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Foreword

Ever since we started the Spark project at Berkeley, I've been excited about not just
building fast parallel systems, but helping more and more people make use of large-
scale computing. This is why 'm very happy to see this book, written by four experts
in data science, on advanced analytics with Spark. Sandy, Uri, Sean, and Josh have
been working with Spark for a while, and have put together a great collection of con-
tent with equal parts explanations and examples.

The thing I like most about this book is its focus on examples, which are all drawn
from real applications on real-world data sets. It’s hard to find one, let alone ten
examples that cover big data and that you can run on your laptop, but the authors
have managed to create such a collection and set everything up so you can run them
in Spark. Moreover, the authors cover not just the core algorithms, but the intricacies
of data preparation and model tuning that are needed to really get good results. You
should be able to take the concepts in these examples and directly apply them to your
own problems.

Big data processing is undoubtedly one of the most exciting areas in computing
today, and remains an area of fast evolution and introduction of new ideas. I hope
that this book helps you get started in this exciting new field.

—Matei Zaharia, CTO at Databricks and Vice President, Apache Spark
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Preface

Sandy Ryza

I don't like to think I have many regrets, but it’s hard to believe anything good came
out of a particular lazy moment in 2011 when I was looking into how to best distrib-
ute tough discrete optimization problems over clusters of computers. My advisor
explained this newfangled Spark thing he had heard of, and I basically wrote off the
concept as too good to be true and promptly got back to writing my undergrad thesis
in MapReduce. Since then, Spark and I have both matured a bit, but one of us has
seen a meteoric rise thats nearly impossible to avoid making “ignite” puns about. Cut
to two years later, and it has become crystal clear that Spark is something worth pay-
ing attention to.

Spark’s long lineage of predecessors, running from MPI to MapReduce, makes it pos-
sible to write programs that take advantage of massive resources while abstracting
away the nitty-gritty details of distributed systems. As much as data processing needs
have motivated the development of these frameworks, in a way the field of big data
has become so related to these frameworks that its scope is defined by what these
frameworks can handle. Spark’s promise is to take this a little further—to make writ-
ing distributed programs feel like writing regular programs.

Spark will be great at giving ETL pipelines huge boosts in performance and easing
some of the pain that feeds the MapReduce programmer’s daily chant of despair
(“why? whyyyyy?”) to the Hadoop gods. But the exciting thing for me about it has
always been what it opens up for complex analytics. With a paradigm that supports
iterative algorithms and interactive exploration, Spark is finally an open source
framework that allows a data scientist to be productive with large data sets.

I think the best way to teach data science is by example. To that end, my colleagues
and I have put together a book of applications, trying to touch on the interactions
between the most common algorithms, data sets, and design patterns in large-scale
analytics. This book isn’t meant to be read cover to cover. Page to a chapter that looks
like something you're trying to accomplish, or that simply ignites your interest.




What's in This Book

The first chapter will place Spark within the wider context of data science and big
data analytics. After that, each chapter will comprise a self-contained analysis using
Spark. The second chapter will introduce the basics of data processing in Spark and
Scala through a use case in data cleansing. The next few chapters will delve into the
meat and potatoes of machine learning with Spark, applying some of the most com-
mon algorithms in canonical applications. The remaining chapters are a bit more of a
grab bag and apply Spark in slightly more exotic applications—for example, querying
Wikipedia through latent semantic relationships in the text or analyzing genomics
data.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/sryza/aas.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: "Advanced Analytics with Spark by
Sandy Ryza, Uri Laserson, Sean Owen, and Josh Wills (O'Reilly). Copyright 2015
Sandy Ryza, Uri Laserson, Sean Owen, and Josh Wills, 978-1-491-91276-8”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
1 DC ers expert content in both book and video form from the
world’s leading authors in technology and business.
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Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/advanced-spark.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1
Analyzing Big Data

Sandy Ryza

[Data applications] are like sausages. It is better not to see them being made.
—Otto von Bismarck

o Build a model to detect credit card fraud using thousands of features and billions
of transactions.

o Intelligently recommend millions of products to millions of users.

o Estimate financial risk through simulations of portfolios including millions of
instruments.

« Easily manipulate data from thousands of human genomes to detect genetic asso-
ciations with disease.

These are tasks that simply could not be accomplished 5 or 10 years ago. When peo-
ple say that we live in an age of “big data,” they mean that we have tools for collecting,
storing, and processing information at a scale previously unheard of. Sitting behind
these capabilities is an ecosystem of open source software that can leverage clusters of
commodity computers to chug through massive amounts of data. Distributed systems
like Apache Hadoop have found their way into the mainstream and have seen wide-
spread deployment at organizations in nearly every field.

But just as a chisel and a block of stone do not make a statue, there is a gap between
having access to these tools and all this data, and doing something useful with it. This
is where “data science” comes in. As sculpture is the practice of turning tools and raw
material into something relevant to nonsculptors, data science is the practice of turn-
ing tools and raw data into something that nondata scientists might care about.

Often, “doing something useful” means placing a schema over it and using SQL to
answer questions like “of the gazillion users who made it to the third page in our




registration process, how many are over 252” The field of how to structure a data
warehouse and organize information to make answering these kinds of questions
easy is a rich one, but we will mostly avoid its intricacies in this book.

Sometimes, “doing something useful” takes a little extra. SQL still may be core to the
approach, but to work around idiosyncrasies in the data or perform complex analysis,
we need a programming paradigm that’s a little bit more flexible and a little closer to
the ground, and with richer functionality in areas like machine learning and statistics.
These are the kinds of analyses we are going to talk about in this book.

For a long time, open source frameworks like R, the PyData stack, and Octave have
made rapid analysis and model building viable over small data sets. With fewer than
10 lines of code, we can throw together a machine learning model on half a data set
and use it to predict labels on the other half. With a little more effort, we can impute
missing data, experiment with a few models to find the best one, or use the results of
a model as inputs to fit another. What should an equivalent process look like that can
leverage clusters of computers to achieve the same outcomes on huge data sets?

The right approach might be to simply extend these frameworks to run on multiple
machines, to retain their programming models and rewrite their guts to play well in
distributed settings. However, the challenges of distributed computing require us to
rethink many of the basic assumptions that we rely on in single-node systems. For
example, because data must be partitioned across many nodes on a cluster, algorithms
that have wide data dependencies will suffer from the fact that network transfer rates
are orders of magnitude slower than memory accesses. As the number of machines
working on a problem increases, the probability of a failure increases. These facts
require a programming paradigm that is sensitive to the characteristics of the under-
lying system: one that discourages poor choices and makes it easy to write code that
will execute in a highly parallel manner.

Of course, single-machine tools like PyData and R that have come to recent promi-
nence in the software community are not the only tools used for data analysis. Scien-
tific fields like genomics that deal with large data sets have been leveraging parallel
computing frameworks for decades. Most people processing data in these fields today
are familiar with a cluster-computing environment called HPC (high-performance
computing). Where the difficulties with PyData and R lie in their inability to scale,
the difficulties with HPC lie in its relatively low level of abstraction and difficulty of
use. For example, to process a large file full of DNA sequencing reads in parallel, we
must manually split it up into smaller files and submit a job for each of those files to
the cluster scheduler. If some of these fail, the user must detect the failure and take
care of manually resubmitting them. If the analysis requires all-to-all operations like
sorting the entire data set, the large data set must be streamed through a single node,
or the scientist must resort to lower-level distributed frameworks like MPI, which are
difficult to program without extensive knowledge of C and distributed/networked
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systems. Tools written for HPC environments often fail to decouple the in-memory
data models from the lower-level storage models. For example, many tools only know
how to read data from a POSIX filesystem in a single stream, making it difficult to
make tools naturally parallelize, or to use other storage backends, like databases.
Recent systems in the Hadoop ecosystem provide abstractions that allow users to
treat a cluster of computers more like a single computer—to automatically split up
files and distribute storage over many machines, to automatically divide work into
smaller tasks and execute them in a distributed manner, and to automatically recover
from failures. The Hadoop ecosystem can automate a lot of the hassle of working
with large data sets, and is far cheaper than HPC.

The Challenges of Data Science

A few hard truths come up so often in the practice of data science that evangelizing
these truths has become a large role of the data science team at Cloudera. For a sys-
tem that seeks to enable complex analytics on huge data to be successful, it needs to
be informed by, or at least not conflict with, these truths.

First, the vast majority of work that goes into conducting successful analyses lies in
preprocessing data. Data is messy, and cleansing, munging, fusing, mushing, and
many other verbs are prerequisites to doing anything useful with it. Large data sets in
particular, because they are not amenable to direct examination by humans, can
require computational methods to even discover what preprocessing steps are
required. Even when it comes time to optimize model performance, a typical data
pipeline requires spending far more time in feature engineering and selection than in
choosing and writing algorithms.

For example, when building a model that attempts to detect fraudulent purchases on
a website, the data scientist must choose from a wide variety of potential features: any
fields that users are required to fill out, IP location info, login times, and click logs as
users navigate the site. Each of these comes with its own challenges in converting to
vectors fit for machine learning algorithms. A system needs to support more flexible
transformations than turning a 2D array of doubles into a mathematical model.

Second, iteration is a fundamental part of the data science. Modeling and analysis typ-
ically require multiple passes over the same data. One aspect of this lies within
machine learning algorithms and statistical procedures. Popular optimization proce-
dures like stochastic gradient descent and expectation maximization involve repeated
scans over their inputs to reach convergence. Iteration also matters within the data
scientist's own workflow. When data scientists are initially investigating and trying to
get a feel for a data set, usually the results of a query inform the next query that
should run. When building models, data scientists do not try to get it right in one try.
Choosing the right features, picking the right algorithms, running the right signifi-
cance tests, and finding the right hyperparameters all require experimentation. A
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framework that requires reading the same data set from disk each time it is accessed
adds delay that can slow down the process of exploration and limit the number of
things we get to try.

Third, the task isn’t over when a well-performing model has been built. If the point of
data science is making data useful to nondata scientists, then a model stored as a list
of regression weights in a text file on the data scientists computer has not really
accomplished this goal. Uses of data recommendation engines and real-time fraud
detection systems culminate in data applications. In these, models become part of a
production service and may need to be rebuilt periodically or even in real time.

For these situations, it is helpful to make a distinction between analytics in the lab
and analytics in the factory. In the lab, data scientists engage in exploratory analytics.
They try to understand the nature of the data they are working with. They visualize it
and test wild theories. They experiment with different classes of features and auxiliary
sources they can use to augment it. They cast a wide net of algorithms in the hopes
that one or two will work. In the factory, in building a data application, data scientists
engage in operational analytics. They package their models into services that can
inform real-world decisions. They track their models’ performance over time and
obsess about how they can make small tweaks to squeeze out another percentage
point of accuracy. They care about SLAs and uptime. Historically, exploratory analyt-
ics typically occurs in languages like R, and when it comes time to build production
applications, the data pipelines are rewritten entirely in Java or C++.

Of course, everybody could save time if the original modeling code could be actually
used in the app for which it is written, but languages like R are slow and lack integra-
tion with most planes of the production infrastructure stack, and languages like Java
and C++ are just poor tools for exploratory analytics. They lack Read-Evaluate-Print
Loop (REPL) environments for playing with data interactively and require large
amounts of code to express simple transformations. A framework that makes model-
ing easy but is also a good fit for production systems is a huge win.

Introducing Apache Spark

Enter Apache Spark, an open source framework that combines an engine for distrib-
uting programs across clusters of machines with an elegant model for writing pro-
grams atop it. Spark, which originated at the UC Berkeley AMPLab and has since
been contributed to the Apache Software Foundation, is arguably the first open
source software that makes distributed programming truly accessible to data
scientists.

One illuminating way to understand Spark is in terms of its advances over its prede-
cessor, MapReduce. MapReduce revolutionized computation over huge data sets by
offering a simple model for writing programs that could execute in parallel across
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hundreds to thousands of machines. The MapReduce engine achieves near linear
scalability—as the data size increases, we can throw more computers at it and see jobs
complete in the same amount of time—and is resilient to the fact that failures that
occur rarely on a single machine occur all the time on clusters of thousands. It breaks
up work into small tasks and can gracefully accommodate task failures without com-
promising the job to which they belong.

Spark maintains MapReduce’s linear scalability and fault tolerance, but extends it in
three important ways. First, rather than relying on a rigid map-then-reduce format,
its engine can execute a more general directed acyclic graph (DAG) of operators. This
means that, in situations where MapReduce must write out intermediate results to the
distributed filesystem, Spark can pass them directly to the next step in the pipeline. In
this way, it is similar to Dryad, a descendant of MapReduce that originated at Micro-
soft Research. Second, it complements this capability with a rich set of transforma-
tions that enable users to express computation more naturally. It has a strong
developer focus and streamlined API that can represent complex pipelines in a few
lines of code.

Third, Spark extends its predecessors with in-memory processing. Its Resilient Dis-
tributed Dataset (RDD) abstraction enables developers to materialize any point in a
processing pipeline into memory across the cluster, meaning that future steps that
want to deal with the same data set need not recompute it or reload it from disk. This
capability opens up use cases that distributed processing engines could not previously
approach. Spark is well suited for highly iterative algorithms that require multiple
passes over a data set, as well as reactive applications that quickly respond to user
queries by scanning large in-memory data sets.

Perhaps most importantly, Spark fits well with the aforementioned hard truths of data
science, acknowledging that the biggest bottleneck in building data applications is not
CPU, disk, or network, but analyst productivity. It perhaps cannot be overstated how
much collapsing the full pipeline, from preprocessing to model evaluation, into a sin-
gle programming environment can speed up development. By packaging an expres-
sive programming model with a set of analytic libraries under a REPL, it avoids the
round trips to IDEs required by frameworks like MapReduce and the challenges of
subsampling and moving data back and forth from HDFS required by frameworks
like R. The more quickly analysts can experiment with their data, the higher likeli-
hood they have of doing something useful with it.

With respect to the pertinence of munging and ETL, Spark strives to be something
closer to the Python of big data than the Matlab of big data. As a general-purpose
computation engine, its core APIs provide a strong foundation for data transforma-
tion independent of any functionality in statistics, machine learning, or matrix alge-
bra. Its Scala and Python APIs allow programming in expressive general-purpose
languages, as well as access to existing libraries.
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SparK’s in-memory caching makes it ideal for iteration both at the micro and macro
level. Machine learning algorithms that make multiple passes over their training set
can cache it in memory. When exploring and getting a feel for a data set, data scien-
tists can keep it in memory while they run queries, and easily cache transformed ver-
sions of it as well without suffering a trip to disk.

Last, Spark spans the gap between systems designed for exploratory analytics and sys-
tems designed for operational analytics. It is often quoted that a data scientist is
someone who is better at engineering than most statisticians and better at statistics
than most engineers. At the very least, Spark is better at being an operational system
than most exploratory systems and better for data exploration than the technologies
commonly used in operational systems. It is built for performance and reliability
from the ground up. Sitting atop the JVM, it can take advantage of many of the
operational and debugging tools built for the Java stack.

Spark boasts strong integration with the variety of tools in the Hadoop ecosystem. It
can read and write data in all of the data formats supported by MapReduce, allowing
it to interact with the formats commonly used to store data on Hadoop like Avro and
Parquet (and good old CSV). It can read from and write to NoSQL databases like
HBase and Cassandra. Its stream processing library, Spark Streaming, can ingest data
continuously from systems like Flume and Katka. Its SQL library, SparkSQL, can
interact with the Hive Metastore, and a project that is in progress at the time of this
writing seeks to enable Spark to be used as an underlying execution engine for Hive,
as an alternative to MapReduce. It can run inside YARN, Hadoop’s scheduler and
resource manager, allowing it to share cluster resources dynamically and to be man-
aged with the same policies as other processing engines like MapReduce and Impala.

Of course, Spark isn't all roses and petunias. While its core engine has progressed in
maturity even during the span of this book being written, it is still young compared to
MapReduce and hasn’t yet surpassed it as the workhorse of batch processing. Its spe-
cialized subcomponents for stream processing, SQL, machine learning, and graph
processing lie at different stages of maturity and are undergoing large API upgrades.
For example, MLIibs pipelines and transformer API model is in progress while this
book is being written. Its statistics and modeling functionality comes nowhere near
that of single machine languages like R. Its SQL functionality is rich, but still lags far
behind that of Hive.

About This Book

The rest of this book is not going to be about Spark’s merits and disadvantages. There
are a few other things that it will not be either. It will introduce the Spark program-
ming model and Scala basics, but it will not attempt to be a Spark reference or pro-
vide a comprehensive guide to all its nooks and crannies. It will not try to be a
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machine learning, statistics, or linear algebra reference, although many of the chap-
ters will provide some background on these before using them.

Instead, it will try to help the reader get a feel for what it’s like to use Spark for com-
plex analytics on large data sets. It will cover the entire pipeline: not just building and
evaluating models, but cleansing, preprocessing, and exploring data, with attention
paid to turning results into production applications. We believe that the best way to
teach this is by example, so, after a quick chapter describing Spark and its ecosystem,
the rest of the chapters will be self-contained illustrations of what it looks like to use
Spark for analyzing data from different domains.

When possible, we will attempt not to just provide a “solution,” but to demonstrate
the full data science workflow, with all of its iterations, dead ends, and restarts. This
book will be useful for getting more comfortable with Scala, more comfortable with
Spark, and more comfortable with machine learning and data analysis. However,
these are in service of a larger goal, and we hope that most of all, this book will teach
you how to approach tasks like those described at the beginning of this chapter. Each
chapter, in about 20 measly pages, will try to get as close as possible to demonstrating
how to build one of these pieces of data applications.
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CHAPTER 2

Introduction to Data Analysis with
Scala and Spark

Josh Wills

If you are immune to boredom, there is literally nothing you cannot accomplish.
—David Foster Wallace

Data cleansing is the first step in any data science project, and often the most impor-
tant. Many clever analyses have been undone because the data analyzed had funda-
mental quality problems or underlying artifacts that biased the analysis or led the
data scientist to see things that weren't really there.

Despite its importance, most textbooks and classes on data science either don’t cover
data cleansing or only give it a passing mention. The explanation for this is simple:
cleansing data is really boring. It is the tedious, dull work that you have to do before
you can get to the really cool machine learning algorithm that you've been dying to
apply to a new problem. Many new data scientists tend to rush past it to get their data
into a minimally acceptable state, only to discover that the data has major quality
issues after they apply their (potentially computationally intensive) algorithm and get
a nonsense answer as output.

Everyone has heard the saying “garbage in, garbage out” But there is something even
more pernicious: getting reasonable-looking answers from a reasonable-looking data
set that has major (but not obvious at first glance) quality issues. Drawing significant
conclusions based on this kind of mistake is the sort of thing that gets data scientists
fired.

One of the most important talents that you can develop as a data scientist is the abil-
ity to discover interesting and worthwhile problems in every phase of the data analyt-
ics lifecycle. The more skill and brainpower that you can apply early on in an analysis
project, the stronger your confidence will be in your final product.




Of course, it’s easy to say all that; it’s the data science equivalent of telling children to
eat their vegetables. It's much more fun to play with a new tool like Spark that lets us
build fancy machine learning algorithms, develop streaming data processing engines,
and analyze web-scale graphs. So what better way to introduce you to working with
data using Spark and Scala than a data cleansing exercise?

Scala for Data Scientists

Most data scientists have a favorite tool, like R or Python, for performing interactive
data munging and analysis. Although they’re willing to work in other environments
when they have to, data scientists tend to get very attached to their favorite tool, and
are always looking to find a way to carry out whatever work they can using it. Intro-
ducing them to a new tool that has a new syntax and a new set of patterns to learn can
be challenging under the best of circumstances.

There are libraries and wrappers for Spark that allow you to use it from R or Python.
The Python wrapper, which is called PySpark, is actually quite good, and we'll cover
some examples that involve using it in one of the later chapters in the book. But the
vast majority of our examples will be written in Scala, because we think that learning
how to work with Spark in the same language in which the underlying framework is
written has a number of advantages for you as a data scientist:

It reduces performance overhead.
Whenever we're running an algorithm in R or Python on top of a JVM-based
language like Scala, we have to do some work to pass code and data across the
different environments, and oftentimes, things can get lost in translation. When
you’re writing your data analysis algorithms in Spark with the Scala API, you can
be far more confident that your program will run as intended.

It gives you access to the latest and greatest.

All of Spark’s machine learning, stream processing, and graph analytics libraries
are written in Scala, and the Python and R bindings can get support for this new
functionality much later. If you want to take advantage of all of the features that
Spark has to offer (without waiting for a port to other language bindings), youre
going to need to learn at least a little bit of Scala, and if you want to be able to
extend those functions to solve new problems you encounter, you'll need to learn
a little bit more.

It will help you understand the Spark philosophy.
Even when you're using Spark from Python or R, the APIs reflect the underlying
philosophy of computation that Spark inherited from the language in which it
was developed—Scala. If you know how to use Spark in Scala, even if you pri-
marily use it from other languages, you’ll have a better understanding of the sys-
tem and will be in a better position to “think in Spark”
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There is another advantage to learning how to use Spark from Scala, but it’s a bit
more difficult to explain because of how different it is from any other data analysis
tool. If you've ever analyzed data that you pulled from a database in R or Python,
you're used to working with languages like SQL to retrieve the information you want,
and then switching into R or Python to manipulate and visualize the data you've
retrieved. Youre used to using one language (SQL) for retrieving and manipulating
lots of data stored in a remote cluster and another language (Python/R) for manipu-
lating and visualizing information stored on your own machine. If you've been doing
it for long enough, you probably don’t even think about it anymore.

With Spark and Scala, the experience is different, because you're using the same lan-
guage for everything. You're writing Scala to retrieve data from the cluster via Spark.
You're writing Scala to manipulate that data locally on your own machine. And then
—and this is the really neat part—you can send Scala code into the cluster so that you
can perform the exact same transformations that you performed locally on data that
is still stored in the cluster. It’s difficult to express how transformative it is to do all of
your data munging and analysis in a single environment, regardless of where the data
itself is stored and processed. It’s the sort of thing that you have to experience for
yourself to understand, and we wanted to be sure that our examples captured some of
that same magic feeling that we felt when we first started using Spark.

The Spark Programming Model

Spark programming starts with a data set or few, usually residing in some form of dis-
tributed, persistent storage like the Hadoop Distributed File System (HDFS). Writing
a Spark program typically consists of a few related steps:

o Defining a set of transformations on input data sets.

o Invoking actions that output the transformed data sets to persistent storage or
return results to the driver’s local memory.

o Running local computations that operate on the results computed in a dis-
tributed fashion. These can help you decide what transformations and actions to
undertake next.

Understanding Spark means understanding the intersection between the two sets of
abstractions the framework offers: storage and execution. Spark pairs these abstrac-
tions in an elegant way that essentially allows any intermediate step in a data process-
ing pipeline to be cached in memory for later use.

Record Linkage

The problem that we're going to study in this chapter goes by a lot of different names
in the literature and in practice: entity resolution, record deduplication, merge-and-
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purge, and list washing. Ironically, this makes it difficult to find all of the research
papers on this topic across the literature in order to get a good overview of solution
techniques; we need a data scientist to deduplicate the references to this data cleans-
ing problem! For our purposes in the rest of this chapter, we're going to refer to this
problem as record linkage.

The general structure of the problem is something like this: we have a large collection
of records from one or more source systems, and it is likely that some of the records
refer to the same underlying entity, such as a customer, a patient, or the location of a
business or an event. Each of the entities has a number of attributes, such as a name,
an address, or a birthday, and we will need to use these attributes to find the records
that refer to the same entity. Unfortunately, the values of these attributes aren't per-
fect: values might have different formatting, or typos, or missing information that
means that a simple equality test on the values of the attributes will cause us to miss a
significant number of duplicate records. For example, let’s compare the business list-
ings shown in Table 2-1.

Table 2-1. The challenge of record linkage

Name Address City State Phone

Josh’s Coffee Shop 1234 Sunset Boulevard ~ West Hollywood  CA (213)-555-1212
Josh Cofee 1234 Sunset Blvd West ~ Hollywood CA 555-1212
Coffee Chain #1234 1400 Sunset Blvd #2 Hollywood (A 206-555-1212

Coffee Chain Regional Office 1400 Sunset Blvd Suite 2 Hollywood California  206-555-1212

The first two entries in this table refer to the same small coffee shop, even though a
data entry error makes it look as if they are in two different cities (West Hollywood
versus Hollywood). The second two entries, on the other hand, are actually referring
to different business locations of the same chain of coffee shops that happen to share
a common address: one of the entries refers to an actual coffee shop, and the other
one refers to a local corporate office location. Both of the entries give the official
phone number of corporate headquarters in Seattle.

This example illustrates everything that makes record linkage so difficult: even
though both pairs of entries look similar to each other, the criteria that we use to
make the duplicate/not-duplicate decision is different for each pair. This is the kind
of distinction that is easy for a human to understand and identify at a glance, but is
difficult for a computer to learn.
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Getting Started: The Spark Shell and SparkContext

We're going to use a sample data set from the UC Irvine Machine Learning Reposi-
tory, which is a fantastic source for a variety of interesting (and free) data sets for
research and education. The data set we'll be analyzing was curated from a record
linkage study that was performed at a German hospital in 2010, and it contains sev-
eral million pairs of patient records that were matched according to several different
criteria, such as the patient’s name (first and last), address, and birthday. Each match-
ing field was assigned a numerical score from 0.0 to 1.0 based on how similar the
strings were, and the data was then hand-labeled to identify which pairs represented
the same person and which did not. The underlying values of the fields themselves
that were used to create the data set were removed to protect the privacy of the
patients, and numerical identifiers, the match scores for the fields, and the label for
each pair (match versus nonmatch) were published for use in record linkage research.

From the shell, let’s pull the data from the repository:

mkdir linkage

cd linkage/

curl -o donation.zip http://bit.ly/1Aoywaq
unzip donation.zip

unzip 'block_*.zip'

RV RV Ve IRV RV

If you have a Hadoop cluster handy, you can create a directory for the block data in
HDEFS and copy the files from the data set there:

$ hadoop fs -mkdir linkage
$ hadoop fs -put block_*.csv linkage

The examples and code in this book assume you have Spark 1.2.1 available. Releases
can be obtained from the Spark project site. Refer to the Spark documentation for
instructions on setting up a Spark environment, whether on a cluster or simply on
your local machine.

Now we'e ready to launch the spark-shell, which is a REPL (read-eval-print loop)
for the Scala language that also has some Spark-specific extensions. If you've never
seen the term REPL before, you can think of it as something similar to the R environ-
ment: it’s a place where you can define functions and manipulate data in the Scala
programming language.

If you have a Hadoop cluster that runs a version of Hadoop that supports YARN, you
can launch the Spark jobs on the cluster by using the value of yarn-client for the
Spark master:

$ spark-shell --master yarn-client

However, if you're just running these examples on your personal computer, you can
launch a local Spark cluster by specifying local[N], where N is the number of threads
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to run, or * to match the number of cores available on your machine. For example, to
launch a local cluster that uses eight threads on an eight-core machine:

$ spark-shell --master local[*]

The examples will work the same way locally. You will simply pass paths to local files,
rather than paths on HDFS beginning with hdfs://. Note that you will still need to
cp block_*.csv into your chosen local directory rather than use the directory con-
taining files you unzipped earlier, because it contains a number of other files besides
the .csv data files.

The rest of the examples in this book will not show a --master argument to spark-
shell, but you will typically need to specify this argument as appropriate for your
environment.

You may need to specify additional arguments to make the Spark shell fully utilize
your resources. For example, when running Spark with a local master, you can use - -
driver-memory 2g to let the single local process use 2 gigabytes of memory. YARN
memory configuration is more complex, and relevant options like --executor-
memory are explained in the Spark on YARN documentation.

After running one of these commands, you will see a lot of log messages from Spark
as it initializes itself, but you should also see a bit of ASCII art, followed by some
additional log messages and a prompt:

Welcome to

A /1
NN N
/| . /\_,_/_] /_/\_\ version 1.2.1
/_1
Using Scala version 2.10.4
(Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_67)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc.
scala>

If this is your first time using the Spark shell (or any Scala REPL, for that matter), you
should run the :help command to list available commands in the shell. :history
and :h? can be helpful for finding the names that you gave to variables or functions
that you wrote during a session but can’t seem to find at the moment. :paste can help
you correctly insert code from the clipboard—something you may well want to do
while following along with the book and its accompanying source code.

In addition to the note about :help, the Spark log messages indicated that “Spark
context available as sc” This is a reference to the SparkContext, which coordinates
the execution of Spark jobs on the cluster. Go ahead and type sc at the command line:
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N

resO: org.apache.spark.SparkContext =
org.apache.spark.SparkContext
The REPL will print the string form of the object, and for the SparkContext object,
this is simply its name plus the hexadecimal address of the object in memory (DEAD
BEEF is a placeholder; the exact value you see here will vary from run to run.)

It’s good that the sc variable exists, but what exactly do we do with it? SparkContext
is an object, and as an object, it has methods associated with it. We can see what those
methods are in the Scala REPL by typing the name of a variable, followed by a period,
followed by tab:

sc.[\t]

accumulable accumulableCollection
accumulator addFile

addJar addSparkListener
appName asInstanceOf
broadcast cancelAllJobs
cancelJobGroup clearCallsSite
clearFiles clearJars
clearJobGroup defaultMinPartitions
defaultMinSplits defaultParallelism
emptyRDD files

getAllPools getCheckpointDir
getConf getExecutorMemoryStatus
getExecutorStorageStatus getlLocalProperty
getPersistentRDDs getPoolForName
getRDDStorageInfo getSchedulingMode
hadoopConfiguration hadoopFile
hadoopRDD initLocalProperties
isInstanceOf isLocal

jars makeRDD

master newAPIHadoopFile
newAPIHadoopRDD objectFile
parallelize runApproximateJob
runJob sequenceFile
setCallSite setCheckpointDir
setJobDescription setJobGroup
startTime stop

submitJob tachyonFolderName
textFile toString

union version
wholeTextFiles

The SparkContext has a long list of methods, but the ones that we’re going to use
most often allow us to create Resilient Distributed Datasets, or RDDs. An RDD is
SparK’s fundamental abstraction for representing a collection of objects that can be
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distributed across multiple machines in a cluster. There are two ways to create an
RDD in Spark:

Using the SparkContext to create an RDD from an external data source, like a
file in HDFS, a database table via JDBC, or a local collection of objects that we
create in the Spark shell.

Performing a transformation on one or more existing RDDs, like filtering
records, aggregating records by a common key, or joining multiple RDDs
together.

RDDs are a convenient way to describe the computations that we want to perform on
our data as a sequence of small, independent steps.

Resilient Distributed Datasets

An RDD is laid out across the cluster of machines as a collection of partitions, each
including a subset of the data. Partitions define the unit of parallelism in Spark. The
framework processes the objects within a partition in sequence, and processes multi-
ple partitions in parallel. One of the simplest ways to create an RDD is to use the
parallelize method on SparkContext with a local collection of objects:

val rdd = sc.parallelize(Array(1, 2, 2, 4), 4)

rdd: org.apache.spark.rdd.RDD[Int] = ...

The first argument is the collection of objects to parallelize. The second is the number
of partitions. When the time comes to compute the objects within a partition, Spark
fetches a subset of the collection from the driver process.

To create an RDD from a text file or directory of text files residing in a distributed
filesystem like HDFS, we can pass the name of the file or directory to the textFile
method:

val rdd2 = sc.textFile("hdfs:///some/path.txt")

rdd2: org.apache.spark.rdd.RDD[String] = ...

When youre running Spark in local mode, the textFile method can access paths
that reside on the local filesystem. If Spark is given a directory instead of an individ-
ual file, it will consider all of the files in that directory as part of the given RDD.
Finally, note that no actual data has been read by Spark or loaded into memory yet,
either on our client machine or the cluster. When the time comes to compute the
objects within a partition, Spark reads a section (also known as a split) of the input
file, and then applies any subsequent transformations (filtering, aggregation, etc.) that
we defined via other RDDs.
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Our record linkage data is stored in a text file, with one observation on each line. We
will use the textFile method on SparkContext to get a reference to this data as an
RDD:

val rawblocks = sc.textFile("linkage")

rawblocks: org.apache.spark.rdd.RDD[String] = ...

There are a few things happening on this line that are worth going over. First, we're
declaring a new variable called rawblocks. As we can see from the shell, the raw
blocks variable has a type of RDD[String], even though we never specified that type
information in our variable declaration. This is a feature of the Scala programming
language called type inference, and it saves us a lot of typing when were working with
the language. Whenever possible, Scala figures out what type a variable has based on
its context. In this case, Scala looks up the return type from the textFile function on
the SparkContext object, sees that it returns an RDD[String], and assigns that type to
the rawblocks variable.

Whenever we create a new variable in Scala, we must preface the name of the variable
with either val or var. Variables that are prefaced with val are immutable, and can-
not be changed to refer to another value once they are assigned, whereas variables
that are prefaced with var can be changed to refer to different objects of the same
type. Watch what happens when we execute the following code:

rawblocks = sc.textFile("linkage")
<console>: error: reassignment to val

var varblocks = sc.textFile("linkage")

varblocks = sc.textFile("linkage")
Attempting to reassign the linkage data to the rawblocks val threw an error, but
reassigning the varblocks var is fine. Within the Scala REPL, there is an exception to
the reassignment of vals, because we are allowed to redeclare the same immutable
variable, like the following:

val rawblocks = sc.textFile("linakge")
val rawblocks = sc.textFile("linkage")

In this case, no error is thrown on the second declaration of rawblocks. This isn't typ-
ically allowed in normal Scala code, but it’s fine to do in the shell, and we will make
extensive use of this feature throughout the examples in the book.
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The REPL and Compilation

In addition to its interactive shell, Spark also supports compiled applications. We typ-
ically recommend using Maven for compiling and managing dependencies. The Git-
Hub repository included with this book holds a self-contained Maven project setup
under the simplesparkproject/ directory to help you with getting started.

With both the shell and compilation as options, which should you use when testing
out and building a data pipeline? It is often useful to start working entirely in the
REPL. This enables quick prototyping, faster iteration, and less lag time between ideas
and results. However, as the program builds in size, maintaining a monolithic file of
code become more onerous, and Scala interpretation eats up more time. This can be
exacerbated by the fact that, when you're dealing with massive data, it is not uncom-
mon for an attempted operation to cause a Spark application to crash or otherwise
render a SparkContext unusable. This means that any work and code typed in so far
becomes lost. At this point, it is often useful to take a hybrid approach. Keep the fron-
tier of development in the REPL, and, as pieces of code harden, move them over into
a compiled library. You can make the compiled JAR available to spark-shell by pass-
ing it to the --jars property. When done right, the compiled JAR only needs to be
rebuilt infrequently, and the REPL allows for fast iteration on code and approaches
that still need ironing out.

What about referencing external Java and Scala libraries? To compile code that refer-
ences external libraries, you need to specify the libraries inside the projects Maven
configuration (pom.xml). To run code that accesses external libraries, you need to
include the JARs for these libraries on the classpath of SparK’s processes. A good way
to make this happen is to use Maven to package a JAR that includes all of your appli-
cations dependencies. You can then reference this JAR when starting the shell by
using the - -jars property. The advantage of this approach is the dependencies only
need to be specified once: in the Maven pom.xml. Again, the simplesparkproject/
directory in the GitHub repository shows you how to accomplish this.

SPARK-5341 also tracks development on the capability to specify Maven repositories
directly when invoking spark-shell and have the JARs from these repositories auto-
matically show up on Spark’s classpath.

Bringing Data from the Cluster to the Client

RDDs have a number of methods that allow us to read data from the cluster into the
Scala REPL on our client machine. Perhaps the simplest of these is first, which
returns the first element of the RDD into the client:
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rawblocks.first
res: String = "id_1","id_2","cmp_fname_c1","cmp_fname_c2",...

The first method can be useful for sanity checking a data set, but were generally
interested in bringing back larger samples of an RDD into the client for analysis.
When we know that an RDD only contains a small number of records, we can use the
collect method to return all of the contents of an RDD to the client as an array.
Because we don’t know how big the linkage data set is just yet, we'll hold off on doing
this right now.

We can strike a balance between first and collect with the take method, which
allows us to read a given number of records into an array on the client. Let’s use take
to get the first 10 lines from the linkage data set:

val head = rawblocks.take(10)
head: Array[String] = Array("id_1","id_2","cmp_fname_c1",...
head.length

res: Int = 10

Actions

The act of creating an RDD does not cause any distributed computation to take place
on the cluster. Rather, RDDs define logical data sets that are intermediate steps in a
computation. Distributed computation occurs upon invoking an action on an RDD.
For example, the count action returns the number of objects in an RDD:

rdd.count()

14/09/10 17:36:09 INFO SparkContext: Starting job: count ...
14/09/10 17:36:09 INFO SparkContext: Job finished: count ...
res0: Long = 4

The collect action returns an Array with all the objects from the RDD. This Array
resides in local memory, not on the cluster:

rdd.collect()

14/09/29 00:58:09 INFO SparkContext: Starting job: collect ...
14/09/29 00:58:09 INFO SparkContext: Job finished: collect ...
res2: Array[(Int, Int)] = Array((4,1), (1,1), (2,2))

Actions need not only return results to the local process. The saveAsTextFile action
saves the contents of an RDD to persistent storage, such as HDES:

rdd.saveAsTextFile("hdfs:///user/ds/mynumbers")
14/09/29 00:38:47 INFO SparkContext: Starting job:
saveAsTextFile ...

14/09/29 00:38:49 INFO SparkContext: Job finished:
saveAsTextFile ...
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The action creates a directory and writes out each partition as a file within it. From
the command line outside of the Spark shell:

hadoop fs -1s /user/ds/mynumbers

-rw-r--r-- 3 ds supergroup 0 2014-09-29 00:38 myfile.txt/_SUCCESS
-W-T--T-- 3 ds supergroup 4 2014-09-29 00:38 myfile.txt/part-00000
-rw-r--r-- 3 ds supergroup 4 2014-09-29 00:38 myfile.txt/part-00001

Remember that textFile can accept a directory of text files as input, meaning that a
future Spark job could refer to mynumbers as an input directory.

The raw form of data that is returned by the Scala REPL can be somewhat hard to
read, especially for arrays that contain more than a handful of elements. To make it
easier to read the contents of an array, we can use the foreach method in conjunction
with println to print out each value in the array on its own line:

head.foreach(println)

"id_1","id_2","cmp_fname_c1","cmp_fname_c2","cmp_lname_c1","cmp_lname_c2",
"cmp_sex","cmp_bd","cmp_bm","cmp_by","cmp_plz","is_match"
37291,53113,0.833333333333333,7,1,7,1,1,1,1,0,TRUE

39086,47614,1,2,1,?,1,1,1,1,1, TRUE

70031,70237,1,?,1,?,1,1,1,1,1, TRUE
84795,97439,1,?,1,?,1,1,1,1,1, TRUE
36950,42116,1,2,1,1,1,1,1,1,1, TRUE
42413,48491,1,?,1,7,1,1,1,1,1,TRUE
25965,64753,1,?,1,2,1,1,1,1,1, TRUE
49451,90407,1,?,1,2,1,1,1,1,0,TRUE
39932,40902,1,7,1,?,1,1,1,1,1, TRUE

The foreach(println) pattern is one that we will frequently use in this book. It’s an
example of a common functional programming pattern, where we pass one function
(println) as an argument to another function (foreach) in order to perform some
action. This kind of programming style will be familiar to data scientists who have
worked with R and are used to processing vectors and lists by avoiding for loops and
instead using higher-order functions like apply and lapply. Collections in Scala are
similar to lists and vectors in R in that we generally want to avoid for loops and
instead process the elements of the collection using higher-order functions.

