice any difference in execu-
tion times when using the With construct as shown in this example. However, when work-
ing with massive sets of data, the With statement might contribute to overall performance.
In any case, the With statement reduces the wordiness of the subroutine, and makes the
code much easier to read and understand. It also saves tons of typing when you’re changing
a lot of properties of an object.

Think of the With statement as if you’re handing Access a particular item and saying
“Here, apply all these properties to this item.” The previous example said, “Go get the item
named x and apply this property to it” over and over again.

The For Each statement
The code in cmdWith_Click is further improved by using the For Each statement to
traverse the Controls collection. For Each walks through each member of a collection,
making it available for examination or manipulation. The following code shows how For
Each simplifi es the example:

Private Sub cmdForEach_Click()
 Dim MyControl As Control

 For Each MyControl In Me.Controls
 If TypeOf MyControl Is CommandButton Then
 With MyControl
 .FontName = "MS Sans Serif"
 .FontBold = False
 .FontSize = 8

785

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 785

 End With
 End If
 Next
End Sub

The improvement goes beyond using fewer lines to get the same amount of work done.
Notice that you no longer need an integer variable to count through the Controls collec-
tion. You also don’t have to call on the Controls collection’s Count property to determine
when to end the For loop. All this overhead is handled silently and automatically for you
by the VBA programming language.

The code in this listing is easier to understand than in either of the previous procedures.
The purpose of each level of nesting is obvious and clear. You don’t have to keep track of
the index to see what’s happening, and you don’t have to worry about whether to start the
For loop at 0 or 1. The code in the For...Each example is marginally faster than the
With...End With example because no time is spent incrementing the integer value used
to count through the loop, and Access doesn’t have to evaluate which control in the collec-
tion to work on.

The Chapter24.accdb example database includes frmWithDemo (see Figure 24.12), which contains all the code

discussed in this section. Each of the three command buttons along the bottom of this form uses different code to

loop through the Controls collections on this form, changing the font characteristics of the controls.

FIGURE 24.12

frmWithDemo is included in Chapter24.accdb.

Exploring the Visual Basic Editor
To be a productive Access developer, you need to know your way around the Visual Basic
Editor (VBE). This section explores the features of the VBE and how to use them.

 ON THE WEB

786

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 786

The Immediate window
When you write code for a procedure, you might want to try the procedure while you’re in
the module, or you might need to check the results of an expression. The Immediate win-
dow (shown in Figure 24.13) enables you to try your procedures without leaving the
module. You can run the module and check variables.

Press Ctrl+G to view the Immediate window, or choose View ➪ Immediate Window in the
VBA code editor.

Notice that the VBE window doesn’t use the Ribbon. Instead, the code window appears much as it has in every ver-

sion of Access since Access 2000. Therefore, in this book, you’ll see references to the code window’s toolbar and

menu whenever we describe working with Access VBA modules. Don’t confuse references to the code editor’s toolbar

with the main Access window’s Ribbon.

FIGURE 24.13

The Immediate window.

Running the BeepWarning procedure is easy. Simply type BeepWarning into the
Immediate window and press Enter. You might hear fi ve beeps or only a continuous beep
because the interval between beeps is short.

787

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 787

 The Immediate Window is an excellent debugging tool. Debugging VBA code is discussed in Chapter 27.

The Project Explorer
The Project Explorer is a window within the VBE that displays all the modules in your
project, both standard modules and form and report modules. It provides an easy way to
move between modules without going back to the main Access application.

To view the Project Explorer, press Ctrl+R or choose View ➪ Project Explorer from the VBE’s
menu. By default, the Project Explorer is docked to the left side of the VBE window, as
shown in Figure 24.14.

FIGURE 24.14

The Project Explorer shows all the modules in your database.

Modules The Immediate window The code pane

The project’s nameModule folders

788

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 788

The Project Explorer shows your project at the top of a collapsible list. The project name is
the same as the database name without the ACCDB extension. Beneath the project name is
one or more folders. In Figure 24.14, you can see that our project has a folder for Microsoft
Access Class Objects and one for Modules. The Class Objects folder holds class modules that
are associated with a form or report, while the Modules folder holds standard modules.

There are three icons at the top of the Project Explorer:

 ■ View Code: Clicking View Code puts the focus into the code pane—the large area
where you write and edit VBA code. It offers little advantage over just moving your
mouse and clicking in the code pane.

 ■ View Object: Clicking View Object displays the object associated with the module.
If you’re in a module associated with a form or report, that form or report will be
displayed. It’s a handy shortcut for moving back to the main Access window. This
button has no effect on standard modules.

 ■ Toggle Folders: Modules are displayed in folders by default. To remove the folders
and display all the modules as one list, click Toggle Folders. Click it again to return
to folder view. With proper naming conventions, showing folders in the Project
Explorer is unnecessary. If you prefi x all your standard modules with mod, they’ll
all be grouped together in either view.

The Object Browser
The Object Browser is a window in the VBE that lets you see all the objects, proper-
ties, methods, and events in your project. Unlike the Immediate window and the Project
Explorer, the Object Browser is not docked by default and usually covers up the entire
code pane.

The Object Browser is a useful tool for fi nding properties and methods. In Figure 24.15, the
search term font was entered in the search box. The Object Browser displays all the ele-
ments that contain that string.

The Object Browser has a Libraries drop-down box to limit the search. You can also search
“All Libraries” if you’re not sure which library to look in. In Figure 24.15, the search was
limited to the Access library. The Access library contains the Access object model and is the
library you’ll use the most when developing Access applications.

The search shown in Figure 24.15 found quite a few entries. The Class column shows the
object’s name, and the Member column shows the property or method. The bottom section
of the Object Browser lets you scroll through all the objects and see all their properties and
methods.

789

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 789

FIGURE 24.15

Search the Object Browser to fi nd properties and methods.

Search results Member information Member listObject list

Library drop-downSearch box

VBE options
Many of the most important features in Access affect only developers. These features are
hidden from end users and benefi t only the person building the application. Spend some
time exploring these features so that you fully understand their benefi ts. You’ll soon settle
on option settings that suit the way you work and the kind of assistance you want as you
write your VBA code.

The Editor tab of the Options dialog box

The Options dialog box contains several important settings that greatly infl uence how
you interact with Access as you add code to your applications. These options are accessed

790

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 790

by choosing Tools ➪ Options from the VBE menu. Figure 24.16 shows the Editor tab of the
Options dialog box.

FIGURE 24.16

The Editor tab of the Options dialog box.

Auto Indent

Auto Indent causes code to be indented to the current depth in all successive lines of code.
For example, if you indented the current line of code with two tabs, the next line of code
that you create when you press Enter will automatically be indented the same amount.

Auto Syntax Check

When the Auto Syntax Check option is selected, Access checks each line of code for syntax
errors as you enter it in the code editor and displays a message box when it fi nds one. Many
experienced developers fi nd this behavior intrusive and prefer to keep this option disabled.
With Auto Syntax Check disabled, lines with syntax errors are colored red, but no message
box is displayed. The benefi t of the message box is that it gives you a little more informa-
tion about the error it found, although often these messages are hard to understand.

Require Variable Declaration

This setting automatically inserts the Option Explicit directive into all new
VBA modules in your Access application. This option is not selected by default. It’s almost
universally accepted that Option Explicit should be used and this option should be
enabled. Any modules created before this option is set will not be updated to include
Option Explicit. The good news is, you can simply type the directive into those
modules.

791

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 791

 Chapter 25 discusses variable declaration and the Option Explicit declaration in more detail.

When you get used to having Option Explicit set on every module (including standard and class modules), the

instances of rogue and unexplained variables (which, in reality, are almost always misspellings of declared variables)

disappear. With Option Explicit set in every module, your code is easier to debug and maintain because the

compiler catches every single misspelled variable.

Auto List Members

This option pops up a list box containing the members of an object’s hierarchy in the code
window. In Figure 24.6, the list of the DoCmd object’s members appeared as soon as we
typed as the period following DoCmd in the VBA statement. You select an item from the list
by continuing to type it in or scrolling the list and pressing the spacebar.

Auto Quick Info

When Auto Quick Info has been selected, Access pops up syntax help (refer to Figure 24.7)
when you enter the name of a procedure (function, subroutine, or method) followed by a
period, space, or opening parenthesis. The procedure can be a built-in function or subrou-
tine or one that you’ve written yourself in Access VBA.

Auto Data Tips

The Auto Data Tips option displays the value of variables when you hold the mouse cursor
over a variable with the module in break mode. Auto Data Tips is an alternative to setting a
watch on the variable and fl ipping to the Debug window when Access reaches the
break point.

 Debugging Access VBA is described in Chapter 27.

The Project Properties dialog box

All the code components in an Access application—including all the modules, procedures,
variables, and other elements—are aggregated as the application’s VBA project. The VBA
language engine accesses modules and procedures as members of the project. Access man-
ages the code in your application by keeping track of all the code objects that are included
in the project, which is different and separate from the code added into the application as
runtime libraries and wizards.

Each Access project includes a number of important options. The Project Properties dia-
log box (shown in Figure 24.17) contains a number of settings that are important for

792

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 792

developers. Open the Project Properties dialog box by choosing Tools ➪ Project Name
Properties (where Project Name is the name of your database’s project).

FIGURE 24.17

The Project Properties dialog box contains a number of interesting options.

Project name

Certain changes in an application’s structure require Access to recompile the code in the
application. For example, changing the code in a standard module affects all statements
in other modules using that code, so Access must recompile all the code in the application.
Until the code is recompiled, Access “decompiles” the application by reverting to the plain-
text version of the code stored in the ACCDB fi le and ignoring the compiled code in the
ACCDB. This means that each line of the code must be interpreted at run time, dramatically
slowing the application.

Sometimes insignifi cant modifi cations, such as changing the name of the project itself,
are suffi cient to cause decompilation. This happens because of the hierarchical nature of
Access VBA. Because all objects are “owned” by some other object, changing the name of a
high-level object might change the dependencies and ownerships of all objects below it in
the object hierarchy.

Access maintains a separate, independent project name for the code and executable objects
in the application. Simply changing the name of the ACCDB fi le is not enough to decompile
the code in an Access application. By default, the project name is the same as the name
of the ACCDB, but it’s not dependent on it. You can assign a unique name to the project
with the Project Name text box in the General tab of the Project Properties dialog box.

793

Chapter 24: Getting Started with Access VBA

24

c24.indd 10/06/2015 Page 793

Project description

The project description is, as its name implies, a description for the project. Because this
area is so small, it isn’t possible to add anything of signifi cance that might be helpful to
another developer.

Conditional compilation arguments

Compiler directives instruct the Access VBA compiler to include or exclude portions of code,
depending on the value of a constant established in the module’s declarations section. Code
lines that begin with # are conditionally compiled.

One of the limitations of using compiler directives is that the constant declaration is local
to the module. This means that you have to use the #Const compiler directive to set up
the constant in every module that includes the #If directive. This limitation can make it
diffi cult to remove all the #Const compiler directives to modify the code at the conclusion
of development.

For example, consider a situation in which you want to use conditional compilation to
include certain debugging statements and functions during the development cycle. Just
before shipping the application to its users, you want to remove the compiler directives
from the code so that your users won’t see the message boxes, status bar messages, and
other debugging information. If your application consists of dozens of forms and modules,
you have to make sure you fi nd every single instance of the #Const directive to make sure
you successfully deactivated the debugging code. (This is why it’s such a good idea to apply
a naming convention to the identifi ers you use with the #Const directive.)

Fortunately, Access provides a way for you to set up “global” conditional compilation
arguments. The General tab of the Project Properties dialog box contains the Conditional
Compilation Arguments text box, where you can enter arguments to be evaluated by the
conditional compilation directives in your code.

As an example, assume you’ve set up the following sort of statements in all the modules in
your application:

#If CC_DEBUG2 Then
 MsgBox "Now in ProcessRecords()"
#End If

Instead of adding the constant directive (#Const CC_DEBUG2 = True) to every module
in the application, you might enter the following text into the Conditional Compilation
Arguments text box:

CC_DEBUG2 = -1

This directive sets the value of CC_DEBUG2 to –1 (True) for all modules (global and form
and report class modules) in the application. You need to change only this one entry to
CC_DEBUG2=0 to disable the debugging statements in all modules in the application.

794

Part VI: Access Programming Fundamentals

c24.indd 10/06/2015 Page 794

You don’t use the words true or false when setting compiler constants in the Project Properties dialog box, even

though you do use these values within a VBA code module. You must use –1 for true and 0 for false in the Project

Properties dialog box.

Separate multiple arguments with colons—for example: CC_DEBUG1=0 : CC_DEBUG 2=-1.

Project protection

The Protection tab contains a check box that, when checked, asks for a password when you
(or someone else) tries to open the module. You must supply a password (and confi rm it)
when using this option. Don’t forget your password, because there’s no offi cial way to get
it b ack.

795

c25.indd 10/06/2015 Page 795

 CHAP T ER

25
Mastering VBA Data Types
and Procedures

IN THIS CHAPTER

Naming and declaring variables

Looking at the VBA data types

Understanding the scope and lifetime of variables

Using constants

Looking at arrays

Working with subs and functions

Building functions

A
ll VBA applications require variables to hold data while the program executes. Variables are like a
white board where important information can be temporarily written and read later on by the pro-
gram. For example, when a user inputs a value on a form, you may need to use a variable to tem-

porarily hold the value until it can be permanently stored in the database or printed on a report. Simply
put, a variable is the name you’ve assigned to a particular bit of data in your application. In more tech-
nical terms, a variable is a named area in memory used to store values during program execution.

Variables are transient and do not persist after an application stops running. And, as you’ll read in
the “Understanding variable scope and lifetime” section later in this chapter, a variable may last a
very short time as the program executes or may exist as long as the application is running.

In most cases, you assign a specifi c data type to each of the variables in your applications. For exam-
ple, you may create a string variable to hold text data such as names or descriptions. A currency vari-
able, on the other hand, is meant to contain values representing monetary amounts. You shouldn’t try
to assign a text value to a currency variable because a runtime error may occur as a result.

The variables you use have a dramatic effect on your applications. You have many options when it
comes to establishing and using variables in your Access programs. Inappropriately using a variable
can slow an application’s execution or potentially cause data loss.

796

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 796

This chapter contains everything you need to know about creating and using VBA variables.
The information in this chapter helps you use the most effi cient and effective data types for
your variables while avoiding the most common problems related to VBA variables.

Using Variables
One of the most powerful concepts in programming is the variable. A variable is a tempo-
rary storage location for some value and is given a name. You can use a variable to store
the result of a calculation, hold a value entered by the user, or read from a table, or you can
create a variable to make a control’s value available to another procedure.

To refer to the result of an expression, you use a variable’s name to store the result. To
assign an expression’s result to a variable, you use the = operator. Here are some examples
of expressions that assign values to variables:

counter = 1
counter = counter + 1
today = Date()

Figure 25.1 shows a simple procedure using several different variables. Although this is a
very simple example of using variables, it effectively demonstrates the basics of using VBA
variables:

FIGURE 25.1

Variable declarations appear at the top of VBA procedures.

797

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 797

25

 ■ The Dim keyword establishes the new variables—sFormName and sCriteria—
within a procedure.

 ■ You provide a meaningful name for the variable as part of the Dim statement. In
Figure 25.1, the variable names are sFormName and sCriteria, indicating how
the variables are used by the procedure.

 ■ The Dim statement includes the data type of the new variable. In Figure 25.1, both
variables are declared as the String data type.

 ■ Different techniques can be used to assign a value to a variable. Figure 25.1 uses
the = operator to assign a literal value—frmContactLog—to sFormName. Notice
that frmContactLog is surrounded by quotation marks, making it a literal value.
A value pulled from the txtContactID text box on the form is combined with a
literal string—"[ContactID]="—and assigned to the sCriteria variable. The
data assigned to variables should always be appropriate for the variable’s data type.

 ■ Variables are manipulated with a variety of operators. Figure 25.1 uses the VBA con-
catenation operator (&) to combine [ContactID]= and the value in txtContactID.

There is a number of ways to perform each of the tasks you see in Figure 25.1. For example,
as you’ll read in the “Declaring variables” section later in this chapter, the Dim statement
is not the only way to establish a variable. And, as you’ll see throughout this book, the
= operator is not the only way to assign a value to a variable. Also, you don’t need to use
a variable like sCriteria to temporarily hold the value generated by combining two val-
ues. The two values can just as easily be combined on the fl y within the DoCmd.OpenForm
statement:

DoCmd.OpenForm "frmContactLog", _
 "[ContactID] = " & Me![txtContactID]

Very few rules govern how you declare and use your variables. You should always strive for
readability in your VBA code. In the small example shown in Figure 25.1, you can easily
see that sFormName holds the name of a form, especially because it’s used as part of the
DoCmd.OpenForm statement.

Naming variables
Every programming language has its own rules for naming variables. In VBA, a variable
name must meet the following conditions:

 ■ It must begin with an alphabetical character.

 ■ It must have a unique name. The variable’s name cannot be used elsewhere in the
procedure or in modules that use the variables.

 ■ It must not contain spaces or punctuation characters (except underscore).

 ■ It must not be a reserved word, such as Sub, Module, or Form.

 ■ It must be no longer than 255 characters.

798

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 798

Although you can make up almost any name for a variable, most programmers adopt a stan-
dard convention for naming variables. Some common practices include the following:

 ■ Using a mix of uppercase and lowercase characters, as in TotalCost.

 ■ Using all lowercase characters, as in counter.

 ■ Separating the parts of a variable’s name with underscores, as in Total_Cost.

 ■ Preceding the name with the data type of the value. A variable that stores a num-
ber might be called iCounter, while a variable holding a string might be named
sLastName.

The “Using a naming convention with variables” section later in this chapter goes into
greater detail about the benefi ts of a naming convention.

One source of endless confusion to Access developers is the fact that Access object names (tables, queries, forms,

and so on) may contain spaces, while variable names never include spaces. One reason not to use spaces in Access

object names is to eliminate confusion when mixing different naming conventions within a single application. You’re

really better off being consistent in how you apply names to your Access objects, variables, procedures, and other

application entities.

When creating variables, you can use uppercase, lowercase, or both to specify the variable or call it later. VBA vari-

ables are not case sensitive. This means that you can use the TodayIs variable later without having to worry about

the case that you used for the name when you created it; TODAYIS, todayis, and tOdAyIs all refer to the same

variable. The VBE automatically changes any explicitly declared variables to the case that was used in the declaration

statement (the Dim statement).

When you need to use the contents of a variable, you simply reference its name. When you
specify the variable’s name, the computer program goes into memory, fi nds the variable,
and gets its contents for you. This process means, of course, that you need to be able to
remember and correctly reference the name of the variable.

Declaring variables
There are two principle ways to add variables to your applications. The fi rst method—called
implicit declaration—is to let VBA automatically create the variables for you. As with most
things that are not carefully controlled, you’ll fi nd that letting VBA prepare your variables
for you is not a particularly good idea and can lead to performance issues in, and problems
debugging, your programs (see the “Comparing implicit and explicit variables” section later
in this chapter).

799

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 799

25

Implicit declaration means that VBA automatically creates an Empty variable for each iden-
tifi er it recognizes as a variable in an application. In the following, there are two implic-
itly declared variables—sFirstName and sLastName. In this example, two variables
(sFirstName and sLastName) are assigned the text contained in two text boxes
(txtFirstName and txtLastName), and a third variable (sFullName) is assigned the
combination of sFirstName and sLastName, with a space between them.

Private Sub Combine_Implicit()

 sFirstName = Me.txtFirstName.Text
 sLastName = Me.txtLastName.Text
 sFullName = sFirstName & Space(1) & sLastName

End Sub

The second approach is to explicitly declare them with one of the following keywords: Dim,
Static, Private, or Public (or Global). The choice of keyword has a profound effect on
the variable’s scope within the application and determines where the variable can be used
in the program. (Variable scope is discussed in the “Understanding variable scope and life-
time” section later in this chapter.)

To force explicit variable declaration, type the directive Option Explicit at the top of each module. Better yet, check

Require Variable Declarations in the VBE Options dialog box, and all new modules will automatically include the

Option Explicit directive.

The syntax for explicitly declaring a variable is quite simple:

Dim VariableName As DataType
Static VariableName As DataType
Private VariableName As DataType
Public VariableName As DataType

In each case, the name of the variable and its data type are provided as part of the declara-
tion. VBA reserves the amount of memory required to hold the variable as soon as the dec-
laration statement is executed. Once a variable is declared, you can’t change its data type,
although you can easily convert the value of a variable and assign the converted value to
another variable.

The following example shows the Combine_Implicit sub rewritten to use explicitly
declared variables:

Private Sub Combine_Explicit()

 Dim sFirstName As String
 Dim sLastName As String

800

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 800

 Dim sFullName As String

 sFirstName = Me.txtFirstName.Text
 sLastName = Me.txtLastName.Text
 sFullName = sFirstName & Space(1) & sLastName

End Sub

So, if there’s often very little difference between using implicit and explicit variables, why
bother declaring variables at all? The following code demonstrates the importance of using
explicitly declared variables in your applications:

Private Sub Form_Load()

 sDepartment = "Manufacturing"
 sSupervisor = "Joe Jones"
 sTitle = "Senior Engineer"

 'Dozens of lines of code go here

 Me.txtDepartment = sDepartment
 Me.txtSupervisor = sSuperviser
 Me.txtTitle = sTitle

End Sub

In this example code, the txtSupervisor text box on the form is always empty and is
never assigned a value. A line near the bottom of this procedure assigns the value of an
implicitly declared variable named Superviser to the txtSupervisor text box. Notice
that the name of the variable (Superviser) is a misspelling of the intended variable
(Supervisor). Because the source of the assignment appears to be a variable, VBA
simply creates a new variant named Superviser and assigns its value (which is, literally,
nothing) to the txtSupervisor text box. And, because the new Superviser variable
has never been assigned a value, the text box always ends up empty. Misspellings such as
this are very common and easy to overlook in long or complex procedures.

Furthermore, the code shown in this example runs fi ne and causes no problem. Because this
procedure uses implicit variable declaration, Access doesn’t raise an error because of the
misspelling, and the problem isn’t detected until someone notices the text box is always
empty. Imagine the problems you’d encounter in a payroll or billing application if variables
went missing because of simple spelling errors!

When you declare a variable, Access sets up a location in the computer’s memory for stor-
ing a value for the variable ahead of time. The amount of storage allocated for the variable
depends on the data type you assign to the variable. More space is allocated for a variable
that will hold a currency amount (such as $1,000,000) than for a variable that will never
hold a value greater than, say, 255. This is because a variable declared with the Currency

801

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 801

25

data type requires more storage than another variable declared as a Byte data type. (Data
types are discussed later in this chapter, in the “Working with Data Types” section.)

Even though VBA doesn’t require you to declare your variables before using them, it does
provide various declaration commands. Getting into the habit of declaring variables is good
practice. A variable’s declaration assures that you can assign only a certain type of data to
it—always a numeric value or only characters, for example. In addition, you attain real per-
formance gains by pre-declaring variables.

A programming best practice is to explicitly declare all variables at the top of the procedure; this makes the program

easier for other programmers to work with later on.

The Dim keyword

To declare a variable, you use the Dim keyword. (Dim is an abbreviation of the archaic
Dimension programming term—because you’re specifying the dimension of the variable.)
When you use the Dim keyword, you must supply the variable name that you assign to the
variable. Here’s the format for a Dim statement:

Dim [VariableName] [As DataType]

The following statement declares the variable iBeeps as an integer data type:

Dim iBeeps As Integer

Notice that the variable name follows the Dim statement. In addition to naming the vari-
able, use As Data Type to specify a data type for the variable. The data type is the kind of
information that will be stored in the variable—String, Integer, Currency, and so on. The
default data type is Variant; it can hold any type of data.

Table 25.1 in the next section lists all the data types available.

When you use the Dim statement to declare a variable in a procedure, you can refer to
that variable only within that procedure. Other procedures, even if they’re stored in the
same module, don’t know anything about the variable declared within a procedure. Such
a variable is often described as local because it’s declared locally within a procedure and is
known only by the procedure that owns it. (You can read more about variable scope in the
“Understanding variable scope and lifetime” section later in this chapter.)

Variables also can be declared in the declarations section of a module. Then all the proce-
dures in the module can access the variable. Procedures outside the module in which you
declared the variable, however, can’t read or use the variable.

802

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 802

You can declare multiple variables in one Dim statement, but you must supply the data type for each variable. If you

don’t supply a data type, the variable is created as a Variant. The statement Dim sString1, sString2 As
String results in sString1 (a Variant) and sString2 (a String). The proper statement, Dim sString1 As
String, sString2 As String, results in both variables being Strings.

The Public keyword

To make a variable available to all modules in the application, use the Public keyword when
you declare the variable. Figure 25.2 illustrates declaring a public variable.

FIGURE 25.2

Declaring a public variable.

You cannot declare a public variable within a procedure. It must be declared in the declarations section of a module.

If you try to declare a variable public within a procedure, you get an error message.

Although you can declare a public variable in any module, the best practice for declaring
public variables is to declare them all in a single standard module that’s used only to store
public variables. Public variables, while necessary in some cases, should be limited. Because
any procedure in your project can change a public variable’s value, it can be diffi cult to fi nd
which procedure is making an unwanted change. With all the publically declared variables
in one place, it’s easy to locate them, and it’s easy to see if you’re using too many and may
need to rethink your code structure.

803

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 803

25

You can declare public variables in the code module attached to a form or report. Referencing these public variables

from another module is a little bit different than referencing public variables declared in standard modules. To refer-

ence the value of a public variable declared behind a form or report from another module, you must qualify the vari-

able reference, using the name of the form or report object. frmMainForm.MyVariable, for example, accesses

a form named frmMainForm and obtains the value of the public variable MyVariable declared in the form’s

code module. Public variables declared within a form or report’s module cannot be referenced unless the form or

report is open.

The Private keyword

The declarations section in Figure 25.2 shows the use of the Private keyword to declare
variables. Technically, there is no difference between Private and Dim when used in the
declarations section of a module, but using Private at the module level to declare vari-
ables that are available to only that module’s procedures is a good idea. The Private key-
word ensures that all procedures in the module can access the variable, but all procedures
in other modules cannot. Declaring private variables contrasts with:

 ■ Dim, which must be used at the procedure level

 ■ Public, the other method of declaring variables in modules, making understand-
ing your code easier

You can quickly go to the declarations section of a module while you’re working on code in a form’s module by

selecting (General) in the Object drop-down list in the code editor. The Procedure drop-down list will change to

(Declarations). (Refer to the Module window combo boxes in Figure 25.2.) The Declarations item is not avail-

able when a control, or the form, is selected in the Object drop-down list.

When you declare a variable, you use the AS clause to specify a data type for the new vari-
able. Because Access is a database development system, it’s not surprising that variable
data types are similar to fi eld data types in an Access database table.

Working with Data Types
When you declare a variable, you also specify the data type for the variable. Each variable
has a data type. The data type of a variable determines what kind of information can be
stored in the variable.

804

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 804

A string variable—a variable with a data type of String—can hold any character that you
can type on a keyboard, plus a few others. Once created, a string variable can be used in
many ways: comparing its contents with another string, pulling parts of information out of
the string, and so on. If you have a variable defi ned as a String, however, you cannot use it
to do mathematical calculations.

Table 25.1 describes the 12 fundamental data types supported by VBA.

TABLE 25.1 VBA Data Types

Data Type Range Description

Boolean True or False 2 bytes

Byte 0 to 255 1-byte binary
data

Currency –922,337,203,685,477,5808 to 922,337,203,685,477,5807 8-byte number
with fi xed deci-
mal point

Decimal +/–79,228,162,514,264,337,593,543,950,335 with no decimal
point +/–7.9228162514264337593543950335 with 28 places
to the right of the decimal; smallest nonzero number is
+/–0.0000000000000000000000000001

14 bytes

Date 01 Jan 100 00:00:00 to 31 Dec 9999 23:59:59 8-byte date/
time value

Double –1.79769313486231E308 to –4.94065645841247E–324 for
negative values and 4.94065645841246544E–324 through
1.79769313486231570E+308 for positive values

8-byte fl oating-
point number

Integer –32,768 to 32,767 2-byte integer

Long –2,147,483,648 to 2,147,483,647 4-byte integer

Object Any object reference 4 bytes

Single –3.402823E38 to –1.401298E–45 for negative values and
1.401298E–45 to 3.402823E38 for positive values

4-byte fl oating-
point number

String (fi xed
length)

1 to approximately 65,400 Length of string

String (vari-
able length)

0 to approximately 2,000,000,000 10 bytes plus
length of string

805

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 805

25

Variant (with
characters)

0 to approximately 2,000,000,000 22 bytes plus
length of string

Variant (with
numbers)

Any numeric value up to the range of the Double data type
(see earlier in this table)

16 bytes

Most of the time, you use the String, Date, Long, and Currency or Double data types. If a
variable always contains whole numbers between –32,768 and 32,767, you can save bytes
of memory and gain a little speed in arithmetic operations if you declare the variable an
Integer data type.

When you want to assign the value of an Access fi eld to a variable, you need to make sure
that the type of the variable can hold the data type of the fi eld. Table 25.2 shows the cor-
responding VBA data types for Access fi eld types.

TABLE 25.2 Access and VBA Data Types

Access Field Data Type VBA Data Type

Attachment —

AutoNumber (Long Integer) Long

AutoNumber (Replication ID) —

Currency Currency

Calculated —

Date/Time Date

Long Text String

Number (Byte) Byte

Number (Integer) Integer

Number (Long Integer) Long

Number (Single) Single

Number (Double) Double

Number (Replication ID) —

OLE object String

Short Text String

Hyperlink String

Yes/No Boolean

806

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 806

Now that you understand variables and their data types, you’re ready to learn how to use
them when writing procedures.

Comparing implicit and explicit variables
The default data type for VBA variables is Variant. This means that, unless you specify
otherwise, every variable in your application will be a Variant. As you read earlier in
this chapter, although useful, the Variant data type is not very effi cient. Its data storage
requirements are greater than the equivalent simple data type (a String, for instance), and
the computer spends more time keeping track of the data type contained in a Variant than
for other data types.

Here’s an example of how you might test for the speed difference when using implicitly
declared Variant variables and explicitly declared variables. This code is found behind
frmImplicitTest in Chapter25.accdb.

'Use a Windows API call to get the exact time:
Private Declare Function GetTickCount _
 Lib "kernel32" () As Long

Private Sub cmdGo_Click()

 Dim i As Integer
 Dim j As Integer
 Dim snExplicit As Single

 Me.txtImplicitStart.Value = GetTickCount()

 For o = 1 To 10000
 For p = 1 To 10000
 q = i / 0.33333
 Next p
 Next o

 Me.txtImplicitEnd.Value = GetTickCount()

 Me.txtImplicitElapsed.Value = _
 Me.txtImplicitEnd.Value - Me.txtImplicitStart.Value

 DoEvents 'Force Access to complete pending operations

 Me.txtExplicitStart.Value = GetTickCount()

 For i = 1 To 10000
 For j = 1 To 10000

807

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 807

25

 snExplicit = i / 0.33333
 Next j
 Next i

 Me.txtExplicitEnd.Value = GetTickCount()

 Me.txtExplicitElapsed.Value = _
 Me.txtExplicitEnd.Value - Me.txtExplicitStart.Value
 DoEvents

End Sub

In this small test, the loop using implicitly declared variables required approximately 2.7
seconds to run, while the loop with the explicitly declared variables required only 2.5
seconds. This is a performance enhancement of approximately 10 percent just by using
explicitly declared variables.

The actual execution time of this—or any—VBA procedure depends largely on the relative
speed of the computer and the tasks the computer is executing at the time the procedure
is run. Desktop computers vary a great deal in CPU, memory, and other resources, making it
quite impossible to predict how long a particular bit of code should take to execute.

The example in this section uses the GetTickCount Windows API function. An Application Program Interface, or

API, is a way for a program (Windows, in this case) to expose certain features to your program. API function details

are outside the scope of this book, but the Windows API is well documented and many examples are available online.

Forcing explicit declaration
Access provides a simple compiler directive that forces you to always declare the variables
in your applications. The Option Explicit statement, when inserted at the top of a
module, instructs VBA to require explicit declaration of all variables in the module. If, for
example, you’re working with an application containing a number of implicitly declared
variables, inserting Option Explicit at the top of each module results in a check of all
variable declarations the next time the application is compiled.

Because explicit declaration is such a good idea, it may not come as a surprise that
Access provides a way to automatically ensure that every module in your application
uses explicit declaration. The Editor tab of the Options dialog box (shown in Figure 25.3)
includes a Require Variable Declaration check box. This option automatically inserts the
Option Explicit directive at the top of every module created from this point in time
onward.

808

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 808

FIGURE 25.3

Requiring variable declaration is a good idea in most Access applications.

The Require Variable Declaration option doesn’t affect modules already written. This option
applies only to modules created after this option is selected, so you’ll have to type the
Option Explicit statement yourself in existing modules. Require Variable Declaration is
not set by default in current versions of Access. You must set this option yourself to take
advantage of having Access add Option Explicit to all your modules.

Using a naming convention with variables
Like most programming languages, applications written in VBA tend to be quite long and
complex, often occupying many thousands of lines of code. Even simple VBA programs may
require hundreds of different variables. VBA forms often have dozens of different con-
trols on them, including text boxes, command buttons, option groups, and other controls.
Keeping track of the variables, procedures, forms, and controls in even a moderately com-
plicated VBA application is a daunting task.

One way to ease the burden of managing the code and objects in an application is through
the use of a naming convention. A naming convention applies a standardized method of
 supplying names to the objects and variables in an application.

The most common naming convention used in Access applications uses a one- to four-
character prefi x (a tag) attached to the base name of the objects and variables in a VBA
application. The tag is generally based on the type of control for controls and the type of
data the variable holds or the scope for variables. For example, a text box containing a per-
son’s last name might be named txtLastName, while a command button that closes a form
would be named cmdClose or cmdCloseForm.

809

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 809

25

The names for variables follow a similar pattern. The string variable holding a customer
name might be named sCustomer, and a Boolean variable indicating whether the customer
is currently active would be bActive.

Using a naming convention is not diffi cult. Most of the code in this book uses one-charac-
ter prefi xes for variables and three-character prefi xes for control names. The actual naming
convention you use is not important. The important point is that you use the convention
consistently. As you write more VBA code, the right convention for you will become obvi-
ous. Table 25.3 shows one naming convention.

TABLE 25.3 A Sample Naming Convention

Control/Data Type Prefi x Example

Control: Text Box txt txtFirstName

Control: Label lbl lblFirstName

Control: Command Button cmd cmdClose

Control: Frame frm frmOptions

Control: Combo Box cbx cbxCustomers

Control: List Box lbx lbxProducts

Control: Check Box chk chkActive

Control: Option Button opt optFemale

Type: Byte bt btCounter

Type: Boolean b bActive

Type: Integer i iCounter

Type: Long l lCustomerID

Type: Single sn snTaxRate

Type: Double d dGrossPay

Type: Currency c cNetSales

Type: Date dt dtHired

Type: Object o oControl

Type: String s sLastName

Type: Variant v vCompany

Scope: Local None sState

Scope: Private m msState

Scope: Public g gsState

810

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 810

One benefi t to using shorter prefi xes for variables and longer prefi xes for controls is that it
becomes easy to tell them apart when you’re reading your code. Also note that more com-
monly used data types get the one-character prefi xes. You’ll typically use Booleans more
often than Bytes, so a shorter prefi x for Booleans saves typing.

Some developers don’t use any prefi xes for variables. There’s nothing wrong with that.
There are some advantages to using prefi xes, however. The fi rst advantage is that you can
identify the data type at the point you’re using the variable. It’s easy to see that a state-
ment like sCustomer = chkActive may cause a problem. You know sCustomer is a
String data type and chkActive, being a check box control, returns a Boolean value.
Another advantage is variable name uniqueness. Recall that the variable naming rules state
that all variable names must be unique and that you can’t use reserved keywords for vari-
able names. That means that you can’t have a Boolean variable named Print that deter-
mines whether to print a report. By using a prefi x, bPrint does not violate any rules.

Including an additional prefi x for the scope conveys similar advantages. Knowing the scope
of the variable in the portion of code you’re working helps debug the code when things go
wrong. It also allows you to use similar variables with different scopes. For example, you
could have a private module-level variable mbIsEnabled that applies to all the code in
your module and still have a local procedure-level variable bIsEnabled for use in only
that procedure.

One fi nal advantage to a naming convention that uses a mix of uppercase and
lowercase letters is that you can detect spelling errors in your variable names very
quickly. VBA will change the case of the variable name to match the case you use when you
declare it. If you declare a variable using Dim sFirstName As String and later type
sfirstname = "Larry" (all lowercase), as soon as you complete that line of code, your
variable will change to sFirstName = "Larry". That immediate feedback will help you
catch spelling errors before they become problems.

Understanding variable scope and lifetime
A variable is more than just a simple data repository. Every variable is a dynamic part of
the application and may be used at different times during the program’s execution. The
declaration of a variable establishes more than just the name and data type of the variable.
Depending on the keyword used to declare the variable and the placement of the variable’s
declaration in the program’s code, the variable may be visible to large portions of the appli-
cation’s code. Alternatively, a different placement may severely limit where the variable
can be referenced in the procedures within the application.

Examining scope

The visibility of a variable or procedure is called its scope. A variable that can be seen and
used by any procedure in the application is said to have public scope. A variable that is
available to any procedure in one module is scoped private to that module. A variable that
is usable by a single procedure is said to have scope that is local to that procedure.

811

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 811

25

There are many analogies for public and private scope. For example, a company is likely
to have a phone number that is quite public (the main switchboard number) and is listed
in the phone book and on the company’s website; each offi ce or room within the company
might have its own extension number that is private within the company. A large offi ce
building has a public street address that is known by anyone passing by the building; each
offi ce or suite within that building will have a number that is private within that building.

Variables declared within a procedure are local to that procedure and can’t be used or refer-
enced outside that procedure. Most of the listings in this chapter have included a number
of variables declared within the procedures in the listings. In each case, the Dim keyword
was used to defi ne the variable. Dim is an instruction to VBA to allocate enough memory to
contain the variable that follows the Dim keyword. Therefore, Dim iMyInt As Integer
allocates less memory (2 bytes) than Dim dMyDouble As Double (8 bytes).

The Public (or Global) keyword makes a variable visible throughout an application.
Public can be used only at the module level and can’t be used within a procedure. Most
often, the Public keyword is used only in standard (stand-alone) modules that are not
part of a form. Figure 25.4 illustrates variables declared with three very different scopes.
This code can be found in the modScope module in Chapter25.accdb.

FIGURE 25.4

Variable scope is determined by the variable’s declaration.

Uses local, module, and global variablesAvailable only within this procedure

Available to all procedures in this moduleAvailable to all procedures in all modules

812

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 812

Every variable declared in the declarations section of a standard module is private to that
module unless the Public keyword is used. Private restricts the visibility of a variable
to the module in which the variable is declared. In Figure 25.4, the gsAppName variable
declared with Public scope at the top of the module will be seen everywhere in the appli-
cation while the mbIsComplete variable declared in the next statement is accessible only
within the module. The sMessage variable is declared inside a procedure, so only that pro-
cedure can see it.

Misunderstanding variable scope is a major cause of serious bugs in many Access applica-
tions. It’s entirely possible to have two same-named variables with different scopes in
an Access VBA project. When ambiguity exists, Access always uses the “closest” declared
variable.

Consider two variables named MyVariable. One of these variables is global (Public) in
scope, while the other is a module-level variable declared with the Private keyword.
In any procedure Access uses one or the other of these variables. In a module where
MyVariable is not declared, Access uses the public variable. The private variable is used
only within the module containing its declaration.

The problem comes when multiple procedures use a variable with the same name as the
multiple-declared MyVariable. Unless the developer working on one of these procedures
has diligently determined which variable is being used, a serious error may occur. All too
easily, a procedure might change the value of a public variable that is used in dozens of
places within an application. If even one of those procedures changes the public variable
instead of a more local variable, a very diffi cult-to-resolve bug occurs.

Determining a variable’s lifetime

Variables are not necessarily permanent citizens of an application. Just as their visibility is
determined by the location of their declaration, their lifetime is determined by their decla-
ration as well. A variable’s lifetime determines when it’s accessible to the application.

By default, local variables exist only while the procedure is executing. As soon as the pro-
cedure ends, the variable is removed from memory and is no longer accessible. As already
discussed, the scope of procedure-level variables is limited to the procedure and cannot be
expanded beyond the procedure’s boundaries.

A variable declared in the declarations section of a form’s module exists as long as the form
is open regardless of how it’s declared (Public, Private, Dim, and so on). All the proce-
dures within the form’s module can use the module-level variables as often as they need,
and they all share the value assigned to the variable. When the form is closed and removed
from memory, all its variables are removed as well.

The greatest variable lifetime is experienced by the variables declared as Public in stan-
dard modules. These variables are available as soon as the VBA application starts up, and
they persist until the program is shut down and removed from memory. Therefore, public

813

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 813

25

variables retain their values throughout the application and are accessible to any of the
procedures within the program. Private variables (declared with the Private keyword)
declared at the top of standard modules endure throughout the application, but following
the rules of variable scope, they’re accessible only from within the module.

There is one major exception to the general rule that procedure-level variables persist only
as long as the procedure is running. The Static keyword makes a procedure-level variable
persist between calls to the procedure. Once a value has been assigned to a static variable,
the variable retains its value until it’s changed in another call to the procedure.

An alternative to using static variables is to declare a global or module-level variable and
use it each time a particular procedure is called. The problem with this approach is that a
global or module-level variable is accessible to other procedures that are also able to modify
its value. You can experience undesirable side-effect bugs by unwittingly changing the
value of a widely scoped variable without realizing what has happened. Because of their
procedure-limited scope, static variables are one way to avoid side-effect bugs.

Incidentally, declaring a procedure with the Static keyword makes all variables in the
procedure static as well. In the following listing, both variables—iStatic and iLocal—in
the StaticTest sub are static, in spite of their local declarations within the procedure. The
Static keyword used in the procedure’s heading makes both variables static in nature.

Private Static Sub StaticTest()

 'Both variables are static because of the
 ' 'Static' keyword in the procedure declaration
 Static lStatic As Long
 Dim lLocal As Long

 lStatic = lStatic + 1
 lLocal = lLocal + 1

 Me.txtLocal.Value = lLocal
 Me.txtStatic.Value = lStatic

End Sub

Deciding on a variable’s scope

Now that you know how declaring a variable affects its scope and lifetime, you may be
wondering how you decide what scope to make a particular variable. The answer is easy:
Always limit the scope of your variables as much as possible. That means that most of your
variables will be at the procedure level and declared with the Dim keyword. If you fi nd that
you need to retain the value of a variable for the next time you call the procedure, change
the Dim to Static. By doing that, you’ll increase the lifetime but not the scope. Limiting
the scope reduces the number of places that a variable can change, which makes it easier to
track down problems when they occur.

814

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 814

If another procedure in the same module needs to use a variable, pass that variable to
the other procedure as a parameter. Parameters are discussed later in this chapter. When
passed as a parameter, the variable is local to the procedure it’s declared in and local to the
procedure it’s passed to, but no other procedures can see it. If the value of your variable
changes unexpectedly, you have only two procedures to debug to fi nd out why.

Sometimes you fi nd yourself passing variables from procedure to procedure within the same
module. When more than a few procedures in a module have the same variable passed to
them, it may be time to declare that variable as Private to the module.

The next level of variable scope is when a procedure outside the module needs to use a
variable. It’s tempting to make the variable global with the Public keyword at this point,
but in trying to follow the rule to keep the variable’s scope as limited as possible, there are
a couple of other considerations. First, consider whether that other procedure belongs in
the module with the variable. Modules should be designed to contain related procedures,
and it’s possible this “outsider” procedure should be moved. If that’s not the case, consider
passing the variable to the other procedure as a parameter. If you were to pass a module-
level variable to a procedure outside the module, the variable would be available to any
procedure in its own module and only the one other procedure it was passed to. The scope
of such a variable is starting to grow but is still as limited as you can make it.

Global variables, declared in standard module with the Public keyword, should be kept
to a minimum. However, almost all projects have at least one global variable. The name of
your application, your application’s version, and a Boolean fl ag that determines if the cur-
rent user of the application has special permissions are all good examples of data to store in
global variables.

Using constants
Constants differ from variables in one major respect: A constant’s value never changes. The
value is assigned to the constant when it’s declared, and attempts to change that value in
code will result in an error.

Declaring constants

Constants are declared with the Const keyword. The format of a constant declaration is as
follows:

[Public | Private] Const constname [As type] = constvalue

Using constants improves the readability of your code. Constants can also aid in error-
proofi ng your code if you use the same value in more than one place. Figure 25.5 shows a
procedure, found in modConstants, that uses a constant.

815

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 815

25

FIGURE 25.5

Constants are declared with the Const keyword.

If the procedure in Figure 25.5 did not use a constant for the discount rate, it might con-
tain a line that looks like this:

dFinalPrice = dFullPrice * (1 – 0.15)

Because of the variable names, you might be able to decipher that 0.15 is a discount rate.
By using a constant like dDISCOUNT, its purpose is obvious to anyone reading the code.

The scope and lifetime of a constant are very similar to variables. Constants declared inside
a procedure are available only within that procedure. Constants declared with the Private
keyword in a module are available to all the procedures in that module and none of the pro-
cedures in other modules. Global constants, declared with the Public keyword, are avail-
able throughout the project. The values of constants never change, so the Static keyword
is not available, and unnecessary, when declaring constants.

Using a naming convention with constants

It’s a good practice to use the same naming convention for constants that you use with
variables. Prefi xing a constant’s name with a g for public constants and an m for private
constants allows you to know the scope of the constant at the point of use. Also including
a prefi x identifying the data type of the constant helps keep your constant names unique
and prevents errors, such as using a String constant in a mathematical operation.

816

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 816

In Figure 25.5, the constant name is all uppercase except for the prefi x. There is no require-
ment to use uppercase with constants. Constants can be declared with any combination of
uppercase and lowercase letters. The rules regarding naming variables and procedures also
apply to constants. However, the all-uppercase convention is used by many developers.

dFinalPrice = dFullPrice * (1 – dDISCOUNT)

In the preceding line, it’s easy to see what’s a variable and what’s a constant by using a
proper-case naming scheme for variables and an uppercase naming scheme for constants.

Unlike variables, using global constants poses no risk to the maintainability of your code.
Constant values never change, so there’s no need to track down which procedures use them.
Like variables, it’s a good practice to put all globally scoped constants in a single module
used only for global variables and constants. If you see a module named modGlobals in a
project, it’s a good bet the developer is using that convention.

Eliminating hard-coded values

Numbers used in a procedure are sometimes referred to as magic numbers. The term doesn’t
imply that the numbers have any special powers, but that another developer reading your
code may not be able to determine where the number came from. To the other developer—
or to you reading your own code months or years later—the numbers seem to appear magi-
cally, without explanation. Many developers strive to remove any magic numbers from their
code except the numbers 0 and 1 and numbers being assigned to variables. This keeps the
code well organized and easy to maintain.

In the following code, a rewrite of the procedure in Figure 25.5, the magic numbers have
been removed and replaced with constants:

Sub DiscountedAmount2()

 Dim dFullPrice As Double
 Dim dFinalPrice As Double

 Const dDISCOUNT As Double = 0.15
 Const dDISCTHRESHOLD As Double = 5000
 Const sPROMPT As String = "The price is "

 dFullPrice = 8000

 If dFullPrice > dDISCTHRESHOLD Then
 dFinalPrice = dFullPrice * (1 - dDISCOUNT)
 Else
 dFinalPrice = dFullPrice
 End If

 MsgBox sPROMPT & dFinalPrice

End Sub

817

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 817

25

If you want to change the message that’s displayed, the discount rate, or the discount
threshold, you don’t have to look through the code to fi nd where those values are used.
All the important values used in the procedure can be found in the declarations section’s
Const statements. Changing the values in the Const statements changes them anywhere
they’re used in the procedure. The line If dFullPrice > dDISCTHRESHOLD Then is
easily understood as a comparison of the full price to a discount threshold. You can get car-
ried away removing magic numbers from your code. The best practice is to use a constant
for any number that’s used more than once and to read your code as if you’re reading it for
the fi rst time and deciding if a descriptive comment name is a better choice over a magic
number.

Working with arrays
An array is a special type of variable. One array variable actually holds multiple pieces of
data. Instead of reserving one block of memory, like a variable, an array reserves several
blocks of memory. The size of an array can be fi xed or dynamic. With dynamic arrays, you
can increase or decrease the size in a procedure. The code in this section can be found in
the modArrays module in Chapter25.accdb.

Fixed arrays

When you declare a fi xed array, you specify the size in the Dim statement, and that size
cannot be changed later. The simplest way to declare a fi xed array is by putting the upper
bound index in parentheses after the variable name:

Dim aCustomers(10) as Long

In this example, aCustomers is an array that can hold 11 long integers, perhaps from a
CustomerID fi eld. Why 11? By default, the lower bound of arrays declared in this way is
zero. That means a value can be stored at aCustomers(0), aCustomers(1), all the way
up to aCustomers(10).

Another way to declare a fi xed array is to specify both the lower and upper bound indices.
It’s a good practice to include the lower bound in the declaration statement even if you
intend to use the default. Use the To keyword to specify the lower and upper bound indices
of an array:

Dim aCustomers(1 to 10) as Long

Unlike the previous example, this array has only enough room to hold ten long integers.
Long integers use 8 bytes of memory, and declaring this array reserves 80 bytes to hold
all ten values. The memory is used when the array is declared, so even if you never assign
any values to the array, nothing else can access that memory. If you’re having performance
problems or your application is using a lot of memory, one place you can look is your arrays
to make sure they’re not larger than you need. However, with modern computers, 80 bytes
here and there probably isn’t an issue.

818

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 818

Assigning values to an array is just like assigning them to any other variable except that
you must specify in which index you want the variable. The following procedure assigns
fl oating point numbers (Doubles) to an array in a loop:

Sub ArrayAssignment()

 Dim aCustomers(1 To 5) As Double

 aCustomers(1) = 0.2
 aCustomers(2) = 24.6
 aCustomers(3) = 7.1
 aCustomers(4) = 99.9
 aCustomers(5) = 14.7

End Sub

Just as with a variable, the array name goes on the left of the equal sign and the value
goes on the right. Unlike variables, however, each assignment includes the index of the
array that is being assigned the value.

VBA includes a directive for setting the default lower bound for arrays where the lower bound is not specifi ed. The

Option Base directive determines the default lower bound. Including Option Base 1 at the top of the module

forces the lower bound to 1. Arrays declared with both a lower and upper bound ignore the Option Base direc-

tive. The Option Base directive applies only to the module in which it’s declared.

Reading values from an array will look familiar. Like reading values from variables, you
simply use the variable name. With arrays, you always must include the index you want
to read. The following procedure stores fi ve random numbers in an array, multiplies those
numbers by 10, and fi nally prints the numbers to the Immediate window:

Sub ArrayRandom()

 Dim aRandom(1 To 5) As Double
 Dim i As Long

 For i = 1 To 5
 aRandom(i) = Rnd
 Next i

 For i = 1 To 5
 aRandom(i) = aRandom(i) * 10
 Next i

819

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 819

25

 For i = 1 To 5
 Debug.Print aRandom(i)
 Next i

End Sub

Because array indexes increase by one, For...Next loops are a common way to access all
the elements in an array.

The arrays we’ve looked at so far are known as one-dimensional arrays. One-dimensional
arrays are like lists—they have many rows, but only one column. You can also have two-
dimensional arrays. Two-dimensional arrays are like tables—they have many rows and col-
umns. Declare a two-dimensional array using a comma to separate the bounds of the fi rst
dimension from the bounds of the second dimension:

Dim aContact(1 to 10, 1 to 3) As String

The aContact array has 30 places to store data. This array might be used to store three
pieces of data for ten contacts. Reading and writing to a two-dimensional array requires
that you specify the index for both dimensions:

Sub TwoDArray()

 Dim aPotus(1 To 2, 1 To 3)
 Dim i As Long

 aPotus(1, 1) = "George"
 aPotus(1, 2) = "Washington"
 aPotus(1, 3) = "1789-1797"
 aPotus(2, 1) = "John"
 aPotus(2, 2) = "Adams"
 aPotus(2, 3) = "1797-1801"

 For i = 1 To 2
 Debug.Print aPotus(i, 1) & Space(1) & aPotus(i, 2) & Space(1) & _
 "was President in the years" & Space(1) & aPotus(i, 3)
 Next i

End Sub

You can specify dimensions beyond two, but those arrays can get very diffi cult to manage. If you need to store that

much data, consider a user-defi ned type or a custom class module.

820

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 820

Dynamic arrays

Dynamic arrays are declared without any indices and can be resized later in the procedure.
Other than the lack of index numbers, they’re declared in the same way as fi xed arrays:

Dim aProductIDs() as Long

With a dynamic array declaration, no memory is allocated until the array is initialized by
providing dimensions. You can’t assign values to this array until it’s initialized. To initial-
ize a dynamic array, use the ReDim keyword.

ReDim aProductIDs(1 to 100)

Note that the data type is not included in the ReDim statement. The data type is set when
the array is declared and cannot be changed. Use a dynamic array when you don’t know
the size of array you’ll need until run time. In this example, all the open forms’ names in
a database are put into an array. Since you can’t know which forms will be open, declare a
dynamic array and resize it when the procedure executes:

Sub FormArray()

 Dim aForms() As String
 Dim frm As Form
 Dim lFrmCnt As Long
 Dim i As Long

 If Application.Forms.Count > 0 Then
 ReDim aForms(1 To Application.Forms.Count)

 For Each frm In Application.Forms
 lFrmCnt = lFrmCnt + 1
 aForms(lFrmCnt) = frm.Name
 Next frm

 For i = LBound(aForms) To UBound(aForms)
 Debug.Print aForms(i) & " is open."
 Next i
 End If

End Sub

The Forms.Count property is used to size the dynamic array. Then a For...Each loop
puts each open form’s name into a different index in the array. Finally, the procedure loops
through the array and prints each form’s name to the Immediate window.

If you know the size of the array at design time, it’s best to create a fi xed array. If you
must use a dynamic array, you’ll get the best performance by determining the array size
you need and issuing a ReDim statement to resize the array. There are times, however,
where you don’t know how many elements you’ll need until you start fi lling the array. VBA

821

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 821

25

provides the Preserve keyword to resize a dynamic array without losing any of the data
that’s already in the array. Using ReDim without Preserve resizes the array, as you’ve
seen, but the array is re-initialized and any existing data is lost.

ReDim Preserve aCustomerIDs(1 to x) As Long

The Preserve keyword makes a new array of the new size and then copies all the data
from the old array to the new one. Even for moderately sized arrays, this can be a perfor-
mance killer. Use Preserve only when there is no other option.

Array functions

VBA provides several useful functions to use with arrays. We don’t have room to cover all of
them, but we’ll cover the most used and most interesting.

Boundary functions

VBA provides two functions, LBound and UBound, to determine the size of an array.
LBound returns the lower bound, and UBound returns the upper bound. These functions
are most useful when used to loop through all the elements of an array:

For i = LBound(aContacts) To UBound(aContacts)
 Debug.Print aContacts(i)
Next i

If aContacts is declared as Dim aContacts(1 to 5) As String, the LBound will
return 1 and UBound will return 5. The real benefi t comes when you revise the code to
Dim aContacts(1 to 6) As String. If you had hardcoded the boundaries in the
For...Next loop, you would’ve needed to change the upper bound in two places. By using
LBound and UBound, you only have to make the change in the Dim statement.

For two-dimensional arrays, LBound and UBound require a second argument for the dimen-
sion. The following example is a typical method for looping through all the elements of a
two-dimensional array:

For i = LBound(aBounds, 1) To UBound(aBounds, 1)
 For j = LBound(aBounds, 2) To UBound(aBounds, 2)
 Debug.Print aBounds(i, j)
 Next j
Next i

The Array function

The Array function allows you to create an array by supplying all the values for the array
in one statement. The array returned by the Array function is known as a variant array—a
Variant data type holding an array. To return the results of the Array function to a vari-
able, that variable must be declared as a Variant. The syntax for the Array function is:

Array(ParamArray ArgList() as Variant)

822

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 822

The ParamArray keyword indicates that there can be one or more arguments, but the
number is not known ahead of time. The arguments of the Array function are separated by
commas, with each argument becoming an element of the array.

Sub ArrayFunction()

 Dim vaRates As Variant
 Dim i As Long

 vaRates = Array(0.05, 0.055, 0.06, 0.065, 0.07)

 For i = LBound(vaRates) To UBound(vaRates)
 Debug.Print vaRates(i)
 Next i

End Sub

In the preceding example, the vaRates variable is a Variant containing an array with fi ve
elements (the fi ve numbers from the Array function). Since the variable is a Variant, you
don’t specify the size of the array beforehand. The number of arguments in the Array
function determines the size. Because of this, the lower and upper bounds are determined
by VBA. The default lower bound is zero, and the default upper bound is one less than the
number of arguments in the Array function. For vaRates in the preceding example, the
bounds would be 0 to 4. The lower bound of an array returned by the Array function is
determined by the Option Base directive, if one exists, at the top of the module.

The Array function returns a variant array—a Variant containing an array. You can also declare an array of Variants.

An array of Variants is a fi xed or dynamic array whose data type is Variant. A variant array and an array of Variants are

two different types of arrays.

The Split function

The Split function converts text into a Variant array. VBA can’t know the size of the
array the Split function will return, so the variable holding the array must be declared as
a Variant. The Split syntax is as follows:

Split(string_expression, [delimiter],[limit],[compare])

The fi rst argument is the string you want to split into an array. The delimiter argu-
ment tells the Split function on which characters to split the string. The limit argu-
ment determines how large the resulting array is. Once the array reaches the limit defi ned,
Split stops splitting the string even if more delimiters are present.

Sub TheSplitFunction()

 Dim vaWords As Variant

823

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 823

25

 Dim i As Long

 vaWords = Split("Now is the time.", Space(1))

 For i = LBound(vaWords) To UBound(vaWords)
 Debug.Print vaWords(i)
 Next i

End Sub

The vaWords variable will be a variant array containing four elements: Now, is, the, and
time. The delimiter—in this case, a single space—is not included in the elements. The
period at the end is included, making the last element time. (with a period) rather than
time (without a period).

Several VBA functions, including Split, have a compare argument that dictates whether text comparisons are

case sensitive. It’s always an optional argument and is omitted in the example in this section. Valid choices for a

compare argument are vbBinaryCompare (case sensitive), vbDatabaseCompare (uses the default compare

for your database), and vbTextCompare (not case sensitive).

The Join function

The Join function is the opposite of Split. Join takes an array and returns a string. The
syntax for Join is:

Join(source_array, [delimiter])

The fi rst argument is the one-dimensional array to be converted into a String. The
source_array can be any data type that VBA can convert into a String, even numbers
and dates. The delimiter is the character or characters to be inserted between the ele-
ments of the array.

Sub TheJoinFunction()

 Dim sResult As String
 Dim aWords(1 To 5) As String

 aWords(1) = "The"
 aWords(2) = "quick"
 aWords(3) = "brown"
 aWords(4) = "fox"
 aWords(5) = "jumped"

824

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 824

 sResult = Join(aWords, Space(1))

 Debug.Print sResult

End Sub

The sResult variable will contain the String The quick brown fox jumped. Each ele-
ment of the array is concatenated together with the delimiter inserted between them.

Understanding Subs and Functions
The code in a VBA application lives in containers called modules. As you learned in
Chapter 24, modules exist behind the forms and reports in an Access application, as well
as in stand-alone modules. The modules themselves contain many procedures, variable and
constant declarations, and other directives to the VBA engine.

The code within the modules is composed of procedures. There are two main types of proce-
dures in VBA: subroutines or subprocedures (often called subs) and functions.

The general rules for procedures include the following:

 ■ You must give the procedure a unique name within its scope (see
“Understanding variable scope and lifetime,” earlier in this chapter). Although
it isn’t a good idea—because of the chance of confusing the VBA engine or another
person working with your code—it is possible to have more than one procedure
with the same name, as long as the name is unique within each procedure’s scope.

 ■ The name you assign to a procedure can’t be the same as a VBA keyword.

 ■ A procedure and a module cannot have the same name. This is one place where a
naming convention can be very useful. If you always prefi x module names with bas
or mod, you don’t run the risk of an error occurring from having a procedure and
module with the same name.

 ■ A procedure can’t contain other procedures within it. A procedure can, however,
call another procedure and execute the code in the other procedure at any time.

Because of the rules governing procedure scope, you can’t have two public procedures
both named MyProcedure, although you can have two private procedures, both named
MyProcedure, or one public procedure named MyProcedure and one private procedure
named MyProcedure, but not in the same module. The reason it’s a bad idea to use the
same procedure name for multiple procedures, even when the procedures have different
scopes, should be obvious.

The following sections cover some of the specifi cs regarding VBA procedures. Planning and
composing the procedures in your modules is the most time-consuming part of working
with VBA, so it’s important to understand how procedures fi t into the overall scheme of
application development.

825

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 825

25

Subroutines and functions both contain lines of code that you can run. When you run a
subroutine or function, you call it. Calling, running, and invoking are all terms meaning to
execute (or run) the statements (or lines of code) within the procedure or function. All these
terms can be used interchangeably (and they will be, by different developers). No matter
how you invoke a VBA procedure—using the Call keyword, referencing the procedure by
its name, or running it from the Immediate window—they all do the same thing, which is to
cause lines of code to be processed, run, executed, or whatever you want to call it.

The only real difference between a procedure and a function is that, when it’s called, a
function returns a value—in other words, it generates a value when it runs, and makes the
value available to the code that called it. You can use a Boolean function to return a True
or False value indicating, for example, where the operation the procedure performed was
successful. You can see if a fi le exists, if a value was greater than another value, or any-
thing you choose. Functions return dates, numbers, or strings; functions can even return
complex data types such as recordsets.

A subroutine does not return a value. However, although a function directly returns a value
to a variable created as part of the function call, there are other ways for functions and
subroutines to exchange data with form controls or declared variables in memory.

Understanding where to create a procedure
You create procedures in one of two places:

 ■ In a standard VBA module: You create a subroutine or function in a standard mod-
ule when the procedure will be shared by code in more than one form or report or
by an object other than a form or report. For example, queries can use functions to
handle very complex criteria.

 ■ Behind a form or report: If the code you’re creating will be called only by a single
procedure or form, the subroutine or function should be created in the form or
report’s module.

A module is a container for multiple subroutines and functions.

Calling VBA procedures
VBA procedures are called in a variety of ways and from a variety of places. They can be
called from events behind forms and reports, or they can be placed in module objects and
called simply by using their name or by using the Call statement. Here are some examples:

SomeSubRoutineName
Call SomeSubRoutineName
Somevalue = SomeFunctionName

826

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 826

Only functions return values that may be assigned to variables. Subroutines are simply
called, do their work, and end. Although functions return a single value, both subroutines
and functions can place values in tables, in form controls, or even in public variables avail-
able to any part of your program. You can see several examples of different ways to use
subroutines and functions throughout this chapter.

The syntax used for calling subroutines with parameters changes depending on how you
call the procedure. For example, when using the Call keyword to call a subroutine that
includes arguments, the arguments must be enclosed in parentheses:

Call SomeSubRoutineName(arg1, arg2)

However, when the same procedure is called without the Call keyword it requires no
parentheses:

SomeSubRoutineName arg1, arg2

Also, using the Call keyword with a function tells Access your code is not capturing the
function’s return value:

Call SomeFunctionName

Or, when arguments are required:

Call SomeFunctionName(arg1, arg2)

In this case, the function is treated as if it is a subroutine.

The Call keyword has been in the BASIC programming language since the beginning. There’s no advantage to using

Call, and most developers have stopped using it altogether.