Immediately, we see a couple of issues with the data that we need to address before we
begin our analysis. First, the CSV files contain a header row that we’ll want to filter
out from our subsequent analysis. We can use the presence of the "id_1" string in the
row as our filter condition, and write a small Scala function that tests for the presence
of that string inside of the line:

def isHeader(line: String) = line.contains("id_1")
isHeader: (line: String)Boolean
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Like Python, we declare functions in Scala using the keyword def. Unlike Python, we
have to specify the types of the arguments to our function; in this case, we have to
indicate that the line argument is a String. The body of the function, which uses the
contains method for the String class to test whether or not the characters "id_1"
appear anywhere in the string, comes after the equals sign. Even though we had to
specify a type for the 1ine argument, note that we did not have to specify a return
type for the function, because the Scala compiler was able to infer the type based on
its knowledge of the String class and the fact that the contains method returns true
or false.

Sometimes, we will want to specify the return type of a function ourselves, especially
for long, complex functions with multiple return statements, where the Scala com-
piler can’t necessarily infer the return type itself. We might also want to specify a
return type for our function in order to make it easier for someone else reading our
code later to be able to understand what the function does without having to reread
the entire method. We can declare the return type for the function right after the
argument list, like this:

def isHeader(line: String): Boolean = {

line.contains("id_1")

}

isHeader: (line: String)Boolean
We can test our new Scala function against the data in the head array by using the
filter method on Scala’s Array class and then printing the results:

head.filter(isHeader).foreach(println)

"id_1","1d_2","cmp_fname_c1","cmp_fname_c2","cmp_lname_c1",...

It looks like our isHeader method works correctly; the only result that was returned
from applying it to the head array via the filter method was the header line itself.
But of course, what we really want to do is get all of the rows in the data except the
header rows. There are a few ways that we can do this in Scala. Our first option is to
take advantage of the filterNot method on the Array class:

head.filterNot(isHeader).length
res: Int = 9

We could also use Scala’s support for anonymous functions to negate the isHeader
function from inside filter:

head.filter(x => !isHeader(x)).length
res: Int = 9

Anonymous functions in Scala are somewhat like Python’s lambda functions. In this
case, we defined an anonymous function that takes a single argument called x and
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passes x to the isHeader function and returns the negation of the result. Note that we
did not have to specify any type information for the x variable in this instance; the
Scala compiler was able to infer that x is a String from the fact that head is an
Array[String].

There is nothing that Scala programmers hate more than typing, so Scala has lots of
little features that are designed to reduce the amount of typing they have to do. For
example, in our anonymous function definition, we had to type the characters x =>in
order to declare our anonymous function and give its argument a name. For simple
anonymous functions like this one, we don't even have to do that; Scala will allow us
to use an underscore (_) to represent the argument to the anonymous function, so
that we can save four characters:

head.filter(!isHeader(_)).length
res: Int = 9
Sometimes, this abbreviated syntax makes the code easier to read because it avoids

duplicating obvious identifiers. Sometimes, this shortcut just makes the code cryptic.
The code listings use one or the other according to our best judgment.

Shipping Code from the Client to the Cluster

We just saw a wide variety of ways to write and apply functions to data in Scala. All of
the code that we executed was done against the data inside the head array, which was
contained on our client machine. Now were going to take the code that we just wrote
and apply it to the millions of linkage records contained in our cluster and repre-
sented by the rawblocks RDD in Spark.

Here’s what the code looks like to do this; it should feel eerily familiar to you:
val noheader = rawblocks.filter(x => !isHeader(x))

The syntax that we used to express the filtering computation against the entire data
set on the cluster is exactly the same as the syntax we used to express the filtering
computation against the array of data in head on our local machine. We can use the
first method on the noheader RDD to verify that the filtering rule worked correctly:

noheader.first

res: String = 37291,53113,0.833333333333333,7,1,7,1,1,1,1,0,TRUE

This is incredibly powerful. It means that we can interactively develop and debug our
data-munging code against a small amount of data that we sample from the cluster,
and then ship that code to the cluster to apply it to the entire data set when were
ready to transform the entire data set. Best of all, we never have to leave the shell.
There really isn't another tool that gives you this kind of experience.
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In the next several sections, we'll use this mix of local development and testing and
cluster computation to perform more munging and analysis of the record linkage
data, but if you need to take a moment to drink in the new world of awesome that
you have just entered, we certainly understand.

Structuring Data with Tuples and Case Classes

Right now, the records in the head array and the noheader RDD are all strings of
comma-separated fields. To make it a bit easier to analyze this data, well need to
parse these strings into a structured format that converts the different fields into the
correct data type, like an integer or double.

If we look at the contents of the head array (both the header line and the records
themselves), we can see the following structure in the data:

o The first two fields are integer IDs that represent the patients that were matched
in the record.

o The next nine values are (possibly missing) double values that represent match
scores on different fields of the patient records, such as their names, birthdays,
and location.

o The last field is a boolean value (TRUE or FALSE) indicating whether or not the
pair of patient records represented by the line was a match.

Like Python, Scala has a built-in tuple type that we can use to quickly create pairs,
triples, and larger collections of values of different types as a simple way to represent
records. For the time being, let’s parse the contents of each line into a tuple with four
values: the integer ID of the first patient, the integer ID of the second patient, an array
of nine doubles representing the match scores (with NaN values for any missing
fields), and a boolean field that indicates whether or not the fields matched.

Unlike Python, Scala does not have a built-in method for parsing comma-separated
strings, so we'll need to do a bit of the legwork ourselves. We can experiment with our
parsing code in the Scala REPL. First, let’s grab one of the records from the head
array:

val line = head(5)
val pieces = line.split(',")

pieces: Array[String] = Array(36950, 42116, 1, ?,...

Note that we accessed the elements of the head array using parentheses instead of
brackets; in Scala, accessing array elements is a function call, not a special operator.
Scala allows classes to define a special function named apply that is called when we
treat an object as if it were a function, so head(5) is the same thing as
head.apply(5).
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We broke up the components of line using the split function from Java’s String
class, returning an Array[String] that we named pieces. Now we'll need to convert
the individual elements of pieces to the appropriate type using Scala’s type conver-
sion functions:

val 1d1 = pieces(0).toInt
val 1d2 = pieces(1).toInt
val matched = pieces(11).toBoolean

Converting the id variables and the matched boolean variable is pretty straightfor-
ward once we know about the appropriate toXYZ conversion functions. Unlike the
contains method and split method that we worked with earlier, the toInt and
toBoolean methods aren’t defined on Java’s String class. Instead, they are defined in
a Scala class called StringOps that uses one of Scala’s more powerful (and arguably
somewhat dangerous) features: implicit type conversion. Implicits work like this: if you
call a method on a Scala object, and the Scala compiler does not see a definition for
that method in the class definition for that object, the compiler will try to convert
your object to an instance of a class that does have that method defined. In this case,
the compiler will see that Java’s String class does not have a toInt method defined,
but the StringOps class does, and that the StringOps class has a method that can
convert an instance of the String class into an instance of the StringOps class. The
compiler silently performs the conversion of our String object into a StringOps
object, and then calls the toInt method on the new object.

Developers who write libraries in Scala (including the core Spark developers) really
like implicit type conversion; it allows them to enhance the functionality of core
classes like String that are otherwise closed to modification. For a user of these tools,
implicit type conversions are more of a mixed bag, because they can make it difficult
to figure out exactly where a particular class method is defined. Nonetheless, we're
going to encounter implicit conversions throughout our examples, so it’s best that we
get used to them now.

We still need to convert the double-valued score fields—all nine of them. To convert
them all at once, we can use the slice method on the Scala Array class to extract a
contiguous subset of the array, and then use the map higher-order function to convert
each element of the slice from a String to a Double:

val rawscores = pieces.slice(2, 11)
rawscores.map(s => s.toDouble)

java.lang.NumberFormatException: For input string: "?"
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:1241)
at java.lang.Double.parseDouble(Double.java:540)
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Oops! We forgot about the “?” entry in the rawscores array, and the toDouble
method in StringOps didn’t know how to convert it to a Double. Let’s write a function
that will return a NaN value whenever it encounters a “?”, and then apply it to our
rawscores array:

def toDouble(s: String) = {
if ("?".equals(s)) Double.NaN else s.toDouble

}

val scores = rawscores.map(toDouble)
scores: Array[Double] = Array(1.0, NaN, 1.0, 1.0, ...

There. Much better. Let’s bring all of this parsing code together into a single function
that returns all of the parsed values in a tuple:

def parse(line: String) = {
val pieces = line.split(',")
val id1 = pieces(0).toInt
val 1d2 = pileces(1).toInt
val scores = pieces.slice(2, 11).map(toDouble)
val matched = pieces(11).toBoolean
(id1, 1d2, scores, matched)
}
val tup = parse(line)
We can retrieve the values of individual fields from our tuple by using the positional
functions, starting from _1, or via the productElement method, which starts counting
from 0. We can also get the size of any tuple via the productArity method:

tup._1
tup.productElement(0)
tup.productArity

Although it is very easy and convenient to create tuples in Scala, addressing all of the
elements of a record by position instead of by a meaningful name can make our code
difficult to understand. What we would really like is a way of creating a simple record
type that would allow us to address our fields by name, instead of by position. Fortu-
nately, Scala provides a convenient syntax for creating these records, called case
classes. A case class is a simple type of immutable class that comes with implementa-
tions of all of the basic Java class methods, like toString, equals, and hashCode,
which makes them very easy to use. Lets declare a case class for our record linkage
data:

case class MatchData(id1: Int, id2: Int,
scores: Array[Double], matched: Boolean)

Now we can update our parse method to return an instance of our MatchData case
class, instead of a tuple:

def parse(line: String) = {
val pileces = line.split(',")
val 1d1 = pileces(0).toInt
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val 1d2 = pileces(1).toInt
val scores = pieces.slice(2, 11).map(toDouble)
val matched = pieces(11).toBoolean
MatchData(id1, 1d2, scores, matched)

}

val md = parse(line)
There are two things to note here: first, we do not need to specify the keyword new in
front of MatchData when we create a new instance of our case class (another example
of how much Scala developers hate typing). Second, our MatchData class comes with
a built-in toString implementation that works great for every field except for the
scores array.

We can access the fields of the MatchData case class by their names now:

md.matched

md.id1
Now that we have our parsing function tested on a single record, let’s apply it to all of
the elements in the head array, except for the header line:

val mds = head.filter(x => !isHeader(x)).map(x => parse(x))

Yep, that worked. Now, let’s apply our parsing function to the data in the cluster by
calling the map function on the noheader RDD:

val parsed = noheader.map(line => parse(line))

Remember that unlike the mds array that we generated locally, the parse function has
not actually been applied to the data on the cluster yet. Once we make a call to the
parsed RDD that requires some output, the parse function will be applied to convert
each String in the noheader RDD into an instance of our MatchData class. If we
make another call to the parsed RDD that generates a different output, the parse
function will be applied to the input data again.

This isn’t an optimal use of our cluster resources; after the data has been parsed once,
wed like to save the data in its parsed form on the cluster so that we don’t have to re-
parse it every time we want to ask a new question of the data. Spark supports this use
case by allowing us to signal that a given RDD should be cached in memory after it is
generated by calling the cache method on the instance. Let’s do that now for the
parsed RDD:

parsed.cache()
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Caching

Although the contents of RDDs are transient by default, Spark provides a mechanism
for persisting the data in an RDD. After the first time an action requires computing
such an RDD’s contents, they are stored in memory or disk across the cluster. The
next time an action depends on the RDD, it need not be recomputed from its depen-
dencies. Its data is returned from the cached partitions directly:

cached.cache()
cached. count()
cached. take(10)

The call to cache indicates that the RDD should be stored the next time it’s computed.
The call to count computes it initially. The take action returns the first 10 elements of
the RDD as a local Array. When take is called, it accesses the cached elements of
cached instead of recomputing them from their dependencies.

Spark defines a few different mechanisms, or StoragelLevel values, for persisting
RDDs. rdd.cache() is shorthand for rdd.persist(StorageLevel.MEMORY), which
stores the RDD as unserialized Java objects. When Spark estimates that a partition
will not fit in memory, it simply will not store it, and it will be recomputed the next
time it’s needed. This level makes the most sense when the objects will be referenced
frequently and/or require low-latency access, because it avoids any serialization over-
head. Its drawback is that it takes up larger amounts of memory than its alternatives.
Also, holding on to many small objects puts pressure on Java’s garbage collection,
which can result in stalls and general slowness.

Spark also exposes a MEMORY_SER storage level, which allocates large byte buffers in
memory and serializes the RDD contents into them. When we use the right format
(more on this in a bit), serialized data usually takes up two to five times less space
than its raw equivalent.

Spark can use disk for caching RDDs as well. The MEMORY_AND_DISK and MEM
ORY_AND_DISK_SER are similar to the MEMORY and MEMORY_SER storage levels, respec-
tively. For the latter two, if a partition will not fit in memory, it is simply not stored,
meaning that it must be recomputed from its dependencies the next time an action
uses it. For the former, Spark spills partitions that will not fit in memory to disk.

Deciding when to cache data can be an art. The decision typically involves trade-offs
between space and speed, with the specter of garbage collecting looming overhead to
occasionally confound things further. In general, RDDs should be cached when they
are likely to be referenced by multiple actions and are expensive to regenerate.
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Aggregations

Thus far in the chapter, we've focused on the similar ways that we process data that is
on our local machine as well as on the cluster using Scala and Spark. In this section,
we'll start to explore some of the differences between the Scala APIs and the Spark
ones, especially as they relate to grouping and aggregating data. Most of the differ-
ences are about efficiency: when we're aggregating large data sets that are distributed
across multiple machines, were more concerned with transmitting information effi-
ciently than we are when all of the data that we need is available in memory on a sin-
gle machine.

To illustrate some of the differences, let’s start by performing a simple aggregation
over our MatchData on both our local client and on the cluster with Spark in order to
calculate the number of records that are matches versus the number of records that
are not. For the local MatchData records in the mds array, well use the groupBy
method to create a Scala Map[Boolean, Array[MatchData]], where the key is based
on the matched field in the MatchData class:

val grouped = mds.groupBy(md => md.matched)

Once we have the values in the grouped variable, we can get the counts by calling the
mapValues method on grouped, which is like a map method that only operates on the
values in the Map object, and get the size of each array:

grouped.mapValues(x => x.size).foreach(println)

As we can see, all of the entries in our local data are matches, so the only entry
returned from the map is the tuple (true,9). Of course, our local data is just a sam-
ple of the overall data in the linkage data set; when we apply this grouping to the
overall data, we expect to find lots of nonmatches.

When we are performing aggregations on data in the cluster, we always have to be
mindful of the fact that the data we are analyzing is stored across multiple machines,
and so our aggregations will require moving data over the network that connects the
machines. Moving data across the network requires a lot of computational resources:
including determining which machines each record will be transferred to, serializing
the data, compressing it, sending it over the wire, decompressing and then serializing
the results, and finally, performing computations on the aggregated data. To do this
quickly, it is important that we try to minimize the amount of data that we move
around; the more filtering that we can do to the data before performing an aggrega-
tion, the faster we will get an answer to our question.
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Creating Histograms

Let’s start out by creating a simple histogram to count how many of the MatchData
records in parsed have a value of true or false for the matched field. Fortunately, the
RDD[T] class defines an action called countByValue that performs this kind of com-
putation very efficiently and returns the results to the client as a Map[T,Long]. Calling
countByValue on a projection of the matched field from MatchData will execute a
Spark job and return the results to the client:

val matchCounts = parsed.map(md => md.matched).countByValue()

Whenever we create a histogram or other grouping of values in the Spark client, espe-
cially when the categorical variable in question contains a large number of values, we
want to be able to look at the contents of the histogram sorted in different ways, such
as by the alphabetical ordering of the keys, or by the numerical counts of the values in
ascending or descending order. Although our matchCounts Map only contains the
keys true and false, let’s take a brief look at how to order its contents in different
ways.

Scala’s Map class does not have methods for sorting its contents on the keys or the val-
ues, but we can convert a Map into a Scala Seq type, which does provide support for
sorting. Scala’s Seq is similar to Java’s List interface, in that it is an iterable collection
that has a defined length and the ability to look up values by index:

val matchCountsSeq = matchCounts.toSeq

Scala Collections

Scala has an extensive library of collections, including lists, sets, maps, and arrays.
You can easily convert from one collection type to another using methods like toL
ist, toSet, and toArray.

Our matchCountsSeq sequence is made up of elements of type (String, Long), and
we can use the sortBy method to control which of the indices we use for sorting:

matchCountsSeq.sortBy(_._1).foreach(println)

(false,5728201)
(true,20931)

matchCountsSeq.sortBy(_._2).foreach(println)

(true,20931)
(false,5728201)
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By default, the sortBy function sorts numeric values in ascending order, but it’s often
more useful to look at the values in a histogram in descending order. We can reverse
the sort order of any type by calling the reverse method on the sequence before we
print it out:

matchCountsSeq.sortBy(_._2).reverse.foreach(println)

(false,5728201)

(true,20931)
When we look at the match counts across the entire data set, we see a significant
imbalance between positive and negative matches; less than 0.4% of the input pairs
actually match. The implication of this imbalance for our record linkage model is
profound: it’s likely that any function of the numeric match scores we come up with
will have a significant false positive rate (i.e., many pairs of records will look like
matches even though they actually are not).

Summary Statistics for Continuous Variables

Spark’s countByValue action is a great way to create histograms for relatively low car-
dinality categorical variables in our data. But for continuous variables, like the match
scores for each of the fields in the patient records, wed like to be able to quickly get a
basic set of statistics about their distribution, like the mean, standard deviation, and
extremal values like the maximum and minimum.

For instances of RDD[Double], the Spark APIs provide an additional set of actions via
implicit type conversion, in the same way we saw that the toInt method is provided
for the String class. These implicit actions allow us to extend the functionality of an
RDD in useful ways when we have additional information about how to process the
values it contains.

Pair RDDs

In addition to the RDD[Double] implicit actions, Spark supports implicit type conver-
sion for the RDD[Tuple2[K, V]] type that provides methods for performing per-key
aggregations like groupByKey and reduceByKey, as well as methods that enable join-
ing multiple RDDs that have keys of the same type.

One of the implicit actions for RDD[Double], stats, will provide us with exactly the
summary statistics about the values in the RDD that we want. Let’s try it now on the
first value in the scores array inside of the MatchData records in the parsed RDD:

parsed.map(md => md.scores(0)).stats()
StatCounter = (count: 5749132, mean: NaN, stdev: NaN, max: NaN, min: NaN)
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Unfortunately, the missing NaN values that we are using as placeholders in our arrays
are tripping up Spark’s summary statistics. Even more unfortunate, Spark does not
currently have a nice way of excluding and/or counting up the missing values for us,
so we have to filter them out manually using the isNaN function from Java’s Double
class:

import java.lang.Double.isNaN

parsed.map(md => md.scores(0)).filter(!isNaN(_)).stats()

StatCounter = (count: 5748125, mean: 0.7129, stdev: 0.3887, max: 1.0, min: 0.0)
If we were so inclined, we could get all of the statistics for the values in the scores
array this way, using Scala’s Range construct to create a loop that would iterate
through each index value and compute the statistics for the column, like so:

val stats = (0 until 9).map(i => {

parsed.map(md => md.scores(i)).filter(!isNaN(_)).stats()
1))

stats(1)
StatCounter = (count: 103698, mean: 0.9000, stdev: 0.2713, max: 1.0, min: 0.0)
stats(8)

StatCounter = (count: 5736289, mean: 0.0055, stdev: 0.0741, max: 1.0, min: 0.0)

Creating Reusable Code for Computing Summary
Statistics

Although this approach gets the job done, it’s pretty inefficient; we have to reprocess
all of the records in the parsed RDD nine times to calculate all of the statistics. As our
data sets get larger and larger, the cost of reprocessing all of the data over and over
again goes up and up, even when we are caching intermediate results in memory to
save on some of the processing time. When were developing distributed algorithms
with Spark, it can really pay off to invest some time in figuring out how we can com-
pute all of the answers we might need in as few passes over the data as possible. In
this case, let’s figure out a way to write a function that will take in any RDD[Array[Dou
ble]] we give it and return to us an array that includes both the count of missing
values for each index and a StatCounter object with the summary statistics of the
nonmissing values for each index.

Whenever we expect that some analysis task we need to perform will be useful again
and again, it's worth spending some time to develop our code in a way that makes it
easy for other analysts to use the solution we come up in their own analyses. To do
this, we can write Scala code in a separate file that we can then load into the Spark

Creating Reusable Code for Computing Summary Statistics | 31



shell for testing and validation, and we can then share that file with others once we
know that it works.

This is going to require a jump in code complexity. Instead of dealing in individual
method calls and functions of a line or two, we need to create proper Scala classes and
APIs, and that means using more complex language features.

For our missing value analysis, our first task is to write an analogue of Spark’s Stat
Counter class that correctly handles missing values. In a separate shell on your client
machine, open a file named StatsWithMissing.scala, and copy the following class defi-
nitions into the file. We'll walk through the individual fields and methods defined
here after the code:

import org.apache.spark.util.StatCounter

class NAStatCounter extends Serializable {
val stats: StatCounter = new StatCounter()
var missing: Long = 0

def add(x: Double): NAStatCounter = {
if (java.lang.Double.isNaN(x)) {
missing += 1
} else {
stats.merge(x)

}
this
}

def merge(other: NAStatCounter): NAStatCounter = {
stats.merge(other.stats)
missing += other.missing
this

}

override def toString = {
"stats: " + stats.toString + " NaN: " + missing
}
}

object NAStatCounter extends Serializable {
def apply(x: Double) = new NAStatCounter().add(x)
}

Our NAStatCounter class has two member variables: an immutable StatCounter
instance named stats, and a mutable Long variable named missing. Note that were
marking this class as Serializable because we will be using instances of this class

inside Spark RDDs, and our job will fail if Spark cannot serialize the data contained
inside an RDD.

32 | Chapter2: Introduction to Data Analysis with Scala and Spark



The first method in the class, add, allows us to bring a new Double value into the sta-
tistics tracked by the NAStatCounter, either by recording it as missing if it is NaN or
adding it to the underlying StatCounter if it is not. The merge method incorporates
the statistics that are tracked by another NAStatCounter instance into the current
instance. Both of these methods return this so that they can be easily chained
together.

Finally, we override the toString method on our NAStatCounter class so that we can
easily print out its contents in the Spark shell. Whenever we override a method from
a parent class in Scala, we need to prefix the method definition with the override
keyword. Scala allows a much richer set of method override patterns than Java does,
and the override keyword helps Scala keep track of which method definition should
be used for any given class.

Along with the class definition, we define a companion object for NAStatCounter. Sca-
la’s object keyword is used to declare a singleton that can provide helper methods for
a class, analogous to the static method definitions on a Java class. In this case, the
apply method provided by the companion object creates a new instance of the NAS
tatCounter class and adds the given Double value to the instance before returning it.
In Scala, apply methods have some special syntactic sugar that allows us to call them
without having to type them out explicitly; for example, these two lines do exactly the
same thing:

val nastats = NAStatCounter.apply(17.29)
val nastats = NAStatCounter(17.29)

Now that we have our NAStatCounter class defined, let’s bring it into the Spark shell
by closing and saving the StatsWithMissing.scala file and using the load command:

:load StatsWithMissing.scala

Loading StatsWithMissing.scala...

import org.apache.spark.util.StatCounter

defined class NAStatCounter

defined module NAStatCounter

warning: previously defined class NAStatCounter is not a companion to object
NAStatCounter. Companions must be defined together; you may wish to use
:paste mode for this.

We get a warning about our companion object not being valid in the incremental
compilation mode that the shell uses, but we can verify that a few examples work as
we expect:

val nasl = NAStatCounter(10.0)
nasl.add(2.1)

val nas2 = NAStatCounter(Double.NaN)
nasl.merge(nas2)
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Let’s use our new NAStatCounter class to process the scores in the MatchData records
within the parsed RDD. Each MatchData instance contains an array of scores of type
Array[Double]. For each entry in the array, we would like to have an NAStatCounter
instance that tracks how many of the values in that index are NaN along with the regu-
lar distribution statistics for the nonmissing values. Given an array of values, we can
use the map function to create an array of NAStatCounter objects:

val arr = Array(1.0, Double.NaN, 17.29)
val nas = arr.map(d => NAStatCounter(d))

Every record in our RDD will have its own Array[Double], which we can translate
into an RDD where each record is an Array[NAStatCounter]. Let’s go ahead and do
that now against the data in the parsed RDD on the cluster:

val nasRDD = parsed.map(md => {
md.scores.map(d => NAStatCounter(d))

H
We now need an easy way to aggregate multiple instances of Array[NAStatCounter]
into a single Array[NAStatCounter]. We can combine two arrays of the same length
using zip. This produces a new Array of the corresponding pairs of elements in the
two arrays. Think of a zipper pairing up two corresponding strips of teeth into one
fastened strip of interlocked teeth. This can be followed by a map method that uses the
merge function on the NAStatCounter class to combine the statistics from both
objects into a single instance:

val nasl = Array(1.0, Double.NaN).map(d => NAStatCounter(d))
val nas2 = Array(Double.NaN, 2.0).map(d => NAStatCounter(d))
val merged = nasl.zip(nas2).map(p => p._1.merge(p._2))

We can even use Scala’s case syntax to break the pair of elements in the zipped array

into nicely named variables, instead of using the _1 and _2 methods on the Tuple2
class:

val merged = nasl.zip(nas2).map { case (a, b) => a.merge(b) }

To perform this same merge operation across all of the records in a Scala collection,
we can use the reduce function, which takes an associative function that maps two
arguments of type T into a single return value of type T and applies it over and over
again to all of the elements in a collection to merge all of the values together. Because
the merging logic we wrote earlier is associative, we can apply it with the reduce
method to a collection of Array[NAStatCounter] values:

val nas = List(nasl, nas2)

val merged = nas.reduce((nl, n2) => {
nl.zip(n2).map { case (a, b) => a.merge(b) }

b
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The RDD class also has a reduce action that works the same way as the reduce method
we used on the Scala collections, only applied to all of the data that is distributed
across the cluster, and the code we use in Spark is identical to the code we just wrote
for the List[Array[NAStatCounter]]:

val reduced = nasRDD.reduce((n1, n2) => {
nl.zip(n2).map { case (a, b) => a.merge(b) }
b

reduced. foreach(println)

stats: (count: 5748125, mean: 0.7129, stdev: 0.3887,

max: 1.0, min: 0.0) NaN: 1007

stats: (count: 103698, mean: 0.9000, stdev: 0.2713,

max: 1.0, min: 0.0) NaN: 5645434

stats: (count: 5749132, mean: 0.3156, stdev: 0.3342, max: 1.0, min: 0.0) NaN: 0
stats: (count: 2464, mean: 0.3184, stdev: 0.3684,

max: 1.0, min: 0.0) NaN: 5746668

stats: (count: 5749132, mean: 0.9550, stdev: 0.2073, max: 1.0, min: 0.0) NaN: 0

stats: (count: 5748337, mean: 0.2244, stdev: 0.4172, max: 1.0, min: 0.0) NaN: 795
stats: (count: 5748337, mean: 0.4888, stdev: 0.4998, max: 1.0, min: 0.0) NaN: 795
stats: (count: 5748337, mean: 0.2227, stdev: 0.4160, max: 1.0, min: 0.0) NaN: 795

stats: (count: 5736289, mean: 0.0055, stdev: 0.0741,
max: 1.0, min: 0.0) NaN: 12843

Let’s encapsulate our missing value analysis code into a function in the StatsWithMiss-

ing.scala file that allows us to compute these statistics for any RDD[Array[Double]] by
editing the file to include this block of code:

import org.apache.spark.rdd.RDD

def statsWithMissing(rdd: RDD[Array[Double]]): Array[NAStatCounter] = {
val nastats = rdd.mapPartitions((iter: Iterator[Array[Double]]) => {
val nas: Array[NAStatCounter] = iter.next().map(d => NAStatCounter(d))
iter.foreach(arr => {
nas.zip(arr).foreach { case (n, d) => n.add(d) }

b

Iterator(nas)

i:stats.reduce((nl, n2) => {
nl.zip(n2).map { case (a, b) => a.merge(b) }
D)
}

Note that instead of calling the map function to generate an Array[NAStatCounter]
for each record in the input RDD, we're calling the slightly more advanced mapPartt
tions function, which allows us to process all of the records within a partition of the
input RDD[Array[Double]] via an Iterator[Array[Double]]. This allows us to cre-
ate a single instance of Array[NAStatCounter] for each partition of the data and then
update its state using the Array[Double] values that are returned by the given itera-
tor, which is a more efficient implementation. Indeed, our statsWithMissing method
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is now very similar to how the Spark developers implemented the stats method for
instances of type RDD[Double].

Simple Variable Selection and Scoring

With the statsWithMissing function, we can analyze the differences in the distribu-
tion of the arrays of scores for both the matches and the nonmatches in the parsed
RDD:

val statsm = statsWithMissing(parsed.filter(_.matched).map(_.scores))
val statsn = statsWithMissing(parsed.filter(!_.matched).map(_.scores))

Both the statsm and statsn arrays have identical structure, but they describe differ-
ent subsets of our data: statsm contains the summary statistics on the scores array
for matches, while statsn does the same thing for nonmatches. We can use the dif-
ferences in the values of the columns for matches and nonmatches as a simple bit of
analysis to help us come up with a scoring function for discriminating matches from
nonmatches purely in terms of these match scores:

statsm.zip(statsn).map { case(m, n) =>
(m.missing + n.missing, m.stats.mean - n.stats.mean)
}.foreach(println)

((1007, 0.2854...), 0)
((5645434,0.09104268062279874), 1)
((0,0.6838772482597568), 2)
((5746668,0.8064147192926266), 3)
((0,0.03240818525033484), 4)
((795,0.7754423117834044), 5)
((795,0.5109496938298719), 6)
((795,0.7762059675300523), 7)
((12843,0.9563812499852178), 8)

A good feature has two properties: it tends to have significantly different values for
matches and nonmatches (so the difference between the means will be large) and it
occurs often enough in the data that we can rely on it to be regularly available for any
pair of records. By this measure, Feature 1 isn’t very useful: it's missing a lot of the
time, and the difference in the mean value for matches and nonmatches is relatively
small—0.09, for a score that ranges from 0 to 1. Feature 4 also isn’t particularly help-
ful. Even though it’s available for any pair of records, the difference in means is just
0.03.

Features 5 and 7, on the other hand, are excellent: they almost always occur for any
pair of records, and there is a very large difference in the mean values (over 0.77 for
both features.) Features 2, 6, and 8 also seem beneficial: they are generally available in
the data set and the difference in mean values for matches and nonmatches are
substantial.
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Features 0 and 3 are more of a mixed bag: Feature 0 doesn’t discriminate all that well
(the difference in the means is only 0.28), even though it’s usually available for a pair
of records, while Feature 3 has a large difference in the means, but it’s almost always
missing. It’s not quite obvious under what circumstances we should include these fea-
tures in our model based on this data.

For now, we’re going to use a simple scoring model that ranks the similarity of pairs
of records based on the sums of the values of the obviously good features: 2, 5, 6, 7,
and 8. For the few records where the values of these features are missing, we'll use 0
in place of the NaN value in our sum. We can get a rough feel for the performance of
our simple model by creating an RDD of scores and match values and evaluating how
well the score discriminates between matches and nonmatches at various thresholds:

def naz(d: Double) = if (Double.NaN.equals(d)) 0.0 else d
case class Scored(md: MatchData, score: Double)
val ct = parsed.map(md => {
val score = Array(2, 5, 6, 7, 8).map(i1 => naz(md.scores(i))).sum
Scored(md, score)
b
Using a high threshold value of 4.0, meaning that the average of the five features was
0.8, we filter out almost all of the nonmatches while keeping over 90% of the matches:

ct.filter(s => s.score >= 4.0).map(s => s.md.matched).countByValue()

Map(false -> 637, true -> 20871)

Using the lower threshold of 2.0, we can ensure that we capture all of the known
matching records, but at a substantial cost in terms of false positives:

ct.filter(s => s.score >= 2.0).map(s => s.md.matched).countByValue()

Map(false -> 596414, true -> 20931)

Even though the number of false positives is higher than we would like, this more
generous filter still removes 90% of the nonmatching records from our consideration
while including every positive match. Even though this is pretty good, it’s possible to
do even better; see if you can find a way to use some of the other values from the
scores array (both missing and not) to come up with a scoring function that success-
fully identifies every true match at the cost of less than 100 false positives.

Where to Go from Here

If this chapter was your first time carrying out data preparation and analysis with
Scala and Spark, we hope that you got a feel for what a powerful foundation these
tools provide. If you have been using Scala and Spark for a while, we hope that you
will pass this chapter along to your friends and colleagues as a way of introducing
them to that power as well.
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Our goal for this chapter was to provide you with enough Scala knowledge to be able
to understand and carry out the rest of the examples in this book. If you are the kind
of person who learns best through practical examples, your next step is to continue
on to the next set of chapters, where we will introduce you to MLIib, the machine
learning library designed for Spark.

As you become a seasoned user of Spark and Scala for data analysis, it’s likely that you
will reach a point where you begin to build tools and libraries that are designed to
help other analysts and data scientists apply Spark to solve their own problems. At
that point in your development, it would be helpful to pick up additional books on
Scala, like Programming Scala by Dean Wampler and Alex Payne, and The Scala Cook-
book by Alvin Alexander (both from O’Reilly).
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CHAPTER 3

Recommending Music and the
Audioscrobbler Data Set

Sean Owen

De gustibus non est disputandum.
(There’s no accounting for taste.)

When somebody asks what it is I work on for a living, the direct answer of “data sci-
ence” or “machine learning” sounds impressive but usually draws a blank stare. Fair
enough; even actual data scientists seem to struggle to define what these mean—stor-
ing lots of data, computing, predicting something? Inevitably, I jump straight to a
relatable example:

“OK, you know how Amazon will tell you about books like the ones you bought? Yes?
Yes! It like that.”

Empirically, the recommender engine seems to be an example of large-scale machine
learning that everyone already understands, and most people have seen Amazon’s. It
is a common denominator because recommender engines are everywhere, from
social networks to video sites to online retailers. We can also directly observe them in
action. We're aware that a computer is picking tracks to play on Spotify, in a way we
don’t necessarily notice that Gmail is deciding whether inbound email is spam.

The output of a recommender is more intuitively understandable than other machine
learning algorithms. It’s exciting, even. For all that we think that musical taste is so
personal and inexplicable, recommenders do a surprisingly good job of identifying
tracks we didn’t know we would like.

Finally, for domains like music or movies where recommenders are usually deployed,
it's comparatively easy to reason about why a recommended piece of music fits with
someone’s listening history. Not all clustering or classification algorithms match that
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description. For example, a support vector machine classifier is a set of coefficients,
and it’s hard even for practitioners to articulate what the numbers mean when they
make predictions.

So, it seems fitting to kick off the next three chapters, which will explore key machine
learning algorithms on Spark, with a chapter built around recommender engines, and
recommending music in particular. It’s an accessible way to introduce real-world use
of Spark and MLIib, and some basic machine learning ideas that will be developed in
subsequent chapters.

Data Set

This example will use a data set published by Audioscrobbler. Audioscrobbler was the
first music recommendation system for last.fm, one of the first Internet streaming
radio sites, founded in 2002. Audioscrobbler provided an open API for “scrobbling,
or recording listeners’ plays of artists’ songs. last.fm used this information to build a
powerful music recommender engine. The system reached millions of users because
third-party apps and sites could provide listening data back to the recommender
engine.

At that time, research on recommender engines was mostly confined to learning
from rating-like data. That is, reccommenders were usually viewed as tools that oper-
ated on input like “Bob rates Prince 3.5 stars”

The Audioscrobbler data set is interesting because it merely records plays: “Bob
played a Prince track” A play carries less information than a rating. Just because Bob
played the track doesn’t mean he actually liked it. You or I may occasionally play a
song by an artist we don't care for, or even play an album and walk out of the room.

However, listeners rate music far less frequently than they play music. A data set like
this is therefore much larger, covers more users and artists, and contains more total
information than a rating data set, even if each individual data point carries less
information. This type of data is often called implicit feedback data because the user-
artist connections are implied as a side effect of other actions, and not given as
explicit ratings or thumbs-up.

A snapshot of a data set distributed by last.fm in 2005 can be found online as a com-
pressed archive. Download the archive, and find within it several files. The main data
set is in the user_artist_data.txt file. It contains about 141,000 unique users, and 1.6
million unique artists. About 24.2 million users’ plays of artists are recorded, along
with their count.

The data set also gives the names of each artist by ID in the artist_data.txt file. Note
that when plays are scrobbled, the client application submits the name of the artist
being played. This name could be misspelled or nonstandard, and this may only be
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detected later. For example, “The Smiths,” “Smiths, The,” and “the smiths” may appear
as distinct artist IDs in the data set, even though they are plainly the same. So, the
data set also includes artist_alias.txt, which maps artist IDs that are known misspell-
ings or variants to the canonical ID of that artist.

The Alternating Least Squares Recommender Algorithm

We need to choose a recommender algorithm that is suitable for this implicit feed-
back data. The data set consists entirely of interactions between users and artists’
songs. It contains no information about the users, or about the artists other than their
names. We need an algorithm that learns without access to user or artist attributes.
These are typically called collaborative filtering algorithms. For example, deciding
that two users may share similar tastes because they are the same age is not an exam-
ple of collaborative filtering. Deciding that two users may both like the same song
because they play many other same songs is an example.

This data set looks large, because it contains tens of millions of play counts. But in a
different sense, it is small and skimpy, because it is sparse. On average, each user has
played songs from about 171 artists—out of 1.6 million. Some users have listened to
only one artist. We need an algorithm that could provide decent recommendations to
even these users. After all, every single listener must have started with just one play at
some point!

Finally, we need an algorithm that scales, both in its ability to build large models and
to create recommendations quickly. Recommendations are typically required in near
real time—within a second, not tomorrow.

This example will employ a member of a broad class of algorithms called latent-factor
models. They try to explain observed interactions between large numbers of users and
products through a relatively small number of unobserved, underlying reasons. It is
analogous to explaining why millions of people buy a particular few of thousands of
possible albums by describing users and albums in terms of tastes for perhaps tens of
genres, tastes that are not directly observable or given as data.

More specifically, this example will use a type of matrix factorization model. Mathe-
matically, these algorithms treat the user and product data as if it were a large matrix
A, where the entry at row i and column j exists if user i has played artist j. A is sparse:
most entries of A are 0, because only a few of all possible user-artist combinations
actually appear in the data. They factor A as the matrix product of two smaller matri-
ces, X and Y. They are very skinny—both have many rows because A has many rows
and columns, but both have just a few columns (k). The k columns correspond to the
latent factors that are being used to explain the interaction data.

The factorization can only be approximate because k is small, as shown in Figure 3-1.
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Figure 3-1. Matrix factorization

These algorithms are sometimes called matrix completion algorithms, because the
original matrix A may be quite sparse, but the product XY” is dense. Very few, if any,
entries are 0, and therefore the model is only an approximation to A. It is a model in
the sense that it produces (“completes”) a value for even the many entries that are
missing (that is, 0) in the original A.

This is a case where, happily, the linear algebra maps directly and elegantly to intu-
ition. These two matrices contain a row for each user and each artist, respectively.
The rows have few values—k. Each value corresponds to a latent feature in the model.
So the rows express how much users and artists associate with these latent features,
which might correspond to tastes or genres. And it is simply the product of a user-
feature and feature-artist matrix that yields a complete estimation of the entire, dense
user-artist interaction matrix.

The bad news is that A = XY” generally has no solution at all, because X and Y arent
large enough (technically speaking, too low rank) to perfectly represent A. This is
actually a good thing. A is just a tiny sample of all interactions that could happen. In a
way, we believe A is a terribly spotty, and therefore hard-to-explain, view of a simpler
underlying reality that is well explained by just some small number of factors, k of
them. Think of a jigsaw puzzle depicting a cat. The final puzzle is simple to describe: a
cat. When you're holding just a few pieces, however, the picture you see is quite diffi-
cult to describe.

XY" should still be as close to A as possible. After all, it’s all we've got to go on. It will
not and should not reproduce it exactly. The bad news again is that this cant be
solved directly for both the best X and best Y at the same time. The good news is that
it’s trivial to solve for the best X if Y is known, and vice versa. But, neither is known
beforehand!

42 | Chapter3: Recommending Music and the Audioscrobbler Data Set


http://bit.ly/1ALoQFK

Fortunately, there are algorithms that can escape this catch-22 and find a decent solu-
tion. More specifically still, the example in this chapter will use the Alternating Least
Squares (ALS) algorithm to compute X and Y. This type of approach was popularized
around the time of the Netflix Prize by papers like “Collaborative Filtering for
Implicit Feedback Datasets” and “Large-scale Parallel Collaborative Filtering for the
Netflix Prize”. In fact, Spark MLIib's ALS implementation draws on ideas from both of
these papers.

Y isn’t known, but it can be initialized to a matrix full of randomly chosen row vec-
tors. Then simple linear algebra gives the best solution for X, given A and Y. In fact,
it’s trivial to compute each row i of X separately as a function of Y and of one row of
A. Because it can be done separately, it can be done in parallel, and that is an excellent
property for a large-scale computation:

AY(YTY) ! = X,

Equality can’t be achieved exactly, so in fact the goal is to minimize |A;Y(Y'Y) - X||,
or the sum of squared differences between the two matrices’ entries. This is where the
“least squares” in the name comes from. In practice this is never solved by actually
computing inverses, but faster and more directly via methods like the QR decomposi-
tion. This equation simply elaborates the theory of how the row vector is computed.

The same thing can be done to compute each Y; from X. And again, to compute X
from Y, and so on. This is where the “alternating” part comes from. There’s just one
small problem: Y was made up, and random! X was computed optimally, yes, but
given a bogus solution for Y. Fortunately, if this process is repeated, X and Y do even-
tually converge to decent solutions.

When used to factor a matrix representing implicit data, there is a little more com-
plexity to the ALS factorization. It is not factoring the input matrix A directly, but a
matrix P of Os and 1s, containing 1 where A contains a positive value and 0 elsewhere.
The values in A are incorporated later as weights. This detail is beyond the scope of
this book, but is not necessary to understand how to use the algorithm.

Finally, the ALS algorithm can take advantage of the sparsity of the input data as well.
This, and its reliance on simple, optimized linear algebra and its data-parallel nature,
make it very fast at large scale. This is much of the reason it is the topic of this chapter
—that, and the fact that ALS is the only recommender algorithm currently imple-
mented in Spark MLIib!

Preparing the Data

Copy all three data files into HDFS. This chapter will assume that the files are avail-
able at /user/ds/. Start spark-shell. Note that this computation will take an unusually
large amount of memory. If you are running locally, rather than on a cluster, for
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example, you will likely need to specify --driver-memory 6g to have enough mem-
ory to complete these computations.

The first step in building a model is to understand the data that is available, and parse
or transform it into forms that are useful for analysis in Spark.

One small limitation of Spark MLIibs ALS implementation is that it requires numeric
IDs for users and items, and further requires them to be nonnegative 32-bit integers.
This means that IDs larger than about Integer.MAX_VALUE, or 2147483647, can’t be
used. Does this data set conform to this requirement already? Access the file as an
RDD of Strings in Spark with SparkContext’s textFile method:

val rawUserArtistData = sc.textFile("hdfs:///user/ds/user_artist_data.txt")

By default, the RDD will contain one partition for each HDFS block. Because this file
consumes about 400 MB on HDFS, it will split into about three to six partitions given
typical HDFS block sizes. This is normally fine, but machine learning tasks like ALS
are likely to be more compute-intensive than simple text processing. It may be better
to break the data into smaller pieces—more partitions—for processing. This can let
Spark put more processor cores to work on the problem at once. You can supply a
second argument to this method to specify a different and larger number of parti-
tions. You might set this to match the number of cores in your cluster, for example.

Each line of the file contains a user ID, an artist ID, and a play count, separated by
spaces. To compute statistics on the user ID, we split the line by space, and the first
(0-indexed) value is parsed as a number. The stats() method returns an object con-
taining statistics like maximum and minimum. And likewise for the artist IDs:

rawUserArtistData.map(_.split(' ')(0).toDouble).stats()
rawUserArtistData.map(_.split(' ')(1).toDouble).stats()

The computed statistics that are printed reveal that the maximum user and artist IDs
are 2443548 and 10794401, respectively. These are comfortably smaller than
2147483647. No additional transformation will be necessary to use these IDs.

It will be useful later in this example to know the artist names corresponding to the
opaque numeric IDs. This information is contained in artist_data.txt. This time, it
contains the artist ID and name separated by a tab. However, a straightforward pars-
ing of the file into (Int,String) tuples will fail:

val rawArtistData = sc.textFile("hdfs:///user/ds/artist_data.txt")
val artistByID = rawArtistData.map { line =>

val (id, name) = line.span(_ != '"\t'")

(id.toInt, name.trim)

}

Here, span() splits the line by its first tab by consuming characters that aren’t tabs. It
then parses the first portion as the numeric artist ID, and retains the rest as the artist
name (with whitespace—the tab—removed). A small number of the lines appear to
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be corrupted. They don't contain a tab, or they inadvertently include a newline char-
acter. These lines cause a NumberFormatException, and ideally, they would not map
to anything at all.

However, the map() function must return exactly one value for every input, so it can’t
be used. It’s possible to remove the lines that don’t parse with filter(), but this
would duplicate the parsing logic. The flatMap() function is appropriate when each
element maps to zero, one, or more results, because it simply “flattens” these collec-
tions of zero or more results from each input into one big RDD. It works with Scala
collections, but also with Scala’s Option class. Option represents a value that might
only optionally exist. It is like a simple collection of 1 or 0 values, corresponding to its
Some and None subclasses. So, while the function in flatMap in the following code
could just as easily return an empty List, or a List of one element, this is a reason-
able place to instead use the simpler and clearer Some and None:

val artistByID = rawArtistData.flatMap { line =>

val (id, name) = line.span(_ != "\t'")
if (name.isEmpty) {
None
} else {
try {
Some((id.toInt, name.trim))
} catch {
case e: NumberFormatException => None
}
}

}

The artist_alias.txt file maps artist IDs that may be misspelled or nonstandard to the
ID of the artist’s canonical name. It contains two IDs per line, separated by a tab. This
file is relatively small, containing about 200,000 entries. It will be useful to collect it as
a Map, mapping “bad” artist IDs to “good” ones, instead of just using it as an RDD of
pairs of artist IDs. Again, some lines are missing the first artist ID, for some reason,
and are skipped:

val rawArtistAlias = sc.textFile("hdfs:///user/ds/artist_alias.txt")
val artistAlias = rawArtistAlias.flatMap { line =>
val tokens = line.split('\t')
if (tokens(0).isEmpty) {
None
} else {
Some((tokens(0).toInt, tokens(1).tolInt))
}
}.collectAsMap()

The first entry, for instance, maps ID 6803336 to 1000010. We can look these up from
the RDD containing artist names:
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artistByID. lookup(6803336).head
artistByID.lookup(1000010).head

This entry evidently maps “Aerosmith (unplugged)” to “Aerosmith?”

Building a First Model

Although the data set is in nearly the right form for use with Spark MLIibs ALS
implementation, it requires two small extra transformations. First, the aliases data set
should be applied to convert all artist IDs to a canonical ID, if a different canonical ID
exists. Second, the data should be converted into Rating objects, which is the imple-
mentation’s abstraction for user-product-value data. Despite the name, Rating is suit-
able for use with implicit data. Note also that MLIib refers to “products” throughout
its API, and so will this example, but the “products” here are artists. The underlying
model is not at all specific to recommending products, or for that matter, to recom-
mending things to people:

import org.apache.spark.mllib.recommendation._

val bArtistAlias = sc.broadcast(artistAlias)

val trainData = rawUserArtistData.map { line =>
val Array(userID, artistID, count) = line.split(' ').map(_.toInt)
val finalArtistID =
bArtistAlias.value.getOrElse(artistID, artistID) (1)
Rating(userID, finalArtistID, count)
}.cache()

O Getartist’s alias if it exists, else get original artist

The artistAlias mapping created earlier can be referenced directly in an RDD’s
map() function, even though it is a local Map on the driver. This works, because it will
be copied automatically with every task. However, it is not tiny, consuming about 15
megabytes in memory and at least several megabytes in serialized form. Because
many tasks execute in one JVM, it’s wasteful to send and store so many copies of the
data.

Instead, we create a broadcast variable called bArtistAlias for artistAlias. This
makes Spark send and hold in memory just one copy for each executor in the cluster.
When there are thousands of tasks, and many execute in parallel on each executor,
this can save significant network traffic and memory.
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Broadcast Variables

When Spark runs a stage, it creates a binary representation of all the information
needed to run tasks in that stage, called the closure of the function that needs to be
executed. This closure includes all the data structures on the driver referenced in the
function. Spark distributes it to every executor on the cluster.

Broadcast variables are useful in situations where many tasks need access to the same
(immutable) data structure. They extend normal handling of task closures to enable:

o Caching data as raw Java objects on each executor, so they need not be deserial-
ized for each task
o Caching data across multiple jobs and stages
For example, consider a natural language processing application that relies on a large

dictionary of English words. Broadcasting the dictionary allows transferring it to
every executor only once:

val dict = ...
val bDict = sc.broadcast(dict)

def query(path: String) = {
sc.textFile(path).map(l => score(1l, bDict.value))

The call to cache() suggests to Spark that this RDD should be temporarily stored
after being computed, and furthermore, kept in memory in the cluster. This is helpful
because the ALS algorithm is iterative, and will typically need to access this data 10
times or more. Without this, the RDD could be repeatedly recomputed from the orig-
inal data each time it is accessed! The Storage tab in the Spark UI will show how
much of the RDD is cached and how much memory it uses, as shown in Figure 3-2.
This one consumes almost 900 MB across the cluster.

Storage Level Cached Partitions Fraction Cached Size in Memory
Memory Deserialized 1x Replicated 120 100% 886.8 MB

Figure 3-2. Storage tab in the Spark UI, showing cached RDD memory usage

Finally, we can build a model:

val model = ALS.trainImplicit(trainData, 10, 5, 0.01, 1.0)
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This constructs model as a MatrixFactorizationModel. The operation will likely take
minutes or more depending on your cluster. Compared to some machine learning
models, whose final form may consist of just a few parameters or coefficients, this
type of model is huge. It contains a feature vector of 10 values for each user and prod-
uct in the model, and in this case there are more than 1.7 million of them. The model
contains these large user-feature and product-feature matrices as RDDs of their own.

To see some feature vectors, try the following. Note that the feature vector is an Array
of 10 numbers, and arrays don’t naturally print in a readable form. This translates the
vectors to readable form with mkString(), a method commonly used in Scala to join
elements of a collection into a delimited string:

model.userFeatures.mapValues(_.mkString(", ")).first()

(4293,-0.3233030601963864, 0.31964527593541325,
0.49025505511361034, 0.09000932568001832, 0.4429537767744912,
0.4186675713407441, 0.8026858843673894, -0.4841300444834003,
-0.12485901532338621, 0.19795451025931002)

The values in your results will be somewhat different. The final
model depends on a randomly chosen initial set of feature vectors.

The other arguments to trainImplicit() are hyperparameters whose value can affect
the quality of the recommendations that the model makes. These will be explained
later. The more important first question is, is the model any good? Does it produce
good recommendations?

Spot Checking Recommendations

We should first see if the artist recommendations make any intuitive sense, by exam-
ining a user, his or her plays, and recommendations for that user. Take, for example,
user 2093760. Extract the IDs of artists that this user has listened to and print their
names. This means searching the input for artist IDs for this user, and then filtering
the set of artists by these IDs so you can collect and print the names in order:

val rawArtistsForUser = rawUserArtistData.map(_.split(' ')).
filter { case Array(user,_,_) => user.tolnt == 2093760 } (1]

val existingProducts =
rawArtistsForUser.map { case Array(_,artist,_) => artist.toInt }.

collect().toSet (2]

artistByID.filter { case (id, name) =>
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existingProducts.contains(id)
}.values.collect().foreach(println) (3]

David Gray
Blackalicious
Jurassic 5

The Saw Doctors
Xzibit

@ Find lines whose user is 2093760
@ Collect unique artists

© Filter in those artists, get just artist, and print

The artists look like a mix of mainstream pop and hip-hop. A Jurassic 5 fan? Remem-
ber, it’s 2005. In case youre wondering, the Saw Doctors are a very Irish rock band
popular in Ireland.

We can do something similar to make five recommendations for this user:

val recommendations = model.recommendProducts(2093760, 5)
recommendations.foreach(println)

Rating(2093760,1300642,0.02833118412903932)
Rating(2093760,2814,0.027832682960168387)
Rating(2093760,1037970,0.02726611004625264)
Rating(2093760,1001819,0.02716011293509426)
Rating(2093760,4605,0.027118271894797333)

The result consists of Rating objects with a (redundant) user ID, artist ID, and
numeric value. Although also in a field called rating, it is not an estimated rating.
For this type of ALS algorithm, it is an opaque value normally between 0 and 1, where
higher values mean a better recommendation. It is not a probability, but can be
thought of as an estimate of a 0/1 value indicating whether the user won't, or will,
interact with the artist, respectively.

After extracting the artist IDs for the recommendations, we can look up artist names
in a similar way:
val recommendedProductIDs = recommendations.map(_.product).toSet
artistByID.filter { case (id, name) =>

recommendedProductIDs.contains(id)
}.values.collect().foreach(println)

Green Day
Linkin Park
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Metallica
My Chemical Romance
System of a Down

The result is a mix of pop punk and metal. This doesn’t look like a great set of recom-
mendations, at first glance. While these are generally popular artists, they don’t
appear personalized to this user’s listening habits.

Evaluating Recommendation Quality

Of course, that’s just one subjective judgment about one user’s results. It's hard for
anyone but that user to quantify how good the recommendations are. Moreover, it’s
infeasible to have any human manually score even a small sample of the output to
evaluate the results.

It’s reasonable to assume that users tend to play songs from artists who are appealing,
and not play songs from artists who aren't appealing. So, the plays for a user give a
partial picture of what “good” and “bad” artist recommendations are. This is a prob-
lematic assumption, but about the best that can be done without any other data. For
example, presumably user 2093760 likes many more artists than the five listed previ-
ously, and among the 1.7 million other artists not played, a few are of interest and not
all are “bad” recommendations.

What if a recommender were evaluated on its ability to rank good artists high in a list
of recommendations? This is one of several generic metrics that can be applied to a
system that ranks things, like a recommender. The problem is that “good” is defined
as “artists the user has listened to,” and the recommender system has already received
all of this information as input. It could trivially return the user’s previously listened-
to artists as top recommendations and score perfectly. This is not useful, especially
because the recommender’s role is to recommend artists that the user has never lis-
tened to.

To make this meaningful, some of the artist play data can be set aside and hidden
from the ALS model building process. Then, this held-out data can be interpreted as a
collection of good recommendations for each user, but one that the recommender has
not already been given. The recommender is asked to rank all items in the model, and
the ranks of the held-out artists are examined. Ideally, the recommender places all of
them at or near the top of the list.

We can then compute the recommender’s score by comparing all held-out artists’
ranks to the rest. (In practice, we compute this by examining only a sample of all such
pairs, because a potentially huge number of such pairs may exist.) The fraction of
pairs where the held-out artist is ranked higher is its score. 1.0 is perfect, 0.0 is the
worst possible score, and 0.5 is the expected value achieved from randomly ranking
artists.
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This metric is directly related to an information retrieval concept, called the Receiver
Operating Characteristic (ROC) curve. The metric in the preceding paragraph equals
the area under this ROC curve, and is indeed known as AUC, for Area Under the
Curve. AUC may be viewed as the probability that a randomly chosen good recom-
mendation ranks above a randomly chosen bad recommendation.

The AUC metric is also used in evaluation of classifiers. It is implemented, along with
related methods, in the MLIib class BinaryClassificationMetrics. For recommen-
ders, we will compute AUC per user and average the result. The resulting metric is
slightly different, and might be called “mean AUC?”

Other evaluation metrics that are relevant to systems that rank things are imple-
mented in RankingMetrics. These include metrics like precision, recall, and mean
average precision (MAP). MAP is also frequently used and focuses more narrowly on
the quality of the top recommendations. However, AUC will be used here as a com-
mon and broad measure of the quality of the entire model output.

In fact, the process of holding out some data to select a model and evaluate its accu-
racy is common practice in all of machine learning. Typically, data is divided into
three subsets: training, cross-validation (CV), and test sets. For simplicity in this ini-
tial example, only two sets will be used: training and CV. This will be sufficient to
choose a model. In Chapter 4, this idea will be extended to include the test set.

Computing AUC

An implementation of AUC is provided in the source code accompanying this book.
It is complex and not reproduced here, but is explained in some detail in comments
in the source code. It accepts the CV set as the “positive” or “good” artists for each
user, and a prediction function. This function translates each user-artist pair into a
prediction as a Rating containing the user, artist, and a number wherein higher val-
ues mean higher rank in the recommendations.

In order to use it, we must split the input data into a training and CV set. The ALS
model will be trained on the training data set only, and the CV set will be used to
evaluate the model. Here, 90% of the data is used for training and the remaining 10%
for cross-validation:

import org.apache.spark.rdd._
def areaUnderCurve(
positiveData: RDD[Rating],

bAllItemIDs: Broadcast[Array[Int]],
predictFunction: (RDD[(Int,Int)] => RDD[Rating])) = {

}...

val allData = buildRatings(rawUserArtistData, bArtistAlias) (1)
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val Array(trainData, cvData) = allData.randomSplit(Array(0.9, 0.1))
trainData.cache()
cvData.cache()

val allItemIDs = allData.map(_.product).distinct().collect() (2]
val bAllItemIDs = sc.broadcast(allItemIDs)

val model = ALS.trainImplicit(trainData, 10, 5, 0.01, 1.0)
val auc = areaUnderCurve(cvData, bAllItemIDs, model.predict)

© This function is defined in accompanying source code

@ Remove duplicates, and collect to driver

Note that areaUnderCurve() accepts a function as its third argument. Here, the pre
dict() method from MatrixFactorizationModel is passed in, but it will shortly be
swapped out for an alternative.

The result is about 0.96. Is this good? It’s certainly higher than the 0.5 that is expected
from making recommendations randomly. It’s close to 1.0, which is the maximum
possible score. Generally, an AUC over 0.9 would be considered high.

This evaluation could be repeated with a different 90% as the training set. The result-
ing AUC values’ average might be a better estimate of the algorithm’s performance on
the data set. In fact, one common practice is to divide the data into k subsets of simi-
lar size, use k — 1 subsets together for training, and evaluate on the remaining subset.
We can repeat this k times, using a different set of subsets each time. This is called k-
fold cross-validation. This won’t be implemented in examples here, for simplicity, but
some support for this technique exists in MLIib in its MLUtils.kFold() helper
function.

It’s helpful to benchmark this against a simpler approach. For example, consider rec-
ommending the globally most-played artists to every user. This is not personalized,
but is simple and may be effective. Define this simple prediction function and evalu-
ate its AUC score:

def predictMostListened(
sc: SparkContext,
train: RDD[Rating])(allData: RDD[(Int,Int)]) = {

val bListenCount = sc.broadcast(
train.map(r => (r.product, r.rating)).
reduceByKey(_ + _).collectAsMap()
)
allData.map { case (user, product) =>
Rating(
user,
product,
bListenCount.value.getOrElse(product, 0.0)
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)
}
}

val auc = areaUnderCurve(
cvData, bAllItemIDs, predictMostlListened(sc, trainData))
This is another interesting demonstration of Scala syntax, where the function appears
to be defined to take two lists of arguments. Calling the function and supplying the
first two arguments creates a partially applied function, which itself takes an argument
(allpata) in order to return predictions. The result of predictMostListened(sc,
trainData) is a function.

The result is about 0.93. This suggests that nonpersonalized recommendations are
already fairly effective according to this metric. It is good to see that the model built
so far beats this simple approach. Can it be made better?

Hyperparameter Selection

So far, the hyperparameter values used to build the MatrixFactorizationModel were
simply given without comment. They are not learned by the algorithm, and must be
chosen by the caller. The arguments to ALS. trainImplicit() were:

rank = 10
The number of latent factors in the model, or equivalently, the number of col-
umns k in the user-feature and product-feature matrices. In nontrivial cases, this
is also their rank.

iterations =5
The number of iterations that the factorization runs. More iterations take more
time but may produce a better factorization.

lambda = 0.01
A standard overfitting parameter. Higher values resist overfitting, but values that
are too high hurt the factorization’s accuracy.

alpha=1.0
Controls the relative weight of observed versus unobserved user-product interac-
tions in the factorization.

rank, lambda, and alpha can be considered hyperparameters to the model. (itera
tions is more of a constraint on resources used in the factorization.) These are not
values that end up in the matrices inside the MatrixFactorizationModel—those are
simply its parameters, and are chosen by the algorithm. These hyperparameters are
instead parameters to the process of building itself.
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The values used in the preceding list are not necessarily optimal. Choosing good
hyperparameter values is a common problem in machine learning. The most basic
way to choose values is to simply try combinations of values and evaluate a metric for
each of them, and choose the combination that produces the best value of the metric.

In the following example, eight possible combinations are tried: rank = 10 or 50,
lambda = 1.0 or 0.0001, and alpha = 1.0 or 40.0. These values are still something of a
guess, but are chosen to cover a broad range of parameter values. The results are
printed in order by top AUC score:

val evaluations =
for (rank <- Array(10, 50);
lambda <- Array(1.0, 0.0001);
alpha <- Array(1.0, 40.0)) (1]
yield {
val model = ALS.trainImplicit(trainData, rank, 10, lambda, alpha)
val auc = areaUnderCurve(cvData, bAllItemIDs, model.predict)
((rank, lambda, alpha), auc)
}

evaluations.sortBy(_._2).reverse.foreach(println) (2]

((50,1.0,40.0),0.9776687571356233)
((50,1.0E-4,40.0),0.9767551668703566)
((10,1.0E-4,40.0),0.9761931539712336)
((10,1.0,40.0),0.976154587705189)
((10,1.0,1.0),0.9683921981896727)
((50,1.0,1.0),0.9670901331816745)
((10,1.0E-4,1.0),0.9637196892517722)
((50,1.0E-4,1.0),0.9543377999707536)

© Read as a triply nested for loop

® Sort by second value (AUC), descending, and print

The for syntax here is a way to write nested loops in Scala. It is like
a loop over alpha inside a loop over lambda, inside a loop over
rank.

Interestingly, the parameter alpha seems consistently better at 40 than 1. (For the
curious, 40 was a value proposed as a default in one of the original ALS papers
mentioned earlier.) This can be interpreted as indicating that the model is better off
focusing far more on what the user did listen to than what he or she did not listen to.
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A higher lambda looks slightly better too. This suggests the model is somewhat sus-
ceptible to overfitting, and so needs a higher lambda to resist trying to fit the sparse
input given from each user too exactly. Overfitting will be revisited in more detail in
Chapter 4.

The number of features doesnt make a clear difference; 50 appears in both the
highest- and lowest-scoring combinations, although the scores do not vary by much
in absolute terms anyway. This could indicate that the right number of features is
actually higher than 50, and that these values are alike in being too small.

Of course, this process can be repeated for different ranges of values, or more values.
It is a brute-force means of choosing hyperparameters. However, in a world where
clusters with terabytes of memory and hundreds of cores are not uncommon, and
with frameworks like Spark that can exploit parallelism and memory for speed, it
becomes quite feasible.

It is not strictly required to understand what the hyperparameters mean, although it
is helpful to know what normal ranges of values are like in order to start the search
over a parameter space that is neither too large nor too tiny.

Making Recommendations

Proceeding for the moment with the best set of hyperparameters, what does a new
model recommend for user 2093760?

50 Cent
Eminem
Green Day
u2
[unknown]

Anecdotally, this makes a bit more sense, with two hip-hop artists. [unknown] is
plainly not an artist. Querying the original data set reveals that it occurs 429,447
times, putting it nearly in the top 100! This is some default value for plays without an
artist, maybe supplied by a certain scrobbling client. It is not useful information and
we should discard it from the input before starting again. It’s an example of how the
practice of data science is often iterative, with discoveries about the data occurring at
every stage.

This model can be used to make recommendations for all users. This could be useful
in a batch process that recomputes a model, and recomputes recommendations, for
users every hour or even less, depending on the size of the data and speed of the
cluster.

At the moment, however, Spark MLIibs ALS implementation does not support a
method to recommend to all users. It is possible to recommend to one user at a time,
although each will launch a short-lived distributed job that takes a few seconds. This
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may be suitable for rapidly recomputing recommendations for small groups of users.
Here, recommendations are made to 100 users taken from the data, and printed:

val someUsers = allData.map(_.user).distinct().take(100) (1)
val someRecommendations =

someUsers.map(userID => model.recommendProducts(userID, 5)) (2]
someRecommendations.map(

recs => recs.head.user + " -> " + recs.map(_.product).mkString(", ") (3]
).foreach(println)

© Copy 100 (distinct) users to the driver
® map() is a local Scala operation here

© nmkString joins a collection to a string with a delimiter

Here, the recommendations are just printed. They could just as easily be written to an
external store like HBase, which provides fast lookup at runtime.

Interestingly, this entire process could also be used to recommend users to artists.
This could be used to answer questions like, “which 100 users are most likely to be
interested in the new album by artist X”? Doing so would only require swapping the
user and artist field when parsing the input:

rawUserArtistData.map { line =>

val userID = tokens(1).toInt (1]
val artistID = tokens(0).toInt (2]

}...

@ Read artist as “user”

® Read user as “artist”

Where to Go from Here

Naturally, it’s possible to spend more time tuning the model parameters, and finding
and fixing anomalies in the input like the [unknown] artist.

For example, a quick analysis of play counts reveals that user 2064012 played artist
4468 an astonishing 439,771 times! Artist 4468 is the implausibly successful alterna-
metal band System of a Down, who turned up earlier in recommendations. Assuming
an average song length of 4 minutes, this is over 33 years of playing hits like “Chop
Suey!” and “B.Y.O.B” Because the band started making records in 1998, this would
require playing 4 or 5 tracks at once for 7 years. It must be spam, or a data error, and
another example of the types of real-world data problems that a production system
would have to address.
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ALS is not the only possible recommender algorithm. At this time, it is the only one
supported by Spark MLIib. However, MLIib also supports a variant of ALS for nonim-
plicit data. Its use is identical, except that the model is built with the method
ALS.train(). This is appropriate when data is rating-like, rather than count-like. For
example, it is appropriate when the data set is user ratings of artists on a 1-5 scale.
The resulting rating field in Rating objects returned from the various recommenda-
tion methods then really is an estimated rating.

Later, other recommender algorithms may be available in Spark MLIib or other
libraries.

In production, recommender engines often need to make recommendations in real
time, because they are used in contexts like ecommerce sites where recommendations
are requested frequently as customers browse product pages. Precomputing and stor-
ing recommendations in a NoSQL store, as mentioned previously, is a reasonable way
to make recommendations available at scale. One disadvantage of this approach is
that it requires precomputing recommendations for all users who might need recom-
mendations soon, which is potentially any of them. For example, if only 10,000 of 1
million users visit a site in a day, precomputing all 1 million users’ recommendations
each day is 99% wasted effort.

It would be nicer to compute recommendations on the fly, as needed. While we can
compute recommendations for one user using the MatrixFactorizationModel, this
is necessarily a distributed operation that takes several seconds, because MatrixFac
torizationModel is uniquely large and therefore actually a distributed data set. This
is not true of other models, which afford much faster scoring. Projects like Oryx 2
attempt to implement real-time on-demand recommendations with libraries like
MLIib by efficiently accessing the model data in memory.
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CHAPTER 4
Predicting Forest Cover with Decision Trees

Sean Owen

Prediction is very difficult, especially if it’s about the future.
—Niels Bohr

In the late 19th century, the English scientist Sir Francis Galton was busy measuring
things like peas and people. He found that large peas (and people) had larger-than-
average offspring. This isn’t surprising. However, the offspring were, on average,
smaller than their parents. In terms of people: the child of a 7-foot-tall basketball
player is likely to be taller than the global average, but still more likely than not to be
less than 7 feet tall.

As almost a side effect of his study, Galton plotted child versus parent size and
noticed there was a roughly linear relationship between the two. Large parent peas
had large children, but slightly smaller than themselves; small parents had small chil-
dren, but generally a bit larger than themselves. The line’s slope was therefore positive
but less than 1, and Galton described this phenomenon as we do today, as regression
to the mean.

Although maybe not perceived this way at the time, this line was, to me, an early
example of a predictive model. The line links the two values, and implies that the
value of one suggests a lot about the value of the other. Given the size of a new pea,
this relationship could lead to a more accurate estimate of its offsprings’ size than
simply assuming the offspring would be like the parent or like every other pea.

Fast Forward to Regression

More than a century of statistics later, and since the advent of modern machine learn-
ing and data science, we still talk about the idea of predicting a value from other val-
ues as regression, even though it has nothing to do with slipping back toward a mean
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value, or indeed moving backward at all. Regression techniques also relate to classifi-
cation techniques. Generally, regression refers to predicting a numeric quantity like
size or income or temperature, while classification refers to predicting a label or cate-
gory, like “spam” or “picture of a cat”

The common thread linking regression and classification is that both involve predict-
ing one (or more) values given one (or more) other values. To do so, both require a
body of inputs and outputs to learn from. They need to be fed both questions and
known answers. For this reason they are known as types of supervised learning.

Classification and regression are the oldest and most well-studied types of predictive
analytics. Most algorithms you will likely encounter in analytics packages and libra-
ries are classification or regression techniques, like support vector machines, logistic
regression, naive Bayes, neural networks, and deep learning. Recommenders, the
topic of Chapter 3, were comparatively more intuitive to introduce, but are also just a
relatively recent and separate subtopic within machine learning.

This chapter will focus on a popular and flexible type of algorithm for both classifica-
tion and regression: decision trees, and its extension, random decision forests. The
exciting thing about these algorithms is that, with respect to Mr. Bohr, they can help
predict the future—or at least, predict the things we don’t yet know for sure, like your
likelihood to buy a car based on your online behavior, whether an email is spam given
its words, or which acres of land are likely to grow the most crops given their location
and soil chemistry.

Vectors and Features

To explain the choice of the data set and algorithm featured in this chapter, and to
begin to explain how regression and classification operate, it is necessary to briefly
define the terms that describe their input and output.

Consider predicting tomorrow’s high temperature given today’s weather. There is
nothing wrong with this idea, but “today’s weather” is a casual concept, and requires
structuring before it can be fed into a learning algorithm.

It is really certain features of today’s weather that may predict tomorrow’s tempera-
ture, such as:

o Today’s high temperature

« Today’s low temperature

o Today’s average humidity

o Whether it’s cloudy, rainy, or clear today

o The number of weather forecasters predicting a cold snap tomorrow
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These features are also sometimes called dimensions, predictors, or just variables. Each
of these features can be quantified. For example, high and low temperatures are meas-
ured in degrees Celsius, humidity can be measured as a fraction between 0 and 1, and
weather type can be labeled cloudy, ratiny, or clear. The number of forecasters is, of
course, an integer count. Today’s weather might therefore be reduced to a list of val-
ues like 13.1,19.0,0.73,cloudy, 1.

These five features together, in order, are known as a feature vector, and can describe
any day’s weather. This usage bears some resemblance to use of the term vector in lin-
ear algebra, except that a vector in this sense can conceptually contain nonnumeric
values, and even lack some values.

These features are not all of the same type. The first two features are measured in
degrees Celsius, but the third is unitless, a fraction. The fourth is not a number at all,
and the fifth is a number that is always a nonnegative integer.

For purposes of discussion, this book will talk about features in two broad groups
only: categorical features and numeric features. Numeric features, here, are those that
can be quantified by a number and have a meaningful ordering. For example, it’s
meaningful to say that today’s high was 23C, and that this is larger than yesterday’s
high of 22C. All of the features mentioned previously are numeric, except the weather
type. Terms like clear are not numbers, and have no ordering. It is meaningless to
say that cloudy is larger than clear. This is a categorical feature, which instead takes
on one of several discrete values.

Training Examples

A learning algorithm needs to train on data in order to make predictions. It requires a
large number of inputs, and known correct outputs, from historical data. For exam-
ple, in this problem, the learning algorithm would be given that, one day, the weather
was between 12 and 16 degrees Celsius, with 10% humidity, clear, with no forecast of
a cold snap, and the following day, the high temperature was 17.2 degrees. With
enough of these examples, a learning algorithm might learn to predict the following
day’s high temperature with some accuracy.

Feature vectors provide an organized way to describe input to a learning algorithm
(here: 12.5,15.5,0.10,clear,0). The output, or target, of the prediction can also be
thought of as a feature, here a numeric feature: 17.2.

It's not uncommon to simply include the target as another feature in the feature vec-
tor. The entire training example might be thought of as 12.5,15.5,0.10,clear,
0,17.2. The collection of all of these examples is known as the training set.

Note that regression problems are just those where the target is a numeric feature,
and classification problems are those where the target is categorical. Not every
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regression or classification algorithm can handle categorical features, or categorical
targets; some are limited to numeric features.

Decision Trees and Forests

It turns out that the family of algorithms known as decision trees can naturally handle
both categorical and numeric features. They can be built in parallel easily. They are
robust to outliers in the data, meaning that a few extreme and possibly erroneous
data points may not affect predictions at all. They can consume data of different types
and on different scales without the need for preprocessing or normalization, which is
an issue that will reappear in Chapter 5.

Decision trees generalize into a more powerful algorithm, called random decision for-
ests. Their flexibility makes these algorithms worthwhile to examine in this chapter,
where Spark MLIibs DecisionTree and RandomForest implementation will be
applied to a data set.

Decision tree-based algorithms have the further advantage of being comparatively
intuitive to understand and reason about. In fact, we all probably use the same rea-
soning embodied in decision trees, implicitly, in everyday life. For example, I sit
down to have morning coffee with milk. Before I commit to that milk and add it to
my brew, I want to predict: is the milk spoiled? I don’t know for sure. I might check if
the use-by date has passed. If not, I predict no, it’s not spoiled. If the date has passed
by more than three days, I predict yes, it's spoiled. Otherwise, I sniff the milk. If it
smells funny, I predict yes, and otherwise no.

This series of yes/no decisions that lead to a prediction are what decision trees
embody. Each decision leads to one of two results, which is either a prediction or
another decision, as shown in Figure 4-1. In this sense, it is natural to think of the
process as a tree of decisions, where each internal node in the tree is a decision, and
each leaf node is a final answer.
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Has use-by date passed?

No Yes
y
- Was the use-by date
el more than 3 days ago?
No Yes
v
Not Spoiled t Does it smell funny?
No Yes
Not Spoiled Spoiled

Figure 4-1. Decision tree: Is it spoiled?

The preceding rules were ones I learned to apply intuitively over years of bachelor life
—they seemed like rules that were both simple and also usefully differentiated cases
of spoiled and nonspoiled milk. These are also properties of a good decision tree.

That is a simplistic decision tree, and was not built with any rigor. To elaborate, con-
sider another example. A robot has taken a job in an exotic pet store. It wants to
learn, before the shop opens, which animals in the shop would make a good pet for a
child. The owner lists nine pets that would and wouldn’t be suitable before hurrying
off. The robot compiles the information found in Table 4-1 from examining the
animals.

Table 4-1. Exotic pet store “feature vectors”

Name Weight (kg) #Legs Color Good pet?

Fido 20.5 4 Brown Yes
Mr. Slither 3.1 0 Green  No
Nemo 0.2 0 Tan Yes

Dumbo 1390.8 4 Grey  No
Kitty 121 4 Grey  Yes

Jim 150.9 2 Tan No
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ET) T Weight (kg) #Legs Color Good pet?

Millie 0.1 100 Brown No
McPigeon 1.0 2 Grey  No
Spot 10.0 4 Brown Yes

Although a name is given, it will not be included as a feature. There is little reason to
believe the name alone is predictive; “Felix” could name a cat or a poisonous taran-
tula, for all the robot knows. So, there are two numeric features (weight, number of
legs) and one categorical feature (color) predicting a categorical target (is/is not a
good pet for a child).

The robot might try to fit a simple decision tree to this training data to start, consist-
ing of a single decision based on weight, as shown in Figure 4-2.

weight >=500kg?

Yes,
Suitable

Figure 4-2. Robot’s first decision tree

The logic of the decision tree is easy to read and make some sense of: 500kg animals
certainly sound unsuitable as pets. This rule predicts the correct value in five of nine
cases. A quick glance suggests that we could improve the rule by lowering the weight
threshold to 100kg. This gets six of nine examples correct. The heavy animals are now
predicted correctly; the lighter animals are only partly correct.

So, a second decision can be constructed to further refine the prediction for examples
with weights less than 100kg. It would be good to pick a feature that changes some of
the incorrect Yes predictions to No. For example, there is one small green animal,
sounding suspiciously like a snake, that the robot could predict correctly by deciding
on color, as in Figure 4-3.
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weight >= 100kg?

No

A

Is color green?

No

Yes,
Suitable

Figure 4-3. Robot’s next decision tree

Yes
o, Not
Suitable

Now, seven of nine examples are correct. Of course, decision rules could be added
until all nine were correctly predicted. The logic embodied in the resulting decision
tree would probably sound implausible when translated into common speech: “If the
animal’s weight is less than 100kg, and its color is brown instead of green, and it has
fewer than 10 legs, then yes it is a suitable pet” While perfectly fitting the given exam-
ples, a decision tree like this would fail to predict that a small, brown, four-legged
wolverine is not a suitable pet. Some balance is needed to avoid this phenomenon,
known as overfitting.