Creating subs
Conceptually, subroutines are easy to understand. A subroutine (usually called a sub and
sometimes called a subprocedure) is a set of programming statements that is executed as a
unit by the VBA engine. VBA procedures can become complex, so this elementary descrip-
tion of subroutines is quickly overwhelmed by the actual subroutines you’ll compose in
your Access applications.

Figure 25.6 shows a typical subroutine. Notice the Sub keyword that begins the routine,
followed by the name of the subroutine. The declaration of this particular subroutine
includes the Private keyword, which restricts the availability of this subroutine to the
module containing the subroutine.

827

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 827

25

FIGURE 25.6

A typical subroutine in an Access application.

The subroutine you see in Figure 25.6 contains most of the components you’ll see in almost
every VBA sub or function:

 ■ Declaration: All procedures must be declared so that VBA knows where to fi nd
them. The name assigned to the procedure must be unique within the VBA project.
The Sub keyword identifi es this procedure as a subroutine.

 ■ Terminator: All procedures must be terminated with the End keyword followed by
the type of procedure that is ending. In Figure 25.6, the terminator is End Sub.
Functions are terminated with End Function.

 ■ Declarations area: Although variables and constants can be declared anywhere in
the body of the procedure (as long as it’s before they’re used), good programming
conventions require variables and constants to be declared near the top of the pro-
cedure where they’ll be easy to fi nd.

 ■ Statements: A VBA procedure can contain many statements. Usually, however,
you’ll want to keep your VBA procedures small to make debugging as painless as
possible. Very large subroutines can be diffi cult to work with, and you’ll avoid prob-
lems if you keep them small. Instead of adding too many features and operations

828

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 828

in a single procedure, place operations in separate procedures, and call those proce-
dures when those operations are needed.

At the conclusion of a subroutine, program fl ow returns to the code or action that origi-
nally called the sub. The subroutine shown in Figure 25.6 may be called from a form’s Load
event, so control is returned to that event.

As an example of a useful VBA subroutine, the next several paragraphs describe building an
event procedure for a control on an Access form. This procedure retrieves a value from one
of the cboCustomerID combo box columns and uses it to fi nd a record. The RowSource
of the cboCustomerID combo box is a SQL statement that returns the CustomerID and the
Company fi elds. Here’s the SQL statement:

SELECT DISTINCT tblCustomers.CustomerID, tblCustomers.Company
FROM tblCustomers
INNER JOIN tblSales
ON tblCustomers.CustomerID = tblSales.CustomerID
ORDER BY tblCustomers.Company;

The tblCustomers table is inner-joined with the tblSales table so that only those cus-
tomers with an invoice are displayed in the combo box. The DISTINCT keyword is used so
that each customer is only returned once.

 Chapter 14 covers SQL syntax in detail.

The objective of this exercise is to learn about procedures, but it also serves to teach you
some additional VBA commands. The code is added to the form as the cboCustomerID_
AfterUpdate event.

To create an event procedure in a form, follow these steps:

 1. Select the cboCustomerID control in frmSales Design view.

 2. Press F4 to display the Property window for the control.

 3. Click in the After Update event property in the Event tab of the Property Sheet
and select [Event Procedure] from the event’s drop-down list.

 4. Press the builder button (...) to open the VBA code editor.

829

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 829

25

 5. Enter the following code into the cboCustomerID_AfterUpdate event procedure,
as shown in Figure 25.7. The following code goes between
Private Sub cboCustomerID_AfterUpdate() and End Sub in the
VBA code editor:

 Me.txtCustomerID.SetFocus

 If Not IsNull(Me.cboCustomerID.Value) Then
 DoCmd.FindRecord Me.cboCustomerID.Value
 End If

 Me.txtInvoiceDate.SetFocus

 6. Select Compile Chapter25 from the Debug menu in the code editor to check
your syntax.

 7. Close the VBA window and return to the frmSales form.

The code fi rst moves the focus to the txtCustomerID text box to make that fi eld the
current fi eld. The Me. refers to the current form and substitutes in this example for
Forms!frmSales!.

The fi rst If statement checks to make sure a Customer ID was selected by making sure the
current value of the combo box’s bound column—CustomerID—is not null.

The heart of the procedure is the FindRecord method of the DoCmd object. FindRecord
searches through the recordset and returns a record that matches the arguments. There are
several arguments to FindRecord, but we supply only the fi rst, FindWhat. The FindWhat
argument is what FindRecord searches for through the records. In this case, it’s searching
for Me.cboCustomerID.Value. The other arguments to FindRecord are optional, and
we have accepted the defaults. By setting the focus to Me.txtCustomerID, we made that
fi eld the current fi eld. By default, FindRecord only searches in the current fi eld, and set-
ting the current fi eld before calling FindRecord achieves our aims.

The fi nal line of code sets the focus to the txtInvoiceDate text box. When the user
locates a record, it’s a good practice to set the focus to a good starting point for navigating
through the record. While not required, it provides a good user experience.

Figure 25.7 shows the procedure created in the code editor after entering the procedure
described earlier. After you fi nish entering these statements, press the Save button on the
toolbar to save your code before closing the VBA window.

830

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 830

FIGURE 25.7

The frmSales cboCustomerID_AfterUpdate event procedure in the VBA code window.

The procedure behind this form runs each time the user selects a different customer in
cboCustomerID. This code shows the fi rst invoice for that customer.

Creating Functions
Functions differ from subroutines in that functions return a value. In the examples in this
section, you’ll see functions that calculate the extended price (quantity × price) for a line
item, create a function to calculate the total of all the taxable line items, and then apply
the current tax rate to the total.

Although functions can be created behind individual forms or reports, usually they’re cre-
ated in standard modules. This fi rst function will be created in a new module that you’ll
name modSalesFunctions. Putting this function in a standard module makes it available
to all parts of the applications. To do this, follow these steps:

 1. Select the Modules tab in the Navigation pane.

 2. Right-click the modSalesFunctions module and select Design view from the
context menu. The VBA window is displayed with the title
modSalesFunctions (Code) in the title bar.

 3. Move to the bottom of the module, and enter the following code:
Public Function CalcExtendedPrice(_
 lQuantity As Long, _
 cPrice As Currency, _
 dDiscount As Double _

831

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 831

25

) As Currency

 Dim cExtendedPrice As Currency

 cExtendedPrice = lQuantity * cPrice

 CalcExtendedPrice = cExtendedPrice * (1 - dDiscount)

End Function

The fi rst statement declares the variable cExtendedPrice as the Currency data type.
cExtendedPrice is used in an intermediate step in the function. The next line of code
performs a calculation assigning the product of two variables, lQuantity and cPrice, to
the cExtendedPrice variable. You might notice that the lQuantity and cPrice vari-
ables are not declared within the function; these variables are explained in the next sec-
tion, “Handling parameters.”

Finally, the last line of code performs one more calculation to apply any discount to
cExtendedPrice. The function’s name is treated as if it were a variable and is assigned
the value of the calculation. This is how a function gets the value that it returns to the
calling program.

Now that you’ve entered the function, you can use it in various ways, as described in the
following sections.

Handling parameters
Now, the question you should be asking is: Where did the lQuantity, cPrice, and
dDiscount variables come from? The answer is simple. They’re the parameters passed from
another procedure, as you may have already guessed.

Parameters (often called arguments) passed to a procedure are treated like any other vari-
able by the procedure. Parameters have a name and a data type and are used as a way to
send information to a procedure. Parameters are often used to get information back from a
procedure, as well.

The following table shows the names and data types of the arguments used in the
CalcExtendedPrice function:

Parameter Name Data Type

lQuantity Long

cPrice Currency

dDiscount Double

832

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 832

These parameter names can be anything you want them to be. Think of them as variables
you would normally declare. All that’s missing is the Dim statement. They don’t have to be
the same name as the variables used in the call to the function. Very often, you’ll pass the
names of fi elds in a table or controls on a form or variables created in the calling procedure
as parameters to a procedure.

The completed CalcExtendedPrice function is shown in Figure 25.8. Notice how this
function’s parameters are defi ned in the function’s declaration statement. The parameters
are separated by continuation characters (a space followed by an underscore) to make the
code easier to read.

FIGURE 25.8

The completed CalcExtendedPrice function.

Calling a function and passing parameters
Now that you’ve completed the function, it’s time to test it.

Normally, a function call comes from a form or report event or from another procedure, and
the call passes information as parameters. The parameters passed to a procedure are often
variables or data taken from a form’s controls. You can test this function by going to the
Immediate window and using hand-entered values as the parameters.

Follow these steps to test the function:

 1. Press Ctrl+G to display the Immediate window.

 2. Enter ? CalcExtendedPrice(5, 3.50, .05). This statement passes the values as 5,
3.50, and .05 (5 percent) to the lQuantity, dPrice, and dDiscount parameters,

833

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 833

25

respectively. CalcExtendedPrice returns 16.625 using those values, as shown
in Figure 25.9.

FIGURE 25.9

Testing the CalcExtendedPrice function in the Immediate window.

 3. Close the Immediate window and the VBA window to return to the Database
window.

The next task is to use the function to calculate the extended price (price multiplied by
quantity) of each item included in a sales invoice. You can add a call to the function from
the Amount box on fsubSalesLineItems. This is a subform embedded on frmSales.
Follow these steps:

 1. Display the frmSales form in Design view.

 2. Click into the fsubSalesLineitems subform.

 3. Click into the txtAmount control in the subform.

 4. Display the Property window and enter the following into the Control Source
property, as shown in Figure 25.10:
=CalcExtendedPrice (Nz(txtQuantity,0),Nz(txtPrice,0),Nz(txtDiscountPercent,0)).

This expression passes the values from three controls—txtQuantity, txtPrice,
and txtDiscountPercent—in the subform to the CalcExtendedPrice function
in the module and returns the value back to the control source of the txtAmount con-
trol each time the line is recalculated or any of the parameters change. The references to
txtQuantity, txtPrice, and txtDiscountPercent are enclosed in calls to the Nz
function, which converts null values to zero. This is one way to avoid Invalid use of
null errors that would otherwise occur.

The sales form (frmSales) enforces a business rule that the extended price is recalculated
any time the user changes the quantity, price, or discount on the sales form.

In Figure 25.10, notice that the Control Source property for txtAmount simply calls
the CalcExtendedPrice function. The call does not specify the module that contains the
function. Because CalcExtendedPrice was declared with the Public keyword, Access
easily fi nds it and passes the required arguments to it.

834

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 834

FIGURE 25.10

Adding a function call to the Control Source of a control.

The CalcExtendedPrice example illustrates an important aspect of Access development: Add a public function

in a single location anywhere in the application’s code and use the function anywhere it’s needed. The ability to reuse

a procedure in multiple places reduces maintenance. Changing the single instance of the function is refl ected every-

where the public procedure is used.

Creating a function to calculate sales tax
In the Collectible Mini Cars application, whenever you add a line item to a sales invoice,
you specify whether the item is taxable. The sales form adds up the extended prices for all
the taxable line items to determine the sales tax for the sale. This total can then be multi-
plied by the tax rate to determine the tax.

The Collectable Mini Cars sales form (frmSales) includes a Text Box control for the tax
amount. You can simply create an expression for the control’s value such as:

=fSubSalesLineitems.Form!txtTaxableTotal * txtTaxRate

This expression references txtTaxableTotal in the subform (fSubSalesLineitems)
and multiplies it by the tax rate (txtTaxRate) from the main form (frmSales).

However, although this expression displays the tax amount, the expression entered into
the txtTaxAmount control would make the txtTaxAmount control read-only because
it contains an expression. You wouldn’t be able to override the calculated amount if you
wanted to. The tax applied to a sale is one of the fi elds that needs to be changed once in a
while for specifi c business purposes.

835

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 835

25

Better than using a hard-coded expression is creating a function to calculate a value and
then place the value of the calculation in the control. This way, you can simply type over
the calculated value if needed.

You can enter the following lines of code to the AfterUpdate events behind the
txtQuantity, txtPrice, txtDiscountPercent, and chkTaxable controls. This way,
each time one of those controls’ values is changed, the tax is recalculated after the con-
tact’s tax rate is retrieved on the frmSales form.

txtTaxAmount = _
 fSubSalesLineitems.Form!txtTaxableTotal * txtTaxRate

Actually, better would be to place this statement in the AfterUpdate event of
fsubSalesLineitems. This way, the tax is recalculated each time a value is updated
in any record of this form. Because fsubSalesLineitems is displayed as a data-
sheet, the AfterUpdate event fi res as soon as the user moves to another line in
fsubSalesLineitems.

Although you can use a simple expression that references controls on forms and subforms,
this technique works only behind the form containing the code. Suppose you also need to
calculate tax in other forms or in reports. There’s a better way than relying on a form.

This is an old developer’s expression: “Forms and reports lie; tables never lie.” This means
that the controls of a form or report often contain expressions, formats, and VBA code
that may make a value seem to be one thing when the table actually contains a completely
different value. The table containing the data is where the real values are stored, and it’s
where calculations and reports should retrieve data from.

You can easily use VBA code to extract data from a table, use the data in a complex calcula-
tion, and return the result to a control on a form, on a report, or to another section of code.

Figure 25.11 shows the completed CalcTax function.

The function is called from the AfterUpdate event behind the frmSalesLineitems
subform. The CalcTax function calculates the sum of the taxable line items from the
tblSalesItems table. The SQLstatement is combined with a bit of ADO code to deter-
mine the total. The calculated total amount is then multiplied by the dTaxPercent param-
eter to calculate the tax. The tax is set to the cReturn variable, which is set to CalcTax
(the name of the expression) at the end of the function.

An important feature of this example code is that it combines data extracted from a data-
base table (Quantity, RetailPrice, DiscountPercent) with data passed as param-
eters (dTaxPercent, lInvoiceNum). All the extraction and calculations are automatically
performed by the code, and the user is never aware of how the tax amount is determined.

836

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 836

FIGURE 25.11

The CalcTax function.

Functions and subroutines are important to the concept of reusable code within an application. You should try to use

functions and subroutines and pass them parameters whenever possible. A good rule is this: The fi rst time you fi nd

yourself copying a group of code, it’s time to create a procedure or function.

Simplifying Code with Named Arguments
Another signifi cant feature of Access VBA is the use of named arguments for procedures.
Without named arguments, the arguments passed to procedures must appear in the correct
left-to-right order. With named arguments, you provide the name of each parameter passed
to a subroutine or function, and the subroutine or function uses the argument based on its
name rather than on its position in the argument list.

837

Chapter 25: Mastering VBA Data Types and Procedures

c25.indd 10/06/2015 Page 837

25

Also, because every parameter passed to a procedure is explicitly named, you can omit an
unused parameter without causing an error. Named arguments are a great way to clean up
your code while making it much easier to read and understand.

Assume your application includes the function shown here:

Function PrepareOutput(sStr1 As String, sStr2 As String, _
 sStr3 As String) As String

 PrepareOutput = sStr1 & Space(1) & sStr2 & Space(2) & sStr3

End Function

This function, of course, does nothing more than concatenate sStr1, sStr2, and sStr3
and return it to the calling routine. The next example shows how this function may be
called from another procedure:

Private Sub cmdForward_Click()

 Me.txtOutput.Value = PrepareOutput(_
 Me.txtFirstName.Value, _
 Me.txtLastName.Value, _
 Me.txtHireDate.Value)

End Sub

The arguments required by PrepareOutput() must be passed in the same order they’re
listed in the procedure declaration. The results of this function are shown in Figure 25.12.
The text in the Function Output text box on this form shows the arguments in the order in
which they appear in the text boxes on the left side of this form.

FIGURE 25.12

frmNamedArguments demonstrates the value of using named arguments in VBA
procedures.

Each argument can be specifi ed by its name as you pass it to functions. Naming arguments
makes them position independent.

838

Part VI: Access Programming Fundamentals

c25.indd 10/06/2015 Page 838

Examine the code in the following listing to see how named arguments work:

Private Sub cmdBackward_Click()

 Me.txtOutput.Value = PrepareOutput(_
 sStr2:=Me.txtLastName.Value, _
 sStr3:=Me.txtFirstName.Value, _
 sStr1:=Me.txtHireDate.Value)

End Sub

The thing to notice in cmdBackward_Click is that the arguments are not passed to
PrepareOutput() in the order specifi ed by the procedure’s argument list. As long as the
name used for an argument matches an argument in the PrepareOutputs argument list,
Access VBA correctly uses the arguments in PrepareOutput().

The Chapter25.accdb example database includes the frmNamedArguments you see in Figure 25.12 and

Figure 25.13. The two buttons below the Function Output text box pass the text from the First Name, Last Name, and

Hire Date text boxes to the PrepareOutput() function using positional and named arguments.

FIGURE 25.13

PrepareOutput() is able to use arguments submitted in any order as long as they’re
named.

 ON THE WEB

839

c26.indd 10/01/2015 Page 839

 CHAP T ER

26
Understanding the Access
Event Model

IN THIS CHAPTER

Mastering Access event programming

Reviewing common events

Understanding event sequences

W
hen working with a database system, you may perform the same tasks repeatedly.
Instead of doing the same steps each time, you can automate the process with VBA
or macros.

Database management systems continually grow as you add records to a form, build new queries,
and create new reports. As the system grows, many of the database objects are saved for later
use—for a weekly report or monthly update query, for example. You tend to create and perform
many tasks repetitively. Every time you add contact records, you open the same form. Likewise,
you print the same form letter for contacts that have purchased a vehicle in the past month.

You can add VBA code throughout your application to automate these tasks. The VBA language
offers a full array of powerful commands for manipulating records in a table, controls on a form, or
just about anything else. This chapter continues the previous chapters’ discussions of working with
procedures in forms, reports, and standard modules.

In this chapter, you’ll use the database fi le Chapter26.accdb. Download this database fi le from the book’s web-

site if you want to follow along with the examples in this chapter.

This chapter focuses on the Access event model, a vitally important aspect of Access develop-
ment. As you’ll see in this chapter, Access provides a wide variety of events to trigger your code
in response to user actions.

 ON THE WEB

840

Part VI: Access Programming Fundamentals

c26.indd 10/01/2015 Page 840

Programming Events
An Access event is the result or consequence of some user action. An Access event occurs
when a user moves from one record to another in a form, closes a report, or clicks a com-
mand button on a form. Even moving the mouse generates a continuous stream of events.

Access applications are event driven, and Access objects respond to many types of events.
Access events are hooked into specifi c object properties. For example, checking or uncheck-
ing a check box triggers a MouseDown, a MouseUp, and a Click event. These events are
hooked into the check box through the OnMouseDown, OnMouseUp, and OnClick proper-
ties, respectively. You use VBA to compose event procedures that run whenever the user
clicks the check box.

Access events can be categorized into seven groups:

 ■ Windows (form, report) events: Opening, closing, and resizing

 ■ Keyboard events: Pressing or releasing a key

 ■ Mouse events: Clicking or pressing a mouse button

 ■ Focus events: Activating, entering, and exiting

 ■ Data events: Changing the current row, deleting, inserting, or updating

 ■ Print events: Formatting and printing

 ■ Error and timing events: Happening after an error has occurred or some time
has passed

In all, Access supports more than 50 different events that can be harnessed through VBA
event procedures.

Of these types of events, by far the most common are the keyboard and mouse events on
forms. As you’ll see in the following sections, forms and most controls recognize keyboard
and mouse events. In fact, exactly the same keyboard and mouse events are recognized by
forms and controls. The code you write for a mouse-click event on a command button is
exactly the same sort of code that you might write for the mouse-click on a form.

In addition, most Access object types have their own unique events. The following sections
discuss the most commonly programmed events, but Microsoft has a habit of introducing
new event capabilities with each new version of Access. Also, many ActiveX controls you
might use in your Access applications may have their own unique and special events. When
using an unfamiliar control or a new type of object in your Access applications, be sure to
check out what events and properties are supported by the control or object.

Understanding how events trigger VBA code
You can create an event procedure that runs when a user performs any one of the many dif-
ferent events that Access recognizes. Access responds to events through special form and

841

Chapter 26: Understanding the Access Event Model

c26.indd 10/01/2015 Page 841

26

control properties. Reports have a similar set of events, tailored to the special needs and
requirements of reports.

Figure 26.1 shows the Property Sheet for frmProducts. This form has many event properties.
Each form section (page header, form header, detail, page footer, form footer) and every
control on the form (labels, text boxes, check boxes, and option buttons, for example) has
its own set of events.

FIGURE 26.1

The Property Sheet for frmProducts with the Events tab open.

In Figure 26.1, notice that the Property Sheet is open on the Event tab. Access forms
include 50 events, and each form section includes a number of events, as well as each con-
trol on the form. As you select a form section or a control on the form, the Event tab in the
Property Sheet changes to show you the events for that object.

In Figure 26.1, all the events with existing event procedures contain [Event Procedure],
which indicates that the property has associated VBA code that executes whenever this
event is triggered. The events may also contain [Embedded Macro], the name of a non-
embedded macro, or the name of a function.

Creating event procedures
In Access, you execute event procedures through an object’s event properties.

842

Part VI: Access Programming Fundamentals

c26.indd 10/01/2015 Page 842

Access provides event properties you use to tie VBA code to an object’s events. For example,
the On Open property is associated with a form or report opening on the screen.

Access event procedures, as shown in the Property Sheet, often contain spaces. For instance, the Open event

appears as the On Open event procedure. The event itself, of course, is Open. Many, but not all, event property

names begin with “On.”

You add an event procedure to a form or report by selecting the event property (Before
Update, for this example) in the object’s Property Sheet. If no event procedure currently
exists for the property, a drop-down arrow and builder button appear in the property’s box,
as shown in the Before Update event property in Figure 26.1.

The drop-down list exposes a list that contains the single item [Event Procedure].
Selecting this option and then clicking the builder button takes you to the VBA code editor
with an event procedure template already in place (see Figure 26.2).

FIGURE 26.2

An empty event procedure template for the form’s BeforeUpdate event.

Notice the general format of the event procedure’s declaration:

Private Sub Object_Event()

The Object portion of the procedure’s name is, of course, the name of the object raising
the event, while the Event portion is the specifi c event raised by the object. In Figure
26.2, the object is Form, and the event is BeforeUpdate. Some events support arguments,
which appear within the parentheses at the end of the declaration.

In case you’re wondering, you can’t change the name or the arguments of an event proce-
dure and expect it to continue working. Access VBA relies on the Object_Event naming
convention to tie a procedure to an object’s event.

843

Chapter 26: Understanding the Access Event Model

c26.indd 10/01/2015 Page 843

26

Identifying Common Events
Certain events are raised by many different Access objects. Microsoft has taken great care
that these events behave exactly the same way, regardless of the object raising them. Table
26.1 lists several of the events most commonly used by Access developers. Most of these
events apply to forms and all the different controls you might add to an Access form.

TABLE 26.1 Events Common to Multiple Object Types

Event Event Type When the Event Is Triggered

Click Mouse When the user presses and releases (clicks) the left mouse button
on an object

DblClick Mouse When the user presses and releases (clicks) the left mouse button
twice on an object

MouseDown Mouse When the user presses the mouse button while the pointer is on
an object

MouseMove Mouse When the user moves the mouse pointer over an object

MouseUp Mouse When the user releases a pressed mouse button while the
pointer is on an object

MouseWheel Mouse When the user spins the mouse wheel

KeyDown Keyboard When the user presses any key on the keyboard when the object
has focus or when the user uses a SendKeys macro action

KeyUp Keyboard When the user releases a pressed key or immediately after the
user uses a SendKeys macro action

KeyPress Keyboard When the user presses and releases a key on an object that has
the focus or when the user uses a SendKeys macro action

Not surprisingly, these events are all associated with the mouse and the keyboard because
these are the user’s primary means of inputting information and giving directions to an
application. Not every object responds to every one of these events, but when an object
responds to any of these events, the event exhibits exactly the same behavior.

Many developers simply copy and paste VBA code from one event procedure to the same event procedure on another

object. For example, you might want to do some fancy formatting on a text box when the user clicks into the box. You

can copy the code performing the fancy formatting into another control’s Click event procedure to get the same

effect without having to retype the code. Even though you’ll have to fi x up the pasted code with the second text box’s

name, it’s much less work than retyping the entire procedure.

844

Part VI: Access Programming Fundamentals

c26.indd 10/01/2015 Page 844

Access supports many, many different events. In fact, one of Access’s fundamental
strengths is the wide variety of events available to developers. You can control virtually
every aspect of an Access application’s behavior and data management through event pro-
cedures. Although Microsoft makes no formal distinction between types of events, the fol-
lowing sections categorize events and event procedures into groups based on the type of
object (forms, reports, and so on) that raise the events within the group.

Access supports a rich event model. Not many Access developers master every Access event, nor is there need to.

Virtually all Access developers learn and use the events that are important for the applications they’re building and

then learn other events as they go. You don’t need to worry about memorizing all these events; instead, just be aware

that Access supports many different types of events and that they’re there when you need them.

Form event procedures
When working with forms, you can create event procedures based on events at the form
level, the section level, or the control level. If you attach an event procedure to a form-
level event, whenever the event occurs, the action takes effect against the form as a whole
(such as when you move to another record or leave the form).

To have your form respond to an event, you write an event procedure and attach it to the
event property in the form that recognizes the event. Many properties can be used to trig-
ger event procedures at the form level.

When we refer to form events, we’re talking about events that happen to the form as a whole, not about an event

that can be triggered by a specifi c control on a form. Form events execute when moving from one record to another

or when a form is being opened or closed. We cover control events in the “Control event procedures” section later in

this chapter.

Essential form events

Access forms respond to many, many events. You’ll never write code for most of these
events, because of their specialized nature. There are, however, some events that you’ll
program over and over again in your Access applications. Table 26.2 lists some of the most
fundamental and important Access form events. Not coincidentally, these are also the most
commonly programmed Access form events.

Table 26.2 lists a number of events that deal with the form as a whole, such as when it’s
opened or closed.

845

Chapter 26: Understanding the Access Event Model

c26.indd 10/01/2015 Page 845

26

TABLE 26.2 Essential Form Events

Event When the Event Is Triggered

Open When a form is opened, but the fi rst record is not yet displayed.

Load When a form is loaded into memory.

Resize When the size of a form changes.

Unload When a form is closed and the records unload, but before the form is
removed from the screen.

Close When a form is closed and removed from the screen.

Activate When an open form receives the focus, becoming the active window.

Deactivate When a different window becomes the active window, but before it
loses focus.

GotFocus When a form with no active or enabled controls receives the focus.

LostFocus When a form loses the focus.

Timer When a specifi ed time interval passes. The interval (in milliseconds) is
specifi ed by the Timer Interval property.

BeforeScreenTip When a screen tip is activated.

Form mouse and keyboard events

Access forms also respond to a number of mouse and keyboard events, as shown in
Table 26.3.

TABLE 26.3 Form Mouse and Keyboard Events

Event When the Event Is Triggered

Click When the user presses and releases (clicks) the left mouse button

DblClick When the user presses and releases (clicks) the left mouse button twice on a
form

MouseDown When the user presses the mouse button while the pointer is on a form

MouseMove When the user moves the mouse pointer over an area of a form

MouseUp When the user releases a pressed mouse button while the pointer is on a form

MouseWheel When the user spins the mouse wheel

KeyDown When the user presses any key on the keyboard when a form has focus or
when the user uses a SendKeys macro action

KeyUp When the user releases a pressed key or immediately after the user uses a
SendKeys macro action

KeyPress When the user presses and releases a key on a form that has the focus or when
the user uses a SendKeys macro

846

Part VI: Access Programming Fundamentals

c26.indd 10/01/2015 Page 846

In addition, the Key Preview property is closely related to form keyboard events. This
property (which is found only in forms) instructs Access to allow the form to see keyboard
events before the controls on the form. By default, the controls on an Access form receive
events before the form. For example, when you click a button on a form, the button—not
the form—sees the click, even though the form supports a Click event. This means that
a form’s controls mask key events from the form, and the form can never respond to those
events. You must set the Key Preview property to Yes (true) before the form responds to
any of the key events (KeyDown, KeyUp, and so on).

Form data events

The primary purpose of Access forms is to display data. Not surprisingly then, Access forms
have a number of events that are directly related to a form’s data management. You’ll see
these events programmed over and over again in this book, and you’ll encounter event pro-
cedures written for these events virtually every time you work on an Access application.
These events are summarized in Table 26.4.

TABLE 26.4 Form Data Events

Event When the Event Is Triggered

Current When you move to a different record and make it the current record

BeforeInsert After data is fi rst entered into a new record, but before the record is
actually created

AfterInsert After the new record is added to the table

BeforeUpdate Before changed data is updated in a record

AfterUpdate After changed data is updated in a record

Dirty When a record is modifi ed

Undo When a user has returned a form to a clean state (the record has been
set back to an unmodifi ed state); the opposite of OnDirty

Delete When a record is deleted, but before the deletion takes place

BeforeDelConfirm Just before Access displays the Delete Confi rm dialog box

AfterDelConfirm After the Delete Confi rm dialog box closes and confi rmation has
happened

Error When a runtime error is produced

Filter When a fi lter has been specifi ed, but before it is applied

ApplyFilter After a fi lter is applied to a form

The Current event fi res just after the data on a form is refreshed. Most often this occurs
as the user moves the form to a different record in the recordset underlying the form. The
Current event is often used to perform calculations based on the form’s data or to format

847

Chapter 26: Understanding the Access Event Model

c26.indd 10/01/2015 Page 847

26

controls. For example, if a certain numeric or date value is outside an expected range,
the Current event can be used to change the text box’s Back Color property so the user
notices the issue.

The BeforeInsert and AfterInsert events are related to transferring a new record
from the form to an underlying data source. BeforeInsert fi res as Access is about to
transfer the data, and AfterInsert is triggered after the record is committed to the data
source. For example, you could use these events to perform a logging operation that keeps
track of additions to a table.

The BeforeUpdate and AfterUpdate events are frequently used to validate data before
it’s sent to the underlying data source. As you’ll see later in this chapter, many form con-
trols also support BeforeUpdate and AfterUpdate. A control’s update is triggered as
soon as the data in the control is changed.

A form’s Update event fi res much later than the BeforeInsert or AfterInsert events. The Update event

occurs just as the form prepares to move to another record. Many developers use the form’s BeforeUpdate

event to scan all the controls on the form to ensure that all the data in the form’s controls is valid. A form’s

BeforeUpdate event includes a Cancel parameter that, when set to True, causes the update to terminate.

Canceling an update is an effective way to protect the integrity of the data behind an Access application.

Users often want to be notifi ed of pending updates before they move off a record to another record. By default,

Access forms automatically update a form’s underlying data source as the user moves to another record or closes

the form. The Dirty event fi res whenever the user changes any of the data on a form. You can use the Dirty event

to set a module-level Boolean (true/false) variable (let’s call it bDirty) so that other controls on the form (such as

a close button) know that pending changes exist on the form. If bDirty is True when the close button is clicked

or when the BeforeUpdate event fi res, you can display an Are you sure? message box to confi rm the user’s

intention to commit the changes to the database.

Control event procedures
Controls also raise events. Control events are often used to manipulate the control’s appear-
ance or to validate data as the user makes changes to the control’s contents. Control events
also infl uence how the mouse and keyboard behave while the user works with the control.
A control’s BeforeUpdate event fi res as soon as focus leaves the control (more precisely,
BeforeUpdate fi res just before data is transferred from the control to the recordset
underlying the form, enabling you to cancel the event if data validation fails), whereas a
form’s BeforeUpdate does not fi re until you move the form to another record. (The form’s
BeforeUpdate commits the entire record to the form’s data source.)

848

Part VI: Access Programming Fundamentals

c26.indd 10/01/2015 Page 848

This means that a control’s BeforeUpdate is good for validating a single control while
the form’s BeforeUpdate is good for validating multiple controls on the form. The form’s
BeforeUpdate would be a good place to validate that values in two different controls are
in agreement with each other (such as a zip code in one text box and the city in another
text box), instead of relying on the BeforeUpdate in each of the controls.

You create event procedures for control events in exactly the same way you create pro-
cedures for form events. You select [Event Procedure] in the Property Sheet for the
event, and then add VBA code to the event procedure attached to the event. Table 26.5
shows each control event property, the event it recognizes, and how it works. As you
review the information in Table 26.5, keep in mind that not every control supports every
type of event.

TABLE 26.5 Control Events

Event When the Event Is Triggered

BeforeUpdate Before changed data in the control is updated to the underlying recordset

AfterUpdate After changed data is transferred to the form’s recordset

Dirty When the contents of a control change

Undo When the control is returned to a clean state

Change When the contents of a text box change or a combo box’s text changes

Updated When an ActiveX object’s data has been modifi ed

NotInList When a value that isn’t in the list is entered into a combo box

Enter Before a control receives the focus from another control

Exit Just before the control loses focus to another control

GotFocus When a nonactive or enabled control receives the focus

LostFocus When a control loses the focus

Click When the left mouse button is pressed and released (clicked) on a control

DblClick When the left mouse button is pressed and released (clicked) twice on a
control or label

MouseDown When a mouse button is pressed while the pointer is on a control

MouseMove When the mouse pointer is moved over a control

MouseUp When a pressed mouse button is released while the pointer is on a control

KeyDown When any key on the keyboard is pressed when a control has the focus or
when a SendKeys macro action is used

KeyPress When a key is pressed and released on a control that has the focus or when
a SendKeys macro action is used

KeyUp When a pressed key is released or immediately after a SendKeys macro is
used

849

Chapter 26: Understanding the Access Event Model

c26.indd 10/01/2015 Page 849

26

The Click event is most commonly associated with clicking the left mouse button on a control. However, several

other actions will trigger this event. Other actions that will trigger a Click event include pressing the spacebar

when the control has the focus, pressing the Enter key when the control’s Default property is set to Yes, pressing

Esc when the control’s Cancel property is set to Yes, and pressing the control’s access key.

Report event procedures
Just as with forms, reports also use event procedures to respond to specifi c events. Access
reports support events for the overall report itself and for each section in the report.
Individual controls on Access reports do not raise events.

Attaching an event procedure to the report runs code whenever the report opens, closes, or
prints. Each section in a report (header, footer, and so on) also includes events that run as
the report is formatted or printed.

Several overall report event properties are available. Table 26.6 shows the Access report
events. As you can see, the list of report events is much shorter than the form event list.

TABLE 26.6 Report Events

Event When the Event Is Triggered

Open When the report opens but before printing

Close When the report closes and is removed from the screen

Activate When the report receives the focus and becomes the active window

Deactivate When a different window becomes active

NoData When no data is passed to the report as it opens

Page When the report changes pages

Error When a runtime error is produced in Access

Even though users do not interact with reports as they do with forms, events still play a
vital role in report design. Opening a report containing no data generally yields erroneous
results. The report may display a title and no detail information. Or, it may display #error
values for missing information. This situation can be a little scary for the user. Use the
NoData event to inform the user that the report contains no data. NoData fi res as a report
opens and there is no data available in the report’s RecordSource. Use the NoData event
procedure to display a message box describing the situation to the user and then cancel the
report’s opening. Figure 26.3 shows a typical NoData event procedure.

850

Part VI: Access Programming Fundamentals

c26.indd 10/01/2015 Page 850

FIGURE 26.3

Running a NoData event procedure when there is no data for a report.

The Report_NoData event illustrated in Figure 26.3 fi rst displays a message box to advise
the user that the report contains no data. Then the event procedure cancels the report’s
opening by setting the Cancel parameter to True. Because the Cancel parameter is set to
True, the report never appears on the screen and is not sent to the printer.

Many Access events are accompanied by parameters, such as the Cancel parameter you
see in Figure 26.3. In this case, setting Cancel to True instructs Access to simply ignore
the process that triggered the event and to prevent the triggering of subsequent events.
Because NoData was triggered as part of the report’s opening process, setting Cancel to
True prevents the report from being sent to the printer or being displayed on the screen.
You’ll see many examples of event property procedure parameters throughout this book.

Report section event procedures
In addition to the event properties for the form itself, Access offers three specialized event
properties to use with report sections. Table 26.7 shows each event and how it works.

TABLE 26.7 Report Section Events

Event When the Event Is Triggered

Format When the section is pre-formatted in memory before being sent to the printer.
This is your opportunity to apply special formatting to controls within the section.

Print As the section is sent to the printer. It is too late to format controls in a report
section when the Print event fi res.

Retreat After the Format event but before the Print event. Occurs when Access has to
back up past other sections on a page to perform multiple formatting passes.
Retreat is included in all sections except headers and footers.

Use the Format event to apply special formatting to controls within a section before the
section is printed. Format is useful, for example, to hide controls you don’t want to print

851

Chapter 26: Understanding the Access Event Model

c26.indd 10/01/2015 Page 851

26

because of some condition in the report’s data. The event procedure runs as Access lays out
the section in memory but before the report is sent to the printer.

You can set the On Format and On Print event properties for any section of the report.
However, On Retreat is not available for the page header or page footer sections. Figure 26.4
shows the Property Sheet’s event tab for a report. Notice that the drop-down list at the
top of the Property Sheet shows that the report is selected, so the events in the Event tab
relate to the report itself and not an individual control on the report.

FIGURE 26.4

Specifying an event procedure for a report’s On No Data event.

In addition to the NoData event, other report events are frequently programmed. Figure
26.5 shows how to add code to a report section’s Format event to control the visibility of
controls on the report.

The Detail0_Format event procedure illustrated in Figure 26.5 fi rst checks the value of
the txtQtyInStock control. If the value of txtQtyInStock is less than 10, lblLowStock is
displayed; otherwise, the warning control is hidden.

Access names the sections of reports by appending a digit to the type of section, such as Detail0. You can rename

these sections by changing the Name property of the section.

852

Part VI: Access Programming Fundamentals

c26.indd 10/01/2015 Page 852

FIGURE 26.5

Running an event procedure to display or hide a control on a report.

You’ll see many examples of using events and event procedures to manipulate forms,
reports, and controls throughout this book.

Paying Attention to Event Sequence
Sometimes even a fairly simple action on the part of the user raises multiple events in
rapid succession. As an example, every time the user presses a key on the keyboard, the
KeyDown, KeyPress, and KeyUp events are raised, in that order. Similarly, clicking the
left mouse button fi res the MouseDown and MouseUp events, as well as a Click event. It’s
your prerogative as a VBA developer to decide which events you program in your Access
applications.

Events don’t occur randomly. Events actually fi re in a predictable fashion, depending on
which control is raising the events. Sometimes the trickiest aspect of working with events
is keeping track of the order in which events occur. It may not be intuitive, for example,
that the Enter event occurs before the GotFocus event (see Table 26.5) or that the
KeyDown event occurs before the KeyPress event (see Table 26.3).

Looking at common event sequences
Here are the sequences of events for the most frequently encountered form scenarios:

 ■ Opening and closing forms:

 ■ When a form opens: Open (form) → Load (form) → Resize (form) →
Activate (form) → Current (form) → Enter (control) → GotFocus (control)

 ■ When a form closes: Exit (control) → LostFocus (control) → Unload (form)
→ Deactivate (form) → Close (form)

853

Chapter 26: Understanding the Access Event Model

c26.indd 10/01/2015 Page 853

26

 ■ Changes in focus:

 ■ When the focus moves from one form to another: Deactivate (form1)
→ Activate (form2)

 ■ When the focus moves to a control on a form: Enter → GotFocus

 ■ When the focus leaves a form control: Exit → LostFocus

 ■ When the focus moves from control1 to control2: Exit (control1) →
LostFocus (control1) → Enter (control2) → GotFocus (control2)

 ■ When the focus leaves the record in which data has changed, but before
entering the next record: BeforeUpdate (form) → AfterUpdate (form) →
Exit (control) → LostFocus (control) → Current (form)

 ■ When the focus moves to an existing record in Form view: BeforeUpdate
(form) → AfterUpdate (form) → Current (form)

 ■ Changes to data:

 ■ When data is entered or changed in a form control and the focus is moved to
another control: BeforeUpdate → AfterUpdate → Exit → LostFocus

 ■ When the user presses and releases a key while a form control has the
focus: KeyDown → KeyPress → KeyUp

 ■ When text changes in a text box or in the text-box portion of a combo box:
KeyDown → KeyPress → Change → KeyUp

 ■ When a value that is not present in the drop-down list is entered into
a combo box’s text area: KeyDown → KeyPress → Change → KeyUp →
NotInList → Error

 ■ When data in a control is changed and the user presses Tab to move to the
next control:

 ■ Control1: KeyDown → BeforeUpdate → AfterUpdate → Exit →
LostFocus

 ■ Control2: Enter → GotFocus → KeyPress → KeyUp

 ■ When a form opens and data in a control changes: Current (form) → Enter
(control) → GotFocus (control) → BeforeUpdate (control) → AfterUpdate
(control)

 ■ When a record is deleted: Delete → BeforeDelConfirm →
AfterDelConfirm

 ■ When the focus moves to a new blank record on a form and a new record is
created when the user types in a control: Current (form) → Enter (control)
→ GotFocus (control) → BeforeInsert (form) → AfterInsert (form)

 ■ Mouse events:

 ■ When the user presses and releases (clicks) a mouse button while the mouse
pointer is on a form control: MouseDown → MouseUp → Click

854

Part VI: Access Programming Fundamentals

c26.indd 10/01/2015 Page 854

 ■ When the user moves the focus from one control to another by clicking the
second control:

 ■ Control1: Exit → LostFocus

 ■ Control2: Enter → GotFocus → MouseDown → MouseUp → Click

 ■ When the user double-clicks a control other than a command button:
MouseDown → MouseUp → Click → DblClick → MouseUp

Writing simple form and control event procedures
Writing simple procedures to verify a form or control’s event sequence is quite easy. Use
the preceding information to determine which event should be harnessed in your applica-
tion. Unexpected behavior often can be traced to an event procedure attached to an event
that occurs too late—or too early!—to capture the information that is needed by the
application.

The Chapter26.accdb example database includes a form named frmEventLogger that
prints every event for a command button, a text box, and a toggle button in the Debug
window. The form is not bound to a recordset, so the list of events will be slightly different
than for a bound form. It is provided to demonstrate just how many Access events are trig-
gered by minor actions. For example, clicking the command button one time, and then tab-
bing to the text box and pressing one key on the keyboard fi res the following events:

 ■ cmdButton_MouseDown

 ■ cmdButton_MouseUp

 ■ cmdButton_Click

 ■ cmdButton_KeyDown

 ■ cmdButton_Exit

 ■ cmdButton_LostFocus

 ■ txtText1_Enter

 ■ txtText1_GotFocus

 ■ txtText1_KeyPress

 ■ txtText1_KeyPress

 ■ txtText1_KeyUp

 ■ txtText1_KeyDown

 ■ txtText1_KeyPress

 ■ txtText1_Change

 ■ txtText1_KeyUp

You’ll have to open the code editor and display the Immediate window to see these events
displayed. From anywhere in the Access environment, press Ctrl+G and the code editor

855

Chapter 26: Understanding the Access Event Model

c26.indd 10/01/2015 Page 855

26

instantly opens with the Immediate window displayed. Then, Alt+Tab back to the main
Access screen, open the form, and click on the various controls and type something into
the text box. You’ll see a long list of event messages when you use Ctrl+G to return to the
Immediate window.

Obviously, these are far more events than you’ll ever want to program. Notice that, on the
command button, both the MouseDown and MouseUp events fi re before the Click event.
Also, a KeyDown event occurs as the Tab key is pushed, and then the command button’s
Exit event fi res before its LostFocus event. (The focus, of course, moves off the com-
mand button to the text box as the Tab key is pressed.)

Also, notice that the text box raises more than one KeyPress event. The fi rst is the
KeyPress from the Tab key, and the second is the KeyPress that occurs as a character
on the keyboard is pressed. Although it may seem strange that the Tab key’s KeyPress
event is caught by a text box and not by the command button, it makes sense when you
consider what is happening under the surface. The Tab key is a directive to move the focus
to the next control in the tab sequence. Access actually moves the focus before passing the
KeyPress event to the controls on the form. This means that the focus moves to the text
box, and the text box receives the KeyPress raised by the Tab key.

Keep in mind that you write code only for events that are meaningful to your applica-
tion. Any event that does not contain code is ignored by Access and has no effect on the
application.

Also, it’s entirely likely that you’ll occasionally program the wrong event for a particular
task. You may, for example, be tempted to change the control’s appearance by adding code
to a control’s Enter event. (Many developers change a control’s BackColor or ForeColor to
make it easy for the user to see which control has the focus.) You’ll soon discover that the
Enter event is an unreliable indicator of when a control has gained focus. The GotFocus
and LostFocus events are specifi cally provided for the purpose of controlling the user
interface, while the Enter and Exit events are more “conceptual” in nature and are not
often programmed in Access applications.

This small example helps explain, perhaps, why Access supports so many different events.
Microsoft has carefully designed Access to handle different categories of events, such as
data or user-interface tasks. These events provide you with a rich programming environ-
ment. You’ll almost always fi nd exactly the right control, event, or programming trick to
get Access to do what you need.

Opening a form with an event procedure

Most applications require multiple forms and reports to accomplish the application’s busi-
ness functions. Instead of requiring the users of the application to browse the database
container to determine which forms and reports accomplish which tasks, an application
generally provides a switchboard form to assist users in navigating throughout the applica-
tion. The switchboard provides a set of command buttons labeled appropriately to suggest

856

Part VI: Access Programming Fundamentals

c26.indd 10/01/2015 Page 856

the purpose of the form or report it opens. Figure 26.6 shows the switchboard for the
Collectible Mini Cars application.

FIGURE 26.6

Using a switchboard to navigate through the forms and reports of an application.

The Collectible Mini Cars switchboard includes fi ve command buttons. Each command
button runs an event procedure when the button is clicked. The Products button
(cmdProducts), for example, runs the event procedure that opens frmProducts. Figure 26.7
shows the Properties window for cmdProducts. Figure 26.8 shows the VBA code for the
Click event of cmdProducts.

Running an event procedure when closing a form

Sometimes, you’ll want to perform some action when you close or leave a form. For example,
you might want Access to keep a log of everyone using the form, or you might want to close
the form’s Print dialog box every time a user closes the main form.

To automatically close frmDialogProductPrint every time frmProducts is closed, create an
event procedure for the frmProducts Close event. Figure 26.9 shows this event procedure.

857

Chapter 26: Understanding the Access Event Model

c26.indd 10/01/2015 Page 857

26

FIGURE 26.7

Specifying an event procedure for a control event.

FIGURE 26.8

Using an event procedure to open a form.

The Form_Close event illustrated in Figure 26.9 fi rst checks to see if frmDialogProductPrint
is open. If it is open, the statement to close it executes. Although trying to close a form that
isn’t currently open doesn’t cause an error, it’s a good idea to check to see if an object is avail-
able before performing an operation on the object.

858

Part VI: Access Programming Fundamentals

c26.indd 10/01/2015 Page 858

FIGURE 26.9

Running an event procedure when a form closes.

Using an event procedure to confirm record deletion

Although you can use the Delete button on the Records group of the Home tab of the
Ribbon to delete a record in a form, a better practice is to provide a Delete button on the
form. A Delete button is more user-friendly because it provides a visual cue to the user as
to how to delete a record. Plus, a command button affords more control over the delete pro-
cess because you can include code to verify the deletion before it’s actually processed. Or
you might need to perform a referential integrity check to ensure that deleting the record
doesn’t cause a connection to the record from some other table in the database to be lost.

Use the MsgBox() function to confi rm a deletion. cmdDelete’s event procedure uses
MsgBox() to confi rm the deletion, as shown in Figure 26.10.

When the cmdDelete_Click() event procedure executes, Access displays a message box
prompt, as shown in Figure 26.11. Notice that the message box includes two command but-
tons: Yes and No. Access displays the prompt and waits for the user to make a selection.
The record is deleted only when the user confi rms the deletion by clicking the Yes button.

Before the RunCommand acCmdDeleteRecord statement executes, it automatically checks to see if deleting

the record violates referential integrity rules that you’ve set up in the Relationships diagram. If a violation occurs, an

Access error message displays and the deletion is canceled.

 See Chapter 4 for more information on setting up referential integrity in a database.

859

Chapter 26: Understanding the Access Event Model

c26.indd 10/01/2015 Page 859

26

FIGURE 26.10

Using the MsgBox() function to confi rm a deletion.

FIGURE 26.11

A confi rmation dialog box before deleting a record.

861

c27.indd 10/06/2015 Page 861

CHAP T ER

27
Debugging Your Access
Applications

IN THIS CHAPTER

Organizing VBA code

Testing an application

Debugging the traditional way: with MsgBox and Debug.Print

Taking advantage of the debugging tools in Access

Trapping unexpected errors

M
any Access applications rely on signifi cant amounts of VBA code in forms and reports, and
as stand-alone modules. Because of its power and fl exibility, VBA is used for all aspects of
application development, from communicating with the user to massaging and transform-

ing data on its way from tables and queries to forms and reports.

Because VBA code is often complicated (or at least, seems complicated!), debugging an error or
problem in an application can be diffi cult and time-consuming. Depending on how well organized
the code is, and whether simple conventions, such as providing descriptive names for variables and
procedures, were followed, tracking down even a small coding bug can be a frustrating experience.

Fortunately, Access provides a full complement of debugging tools to make your life easier. These
tools not only save time by helping you pinpoint where a coding error occurs, but can help you better
understand how the code is organized and how execution passes from procedure to procedure.

This chapter largely ignores the errors caused by poor design: misrepresentation of data caused by ill-designed

queries, update and insert anomalies caused by inappropriate application of referential integrity rules, and so on.

For the most part, these problems occur because of issues such as failing to conform to proper design disciplines,

misunderstanding Access query design, and so on. What we can help you with, however, are the bugs that creep

into your VBA code, particularly those bugs that cause noticeable problems with the data or user interface in your

applications.

862

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 862

This chapter is a departure from the other example fi les you’ve used in the book. The sample database fi le

(Chapter27.accdb) contains the basic example code shown throughout this chapter. The code in Chapter27
.accdb does not necessarily do anything useful. It’s provided mostly as a “test bench” for practicing with the

Access debugging tools rather than as a good example of practical VBA code.

Organizing VBA Code
The fi rst step in debugging your code is to avoid coding errors in the fi rst place. It shouldn’t
come as any surprise that your coding habits have a lot to do with the type and amount
of errors you encounter in your applications. Often, the adoption of simple coding conven-
tions eliminates all but the toughest syntactical and logical errors in VBA code. Some of
these conventions are described elsewhere in this book but are repeated here as a helpful
reminder.

 ■ Use a naming convention. Naming conventions for procedures, variables, and con-
stants don’t have to be complicated. But a consistently applied naming convention
can help you spot errors that might otherwise slip through the cracks. Trying to
assign a value to a constant, using a String variable in a mathematical operation,
and passing improperly typed arguments to a function are examples of problems
that a naming convention can help you avoid.

 ■ Limit scopes for variables. Your variables should have the smallest scope possible
that still allows your program to work effi ciently and effectively. Create your vari-
ables at the procedure level by default and only increase the scope when the logic of
your code requires it. Keep your globally scoped variables in their own module. When
the list of global variables starts to get too big, consider refactoring your code.

 ■ Use constants. Constants are a great way to add readability to your code and pre-
vent errors. When you use a constant like dDISCOUNT_THRESHOLD, your intent
is immensely more obvious than when you have a magic number like 5000. Try
to remove all magic numbers from your code and put them in descriptively named
constants. Even if you don’t succeed in getting all of them, your code will be more
robust and error-proof than if you spread numbers around liberally.

 ■ Keep your procedures short. In general, a procedure should do one thing. If you
fi nd your procedures are getting too long to fi t on one screen, consider breaking
the procedure into multiple procedures and calling each of them from the main pro-
cedure. There are certainly cases in which procedures will do more than one thing.
However, you’ll fi nd your code much easier to manage when you have many simple
procedures as opposed to a few giant ones.

 ■ Keep your modules clean. There is virtually no limit to the number of modules
you can have in your project. All the procedures in a module should be related in

 ON THE WEB

863

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 863

27

some way. Modules behind forms and reports will contain event procedures for their
parent object but should only contain other procedures that support those event
procedures. Keeping only related procedures in a module will also give you more
confi dence that private variables in that module won’t be misused.

 ■ Use comments when necessary. Comments can be an important part of the code in
your project. If you have too many comments, however, nobody will ever read them
and they’ll quickly become out of date as your code changes. Use well-named proce-
dures, variables, and constants to make your code self-documenting. Use comments
when you’ve coded something a little out of the ordinary or to explain why you
took one approach to a problem over another. Comments should not describe what
the code does, but why the code does it.

 ■ Don’t repeat yourself. Much of the code you write will seem repetitive, particu-
larly when you’re coding the events on a form with a lot of controls. If it seems
like you’re writing the same code over and over, consider moving the code to sepa-
rate procedures and passing in arguments from the event procedure. If a change
is required, you’ll only have to change the code in one place, saving you time and
preventing errors.

 ■ Compile often. Compile your project after you’ve written or changed several
lines of code. Don’t wait until the entire module or project is written to compile.
Catching syntax errors while you’re writing code enables you to fi x those errors
easily. You’ll have a lot of the information about what your procedure does and
where it’s used when you’re writing it, which makes it the best time to catch errors.

Testing Your Applications
Testing Access applications is an ongoing process. Each time you switch a form or report
from Design view to Normal view, or leave the VBA Editor to run a bit of code, you’re test-
ing your application. Every time you write a line of code and move to another line, the VBA
syntax parser checks the code you just wrote. Each time you change a property in a form
or report and move your cursor to another property or another control, you’re testing the
property you’ve changed.

Testing is the time to see if your application runs the way you intend, or even if it runs at
all. When you run an application and it doesn’t work, you’ve found a bug. Fixing problems
is most often referred to as debugging.

This term dates back to the earliest electro-mechanical computers. Legend has it that a moth shorted out an electri-

cal circuit. The late Admiral Grace Hopper, an early pioneer in computing, coined the term debugging to describe the

process of removing the moth.

864

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 864

When you run a report and no data appears, you’ve had to check the report’s RecordSource
property to ensure that the report is pulling the correct data. You may have viewed the
data in a query or table to see if the data source is the problem. If you run a form and
you see #Name or #Error in individual controls, you’ve learned to check the control’s
ControlSource property. Perhaps you have an incorrect reference to a table fi eld or you
spelled something wrong and Access is unable to evaluate the reference.

Maybe you have too many parentheses in an expression, or you’ve used a control name in
a formula that confl icts with an Access keyword. Each time you had this problem, you may
have asked someone with more experience than you what the problem was, or perhaps you
looked it up online or in a book, or you researched the syntax of the formula.

Most problems with query, form, and report design are pretty obvious. You know you have a
problem when a query returns the wrong data, or a form or report fails to open or displays
an error message as it opens. Behind the scenes, Access does a great deal to help you notice
and rectify problems with your application’s design. When you run forms and reports,
Access often reports an error if it fi nds something seriously and obviously wrong.

It’s much more diffi cult for Access to help you with incorrectly written code. Very often, a
problem in VBA code exists for months or even years before a user notices it. Even poorly
written code can run without throwing errors or exhibiting obvious problems. However,
determining exactly where a bug exists in VBA code—and fi guring out what to do to repair
the bug—can be very challenging. When you create VBA code, you’re pretty much on your
own when it comes to detecting and resolving problems. Fortunately, a wide variety of tools
have been built into the editor to help you.

Testing and debugging takes quite a bit of time. Many good developers easily spend a third of their time designing a

program, another third writing code, and another third testing and debugging. Having someone other than the devel-

oper test a program’s operation is a good idea. A person who is unfamiliar with an application is more likely to do

something the developer never expected, leading to new and surprising bugs and instability issues.

Testing functions
Functions return values, and that makes them easier to test than other types of proce-
dures. A good developer will write a separate procedure to test each function to make sure
the output is what’s expected. Testing your function when it’s written will expose any
problems at a time when the problem is easiest to fi x. If a function contains an error and
that error propagates to a control on a form, it may be harder to track down. Writing tests
also forces you to think through the logic of your functions from different angles.

VBA provides the Debug.Assert method to aid in writing tests. The following example
procedure computes a discount on an invoice. There are several factors that determine
whether a discount is given. See if you can identify them as you read the code.

865

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 865

Function InvoiceDiscountAmount(_
 sCustomerID As String, _
 cInvoiceTotal As Currency, _
 dtInvoice As Date _
) As Currency

 Dim cReturn As Currency

 Const dDISCOUNT_THRESHOLD As Double = 10000
 Const dDEFAULT_DISCOUNT As Double = 0.1

 cReturn = 0

 If cInvoiceTotal >= dDISCOUNT_THRESHOLD Then
 cReturn = cInvoiceTotal * dDEFAULT_DISCOUNT
 ElseIf IsDiscountCustomer(sCustomerID) Then
 cReturn = cInvoiceTotal * dDEFAULT_DISCOUNT
 ElseIf IsLastDayOfMonth(dtInvoice) Then
 cReturn = cInvoiceTotal * dDEFAULT_DISCOUNT
 End If

 InvoiceDiscountAmount = cReturn

End Function

There are three situations that will result in a discount. If the invoice is over a certain
amount, if the customer is fl agged as getting a discount, or if it’s the last day of the month,
the default discount is applied to the invoice. Comparing the invoice total to the threshold
is fairly straightforward. In order to make the code clean and readable, the other two con-
ditions were moved to their own functions. Those functions are shown here:

Private Function IsDiscountCustomer(sCustomerID As String) As Boolean

 Dim rsCustomer As ADODB.Recordset
 Dim conn As ADODB.Connection
 Dim sSql As String

 Set conn = CurrentProject.Connection
 sSql = "SELECT GetsDiscount FROM Customers " & _
 "WHERE CustomerID = '" & sCustomerID & "'"

 Set rsCustomer = conn.Execute(sSql)

 If Not rsCustomer.EOF Then
 IsDiscountCustomer = rsCustomer.Fields(0).Value

866

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 866

 End If

End Function

Private Function IsLastDayOfMonth(dtDate As Date) As Boolean

 'The zeroth day of the next month is the last
 'day of the current month
 IsLastDayOfMonth = (dtDate = DateSerial(Year(dtDate), Month(dtDate), 0))

End Function

Now that the functions are written, we can write a test procedure to see if it works as
expected. We know the three conditions that should result in a discount, and we’ll test the
combinations of those. The Debug.Assert method will halt the code if a test doesn’t pass.
For illustration purposes, there is an error in the IsLastDayOfMonth function. We’ll fi x
that error shortly. Figure 27.1 shows the test procedure after it has been run.

FIGURE 27.1

Debug.Assert halts code when a test fails.

867

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 867

To test the function, three arrays were created containing information to pass to the func-
tion. The vaCustomer array contains one customer that gets a discount and one customer
that doesn’t. These customers were selected by inspecting the Customers table. The
vaTotal array contains an invoice total amount that gets a discount and one that doesn’t.
The fi rst value is the amount of the threshold (and should pass), and the second value is
one less than the threshold (and should fail). Picking values around the value that defi nes
pass/fail is called picking edge cases. The last array contains a date that should pass
(because it’s the last day of the month) and a date that shouldn’t.

The procedure contains three nested loops so that all eight combinations of data are passed
to the function. Only when the last element of each array is the current element should
there be no discount (that is, when ANATR, 9999, and #2/1/2012# are passed to the func-
tion). The If statement checks to see if each loop is referencing the last element. If they
are, Debug.Assert compares the calculated discount to zero. If any loop is not referenc-
ing the last element, then Debug.Assert compares the calculated discount to 10 percent
of the invoice total.

Running the test procedure caused execution to stop on the Debug.Assert line. Checking
the values of i, j, and k, we can see that the combination of "ANATR", 9999, and
#1/31/2012# resulted in a calculated discount of zero, but our test says it should have
been 999.9. We know there is a problem in our function—now we just have to fi nd it.

Upon closer inspection of the IsLastDayOfMonth function, we see that it should have read:

IsLastDayOfMonth = (dtDate = DateSerial(Year(dtDate), Month(dtDate) + 1, 0))

We forgot to include the +1 to advance the month to the next month. After correcting
the error and rerunning TEST_InvoiceDiscountAmount, the code runs without error.
Debug.Assert stops the code only when a test doesn’t pass. If everything is fi ne, nothing
happens. You may want to include a MsgBox or Debug.Print statement at the end of your
tests to give you a visual cue that the test procedure completed.

In this example, it took almost as long to write the test as it did to write the three functions.
However, if we hadn’t caught the error, it could have caused many worse problems in the
form where the function was used. The erroneous procedure would have returned no discount
when one was warranted. It’s easy to imagine that the user would not notice the error, and
the result would be an unhappy customer. Another benefi t of testing functions in this way
is that any changes to the function can be tested using the same test procedure. If the tests
pass, we know our changes haven’t violated the business rules of our application.

Compiling VBA code
After you create a subprocedure or function and want to make sure that all your syntax
is correct, you should compile your procedures by choosing Debug ➪ Compile Project Name
from the VBA code editor window menu (where Project Name is the name of the project set
in the Project dialog box, accessed from the Tools menu). Figure 27.2 shows the Debug menu
opened in the editor window.

868

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 868

FIGURE 27.2

The Debug menu in the VBA code editor window contains valuable debugging tools.

The compile action checks your code for errors and also converts the programs to a form
that your computer can understand. If the compile operation is not successful, an error
window appears, as shown in Figure 27.3.

This level of checking is more stringent than the single-line syntax checker. Variables are
checked for proper references and type. Each statement is checked for all proper param-
eters. All text strings are checked for proper delimiters, such as the quotation marks.
Figure 27.3 illustrates a typical compile-time error. In this case, the name of a method
(GetOption) has been misspelled, and the compiler is unable to resolve the misspelled
reference.

Access compiles all currently uncompiled procedures, not just the one you’re currently view-
ing. If you receive a compiler error, immediately modify the code to rectify the problem,
and then try to compile the procedure again. If there are further compiler errors, you’ll see
the next error.

After compiling your application, you can’t choose Debug ➪ Compile (it’s grayed out). Before implementing an appli-

cation, you should make sure that your application is compiled.

869

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 869

FIGURE 27.3

Viewing a compile error.

Your database is named with a standard Windows name, such as Chapter27.accdb, but
Access uses an internal project name to reference the VBA code in your application. You’ll
see this name when you compile your database. When the database fi le is fi rst created, the
project name and the Windows fi lename will be the same. The project name isn’t changed
when you change the Windows fi lename of the ACCDB fi le. You can change the project name
by choosing Tools ➪ Project Name Properties (where Project Name is the current internal
project name).

Compiling your database only makes sure that you have no syntax errors. The compiler can
check only for language problems by fi rst recognizing the VBA statement and then check-
ing to see that you specify the correct number of options and in the right order. The VBA
compiler can’t detect logical errors in your code, and it certainly can’t help with errors that
compile but occur while the code is executing (known as run-time errors).

If you fi nd your database fi le getting unusually large, you should compact your database (see Chapter 31 for more on

compacting). Every time you make a change to your program, Access stores both the changes and the original ver-

sion. When you compile your program, it may double in size as the compiled and uncompiled versions of your code

are stored. Compacting the database can reduce the size of the database by as much as 80 percent to 90 percent,

because it eliminates all previous versions internally.

870

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 870

Traditional Debugging Techniques
Two widely used debugging techniques have been available since Access 1.0. The fi rst is to
insert MsgBox statements to display the value of variables, procedure names, and so on.
The second common technique is to insert Debug.Print statements to output messages to
the Immediate window.

Using MsgBox
Figure 27.4 shows an example of a message box displaying a long SQL statement to enable
the developer to verify that the statement was properly composed by the application. The
example in Figure 27.4 is found in the modUsingMsgBox module in the Chapter27.accdb
example database and is shown here:

Public Function UsingMsgBox()
 Dim db As DAO.Database
 Dim rs As DAO.Recordset
 Dim sSQL As String

 Set db = DBEngine.Workspaces(0).Databases(0)

 sSQL = "SELECT DISTINCTROW OrderDetails.OrderID, " _
 & "OrderDetails.ProductID, " _
 & "Products.ProductName, " _
 & "OrderDetails.UnitPrice, " _
 & "OrderDetails.Quantity, " _
 & "OrderDetails.Discount, " _
 & "CCur(OrderDetails.UnitPrice*Quantity) AS ExtendedPrice " _
 & "FROM Products INNER JOIN OrderDetails " _
 & "ON Products.ProductID = OrderDetails.ProductID " _
 & "ORDER BY OrderDetails.OrderID;"

 MsgBox "sSQL: " & sSQL

 Set rs = db.OpenRecordset(sSQL, dbOpenForwardOnly)

 rs.Close
 Set rs = Nothing

End Function

871

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 871

FIGURE 27.4

The MsgBox statement makes a satisfactory debugging tool (with some limitations).