This is enough of an introduction to decision trees for us to begin using them with
Spark. The remainder of the chapter will explore how to pick decision rules, how to
know when to stop, and how to gain accuracy by creating a forest of trees.

Covtype Data Set

The data set used in this chapter is the well-known Covtype data set, available online
as a compressed CSV-format data file, covtype.data.gz, and accompanying info file,
covtype.info.

The data set records the types of forest covering parcels of land in Colorado, USA. It’s
only coincidence that the data set concerns real-world forests! Each example contains
several features describing each parcel of land, like its elevation, slope, distance to
water, shade, and soil type, along with the known forest type covering the land. The
forest cover type is to be predicted from the rest of the features, of which there are 54
in total.

This data set has been used in research, and even a Kaggle competition. It is an inter-
esting data set to explore in this chapter because it contains both categorical and
numeric features. There are 581,012 examples in the data set, which does not exactly
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qualify as big data, but is large enough to be manageable as an example and still high-
light some issues of scale.

Preparing the Data

Thankfully, the data is already in a simple CSV format and does not require much
cleansing or other preparation to be used with Spark MLIib. Later, it will be of interest
to explore some transformations of the data, but it can be used as is to start.

The covtype.data file should be extracted and copied into HDFES. This chapter will
assume that the file is available at /user/ds/. Start spark-shell.

The Spark MLIib abstraction for a feature vector is known as a LabeledPoint, which
consists of a Spark MLIib Vector of features, and a target value, here called the label.
The target is a Double value, and Vector is essentially an abstraction on top of many
Double values. This suggests that LabeledPoint is only for numeric features. It can be
used with categorical features, with appropriate encoding.

One such encoding is one-hot or 1-of-n encoding, in which one categorical feature
that takes on N distinct values becomes N numeric features, each taking on the value
0 or 1. Exactly one of the N values has value 1, and the others are 0. For example, a
categorical feature for weather that can be cloudy, rainy, or clear would become
three numeric features, where cloudy is represented by 1,0,0; rainy by 0,1,0; and so
on. These three numeric features might be thought of as is_cloudy, is_ratny, and
is_clear features.

Another possible encoding simply assigns a distinct numeric value to each possible
value of the categorical feature. For example, cloudy may become 1.0, rainy 2.0, and
so on.

Be careful when encoding a categorical feature as a single numeric
feature. The original categorical values have no ordering, but when
encoded as a number, they appear to. Treating the encoded feature
as numeric leads to meaningless results because the algorithm is
effectively pretending that rainy is somehow greater than, and two
times larger than, cloudy. It's OK as long as the encoding’s numeric
value is not used as a number.

All of the columns contain numbers, but the Covtype data set does not consist solely
of numeric features, at heart. The covtype.info file says that four of the columns are
actually a one-hot encoding of a single categorical feature, called Wilderness_Type,
with four values. Likewise, 40 of the columns are really one Soil_Type categorical
feature. The target itself is a categorical value encoded as the values 1 to 7. The
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remaining features are numeric features in various units, like meters, degrees, or a
qualitative “index” value.

We see both types of encodings of categorical features, then. It would have, perhaps,
been simpler and more straightforward to not encode such features (and in two ways,
no less), and instead simply include their values directly like “Rawah Wilderness
Area” This may be an artifact of history; the data set was released in 1998. For perfor-
mance reasons, or to match the format expected by libraries of the day, which were
built more for regression problems, data sets often contain data encoded in these
ways.

A First Decision Tree

To start, the data will be used as is. The DecisionTree implementation, like several in
Spark MLIib, requires input in the form of LabeledPoint objects:

import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.regression._

val rawData = sc.textFile("hdfs:///user/ds/covtype.data")

val data = rawData.map { line =>
val values = line.split(',').map(_.toDouble)
val featureVector = Vectors.dense(values.init) (1)
val label = values.last - 1 @
LabeledPoint(label, featureVector)

}

© init returns all but last value; target is last column

® DecisionTree needs labels starting at 0; subtract 1

In Chapter 3, we built a recommender model right away on all of the available data.
This created a recommender that could be sense-checked by anyone with some
knowledge of music: looking at a user’s listening habits and recommendations, we got
some sense that it was producing good results. Here, that is not possible. We would
have no idea how to make up a new 54-feature description of a new parcel of land in
Colorado, or what kind of forest cover to expect from such a parcel.

Instead, we must jump straight to holding out some data for purposes of evaluating
the resulting model. Before, the AUC metric was used to assess the agreement
between held-out listening data and predictions from recommendations. The princi-
ple is the same here, although the evaluation metric will be different: precision. This
time, the data will be split into the full three subsets: training, cross-validation (CV),
and test. As you can see, 80% of the data is used for training, and 10% each for cross-
validation and test:
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val Array(trainData, cvData, testData) =
data.randomSplit(Array(0.8, 0.1, 0.1))

trainData.cache()

cvData.cache()

testData.cache()

As with the ALS implementation, the DecisionTree implementation has several
hyperparameters for which a value must be chosen. So, as before, the training and CV
sets are used to choose a good setting of these hyperparameters for this data set. Here,
the third set, the test set, is then used to produce an unbiased evaluation of the
expected accuracy of a model built with those hyperparameters. The accuracy of the
model on just the cross-validation set tends to be biased and slightly too optimistic.
This chapter will take this extra step of evaluating the final model on the test set.

But first, try building a DecisionTreeModel on the training set, with some default
arguments, and compute some metrics about the resulting model using the CV set:

import org.apache.spark.mllib.evaluation._
import org.apache.spark.mllib.tree._
import org.apache.spark.mllib.tree.model._
import org.apache.spark.rdd._

def getMetrics(model: DecisionTreeModel, data: RDD[LabeledPoint]):
MulticlassMetrics = {
val predictionsAndLabels = data.map(example =>
(model.predict(example.features), example.label)

)

new MulticlassMetrics(predictionsAndLabels)

}

val model = DecisionTree.trainClassifier(
trainData, 7, Map[Int,Int](), "gini", 4, 100)

val metrics = getMetrics(model, cvData)

Here, the use of trainClassifier instead of trainRegressor suggests that the target
value within each LabeledPoint should be treated as a distinct category number, not
a numeric feature value. (trainRegressor works similarly for regression problems,
and will not be discussed separately in this chapter.)

At this time, we must specify the number of target values it will encounter: 7. The Map
holds information about categorical features; this will be discussed later along with
the meaning of “gini,” the maximum depth of 4, and the maximum bin count of 100.

MulticlassMetrics computes standard metrics that in different ways measure the
quality of the predictions from a classifier, which here has been run on the CV set.
Ideally, the classifier should predict the correct target category for each example in
the CV set. The metrics available here measure this sort of correctness, in different
ways.

68 | Chapter4: Predicting Forest Cover with Decision Trees



Its companion class, BinaryClassificationMetrics, contains similar evaluation
metric implementations for the particular, common case of a categorical target with
just two values. It can’'t be used directly here because the target takes on many values.

It may be helpful to look at the confusion matrix first:

metrics.confusionMatrix

14019.0 6630.0 15.0 0.0

0.0 1.0 391.0
5413.0 22399.0 438.0 16.0 0.0 3.0 50.0
0.0 457.0 2999.0 73.0 0.0 12.0 0.0
0.0 1.0 163.0 117.0 0.0 0.0 0.0
0.0 872.0 40.0 0.0 0.0 0.0 0.0
0.0 500.0 1138.0 36.0 0.0 48.0 0.0
1091.0 41.0 0.0 0.0 0.0 0.0 891.0

Your values will be a little different. The process of building a deci-
sion tree includes some random choices that can lead to slightly
different classifications.

Because there are seven target category values, this is a 7-x-7 matrix, where each row
corresponds to an actual correct value, and each column to a predicted value, in
order. The entry at row i and column j counts the number of times an example with
true category i was predicted as category j. So, the correct predictions are the counts
along the diagonal, and incorrect predictions are everything else. Counts are high
along the diagonal, which is good. However, there are certainly a number of misclas-
sifications, and, for example, category 5 is never predicted at all.

It’s helpful to summarize the accuracy with a single number. An obvious place to start
is to compute the fraction of all examples that were correctly predicted:

metrics.precision

0.7030630195577938

About 70% of examples were classified correctly. This is commonly called accuracy,
and is called precision in Spark’s MulticlassMetrics. This is a light overloading of the
term.

Precision is actually a common metric for binary classification problems, where there
are two category values, not several. In a binary classification problem, where there is
some kind of positive and negative class, precision is the fraction of examples that
the classifier marked positive that are actually positive. It is often accompanied by

AFirst DecisionTree | 69



the metric recall. This is the fraction of all examples that are actually positive that
the classifier marked positive.

For example, say there are 20 actually positive examples in a data set of 50 examples.
The classifier marks 10 of the 50 as positive, and of those 10, 4 are actually positive
(correctly classified). Precision is 4/10 = 0.4 and recall is 4/20 = 0.2 in this case.

We can apply these concepts to this multiclass problem by viewing each category
independently as the positive class, and all else as negative. For example, to com-
pute precision and recall for each category versus the rest:

(0 until 7).map( @
cat => (metrics.precision(cat), metrics.recall(cat))
).foreach(println)

(0.6805931840866961,0.6809492105763744)
(0.7297560975609756,0.7892237892589596)
(0.6376224968044312,0.8473952434881087)
(0.5384615384615384,0.3917910447761194)
(0.0,0.0)
(0.7083333333333334,0.0293778801843318)
(0.6956168831168831,0.42828585707146427)

O DecisionTreeModel numbers categories from 0

This shows that the accuracy for each class individually varies. For our purposes here,
there’s no reason to think that one category’s accuracy is more important than
another, so examples will take the overall multiclass precision as a good, single meas-
ure of the accuracy of predictions.

Although 70% accuracy sounds decent, it'’s not immediately clear whether it is out-
standing or poor. How well would a simplistic approach do, to establish a baseline?
Just as a broken clock is correct twice a day, randomly guessing a classification for
each example would also occasionally produce the correct answer.

We could construct such a “classifier” by picking a class at random in proportion to
its prevalence in the training set. Each classification would be correct in proportion to
its prevalence in the CV set. For example, a class that makes up 20% of the training
set and 10% of the CV set will contribute 20% of 10%, or 2%, to the overall accuracy.
That 10% will be correctly “classified” 20% of the time through guessing. We can eval-
uate the accuracy by summing these products of probabilities:

import org.apache.spark.rdd._

def classProbabilities(data: RDD[LabeledPoint]): Array[Double] = {
val countsByCategory = data.map(_.label).countByValue() (1]
val counts = countsByCategory.toArray.sortBy(_._1).map(_._2) (2]
counts.map(_.toDouble / counts.sum)
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}

val trainPriorProbabilities = classProbabilities(trainData)

val cvPriorProbabilities = classProbabilities(cvData)

trainPriorProbabilities.zip(cvPriorProbabilities).map { (3]
case (trainProb, cvProb) => trainProb * cvProb

}.sum

0.37737764750734776
© Count (category,count) in data
® Order counts by category and extract counts

© Pair probability in training, CV set and sum products

Random guessing achieves 37% accuracy then, which makes 70% seem like a good
result after all. But this result was achieved with default arguments to Decision
Tree.trainClassifier(). We can do even better by exploring what these arguments
—hyperparameters—mean for the tree-building process.

Decision Tree Hyperparameters

In Chapter 3, the ALS algorithm exposed several hyperparameters whose values we
had to choose by building models with various combinations of values, and then
assessing the quality of each result using some metric. The process is the same here,
although the metric is now multiclass accuracy instead of AUC, and the hyperpara-
meters controlling how the tree’s decisions are chosen are maximum depth, maxi-
mum bins, and impurity measure.

Maximum depth simply limits the number of levels in the decision tree. It is the max-
imum number of chained decisions that the classifier will make to classify an exam-
ple. It is useful to limit this to avoid overfitting the training data, as illustrated
previously in the pet store example.

he decision tree algorithm is responsible for coming up with potential decision rules
to try at each level, like the weight >= 100 or weight >= 500 decisions in the pet
store example. Decisions are always of the same form: for numeric features, decisions
are of the form feature >= value, and for categorical features they are of the form
feature in (valuel, value2, ..). So, the set of decision rules to try is really a set of
values to plug in to the decision rule. These are referred to as “bins” in the Spark
MLIib implementation. A larger number of bins requires more processing time but
may lead to finding a more optimal decision rule.
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What makes a decision rule good? Intuitively, a good rule would meaningfully distin-
guish examples by target category value. For example, a rule that divides the Covtype
data set into examples with only categories 1-3 on the one hand, and 4-7 on the
other, would be excellent because it clearly separates some categories from the others.
A rule that resulted in about the same mix of all categories as are found in the whole
data set doesn’t seem helpful. Following either branch of such a decision leads to
about the same distribution of possible target values, and so doesn't really make pro-
gress toward a confident classification.

Put another way, good rules divide the training datas target values into relatively
homogeneous, or “pure,” subsets. Picking a best rule means minimizing the impurity
of the two subsets it induces. There are two commonly used measures of impurity:
Gini impurity and entropy.

Gini impurity is directly related to the accuracy of the random-guess classifier.
Within a subset, it is the probability that a randomly chosen classification of a ran-
domly chosen example (both according to the distribution of classes in the subset) is
incorrect. This is the sum of products of proportions of classes, but with themselves,
and subtracted from 1. If a subset has N classes and p; is the proportion of examples
of class i, then its Gini impurity is given in the Gini impurity equation:

If the subset contains only one class, this value is 0 because it is completely “pure”
When there are N classes in the subset, this value is larger than 0 and is largest when
the classes occur the same number of times—maximally impure.

Entropy is another measure of impurity, borrowed from information theory. Its
nature is more difficult to explain, but it captures how much uncertainty the collec-
tion of target values in the subset contains. A subset containing one class only is com-
pletely certain, and has 0 entropy. Hence low entropy, like low Gini impurity, is a
good thing. Entropy is defined in the entropy equation:

N 1 N
Iy(p) = X plog (;) == X pilog (p)

Interestingly, uncertainty has units. Because the logarithm is the natural log (base e),
the units are nats, the base-e counterpart to more familiar bits (which we can obtain
by using log base 2 instead). It really is measuring information, and so it’s also com-
mon to talk about the information gain of a decision rule when using entropy with
decision trees.
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One or the other measure may be a better metric for picking decision rules in a given
data set. The default in Spark’s implementation is Gini impurity.

Some decision tree implementations will impose a minimum information gain, or
decrease in impurity, for candidate decision rules. Rules that do not improve the sub-
sets impurity enough are rejected. Like a lower maximum depth, this can help the
model resist overfitting, because decisions that barely help divide the training input
may in fact not helpfully divide future data at all. However, rules like minimum infor-
mation gain are not implemented in Spark MLIib yet.

Tuning Decision Trees

It’s not obvious from looking at the data which impurity measure leads to better accu-
racy, or what maximum depth or number of bins is enough without being excessive.
Fortunately, as in Chapter 3, it's simple to let Spark try a number of combinations of
these values and report the results:

val evaluations =
for (impurity <- Array("gini", "entropy");

depth <- Array(1, 20);
bins <- Array(10, 300)) @

yield {
val model = DecisionTree.trainClassifier(

trainData, 7, Map[Int,Int](), impurity, depth, bins)
val predictionsAndLabels = cvData.map(example =>
(model.predict(example.features), example.label)
)
val accuracy =
new MulticlassMetrics(predictionsAndLabels).precision

((impurity, depth, bins), accuracy)

}

evaluations.sortBy(_._2).reverse.foreach(println) (2]

((entropy,20,300),0.9125545571245186)
((gini,20,300),0.9042533162173727)
((gini,20,10),0.8854428754813863)
((entropy,20,10),0.8848951647411211)
((gini,1,300),0.6358065896448438)
((gini,1,10),0.6355669661959777)
((entropy,1,300),0.4861446298673513)
((entropy,1,10),0.4861446298673513)

O Again, read as a triply nested for loop

® Sort by second value (accuracy), descending, and print
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Clearly, maximum depth 1 is too small and produces inferior results. More bins helps
a little. The two impurity measures seem comparable, for reasonable settings of maxi-
mum depth. This process could be continued to explore these hyperparameters. More
bins should never hurt, but will slow down the building process and increase memory
usage. Both impurity measures should be tried in all cases. More depth will help up to
a point.

So far, the code samples here have ignored the 10% of data held out as the test set. If
the purpose of the CV set was to evaluate parameters fit to the training set, then the
purpose of the test set is to evaluate hyperparameters that were “fit” to the CV set.
That is, the test set ensures an unbiased estimate of the accuracy of the final, chosen
model and its hyperparameters.

The preceding test suggests that entropy-based impurity, maximum depth 20, and
300 bins are the best-known hyperparameter settings so far, and achieves about 91.2%
accuracy. However, there’s an element of randomness in how these models are built.
By chance, this model and evaluation could have turned out unusually well. The top
model and evaluation result could have benefited from a bit of luck, and so, its accu-
racy estimate is likely to be slightly optimistic. Put another way, hyperparameters can
overfit too.

To really assess how well this best model is likely to perform on future examples, we
need to evaluate it on examples that were not used to train it, certainly. But we also
need to avoid examples in the CV set that were used to evaluate it. That is why a third
subset, the test set, was held out. As a final step, we can use the hyperparameters to
build a model on the training and CV sets together, and evaluate as before:

val model = DecisionTree.trainClassifier(
trainData.union(cvData), 7, Map[Int,Int](), "entropy", 20, 300)
The result is about 91.6% accuracy, which is about the same, so the initial estimate
appears to have been reliable.

This is an interesting point at which to revisit the issue of overfitting. As discussed
previously, it’s possible to build a decision tree so deep and elaborate that it fits the
given training examples very well or perfectly, but fails to generalize to other exam-
ples because it has fit the idiosyncrasies and noise of the training data too closely.
This is a problem common to most machine learning algorithms, not just decision
trees.

When a decision tree has overfit, it will exhibit high accuracy when run on the same
training data that it fit the model to, but low accuracy on other examples. Here, the
final model’s accuracy was about 91.6% on other, new examples. Accuracy can just as
easily be evaluated over the same data that the model was trained on, train
Data.union(cvData). This gives an accuracy of about 95.3%.
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The difference is not large, but suggests the decision tree has overfit the training data
to some extent. A lower maximum depth might be a better choice.

Categorical Features Revisited

The code samples so far have included the argument Map[Int,Int]() without
explanation. This parameter, like the 7, specifies the number of distinct values to
expect for each categorical feature in the input. The keys in this Map are indices of
features in the input Vector, and values are distinct value counts. At this time, the
implementation requires this information in advance.

The empty Map() indicates that no features should be treated as categorical; all are
numeric. All of the features are in fact numbers, but some represent categorical fea-
tures, conceptually. As mentioned earlier, it would be an error to treat a categorical
feature that had simply been mapped to distinct numbers as a numeric value, because
the algorithm would be trying to learn from an ordering that has no meaning.

Thankfully, the categorical features here are one-hot encoded as several binary 0/1
values. Treating these individual features as numeric turns out to be fine, because any
decision rule on the “numeric” features will choose thresholds between 0 and 1, and
all are equivalent since all values are 0 or 1.

Of course, this encoding forces the decision tree algorithm to consider the values of
the underlying categorical feature individually. It is not limited in this way when
learning from a single categorical feature. With one 40-valued categorical feature, the
decision tree can create decisions based on groups of categories in one decision,
which may be more direct and optimal. On the other hand, having 40 numeric fea-
tures represent one 40-valued categorical feature also increases memory usage and
slows things down.

What about undoing the one-hot encoding? The following alternative parsing of the
input turns the two categorical features from one-hot encoding to a series of distinct
numeric values:

val data = rawData.map { line =>
val values = line.split(',"').map(_.toDouble)
val wilderness = values.slice(10, 14).indexOf(1.0).toDouble (1]
val soil = values.slice(14, 54).index0f(1.0).toDouble (2]
val featureVector =
Vectors.dense(values.slice(0, 10) :+ wilderness :+ soil) (3]
val label = values.last - 1
LabeledPoint(label, featureVector)
}

@ Which of 4 “wilderness” features is 1

© Similarly for following 40 “soil” features
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©® Add derived features back to first 10

We can repeat the same process of train/CV/test split and evaluation. This time, the
count of distinct values for the two new categorical features is given, which causes
these features to be treated as categorical, and not numeric. DecisionTree requires
the number of bins to increase to at least 40, because the soil feature has 40 distinct
values. Given previous results, deeper trees are built, up to the maximum of depth 30
that DecisionTree currently supports. Finally, both train and CV accuracy are
reported:

val evaluations
for (impurity <- Array("gini", "entropy");
depth <- Array(10, 20, 30);
bins <- Array(40, 300))
yield {
val model = DecisionTree.trainClassifier(
trainData, 7, Map(10 -> 4, 11 -> 40),
impurity, depth, bins) (1]
val trainAccuracy = getMetrics(model, trainData).precision
val cvAccuracy = getMetrics(model, cvData).precision
((impurity, depth, bins), (trainAccuracy, cvAccuracy))

}

((entropy,30,300),(0.9996922984231909,0.9438383977425239))
((entropy,30,40),(0.9994469978654548,0.938934581368939))
((gini,30,300),(0.9998622874061833,0.937127912178671))
((gini,30,40),(0.9995180059216415,0.9329467634811934))
((entropy,20,40),(0.9725865867933623,0.9280773598540899))
((gini,20,300),(0.9702347139020864,0.9249630062975326) )
((entropy,20,300),(0.9643948392205467,0.9231391307340239))
((gini,20,40),(0.9679344832334917,0.9223820503114354))
((gini,10,300),(0.7953203539213661,0.7946763481193434))
((gini,10,40),(0.7880624698753701,0.7860215423792973))
((entropy,10,40),(0.78206336500723,0.7814790598437661))
((entropy,10,300),(0.7821903188046547,0.7802746137169208))

© Specify value count for categorical features 10, 11

® Return train and CV accuracy

If you run this on a cluster, you may notice that the tree-building process completes
several times faster than before.

At depth 30, the training set is fit nearly perfectly; it is overfitting to some degree, but
still providing the best accuracy on the cross-validation set. Entropy, and a larger
number of bins, appear to help accuracy again. The accuracy on the test set is 94.5%.
By treating categorical features as actual categorical features, the classifier improved
its accuracy by almost 3%.
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Random Decision Forests

If you have been following along with the code examples, you may have noticed that
your results differ slightly from those presented in code listings in the book. That is
because there is an element of randomness in building decision trees, and the ran-
domness comes into play when youre deciding what data to use and what decision
rules to explore.

The algorithm does not consider every possible decision rule at every level. To do so
could take an incredible amount of time. For a categorical feature over N values, there
are 2% — 2 possible decision rules (every subset except the empty set and entire set).
For even moderately large N this would create billions of candidate decision rules.

Instead, decision trees use several heuristics to be smarter about which few rules to
actually consider. The process of picking rules also involves some randomness; only a
few features picked at random are looked at each time, and only values from a ran-
dom subset of the training data. This trades a bit of accuracy for a lot of speed, but it
also means that the decision tree algorithm won't build the same tree every time. This
is a good thing.

It’s good for the same reason that the “wisdom of the crowds” usually beats individual
predictions.

To illustrate, take this quick quiz: How many black taxis operate in London?
Don't peek at the answer; guess first.

I guessed 10,000, which is well off the correct answer of about 19,000. Because I
guessed low, youre a bit more likely to have guessed higher than I did, and so the
average of our answers will tend to be more accurate. There’s that regression to the
mean again. The average guess from an informal poll of 13 people in the office was
indeed closer: 11,170.

A key to this effect is that the guesses were independent and didn’t influence one
another. (You didn't peek, did you?) The exercise would be useless if we had all agreed
on and used the same methodology to make a guess, because the guesses would have
been the same answer—the same potentially quite wrong answer. It would even have
been different and worse if I'd merely influenced you by stating my guess upfront.

It would be great to have not one tree, but many trees, each producing reasonable but
different and independent estimations of the right target value. Their collective aver-
age prediction should fall close to the true answer, more than any individual tree’s
does. It’s the randomness in the process of building that helps create this independ-
ence. This is the key to random decision forests.
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Through RandomForest, Spark MLIib can build random decision forests, which are,
as the name suggests, collections of independently built decision trees. The invoca-
tion is virtually the same:

val forest = RandomForest.trainClassifier(
trainData, 7, Map(10 -> 4, 11 -> 40), 20,
"auto", "entropy", 30, 300)

Two new parameters appear, compared to DecisionTree.trainClassifier(). First
is a number of trees to build: here 20. This model-building process may take signifi-
cantly longer than before, because 20 trees are being built instead of one.

Second is a strategy for choosing which features to evaluate at each level of the tree,
which is here set to "auto". The random decision forest implementation will not even
consider every feature as the basis of a decision rule, but only a subset of all features.
This parameter controls how it picks the subset. Checking only a few features is of
course faster, and speed is helpful now that so many more trees are being constructed.

However, it also makes the individual trees” decisions more independent, and makes
the forest as a whole less prone to overfitting. If a particular feature contains noisy
data, or is deceptively predictive only in the training set, then most trees will not have
considered this problem feature, most of the time. Most trees will not have fit the
noise and will tend to “outvote” the ones that have in the forest.

In fact, when you're building a random decision forest, each tree will not even neces-
sarily see all of the training data. They may be fed a randomly chosen subset of it
instead, for similar reasons.

The prediction of a random decision forest is simply a weighted average of the trees’
predictions. For a categorical target, this can be a majority vote, or the most probable
value based on the average of probabilities produced by the trees. Random decision
forests, like decision trees, also support regression, and the forests prediction in this
case is the average of the number predicted by each tree.

The accuracy from this RandomForestModel model is 96.3% oft the bat—about 2%
better already, although viewed another way, that’s a 33% reduction in the error rate
over the best decision tree built previously, from 5.5% down to 3.7%.

Random decision forests are appealing in the context of big data because trees are
supposed to be built independently, and big-data technologies like Spark and MapRe-
duce inherently need data-parallel problems, where parts of the overall solution can
be computed independently on parts of the data. The fact that trees can, and should,
train on only a subset of features or input data makes it trivial to parallelize building
of the trees.

Although Spark MLIib does not yet support it directly, random decision forests can
also evaluate their own accuracy along the way, because often trees are built on just a
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subset of all training data and can be internally cross-validated against the remaining
data. This means that the forest can even know which of its trees appear to be the
most accurate and weight accordingly.

This property also leads to a way to assess which features of the input are most help-
ful in predicting the target, and thus help with the problem of feature selection. This
is also beyond the scope of this chapter, and MLIib, at the moment.

Making Predictions

Building a classifier, while interesting and a nuanced process, is not the end goal. The
goal is to make predictions. This is the payoff, and it is comparatively quite easy. The
training set consisted of LabeledPoint instances, each of which contained a Vector
and a target value. These are an input and known output, respectively. When we’re
making predictions—especially about the future, says Mr. Bohr—the output is of
course not known.

The results of the DecisionTree and RandomForest training shown so far are Deci
sionTreeModel and RandomForestModel objects, respectively. Both contain essen-
tially one method, predict(). It accepts a Vector, just like the feature vector portion
of LabeledPoint. So, we can classify a new example by converting it to a feature vec-
tor in the same way and predicting its target class:

val input = "2709,125,28,67,23,3224,253,207,61,6094,0,29"
val vector = Vectors.dense(input.split(',').map(_.toDouble))
forest.predict(vector)

@ Can also predict for a whole RDD at once

The result should be 4.0, which corresponds to class 5 (the original feature was 1-
indexed) in the original Covtype data set. The predicted cover type for the land
described in this example is “Aspen.” Obviously.

Where to Go from Here

This chapter introduced two related and important types of machine learning, classi-
fication and regression, along with some foundational concepts in building and tun-
ing models: features, vectors, training, and cross-validation. It demonstrated how to
predict a type of forest cover from things like location and soil type, using the Cov-
type data set, with decision trees and forests implemented in Spark MLIib.

As with recommenders in Chapter 3, it could be useful to continue exploring the
effect of hyperparameters on accuracy. Most decision tree hyperparameters trade
time for accuracy: more bins and trees generally produce better accuracy, but hit a
point of diminishing returns.
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The classifier here turned out to be very accurate. It’s unusual to achieve more than
95% accuracy. In general, you will achieve further improvements in accuracy by
including more features, or transforming existing features into a more predictive
form. This is a common, repeated step in iteratively improving a classifier model. For
example, for this data set, the two features encoding horizontal and vertical distance
to surface water features could produce a third feature: straight-line distance to sur-
face water features. This might turn out to be more useful than either original feature.
Or, if it were possible to collect more data, we might try adding new information like
soil moisture in order to improve classification.

Of course, not all prediction problems in the real world are exactly like the Covtype
data set. For example, some problems require predicting a continuous numeric value,
not a categorical value. Much of the same analysis and code applies to this type of
regression problem; the trainRegressor() method will be of use in this case instead
of trainClassifier().

Furthermore, decision trees and forests are not the only classification or regression
algorithms, and not the only ones implemented in Spark MLIib. For classification, it
includes implementations of:

o Naive Bayes
o Support vector machines (SVMs)

» Logistic regression

Yes, logistic regression is a classification technique. Underneath the hood, it classifies
by predicting a continuous function of a class probability. This detail is not necessary
to understand.

Each of these algorithms operates quite differently from decision trees and forests.
However, many elements are the same: they accept an RDD of LabeledPoint as
input, and have hyperparameters that you must select using training, cross-
validation, and test subsets of the input data. The same general principles, with these
other algorithms, can also be deployed to model classification and regression
problems.

These have been examples of supervised learning. What happens when some, or all,
of the target values are unknown? The following chapter will explore what can be
done in this situation.
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CHAPTER 5

Anomaly Detection in Network Traffic
with K-means Clustering

Sean Owen

There are known knowns; there are things that we know that we know. We also know there
are known unknowns; that is to say, we know there are some things we do not know. But
there are also unknown unknowns, the ones we don’t know we don’t know.

—Donald Rumsfeld

Classification and regression are powerful, well-studied techniques in machine learn-
ing. Chapter 4 demonstrated a classifier as a predictor of unknown values. There was
a catch: in order to predict unknown values for new data, we had to know that target
value for many previously seen examples. Classifiers can only help if we, the data sci-
entists, know what we are looking for already, and can provide plenty of examples
where input produced a known output. These were collectively known as supervised
learning techniques, because their learning process receives the correct output value
for each example in the input.

However, there are problems in which the correct output is unknown for some or all
examples. Consider the problem of dividing up an ecommerce site’s customers by
their shopping habits and tastes. The input features are their purchases, clicks, demo-
graphic information, and more. The output should be groupings of customers. Per-
haps one group will represent fashion-conscious buyers, another will turn out to
correspond to price-sensitive bargain hunters, and so on.

If you were asked to determine this target label for each new customer, you would
quickly run into a problem in applying a supervised learning technique like a classi-
fier: you don’t know a priori who should be considered fashion-conscious, for exam-
ple. In fact, you're not even sure if “fashion-conscious” is a meaningful grouping of
the site’s customers to begin with!
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Fortunately, unsupervised learning techniques can help. These techniques do not
learn to predict any target value, because none is available. They can, however, learn
structure in data, and find groupings of similar inputs, or learn what types of input
are likely to occur and what types are not. This chapter will introduce unsupervised
learning using clustering implementations in MLIib.

Anomaly Detection

The problem of anomaly detection is, as its name implies, that of finding unusual
things. If we already knew what “anomalous” meant for a data set, we could easily
detect anomalies in the data with supervised learning. An algorithm would receive
inputs labeled “normal” and “anomaly” and learn to distinguish the two. However,
the nature of anomalies is that they are unknown unknowns. Put another way, an
anomaly that has been observed and understood is no longer an anomaly.

Anomaly detection is often used to find fraud, detect network attacks, or discover
problems in servers or other sensor-equipped machinery. In these cases, it’s impor-
tant to be able to find new types of anomalies that have never been seen before—new
forms of fraud, new intrusions, new failure modes for servers.

Unsupervised learning techniques are useful in these cases, because they can learn
what input data normally looks like, and therefore detect when new data is unlike
past data. Such new data is not necessarily attacks or fraud; it is simply unusual, and
therefore, worth further investigation.

K-means Clustering

Clustering is the best-known type of unsupervised learning. Clustering algorithms try
to find natural groupings in data. Data points that are like one another, but unlike
others, are likely to represent a meaningful grouping, and so clustering algorithms try
to put such data into the same cluster.

K-means clustering is maybe the most widely used clustering algorithm. It attempts
to detect k clusters in a data set, where k is given by the data scientist. k is a hyper-
parameter of the model, and the right value will depend on the data set. In fact,
choosing a good value for k will be a central plot point in this chapter.

What does “like” mean when the data set contains information like customer activity?
Or transactions? K-means requires a notion of distance between data points. It is
common to use simple Euclidean distance to measure distance between data points
with K-means, and as it happens, this is the only distance function supported by
Spark MLIib as of this writing. The Euclidean distance is defined for data points
whose features are all numeric. “Like” points are those whose intervening distance is
small.
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To K-means, a cluster is simply a point: the center of all the points that make up the
cluster. These are in fact just feature vectors containing all numeric features, and can
be called vectors. It may be more intuitive to think of them as points here, because
they are treated as points in a Euclidean space.

This center is called the cluster centroid, and is the arithmetic mean of the points—
hence the name K-means. To start, the algorithm picks some data points as the initial
cluster centroids. Then each data point is assigned to the nearest centroid. Then for
each cluster, a new cluster centroid is computed as the mean of the data points just
assigned to that cluster. This process is repeated.

Enough about K-means for now. Some more interesting details will emerge in the
course of the use case to follow.

Network Intrusion

So-called cyber attacks are increasingly visible in the news. Some attacks attempt to
flood a computer with network traffic to crowd out legitimate traffic. But in other
cases, attacks attempt to exploit flaws in networking software to gain unauthorized
access to a computer. While it’s quite obvious when a computer is being bombarded
with traffic, detecting an exploit can be like searching for a needle in an incredibly
large haystack of network requests.

Some exploit behaviors follow known patterns. For example, accessing every port on
a machine in rapid succession is not something any normal software program would
need to do. However, it is a typical first step for an attacker, who is looking for serv-
ices running on the computer that may be exploitable.

If you were to count the number of distinct ports accessed by a remote host in a short
time, you would have a feature that probably predicts a port-scanning attack quite
well. A handful is probably normal; hundreds indicates an attack. The same goes for
detecting other types of attacks from other features of network connections—number
of bytes sent and received, TCP errors, and so forth.

But what about those unknown unknowns? The biggest threat may be the one that
has never yet been detected and classified. Part of detecting potential network intru-
sions is detecting anomalies. These are connections that aren’t known to be attacks,
but do not resemble connections that have been observed in the past.

Here, unsupervised learning techniques like K-means can be used to detect anoma-
lous network connections. K-means can cluster connections based on statistics about
each of them. The resulting clusters themselves aren't interesting per se, but they col-
lectively define types of connections that are like past connections. Anything not
close to a cluster could be anomalous. Clusters are interesting insofar as they define
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regions of normal connections; everything else outside is unusual and potentially
anomalous.

KDD Cup 1999 Data Set

The KDD Cup was an annual data mining competition organized by a special interest
group of the ACM. Each year, a machine learning problem was posed, along with a
data set, and researchers were invited to submit a paper detailing their best solution
to the problem. It was like Kaggle, before there was Kaggle. In 1999, the topic was
network intrusion, and the data set is still available. This chapter will walk through
building a system to detect anomalous network traffic, using Spark, by learning from
this data.

Don't use this data set to build a real network intrusion system! The
data did not necessarily reflect real network traffic at the time, and
in any event it only reflects traffic patterns as of 15 years ago.

Fortunately, the organizers had already processed raw network packet data into sum-
mary information about individual network connections. The data set is about 708
MB and contains about 4.9M connections. This is large, if not massive, but will be
large enough for our purposes here. For each connection, the data set contains infor-
mation like the number of bytes sent, login attempts, TCP errors, and so on. Each
connection is one line of CSV-formatted data, containing 38 features, like this:

0,tcp,http,SF,215,45076,
9,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,
0.00,0.00,0.00,0.00,1.00,0.00,0.00,0,0,0.00,
0.00,0.00,0.00,0.00,0.00,0.00,0.00,normal.

This connection, for example, was a TCP connection to an HTTP service—215 bytes
were sent and 45,706 bytes were received. The user was logged in, and so on. Many
features are counts, like num_file_creations in the 17th column.

Many features take on the value 0 or 1, indicating the presence or absence of a behav-
ior, like su_attempted in the 15th column. They look like the one-hot encoded cate-
gorical features from Chapter 4, but are not grouped and related in the same way.
Each is like a yes/no feature, and is therefore arguably a categorical feature. It is not
always valid to translate categorical features to numbers and treat them as if they had
an ordering. However, in the special case of a binary categorical feature, in most
machine learning algorithms, it will happen to work well to map these to a numeric
feature taking on values 0 and 1.

The rest are ratios like dst_host_srv_rerror_rate in the next-to-last column, and
take on values from 0.0 to 1.0, inclusive.
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Interestingly, a label is given in the last field. Most connections are labeled normal.,
but some have been identified as examples of various types of network attacks. These
would be useful in learning to distinguish a known attack from a normal connection,
but the problem here is anomaly detection, and finding potentially new and
unknown attacks. This label will be mostly set aside for our purposes here.

A First Take on Clustering

Unzip the kddcup.data.gz data file and copy it into HDFS. This example, like others,
will assume the file is available at /user/ds/kddcup.data. Open the spark-shell, and
load the CSV data as an RDD of String:

val rawData = sc.textFile("hdfs:///user/ds/kddcup.data")

Begin by exploring the data set. What labels are present in the data, and how many
are there of each? The following code counts by label into label-count tuples, sorts
them descending by count, and prints the result:

rawData.map(_.split(',').last).countByValue().toSeq.
sortBy(_._2).reverse.foreach(println)
A lot can be accomplished in a line in Spark and Scala! There are 23 distinct labels,
and the most frequent are smurf. and neptune. attacks:

(smurf.,2807886)
(neptune.,1072017)
(normal.,972781)
(satan.,15892)

Note that the data contains nonnumeric features. For example, the second column
may be tcp, udp, or icmp, but K-means clustering requires numeric features. The final
label column is also nonnumeric. To begin, these will simply be ignored. The follow-
ing Spark code splits the CSV lines into columns, removes the three categorical value
columns starting from index 1, and removes the final column. The remaining values
are converted to an array of numeric values (Double objects), and emitted with the
final label column in a tuple:

import org.apache.spark.mllib.linalg._

val labelsAndData = rawData.map { line =>
val buffer = line.split(',"').toBuffer (1)
buffer.remove(1, 3)
val label = buffer.remove(buffer.length-1)
val vector = Vectors.dense(buffer.map(_.toDouble).toArray)
(label,vector)
}

val data = labelsAndData.values.cache()
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@ toBuffer creates Buffer, a mutable list

K-means will operate on just the feature vectors. So, the RDD data contains just the
second element of each tuple, which in an RDD of tuples are accessed with values.
Clustering the data with Spark MLIib is as simple as importing the KMeans implemen-
tation and running it. The following code clusters the data to create a KMeansModel,
and then prints its centroids:

import org.apache.spark.mllib.clustering._

val kmeans = new KMeans()
val model = kmeans.run(data)

model.clusterCenters.foreach(println)

Two vectors will be printed, meaning K-means was fitting k = 2 clusters to the data.
For a complex data set that is known to exhibit at least 23 distinct types of connec-
tions, this is almost certainly not enough to accurately model the distinct groupings
within the data.