The MsgBox keyword stops code execution and displays a string in a box that must be
cleared before code execution continues. Here are the advantages of using the MsgBox
statement:

 ■ The MsgBox statement is easy to use and occupies only a single line of code.

 ■ The MsgBox statement can output many types of data.

 ■ The message box itself pops up right on the user interface, and you don’t have to
have the Immediate window open or fl ip to the Immediate window to view the mes-
sage box.

 ■ MsgBox halts code execution, and because you know where you’ve put the MsgBox
statements, you know exactly where the code is executing.

There are also some problems associated with MsgBox statements:

 ■ There is nothing about the MsgBox statement to prevent it from popping up in
front of an end user, causing all kinds of confusion and other problems.

It’s a good idea to remove all debugging statements from your code before shipping to end users. Search your code

for MsgBox and Debug.Print to make sure all debugging statements have been removed.

 ■ Message boxes are modal, which means you can’t fl ip to the code editor window or
Immediate window (discussed in the “Running code with the Immediate window”
section) to examine the value of variables or examine the code underlying the
application.

 ■ It’s diffi cult to get the text out of a message box. You can’t copy the text or select
parts of it. Other than reading the text in a message box, about the only other
action you can do is print the screen.

872

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 872

Compiler Directives
A refi nement of the MsgBox technique is to use compiler directives to suppress the MsgBox statements,
unless a special type of constant has been set in the code or within the Access environment. Examine
the code in the following fi gure. Notice the #Const compiler directive above the MsgBox statement
and the #If and #End If directives surrounding the MsgBox statement.

All the keywords beginning with the pound sign (#) are seen only by the VBA compiler. These keywords
(#Const, #If, #Else, and #End If) constitute directives to the VBA compiler to include (or exclude)
certain statements in the compiled version of your project.

(Conditional compilation using compiler directives is introduced in Chapter 24.)

The #Const directive you see in the preceding fi gure can appear anywhere in the module as long as
it’s placed above the #If directive. The logical place for the #Const is in the module’s declaration sec-
tion, since #Const values are global to the module. In the fi gure, the compiler constant is set to False,
which means the statements between #If and #End If won’t be compiled into the application’s VBA
project. In this case, the MsgBox statement isn’t processed and doesn’t appear in the user interface.
Setting the #Const directive’s value to True displays the MsgBox statement when the code is run.

873

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 873

Compiler directives also can be used for statements other than MsgBox. You could, for example, use
compiler directives to conditionally compile features, additional help, or other capabilities into an
application. Compiler directives are particularly effective for suppressing MsgBox statements that are
used for debugging purposes and must be squelched before giving the application to users. You can
easily reactivate MsgBox statements by setting the #Const statement to True.

Perhaps the biggest impediment to using compiler constants is that the #Const statement is
module-level in scope. A compiler constant declared in one module is not seen by other modules in
the application. This means that you must add compiler constants to every module in which you want
to employ conditional compilation.

Access provides the Conditional Compilation Arguments text box in the General tab of the application’s
Project Properties dialog box (Tools ➪ Application Name Properties) to get around this constraint. As
shown in the following fi gure, you use the Conditional Compilation Arguments text box to specify any
number of compiler constants that apply to the entire application. These settings make it very easy
to toggle conditional compilation from a single location in the application, instead of changing the
#Const statements in every module.

Conditional Compilation Arguments and other settings set in the Project Properties dialog box are
relevant only to the current application. Unlike the options you set in the Options dialog box (accessible
from the Tools menu), the Project Properties settings are not shared among multiple Access applications.

Continues

874

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 874

In the preceding fi gure, notice that the value assigned to the Conditional Compilation Argument is
numeric. Assigning zero to a Conditional Compilation Argument sets the argument’s logical value
to False; any nonzero value is interpreted as True. You can’t use the words True and False in the
Conditional Compilation Arguments text box. Setting the value to 0 (False) means that you can leave
all the conditional compilation directives in your code. Setting the value to False effectively disables
them, allowing your code to execute as if they don’t exist.

If you’re confused about the confl icting terminologies applied to the VBA conditional compilation fea-
ture, you’re not alone. In a VBA code module, you assign conditional compilation constants using the
#Const keyword, yet in the Project Properties dialog box, you set Conditional Compilation Arguments.
Also, you assign the True and False keywords to conditional compilation constants in a VBA module,
but use -1 and 0 to assign True and False, respectively, to Conditional Compilation Arguments. This
is one place where the terminology and syntax used for the same purpose are quite different in dif-
ferent parts of an Access VBA project.

In case you’re wondering, the name you apply to a compiler constant is anything you want it to
be. The example in this section uses gDEBUG1 merely as a convenience, but it could have been
MyComplierConstant, Betty, DooDah, or any other valid constant name.

Using Debug.Print
The second commonly used debugging technique is using Debug.Print to output messages
to the Immediate window. (Print is actually a method of the Debug object.) Figure 27.5
shows how the sSQL variable appears in the Immediate window.

The following code can be found in the modUsingDebugDotPrint module in Chapter27
.accdb. It’s almost identical to the code in Figure 27.4, except that instead of using
MsgBox to inspect the variable, it uses Debug.Print.

Sub UsingDebugDotPrint()
 Dim db As DAO.Database
 Dim rs As DAO.Recordset
 Dim sSQL As String

 Set db = DBEngine.Workspaces(0).Databases(0)

 sSQL = "SELECT DISTINCTROW OrderDetails.OrderID, " _
 & "OrderDetails.ProductID, " _
 & "Products.ProductName, " _

continued

875

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 875

 & "OrderDetails.UnitPrice, " _
 & "OrderDetails.Quantity, " _
 & "OrderDetails.Discount, " _
 & "CCur(OrderDetails.UnitPrice*Quantity) AS ExtendedPrice " _
 & "FROM Products INNER JOIN OrderDetails " _
 & "ON Products.ProductID = OrderDetails.ProductID " _
 & "ORDER BY OrderDetails.OrderID;"

 Debug.Print "sSQL: " & sSQL

 Set rs = db.OpenRecordset(sSQL, DB_OPEN_DYNASET)

 rs.Close
 Set rs = Nothing
 Set db = Nothing

End Sub

FIGURE 27.5

Use Debug.Print to output messages to the Immediate window.

Unlike the MsgBox statement, you don’t have to do anything special to suppress the
Debug.Print output from the user interface. The output of Debug.Print only goes to
the Immediate window, and because end users never see the Immediate window, you don’t
have to worry about a user encountering debug messages.

The problems with Debug.Print are obvious from Figure 27.5. Long strings don’t wrap
in the Immediate window. Also, the Immediate window must be visible in order for you
to view its output. But these limitations are relatively harmless and you’ll frequently use
Debug.Print in your applications.

876

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 876

Some people have reported that excessive numbers of Debug.Print statements can slow an application. Even

though the Immediate window is not visible, Access executes the Debug.Print statements that it fi nds in its

code. You may want to consider surrounding each Debug.Print statement with the compiler directives described

in the “Compiler Directives” sidebar to remove them from the end user’s copy of the application.

Using the Access Debugging Tools
Access features a full complement of debugging tools and other capabilities. You use these
tools to monitor the execution of your VBA code, halt code execution on a statement so
that you can examine the value of variables at that moment in time, and perform other
debugging tasks.

Running code with the Immediate window
Open the Immediate window (also called the Debug window) by choosing View ➪ Immediate
or by pressing Ctrl+G. You can open the Immediate window any time (for example, while
you’re working on a form’s design). You’ll sometimes fi nd it useful to test a line of code or
run a procedure (both of which are supported by the Immediate window) while you’re work-
ing on a form or report.

The Immediate window is shown in Figure 27.6. The Immediate window permits certain
interactivity with the code and provides an output area for Debug.Print statements. The
basic debugging procedures include stopping execution so that you can examine code and
variables, dynamically watching variable values, and stepping through code.

FIGURE 27.6

Get to know the Immediate window! You’ll use it a lot in Access.

877

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 877

One of the most basic uses of the Immediate window is to run code, such as built-in func-
tions, or subroutines and functions that you’ve written. Figure 27.7 shows several examples
that have been run in the Immediate window.

FIGURE 27.7

Running code from the Immediate window is a common practice.

The fi rst example in Figure 27.7 shows how to run a subprocedure (UsingDebugDotPrint)
that’s been added to the VBA project. This subprocedure includes a Debug.Print state-
ment that returns a long SQL statement, and that output is shown below the procedure
name when the Enter key is pressed.

In the second example, the built-in Now() function has been run from the Immediate
window, returning the current date and time. The question mark (?) in front of the Now()
function name is a shortcut for the Print keyword. Instead of typing ?Now, you can
type Print Now. Both the question mark and the Print keyword are a directive to the
Immediate window to display (or print) the value returned by the Now() function.

The third example in Figure 27.7 shows calling a function (IsLastDayOfMonth) from the
Immediate window. As with Now(), the question mark is used to direct VBA to return
the value from the function. The one required argument is passed and the result is shown
below the function call. This function was changed from Private to Public for this
example, as only Public functions can be called from the Immediate window.

Suspending execution with breakpoints
You suspend execution by setting a breakpoint in the code. When Access encounters a
breakpoint, execution immediately stops, allowing you to switch to the Immediate window
to set or examine the value of variables.

878

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 878

Setting a breakpoint is easy. Open the code window and click the gray Margin Indicator
bar to the left of the statement on which you want execution to stop (see Figure 27.8).
Alternatively, position the cursor on the line and click the Breakpoint toolbar button. The
breakpoint itself appears as a large brown dot in the gray bar along the left edge of the
code window and as a brown highlight behind the code. The text of the breakpoint state-
ment appears in a bold font.

FIGURE 27.8

Setting a breakpoint is easy.

You can change all these colors and font characteristics in the Editor Format tab of the Options dialog box.

Removing a breakpoint involves nothing more than clicking the breakpoint indicator in
the Margin Indicator bar. Breakpoints are also automatically removed when you close the
application.

When execution reaches the breakpoint, Access halts execution and opens the module
at the breakpoint (see Figure 27.9). You now use the Immediate window (see the preced-
ing section) to examine the values of variables and perform other operations, or use any
of the other debugging tools described in this section. Neither the code window nor the
Immediate window are modal, so you still have full access to the development environment.

Figure 27.10 illustrates two techniques for viewing the values of variables while execu-
tion is stopped at a breakpoint. The Locals window contains the names and current values
of all the variables in the current procedure. You open the Locals window by choosing
Locals Window from the View menu. If you want to see the value of a variable in a slightly

879

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 879

different format, use the Print command (?) in the Immediate window to display the vari-
able’s value.

FIGURE 27.9

Execution stops on the breakpoint.

FIGURE 27.10

Variables are in scope when in break mode.

Current position indicator arrow Code at breakpoint

Immediate windowUsing? to display variable’s value Locals window

880

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 880

Using Stop Statements Instead of Setting
Breakpoints
An alternative to setting breakpoints is to use Stop statements. The Stop statement halts execution
but is more permanent than a breakpoint. A Stop statement, like any other VBA statement, persists
from session to session until explicitly removed. You can, however, surround the Stop statement with
conditional compilation expressions and toggle their action by changing the value assigned to a con-
ditional compilation constant. The following fi gure illustrates using the Stop statement.

Using Stop is a bit dangerous, however. Because Stop is an executable statement, unless it’s carefully
controlled with compiler directives, deleted, or commented out, your application will, literally, stop
executing in front of a user. You’re probably better off using regular breakpoints than Stop statements
in most situations.

The most fundamental operation at a breakpoint is to walk through the code, one state-
ment at a time, enabling you to view what’s happening to the application’s logic and vari-
ables. After you’ve reached a breakpoint, you use a few keystroke combinations to control
the execution of the application. You’re able to step through code one statement at a time,
automatically walk through the local procedure, or step over the procedure and continue
execution on the “other side” of the procedure.

In Figure 27.11, a breakpoint has been inserted near the top of the UsingBreakpoints()
function. When execution reaches this statement a breakpoint asserts itself, allowing you
to take control of program execution.

In Figure 27.12, the break has occurred and we’ve clicked the Step Into button (or pressed
F8). The Step Into button executes the current statement and moves to the next statement

881

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 881

in the program’s fl ow of execution. In this case, the db variable is set and the current line
becomes the statement that sets the sSql variable (indicated by a yellow highlight and
an arrow in the left margin). At this point, the sSql assignment statement has not been
executed, and the value of sSql is an empty string. Press F8 again to execute the sSql
assignment statement and move the current line to the next line. After sSql is set, you
can see the value of sSql in the Immediate window by using ?sSql or by opening the
Locals window (described in the “Looking at variables with the Locals window” section,
later in this chapter).

FIGURE 27.11

Insert a breakpoint near the location of the code you want to step through.

FIGURE 27.12

Step Into executes one line at a time.

882

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 882

Consecutive clicks on the Step Into button (or pressing F8) executes the code one state-
ment at a time. If a statement includes a call to a child procedure, you’ll be taken to that
procedure, and each of its lines will execute one at a time. If you want, you can use the
Step Over button (or press Shift+F8) to execute all the code in the child routine (not one
line at time) but continue in the calling procedure one line at a time.. If you’ve previously
debugged the child routine and you’re sure it contains no errors, there is no reason to walk
through its code. The code in the called routine is actually executed when you click the
Step Over button, changing any variables involved.

When you’re satisfi ed that you don’t need to continue walking through the code in the
child procedure, click the Step Out button (or press Ctrl+F8) to complete the procedure.
The Step Out button is handy if you’ve stepped into a called routine and you’re sure there’s
nothing interesting going on in it.

One very nice feature in the Access VBA window is the Auto Data Tips option in the Editor
tab in the Options dialog box (See Chapter 25 for more on VBE Options.) With this option
selected, you’re able to view the value of any variable in a tooltip-like window by hovering
the mouse pointer over the variable’s name in the module window (see Figure 27.13).

FIGURE 27.13

Auto Data Tips are a powerful tool for debugging.

The Auto Data Tips display you see by hovering the mouse over a variable is very dynamic.
The value shown in Auto Data Tips changes whenever the variable is assigned a new value.

883

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 883

Because hovering the mouse is easy to do, you don’t have to use the Immediate window to
view every variable in your code. You can hover over any variable in the procedure, not just
on the current line. In Figure 27.13, the mouse is over the sSql variable in the line above
the line with the execution pointer.

The Auto Data Tips option must be selected in the Editor tab in order for the data tip you see in Figure 27.13 to

appear.

Figure 27.13 shows an Auto Data Tip for a variable with a very long string. You can’t see the whole value using

this method. You can, however, see the last part of the screen by holding down the Ctrl key while you hover over a

variable.

One very nice feature of breakpoints is that the execution pointer (the yellow arrow in the
left margin) is movable. You can use the mouse to reposition the pointer to another state-
ment within the current procedure. For example, you can drag the pointer to a position
above its current location to re-execute several lines of code.

You can easily reposition the execution pointer in such a way that your code’s execution is
invalid, such as moving it into the body of an If...Then...Else statement, or into the
middle of a loop. Also, moving the pointer to a position lower in the code may mean that
variables aren’t set correctly or an important bit of code is ignored. Overall, though, the
ability to easily re-execute a few lines of code is a valuable debugging aid.

Looking at variables with the Locals window
The Locals window (View ➪ Locals Window) shows all variables that are currently in scope,
saving you from having to examine each variable one at a time. The variable’s name, its
data type, and its current value are displayed.

Notice the items in the Locals window in Figure 27.14. Any line in the Locals window that
begins with a plus sign will unfold to reveal more information. For example, you can set a
breakpoint on the End Function statement at the bottom of the function to halt execu-
tion so that you can examine the results of the rs assignment statement. Unfolding the rs
entry in the Locals window reveals all the properties of the rs object and its contents (see
Figure 27.14).

884

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 884

FIGURE 27.14

Use the Locals window to examine the values of complex objects.

One powerful feature of the Locals window is that you can set the values of simple variables
(numeric, string, and so on) by clicking on the Value column in a variable’s row and typing
in a new value for the variable. This makes it very easy to test how various combinations of
variable values affect your application.

In the preceding section, we tell you how to move the execution point within a procedure
by dragging the yellow arrow with the mouse. By changing the value of a variable and mov-
ing the execution point to different places in the procedure, you can verify that the code
executes as expected. Directly manipulating variables is much easier than other methods of
testing the effect of outliers and unexpected values.

The Locals window shows only module-level variables under the name of the module. Globally scoped variables

are not shown in the Locals window. You have to use the Immediate window or the Auto Data Tips to inspect global

variables.

Setting watches with the Watches window
The Locals window can be overrun with variables in a large application or in an applica-
tion with many variables in scope. The Watches window enables you to specify just which

885

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 885

variables you want to monitor as you single-step through your code. The value of a watched
variable changes dynamically as the code runs. (You need to be at some kind of breakpoint,
of course, to actually see the values.) The advantage of using the Watches window is that
the variables displayed don’t have to be from the local procedure. In fact, the variables in
the Watch window can be from any part of the application.

Setting a watch is more complicated than using the Locals window or setting a breakpoint:

 1. Choose View ➪ Watch Window to display the Watches window.

 2. Choose Debug ➪ Add Watch or right-click anywhere in the Watches window and
select Add Watch from the shortcut menu. The Add Watch dialog box (see Figure
27.15) appears.

 3. Enter the name of the variable or any other expression in the Expression text box.

FIGURE 27.15

The Add Watch dialog box includes some powerful options.

The Add Watch dialog box includes some important options. In addition to the name of a
variable or expression (an expression might be something like Len(sSql) = 0), there are
options for specifying the module and procedure within the module to watch. In Figure
27.16, the Add Watch dialog box is set up to watch the sSql variable, but only with the
UsingBreakpoints procedure in the modUsingBreakpoints module. If an sSql vari-
able exists in any other procedure or any other module, you can’t see it here.

At the bottom of the Add Watch dialog box are the following options:

 ■ Watch Expression: The variable’s value will dynamically change in the Watch win-
dow. You must use an explicit breakpoint or Stop statement in order to observe the
value of the watched variable.

 ■ Break When Value Is True: This option asserts a break whenever the value of
the watched variable or expression becomes True. If you set the expression to

886

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 886

Len(sSql) = 0, a breakpoint occurs whenever the value of the sSql variable
changes to an empty string.

 ■ Break When Value Changes: This directive causes Access to halt execution when-
ever the value of the variable or expression changes. Obviously, this setting can
generate a lot of breakpoints, but it can be useful if a variable is changing unex-
pectedly and you can’t fi gure out where.

Use watches wisely. You don’t want to be breaking into program execution too frequently, or you’ll never get through

the code. On the other hand, you don’t want to overlook some important change in the value of a variable because

you didn’t set a watch appropriately.

Figure 27.16 shows the Watches window in action. This watch window contains the rs vari-
able that is expandable and the sSql variable showing the string assigned.

FIGURE 27.16

The Watches window reveals all of a variable’s details.

The Watches window can “fl oat” or be docked at any side of the VBA editor window. If you don’t like the Watches

window’s current position, use its title bar to drag it to another location. As you drag the window to a docking posi-

tion, a gray rectangle appears where Access thinks you want to dock the window. Just release the mouse button when

you have the window positioned in its new location, and Access will either dock the window or leave it fl oating freely,

as you directed. The Watches window will be in the same position the next time you open the VBA editor window.

If you don’t like the “docking” behavior, right-click anywhere within the body of the Watches window and deselect the

Dockable option.

Using conditional watches
Although watching variables in the Locals window or Watches window can be entertain-
ing, you can spend a lot of unproductive time hoping to see something unexpected hap-
pen. You’ll probably fi nd it much more effi cient to set a conditional watch on a variable, and
instruct the VBA engine to break when the condition you’ve established is met.

887

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 887

The Add Watch dialog box (see Figure 27.17) accepts a Boolean (True or False) expression,
such as rs.Fields("OrderID").Value=10251 in the text box near the top. You specify
where in the application (which procedures and which modules) the expression is applied,
and you tell Access what you want the VBA engine to do when the expression is evaluated.
For our purposes, we want execution to break when the loop reaches a record whose OrderID
fi eld is equal to 10251—that is, when the above expression is True.

FIGURE 27.17

A conditional watch halts execution when the expression rs.Fields("OrderID")
.Value=10251 is True.

Running the FillRecordset1 procedure in the modSQLStatement module with this
watch set will cause the code to stop on the Loop statement. At this point, you can inspect
the other values in the recordset via the Locals window or write some statements in the
Immediate window to investigate a problem.

The conditional watches you set up through the Add Watch dialog box are added to the
Watches window. The watch expression appears in the Watches window’s Expression
column.

You can use conditional watches in other ways, too, such as using compound conditions
(X = True And Y = False), and forcing a break whenever a value changes from the
value set in the Expression text box. The small example illustrated in Figure 27.17 only
hints at the capabilities possible with conditional watches.

The Watches window is more than a static display. If needed, you can click on an item in the Expression

column and change a watched expression. For example, let’s say you set up a watch containing an expression as

TotalSale > 100 and directed the watch to assert a breakpoint as soon as this expression becomes True. You

may fi nd that the breakpoint occurs much too often for your testing purposes. Instead of deleting the watch expression

and starting over, you can easily modify the expression, replacing 100 with 200 or any other value you’d like to try.

888

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 888

You can have as many watches as you want, but, as with all other debugging tools, the
watches are removed when you exit Access.

If, while working with conditional watches, you fi nd a particular expression useful, you may want to write it down for

future use.

Using the Call Stack window
The last debugging tool we’ll examine is a bit more diffi cult to understand because it
involves “multiple dimensions” of execution. In many Access applications, you’ll have
procedures that call other procedures that call still other procedures. To my knowledge,
there is no practical limit on the number of procedures that can be sequentially called in a
VBA project. This means you may have a “tree” of procedures many levels deep, one level
of which is causing problems in your application. This situation is particularly true in the
case of an application that has been modifi ed many times, or when little thought was given
to optimizing how the code in the application is used.

Even so, some very carefully designed applications end up with deeply nested code, making
it diffi cult to understand how all the code ties together.

Imagine a function that performs a common operation (such as calculating shipping costs)
in an application. As a general rule, rather than include this function in every module in
the application, you’ll put the function into a single module, declare it with the Public
keyword so that it’s recognized and used by the entire application, and then call it from
whichever procedure needs a shipping costs calculation.

Furthermore, imagine that this application has many such functions and subroutines, each
calling the other, depending on the application’s logic at that moment. Finally, imagine
that users report that the shipping fee appears to be incorrectly calculated under some con-
ditions but not others.

You could single-step through all the code in the application, hoping to discover the cause
of the erroneous shipping fee. However, this approach wouldn’t be effi cient. You’d be much
better off setting a conditional watch on an important variable within the shipping fee
function, forcing the code to break when the condition is True. Then open the Call Stack
window, by choosing Call Stack from the View menu (see Figure 27.18), to view the path
that the VBA engine has taken to reach this particular point in the code.

The bottom entry in the Call Stack window (Chapter27.modCallStack1.Procedure1)
indicates that Procedure1 (contained in module modCallStack1) was the fi rst function
called. The entry above it (Chapter27.modCallStack2.Procedure2) indicates that

889

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 889

Procedure1 called Procedure2 (contained in modCallStack2) and so on. You can quite
easily trace the path that the VBA code has taken to reach the current breakpoint.

FIGURE 27.18

The Call Stack window shows you how the execution point reached its current position.

Double-click any of the items listed in the Call Stack to be taken to the statement that sent
execution to the next procedure. Using the Call Stack window in conjunction with condi-
tional watches enables you to stop code wherever relevant, and to diagnose how code has
executed up to the breakpoint.

Trapping Errors in Your Code
You can test and debug your code to your heart’s content, but you still won’t fi nd every
possible bug. All projects of a signifi cant size contain bugs that the developers were not
able to uncover during the testing and debugging phase of development. As a developer, it’s
your job to ensure that your program handles unexpected problems gracefully.

Understanding error trapping
When VBA encounters an error in your code, it raises an error. A number of things happen
when an error is raised, most notably the VBA engine looks for an On Error statement and
the Err object is created. You include the On Error keywords in your code when you want
VBA to act in a certain way when an error occurs.

On Error Resume Next

An On Error Resume Next statement instructs VBA to ignore any errors in the state-
ments that follow it and continue executing as if the error never happened. This can be a
very dangerous statement. If statements in your code rely on prior statements being
executed successfully, the errors will pile up and can cause a mess. Used judiciously,
however, On Error Resume Next can be very useful.

890

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 890

VBA contains an object called a Collection that can hold multiple items. When items are
added to a collection, the key associated with that item must be unique. If you try to add
a key that already exists, an error will occur. You can use this feature of the Collection
object with On Error Resume Next to get a unique list of items:

Sub IgnoringErrors()

 Dim colUnique As Collection
 Dim vaFruit As Variant
 Dim i As Long

 vaFruit = Array("Apple", "Pear", "Orange", "Apple", "Grape", "Pear")
 Set colUnique = New Collection

 For i = LBound(vaFruit) To UBound(vaFruit)
 On Error Resume Next
 colUnique.Add vaFruit(i), vaFruit(i)
 On Error GoTo 0
 Next i

 For i = 1 To colUnique.Count
 Debug.Print colUnique.Item(i)
 Next i

End Sub

In the preceding procedure, there is an array that contains duplicates. To get a list of items
in the arrays without the duplicates, each item is added to a collection and that item’s
name is also used as the key (the second argument to the Add method). When VBA encoun-
ters the colUnique.Add statement for an item that already exists in the collection, it
raises an error. The On Error Resume Next statement above that line instructs VBA to
ignore the error and continue processing. The duplicate item does not get added and only
unique items end up in the collection.

This procedure demonstrates how a known error can be suppressed to your advantage.
The very next line after the line that will generate an error instructs VBA to treat errors
normally. Resetting the error handler in this way ensures that you don’t suppress errors
unintentionally. It’s also a good practice to indent any statements between the On Error
statements to provide a visual cue about which errors should be suppressed.

On Error Resume Next suppresses all errors that would otherwise cause the code to stop. While it can be

useful to suppress particular errors, it doesn’t know the difference between the error that you want to ignore and the

error that you unintentionally coded. Be sure to carefully debug the statements covered by On Error Resume
Next.

891

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 891

On Error Goto 0

In the preceding example, you used On Error Resume Next to ignore any errors. If you
don’t tell it otherwise, VBA will continue ignoring errors for the rest of the subroutine,
which may not be what you want. In that example, the On Error Goto 0 statement
was used a few lines later to reset the error handler to the default. If no On Error
statement were included in the code, VBA would break on any error and display a
message. The On Error Goto 0 statement does the same thing. Typically, it’s used
with On Error Resume Next to return the error handler back to the default state after
intentionally suppressing a particular error.

On Error Goto Label

The most common use of On Error is to direct the program fl ow to a label
 in your procedure. Labels are special statements that provide anchors in your code.
Labels are text followed by a colon and cannot be indented. When VBA raises an error
after On Error Goto Label, the program branches to the line just below the label and
continues executing.

Sub BranchError()

 Dim x As Long

 On Error GoTo ErrHandler

 x = 1 / 0

 Debug.Print x

ErrHandler:
 MsgBox "An error occurred"

End Sub

In this simple example, an error is generated by attempting to divide by zero. When the
error is raised, VBA branches to the line below ErrHandler:, displays a message box, and
continues on to the End Sub statement. The Debug.Print statement is never executed.

The Resume keyword

We’ve seen how Resume Next can be used with On Error to ignore certain errors.
Resume can also be used on its own. Used alone, Resume branches the program back to the
line that caused the error and the error is re-raised. This is useful when you want to handle
errors but have the option of inspecting the line that caused the error, but it can cause an
infi nite loop of raising errors and resuming if you’re not careful.

Resume can also be used with a label to branch program execution elsewhere. Generally,
Resume Label branches to a part of the code that performs clean-up duty and exits the

892

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 892

procedure. A label is a special line in VBA code that ends with a colon (:). Labels are like
bookmarks or anchors in your code—they’re places that you can jump to, such as when
using a Resume statement.

Sub ErrorResumeOptions()

 Dim x As Long
 Dim lResp As Long

 On Error GoTo ErrHandler

 x = 1 / 0

 Debug.Print x

ErrExit:
 Exit Sub

ErrHandler:
 lResp = MsgBox("Do you want to inspect the error?", vbYesNo)
 If lResp = vbYes Then
 Stop
 Resume
 Else
 Resume ErrExit
 End If

End Sub

Like the previous example, this code intentionally raises an error by attempting to divide
by zero. The error handler is called and the program is branched to ErrHandler:. Inside
the error handler, the user is asked whether he would like to inspect the error. Clicking No
on the message box executes the Resume ErrExit statement, and execution is branched
to that label where Exit Sub is executed. Clicking Yes fi rst executes a Stop statement.
Without the Stop statement, Resume would send program execution back to the line that
caused the error, the error would be raised again, and the program would head back to the
error handler. Stop allows the developer to step through the code line-by-line, fi rst exe-
cuting Resume to see what line caused the error, and then inspecting variables to diagnose
the problem.

The Err object
In addition to raising an error and branching based on On Error, VBA also creates an Err
object that contains information about the error. In fact, the Err object is always present,
even when no error has been raised. When VBA encounters an error, regardless of whether
there is error handling in place, the Number property of the Err object is set to the num-
ber of the error that occurred. When no error has been encountered, Number is zero.

893

Chapter 27: Debugging Your Access Applications

27

c27.indd 10/06/2015 Page 893

The Err object also has a Description property. The error number may not be meaningful to
you, but the Description property generally helps you identify the error.

Including error handling in your procedures
Some procedures are so trivial that error handling is not needed. For all other procedures,
you should include some error handling to avoid having your users thrust into the VB
Editor when an unexpected error occurs.

Your error handling technique should include an On Error Goto Label statement near
the top of the procedure, suspension of the error handling in the code when needed, an
exit label that cleans up any in-process variables, and an error handling label that displays
the error and controls program fl ow.

Here’a a typical procedure with error handling:

Sub ATypicalErrorHandler()

 Dim statements

 On Error GoTo ErrHandler

 Multiple statements

 On Error Resume Next
 Intentional errors to ignore
 On Error GoTo ErrHandler

 Multiple statements

ErrExit:
 Clean up code
 Exit Sub

ErrHandler:
 MsgBox Err.Description, vbOKOnly
 If gbDebugMode Then
 Stop
 Resume
 Else
 Resume ErrExit
 End If

End Sub

The procedure starts with On Error Goto ErrHandler, which directs the program to
the ErrHandler label if an unexpected error occurs. In the middle of the procedure is an

894

Part VI: Access Programming Fundamentals

c27.indd 10/06/2015 Page 894

example of stopping the error handler using On Error Resume Next to trap an inten-
tional error. The error handler is restarted after the statements with the intentional errors.
Above the error handling section, the clean-up and exiting statements are executed. If
there are no errors, this code will be run and the procedure will complete without running
the error handling code.

The error handling section displays a message using the Description property of the
Err object. There is a global variable, gbDebugMode, that the developer can set to True
during debugging and False when the application is sent to the users. If gbDebugMode
is True, the program stops and the developer can step through the code to investigate
the error. Otherwise, the Err Exit portion of the code is executed and the user sees only
the message box.

c28.indd 10/07/2015 Page 895

Part VII

Advanced Access

Programming Techniques

IN THIS PART

Chapter 28
Accessing Data with VBA

Chapter 29
Advanced Data Access with VBA

Chapter 30
Customi zing the Ribbon

Chapter 31
Preparing Your Access Application for
Distribution

c28.indd 10/07/2015 Page 896

897

c28.indd 10/07/2015 Page 897

 CHAP T ER

28
Accessing Data
with VBA

IN THIS CHAPTER

Working with Access data

Examining the ADO object model

Looking at DAO objects

Updating a table with VBA code

D
ata access and data management are at the core of any database application. Although you can
do a fi ne job building applications with bound forms, using Visual Basic for Applications (VBA)
code to access and manipulate data directly provides far greater fl exibility than a bound appli-

cation can. Anything that can be done with bound forms and controls can be done with a bit of VBA
code using ActiveX data objects (ADO) or data access objects (DAO) to retrieve and work with data.

The VBA language offers a full array of powerful commands for manipulating records in a table, pro-
viding data for controls on a form, or just about anything else. This chapter provides some in-depth
examples of working with procedures that use SQL and ADO to manipulate database data.

In the Chapter28.accdb database, you’ll fi nd a number of forms to use as a starting point and other completed

forms to compare to the forms you change in this example.

Working with Data
The fi rst thing to note when discussing data access objects is that the DAO and ADO object mod-
els are separate from the Access object model. DAO and ADO represent the objects managed and
“owned” by the Access database engines (ACE or Jet), which are software components installed
along with Offi ce. In the past, Excel (with the MSQuery add-on) and Visual Basic (the stand-alone
application development product) could directly use the Jet database engine or access it through
open database connectivity (ODBC) or Microsoft Query.

ON THE WEB

898

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 898

Using Access VBA enables you to manipulate your database objects behind the scenes, giv-
ing you a great amount of fl exibility within your applications. Access provides two differ-
ent object models for working with data: ADO and DAO.

ADO is the newer of the two syntaxes. It’s based on Microsoft’s ActiveX technology, which
provides the basis for independent objects that perform complex tasks without input from
their hosts. When applied to ADO, the ActiveX objects are able to perform a wide variety
of data access tasks without hampering Access in any way. Because ADO objects are quite
powerful, the ADO object model (meaning, the ADO object hierarchy) is fairly sparse. Only
a few objects are needed to perform virtually all data access tasks in Access applications.

Prior to ADO, the data access object model supported by Access was DAO. Unlike ADO, DAO
objects are simple and direct, and they are part of a more complex hierarchy of objects. In
recent versions, Microsoft has revived DAO by building it into the Access Database Engine.

The distinction between Access and DAO is important because Access’s user interface tends
to blur the line between objects belonging to Access and those belonging to the database
engine. There are some features available in code that you may think are data access objects
but are really features of Access, and vice versa. In code, you’ll have to develop with this
distinction in mind. For example, ADO and DAO objects have many built-in properties and
methods; other properties are added by Access.

In any case, working with ADO and DAO in VBA procedures provides you with much greater
fl exibility than dealing strictly with forms and reports bound to queries and tables. As
you’ll see in the rest of this chapter, relatively few lines of ADO or DAO code perform
complex operations on data, such as updating or deleting existing records, or adding new
records to tables. Using VBA code means that an application can respond to current condi-
tions on a form, such as missing or incorrect values. It’s quite easy to perform ad hoc que-
ries against data that would otherwise require complex queries with many parameters.

Entire books—big books—have been written on the topics covered in this chapter. All we
can do in this chapter is provide you with some fundamental examples of using ADO and
DAO in Access applications, and, coupled with the material in the other chapters in this
book, you should be well prepared to incorporate VBA-based data management in your
Access applications.

ADO and DAO are not equivalent in every regard. Both syntaxes enable you to add to or modify the data in tables,

build recordsets, work with data in recordsets, and populate forms with data. However, ADO has a distinct edge when

it comes to working with external data sources. As you’ll soon see, ADO requires a provider that defi nes the data

source used by the ADO objects in an application. ADO providers are specifi c to the data source, such as SQL Server

or Access. The provider endows the ADO objects with special abilities (such as the ability to test the connection to

the data source), depending on the underlying data sources. DAO, on the other hand, is a more generic data access

syntax and is not specifi c to any one data source. ADO is the logical choice where advanced data access tasks must

be performed, while DAO is very good at routine querying, updating, and other data tasks.

899

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 899

28

The following sections describe each of these objects and explain how each object adds to
the ADO data access capabilities.

Although Access is not strictly object oriented, it is most certainly object based. The
remainder of this chapter describes the object models you use in VBA code to perform data-
management tasks in your Access applications. An object model is simply the arrangement of
the objects that perform the data-management tasks. A sound understanding of the ADO and
DAO object models is an essential requirement when using VBA code to manage Access data.

Many of the objects described in this chapter contain a collection of zero or more objects. A
collection is a container holding all the members of a certain type of object. (A collection is,
itself, an object.)

A collection is like a stack of baseball cards. Each card in the stack is different from all the
other cards, but all baseball cards have certain characteristics (like size, the statistics printed
on the back, and so on) in common. In Access, a recordset object (either ADO or DAO) contains
a collection of field objects. Every recordset object shares certain characteristics with all other
recordset objects, and every fi eld object is similar to all other fi elds in certain ways.

The name of a collection is almost always the plural of the object type within the
 collection. Therefore, a Fields collection contains a number of different Field objects.

It’s important to know when a term applies to an object of the same name or is just the name of a general category of

database items. In this book, a capitalized word like Field refers to a Field object, in contrast to field (lowercase),

which is a generic reference to any fi eld in any table. Similarly, Fields means a Fields collection, while fields refers

to a number of different fi elds.

Each ADO or DAO object comes with a collection of properties and methods. Each property
or method provides you with a way to defi ne the object, or represents an action you use to
direct the object to perform its job.

An object’s Properties collection is made up of a number of Property objects. Each
Property object has its own set of properties. Properties can be referenced directly, cre-
ated through the Access interface, or created by a user and added to the Properties
collection. You generally refer to a property in this way: ObjectName.PropertyName. For
example, to refer to the Name property of a fi eld, the syntax would be as follows:

MyField.Name

Methods are a little different. A method is an action an object can perform, or is an action
performed on an object. The purpose of a data access object is to manipulate or display
data in a database; therefore, each object must have some way to act upon that data. You
can’t add or delete methods in the ADO or DAO objects. (This is one of the several ways
that Access is not truly object oriented.) You can only invoke the method on the object. For

900

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 900

example, the following code places the record pointer of the recordset MyRecordset at the
next record:

MyRecordset.MoveNext

Like properties, every ADO and DAO object has a set of methods applicable to that object.

If you ever need to know more about an ADO or DAO object, use the Object Browser (see
Figure 28.1). Open the Object Browser from within the VBA Editor by pressing F2 or by choos-
ing View ➪ Object Browser from the menu in the VBA editor window. The Object Browser lets
you examine each object’s methods and properties and the arguments you can expect when
using them. The Object Browser is used by all Microsoft applications that feature VBA as
their language engine.

FIGURE 28.1

The Object Browser provides a view into an object’s properties and methods.

Selected object MethodMethod syntax Event

PropertyLibrary drop-down list

The Object Browser is easy to use. Select a library (ADODB, for example) from the drop-
down list in the upper-left corner; then scroll through the object list on the left side of
the browser to fi nd an object of interest. Selecting an object fi lls the right-side list with

901

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 901

28

the object’s properties, methods, and events (if applicable). Clicking a property, method, or
event reveals the item’s syntax in the area below the lists.

Although the Object Browser doesn’t show specifi c code examples, very often seeing the
syntax associated with the property, method, or event may be enough to get you started
writing VBA code, or to clarify the object’s details.

Understanding ADO Objects
We’ll begin our explanation of the ActiveX Data Objects by examining the ADO object model
and describing the purpose of each object. Then we’ll look at a number of code examples
that use the ADO objects to perform common database tasks.

The ADO object model is shown in Figure 28.2. As you can see, the ADO object model is
quite simple and includes only a few types of objects. Notice that the ADO object model
is not hierarchical. Each object stands alone and is not subordinate to another object in
the model.

FIGURE 28.2

The ADO object model.

Using ADO objects requires a reference to the ADO library. Figure 28.3 shows the References
dialog box (opened by choosing Tools ➪ References in the VBA editor window) with the
ADO library (Microsoft ActiveX Data Objects) selected. The exact version of the ADO library
installed on your machine may vary, and, in fact, there may be more than one ADO library
in the References dialog box. Select the highest-numbered library if you want to use the
latest version available to Access. You may want to select a lower-numbered library to
maintain compatibility with an existing system.

902

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 902

FIGURE 28.3

Referencing the ADO library.

In the following code examples, notice that all the ADO object variables are referenced
as ADODB object types. Although not entirely necessary, prefi xing object type names
with a library reference clears up any ambiguity that Access might have regarding the
type of object referenced by the VBA statements. For example, both ADO and DAO sup-
port a Recordset object. Unless the object type declaration is prefi xed with either
ADODB or DAO, Access may misunderstand which type of recordset is referenced in a
VBA statement.

The ADO Connection object
As its name suggests, the Connection object provides a connection to a data source.
Having access to a data source is necessary for any data operation, so the Connection
object is required in virtually any scenario involving ADO.

After the ADO library has been referenced, creating a Connection object is simple (the
ADO library is referenced as ADODB in VBA code):

Dim adConn as ADODB.Connection
Set adConn = New ADODB.Connection

These two statements are typical of VBA’s approach to object-oriented programming. In the
fi rst statement, an object variable (adConn) is established as an ADODB.Connection object
type. This means that VBA recognizes adConn as a Connection, with all the properties
and methods associated with Connection objects, as defi ned by the ADO library. However,
at this point, adConn is just a placeholder—it doesn’t yet exist in memory.

903

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 903

28

The second statement instantiates the adConn object variable. As this statement executes,
VBA creates a Connection object in the computer’s memory, points the adConn variable to
the object in memory, and prepares it for use.

The Connection must be opened before it can be used. The following statement is the
easiest way to open an ADO Connection:

adConn.Open CurrentProject.Connection

In this case, the Connection connects to the current database. As you’ll soon see, a
Connection object requires a number of properties to be set before it can successfully
open, but opening a Connection on the current database’s Connection property provides
all those settings. CurrentProject.Connection is actually a long string (specifi cally, a
connection string) that includes all the information needed about the current database. A
typical Connection property setting is as follows:

Provider=Microsoft.ACE.OLEDB.12.0;User ID=Admin;
Data Source=C:\...\Chapter28.accdb;
Mode=Share Deny None;Extended Properties="";
Jet OLEDB:System database=C:\...\Microsoft\Access\System.mdw;
Jet OLEDB:Registry Path=Software\...\Access Connectivity Engine;
Jet OLEDB:Database Password="";
Jet OLEDB:Engine Type=6;
Jet OLEDB:Database Locking Mode=1;
Jet OLEDB:Global Partial Bulk Ops=2;
Jet OLEDB:Global Bulk Transactions=1;
Jet OLEDB:New Database Password="";
Jet OLEDB:Create System Database=False;
Jet OLEDB:Encrypt Database=False;
Jet OLEDB:Don't Copy Locale on Compact=False;
Jet OLEDB:Compact Without Replica Repair=False;
Jet OLEDB:SFP=False;
Jet OLEDB:Support Complex Data=True;
Jet OLEDB:Bypass UserInfo Validation=False;
Jet OLEDB:Limited DB Caching=False;
Jet OLEDB:Bypass ChoiceField Validation=False

Line breaks have been added above for clarity, and some lines have been shortened.

This is actually considerably more than the Connection object actually needs, but
Microsoft wanted to make sure nothing was missing.

Notice the Data Source portion of the ConnectionString property. This is the part that
points to a specifi c ACCDB fi le. Changing this path means the Connection object can open
virtually any Access database as long as the path is valid and terminates at an ACCDB fi le.

904

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 904

The following procedure opens a Connection against the current database, prints the
Connection object’s Provider property, and then closes and discards the Connection
object:

Public Sub OpenConnection()

 Dim adConn As ADODB.Connection

 Set adConn = New ADODB.Connection
 adConn.Open CurrentProject.Connection

 ' Connection is open
 Debug.Print adConn.Provider

 adConn.Close
 Set adConn = Nothing

End Sub

When working with ADO, it’s very important to close an object (if the object supports a
Close method) and set it to Nothing when your code is done with the object. ADO objects
tend to stay in memory once they’ve been opened, and must be explicitly closed and dis-
carded (set to Nothing) to clear them from memory. If an ADO object is not properly termi-
nated, it may remain in memory causing problems for users.

A Connection object requires the provider information and the data source. The provider
specifi es which ADO provider (essentially a driver) to attach to the Connection object. For
example, there are providers for SQL Server databases: one for the Jet database engine, and
another for the ACE database engine. Each provider knows how to connect to a different
type of data and endows the Connection object with features specifi c to the data source.

The downside to the Connection object, and one that causes a lot of problems for Access
developers, is the correct syntax to use for the Connection object’s ConnectionString
property. The ConnectionString must be properly composed and must reference a pro-
vider that is installed on the local machine.

One way to get the correct connection string syntax is to use Excel’s Get External Data fea-
ture to get data from Access. Pick a small table in your Access database to bring into Excel
and inspect the connection string under the Connection’s properties. Figure 28.4 shows the
Connection Properties dialog box.

You may notice from Figure 28.4 that the tblCustomers table from Chapter28.accdb was
used. It’s a smaller table, so it takes less time to import into Excel. Since we’re just using it
so that Excel creates the connection string, it doesn’t matter which table is used.

You can copy the connection string from the Connection Properties dialog box with the
Ctrl+C keyboard shortcut and paste it into your VBA code.

905

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 905

28

FIGURE 28.4

Use Excel’s Get External Data feature to create a connection string.

When you paste strings into VBA code, any double quotes in the strings will cause compiler errors until they are

escaped. To escape a double quote simply use two double quotes together. The string ExtendedProperties=""

becomes ExtendedProperties="""". Each double quote becomes two double quotes.

The connection strings in the fi gures include the path to the database. The path to your database will surely be differ-

ent from the path to mine. Be sure to use the correct path for your computer.

The ADO Command object
The second major ADO topic is the Command object. As its name implies, a Command object
executes a command against the data source opened through a Connection. The command
can be as simple as the name of an Access query or as complex as a long SQL statement that

906

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 906

selects dozens of fi elds and includes WHERE and ORDER BY clauses. In fact, the Command
object is the most common way to execute SQL Server stored procedures from Access
applications.

As you’ll see later in this chapter, the output from executing a Command object can be
directed into a recordset. The data in the recordset can then be used to populate a form or
controls such as text boxes, combo boxes, and list boxes.

There are many, many ways to use Command objects. The following procedure is just one
example of using a Command object. In this case, the Command object populates a recordset
with data taken directly from tblCustomers. (Recordsets are discussed in the next sec-
tion.) The following procedure, ExecuteCommand, is included in modADO_Commands in the
Chapter 28.accdb example database:

Public Sub ExecuteCommand()

 Dim adRs As ADODB.Recordset
 Dim adCmd As ADODB.Command

 Const sTABLE As String = "tblCustomers"

 Set adRs = New ADODB.Recordset
 Set adCmd = New ADODB.Command

 adCmd.ActiveConnection = CurrentProject.Connection
 adCmd.CommandText = sTABLE

 Set adRs = adCmd.Execute

 Debug.Print adRs.GetString

 adRs.Close
 Set adRs = Nothing
 Set adCmd = Nothing

End Sub

Notice the following actions in this procedure:

 ■ A Recordset and a Command object are both declared and instantiated.

 ■ The Command object’s ActiveConnection property is set to the current project’s
Connection property.

 ■ The Command object’s CommandText property is set to the name of a table in
the database.

907

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 907

28

 ■ The recordset is populated by setting it to the value returned when the Command
object is executed.

Notice the use of the recordset’s GetString method. GetString is a handy way to output
everything that’s in the recordset. Figure 28.5 shows the output from ExecuteCommand in
the Immediate window.

FIGURE 28.5

GetString is a convenient way to see what’s in a recordset.

 The Immediate window is thoroughly discussed in Chapter 27.

This little example illustrates the basics of what you need to know about ADO Command
objects. A Command object must be attached to an available Connection through its
ActiveConnection property. The ActiveConnection can be a connection string or
an open Connection object. It doesn’t make any difference where the Connection is
pointing—an Access or SQL Server database, Oracle or any other data source. The Command
object uses the Connection’s special knowledge of the data source to get at the data.

Command objects are most valuable when working with parameterized queries. Each
Command object includes a Parameters collection containing, naturally, Parameter
objects. Each parameter corresponds to a parameter required by the query or stored proce-
dure referenced by the Command’s CommandText property.

Very often the CommandText property is set to a SQL statement that includes parameters:

SELECT * FROM tblCustomers
WHERE State = 'NY' OR State = 'NJ';

You’ll see many examples of using the ADO Command object to populate recordsets and
 perform actions on data throughout this book.

908

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 908

The ADO Recordset object
Recordset is a very versatile ADO object. Most often, it’s populated by executing a
Command or directly through its Open method. Open_ADO_Recordset illustrates how easily
the Recordset object opens an Access table:

Public Sub Open_ADO_Recordset()

 Dim adRs As ADODB.Recordset

 Set adRs = New ADODB.Recordset

 adRs.Open "SELECT * FROM tblCustomers;", _
 CurrentProject.Connection

 Debug.Print adRs.GetString

 adRs.Close
 Set adRs = Nothing

End Sub

In this example, the recordset is populated by selecting records from the Customers table
using a SQL statement. The SQL statement could include WHERE or ORDER BY clauses to
fi lter and sort the data as it’s selected.

An alternative way to write this procedure is to use a separate statement for assigning the
ActiveConnection property:

Public Sub Open_ADO_Rs_Connection()

 Dim adRs As ADODB.Recordset

 Set adRs = New ADODB.Recordset
 adRs.ActiveConnection = CurrentProject.Connection

 adRs.Open "SELECT * FROM tblCustomers;"

 Debug.Print adRs.GetString

 adRs.Close
 Set adRs = Nothing

End Sub

Many developers prefer the approach in Open_ADO_Rs_Connection because it’s easier to
see exactly what’s happening to the Recordset object and where its properties are being
set. Although these very small procedures are easily understood, in larger code segments

909

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 909

28

fi nding all the references to an object like adRs can be challenging, especially when the
VBA statements become long and complex.

As with the other ADO objects, a Recordset object must be declared and instantiated.
Like the Command object, if the Open method is used to populate a Recordset object, an
open connection must be provided as an argument to the Open method.

Recordset objects are used in many different places in this book. Depending on con-
text, the most commonly used Recordset methods include Open, Close, MoveFirst,
MoveNext, MovePrevious, and MoveLast.

 Open_ADO_Recordset and Open_ADO_Rs_Connection are included in modADO_Recordsets in the

Chapter28.accdb example database.

Navigating recordsets

Recordsets wouldn’t be much use if all you could do is open and close them, or if the
GetString method were the only way to use the data in a recordset. Depending on con-
text, the word recordset means several different things:

 ■ The rows of data returned by a query

 ■ The data bound to an Access form

 ■ The object fi lled with data as the result of an ADO operation

In all cases, however, a recordset is a data structure containing rows and columns of data.
The rows, of course, are records, while the columns are fields.

It makes sense that ADO provides ways to navigate through a recordset. When viewing a
table or query results as a datasheet, you can use the vertical and horizontal scroll bars or
arrow keys to move up and down, left and right, through the Datasheet view of the record-
set. It’s not surprising, then, that ADO Recordset objects support methods for moving
through the records contained in a recordset.

The following procedure, RecordsetNavigation, demonstrates the fundamental ADO record-
set navigation methods. (As you’ll see in the “Understanding DAO Objects” section, later in
this chapter, DAO recordsets support identically named methods.)

Public Sub RecordsetNavigation()

 Dim adRs As ADODB.Recordset

 Set adRs = New ADODB.Recordset
 adRs.ActiveConnection = CurrentProject.Connection

 adRs.CursorType = adOpenStatic

910

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 910

 adRs.Open "SELECT * FROM tblCustomers;"

 Debug.Print adRs!CustomerID, adRs!Company

 adRs.MoveNext
 Debug.Print adRs!CustomerID, adRs!Company

 adRs.MoveLast
 Debug.Print adRs!CustomerID, adRs!Company

 adRs.MovePrevious
 Debug.Print adRs!CustomerID, adRs!Company

 adRs.MoveFirst
 Debug.Print adRs.Fields("CustomerID").Value, _
 adRs.Fields("Company").Value

 adRs.Close
 Set adRs = Nothing

End Sub

This procedure begins by opening a Recordset object populated with data from
tblCustomers. It immediately displays the CustomerID and Company from the very fi rst
record; then it moves around the recordset a few rows at a time, displaying the CustomerID
and Company for each record along the way. It ends by returning to the fi rst record and
displaying its data. The output produced by RecordsetNavigation is shown in Figure 28.6.

FIGURE 28.6

Demonstrating recordset navigation.

Obviously, this is a trivial example meant to demonstrate how easily ADO recordsets can be
navigated. As a developer, you’re free to work with any record in the recordset, moving up
and down the rows as needed.

Recordsets support the concept of a current record pointer. Only one record at a time within
a recordset is current. When you make changes to a recordset or navigate through its rows,
your code affects only the current record.

911

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 911

28

The RecordsetNavigation procedure also demonstrates two methods for referencing indi-
vidual fi elds within a record: using the bang operator (!) and the Fields collection. After
moving to a row, individual fi elds are referenced as members of the recordset. Access works
on just one record at a time, so any reference to a fi eld evaluates to the fi eld within the
current record.

Understanding CursorType

In the RecordsetNavigation procedure, notice the recordset’s CursorType property.
In this example, it’s set to adOpenStatic. There are several settings for CursorType;
adOpenStatic means to open the recordset with a static type cursor. Access uses a cursor
to keep track of the current record in a recordset. A static cursor means that new records
can’t be added to the recordset—that is, the data in the recordset is static. Static cursors
are ideal when the purpose of the recordset is to review data in the underlying tables and
adding new records is not necessary.

Table 28.1 shows the permissible values for CursorType.

TABLE 28.1 CursorType Values

Value Effect of CursorType

adOpenDynamic A dynamic cursor supports all navigation methods, and the recordset
is completely editable. New records can be added and existing
records can be edited. Changes made by other users are refl ected in
the recordset currently in memory.

adOpenForwardOnly The recordset is opened as a static copy of the underlying data, and
new records can’t be added. The recordset also won’t refl ect
changes made to the underlying tables by other users. Most impor-
tant, only the MoveNext and MoveLast methods are valid against a
forward-only recordset.

adOpenKeyset Supports full navigation and records are editable. However, records
added or deleted by other users are not seen.

adOpenStatic Opens a static recordset that does not show changes made to the
underlying tables by other users. Similar to a forward-only cursor,
except that all navigation methods are valid

Each type of cursor has a specifi c effect on the data contained in a recordset. For example,
you wouldn’t want to use a forward-only cursor on data where the user expects to be able
to move forward and backward through the data. A forward-only recordset is most often
used for updating records as a bulk operation, such as updating area codes or tax rates in a
number of records.

912

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 912

On the other hand, it doesn’t make sense to use a dynamic cursor (adOpenDynamic) for sim-
ple tasks such as scanning a recordset for updates. A dynamic cursor keeps track of changes
by the current user and changes in the underlying tables. A dynamic cursor is, therefore,
slower and requires more memory and CPU cycles than a simpler forward-only cursor.

Detecting the recordset end or beginning

The MovePrevious and MoveNext methods move the current record pointer one row
through the recordset. If the pointer is at the very fi rst or very last record, these methods
move the pointer off the beginning or end of the recordset without raising an error. When
you’re navigating a recordset, you need to be sure the current record pointer is resting on a
valid record before referencing data or executing an action on the record.

The ADO Recordset object supports two Boolean properties, EOF and BOF, that indicate
when the current record pointer is at the end or beginning (respectively) of the recordset.
(EOF and BOF are acronyms for end of file and beginning of file.) EOF and BOF are both False
when the record pointer is on a valid record. EOF is True only when the record pointer is off
the end of the recordset, and BOF is True only when the pointer is off the beginning of the
recordset. EOF and BOF are both True only when the recordset contains no records at all.

The Use_EOF_BOF procedure illustrates using EOF and BOF in an ADO Recordset:

Public Sub Use_EOF_BOF()

 Dim adRs As ADODB.Recordset

 Set adRs = New ADODB.Recordset
 adRs.ActiveConnection = CurrentProject.Connection
 adRs.CursorType = adOpenStatic

 adRs.Open "SELECT * FROM tblCustomers " _
 & "WHERE State = 'NY' " _
 & "ORDER BY Company;"

 Debug.Print "RecordCount: " & adRs.RecordCount

 If adRs.BOF And adRs.EOF Then
 Debug.Print "No records to process"
 Exit Sub
 End If

 Do Until adRs.EOF
 Debug.Print adRs!Company
 adRs.MoveNext
 Loop

 adRs.MoveLast

 Do Until adRs.BOF

913

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 913

28

 Debug.Print adRs!Company
 adRs.MovePrevious
 Loop

 adRs.Close
 Set adRs = Nothing

End Sub

Previous examples in this chapter have included code like this. The main differences are
checking EOF and BOF state before executing the MoveLast and MovePrevious methods.
Notice that these properties change to True only after these methods have executed. When
moving toward the end of the recordset, the EOF value is checked after MoveNext has
executed (at the top of the Do Until loop).

Counting records

It’s often very useful to know how many records are in a recordset before beginning opera-
tions that may take a long time. A user may unwisely select criteria that return too many
records to handle effi ciently, and you may want your code to alert them before processing
a large recordset. Fortunately, ADO Recordset objects provide a RecordCount prop-
erty that tells you exactly how many records are present in the recordset. The following
UseRecordCount subroutine uses the RecordCount property to display the total records as
the recordset is processed:

Public Sub UseRecordCount()

 Dim adRs As ADODB.Recordset
 Dim lCnt As Long

 Set adRs = New ADODB.Recordset
 adRs.ActiveConnection = CurrentProject.Connection
 adRs.CursorType = adOpenStatic

 adRs.Open "SELECT * FROM tblCustomers;"

 Do While Not adRs.EOF
 lCnt = lCnt + 1
 Debug.Print "Record " & lCnt & " of " & adRs.RecordCount
 adRs.MoveNext
 Loop

 adRs.Close
 Set adRs = Nothing

End Sub

914

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 914

The RecordCount property is not valid for forward-only recordsets. Notice that the
CursorType is set to adOpenStatic in this code. If it’s set to adOpenForwardOnly, the
RecordCount property is set to –1 and does not change while the recordset is in memory.

RecordCount is a convenient way to determine whether a recordset contains any records
at all. The only issue with RecordCount is that, on large recordsets, RecordCount penal-
izes performance. The Recordset object actually counts the number of records it contains,
halting execution until the count is complete.

A much faster way to detect an empty recordset is determining whether EOF and BOF are
both True:

If adRs.BOF And rs.EOF Then
 Debug.Print "No records to process"
 Exit Sub
End If

If BOF and EOF are both True, the cursor is both before the fi rst record and after the last
record at the same time. That only can happen when there are no records.

 ADO Recordset objects include many capabilities not covered in this chapter. Many of the remaining

recordset features are covered in Chapter 29, while others are documented in various other chapters of

this book. The ADO Recordset object is a powerful tool for Access developers and deserves careful

study in a variety of contexts.

Understanding DAO Objects
DAO is the other Access data access object model. DAO has been included in Access since
the very beginning, and, although many of the examples in this book use ADO, you should
know both and choose the data access model that’s right for your application.

Unlike ADO, DAO objects are arranged in a hierarchical fashion. Certain objects are subordi-
nate to other objects, and they can’t exist without an instance of the superior object. The
top-level DAO object is DBEngine, and all other DAO objects are descendants of DBEngine
(see Figure 28.7).

Each of the most frequently used DAO objects is described later in this section.

Generally speaking, the DAO hierarchy closely follows the arrangement of Access database
objects. For example, an Access table (which is a TableDef object) contains fi elds (each of
which is a Field object). A fi eld has a set of properties you use to specify the details of its
data type, the default value, validation rules, and so on.

915

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 915

28

FIGURE 28.7

The DAO object model.

For clarity’s sake, the set of properties associated with each DAO object is left out of Figure 28.7. But you can safely

assume that every object in Figure 28.7 includes a number of properties.

Each DAO object also has a collection of properties appropriate for its object type. A
TableDef object may have some properties in common with a QueryDef, but each object
has properties that are unique to its object type. A QueryDef has a Name property, as does
a TableDef, but a QueryDef has a SQL property and a TableDef does not. The same is
true of methods. Each DAO object has actions that only it can perform. For example, an
action query defi ned by a QueryDef has an Execute method but a TableDef does not.
Learning which properties and methods apply to each DAO object is perhaps the biggest
challenge facing Access developers.

As you read the following sections, you’ll notice that details have been omitted from the discussions of each type

of data access object. Because of the numerous properties and methods associated with each DAO object, and the

many ways these objects are used in Access applications, it’s not possible to present a detailed description of the

entire DAO object model in a single chapter. Instead, examples of specifi c ways to use DAO (and ADO) are given

throughout this book. Please refer to the index to fi nd the chapters and sections in this book that discuss particular

data access objects.

916

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 916

Access 2007 introduced ACE (Microsoft Access Engine), a new database engine for the Offi ce products. ACE is why

Access 2007 through 2016 support advanced features such as attachment and multi-value fi elds. Because of the

new data types, ACE required an updated version of DAO (called ACEDAO) to support the new capabilities. The big-

gest differences between DAO and ACEDAO are the introduction of the Recordset2 and Field2 objects and new

properties and methods required to support the features introduced with Access 2007. The examples in this chapter

use ACEDAO, but the data access model is referred to as DAO for simplicity.The Access 2003 MDB format only sup-

ports DAO 3.6, not ACEDAO.

The DAO DBEngine object
The DBEngine object, the object representing the ACE engine, is at the very top of the DAO
hierarchy. It isn’t a member of any collection, and all collections are children of DBEngine.
There is only one instance of this object, and it’s one of the few data access objects that
you can’t create yourself. You open the DBEngine object when you start Access and issue a
DAO operation. It has relatively few properties and methods. For property changes to take
effect, they must be issued before a data access object operation has been performed; oth-
erwise, you’ll receive an error. Because DBEngine is at the top of the hierarchy, you almost
always begin a DAO code sequence with DBEngine.

The DAO Workspace object
A Workspace object represents an open, active session for each user working with Access.
All databases are opened within a workspace, either as a default database session or one
that has been created using the CreateWorkspace method of the DBEngine object.

If you choose to use transaction tracking (BeginTrans...EndTrans) within your application, these statements

include all recordsets opened within the current workspace. If you don’t want to use transactions with a particular

recordset, create a new workspace and open the recordset within the new Workspace object.

Security is also implemented from Workspace objects (but, only for the MDB fi le for-
mat). The security methods available to Workspace objects allow you to create your own
security interfaces and routines. If necessary, you can create users or groups using the
CreateUser or CreateGroup methods of the Workspace object.

The DAO Database object
A Database object represents a data source and is analogous to an ADO Connection
object. Access is able to directly open a number of different database formats. When you
work directly with the ACE or Jet database engines, your database could be any number of

917

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 917

28

sources, such as another ACCDB or an ODBC data source. The distinguishing feature is how
you set your database object variables.

The following code refers to the currently open Access database:

Dim daDb As DAO.Database
Set daDb = CurrentDb

CurrentDb is a method of the Access Application object, which represents the entire
Access environment and all its objects. CurrentDb is a fast, easy way to access the data-
base that the user is currently working with.

It’s also possible to open an Access database outside the current database:

Dim daDb As DAO.Database
Set daDb = OpenDatabase("C:\Northwind.mdb")

Notice that the OpenDatabase method accepts the path to an existing MDB or ACCDB fi le.
The OpenDatabase method may fail, depending on whether the external Access database
is available, or whether its current state prevents opening from another Access application.

As with ADO objects, be sure to prefi x DAO object type declarations with DAO so that Access
is clear as to which library to use when setting up the object.

ACEDAO objects use DAO as the prefi x, just as DAO 3.6 objects do.

The DAO TableDef object
The DAO TableDef object represents a table in an Access database. The table may be
local or linked to the current database. The following procedure (which is included in the
Chapter28.accdb example database) creates a new table named MyTempTable, adds three
text fi elds to it, and adds the table to the current database’s TableDefs collection.

Public Sub CreateNewTableDef()

 Dim daDb As DAO.Database
 Dim daTdf As DAO.TableDef

 Const sTABLENAME As String = "MyTempTable"

 Set daDb = Application.CurrentDb

 'Delete an existing table, but ignore the error
 'if table doesn't exist
 On Error Resume Next

918

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 918

 daDb.TableDefs.Delete sTABLENAME
 On Error GoTo 0

 ' Create a new TableDef object:
 Set daTdf = daDb.CreateTableDef(sTABLENAME)

 With daTdf
 ' Create fields and append them to the TableDef
 .Fields.Append .CreateField("FirstName", dbText)
 .Fields.Append .CreateField("LastName", dbText)
 .Fields.Append .CreateField("Phone", dbText)
 End With

 ' Append the new TableDef object to the current database:
 daDb.TableDefs.Append daTdf

 daDb.Close
 Set daDb = Nothing

End Sub

Running this code in the Chapter28.accdb database creates a new table named
MyTempTable, a permanent addition to the database. Notice that the CreateNewTableDef
procedure deletes this table if it exists, before creating it as a new TableDef. Access won’t
be able to append the new TableDef object to its TableDefs collection if a table with the
same name already exists in the database.

If a newly created TableDef (or other object) doesn’t appear in the Navigation pane, press F5 to refresh it.

 The CreateNewTableDef procedure includes two statements that control how Access handles errors in

this code. Chapter 27 discusses the VBA error handling statements, and explains why you’d use On

Error Resume Next and On Error GoTo 0 in a procedure such as this.

TableDef objects are stored in the TableDefs collection. The following procedure dis-
plays the names of all TableDef objects (including hidden and system tables) in the cur-
rent database:

Public Sub DisplayAllTableDefs()

 Dim daDb As DAO.Database
 Dim daTdf As DAO.TableDef

 Set daDb = CurrentDb

 With daDb

919

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 919

28

 Debug.Print .TableDefs.Count & _
 " TableDefs in " & .Name

 For Each daTdf In .TableDefs
 Debug.Print , daTdf.Name
 Next daTdf
 End With

 daDb.Close
 Set daDb = Nothing

End Sub

The DAO QueryDef object
A QueryDef object represents a saved query in an Access database. Using VBA code, you
can point a QueryDef object variable at an existing query (or create a new query), and
change the query’s SQL statement, populate parameters used by the query, and execute the
query. The query could be a select query that returns a recordset, or an action query that
modifi es code in the tables underlying the query.

Creating a QueryDef in code is similar to creating a TableDef except that the new
QueryDef doesn’t have to be explicitly appended to the database’s QueryDefs collection.
The CreateNewQueryDef procedure shown here creates a new QueryDef that queries records
from the Customers table:

Public Sub CreateNewQueryDef()

 Dim daDb As DAO.Database
 Dim daQdf As DAO.QueryDef

 Const sQRYNAME As String = "MyQueryDef"

 Set daDb = CurrentDb

 Set daQdf = daDb.CreateQueryDef(sQRYNAME, _
 "SELECT * FROM tblCustomers;")

 daDb.Close
 Set daDb = Nothing

End Sub

In fact, as soon at the CreateQueryDef method is executed, Access adds the new
QueryDef to the database. You must explicitly delete the QueryDef if you don’t want it to
appear in the Navigation pane:

CurrentDb.TableDefs.Delete "QueryDefName"

920

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 920

You could, if desired, create a QueryDef without a name. In this case, the new QueryDef
is not saved and does not show up in the Navigation pane. This technique might be useful,
for instance, if you’re fi lling a combo box or list box with data and you don’t want to create
a permanent QueryDef because the criteria changes every time the code is executed.

One time-honored advanced Access technique is dynamically changing an existing
QueryDef object’s SQL statement. Once the SQL property has been changed, the query
returns the recordset specifi ed by the new SQL statement:

Public Sub ChangeQueryDefSQL()

 CurrentDb.QueryDefs("MyQueryDef").SQL = _
 "SELECT * FROM tblProducts;"

End Sub

Notice that the ChangeQueryDefSQL procedure doesn’t declare any object variables, such
as daDb or daQdf, to refer to the Database or QueryDef. Instead, the procedure uses
CurrentDb to refer to the Database and accesses the SQL property directly on the object
returned by the QueryDefs property. It is advisable to use object variables for longer pro-
cedures, but for short procedures like this one, using CurrentDb directly is easier and can
actually improve readability.

It’s very easy to populate a DAO Recordset object directly from a QueryDef (see the next
section for more on the Recordset object). Notice how much simpler this procedure is
than the equivalent ADO process:

Public Function GetRecordset() As DAO.Recordset

 Dim daRs As DAO.Recordset
 Dim daQdf As DAO.QueryDef

 Set daQdf = CurrentDb.QueryDefs("MyQueryDef")

 'Open Recordset from QueryDef.
 Set daRs = daQdf.OpenRecordset(dbOpenSnapshot)

 daRs.MoveLast
 Debug.Print "Number of records = " & daRs.RecordCount

 Set GetRecordset = daRs

End Sub

The locally declared Recordset object (daRs) is assigned to the function just before
the function ends. This is one way for a procedure to build recordsets without having

921

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 921

28

to duplicate the code setting up the recordset and running the QueryDef every place a
recordset is needed by an application.

The DAO Recordset object
Recordset objects are declared and set to a particular table, query, or ODBC data source
within your application. Using a Recordset object’s methods you can update, edit, and
delete records, move forward and backward within the recordset, or locate specifi c records
using the Find and Seek methods.

A Recordset object can be a Table, a Dynaset, or a Snapshot type; the type you spec-
ify depends on your needs. For example, suppose you only wanted to scan through a table
to search for a particular value of a fi eld. A Snapshot, which is a read-only view of your
data, would probably be a good choice. Or maybe you’d like to query a table on the fl y, but
the query depends on user input. In this case, you might build a SQL statement based on an
input value, and use the SQL statement to build a Dynaset-type recordset.

You specify the type of recordset using the dbOpenTable, dbOpenDynaset, and
dbOpenSnapshot constants as arguments of the OpenRecordset method of a Database
object. The following example shows how to open a Snapshot-type recordset based on a
SQL string.

Dim daDb As DAO.Database
Dim daRs As DAO.Recordset
Dim sSql As String
sSql = "SELECT * FROM tblCustomers;"
Set daDb = CurrentDb
Set daRs = daDb.OpenRecordset(sSql, dbOpenSnapshot)

If you don’t explicitly choose a type of Recordset, Access uses what it believes to be the
most effi cient method. You can’t open an ODBC data source using the dbOpenTable option.
Instead, you must use the dbOpenDynaset and dbOpenSnapshot constants.

As you’ll see in many different places in this book, there are a number of different ways to
open DAO recordsets. The following procedure illustrates just one of these techniques. In
this particular example, the recordset is created directly against tblCustomers, and each
fi eld in every row in the table is displayed in the debug window (the Field object and
Fields collection are discussed in the next section):

Public Sub OpenDAORecordset()

 Dim daDb As DAO.Database
 Dim daRs As DAO.Recordset
 Dim i As Long

 Set daDb = CurrentDb

 'Open recordset directly against a table:

922

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 922

 Set daRs = daDb.OpenRecordset("tblCustomers")

 Debug.Print "Table-type recordset: " & daRs.Name

 ' Enumerate records.
 Do While Not daRs.EOF
 For i = 0 To daRs.Fields.Count - 1
 Debug.Print daRs.Fields(i).Name & ": " & daRs.Fields(i).Value
 Next i

 Debug.Print

 daRs.MoveNext
 Loop

 daRs.Close
 Set daRs = Nothing
 Set daDb = Nothing

End Sub

The DAO Field objects (recordsets)
Field objects within recordsets represent a column of data from a table or returned by a
query. Recordset Field objects differ from their TableDef and QueryDef counterparts in
that they actually contain a data value. Each TableDef object contains a Fields collec-
tion containing the data held within the table represented by the TableDef.

You’ll see many, many references to DAO (and ADO) fi elds in this book, so there isn’t
much to discuss at this point. In the meantime, it’s enough to know that the DAO Field
object supports many more properties than are visible in the Access Table Designer. The
Chapter28.accdb example database includes the following procedure that enumerates all
the “valid” properties of the Company fi eld in tblCustomers:

Public Sub DisplayFieldProperties()

 Dim daDb As DAO.Database
 Dim daTdf As DAO.TableDef
 Dim daFld As DAO.Field
 Dim daProp As DAO.Property

 Set daDb = CurrentDb
 Set daTdf = daDb.TableDefs("tblCustomers")

 Set daFld = daTdf.Fields("Company")

 Debug.Print "Properties in Company field:"

 For Each daProp In daFld.Properties

923

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 923

28

 On Error Resume Next
 Debug.Print Space(2) & daProp.Name & " = " & daProp.Value
 On Error GoTo 0
 Next daProp

 daDb.Close

End Sub

Not every property associated with a Field object is valid at a particular time. Some prop-
erties are set only after the fi eld contains data, or when the fi eld is involved in an index.
For example, the Value property of the Field object cannot be referenced directly from
code. Instead, you set or get the value of a fi eld only through the fi eld’s membership in a
Recordset object. The On Error Resume Next statement allows this code to run, in
spite of invalid properties. The errors that may occur when invalid properties are referenced
by this code are ignored.

Deciding between ADO and DAO
Given the obvious similarities between ADO and DAO, you might be confused as to which syntax to
choose for new Access applications. (We’re assuming that existing Access applications already specify
either ADO or DAO.) After all, Microsoft continues to support ADO and DAO, and it has introduced
ACEDAO for more recent versions of Access. So, which is best for your applications?

As with everything else in database development, the answer depends on your specifi c situation. In
spite of its more complex object model, DAO is somewhat faster and easier for certain tasks. Because
DAO doesn’t require a connection string, DAO code tends to be simple and easy to write. Very often a
successful DAO procedure can be written strictly from memory, without having to look up the syntax in
a book or online. DAO is also somewhat faster than ADO, especially when working with small datasets.

ADO, on the other hand, excels when connecting to external databases, whether the data source is
another Access application or a SQL Server database. Depending on the referenced provider, ADO
connections include properties that tell you the connection’s state (open, connecting, disconnected,
and so on). This information can be extremely valuable in some situations.

There is no problem including both ADO and DAO code in the same application—but you can’t use
DAO and ACEDAO in the same project. Just be sure to prefi x object references with DAO (or ACEDAO),
or ADODB, depending on the object syntax you’re using.

In many cases, the decision to use DAO or ADO depends on the example code you might fi nd to
use in your application. There are, literally, thousands of VBA code examples available using either
DAO or ADO. From a purely technical standpoint, there is no compelling reason to use either DAO or
ADO. The only exception is when working with SQL Server data. Because Microsoft provides a native
ADO provider for SQL Server, ADO is clearly the better choice when working with SQL Server. Once
a connection is established to the SQL Server database, the ADO Command object is the ideal way to

Continues

924

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 924

invoke a stored procedure or run an ad hoc query against SQL Server tables. In a SQL Server context,
ADO will almost always be faster and more effi cient than DAO because DAO’s access to SQL Server
is limited to using an OLEDB data source pointing to the SQL Server database.

In case you’re wondering, ACEDAO is the default data access library in Access 2016. Every new Access
2016 database is created with a reference set to the Microsoft Offi ce 15.0 Access Database Engine
Object Library (ACEDAO) already in place. If you want to use ADO in your Access 2016 applications,
you’ll have to manually add a reference to the Microsoft ActiveX Data Objects 6.1 Library.

Writing VBA Code to Update a Table
Updating data in a table by using a form is easy. You simply place controls on the form for
the fi elds of the table that you want to update. For example, Figure 28.8 shows frmSales.
The controls on frmSales update data in tblSales, tblSalesLineitems, and tblSalesPayments
because these fi elds are directly bound to controls on frmSales.

FIGURE 28.8

Using a form to update data in tables.

continued

925

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 925

28

Sometimes, however, you want to update a fi eld in a table that isn’t displayed on the
form. When information is entered in frmSales, for example, the fi eld for the last sales
date (LastSalesDate) in tblCustomers should be updated to refl ect the most recent date
on which the contact purchased a product. When you enter a new sale, the value for the
LastSalesDate fi eld is the value of the txtSaleDate control on frmSales.

Because the contact’s last sales date refers to the txtSaleDate control on frmSales, you don’t
want the user to have to enter it twice. Theoretically, you could place the LastSalesDate
fi eld as a calculated fi eld that is updated after the user enters the Sale Date, but displaying
this fi eld would be confusing and is irrelevant to the items for the current sale.

The best way to handle updating the LastSalesDate fi eld in tblCustomers is to use a VBA
procedure. You can use VBA code to update individual fi elds in a record, add new records, or
delete records.

Updating fi elds in a record using ADO
Use the AfterUpdate event procedure to update LastSalesDate (see Figure 28.9). This pro-
cedure uses ADO syntax to operate directly on tblCustomers.

FIGURE 28.9

Using ADO to update a table.

926

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 926

The programming syntax used to access and manipulate the data in an Access database is
ADO. ADO defi nes a number of different objects, each with a set of properties and methods
for performing a variety of data-oriented operations.

ADO is not a programming language; instead, it’s a VBA syntax specifi cally designed for
data access. Syntax simply refers to the words and phrases you use in your VBA code to
accomplish a particular task.

ADO is a versatile means of accessing data from various locations. The examples you’ve seen
so far show you how to use Access to update data in a local Access database. All tables, que-
ries, forms, and reports are stored in a single Access database fi le located either in a folder
on your desktop or on a fi le server. But Access, as a generic database development tool, can
interact with all kinds of databases. You can develop forms and reports in one Access data-
base that get their data from another Access database that may be on your local desktop or
on a remote fi le server. You can even link to non-Access server databases, like Oracle and
SQL Server, just as easily as you can link to an Access database.

As a data access interface, ADO allows you to write programs to manipulate data in local
or remote databases. Using ADO, you can perform database functions including querying,
updating, data-type conversion, indexing, locking, validation, and transaction management.

Here is a fragment of a procedure showing how to use the ADO Recordset object to
open a table:

 Dim adRs As ADODB.Recordset

 Set adRs = New ADODB.Recordset

 adRs.ActiveConnection = CurrentProject.Connection
 adRs.Source = "tblCustomers"
 adRs.CursorType = adOpenDynamic
 adRs.LockType = adLockOptimistic

 adRs.Open

The ADO Recordset object provides the Open method to retrieve data from a table or
query. A recordset is simply a set of records from a database table or the set of records
returned by a query.

The Open method has four parameters:

 ■ Source: The data source to open. Source can be the name of a table (as in this
example), the name of a query, or a SQL statement that retrieves records. When ref-
erencing a table, the table can be a local or linked table.

 ■ ActiveConnection: A connection to a database. A connection is a communica-
tion line into the database. CurrentProject.Connection refers to the current
Access database.

927

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 927

28

 ■ CursorType: A cursor is a pointer, or set of pointers, to records. Think of a
cursor the way ADO keeps track of records. Depending on the property settings
used to retrieve data, ADO cursors can move only forward through records
(adOpenForwardOnly) or permit forward and backward movement
(adOpenDynamic). A dynamic cursor (adOpenDynamic) allows movement in both
directions, while adOpenForwardOnly permits only forward movement. (The
CursorType property is explained in detail in the “Understanding CursorType”
section, earlier in this chapter.)

 ■ LockType: Determines how ADO locks records when updating.
adLockOptimistic allows other users to work with a record that is locked
by the ADO code, while adLockPessimistic completely locks other users out of
the record while changes are made to the record’s data.

This same ADO statement can be rewritten in a somewhat more condensed fashion:

 Dim adRs As ADODB.Recordset

 Set adRs = New ADODB.Recordset

 adRs.Open "tblCustomers", CurrentProject.Connection, _
 adOpenDynamic, adLockOptimistic

In this example, the recordset properties are set as part of the Open statement. Either
syntax is correct; it’s completely the choice of the developer. Also, because we are directly
accessing the table, there is no way to specify an ORDER BY for the data. The data is likely
to be returned in an unpredictable order.

Here is another example extracting a single record, based on a CustomerID:

Dim adRs As ADODB.Recordset

Set arRs = New ADODB.Recordset

adRs.ActiveConnection = CurrentProject.Connection
adRs.Source = _
 "SELECT * FROM tblCustomers WHERE CustomerID = 17"
adRs.CursorType = adOpenDynamic
adRs.LockType = adLockOptimistic

adRs.Open

Notice that, rather than specifying a table in Figure 28.9, the Source property is a SQL
SELECT statement. The SQL statement used to extract records returns a single record,
based on the CustomerID. In this case, because the LockType property is set to
adLockOptimistic, the user can change the data in the record.

928

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 928

Both CursorType and LockType are optional. If you don’t specify a CursorType or
LockType, ADO creates the recordset as an adOpenForwardOnly/adLockReadOnly type
of recordset by default. This type of recordset is not updatable. If you need to make changes
to the data in the recordset, you need an understanding of the various CursorType and
LockType combinations and how they affect the capabilities of a recordset.

When you use ADO, you interact with data almost entirely through Recordset objects.
Recordsets are composed of rows containing fi elds, just like database tables. Once a record-
set has been opened, you can begin working with the values in its rows and fi elds.

You’ve seen recordsets many times in this book. The records returned by a query are
delivered as a recordset. Actually, when you open an Access table, Access arranges the
table’s records as a recordset and presents it in Datasheet view. You never really “see” an
Access table—you see only a representation of the table’s data as a recordset displayed in
Datasheet view.

When you open an updatable recordset—by using the adOpenDynamic or adOpenKeySet
cursor type and specifying the adLockOptimistic lock type—the recordset opens in
edit mode.

One major difference between a table open in Datasheet view and a recordset is that a
recordset provides no visual representation of the data it contains. A datasheet provides
you with rows and columns of data, and even includes column headings so you know the
names of the fi elds in the underlying table.

A recordset exists only in memory. There is no easy way to visualize the data in a record-
set. As a developer you must always be aware of the fi eld names, row count, and other data
attributes that are important to your application.

When you are working with datasheets and recordsets, only one record is active. In a data-
sheet the active record is indicated by a color difference in the row. Recordsets have no
such visual aid, so you must always be aware of which record is current in a recordset.

Fortunately, both ADO and DAO provide a number of ways to keep track of records in a
recordset, and different techniques for moving around within a recordset. It’s also quite
easy to learn the fi eld names in a recordset and to modify the data within each fi eld.

This chapter (and many of the chapters in this book) demonstrates many of the data man-
agement techniques available through the VBA language. As an Access developer, you’ll
almost certainly learn new and more effective ways to work with data every time you work
on an Access application.

Before you change data in any of the recordset’s fi elds, however, you need to make sure
that you’re in the record you want to edit. When a recordset opens, the current record is

929

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 929

28

the fi rst record in the set. If the recordset contains no records, the recordset’s EOF prop-
erty is True.

A run-time error occurs if you try to manipulate data in a recordset that contains no records. Be sure to check the

value of the EOF property immediately after opening a recordset:

Set adRs = New ADODB.Recordset
adRs.Open "tblCustomers"....
If Not adRs.EOF Then
 'Okay to process records
End If

Errors will occur if the code moves past either EOF (MoveNext) or BOF (MovePrevious). Your code should

always check the EOF and BOF property after executing a move method.

To update a fi eld in the current record of the recordset, in an ADO recordset, you sim-
ply assign a new value to the fi eld. When using DAO, you must execute the Recordset
object’s Edit method before assigning a new value. In the Form_AfterUpdate procedure
in Figure 28.9, you assign the value of txtSaleDate on the frmSales form to the recordset’s
LastSaleDate fi eld.

After you change the record, use the recordset’s Update method to commit the record to
the database. The Update method copies the data from the memory buffer to the recordset,
overwriting the original record. The entire record is replaced, not just the updated fi eld(s).
Other records in the recordset, of course, are not affected by the update.

Changes to an ADO recordset are automatically saved when you move to another record or
close the recordset. In addition, the edited record is also saved if you close a recordset or
end the procedure that declares the recordset or the parent database. However, you should
use the Update method for better code readability and maintainability.

Use the record’s CancelUpdate method to cancel pending changes to an ADO recordset.
If it’s important to undo changes to a record, you must issue the CancelUpdate method
before moving to another record in an ADO recordset because moving off of a record com-
mits the change, and an undo is no longer available.

The rsContacts.Close statement near the end of the Form_AfterUpdate procedure
closes the recordset. Closing recordsets when you’re done with them is good practice.
In Figure 28.9, notice also that the Recordset object is explicitly set to nothing
(Set rsContacts = Nothing) to clear the recordset from memory. Omitting this
important step can lead to “memory leaks” because ADO objects tend to persist in memory
unless they’re explicitly set to Nothing and discarded.

930

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 930

Updating a calculated control
In the frmSales example, the txtTaxAmount control displays the tax to collect at the time
of the sale. The tax amount’s value is not a simple calculation. The tax amount is deter-
mined by the following items:

 ■ The sum of the item amounts purchased that are taxable

 ■ The customer’s tax rate in effect on the sale date

 ■ The value in txtOtherAmount and whether the txtOtherAmount is a taxable item

When the user changes information for the current sale, any one or all three of these fac-
tors can change the tax amount. The tax amount must be recalculated whenever any of the
following events occur in the form:

 ■ Adding or updating a line item

 ■ Deleting a line item

 ■ Changing the buyer to another customer

 ■ Changing txtTaxLocation

 ■ Changing txtOtherAmount

You use VBA procedures to recalculate the tax amount when any of these events occurs.

Recalculating a control when updating or adding a record

Figure 28.10 shows the code for adding or updating a line item on frmSales.

FIGURE 28.10

Recalculating a fi eld after a form is updated.

A single event can handle recalculating the tax amount when new line items are added or
when a line item is changed—when an item’s price or quantity is changed, for example.
In any case, you can use the subform’s AfterUpdate event to update the sales tax.

931

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 931

28

AfterUpdate occurs when a new record is entered or when any value is changed for an
existing record.

The Form_AfterUpdate procedure for fsubSalesLineItems executes when a line item
is added to the subform, or when any information is changed in a line item. The Form_
AfterUpdate procedure recalculates the tax amount control (txtTaxAmount) on frmSales.
The dTaxRate variable holds the customer’s tax rate (the value of txtTaxRate on frmSales)
and cTaxAmount stores the value returned by the CalcTax() function. CalcTax() cal-
culates the actual tax amount. When the After_Update procedure calls CalcTax(), it
passes two parameters: the value of dTaxRate and the current line item’s invoice number
(Me.InvoiceNumber). Figure 28.11 shows the CalcTax() function.

FIGURE 28.11

CalcTax() uses ADO to determine sales tax.

CalcTax() uses ADO syntax to create a recordset that sums the quantities and prices
for the taxable items in tblSalesLineItems for the current sale. The function receives two
parameters: the tax rate (dTaxPercent) and the invoice number (lInvoiceNum). The ADO
code checks to see whether the recordset returned a record. If the recordset is at the end
of the fi eld (EOF), the recordset did not fi nd any line items for the current sale—and
CalcTax returns 0. If the recordset does contain a record, the return value for CalcTax is
set to the recordset’s Subtotal fi eld times the tax rate (dTaxPercent).

At the end of a procedure that calls CalcTax, shown in Figure 28.12, txtTaxAmount is set
to the cTaxAmount value.

932

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 932

When the Buyer, Tax Location, or Tax Rate controls are changed in frmSales, you use the
AfterUpdate event for the individual control to recalculate the tax amount. Figure 28.12
shows the code for the txtTaxRate_AfterUpdate event.

FIGURE 28.12

Recalculating a control after a control is updated.

The logic implemented in txtTaxRate_AfterUpdate is identical to the logic in
fsubSalesLineItems_AfterUpdate. In fact, you can use the same code for the Buyer
and Tax Location controls as well. The only difference between the code in Figure 28.10
and the code in Figure 28.12 is that the procedure in Figure 28.10 runs whenever a change
occurs in the sales line items subform, whereas the code in Figure 28.12 runs whenever a
change is made to txtTaxRate on the main form.

Checking the status of a record deletion

Use the form’s AfterDelConfirm event to recalculate the txtTaxAmount control
when deleting a line item. The form’s AfterDelConfirm event (shown in Figure 28.13)
is similar to the code for the subform’s AfterUpdate event. Notice, however, that
txtTaxAmount on the main sales form is set by this procedure, even though this code
runs in fsubSalesLineItems subform embedded on frmSales.

Access always confi rms deletions initiated by the user. Access displays a message box ask-
ing the user to confi rm the deletion. If the user affi rms the deletion, the current record
is removed from the form’s recordset and temporarily stored in memory so that the dele-
tion can be undone if necessary. The AfterDelConfirm event occurs after the user
confi rms or cancels the deletion. If the BeforeDelConfirm event isn’t canceled, the
AfterDelConfirm event occurs after the delete confi rmation dialog box is displayed. The
AfterDelConfirm event occurs even if the BeforeDelConfirm event is canceled.

933

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 933

28

FIGURE 28.13

Recalculating a control after a record is deleted.

The AfterDelConfirm event procedure returns status information about the deletion.
Table 28.2 describes the deletion status values.

TABLE 28.2 Deletion Status Values

Status value Description

acDeleteOK Deletion occurred normally.

acDeleteCancel Deletion canceled programmatically.

acDeleteUserCancel User canceled deletion.

The Status argument for the AfterDelConfirm event procedure can be set to any of
these values within the procedure. For example, if the code in the AfterDelConfirm
event procedure determines that deleting the record may cause problems in the application,
the Status argument should be set to acDeleteCancel:

If <Condition_Indicates_a_Problem> Then
 Status = acDeleteCancel
 Exit Sub
Else
 Status = acDeleteOK
End If

The Status argument is provided to enable your VBA code to override the user’s decision
to delete a record if conditions warrant such an override. In the case that Status is set
to acDeleteCancel, the copy of the record stored in the temporary buffer is restored to
the recordset, and the delete process is terminated. If, on the other hand, Status is set
to acDeleteOK, the deletion proceeds and the temporary buffer is cleared after the user
moves to another record in the recordset.

934

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 934

Eliminating repetitive code

The examples in this section result in three procedures containing nearly identical code. If
the code needs to be modifi ed, you will have to modify it in the Form_AfterDelConfirm
and Form_AfterUpdate events of the subform and the txtTaxRate_AfterUpdate
event of the main form. If your modifi cations are not identical, or if you simply forget to
modify the code in one of the procedures, you can introduce errors into the project.

When you fi nd yourself writing the same, or very similar, code in multiple event proce-
dures, the best practice is to move the code to a standard module and call it from the event
procedures. We can’t simply copy the code to a standard module because, while very similar,
the code isn’t exactly the same. The differences in the code, for example how txtTaxRate is
referenced, need to be handled in parameters to the new procedure:

Public Sub UpdateTaxRate(frmMain As Form, _
 dTaxRate As Double, _
 lInvoiceNumber As Long)

 Dim cTaxAmount As Currency

 cTaxAmount = CalcTax(dTaxRate, lInvoiceNumber)

 frmMain.txtTaxAmount.Value = cTaxAmount

End Sub

This procedure is placed in the modSalesFunctions module. Instead of having similar code
in three event procedures, each of those event procedures calls this procedure. If any
changes are necessary, only this procedure needs to be updated. The code below shows how
to call this procedure from the subform’s Form_AfterUpdate event and the main form’s
txtTaxRate_AfterUpdate event.

Private Sub txtTaxRate_AfterUpdate()

 UpdateTaxRate Me, CDbl(Nz(Me.txtTaxRate.Value, 0)), _
 Me.InvoiceNumber.Value

End Sub

Private Sub Form_AfterUpdate()

 UpdateTaxRate Me.Parent, _
 CDbl(Nz(Me.Parent.txtTaxRate.Value, 0)), _
 Me.InvoiceNumber.Value

End Sub

935

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 935

28

From the main form, the Me keyword is passed (referring to the form itself) and the other
parameters are taken from controls on the form. From the subform, Me.Parent is used to
refer to the main form to retrieve the necessary values.

Adding a new record
You can use ADO to add a record to a table just as easily as updating a record. Use the
AddNew method to add a new record to a table. The following shows an ADO procedure for
adding a new customer to tblCustomerContacts:

Public Sub AddNewContact(sFirstName As String, sLastName As String)

 Dim adRs As ADODB.Recordset
 Set adRs = New ADODB.Recordset

 adRs.Open "tblCustomerContacts", CurrentProject.Connection, _
 adOpenDynamic, adLockOptimistic

 With adRs
 .AddNew 'Add new record

 'Add data:
 .Fields("LastName").Value = sLastName
 .Fields("FirstName").Value = sFirstName

 .Update 'Commit changes
 End With

 adRs.Close
 Set adRs = Nothing

End Sub

As you see in this example, using the AddNew method is similar to using ADO to edit
recordset data. AddNew creates a buffer for a new record. After executing AddNew, you
assign values to fi elds in the new record. The Update method adds the new record to the
end of the recordset, and then to the underlying table.

Deleting a record
To remove a record from a table, you use the ADO method Delete. The following code
shows an ADO procedure for deleting a record from tblCustomerContacts.

Public Sub DeleteContact(ContactID As Long)

 Dim adRs As ADODB.Recordset

936

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 936

 Dim sSQL As String

 Set adRs = New ADODB.Recordset

 sSQL = "SELECT * FROM tblCustomerContacts " _
 & "WHERE ID = " & ContactID & ";"

 adRs.Open sSQL, CurrentProject.Connection, _
 adOpenDynamic, adLockOptimistic

 With adRs
 If Not .EOF Then
 .Delete 'Delete the record
 End If
 End With

 adRs.Close
 Set adRs = Nothing

End Sub

Notice that you don’t follow the Delete method with Update. As soon as the Delete method executes, the

record is permanently removed from the recordset.

Deleting records using ADO doesn’t trigger the deletion confi rmation dialog box. Generally
speaking, changes made to data with ADO code are not confi rmed because confi rmation
would interrupt the user’s workfl ow. This means that, as the developer, you’re respon-
sible for making sure that deletions are appropriate before proceeding. Once the record is
deleted, there is no way to undo the change to the underlying table. Access does, however,
still enforce referential integrity. If you attempt to delete a record that violates referential
integrity, you’ll get an error.

Deleting related records in multiple tables
When you write ADO code to delete records, you need to be aware of the application’s rela-
tionships. The table containing the record that you’re deleting may be participating in a
one-to-many relationship with another table.

Take a look at the relationships diagram (see Figure 28.14) for the tables used in the
frmSales example. tblSales has two dependent tables associated with it: tblSalesLineItems
and tblSalesPayments.

The Edit Relationships dialog box shows how the relationship is set up between tblSales
and tblSalesLineItems. The relationship type is a one-to-many (1:M) and referential integ-
rity is enforced. A one-to-many relationship means that each record in the parent table

937

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 937

28

(tblSales) may have one or more records in the child table (tblSalesLineItems). Each record
in the parent table must be unique—you can’t have two sales records with exactly the same
InvoiceNumber, SalesDate, and other information.

FIGURE 28.14

Examining the tables of a one-to-many relationship.

 Relationships between tables are discussed in Chapter 4.

In a one-to-many relationship each child record (in tblSalesLineItems) must be related to
one record (and only one record) in the parent table (tblSales). But each sales record in tbl-
Sales may be related to more than one record in tblSalesLineItem.

When you enforce referential integrity on a one-to-many relationship, you’re telling Access
that a record in tblSales can’t be deleted if records with the same invoice number value
exist in tblSalesLineItems. If Access encounters a delete request that violates referential
integrity, Access displays an error message and the delete will be canceled, unless cascad-
ing deletes have been enabled in the Edit Relationships dialog box (refer to Figure 28.14).

As you’ll recall from Chapter 4, you have the option of setting Cascade Update Related
Fields and Cascade Delete Related Fields in the Edit Relationships dialog box. By default,
these options are not enabled—and for good reason. If cascading deletes is turned on, when
you use VBA code to delete a sales record, all the related records in tblSalesLineItems and

938

Part VII: Advanced Access Programming Techniques

c28.indd 10/07/2015 Page 938

tblSalesPayments are also deleted. Depending on the situation, this may or may not be a
good thing. In the case of a canceled sales order, there is probably no harm done by deleting
the unsold sales line items. However, when working on a canceled order where payment has
been made, deleting the customer’s payment history may be an issue. Surely, they’ll expect a
refund of payments made on the order, but Access just deleted the payment records.

In most cases, you’re far better off using an Active fi eld (Yes/No data type) to indicate a
parent record’s status. The Active fi eld is set to Yes when the order is placed, and only set
to No when the order has been canceled or completed. You might also consider adding a
CancellationDate fi eld to tblSales, and set it to the date on which an order is canceled. If
CancellationDate is null, the order has not been canceled.

When you write ADO code to delete a record, you need to fi rst check to see whether there
are any one-to-many relationships between the table containing the record to delete and
any other tables in the database. If there are dependent tables, the records in the dependent
tables need to be deleted before Access allows you to delete the record in the parent table.

Fortunately, you can write a single procedure to delete records in both the dependent
table(s) and the parent table. Figure 28.15 shows the code for the cmdDelete command but-
ton in frmSales.

FIGURE 28.15

Using ADO code to delete multiple records.

939

Chapter 28: Accessing Data with VBA

c28.indd 10/07/2015 Page 939

28

The cmdDelete_Click event procedure deletes records in tblSalesPayments,
tblSalesLineItems, and tblSales that have an invoice number matching the current
invoice number.

The fi rst statement in cmdDelete_Click (If Me.NewRecord Then) uses the
NewRecord property to see whether the current sales record is new. If the record is new,
Me.Undo rolls back changes to the record. If the current record is not new, the procedure
displays a message box to confi rm that the user really wants to delete the record. If the
user clicks the Yes button, the procedure deletes the record from the tables.

Two constants, sSQL_DELPMTS and sSQL_DELLINE, hold the SQL statements for locating and
deleting records in tblSalesPayments and tblSalesLineItems, respectively, with an invoice
number that matches the invoice number on frmSales. The invoice number is concatenated
to the end of the constants, and they’re passed as a parameter to the Execute method of
CurrentDb. You can pass either the name of a query or a SQL statement as a parameter
to the Execute method. The Execute method simply runs the specifi ed query or SQL
statement.

If the query or SQL statement contains a WHERE clause and the Execute method does not fi nd any records that

meet the WHERE condition, no error occurs. If the query or SQL statement contains invalid syntax or an invalid fi eld

or table name, however, the Execute method fails and an error is raised.

 After the tblSalesPayments and tblSalesLineItems records are deleted, the tblSales record
can then be deleted.

941

c29.indd 10/01/2015 Page 941

 CHAP T ER

29
Advanced Data Access
with VBA

IN THIS CHAPTER

Using a combo box to fi nd a record on a form

Using the form’s fi lter options

Using parameter queries to fi lter a form

I
n the previous few chapters, you learned the basics of Access programming, reviewed some
 built-in VBA functions, and experienced the various VBA logical constructs. You learned about
DAO and ADO and how to access data in tables and queries through SQL recordsets. You also

learned a lot about forms and queries.

In this chapter, you use all this knowledge and learn how to display selected data in forms or
reports using a combination of techniques involving forms, Visual Basic code, and queries.

In the Chapter29.accdb database, you’ll fi nd several forms to use as a starting point, and other completed

forms to compare to the forms you change in this example. All the examples use a modifi ed version of frmProducts or

tblProducts.

Adding an Unbound Combo Box to a Form to Find Data
When viewing an Access form, you often have to page through hundreds or even thousands of
records to fi nd the record or set of records you want to work with. You can teach your users how to
use the Access “fi nd” features, what to do to see other records, and so on, but this defeats the pur-
pose of a programmed application. If you build an application, you want to make it easier for your
users to be productive with your system, not teach them how to use the tools built into Access.

ON THE WEB

942

Part VII: Advanced Access Programming Techniques

c29.indd 10/01/2015 Page 942

Figure 29.1 shows a form based on frmProducts that has an additional control at the top:
a combo box that is not bound to any data in the form. The unbound combo box is used to
directly look up a record in tblProducts and then display the record in the form using a bit
of code. This chapter shows several ways to build this combo box and use it as a quick way
to fi nd records in the form.

FIGURE 29.1

The frmProductsExample1 form with an unbound combo box.

The design for the combo box is shown in Figure 29.2. Notice that the Control Source prop-
erty is empty. This indicates that the combo box is not bound to any fi eld in a table and is
used only by the form, not to change data in the underlying database.

The combo box contains two columns selected by the query shown in Figure 29.3. The fi rst
column, LongDescription, concatenates ModelYear and Description from tblProducts. The
second column is the ProductID fi eld in tblProducts. The ProductID column serves as the
bound column for the combo box and is the value returned by the combo box when a row is
selected in the combo box. The second column’s width is 0, which hides the column when
the combo box list is pulled down.

In the code examples that follow, you’ll see references to cboQuickSearch.Value. Keep in mind that the value of the

combo box comes from the Bound Column and in this case is the Product ID of the item selected in the combo box.

943

Chapter 29: Advanced Data Access with VBA

c29.indd 10/01/2015 Page 943

29

FIGURE 29.2

The Property Sheet for the unbound combo box control.

FIGURE 29.3

The query behind the Row Source property of cboQuickSearch.

944

Part VII: Advanced Access Programming Techniques

c29.indd 10/01/2015 Page 944

This combo box is used for several of the examples in this chapter. Next, you see how to
fi nd records in a variety of ways using the combo box and the code behind it.

Using the FindRecord method
Let’s take a look at how the quick search combo box on frmProductsExample1 works.
Selecting a product from cboQuickSearch fi res the AfterUpdate event. Code in the
AfterUpdate event procedure performs the search on the form, and the form instantly
displays the selected record.

The FindRecord method locates a record in the form’s bound recordset. This is equivalent
to using the binoculars on the Ribbon to fi nd a record in a datasheet.

When performing a search on a datasheet, you begin by clicking the column you want to
search, perhaps LastName. Next, you click the binoculars on the Ribbon to open the Find
and Replace dialog box, and enter the name you want to fi nd in the recordset. Access
knows to use the LastName fi eld because that’s the column you selected in the datasheet.
When you enter Smith as the search criteria, Access moves the datasheet record pointer to
the fi rst row that contains Smith in the LastName fi eld.

When you use code to search through the contents of a bound Access form, you actually
perform these same steps using VBA statements.

Perform the following steps to create an AfterUpdate event procedure behind the
combo box:

 1. Display frmProductsExample1 in Design view, click cboQuickSearch, and then
press F4 to display the Property Sheet.

 2. Select the Event tab and select the AfterUpdate event.

 3. Click the combo box arrow in the AfterUpdate event property and select Event
Procedure.

 4. Click the Builder button that appears in the right side of the property. The
procedure appears in a separate VBA code window. The event procedure template
(Private Sub cboQuickSearch_AfterUpdate()...End Sub) is auto-
matically created in the form’s code module. As you’ve learned, whenever you
create an event procedure, the names of the control and event are part of the
subprocedure.

 5. Enter the four lines of code exactly as shown in Figure 29.4.

945

Chapter 29: Advanced Data Access with VBA

c29.indd 10/01/2015 Page 945

29

FIGURE 29.4

Using the FindRecord method to fi nd a record.

The fi rst line checks to make sure that cboQuickSearch contains a value (is not null). If
cboQuickSearch is null, the program fl ows to the End If statement and no search takes
place. If cbQuickSearch has a value, the code inside the If block is executed, starting with
this statement:

Me.txtProductID.SetFocus

This statement moves the cursor to the txtProductID control. Just as you need to manually
move the cursor to a column in a datasheet in order to use the Find icon on the Ribbon, you
must place the cursor in the bound control you want to use as the search’s target. In this
case, you’re moving the cursor to the control containing the ProductID value because the
search will look for a particular ProductID in the form’s bound recordset.

The next statement in the If block is:

DoCmd.FindRecord Me.cboQuickSearch.Value

In this statement, the FindRecord method uses the combo box’s value (which is the
selected item’s Product ID) to search for the selected product’s record. Access matches the
value in cboQuickSearch with the ProductID in the recordset bound to the form.

The fi rst value found by the FindRecord method is determined by a series of parameters,
including whether the case is matched and whether the search is forward, backward, or the
fi rst record found. Enter DoCmd.FindRecord in the code window and press the spacebar, to
see all available options. The FindRecord method fi nds only one record at a time, while
allowing all other records to be viewed.

946

Part VII: Advanced Access Programming Techniques

c29.indd 10/01/2015 Page 946

Using a bookmark
The FindRecord method is a good way to search when the control you want to use to fi nd
a record is displayed on the form. It’s also a good way if the value being searched for is a
single value. A bookmark is another way of fi nding a record.

frmProductsExample2 contains the code for this example.

Figure 29.5 shows the combo box’s AfterUpdate event procedure. This code uses a book-
mark to locate the record in the form’s recordset matching the search criteria.

FIGURE 29.5

Using a RecordsetClone bookmark to fi nd a record.

The fi rst several lines are:

Dim rsClone As DAO.Recordset
Dim sCriteria As String

Const sSEARCHFLD As String = "[ProductID]"

If Not IsNull(Me.cboQuickSearch.Value) Then

 Set rsClone = Me.RecordsetClone

947

Chapter 29: Advanced Data Access with VBA

c29.indd 10/01/2015 Page 947

29

The fi rst three lines declare a recordset named rsClone, a string named sCriteria, and a con-
stant named sSEARCHFLD that is set to the name of the fi eld to search. These will be used
later in the code. Next, the procedure checks whether cboQuickSearch has a value, which
means the user selected something in the combo box. The following line sets the recordset
to a copy of the form’s bound recordset (the RecordsetClone).

A RecordsetClone is exactly what its name implies: an in-memory clone of the form’s
recordset that you can use when searching for records. If you used the form’s bound record-
set instead, your search will move the current record away from the record displayed in the
form. If the search target is not found in the form’s bound recordset, the form ends up posi-
tioned at the last record in the bound recordset, which is sure to confuse users.

The Recordset object’s FindFirst method requires a search string containing criteria to
look up in the recordset. (Yes, that’s correct—you’re actually asking the RecordsetClone
to search itself for a record, based on some criteria.)

The criteria string can be as complicated as needed. The following statement concatenates
[ProductID] (our constant), an equal sign, and the value of cboQuickSearch:

sCriteria = sSEARCHFLD & " = " & Me.cboQuickSearch.Value

Assuming the value of cboQuickSearch is 17, sCriteria is now:

[ProductID] = 17

The criteria string works only because ProductID is a numeric fi eld. If it were text, quotes would be required around

the value, as in:

sCriteria = sSEARCHFLD & " = '" & Me.cboQuickSearch.Value & "'"

so that the criteria would actually be:

[ProductID] = '17'

In this example, we have a lot of control over the criteria string because we’re using a combo box’s value. In other

cases, we may get parts of the criteria string from a text box where a user could type virtually anything he wants. If,

for instance, he included an apostrophe in a text box that was used in a criteria string, we would have a situation

known as an embedded quote (a quote inside a quoted string).

Fortunately, embedded quotes are easy to avoid. If you need a quote inside a quoted string, you simply use two

quotes. For example, if you search for the name O’Mally, it would look like this:

sCriteria = "[LastName] = 'O''Mally'"

Note the two quotes in O''Mally that get converted to one quote when the criteria string is processed. To accom-

plish this with a text box, use the Replace function to replace one quote with two quotes.

sCriteria = "[LastName] = " & _
 Replace(Me.txtLastName, String(1, "'"), _
 String(2, "'"))

948

Part VII: Advanced Access Programming Techniques

c29.indd 10/01/2015 Page 948

Creating criteria in code is sometimes a complicated process. The objective is to build a string that could be copied

into a query SQL window and run as is. Often, the best way to create a criteria string is to build a query, switch to SQL

view, and copy the SQL into a VBA code window. Then, break the code’s WHERE clause into fi eld names and control

values, inserting concatenation operators and delimiters as needed around string and date values.

After the criteria string is completed, use the recordset’s FindFirst method to search for
the record in the RecordsetClone. The following line uses the FindFirst method of the
recordset, passing the criteria string as the argument:

rsClone.FindFirst sCriteria

You don’t have to create an sCriteria variable and then set the criteria string to it. You can simply place the

criteria after the rsClone.FindFirst method, like this:

rsClone.FindFirst "ProductID = " & Me.cboQuickSearch.Value

However, when you have complex criteria, it may be easier to create the criteria separately from the command that

uses the criteria string so you can debug the string separately in the query editor.

The next lines are used to determine whether the record pointer in the form should be
moved. Notice the Bookmark property referenced in the following code block. A bookmark
is a stationary pointer to a record in a recordset. The FindFirst method positions the
recordset’s bookmark on the found record.

If Not rsClone.NoMatch Then
 Me.Bookmark = rsClone.Bookmark
End If

If no record is found, the recordset’s NoMatch property is True. Because you want to set
the bookmark if a record is found, you need the computer equivalent of a double negative.
Essentially, it says if there is “not no record found,” and then the bookmark is valid. Why
Microsoft chose NoMatch instead of Match (which would reduce the logic to If rsClone
.Match Then...) is a mystery to everyone.

If a matching record is found, the form’s bookmark (Me.Bookmark) is set to the found
recordset’s bookmark (rsClone.Bookmark) and the form repositions itself to the book-
marked record. This doesn’t fi lter the records—it merely positions the form’s bookmark on
the fi rst record matching the criteria. All other records are still visible in the form.

The last lines of code simply close the recordset and remove it from memory.

949

Chapter 29: Advanced Data Access with VBA

c29.indd 10/01/2015 Page 949

29

Criteria can be as complex as you need them to be, even involving multiple fi elds of different data types. Remember

that strings must be delimited by single quotes (not double quotes, because double quotes surround the entire

string), dates are delimited by pound signs (#), and numeric values are not delimited.

Using the FindFirst or Bookmark method is preferable to using FindRecord because it
allows for more complex criteria and doesn’t require the control being searched to be vis-
ible. You don’t have to preposition the cursor on a control to use the recordset’s FindFirst
method.

In case you’re wondering, the recordset created from the form’s RecordsetClone property is a DAO-type record-

set. Only DAO recordsets support the FindFirst, FindLast, FindNext, and FindPrevious methods. There

is no reason for Microsoft to re-architect Access forms (and reports, for that matter) to use ADO-type recordsets. The

DAO model works very well when working with bound forms and reports.

Filtering a Form
Although using the FindRecord or FindFirst methods allow you to quickly locate a
record meeting the criteria you want, it still shows all the other records in a table or query
recordset and doesn’t necessarily keep all the records together. Filtering a form lets you
view only the record or set of records you want, hiding all non-matching records.

Filters are good when you have large recordsets and want to view only the subset of records
matching your needs.

You can fi lter a form with code or with a query. I cover both approaches in this section.

With code
Figure 29.6 shows the two lines of code necessary to create and apply a fi lter to a form’s
recordset. Each form contains a Filter property that specifi es how the bound records are
fi ltered. By default, the Filter property is blank and the form shows all the records in the
underlying recordset.

950

Part VII: Advanced Access Programming Techniques

c29.indd 10/01/2015 Page 950

FIGURE 29.6

Code for fi ltering and clearing a fi lter behind a form.

The fi rst line of code sets the form’s Filter property:

Me.Filter = "ProductID = "& Me.cboQuickSearch.Value

Notice that this is exactly the same string used as the criteria passed to the recordset’s
FindFirst property.

The second line of code (Me.FilterOn = True) turns on the fi lter. You can put all
the criteria that you want in a fi lter property, but unless you explicitly set the
FilterOn property to True, the fi lter is never applied to the form’s recordset. The fi lter
hides all the records that do not meet the criteria, showing only the records meeting the
fi lter’s value.

Me.FilterOn = True

Whenever you turn on a fi lter, it’s useful to provide a way to turn off the fi lter. There
is a small button (cmdClearFilter) next to the combo box on frmProductsExample3. This
button turns off the fi lter and sets the form’s Filter property to an empty string
(vbNullString). The second procedure shown in Figure 29.6 is the button’s Click event
procedure:

Private Sub cmdClearFilter_Click()

 Me.Filter = vbNullString
 Me.FilterOn = False
 Me.cboQuickSearch.Value = Null

End Sub

951

Chapter 29: Advanced Data Access with VBA

c29.indd 10/01/2015 Page 951

29

If you create a form fi lter and then save the form design with the fi lter set, the fi lter is saved with the form. The next

time the form is opened, the fi lter is active. It’s a good practice to set the form’s Filter property to an empty string

as the form closes. The following code uses the form’s Close event procedure to clear the fi ler:

Private Sub Form_Close()

 Me.Filter = vbNullString
 Me.FilterOn = False

End Sub

Other than the line to clear the combo box, this code is identical to the code in cmdClearFilter_Click. In

order to have a cleaner code base, it’s a good idea to move the repetitive code into its own procedure. The two event

procedures and the new procedure with the repetitive code are shown below:

Private Sub cmdClearFilter_Click()

 ResetFilter
 Me.cboQuickSearch.Value = Null

End Sub

Private Sub Form_Close()

 ResetFilter

End Sub

Private Sub ResetFilter()

 Me.Filter = vbNullString
 Me.FilterOn = False

End Sub

Instead of duplicate code, both event procedures call ResetFilter.

With a query
You might want to have one form control another. Or you might want a recordset to display
selected data based on ad hoc criteria entered by the user. For example, each time a report
is run, a dialog box is displayed and the user enters a set of dates or selects a product or
customer. One way to do this is to use a parameter query.

952

Part VII: Advanced Access Programming Techniques

c29.indd 10/01/2015 Page 952

Creating a parameter query

A parameter query is any query that contains criteria based on a reference to a variable, a
function, or a control on a form. Normally, you enter a value such as SMITH, 26 or 6/15/12
in a criteria entry area. You can also enter a prompt such as [Enter the Last Name] or
a reference to a control on a form such as Forms!frmProducts![cboQuickFind].

The Chapter29.accdb database contains a parameter query named qryProductParameterQuery.

The simplest way to create a parameter query is to create a select query, specify the query’s
criteria, and run the query to make sure it works. Then change the criteria to the following:

Like [<some prompt>] & "*"

or:

Like "*" & [<some prompt>] & "*"

where <some prompt> is the question you want to ask the user. Figure 29.7 shows a param-
eter query that prompts the user whenever the query is run to enter the Product Category.

FIGURE 29.7

Creating a simple parameter query.

Anytime the query is run, even if it’s used as the record source for a form or report or the
row source for a list or combo box, the parameter dialog box is displayed—and depending
on what’s entered, the query criteria fi lters the query results. Figure 29.8 shows the param-
eter dialog box open, asking for the product category value required by the query.

 ON THE WEB

953

Chapter 29: Advanced Data Access with VBA

c29.indd 10/01/2015 Page 953

29

FIGURE 29.8

Running the parameter query.

You may remember learning that the Like operator allows for wildcard searches. For exam-
ple, if you want to fi lter the query records for any product category that starts with “car”
(or “CAR”), you enter CAR in the parameter dialog box. Without the parameter, you would
have to enter Like "CAR*" in the criteria area of the query. Also, because the wildcard
(*) is included as part of the parameter, users don’t have to include the wildcard when they
respond to the parameter dialog box.

You can use the wildcards * (anything after this position) and ? (one character in this position) with a Like operator

in any query or SQL string.

If SQL Server Compatible Syntax (ANSI 92) is selected (choose File ➪ Options, then select the Object Designers tab),

or if ADO is being used to run the SQL statement, the wildcards are % (anything in this position) and _ (one character

in this position).

A consequence of adding the asterisk to the parameter is that, if the user doesn’t enter
a parameter value, the criteria evaluates to "LIKE *", and the query returns all records
except the nulls. Leaving the asterisk out of the criteria expression results in no returned
records if the user fails to provide a product category.

Figure 29.9 shows the Query Parameters dialog box (opened by right-clicking the que-
ry’s upper area and selecting Parameters from the shortcut menu). You use the Query

954

Part VII: Advanced Access Programming Techniques

c29.indd 10/01/2015 Page 954

Parameters dialog box to specify parameters that require special consideration, such as
date/time entries or specially formatted numbers. One text entry has been entered in
the Query Parameters dialog box to show how it works. You enter the parameter text and
choose the parameter’s data type.

FIGURE 29.9

The Query Parameters dialog box.

If you want to add more-complex parameters, such as a range of dates, use an expression such as Between
[Enter the Start Date] and [Enter the End Date] as a criterion in a date fi eld. This would dis-

play two separate parameter dialog boxes and then fi lter the date value appropriately.

Unfortunately, Access parameter queries don’t provide a way to supply default values for
parameters. Your best bet is to always include the asterisk in your criteria expression so
that, if the user closes the parameter dialog box without entering a value, the query will
return all records because the criteria expression will resolve to Like "*".

You can only use Like "*" with text fi elds. For numeric fi elds, you can set the criteria to [My Prompt] OR
([My Prompt] IS NULL). Just be certain that both occurrences of My Prompt are typed identically. (Copy

and paste is a good idea.) You can also use this technique with text fi elds if you want to return all the records includ-

ing those with null values.

955

Chapter 29: Advanced Data Access with VBA

c29.indd 10/01/2015 Page 955

29

Creating an interactive filter dialog box

The problem with parameter queries is that they’re only suitable for simple parameters. The
users have to know exactly what to type into the parameter dialog box, and if they enter
the parameter incorrectly, they won’t see the results they expect. Also, using parameter
queries for entering complex criteria is fairly diffi cult.

A better technique is to create a simple form, place controls on the form, and reference the
controls from a query as parameters. In other words, the query uses the form’s controls to
get its parameter values. This is a huge advantage to the users because the controls can
help the user select the criteria by presenting lists or drop-down menus of the acceptable
parameter values. Plus, code can be added to each control’s AfterUpdate event to validate
the user’s input to ensure that the query will actually run. The content of controls like
combo boxes or list boxes can be dynamic and contain actual values from the underlying
tables. This means that the criteria controls might contain only the names of customers
who’ve placed orders, or product categories actually in the database at the moment.

Figure 29.10 shows frmFilterProducts in Design view. cboCategory is fi lled with the data
from qryCategories, which sorts the records in tblCategories in alphabetical order.

FIGURE 29.10

Creating a dialog box for selecting records.

cboCategory’s DefaultValue property is set to Cars because this is the most commonly used
criteria for the Products form. In this case, LimitToList is set to Yes because we want to
force users to select only from the categories actually in tblCategories.

956

Part VII: Advanced Access Programming Techniques

c29.indd 10/01/2015 Page 956

Figure 29.11 shows qryProducts_FormParameter. This query selects all fi elds in tblProducts
based on the category retrieved from cboCategory on frmFilterProducts. Notice the criteria
expression in the Category column:

= [Forms]![frmFilterProducts]![cboCategory]

As the query runs, it automatically retrieves the criteria value from cboCategory. The
combo box returns Cars, unless the user has choosen a different category.

FIGURE 29.11

Creating a query that references a form control.

In normal operation, the user selects a product category from frmFilterProducts and clicks
OK. Code behind the button opens frmProductsExample4, which is bound to qryProducts_
FormParameter. The criteria for the Category fi eld in qryProducts_FormParameter looks up
the selected value in cboCategory on frmFilterProducts, and magically frmProductsExample4
opens with just the selected product category loaded.

The only issue facing developers working with tightly integrated database objects like this
(in this case, frmFilterProducts, qryProducts_FormParameter, and frmProductsExample4) is
that it may not be obvious that the objects work together. Removing or modifying any of
these objects might break the workfl ow or cause problems for the users.

You might choose to use a naming convention that implies the relationship between the
two forms and the query, such as giving each item the same name, but with different pre-
fi xes. Or, you could use the custom groups in the Navigation pane, and add the objects to
a single group. Very often things that are obvious to you—the original designer and devel-
oper—may not be as clear to someone else, so it pays to take advantage of simple tech-
niques that help document your applications.

957

Chapter 29: Advanced Data Access with VBA

c29.indd 10/01/2015 Page 957

29

Running qryProducts_FormParameter when frmFilterProducts is not open will result in the query

prompting the user to enter a value. When frmFilterProducts is not open, Access can’t fi gure out what the

criteria [Forms]![frmFilterProducts]![cbCategory] means because there is not a form named

frmFilterProducts loaded. In this situation, Access assumes the parameter is a prompt and displays an input box.

Linking the dialog box to another form

The frmFilterProducts dialog box (refer to Figure 29.10) does more than just create a value
that can be referenced from a query. It also contains code to open frmProductsExample4.

Figure 29.12 shows the cmdCancel_Click and cmdOK_Click event procedures behind the
Cancel and OK buttons found on frmFilterProducts.

FIGURE 29.12

Creating a dialog box that opens a form.

The cmdOK_Click event procedure code opens frmProductsExample4, sets the focus on it,
and then re-queries the form to make sure that the latest selection is used on the form.
The SetFocus method is necessary to move focus to the form that is opened. The Requery
method isn’t strictly required, because a form automatically re-queries its record source the
fi rst time it’s opened. However, if the form is already opened—for example, if you use the
dialog box a second time to search for another record—the Requery method ensures that
the form displays fresh data.

958

Part VII: Advanced Access Programming Techniques

c29.indd 10/01/2015 Page 958

Although not implemented in frmFilterProducts, the cmdOK_Click event procedure
could also contain a DoCmd.Close statement to close the dialog box after it has opened
frmProductExample4. Or, you may elect to keep the dialog box open to make it easy for
users to select another product category to view.

Using the With Keyword
The With keyword is used to save execution time by not referencing the controls on the form explicitly
(that is, directly)—for example, Forms!frmProductsExample4.SetFocus. This syntax requires Access
to search alphabetically through the list of forms in the database container. If there were 500 forms
(and some large systems have this many or more) and the form name started with z, this would take
a considerable amount of time. Because there is more than one reference to the form, this process
would have to take place multiple times. The With command sets up an internal pointer to the form
so that all subsequent references to controls, properties, or methods (like Requery or SetFocus) of
the form are much faster.

When you use the With keyword and reference the form name, you simply use a dot (.) or an excla-
mation point (!) to reference a control, property, or method just like the Forms!FormName was fi rst.
You can see this in Figure 29.12.

For each With, you must have an End Wit h .

959

c30.indd 10/05/2015 Page 959

 CHAP T ER

30
Customi zing the Ribbon

IN THIS CHAPTER

Working with the default Ribbon

Examining Ribbon architecture

Studying Ribbon controls

Learning the XML necessary to construct Ribbons

Adding VBA callbacks

U
nless you’re upgrading from Access 2003, the Ribbon will already be familiar to you. The
Ribbon was introduced in Offi ce 2007 and replaced the toolbar and menu system that ruled
the computing world for decades. The toolbars and menus were an effective user interface

for working with a variety of tasks and operations, but the CommandBars model used in versions of
Access prior to 2007 was quite complex, and sometimes diffi cult to program. The Ribbon introduced
an entirely new way of working with user-interface components.

The Ribbon is quite unlike traditional toolbars or menus and supports features not possible with
toolbars and menus. As you’ll soon see, customizing the Ribbon is a very different process from
using CommandBars to compose toolbars and menus in previous versions of Access.

In the Chapter30.accdb database, you can’t see the USysRibbons table until you right-click the Navigation

pane, select Navigation Options, and select the Show System Objects check box in the Navigation Options dialog

box. Included with the database are several XML fi les that are used in this chapter.

The Ribbon Hierarchy
The Ribbon is a fairly complex structure and is hierarchical in nature. At the top level are the tabs
you see along the top of the Ribbon. Each tab contains one or more groups, each containing one or

ON THE WEB

960

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 960

more controls. The Ribbon is highly adaptable to your current tasks, so the description that
follows may not be exactly the same as you see on your screen:

 ■ Tabs: The top object in the Ribbon hierarchy. You use tabs to separate the most
fundamental operations into logical groups. For instance, the default Ribbon
contains four tabs: Home, Create, External Data, and Database Tools. The File tab
acts differently from the other tabs. It opens a backstage area with typical fi le
operations.

 ■ Groups: The second highest object in the Ribbon hierarchy. Groups contain any
of the number of different types of controls and are used to logically separate
operations supported by a Ribbon tab. In Figure 30.1, the Home tab contains seven
groups: Views, Clipboard, Sort & Filter, Records, Find, Window, and Text Formatting.

 ■ Controls: In Figure 30.1, notice the variety of controls within each group on the
Home tab. The Views group contains a single control, while the Text Formatting
group contains 18 different controls. Normally, the controls within a group are
related to one another, but this is not a hard-and-fast rule.

FIGURE 30.1

The default Ribbon.

As you design your custom Ribbons, you should keep the basic Ribbon hierarchy in mind.
Microsoft has spent a great deal of time experimenting with and testing the Ribbon para-
digm, and it works well for a wide variety of applications.

You can add a maximum of 100 tabs to a custom Ribbon—a very high limit. The other
objects have similarly high limits. Obviously, too many tabs or too many groups can become
a real problem for your users. Generally speaking, you should design your Ribbons in a
conservative manner, including only the items at each level that your users actually need.
Microsoft recommends four or fi ve tabs and never more than seven.

Controls for Access Ribbons
The Ribbon supports many more types of controls than the older command bars. In previous
versions of Access, the type and variety of controls you could add to menus and toolbars
were severely limited. Most toolbars included buttons, and a few other types of controls

961

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 961

30

like drop-down lists, but there were very few options for adding complex or sophisticated
controls to command bars.

Ribbons can contain buttons, text boxes, labels, separators, check boxes, toggle buttons,
edit boxes, and even controls nested within other controls. This chapter explores a few of
these controls, but you can fi nd examples showing how to use every type of Ribbon control
in Access on the Microsoft Offi ce website (http://office.microsoft.com).

Access features some very interesting controls to use on your custom Ribbons. These con-
trols are used in the default Ribbon and are accessible to the custom Ribbons you add to
your applications. These controls have no analogues in older versions of Access and are
completely new to Access.

SplitButton

The SplitButton is similar to a traditional button in an Access interface. What makes the
SplitButton different is that it is split vertically or horizontally into two different controls.
The left (or top side) of the control works as any other button and responds to a single
click. The right (or bottom side) of the button includes an arrow that, when clicked, reveals
a selection list of single-select options.

An example of a SplitButton (shown in Figure 30.2) is the View button on the Home tab.

FIGURE 30.2

The SplitButton is a powerful Ribbon control.

The top portion of the View button can be clicked to switch to Design view. Or the arrow
on the View button can be clicked to reveal a list of other options. Only one option in the
SplitButton list can be selected. As soon as an item in the list is selected, the SplitButton
closes, and the action selected by the user is performed.

The button portion of the SplitButton control is independently programmable.

http://office.microsoft.com

962

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 962

Menu

The Menu control is shown in Figure 30.3. Although the Menu looks very much like a
ComboBox or DropDown, they are not the same type of object. Notice that the items in the
drop-down list in Figure 30.3 include not only text (Clear All Filters, Filter By Form, and so
on) but also an image and tooltip help (not shown in Figure 30.3) associated with each item.

FIGURE 30.3

The Menu control simplifi es a user’s selections.

Only one item in the list can be selected at a time, providing an easy-to-understand inter-
face for your users, when a limited number of options exist.

The SplitButton and Menu are similar in many ways. They both expose a list when clicked
and present a list of single-select items. The main difference is that a SplitButton is split
into two portions (the button portion that executes the default action and the menu por-
tion), whereas the Menu simply drops down the list when clicked.

Gallery

The Gallery presents the user with an abbreviated view of different options for formatting
and other tasks. Figure 30.4 shows the Themes Gallery for reports.

Gallery controls are used extensively in Access for displaying options such as to format
controls and select fonts.