This is a good opportunity to use the given labels to get an intuitive sense of what
went into these two clusters, by counting the labels within each cluster. The following
code uses the model to assign each data point to a cluster, counts occurrences of clus-
ter and label pairs, and prints them nicely:

val clusterLabelCount = labelsAndData.map { case (label,datum) =>
val cluster = model.predict(datum)
(cluster,label)

}.countByValue

clusterLabelCount.toSeq.sorted.foreach {
case ((cluster,label),count) =>
println(f"$cluster%1s$label%18sScount%8s") (1)

}

© Format string interpolates and formats variables

The result shows that the clustering was not at all helpful. Only one data point ended
up in cluster 1!

0 back. 2203
0 buffer_overflow. 30
0 ftp_write. 8
0 guess_passwd. 53
0 imap. 12
0 ipsweep. 12481
0 land. 21
0 loadmodule. 9
0 multihop. 7
0 neptune. 1072017
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0 nmap. 2316
0 normal. 972781
0 perl. 3
0 phf. 4
0 pod. 264
[¢] portsweep. 10412
0 rootkit. 10
0 satan. 15892
0 smurf. 2807886
0 spy. 2
0 teardrop. 979
0 warezclient. 1020
0 warezmaster. 20
1 portsweep. 1

Choosing k

Two clusters are plainly insufficient. How many clusters are appropriate for this data
set? It’s clear that there are 23 distinct patterns in the data, so it seems that k could be
at least 23, or likely, even more. Typically, many values of k are tried to find the best
one. But what is “best”?

A clustering could be considered good if each data point were near to its closest cent-
roid. So, we define a Euclidean distance function, and a function that returns the dis-
tance from a data point to its nearest cluster’s centroid:

def distance(a: Vector, b: Vector) =
math.sqrt(a.toArray.zip(b.toArray).
map(p => p._1 - p._2).map(d => d * d).sum)

def distToCentroid(datum: Vector, model: KMeansModel) = {
val cluster = model.predict(datum)
val centroid = model.clusterCenters(cluster)
distance(centroid, datum)

}
You can read off the definition of Euclidean distance here by unpacking the Scala
function, in reverse: sum (sum) the squares (map(d => d * d)) of differences (map(p
=> p._1 - p._2)) in corresponding elements of two vectors (a.toAr
ray.zip(b.toArray)), and take the square root (math.sqrt).

From this, it’s possible to define a function that measures the average distance to cent-
roid, for a model built with a given k:

import org.apache.spark.rdd._

def clusteringScore(data: RDD[Vector], k: Int) = {
val kmeans = new KMeans()
kmeans.setK(k)
val model = kmeans.run(data)
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data.map(datum => distToCentroid(datum, model)).mean()
}

Now, this can be used to evaluate values of k from, say, 5 to 40:

(5 to 40 by 5).map(k => (k, clusteringScore(data, k))).
foreach(println)

The (x to y by z) syntax is a Scala idiom for creating a collection of numbers
between a start and end (inclusive), with a given difference between successive ele-
ments. This is a compact way to create the values “5, 10, 15, 20, 25, 30, 35, 40” for k,
and then do something with each.

The printed result shows that the score decreases as k increases:

(5,1938.858341805931)
(10,1689.4950178959496)
(15,1381.315620528147)
(20,1318.256644582388)
(25,932.0599419255919)
(30,594.2334547238697)
(35,829.5361226176625)
(40,424.83023056838846)

Again, your values will be somewhat different. The clustering
depends on a randomly chosen initial set of centroids.

However, this much is obvious. As more clusters are added, it should always be possi-
ble to make data points closer to a nearest centroid. In fact, if k is chosen to equal the
number of data points, the average distance will be 0, because every point will be its
own cluster of one!

Worse, in the preceding results, the distance for k = 35 is higher than for k = 30. This
shouldn’t happen, because higher k always permits at least as good a clustering as a
lower k. The problem is that K-means is not necessarily able to find the optimal clus-
tering for a given k. Its iterative process can converge from a random starting point to
a local minimum, which may be good but not optimal.

This is still true even when more intelligent methods are used to choose initial cent-
roids. K-means++ and K-means|| are variants with selection algorithms that are more
likely to choose diverse, separated centroids, and lead more reliably to a good cluster-
ing. Spark MLIib, in fact, implements K-means||. However, all still have an element of
randomness in selection, and can’t guarantee an optimal clustering.

The random starting set of clusters chosen for k = 35 perhaps led to a particularly
suboptimal clustering, or, it may have stopped early before it reached its local
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optimum. We can improve this by running the clustering many times for a value of k,
with a different random starting centroid set each time, and picking the best cluster-
ing. The algorithm exposes setRuns() to set the number of times the clustering is run
for one k.

We can improve it by running the iteration longer. The algorithm has a threshold via
setEpsilon() that controls the minimum amount of cluster centroid movement that
is considered significant; lower values means the K-means algorithm will let the cent-
roids continue to move longer.

Run the same test again, but try larger values, from 30 to 100. In the following exam-
ple, the range from 30 to 100 is turned into a parallel collection in Scala. This causes
the computation for each k to happen in parallel in the Spark shell. Spark will manage
the computation of each at the same time. Of course, the computation of each k is
also a distributed operation on the cluster. Its parallelism inside parallelism. This may
increase overall throughput by fully exploiting a large cluster, although at some point,
submitting a very large number of tasks simultaneously will become
counterproductive:

kmeans.setRuns(10)
kmeans.setEpsilon(1l.0e-6) (1)

(30 to 100 by 10).par.map(k => (k, clusteringScore(data, k))).
toList.foreach(println)

© Decrease from default of 1.0e-4
This time, scores decrease consistently:

(30,862.9165758614838)
(40,801.679800071455)
(50,379.7481910409938)
(60,358.6387344388997)
(70,265.1383809649689)
(80,232.78912076732163)
(90,230.0085251067184)
(100,142.84374573413373)

We want to find a point past which increasing k stops reducing the score much, or an
“elbow” in a graph of k versus score, which is generally decreasing but eventually flat-
tens out. Here, it seems to be decreasing notably past 100. The right value of k may be
past 100.

Visualizationin R

At this point, it could be useful to look at a plot of the data points. Spark itself has no
tools for visualization. However, data can be easily exported to HDFS, and then read
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into a statistical environment like R. This brief section will demonstrate using R to
visualize the data set.

While R provides libraries for plotting points in two or three dimensions, this data set
is 38-dimensional. It will have to be projected down into at most three dimensions.
Further, R itself is not suited to handle large data sets, and this data set is certainly
large for R. It will have to be sampled to fit into memory in R.

To start, build a model with k = 100 and map each data point to a cluster number.
Write the features as lines of CSV text to a file on HDFS:

val sample = data.map(datum =>
model.predict(datum) + "," + datum.toArray.mkString(",") @
).sample(false, 0.05)

sample.saveAsTextFile(" /user/ds/sample")

@ nkString joins a collection to a string with a delimiter

sample() is used to select a small subset of all lines, so that it more comfortably fits in
memory in R. Here, 5% of the lines are selected (without replacement).

The following R code reads CSV data from HDFS. This can also be accomplished
with libraries like rhdfs, which can take some setup and installation. Here it just uses
a locally installed hdfs command from a Hadoop distribution, for simplicity. This
requires HADOOP_CONF_DIR to be set to the location of Hadoop configuration, with
configuration that defines the location of the HDFS cluster.

It creates a three-dimensional data set out of a 38-dimensional data set by choosing
three random unit vectors and projecting the data onto these three vectors. This is a
simplistic, rough-and-ready form of dimension reduction. Of course, there are more
sophisticated dimension reduction algorithms, like Principal Component Analysis or
the Singular Value Decomposition. These are available in R, but take much longer to
run. For purposes of visualization in this example, a random projection achieves
much the same result, faster.

The result is presented as an interactive 3D visualization. Note that this will require
running R in an environment that supports the rgl library and graphics (for example,
on Mac OS X, it requires X11 from Apple’s Developer Tools to be installed):

install.packages("rgl") # First time only
library(rgl)

clusters_data <-

read.csv(pipe("hadoop fs -cat /user/ds/sample/*")) (1)
clusters <- clusters_data[1]
data <- data.matrix(clusters_data[-c(1)])
rm(clusters_data)
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random_projection <- matrix(data = rnorm(3*ncol(data)), ncol = 3)
random_projection_norm <-
random_projection /
sqrt(rowSums(random_projection*random_projection)) (2]

projected_data <- data.frame(data %*% random_projection_norm) (3]

num_clusters <- nrow(unique(clusters))

palette <- rainbow(num_clusters)

colors = sapply(clusters, function(c) palette[c])
plot3d(projected_data, col = colors, size = 10)

@ Read cluster and data with hdfs command
® Create random unit vectors in 3D

© Project the data

The resulting visualization in Figure 5-1 shows data points shaded by cluster number
in 3D space. Many points fall on top of one another, and the result is sparse and hard
to interpret. However, the dominant feature of the visualization is its “I” shape. The
points seem to vary along two distinct dimensions, and little in other dimensions.

This makes sense, because the data set has two features that are on a much larger scale
than the others. Whereas most features have values between 0 and 1, the bytes-sent
and bytes-received features vary from 0 to tens of thousands. The Euclidean distance
between points is therefore almost completely determined by these two features. It’s
almost as if the other features don’t exist! So, it's important to normalize away these
differences in scale to put features on near-equal footing.

Feature Normalization

We can normalize each feature by converting it to a standard score. This means sub-
tracting the mean of the feature’s values from each value, and dividing by the stan-
dard deviation, as shown in the standard score equation:

feature, — u.
. 1 1
normalzzedi =
i
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Figure 5-1. Random 3D projection

In fact, subtracting means has no effect on the clustering, because the subtraction
effectively shifts all of the data points by the same amount in the same directions.
This does not affect interpoint Euclidean distances. For consistency, however, the

mean will be subtracted anyway.

Standard scores can be computed from the count, sum, and sum-of-squares of each
feature. This can be done jointly, with reduce operations used to add entire arrays at
once, and fold used to accumulate sums of squares from an array of zeros:

val dataAsArray = data.map(_.toArray)
val numCols = dataAsArray.first().length
val n = dataAsArray.count()
val sums = dataAsArray.reduce(
(a,b) => a.zip(b).map(t => t._1 + t._2))
val sumSquares = dataAsArray.fold(
new Array[Double](numCols)
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)(
(a,b) => a.zip(b).map(t => t._1 + t._2 * t._2)
)
val stdevs = sumSquares.zip(sums).map {
case(sumSq,sum) => math.sqrt(n*sumSq - sum*sum)/n

}

val means = sums.map(_ / n)

def normalize(datum: Vector) = {
val normalizedArray = (datum.toArray, means, stdevs).zipped.map(
(value, mean, stdev) =>
if (stdev <= 0) (value - mean) else (value - mean) / stdev

)

Vectors.dense(normalizedArray)

}

We can run the same test with normalized data, on a higher range of k:

val normalizedData = data.map(normalize).cache()
(60 to 120 by 10).par.map(k =>
(k, clusteringScore(normalizedData, k))).tolList.foreach(println)

This yields some evidence that k = 100 may be a reasonably good choice:

(60,0.0038662664156513646)
(70,0.003284024281015404)
(80,0.00308768458568131)
(90,0.0028326001931487516)
(100,0.002550914511356702)
(110,0.002516106387216959)
(120,0.0021317966227260106)

Another 3D visualization of the normalized data points reveals a richer structure, as
expected. Some points are spaced in regular, discrete intervals in a direction; these are
likely projections of discrete dimensions in the data, like counts. With 100 clusters,
it’s hard to make out which points come from which clusters. One large cluster seems
to dominate, and many clusters correspond to small compact subregions (some of
which are omitted from this zoomed detail of the entire 3D visualization). The result,
shown in Figure 5-2, does not necessarily advance the analysis, but is an interesting
sanity check.
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Figure 5-2. Random 3D projection of normalized data

Categorical Variables

Earlier, three categorical features were excluded, because nonnumeric features can't
be used with the Euclidean distance function that K-means uses in MLIib. This is the
reverse of the issue noted in Chapter 4, where numeric features were used to repre-
sent categorical values, but a categorical feature was desired.

The categorical features can translate into several binary indicator features using one-
hot encoding, which can be viewed as numeric dimensions. For example, the second
column contains the protocol type: tcp, udp, or icmp. This feature could be thought of
as three features, perhaps is_tcp, is_udp, and is_1icmp. The single feature value tcp
might become 1,0,0; udp might be 0,1,0; and so on. The accompanying source code
implements this transformation to replace these categorical values with a one-hot
encoding; it is not reproduced here.

This new, larger data set can be normalized again, and clustered again, perhaps trying
larger k as well. Because the individual clustering jobs are getting large, it may be best
to remove the .par and return to computing one model at a time:
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(80,0.038867919526032156)
(90,0.03633130732772693)
(100,0.025534431488492226)
(110,0.02349979741110366)
(120,0.01579211360618129)
(130,0.011155491535441237)
(140,0.010273258258627196)
(150,0.008779632525837223)
(160,0.009000858639068911)

These sample results suggest k = 150, although even with 10 runs each, at this size, k
= 160 fails to produce a better clustering. There is still some uncertainty about these
scores.

Using Labels with Entropy

Earlier, we used the given label for each data point to create a quick sanity check of
the quality of the clustering. This notion can be formalized further and used as an
alternative means of evaluating clustering quality, and therefore, of choosing k.

It stands to reason that a good clustering would create clusters that contain one or a
few types of the known attacks, and little of anything else. You may recall from Chap-
ter 4 that we have metrics for homogeneity: Gini impurity and entropy. Entropy will
be used here for illustration.

A good clustering would have clusters whose collections of labels are homogeneous
and so have low entropy. A weighted average of entropy can therefore be used as a
cluster score:

def entropy(counts: Iterable[Int]) = {
val values = counts.filter(_ > 0)
val n: Double = values.sum
values.map { v =>

valp=v/n
-p * math.log(p)
}.sum

}
def clusteringScore(
normalizedLabelsAndData: RDD[(String,Vector)],
k: Int) = {
val model = kmeans.run(normalizedLabelsAndData.values)

val labelsAndClusters =
normalizedLabelsAndData.mapValues(model.predict) (1)

val clustersAndLabels = labelsAndClusters.map(_.swap) (2]
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val labelsInCluster = clustersAndLabels.groupByKey().values (3]

val labelCounts = labelsInCluster.map(
_.groupBy(l => 1).map(_._2.size)) (4]

val n = normalizedLabelsAndData.count()

labelCounts.map(m => m.sum * entropy(m)).sum / n (5]

}

® 6 o © o

Predict cluster for each datum

Swap keys/values

Extract collections of labels, per cluster
Count labels in collections

Average entropy weighted by cluster size

As before, this analysis can be used to obtain some idea of a suitable value of k.
Entropy will not necessarily decrease as k increases, so it is possible to look for a local
minimum value. Here again, results suggest k = 150 is a reasonable choice:

(80,1.0079370754411006)
(90,0.9637681417493124)

(100,0.
(110,0.
(120,0.
(130,0.
(140,0.
(150,0.
(160,0.

9403615199645968)

4731764778562114)

37056636906883805)
36584249542565717)
10532529463749402)
10380319762303959)
14469129892579444)

Clustering in Action

Finally, with confidence, we can cluster the full normalized data set with k = 150.
Again, we can print the labels for each cluster to get some sense of the resulting clus-
tering. Clusters do seem to contain mostly one label:

[cl ol oMo No)

90
90
90
90

back. 6
neptune. 821239
normal. 255
portsweep. 114
satan. 31
ftp_write. 1
loadmodule. 1
neptune. 1

normal. 41253
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90 warezclient. 12

93 normal. 8

93 portsweep. 7365
93 warezclient. 1

Now, we can make an actual anomaly detector. Anomaly detection amounts to meas-
uring a new data point’s distance to its nearest centroid. If this distance exceeds some
threshold, it is anomalous. This threshold might be chosen to be the distance of, say,
the 100th-farthest data point from among known data:

val distances = normalizedData.map(
datum => distToCentroid(datum, model)
)

val threshold = distances.top(100).last
The final step is to apply this threshold to all new data points as they arrive. For
example, Spark Streaming can be used to apply this function to small batches of input
data arriving from sources like Flume, Kafka, or files on HDFS. Data points exceed-
ing the threshold might trigger an alert that sends an email or updates a database.

As an example, we will apply it to the original data set, to see some of the data points
that are, we might believe, most anomalous within the input. To interpret the results,
we keep the original line of input with the parsed feature vector:

val model = ...

val originalAndData = ...

val anomalies = originalAndData.filter { case (original, datum) =>
val normalized = normalizeFunction(datum)
distToCentroid(normalized, model) > threshold

}.keys

For fun, the winner is the following data point, which is the most anomalous in the
data, according to this model:

0,tcp,http,S1,299,26280,
0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,15,16,
0.07,0.06,0.00,0.00,1.00,0.00,0.12,231,255,1.00,
0.00,0.00,0.01,0.01,0.01,0.00,0.00,normal.

A network security expert would be more able to interpret why this is or is not
actually a strange connection. It appears unusual at least because it is labeled normal.,
but involved more than 200 different connections to the same service in a short time,
and ended in an unusual TCP state, S1.

Where to Go from Here

The KMeansModel is, by itself, the essence of an anomaly detection system. The pre-
ceding code demonstrated how to apply it to data to detect anomalies. This same
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code could be used within Spark Streaming to score new data as it arrives in near real
time, and perhaps trigger an alert or review.

MLIib also includes a variation called StreamingKMeans, which can update a cluster-
ing incrementally as new data arrives in a StreamingkMeansModel. We could use this
to continue to learn, approximately, how new data affects the clustering, and not just
assess new data against existing clusters. It can be integrated with Spark Streaming as
well.

This model is only a simplistic one. For example, Euclidean distance is used in this
example because it is the only distance function supported by Spark MLIib at this
time. In the future, it may be possible to use distance functions that can better
account for the distributions of and correlations between features, such as the Maha-
lanobis distance.

There are also more sophisticated cluster quality evaluation metrics that could be
applied, even without labels, to pick k, such as the Silhouette coefficient. These tend
to evaluate not just closeness of points within one cluster, but closeness of points to
other clusters.

Finally, different models could be applied too, instead of simple K-means clustering;
for example, a Gaussian mixture model or DBSCAN could capture more subtle rela-
tionships between data points and the cluster centers.

Implementations of these may become available in Spark MLIib or other Spark-based
libraries in the future.

Of course, clustering isn’t just for anomaly detection either. In fact, it's more usually
associated with use cases where the actual clusters matter! For example, clustering
can also be used to group customers according to their behaviors, preferences, and
attributes. Each cluster, by itself, might represent a usefully distinguishable type of
customer. This is a more data-driven way to segment customers rather than leaning
on arbitrary, generic divisions like “age 20-34” and “female”

98 | Chapter5: Anomaly Detection in Network Traffic with K-means Clustering


https://spark.apache.org/streaming/
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Cluster_analysis#Internal_evaluation
http://en.wikipedia.org/wiki/Silhouette_(clustering)
http://bit.ly/1GzKhLJ
http://bit.ly/1GzKCOG

CHAPTER 6

Understanding Wikipedia with Latent
Semantic Analysis

Sandy Ryza

Where are the Snowdens of yesteryear?
—Capt. Yossarian

Most of the work in data engineering consists of assembling data into some sort of
queryable format. We can query structured data with formal languages. For example,
when this structured data is tabular, we can use SQL. While it is by no means an easy
task in practice, at a high level, the work of making tabular data accessible is often
straightforward—pull data from a variety of data sources into a single table, perhaps
cleansing or fusing intelligently along the way. Unstructured text data presents a
whole different set of challenges. The process of preparing data into a format that
humans can interact with is not so much “assembly;” but rather “indexing” in the nice
case or “coercion” when things get ugly. A standard search index permits fast queries
for the set of documents that contains a given set of terms. Sometimes, however, we
want to find documents that relate to the concepts surrounding a particular word
whether or not the documents contain that exact string. Standard search indexes
often fail to capture the latent structure in the text’s subject matter.

Latent Semantic Analysis (LSA) is a technique in natural language processing and
information retrieval that seeks to better understand a corpus of documents and the
relationships between the words in those documents. It attempts to distill the corpus
into a set of relevant concepts. Each concept captures a thread of variation in the data
and often corresponds to a topic that the corpus discusses. Without yet delving into
the mathematics, each concept consists of three attributes: a level of affinity for each
document in the corpus, a level of affinity for each term in the corpus, and an impor-
tance score reflecting how useful the concept is in describing variance in the data set.
For example, LSA might discover a concept with high affinity for the terms “Asimov”
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and “robot,” and high affinity for the documents “Foundation series” and “Science
Fiction” By selecting only the most important concepts, LSA can throw away some
irrelevant noise and merge co-occurring strands to come up with a simpler represen-
tation of the data.

We can employ this concise representation in a variety of tasks. It can provide scores
of similarity between terms and other terms, between documents and other docu-
ments, and between terms and documents. By encapsulating the patterns of variance
in the corpus, it can base these scores on a deeper understanding than simply count-
ing occurrences and co-occurrences of words. These similarity measures are ideal for
tasks such as finding the set of documents relevant to query terms, grouping docu-
ments into topics, and finding related words.

LSA discovers this lower-dimensional representation using a linear algebra technique
called singular value decomposition (SVD). SVD can be thought of as a more powerful
version of the ALS factorization described in Chapter 3. It starts with a term-
document matrix generated through counting word frequencies for each document.
In this matrix, each document corresponds to a column, each term corresponds to a
row, and each element represents the importance of a word to a document. SVD then
factorizes this matrix into three matrices, one of which expresses concepts in regard
to documents, one of which expresses concepts in regard to terms, and one of which
contains the importance for each concept. The structure of these matrices is such that
we can achieve a low-rank approximation of the original matrix by removing a set of
their rows and columns corresponding to the least important concepts. That is, the
matrices in this low-rank approximation can be multiplied to produce a matrix close
to the original, with increasing loss of fidelity as each concept is removed.

In this chapter, we’ll embark upon the modest task of enabling queries against the full
extent of human knowledge, based on its latent semantic relationships. More specifi-
cally, we'll apply LSA to a corpus consisting of the full set of articles contained in
Wikipedia, about 46 GB of raw text. We'll cover how to use Spark for preprocessing
the data: reading it, cleansing it, and coercing it into a numerical form. We'll show
how to compute the SVD and explain how to interpret and make use of it.

SVD has wide applications outside LSA. It appears in such diverse places as detecting
climatological trends (Michael Mann’s famous hockey-stick graph), face recognition,
and image compression. Spark’s implementation can perform the matrix factorization
on enormous data sets, which opens up the technique to a whole new set of
applications.

The Term-Document Matrix

Before performing any analysis, LSA requires transforming the raw text of the corpus
into a term-document matrix. In this matrix, each row represents a term that occurs
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in the corpus, and each column represents a document. Loosely, the value at each
position should correspond to the importance of the row’s term to the column’s docu-
ment. A few weighting schemes have been proposed, but by far the most common is
term frequency times inverse document frequency, commonly abbreviated as TF-IDF:

def termDocWeight(termFrequencyInDoc: Int, totalTermsInDoc: Int,
termFreqInCorpus: Int, totalDocs: Int): Double = {
val tf = termFrequencyInDoc.toDouble / totalTermsInDoc
val docFreq = totalDocs.toDouble / termFreqInCorpus
val idf = math.log(docFreq)
tf * idf
}
TE-IDF captures two intuitions about the relevance of a term to a document. First, we
would expect that the more often a term occurs in a document, the more important it
is to that document. Second, not all terms are equal in a global sense. It is more
meaningful to encounter a word that occurs rarely in the entire corpus than a word
that appears in most of the documents, thus the metric uses the inverse of the word’s
appearance in documents in the full corpus.

The frequency of words in a corpus tends to be distributed exponentially. A common
word will often appear ten times as often as a mildly common word, which in turn
might appear ten or a hundred times as often as a rare word. Basing a metric on the
raw inverse document frequency would give rare words enormous weight and practi-
cally ignore the impact of all other words. To capture this distribution, the scheme
uses the log of the inverse document frequency. This mellows the differences in docu-
ment frequencies by transforming the multiplicative gaps between them into additive
gaps.

The model relies on a few assumptions. It treats each document as a “bag of words,”
meaning that it pays no attention to the ordering of words, sentence structure, or
negations. By representing each term once, the model has difficulty dealing with
polysemy, the use of the same word for multiple meanings. For example, the model
can’t distinguish between the use of band in “Radiohead is the best band ever” and “I
broke a rubber band”” If both sentences appear often in the corpus, it may come to
associate Radiohead with rubber.

The corpus has 10 million documents. Counting obscure technical jargon, the
English language contains about a million terms, some subset in the tens of thou-
sands of which is likely useful for understanding the corpus. Because the corpus con-
tains far more documents than terms, it makes the most sense to generate the term-
document matrix as a row matrix, a collection of sparse vectors, each corresponding
to a document.

Getting from the raw Wikipedia dump into this form requires a set of preprocessing
steps. First, the input consists of a single enormous XML file with documents delimi-
ted by <page> tags. This needs to be broken up to feed to the next step, turning
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Wiki-formatting into plain text. The plain text then is split into tokens, which are
reduced from their different inflectional forms to a root term through a process
called lemmatization. These tokens can then be used to compute term frequencies
and document frequencies. A final step ties these frequencies together and builds the
actual vector objects.

The first steps can be performed for each document fully in parallel (which in Spark
means as a set of map functions), but computing the inverse document frequencies
requires aggregation across all the documents. A number of useful general NLP and
Wikipedia-specific extraction tools exist that can aid in these tasks.

Getting the Data

Wikipedia makes dumps of all its articles available. The full dump comes in a single
large XML file. These can be downloaded from http://dumps.wikimedia.org/enwiki
and then placed on HDEFS. For example:

$ curl -s -L http://dumps.wikimedia.org/enwiki/latest/\
$ enwiki-latest-pages-articles-multistream.xml.bz2 \

$ | bzip2 -cd \

$ | hadoop fs -put - /user/ds/wikidump.xml

This will take a little while.

Parsing and Preparing the Data

Here’s a snippet at the beginning of the dump:

<page>
<title>Anarchism</title>
<ns>0</ns>
<id>12</id>
<revision>
<1d>584215651</1d>
<parentid>584213644</parentid>
<timestamp>2013-12-02T15:14:01Z</timestamp>
<contributor>
<username>AnomieBOT</username>
<1d>7611264</1d>
</contributor>
<comment>Rescuing orphaned refs (&quot;autogeneratedi&quot; from rev
584155010; &quot;bbc&quot; from rev 584155010)</comment>
<text xml:space="preserve">{{Redirect|Anarchist|the fictional character|
Anarchist (comics)}}
{{Redirect|Anarchists}}
{{pp-move-indef}}
{{Anarchism sidebar}}

"'"'"Anarchism''' 1s a [[political philosophy]] that advocates [[stateless society]
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stateless societies]] often defined as [[self-governance|self-governed]] voluntary
institutions,&lt;ref&gt;&quot; ANARCHISM, a social philosophy that rejects
authoritarian government and maintains that voluntary institutions are best suited
to express man's natural social tendencies.&quot; George Woodcock.
&quot;Anarchism&quot; at The Encyclopedia of Philosophy&lt;/ref&gt;&lt;ref&gt;
&quot;In a society developed on these lines, the voluntary associations which
already now begin to cover all the fields of human activity would take a still
greater extension so as to substitute

Let’s fire up the Spark shell. In this chapter, we rely on several libraries to make our
lives easier. The GitHub repo contains a Maven project that can be used to build a
JAR file that packages all these dependencies together:

$ cd lsa/
$ mvn package
$ spark-shell --jars target/ch06-1sa-1.0.0.jar

We've provided a class, XmlInputFormat, derived from the Apache Mahout project,
that can split up the enormous Wikipedia dump into documents. To create an RDD
with it:

import com.cloudera.datascience.common.XmlInputFormat
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.io._

val path = "hdfs:///user/ds/wikidump.xml"
val conf = new Configuration()
conf.set(XmlInputFormat.START_TAG_KEY, "<page>")
conf.set(XmlInputFormat.END_TAG_KEY, "</page>")
val kvs = sc.newAPIHadoopFile(path, classOf[XmlInputFormat],
classOf[LongWritable], classOf[Text], conf)
val rawXmls = kvs.map(p => p._2.toString)

Turning the Wiki XML into the plain text of article contents could require a chapter
of its own, but, luckily, the Cloud9 project provides APIs that handle this entirely:

import edu.umd.cloud9.collection.wikipedia.language._
import edu.umd.cloud9.collection.wikipedia._

def wikiXmlToPlainText(xml: String): Option[(String, String)] = {
val page = new EnglishWikipediaPage()
WikipediaPage.readPage(page, xml)
if (page.isEmpty) None
else Some((page.getTitle, page.getContent))

}

val plainText = rawXmls.flatMap(wikiXmlToPlainText)
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Lemmatization

With the plain text in hand, next we need to turn it into a bag of terms. This step
requires care for a couple of reasons. First, common words like the and is take up
space but at best offer no useful information to the model. Filtering out a list of stop
words can both save space and improve fidelity. Second, terms with the same meaning
can often take slightly different forms. For example, monkey and monkeys do not
deserve to be separate terms. Nor do nationalize and nationalization. Combining
these different inflectional forms into single terms is called stemming or lemmatiza-
tion. Stemming refers to heuristics-based techniques for chopping off characters at
the ends of words, while lemmatization refers to more principled approaches. For
example, the former might truncate drew to dr, while the latter might more correctly
output draw. The Stanford Core NLP project provides an excellent lemmatizer with a
Java API that Scala can take advantage of. The following snippet takes the RDD of
plain-text documents and both lemmatizes it and filters out stop words:

import edu.stanford.nlp.pipeline._
import edu.stanford.nlp.ling.CoreAnnotations._

def createNLPPipeline(): StanfordCoreNLP = {
val props = new Properties()
props.put("annotators", "tokenize, ssplit, pos, lemma")
new StanfordCoreNLP(props)

}

def isOnlyLetters(str: String): Boolean = {
str.forall(c => Character.isLetter(c))

}

def plainTextToLemmas(text: String, stopWords: Set[String],
pipeline: StanfordCoreNLP): Seq[String] = {
val doc = new Annotation(text)
pipeline.annotate(doc)

val lemmas = new ArrayBuffer[String]()
val sentences = doc.get(classOf[SentencesAnnotation])
for (sentence <- sentences;
token <- sentence.get(classOf[TokensAnnotation])) {
val lemma = token.get(classOf[LemmaAnnotation])
if (lemma.length > 2 && !stopWords.contains(lemma)
&& isOnlyLetters(lemma)) { (1)
lemmas += lemma.tolLowerCase
}
}
lemmas

}

val stopWords = sc.broadcast(
scala.lo.Source.fromFile("stopwords.txt).getLines().toSet).value
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val lemmatized: RDD[Seq[String]] = plainText.mapPartitions(it => {
val pipeline = createNLPPipeline()
it.map { case(title, contents) =>
plainTextToLemmas(contents, stopWords, pipeline)

}
H @
© Specify some minimal requirements on lemmas to weed out garbage.

® Use mapPartitions so that we only initialize the NLP pipeline object once per
partition instead of once per document.

Computing the TF-IDFs

At this point, lemmatized refers to an RDD of arrays of terms, each corresponding to
a document. The next step is to compute the frequencies for each term within each
document and for each term within the entire corpus. The following code builds up a
map of terms to occurrence counts for each document:

import scala.collection.mutable.HashMap

val docTermFreqs = lemmatized.map(terms => {
val termFreqs = terms.foldLeft(new HashMap[String, Int]()) {
(map, term) => {
map += term -> (map.getOrElse(term, 0) + 1)
map
}
}

termFreqgs

b
The resulting RDD will be used at least twice after this point: to calculate the inverse

document frequencies and to calculate the final term-document matrix. So caching it
in memory is a good idea:

docTermFreqs.cache()

It is worth considering a couple of approaches for calculating the document frequen-
cies (i.e., for each term, the number of documents in which it appears within the
entire corpus). The first uses the aggregate action to build a local map of terms to
frequencies at each partition and then merge all these maps at the driver. aggregate
accepts two functions: a function for merging a record into the per-partition result
object and a function for merging two of these result objects together. In this case,
each record is a map of terms to frequencies within a document, and the result object
is a map of terms to frequencies within the set of documents. When the records being
aggregated and the result object have the same type (e.g., in a sum), reduce is useful,
but when the types differ, as they do here, aggregate is a more powerful alternative:
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val zero = new HashMap[String, Int]()
def merge(dfs: HashMap[String, Int], tfs: HashMap[String, Int])
: HashMap[String, Int] = {
tfs.keySet.foreach { term =>
dfs += term -> (dfs.getOrElse(term, 0) + 1)

}
dfs

}
def comb(dfs1: HashMap[String, Int], dfs2: HashMap[String, Int])
: HashMap[String, Int] = {
for ((term, count) <- dfs2) {
dfs1l += term -> (dfsl.getOrElse(term, 0) + count)

}
dfs1

}

docTermFreqs.aggregate(zero)(merge, comb)
Running this on the entire corpus spits out:
java.lang.OutOfMemoryError: Java heap space

What is going on? It appears that the full set of terms from all the documents cannot
fit into memory and is overwhelming the driver. Just how many terms are there?

docTermFregs.flatMap(_.keySet).distinct().count()

res@: Long = 9014592

Many of these terms are garbage or appear only once in the corpus. Filtering out less
frequent terms can both improve performance and remove noise. A reasonable
choice is to leave out all but the top N most frequent words, where N is somewhere in
the tens of thousands. The following code computes the document frequencies in a
distributed fashion. This resembles the classic word count job widely used to show-
case a simple MapReduce program. A key-value pair with the term and the number 1
is emitted for each unique occurrence of a term in a document, and a reduceByKey
sums these numbers across the data set for each term:

val docFregs = docTermFregs.flatMap(_.keySet).map((_, 1)).
reduceByKey(_ + _)

The top action returns the N records with the highest values to the driver. A custom
Ordering is used to allow it to operate on term-count pairs:

val numTerms = 50000

val ordering = Ordering.by[(String, Int), Int](_._2)

val topDocFreqs = docFregs.top(numTerms)(ordering)
With the document frequencies in hand, we can compute the inverse document fre-

quencies. Calculating these on the driver instead of in executors each time a term is
referenced saves some redundant floating-point math:
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val idfs = docFregs.map{
case (term, count) => (term, math.log(numDocs.toDouble / count))
}.toMap

The term frequencies and inverse document frequencies constitute the numbers
needed to compute the TF-IDF vectors. However, there remains one final hitch: the
data currently resides in maps keyed by strings, but feeding these into MLIib requires
transforming them into vectors keyed by integers. To generate the latter from the for-
mer, assign a unique ID to each term:

val termIds = idfs.keys.zipWithIndex.toMap

Because the term ID map is fairly large and we'll use it in a few different places, let’s
broadcast it:

val bTermIds = sc.broadcast(termIds).value

Finally, we tie it all together by creating a TF-IDF-weighted vector for each docu-
ment. Note that we use sparse vectors because each document will only contain a
small subset of the full set of terms. We can construct MLIibs sparse vectors by giving
a size and a list of index-value pairs:

import scala.collection.JavaConversions._
import org.apache.spark.mllib.linalg.Vectors

val vecs = docTermFregs.map(termFregs => {
val docTotalTerms = termFregs.values().sum
val termScores = termFregs.filter {
case (term, freq) => bTermlIds.containsKey(term)
}.map{
case (term, freq) => (bTermIds(term),
bIdfs(term) * termFreqs(term) / docTotalTerms)
}.toSeq
Vectors.sparse(bTermIds.size, termScores)

b

Singular Value Decomposition

With the term-document matrix M in hand, the analysis can proceed to the factoriza-
tion and dimensionality reduction. MLIib contains an implementation of the singular
value decomposition (SVD) that can handle enormous matrices. The singular value
decomposition takes an m x n matrix and returns three matrices that approximately
equal it when multiplied together:

M=USV"

o Uis an m x k matrix whose columns form an orthonormal basis for the docu-
ment space.
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o Sisak x k diagonal matrix, each of whose entries correspond to the strength of
one of the concepts.

o Visak x n matrix whose columns form an orthonormal basis for the term space.

In the LSA case, m is the number of documents and 7 is the number of terms. The
decomposition is parameterized with a number k, less than or equal to n, that indi-
cates how many concepts to keep around. When k = n, the product of the factor
matrices reconstitutes the original matrix exactly. When k < #, the multiplication
results in a low-rank approximation of the original matrix. k is typically chosen to be
much smaller than n. SVD ensures that the approximation will be the closest possible
to the original matrix (as defined by the L2 Norm—that is, the sum of squares—of the
difference), given the constraint that it needs to be expressible in only k concepts.

To find the singular value decomposition of a matrix, simply wrap an RDD of row
vectors in a RowMatrix and call computeSVD:

import org.apache.spark.mllib.linalg.distributed.RowMatrix

termDocMatrix.cache()

val mat = new RowMatrix(termDocMatrix)
val k = 1000

val svd = mat.computeSVD(k, computeU=true)

The RDD should be cached in memory beforehand because the computation requires
multiple passes over the data. The computation requires O(nk) storage on the driver,
O(n) storage for each task, and O(k) passes over the data.

As a reminder, a vector in ferm space means a vector with a weight on every term, a
vector in document space means a vector with a weight on every document, and a vec-
tor in concept space means a vector with a weight on every concept. Each term, docu-
ment, or concept defines an axis in its respective space, and the weight ascribed to the
term, document, or concept means a length along that axis. Every term or document
vector can be mapped to a corresponding vector in concept space. Every concept vec-
tor has possibly many term and document vectors that map to it, including a canoni-
cal term and document vector that it maps to when transformed in the reverse
direction.

Vis an n x k matrix where each row corresponds to a term and each column corre-
sponds to a concept. It defines a mapping between term space (the space where each
point is an n-dimensional vector holding a weight for each term) and concept space
(the space where each point is a k-dimensional vector holding a weight for each
concept).

Similarly, U is an m x k matrix where each row corresponds to a document and each
column corresponds to a concept. It defines a mapping between document space and
concept space.
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Sisak x k diagonal matrix that holds the singular values. Each diagonal element in S
corresponds to a single concept (and thus a column in V and a column in U). The
magnitude of each of these singular values corresponds to the importance of that
concept: its power in explaining the variance in the data. An (inefficient) implemen-
tation of SVD could find the rank-k decomposition by starting with the rank-n
decomposition and throwing away the n - k smallest singular values until there are k
left (along with their corresponding columns in U and V). A key insight of LSA is that
only a small number of concepts are important to representing that data. The entries
in the S matrix directly indicate the importance of each concept. They also happen to
be the square roots of the eigenvalues of M M.