Button

The Button is a familiar control from the CommandBar user-interface in older versions.
A button can be clicked to perform an action. It does not provide options like a Menu or
Gallery, but it can open a dialog box that contains additional options. The Copy button in

963

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 963

30

the Clipboard group of the Home tab is an example of a button. Clicking Copy copies the
current selection onto the Clipboard, but it doesn’t provide any other options or perform
any other actions.

FIGURE 30.4

The Gallery provides the user with a preview of the options.

ToggleButton

A special type of button control, the ToggleButton is used to set a state or condition of
the application. ToggleButtons have two states: on and off. When a ToggleButton is in the
off state, it appears like a normal button on the Ribbon. When a ToggleButton is clicked to
set the on state, its background color changes to indicate its state, and its tooltip caption
may change. Figure 30.5 shows the Apply Filter ToggleButton in its on state. The change
in appearance is an indicator that a fi lter has been applied. Its tooltip changed from Apply
Filter to Remove Filter.

ComboBox

A ComboBox on the Ribbon is very similar to the Combo Box control on a form. It is a com-
bination of a text box and a list box in that you can type directly into a ComboBox or click
the down arrow portion of the control to display a list of options. The Font control on the
Text Formatting group of the Home tab is an example of a ComboBox control.

964

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 964

FIGURE 30.5

A ToggleButton changes appearance to indicate state.

CheckBox

A CheckBox control is another control that may seem familiar. It looks and acts just like a
check box you put on a form. When a CheckBox has been clicked, a check mark appears in
the box; otherwise, the box appears empty. The Required control on the Field Validation
group of the Table Tools tab is an example of a CheckBox control.

Special Ribbon features
The Ribbon contains two other special features that are worth noting. Some controls have
SuperTips that can expand the amount of information shown in a tooltip. Also, the Ribbon
can be hidden to increase the screen space available.

SuperTips

The SuperTip is similar to the tooltip used in previous versions of Access. A SuperTip is rel-
atively large and contains text that you specify, helping the user understand the purpose
of a control. The SuperTip, shown in Figure 30.6, appears as the user hovers the mouse over
a control on the Ribbon.

FIGURE 30.6

The SuperTip provides helpful information to the user.

965

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 965

30

The SuperTip example in Figure 30.6 is displayed when you hover the mouse pointer over
the Find button on the Home tab. It’s larger than a tooltip and shows more information,
such as the shortcut key and a longer explanation of its function.

Collapsing the Ribbon

By default, the Ribbon is always open on the screen. However, the Ribbon, with all its con-
trols and tabs, is quite large and may be in the way while users work with an application.
There are several ways to collapse the Ribbon. The easiest methods are to press Ctrl+F1 or
to double-click any tab. Pressing Ctrl+F1 again expands the Ribbon and keeps it visible.
Single-clicking any tab brings the Ribbon back again, but only temporarily; the Ribbon will
“auto-collapse” until you double-click a tab to restore the Ribbon to its pinned state.

The Ribbon contains a Collapse/Pin button in the lower-right corner. When the Ribbon is
pinned (expanded) the button is a small up arrow. When the Ribbon is collapsed, the button
shows a push pin. Figure 30.7 shows the Collapse/Pin button in both states.

Any forms or reports that are open as the Ribbon is collapsed and expanded are moved
up or down so that their positions (relative to the Ribbon) remain the same. For example,
a form that is open right below the Ribbon moves upward to occupy the same distance
between the top of the form and the bottom of the Ribbon area.

FIGURE 30.7

The Ribbon can be collapsed or pinned.

Editing the Default Ribbon
Access 2010 added the ability to edit the default Ribbon. Changes made to the Ribbon stay
with Access on the machine where the changes were made, but an option to export modifi -
cations is available in the Ribbon Designer.

Right-click anywhere on the Ribbon and choose Customize the Ribbon from the menu to
launch the Ribbon Designer. The Customize the Ribbon window (see Figure 30.8) uses the
“two list” paradigm in which one list contains available commands and the other contains

966

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 966

selected commands. You select the category of Ribbon you want to modify (File Tabs, Main
Tabs, Macros, All Commands, Popular Commands, and so on) from the drop-down above the
list on the left side, and then you use the Add and Remove buttons between the lists to
add or remove items from the Ribbon.

FIGURE 30.8

The Ribbon Designer allows you to customize the Ribbon.

Rename selected itemAdd new groupAdd new tab

Import or export modifications

Command category drop-down list Show/hide check boxes

From the perspective of Access, there is just one Ribbon, but it has a number of Main tabs
on it: Print Preview, Home, Create, External Data, Database Tools, Source Control, and

967

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 967

30

Add-Ins. Within a Main tab are a number of groups, such as Views, Clipboard, and Sort &
Filter. You cannot add or remove tabs or commands from the default Ribbon, but you can
remove individual groups.

You can take away entire built-in groups, but you can’t remove individual commands within
a group. You can use the buttons below the right list to add new custom tabs or to add new
groups within existing Ribbon tabs, and then add commands to the custom group. Using a
new custom tab or group is the only way to add commands from the left list to the Ribbon
defi nition on the right side.

You can’t add commands directly to tabs. Commands must reside within groups on a tab. It’s
easy to add a command to a group: Select the command from the list on the left, select the
custom group to receive the command in the list on the right, and click the right-pointing
arrow between the lists.

If you want to remove certain commands from a built-in group, you have to remove the
built-in group containing the bad command, add a custom group, move it to the appropriate
tab, and then add only the commands you want in the group. Right-click the new group and
select Rename from the shortcut menu, or select the new group and click the Rename but-
ton under the Customize the Ribbon list. The Rename dialog box appears (see Figure 30.9).
Use this dialog box to assign a new name to the group and select the group’s icon.

FIGURE 30.9

Renaming a custom group and setting the group’s icon.

You can hide built-in Ribbon tabs if you prefer. Notice the check boxes next to the items
in the list on the right side of Figure 30.8. Deselecting a box next to a tab hides the tab
from the user. If the tab contains commands the user must have, you can add a custom
tab (with the New Tab button under the Customize the Ribbon list on the right side of

968

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 968

Figure 30.8), and then add custom groups as needed. Finally, add the necessary commands
to the custom groups.

In many cases, simply hiding tabs is probably easier than removing them from the Ribbon.
If they’re hidden, you can easily restore their visibility later on, if you need to.

The Ribbon Designer includes up and down arrows at the far right side for repositioning tabs
and groups within tabs. You could, for instance, add a custom group (or use an existing group)
and move the most commonly used commands into it with the up- and down-arrow keys.

If the changes you’ve made don’t work out as expected, click the Reset button below the
Customize the Ribbon list to return the built-in Ribbon to its original state. The Reset but-
ton (notice its drop-down arrow in Figure 30.8) lets you reset the entire Ribbon or just the
selected tab.

Click the Import/Export button below the Customize the Ribbon list to export the custom-
izations you’ve made to the Ribbon as an external fi le. Alternatively, the list that appears
when you click the Import/Export button includes a command to import a customization
fi le and apply it to your Ribbon. Not surprisingly, the customization fi le is in XML format
and is shared by all of the Offi ce 2016 applications.

Using a customization fi le makes it easy to apply custom Ribbon changes to all users work-
ing with an Access 2016 application. It’s also a great way to back up the changes you’ve
made if you need to reapply the changes later on. You could, for instance, set up the
Ribbon exactly as you want your users to see it, export the customization, and then reset
the Ribbon to its original state so that you have access to all Ribbon features during your
development cycle.

Working with the Quick Access Toolbar
The Quick Access toolbar is in the upper-left corner of the main Access screen (see
Figure 30.10) just above the File tab. The Quick Access toolbar remains visible at all times
in Access and provides a handy way to give your users quick access to commonly performed
tasks such as opening a database fi le or sending an object to a printer.

The Quick Access toolbar is fully customizable. It comes with a list of default controls, some
of which are hidden, that you can hide or unhide with the Quick Access Toolbar menu (see
Figure 30.10). You can quickly and easily add any of a large number of operations to the
Quick Access toolbar. Also, the controls you add are applicable either to the current data-
base or to all Access databases.

The easiest way to add a command to the Quick Access toolbar is to locate the command on
the Ribbon, right-click it, and then select Add to Quick Access Toolbar from the shortcut
menu that appears. Access adds the selected item to the rightmost position in the Quick
Access toolbar.

969

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 969

30

FIGURE 30.10

The Quick Access toolbar remains on the screen at all times.

Quick Access Toolbar menuQuick Access Toolbar

A more fl exible approach to modifying the Quick Access toolbar is to open the Quick Access
Toolbar customization screen by selecting the File tab in the upper-left corner of the main
Access screen and clicking the Options button near the bottom of the Backstage. Then
select the Quick Access Toolbar item from the Access Options list to open the Customize the
Quick Access Toolbar screen (see Figure 30.11).

Like the Ribbon Designer, the Quick Access Toolbar Designer uses a list of available com-
mands and a list of selected commands. The list on the left side of the screen contains
items representing every command available in Access, categorized as Popular Commands,
Commands Not in the Ribbon, All Commands, and Macros. You select the command category
from the drop-down control above the list. The category list also contains entries for all
the Ribbon tabs in Access (File, Home, External Data, and so on). Selecting an item from
this drop-down list reveals the commands within that category.

The Quick Access toolbar provides a handy way for you to control which commands the users
access as they work with your Access applications. The tasks available to the Quick Access
toolbar include operations such as backing up the current database, converting the current
database to another Access data format, viewing database properties, and linking tables.

Because the Quick Access toolbar is visible to all users, be sure not to include com-
mands (such as Design View) that may be confusing to users or harmful to your applica-
tions. Because the Quick Access toolbar is easy to customize, it’s not diffi cult to add the

970

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 970

commands you need at the time you need them, instead of leaving them visible to all users
all the time.

FIGURE 30.11

You can easily add new commands to the Quick Access toolbar.

Position items on the Quick Access Toolbar

Commands added to the Quick Access Toolbar

Use the Add and Remove buttons in the Quick Access Toolbar Designer to move an item
from the list on the left to the list on the right. The Quick Access Toolbar Designer is quite

971

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 971

30

smart. After a command has been added to the Quick Access toolbar, the command is no
longer available to be added again, so you can’t add the same command more than once.

The Quick Access Toolbar Designer also contains up and down arrows to the right of the
selected list that enable you to reorder the left-to-right appearance of the Quick Access
toolbar commands.

Be warned that you can add any number of commands to the Quick Access toolbar. When
more commands are contained than the Quick Access toolbar can display, a double-right-
arrow button appears at the far right side that expands to show the hidden commands.
However, because the whole idea of the Quick Access toolbar is to make commands quickly
available to users, there is no point in loading up the Quick Access toolbar with dozens of
commands that only make it more diffi cult for the user.

Developing Custom Ribbons
The Ribbon Designer and Quick Access Toolbar Designer provide convenient ways to custom-
ize the Access user interface. However, as you’ve seen, these methods limit the customiza-
tions you can make. Using Extensible Markup Language (XML), you have a lot of fl exibility
in customizing the Ribbon.

Ribbons are not represented by a programmable object model in Access. Ribbon cus-
tomizations are defi ned by XML statements contained in a special table named
USysRibbons. Access uses the information it fi nds in the XML to compose and render
the Ribbon on the screen.

The Ribbon creation process
Briefl y, creating custom Ribbons is a fi ve-step process:

 1. Design the Ribbon and compose the XML that defines the Ribbon.

 2. Write VBA callback routines (described in the following section) that support
the Ribbon’s operations.

 3. Create the USysRibbons table.

 4. Provide a Ribbon name and add the custom Ribbon’s XML to the USysRibbons
table.

 5. Specify the custom Ribbon’s name in the Access options screen.

972

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 972

None of these steps is particularly intuitive, especially when it comes to composing the XML
and writing callback routines. Your best bet is to fi nd an example that is reasonably close
to what you want and customize its XML to suit your purposes.

Using VBA callbacks
A callback is code that is passed to another entity for processing. Each procedure you write
to support operations on a Ribbon is passed to the “Ribbon processor” in Access that actu-
ally performs the Ribbon’s actions. This is very unlike the event-driven code you’ve been
working with in Access. Clicking a button on a form directly triggers the code in the but-
ton’s Click event procedure. A Ribbon’s callback procedure is linked to the Ribbon but is
internally processed by Access and does not directly run in response to the click on the
Ribbon.

To fully understand this process, imagine that Access contains a process that constantly
monitors activity on the Ribbon. As soon as the user clicks a Ribbon control, the Ribbon
processor springs into action, retrieving the callback procedure associated with the control
and performing the actions specifi ed in the callback.

This means that there are no Click, DblClick, or GotFocus events associated with the
Ribbon in Access. Instead, you bind a callback to a Ribbon control through the XML that
defi nes the Ribbon. Each Ribbon control includes a number of action attributes that can be
attached to callbacks, and the Ribbon processor takes over when the user invokes a con-
trol’s action.

Here is an example. The following XML statements defi ne a button control on a Ribbon:

<button id="ViewProducts"
 label="All Products"
 size="large"
 imageMso="FindDialog"
 onAction="OpenProductsForm"
 tag="frmProductsDisplay"/>

These lines are a single XML statement. Line breaks have been added for readability.

Notice the onAction attribute in this XML code. Notice also that the onAction attribute
is set to OpenProductsForm. The onAction attribute is similar to the events associated
with a form’s controls. Each interactive Ribbon control (buttons, SplitButtons, and so on)

973

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 973

30

includes the onAction attribute. The callback procedure (OpenProductsForm, in this
example) assigned to the onAction attribute is passed to the Ribbon processor when the
control’s action occurs.

A control’s attributes may appear in any order within the control’s XML, but they must be
spelled correctly. XML is case sensitive, so attributes must be entered exactly as you see
in the examples in this chapter and in the Chapter30.accdb example database. And,
attribute values (like "FindDialog") must be surrounded by double or single quote char-
acters. Both types of quotes are legal in XML, but it’s a good practice to choose one and
stick with it.

Notice that the button control does not contain a Click event. Instead, each interactive
control’s onAction attribute handles whatever action is expected by the control. In the
case of a button, the action is a user clicking the button, whereas for a text box, the action
is the user typing into the text box. Both of these controls include the onAction attri-
bute, but onAction means something different for each control.

Be aware than onAction is not an event. It is just an XML attribute that points to the callback procedure tied

to the Ribbon control. The callback procedure runs whenever the user interacts with the control. In this case, the

ViewProducts button’s callback procedure is invoked when the user clicks the button.

Ribbon controls have several other important attributes, such as imageMso, screentip,
and supertip. These attributes are described in the “Adding Ribbon Controls” section,
later in this chapter.

You probably want to see any errors generated by your custom Ribbon during development. By default, Ribbon error

reporting is disabled, and you must enable it before you see error messages thrown by the Ribbon. Select the File

tab in the upper-left corner of the main Access screen and choose the Options button at the bottom. Next, select the

Client Settings tab in the Options dialog box and scroll down to the General section (see Figure 30.12). Make sure

the Show Add-In User Interface Errors check box is selected, and then click OK at the bottom of the dialog box. The

error messages generated by the Ribbon are invaluable debugging aids. Without these messages, you have no idea

what has failed in your custom Ribbons.

974

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 974

FIGURE 30.12

Set the Show add-in user interface errors property to see Ribbon errors.

Creating a Custom Ribbon
As mentioned previously, creating and customizing Ribbons is very different from working
with CommandBars in earlier versions of Access. Creating Access Ribbons is, at minimum, a
fi ve-step process. Each of these steps is described in detail in the following sections. Later
you’ll see more examples of these steps.

Step 1: Design the Ribbon and build the XML
As with most database objects, the fi rst step to creating a new Access Ribbon is to design
it carefully on paper. If you’re converting an existing toolbar or menu to an Access Ribbon,
you have a pretty good idea of the controls and other items to add to the Ribbon.

975

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 975

30

The XML document you create for your Ribbon mirrors the design you’ve laid out. Perhaps
the most challenging aspect of composing the Ribbons XML is visualizing how the Ribbon
will look, based on the XML behind it. There are no visual cues in a Ribbon XML document
that hint at the Ribbon’s appearance when rendered in Access. Experience will be your best
guide as you work with Ribbon customization, and sometimes trial and error is the only
way to achieve a desired objective.

As a fi nal point, Access is extremely fussy about the XML used to compose Ribbons. There
is no “parser” in Access that validates the XML as a Ribbon is rendered. If an error exists in
the XML document, Access refuses to render the Ribbon, or the Ribbon will be missing ele-
ments defi ned in the XML. This is one reason that using a good XML editor to compose your
XML is important. Most often, the only way you know that an error exists in your Ribbon
XML code is that Access loads the default Ribbon instead of your custom Ribbon.

Inevitably, Ribbon development in Access requires a number of back-and-forth cycles in
which you modify the XML, transfer it to Access, and view the results. You have no real way
of really knowing how well your XML will work as a Ribbon specifi cation until Access ren-
ders the Ribbon on the screen.

The “Basic Ribbon XML” section later in this chapter describes the fundamental XML state-
ments required by Access Ribbons.

For this example, we’ll create a new tab on the default Ribbon. The new tab will be named
“Messages” and will contain one control that opens a form. First, design a form with one
Label control on it containing a message to be displayed. Figure 30.13 shows the form
frmMessage, which can be found in the Chapter30.accdb database.

FIGURE 30.13

A simple form that displays a message.

976

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 976

To create the XML that will defi ne the new Ribbon elements, open your favorite XML edi-
tor. The examples in this chapter use the XML Notepad application, available for free from
Microsoft.com (www.microsoft.com/en-us/download/details.aspx?id=7973).
Figure 30.14 shows the XML in XML Notepad.

FIGURE 30.14

XML Notepad can be used to write XML.

In XML Notepad, you can choose Source from the View fi le to see the XML that is generated.
Here’s the XML for Message.xml:

<?xml version="1.0" encoding="utf-8"?>
<customUI xmlns="http://schemas.microsoft.com/office/2009/07
 /customui" onLoad="onRibbonLoad">
 <ribbon startFromScratch="false">
 <tabs>
 <tab id="ch30_t_Messages" label="Messages">
 <group id="ch30_g_Messages" label="Show">
 <button id="ch30_b_Message" label="Show Message"
 imageMso="GroupTasksLayout" size="large"
 onAction="ShowMessage" />
 </group>
 </tab>

http://www.microsoft.com/en-us/download/details.aspx?id=7973
http://schemas.microsoft.com/office/2009/07/customui
http://schemas.microsoft.com/office/2009/07/customui

977

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 977

30

 </tabs>
 </ribbon>
</customUI>

We’ll discuss each of the parts of this XML fi le later in the chapter. For now, note that
this XML creates a button labeled Show Messages on a Group labeled Show on a tab
labeled Messages. The onAction attribute, which we’ll need for the next step, is named
ShowMessage.

Step 2: Write the callback routines
Before writing any callback code for Ribbon controls, you must reference the Microsoft
Offi ce 16.0 Object Library in the References dialog box (choose Tools ➪ References, and
select the check box next to Microsoft Offi ce 16.0 Object Library). Otherwise, the VBA inter-
preter will have no idea how to handle references to Ribbon controls.

As we described earlier in this chapter, callback routines are similar to event procedures,
but they don’t directly respond to control events. Each type of callback routine has a
specifi c “signature” that must be followed in order for the Ribbon processor to locate and
use the callback. For instance, the prototype onAction callback signature for a button
control is:

Public Sub OnAction(control as IRibbonControl)

The prototype onAction callback for a check box is:

Public Sub OnAction(control As IRibbonControl, _
 pressed As Boolean)

Even though these callbacks support the same onAction control attribute, because
the controls are different, the signatures are different. Clicking a button is just
that—click once, and the action is done. In the case of a check box, a click either
selects (pressed = True) or deselects (pressed = False) the control. Therefore, an
additional parameter is required for check boxes.

These procedures are just prototypes and do not apply to any particular control on a
Ribbon. In practice, the callback procedure for a control is usually named after the control
to distinguish it from callback procedures for other controls. For this example, write the
following code in a standard module:

Public Sub ShowMessage(control As IRibbonControl)

 'Called from Messages > Show > Show Message
 DoCmd.OpenForm "frmMessage"

End Sub

978

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 978

Notice that this procedure’s declaration matches the prototype for a button control’s
onAction callback procedure. Although not required, this procedure even contains a
comment that identifi es the Ribbon control that calls the routine.

Callback routines must be declared with the Public attribute in a standard module, or
they can’t be seen by the Ribbon process.

The name you apply to callback routines is entirely your choice, as long as the procedure’s
declaration matches the control’s onAction signature. Obviously, the procedure’s name
must match the value you assign to the control’s onAction attribute, and documenting the
procedure’s relationship to a Ribbon control is very helpful when it comes time to modify
the Ribbon or the callback.

Notice that the preceding callback procedure doesn’t reference the control by name. This
means that you have to write a uniquely named callback for each control or use a single
callback for multiple similar controls.

You can fi nd a list of callback signatures for all the Ribbon controls at https://msdn.microsoft.com/
en-us/library/aa722523.aspx.

Step 3: Create the USysRibbons table
Access looks for a table named USysRibbons to see whether any custom Ribbons are in the
current database application. This table does not exist by default; if present, it contains
the XML that defi nes the custom Ribbons in the application.

USysRibbons is hidden in the Navigation pane by virtue of the USys prefi x in its name. (Any database object

with USys as the fi rst four characters of its name is automatically hidden in the Navigation pane.) If you want to see

USysRibbons in the Navigation pane, you must enable Show System Objects in the Navigation Options: Right-click

the Navigation pane title bar, select Navigation Options, and then select Show System Objects in the lower-left cor-

ner of the Navigation Options dialog box.

USysRibbons is very simple, containing only three fi elds (shown in Table 30.1).

 ON THE WEB

https://msdn.microsoft.com

979

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 979

30

TABLE 30.1 The USysRibbons Table Design

Field Data Type

ID AutoNumber

RibbonName Short Text 255

RibbonXML Long Text

The ID fi eld just keeps track of the Ribbons in the table. The RibbonName fi eld is used to
specify which Ribbon Access should load at startup (described in Step 5, later in this chap-
ter), whereas RibbonXML is a Long Text fi eld containing the XML that defi nes the Ribbon.

Because USysRibbons is a table, your Access database may actually include the defi ni-
tions of many different custom Ribbons. However, only one custom Ribbon can be active at
a time. Later in this chapter, we cover how to invalidate an existing Ribbon and load a new
Ribbon in its place.

You might fi nd good reasons to add additional fi elds to USysRibbons, if necessary. For
instance, you could add a Notes or Comments fi eld that helps another developer under-
stand how the Ribbon should be used. You could also add a modifi cation date and other
fi elds that help track changes to your custom Ribbons. If you modify USysRibbons, be
sure not to remove or rename the three required fi elds (ID, RibbonName, and RibbonXML).
These three fi elds must exist in USysRibbons and must be named correctly for your cus-
tom Ribbons to work.

Step 4: Add XML to USysRibbons
Now you’re ready to store your XML in the USysRibbons table. Open the USysRibbons
table in Datasheet view. In the RibbonName fi eld, enter rbnMessages and move the cursor
to the RibbonXml fi eld.

Copy the XML that you created in Step 1 and paste it into the RibbonXml fi eld of
USysRibbons. If you’re using XML Notepad, open the XML fi le in XML Notepad and choose
View ➪ Source to output the XML to Windows Notepad. Then copy the XML from there to
paste into USysRibbons. Figure 30.15 show USysRibbons with the fi elds completed.

The XML that was pasted into the RibbonXml fi eld contains a lot of white space. Don’t
worry about the tabs and line breaks in the XML. However, if you replace existing data in
the RibbonXml fi eld, be sure to replace all the existing data. With tabs and line breaks, it
can be diffi cult to know if you’ve left any remnants from the previous data.

980

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 980

FIGURE 30.15

The USysRibbons table stores the XML for custom Ribbons.

Because it’s diffi cult to read long XML strings in Datasheet view, you may want to create a form with a large enough

text box to display more of the string. Figure 30.16 shows a form named frmRibbons from the Chapter30
.accdb that shows the contents of the USysRibbons table.

FIGURE 30.16

frmRibbons displays the information stored in the USysRibbons table.

981

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 981

30

Step 5: Specify the custom Ribbon property
The last step, before restarting the application, is to open the Current Database properties
(choose File ➪ Options ➪ Current Database), scroll to the Ribbons and Toolbar Options sec-
tion, and select the name of the new Ribbon from the Ribbon Name combo box (see Figure
30.17). The combo box’s list contains only the names of custom Ribbons in USysRibbons
that were in the table as Access started, so it does not contain the name of the new Ribbon.
(Apparently Access reads USysRibbons only one time as Access opens a database.) You
have to type the Ribbon’s name into the combo box, or restart the application and let
Access fi nd the new Ribbon in USysRibbons.

FIGURE 30.17

Specifying the new custom Ribbon in the Current Database options dialog box.

When you close the Options dialog box after selecting a new Ribbon Name, Access displays
a message that you must close and reopen the database for the changes to take effect.
Figure 30.18 shows the message displayed.

982

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 982

FIGURE 30.18

Changes to the Ribbon Name property require a restart of the application.

Once Access is restarted, the new tab shows on the default Ribbon. Figure 30.19 shows the
new tab, the Show group on that tab, the lone Show Message button, and the form that is
opened when the button is pushed.

FIGURE 30.19

The XML produces new Ribbon elements that open a form.

983

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 983

30

The Basic Ribbon XML
Take a closer look at the basic XML required by Ribbons. The following XML represents a
prototype Ribbon. (Line numbers have been added to make the discussion following this
XML easier to understand.)

 1 <?xml version="1.0" encoding="utf-8"?>
 2 <!-- This is a comment in the ribbon's XML -->
 3 <customUI xmlns="http://schemas.microsoft.com/office
 /2009/07/customui" onLoad="onRibbonLoad">
 4 <ribbon startFromScratch="true">
 5 <tabs>
 6 <tab id="tab1" ...
 7 <group id="group1" ... >
 8 ... Controls go here ...
 9 </group>
10 </tab>
11 <tab id="tab2" ...
12 <group id="group2" ... >
13 ... Controls go here ...
14 </group>
15 ... Repeat Groups ...
16 </tab>
17 ... Repeat Tabs ...
18 </tabs>
19 </ribbon>
20 </customUI>

The fi rst statement (<?xml version="1.0" encoding="utf-8"?>) is not required by
and does not affect Access Ribbons. It’s completely your choice whether to keep this line
or not in the USysRibbons table. Well-formed XML includes the version line, and it helps
other programs to render the fi le, so it’s a good practice to include it. Line 2 shows how to
add a comment to a Ribbon’s XML code. The <!-- and --> are standard commenting tags
for XML documents.

Line 3 (beginning with <customUI...) specifi es an XML namespace (xmlns), an XML
document that predefi nes acceptable tags for the XML statements that follow. The Offi ce
namespace defi nes the Offi ce Ribbon constructs, such as tabs, groups, controls, and so on.
Every Ribbon defi ned in the RibbonXML fi eld in USysRibbons must start with this state-
ment, so be sure it’s included.

http://schemas.microsoft.com/office/2009/07/customui
http://schemas.microsoft.com/office/2009/07/customui

984

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 984

Beginning with Offi ce 2010, the CustomUI tag changed. If you intend your application to work in Access 2007,

you must use the previous customUI tag. The old tag will work with newer versions, but the new tag won’t work in

Access 2007. The old tag is:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">

The statement in line 4 is rather important. The startFromScratch directive determines
whether you’re building an entire Ribbon from scratch or modifying the default Ribbon by add-
ing or taking things away. Depending on your situation, the majority of your custom Ribbons
may be built from scratch because the default Ribbon knows nothing about the forms, reports,
and other objects and operations in your database. Also, the default Ribbon contains commands
that may be dangerous to your application’s integrity. For instance, a user could open a form,
report, or table in Design view and make changes without your being aware of it. Removing
these commands from the user interface is a fi rst line of defense for your applications.

When startFromScratch is set to false, your custom Ribbon defi nition is added to
the default Ribbon to the right of the built-in tabs. Because Access includes only four tabs
by default, you may have enough room for your additional tabs without overcrowding the
Ribbon. When startFromScratch is set to true, none of the default tabs, groups, or con-
trols is shown on the Ribbon. Only what you include in the XML will be displayed.

Most of the tags in an XML fi le have a corresponding closing tag that defi nes the end of the
section that relates to that tag. All the statements between the opening and closing tags
are children of that tag. Lines 19 and 20 are the closing tags for the Ribbon and CustomUI
elements, respectively.

The <tabs> (line 5) and </tabs> (line 18) tags indicate the beginning and end of the
tabs on the Ribbon. Ribbons are hierarchical, with tabs containing groups, which contain
controls. The tabs, therefore, are the highest-level objects within a Ribbon and enclose all
other Ribbon objects.

Line 6 defi nes the leftmost tab on the Ribbon. In this example, the tab’s name is tab1. The
other attributes for this tab are not shown but are implied by the ellipsis (...). The ending
tag for tab1 is located on line 10.

Line 7 begins the defi nition of the fi rst group on tab1 and line 9 ends this group. Within
the group are the controls displayed by the group.

The rest of this prototype Ribbon is simple repetition of the fi rst few items.

XML is case sensitive. Be careful to use exactly the same case and spelling for all references in your XML as well as

in the callback code driving the Ribbon.

http://schemas.microsoft.com/office/2006/01/customui

985

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 985

30

Adding Ribbon Controls
The previous section presented a simple prototype Ribbon. In this example, the controls
were indicated by ... Controls go here on lines 8 and 13. In this section, you’ll
see the XML and the callback procedures for several controls. Many XML attributes are com-
mon to more than one control. We won’t discuss every attribute for every control; rather,
we’ll look at the most-used attributes.

Specifying imageMso
Most, but not all, Ribbon controls include an imageMso attribute that specifi es the pic-
ture attached to the control. You can’t provide simple references to image fi les; instead,
you must use an imageMso identifi er for this purpose. Every Ribbon control in the Offi ce
2016 applications has an associated imageMso value. You use these values on your cus-
tom Access Ribbon controls and provide a label that tells your users the exact purpose of
the control.

To fi nd the imageMso for a particular Ribbon control, use the Customize the Ribbon win-
dow to open a particular Ribbon. Then use the drop-down in the upper left of the designer
to select the Ribbon category containing the Ribbon command and hover the mouse over
the command’s entry in the list (see Figure 30.20).

The imageMso for the Layout View command (ViewsLayoutView) is shown in parentheses
in the tooltip that appears near the selected command.

The Label control
The Label control is, by far, the simplest and easiest to add to a Ribbon. A Ribbon label is
completely analogous to a label you add to an Access form. It contains either hard-coded
text or text that is generated by a callback procedure.

Here is a sample label defi nition:

<group id="ch30_g_Settings" label="Settings">
 <labelControl id="lbl1" label="Font Things" />
 <separator id="s1"/>
 <labelControl id="lbl2" label="Choose Font Settings" />
 <checkBox id="chk1" label="Bold" onAction="SetBold"/>
 <checkBox id="chk2" label="Italics" onAction="SetItalics"/>
</group>

986

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 986

FIGURE 30.20

Using the Ribbon Designer to obtain a Ribbon command’s imageMso attribute.

This XML contains two labels, a separator, and two check boxes. The text in each of these
labels is hard coded, rather than returned by a callback procedure. You can set the label’s
caption at run time using a callback procedure and the getLabel attribute:

<group id="ch30_g_Label" label="Labels">
 <labelControl id="lbl3" getLabel="lbl3_getLabel" />
</group>

The preceding XML code uses getLabel to identify the callback procedure that will deter-
mine what the label displays. In a standard module, the following procedure will show the
current date in the label:

Public Sub lbl3_getLabel(control As IRibbonControl, ByRef label)

 label = FormatDateTime(Date, vbLongDate)

End Sub

987

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 987

30

The label argument is passed ByRef, and whichever string is assigned to that argument is
displayed in the labelControl. In this example, the FormatDateTime function is used
to create a string with the current date.

You can also use one callback procedure to control several labels. In this example, three
labels use the same getLabel attribute:

<group id="ch30_g_Label" label="Labels">
 <labelControl id="lbl3" getLabel="lbl3_getLabel" />
 <labelControl id="lbl4" getLabel="lbl456_getLabel" />
 <labelControl id="lbl5" getLabel="lbl456_getLabel" />
 <labelControl id="lbl6" getLabel="lbl456_getLabel" />
</group>

The lbl456_getLabel callback procedure uses the control’s id property to determine
which control is calling the procedure:

Public Sub lbl456_getLabel(control As IRibbonControl, ByRef label)

 Select Case control.Id
 Case "lbl4"
 label = "This is Label 4"
 Case "lbl5"
 label = "This is Label 5"
 Case "lbl6"
 label = "This is Label 6"
 End Select

End Sub

Most attributes have both a static form and a dynamic form. By prefi xing the attribute’s name with “get,” you transform

it from an attribute whose value is set in the XML to an attribute whose value is determined by a callback procedure.

For example, the labelControl has a label attribute and a getLabel attribute. Use label when you want to

set the value in the XML and getLabel when you want to set the value dynamically in a VBA callback procedure. An

attribute and its getAttribute cousin are mutually exclusive. Only specify one or the other in the XML.

The Button control
The Button control is perhaps the most useful and fundamental of all of the Ribbon con-
trols. A button is very simple; it has a label, an imageMso attribute for setting the button’s
image, and an onAction attribute that names the callback routine. An example of a but-
ton XML is:

<button id="btn1" size="large"
 label="Browse"

988

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 988

 imageMso="OutlookGlobe"
 onAction="btn1_onAction" />

The btn1_onAction callback procedure, shown below, uses the FollowHyperlink
method of the Application object to launch a web browser. The Button Ribbon control
does not support double-click actions, so tying a button to a callback procedure is very
simple.

Public Sub btn1_onAction(control As IRibbonControl)

 Application.FollowHyperlink "http://www.wiley.com"

End Sub

Another attribute that you can use with the Button control is the keytip attribute. Access
assigns key tips to most controls that you add to the Ribbon. Key tips are shown when the
Alt key is pressed; they allow you to navigate the Ribbon from the keyboard. You can spec-
ify your own key tip with the keytip attribute. The XML for the preceding button with a
keytip attribute look like this:

<button id="btn1" size="large"
label="Browse" keytip="B"
imageMso="OutlookGlobe"
onAction="btn1_onAction" />

Figure 30.21 shows the new button with a B for the key tip, allowing the user to access the
button with an easy-to-remember keyboard shortcut.

FIGURE 30.21

You can specify a custom key tip for controls.

Separators
A separator is a graphical element that divides items in a group, as shown in Figure 30.22.
Separators contain no text and appear as a vertical line within a group. By themselves,
they’re not very interesting, but they graphically separate controls that would otherwise be
too close within a group.

http://www.wiley.com

989

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 989

30

FIGURE 30.22

Separators provide a way to divide controls within a group.

Here’s the XML code for the separators in Figure 30.22:

<group id="ch30_g_Separator" label="Separators">
 <labelControl id="lbl7" label="1" />
 <separator id="s2" />
 <labelControl id="lbl8" label="2" />
 <separator id="s3" />
 <labelControl id="lbl9" label="3" />
</group>

The only requirement for separators is that each be assigned a unique ID value.

The CheckBox control
The CheckBox control is effective for allowing the user to select any of a number of differ-
ent options. CheckBox controls are not mutually exclusive, so the user can choose any of
the check boxes within a group without affecting other selections.

CheckBox controls are established much like any other Ribbon control:

<tab id="ch30_t_Outdoor" label="Outdoor">
 <group id="ch30_g_Sports" label="Sports">
 <checkBox id="chkBaseball" label="Baseball" ...
 <checkBox id="chkBasketball" label="Basketball" ...
 <separator id="outdoor_Sep1"/>
 <checkBox id="chkTennis" label="Tennis" ...
 <checkBox id="chkWaterPolo" label="Water Polo" ...
 </group>
 <group id="ch30_g_Camping" label="Camping Supplies">
 <checkBox id="chkTent" label="Tent" ...
 <checkBox id="chkGranola" label="Granola" ...
 <checkBox id="chkLantern" label="Lantern" ...
 <separator id="camping_Sep1"/>
 <button id="btnCamping" imageMso="StartTimer"
 size="large" label="A Big Button" />
 </group>
</tab>

990

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 990

We removed some XML and replaced it with ellipsis characters to improve clarity of this example XML.

The tab produced by this XML code is shown in Figure 30.23 (and included in the
ControlExamples.xml example Ribbon in the Chapter30.accdb database).

FIGURE 30.23

CheckBox controls are a good choice when the user needs to be able to select among a
number of options.

The Ribbon CheckBox controls shown in Figure 30.23 work exactly as you would expect. The
check boxes may be selected individually or in any combination. CheckBox controls are not
mutually exclusive, and each control can have its own onAction attribute, or multiple con-
trols can share a callback procedure.

The DropDown control
The DropDown control is more complex than the label, button, and check box exam-
ples we’ve covered. It includes a list of items for the user to choose from. Therefore, a
DropDown has a number of attributes that defi ne its appearance, as well as callbacks that
populate its list:

<dropDown
 id="ddLogin"
 label="Login" supertip="Select your employee name...
 screentip="Login Name"
 getItemCount="ddLogin_getItemCount"
 getItemLabel="ddLogin_getItemLabel"
 onAction="ddLogin_onAction" />

The id, label, screentip, and supertip attributes defi ne the DropDown control’s
appearance. The getItemCount and getItemLabel populate the DropDown’s list.
onAction specifi es the callback that handles the control’s action. Figure 30.24 shows the
DropDown created in this section.

991

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 991

30

FIGURE 30.24

A DropDown control lists users’ names.

The VBA callbacks for a typical DropDown are shown in the following code. Two primary
callbacks are required for a DropDown. The fi rst sets the count of items to appear in the
list, and the second actually populates the list.

Public Sub ddLogin_GetItemCount(_
 control As IRibbonControl, ByRef count)

 count = Nz(DCount("*", "tblSalesPerson"), 0)

End Sub

Public Sub ddLogin_getItemLabel(_
 control As IRibbonControl, index As Integer, ByRef label)

 Dim sName As String

 sName = Nz(DLookup("SalespersonName", _
 "tblSalesPerson", "SalesPersonID = " & index + 1), _
 vbNullString)

 label = sName

End Sub

The fi rst callback (ddLogin_getItemCount) gets the count of items to be placed on the
DropDown’s list. Notice the ByRef count parameter. This parameter tells the DropDown
how many items to accommodate on its list.

The second procedure (ddLogin_getItemLabel) actually retrieves the items
for the list. In this case, the procedure pulls the SalesPerson name fi eld from
tblSalesPerson using DLookup. ddLogin_getItemLabel is called by the DropDown
multiple times; the exact number of calls is determined by the count value established by
ddLogin_getItemCount.

An accurate count of values to add to the DropDown is important. The DropDown has no
way, other than the count parameter, to know how many items to expect. Setting a count
too low means that not all items will be added, whereas setting the count too high means

992

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 992

that list contains blank spaces. For instance, if you set the count to ten items but only fi ve
are available, then the DropDown’s list contains the fi ve items but also fi ve blank spaces.

The ddLogin_getItemLabel routine cheats a little bit to supply this information. Notice
the index parameter passed to this routine, which tells the procedure which slot on the
drop-down list is being fi lled when the procedure is called. The DLookup adds 1 to this
value and extracts the name of the salesperson whose ID matches this value. This means
that the SalesPersonID values have to be sequential, starting with 1, or this procedure
will fail.

Extracting data with nonsequential ID values, or where the ID value is non-numeric,
requires a bit more work. In the following code, ddLogin_getItemLabel has been rewrit-
ten to use an ADO recordset rather than the DLookup function. The ddLogin_onAction
procedure uses a recordset in the same way.

Private Const msSQLSALESPERSON As String = _
 "SELECT SalespersonName FROM tblSalesPerson ORDER BY
 SalesPersonName;"

Public Sub ddLogin_getItemLabel(_
 control As IRibbonControl, index As Integer, ByRef label)

 Dim adRs As ADODB.Recordset

 Set adRs = CurrentProject.Connection.Execute(msSQLSALESPERSON)
 adRs.Move index

 label = adRs.Fields(0).Value

End Sub

Public Sub ddLogin_onAction(_
 control As IRibbonControl, id As String, index As Integer)

 Dim adRs As ADODB.Recordset

 Set adRs = CurrentProject.Connection.Execute(msSQLSALESPERSON)
 adRs.Move index

 MsgBox "You are logged in as " & _
 adRs.Fields(0).Value & ".", _
 vbOKOnly, "Logged In"

End Sub

Both procedures use the same module-level constant, msSQLSALESPERSON. This ensures
that the records are sorted in exactly the same order. The Move method moves to the record
specifi ed by index, and if the records were in a different order from one procedure to the

993

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 993

30

next, the wrong name would be returned. The name of the salesperson is retrieved using
the adRs.Fields(0).Value statement. By controlling the SQL statement in a module-
level constant, you can be sure that the fi rst fi eld (.Fields(0)) will contain the proper
information.

The Ribbon includes three controls that appear quite similar. The DropDown control discussed in this section shares

many visual characteristics with the Menu control (see Figure 30.3) and the ComboBox control. (The Font combo

box in the Text Formatting group on the Home tab is an example.) The DropDown and ComboBox controls use the

getItemCount and getItemLabel callbacks to populate their lists, while the Menu control contains Button

elements directly in the XML. You should understand the differences among these controls so that you can choose

the best one for your application.

The DropDown control forces the user to select an item on the list and displays the selected item in the control.

While the DropDown control looks like a ComboBox control, the user can’t edit the value directly.

The ComboBox control works just like a DropDown, except that the user can edit the value directly in the control and

is not limited to the items in the list. DropDown controls and CombBox controls are analogous to List Boxes and

Combo Boxes that you might use on a form.

The simplest of the three controls, the Menu control, is a list of buttons that perform an action. The value of the

selection is not displayed in the control, and the buttons cannot be created dynamically.

The SplitButton Control
The SplitButton control is very useful in situations where the user may select from a
number of different options, but one option is used more frequently than the others. An
example might be a number of reports, one of which is commonly printed while the others
are printed less often. The View SplitButton that’s on the Home tab when you’re designing
a table is a good example (refer to Figure 30.2). The button portion of the View SplitButton
changes, depending on the context. If the user is already in Datasheet view, the button
changes to Design view and vice versa.

The items on a SplitButton’s list are contained within <menu> and </menu> tags.
Whichever controls (within reason, of course) that appear within these tags show up in
the SplitButton’s list. The defi nition of the default button portion of a SplitButton lies
outside the <menu> and </menu> tags. In the following code fragment, spbtn1_btn1 is
the default button, whereas the other buttons (spbtn1_btn2, spbtn1_btn3, and so on)
occupy the SplitButton’s list:

<group id="ch30_g_Splits" label="Split Button">
 <splitButton id="spbtn1" size="large">
 <button id="spbtn1_btn1"
 imageMso="ModuleInsert"
 label="Button1"
 onAction="spbtn1_onAction" />

994

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 994

 <menu id="spbtn1_menu" itemSize="large">
 <button id="spbtn1_btn2"
 imageMso="OutlookGlobe"
 label="Button2"
 onAction="spbtn1_onAction" />
 <button id="spbtn1_btn3"
 imageMso="OutlookGears"
 label="Button3"
 onAction="spbtn1_onAction" />
 <button id="spbtn1_btn4"
 imageMso="Organizer"
 label="Button4"
 onAction="spbtn1_onAction" />
 </menu>
 </splitButton>
</group>

This Ribbon XML example produces the SplitButton shown in Figure 30.25. This example is
contained in the rbnControls example in the Chapter30.accdb database.

FIGURE 30.25

A SplitButton is a very useful Ribbon control.

Attaching Ribbons to Forms and Reports
The Ribbon elements we’ve created so far are always visible. Often, you’ll want the Buttons,
DropDowns, and Menus that you place on the Ribbon to be available all the time. However,
you may have certain Ribbon elements that you want to display only in certain situations.
Fortunately, Access provides a simple way to display Ribbons when a form or report is active.

Forms and reports have a RibbonName property that you can set in the Property Sheet or
with VBA. The Ribbon Name property in the Property Sheet provides a drop-down for all the
Ribbons in the USysRibbons table. Figure 30.26 shows a Ribbon being attached to a form.

995

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 995

30

FIGURE 30.26

Setting a form’s Ribbon Name property.

The rbnAttach XML code is in the FormAttach.xml fi le included with the sample fi les
for this chapter and is in the USysRibbons table in the Chapter30.accdb example data-
base. Here’s the XML:

<?xml version="1.0" encoding="utf-8"?>
<customUI xmlns="http://schemas.microsoft.com/office/2009/07
 /customui" onLoad="onRibbonLoad">
 <ribbon startFromScratch="false">
 <tabs>
 <tab id="ch30_t_Attach" label="My Form">
 <group id="ch30_g_Attach" label="My Form">
 <button id="ch30_b_Attach" label="My Form"
 imageMso="GroupTasksLayout" size="large" />
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

The button doesn’t have an onAction attribute, so the Ribbon doesn’t actually do any-
thing. It’s just an example to show how the Ribbon changes when attached to the form.
The startFromScratch attribute is set to false so that the tab is added to the default
Ribbon instead of replacing it. Figure 30.27 shows the new tab that is displayed when the
form is opened.

http://schemas.microsoft.com/office/2009/07/customui
http://schemas.microsoft.com/office/2009/07/customui

996

Part VII: Advanced Access Programming Techniques

c30.indd 10/05/2015 Page 996

FIGURE 30.27

Opening a form opens its Ribbon.

The My Form tab, with its associated controls, is available while the form is open. Closing
the form causes the new tab to disappear. The list of Ribbons in the Property Sheet acts
like the list in the Options sheet. That is, it doesn’t update whenever you add a new Ribbon
to USysRibbons. You have to close and reopen your application to update the list.

Choosing Compact and Repair from File ➪ Info automatically closes and reopens your database. It’s a quick option

for updating the loaded Ribbons list. It has the added benefi t of keeping your database compacted.

Removing the Ribbon Completely
Assume, for a moment, that there are perfectly legitimate reasons why you don’t want to
use the Ribbon in your applications. Perhaps you’ve developed a set of effective switch-
board forms, or you’ve mimicked the old-style toolbars and menus with borderless forms.
Or, your applications are entirely forms-driven and don’t need the fl exibility provided by
toolbars and Ribbons.

Here’s how you can completely remove the Ribbon from the Access interface:

 1. Create a new table called USysRibbons, if you haven’t already done so.

 2. If creating the USysRibbons table for the first time, add three fields: ID
(AutoNumber), RibbonName (Text) and RibbonXML (Memo).

997

Chapter 30: Customizing the Ribbon

c30.indd 10/05/2015 Page 997

30

 3. Create a new record with the RibbonName set to Blank. It doesn’t really matter
what you call it.

 4. Add the following XML to the RibbonXML column:
<CustomUI xmlns="http://schemas.microsoft.com/office/2009
/07/CustomUI ">
 <Ribbon startFromScratch="true"/>
</CustomUI>

 5. Restart the database.

 6. Select the File tab and then the Options button in the Backstage.

 7. Click the Current Database tab and scroll to the Ribbon and Toolbars area.

 8. In the Ribbon and Toolbars area, set the Ribbon Name to Blank (the same name
you specified for the RibbonNa me column in Step 3).

 9. Close and reopen the database.

This process sets up a dummy Ribbon named Blank that contains no tabs, no groups, and no
controls. In effect, you’re telling Access to put up an empty Ribbon, which simply removes
the Ribbon from the Access user interfac e.

http://schemas.microsoft.com/office/2009/07/CustomUI
http://schemas.microsoft.com/office/2009/07/CustomUI

999

c31.indd 10/06/2015 Page 999

 CHAP T ER

31
Preparing Your Access
Application for Distribution

IN THIS CHAPTER

Setting options for your current database

Developing your application

Putting the fi nishing touches on your application

Hardening your application

Securing the Access environment

Y
ou’re lucky if you have the luxury of developing only single-user, in-house applications and
you never have to worry about distributing an application within a company or across the
country. Most developers have to prepare an Access application for distribution sooner or later.

You don’t even have to develop commercial software to deal with distribution; when you develop
an application to be run on a dozen workstations in one organization, you need to distribute your
application in some form or other.

This chapter covers the issues relevant to distributing Access applications. However, because some
of these items—such as error handling and splitting tables—are covered in detail elsewhere in this
book, this chapter focuses primarily on setting database options when preparing your application
for distribution.

You need to be concerned with many issues when preparing an Access application for distribution.
Distributing your application properly not only makes installing and using the application easier
for the end user, but also makes updating and maintaining the application easier for you, the
application’s developer. In addition, the support required for an application is greatly decreased by
properly preparing and packaging the database and associated fi les for distribution.

1000

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1000

This chapter uses the Chapter31.accdb database. If you haven’t already copied it onto your machine, you’ll need

to do so now.

Most of the techniques described in this chapter have been applied to the sample database. In order to open it so

that you can see the options, open Access fi rst, and then hold down the Shift key while you click the name of the

database to open. Don’t release the Shift key until the database has opened. The database has a custom icon as

described in this chapter. The icon fi le won’t be in the same place on your computer and you’ll have to adjust the set-

tings for it to show properly.

Defi ning the Current Database Options
Access databases have a number of options that simplify the distribution process. You can
access these database options by choosing File ➪ Options, and then selecting the Current
Database tab (shown in Figure 31.1). You can still use an Autoexec macro to execute ini-
tialization code, but the Current Database options enable you to set up certain aspects of
your application, thus reducing the amount of startup code that you have to write. It’s very
important to correctly structure these options before you distribute an Access application.

Setting the Current Database options saves you many lines of code that you would ordinarily need in order to perform

the same functions and enables you to control your application’s interface from the moment the user starts it. Always

verify the Current Database options before distributing your application.

Application options
The settings in the Application Options section let you defi ne parameters for your database
as an application.

Application Title

The text that you provide in the Application Title fi eld displays on the main Access win-
dow’s title bar. The Application Title is also the text that’s displayed in the Windows task
bar when the application is open and running.

You should always specify an application title for your distributed applications. If you don’t, the database name and

“Access” appear on the title bar of your application.

 ON THE WEB

1001

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1001

31

Application Icon

The icon that you specify in the Application Icon fi eld displays on the title bar of your
application and in the task switcher (Alt+Tab) of Windows. If you check the Use as Form
and Report Icon box, this icon is also displayed when a form or report is minimized.

FIGURE 31.1

The Current Database options enable you to take control of your application from the
moment a user starts it.

If you don’t specify your own icon, Access displays the default Access icon, so you might
want to provide an application-specifi c icon for your application. Using special program
icons helps your users distinguish between different Access applications.

1002

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1002

You can create small bitmaps in Windows Paint and use a conversion tool to convert a BMP fi le to the ICO fi le format.

You can also create icons using other graphics programs or search for application icons online.

Display Form

The form you select in the Display Form drop-down list automatically opens when Access
starts the application. When the form loads, the Form Load event of the display form fi res
(if it contains any code), reducing the need to use an Autoexec macro.

Consider using a splash screen as your startup display form. For more information, see the “A splash screen” section

later in this chapter.

Display Status Bar

You can deselect the Display Status Bar check box to remove the status bar from the bottom
of the Access screen. (This option is selected by default.)

The status bar is an informative and easy-to-use tool because it automatically displays key states (such as Caps Lock

and Scroll Lock), as well as the Status Bar Text property for the active control. Instead of hiding the status bar, you

should make full use of it and disable it only if you have a very good reason to do so.

Document Window Options

Under Document Window Options, you can choose how the forms and reports look in your
distributed application. Your options are:

 ■ Overlapping Windows: Overlapping Windows retains the look of previous versions
of Access, letting you look at multiple forms at once.

 ■ Tabbed Documents: Tabbed Documents uses a single-document interface (shown in
Figure 31.2) similar to recent versions of Internet Explorer.

You must close and reopen the current database for the changes to take effect.

The Display Document Tabs check box is only available when you select Tabbed Documents;
it turns on or off the tabs that appear at the top of any open database object. This setting
turns off only the tabs and does not close tabbed objects themselves.

1003

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1003

31

FIGURE 31.2

A database with the Tabbed Documents option selected. The tabs let you select which
Access object to work with.

Use Access Special Keys

If you select this option, users of your application can use accelerator keys that are specifi c
to the Access environment in order to circumvent some security measures, such as unhid-
ing the Navigation pane. If you deselect this option, the following keys are disabled:

 ■ F11: Press to show the Navigation pane (if hidden).

 ■ Ctrl+G: Press to open the Immediate window in the Visual Basic Editor (VBE).

 ■ Ctrl+Break: In Access projects, press to interrupt Access while retrieving records
from the server database.

 ■ Alt+F11: Press to start the VBE.

1004

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1004

It’s a good idea to deselect the Access Special Keys check box when distributing the application, in order to prevent

users from circumventing the options you select; otherwise, users might inadvertently reveal the Navigation pane or

VBA code edition, leading to confusion and other problems.

When using the Access Special Keys property to disable Access’s default accelerator keys, you can still use an

AutoKeys macro to set your application’s shortcut keys.

Compact on Close

Checking the Compact on Close check box tells Access to automatically compact and repair
your database when you close it. Some Access developers use Compact on Close as a way to
perform this maintenance process each time a user works with a database, while others fi nd
it unnecessary. We’re in the latter camp, but you can decide for yourself based on the level
of activity in your database. You must close and reopen the current database in order for
this change to take effect.

Access includes a utility named Compact and Repair Database on the Database Tools Ribbon. File-based databases,

such as Access, need such a utility to avoid data corruption, optimize performance, and reduce fi le sizes. As records

are added to and deleted from tables, the size of your Access database fi le can become large.

Compacting an Access database forces Access to rebuild the indexes in all the tables, and physically rearranges

tables in primary key order in the ACCDB fi le. The maintenance operations ensure that your Access databases oper-

ate at maximum effi ciency.

Keep in mind that compacting a large database might take a considerable amount of time. Plus, Compact on Close

only affects the front-end database. Unless your application uses the front end for temporary tables or other opera-

tions that cause the front end to bloat, the Compact and Repair option may be of minimal benefi t to your users.

Remove Personal Information from File Properties on Save

Checking this box automatically removes the personal information from the fi le properties
when you save the fi le. You must close and reopen the current database for this change to
take effect.

Use Windows-Themed Controls on Forms

Checking this box uses your system’s Windows theme on the form/report controls. This set-
ting only applies when you use a Windows theme other than the standard theme.

Enable Layout View

The Enable Layout View check box shows or hides the Layout View button on the Access
status bar and in the shortcut menus that appear when you right-click on an object tab.

1005

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1005

31

Remember that you can disable the Layout view for individual objects, so even when you enable this option, Layout

view may not be available for certain forms and reports.

Enable Design Changes for Tables in Datasheet View

The Enable Design Changes for Tables in Datasheet View check box allows you to make
structural changes to your tables in Datasheet view, as opposed to having to be in Design
view. In most well-designed Access applications, the users never see the tables in either
Design view or Datasheet view, instead interacting with data via forms. If your applica-
tion allows viewing tables in Datasheet view, you should uncheck this option to prevent
unwanted changes to your tables’ designs.

Check for Truncated Number Fields

Checking this option makes numbers appear as ##### when the column is too narrow to
display the entire value. (This behavior has been in Excel for a long time.) Unchecking this
box truncates values that are too wide to be displayed in the datasheet, which means that
users see only a part of the column’s value when the column is too narrow and might misin-
terpret the column’s contents.

Picture Property Storage Format

Under Picture Property Storage Format, you can choose how graphic fi les are stored in the
database. Your options are:

 ■ Preserve Source Image Format (Smaller File Size): Choose this option if you want
to store the image in the original format, which also reduces the database size.

 ■ Convert All Picture Data to Bitmaps (Compatible with Access 2003 and Earlier):
Choose this option if you want to store all images as bitmaps, which increases the
database size but keeps it compatible with previous versions of Access (Access 2003
and earlier).

Versions of Access prior to 2007 always stored images twice within the database. The fi rst
copy was the original format of the image fi le (such as JPG), while the second copy was a
bitmap used only to display the image on Access forms and reports. Because images were
stored twice, early Access databases were prone to severe bloating when a lot of image data
was stored in the MDB.

You have the option to Preserve Source Image Format to conserve disk space by reducing
the database fi le’s size. (This option is only available in the ACCDB fi le format.) When using
this option, Access only stores one copy of an image (in its original format) and dynami-
cally generates a bitmap when the image is displayed on a form or report.

1006

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1006

Navigation options
The settings in the Navigation section let you defi ne parameters that affect how users navi-
gate your database as an application.

The Display Navigation Pane check box

With most distributed applications, you might never want your users to have direct access to
any of your tables, queries, forms, or other database objects. It’s far too tempting for a user
to try to “improve” a form or report, or to make some minor modifi cation to a table or query.
Rarely are users really qualifi ed to make such changes to an Access database. Deselecting
the Display Navigation Pane option hides the Navigation pane from the user at startup.

Unless you also deselect the Use Access Special Keys option (described earlier in this chapter), users can press F11

to unhide the Navigation pane.

You must close and reopen the current database for this change to take effect.

The Navigation Options button

One nice addition to recent versions of Access is the ability to select which database
options are exposed to users when the Navigation pane is visible at startup. Clicking the
Navigation Options button opens the Navigation Options dialog box (shown in Figure 31.3),
which you use to change the categories and groups that appear in the Navigation pane.

FIGURE 31.3

The Navigation Options dialog box.

1007

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1007

31

In the Grouping Options section, click a category on the left side of the dialog box to
change the category display order or to add groups to the right side of the dialog box.
Click the Object Type category to disable viewing of certain Access objects (tables, queries,
forms, reports, macros, or modules).

In the Display Options section, you can select the Show Hidden Objects, Show System
Objects, and Show Search Bar check boxes.

It’s usually a good idea to hide the hidden and system objects, which you normally don’t want to modify. (They’re

hidden for a reason!)

The Search Bar (shown in Figure 31.4), on the other hand, is useful in the Navigation pane when you have a lot of

objects and want to narrow the list to avoid excessive scrolling, so you should select the Show Search Bar check box.

For example, if you wanted to see the objects (tables, forms, etc.) that had the word Product in them, you’d type Prod

in the Search Bar to limit the tables shown in the Navigation pane.

FIGURE 31.4

The Search Bar appears at the top of the Navigation pane.

In the Open Objects With section, select Single-Click or Double-Click to choose how you
open a database object. Double-Click is the default option and is most likely familiar to all
your users.

Ribbon and toolbar options
The settings in the Ribbon and Toolbar Options section let you defi ne custom Ribbons and
toolbars when using your database as an application. All the options in this section require
you to close and reopen the current database for the change to take effect.

 Creating custom Ribbons is explained in Chapter 30.

1008

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1008

Ribbon Name

The Ribbon Name option lets you specify a customized (usually trimmed-down) version of
the Ribbon. If you don’t supply a Ribbon name, Access uses its built-in Ribbon, which might
be inappropriate for your application. The default Ribbon contains many controls for modi-
fying database objects, which might lead to problems with your users.

Shortcut Menu Bar

Setting the Shortcut Menu Bar changes the default menu for shortcut menus (right-click
menus) to a menu bar that you specify. Using custom shortcut menus that have functional-
ity specifi c to your application is always preferable.

Allow Full Menus

Checking the Allow Full Menus box determines whether Access displays all the commands
in its menus or just the frequently used commands. If you supply custom menus for all
your forms and reports and set the Menu Bar property to a custom menu bar, this setting
has no effect.

Allow Default Shortcut Menus

The Allow Default Shortcut Menus setting determines whether Access displays its own
default shortcut menus when a user right-clicks an object in the Navigation pane or a con-
trol on a form or report.

Name AutoCorrect Options
Several chapters in this book mention the problems associated with changing the names
of fundamental database objects such as tables and fi elds within tables. For example, if
you change the name of a table, everywhere you refer to that table (a query, a control’s
ControlSource property, VBA code, a macro, and so on) becomes invalid, causing the
application to malfunction.

Microsoft added the Name AutoCorrect feature to Access 2000 as a way of mitigating the
problems that inevitably occur when database objects are renamed. Unfortunately, this
feature has never worked quite as well as Microsoft hoped. Primarily, Name AutoCorrect is a
major drag on performance. Because Access must constantly monitor activity while Access
is used, a database with this option selected runs noticeably slower than it does when
the option is turned off. Plus, there are far too many places where an object’s name may
appear for an AutoCorrect feature to effectively capture every instance when the object is
renamed. This is especially true of object names appearing in VBA code; many applications
contain hundreds of thousands of lines of VBA code, making it virtually impossible to fi nd
and update every object reference.

1009

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1009

31

The Name AutoCorrect option is turned on by default in Access applications. Unless you fi nd this option useful in your

projects, you should consider turning it off, as it has been in the Chapter31.accdb example accompanying this

chapter.

Developing the Application
Developing an application generally consists of defi ning the requirements, building the
database objects and writing the code, creating the documentation, and testing the
application. If you’re developing an application for your own use, the requirements are
probably in your head. You also may be so familiar with the problem that you’re trying
to solve that you don’t feel a need to formalize the requirements. Consider writing them
down anyway as a way to clarify your thoughts and identify any problems early in the
development process.

Building to a specifi cation
All databases are meant to solve some problem experienced by users. The problem might be
ineffi ciency in their current methods or the inability to view or retrieve data in a format
they need. Or you may simply be converting an obsolete database to a more modern equiva-
lent. The effectiveness of the solution you build will be judged by how well it resolves the
problem the users are having. Your best guarantee of success is to carefully plan the appli-
cation before building any table, query, or form. Only by working to a plan will you know
how well the application will solve the user’s problem.

Most Access development projects follow this general sequence of events:

 1. Define the problem. Something is wrong or inadequate with the current
methods—a better system is needed and Access appears to be a good candidate to
produce the new system.

 2. Determine the requirements. Interviews with the users yield a description of the
basic features the program should provide. The product of these discussions is the
design specification, a written document that outlines and details the application.

 3. Finalize the specifications. Review the design specifi cations with the users to
ensure accuracy and completeness.

 4. Design the application. The developer uses the initial design specifi cation to
design the basic structure of the database and its user interface.

1010

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1010

 5. Develop the application. This is where most developers spend most of their time.
You spend a great deal of time building the tables, queries, forms, and other data-
base objects needed to meet the specifi cation produced in Step 2.

 6. Test. The developer and client exercise the application to verify that it performs as
expected. The application is tested against the requirements defi ned in the design
specifi cation, and discrepancies are noted and corrected for Step 7.

 7. Distribute and roll out. After the application’s performance has been verifi ed, it’s
distributed to its users. If necessary, users are trained in the application’s use and
instructed on how to report problems or make suggestions for future versions.

Many Access developers dive right into development without adequately defi ning the appli-
cation’s objectives or designing the database’s structure. Unless the application is incred-
ibly simple, a developer who doesn’t work to a specifi cation will surely end up with a buggy,
unreliable, and trouble-prone database.

Another major error is allowing the database to stray too far from the initial design speci-
fi cation. Adding lots of bells and whistles to an otherwise simple and straightforward data-
base is all too tempting. If implementation digresses too far from the design specifi cation,
the project may fail because too much time is spent on features that don’t directly address
the users’ problems. This is one of the reasons for the third step (fi nalize the specifi ca-
tions). The developer and the user are essentially entering into a contract at that point,
and you might want to include a process to be followed in order for either party to make
changes to the specifi cation once it’s been agreed upon.

Before any work begins, most professional application developers expect the client to
submit a written document describing the intended application and specifying what the
program is expected to do. A well-written design specifi cation includes the following
information:

 ■ Expected inputs: What kind of data (text, numeric, binary) will the database have
to handle? Will the data be shared with other applications like Excel or another
database system? Does the data exist in a format that is easily imported into an
Access database, or will the data have to be re-keyed at run time? Will all the data
always be available? Is there a chance that the type might vary? For example, birth
dates are obviously dates, but what happens if you know the year of birth but not
the month or day?

 ■ User interface: Will the users be comfortable with simple forms, or will they need
custom menus and Ribbons and other user-interface components? Is context-
sensitive online Help required?

 ■ Expected outputs: Which kinds of reports are needed by the user? Will simple
select queries be adequate to produce the desired results, or are totals, crosstabs,
and other advanced queries necessary as well?

1011

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1011

31

The whole point of a design specifi cation is to avoid adding unplanned features that
decrease the database’s reliability without contributing to its utility. Writing a design
specifi cation before beginning the actual implementation will consistently yield the follow-
ing benefi ts:

 ■ A guide to development effort: Without some kind of design specifi cation, how
can you possibly know whether you’re building an application that truly meets the
client’s expectations? As you work through the development phase, you can avoid
adding features that don’t contribute to the application’s objectives and concen-
trate on those items that the client has identifi ed as having priority.

 ■ Verification that the application meets expectations: All aspects of the applica-
tion must be tested to verify its operation. The best way to conduct testing is to
confi rm that all design objectives have been met and that no unexpected behavior
is observed during the testing phase.

 ■ Minimization of design changes during implementation: Many problems can be
avoided by sticking to the specifi cation. One of the easiest ways to break an appli-
cation is to add new features not included in the original design. If the applica-
tion was properly planned, the specifi ed features will have been designed to work
together. Introducing new features after development has begun most likely will
result in a less reliable system.

Overall, a well-written design specifi cation provides the basis for creating tight, bullet-
proof applications that fulfi ll the user’s requirements. At the conclusion of the project,
the fi nished database can be compared to the design specifi cation, and its effectiveness in
addressing the original problem can be objectively evaluated. Without a design specifi cation
written at the beginning of a project, you have no valid measure of how well the applica-
tion resolves the problem that inspired the project in the fi rst place.

Creating documentation
Even the best-written Access application will fail if users don’t fully understand how to
use it. And it’s not just the user interface that needs to be understood: The logic of what
happens when the user clicks a particular button needs to be understood both by at least
some of the users as well as by any technical support staff who might be involved with the
application.

While many developers dislike writing documentation, leaving it as a last step that they
hopefully won’t have time for because they’ve moved onto another project, documentation
really is a “necessary evil.”

Documenting the code you write

Over time, changes or additions might be required to the application. Even if you’re the one
making those changes, the passage of time since you originally wrote the code might mean

1012

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1012

that even you have problems understanding exactly what the code does. Imagine how much
harder it’ll be if someone else has to fi gure it out!

Write self-documenting code by using consistent naming conventions for your variables,
constants, and procedures. Provide logical names for your procedures that describe simply
and clearly what the procedure does. If you can’t come up with a reasonable name for a pro-
cedure, it may be that you’re trying to do too much in one procedure, and you should con-
sider breaking it up. Use comments when necessary, but don’t overuse them or they’ll never
be read and will be quickly out-of-date. Create a comment when you make an important
design decision that you want to document or when you use a non-intuitive programming
technique that would be otherwise diffi cult to understand.

Figure 31.5 shows a short procedure that is mostly self-documenting. The procedure, variables,
and constants are well named and a comment is included to explain an unusual line of code.

FIGURE 31.5

Produce self-documenting code when possible.

Name your database objects and controls and don’t accept the default names that Access
provides for database objects such as forms and controls. The default names are simply a
convenience for simple applications and shouldn’t be used in professional-quality work.

Documenting the application

The applications you deliver to end users should be accompanied by documentation that
explains how the applications are meant to be used. End-user documentation doesn’t have
to include descriptions of the internal structure or logic behind the user interface. It

1013

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1013

31

should, however, explain how the forms and reports work, describe things the users should
avoid (for example, changing existing data), and include printouts of sample reports. Use
screenshots to illustrate the documentation.

Be sure the documentation includes the exact version number in the title or footer so that users can verify that the

documentation is the right version for the software they’re using.

The users of your applications will benefi t from the online Help you build into the data-
base. Online Help, of course, means everything from the tooltips you attach to the controls
on a form to status-bar text, to sophisticated context-sensitive and “What’s this?” help you
see in many Microsoft products.

It’s often useful to have a user write the actual user documentation (in conjunction with the developer, of course). In

this way, you can ensure that it’s written in language that the users understand.

Testing the application before distribution
As you design your application, consider how you’ll test the various aspects of it. Planning
your tests during the design phase is the best time because the functions of a form or
report will be fresh in your mind. Don’t wait until you’re completely done developing to
start thinking about testing, or you’ll have a hard time remembering all the important
features that you should test. Write out a test plan during, or shortly after, designing an
object in your application (such as a table or form). Don’t worry if the test plan isn’t per-
fect, you’ll be able to change it before you distribute the application.

Execute your test plans as soon as it’s practical to do so. Then execute them again when the
whole project is complete and you’re ready to distribute it. The fi rst time you execute them
assures that you designed the object as you intended. Executing them at the end ensures
that future changes didn’t introduce bugs. You may fi nd that your tests are no longer valid
because of changes you made to the design. Design changes happen all the time during
development and when tests become invalid you can simply remove them or change them to
test the new functionality.

Distributing an application that is 100 percent bug-free is almost impossible. The nature of the software develop-

ment beast is that, if you write a program, someone can—and will—fi nd an unanticipated way to break it. Certain

individuals seem to have a black cloud above their heads and can break an application (in other words, hit a critical

bug) within minutes of using it. If you know of such people, hire them! They can be great assets when you’re testing

an application.

1014

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1014

While working through the debugging process of an application, categorize your bugs into
one of three categories:

 ■ Category 1: Catastrophic bugs: These bugs are absolutely unacceptable—for
example, numbers in an accounting application that don’t add up the way they
should or a routine that consistently causes the application to terminate unex-
pectedly. If you ship an application with known Category 1 bugs, prepare for your
users to revolt!

 ■ Category 2: Major bugs that have a workaround: Category 2 bugs are fairly major
bugs, but they don’t stop users from performing their tasks because some work-
around exists in the application. For example, a button that doesn’t call a procedure
correctly is a bug. If the button is the only way to run the procedure, this bug is
a Category 1 bug. But if a corresponding Ribbon command calls the procedure cor-
rectly, the bug is a Category 2 bug. Shipping an application with a Category 2 bug is
sometimes necessary. Although shipping a bug is offi cially a no-no, deadlines some-
times dictate that exceptions need to be made. Category 2 bugs will annoy users,
but shouldn’t send them into fi ts.

If you ship an application with known Category 2 bugs, document them! Some developers have a don’t-say-anything-

and-act-surprised attitude regarding Category 2 bugs. This attitude can frustrate users and waste their time by

forcing them to discover not only the problem, but also the solution. For example, if you were to ship an application

with the Category 2 bug just described, you should include a statement in your application’s README fi le that reads

something like this: “The button on the XYZ form does not correctly call feature such-and-such. Please use the corre-

sponding command such-and-such found on the Ribbon. A patch will be made available as soon as possible.”

 ■ Category 3: Small bugs and cosmetic problems: Category 3 bugs are small issues
that don’t affect the operation of your application. They may be caption or label
misspellings or incorrect text-box colors. Category 3 bugs should be fi xed soon,
but they shouldn’t take precedence over Category 1 bugs. They should take prece-
dence over Category 2 bugs only when they’re so extreme that the application looks
completely unacceptable or when they cause enough trouble for users that a fi x is
quickly needed.

Categorizing bugs, and approaching them systematically, helps you create a program that
looks and behaves the way its users think it should. Sometimes you may feel like you’ll
never fi nish your Category 1 list, but you will. You’ll be smiling the day you check your
bug sheet and realize that you’re down to a few Category 2s and a dozen or so Category
3s! Although you might be tempted to skip this beta-testing phase of development, don’t.
You’ll only pay for it in the long run.

1015

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1015

31

Not all Access features are available when an application is run within the Access runtime environment. You can

operate in the runtime environment and use the full version of Access to test for problems with your code and with

the runtime environment by using the /Runtime command-line option when starting your Access application. From

the Charms menu, select the App charm and then the Run app or create a shortcut.

Polishing Your Application
When your application has been thoroughly tested and appears ready for distribution,
spend some time polishing your application.

Giving your application a consistent look and feel
First and foremost, decide on some visual design standards and apply them to your appli-
cation. This step is incredibly important if you want a professional look and feel to your
applications. Figure 31.6 shows a form with samples of different styles of controls.

FIGURE 31.6

You can decide on any interface style that you like for your application. But after you decide
on a style, use it consistently.

Your design decisions may include the following:

 ■ Will text boxes be sunken, fl at with a border, fl at without a border, chiseled, or
raised?

 ■ What back color should text boxes be?

 ■ What color will the forms be?

1016

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1016

 ■ Will you use chiseled borders to separate related items or select a sunken or raised
border?

 ■ What size will buttons on forms be?

 ■ For forms that have similar buttons, such as Close and Help, in what order will the
buttons appear?

 ■ Which accelerator keys will you use on commonly used buttons, such as Close and
Help?

 ■ Which control will have focus when the form opens?

 ■ How will the tab order be set?

 ■ What will your Enter key property be for text boxes?

 ■ Will you add some visual indication for when list boxes are multi-select and when
they aren’t?

 ■ Will you add some visual indication for when combo boxes have their Limit to List
property set?

Making your application look and work in a consistent manner is the single most important
way to make it appear professional. For ideas on design standards to implement in your
applications, spend some time working with some of your favorite programs to see which
standards they use.

In the area of look and feel, copying from another developer is generally not considered plagiarism but is instead

often looked upon as a compliment. Copying does not extend, however, to making use of another application’s icons

or directly copying the look and feel of a competitor’s product; this is a very bad practice.

Adding common professional components
Most professional applications have some similar components. The most common compo-
nents are the splash screen, an application switchboard, and an About box. These may seem
like trivial features, but they can greatly enhance your application’s appeal. They don’t
take much time to implement and should be included in all your distributed applications.

A splash screen

The splash screen (see Figure 31.7 for an example) not only aids in increasing perceived
speed of an application but also gives the application a polished, professional appearance
from the moment a user runs the program.

1017

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1017

31

FIGURE 31.7

A splash screen not only increases perceived speed of your application, but it also gives your
application a professional appearance.

Figure 31.7 shows the design window for a splash screen template that you can use when building your own applica-

tions. This form is included in the Chapter31.accdb database. It’s named frmSplashScreen. Import this

form into your application and use it as a template for creating your own splash screen.

Most splash screens contain information such as the following:

 ■ The application’s title

 ■ The application’s version number

 ■ Your company information

 ■ A copyright notice (© Copyright)

In addition, you might want to include the licensee information and/or a picture on the
splash screen. If you use a picture on your splash screen, make it relevant to your applica-
tion’s function. For example, some coins and an image of a check could be used for a check-
writing application. If you want, you can also use clip art for your splash screen—just be
sure that the picture is clear and concise and doesn’t interfere with the text information
presented on your splash screen.

 ON THE WEB

1018

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1018

To implement the splash screen, have your application load the splash form before it does
anything else. (Consider making your splash screen the Display Form in the Application
Options, described earlier in this chapter.) When your application fi nishes all its initialization
procedures, close the form. Make the splash form a light form and convert any bitmaps that
you place on your splash screen to pictures in order to decrease the splash form’s load time.

An application switchboard

An application switchboard is essentially a steering wheel for users to fi nd their way
through the functions and forms that are available in the application. Use the switchboard
itself as a navigation form, using buttons to display other forms, as shown in the switch-
board example in Figure 31.8. This is the switchboard named frmSwitchboard created for
the Collectible Mini Cars database in this book.

The switchboard provides a familiar place where users can be assured that they won’t get
lost in the application.

FIGURE 31.8

The switchboard provides a handy way to navigate throughout the application.

Make sure that the switchboard redisplays whenever the user closes a form.

An About box

The About box (like the one shown in Figure 31.9) contains your company and copyright
information, as well as the application name and current version. Including your application’s
licensee information (if you keep such information) in the About box is also a good idea.

1019

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1019

31

The About box serves as legal notice of ownership and makes your application easier to
support by giving your users easy access to the version information. Some advanced About
boxes call other forms that display system information. You can make the About box as
fancy as you want, but usually a simple one works just fi ne.

FIGURE 31.9

An About box provides useful information to the user and protects your legal interests.

Figure 31.9 shows an About box template form that you can use when building your own applications. This form is

included in the Chapter31.accdb database. It’s named frmAbout. Import this form into your application and

use it as a template for creating your own About box.

The About box should be accessible from a Help menu or from a button on your switch-
board form.

Making the Most of Pictures
Most users love pictures, and most developers love to use pictures on buttons. Clear and concise
pictures are more intuitive and are more easily recognized than textual captions. Most developers,
however, are not graphic artists, and they usually slap together buttons made from any clip-art images
that are handy. These ugly buttons make an application look clumsy and unprofessional. In addition,
pictures that don’t clearly show the function of the button make the application harder to use.

Select or create pictures that end users will easily recognize. Avoid abstract pictures or pictures that
require specifi c knowledge to understand them. If your budget permits, consider hiring a professional
design fi rm to create your button pictures. A number of professional image galleries and tools to
create and edit buttons are available.

Picture buttons that are well thought out can really make your application look outstanding, as well
as make it easier to use.

 ON THE WEB

1020

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1020

The status bar

Keeping your users informed about what’s happening with your application is an important
part of building a good user experience. Access provides a SysCmd function that lets you
display messages in the status bar (the thin colored bar across the bottom of the screen).

By default, the status bar shows information about the state of the object you’re work-
ing on. For example, when you have a form open in Design view, the left side of the status
bar reads “Design View.” The status bar also displays whether the NUM LOCK key is active.
Depending on the type of object you have open, the far right of the status bar provides a
quick way to switch between views.

Using SysCmd, you can display your own messages on the left side of the status bar. The
status bar is a great place to display noncritical messages because it doesn’t require any
user interaction (other than reading it, of course).

To show a message in the status bar, use the acSysCmdSetStatus parameter, as shown in
the following code:

Private Sub cmdHelpText_Click()

 Const sMSG As String = "Hello, World!"

 SysCmd acSysCmdSetStatus, sMSG

End Sub

This code displays "Hello, World!" in the status bar, but you can display any string you’d
like. However, if the string is longer than Access has space to show, nothing will display. The
status bar can also be used to show the user what’s happening during a long process. In the
following code, the status bar is updated while looping through a large recordset.

Private Sub cmdLoop_Click()

 Dim rs As ADODB.Recordset
 Dim sSql As String
 Dim lCnt As Long

 sSql = "SELECT * FROM tblLarge;"
 Set rs = New ADODB.Recordset
 rs.Open sSql, CurrentProject.Connection, _
 adOpenKeyset, adLockReadOnly

 Do While Not rs.EOF
 lCnt = lCnt + 1
 If lCnt Mod 10 = 0 Then
 SysCmd acSysCmdSetStatus, _
 "Processing record " & lCnt & " of " & rs.RecordCount

1021

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1021

31

 DoEvents
 End If
 rs.MoveNext
 Loop

 SysCmd acSysCmdClearStatus

 rs.Close
 Set rs = Nothing

End Sub

When processing a lot of records, it’s useful to display a counter like in the preceding code.
This code updates the status bar every tenth record. If it were updated for every record, it
would move so fast the user would barely be able to see it. Also, overuse of the status bar
can degrade performance, so updating it only as needed helps speed up the process. The
Mod function returns the remainder when the fi rst number is divided by the second. When
the remainder is zero, the counter is a multiple of 10 and the status bar is updated. Find a
multiple that works for your data. The status bar should update frequently enough that the
user doesn’t think the program has stopped, but not so frequently that the text is a blur or
the performance of the process is affected.

A couple of other aspects of the preceding code are worth mentioning. The recordset was
opened with a cursor type of adOpenKeyset. Opening a recordset with this cursor type
allows you to use the RecordCount property to return the total number of records. Inside the
loop, the DoEvents keyword is used. While the code is running, it can use all the Windows
resources; certain activities, like refreshing the screen, are put on hold until the code stops.
That’s not very helpful when you’re trying to display text in the status bar. DoEvents is a com-
mand that briefl y gives control to Windows so it can complete any tasks in its events queue.

Figure 31.10 shows the status bar being updated.

Near the end of the procedure, the acSysCmdClearStatus parameter is used to return
control of the status bar back to Access.

If you don’t want to display a status bar message, but you don’t want Access to display one either, you can use

SysCmd to put a single space in the status bar. The code SysCmd acSysCmdSetStatus, Space(1) will

keep the status bar blank until you’re ready to use it.

A progress meter

Access provides a built-in progress meter in the status bar at the bottom of the main
Access window. This progress meter is a rectangle that grows horizontally as a long-running
process is executed by Access.

1022

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1022

FIGURE 31.10

Use the status bar to provide feedback on a long process.

Setting up and using a progress meter requires an initializing step, and then setting the
meter to its next value. As your code progresses, you don’t just increment a counter that is
managed by SysCmd. You must explicitly set the meter’s value to a value between 0 and the
maximum you set at initialization.

The following code and demonstration are contained in a form named frmSysCmdDemo in the Chapter31
.accdb database.

Use the acSysCmdInitMeter constant to initialize the meter. You must pass some text
that is used to label the meter, as well as the meter’s maximum value:

Private Sub cmdInitMeter_Click()

 Const sSTATUSTEXT As String = "Reading Data"

 mlMeterMax = 100
 mlMeterIncrement = 0

 SysCmd acSysCmdInitMeter, sSTATUSTEXT, mlMeterMax

End Sub

This procedure sets the max to 100 and initializes the mlMeterIncrement variable to
zero. When this procedure is run, the Access status bar appears, as shown in Figure 31.11.

FIGURE 31.11

The progress meter after initialization.

Status bar progress meter

Custom status bar label

 ON THE WEB

1023

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1023

31

Incrementing the meter is a little tricky. In the following subroutine, the module-level
variable mlMeterIncrement is incremented by 10 and the meter’s position is set to the
value of mlMeterIncrement:

Private Sub cmdIncrementMeter_Click()

 mlMeterIncrement = mlMeterIncrement + 10

 If mlMeterIncrement > mlMeterMax Then
 mlMeterIncrement = 0
 End If

 SysCmd acSysCmdUpdateMeter, mlMeterIncrement

End Sub

This procedure also checks to see if the value of mlMeterIncrement exceeds the
maximum set in the initialization routine. If it does, it starts back at zero. That’s interest-
ing for a demonstration, but in real-world situations it’s best to set the maximum to an
appropriate value that won’t be exceeded. Figure 31.12 shows the progress meter after the
Progress Meter Demo button was clicked and the Increment Meter button was clicked fi ve
times. It’s easy to see that the meter has moved a distance proportional to the value of
mlMeterIncrement after being incremented fi ve times.

FIGURE 31.12

The progress meter midway in its movement.

You’ll have to choose values for the progress meter’s maximum and increment settings in
your application. Also, be sure to update the progress meter at appropriate intervals, such
as every time one-tenth of a process has run (assuming, of course, that you know ahead of
time how many items will be processed or how long an operation may take).

A meter is a valuable way of keeping the user informed of the progress of a lengthy process.
Because you control its initial value and the rate at which it increments, you’re able to
fairly precisely report the application’s progress to its users.

The only issue with the default Access progress meter is that it appears at the very bottom
of the screen and is easily overlooked by users. Also, if the status bar is hidden through
the Display Status Bar option on the Current Database tab of the Access Options dialog box
(refer to Figure 31.1), the progress meter can’t be seen at all.

1024

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1024

If you prefer to keep the status bar hidden and show a progress meter that the users are sure
to see, you can create your own progress meter with a form and a couple of label controls.
Figure 31.13 shows just such a progress meter. It starts with an unbound form and two label
controls. One label is on top of the other and they have the same Top, Left, Height, and
Width properties. The label underneath has a lighter BackColor than the label on top.

FIGURE 31.13

A homemade progress meter.

As the program progresses, the top label’s Width property is increased, giving the illusion
that a darker color is fi lling a box. The form has certain properties set to give it the look
and feel of a progress meter. Table 31.1 shows some of the properties of the form.

TABLE 31.1 Form Properties for a Progress Meter

Property Value Description

Pop Up Yes Along with Modal, ensures that the form is always on top
and other forms can’t be selected.

Modal Yes Along with Pop Up, ensures that the form is always on top
and other forms can’t be selected.

Caption Progress You can change this property to customize your progress
meter.

Allow Datasheet
View

No Progress meters should only be shown in Form view.

Allow Layout View No Progress meters should only be shown in Form view.

Auto Center Yes Puts the progress meter in the middle of the screen.

Record Selectors No Hides the record selectors.

Navigation
Buttons

No Hides the navigation buttons.

Control Box No Hides the control box.

Close Button No Hides the close button.

Min Max Buttons No Hides the minimize and maximize buttons.

Border Style Dialog Makes the progress meter appear as a dialog box.

1025

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1025

31

In the Chapter 31.accdb database, the frmSysCmdDemo form calls the frmProgress form and includes

all the code in this section.

To create the progress meter in Figure 31.13, start by adding two custom properties to
frmProgress. In addition to the form properties built-in to Access, you can add properties
unique to your application. Add a Max property to set the maximum length of the progress
bar and a Progress property to set how far along the process is.

Private mlMax As Long
Private mdProgress As Double

Public Property Get Max() As Long
 Max = mlMax
End Property

Public Property Let Max(lMax As Long)
 mlMax = lMax
End Property

Public Property Get Progress() As Double
 Progress = mdProgress
End Property

Public Property Let Progress(dProgress As Double)
 mdProgress = dProgress
End Property

The Property keyword in VBA is used to defi ne the custom properties. Declare a module-
level variable to hold the property’s value, like mlMax. Then create Property Get and
Property Let procedures to read and write the property, respectively. You can also omit
either the Get or Let property statement if you want to make the property read-only or
write-only.

Use the Form_Load event to initialize the width of the top label, lblPmFront. The under-
neath label, lblPmBack, always stays the same width.

Private Sub Form_Load()

 Me.lblPmFront.Width = 0

End Sub

The last piece of code behind frmProgress is a custom method to update the progress bar.
A custom method is simply a sub-procedure declared with the Public keyword.

 ON THE WEB

1026

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1026

Public Sub UpdateProgress(lProgress As Long)

 If lProgress >= Me.Max Then
 Me.Progress = 1
 Else
 Me.Progress = lProgress / Me.Max
 End If

 Me.lblPmFront.Width = Me.lblPmBack.Width * Me.Progress

End Sub

The fi rst part of the custom method determines if the lProgress argument is greater
than the maximum. If it is, Progress is set to 1, or 100%. This way, the progress meter
will never go above 100%. If lProgress is less than the max, Progress is set to the ratio
of lProgress to the maximum. Finally, the width of lblPmFront is increased by that
proportion.

The procedure in the frmSysCmdDemo form that uses this progress meter is shown below.
It is very similar to the code used earlier in this chapter to update the status bar when
looping through a large recordset.

Private Sub cmdLoopProgress_Click()

 Dim rs As ADODB.Recordset
 Dim sSql As String
 Dim lCnt As Long

 Const sFORMPROGRESS As String = "frmProgress"

 sSql = "SELECT * FROM tblLarge;"
 Set rs = New ADODB.Recordset
 rs.Open sSql, CurrentProject.Connection, _
 adOpenKeyset, adLockReadOnly

 DoCmd.OpenForm sFORMPROGRESS
 Set frmProgress = Forms(sFORMPROGRESS)
 frmProgress.Max = rs.RecordCount

 Do While Not rs.EOF
 lCnt = lCnt + 1
 If lCnt Mod 10 = 0 Then
 frmProgress.UpdateProgress lCnt
 DoEvents
 End If
 rs.MoveNext

1027

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1027

31

 Loop

 DoCmd.Close acForm, sFORMPROGRESS

End Sub

In this procedure, the frmProgress form is opened and assigned to a variable that allows
access to the Max property and the UpdateProgress method. The Max property is set to
rs.RecordCount and the UpdateProgress method is called within the loop, passing the
lCnt variable. Finally, the progress form is closed at the end of the procedure.

Making the application easy to start
You shouldn’t expect users to locate the Access data fi le (ACCDB or MDB) or to choose
File ➪ Open in Access to invoke the application. Pinning items to the Windows Start screen
isn’t diffi cult. When properly implemented, a program icon creates the impression that the
application exists as an entity separate from Access, and endows it with a status equivalent
to Word, Excel, or other task-oriented programs.

Creating a program icon isn’t diffi cult. Many freeware and shareware versions of icon
editors are available online, enabling you to create entirely new icons. The Chapter31
.accdb example database comes with its own program icon (Earth.ico) for you to
experiment with. You designate the program icon in the Access startup options (see the
“Application options” section earlier in this chapter) or by setting a program icon in
Windows Explorer.

Follow these steps to establish a Windows shortcut for an Access database application:

 1. In the Microsoft Office program folder (usually C:\Program Files\
Microsoft Office\root\Office16), locate MSACCESS.EXE.

 2. Right-click MSACCESS.EXE and select Create Shortcut.

 3. Press F2 while the shortcut is highlighted and enter a new caption for the icon.

 4. Right-click the icon and select Properties. The icon’s Properties dialog box
appears.

 5. Select the Shortcut tab and add a complete path reference to the application’s
ACCDB or MDB file to the Target text box.

Be sure not to delete or alter the path to the Access executable fi le.

In Figure 31.14 the application database’s path is E:\Dropbox\Dropbox\
Access2016\Chapter31\Chapter31.accdb. Notice that the Target text box
contains the path to the Access executable followed by the path to the ACCDB fi le.

1028

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1028

If the path to the database includes spaces, you need to put double quotes around the full path.

FIGURE 31.14

It’s easy to get Access to automatically open a database from a shortcut icon.

 6. Click the Change Icon button. The Change Icon dialog box appears.

 7. Click the Browse button and navigate to the icon file (with an ICO extension)
you want to use (see Figure 31.15).

 8. Drag the shortcut to the computer’s desktop or Quick Launch toolbar to provide
a convenient way to start the Access application.

1029

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1029

31

FIGURE 31.15

A colorful icon can make an application easy to fi nd in a crowded folder or desktop.

Bulletproofi ng an Application
Bulletproofing (or hardening) an application is the process of making the application more
stable and less prone to problems caused by unskilled users. Bulletproofi ng involves trap-
ping errors that can be caused by users, such as invalid data entry, attempting to run a
function when the application is not ready to run the function, and allowing users to click
a Calculate button before all necessary data has been entered. Bulletproofi ng your applica-
tion is an additional stage that should be completed in parallel with debugging and should
be performed again after the application is working and debugged.

 Chapter 27 discusses error trapping in VBA.

Using error trapping on all Visual Basic procedures
An error-handling routine gives you a chance to display a friendly message to the user,
rather than some unintuitive default message box. Figure 31.16 shows a message box with
a runtime error “2102,” which is unintuitive; however, it also shows a more-detailed mes-
sage of a form missing or misspelled. The user won’t know the name of the form or if it’s
misspelled or missing. An error-handling routine is needed to provide the user with a more
informative and meaningful error message than what’s shown in Figure 31.16.

FIGURE 31.16

An error message resulting from a procedure with no error-handling routine.

1030

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1030

One of the most important elements of bulletproofi ng an application is making sure that
the application never crashes (ceases operation completely and unexpectedly). Although
Access provides built-in error processing for most data-entry errors (for example, characters
entered into a currency fi eld), automatic processing doesn’t exist for VBA code errors. You
should include error-handling routines in every VBA procedure, as described in Chapter 27.

When running an application at run time, any untrapped error encountered in your code
causes the program to terminate completely. Your users can’t recover from such a crash,
and serious data loss might occur. Your users have to restart the application after such an
application error.

Maintaining usage logs

Usage logs capture information such as the user’s name or ID, the date, and the time. They
provide valuable information, especially if an error occurs. Although you can easily record
too much information, a properly designed usage log will permit you to pinpoint whether a
certain type of error always seems to occur when a particular user is working with the
system or when a certain query is run.

The logging information you add to a database might include updating a time stamp on
records in a table when changes are made. Be aware, however, that the more logging you
do, the slower the application becomes. The log information will cause the database to grow
as well, unless the log information is stored in another location.

You can even tailor the level of logging to suit individual users or groups of users. Using
the information captured on a login form, the application can determine at startup what
level of logging to impose during the session. To make reviewing the logs much easier,
you can even log to a table located in an external database in a different location on the
network.

Usage logs can also provide an excellent way to perform a postmortem on an application
that doesn’t operate properly. If you have logging in each subroutine and function that
might fail at run time, you can see exactly what happened at the time an error occurred,
instead of relying on the user’s description of the error.

Logging can produce undesirable results when errors occur. For example, an error that
causes an endless loop can easily consume all available disk space on the user’s computer if
each iteration of the loop adds a message to an error log. Use logging wisely. You may want
to add logging to every procedure in an application during the beta-test process, and reduce
the number of calls to the logging procedure just before distributing the application to its
users. You may even provide some way that users can turn on logging if they encounter a
reproducible problem in a database application.

The function shown in the following listing provides an elementary form of error logging.
LogError() writes the following information to a text fi le in the same location as the
database:

1031

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1031

31

 ■ The current date and time

 ■ The procedure name that produced the error

 ■ The error number

 ■ The error description

 ■ The form that was active at the time the error occurred (may be null if no form is
open)

 ■ The name of the control that was active at the time the error occurred (may be null
if no control is selected)

Using a text fi le as a log instead of writing to the database keeps the database smaller and
improves performance.

Public Sub LogError(ProcName As String, _
 ErrNum As Integer, ErrDescription As String)

 Dim sFile As String, lFile As Long
 Dim aLogEntry(1 To 6) As String

 Const sLOGFILE = "Error.log"
 Const sLOGDELIM = "|"

 On Error Resume Next

 sFile = CurrentProject.Path & "\" & sLOGFILE
 lFile = FreeFile

 aLogEntry(1) = Format(Now, "yyyy-mm-dd hh:mm:ss") 'Date stamp
 aLogEntry(2) = ErrNum
 aLogEntry(3) = ErrDescription
 aLogEntry(4) = ProcName
 'The following may be NULL
 aLogEntry(5) = Screen.ActiveForm.Name
 aLogEntry(6) = Screen.ActiveControl.Name

 Open sFile For Append As lFile
 Print #lFile, Join(aLogEntry, sLOGDELIM)
 Close lFile

End Sub

This simple subroutine adds to or creates a text fi le named Error.log in the same direc-
tory as the database. Each error encountered is one line in the text fi le, and each piece of
information is separated by a pipe delimiter.

1032

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1032

The most critical items in the error log are the date and time, the error number, and the
error description. The procedure name is useful, but it has to be hard-coded for each proce-
dure (subroutine or function) you log with LogError().

The following procedure intentionally generates an error to test the LogError procedure.
A button on the frmError form runs this procedure. After the button has been clicked a
few times, the Error.log fi le might look like Figure 31.17.

Private Sub cmdError_Click()

 Dim x As Long

 On Error GoTo ErrHandler

 x = 1 / 0

ErrExit:
 Exit Sub

ErrHandler:
 LogError "cmdError_Click", Err.Number, Err.Description
 Resume ErrExit

End Sub

FIGURE 31.17

A text fi le can be used to log errors.

When it’s time to review the errors, you can open the text fi le to see what’s happened. You
can also import the text fi le into an Access table to allow you to sort and fi lter the entries.
Figure 31.18 shows Error.log imported into a table.

1033

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1033

31

FIGURE 31.18

The error log can be imported into a table.

Once the data has been analyzed, the Error table can be deleted to keep the database small.
Importing an error log is a good candidate for saving the import steps so that it can be eas-
ily imported the next time you want to review the data.

 See Chapter 6 for more information on importing text fi les.

Separating tables from the rest of the application
You should separate your code objects (forms, reports, queries, modules, and macros) from your
table objects. Many benefi ts are gained from distributing these objects in separate ACCDB fi les:

 ■ Network users benefi t from speed increases by running the code ACCDB (the data-
base containing the queries, forms, macros, reports, and modules) locally and
accessing only the shared data on the network.

 ■ Updates can easily be distributed to users.

 ■ Data can be backed up more effi ciently because disk space and time aren’t used to
continuously back up the code objects.

All professionally distributed applications—especially those intended for network use—
should have separate code and data database fi les.

 Chapter 7 has more information on separating tables from the rest of the database, called splitting a

database.

Building bulletproof forms
You can take several steps to make each form in an application virtually bulletproof:

 ■ Consider removing the Control Box, Min, Max, and Close buttons from the form
at design time. Your users will be forced to use the navigation aids you’ve built
into the application to close the form, ensuring that your application is able to
test and verify the user’s input. When using the tabbed documents interface, the

1034

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1034

Min and Max buttons don’t apply. The Close button is represented by an X at the far
right of the tab above the form’s body. Removing the Close button from a tabbed
form disables the X in the tab but doesn’t actually remove it.

 ■ Always put a Close or Return button on forms to return the user to a previous
or next form in the application. The buttons should appear in the same general
location on every form and should be consistently labeled. Don’t use Close on one
form, Return on another, and Exit on a third.

 ■ Set the ViewsAllowed property of the form to Form at design time. This set-
ting prevents the user from ever seeing a form as a datasheet.

 ■ Use modal forms where appropriate. Keep in mind that modal forms force the
user to respond to the controls on the form—the user can’t access any other part of
the application while a modal form is open.

 ■ Use your own navigation buttons that check for EOF (end of file) and BOF
(beginning of file) conditions on bound forms. Use the OnCurrent event to
verify information or set up the form as the user moves from record to record.

 ■ Use the StatusBarText property on every control, to let the user know what’s
expected in each control. The Control TipText property should also be set on
all relevant controls.

In order for the StatusBarText to be used, the status bar must be displayed (see Figure 31.1).

Validating user input
One of the most important bulletproofi ng techniques is to simply validate everything the
user enters into the database. Capturing erroneous data input during data entry is an impor-
tant safeguard that you can build into your applications. In many cases, you can use the
table-level validation (determined by each fi eld’s ValidationRule and ValidationText
properties), but in many other cases you’ll want more control over the message the user
receives or the actions taken by the database in response to erroneous input.

One of the major problems with the ValidationRule property is that it isn’t checked
until the user actually tabs to the next control, making it impossible to capture bad data
entry. You’re much better off in many cases validating entries in code. Very often you’ll
want to validate all controls on a form from the form’s BeforeUpdate event instead of
individually checking each and every control on the form.

Using the /runtime option
If you’re not concerned with protecting your application, and you just want to prevent
users from mistakenly breaking your application by modifying or deleting objects, you can

1035

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1035

31

force your application to be run in Access’s runtime mode. When a database is opened in
Access’s runtime mode, all the interface elements that allow changes to objects are
hidden from the user. In fact, while in runtime mode, it’s impossible for a user to access the
Navigation pane.

When using the runtime option, you must ensure that your application has a startup form
that gives users access to any objects you want them to access. Normally, this is the main
menu or main switchboard of your application.

To assign a form as a startup form, open the database that you want to use, select the File tab, select Options,

and select the Current Database tab. Under Application Options, set the Display Form drop-down list to the form

you want to be the startup form for the application. Startup forms are covered in more depth in the “Polishing Your

Application” section earlier in this chapter.

Earlier in this chapter, in the “Making the application easy to start” section, you read
how to create a Windows shortcut that launches an Access application. Forcing run-time
behavior in Access is quite easy. Simply add the /runtime switch after the reference to
the database fi le in the shortcut properties, as shown in Figure 31.19.

FIGURE 31.19

Adding the /runtime switch to a shortcut.

1036

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1036

If your database has a password associated with it, the user will still be prompted to enter the password prior to

opening the database. Passwords are discussed later in this chapter.

Access allows you to change the fi le extension from ACCDB to ACCDR to have the same effect of starting your Access

application with the /runtime switch. Change the extension back to ACCDB to restore full functionality.

Encrypting or encoding a database
When security is of utmost importance, one fi nal step that you need to take is to encrypt
or encode the database. Access uses strong encryption to secure the data and contents of
Access databases.

Follow these steps to encrypt an Access ACCDB database:

 1. Open an existing ACCDB database (Chapter31.accdb) exclusively.

 2. Click the File button in the upper-left corner of the screen, and select the
Encrypt with Password command on the Info tab (see Figure 31.20).

FIGURE 31.20

Choosing to encrypt an Access database.

1037

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1037

31

 3. In the Password field, type the password that you want to use to secure the
database (see Figure 31.21). Access does not display the password; instead, it
shows an asterisk (*) for each letter.

FIGURE 31.21

Providing a password to encrypt an Access database.

 4. Retype the same password in the Verify field and click OK.

An encrypted database looks like any other Access application to its users. There is no outward
difference in the appearance of the application’s forms or reports after encryption. The only dif-
ference is that the user is required to provide the password each time the database is opened.

When encrypting a database, however, be aware of the following drawbacks:

 ■ Encrypted databases don’t compress from their original size when used with
compression programs, such as WinZip or sending it to a compressed (zipped)
folder. Encryption modifi es the way that the data is stored on the hard drive so
compression utilities have little or no effect.

 ■ Encrypted databases suffer some performance degradation (up to 15 percent).
Depending on the size of your database and the speed of your computer, this degra-
dation may be imperceptible.

Also, be aware that encrypting a database makes it impossible to access the data or data-
base objects without the proper password. Always maintain an unencrypted backup copy
of the database in a secure location in the event that the password is lost or accidentally
changed. There is no “universal” password for decrypting an encrypted Access database,
and because Access uses strong encryption, there is no way to decrypt the database with-
out the proper password.

Removing a database password

Follow these steps to remove the password from an encrypted database, and restore it to its
previous, unencrypted state.

 1. Open the encrypted ACCDB database (for example, Chapter31.accdb) exclusively.

 2. Click the File button in the upper-left corner of the screen, and select the
Decrypt Database command on the Info tab (see Figure 31.22). The Unset
Database Password dialog box appears (see Figure 31.23).

1038

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1038

FIGURE 31.22

Choosing to remove a password from an encrypted Access database.

FIGURE 31.23

Providing a password to remove a password from an encrypted Access database.

 3. Enter the database password and click OK.

Protecting Visual Basic code
You control access to the VBA code in your application by creating a password for the Visual
Basic project that you want to protect. When you set a database password for a project,
users are prompted to enter the password each time they try to view the Visual Basic code
in the database.

1039

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1039

31

A Visual Basic project refers to the set of standard and class modules (the code behind forms and reports) that are

part of your Access database.

 1. Open the Visual Basic Editor by pressing Alt+F11.

 2. In the Visual Basic Editor, choose Tools ➪ Chapter31 Properties. The Project
Properties dialog box appears.

 3. Select the Protection tab (shown in Figure 31.24).

FIGURE 31.24

Creating a project password restricts users from viewing the application’s Visual
Basic code.

 4. Select the Lock Project for Viewing check box.

 5. Enter a password in the Password text box. Access does not display the password;
instead, it shows an asterisk (*) for each letter.

 6. Type the password again in the Confirm Password text box and click OK. This
security measure ensures that you don’t mistype the password (because you can’t
see the characters that you type) and mistakenly prevent everyone, including your-
self, from accessing the database.

After you save and close the project, users attempting to view the application’s code must
enter the password. Access prompts for the project password only once per session.

A more secure method of securing your application’s code, forms, and reports is to distribute
your database as an ACCDE fi le. When you save your database as an ACCDE fi le, Access compiles

1040

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1040

all code modules (including form modules), removes all editable source code, and compacts the
database. The new ACCDE fi le contains no source code but continues to work because it contains
a compiled copy of all your code. Not only is this a great way to secure your source code, but it
also enables you to distribute databases that are smaller (because they contain no source code)
and always keep their modules in a compiled state.

To create an ACCDE fi le, choose Save As from the File tab, Save Database As, and Make
ACCDE, as shown in Figure 31.25.

FIGURE 31.25

Create an ACCDE fi le to protect your database.

Securing the Environment
A serious Access application must be secured from unauthorized users. The built-in user-
level security system (enforced by the ACE database engine, not by Access) provides mul-
tiple levels of security. You can, for example, secure a single database object (form, table,
report) from individuals, groups, or individuals within groups. A user can even have mul-
tiple levels of security (provided the user has been assigned multiple login names). All the
Access security objects, their properties, and methods are accessible throughout Access
Visual Basic code.

User-level security is available only in the MDB database format. The ACCDB format provides
other types of data protection, such as password-protected strong encryption, that is not
available in the MDB format. As a developer, you’ll have to decide whether user-level secu-
rity or strong encryption is needed to protect the data in your Access applications.

1041

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1041

31

Setting startup options in code
The options you set on the Current Database tab of the Access Options dialog box (refer to
Figure 31.1) apply globally to every user who logs into the database. There are times when
you want to control these options through startup code instead of allowing the global set-
tings to control the application. For example, a database administrator should have access
to more of the database controls (menus, the Navigation pane) than a data-entry clerk has.

Almost every option you see on the Options screen can be set through code. As you’ll see in
the “Setting property values” section, you can use Access VBA to control the setting of the
current database properties listed in Table 31.2.

TABLE 31.2 Startup Option Properties of the Application Object

Startup Option Property to Set Data Type

Application title AppTitle dbText

Application icon AppIcon dbText

Display form StartupForm dbText

Display database window StartupShowDBWindow dbBoolean

Display status bar StartupShowStatusBar dbBoolean

Menu bar StartupMenuBar dbText

Shortcut menu bar StartupShortcutMenuBar dbText

Allow full menus AllowFullMenus dbBoolean

Allow default shortcut menus AllowShortcutMenus dbBoolean

Allow built-in toolbars AllowBuiltInToolbars dbBoolean

Allow toolbar changes AllowToolbarChanges dbBoolean

Allow viewing code after error AllowBreakIntoCode dbBoolean

Use Access special keys AllowSpecialKeys dbBoolean

Depending on the username (and password) provided on the login form, you can use VBA
code on the splash screen or switchboard form to set or reset any of these properties. Clearly,
these properties have a lot to do with controlling the Access environment at startup.

Be aware that many of the database options in Table 31.2, such as AppIcon, require
restarting the Access database before they take effect.

Disabling startup bypass
The Access startup properties provide some options for how your users see your application
when it starts. Unfortunately, users can bypass your carefully designed startup options by
holding down the Shift key as the application starts. Bypassing your startup routines, of

1042

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1042

course, will reveal the application’s design and objects that you’ve hidden behind the user
interface.

Fortunately, the Access designers anticipated the need for bulletproofi ng an application’s
startup by providing a database property named AllowBypassKey. This property, which
accepts True or False values, disables (or enables) the Shift key bypass at application
startup.

Because AllowBypassKey is a developer-only property, it isn’t built into Access databases. You must cre-

ate, append, and set this property sometime during the development process. Once appended to the database’s

Properties collection, you can set and reset it as needed.

Here’s the code you need to implement the AllowBypassKey property:

Public Sub SetBypass(bFlag As Boolean)

 Dim db As DAO.Database
 Dim pBypass As DAO.Property
 Const sKEYNAME As String = "AllowBypassKey"

 Set db = CurrentDb
 On Error Resume Next
 Set pBypass = db.Properties(sKEYNAME)
 On Error GoTo 0

 If pBypass Is Nothing Then
 Set pBypass = db.CreateProperty(sKEYNAME, dbBoolean, bFlag)
 db.Properties.Append pBypass
 Else
 pBypass.Value = bFlag
 End If

End Sub

This procedure fi rst tries to point a variable (pBypass) to the AllowBypassKey property.
If the variable is Nothing, then the AllowBypassKey property doesn’t exist and it is
created and appended to the database. If it does already exist, its Value property is set to
bFlag (the value passed into the procedure).

Setting property values
You use the CurrentDb object’s CreateProperty and Properties.Append methods to
add each of these properties. In most cases, unless the property has already been set in the
Access Options dialog box, the property hasn’t been appended to the database’s Properties

1043

Chapter 31: Preparing Your Access Application for Distribution

c31.indd 10/06/2015 Page 1043

31

collection. You must make sure the property exists before trying to set its value in code.
The following function sets the value of a startup property, creating and appending the
property to the Properties collection if the property doesn’t exist:

Public Function SetStartupProperty(sPropName As String, _
 ePropType As DAO.DataTypeEnum, vPropValue As Variant) As Boolean

 Dim db As DAO.Database
 Dim prp As DAO.Property
 Dim bReturn As Boolean

 Set db = CurrentDb
 On Error Resume Next
 Set prp = db.Properties(sPropName)

 If prp Is Nothing Then
 Set prp = db.CreateProperty(sPropName, ePropType, vPropValue)

 If prp Is Nothing Then
 bReturn = False
 Else
 db.Properties.Append prp
 bReturn = True
 End If
 Else
 prp.Value = vPropValue
 bReturn = True
 End If

 SetStartupProperty = bReturn

End Function

Using SetStartupProperty() is quite easy. You must know the exact property name and
data type of the property before invoking SetStartupProperty(). The following subrou-
tine demonstrates how to set a startup property with SetStartupProperty():

Sub ChangeAppTitle()

 Dim bSuccess As Boolean

 bSuccess = SetStartupProperty("AppTitle", dbText, "My Application")

 If bSuccess Then
 MsgBox "Application title has been changed."
 Else
 MsgBox "Application title has not been changed."
 End If

End Sub

1044

Part VII: Advanced Access Programming Techniques

c31.indd 10/06/2015 Page 1044

Notice that the AppTitle property is a string data type (dbText).

Use the RefreshTitleBar method to see the changes made by setting either the AppTitle or AppIcon

property. The syntax of RefreshTitleBar is simple:

Application.RefreshTitleBar

Getting property values
Getting the value of a property is much easier than setting a property’s value. The
Properties collection returns the property, and the Value property returns the value.
The syntax to get the value of the AppTitle property is as follows:

On Error Resume Next
GetAppTitle = CurrentDb.Properties("AppTitle").Value

where GetAppTitle is a string variable. The On Error Resume Next statement is
necessary in case the property has not been set.

c32.indd 10/07/2015 Page 1045

IN THIS PART

Chapter 32
Integrating Access with SharePoint

Chapter 33
Deploying Access Applications to SharePoint

Part VIII

Access and Windows

SharePoint Services

c32.indd 10/07/2015 Page 1046

1047

c32.indd 10/07/2015 Page 1047

CHAP T ER

32
Integrating Access with
SharePoint

IN THIS CHAPTER

Getting familiar with SharePoint sites

Understanding Access and SharePoint integration

Linking to SharePoint lists

Importing SharePoint lists

Exporting Access tables to SharePoint

Upsizing Access databases to SharePoint

Using SharePoint list templates

T
hroughout this book you’ve read about the many features that Microsoft has added to Access
over the years. As exciting and interesting as these new capabilities are, they pale in com-
parison to the ability to upsize Access applications to Windows SharePoint Server. Each recent

version of Access has demonstrated greater and greater ability to integrate with SharePoint. The
most exciting aspect of this integration is the ability to actually run your Access application as a
SharePoint website.

In this chapter and the next, we’ll explore the various techniques that allow you to upsize your
Access databases to SharePoint. This chapter gives you a base understanding of what SharePoint is
and how it helps organizations share and collaborate data.

Introducing SharePoint
SharePoint is Microsoft’s collaborative server environment, providing tools for sharing documents
and data across various organizations within your company network.

SharePoint is typically deployed on a company’s network as a series of SharePoint sites. A SharePoint
site is confi gured as an intranet site, giving various departments the ability to control their own

1048

Part VIII: Access and Windows SharePoint Services

c32.indd 10/07/2015 Page 1048

security, workgroups, documents, and data. These sites can be nested within other sites in a
hierarchical fashion.

As with any other website, the pages within a SharePoint site are accessible through a URL
that the user can access via a standard web browser.

Although SharePoint is most frequently used for sharing documents, data tables, and other
content management tasks, SharePoint is frequently applied to many other applications—
for example, to handle the documentation required for product development. A SharePoint
site devoted to a development project easily handles the project initiation, tracking, and
progress reporting tasks. Because SharePoint easily handles virtually any type of docu-
ment, project drawings, videos, schematics, photographs, and so on can be added to the
project’s SharePoint site for review and comment by project members.

Companies often use SharePoint for distributing human resource and policy documents.
Because SharePoint provides user- and group-level security, it’s quite easy to grant a par-
ticular department access to a SharePoint page while denying other users access to the
same site.

SharePoint also logs changes to documents and supports a check-in/check-out paradigm for
controlling who is eligible to make changes to existing documents and who is allowed to
post new documents and fi les.

Some of the most common SharePoint deployments are storing of version-controlled
documents, such as Word documents and Excel spreadsheets. In many environments, e-mail
is used for passing documents back and forth between users. The potential for mixing up
different versions of the same document is considerable. Also, storing multiple copies of the
same document takes up a lot of disk space. Because SharePoint provides a single source for
storing, viewing, and updating documents, many of these issues are eliminated entirely.

Understanding SharePoint Sites
Before going into the detail of describing how Access integrates with SharePoint technol-
ogy, it’s helpful to picture a typical SharePoint site. In this section, you’ll get a brief over-
view of the two most common aspects of a SharePoint site: documents and lists.

The topic of SharePoint is vast and worthy of its own book. In that light, we won’t be discussing how to create and

manage SharePoint lists or document libraries. In this book, we’ll assume that your organization has a SharePoint

site ready for consumption via Access. If you want to immerse yourself in SharePoint setup and administration,

consider picking up the book Beginning SharePoint 2013: Building Business Solutions with SharePoint, by Amanda

Perran, Shane Perran, Jennifer Mason, and Laura Rogers (Wiley, 2013).

1049

Chapter 32: Integrating Access with SharePoint

c32.indd 10/07/2015 Page 1049

32

SharePoint Documents
Perhaps the most common use of SharePoint is to store shared documents and other fi les.
SharePoint keeps track of fi les from the moment they’re added to a list until they’re
removed or deleted. Anyone with write-access to a SharePoint site can upload a document
for sharing. Figure 32.1 shows a short list of several different types of fi les uploaded to a
SharePoint document library.

FIGURE 32.1

A SharePoint document library.

In Figure 32.1, notice that the library contains several different types of documents. Each
row in the document list includes an icon indicating the document’s type, the document’s
name, the size of the document, and the name of the person who added the document to
the list.

SharePoint document libraries support a check-in/check-out paradigm. Only one person
at a time is able to check out a document for changes. Although not shown in Figure 32.1,
SharePoint records when a document is checked in or out and keeps track of the individuals
making changes. SharePoint can even be instructed to roll back document changes to an
earlier version, if necessary.

Again, this document-sharing paradigm is most commonly used to share information across
organizations, allowing for collaboration between the users of the SharePoint site.

SharePoint lists
In addition to storing and tracking entire documents, SharePoint users can store and share
data via SharePoint lists. SharePoint lists are conceptually similar to database tables in

1050

Part VIII: Access and Windows SharePoint Services

c32.indd 10/07/2015 Page 1050

that each list consists of rows and columns of data. Each column holds a particular type of
data, such as text, a date, or an object (such as a photo). From this simplistic perspective,
SharePoint lists are analogous to Access tables.

Figure 32.2 illustrates a typical SharePoint list. As you can see, the relevant information is
presented in a single screen. You add a new item, edit an existing item, or delete an item
through this same screen.

FIGURE 32.2

A SharePoint list allows for the storage and tracking of data in a table format.

SharePoint can manage virtually any type of data you want to share with other people.
Although the site shown in Figure 32.2 is designed for a specifi c purpose, SharePoint is suit-
able for many other scenarios. For example, an HR department could use a SharePoint list for
sharing and tracking required training courses. An IT department could maintain a list of
assets, including status and locations. Even smaller organizations like a local bowling club
can share and maintain tournament schedules and player rankings as SharePoint lists.

SharePoint easily supports multiple lists, allowing an organization to add as many lists as
needed. Unfortunately, unlike Access tables, SharePoint lists are not relational; there is no
way to directly relate data in two different SharePoint lists or to query multiple SharePoint
lists to fi nd related data. However, SharePoint lists can be linked or imported into Access.
Linking to SharePoint lists makes data stored on a SharePoint website appear as linked
tables in Access.

For the most part, linking to a SharePoint list is no different from linking to a SQL Server
database table or other remote data source. However, an important difference is that

1051

Chapter 32: Integrating Access with SharePoint

32

c32.indd 10/07/2015 Page 1051

linked SharePoint lists in Access 2016 are read-only; you can’t edit or update the linked
SharePoint list.

When linked to an Access application, SharePoint data is available to all the queries, forms,
and reports in that application. This means that data entered into SharePoint lists can be
viewed in real time and utilized through your Access application, making Access a feature-
rich front-end platform for displaying SharePoint content.

Many IT organizations today have already implemented a SharePoint environment. It is likely that your organiza-

tion already has SharePoint running on your network. No one user can simply stand up a SharePoint site. If you’re

interested in using SharePoint, you’ll need to contact your IT department to inquire about getting access to a

SharePoint site.

Sharing Data between Access and SharePoint
Building Access applications with SharePoint data simply means going into an Access
application, linking to SharePoint lists, and then writing forms and reports based on those
linked tables. A linked SharePoint list appears (to Access) as any other linked data source.

 Turn to Chapter 7 for more on linking to external data.

In addition to linking to SharePoint lists, you may fi nd it helpful to import SharePoint data
directly into local Access tables. Imported data is no longer connected to the SharePoint
site, and is therefore useful in those situations when you need to work with static snap-
shots of SharePoint lists.

Because a SharePoint environment is needed to experiment with the concepts found here, there is no sample data-

base for this chapter. If you’re interested in using SharePoint, you’ll need to contact your IT department to inquire

about getting access to a SharePoint site. You can also fi nd a commercial site, or perhaps even a free demonstration

service, to experiment with.

Linking to SharePoint lists
The most fundamental data sharing between Access and SharePoint is for Access to link to
a SharePoint list and use the data as with any other linked data source. Follow these steps
to link to a SharePoint list:

1052

Part VIII: Access and Windows SharePoint Services

c32.indd 10/07/2015 Page 1052

 1. Click the More drop-down button in the Import & Link group on the External Data
tab. The list of more advanced import and linking options (see Figure 32.3) appears.

FIGURE 32.3

 Preparing to link to a SharePoint list.

 2. Select SharePoint List from the list of import and linking options. The Get
External Data – SharePoint Site dialog box (see Figure 32.4) appears. Here, you can
specify your target SharePoint site by entering the site’s URL. This dialog box will
remember any URL you enter and, when activated again, will show you a selectable
list of the recently used URLs.

FIGURE 32.4

The Get External Data – SharePoint Site dialog box.

1053

Chapter 32: Integrating Access with SharePoint

32

c32.indd 10/07/2015 Page 1053

You must have appropriate permissions to link to a SharePoint list. In fact, without
proper permissions, Access can’t even display the SharePoint lists on the desig-
nated site. SharePoint users are recognized by their membership in Windows Active
Directory services and their inclusion in designated SharePoint groups. These
topics are beyond the scope of this book, but you should be aware that access to
SharePoint sites and SharePoint data is protected by processes similar to any other
Windows application.

 3. Enter your username and password. Once you successfully log in to the
SharePoint site, you will be presented with a list of SharePoint lists in the
 designated SharePoint site. Each item in the list is accompanied by a check box.

 4. Place a check next to each list you want linked, and then click OK. In Figure
32.5, only the Customers SharePoint list is selected for linking, but you can select
multiple lists as well.

FIGURE 32.5

Selecting a SharePoint list for Linking.

Figure 32.6 shows the linked SharePoint list. The icons indicating linked SharePoint lists
look very much like Access table icons. Each linked list is accompanied by an arrow, and
the color of the icon has changed to a yellowish-orange color.

The data in the linked table is compatible with Access, and you can build queries, forms,
and reports against this data if needed. It’s important to remember that the data in the
linked list is read-only, meaning you can’t update the data in the SharePoint list via
Access 2016.

1054

Part VIII: Access and Windows SharePoint Services

c32.indd 10/07/2015 Page 1054

FIGURE 32.6

A linked SharePoint list appears much like any other Access table.

Instead of requiring the user to log in each and every time she uses SharePoint data, after a user’s SharePoint cre-

dentials have been established, Access creates a UserInfo table containing information about the user and her role

in SharePoint. Although the user has to provide a password to initially access SharePoint, the UserInfo table is a

repository of additional information about the user. The UserInfo table resides within Access, which means that it’s

available before the user logs in to SharePoint. This enables Access to provide SharePoint with the user information

as the user logs in to SharePoint.

Importing SharePoint lists
Instead of having a live link to SharePoint lists, you may want to import a list. Importing
a SharePoint list allows you to simply take a snapshot of the list and bring the data into
Access as a stand-alone disconnected table. Unlike a linked SharePoint list, an imported
list will not be automatically updated with new SharePoint data.

The steps for importing a SharePoint list are similar to those for linking:

 1. Click the More drop-down button in the Import & Link group on the External
Data tab. The list of more advanced import and linking options appears.

 2. Select SharePoint List from the list of import and linking options. The Get
External Data – SharePoint Site dialog box appears.

 3. In the top portion of this dialog box, either select a recently visited SharePoint
site or enter a new destination SharePoint URL; then select the Import option,
as shown in Figure 32.7.

1055

Chapter 32: Integrating Access with SharePoint

32

c32.indd 10/07/2015 Page 1055

FIGURE 32.7

Selecting a SharePoint list for importing.

 4. Enter the appropriate permissions to link to a SharePoint list. You’re presented
with a list of SharePoint lists in the designated SharePoint site. Each item in the
list is accompanied by a check box.

 5. Place a check next to each list you want imported, and then click OK. Access
imports your chosen lists into a table that can be viewed and utilized like any
other standard table through the Navigation pane.

Exporting Access tables to SharePoint
Sometimes you need to transfer data from Access to SharePoint so that SharePoint users
have access to the same data as Access users. The following steps export a table from
Access to a SharePoint list. Remember, you will need to have proper Write access on the
SharePoint site in order to perform this action.

 1. Right-Click the table you want to export, and then select Export ➪ SharePoint
List (see Figure 32.8). The SharePoint Site dialog box activates.

 2. Enter or select the target SharePoint site URL (see Figure 32.9). In addition to
pointing to the URL, you have the option of specifying a name for the soon-to-be-
created list.

1056

Part VIII: Access and Windows SharePoint Services

c32.indd 10/07/2015 Page 1056

FIGURE 32.8

Exporting a table to SharePoint.

FIGURE 32.9

Select the destination SharePoint site and specify a name for the exported list.

1057

Chapter 32: Integrating Access with SharePoint

32

c32.indd 10/07/2015 Page 1057

 3. Click the OK button. If you’re prompted for a login, enter a valid SharePoint user-
name and password.

When the export is complete, the new SharePoint list will be displayed with the
other lists on the SharePoint site.

 4. Click the Close button in Access to dismiss the Export to SharePoint dialog box.

Note that after exporting data from Access to SharePoint, the two data tables are not
connected, so if changes are made in either location, the other application doesn’t see
the change.

You can also export the results of a query to SharePoint. Simply right-click the target query and select Export ➪

SharePoint List.

Certain fi elds don’t export well to SharePoint. For instance, an OLE Object fi eld is simply
left empty on the SharePoint side and contains no data. However, most other fi eld data
types are properly translated into compatible SharePoint columns and populated with data
from the Access table. Table 32.1 shows how Access data types are translated to compatible
column types in SharePoint. Notice that far fewer types of data are available in SharePoint
lists than in Access tables. The data types in Table 32.1 are applied any time an Access
table is exported to SharePoint.

TABLE 32.1 SharePoint Data Type Conversion

Access Data Type Converted Type in SharePoint

AutoNumber Number

Text Single line of text

Memo Multiple lines of text, limited to 8,192
characters

All Number Types (Byte, Integer, Long Integer,
Single, Double, Decimal)

Number

Date/Time Date and Time

Currency Currency

Yes/No YesNo

OLE Object Single line of text

Calculated Calculated

Hyperlink Hyperlink or Picture

1058

Part VIII: Access and Windows SharePoint Services

c32.indd 10/07/2015 Page 1058

Moving Access tables to SharePoint
Instead of simply exporting Access tables to SharePoint, another approach to data sharing
is to move all the tables in an Access application to SharePoint as a single export opera-
tion and link the new SharePoint lists back to the Access application. All the tables in the
Access database are moved to SharePoint and linked back to Access in a single process.

The advantage of moving Access tables to SharePoint is that you can build out your data
model in Access, using all convenient tools for table creation, and then upsize the data
model to SharePoint. Once the data is in SharePoint, any changes made in SharePoint will
be immediately seen in Access.

This level of integration allows SharePoint to be used as the data collaboration and track-
ing portal, while giving users the benefi t of Access’s superior user-reporting tools.

Moving Access tables to SharePoint is not one of the import/export features of Access 2016.
Instead, the commands necessary to move the entire set of Access tables to SharePoint are
on the Database Tools tab of the Ribbon (see Figure 32.10).

FIGURE 32.10

The Move Data group on the Ribbon contains the wizard to upsize to SharePoint.

Clicking the SharePoint command in the Move Data group on the Ribbon opens the Export
Tables to SharePoint Wizard dialog box (shown in Figure 32.11). The only information that
you need is the URL of the destination SharePoint site; Access handles the rest.

The Next button initiates the export process, which may take more than a few minutes,
depending on the number of tables in the Access database, the volume of data in each
record, and the effi ciency of the SharePoint server hardware and software. You may also be
asked for your SharePoint username and password because SharePoint must verify that you
have the proper permissions to create objects in the destination SharePoint site.

The newly created SharePoint lists are given the same name. At the conclusion of the
process, all the tables in the Access database have been moved to SharePoint and linked
back to the Access application. The tables and their data are now stored and managed
by SharePoint Services. All that’s left in the Access database are logical links to the
SharePoint website; the tables and data are no longer stored in the Access database.

Just as with other export processes, you can save the export steps for future use. Access
also makes a backup of the Access database fi le prior to the export process so that you can
revert to the prior state, if necessary.

1059

Chapter 32: Integrating Access with SharePoint

32

c32.indd 10/07/2015 Page 1059

FIGURE 32.11

The Export Tables to SharePoint Wizard dialog box specifi es the destination SharePoint site.

Things to Note Before Moving Access Tables to
SharePoint
Before attempting to upsize your Access tables to SharePoint, keep in mind the following:

 ■ The export might fail if an Access table name does not conform to SharePoint nam-
ing rules. For example, Access table names may contain spaces and limited punctuation
characters, while SharePoint tables are plain text with no spaces. If the export fails, it’s likely
to be caused by a list-naming violation.

 ■ All the queries, forms, and reports that are based on the linked tables should func-
tion as before, with a few exceptions. Because of incompatibilities between Access and
SharePoint data, not every Access data type migrates to SharePoint. The incompatible fi elds
are created in the SharePoint list, but they’re added to the SharePoint list as text columns
and are left empty.

 ■ Export issues are reported in a table named Move to SharePoint Site Issues, with one
row for each problem. A single Access fi eld may generate multiple rows in the issues table.
Most export problems are traceable to data incompatibility issues.

 ■ During the export process, several fi elds will be added to the SharePoint list that are
required for list management on the SharePoint side. These fi elds will be available in the
linked table in Access but are not included in any of the queries, forms, or reports based
on the table before it was exported to SharePoint. These additional fi elds are listed in the
following table. It’s possible that you may be able to make use of at least some of these
columns, but by and large, they serve no purpose in an Access application.

Continues

1060

Part VIII: Access and Windows SharePoint Services

c32.indd 10/07/2015 Page 1060

SharePoint Field Name Data Type

_OldId Number (Double)

Content Type Text

Workfl ow Instance ID Text

File Type Text

Modifi ed Date/Time

Created Date/Time

Created By Text

Modifi ed By Text

URL Path Text

Path Text

Item Type Text

Encoded Absolute URL Text

Using SharePoint Templates
In this chapter, we examine the options available when an Access database already exists
and users require the same data on a SharePoint website. In its attempt to solidify the con-
nection between Access and SharePoint, Microsoft has provided yet another approach to
integrating Access applications with SharePoint.

Instead of exporting existing Access tables to SharePoint or linking to SharePoint lists,
this alternative technique involves building entirely new SharePoint lists within the Access
environment. Access 2016 provides SharePoint list templates, which contain all the details
necessary to build SharePoint lists, including column names and data types and other list
properties. This is essentially meant to be a time-saver for anyone who wants to quickly
stand up a new list on SharePoint.