Finding Important Concepts

So SVD outputs a bunch of numbers. How can we inspect these to verify they actually
relate to anything useful? The V matrix represents concepts through the terms that
are important to them. As discussed earlier, V contains a column for every concept
and a row for every term. The value at each position can be interpreted as the rele-
vance of that term to that concept. This means that the most relevant terms to each of
the top concepts can be found with something like this:

import scala.collection.mutable.ArrayBuffer

val v = svd.V
val topTerms = new ArrayBuffer[Seq[(String, Double)]]()
val arr = v.toArray
for (1 <- 0 until numConcepts) {
val offs = 1 * v.numRows
val termWeights = arr.slice(offs, offs + v.numRows).zipWithIndex
val sorted = termWeights.sortBy(-_._1)
topTerms += sorted.take(numTerms).map{
case (score, id) => (termIds(id), score)
}
}

topTerms

Note that V is a matrix in memory locally in the driver process, and the computation
occurs in a nondistributed manner. We can find the terms relevant to each of the top
concepts in a similar manner using U, but the code looks a little bit different because
U is stored as a distributed matrix:

def topDocsInTopConcepts(

svd: SingularValueDecomposition[RowMatrix, Matrix],
numConcepts: Int, numDocs: Int, docIds: Map[Long, String])

: Seq[Seq[(String, Double)]] = {

val u = svd.U

val topDocs = new ArrayBuffer[Seq[(String, Double)]]()

for (1 <- 0 until numConcepts) {
val docWeights = u.rows.map(_.toArray(i)).zipWithUniqueId()
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topDocs += docWeights.top(numDocs).map{
case (score, id) => (docIds(id), score) (1)
}
}

topDocs

}

While it’s not difficult, for continuity, we've elided how we create the doc ID map-
ping. Refer to the repo for this.

Let’s inspect the first few concepts:

val topConceptTerms = topTermsInTopConcepts(svd, 4, 10, termIds)

val topConceptDocs = topDocsInTopConcepts(svd, 4, 10, docIds)

for ((terms, docs) <- topConceptTerms.zip(topConceptDocs)) {
println("Concept terms: " + terms.map(_._1).mkString(", "))
println("Concept docs: + docs.map(_._1).mkString(", "))
println()

}

Concept terms: summary, licensing, fur, logo, album, cover, rationale,
gif, use, fair

Concept docs: File:Gladys-in-grammarland-cover-1897.png,
File:Gladys-in-grammarland-cover-2010.png, File:1942ukrpoljudeakt4. jpg,
File:ZakeAAapidng.jpg, File:Baghdad-texas.jpg, File:Realistic.jpeg,
File:DuplicateBoy.jpg, File:Garbo-the-spy.jpg, File:Joysagar.jpg,
File:RizalHighSchoollogo. jpg

Concept terms: disambiguation, william, james, john, iran, australis,
township, charles, robert, river

Concept docs: G. australis (disambiguation), F. australis (disambiguation),
U. australis (disambiguation), L. maritima (disambiguation),
G. maritima (disambiguation), F. japonica (disambiguation),
P. japonica (disambiguation), Velo (disambiguation),
Silencio (disambiguation), TVT (disambiguation)

Concept terms: licensing, disambiguation, australis, maritima, rawal,
upington, tallulah, chf, satyanarayana, valérie

Concept docs: File:Rethymno.jpg, File:Ladycarolinelamb.jpg,
File:KeyAirlines.jpg, File:NavyCivValor.gif, File:Vitushka.gif,
File:DavidViscott.jpg, File:Bigbrotheri3cast.jpg, File:Rawal Lakel.JPG,
File:Upington location.jpg, File:CHF SG Viewofaltar01.JPG

Concept terms: licensing, summarysource, summaryauthor, wikipedia,
summarypicture, summaryfrom, summaryself, rawal, chf, upington

Concept docs: File:Rethymno.jpg, File:Wristlock4.jpg, File:Meseanlol.jpg,
File:Sarles.gif, File:SuzlonWinMills.JPG, File:Rawal Lakel.JPG,
File:CHF SG Viewofaltar@1.JPG, File:Upington location.jpg,
File:Driftwood-cover.jpg, File:Tallulah gorge2.jpg

Concept terms: establishment, norway, country, england, spain, florida,
chile, colorado, australia, russia
Concept docs: Category:1794 establishments in Norway,
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Category:1838 establishments in Norway,
Category:1849 establishments in Norway,
Category:1908 establishments in Norway,
Category:1966 establishments in Norway,
Category:1926 establishments in Norway,
Category:1957 establishments in Norway,
Template:EstcatCountrylstMillennium,
Category:2012 establishments in Chile,
Category:1893 establishments in Chile

The documents in the first concept appear to all be image files, and the terms appear
to be related to image attributes and licensing. The second concept appears to be dis-
ambiguation pages. It seems that perhaps this dump is not restricted to the raw Wiki-
pedia articles and is cluttered by administrative pages as well as discussion pages.
Inspecting the output of intermediate stages is useful for catching this kind of issue
early. Luckily, it appears that Cloud9 provides some functionality for filtering these
out. An updated version of the wikiXmlToPlainText method looks like the following:

def wikiXmlToPlainText(xml: String): Option[(String, String)] = {

if (page.isEmpty || !page.isArticle || page.isRedirect ||

page.getTitle.contains("(disambiguation)")) {
} else {

Some( (page.getTitle, page.getContent))
}

}

Rerunning the pipeline on the filtered set of documents yields a much more reason-
able result:

Concept terms: disambiguation, highway, school, airport, high, refer,
number, squadron, list, may, division, regiment, wisconsin, channel,
county

Concept docs: Tri-State Highway (disambiguation),

Ocean-to-Ocean Highway (disambiguation), Highway 61 (disambiguation),
Tri-County Airport (disambiguation), Tri-Cities Airport (disambiguation),
Mid-Continent Airport (disambiguation), 99 Squadron (disambiguation),
95th Squadron (disambiguation), 94 Squadron (disambiguation),

92 Squadron (disambiguation)

Concept terms: disambiguation, nihilistic, recklessness, sullen, annealing,
negativity, initialization, recapitulation, streetwise, pde, pounce,
revisionism, hyperspace, sidestep, bandwagon

Concept docs: Nihilistic (disambiguation), Recklessness (disambiguation),
Manjack (disambiguation), Wajid (disambiguation), Kopitar (disambiguation),
Rocourt (disambiguation), QRG (disambiguation),

Maimaicheng (disambiguation), Varen (disambiguation), Gvr (disambiguation)

Concept terms: department, commune, communes, insee, france, see, also,
southwestern, oise, marne, moselle, manche, eure, aisne, isére

Concept docs: Communes in France, Saint-Mard, Meurthe-et-Moselle,
Saint-Firmin, Meurthe-et-Moselle, Saint-Clément, Meurthe-et-Moselle,
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Saint-Sardos, Lot-et-Garonne, Saint-Urcisse, Lot-et-Garonne, Saint-Sernin,
Lot-et-Garonne, Saint-Robert, Lot-et-Garonne, Saint-Léon, Lot-et-Garonne,
Saint-Astier, Lot-et-Garonne

Concept terms: genus, species, moth, family, lepidoptera, beetle, bulbophyllum,
snail, database, natural, find, geometridae, reference, museum, noctuidae
Concept docs: Chelonia (genus), Palea (genus), Argiope (genus), Sphingini,
Cribrilinidae, Tahla (genus), Gigartinales, Parapodia (genus),
Alpina (moth), Arycanda (moth)

Concept terms: province, district, municipality, census, rural, iran,
romanize, population, infobox, azerbaijan, village, town, central,
settlement, kerman

Concept docs: New York State Senate elections, 2012,

New York State Senate elections, 2008,

New York State Senate elections, 2010,

Alabama State House of Representatives elections, 2010,
Albergaria-a-Velha, Municipalities of Italy, Municipality of Malmo,
Delhi Municipality, Shanghai Municipality, Goteborg Municipality

Concept terms: genus, species, district, moth, family, province, iran, rural,
romanize, census, village, population, lepidoptera, beetle, bulbophyllum

Concept docs: Chelonia (genus), Palea (genus), Argiope (genus), Sphingini,
Tahla (genus), Cribrilinidae, Gigartinales, Alpina (moth), Arycanda (moth),
Arauco (moth)

Concept terms: protein, football, league, encode, gene, play, team, bear,
season, player, club, reading, human, footballer, cup

Concept docs: Protein FAM186B, ARL6IP1, HIP1R, SGIP1, MTMR3,
Gem-associated protein 6, Gem-associated protein 7, C2orf30, 0S9 (gene),
RP2 (gene)

The first two concepts remain ambiguous, but the rest appear to correspond to mean-
ingful categories. The third appears to be composed of locales in France, the fourth
and sixth of animal and bug taxonomies. The fifth concerns elections, municipalities,
and government. The articles in the seventh concern proteins, while some of the
terms also reference football, perhaps with a crossover of fitness of performance-
enhancing drugs? While unexpected words appear in each, all the concepts exhibit
some thematic coherence.

Querying and Scoring with the Low-Dimensional
Representation

How relevant is a term to a document? How relevant are two terms to each other?
Which documents most closely match a set of query terms? The original term-
document matrix provides a shallow way to answer these questions. We can achieve a
relevance score between two terms by computing the cosine similarity between their
two column vectors in the matrix. Cosine similarity measures the angle between two
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vectors. Vectors that point in the same direction in the high-dimensional document
space are thought to be relevant to each other. It is computed as the dot product of
the vectors divided by the product of their lengths. Cosine similarity sees wide use as
a similarity metric between vectors of term and document weights in natural lan-
guage and information retrieval applications. Likewise, for two documents, a rele-
vance score can be computed as the cosine similarity between their two row vectors.
A relevance score between a term and a document can simply be the element in the
matrix at the intersection of both.

However, these scores come from shallow knowledge about the relationships between
these entities, relying on simple frequency counts. LSA provides the ability to base
these scores on a deeper understanding of the corpus. For example, if the term artil-
lery appears nowhere in a document on the Normandy landings article, but it men-
tions howitzer frequently, the LSA representation may be able to recover the relation
between artillery and the article based on the co-occurrence of artillery and howitzer
in other documents.

The LSA representation also offers benefits from an efficiency standpoint. It packs the
important information into a lower-dimensional representation that can be operated
on instead of the original term-document matrix. Consider the task of finding the set
of terms most relevant to a particular term. The naive approach requires computing
the dot product between that term’s column vector and every other column vector in
the term-document matrix. This involves a number of multiplications proportional to
the number of terms times the number of documents. LSA can achieve the same by
looking up its concept-space representation and mapping it back into term space,
requiring a number of multiplications only proportional to the number of terms
times k. The low-rank approximation encodes the relevant patterns in the data so the
full corpus need not be queried.

Term-Term Relevance

LSA understands the relation between two terms as the cosine similarity between
their two columns in the reconstructed low-rank matrix; that is, the matrix that
would be produced if the three approximate factors were multiplied back together.
One of the ideas behind LSA is that this matrix offers a more useful representation of
the data. It offers this in a few ways:

o Accounting for synonymy by condensing related terms.

o Accounting for polysemy by placing less weight on terms that have multiple
meanings.

« Throwing out noise.
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However, we need not actually calculate the contents of this matrix to discover the
cosine similarity. Some linear algebra manipulation reveals that the cosine similarity
between two columns in the reconstructed matrix is exactly equal to the cosine simi-
larity between the corresponding columns in § V7. Consider the task of finding the
set of terms most relevant to a particular term. Finding the cosine similarity between
a term and all other terms is equivalent to normalizing each row in V' § to length 1
and then multiplying the row corresponding to that term by it. Each element in the
resulting vector will contain a similarity between a term and the query term.

For the sake of brevity, the implementations of the methods that compute V'S and
normalize its rows are omitted, but they can be found in the repository:

import breeze.linalg.{DenseVector => BDenseVector}
import breeze.linalg.{DenseMatrix => BDenseMatrix}

def topTermsForTerm(
normalizedVS: BDenseMatrix[Double],
termId: Int): Seq[(Double, Int)] = {
val rowVec = new BDenseVector[Double](
row(normalizedVS, termId).toArray) (1)

val termScores = (normalizedVS * rowVec).toArray.zipWithIndex (2]

termScores.sortBy(-_._1).take(10) (3]
}

val VS = multiplyByDiagonalMatrix(svd.V, svd.s)
val normalizedVS = rowsNormalized(VS)

def printRelevantTerms(term: String) {
val id = idTerms(term)
printIdWeights(topTermsForTerm(normalizedVS, id, termIds)
}

© Look up the row in VS corresponding to the given term ID
® Compute scores against every term

© Find the terms with the highest scores
Here are the highest-scored terms for a few example terms:

printRelevantTerms("algorithm")

(algorithm,1.000000000000002), (heuristic,0.8773199836391916),
(compute,0.8561015487853708), (constraint,0.8370707630657652),
(optimization,0.8331940333186296), (complexity,0.823738607119692),
(algorithmic,0.8227315888559854), (iterative,0.822364922633442),
(recursive,0.8176921180556759), (minimization,0.8160188481409465)
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printRelevantTerms("radiohead")

(radiohead,0.9999999999999993), (lyrically,0.8837403315233519),
(catchy,0.8780717902060333), (riff,0.861326571452104),
(lyricsthe,0.8460798060853993), (lyric,0.8434937575368959),
(upbeat,0.8410212279939793), (song,0.8280655506697948),
(musically,0.8239497926624353), (anthemic,0.8207874883055177)

printRelevantTerms("tarantino")

(tarantino,1.0), (soderbergh,0.780999345687437),
(buscemi,0.7386998898933894), (screenplay,0.7347041267543623),
(spielberg,0.7342534745182226), (dicaprio,0.7279146798149239),
(filmmaking,0.7261103750076819), (lumet,0.7259812377657624),
(directorial,0.7195131565316943), (biopic,0.7164037755577743)

Document-Document Relevance

The same goes for computing relevance scores between documents. To find the simi-
larity between two documents, compute the cosine similarity between u," S and u,” S,
where u; is the row in U corresponding to term i. To find the similarity between a

document and all other documents, compute normalized(U S) u,.

In this case, the implementation is slightly different because U is backed by an RDD,

not a local matrix:

import org.apache.spark.mllib.linalg.Matrices

def topDocsForDoc(normalizedUS: RowMatrix, docId: Long)
: Seq[(Double, Long)] = {
val docRowArr = row(normalizedUS, docId) (1)
val docRowVec = Matrices.dense(docRowArr.length, 1, docRowArr)

val docScores = normalizedUS.multiply(docRowVec) (2]

val allDocWeights = docScores.rows.map(_.toArray(0)).
zipWithUniqueId() (3]

allDocWeights.filter(!_._1.isNaN).top(10) (4]

}
val US = multiplyByDiagonalMatrix(svd.U, svd.s)

val normalizedUS = rowsNormalized(US)
def printRelevantDocs(doc: String) {
val id = idDocs(doc)
printIdWeights(topDocsForDoc(normalizedUS, id, docIds)
}

© Look up the row in US corresponding to the given doc ID.

Document-Document Relevance
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@ Compute scores against every doc.
© Find the docs with the highest scores.

O Docs can end up with NaN score if their row in U is all zeros. Filter these out.
Here are the most similar documents for a few example documents:

printRelevantDocs("Romania")

(Romania,0.9999999999999994), (Roma in Romania,0.9229332158078395),
(Kingdom of Romania,0.9176138537751187),

(Anti-Romanian discrimination,0.9131983116426412),

(Timeline of Romanian history,0.9124093989500675),

(Romania and the euro,0.9123191881625798),

(History of Romania,0.9095848558045102),

(Romania-United States relations,0.9016913779787574),

(Wiesel Commission,0.9016106300096606),

(List of Romania-related topics,0.8981305676612493)

printRelevantDocs("Brad Pitt")

(Brad Pitt,0.9999999999999984), (Aaron Eckhart,0.8935447577397551),
(Leonardo DiCaprio,0.8930359829082504), (Winona Ryder,0.8903497762653693),
(Ryan Phillippe,0.8847178312465214), (Claudette Colbert,0.8812403821804665),
(Clint Eastwood,0.8785765085978459), (Reese Witherspoon,0.876540742663427),
(Meryl Streep in the 2000s,0.8751593996242115),

(Kate Winslet,0.873124888198288)

printRelevantDocs("Radiohead")

(Radiohead,1.0000000000000016), (Fightstar,0.9461712602479349),
(R.E.M.,0.9456251852095919), (Incubus (band),0.9434650141836163),
(Audioslave,0.9411291455765148), (Tonic (band),0.9374518874425788),
(Depeche Mode,0.9370085419199352), (Megadeth,0.9355302294384438),
(Alice in Chains,0.9347862053793862), (Blur (band),0.9347436350811016)

Term-Document Relevance

What about computing a relevance score between a term and a document? This is
equivalent to finding the element corresponding to that term and document in the
reduced-rank approximation of the term-document matrix. This is equal to u,” S v,
where u, is the row in U corresponding to the document and v, is the row in V corre-
sponding to the term. Some simple linear algebra manipulation reveals that comput-
ing a similarity between a term and every document is equivalent to U S v,. Each
element in the resulting vector will contain a similarity between a document and the
query term. In the other direction, the similarity between a document and every term
comes from u,” S V:

def topDocsForTerm(US: RowMatrix, V: Matrix, termId: Int)
: Seq[(Double, Long)] = {

116 | Chapter 6: Understanding Wikipedia with Latent Semantic Analysis



val rowArr = row(V, termId).toArray
val rowVec = Matrices.dense(termRowArr.length, 1, termRowArr)

val docScores = US.multiply(termRowVec) (1)

val allDocWeights = docScores.rows.map(_.toArray(0)).
zipWithUniqueId() (2]
allDocWeights.top(10)
}

def printRelevantDocs(term: String) {
val id = idTerms(term)
printIdWeights(topDocsForTerm(normalizeduS, svd.V, id, docIds)
3

Compute scores against every doc

Find the docs with the highest scores

printRelevantDocs("fir")

(Silver tree,0.006292909647173194),

(See the forest for the trees,0.004785047583508223),
(Eucalyptus tree,0.004592837783089319),

(Sequoia tree,0.004497446632469554),

(Willow tree,0.004442871594515006),

(Coniferous tree,0.004429936059594164),

(Tulip Tree,0.004420469113273123),

(National tree,0.004381572286629475),

(Cottonwood tree,0.004374705020233878),

(Juniper Tree,0.004370895085141889)

printRelevantDocs("graph")

(K-factor (graph theory),0.07074443599385992),

(Mesh Graph,0.05843133228896666), (Mesh graph,0.05843133228896666),

(Grid Graph,0.05762071784234877), (Grid graph,0.05762071784234877),

(Graph factor,0.056799669054782564), (Graph (economics),0.05603848473056094),
(Skin graph,0.05512936759365371), (Edgeless graph,0.05507918292342141),
(Traversable graph,0.05507918292342141)

Multiple-Term Queries

Lastly, what about servicing queries with multiple terms? Finding documents relevant
to a single term involved selecting the row corresponding to that term from V. This is
equivalent to multiplying V by a term vector with a single nonzero entry. To move to
multiple terms, instead compute the concept-space vector by simply multiplying V by
a term vector with nonzero entries for multiply terms. To maintain the weighting
scheme used for the original term-document matrix, set the value for each term in the
query to its inverse document frequency. In one sense, querying in this way is like
adding a new document to the corpus with just a few terms, finding its representation
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as a new row of the low-rank term-document matrix approximation, and then dis-
covering the cosine similarity between it and the other entries in this matrix:

import breeze.linalg.{SparseVector => BSparseVector}

def termsToQueryVector(
terms: Seq[String],
idTerms: Map[String, Int],
idfs: Map[String, Double]): BSparseVector[Double] = {
val indices = terms.map(idTerms(_)).toArray
val values = terms.map(idfs(_)).toArray
new BSparseVector[Double](indices, values, idTerms.size)

}

def topDocsForTermQuery(
US: RowMatrix,
V: Matrix,
query: BSparseVector[Double]): Seq[(Double, Long)] = {
val breezeV = new BDenseMatrix[Double](V.numRows, V.numCols,
V.toArray)
val termRowArr = (breezeV.t * query).toArray

val termRowVec = Matrices.dense(termRowArr.length, 1, termRowArr)
val docScores = US.multiply(termRowVec) (1)

val allDocWeights = docScores.rows.map(_.toArray(0)).
zipWithUniquelId() (2]
allDocWeights.top(10)
}

def printRelevantDocs(terms: Seq[String]) {
val queryVec = termsToQueryVector(terms, idTerms, idfs)
printIdWeights(topDocsForTermQuery(US, svd.V, queryVec), doclds)
}

© Compute scores against every doc

® Find the docs with the highest scores
printRelevantDocs(Seq("factorization", "decomposition"))

(K-factor (graph theory),0.04335677416674133),
(Matrix Algebra,0.038074479507460755),

(Matrix algebra,0.038074479507460755),

(Zero Theorem,0.03758005783639301),

(Birkhoff-von Neumann Theorem,0.03594539874814679),
(Enumeration theorem,0.03498444607374629),
(Pythagoras' theorem,0.03489110483887526),

(Thales theorem,0.03481592682203685),

(Cpt theorem,0.03478175099368145),

(Fuss' theorem,0.034739350150484904)
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Where to Go from Here

The singular value decomposition and its sister technique, principal component anal-
ysis, have a wide variety of applications outside of text analysis. A common method of
recognizing human faces known as eigenfaces relies on it to understand the patterns
of variation in human appearance. In climate research, it is used to find global tem-
perature trends from disparate noisy data sources like tree rings. Michael Mann’s
famous “hockey stick” graph, depicting the rise of temperatures throughout the 20th
century, in fact depicts a concept. Singular value decomposition and PCA are also use-
ful in visualization of high-dimensional data sets. When a data set is reduced down to
its first two or three concepts, it can be plotted on a graph that humans can view.

A variety of other methods exist for understanding large corpuses of text. For exam-
ple, a technique known as Latent Dirichlet Allocation (LDA) is useful in many similar
applications. As a topic model, it infers a set of topics from a corpus and assigns each
document a level of participation in each topic.
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CHAPTER 7

Analyzing Co-occurrence Networks
with GraphX

Josh Wills

It’s a small world. It keeps recrossing itself.
—David Mitchell

Data scientists come in all shapes and sizes and from a remarkably diverse set of aca-
demic backgrounds. Although many have some training in disciplines like computer
science, mathematics, and physics, other successful data scientists have studied neu-
roscience, sociology, and political science. Although these fields study different things
(e.g., brains, people, political institutions) and have not traditionally required stu-
dents to learn how to program, they all share two important characteristics that have
made them fertile training ground for data scientists.

First, all of these fields are interested in understanding relationships between entities,
whether between neurons, individuals, or countries, and how these relationships
affect the observed behavior of the entities. Second, the explosion of digital data over
the past decade gave researchers access to vast quantities of information about these
relationships, and required that they develop new skills in order to acquire and man-
age these data sets.

As these researchers began to collaborate with each other and with computer scien-
tists, they also discovered that many of the techniques that they were using to analyze
relationships could be applied to problems across domains, and the field of network
science was born. Network science applies tools from graph theory, the mathematical
discipline that studies the properties of pairwise relationships (called edges) between a
set of entities (called vertices). Graph theory is also widely used in computer science
to study everything from data structures to computer architecture to the design of
networks like the Internet.
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Graph theory and network science have had a significant impact in the business
world as well. Almost every major Internet company derives a significant fraction of
its value by its ability to build and analyze an important network of relationships bet-
ter than any of its competitors: the recommendation algorithms that are used at Ama-
zon and Netflix rely on the networks of consumer-item purchases (Amazon) and
user-movie ratings (Netflix) that each company creates and controls. Facebook and
LinkedIn built graphs of relationships between people that they analyze in order to
organize content feeds, promote advertisements, and broker new connections. And
perhaps most famously of all, Google used the PageRank algorithm that the founders
developed to create a fundamentally better way to search the World Wide Web.

The computational and analytical needs of these network-centric companies helped
drive the creation of distributed processing frameworks like MapReduce as well as the
hiring of data scientists who were capable of using these new tools to analyze and cre-
ate value from the ever-expanding volume of data. One of the earliest use cases for
MapReduce was to create a scalable and reliable way to solve the equation at the heart
of PageRank. Over time, as the graphs became larger and data scientists needed to
analyze them faster, new graph-parallel processing frameworks, like Pregel at Google,
Giraph at Yahoo!, and GraphLab at Carnegie Mellon, were developed. These frame-
works supported fault-tolerant, in-memory, iterative, and graph-centric processing,
and were capable of performing certain types of graph computations orders of mag-
nitude faster than the equivalent data-parallel MapReduce jobs.

In this chapter, we're going to introduce a Spark library called GraphX, which extends
Spark to support many of the graph-parallel processing tasks that Pregel, Giraph, and
GraphLab support. Although it cannot handle every graph computation as quickly as
the custom graph frameworks do, the fact that it is a Spark library means that it is
relatively easy to bring GraphX into your normal data analysis workflow whenever
you want to analyze a network-centric data set. With it, you can combine graph-
parallel programming with the familiar Spark abstractions that you are used to work-
ing with.

The MEDLINE Citation Index: A Network Analysis

MEDLINE (Medical Literature Analysis and Retrieval System Online) is a database of
academic papers that have been published in journals covering the life sciences and
medicine. It is managed and released by the United States National Library of Medi-
cine (NLM), a division of the National Institute of Health (NIH). Its citation index,
which tracks the publication of articles across thousands of journals, can trace its his-
tory back to 1879, and it has been available online to medical schools since 1971 and
to the general public via the World Wide Web since 1996. The main database contains
more than 20 million articles going back to the early 1950s and is updated five days a
week.
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Due to the volume of citations and the frequency of updates, the research community
developed an extensive set of semantic tags called MeSH (Medical Subject Headings)
that are applied to all of the citations in the index. These tags provide a meaningful
framework that can be used to explore relationships between documents to facilitate
literature reviews, and they have also been used as the basis for building data prod-
ucts: in 2001, PubGene demonstrated one of the first production applications of bio-
medical text mining by launching a search engine that allowed users to explore the
graph of MeSH terms that connect related documents together.

In this chapter, we're going to use Scala, Spark, and GraphX to acquire, transform,
and then analyze the network of MeSH terms on a recently published subset of cita-
tion data from MEDLINE. The network analysis we’ll be performing was inspired by
the paper “Large-Scale Structure of a Network of Co-Occurring MeSH Terms: Statis-
tical Analysis of Macroscopic Properties,” by Kastrin et al. (2014), although we'll be
using a different subset of the citation data and performing the analysis with GraphX
instead of the R packages and C++ code that was used in that paper.

Our goal will be to get a feel for the shape and properties of the citation graph. We'll
attack this from a few different angles to get a full view of the data set. First, we'll get
our feet wet by looking at the major topics and their co-occurrences, a simpler analy-
sis that doesn’t require using GraphX. Then, we'll look for connected components—
can one follow a path of citations from any topic to any other topic, or is the data
actually a set of separate smaller graphs? We'll move on to look at the degree distribu-
tion of the graph, which gives a sense of how the relevance of topics can vary, and
find the topics that are connected to the most other topics. Last, we'll compute a cou-
ple of slightly more advanced graph statistics: the clustering coefficient and the average
path length. Among other uses, these allow us to understand how similar the citation
graph is to other common real-world graphs like the World Wide Web and Face-
booK’s social network.

Getting the Data

We can retrieve a sample of the citation index data from the NIH’s FTP server:

$ mkdir medline_data
$ cd medline_data
$ wget ftp://ftp.nlm.nih.gov/nlmdata/sample/medline/*.gz

Let’s uncompress the citation data and examine it before we load it into HDFS:

$ gunzip *.gz
$ 1s -1ltr

total 843232

-rw-r--r-- 1 spark spark 162130087 Dec 17 2013 medsamp2014h.xml
-rw-r--r-- 1 spark spark 146357238 Dec 17 2013 medsamp2014g.xml
-rw-r--r-- 1 spark spark 132427298 Dec 17 2013 medsamp2014f.xml
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-rw-r--r-- 1 spark spark 102401546 Dec 17 2013 medsamp2014e.xml

1
-rw-r--r-- 1 spark spark 102715615 Dec 17 2013 medsamp2014d.xml
-rw-r--r-- 1 spark spark 89355057 Dec 17 2013 medsamp2014c.xml
-rw-r--r-- 1 spark spark 69209079 Dec 17 2013 medsamp2014b.xml
-rw-r--r-- 1 spark spark 58856903 Dec 17 2013 medsamp2014a.xml

The sample files contain about 600 MB of XML-formatted data, uncompressed. Each
entry in the sample files is a MedlineCitation record, which contains information
about the publication of an article in a biomedical journal, including the journal
name, issue, publication date, the names of the authors, the abstract, and the set of
MeSH keywords that are associated with the article. In addition, each of the MeSH
keywords has an attribute to indicate whether or not the concept the keyword refers
to was a major topic of the article. Let’s take a look at the first citation record in med-
samp2014a.xml:

<MedlineCitation Owner="PIP" Status="MEDLINE">
<PMID Version="1">12255379</PMID>
<DateCreated>

<Year>1980</Year>

<Month>01</Month>

<Day>03</Day>
</DateCreated>

<MeshHeadinglList>

<MeshHeading>

<DescriptorName MajorTopicYN="N">Intelligence</DescriptorName>
</MeshHeading>
<MeshHeading>

<DescriptorName MajorTopicYN="Y">Maternal-Fetal Exchange</DescriptorName>
</MeshHeading>

</MeshHeadingList>

</MedlineCitation>
In our latent semantic analysis of Wikipedia articles, we were primarily interested in
the unstructured article text that was contained in each of the XML records. But for
our co-occurrence analysis, we're going to want to extract the values contained within
the DescriptorName tags by parsing the structure of the XML directly. Fortunately,

Scala comes with an excellent library called scala-xml for parsing and querying XML
documents directly that we can use to help us out.

Let’s get started by loading the citation data into HDFS:

$ hadoop fs -mkdir medline
$ hadoop fs -put *.xml medline

Now we can start up an instance of the Spark shell. The chapter relies on the code
described in Chapter 6 for parsing XML-formatted data. To compile this code into a
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JAR so that we can make use of it, go into the common/ directory in the Git repo and
build it with Maven:

$ cd common/
$ mvn package
$ spark-shell --jars target/common-1.0.0.jar

Let’s write a function to read the XML-formatted MEDLINE data into the shell:

import com.cloudera.datascience.common.XmlInputFormat
import org.apache.spark.SparkContext

import org.apache.hadoop.io.{Text, LongWritable}
import org.apache.hadoop.conf.Configuration

def loadMedline(sc: SparkContext, path: String) = {
val conf = new Configuration()
conf.set(XmlInputFormat.START_TAG_KEY, "<MedlineCitation ")
conf.set(XmlInputFormat.END_TAG_KEY, "</MedlineCitation>")
val in = sc.newAPIHadoopFile(path, classOf[XmlInputFormat],
classOf[LongWritable], classOf[Text], conf)
in.map(line => line._2.toString)

}

val medline_raw = loadMedline(sc, "medline")
We are setting the value of the START_TAG_KEY configuration parameter to be the pre-
fix of the MedlineCitation start tag, because the values of the tag’s attributes may
change from record to record. The XmlInputFormat will include these varying
attributes in the record values that are returned.

Parsing XML Documents with Scala’s XML Library

Scala has an interesting history with XML. Since version 1.2, Scala has treated XML
as a first-class data type. This means that the following code is syntactically valid:

import scala.xml._

val cit = <MedlineCitation>data</MedlineCitation>

This support for XML literals has always been somewhat unusual among major pro-
gramming languages, especially as other serialization formats such as JSON have
come into widespread use. In 2012, Martin Odersky published the following note to
the Scala language mailing list:

[XML literals] Seemed a great idea at the time, now it sticks out like a sore thumb. I
believe with the new string interpolation scheme we will be able to put all of XML pro-
cessing in the libraries, which should be a big win.

As of Scala 2.11, the scala.xml package is no longer a part of the core Scala libraries.
After you upgrade, you will need to explicitly include the scala-xml dependency to
use the Scala XML libraries in your projects.
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With that caveat in mind, Scala’s support for parsing and querying XML documents is
truly excellent, and we will be availing ourselves of it to help extract the information
we want from the MEDLINE citations. Let’s get started by pulling the unparsed first
citation record into our Spark shell:

val raw_xml = medline_raw.take(1)(0)

val elem = XML.loadString(raw_xml)
The elem variable is an instance of the scala.xml.Elem class, which is how Scala rep-
resents an individual node in an XML document. The class contains a number of
built-in functions for retrieving information about the node and its contents, such as:

elem.label

elem.attributes
It also contains a small set of operators for finding the children of a given XML node;
the first one, for retrieving a node’s direct children by name, is called \:

elem \ "MeshHeadingList"

NodeSeq(<MeshHeadingList>

<MeshHeading>

<DescriptorName MajorTopicYN="N">Behavior</DescriptorName>
</MeshHeading>

The \ operator only works on direct children of the node; if we execute elem \ "Mesh
Heading", the result is an empty NodeSeq. To extract nondirect children of a given
node, we need to use the \\ operator:

elem \\ "MeshHeading"

NodeSeq(<MeshHeading>
<DescriptorName MajorTopicYN="N">Behavior</DescriptorName>
</MeshHeading>,

We can also use the \\ operator to get at the DescriptorName entries directly, and
then retrieve the MeSH tags within each node by calling the text function on each
element of the NodeSeq:

(elem \\ "DescriptorName").map(_.text)

List(Behavior, Congenital Abnormalities, ...

Finally, note that each of the DescriptorName entries has an attribute called MajorTo
picYN that indicates whether or not this MeSH tag was a major topic of the cited arti-
cle. We can look up the value of attributes of XML tags using the \ and \\ operators if
we preface the attribute name with an “@” symbol. We can use this to create a filter
that only returns the names of the major MeSH tags for each article:
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def majorTopics(elem: Elem): Seq[String] = {
val dn = elem \\ "DescriptorName"
val mt = dn.filter(n => (n \ "@MajorTopicYN").text == "Y")
mt.map(n => n.text)

}

majorTopics(elem)

Now that we have our XML parsing code working locally, let’s apply it to parse the
MeSH codes for each citation record in our RDD and cache the result:

val mxml: RDD[Elem] = medline_raw.map(XML.loadString)
val medline: RDD[Seq[String]] = mxml.map(majorTopics).cache()
medline.take(1)(0)

Analyzing the MeSH Major Topics and Their
Co-occurrences

Now that we've extracted the MeSH tags we want from the MEDLINE citation
records, let’s get a feel for the overall distribution of tags in our data set by calculating
some basic summary statistics, such as the number of records and a histogram of the
frequencies of various major MeSH topics:

medline.count()

val topics: RDD[String] = medline.flatMap(mesh => mesh)
val topicCounts = topics.countByValue()
topicCounts.size

val tcSeq = topicCounts.toSeq
tcSeq.sortBy(_._2).reverse.take(10).foreach(println)

(Research,5591)

(Child,2235)

(Infant,1388)

(Toxicology,1251)

(Pharmacology,1242)

(Rats,1067)

(Adolescent,1025)

(Surgical Procedures, Operative,1011)
(Pregnancy,996)

(Pathology,967)

The most frequently occurring major topics are, unsurprisingly, some of the most
general ones, like the uber-generic “Research,” or the slightly less generic “Toxicol-
ogy, “Pharmacology;,” and “Pathology” The frequent topic list also includes refer-
ences to various patient populations, like “Child,” “Infant,” “Rats,” or (the even more
odious) “Adolescent” Fortunately, there are more than 13,000 different major topics
in our data set, and given that the most frequently occurring major topic only occurs
in a small fraction of all the documents (5,591/240,000 ~ 2.3%), we would expect that
the overall distribution of the number of documents containing a topic has a
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relatively long tail. We can verify this by creating a frequency count of the values of
the topicCounts map:

val valueDist = topicCounts.groupBy(_._2).mapValues(_.size)
valueDist.toSeq.sorted. take(10).foreach(println)

(1,2599)

(2,1398)

(3,935)

(4,761)

(5,592)

(6,461)

(7,413)

(8,394)

(9,345)

(10,297)
Of course, our primary interest is in co-occurring MeSH topics. Each entry in the
medline data set is a list of strings that are the names of topics that are mentioned in
each citation record. To get the co-occurrences, we need to generate all of the two-
element subsets of this list of strings. Fortunately, Scala’s collections library has a
built-in method called combinations to make generating these sublists extremely
easy. combinations returns an Iterator, meaning that the combinations need not all
be held in memory at the same time:

val list = List(1, 2, 3)
val combs = list.combinations(2)
combs . foreach(println)

When using this function to generate sublists that we are going to aggregate with
Spark, we need to be careful that all of the lists are sorted in the same way. This is
because the lists returned from the combinations function depend on the order of

the input elements, and lists with the same elements in a different order are not equal
to one another:

val combs = list.reverse.combinations(2)

combs . foreach(println)

List(3, 2) == List(2, 3)
Therefore, when we generate the two-element sublists for each citation record, we'll
ensure that the list of topics is sorted before we call combinations:

val topicPairs = medline.flatMap(t => t.sorted.combinations(2))
val cooccurs = topicPairs.map(p => (p, 1)).reduceByKey(_+_)
cooccurs.cache()

cooccurs.count()

Because there are 13,034 topics in our data, there are potentially 13,034*13033/2 =
84,936,061 unordered co-occurrence pairs. However, the count of co-occurrences
reveals that only 259,920 pairs actually appear in the data set, a tiny fraction of the
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possible pairs. If we look at the most frequently appearing co-occurrence pairs in the
data, we see this:

val ord = Ordering.by[(Seq[String], Int), Int](_._2)
cooccurs.top(10)(ord).foreach(println)

(List(Child, Infant),1097)

(List(Rats, Research),995)

(List(Pharmacology, Research),895)

(List(Rabbits, Research),581)

(List(Adolescent, Child),544)

(List(Mice, Research),505)

(List(Dogs, Research),469)

(List(Research, Toxicology),438)

(List(Biography as Topic, History),435)

(List(Metabolism, Research),414)
As we might have suspected from the counts of the most frequently occurring major
topics, the most frequently occurring co-occurrence pairs are also relatively uninter-
esting. Most of the top pairs, like (“Child,” “Infant”) and (“Rats,” “Research”), are sim-
ply the product of two of the most frequently occurring individual topics. There’s
nothing surprising or informative about the fact that these pairs exist in the data.

Constructing a Co-occurrence Network with GraphX

As we saw in the preceding section, when we're studying co-occurrence networks, our
standard tools for summarizing data don’'t provide us much insight. The overall sum-
mary statistics we can calculate, like raw counts, don’t give us a feel for the overall
structure of the relationships in the network, and the co-occurrence pairs that we can
see at the extremes of the distribution are usually the ones that we care about least.

What we really want to do is analyze the co-occurrence network as a network: by
thinking of the topics as vertices in a graph, and the existence of a citation record that
features both topics as an edge between those two vertices. Then, we could compute
network-centric statistics that would help us understand the overall structure of the
network and identify interesting local outlier vertices that are worthy of further
investigation.

We can also use co-occurrence networks to identify meaningful interactions between
entities that are worthy of further investigation. Figure 7-1 shows part of a co-
occurrence graph for combinations of cancer drugs that were associated with adverse
events in the patients who were taking them. We can use the information in these
graphs to help us design clinical trials to study these interactions.
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Figure 7-1. Partial co-occurrence graph for combinations of cancer drugs that were asso-
ciated with adverse events in patients

In the same way that MLIib provides a set of patterns and algorithms for creating
machine learning models in Spark, GraphX is a Spark library that is designed to help
us analyze various kinds of networks using the language and tools of graph theory.
Because GraphX builds on top of Spark, it inherits all of Spark’s scalability properties,
which means that it is capable of carrying out analyses on extremely large graphs that
are distributed across multiple machines. GraphX also integrates well with the rest of
the Spark platform, and as we will see, makes it easy for data scientists to move from
writing data-parallel ETL routines against RDDs, to executing graph-parallel algo-
rithms against a graph, to analyzing and summarizing the output of the graph com-
putation in a data-parallel fashion again. It is the seamless way that GraphX allows us
to introduce graph-style processing into our analytic workflow that makes it so
powerful.

GraphX is based on two specialized RDD implementations that are optimized for
graphs. The VertexRDD[VD] is a specialized implementation of RDD[(VertexId,
VD) ], where the VertexID type is an instance of Long and is required for every vertex,
while the VD can be any other type of data that is associated with the vertex, and is
called the vertex attribute. The EdgeRDD[ED] is a specialized implementation of
RDD[Edge[ED]], where Edge is a case class that contains two VertexId values and an
edge attribute of type ED. Both the VertexRDD and the EdgeRDD have internal indices
within each partition of the data that is designed to facilitate fast joins and attribute
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updates. Given both a VertexRDD and an associated EdgeRDD, we can create an
instance of the Graph class, which contains a number of methods for efficiently per-
forming graph computations.

The first requirement in creating a graph is to have a Long value that can be used as
an identifier for each vertex in the graph. This is a bit of a problem for us in con-
structing our co-occurrence network, because all of our topics are identified as
strings. We need a way to come up with a unique 64-bit value that can be associated
with each topic string, and ideally, wed like to do it in a distributed fashion so that it
can be done quickly across all of our data.

One option we could use would be to use the built-in hashCode method that will gen-
erate a 32-bit integer for any given Scala object. For our problem, which only has
13,000 vertices in the graph, the hash code trick will probably work. But for graphs
that have millions or tens of millions of vertices, the probability of a hash code colli-
sion might be unacceptably high. For this reason, were going to use the Hashing
library from Google’s Guava Library to create a unique 64-bit identifier for each topic
using the MD5 hashing algorithm:

import com.google.common.hash.Hashing

def hashId(str: String) = {
Hashing.md5().hashString(str).asLong()
}

We can apply this hashing function to our MEDLINE data to generate an RDD[(Long,
String)] that will be the basis for the set of vertices in our co-occurrence graph. We
can also do a simple verification check to ensure that the hash value was unique for
each topic:

val vertices = topics.map(topic => (hashId(topic), topic))

val uniqueHashes = vertices.map(_._1).countByValue()

val uniqueTopics = vertices.map(_._2).countByValue()

uniqueHashes.size == uniqueTopics.size
We will generate the edges for the graph from the co-occurrence counts that we cre-
ated in the previous section, using the hashing function to map each topic name to its
corresponding vertex ID. A good habit to get into when you are generating edges is to
ensure that the left side VertexId (which GraphX refers to as the src) is less than the
right side VertexId (which GraphX refers to as the dst). Although most of the algo-
rithms in the GraphX library do not assume anything about the relationship between
src and dst, there are a few that do, so it’s a good idea to implement this pattern early
so that you don't have to think about it later on:

import org.apache.spark.graphx._

val edges = cooccurs.map(p => {
val (topics, cnt) = p
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val ids = topics.map(hashId).sorted
Edge(ids(0), 1ds(1), cnt)
i)
Now that we have both the vertices and the edges, we can create our Graph instance,
and mark it as cached so we can keep it around for subsequent processing:
val topicGraph = Graph(vertices, edges)
topicGraph.cache()
The vertices and edges arguments that we used to construct the Graph instance
were regular RDDs—we didn’t even deduplicate the entries in the vertices so that
there was only a single instance of each topic. Fortunately, the Graph API does this
for us, converting the RDDs we passed in to a VertexRDD and an EdgeRDD, so that the
vertex counts are now unique:

vertices.count()

280823

topicGraph.vertices.count()

13034
Note that if there are duplicate entries in the EdgeRDD for a given pair of vertices, the
Graph API will not deduplicate them: GraphX allows us to create multigraphs, which
can have multiple edges with different values between the same pair of vertices. This
can be useful in applications where the vertices in the graph represent rich objects,
like people or businesses, that may have many different kinds of relationships

between them (e.g., friends, family members, customers, partners, etc.). It also allows
us to treat the edges as either directed or undirected, depending on the context.

Understanding the Structure of Networks

When we explore the contents of a table, there are a number of summary statistics
about the columns that we want to calculate right away so that we can get a feel for
the structure of the data and explore any problem areas. The same principle applies
when we are investigating a new graph, although the summary statistics we are inter-
ested in are slightly different. The Graph class provides built-in methods for calculat-
ing a number of these statistics, and in combination with the regular Spark RDD
APIs, makes it easy for us to quickly get a feel for the structure of a graph to guide our
exploration.

Connected Components

One of the most basic things we want to know about a graph is whether or not it is
connected. In a connected graph, it is possible for any vertex to reach any other vertex
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by following a path, which is simply a sequence of edges that lead from one vertex to
another. If the graph isn’t connected, it may be divided into a smaller set of connected
subgraphs that we can investigate individually.

Connectedness is a fundamental graph property, and so it shouldn't be surprising that
GraphX includes a built-in method for identifying the connected components in a
graph. You'll note that as soon as you call the connectedComponents method on the
graph, a number of Spark jobs will be launched, and then you’ll finally see the result
of the computation:

val connectedComponentGraph: Graph[VertexId, Int] =
topicGraph.connectedComponents()

Look at the type of the object returned by the connectedComponents method: its
another instance of the Graph class, but the type of the vertex attribute is a VertexId
that is used as a unique identifier for the component that each vertex belongs to. To
get a count of the number of connected components and their size, we can use the
trusty countByValue method against the VertexId values for each vertex in the Ver
texRDD. We'll write a function to find a list of all the connected components, sorted by
their sizes:

def sortedConnectedComponents(
connectedComponents: Graph[VertexId, _])
: Seq[(VertexId, Long)] = {
val componentCounts = connectedComponents.vertices.map(_._2).
countByValue
componentCounts.toSeq.sortBy(_._2).reverse

}

Let’s look at how many connected components there are, and then a little closer at the
10 largest:

val componentCounts = sortedConnectedComponents(
connectedComponentGraph)
componentCounts.size

1039
componentCounts. take(10)foreach(println)

-9222594773437155629,11915)
-6468702387578666337,4)
-7038642868304457401,3)
-7926343550108072887,3)
-5914927920861094734,3)
-4899133687675445365,3)
-9022462685920786023,3)
-7462290111155674971,3)
-5504525564549659185,3)
-7557628715678213859,3)

AN AN A AAAAAAAA A
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The largest component includes more than 90% of the vertices, while the second larg-
est contains only 4%—a vanishingly small fraction of the graph. It's worthwhile to
take a look at the topics for some of these smaller components, if only to understand
why they were not connected to the largest component. To see the names of the topics
associated with these smaller components, we'll need to join the VertexrRDD for the
connected components graph with the vertices from our original concept graph. Ver
texRDD provides an innerJoin transformation that can take advantage of the way
GraphX lays out data for much better performance than Spark’s regular join trans-
formation. The innerJoin method requires that we provide a function on the Ver
texID and the data contained inside of each of the two VertexRDDs that returns a
value that will be used as the new data type for the resulting VertexRDD. In this case,
we want to understand the names of the concepts for each connected component, so
we'll return a tuple that contains both values:

val nameCID = topicGraph.vertices.
innerJoin(connectedComponentGraph.vertices) {
(topicId, name, componentId) => (name, componentId)

}

Let’s take a look at the topic names for the largest connected component that wasn’t a
part of the giant component:

val cl = nameCID.filter(x => x._2._2 == topComponentCounts(1)._2)
cl.collect().foreach(x => println(x._2._1))

Reverse Transcriptase Inhibitors
Zidovudine

Anti-HIV Agents

Nevirapine

If we look up the terms [Zidovudine] and [Nevirapine] in Google, we find the Wiki-
pedia entry for Nevirapine, which indicates that the two drugs are used in conjunc-
tion for the treatment of HIV-1, the most severe form of HIV.

It’s surprising that this subgraph was not connected to any other topics about HIV or
AIDS in the overall subgraph. If we take a look at the distribution of topics that men-
tion HIV in the overall data, we see this:

val hiv = topics.filter(_.contains("HIV")).countByValue()
hiv.foreach(println)

(HIV Seronegativity,10)

(HIV Long Terminal Repeat,?2)
(HIV Long-Term Survivors,1)
(HIV Integrase Inhibitors,1)
(HIV Infections,104)
(HIV-2,2)

(HIV Seroprevalence,6)
(Anti-HIV Agents,1)
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(HIV-1,72)

(HIV, 16)

(HIV Seropositivity,41)
It feels like this distinct subcomponent in the graph is an artifact of the data—Ilikely a
result of a parsimonious labeling of the major topics for an individual citation in the
index that excluded other major topics, like HIV-1, that would have tied this paper
into the giant component of the graph. The lesson here is that the topic co-occurrence
network is tending toward being fully connected as we add more citations to it over
time, and there do not appear to be structural reasons that we would expect it to
become disconnected into distinct subgraphs.

Under the covers, the connectedComponents method is performing a series of itera-
tive computations on our graph in order to identify the component that each vertex
belongs to, taking advantage of the fact that the VertexId is a unique numeric identi-
fier for each vertex. During each phase of the computation, each vertex broadcasts the
smallest VertexID value that it has seen to each of its neighbors. During the first iter-
ation, this will simply be the vertex’s own ID, but this will generally be updated in
subsequent iterations. Each vertex keeps track of the smallest VertexID it has seen,
and when none of these smallest IDs changes during an iteration, the connected com-
ponent computation is complete, with each vertex assigned to the component that is
represented by the smallest Ver texID value for a vertex that was a part of that compo-
nent. These kinds of iterative computations on graphs are common, and later in this
chapter, we will see how we can use this iterative pattern to compute other graph met-
rics that illuminate the structure of the graph.

Degree Distribution

A connected graph can be structured in many different ways. For example, there
might be a single vertex that is connected to all of the other vertices, but none of
those other vertices connect to each other. If we eliminated that single central vertex,
the graph would shatter into individual vertices. We might also have a situation in
which every vertex in the graph was connected to exactly two other vertices, so that
the entire connected component formed a giant loop.

Figure 7-2 illustrates how connected graphs may have radically different degree
distributions.
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Figure 7-2. Degree distributions in connected graphs

To gain additional insight into how the graph is structured, it’s helpful to look at the
degree of each vertex, which is simply the number of edges that a particular vertex
belongs to. In a graph without loops (i.e., an edge that connects a vertex to itself), the
sum of the degrees of the vertices will be equal to twice the number of edges, because
each edge will contain two distinct vertices.

In GraphX, we can get the degree of each vertex by calling the degrees method on
the Graph object. This method returns a VertexRDD of integers that is the degree at
each vertex. Let’s get the degree distribution and some basic summary statistics on it
for our concept network:

val degrees: VertexRDD[Int] = topicGraph.degrees.cache()
degrees.map(_._2).stats()

(count: 12065, mean: 43.09,
stdev: 97.63, max: 3753.0, min: 1.0)
There are a few interesting bits of information in the degree distribution. First, note
that the number of entries in the degrees RDD is less than the number of vertices in
the graph: while the graph contains 13,034 vertices, the degrees RDD only has 12,065
entries. Some vertices have no edges that touch them. This is probably caused by cita-
tions in the MEDLINE data that only had a single major topic, which means that they
would not have had any other topics to co-occur with in our data. We can confirm
that this is the case by revisiting the original medline RDD:

val sing = medline.filter(x => x.size == 1)
sing.count()

48611
val singTopic = sing.flatMap(topic => topic).distinct()

singTopic.count()

8084
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There are 8,084 distinct topics that occur as singletons inside of 48,611 MEDLINE
documents. Let’s remove the instances of those topics that already occur in the topic
Pairs RDD:

val topic2 = topicPairs.flatMap(p => p)
singTopic.subtract(topic2).count()

969
This leaves 969 topics that only occur as singletons inside of MEDLINE documents,
and 13,034 - 969 is 12,065, the number of entries in the degrees RDD.

Next, note that although the mean is relatively small, indicating that the average ver-
tex in the graph is only connected to a small fraction of the other nodes, the maxi-
mum value indicates that there is at least one highly connected node in the graph that
is connected to almost a third of the other nodes in the graph.

Let’s take a closer look at the concepts for these high-degree vertices by joining the
degrees VertexRDD to the vertices in the concept graph using GraphX’s innerJoin
method and an associated function for combining the name of a concept and the
degree of the vertex into a tuple. Remember, the innerJoin method only returns ver-
tices that are present in both of the VertexRDDs, so the concepts that do not have any
co-occurring concepts will be filtered out. We'll write a function that we can reuse
later to find the names of the topics with the highest degrees:

def topNamesAndDegrees(degrees: VertexRDD[Int],
topicGraph: Graph[String, Int]): Array[(String, Int)] = {
val namesAndDegrees = degrees.innerJoin(topicGraph.vertices) {
(topicld, degree, name) => (name, degree)
}
val ord = Ordering.by[(String, Int), Int](_._2)
namesAndDegrees.map(_._2).top(10)(ord)
}

When we print the top 10 elements of the namesAndDegrees VertexRDD ordered by
the value of the degree, we get this:

topNamesAndDegrees(degrees, topicGraph).foreach(println)

(Research,3753)
(Child,2364)
(Toxicology,2019)
(Pharmacology,1891)
(Adolescent,1884)
(Pathology,1781)
(Rats,1573)
(Infant,1568)
(Geriatrics,1546)
(Pregnancy,1431)
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Unsurprisingly, most of the high-degree vertices refer to the same generic concepts
that we've been seeing throughout this analysis. In the next section, we’ll use some
new functionality of the GraphX API and a bit of old-fashioned statistics to filter out
some of the less interesting co-occurrence pairs from the graph.

Filtering Out Noisy Edges

In the current co-occurrence graph, the edges are weighted based on the count of
how often a pair of concepts appears in the same paper. The problem with this simple
weighting scheme is that it doesn’t distinguish concept pairs that occur together
because they have a meaningful semantic relationship from concept pairs that occur
together because they happen to both occur frequently for any type of document. We
need to use a new edge weighting scheme that takes into account how “interesting” or
“surprising” a particular pair of concepts is for a document given the overall preva-
lence of those concepts in the data. We will use Pearson’s chi-squared test to calculate
this “interestingness” in a principled way—that is, to test whether the occurrence of a
particular concept is independent from the occurrence of another concept.

For any pair of concepts A and B, we can create a 2x2 contingency table that contains
the counts of how those concepts co-occur in MEDLINE documents:

YesB NoB BTotal
YesA  YY YN YA
NoA NY NN NA

BTotal YB NB T

In this table, the entries YY, YN, NY, and NN represent the raw counts of presence/
absence for concepts A and B. The entries YA and NA are the row sums for concept A,
and YB and NB are the column sums for concept B, and the value T is the total num-
ber of documents.

For the chi-squared test, we think of YY, YN, NY, and NN as sampled from an
unknown distribution. We can compute a chi-squared statistic from these values with:

YY*NN - YN*NY)?
YA*NA*YB*NB

XZZT(

If our samples are in fact independent, we would expect the value of this statistic to be
drawn from a chi-squared distribution with the appropriate degrees of freedom.
Where r and ¢ are the cardinalities of the two random variables being compared, the

138 | Chapter7: Analyzing Co-occurrence Networks with GraphX



degrees of freedom is calculated as (r — 1)(c - 1) = 1. A large chi-squared statistic
indicates that the variables are less likely to be independent, and thus we find the pair
of concepts more interesting. More specifically, the CDF of the one-degree chi-
squared distribution yields a p-value that is the level of confidence with which we can
reject the null hypothesis that the variables are independent.

In this section, we’ll compute the value of the chi-squared statistic for each pair of
concepts in our co-occurrence graph using GraphX.

Processing EdgeTriplets

The easiest part of the chi-squared statistic to count is T, the total number of docu-
ments under consideration. We can get this easily by simply counting the number of
entries in the medline RDD:

val T = medline.count()

It’s also relatively easy for us to get the counts of how many documents feature each
concept; we already did this analysis to create the map of topicCounts earlier in this
chapter, but now we’ll get the counts as an RDD on the cluster:

val topicCountsRdd = topics.map(x => (hashId(x), 1)).reduceByKey(_+_)

Once we have this VertexRDD of counts, we can create a new graph using it as the
vertex set, along with the existing edges RDD:

val topicCountGraph = Graph(topicCountsRdd, topicGraph.edges)

Now we have all of the information we need to compute the chi-squared statistic for
each edge in the topicCountGraph. To do the calculation, we need to combine data
that is stored at both the vertices (i.e., the counts of how often each concept appears
in a document) as well as the edges (the count of how often each pair of concepts
occurs in the same document). GraphX supports this kind of computation via a data
structure called an EdgeTriplet[VD, ED], which has information about the attributes
of both the vertices and the edges contained within a single object, as well as the IDs
of both of the vertices. Given a EdgeTriplet over our topicCountGraph, we can cal-
culate the chi-squared statistic as follows:

def chiSq(YY: Int, YB: Int, YA: Int, T: Long): Double = {

valNB =T - YB
val NA =T - YA
val YN = YA - YY
val NY = YB - YY
val NN = T - NY - YN - YY

val inner = (YY * NN - YN * NY) - T / 2.0
T * math.pow(inner, 2) / (YA * NA * YB * NB)
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We can then apply this method to transform the value of the graph edges via the map
Triplets operator, which returns a new graph whose edge attributes will be the value
of the chi-squared statistic for each co-occurrence pair, and then get an idea of the
distribution of the values for this statistic across the edges:

val chiSquaredGraph = topicCountGraph.mapTriplets(triplet => {
chiSq(triplet.attr, triplet.srcAttr, triplet.dstAttr, T)

b
chiSquaredGraph.edges.map(x => x.attr).stats()

(count: 259920, mean: 546.97,
stdev: 3428.85, max: 222305.79, min: 0.0)

Having calculated the chi-squared statistic value, we want to use it to filter out edges
that don’t appear to have any meaningful relationship between the co-occurring con-
cepts. As we can see from the distribution of the edge values, there is an enormous
range of values for the chi-squared statistic across the data, which should make us feel
comfortable experimenting with an aggressive filtering criterion to eliminate noisy
edges. For a 2x2 contingency table in which there is no relationship between the vari-
ables, we expect that the value of the chi-squared metric will follow the chi-squared
distribution with one degree of freedom. The 99.999th percentile of the chi-squared
distribution with one degree of freedom is approximately 19.5, so let’s try this value as
a cutoff to eliminate edges from the graph, leaving us with only those edges where we
are extremely confident that they represent an interesting co-occurrence relationship.
We'll perform this filtering on the graph with the subgraph method, which takes a
boolean function of an EdgeTriplet to determine which edges to include in the
subgraph:
val interesting = chiSquaredGraph.subgraph(

triplet => triplet.attr > 19.5)
interesting.edges.count

170664
Our extremely strict filtering rule removed about one third of the edges in the origi-
nal co-occurrence graph. It isn’t a bad thing that the rule didn't remove more of the
edges, because we expect that most of the co-occurring concepts in the graph are
actually semantically related to one another, and so they would co-occur more often
than they would simply by chance. In the next section, we'll analyze the connected-

ness and overall degree distribution of the subgraph, to see if there was any major
impact to the structure of the graph when we removed these noisy edges.

Analyzing the Filtered Graph

We'll start by rerunning the connected component algorithm on the subgraph and
checking the component counts and sizes, using the function we wrote earlier for the
original graph:
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val interestingComponentCounts = sortedConnectedComponents(
interesting.connectedComponents())
interestingComponentCounts.size

1042
interestingComponentCounts. take(10).foreach(println)

-9222594773437155629,11912)
-6468702387578666337,4)
-7038642868304457401,3)
-7926343550108072887,3)
-5914927920861094734,3)
-4899133687675445365,3)
-9022462685920786023,3)
-7462290111155674971,3)
-5504525564549659185,3)
-7557628715678213859,3)

AN AN AN A AAAAAAAAA

Filtering out a third of the edges in the graph led to a small change in the connected-
ness of the graph: three additional islands exist in the filtered graph (1,042 versus
1,039 in the original), and the size of the largest connected component has fallen by
three vertices (11,912 versus 11,915). This indicates that three weakly connected con-
cepts have been pruned from the largest component into individual islands. Even so,
the largest connected component is still roughly the same size as before; pruning a
third of the edges in the graph did not cause the largest component to break up into a
number of large pieces. This indicates that the connected structure of the graph is
reasonably robust to filtering out the noisy edges. When we look at the degree distri-
bution for the filtered graph, we see a similar story:

val interestingDegrees = interesting.degrees.cache()
interestingDegrees.map(_._2).stats()

(count: 12062, mean: 28.30,
stdev: 44.84, max: 1603.0, min: 1.0)

The mean degree for the original graph was about 43, and the mean degree for the
filtered graph has fallen a bit, to about 28. More interesting, however, is the precipi-
tous drop in the size of the largest degree vertex, which has fallen from 3,753 in the
original graph to 1,603 in the filtered graph. If we look at the association between
concept and degree in the filtered graph, we see this:

topNamesAndDegrees(interestingDegrees, topicGraph).foreach(println)

(Research,1603)
(Pharmacology,873)
(Toxicology,814)
(Rats,716)
(Pathology,704)
(Child,617)
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(Metabolism,587)

(Rabbits,560)

(Mice,526)

(Adolescent,510)
Our chi-squared filtering criterion appears to have the desired effect: it's eliminating
edges in our graph related to generic concepts, while preserving the edges in the rest
of the graph that represent meaningful and interesting semantic relationships
between concepts. We can continue to experiment with different chi-squared filtering
criteria to see how they impact the connectedness and degree distribution in the
graph; it would be interesting to find out what value of the chi-squared distribution
would cause the large connected component in the graph to break up into smaller
pieces, or if the largest component would simply continue to “melt,” like a giant ice-
berg slowly losing tiny pieces over time.

Small-World Networks

The connectedness and degree distribution of a graph can give us a basic idea of its
overall structure, and GraphX makes it easy to calculate and analyze these properties.
In this section, we'll go a bit deeper into the GraphX APIs and show how we can use
them to calculate some more advanced properties of a graph that do not have built-in
support in GraphX.

With the rise of computer networks like the World Wide Web and social networks
like Facebook and Twitter, data scientists now have rich data sets that describe the
structure and formation of real-world networks versus the idealized networks that
mathematicians and graph theorists have traditionally studied. One of the first papers
to describe the properties of these real-world networks, and how they differed from
the idealized models, was published in 1998 by Duncan Watts and Steven Strogatz
and was titled “Collective dynamics of ‘small-world’ networks”. It was a seminal paper
that outlined the first mathematical model for how to generate graphs that exhibited
the two “small-world” properties that we see in real-world graphs:

o Most of the nodes in the network have a small degree and belong to a relatively
dense cluster of other nodes; that is, a high fraction of a node’s neighbors are also
connected to each other.

o Despite the small degree and dense clustering of most nodes in the graph, it is
possible to reach any node in the network from any other network relatively
quickly by traversing a small number of edges.

For each of these properties, Watts and Strogatz defined a metric that could be used
to rank graphs based on how strongly they expressed these properties. In this section,
we will use GraphX to compute these metrics for our concept network, and compare
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the values that we get to the values we would get for an idealized random graph to
test whether our concept network exhibits the small-world property.

Cliques and Clustering Coefficients

A graph is complete if every vertex is connected to every other vertex by an edge. In a
given graph, there may be many subsets of vertices that are complete, and we call
these complete subgraphs cliques. The presence of many large cliques in a graph indi-
cates that the graph has the kind of locally dense structure that we see in real small-
world networks.

Unfortunately, finding cliques in a given graph turns out to be very difficult to do.
The problem of detecting whether or not a given graph has a clique of a given size is
NP-complete, which means that finding cliques in even small graphs can be very
computationally intensive.

Computer scientists have developed a number of simple metrics that give us a good
feel for the local density of a graph without the computational costs of finding all of
the cliques of a given size. One of these metrics is the triangle count at a vertex. A
triangle is a complete graph on three vertices, and the triangle count at a vertex V is
simply the number of triangles that contain V. The triangle count is a measure of how
many neighbors of V are also connected to each other. Watts and Strogatz defined a
new metric, called the local clustering coefficient, that is the ratio of the actual triangle
count at a vertex to the number of possible triangles at that vertex based on how
many neighbors it has. For an undirected graph, the local clustering coefficient C for
a vertex that has k neighbors and t triangles is:

2t
C= D

Let’s use GraphX to compute the local clustering coefficients for each node in the fil-
tered concept network. GraphX has a built-in method called triangleCount that
returns a Graph whose VertexRDD contains the number of triangles at each vertex:

val triCountGraph = graph.triangleCount()
triCountGraph.vertices.map(x => x._2).stats()

(count: 13034, mean: 163.05,
stdev: 616.56, max: 38602.0, min: 0.0)

To compute the local clustering coefficient, we'll need to normalize these triangle
counts by the total number of possible triangles at each vertex, which we can compute
from the degrees RDD:

val maxTrisGraph = graph.degrees.mapValues(d =>d * (d - 1) / 2.0)
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Now we'll join the VertexRDD of triangle counts from triCountGraph to the Ver
texRDD of normalization terms we calculated and compute the ratio of the two, being
careful to avoid dividing by zero for any vertices that only have a single edge:

val clusterCoefGraph = triCountGraph.vertices.
innerJoin(maxTrisGraph) { (vertexId, triCount, maxTris) => {
if (maxTris == 0) 0 else triCount / maxTris
3
}
Computing the average value of the local clustering coefficient for all of the vertices
in the graph gives us the network average clustering coefficient:

clusterCoefGraph.map(_._2).sum() / graph.vertices.count()

0.2784084744308219

Computing Average Path Length with Pregel

The second property of small-world networks is that the length of the shortest path
between any two randomly chosen nodes tends to be small. In this section, we'll com-
pute the average path length for nodes contained in the large connected component
of our filtered graph.

Computing the path length between vertices in a graph is an iterative process that is
similar to the iterative process we use to find the connected components. At each
phase of the process, each vertex will maintain a collection of the vertices that it
knows about and how far away each vertex is. Each vertex will then query its neigh-
bors about the contents of their lists, and it will update its own list with any new verti-
ces that are contained in its neighbors’ lists that were not contained in its own list.
This process of querying neighbors and updating lists will continue across the entire
graph until none of the vertices are able to add any new information to their lists.

This iterative, vertex-centric method of parallel programming on large, distributed
graphs is based on a paper that Google published in 2009 called “Pregel: a system for
large-scale graph processing”. Pregel is based on a model of distributed computation
that predates MapReduce called “bulk-synchronous parallel,” or BSP. BSP programs
divide parallel processing stages into two phases: computation and communication.
During the computation phase, each vertex in the graph examines its own internal
state and decides to send zero or more messages to other vertices in the graph. During
the communication phase, the Pregel framework handles routing the messages that
resulted from the previous communication phase to the appropriate vertices, which
then process those messages, update their internal state, and potentially generate new
messages during the next computation phase. The sequence of computation and
communication steps continues until all of the vertices in the graph vote to halt, at
which point the computation is finished.
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BSP was one of the first parallel programming frameworks that was both fairly
general-purpose as well as fault-tolerant: it was possible to design BSP systems in
such a way that the state of the system at any computation phase could be captured
and stored so that if a particular machine failed, the state of that machine could be
replicated on another machine, the overall computation could be rolled back to the
earlier state before the failure occurred, and then the computation could continue.

Since Google published its paper on Pregel, a number of open source projects have
been developed that replicate aspects of the BSP programming model on top of
HDEFS, such as Apache Giraph and Apache Hama. These systems have proven very
useful for specialized problems that fit nicely into the BSP computational model, such
as large-scale PageRank computations, but they are not widely deployed as part of the
analysis toolkit for regular data scientists because it is relatively difficult to integrate
them into a standard data-parallel workflow. GraphX solves this problem by allowing
data scientists to easily bring graphs into a data-parallel workflow when it is conve-
nient for representing data and implementing algorithms, and it provides a built-in
pregel operator for expressing BSP computations on top of graphs. In this section,
we'll demonstrate how to use this operator to implement the iterative, graph-parallel
computations we need to compute the average path length for a graph:

1. Figure out what state we need to keep track of at each vertex.

2. Write a function that takes the current state into account, and evaluates each pair
of linked vertices to determine which messages to send at the next phase.

3. Write a function that merges the messages from all of the different vertices
together before we pass the output of the function to the vertex for updating.

There are three major decisions we need to make in order to implement a distributed
algorithm using pregel. First, we need to decide what data structure were going to
use to represent the state of each vertex, and what data structure were going to use to
represent the messages that are passed between vertices. For the average path length
problem, we want each vertex to have a lookup table that contains the IDs of the ver-
tices it currently knows about and how far away from those vertices it is. We'll store
this information inside of a Map[VertexId, Int] that we maintain for each vertex.
Similarly, the messages that are passed to each vertex should be a lookup table of ver-
tex IDs and distances that are based on information that the vertex receives from its
neighbors, and we can use a Map[VertexId, Int] to represent this information as
well.

Once we know the data structures that we’ll use for representing the state of the verti-
ces and the content of the messages, we need to write two functions. The first one,
which we'll call mergeMaps, is used to merge the information from the new messages
into the state of the vertex. In this case, both the state and the message are of type
Map[VertexId, Int], so we need to merge the contents of these two maps while
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retaining the smallest value associated with any VertexId entries that occur in both
maps:

def mergeMaps(ml: Map[VertexId, Int], m2: Map[VertexId, Int])
: Map[VertexId, Int] = {
def minThatExists(k: VertexId): Int = {
math.min(
ml.getOrElse(k, Int.MaxValue),
m2.getOrElse(k, Int.MaxValue))
}

(m1.keySet ++ m2.keySet).map {
k => (k, minThatExists(k))
}.toMap
}

The vertex update function also includes the VertexId value as an argument, so we'll
define a trivial update function that takes the VertexId along with the Map[Ver
texId, Int]arguments, but delegates all of the actual work to mergeMaps:

def update(
id: VertexId,
state: Map[VertexId, Int],
msg: Map[VertexId, Int]) = {
mergeMaps(state, msg)

}

Because the messages that we'll be passing during the algorithm are also of type
Map[VertexId, Int], and we want to merge them and keep the minimal value of
each key they possess, we will be able to use the mergeMaps function for the reduce
phase of the Pregel run as well.

The final step is usually the most involved: we need to write the code that constructs
the message that will be sent to each vertex based on the information it receives from
its neighbors at each iteration. The basic idea here is that each vertex should incre-
ment the value of each key in its current Map[VertexId, Int] by one, combine the
incremented map values with the values from its neighbor using the mergeMaps
method, and send the result of the mergeMaps function to the neighboring vertex if it
differs from the neighbor’s internal Map[VertexId, Int]. The code for performing
this sequence of operations looks like this:

def checkIncrement(
a: Map[VertexId, Int],
b: Map[VertexId, Int],
bid: VertexId) = {
val aplus = a.map { case (v, d) =>v -> (d + 1) }
if (b != mergeMaps(aplus, b)) {
Iterator((bid, aplus))
} else {
Iterator.empty

146 | Chapter7: Analyzing Co-occurrence Networks with GraphX



}
}
With the checkIncrement function in hand, we can define the iterate function that
we will use for performing the message updates at each Pregel iteration for both the
src and dst vertices inside of an EdgeTriplet:

def iterate(e: EdgeTriplet[Map[VertexId, Int], _]) = {
checkIncrement(e.srcAttr, e.dstAttr, e.dstId) ++
checkIncrement(e.dstAttr, e.srcAttr, e.srcId)

}
During each iteration, we need to determine the path lengths that need to be commu-
nicated to each of the vertices based on the path lengths that they already know
about, and then we need to return an Iterator that contains a tuple of (VertexId,
Map[VertexId, Int]), where the first VertexId indicates where the message should
be routed, and the Map[VertexId, Int] isthe message itself.

If any vertex does not receive any messages during an iteration, the pregel operator
assumes that this vertex is finished computing, and it will be excluded from subse-
quent processing. As soon as no more messages are sent to any vertex from the iter
ate method, the algorithm is complete.

The implementation of the pregel operator in GraphX has a limi-
tation compared to BSP systems like Giraph: GraphX can only send
messages between vertices that are connected by an edge, whereas
Giraph can send messages between any two vertices in a graph.

Now that our functions are completed, let’s prepare the data for the BSP run. Given a
large enough cluster and plenty of memory, we could compute the path lengths
between every pair of vertices using a Pregel-style algorithm with GraphX. However,
this isn’t necessary for us to get an idea of the general distribution of path lengths in
the graph; instead, we can randomly sample a small subset of the vertices and then
compute the path lengths for each vertex to just that subset. Using the RDD sample
method, lets select 2% of the VertexId values for our sample without replacement,
using the value 1729L as the seed for the random number generator:

val fraction = 0.02

val replacement = false

val sample = interesting.vertices.map(v => v._1).
sample(replacement, fraction, 1729L)

val ids = sample.collect().toSet

Now, we'll create a new Graph object whose vertex Map[VertexId, Int] values are
only nonempty if the vertex is a member of the sampled IDs:
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val mapGraph = interesting.mapVertices((id, _) => {
if (ids.contains(id)) {
Map(id -> 0)
} else {
Map[VertexId, Int]()
}
b

Finally, to kick off the run, we need an initial message to send to the vertices. For this
algorithm, that initial message is an empty Map[VertexId, Int]. We can then call the
pregel method, followed by the update, iterate, and mergeMaps functions to exe-
cute during each iteration:

val start = Map[VertexId, Int]()
val res = mapGraph.pregel(start)(update, iterate, mergeMaps)

This should run for a few minutes; the number of iterations of the algorithm will be
one plus the length of the longest path in our sample. Once it completes, we can flat
Map the vertices to extract the tuples of (VertexId, VertexId, Int) values that rep-
resent the unique path lengths that were computed:

val paths = res.vertices.flatMap { case (id, m) =>
m.map { case (k, v) =>
if (id < k) {
(id, k, v)
} else {
(k, id, v)
}
}
}.distinct()
paths.cache()

We can now compute summary statistics for the nonzero path lengths and compute
the histogram of path lengths in our sample:

paths.map(_._3).filter(_ > 0).stats()

(count: 2701516, mean: 3.57,
stdev: 0.84, max: 8.0, min: 1.0)

val hist = paths.map(_._3).countByValue()
hist.toSeq.sorted.foreach(println)
(0,248)

(1,5653)

(2,213584)

(3,1091273)

(4,1061114)

(5,298679)

(6,29655)

(7,1520)

(8,38)
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The average path length of our sample was 3.57, while the clustering coefficient that
we calculated in the last section was 0.274. Table 7-1 shows the values of these statis-
tics for three different small-world networks as well as for random graphs that were
generated on the same number of vertices and edges as each of the real-world net-
works, and is taken from a paper titled “Multiscale visualization of small world net-
works” by Auber et al. (2003).

Table 7-1. Example small-world networks

Graph Avg path length (APL) Clustering coefficient ((C) Random APL Random (C

IMDB 3.20 0.967 2.67 0.024
Mac0S9 3.28 0.388 332 0.018
.edussites  4.06 0.156 4.048 0.001

The IMDB graph was built from actors who had appeared in the same movies, the
Mac OS 9 network referred to header files that were co-included in the same source
files in the OS 9 operating system source code, and .edu sites refers to sites in the .edu
top-level domain that linked to one another and are drawn from a paper by Adamic
(1999). Our analysis shows that the network of MeSH tags in the MEDLINE citation
index fits naturally into the same range of average path length and clustering coeffi-
cient values that we see in other well-known small-world networks, with a much
higher clustering coefficient value than we would expect given the relatively low aver-
age path length.

Where to Go from Here

At first, small-world networks were a curiosity; it was interesting that so many differ-
ent types of real-world networks, from sociology and political science to neuroscience
and cell biology, had such similar and peculiar structural properties. More recently,
however, it seems that deviances from small-world structure in these networks can be
indicative of the potential for functional problems. Dr. Jeffrey Petrella at Duke Uni-
versity gathered research that indicates that the network of neurons in the brain
exhibits a small-world structure, and that deviance from this structure occurs in
patients who have been diagnosed with Alzheimer’s disease, schizophrenia, depres-
sion, and attention deficit disorders. In general, real-world graphs should exhibit the
small-world property; if they do not, that may be evidence of a problem, such as frau-
dulent activity in a small-world graph of transactions or trust relationships between
businesses.
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CHAPTER 8

Geospatial and Temporal Data Analysis on
the New York City Taxi Trip Data

Josh Wills

Nothing puzzles me more than time and space;
and yet nothing troubles me less, as I never think about them.

—Charles Lamb

New York is widely known for its yellow taxis, and hailing one is just as much a part
of the experience of visiting New York as eating a hot dog from a street vendor or
riding the elevator to the top of the Empire State Building.

Residents of New York have all kinds of tips based on their anecdotal experiences
about the best times and places to catch a cab, especially during rush hour and when
it’s raining. But there is one time of day when everyone will recommend that you sim-
ply take the subway instead: during the shift change that happens from 4 to 5 PM
every day. During this time, yellow taxis have to return to their dispatch centers
(often in Queens) so that one driver can quit for the day and the next one can start,
and drivers who are late to return have to pay fines.

In March of 2014, the New York City Taxi and Limousine Commission shared an
infographic on its Twitter account, @nyctaxi, that showed the number of taxis on the
road and the fraction of those taxis that was occupied at any given time. Sure enough,
there was a noticeable dip of taxis on the road from 4 to 6 PM, and two-thirds of the
taxis that were driving were occupied.

This tweet caught the eye of self-described urbanist, mapmaker, and data junkie Chris
Whong, who sent a tweet to the @nyctaxi account to find out if the data it used in its
infographic was publicly available. The taxi commission replied that he could have
the data if he filed a Freedom of Information Law (FOIL) request and provided the
commission with hard drives that they could copy the data on to. After filling out one
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PDF form, buying two new 500 GB hard drives, and waiting two business days, Chris
had access to all of the data on taxi rides from January 1st through December 31st
2013. Even better, he posted all of the fare data online, where it has been used as the
basis for a number of beautiful visualizations of transportation in New York City.

One statistic that is important to understanding the economics of taxis is utilization:
the fraction of time that a cab is on the road and is occupied by one or more passen-
gers. One factor that impacts utilization is the passenger’s destination: a cab that
drops off passengers near Union Square at midday is much more likely to find its
next fare in just a minute or two, whereas a cab that drops someone off at 2 AM on
Staten Island may have to drive all the way back to Manhattan before it find its next
fare. Wed like to quantify these effects and find out the average time it takes for a cab
to find its next fare as a function of the borough in which it dropped its passengers
off —Manhattan, Brooklyn, Queens, the Bronx, Staten Island, or none of the above
(e.g., if it dropped the passenger off somewhere outside of the city, like Newark Inter-
national Airport).