The SharePoint templates in Access 2016 cover a number of important business functions:
Contacts, Tasks, Issues, and Events, as shown in Figure 32.12. In addition, the Custom
list template (near the bottom of the list) allows you to add virtually any combination
of SharePoint-compatible columns to an otherwise blank list. The last item in the drop-
down list (Existing SharePoint List) provides the same linking capability discussed in the
“Linking to SharePoint lists” section, earlier in this chapter.

Selecting an item from the list of SharePoint list templates opens the Create New List dialog box
(shown in Figure 32.13). You’ll have to provide a SharePoint URL and a name for the new list.

continued

1061

Chapter 32: Integrating Access with SharePoint

32

c32.indd 10/07/2015 Page 1061

Notice that you don’t have an option to modify the template before you create it in
SharePoint. This means, of course, that the list will include a predetermined set of col-
umns, each set to a particular data type required for the list’s operations.

FIGURE 32.12

SharePoint list templates available in Access.

FIGURE 32.13

The Create New List dialog box when creating a new SharePoint list from an Access
template.

 You may be asked to provide SharePoint credentials as the new list is created. You
need administrative rights to add lists to a SharePoint site, so even if you can link to a
SharePoint list, you may not be entitled to create an entirely new list.

The newly created list will be automatically added to Access as a linked table that behaves
like any other linked SharePoint list.

1063

c33.indd 10/07/2015 Page 1063

CHAP T ER

33
Deploying Access Applications
to SharePoint

IN THIS CHAPTER

Understanding web publishing with Access

Examining the limitations of Access web applications

Building a starting data model

Initializing a web application

Editing tables and default views

Creating validation rules and events

Creating your own views

Managing your web applications

O
ver the last decade, Microsoft has been emphasizing and promoting SharePoint as a platform
for collaborative development. Chapter 32 explored some of the capabilities built into Access
that enable Access users to seamlessly share data with SharePoint users.

With the release of Access 2010 and SharePoint 2010, Microsoft took the next step with SharePoint
and Access Services. Access Services is a SharePoint implementation that allows Access applications
to run directly in the browser via SharePoint. The bottom line is that Access developers have the
ability to bring their applications to the web.

In this chapter, you get an understanding of Access Services and how it can help you create Access
2016 applications with a credible web presence.

1064

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1064

A Word about SharePoint Requirements and Office
365
In order to take advantage of the functionality afforded by Access Services, you must have permis-
sions to publish to a SharePoint site that is running Access Services. Access Services is a SharePoint
implementation that is available only with SharePoint 2010 or 2013, so you’ll want to ensure your
SharePoint site is one of those two versions.

Most people work within companies that already have a SharePoint 2010 or 2013 environment.
However, if you don’t have access to an existing SharePoint environment, hundreds of service pro-
viders offer subscription-based SharePoint services. Many of these providers provide volume-based
pricing on a subscription model.

In fact, Microsoft has an offering called Office 365. Offi ce 365 is a cloud-based Microsoft environment
that offers subscribers a line of collaborative Microsoft Offi ce-like tools that can be accessed through
the Web. Similar to Google Docs or Google Spreadsheets, Microsoft offers Word, Excel, and PowerPoint
in Offi ce 365. It also offers Access Services with connections to SQL Azure (the cloud-based version
of SQL Server). This means you can use Offi ce 365 to publish and host your Access web applications.

Subscribing to a commercial SharePoint service provider may be the fastest and most affordable
way to host Access applications on SharePoint. Again, the only caveat is that the commercial service
provider you choose must offer either SharePoint 2010 or 2013 with Access Services implemented.

Understanding Web Publishing with Access
IT departments have long criticized Access applications as a development platform that has
issues with version control and data security. It was not uncommon to fi nd users with dif-
ferent versions of Access applications running on different computers. It was also diffi cult
to guarantee a high degree of database security.

Although these problems were evident to IT departments, many Access developers and busi-
ness users were reluctant to move their applications to IT where they would have to depend
on IT development teams to manage the time and resources needed to build and support
the application. Business users know all too well how IT development teams can quickly
become overwhelmed by the need for changes and new features.

Microsoft’s solution to the confl icting needs of business users and IT departments is to pro-
vide tools in Access that allow developers to publish Access applications on SharePoint sites.
When you publish a properly prepared Access application to SharePoint, users instantly
gain the ability to view and work with web-based Access forms via a SharePoint site.

1065

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1065

3333

Versioning issues go away with the ability to republish your Access application any time
changes are needed. Once the application is republished, all users receive the updates the
next time they use the web application. Also, the data is secure because users must be
granted permission to use SharePoint, but after they provide their username and password,
the SharePoint data is accessible through any web browser.

When you publish an Access 2016 web application to SharePoint, new SQL Server 2012
tables are created to store the data. It might be surprising to learn that SQL Server is used
instead of SharePoint lists, but there are real advantages associated with the use of SQL
Server. SQL Server tables can handle larger, more complex sets of data than SharePoint
lists, allowing for greater scalability as the data in your application grows. Also, this archi-
tecture allows for IT developers to more easily integrate and work with the data since it is
already in a SQL environment.

Users utilizing your published Access web application don’t need Access installed on their machine. However, you (as

the developer) must have Access installed in order to make any changes to the database structure.

Understanding Access Services
When an Access application is published to SharePoint, a SharePoint service application
called Access Services renders the ASPX pages necessary to display the Access application
in a web browser. In other words, Access Services is the driving force behind SharePoint-
hosted Access applications.

Access Services compiles and executes the queries in the Access web application and directs
the queries against the SharePoint lists containing the data. Access Services also synchro-
nizes updates between versions of the Access application on a developer’s desktop and the
version stored in SharePoint.

Perhaps the most important role played by Access Services is to translate the relational
data model to SQL Server when your application is published to SharePoint. SharePoint
itself can’t recognize the relational nature of your data. Access Services provides the logic
SQL Server requires to create the back-end database for your application.

Access Services in SharePoint also provides data caching. Instead of relying on the native
ability of SharePoint to locate and deliver data, Access Services provides a middle-tier cach-
ing service that stores data that is likely to be consumed by the application and delivers
the data much more quickly than SharePoint alone. The caching is transparent to users and
developers, and no confi guration options exist for setting up the cache or modifying its
parameters.

1066

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1066

The Access Services layer fi lters data in a query before adding it to the cache. This means
that queries that include a WHERE clause are guaranteed to run more quickly and make
better use of Access Services caching than queries that select all rows from the underlying
table(s). As with any database application, you should plan on using query predicates (the
WHERE clause) when possible to minimize the amount of data that moves between the data
store (in this case, SharePoint lists) and the user interface.

Why SharePoint?
Many developers question why Microsoft chose to make Access web development reliant
on SharePoint Services. If the intent is to make Access a bona-fi de web development tool,
doesn’t it make sense to incorporate true web development capabilities into Access, like
Microsoft did with Visual Studio, many years ago?

When Microsoft examined the issues involved, it quickly became clear that adding credible
web development capabilities to Access wasn’t practical. Many people forget that a website
is far more than just HTML pages. Security, performance, and data integrity issues must be
considered.

Microsoft chose SharePoint as the platform for Access web publishing because of the sig-
nifi cant features built into SharePoint, including the following:

 ■ Security: SharePoint supports users and groups of users. Users and groups may be
granted or denied access to various parts of a SharePoint website, and designated
users may be granted permission to add, delete, or modify the site.

 ■ Versioning: SharePoint automatically maintains a version history of objects and
data. Changes can be rolled back to an earlier state at virtually any time. The abil-
ity to roll back changes can be granted to individual users, and DBA support is not
required.

 ■ Recycle bin: Deleted data and objects are held in a recycle bin so that they may
be recovered. Unlike Access, in which every deletion or change is permanent,
SharePoint supports an undo feature for its data.

 ■ Alerts: Users and groups can be e-mailed when specifi c data in a SharePoint list is
added, deleted, or changed. If granted the proper permissions, users can manage
their own alerts.

 ■ End-user maintenance: SharePoint sites are meant to be maintained by their users,
without the intervention of IT departments. Although SharePoint pages are not as
fl exible as typical web pages, a SharePoint developer can add or remove features from
pages; change fonts, headings, colors, and other attributes of pages; create subsites
and lists; and perform many other maintenance and enhancement tasks.

 ■ Other features: Every SharePoint site includes a number of features—such as a cal-
endar, a task list, and announcements—that users can turn off or remove.

1067

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1067

33

The ability of users to maintain a SharePoint site is a major difference between a
SharePoint site and a website built with a tool such as ASP.NET. The web pages in a .NET
website are tightly bound to the compiled code that manages the site. A user can’t change
an ASPX page because it’s stored on a web server, and (in most cases) the code behind the
page must be recompiled when changes are made to the page’s interface.

Examining the Limitations of Access Web

Applications
Access web applications are not the best solution for public-facing websites; they’re bet-
ter suited for departmental or workgroup environments. Certain limitations mean that the
Access/SharePoint web option is targeted for specifi c situations.

The limitations of Access web applications are determined more by SharePoint than any-
thing in Access itself. For instance, SharePoint doesn’t support anonymous access to
SharePoint sites. Users are expected to log in to a SharePoint site, using a valid username
and password. (SharePoint uses Windows Active Directory services to identify users.)

Although workarounds exist for this limitation, it can be diffi cult to restrict users to
certain portions of a SharePoint application. In general, after users are authenticated by
SharePoint’s security system, they can access the lists, calendars, and other features sup-
ported by the SharePoint site. Restricting users means determining which features should
be allowed for which sets of users, and individually setting permissions for those features
throughout the SharePoint site. Most web applications, on the other hand, present only the
features the developer has specifi ed.

SharePoint was never meant to be a general-purpose web development tool; instead, it was
designed and built primarily as a collaborative platform for sharing data and documents.
This means that SharePoint pages are built from templates, not from free-form HTML. As a
result, all SharePoint pages share certain appearance features.

In most cases, the similarities between pages hosted on different SharePoint sites are an
asset, not a hindrance. After users are familiar with SharePoint and SharePoint pages, no
further instruction is needed, so users are productive more quickly than with applications
where each page is different. Common tasks such as adding a new item to a list or editing
an existing item are the same in every SharePoint page.

You can customize the colors, fonts, and some other appearance attributes of a SharePoint
page. However, the basic layout—with the Navigation pane at the left, a Ribbon and
“breadcrumbs” at the top, and an items list to the right of the Navigation pane—is common
to all SharePoint pages.

1068

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1068

If absolutely necessary, you can create a custom page template from scratch, or from an
existing template, and use it on a SharePoint site. Because most SharePoint sites are used
on an intranet for a specialized audience, however, the default page layout usually works
quite well.

Limitations of Access Services
As with other Microsoft technologies, Access Services comes with its own set of limitations
(see Table 33.1). It’s important to be aware of these before deciding whether to publish your
Access applications to SharePoint.

You’ll note a default value for each of these limitations. These default values represent the
standard value when Access Services is installed on the SharePoint site. In order to use
the maximum values, your SharePoint administrator will have to explicitly confi gure each
attribute to the maximum allowable.

TABLE 33.1 Access Services Limitations

Type of Query or Field Comments

Maximum records per
table

The maximum number of records that a table in an application
can contain.

Maximum: No limit

Default: 500,000

Maximum columns per
query

The maximum number of columns that can be referenced in a
query. Note that some columns may automatically be referenced
by the query engine and will be included in this limit.

Maximum: 255

Default: 40

Maximum rows per query The maximum number of rows that the output of the query can
have.

Maximum: 200,000

Default: 25,000

Maximum sources per
query

The maximum number of lists that may be used as input to one
query.

Maximum: 20

Default: 12

1069

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1069

33

Maximum calculated col-
umns per query

The maximum number of inline calculated columns that can be
included in a query, either in the query itself or in any subquery
on which it is based.

Maximum: 32

Default: 10

Maximum Order By
clauses per query

The maximum number of fi elds referenced in the Order By clause
in a query.

Maximum: 8

Default: 4

Maximum request dura-
tion (request time-out
setting)

The maximum duration (in seconds) allowed for a request from an
application.

Maximum: No limit

Default: 30

Memory utilization The maximum number of private bytes (in MB) allocated by the
Access Database Service process.

Maximum: 50% of physical memory on the client computer

Default: 50% of physical memory on the client computer

After looking at these limitations, it should be clear that not all Access applications are
good candidates for a web application. In the past, Microsoft has been blunt in suggest-
ing that applications with more than 40,000 rows in one table are not good candidates for
SharePoint-hosted Access applications. This, however, is a blanket suggestion to help you
avoid performance issues after publishing your applications to the web.

The fact is that the performance of your Access web application depends on many factors:
the number of records, number of tables, complexity of queries, the number of data calls
to the server, and so on. It really depends on your situation.

If your Access application exceeds any of the limits shown in Table 33.1, you’ll need to con-
sider a more traditional web development path, using tools such as ASP.NET and SQL Server.
These development platforms are geared toward large-scale, high-performance, data-driven
websites.

Transactional limitations
A SharePoint-hosted Access web application is not a great platform for environments where
hundreds of users are constantly adding to or updating data. Although SharePoint uses

1070

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1070

SQL Server as its underlying database, database updates are considerably slower than when
working directly with SQL Server tables through linked Access tables or stored procedures.

In other words, a SharePoint-hosted Access database should not be used for applications
requiring high-volume data entry features. Instead, the SharePoint-hosted Access applica-
tion would be used ideally for moderate database updates and reporting.

Publishing a Custom Access Application to

SharePoint
In the following example, an entire Access 2016 application is published to SharePoint.
Specifi cally, we’ll create a sales opportunity web application that allows sales reps to
enter new sales opportunities via a SharePoint web page. Managers will also be able to run
reports from our new web application.

Because our application will be published to SharePoint, any users (with the proper
SharePoint credentials) can access the application through a web browser, without the need
for Microsoft Access on their desktop.

The starting database for this walkthrough, SalesApplication.accdb, can be downloaded with the sample

fi les for this book. As a reminder, you’ll need read/write access to a SharePoint Server to experiment with the tech-

niques described in this chapter. If you’re interested in publishing your own Access web applications, contact your IT

department to inquire about getting access to a SharePoint site confi gured with Access Services. If you don’t have

access to an existing SharePoint environment, consider an Offi ce 365 subscription as mentioned at the beginning of

this chapter.

Preparing the Access data model
When starting an Access web application, you’ll need to begin with a basic Access data
model. Because Access Services can’t accept complex logic and VBA procedures, your start-
ing data model will have to be fairly simple.

We’ll start with a set of base tables (see Figure 33.1). These tables are found in a standard
ACCDB database.

SharePoint and Access Services can’t accept Access applications that include VBA, because Access forms and VBA

can’t be converted to the JavaScript used by SharePoint. Also, advanced features such as ActiveX controls may not

have .NET analogs, so Access Services can’t create an appropriate substitute. This may seem disappointing to experi-

enced Access developers, but, as you’ll see later in this chapter, you can substitute much of the necessary VBA logic

with validation rules and data macros.

 ON THE WEB

1071

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1071

33

FIGURE 33.1

Start with a set of base tables.

You’ll want to establish defi ned relationships between each table via the Relationships tool
in the Database Tools dialog box. These relationships will ensure that Access Services prop-
erly handles the interactivity between each table in your model. Figure 33.2 illustrates the
Relationships screen for our starting data model.

FIGURE 33.2

Be sure to establish Relationships between the tables in your data model.

 Need a refresher on the topic of table relationships? Feel free to peruse Chapter 4.

Notice in Figure 33.2 that each table contains a primary key. It’s important to note that
Access Services does not effectively handle many-to-many relationships, so you’ll need
to ensure that each table in your starting data model has a single-fi eld primary key that
serves as a unique identifi er for the rows within the table. The best way to achieve this is
to create an AutoNumber fi eld in each table that serves as the primary key. To do this, sim-
ply go into the Design view of each table and add a fi eld called “ID” (see Figure 33.3). Then
set the Data Type for the fi eld to AutoNumber. Once that’s done, set it as the primary key.

 Chapter 3 covers table design and confi guration in detail.

1072

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1072

FIGURE 33.3

Create an AutoNumber fi eld for each table, and then set the AutoNumber fi eld as the
 primary key.

Another step you can take to prepare your data model is to add any lookup fi elds that
will assist your users during data entry. Figure 33.4 illustrates a lookup fi eld in the
Opportunities table that allows a user to select from a list of Companies when entering a
new record. This prevents the user from having to remember company names, saving time
and avoiding data entry errors.

FIGURE 33.4

Add lookup fi elds wherever possible, allowing for more effective data entry.

Chapter 3 covers lookup fi elds in detail, but as a refresher, look at Figure 33.5. A lookup
fi eld is set in the Design view of the table. In this example, the Company fi eld has a lookup
that returns the ID, Company, and ContactName from the Customers table. Again, this gives
your users an interactive drop-down list, allowing them to easily select and tag correct
company data.

Once you’ve taken these preparatory steps, you’re ready to create your custom web applica-
tion. Notice that we haven’t created any queries or forms in this starting data model. The
data model truly consists of base tables with some rudimentary logic. Access 2016 web
applications simply will not accept any more than that initially. However, as you’ll see in

1073

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1073

33

the next section, you can add queries, nuanced logic, and other confi gurations once the
web application has been created.

FIGURE 33.5

You can set lookup fi elds in the Design view of your tables.

Initializing and confi guring the custom web application
Now that you have a starting data model, it’s time to create the custom web application:

 1. Open Access 2016 via the Windows Start button (Start ➪ Programs ➪ Access
2016). You’ll see the default welcome screen shown in Figure 33.6.

 2. Click the Custom Web App button. The Custom Web App dialog box appears.

FIGURE 33.6

Start Access 2016 via the Windows Start button, and press the Custom Web App
button.

1074

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1074

 3. Enter a name for your application and the URL for the target SharePoint site
(see Figure 33.7), and click Create.

 4. When prompted, enter your username and password. Access caches this informa-
tion for future use and doesn’t ask for them again unless they change.

FIGURE 33.7

Specify the name and SharePoint site for your application.

After a bit of gyrating, SharePoint creates an empty web application on the
SharePoint site. In Access, you see a new web database similar to the one shown in
Figure 33.8.

 5. Here, you need to tell Access which tables you want to use for your web appli-
cation. Take a moment to look at the bottom of Figure 33.8. Notice that you have
the option of pulling tables in from all kinds of sources: Access, Excel, SQL Server,
Other ODBC connections, text fi les, and even SharePoint lists. This gives you the
fl exibility to utilize virtually any data source for your web application.

This example uses the basic data model found in SalesApplication.accdb.

 6. Click the Access icon shown at the bottom of Figure 33.8.

 7. Select the database you want to use as the source for your data. The Import
Objects dialog box (shown in Figure 33.9) appears.

1075

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1075

33

FIGURE 33.8

Click the Access icon to pull data from the data model in the SalesApplication.accdb fi le.

FIGURE 33.9

Select all the tables you want included in your web application.

1076

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1076

 8. Select the tables you want included in your web application (in this case,
choose Select All), and click OK.

A Word about Table Templates
In this walkthrough, we took the time to build our own custom data model, which includes the tables
we need for our sales application. We then chose those tables as the source for our web application.
If you don’t want to do all that work, you can use Microsoft’s set of predefi ned table templates.

In Figure 33.8, notice that there is a search box, allowing you to search for table templates from the
Microsoft site. Entering a search term in this box brings up a list of predefi ned table templates that
you can use in place of your own custom data model.

For example, if you enter the term “project tracking,” a list of tables related to project tracking pops
up. Selecting one of the tables brings the selected table along with other tables related to project
tracking. This is a time-saver, allowing you to start a web application without having to build your own
data model. Once you have the table templates, you can easily customize them to suit your needs.

Reviewing and editing table views

After you select your source tables, Access imports them into the web application. At this
point, your screen looks similar to Figure 33.10. Each table name appears on the left of the
screen with a set of views in the middle of the screen. Clicking the Navigation Pane button
on the Ribbon will activate the familiar-looking Navigation pane you’re used to seeing in a
standard Access database.

FIGURE 33.10

Access imports all the selected tables and creates two default views for each table.

1077

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1077

33

Each table will have two default views associated with it: a List view and a Datasheet view.
Clicking the List view for a table allows you to view and edit each fi eld in the table in a
form (see Figure 33.11). That’s right—Access automatically created a form for each table. In
fact, you’ll fi nd the design and layout of the automatically created forms to be surprisingly
good. Nevertheless, you can edit the form if you want.

Clicking the Datasheet view for a table allows you to view and edit each fi eld in a datasheet
format. Again, you can edit the view to add or remove fi elds as needed.

FIGURE 33.11

Access automatically creates a form for each table in a List view.

Some of the tables in your data model are there simply as reference tables, not to be shown
to the public. In Figure 33.12, the Categories table is not something we want the users
of our application to see. In this case, we can hide that table by selecting the table and
selecting the gear icon to reveal the Hide command. This ensures that our users are not
able to view or edit this table.

After a table is set to be hidden, it will have a perforated border around it and it will be
given a lighter, subdued color. This way, you can tell it’s hidden from the public.

Adding a validation rule to a table

At this point, you’ll want to add any rules or logic to make your application more than just
a few simple tables. To do so, you’ll need to edit each table individually. Select the target
table and click the gear icon to reveal the Edit Table option (see Figure 33.13).

1078

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1078

FIGURE 33.12

You can hide tables you don’t want to be viewed or edited by your users.

FIGURE 33.13

Choose to edit the Customers table.

In Figure 33.14, you’ll see the Customers table in Design View. When users enter a new cus-
tomer into the Customers form, we want to ensure that they can’t save the record without
entering values in the Company fi eld and the ContactName fi eld.

Access allows you to add validation rules to your tables by clicking the Validation Rule
command on the Ribbon.

1079

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1079

33

The Expression Builder dialog box (shown in Figure 33.15) appears. Here, you can enter any
expression you want. In this case, we want to ensure that the Company and ContactName
fi elds are not null, so enter the following expression:

Coalesce([Company], [ContactName]) Is Not Null

FIGURE 33.14

Add a new validation rule to the Customers table.

FIGURE 33.15

Enter the desired validation rule in the form of an expression. This expression ensures that
the Company and ContactName fi elds are not left blank.

1080

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1080

The Coalesce function is a SQL function that returns the fi rst non-null expression among its arguments. We are

using it here to validate that neither the CustomerName nor the Company fi eld is blank.

Once we confi rm the expression, we can click the Validation Message command (shown in
Figure 33.16) to enter a message to our users.

FIGURE 33.16

Click the Validation Message command.

In the Enter Validation Message dialog box (shown in Figure 33.17), we want to enter the
message that the users will see when they violate our newly created validation rule.

FIGURE 33.17

Enter a message that will show when the validation rule is violated.

Adding events to a table

Sometimes, you’ll want to trigger an event in your web application when a record is
inserted, updated, or deleted. As mentioned earlier, Access Services can’t translate VBA

1081

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1081

33

into JavaScript, so VBA is out of the question. In order to add events, you’ll have to use
data macros.

 Chapter 23 discusses how to create and confi gure data macros.

To illustrate how to use events, let’s add an event to our Opportunities table.

In our custom web application, we have a table where users can enter new sales opportuni-
ties. When entering a new sales opportunity, users will have to provide an estimated rev-
enue value and a probability percent. We’ll want to fi re an event when either of those fi elds
doesn’t conform to what the application needs.

First, select the Opportunities table and click the gear icon to reveal the Edit Table option.
After clicking Edit Table, you see the Opportunities table in Design view (see Figure 33.18).
Here, click the On Insert command in the Events group.

FIGURE 33.18

The Events group shown in Design view allows you to add data macros that fi re On Insert,
On Update, and On Delete.

Access activates the Macros window, where you can build the inner workings of your data
macro. As you can see in Figure 33.19, we’ll trigger an error message if the Est Revenue fi eld
is less than 0 or if the Probability fi eld is not between 0 and 1.

1082

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1082

FIGURE 33.19

Use the Macros window to add the logic for your event.

Creating your own queries and views

As mentioned previously, Access starts you off with two default views for each table in
your web application: a List view and a Datasheet view. You can extend the functionality of
your application by adding your own views based on custom queries.

Start by selecting the Advanced drop-down list and selecting Query (see Figure 33.20).

FIGURE 33.20

Select the Advanced drop-down list, and then select Query.

Note that you can choose to create your own List view, Datasheet view, or even Blank view. When you choose any one

of these options, Access presents you with a list of fi elds you can add to your new view. Simply choose the fi elds you

want included and start building.

1083

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1083

33

When you choose Query from the Advanced drop-down list, Access activates the familiar
Query Builder. As you can see in Figure 33.21, building a query in a web application is simi-
lar to building one in a standard Access database. In this example, we’re summarizing the
open opportunity sales for each sales rep.

FIGURE 33.21

Build your query in the same fashion you would in a standard Access database.

After you save your query with a name (SalesSummary in this case), Access shows you the
results (see Figure 33.22).

FIGURE 33.22

Save your query with a name and view the results.

1084

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1084

Now it’s time to create a new view from the query. Select any table used in the query, and
then click the plus icon. The dialog box shown in Figure 33.23 appears. Here, provide a
name for your new view, select a view type (List or Datasheet), and then choose your query
as the data source for the view.

FIGURE 33.23

Start a new view by clicking the plus icon and fi ll in the required attributes.

After clicking the Add New View button, your view will be available along with the default
views (see Figure 33.24).

FIGURE 33.24

Any new views will show next to the default views.

A final word on configuring your web application

In this section, we quickly looked at the various ways you can confi gure your web applica-
tion. Obviously, the basic scenarios shown here are designed to give you a general overview

1085

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1085

33

of the tools Access has provided for confi guring your application. It goes without saying
that these fundamental building blocks can be extended to add as much complexity as you
need to your web application.

The key concept you should take away is that confi guration of an Access 2016 web applica-
tion is done after a web application has been created. Many Access developers approach web
applications with the notion that they can take their existing database and simply make it
web-enabled. Unfortunately, it doesn’t work that way in Access 2016.

You start a web application with nothing more than tables that have a basic relationship
schema. All the logic, rules, and events are built within the web application environment.

Launching and managing your web application
Once you’ve completed the confi guration of your web application, you can click the Launch
App command (see Figure 33.25). Enter your username and password if asked to do so.

FIGURE 33.25

Launch your web application.

Your web application will show through a SharePoint screen, with easy navigation and fi l-
tering options built in (see Figure 33.26).

SharePoint and Access Services do a nice job of making your web application look profes-
sional. For example, in Figure 33.27, you can see that any date fi eld comes with a visually
appealing calendar selector.

1086

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1086

FIGURE 33.26

Your web application will be displayed via a SharePoint portal.

FIGURE 33.27

SharePoint and Access Services automatically add nice touches to your web application.

Any events you’ve added are compiled and made part of the application. In our example, we
added an event that raises an error if the Est Revenue fi eld has a value less than zero. As
you can see in Figure 33.28, the application activates a message box based on our event.

And because we created our application with properly formed table relationships, Access
services is able to automatically add useful hierarchical views for our users. In Figure 33.29,
you can see that when DataPig Technologies is selected from the Customers table, a list of
existing opportunities from the Opportunities table is also shown.

1087

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1087

33

FIGURE 33.28

Any event built into the web application is triggered as designed.

FIGURE 33.29

Useful hierarchical views are automatically created based on table relationships.

Our custom-made view is also available, automatically including any new data that has
been entered (see Figure 33.30).

1088

Part VIII: Access and Windows SharePoint Services

c33.indd 10/07/2015 Page 1088

FIGURE 33.30

Custom-made views dynamically keep up with the data in the web application.

Right-clicking any Datasheet view through a SharePoint portal allows the user to export
the table to a local Excel spreadsheet (see Figure 33.31).

FIGURE 33.31

Exporting data to Excel is as easy as right-clicking any Datasheet view.

If you need to make changes to your web application, simply click the gear icon at the top
right of your application. Then click the Customize in Access option (see Figure 33.32). An
ACCDW database fi le, which can be opened and edited with Access 2016, is downloaded to a
location of your choosing. Note that not all users will see the gear icon. You must have pub-
lishing permissions (set by the SharePoint Administrator) to choose this action.

1089

Chapter 33: Deploying Access Applications to SharePoint

c33.indd 10/07/2015 Page 1089

33

FIGURE 33.32

To make changes to the web application, click the Customize in Access option.

Once you make the necessary changes, simply launch the application again. Users will
seamlessly get any changes you make to the ACCDW database.

You can view and manage all your web applications via SharePoint. Clicking the three dots
next to each application will activate a dialog box (shown in Figure 33.33) that gives you
the ability to view usage logs, manage permissions for your application, and remove the
application.

FIGURE 33.33

SharePoint allows administrators and publishers to view all the applications on the site, view
logs, manage permissions, and remove applications.

1091

bindex.indd 10/07/2015 Page 1091

Index

Symbols and
Numbers

+ (addition) operator, 268, 269
& (concatenation) operator, 275
/ (division) operator, 268, 269
= (equal) operator, 271, 272
^ (exponentiation) operator, 268, 270
> (greater than) operator, 271, 273
>= (greater than or equal to) operator,

271, 273
\ (integer division) operator, 268, 270
< (less than) operator, 271, 272
<= (less than or equal to) operator,

271, 272
* (multiplication) operator, 268, 269
<> (not equal) operator, 271, 272
- (subtraction) operator, 268, 269
1NF (fi rst normal form), 93–96
2NF (second normal form), 96–101

foreign keys, 97
3NF (third normal form), 101–102

A
ACCDB fi les, 22
Access Ribbon. See Ribbon
Access Services

limitations, 1068–1069
publishing and, 1065–1066

ACE (Access Connectivity Engine), 22
Action Catalog (macros), 699

data actions, 741
CancelRecordChange, 742
ClearMacroError, 743
DeleteRecord, 742
ExitForEachRecord, 742
GoToNext, 743
LogEvent, 742
OnError, 743
RaiseError, 743
RunDataMacro, 743
SendEmail, 742

SetField, 742
SetLocalVar, 742
StopAllMacros, 743
StopMacro, 743

data blocks
CreateRecord action,

740–741
EditRecord action, 741
ForEachRecord action,

741
LookupRecord action, 741

program fl ow and, 740
action queries, 432–433

subqueries and, 452–455
Activate event, 845, 849
Add Watch dialog box, 885–886
ADO (ActiveX data objects), 897–901

DAO comparison, 923–924
fi elds, updating, 925–929
objects, 901–902

Command, 905–907
Connection, 902–905
Recordset, 908–914

AfterChange event, 737
AfterDelConfirm event, 846
AfterInsert event, 846
AfterUpdate event, 846, 848
age calculation, 390–392
aggregate functions

Avg, 315
Count, 315
domain aggregate functions,

455–456
DAvg, 457
DCount, 457
DFirst, 457
DLast, 457
DLookup, 457
DMax, 457
DMin, 457
DStDev, 458
DStDevP, 458
DVar, 458
DVarP, 458
percent of total calculation,

460–461

previous record values,
463–465

running count, 461–463
syntax, 458–459

Expression, 315–318
First, 315
Group By, 313–314
Last, 315
Max, 315
Min, 315
StDev, 315
Sum, 315
Var, 315
Where, 315–318

aggregate queries, 309–313
descriptive statistics and,

468–469
results as hard data, 320–321

aggregation, 168–169
GROUP BY clause, 428
results, calculations, 377–378

aliases
AS clause, 429
column names, 312–313
correlated subqueries and, 451

alignment, 161
controls, 510–512
reports

control labels, 679
title, 679

AllowZeroLength property, 56, 67–68
ALTER TABLE statement, 436–438
And operator, 277

across fi elds, 303–304
queries, 285–287
range specifi cation, 299–301

anomalies, 102–103
append queries, 324–329

INSERT INTO statement, 432
subqueries in, 452

applications
About box, 1018–1019
desktop

blank, 20
welcome screen, 20

look and feel, 1015–1016

1092

Index

bindex.indd 10/07/2015 Page 1092

progress meter, 1021–1027
publishing

confi guration, 1073–1085
initialization, 1073–1085
launching, 1085–1089
managing, 1085–1089

splash screen, 1016–1018
startup, 1027–1029
status bar, 1020–1021
switchboard, 1018
web, welcome screen, 20

application-specifi c referential
integrity, 129–130

ApplyFilter event, 846
arguments

functions
calculations as, 378–380
IIf, 410

macros, 698, 699
named, 836–838

Array function, 821–822
arrays

dynamic, 820–821
fi xed, 817–819
functions

Array function, 821–822
boundary functions, 821
Join function, 823–824
ParamArray keyword, 822
Split function, 822–823

one-dimensional, 819
AS clause (SQL), 429
Attachment data type, 49–50
attachments, 500
Auto Data Tips, 882–883
AutoCorrect, 37
AutoNumber data type, 44, 49

converting
to number, 54
to short text, 54

tblCustomers, 51
Avg aggregate function, 315

B
Back Color property, 551
Backstate view, 28
banded report design, 614–620
BeforeChange event, 735–736
BeforeDelConfirm event, 846
BeforeDelete event, 735–736
BeforeInsert event, 846
BeforeScreenTip event, 845
BeforeUpdate event, 846, 848

BETWEEN...AND operator, 279–280,
404

range specifi cation, 301
blank databases, 20–22
blank lines in reports, 674–676
BOF (beginning of fi le), 912
bookmarks, 946–949
Boolean data type, 804
Boolean (logical) operators

And, 277
Not, 278–279
Or, 278
precedence, 282

Boolean values, VBA, 773–774
bound controls, 500
bound object frames, 500
bound reports, user’s name, 681–682
boundary functions, 821
breakpoints in debugging, 877–883

Stop statement alternative, 880
bulleted lists, 666–669
Button (Ribbon), 962–963
byte data type, 804

C
calculated controls, 500

creating, 565
table updates, 930–935

calculations, 375–376
age, 390–392
aggregation results in, 377–378
as argument in function, 378–380
constants, 376
dates, 388–399
errors, 384–387
Expression Builder, 380–384
expressions, syntax, 387–388
fi elds in, 376–377
order of operator precedence,

384–385
results, as expression elsewhere,

378
Call Stack window, debugging and,

888–889
camel case naming, 36
Caption property, 56, 65
case, changing, 363–364
Change event, 848
character criteria in queries, 289–290
charts, 499
Check Box control, 564
check boxes, 499

design and, 567
CheckBox (Ribbon), 964

child tables, 109
Chr$() function, 669
clauses (SQL)

AS, 429
GROUP BY, 428
ORDER BY, 429
WHERE, 424

Click event, 843, 845, 848
Close event, 845, 849
collections, 780–781, 899

For..Each statement, 784–785
names, 899
properties, 780

default, 781
referencing items, 781

color, rows, 159–161
Column Width dialog box, 156
columnar reports, 592–593
columns (fi elds), 5–6

aliases, 312–313
ALTER TABLE statement,

436–438
data alignment, 161
freezing, 162
hiding/unhiding, 161–162
SELECT statement and, 423

columns (reports)
snaking, 684–691
vertical lines, 672–674

Combo Box control, 562–564
combo boxes, 499

design and, 567
forms, 536–537
as lookup control, 72
report display, 682–684
unbound, 941–944

bookmarks, 946–949
FindRecord method, 944–945

ComboBox (Ribbon), 963–964
Command Button control, 562
Command object, 905–907
comments, debugging and, 863
comparison operators

= (equal), 271, 272
> (greater than), 271, 273
>= (greater than or equal to),

271, 273
< (less than), 271, 272
<= (less than or equal to), 271,

272
<> (not equal), 271, 272
precedence, 282
queries, 283–284
subqueries, 447–448

compiler directives, MsgBox and,
872–874

applications (continued)

1093

Index

bindex.indd 10/07/2015 Page 1093

compiles, debugging and, 863
complex criteria in queries, 284–287
composite primary keys, 74–75, 120,

121
compound controls, 631–632
concatenation, fi elds, 360–363
conditional functions, IIf, 410–416
conditional watches, debugging and,

886–888
Connection object, 902–905
Const keyword, 814–815
constants

calculations and, 376
debugging and, 862
declaring, 814–815
hard-coded values and, 816–817
naming conventions, 815–816

Contextual tabs (Ribbon), 27
control event procedures

AfterUpdate, 848
BeforeUpdate, 848
Change, 848
Click, 848
DblClick, 848
Dirty, 848
Enter, 848
Exit, 848
GotFocus, 848
KeyDown, 848
KeyPress, 848
KeyUp, 848
LostFocus, 848
MouseDown, 848
MouseMove, 848
MouseUp, 848
NotInList, 848
Undo, 848
Updated, 848
writing, 854–859

controls
alignment, 510–512
appearance modifi cation, 512–513
attachments, 500
bound, 500
bound object frames, 500
buttons, 499
calculated, 500

creating, 565
categories, 498–500
charts, 499
Check Box, 564
check boxes, 499
Combo Box, 562–564
combo boxes, 499
Command Button, 562

compound, 631–632
Controls group and, 501–502
copying, 515
deleting, 515–516
Design tab, 499–500
editing, 532–533
Field List and, 502–505
forms, 17
grouping, 513–515
handles, 505–506
hyperlinks, 499
Image, 571–572
images, 500
labels, 499

alignment, 679
naming, 521–523
reattaching, 516–517

lines, 499
List Box, 562–564
list boxes, 499
morphing, 572–573
moving, 509–510
option buttons, 500
Option Group, 564
option groups, 499
page breaks, 499
properties, 517

settings, 520–521
Property Sheet, 519
rectangles, 499
reports

micro-adjusting, 679–680
names, 693–694
placement, 625–626

resizing, 507–509
Ribbon, 960
selecting/deselecting, 505–507
sizing, 509
subforms/subreports, 500
tabs, 499
Text Box, 560–561
text boxes, 499
Toggle Button, 564
toggle buttons, 499
types, changing, 515
unbound, 500
unbound object frames, 499
Web Browser, 564–565

Controls group, 501–502
converting data, 54
converting forms, to reports, 556
copying

controls, 515
tables, 84–85
values, 151

correlated subqueries, 449–452
Count() function, 692–693
Count aggregate function, 315
Count property, 780
Create Back-end Database dialog box,

233
Create tab (Ribbon), 27, 38

Forms group, 486–487
Macro button, 698–699
objects, adding, 38

CreateRecord action (macros),
740–741

crosstab queries
creating manually, 340–345
custom, 343–345
hard data and, 339
TRANSFORM statement, 433
value fi elds, 341–343
wizard, 333–339

Crosstab Query Wizard, 333–339
CSV (comma-separated values),

222–223
currency data type, 44, 48, 143, 804

converting
to number, 54
to short text, 54

Currency format, 57
Current event, 846

D
DAO (data access objects), 897–901

ADO comparison, 923–924
objects, 914–916

Database, 916–917
DBEngine, 916
Field objects, 922–923
QueryDef, 919–921
Recordset, 921–922
TableDef, 917–919
Workspace, 916

data. See also external data
design, 12–13
events, 840

data conversion, 54
data events (forms), 846–847

AfterDelConfirm, 846
AfterInsert, 846
AfterUpdate, 846
ApplyFilter, 846
BeforeDelConfirm, 846
BeforeInsert, 846
BeforeUpdate, 846
Current, 846

1094

Index

bindex.indd 10/07/2015 Page 1094

Delete, 846
Dirty, 846
Error, 846
Filter, 846
Undo, 846

data macros
collapsing items, 747
creating, 743–747
data actions, 741

CancelRecordChange, 742
ClearMacroError, 743
DeleteRecord, 742
ExitForEachRecord, 742
GoToNext, 743
LogEvent, 742
OnError, 743
RaiseError, 743
RunDataMacro, 743
SendEmail, 742
SetField, 742
SetLocalVar, 742
StopAllMacros, 743
StopMacro, 743

data blocks
CreateRecord action,

740–741
EditRecord action, 741
ForEachRecord action, 741
LookupRecord action, 741

expanding items, 747
limitations, 749–750
macro designer, 738–739
moving items, 748
overview, 734
saving, as XML, 748–749

Data Type drop-down list, 45
data types, 44–46

Attachment, 49–50
AutoNumber, 44, 49
converting, 54
currency, 44, 48, 143
date/time, 44, 48, 143
Hyperlink, 45, 50
indexing and, 46
Long Text, 44, 47, 144
Lookup Wizard, 45, 50
number, 44, 47–48, 143
OLE Object, 44, 49, 143–144
reports and, 46
Short Text, 44, 47
sorting and, 46
storage requirements, 46
validation, automatic, 141–142

VBA, 803–806
Yes/No, 44, 49

Database Splitter, 232–234
Database Tools tab (Ribbon), 27
databases. See also relational

databases
blank, 20
Database Splitter, 232–234
importing, Access databases,

177–180
manual, 4
opening, 20
overview, 4-5
recently opened, 20
splitting

benefi ts, 228–231
object location, 231

data-entry fi elds, 17
data-entry forms, 8–9
datasets

median, 472–474
merging, 434–435
modes, 470–472
rows, adding, 328–329
updatable, 332–333

Datasheet Formatting dialog box, 160
datasheet forms, 496–497
Datasheet view, 133, 537–538
Datasheet window, 134

alignment, 161
colors, rows, 159–161
columns

freezing, 162
hiding/unhiding, 161–162

fi elds, width, 156–157
fonts, 158–159
gridlines, 159–161
Home Ribbon, 135–136

Clipboard, 136
Find, 136
Records, 136
Sort & Filter, 136
Text Formatting, 136
Views, 136
Window, 136

navigating, 134–135
Navigation buttons, 135
records

adding, 153
deleting, 153–154
fi ltering by form, 167–168
fi ltering by selection, 164–166
height, 157–158
moving between, 145–146

ordering, 154–155
saving, 162–163
sorting, 163–164

row colors, 159–161
saving

layout, 162–163
records, 162–163

values
changing, 149–150
copying, 151
editing, 149–150
fi nding, 146–148
pasting, 151
replacing, 152–153
replacing manually, 148–149

wildcards, 147
datasheets, 5, 132

opening, 138
records

entering, 138–140
saving, 140–141

date
calculations, 388–399
quarters, 396–398
reports, intervals, 655–656

Date and Time dialog box, 570–571
date data type, 804
Date function, 389–392
DateAdd function, 395–396
DateDiff function, 407–408
DateSerial function, 398–399
date/time data type, 44, 46, 48,

143
converting to Short Text, 54
forms, 535

Date/Time format, 59–60
DAvg function, 457
Day function, 393–394
DblClick event, 843, 845,

848
DBMS (database management system),

4
DCount function, 457
Deactivate event, 845, 849
Debug.Assert method, 864–865
debugging, 861

Auto Data Tips and, 882–883
breakpoints and, 877–883
Call Stack window, 888–889
conditional watches, 886–888
Debug.Print and, 874–876
error handling, 893–894
error trapping

Err object, 892–893

data events (forms) (continued)

1095

Index

bindex.indd 10/07/2015 Page 1095

On Error Goto Label
statement, 891

On Error Resume 0
statement, 891

On Error Resume statement,
889–890

Resume keyword, 891–892
Immediate window, running code,

876–877
Local window and, variables,

883–884
macros, 726–727
MsgBox, 870–874
organization and, 862–863
testing and, 863–867
Watches window, 884–886

Debug.Print, debugging and,
874–876

decimal data type, 804
Decimal Places property, 56
decomposition, 100
Default Value property, 56
Delete event, 846
delete queries, 321–324

DELETE statement, 433
subqueries in, 453

DELETE statement, 433
Deleter Rows button, 42
deleting

controls, 515–516
fi elds, 52–53
records, 323–324
tables, 84

deletion anomaly, 103
denormalization, 103–104
descriptive statistics, 467

aggregate queries and, 468–469
dataset median, 472–474
dataset mode, 470–472
frequency distribution, 480–482
percentile rank, 476–478
quartile standing, 478–480
random sampling, 474–476
ranking records, 469–470

design. See also Table Designer
fi ve steps, 10–11

data design, 12–13
form design, 17
reports, 11
table design, 13–17

tables, 36–41
Design tab (Ribbon), 41, 499–500

controls and, 499–500
Delete Rows button, 42
Indexes button, 42

Insert Rows button, 42
primary key, 41
Property Sheet button, 42

Design View, 612–614
reports, 611–612
SQL and, 421–422

desktop
applications

blank, 20
welcome screen, 20

customer service, 20
databases, blank, 21–22

Detail section (reports), 618
DFirst function, 457
dialog boxes

Add Watch, 885–886
Column Width, 156
Create Back-end Database, 233
Datasheet Formatting, 160
Date and Time, 570–571
Documenter, 82
Edit Relationships, 123
Enter Parameter Value, 403
Export - HTML Document, 197
Export XML, 192
Find and Replace, 146, 152
Get External Data, 215, 218
Grouping Options, 599–600
Import Specifi cations, 190
information collection and,

579–582
Join Properties, 125
Link Tables, 216
Options (VBE), 789–791
Page Setup, 687–691
Paste Table As, 85
Print Table Defi nition, 82
Project Properties (VBE), 791–794
Show Table, 240
Summary Options, 601
Unhide Columns, 162

digital certifi cates, 703
digital signatures, 703
Dim keyword, 797, 801–802
Dirty event, 846, 848
display forms, 8–9
Display When property, 552
DISTINCT predicate (SQL), 428
distribution

application development, 1009–
1011

documentation, 1011–1013
testing, 1013–1015

Application Options, 1000–1005
application startup, 1027–1029

bulletproofi ng applications,
1029–1040

documentation, 1011–1013
Name Autocorrect options, 1008
Navigation Options, 1006–1007
polishing application, 1015–1029
Ribbon and Toolbar options,

1007–1008
testing, 1013–1015

DLast function, 457
DLookup function, 457
DMax function, 457
DMin function, 457
documentation, application

distribution and, 1011–
1013

Documenter dialog box, 82–83
Documents folder, 21
domain aggregate functions

DAvg, 457
DCount, 457
DFirst, 457
DLast, 457
DLookup, 457
DMax, 457
DMin, 457
DStDev, 458
DStDevP, 458
DSum, 457
DVar, 458
DVarP, 458
percent of total calculation,

460–461
previous record values, 463–465
running count, 461–463
syntax, 458–459

double data type, 804
drop-down lists, Data Type, 45
DStDev function, 458
DStDevP function, 458
duplicate records

defi ning, 352–353
fi nding, 353–356
removing, 356–359

DVar function, 458
DVarP function, 458
dynamic arrays, 820–821

E
edge cases, 867
Edit Relationships dialog box, 123
editing, form values, 531–538
EditRecord action (macros), 741

1096

Index

bindex.indd 10/07/2015 Page 1096

embedded macros, 727–729
empty reports, 671–672
encoding, 1036–1038
encryption, 1036–1038
enforcing referential integrity,

126–128
Enter event, 848
Enter Parameter Value dialog box, 403
entity integrity, primary keys,

116–117
entry order of tables, 76
environment security, 1040–1044
EOF (end of fi le), 912
Err object, 892–893
Error event, 846, 849
error events, 840
error handling, debugging and,

893–894
error trapping

Err object, 892–893
On Error Goto Label

statement, 891
On Error Resume 0 statement,

891
On Error Resume statement,

889–890
Resume keyword, 891–892
usage logs, 1030–1033

errors, run-time, 869
Euro format, 57
evaluate, 268
even-odd report printing, 676–678
event model, 839
events

categories, 840
Click, 843
control event procedures, 847–849

AfterUpdate, 848
BeforeUpdate, 848
Change, 848
Click, 848
DblClick, 848
Dirty, 848
Enter, 848
Exit, 848
GotFocus, 848
KeyDown, 848
KeyPress, 848
KeyUp, 848
LostFocus, 848
MouseDown, 848
MouseMove, 848
MouseUp, 848
NotInList, 848

Undo, 848
Updated, 848
writing, 854–859

DblClick, 843
form event procedures, 844

Activate, 845
AfterDelConfirm, 846
AfterInsert, 846
AfterUpdate, 846
ApplyFilter, 846
BeforeDelConfirm, 846
BeforeInsert, 846
BeforeScreenTip, 845
BeforeUpdate, 846
Click, 845
Close, 845
Current, 846
data events, 846–847
DblClick, 845
Deactivate, 845
Delete, 846
Dirty, 846
Error, 846
Filter, 846
GotFocus, 845
keyboard events, 845
KeyDown, 845
KeyPress, 845
KeyUp, 845
Load, 845
LostFocus, 845
mouse events, 845
MouseDown, 845
MouseMove, 845
MouseUp, 845
MouseWheel, 845
Open, 845
Resize, 845
Timer, 845
Undo, 846
Unload, 845
writing, 854–859

Format, 676
KeyDown, 843
KeyPress, 843
KeyUp, 843
macros, assigning to, 701–702
MouseDown, 843
MouseMove, 843
MouseUp, 843
MouseWheel, 843
procedures, 841–842
programming events, 840–842
report event procedures, 849–850

Activate, 849
Close, 849
Deactivate, 849
Error, 849
NoData, 849
Open, 849
Page, 849

report section event procedures,
850–852

Format, 850
Print, 850
Retreat, 850

sequences
data changes, 853
focus changes, 853
forms, opening/closing, 852
mouse events, 853–854

table events
AfterChange, 737
BeforeChange, 735–736
BeforeDelete, 735–736

VBA code triggers, 840–841
Excel, 905

linking to data, 217–220
spreadsheets, importing to

databases, 180–184
worksheets, as fl at-fi le database,

105
Exit event, 848
explicit variables, 806–807

forcing, 807–808
Export - HTML Document dialog box,

197
Export XML dialog box, 192
exporting

to Access databases, 201
external data, 172
external formats, 200–207
HTML documents, 195–197
internal data, 175
ODBC drivers and, 201–203
PDF format and, 206–207
to Word, 204–206
XML documents, 192–195
XPS format and, 206–207

Expression aggregate function,
315–318

Expression Builder, calculations,
380–384

expressions, 267
criteria, Date function in, 389
subqueries as, 448–449
syntax, 387–388
update queries, 332

1097

Index

bindex.indd 10/07/2015 Page 1097

external data, 171–172
exporting, 173
importing, 172, 174

from Access database, 177–180
from Excel spreadsheet,

180–184
text fi les, 185–192

linking, 172, 173–173, 210–211
to Access database tables,

214–217
Excel, 217–220
HTML fi les, 220–222
limitations, 213–214
non-database data, 217–224
ODBC data sources, 217
tables, 211–213
text fi les, 222–224

types, 172
External Data tab (Ribbon), 27

Export group, 176
Import & Link group, 176

F
Field List, controls and, 502–504
Field Size property, 55
fi elds, 5–6, 42–43, 132

attachment fi elds, 86–87
blank, fi lling in, 359–360
in calculations, 376–377
concatenation, 360–363
data types, 44–46

Attachment, 49–50
AutoNumber, 44, 49
currency, 44, 48
date/time, 44, 48
Hyperlink, 45, 50
indexing and, 46
Long Text, 44, 47
Lookup Wizard, 45, 50
number, 44, 47–48
OLE Object, 44, 49
Short Text, 44, 47
sorting and, 46
storage requirements, 46
Yes/No, 44, 49

data-entry, 17
deleting, 52–53
descriptions, 50
forms, navigating, 530–531
inserting, 52
moving, 53
naming, 43–44

numeric, settings, 48
properties

AllowZeroLength, 56, 67–68
Caption, 56, 65
Decimal Places, 56
Default Value, 56
Field Size, 55
Format, 55, 56–57
IME Mode, 56
IME Sentence Mode, 56
Indexed, 56, 68–70
Input Mask, 55, 62–65
New Values, 55
Required, 56, 67
tblCustomers, 70–72
Unicode Compression, 56
Validation Rule, 56, 65–67
Validation Text, 56, 65–67

queries, 243–245
character criteria, 289–290
column resizing, 247–248
hiding, 248–249
inserting, 248
Like operator, 290–293
multiple criteria, 296–302
non-matching values, 293–294
numeric criteria, 294–295
OLE object criteria, 296
ordering, 246–247
QBE grid, 246
referencing, 288
removing, 248
single-value criteria, 288–296
sort order, 249–250
true/false criteria, 295–296
wildcards, 290–293

related, 127–128
renaming, 53
Short Text fi elds, 40
sizing, 53
text-boxes, 17
validation rules, 50–51
width, 156–157

Fields tab (Ribbon), 39
fi eld design, 39

File Name box, 21
File tab (Ribbon), 27
fi les

ACCDB, 22
formats, 22
MDB, 22
Recent, 19–20

Filter event, 846
Filter property, 949–951

fi ltering, forms, 949–958
Find and Replace dialog box, 146, 152
Find Duplicates Query Wizard,

353–354
fi nding data, combo boxes, 941–944

bookmarks, 946–949
FindRecord method, 944–945

FindRecord method, 944–945
First aggregate function, 315
fi ve-step design method

data design, 12–13
form design, 17
overal design, 10–11
reports, 11
table design, 13–17

fi xed arrays, 817–819
Fixed format, 57
fi xed-width text fi les, 222
fl at-fi le databases, 93, 104–105
FlexFormat() function, 678–679
focus events, 840
folders, Documents, 21
fonts, 158–159
footers, forms, 550
For...Each statement, 784–785
ForEachRecord action (macros), 741
foreign keys, 15, 97

referential integrity and, 115–116
relationships, 119

Form command, 487–488
Form Design button, 488
form event procedures

Activate, 845
BeforeScreenTip, 845
Click, 845
Close, 845
data events, 846–847

AfterDelConfirm, 846
AfterInsert, 846
AfterUpdate, 846
ApplyFilter, 846
BeforeDelConfirm, 846
BeforeInsert, 846
BeforeUpdate, 846
Current, 846
Delete, 846
Dirty, 846
Error, 846
Filter, 846
Undo, 846

DblClick, 845
Deactivate, 845
GotFocus, 845
keyboard events, 845

1098

Index

bindex.indd 10/07/2015 Page 1098

KeyDown, 845
KeyPress, 845
KeyUp, 845
Load, 845
LostFocus, 845
mouse events, 845
MouseDown, 845
MouseMove, 845
MouseUp, 845
MouseWheel, 845
Open, 845
Resize, 845
Timer, 845
Unload, 845
writing, 854–859

Form view, Home tab, 526–527
Clipboard group, 528–529
Find group, 529
Records group, 529
Sort & Filter group, 529
Text Formatting group, 530
Views group, 528
Window group, 529–530

Form Wizard, 489–491
Format event, 676, 850
Format Painter, 573
Format property, 55, 56–57, 59–60

Currency fi eld, 57–58
Custom formats, 58–59
Date/Time format, 59–60
hyperlink format, 62
Long Text format, 60–61
Number fi eld, 57–58

Currency format, 57
Euro format, 57
Fixed format, 57
General Number format, 57
Percent format, 57
Scientifi c format, 57
Standard format, 57

Short Text format, 60–61
forms, 4, 485

background, images, 574–576
bulletproof, 1033–1034
closing, event procedures and,

856–858
combo boxes, 536–537
controls, 17
converting to report, 556
creating, 487–491
data-entry, 8–9
datasheet, 496–497
Datasheet view, 537–538

date, 570–571
Date/Time data type, 535
design, 17

appearance, 589–590
basic form creation, 583–584
check boxes, 567
combo boxes, 568–569
list boxes, 568–569
properties, 587
record saving, 588–589
subforms, 584–586
tab stops, 567
value lookup, 587–588

dialog forms, 579–582
display, 8–9
editing values, 531–538
fi elds

data-entry, 17
navigating, 530–531
text-boxes, 17

fi ltering
code and, 949–951
queries and, 951–958

footers, 550
graphical objects, 17
headers, 550
Image control, 571–572
labels, 17
Layout view

control properties, 552–553
Field List, controls and,

554–556
tab order, 553–554
text in controls, 554

list boxes, 536–537
Long Text data type, 534
multiple-items, 494–495
navigation forms, 491–494
OLE objects, 533–534
opening, event procedures and,

855–856
option groups, 536
printing, 538–539
properties, 539–540

Back Color, 551
bound forms, 541–542
data properties, 548–549
Display When, 552
form viewing, 542–543
format properties, 544–548
Height, 551
other properties, 549–550
printing properties, 552
Record Selectors, 543

Special Effect, 551
title bar text, 540–541
Visible, 551

records
limiting those shown, 576–577
moving among, 531
saving, 538

versus reports, 594
resizing, 497
Ribbon, attaching, 994–996
saving, 497–498
split, 495–496
subforms, 565–567
Tab control, 577–579
time, 570–571
values, changing, 531–538

Forms group (Create tab), 486–487
For...Next statement (VBA),

778–779
free fl oating macros, 739
freezing columns, 162
frequency distribution, 480–482
functions

aggregate
Avg, 315
Count, 315
Expression, 315–318
First, 315
Group By, 313–314
Last, 315
Max, 315
Min, 315
StDev, 315
Sum, 315
Var, 315
Where, 315–318

arguments, calculations as,
378–380

arrays
Array function, 821–822
boundary functions, 821
Join function, 823–824
ParamArray keyword, 822
Split function, 822–823

Chr$(), 669
Count(), 692–693
Date, 389–392
DateAdd, 395–396
DateDiff, 407–408
DateSerial, 398–399
Day, 393–394
domain aggregate functions,

455–456
DAvg, 457

form event procedures (continued)

1099

Index

bindex.indd 10/07/2015 Page 1099

DCount, 457
DFirst, 457
DLast, 457
DLookup, 457
DMax, 457
DMin, 457
DStDev, 458
DStDevP, 458
DVar, 458
DVarP, 458
percent of total calculation,

460–461
previous record values,

463–465
running count, 461–463
syntax, 458–459

FlexFormat(), 678–679
InStr, 370–373
Int, 392
Left, 368
Month, 393–394
Partition, 480–482
PrepareOutput(), 837–838
in queries, 288
Replace, 366–367
Space$(), 667
Sum(), 692–693
Switch, 416–417, 479–480
UsingBreakpoints(), 880
VBA, 824, 830–831

calling, 825, 832–834
LBound, 821
Now(), 754
parameters, 831–832
passing, 832–834
UBound, 821

Weekday, 393–394
Year, 393–394

G
Gallery (Ribbon), 962
General Number format, 57
Get External Data dialog box, 215, 218
GotFocus event, 845, 848
graphical objects, 17
gridlines, 159–161
Group By aggregate function,

313–314
GROUP BY clause (SQL), 428
Group Footer Section (reports), 619

group-by queries. See aggregate
queries

Grouping Options dialog box, 599–600
groups, Ribbon, 960

H
handles on controls, 505–506
headers

forms, 550
reports

group, 615
hiding, 660–661
page, 615

Height property, 551
help for users, 574
Home tab (Ribbon), 27

Form view, 526–527
Clipboard group, 528–529
Find group, 529
Records group, 529
Sort & Filter group, 529
Text Formatting group, 530
Views group, 528
Window group, 529–530

HTML documents, importing/
exporting, 195–197

HTML fi les, linking to data, 220–222
hyper links, Open Other Files, 20
Hyperlink data type, 45, 50
hyperlinks, 499

I
If keyword (VBA), 771–774
IIf function

arguments, 410
crosstab analyses, 415–416
mathematical errors and, 411
nesting, 414–415
Switch function comparison,

417–419
time saving, 412–414

Image control, 571–572
images, 500

forms, background, 574–576
IME Mode property, 56
IME Sentence Mode property, 56
Immediate window, debugging and,

876–877

implicit variables, 806–807
Import Specifi cations dialog box, 190
Import Spreadsheet Wizard, 182
Import Text Wizard, 186–188
importing

external data, 172, 174
from Access database, 177–180
from Excel spreadsheet,

180–184
text fi les, 185–192

HTML documents, 195–197
objects, 197–199
Outlook folder, 199–200
Saved Import Steps feature,

179–180
SharePoint lists, 184–185
XML documents, 192–195

In operator, 280
values list, 299

IN operator, subqueries and,
447

Indexed property, 56, 68–70
Indexes button, 42
indexing tables, 75–76

importance, 76–78
multiple-fi eld indexing, 78–80
when to index, 80–81

inferential statistics, 467
inner joins, 124

queries, 261
SQL, 425–426

Input Mask property, 55, 62–65
Input Mask Wizard, 64
input validation, 1034
INSERT INTO statemenet, 432
Insert Rows button, 42
insertion anomaly, 102–103
InStr function, 370–373
Int function, 392
integer data type, 804
IntelliSense, VBA, 766–769
interface. See user interface
internal data, exporting, 175
Is operator, 280–281
Item property, 780

J
Jet engine, 22
Join function, 823–824
join line (query designer), 259–260

1100

Index

bindex.indd 10/07/2015 Page 1100

join properties, 124–125
Join Propeties dialog box, 125
join tables, 34, 111
joins

inner joins, SQL, 124, 424–425
outer joins, SQL, 425–426
queries

ad hoc, 263–264
creation methods, 263
deleting, 266
inner, 261
left outer, 261–262
right outer, 262–263
type specifi cation, 264–266

K
keyboard events, 840, 845
KeyDown event, 843, 845, 848
KeyPress event, 843, 845, 848
keys

foreign, 15–16, 97
primary, 15–16, 116–117

benefi ts, 119–120
composite, 74–75, 120, 121
creating, 74, 122
deriving, 118
Design tab, 41
natural, 121
selecting, 73–74, 117–119
single-fi eld, 120–121
surrogate, 74, 121

referential integrity and, 113
violation, append queries and,

325
KeyUp event, 843, 845, 848
keywords

Const, 814–815
Dim, 797, 801–802
ParamArray, 822
Preserve, 821
Private, 803
Public, 802–803
Resume, 891–892
Sub, 826–827
VBA, 754
With, 958

L
Label control

appearance, 632–633
moving, 631–633

properties, 634–635
sizing, 629–630

labels, 499
alignment, 679
controls, 516–517

naming, 521–523
Last aggregate function, 315
Layout View, reports, 612–614
Layout view, forms

control properties, 552–553
Field List, controls and, 554–556
tab order, 553–554
text in controls, 554

layouts, saving, 162–163
LBound function (VBA), 821
Left function, 368
left outer joins

queries, 261–262
SQL, 425

lifetime of a variable, 812–813
Like operator, 275

queries, 290–293
selection methods, 427
wildcards, 276, 426–427

Line method, 672–673
lines, 499
Link HTML Wizard, 221
Link Specifi cation screen,

221
Link Spreadsheet Wizard, 219
Link Tables dialog box, 216
Linked Table Manager, 210, 227
linked tables, 211–217

information changes, 226–227
optimization, 225–226
properties, 224–225
references, deleting, 226
refreshing, 227–228
relationships, 225

linking
external data, 172, 173–173,

210–211
to Access database tables,

214–217
Excel, 217–220
HTML fi les, 220–222
limitations, 213–214
non-database data, 217–224
ODBC data sources, 217
tables, 211–213
text fi les, 222–224

fi xing links, 210
List Box control, 562–564
list boxes, 499

design and, 567

forms, 536–537
Load event, 845
Local window, debugging and,

883–884
lock violations, append queries and,

325
long data type, 804
Long Text data type, 44, 47, 144

converting to Short Text, 54
entering data, 534

Lookup Wizard data type, 45, 50
LookupRecord action (macros), 741
looping (VBA)

Do...Loop statement, 777–778
For...Next statement, 778–779

LostFocus event, 845, 848

M
macro designer, data macros, 738–739
Macro window, 699
macros, 4, 9. See also data macros

Action Catalog, 699
data actions and, 741–743
macro groups, 740
program fl ow and, 740

arguments, 698, 699
creating, 698–700
debugging, 726–727
digital signatures, 703
embedded, 727–729
error handling, 721–723

MacroError object, 725–726
OnError action, 723–725

events, assigning, 701–702
free fl oating, 739
limitations, 752
multi-action, 706–708

in conditions, 716
named, 739
running, 700
Sandbox mode, 702–704
security, 702–705
submacros, 709–713

conditions, 713–716
Trust Center and, 705
variables, temporary, 716–721
versus VBA statements, 729–732

Mail Merge Wizard (Word), 204
mailing label reports, 593–594
make-table queries, 318–320

SELECT INTO statement, 432
subqueries in, 452

manual database systems, 4

1101

Index

bindex.indd 10/07/2015 Page 1101

manual fi le systems, 4
many-to-many relationships, 34,

111–113
mathematical operators

+ (addition), 268, 269
/ (division), 268, 269
^ (exponentiation), 268, 270
\ (integer division), 268, 270
* (multiplication), 268, 269
- (subtraction), 268, 269
Mod (Modulo), 268, 270-271
precedence, 281

Max aggregate function, 315
MDB fi les, 22
Menu (Ribbon), 962
methods

Debug.Assert, 864–865
FindRecord, 944–945
objects and, 782, 899–900

Min aggregate function, 315
miscellaneous operators

In, 280
Between...And, 279–280
Is, 280–281

Mod (Modulo) operator, 268,
270–271

modes, datasets, 470–472
modules

debugging and, 862–863
VBA, 754

saving, 770
Month function, 393–394
mouse events, 840, 845
MouseDown event, 843, 845, 848
MouseMove event, 843, 845, 848
MouseUp event, 843, 845, 848
MouseWheel event, 843, 845
moving

controls, 509–510
fi elds, 53

MsgBox, debugging and, 870–874
multi-action macros, 706–708

in conditions, 716
multiple-items forms, 494–495
MyProcedure, 824

N
named arguments, 836–838
named macros, 739
naming conventions, 35–36

constants, 815–816
control labels, 521–523
controls, 693–694

debugging and, 862
fi elds, 43–44
variables, VBA, 808–810

natural order of tables, 76
natural primary keys, 121
navigation forms, Horizontal Tabs

and, 491–492
Navigation pane, 23–24

Created Date option, 25
Custom option, 24
Modifi ed Date option, 25–26
Object Type option, 25
Tables and Related Views option,

25
nesting statements, 773
New Values property, 55
NoData event, 849
normalization, 92

1NF (fi rst normal form), 93–96
2NF (second normal form), 96–101

foreign keys, 97
3NF (third normal form), 101–102
denormalization, 103–104
query optimization and, 346

NOT IN operator, subqueries and, 447
Not Like operator, 275
Not operator, 278–279
NotInList event, 848
Now() function, 754
null values

calculation errors and, 385–387
referential integrity and, 115
searching, 301–302

number data type, 44, 47–48, 143
converting

to Currency, 54
to Short Text, 54

Number fi eld
Currency format, 57
Euro format, 57
Fixed format, 57
General Number format, 57
Percent format, 57
Scientifi c format, 57
Standard format, 57

numbered lists in reports, 662–666
numeric criteria, queries, 294–295
numeric fi elds, settings, 48

O
Object Browser, 900
object data type, 804
object models, 899

object tables, 34
objects, 780

ADO
Command, 905–907
Connection, 902–905
Recordset, 908–914

collections, 780–781, 899
names, 899

Create tab and, 38
DAO, 914–916

Database, 916–917
DBEngine, 916
Field objects, 922–923
QueryDef, 919–921
Recordset, 921–922
TableDef, 917–919
Workspace, 916

Err, 892–893
forms, 7
importing, 197–199
macros, 8, 9
methods, 782, 899–900
modules, 8
names, 899
planning for, 10
properties, 782

With statement, 782–784
queries, 7
reports, 7, 9
tables, 7
VBA, 9

ODBC drivers, 202
ODBC sources, 217
Offi ce 365 and SharePoint, 1064
OLE Object data type, 44, 49, 143–144,

533–534
queries, 296

On Error Goto Label statement,
891

On Error Resume 0 statement, 891
On Error Resume statement,

889–890
one-dimensional arrays, 819
one-to-many relationships, 109–111
one-to-one relationships, 108–109
Open event, 845, 849
Open Other Files hyperlink, 20
operators

In, 280
BETWEEN...AND, 279–280, 404
Boolean (logical)

And, 277
Not, 278–279
Or, 278
precedence, 282

1102

Index

bindex.indd 10/07/2015 Page 1102

comparison
= (equal), 271, 272
> (greater than), 271, 273
>= (greater than or equal to),

271, 273
< (less than), 271, 272
<= (less than or equal to),

271, 272
<> (not equal), 271, 272
precedence, 282
queries, 283–284
subqueries and, 447–448

expressions, 267
Is, 280–281
mathematical

+ (addition), 268, 269
/ (division), 268, 269
^ (exponentiation), 268, 270
\ (integer division), 268, 270
* (multiplication), 268, 269
- (subtraction), 268, 269
Mod (Modulo), 268
precedence, 281

operands, 267
precedence

Boolean operators, 270-271,
282

calculations and, 384–385
comparison operators, 282
mathematical operators, 281

string
& (concatenation), 273–275
Like, 275
Not Like, 275

UNION, 434–435
optimization, linked tables, 225–226
option buttons, 500
Option Group control, 564
option groups, 499, 536
Options dialog box (VBE), Editor tab,

789–791
Or operator, 278

across fi elds, 303–306
QBE pane, 297–298
queries, 285–287, 297

order of precedence
Boolean operators, 282
calculations, 384–385
comparison operators, 282
mathematical operators, 281

orphaned records, 113–116
outer joins, 124

SQL, 425–426

outer queries, 443
Outlook, folders, importing, 199–200

P
padding strings, 369–370
page breaks, 499

reports, 641–642
Page event, 849
Page Footer Section (reports), 619
Page Header section (reports), 617–618
Page Setup dialog box, 687–691
ParamArray keyword, 822
parameter queries, 401–403

calculation variables and, 406–407
conventions, 403–404
function arguments and, 407–408
multiple, 404
operators and, 404–405
wildcards and, 405–406

parent tables, 109
parsing, strings, character markers

and, 370–373
Partition function, 480–482
pass-through queries, 438–439
Paste Table As dialog box, 85
Percent format, 57
percentile rank, 476–478
physical order of tables, 76
PrepareOutput() function,

837–838
Preserve keyword, 821
primary keys, 15, 116–117

benefi ts, 119–120
composite, 74–75, 120, 121
creating, 74, 122
deriving, 118
Design tab, 41
entity integrity, 117
natural, 121
referential integrity and, 115–116
relationships, 105–108
selecting, 73–74, 117–119
single-fi eld, 120–121
surrogate, 74, 121

Print event, 850
print events, 840
Print Preview window, reports, 608–

610, 612–614
Print Table Defi nition dialog box, 82
printing

forms, 538–539
properties, 552

previewing, 170
query recordsets, 254
records, 169–170

Page Setup dialog box,
687–691

reports, 612
even-odd, 676–678
fast printing from queries, 684

tables, 81–82
Private keyword, 803
procedures

debugging and, 862
error trapping, 1029–1033
events, 841–842
VBA, 754

functions, 754
MyProcedure, 824
named arguments, 836–838
subroutines, 754

programming events, 840–842
Project management, welcome screen,

20
Project Properties dialog box (VBE),

791–794
properties, 517

blank lines in reports, 675
Check Box control, 564
Combo Box control, 562–564
Command Button control, 562
Count, 780
data entry and, 142
dialog forms, 580
fi elds

AllowZeroLength, 56, 67–68
Caption, 56, 65
Decimal Places, 56
Default Value, 56
Field Size, 55
Format, 55, 56–57
IME Mode, 56
IME Sentence Mode, 56
Indexed, 56, 68–70
Input Mask, 55, 62–65
New Values, 55
Required, 56, 67
tblCustomers, 70–72
Unicode Compression, 56
Validation Rule, 56, 65–67
Validation Text, 56, 65–67

forms, 539–540
Back Color, 551
bound forms, 541–542
data properties, 548–549
Display When, 552

operators (continued)

1103

Index

bindex.indd 10/07/2015 Page 1103

form viewing, 542–543
format properties, 544–548
Height, 551
other properties, 549–550
printing properties, 552
Record Selectors, 543
Special Effect, 551
title bar text, 540–541
Visible, 551

indexed tables, 79–80
Item, 780
join properties, 124–125
linked tables, 224–225
List Box control, 562–564
objects, 782
Option Group control, 564
Property Sheet, 518–519

Data tab, 519
Event tab, 519
Format tab, 519
Other tab, 519

With statement, 782–784
Tab control, 579
Text Box control, 560–561
Toggle Button control, 564
Web Browser control, 564–565

Property Sheet, 43, 518–519
Data tab, 519
Event tab, 519
Format tab, 519
Other tab, 519

Property Sheet button, 42
Public keyword, 802–803
publishing, 1064–1065

Access Services, 1065–1066
limitations, 1068–1069

applications
confi guration, 1073–1085
initialization, 1073–1085
launching, 1085–1089
managing, 1085–1089

data model, 1070–1073
table templates and, 1076

Q
QBE (Query by Example), 241

fi elds, 246
Or operator, 297

quartile standing, records, 478–480
queries, 4, 8, 237–238. See also

parameter queries;
subqueries

action queries, 432–433

aggregate, 309–313
descriptive statistics and,

468–469
results as hard data, 320–321

append, 324–329
capabilities, 238–239
comparison operators, 283–284
complex criteria, 284–287
delete, 321–324
duplicate records, 353–356
fi elds, 243–245

character criteria, 289–290
column resizing, 247–248
hiding, 248–249
inserting, 248
Like operator, 290–293
multiple criteria, 296–302
non-matching values, 293–294
numeric criteria, 294–295
OLE object criteria, 296
ordering, 246–247
QBE grid, 246
referencing, 288
removing, 248
single-value criteria, 288–296
sort order, 249–250
true/false criteria, 295–296
wildcards, 290–293

fi lters and, 951–952
dialog box links, 957–958
interactive dialog box,

955–957
parameter queries, 952–954

functions in, 288
joins

ad hoc, 263–264
creation methods, 263
deleting, 266
inner, 261
left outer, 261–262
right outer, 262–263
type specifi cation, 264–266

make-table, 318–320
multiple fi elds, 302–308
multi-table, 254–256

fi elds, multiple, 257
limitations, 257–259
table names, 256

outer queries, 443
pass-through, 438–439
Query Design button, 240
query design window, 241
recordsets, printing, 254
reports, binding to, 621–622
returns, 239

running, 245
saving, 254
selection criteria, 250–251

entering, 251–253
Show Table dialog box, 240
SQL-specifi c, 433–439
table pane

adding tables, 260
join line, 259–260
moving tables, 260
removing tables, 260

update, 330–333
expressions in, 332

update rules, 257–258
workday, 394

Query Design view, 330
subqueries, 442

query optimizer, 346–348
compacting database, 348
design improvements, 347–348
indexes and, 346–347
repairing database, 348

Query Tools Design Ribbon, 242–243
Quick Access toolbar, 23, 28–29,

968–971
commands, adding, 29–30

R
random samplings, 474–476
ranking column, 664–665
ranking records, 469–470

percentile rank, 476–478
RDBMS (relational database

management system), 4
Recent fi les, 19–20
records, 5–6, 133

adding, 85–86, 153
datasheets

entering, 138–140
saving, 140–141

deleting, 153, 323–324
duplicate

defi ning, 352–353
fi nding, 353–356
removing, 356–359

fi ltering
by form, 167–168
by selection, 164–166

forms, moving between, 531
height, 157–158
limiting shown, 576–577
moving between, 145–146
ordering, 154–155

1104

Index

bindex.indd 10/07/2015 Page 1104

orphaned, 113–116
percentile rank, 476–478
printing, 169–170

previewing, 170
properties and, 142–144
quartile standing, 478–480
ranking, descriptive statistics

and, 469–470
saving, 538
sorting, 163–164

Recordset object, 908
ActiveConnection property,

908
CursorType property, 911–912
FindFirst method, 947
MoveNext method, 912–913
MovePrevious method, 912–913
navigating recordsets, 909–911
RecordCount property, 913–914

recordsets, 899
printing, 254
queries and, 239

rectangles, 499
references

to fi elds in queries, 288
linked tables, deleting, 226

referential integrity, 113–115
application-specifi c, 129–130
enforcing, 126–128
foreign keys and, 115–116
null values, 115
primary keys and, 115–116

related tables, 4
relational databases, 6–7, 92
relationships

creating, 122–128
deleting, 129
deleting related fi elds, 127–128
fl at-fi le databases, 104–105
foreign keys, 119
integrity rules, referential

integrity, 113–115
joins

inner, 124
outer, 124

keys, primary, 116–122
linked tables, 225
many-to-many, 111–113

join tables and, 34
one-to-many, 109–111
one-to-one, 108–109
primary keys, 105–108
referential integrity, 126–128

application-specifi c, 129–130
updating related fi elds, 127
viewing, 128–129

Relationships window
deleting relationships, 129
relationship creation, 122–128
viewing all, 128–129

repetition, debugging and, 863
Replace function, 366–367
report event procedures

Activate, 849
Close, 849
Deactivate, 849
Error, 849
NoData, 849
Open, 849
Page, 849

Report Footer section, 619–620
Report Header section, 617
report section event procedures

Format, 850
Print, 850
Retreat, 850

Report View, reports, 612–614
Report Wizard, 591

alternate format publishing,
610–611

design, opening, 602–603
Design view, 611–612
group data, 599–600
grouping levels, 598–599
HTML format, 609–610
Layout area, 602
Layout View, 603–604
new reports, 597–598
PDF format, 609–610
Print Preview window, 608–610
sort order, 600–601
summary options, 601
themes, 604–606

color schemes, 606–608
XPS format, 609–610

reports, 4, 9
adding information, 680–681
alignment

control labels, 679
title, 679

alternate format publishing,
610–611

bands, 615
blank lines, 674–676
bound, user’s name, 681–682
bulleted lists, 666–669
columnar, 592–593

columns
snaking, 684–691
vertical lines between,

672–674
combo boxes, displaying in,

682–684
controls

micro-adjusting, 679–680
moving between sections,

640–641
names, 693–694
placement, 625–626

converting from forms, 556
data types and, 46

assembling, 596–597
design

banded approach, 614–620
opening, 602–603

design and, 11
Design View, 612–614
Design view, 611–612
Detail section, 618
emphasis at run time, 669–671
empty, 671–672
versus forms, 594
Group Fooder Section, 619
Group Header section, 618
Grouping Options dialog box,

599–600
groups, 599–600

alphabetical, 650–655
date intervals, 655–656
header/footers, 637–638
expressions in header,

644–645
levels, 598–599
page numbering, 661–662
removing, 639
sorting, 638–639

headers, 645–647
group, 615
hiding, 660–661
page, 615

HTML format, 609–610
Label controls

appearance, 633–634
moving, 631–633
properties, 634–635
sizing, 629–630

layout, defi ning, 595–596,
622–624

Layout area, 602
Layout View, 603–604, 612–614
mailing label, 593–594

records (continued)

1105

Index

bindex.indd 10/07/2015 Page 1105

new, 597–598
binding to query, 621–622

numbered lists, 662–666
opening, macros, 713–716
page breaks, 641–642
Page Footer Section, 619
page header, 643–644
Page Header section, 617–618
page size, defi ning, 622–624
PDF format, 609–610
Print Preview window, 608–610,

612–614
printing, 612

even-odd, 676–678
fast printing from queries, 684
Page Setup dialog box,

687–691
Rank column, 664–665
repeating information, 656–660
Report Footer section, 619–620
Report Header section, 617
Report View, 612–614
Ribbon, attaching, 994–996
saving, 614
sections

hiding, 639–640
moving controls between,

640–641
sizing, 626–627, 640

sort order, 600–601
summary options, 601
Summary Options dialog box, 601
tabular, 592–593
Text Box controls, 627

expressions, 628–629
growing/shrinking, 636
labels, 630–631
moving, 631–633
properties, 634–635
sizing, 629–630

text boxes, different formats in,
678–679

themes, 604–606
color schemes, 606–608

two-pass reporting, 691–693
XPS format, 609–610

Required property, 56, 67
Resize event, 845
Resume keyword, 891–892
Retreat event, 850
Ribbon, 23, 26–27

collapsing, 965
Contextual tabs, 27
controls, 960

Button, 962–963, 987–988
CheckBox, 964, 989–990
ComboBox, 963–964
DropDown, 990–993
Gallery, 962
Label, 985–987
Menu, 962
separators, 988–989
SplitButton, 961, 993–994
ToggleButton, 963

Create tab, 27, 38
custom creations, 971–972

callback routines, 972–974,
977–978

controls, 985–994
USysRibbons, 979–982
USysRibbons table, 978–979
XML and, 974–977, 979–980

customizing, 965–968
Database Tools tab, 27
Datasheet window, 135–136

Clipboard, 136
Find, 137
Records, 137
Sort & Filter, 136
Text Formatting, 137
Views, 136
Window, 137

Design tab, 41
Delete Rows button, 42
Indexes button, 42
Insert Rows button, 42
primary key, 41
Property Sheet button, 42

External Data tab, 27, 176
Export group, 176

Fields tab, 39
File tab, 27
forms, attaching to, 994–996
groups, 960
Home tab, 27

Form view, 526–527
imageMso attribute, 985
removing, 996–997
reports, attaching to, 994–996
SuperTips, 964–965
tabs, 960
XML, 983–984

Ribbon Designer, 966–968
right outer joins

queries, 262–263
SQL, 425

rows (records), 5–6
color, 159–161

Delete Rows button, 42
Insert Rows button, 42
selecting, DISTINCT predicate,

428
Running Sum, 662
run-time errors, 869
runtime mode, 1034–1035

S
Sandbox mode, macros, 702–704
Saved Import steps, 179–180
saving

forms, 497–498
layouts, 162–163
queries, 254
records, 140–141, 162–163, 538
reports, 614
tables, 83

Scientifi c format, 57
scope, variables, 810–814

debugging and, 862
searches

match criteria, 147–148
wildcards, 147

security
digital signatures, 703
encryption, 1036–1038
environment, 1040–1044
Trust Center, 705

Select Case statement (VBA),
774–776

SELECT INTO statement, 432
SELECT statement, 422–423

SELECT TOP PERCENT
statement, 432

SELECT TOP statement, 429–432
WHERE clause, 424

SharePoint, 1047–1048
data macros, 734
documents, 1049
lists, 1049–1051

importing, 184–185, 1054–1055
linking to, 1051–1054

Offi ce 365 and, 1064
publishing and, reasons to use,

1066–1067
sites, 1048–1051
tables

importing Access, 1055–1057
moving to, 1058–1060

templates, 1060–1061
Short Text data type, 40, 44, 47

converting, 54

1106

Index

bindex.indd 10/07/2015 Page 1106

Show Table dialog box, 240
single data type, 804
single-fi eld primary keys, 120–121
single-value criteria in queries,

288–296
sizing

controls, 509
fi elds, 53

sorting
fi elds, 46, 249–250
ORDER BY clause, 429

Space$() function, 667
Special Effect property, 551
splash screen, 1016–1018
split forms, 495–496
Split function, 822–823
SplitButton (Ribbon), 961
splitting databases

benefi ts, 228–231
Database Splitter, 232–234
object location, 231

spreadsheets (Excel), importing, to
databases, 180–184

SQL (Structured Query Language),
421–422

clauses
AS, 429
GROUP BY, 428
ORDER BY, 429
WHERE, 424

DISTINCT predicate, 428
joins

inner joins, 424–425
outer joins, 425–426

Like operator, 426–427
queries, 433–439

action queries, 432–433
pass-through, 438–439

statements
ALTER TABLE, 436–438
CREATE TABLE, 436
DELETE, 433
INSERT INTO, 432
SELECT, 422–423, 429–432
SELECT INTO, 432
subqueries and, 444–446
TRANSFORM, 433
UPDATE, 433

SQLite3, ODBC drivers, 203
Standard format, 57
statements (SQL)

ALTER TABLE, 436–438
CREATE TABLE, 436
DELETE, 433
INSERT INTO, 432

SELECT, 422–423
WHERE clause, 424

TRANSFORM, 433
UPDATE, 433

statements, VBA, 754
nesting, 773
Select Case, 774–776

statistics. See also descriptive
statistics

inferential, 467
StDev aggregate function, 315
Stop statements, 880
storage, data types, 46
string data type, 804
string operators

& (concatenation), 273–275
Like, 275
Not Like, 275

string variables, 804
strings

leading spaces, removing, 365
padding, 369–370
parsing, character markers and,

370–373
text, adding, 367–369
trailing spaces, removing, 365

Sub keyword, 826–827
subforms/subreports, 500, 565–567,

584–586
submacros, 709–713

conditions
multiple actions in, 716
opening reports, 713–716

subqueries, 442
action queries and, 452–455
comparison operators, 447–448
correlated, 449–452
as expressions, 448–449
guidelines, 443–444
NOT IN operator, 447
IN operator, 447
outer queries, 443
SQL statements and, 444–446
uncorrelated, 450
uses, 443

subroutines (VBA), 824
calling, 825
declaration, 827
statements, 827
terminator, 827

subselect queries, 442
subtyping, 109
Sum() function, 692–693
Sum aggregate function, 315
Summary Options dialog box, 601

surrogate primary key, 74, 121
Switch function, 416–417, 479–480

IIf function comparison, 417–419
syntax

domain aggregate functions,
458–459

expressions, 387–388

T
Tab control, 577–579
tabbed windows, 26
Table button, 38
Table Design button, 38
Table Design View, 69
Table Design window, fi elds,

inserting, 52
Table Designer, 40
tables, 4, 5, 8, 132

adding, 38
ALTER TABLE statement, 436–438
child, 109
copying, 84–85
CREATE TABLE statement,

436
creating, 34–35
data conversion, 54
datasheets. See datasheets
deleting, 84
design, 13–17, 36–41

changing, 52–70
entry order, 76
events

AfterChange, 737
BeforeChange, 735–736
BeforeDelete, 735–736

exporting to SharePoint,
1055–1057

fi elds, 5
attachment fi elds, 86–87
deleting, 52–53
inserting, 52
moving, 53
property assignment, 55–70
renaming, 53
sizing, 53

indexing, 75–76
importance, 76–78
multiple-fi eld indexing, 78–80
when to index, 80–81

join tables, 34, 111
keys

foreign, 15–16
primary, 15–16, 73–75

1107

Index

bindex.indd 10/07/2015 Page 1107

linked, 211–217
information changes, 226–227
optimization, 225–226
properties, 224–225
references, deleting, 226
refreshing, 227–228
relationships, 225

make-table queries, 318–320
modifying, 37
moving to SharePoint, 1058–1060
multiple, 7
natural order, 76
object tables, 34
parent, 109
physical order, 76
printing, 81–82
records. See records
related, 4
renaming, 83
saving, 83
transaction tables, 34
types, 33–34
updates (VBA), 924–925

adding records, 935
calculated controls, 930–935
deleting records, 935–939
fi elds, 925–929

tabs, 499
Ribbon, 960

tabular reports, 592–593
Task management, welcome screen, 20
tblCustomers

AutoNumber fi elds, 51
fi eld properties, 70–72

templates
SharePoint, 1060–1061
welcome screen, 20

temporary variables, in macros,
716–721

testing, 863–867
debugging and, 863–864

functions, 864–867
distribution and, 1013–1015

text
fi nd/replace, 366–367
strings, adding to, 367–369

Text Box control
expressions, entering, 628–629
growing/shrinking, 636
labels

cutting, 630–631

deleting, 630–631
pasting, 631

moving, 631–633
properties, 560–561, 634–635
sizing, 629–630

text boxes, 499
reports, 678–679

text fi les
CSV (comma-separated values),

222–223
fi xed-width, 222
linking to data, 222–224

text-box fi elds, 17
Timer event, 845
timing events, 840
Toggle Button control, 564
toggle buttons, 499
ToggleButton (Ribbon), 963
transaction tables, 34
TRANSFORM statement, 433
true/false criteria, queries, 295–296
Trust Center, 705
two-pass reporting, 691–693
type conversion, append queries and,

325

U
UBound function (VBA), 821
unbound controls, 500

calculated, 565
unbound object frames, 499
uncorrelated subqueries, 450
Undo, 150–151
Undo event, 846, 848
Unhide Columns dialog box, 162
Unicode Compression property, 56
UNION operator, 434–435
Unload event, 845
update anomalies, 98, 103
update queries, 330–333

expressions in, 332
subqueries in, 453
UPDATE statement, 433

UPDATE statement, 433
Updated event, 848
usage logs, 1030–1033
Use Control Wizards button, 500
user help, 574
user interface, 557
users, input validation, 1034

UsingBreakpoints() function,
880

USysRibbons table, 978–982

V
validation

append queries and, 325
data types, automatic, 141–142
user input, 1034

Validation Rule property, 56, 65–67,
129–130

Validation Text property, 56, 65–67
values, 6

copying, 151
forms, changing, 531–538
pasting, 151
replacing, 152–153
selecting, DISTINCT predicate,

428
single-value criteria in queries,

288–296
Var aggregate function, 315
variables

conditional watches, 886–888
Local window, debugging and,

883–884
scope, debugging and, 862
temporary, macros, 716–721
VBA, 754, 796–797

arrays, 817–824
assigning, 762
constants, 814–817
data types, 803–806
declaring, 761, 798–801
Dim keyword, 801–802
explicit, 806–807
forcing, 807–808
implicit, 806–807
lifetime, 812–813
naming, 797–798
naming conventions, 808–810
Private keyword, 803
Public keyword, 802–803
scope, 810–814
string, 804

variant data type, 804
VBA (Visual Basic for Applications), 4,

9, 697, 752–753
Boolean values, 773–774
branching

1108

Index

bindex.indd 10/07/2015 Page 1108

If keyword, 771–774
Select Case statement,

774–776
code, compiling, 867–869
code triggers, events, 840–841
code window, 763

IntelliSense and, 766–769
line continuation, 764–766
modules, saving, 770
multi-statement lines,

766
procedures, compiling,

769–770
white space, 764

data types, 803–806
Debug.Assert method, 864–865
functions, 762–763, 824, 830–831

calling, 825, 832–834
LBound, 821
Now(), 754
parameters, 831–832
passing, 832–834
UBound, 821

keywords, 754
language, 754
looping, 776–777

Do...Loop statement,
777–778

For..Next statement,
778–779

modules, 754
class, 759–760
sections, 760
standard, 759

procedures, 754, 756–759, 824
calling, 825–826
functions, 754, 762–763
MyProcedure, 824
named arguments, 836–838
subprocedures, 760–761
subroutines, 754
variable assignment, 762
variable declaration, 761

statements, 754

versus macros, 729–732
nesting, 773

subroutines, 824
calling, 825
creating, 826–830

table updates, 924–925
adding records, 935
calculated controls, 930–935
deleting records, 935–939
fi elds, 925–929

variables, 754, 796–797
arrays, 817–824
assigning, 762
constants, 814–817
declaring, 761, 798–801
Dim keyword, 801–802
explicit, 806–807
forcing, 807–808
implicit, 806–807
lifetime, 812–813
naming, 797–798
naming conventions, 808–810
Private keyword, 803
Public keyword, 802–803
scope, 810–814
string, 804
temporary, 720–721

VBE (Visual Basic Editor), 785
Immediate window, 786–787
Object Browser, 788–789
Options dialog box, Editor tab,

789–791
Project Explorer, 787–788
Project Properties dialog box,

791–794
Visible property, 551

W
Watches window, debugging and,

884–886
web applications

limitations, 1067–1068
Access Services, 1068–1069

transactional, 1069–1070
welcome screen, 20

Web Browser control, 564–565
web publishing. See publishing
Weekday function, 393–394
welcome screen, 19–21
Where aggregate function, 315–318
WHERE clause (SQL), 424
wildcards

datasheet searches, 147
Like operator, 276, 426–427
queries, 290–293

windows
events, 840
tabbed, 26

With keyword, 958
With statement, 782–784
wizards

Crosstab Query, 333–339
Find Duplicates Query, 353–354
Form, 489–491
Import Spreadsheet, 182
Import Text, 186–188
Input Mask, 64
Link HTML, 221
Link Spreadsheet, 219
Mail Merge (Word), 204
Report Wizard, 591
Use Control Wizards button, 500

workday queries, 394

X-Y-Z
XML (eXtensible Markup Language)

documents, importing/exporting,
192–195

Ribbon, 974–977, 983–984

Year function, 393–394
Yes/No data type, 44, 49

converting, to Short Text, 54
Yes/No format, 61–62

Zoom window, 144

VBA (continued)

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Introduction
	Part I: Access Building Blocks�������������������������������������
	Chapter 1: An Introduction to Database Development���
	The Database Terminology of Access���
	Databases����������������
	Tables�������������
	Records and fields�������������������������
	Values�������������

	Relational Databases���������������������������
	Access Database Objects������������������������������
	Tables�������������
	Queries��������������
	Data-entry and display forms�����������������������������������
	Reports��������������
	Macros and VBA���������������������
	Planning for Database Objects������������������������������������

	A Five-Step Design Method��������������������������������
	Step 1: The overall design—from concept to reality���
	Step 2: Report design����������������������������
	Step 3: Data design��������������������������
	Step 4: Table design���������������������������
	Step 5: Form design��������������������������

	Chapter 2: Getting Started with Access���
	The Access Welcome Screen��������������������������������
	How to Create a Blank Desktop Database���
	The Access 2016 Interface��������������������������������
	The Navigation pane��������������������������
	Custom�������������
	Object Type������������������
	Tables and Related Views�������������������������������
	Created Date�������������������
	Modified Date��������������������

	The Ribbon�����������������
	The Quick Access toolbar�������������������������������

	Part II: Understanding Access Tables���
	Chapter 3: Creating Access Tables��
	Table Types������������������
	Object tables��������������������
	Transaction tables�������������������������
	Join tables������������������

	Creating a New Table���������������������������
	Designing tables�����������������������
	Using the Design tab���������������������������
	Primary Key������������������
	Insert Rows������������������
	Delete Rows������������������
	Property Sheet���������������������
	Indexes��������������

	Working with fields��������������������������
	Naming a field���������������������
	Specifying a data type�����������������������������
	Entering a field description�����������������������������������
	Specifying data validation rules���������������������������������������

	Creating tblCustomers����������������������������
	Using AutoNumber fields������������������������������
	Completing tblCustomers������������������������������

	Changing a Table Design������������������������������
	Inserting a new field����������������������������
	Deleting a field�����������������������
	Changing a field location��������������������������������
	Changing a field name����������������������������
	Changing a field size����������������������������
	Handling data conversion issues��������������������������������������
	Assigning field properties���������������������������������
	Common properties������������������������
	Format�������������
	Input Mask�����������������
	Caption��������������
	Validation Rule and Validation Text��
	Required���������������
	AllowZeroLength����������������������
	Indexed��������������

	Understanding tblCustomers Field Properties��
	Setting the Primary Key������������������������������
	Choosing a primary key�����������������������������
	Creating the primary key�������������������������������
	Creating composite primary keys��������������������������������������

	Indexing Access Tables�����������������������������
	The importance of indexes��������������������������������
	Multiple-field indexes�����������������������������
	When to index tables���������������������������

	Printing a Table Design������������������������������
	Saving the Completed Table���������������������������������
	Manipulating Tables��������������������������
	Renaming tables����������������������
	Deleting tables����������������������
	Copying tables in a database�����������������������������������
	Copying a table to another database��

	Adding Records to a Database Table���
	Understanding Attachment Fields��������������������������������������

	Chapter 4: Understanding Table Relationships���
	Building Bulletproof Databases�������������������������������������
	Data Normalization and Denormalization���
	First normal form������������������������
	Second normal form�������������������������
	Identifying entities���������������������������
	Less obvious entities����������������������������
	Breaking the rules�������������������������

	Third normal form������������������������
	Denormalization����������������������

	Table Relationships��������������������������
	Connecting the data��������������������������
	One-to-one�����������������
	One-to-many������������������
	Many-to-many�������������������

	Integrity Rules����������������������
	No primary key can contain a null value��
	All foreign key values must be matched by corresponding primary keys���

	Keys�����������
	Deciding on a primary key��������������������������������
	Looking at the benefits of a primary key���
	Designating a primary key��������������������������������
	Single-field versus composite primary keys���
	Natural versus surrogate primary keys��
	Creating primary keys����������������������������

	Creating relationships and enforcing referential integrity���
	Specifying the join type between tables��
	Enforcing referential integrity��������������������������������������

	Viewing all relationships��������������������������������
	Deleting relationships�����������������������������
	Following application-specific integrity rules���

	Chapter 5: Working with Access Tables��
	Understanding Datasheets�������������������������������
	Looking at the Datasheet Window��������������������������������������
	Moving within a datasheet��������������������������������
	Using the Navigation buttons�����������������������������������
	Examining the Datasheet Ribbon�������������������������������������
	Views������������
	Clipboard����������������
	Sort & Filter��������������������
	Records��������������
	Find�����������
	Window�������������
	Text Formatting����������������������

	Opening a Datasheet��������������������������
	Entering New Data������������������������
	Saving the record������������������������
	Understanding automatic data-type validation���
	Knowing how properties affect data entry���
	Standard text data entry�������������������������������
	Date/Time data entry���������������������������
	Number/Currency data entry with data validation��
	OLE object data entry����������������������������
	Long Text field data entry���������������������������������

	Navigating Records in a Datasheet��
	Moving between records�����������������������������
	Finding a specific value�������������������������������

	Changing Values in a Datasheet�������������������������������������
	Manually replacing an existing value���
	Changing an existing value���������������������������������

	Using the Undo Feature�����������������������������
	Copying and Pasting Values���������������������������������
	Replacing Values�����������������������
	Adding New Records�������������������������
	Deleting Records�����������������������
	Displaying Records�������������������������
	Changing the field order�������������������������������
	Changing the field display width���������������������������������������
	Changing the record display height���
	Changing display fonts�����������������������������
	Displaying cell gridlines and alternate row colors���
	Aligning data in columns�������������������������������
	Hiding and unhiding columns����������������������������������
	Freezing columns�����������������������
	Saving the changed layout��������������������������������
	Saving a record����������������������

	Sorting and Filtering Records in a Datasheet���
	Sorting your records with QuickSort��
	Filtering a selection����������������������������
	Filtering by form������������������������

	Aggregating Data�����������������������
	Printing Records�����������������������
	Previewing Records�������������������������

	Chapter 6: Importing and Exporting Data��
	How Access Works with External Data��
	Types of external data�����������������������������
	Ways of working with external data���
	When to link to external data������������������������������������
	When to import external data�����������������������������������
	When to export internal data�����������������������������������

	Options for Importing and Exporting��
	Importing External Data������������������������������
	Importing from another Access database���
	Importing from an Excel spreadsheet��
	Importing a SharePoint list����������������������������������
	Importing data from text files�������������������������������������
	Delimited text files���������������������������
	Fixed-width text files�����������������������������

	Importing and exporting XML documents��
	Importing and exporting HTML documents���
	Importing Access objects other than tables���
	Importing an Outlook folder����������������������������������

	Exporting to External Formats������������������������������������
	Exporting objects to other Access databases��
	Exporting through ODBC drivers�������������������������������������
	Exporting to Word������������������������
	Merging data into Word�����������������������������

	Publishing to PDF or XPS�������������������������������

	Chapter 7: Linking to External Data��
	Linking External Data����������������������������
	Identifying linked tables��������������������������������
	Limitations of linked data���������������������������������
	Linking to other Access database tables��
	Linking to ODBC data sources�����������������������������������
	Linking to non-database data�����������������������������������
	Linking to Excel�����������������������
	Linking to HTML files����������������������������
	Linking to text files����������������������������

	Working with Linked Tables���������������������������������
	Setting view properties������������������������������
	Setting relationships����������������������������
	Optimizing linked tables�������������������������������
	Deleting a linked table reference��
	Viewing or changing information for linked tables��
	Refreshing linked tables�������������������������������

	Splitting a Database���������������������������
	The benefits of splitting a database���
	Knowing where to put which objects���
	Using the Database Splitter add-in���

	Part III: Working with Access Queries��
	Chapter 8: Selecting Data with Queries���
	Introducing Queries��������������������������
	What queries can do��������������������������
	What queries return��������������������������

	Creating a Query�����������������������
	Adding fields to your queries������������������������������������
	Adding a single field����������������������������
	Adding multiple fields�����������������������������

	Running your query�������������������������

	Working with Query Fields��������������������������������
	Selecting a field in the QBE grid��
	Changing field order���������������������������
	Resizing columns in the QBE grid���������������������������������������
	Removing a field�����������������������
	Inserting a field������������������������
	Hiding a field���������������������
	Changing the sort order of a field���

	Adding Criteria to Your Queries��������������������������������������
	Understanding selection criteria���������������������������������������
	Entering simple string criteria��������������������������������������
	Entering other simple criteria�������������������������������������

	Printing a Query’s Recordset�����������������������������������
	Saving a Query���������������������
	Creating Multi-Table Queries�����������������������������������
	Viewing table names��������������������������
	Adding multiple fields�����������������������������
	Recognizing the limitations of multi-table queries���
	Overcoming query limitations�����������������������������������
	Updating a unique index (primary key)��
	Replacing existing data in a query with a one-to-many relationship���
	Updating fields in queries���������������������������������

	Working with the Table Pane����������������������������������
	Looking at the join line�������������������������������
	Moving a table���������������������
	Removing a table�����������������������
	Adding more tables�������������������������

	Creating and Working with Query Joins��
	Understanding joins��������������������������
	Leveraging ad hoc table joins������������������������������������
	Specifying the type of join����������������������������������
	Deleting joins���������������������

	Chapter 9: Using Operators and Expressions in Access���
	Introducing Operators����������������������������
	Types of operators�������������������������
	Mathematical operators�����������������������������
	Comparison operators���������������������������
	String operators�����������������������
	Boolean (logical) operators����������������������������������
	Miscellaneous operators������������������������������

	Operator precedence��������������������������
	The mathematical precedence����������������������������������
	The comparison precedence��������������������������������
	The Boolean precedence�����������������������������

	Using Operators and Expressions in Queries���
	Using query comparison operators���������������������������������������
	Understanding complex criteria�������������������������������������
	Using functions in select queries��
	Referencing fields in select queries���

	Entering Single-Value Field Criteria���
	Entering character (Text or Memo) criteria���
	The Like operator and wildcards��������������������������������������
	Specifying non-matching values�������������������������������������
	Entering numeric criteria��������������������������������
	Entering true or false criteria��������������������������������������
	Entering OLE object criteria�����������������������������������

	Using Multiple Criteria in a Query���
	Understanding an Or operation������������������������������������
	Specifying multiple values with the Or operator��
	Using the Or cell of the QBE pane��
	Using a list of values with the In operator��
	Using And to specify a range�����������������������������������
	Using the Between...And operator���������������������������������������
	Searching for null data������������������������������

	Entering Criteria in Multiple Fields���
	Using And and Or across fields in a query��
	Specifying Or criteria across fields of a query��
	Using And and Or together in different fields��
	A complex query on different lines���

	Chapter 10: Going Beyond Select Queries��
	Aggregate Queries������������������������
	Creating an aggregate query����������������������������������
	About aggregate functions��������������������������������
	Group By���������������
	Sum, Avg, Count, StDev, Var����������������������������������
	Min, Max, First, Last����������������������������
	Expression, Where������������������������

	Action Queries���������������������
	Make-table queries�������������������������
	Delete queries���������������������
	Append queries���������������������
	Update queries���������������������

	Crosstab Queries�����������������������
	Creating a crosstab query using the Crosstab Query Wizard��
	Creating a crosstab query manually���
	Using the query design grid to create your crosstab query��
	Customizing your crosstab queries��

	Optimizing Query Performance�����������������������������������
	Normalizing your database design���������������������������������������
	Using indexes on appropriate fields��
	Optimizing by improving query design���
	Compacting and repairing your database regularly���

	Part IV: Analyzing Data in Access��
	Chapter 11: Transforming Data in Access��
	Finding and Removing Duplicate Records���
	Defining duplicate records���������������������������������
	Finding duplicate records��������������������������������
	Removing duplicate records���������������������������������

	Common Transformation Tasks����������������������������������
	Filling in blank fields������������������������������
	Concatenating��������������������
	Concatenating fields���������������������������
	Augmenting field values with your own text���

	Changing case��������������������
	Removing leading and trailing spaces from a string���
	Finding and replacing specific text��
	Adding your own text in key positions within a string��
	Parsing strings using character markers��
	Query 1��������������
	Query 2��������������

	Chapter 12: Working with Calculations and Dates��
	Using Calculations in Your Analyses��
	Common calculation scenarios�����������������������������������
	Using constants in calculations��������������������������������������
	Using fields in calculations�����������������������������������
	Using the results of aggregation in calculations���
	Using the results of one calculation as an expression in another���
	Using a calculation as an argument in a function���

	Constructing calculations with the Expression Builder��
	Common calculation errors��������������������������������
	Understanding the order of operator precedence���
	Watching out for null values�����������������������������������
	Watching the syntax in your expressions��

	Using Dates in Your Analyses�����������������������������������
	Simple date calculations�������������������������������
	Advanced analysis using functions��
	The Date function������������������������
	The Year, Month, Day, and Weekday functions��
	The DateAdd function���������������������������
	Grouping dates into quarters�����������������������������������
	The DateSerial function������������������������������

	Chapter 13: Performing Conditional Analyses��
	Using Parameter Queries������������������������������
	How parameter queries work���������������������������������
	Ground rules of parameter queries��
	Working with parameter queries�������������������������������������
	Working with multiple parameter conditions���
	Combining parameters with operators��
	Combining parameters with wildcards��
	Using parameters as calculation variables��
	Using parameters as function arguments���

	Using Conditional Functions����������������������������������
	The IIf function�����������������������
	Using IIf to avoid mathematical errors���
	Saving time with IIf���������������������������
	Nesting IIf functions for multiple conditions��
	Using IIf functions to create crosstab analyses��

	The Switch function��������������������������
	Comparing the IIf and Switch functions���

	Chapter 14: The Fundamentals of Using SQL��
	Understanding Basic SQL������������������������������
	The SELECT statement���������������������������
	Selecting specific columns���������������������������������
	Selecting all columns����������������������������

	The WHERE clause�����������������������
	Making sense of joins����������������������������
	Inner joins������������������
	Outer joins������������������

	Getting Fancy with Advanced SQL Statements���
	Expanding your search with the Like operator���
	Selecting unique values and rows without grouping��
	Grouping and aggregating with the GROUP BY clause��
	Setting the sort order with the ORDER BY clause��
	Creating aliases with the AS clause��
	Creating a column alias������������������������������
	Creating a table alias�����������������������������

	Showing only the SELECT TOP or SELECT TOP PERCENT��
	Top values queries explained�����������������������������������
	The SELECT TOP statement�������������������������������
	The SELECT TOP PERCENT statement���������������������������������������

	Performing action queries via SQL statements���
	Make-table queries translated������������������������������������
	Append queries translated��������������������������������
	Update queries translated��������������������������������
	Delete queries translated��������������������������������

	Creating crosstabs with the TRANSFORM statement��

	Using SQL-Specific Queries���������������������������������
	Merging datasets with the UNION operator���
	Creating a table with the CREATE TABLE statement���
	Manipulating columns with the ALTER TABLE statement��
	Adding a column with the ADD clause��
	Altering a column with the ALTER COLUMN clause���
	Deleting a column with the DROP COLUMN clause��
	Dynamically adding primary keys with the ADD CONSTRAINT clause���

	Creating pass-through queries������������������������������������

	Chapter 15: Subqueries and Domain Aggregate Functions��
	Enhancing Your Analyses with Subqueries��
	Why use subqueries?��������������������������
	Subquery ground rules����������������������������
	Creating subqueries without typing SQL statements��
	Using IN and NOT IN with subqueries��
	Using subqueries with comparison operators���
	Using subqueries as expressions��������������������������������������
	Using correlated subqueries����������������������������������
	Uncorrelated subqueries������������������������������
	Correlated subqueries����������������������������
	Using a correlated subquery as an expression���

	Using subqueries within action queries���
	A subquery in a make-table query���������������������������������������
	A subquery in an append query������������������������������������
	A subquery in an update query������������������������������������
	A subquery in a delete query�����������������������������������

	Domain Aggregate Functions���������������������������������
	Understanding the different domain aggregate functions���
	DSum�����������
	DAvg�����������
	DCount�������������
	DLookup��������������
	DMin and DMax��������������������
	DFirst and DLast�����������������������
	DStDev, DStDevP, DVar, and DvarP���������������������������������������

	Examining the syntax of domain aggregate functions���
	Using no criteria������������������������
	Using text criteria��������������������������
	Using number criteria����������������������������
	Using date criteria��������������������������

	Using domain aggregate functions���������������������������������������
	Calculating the percent of total���������������������������������������
	Creating a running count�������������������������������
	Using a value from the previous record���

	Chapter 16: Running Descriptive Statistics in Access���
	Basic Descriptive Statistics�����������������������������������
	Running descriptive statistics with aggregate queries��
	Determining rank, mode, and median���
	Ranking the records in your dataset��
	Getting the mode of a dataset������������������������������������
	Getting the median of a dataset��������������������������������������

	Pulling a random sampling from your dataset��

	Advanced Descriptive Statistics��������������������������������������
	Calculating percentile ranking�������������������������������������
	Determining the quartile standing of a record��
	Creating a frequency distribution��

	Part V: Working with Access Forms and Reports��
	Chapter 17: Creating Basic Access Forms��
	Formulating Forms������������������������
	Creating a new form��������������������������
	Using the Form command�����������������������������
	Using the Form Wizard����������������������������

	Looking at special types of forms��
	Navigation forms�����������������������
	Multiple-items forms���������������������������
	Split forms������������������
	Datasheet forms����������������������

	Resizing the form area�����������������������������
	Saving your form�����������������������

	Working with Controls����������������������������
	Categorizing controls����������������������������
	Adding a control�����������������������
	Using the Controls group�������������������������������
	Using the field list���������������������������

	Selecting and deselecting controls���
	Selecting a single control���������������������������������
	Selecting multiple controls����������������������������������
	Deselecting controls���������������������������

	Manipulating controls����������������������������
	Resizing a control�������������������������
	Sizing controls automatically������������������������������������
	Moving a control�����������������������
	Aligning controls������������������������
	Modifying the appearance of a control��
	Grouping controls������������������������
	Changing a control’s type��������������������������������
	Copying a control������������������������
	Deleting a control�������������������������
	Reattaching a label to a control���������������������������������������

	Introducing Properties�����������������������������
	Displaying the Property Sheet������������������������������������
	Getting acquainted with the Property Sheet���
	Changing a control’s property setting��
	Naming control labels and their captions���

	Chapter 18: Working with Data on Access Forms��
	Using Form View����������������������
	Looking at the Home tab of the Ribbon��
	The Views group����������������������
	The Clipboard group��������������������������
	The Sort & Filter group������������������������������
	The Records group������������������������
	The Find group���������������������
	The Window group�����������������������
	The Text Formatting group��������������������������������

	Navigating among fields������������������������������
	Moving among records in a form�������������������������������������

	Changing Values in a Form��������������������������������
	Knowing which controls you can’t edit��
	Working with pictures and OLE objects��
	Entering data in the Long Text field���
	Entering data in the Date field��������������������������������������
	Using option groups��������������������������
	Using combo boxes and list boxes���������������������������������������
	Switching to Datasheet view����������������������������������
	Saving a record����������������������

	Printing a Form����������������������
	Working with Form Properties�����������������������������������
	Changing the title bar text with the Caption property��
	Creating a bound form����������������������������
	Specifying how to view the form��������������������������������������
	Removing the Record Selector�����������������������������������
	Looking at other form properties���������������������������������������

	Adding a Form Header or Footer�������������������������������������
	Working with Section Properties��������������������������������������
	The Visible property���������������������������
	The Height property��������������������������
	The Back Color property������������������������������
	The Special Effect property����������������������������������
	The Display When property��������������������������������
	The printing properties������������������������������

	Changing the Layout��������������������������
	Changing a control’s properties��������������������������������������
	Setting the tab order����������������������������
	Modifying the format of text in a control��
	Using the Field List to add controls���

	Converting a Form to a Report������������������������������������

	Chapter 19: Working with Form Controls���
	Setting Control Properties���������������������������������
	Customizing default properties�������������������������������������
	Looking at common controls and properties��
	The Text Box control���������������������������
	The Command Button control���������������������������������
	The Combo Box and List Box controls��
	The Check Box and Toggle Button controls���
	The Option Group control�������������������������������
	The Web Browser control������������������������������

	Creating a Calculated Control������������������������������������
	Working with Subforms����������������������������
	Form Design Tips�����������������������
	Using the Tab Stop property����������������������������������
	Tallying check boxes���������������������������
	Setting up combo boxes and list boxes��

	Tackling Advanced Forms Techniques���
	Using the Page Number and Date/Time controls���
	Using the Image control������������������������������
	Morphing a control�������������������������
	Using the Format Painter�������������������������������
	Offering more end-user help����������������������������������
	Adding background pictures���������������������������������
	Limiting the records shown on a form���

	Using the Tab Control����������������������������
	Using Dialog Boxes to Collect Information��
	Designing the query��������������������������
	Setting up the command buttons�������������������������������������
	Adding a default button������������������������������
	Setting a Cancel button������������������������������
	Removing the control menu��������������������������������

	Designing a Form from Scratch������������������������������������
	Creating the basic form������������������������������
	Creating a subform�������������������������
	Adding the subform�������������������������
	Changing the form’s behavior�����������������������������������
	Setting the form properties����������������������������������
	Looking up values during data entry��
	Saving the record������������������������

	Changing the form’s appearance�������������������������������������

	Chapter 20: Presenting Data with Access Reports��
	Introducing Reports��������������������������
	Identifying the different types of reports���
	Tabular reports����������������������
	Columnar reports�����������������������
	Mailing label reports����������������������������

	Distinguishing between reports and forms���

	Creating a Report, from Beginning to End���
	Defining the report layout���������������������������������
	Assembling the data��������������������������
	Creating a report with the Report Wizard���
	Creating a new report����������������������������
	Selecting the grouping levels������������������������������������
	Defining the group data������������������������������
	Selecting the sort order�������������������������������
	Selecting summary options��������������������������������
	Selecting the layout���������������������������
	Opening the report design��������������������������������
	Adjusting the report’s layout������������������������������������
	Choosing a theme�����������������������
	Creating new theme color schemes���������������������������������������
	Using the Print Preview window�������������������������������������
	Publishing in alternate formats��������������������������������������
	Viewing the report in Design view��

	Printing or viewing the report�������������������������������������
	Printing the report��������������������������
	Viewing the report�������������������������

	Saving the report������������������������

	Banded Report Design Concepts������������������������������������
	The Report Header section��������������������������������
	The Page Header section������������������������������
	The Group Header section�������������������������������
	The Detail section�������������������������
	The Group Footer section�������������������������������
	The Page Footer section������������������������������
	The Report Footer section��������������������������������

	Creating a Report from Scratch�������������������������������������
	Creating a new report and binding it to a query��
	Defining the report page size and layout���
	Placing controls on the report�������������������������������������
	Resizing a section�������������������������
	Modifying the appearance of text in a control��

	Working with Text Box controls�������������������������������������
	Adding and using Text Box controls���
	Entering an expression in a Text Box control���
	Sizing a Text Box control or Label control���
	Deleting and cutting attached labels from Text Box controls��
	Pasting labels into a report section���
	Moving Label and Text Box controls���
	Modifying the appearance of multiple controls��

	Changing Label and Text Box control properties���
	Growing and shrinking Text Box controls��
	Sorting and grouping data��������������������������������
	Creating a group header or footer��

	Sorting data within groups���������������������������������
	Removing a group�����������������������
	Hiding a section�����������������������
	Sizing a section�����������������������
	Moving controls between sections���������������������������������������

	Adding page breaks�������������������������

	Improving the Report’s Appearance��
	Adjusting the page header��������������������������������
	Creating an expression in the group header���
	Creating a report header�������������������������������

	Chapter 21: Advanced Access Report Techniques��
	Grouping and Sorting Data��������������������������������
	Grouping alphabetically������������������������������
	Grouping on date intervals���������������������������������
	Hiding repeating information�����������������������������������
	Hiding a page header���������������������������
	Starting a new page number for each group��

	Formatting Data����������������������
	Creating numbered lists������������������������������
	Creating bulleted lists������������������������������
	Adding emphasis at run time����������������������������������
	Avoiding empty reports�����������������������������
	Inserting vertical lines between columns���
	Adding a blank line every n records��
	Even-odd page printing�����������������������������
	Using different formats in the same text box���
	Centering the title��������������������������
	Aligning control labels������������������������������
	Micro-adjusting controls�������������������������������

	Adding Data������������������
	Adding more information to a report��
	Adding the user’s name to a bound report���

	Adding Even More Flexibility�����������������������������������
	Displaying all reports in a combo box��
	Fast printing from queried data��������������������������������������
	Using snaking columns in a report��
	Exploiting two-pass report processing��
	Assigning unique names to controls���

	Part VI: Access Programming Fundamentals���
	Chapter 22: Using Access Macros��������������������������������������
	An Introduction to Macros��������������������������������
	Creating a macro�����������������������
	Assigning a macro to an event������������������������������������

	Understanding Macro Security�����������������������������������
	Enabling sandbox mode����������������������������
	The Trust Center�����������������������

	Multi-Action Macros��������������������������
	Submacros����������������
	Conditions�����������������
	Opening reports using conditions���������������������������������������
	Multiple actions in conditions�������������������������������������

	Temporary Variables��������������������������
	Enhancing a macro you’ve already created���
	Using temporary variables to simplify macros���
	Using temporary variables in VBA���������������������������������������

	Error Handling and Macro Debugging���
	The OnError action�������������������������
	The MacroError object����������������������������
	Debugging macros�����������������������

	Embedded Macros����������������������
	Macros versus VBA Statements�����������������������������������
	Choosing between macros and VBA��������������������������������������
	Converting existing macros to VBA��

	Chapter 23: Using Access Data Macros���
	Introducing Data Macros������������������������������
	Understanding Table Events���������������������������������
	“Before” events����������������������
	“After” events���������������������

	Using the Macro Designer for Data Macros���
	Understanding the Action Catalog���������������������������������������
	Program flow�������������������
	Data blocks������������������
	Data actions�������������������

	Creating Your First Data Macro�������������������������������������
	Managing Macro Objects�����������������������������
	Collapsing and expanding macro items���
	Moving macro items�������������������������
	Saving a macro as XML����������������������������

	Recognizing the Limitations of Data Macros���

	Chapter 24: Getting Started with Access VBA��
	Introducing Visual Basic for Applications��
	Understanding VBA Terminology������������������������������������
	Starting with VBA Code Basics������������������������������������
	Creating VBA Programs����������������������������
	Modules and procedures�����������������������������
	Modules��������������
	Procedures and functions�������������������������������

	Working in the code window���������������������������������
	White space������������������
	Line continuation������������������������
	Multi-statement lines����������������������������
	IntelliSense�������������������
	Compiling procedures���������������������������
	Saving a module����������������������

	Understanding VBA Branching Constructs���
	Branching����������������
	The If keyword���������������������
	The Select Case...End Select statement���

	Looping��������������
	The Do...Loop statement������������������������������
	The For...Next statement�������������������������������

	Working with Objects and Collections���
	An object primer�����������������������
	Properties and methods�����������������������������
	Properties�����������������
	Methods��������������

	The With statement�������������������������
	The For Each statement�����������������������������

	Exploring the Visual Basic Editor��
	The Immediate window���������������������������
	The Project Explorer���������������������������
	The Object Browser�������������������������
	VBE options������������������
	The Editor tab of the Options dialog box���
	The Project Properties dialog box��

	Chapter 25: Mastering VBA Data Types and Procedures��
	Using Variables����������������������
	Naming variables�����������������������
	Declaring variables��������������������������
	The Dim keyword����������������������
	The Public keyword�������������������������
	The Private keyword��������������������������

	Working with Data Types������������������������������
	Comparing implicit and explicit variables��
	Forcing explicit declaration�����������������������������������
	Using a naming convention with variables���
	Understanding variable scope and lifetime��
	Examining scope����������������������
	Determining a variable’s lifetime��
	Deciding on a variable’s scope�������������������������������������

	Using constants����������������������
	Declaring constants��������������������������
	Using a naming convention with constants���
	Eliminating hard-coded values������������������������������������

	Working with arrays��������������������������
	Fixed arrays�������������������
	Dynamic arrays���������������������
	Array functions����������������������

	Understanding Subs and Functions���������������������������������������
	Understanding where to create a procedure��
	Calling VBA procedures�����������������������������
	Creating subs��������������������

	Creating Functions�������������������������
	Handling parameters��������������������������
	Calling a function and passing parameters��
	Creating a function to calculate sales tax���

	Simplifying Code with Named Arguments��

	Chapter 26: Understanding the Access Event Model���
	Programming Events�������������������������
	Understanding how events trigger VBA code��
	Creating event procedures��������������������������������

	Identifying Common Events��������������������������������
	Form event procedures����������������������������
	Essential form events����������������������������
	Form mouse and keyboard events�������������������������������������
	Form data events�����������������������

	Control event procedures�������������������������������
	Report event procedures������������������������������
	Report section event procedures��������������������������������������

	Paying Attention to Event Sequence���
	Looking at common event sequences��
	Writing simple form and control event procedures���
	Opening a form with an event procedure���
	Running an event procedure when closing a form���
	Using an event procedure to confirm record deletion��

	Chapter 27: Debugging Your Access Applications���
	Organizing VBA Code��������������������������
	Testing Your Applications��������������������������������
	Testing functions������������������������
	Compiling VBA code�������������������������

	Traditional Debugging Techniques���������������������������������������
	Using MsgBox�������������������
	Using Debug.Print������������������������

	Using the Access Debugging Tools���������������������������������������
	Running code with the Immediate window���
	Suspending execution with breakpoints��
	Looking at variables with the Locals window��
	Setting watches with the Watches window��
	Using conditional watches��������������������������������
	Using the Call Stack window����������������������������������

	Trapping Errors in Your Code�����������������������������������
	Understanding error trapping�����������������������������������
	On Error Resume Next���������������������������
	On Error Goto 0����������������������
	On Error Goto Label��������������������������
	The Resume keyword�������������������������

	The Err object���������������������
	Including error handling in your procedures��

	Part VII: Advanced Access Programming Techniques���
	Chapter 28: Accessing Data with VBA Code���
	Working with Data������������������������
	Understanding ADO Objects��������������������������������
	The ADO Connection object��������������������������������
	The ADO Command object�����������������������������
	The ADO Recordset object�������������������������������
	Navigating recordsets����������������������������
	Understanding CursorType�������������������������������
	Detecting the recordset end or beginning���
	Counting records�����������������������

	Understanding DAO Objects��������������������������������
	The DAO DBEngine object������������������������������
	The DAO Workspace object�������������������������������
	The DAO Database object������������������������������
	The DAO TableDef object������������������������������
	The DAO QueryDef object������������������������������
	The DAO Recordset object�������������������������������
	The DAO Field objects (recordsets)���

	Writing VBA Code to Update a Table���
	Updating fields in a record using ADO��
	Updating a calculated control������������������������������������
	Recalculating a control when updating or adding a record���
	Checking the status of a record deletion���
	Eliminating repetitive code����������������������������������

	Adding a new record��������������������������
	Deleting a record������������������������
	Deleting related records in multiple tables��

	Chapter 29: Advanced Data Access with VBA��
	Adding an Unbound Combo Box to a Form to Find Data���
	Using the FindRecord method����������������������������������
	Using a bookmark�����������������������

	Filtering a Form�����������������������
	With code����������������
	With a query�������������������
	Creating a parameter query���������������������������������
	Creating an interactive filter dialog box��
	Linking the dialog box to another form���

	Chapter 30: Customizing the Ribbon���
	The Ribbon Hierarchy���������������������������
	Controls for Access Ribbons����������������������������������
	SplitButton������������������
	Menu�����������
	Gallery��������������
	Button�������������
	ToggleButton�������������������
	ComboBox���������������
	CheckBox���������������

	Special Ribbon features������������������������������
	SuperTips����������������
	Collapsing the Ribbon����������������������������

	Editing the Default Ribbon���������������������������������
	Working with the Quick Access Toolbar��
	Developing Custom Ribbons��������������������������������
	The Ribbon creation process����������������������������������
	Using VBA callbacks��������������������������

	Creating a Custom Ribbon�������������������������������
	Step 1: Design the Ribbon and build the XML��
	Step 2: Write the callback routines��
	Step 3: Create the USysRibbons table���
	Step 4: Add XML to USysRibbons�������������������������������������
	Step 5: Specify the custom Ribbon property���

	The Basic Ribbon XML���������������������������
	Adding Ribbon Controls�����������������������������
	Specifying imageMso��������������������������
	The Label control������������������������
	The Button control�������������������������
	Separators�����������������
	The CheckBox control���������������������������
	The DropDown control���������������������������
	The SplitButton Control������������������������������

	Attaching Ribbons to Forms and Reports���
	Removing the Ribbon Completely�������������������������������������

	Chapter 31: Preparing Your Access Application for Distribution���
	Defining the Current Database Options��
	Application options��������������������������
	Application Title������������������������
	Application Icon�����������������������
	Display Form�������������������
	Display Status Bar�������������������������
	Document Window Options������������������������������
	Use Access Special Keys������������������������������
	Compact on Close�����������������������
	Remove Personal Information from File Properties on Save���
	Use Windows-Themed Controls on Forms���
	Enable Layout View�������������������������
	Enable Design Changes for Tables in Datasheet View���
	Check for Truncated Number Fields��
	Picture Property Storage Format��������������������������������������

	Navigation options�������������������������
	The Display Navigation Pane check box��
	The Navigation Options button������������������������������������

	Ribbon and toolbar options���������������������������������
	Ribbon Name������������������
	Shortcut Menu Bar������������������������
	Allow Full Menus�����������������������
	Allow Default Shortcut Menus�����������������������������������

	Name AutoCorrect Options�������������������������������

	Developing the Application���������������������������������
	Building to a specification����������������������������������
	Creating documentation�����������������������������
	Documenting the code you write�������������������������������������
	Documenting the application����������������������������������

	Testing the application before distribution��

	Polishing Your Application���������������������������������
	Giving your application a consistent look and feel���
	Adding common professional components��
	A splash screen����������������������
	An application switchboard���������������������������������
	An About box�������������������
	The status bar���������������������
	A progress meter�����������������������

	Making the application easy to start���

	Bulletproofing an Application������������������������������������
	Using error trapping on all Visual Basic procedures��
	Maintaining usage logs�����������������������������

	Separating tables from the rest of the application���
	Building bulletproof forms���������������������������������
	Validating user input����������������������������
	Using the /runtime option��������������������������������
	Encrypting or encoding a database��
	Removing a database password�����������������������������������

	Protecting Visual Basic code�����������������������������������

	Securing the Environment�������������������������������
	Setting startup options in code��������������������������������������
	Disabling startup bypass�������������������������������
	Setting property values������������������������������
	Getting property values������������������������������

	Part VIII: Access and Windows SharePoint Services��
	Chapter 32: Integrating Access with SharePoint���
	Introducing SharePoint�����������������������������
	Understanding SharePoint Sites�������������������������������������
	SharePoint Documents���������������������������
	SharePoint lists�����������������������

	Sharing Data between Access and SharePoint���
	Linking to SharePoint lists����������������������������������
	Importing SharePoint lists���������������������������������
	Exporting Access tables to SharePoint��
	Moving Access tables to SharePoint���

	Using SharePoint Templates���������������������������������

	Chapter 33: Deploying Access Applications to SharePoint��
	Understanding Web Publishing with Access���
	Understanding Access Services������������������������������������
	Why SharePoint?����������������������

	Examining the Limitations of Access Web Applications���
	Limitations of Access Services�������������������������������������
	Transactional limitations��������������������������������

	Publishing a Custom Access Application to SharePoint���
	Preparing the Access data model��������������������������������������
	Initializing and configuring the custom web application��
	Reviewing and editing table views��
	Adding a validation rule to a table��
	Adding events to a table�������������������������������
	Creating your own queries and views��
	A final word on configuring your web application���

	Launching and managing your web application��

	Index
	EULA