To carry out this analysis, we need to deal with two types that data that come up all
the time: temporal data, such as dates and times, and geospatial information, like
points of longitude and latitude and spatial boundaries. In this chapter, we're going to
demonstrate how to use Scala and Spark to work with these data types.

Getting the Data

For this analysis, we're only going to consider the fare data from January 2013, which
will be about 2.5 GB of data after we uncompress it. You can access the data for each
month of 2013 at http://www.andresmh.com/nyctaxitrips/, and if you have a suffi-
ciently large Spark cluster at your disposal, you can re-create the following analysis
against all of the data for the year. For now, let’s create a working directory on our
client machine and take a look at the structure of the fare data:

$ mkdir taxidata

$ cd taxidata

$ wget https://nyctaxitrips.blob.core.windows.net/data/trip_data_1.csv.zip
$ unzip trip_data_1.csv.zip

$ head -n 10 trip_data_1.csv

Each row of the file after the header represents a single taxi ride in CSV format. For
each ride, we have some attributes of the cab (a hashed version of the medallion num-
ber) as well as the driver (a hashed version of the hack license, which is what licenses
to drive taxis are called), some temporal information about when the trip started and
ended, and the longitude/latitude coordinates for where the passenger(s) were picked
up and where they were dropped off.
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Working with Temporal and Geospatial Data in Spark

One of the great features of the Java platform is the sheer volume of code that has
been developed for it over the years: for any kind of data type or algorithm you might
need to use, it’s likely that someone else has written a Java library that you can use to
solve your problem, and there’s also a good chance that an open source version of that
library exists that you can download and use without having to purchase a license.

Of course, just because a library exists and is freely available doesn't mean that you
necessarily want to rely on it to solve your problem; open source projects have a lot of
variation in terms of their quality, their state of development in terms of bug fixes and
new features, and their ease-of-use in terms of API design and the presence of useful
documentation and tutorials.

Our decision-making process is a bit different than that of a developer choosing a
library for an application; we want something that will be pleasant to use for interac-
tive data analysis and that is easy to use in a distributed application. In particular, we
want to be sure that the main data types that we will be working with in our RDDs
implement the Serializable interface and/or can be easily serialized using libraries
like Kryo.

Additionally, we would like the libraries we use for interactive data analysis to have as
few external dependencies as possible. Tools like Maven and SBT can help application
developers deal with complex dependencies when building applications, but for inter-
active data analysis, we would much rather simply grab a JAR file with all of the code
we need, load it into the Spark shell, and start our analysis. Additionally, bringing in
libraries with lots of dependencies can cause version conflicts with other libraries that
Spark itself depends on, which can cause difficult-to-diagnose error conditions that
developers refer to as JAR hell.

Finally, we would like our libraries to have relatively simple and rich APIs that do not
make extensive use of Java-oriented design patterns like abstract factories and visi-
tors. Although these patterns can be very useful for application developers, they tend
to add a lot of complexity to our code that is unrelated to our analysis. Even better,
many Java libraries have Scala wrappers that take advantage of Scala’s power to reduce
the amount of boilerplate code required to use them.

Temporal Data with JodaTime and NScalaTime

For temporal data, there is of course the Java Date class and the Calendar class. But as
anyone who has ever used these libraries knows, theyre difficult to work with and
can require massive amounts of boilerplate for simple operations. For many years
now, JodaTime has been the Java library of choice for working with temporal data.
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There is a wrapper library named NScalaTime that provides some additional syntac-
tic sugar for working with JodaTime from Scala. We can get access to all its function-
ality with a single import:

import com.github.nscala_time.time.Imports._

JodaTime and NScalaTime revolve around the DateTime class. DateTime objects are
immutable, like Java Strings (and unlike the Calendar/Date objects in the regular
Java APIs), and provide a number of methods that we can use to perform calculations
on temporal data. In the following example, dt1 represents 9 AM on September 4th,
2014, and dt2 represents 3 PM on October 31st, 2014:

val dtl = new DateTime(2014, 9, 4, 9, 0)
dtl: org.joda.time.DateTime = 2014-09-04T09:00:00.000-07:00

dti.dayOfYear.get
res60: Int = 247

val dt2 = new DateTime(2014, 10, 31, 15, 0)
dt2: org.joda.time.DateTime = 2014-10-31T15:00:00.000-07:00

dtl < dt2
res6l: Boolean = true

val dt3 = dt1 + 60.days
dt3: org.joda.time.DateTime = 2014-11-03T09:00:00.000-08:00

dt3 > dt2
res62: Boolean = true

For data analysis problems, we usually need to convert some string representation of
a date into a DateTime object on which we can do calculations. A simple way to
accomplish this is with Java’s SimpleDateFormat, which is useful for parsing dates in
different formats. The following parses dates in the format used by the taxi data set:

import java.text.SimpleDateFormat

val format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
val date = format.parse("2014-10-12 10:30:44")
val datetime = new DateTime(date)

Once we have parsed our DateTime objects, we often want to do a kind of temporal
arithmetic on them to find out how many seconds or hours or days separate them. In
JodaTime, we represent the concept of a span of time by the Duration class, which we
can create from two DateTime instances like this:

val d = new Duration(dt1, dt2)
d.getMillis

d.getStandardHours
d.getStandardDays
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JodaTime handles all of the tedious details of different time zones and quirks of the
calendar like Daylight Saving Time when it performs these duration calculations so
that you don’t have to worry about them.

Geospatial Data with the Esri Geometry APl and Spray

Working with temporal data on the JVM is easy: just use JodaTime, maybe with a
wrapper like NScalaTime if it makes your analysis easier to understand. For geospa-
tial data, the answer isn’t nearly so simple; there are many different libraries and tools
that have different functions, states of development, and maturity levels, so there is
not a dominant Java library for all geospatial use cases.

First problem: what kind of geospatial data do you have? There are two major kinds,
vector and raster, and there are different tools for working with the different kinds of
data. In our case, we have latitude and longitude for our taxi trip records, and vector
data stored in the GeoJSON format that represents the boundaries of the different
boroughs of New York. So we need a library that can parse GeoJSON data and can
handle spatial relationships, like detecting whether a given longitude/latitude pair is
contained inside of a polygon that represents the boundaries of a particular borough.

Unfortunately, there isn’t an open source library that fits our needs exactly. There is a
GeoJSON parser library that can convert GeoJSON into Java objects, but there isn’t an
associated geospatial library that can analyze spatial relationships on the generated
objects. There is the GeoTools project, but it has a long list of components and depen-
dencies—exactly the kind of thing we try to avoid when choosing a library to work
with from the Spark shell. Finally, there is the Esri Geometry API for Java, which has
few dependencies and can analyze spatial relationships, but can only parse a subset of
the GeoJSON standard, so it won't be able to parse the GeoJSON data we downloaded
without us doing some preliminary data munging.

For a data analyst, this lack of tooling might be an insurmountable problem. But we
are data scientists: if our tools don't allow us to solve a problem, we build new tools.
In this case, we will add Scala functionality for parsing all of the GeoJSON data,
including the bits that aren’t handled by the Esri Geometry API, by leveraging one of
the many Scala projects that support parsing JSON data. The code that we will be dis-
cussing in the next few sections is available in the book’s Git repo, but has also been
made available as a standalone library on GitHub, where it can be used for any kind
of geospatial analysis project in Scala.

Exploring the Esri Geometry API

The core data type of the Esri library is the Geometry object. A Geometry describes a
shape, accompanied by a geolocation where that shape resides. The library contains a
set of spatial operations that allows analyzing geometries and their relationships.
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These operations can do things like tell us the area of a geometry, tell us whether two
geometries overlap, or compute the geometry formed by the union of two geometries.

In our case, we'll have geometry objects representing dropoff points for cab rides
(longitude and latitude), and geometry objects that represent the boundaries of a bor-
ough in NYC. The spatial relationship were interested in is containment: is a given
point in space located inside one of the polygons associated with a borough of
Manbhattan?

The Esri API provides a convenience class called GeometryEngine that contains static
methods for performing all of the spatial relationship operations, including a con
tains operation. The contains method takes three arguments: two Geometry objects,
and one instance of the SpatialReference class, which represents the coordinate sys-
tem used to perform the geospatial calculations. For maximum precision, we need to
analyze spatial relationships relative to a coordinate plane that maps each point on
the misshapen spheroid that is planet Earth into a two-dimensional coordinate sys-
tem. Geospatial engineers have a standard set of well-known identifiers (referred to as
WKIDs) that can be used to reference the most commonly used coordinate systems.
For our purposes, we will be using WKID 4326, which is the standard coordinate sys-
tem used by GPS.

As Scala developers, were always on the lookout for ways to reduce the amount of
typing we need to do as part of our interactive data analysis in the Spark shell, where
we don’t have access to development environments like Eclipse and Intelli] that can
automatically complete long method names for us and provide some syntactic sugar
to make it easier to read certain kinds of operations. Following the naming conven-
tion we saw in the NScalaTime library, which defined wrapper classes like RichDate
Time and RichDuration, we'll define our own RichGeometry class that extends the
Esri Geometry object with some useful helper methods:

import com.esri.core.geometry.Geometry
import com.esri.core.geometry.GeometryEngine
import com.esri.core.geometry.SpatialReference

class RichGeometry(val geometry: Geometry,
val spatialReference: SpatialReference =
SpatialReference.create(4326)) {
def area2D() = geometry.calculateArea2D()

def contains(other: Geometry): Boolean = {
GeometryEngine.contains(geometry, other, spatialReference)

}

def distance(other: Geometry): Double =
GeometryEngine.distance(geometry, other, spatialReference
}
}
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We'll also declare a companion object for RichGeometry that provides support for
implicitly converting instances of the Geometry class into RichGeometry instances:

object RichGeometry {
implicit def wrapRichGeo(g: Geometry) = {
new RichGeometry(g)
}
}
Remember, to be able to take advantage of this conversion, we need to import the
implicit function definition into the Scala environment, like this:

import RichGeometry._

Intro to GeoJSON

The data we'll use for the boundaries of boroughs in New York City comes written in
a format called GeoJSON. The core object in GeoJSON is called a feature, which is
made up of a geometry instance and a set of key-value pairs called properties. A geom-
etry is a shape like a point, line, or polygon. A set of features is called a FeatureCollec-
tion. Let’s pull down the GeoJSON data for the NYC borough maps and take a look at
its structure.

In the taxidata directory on your client machine, download the data and rename the
file to something a bit shorter:

$ wget https://nycdatastables.s3.amazonaws.com/2013-08-19T18:15:35.172Z/
nyc-borough-boundaries-polygon.geojson
$ mv nyc-borough-boundaries-polygon.geojson nyc-boroughs.geojson
Open the file and look at a feature record; note the properties and the geometry
objects—in this case, a polygon representing the boundaries of the borough, and the
properties containing the name of the borough and other related information.

The Esri Geometry API will help us parse the geometry JSON inside of each feature,
but won't help us with parsing the id or the properties fields, which can be arbitrary
JSON objects. To parse these objects, we're going to need to use a Scala JSON library,
of which there are many that we can choose from.

Spray, an open source toolkit for building web services with Scala, provides a JSON
library that is up to the task. spray-json allows us to convert any Scala object to a cor-
responding JsValue by calling an implicit toJson method, and it also allows us to
convert any String that contains JSON to a parsed intermediate form by calling par
seJson, and then convert it to a Scala type T by calling convertTo[T] on the inter-
mediate type. Spray comes with built-in conversion implementations for the common
Scala primitive types as well as tuples and the collection types, and it also has a for-
matting library that allows us to declare the rules for converting custom types like our
RichGeometry class to and from JSON.
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First, we'll need to create a case class for representing GeoJSON features. According
to the specification, a feature is a JSON object that is required to have one field
named “geometry” that corresponds to a GeoJSON geometry type, and one field
named “properties” that is a JSON object with any number of key-value pairs of any
type. A feature may also have an optional “id” field that may be any JSON identifier.
Our Feature case class will define corresponding Scala fields for each of the JSON
fields, and will add some convenience methods for looking up values from the map of
properties:

import spray.json.JsValue

case class Feature(
val id: Option[JsValue],
val properties: Map[String, JsValue],
val geometry: RichGeometry) {
def apply(property: String) = properties(property)
def get(property: String) = properties.get(property)
}
We're representing the geometry field in Feature using an instance of our RichGeome
try class, which we'll create with the help of the GeoJ]SON geometry parsing func-
tions from the Esri Geometry APL

Well also need a case class that corresponds to the GeoJson FeatureCollection. To
make the FeatureCollection class a bit easier to use, we will have it extend the Index
edSeq[Feature] trait by implementing the appropriate apply and length methods,
so that we can call the standard Scala Collections API methods like map, filter, and
sortBy directly on the FeatureCollection instance itself, without having to access
the underlying Array[Feature] value that it wraps:

case class FeatureCollection(features: Array[Feature])
extends IndexedSeq[Feature] {
def apply(index: Int) = features(index)
def length = features.length
}
After we have defined the case classes for representing the GeoJSON data, we need to
define the formats that tell Spray how to convert between our domain objects (RichGe
ometry, Feature, and FeatureCollection) and a corresponding JsValue instance.
To do this, we need to create Scala singleton objects that extend the RootJsonFor
mat[T] trait, which defines abstract read(jsv: JsValue): T and write(t: T):
JsValue methods. For the RichGeometry class, we can delegate most of the parsing
and formatting logic to the Esri Geometry API, particularly the geometryToGeoJson
and geometryFromGeoJson methods on the GeometryEngine class, but for our case
classes, we need to write the formatting code ourselves. Here’s the formatting code for
the Feature case class, including some special logic to handle the optional id field:
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implicit object FeatureJsonFormat extends
RootJsonFormat[Feature] {
def write(f: Feature) = {
val buf = scala.collection.mutable.ArrayBuffer(
"type" -> JsString("Feature"),
"properties" -> JsObject(f.properties),
"geometry" -> f.geometry.toJson)
f.id.foreach(v => { buf += "id" -> v})
JsObject(buf.toMap)
}

def read(value: JsValue) = {
val jso = value.asJsObject
val id = jso.fields.get("id")
val properties = jso.fields("properties").asJsObject.fields
val geometry = jso.filelds("geometry").convertTo[RichGeometry]
Feature(id, properties, geometry)
}
}
The FeatureJsonFormat object uses the implicit keyword so that the Spray library
can look it up when the convertTo[Feature] method is called on an instance of
JsValue. You can see the rest of the RootJsonFormat implementations in the source
code for the GeoJSON library on GitHub.

Preparing the New York City Taxi Trip Data

With the GeoJSON and JodaTime libraries in hand, it’s time to begin analyzing the
NYC taxi trip data interactively using Spark. Let’s create a taxidata directory in HDFS
and copy the trip data we have been looking at into the cluster:

$ hadoop fs -mkdir taxidata
$ hadoop fs -put trip_data_1.csv taxidata/

Now start the Spark shell, using the - -jars argument to make the libraries we need
available in the REPL:

$ mvn package

$ spark-shell --jars target/ch08-geotime-1.0.0.jar
Once the Spark shell has loaded, we can create an RDD from the taxi data and exam-
ine the first few lines, just as we have in other chapters:

val taxiRaw = sc.textFile("taxidata")

val taxiHead = taxiRaw.take(10)

taxiHead.foreach(println)
Let’s begin by defining a case class that contains the information about each taxi trip
that we want to use in our analysis. We'll define a case class called Trip that uses the
DateTime class from the JodaTime API to represent pickup and dropoff times, and
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the Point class from the Esri Geometry API to represent the longitude and latitude of
the pickup and dropoff locations:

import com.esri.core.geometry.Point
import com.github.nscala_time.time.Imports._

case class Trip(
pickupTime: DateTime,
dropoffTime: DateTime,
pickupLoc: Point,
dropoffLoc: Point)

To parse the data from the taxiRaw RDD into instances of our case class, we will need
to create some helper objects and functions. First, we'll process the pickup and drop-
off times using an instance of our SimpleDateFormat with an appropriate formatting
string:

val formatter = new SimpleDateFormat(
"yyyy-MM-dd HH:mm:ss")

Next, we will parse the longitude and latitude of the pickup and dropoff locations
using the Point class and the implicit toDouble method Scala provides for strings:

def point(longitude: String, latitude: String): Point = {
new Point(longitude.toDouble, latitude.toDouble)
}

With these methods in hand, we can define a parse function that extracts a tuple
containing the driver’s hack license and an instance of the Trip class from each line of
the taxiraw RDD:

def parse(line: String): (String, Trip) = {
val fields = line.split(',")
val license = fields(1)
val pickupTime = new DateTime(formatter.parse(fields(5)))
val dropoffTime = new DateTime(formatter.parse(fields(6)))
val pickupLoc = point(fields(10), fields(11))
val dropoffLoc = point(fields(12), fields(13))

val trip = Trip(pickupTime, dropoffTime, pickupLoc, dropoffLoc)
(license, trip)

}

We can test the parse function on several of the records from the taxiHead array to
verify that it can correctly handle a sample of the data.

Handling Invalid Records at Scale

Anyone who has been working with large-scale, real-world data sets knows that they
invariably contain at least a few records that do not conform to the expectations of
the person who wrote the code to handle them. Many MapReduce jobs and Spark
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pipelines have failed because of invalid records that caused the parsing logic to throw
an exception.

Typically, we handle these exceptions one at a time by checking the logs for the indi-
vidual tasks, figuring out which line of code threw the exception, and then figuring
out how to tweak the code to ignore or correct the invalid records. This is a tedious
process, and it often feels like were playing whack-a-mole: just as we get one excep-
tion fixed, we discover another one on a record that came later within the partition.

One strategy that experienced data scientists deploy when working with a new data
set is to add a try-catch block to their parsing code so that any invalid records can
be written out to the logs without causing the entire job to fail. If there are only a
handful of invalid records in the entire data set, we might be okay with ignoring them
and continuing with our analysis. With Spark, we can do even better: we can adapt
our parsing code so that we can interactively analyze the invalid records in our data
just as easily as we would perform any other kind of analysis.

For any individual record in an RDD, there are two possible outcomes for our parsing
code: it will either parse the record successfully and return meaningful output, or it
will fail and throw an exception, in which case we want to capture both the value of
the invalid record and the exception that was thrown. Whenever an operation has
two mutually exclusive outcomes, we can use Scala’s Either[L, R] type to represent
the return type of the operation. For us, the “left” outcome is the successfully parsed
record and the “right” outcome is a tuple of the exception we hit and the input record
that caused it.

The safe function takes an argument named f of type S => T and returns a new S =>
Either[T, (S, Exception)] that will return either the result of calling f or, if an
exception is thrown, a tuple containing the invalid input value and the exception
itself:

def safe[S, T](f: S => T): S => Either[T, (S, Exception)] = {
new Function[S, Either[T, (S, Exception)]] with Serializable {
def apply(s: S): Either[T, (S, Exception)] = {
try {
Left(f(s))
} catch {
case e: Exception => Right((s, e))
}
}
}
}

We can now create a safe wrapper function called safeParse by passing our parse
function (of type String => Trip) to the safe function, and then applying safeParse
to the taxiRaw RDD:
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val safeParse = safe(parse)

val taxiParsed = taxiRaw.map(safeParse)

taxiParsed.cache()
If we want to determine how many of the input lines were parsed successfully, we can
use the isLeft method on Either[L, R] in combination with the countByValue
action:

taxiParsed.map(_.1isLeft).
countByValue().
foreach(println)

(false,87)

(true,14776529)
This looks like good news—only a small fraction of the input records threw excep-
tions. We would like to examine these records in the client to see which exception
was thrown and determine if our parsing code can be improved to correctly handle
them. One way to get the invalid records is to use a combination of the filter and
map methods:

val taxiBad = taxiParsed.

filter(_.1sRight).

map(_.right.get)
Alternatively, we can do both the filtering and the mapping in a single call using the
collect method on the RDD class that takes a partial function as an argument. A par-
tial function is a function that has an isDefinedAt method, which determines
whether or not it is defined for a particular input. We can create partial functions in
Scala either by extending the PartialFunction[S, T] trait or by the following spe-
cial case syntax:

val taxiBad = taxiParsed.collect({
case t if t.isRight => t.right.get
b

The if block determines the values for which the partial function is defined, and the
expression after the => gives the value the partial function returns. Be careful to dis-
tinguish between the collect transformation that applies a partial function to an
RDD and the collect() action that takes no arguments and returns the contents of
the RDD to the client:

taxiBad.collect().foreach(println)

Note that most of the bad records throw ArrayIndexOutOfBoundsExceptions
because they are missing the fields that we are trying to extract in the parse function
we wrote earlier. Because there are relatively few of these bad records (only 87 or so),
we will drop them from consideration and continue our analysis, focusing on the
records in the data that parsed correctly:
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val taxiGood = taxiParsed.collect({
case t if t.isLeft => t.left.get
b

taxiGood.cache()

Even though the records in the taxiGood RDD parsed correctly, they may still have
data quality problems that we want to uncover and handle. To find the remaining
data quality problems, we can start to think of conditions that we would expect to be
true for any correctly recorded trip.

Given the temporal nature of our trip data, one reasonable invariant that we can
expect is that the dropoff time for any trip will be sometime after the pickup time. We
might also expect that trips will not take more than a few hours to complete, although
it’s certainly possible that long trips, trips that take place during rush hour, or trips
that are delayed by accidents could go on for several hours. Were not exactly sure
what the cutoff should be for a trip that takes a “reasonable” amount of time.

Let’s define a helper function named hours that uses the JodaTime Duration class to
compute the number of hours a taxi ride took. We can then use it to compute the
histogram of the number of hours the trips in the taxiGood RDD took from start to
finish:

import org.joda.time.Duration

def hours(trip: Trip): Long = {
val d = new Duration(
trip.pickupTime,
trip.dropoffTime)
d.getStandardHours
}

taxiGood.values.map(hours).
countByValue().
toList.
sorted.
foreach(println)

('8:1)

(0,14752245)

(1,22933)

(2,842)

(3,197)

(4,86)

(5,55)

(6,42)

(7,33)

(8,17)

(9,9)
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Everything looks fine here, except for one trip that took a negative eight hours to
complete! Perhaps the DeLorean from Back to the Future is moonlighting as an NYC
taxi? Let’s examine this record:

taxiGood.values.
filter(trip => hours(trip) == -8).
collect().
foreach(println)

This reveals the one odd record—a trip that began around 6 PM on January 25th and
finished just before 10 AM the same day. It isn’t obvious what exactly went wrong
with the recording of this trip, but because it only seemed to happen for a single
record, it should be okay to exclude it from our analysis for now.

Looking at the remainder of the trips that went on for a nonnegative number of
hours, it appears that the vast majority of taxi rides last for no longer than three
hours. We'll apply a filter to the taxiGood RDD so that we can focus on the distribu-
tion of these “typical” rides and ignore the outliers for now:

val taxiClean = taxiGood.filter {
case (lic, trip) => {
val hrs = hours(trip)
0 <= hrs && hrs < 3
}
}

Geospatial Analysis

Let’s start examining the geospatial aspects of the taxi data. For each trip, we have a
longitude/latitude pair representing where the passenger(s) were picked up and
another one for where they were dropped off. We would like to be able to determine
which borough each of these longitude/latitude pairs belongs to, and identify any
trips that did not start or end in any of the five boroughs. For example, if a taxi took
passengers from Manhattan to Newark International Airport, that would be a valid
ride that would be interesting to analyze, even though it would not end within one of
the five boroughs. However, if it looks as if a taxi took a passenger to the South Pole,
we can be reasonably confident that the record is invalid and should be excluded
from our analysis.

To perform our borough analysis, we'll need to load the GeoJSON data we downloa-
ded earlier and stored in the nyc-boroughs.geojson file. The Source class in the
scala.lo package makes it easy to read the contents of a text file or URL into the
client as a single String:

val geojson = scala.io.Source.

fromFile("nyc-boroughs.geojson").
mkString
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Now we need to use the GeoJSON parsing tools we reviewed earlier in the chapter
using Spray and Esri into the Spark shell so that we can parse the geojson string into
an instance of our FeatureCollection case class:

import com.cloudera.science.geojson._
import GeoJsonProtocol._
import spray.json._

val features = geojson.parseJson.convertTo[FeatureCollection]

We can create a sample point to test out the functionality of the Esri Geometry API
and verify that it can correctly identify which borough a particular point belongs to:

val p = new Point(-73.994499, 40.75066)
val borough = features.find(f => f.geometry.contains(p))

Before we use the features on the taxi trip data, we should take a moment to think
about how to organize this geospatial data for maximum efficiency. One option
would be to research data structures that are optimized for geospatial lookups, such
as quad trees, and then find or write our own implementation. But let’s see if we can
come up with a quick heuristic that will allow us to bypass that bit of work.

The find method will iterate through the FeatureCollection until it finds a feature
whose geometry contains the given Point of longitude/latitude. Most taxi rides in
New York begin and end in Manhattan, so if the geospatial features that represent
Manbhattan are earlier in the sequence, most of the find calls will return relatively
quickly. We can use the fact that the boroughCode property of each feature can be
used as a sorting key, with the code for Manhattan equal to 1 and the code for Staten
Island equal to 5. Within the features for each borough, we want the features associ-
ated with the largest polygons to come before the smaller polygons, because most
trips will be to and from the “major” region of each borough. Sorting the features by
the combination of the borough code and the area2D() of each feature’s geometry
should do the trick:

val areaSortedFeatures = features.sortBy(f => {
val borough = f("boroughCode").convertTo[Int]
(borough, -f.geometry.area2D())

b

Note that we're sorting based on the negation of the area2D() value, because we want
the largest polygons to come first and Scala sorts in ascending order by default.

Now we can broadcast the sorted features in the frs sequence to the cluster and write
a function that uses these features to find out in which of the five boroughs (if any) a
particular trip ended:

val bFeatures = sc.broadcast(areaSortedFeatures)

def borough(trip: Trip): Option[String] = {
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val feature: Option[Feature] = bFeatures.value.find(f => {
f.geometry.contains(trip.dropofflLoc)
1))
feature.map(f => {
f("borough").convertTo[String]
b
}

If none of the features contain the dropoff_loc for the trip, the value of optf will be
None, and the result of calling map on a None value is still None. We can apply this
function to the trips in the taxiClean RDD to create a histogram of trips by borough:

taxiClean.values.
map(borough).
countByValue().
foreach(println)

(Some(Queens),672135)
(Some(Manhattan),12978954)
(Some(Bronx),67421)
(Some(Staten Island),3338)
(Some(Brooklyn),715235)
(None,338937)

As we expected, the vast majority of trips end in the borough of Manhattan, while
relatively few trips end in Staten Island. One surprising observation is the number of
trips that end outside of any borough; the number of None records is substantially
larger than the number of taxi rides that end in the Bronx. Let’s grab some examples
of this kind of trip from the data:

taxiClean.values.
filter(t => borough(t).isEmpty).
take(10).foreach(println)

When we print out these records, we see that a substantial fraction of them start and
end at the point (0.0, 0.0), indicating that the trip location is missing for these

records. We should filter these events out of our data set, because they won't help us
with our analysis:

def hasZero(trip: Trip): Boolean = {

val zero = new Point(0.0, 0.0)

(zero.equals(trip.pickupLoc) || zero.equals(trip.dropofflLoc))
}

val taxiDone = taxiClean.filter {
case (lic, trip) => !hasZero(trip)
}.cache()

When we rerun our borough analysis on the taxibone RDD, we see this:

taxiDone.values.
map(borough).
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countByValue().
foreach(println)

(Some(Queens),670996)
(Some(Manhattan),12973001)
(Some(Bronx),67333)
(Some(Staten Island),3333)
(Some(Brooklyn),714775)
(None,65353)

Our zero point filter removed a small number of observations from the output bor-
oughs, but it removed a large fraction of the None entries, leaving a much more rea-
sonable number of observations that had dropoffs outside the city.

Sessionization in Spark

Our goal, from many pages ago, was to investigate the relationship between the bor-
ough in which a driver drops his passenger off and the amount of time it takes to
acquire another fare. At this point, the taxiDone RDD contains all of the individual
trips for each taxi driver in individual records that are distributed across different
partitions of the data. To compute the length of time between the end of one ride and
the start of the next one, we need to aggregate all of the trips from a shift by a single
driver into a single record, and then sort the trips within that shift by time. The sort
step allows us to compare the dropoff time of one trip to the pickup time of the next
trip. This kind of analysis, in which we want to analyze a single entity as it executes a
series of events over time, is called sessionization, and is commonly performed over
web logs to analyze the behavior of the users of a website.

Sessionization can be a very powerful technique for uncovering insights in data and
for building new data products that can be used to help people make better decisions.
For example, Google’s spell-correction engine is built on top of the sessions of user
activity that Google builds each day from the logged records of every event (searches,
clicks, maps visits, etc.) occurring on its web properties. To identify likely spell-
correction candidates, Google processes those sessions looking for situations where a
user typed in a query, didn’t click anything, typed in a slightly different query a few
seconds later, and then clicked a result and didn't come back to Google. Then it
counts how often this pattern occurs for any pair of queries. If it occurs frequently
enough (e.g., if every time we see the query “untied stats,” it’s followed a few seconds
later by the query “united states”), then we assume that the second query is a spell
correction of the first.

This analysis takes advantage of the patterns of human behavior that are represented
in the event logs to build a spell-correction engine from data that is more powerful
than any engine that could be created from a dictionary. The engine can be used to
perform spell correction in any language, and can correct words that might not be
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included in any dictionary (e.g., the name of a new startup), and can even correct
queries like “untied stats” where none of the words are misspelled! Google uses simi-
lar techniques to show recommended and related searches, as well as to decide which
queries should return a OneBox result that gives the answer to a query on the search
page itself, without requiring that the user click through to a different page. There are
OneBoxes for weather, scores from sports games, addresses, and lots of other kinds of
queries.

So far, information about the set of events that occurs to each entity is spread out
across the RDD’s partitions, so, for analysis, we need to place these relevant events
next to each other and in chronological order. In the next section, we'll show how to
efficiently construct and analyze sessions using some advanced functionality that was
introduced in Spark 1.2.

Building Sessions: Secondary Sorts in Spark

The naive way to create sessions in Spark is to perform a groupBy on the identifier we
want to create sessions for and then sort the events post-shuffle by a timestamp iden-
tifier. If we only have a small number of events for each entity, this approach will
work reasonably well. However, because this approach requires all the events for any
particular entity to be in memory at the same time, it will not scale as the number of
events for each entity gets larger and larger. We need a way of building sessions that
does not require all of the events for a particular entity to be held in memory at the
same time for sorting.

In MapReduce, we can build sessions by performing a secondary sort, where we create
a composite key made up of an identifier and a timestamp value, sort all of the
records on the composite key, and then use a custom partitioner and grouping func-
tion to ensure that all of the records for the same identifier appear in the same output
partition. Fortunately, Spark can also support this same secondary sort pattern by
making use of its repartitionAndSortWithinPartitions transformation.

In the repo, we've provided an implementation of a groupByKeyAndSortValues trans-
formation that does exactly this. Because the workings of this functionality are mostly
orthogonal to the concepts this chapter is covering, were omitting the gory details
here. Work is progressing on Spark JIRA SPARK-3655 to add a transformation like
this to core Spark.

The transformation accepts four parameters:

o The RDD of key-value pairs that we want to operate on.

o A function that accepts a value and extracts the secondary key to sort on.
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 An optional splitting function that can break up sorted runs with the same key
into multiple groups. In our case, we'll use this to break up multiple shifts from
the same driver.

o The number of partitions in the output RDD.

Our secondary key in this case is the pickup time for the trip:
def secondaryKeyFunc(trip: Trip) = trip.pickupTime.getMillis

We need to decide what criteria we should use to determine when one shift ends and
another one begins. Like some of the other choices we've made in this chapter (e.g.,
filtering out trips that go on for longer than three hours), this is a somewhat arbitrary
choice, and we need to be conscious of how this choice may impact the results of our
subsequent analysis. It’s a good idea, especially in the early stages of a sessionization
analysis, to try many different split criteria and see how the results of our analysis
change. Once we settle on a reasonable window of time to distinguish between differ-
ent shifts, the important thing is to make a choice—even though it is somewhat arbi-
trary—and to stick with that choice for the long haul. Our primary interest as data
scientists is how things change over time, and keeping our definitions for data and
metrics constant allows us to make valid comparisons over long periods.

Let’s start out by choosing four hours as our threshold, so that any gap of time
between sequential pickups longer than that time will be considered two separate
shifts, and the intermediate time will be considered a break where the driver was not
accepting new passengers:

def split(tl: Trip, t2: Trip): Boolean = {
val p1 = t1.pickupTime
val p2 = t2.pickupTime
val d = new Duration(pl, p2)
d.getStandardHours >= 4

}

Armed with our secondary key function and splitting function, we can perform the
grouping and sorting. Because this operation triggers a shuffle and a fair bit of com-
putation, and we'll need to use the results more than once, we cache the results:

val sessions = groupByKeyAndSortValues(
taxiDone, secondaryKeyFunc, split, 30)
sessions.cache()

The result is an RDD[(String, List[Trip])], where all of the trips belong to the
same shift for the same driver, and the trips are sorted by time.

Executing a sessionization pipeline is an expensive operation, and the sessionized
data is often useful for many different analysis tasks that we might want to perform.
In settings where one might want to pick up on the analysis later or collaborate with
other data scientists, it’s a good idea to amortize the cost of sessionizing a large data
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set by only performing the sessionization once, and then writing the sessionized data
to HDEFS so that it can be used to answer lots of different questions. Performing ses-
sionization once is also a good way to enforce standard rules for session definitions
across the entire data science team, which has the same benefits for ensuring apples-
to-apples comparisons of results.

At this point, we are ready to analyze our sessions data to see how long it takes for a
driver to find his next fare after a dropoff in a particular borough. We will create a
boroughDuration method that takes two instances of the Trip class and computes
both the borough of the first trip and the Duration between the dropoff time of the
first trip and the pickup time of the second:

def boroughDuration(tl: Trip, t2: Trip) = {
val b = borough(t1)
val d = new Duration(
tl.dropoffTime,
t2.pickupTime)
(b, d)
}

We want to apply our new function to all sequential pairs of trips inside of our ses
sions RDD. Although we could write a for loop to do this, we can also use the slid
ing method of the Scala Collections API to get the sequential pairs in a more
functional way:

val boroughDurations: RDD[(Option[String], Duration)] =
sessions.values.flatMap(trips => {
val iter: Iterator[Seq[Trip]] = trips.sliding(2)
val viter = iter.filter(_.size == 2)
viter.map(p => boroughDuration(p(0), p(1)))
}).cache()

The filter call on the result of the sliding method ensures that we ignore any ses-
sions that contain only a single trip, and the result of our flatMap over the sessions is
an RDD[ (Option[String], Duration)] that we can now examine. First, we should
do a validation check to ensure that most of the durations are nonnegative:

bdrdd.values.map(_.getStandardHours).
countByValue().
tolList.
sorted.
foreach(println)
('2:2)
(-1,17)
(0,13367875)
(1,347479)
(2,76147)
(3,19511)
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Only a few of the records have a negative duration, and when we examine them more
closely, there dont seem to be any common patterns to them that we could use to
understand the source of the erroneous data. We will exclude these records from our
analysis of the distribution of durations, which we can compute with the help of
SparK’s StatCounter class that we have used before:

import org.apache.spark.util.StatCounter

boroughDurations.filter {
case (b, d) => d.getMillis >= 0
}.mapValues(d => {
val s = new StatCounter()
s.merge(d.getStandardSeconds)

H.
reduceByKey((a, b) => a.merge(b)).collect().foreach(println)

(Some(Bronx),(count: 56951, mean: 1945.79,
stdev: 1617.69, max: 14116, min: 0))
(None, (count: 57685, mean: 1922.10,
stdev: 1903.77, max: 14280, min: 0))
(Some(Queens), (count: 557826, mean: 2338.25,
stdev: 2120.98, max: 14378.000000, min: 0))
(Some(Manhattan), (count: 12505455, mean: 622.58,
stdev: 1022.34, max: 14310, min: 0))
(Some(Brooklyn),(count: 626231, mean: 1348.675465,
stdev: 1565.119331, max: 14355, min: 0))
(Some(Staten Island),(count: 2612, mean: 2612.24,
stdev: 2186.29, max: 13740, min: 0.000000))

As we would expect, the data shows that dropoffs in Manhattan have the shortest
amount of downtime for drivers at just over 10 minutes. Taxi rides that end in Brook-
lyn have a downtime of more than twice that, and the relatively few rides that end in
Staten Island take a driver an average of almost 45 minutes to get to his next fare.

As the data demonstrates, taxi drivers have a major financial incentive to discriminate
among passengers based on their final destination; dropoffs in Staten Island, in par-
ticular, involve an extensive amount of downtime for a driver. The NYC Taxi and
Limousine Commission has made a major effort over the years to identify this dis-
crimination and has fined drivers who have been caught rejecting passengers because
of where they wanted to go. It would be interesting to attempt to examine the data for
unusually short taxi rides that could be indicative of a dispute between the driver and
the passenger about where the passenger wanted to be dropped off.

Where to Go from Here

Imagine using this same technique on the taxi data to build an application that could
recommend the best place for a cab to go after a dropoff, based on the current traffic
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patterns and the historical record of next-best locations that is contained within this
data. You could also look at the information from the perspective of someone trying
to catch a cab: given the current time, place, and weather data, what is the probability
that I will be able to hail a cab from the street within the next five minutes? This sort
of information could be incorporated into applications like Google Maps to help trav-
elers decide when to leave and which travel option they should take.

The Esri API is one of a few different tools that can help us interact with geospatial
data from JVM-based languages. Another is GeoTrellis, a geospatial library written in
Scala, that seeks to be easily accessible from Spark. A third is GeoTools, a Java-based
GIS toolkit.
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CHAPTER 9

Estimating Financial Risk
through Monte Carlo Simulation

Sandy Ryza

If you want to understand geology, study earthquakes.
If you want to understand the economy, study the Depression.

—Ben Bernanke

Under reasonable circumstances, how much can you expect to lose? This is the quan-
tity that the financial statistic Value at Risk (VaR) seeks to measure. Since its develop-
ment soon after the stock market crash of 1987, VaR has seen widespread use across
financial services organizations. The statistic plays a vital role in the management of
these institutions—it helps determine how much cash they must hold to meet the
credit ratings that they seek. In addition, some use it to more broadly understand the
risk characteristics of large portfolios, and others compute it before executing trades
to help inform immediate decisions.

Many of the most sophisticated approaches to estimating this statistic rely on compu-
tationally intensive simulation of markets under random conditions. The technique
behind these approaches, called Monte Carlo simulation, involves posing thousands or
millions of random market scenarios and observing how they tend to affect a portfo-
lio. Spark is an ideal tool for Monte Carlo simulation, because the technique is natu-
rally massively parallelizable. Spark can leverage thousands of cores to run random
trials and aggregate their results. As a general-purpose data transformation engine, it
is also adept at performing the pre- and post-processing steps that surround the sim-
ulations. It can transform the raw financial data into the model parameters needed to
carry out the simulations, as well as support ad-hoc analysis of the results. Its simple
programming model can drastically reduce development time compared to more tra-
ditional approaches that use HPC environments.
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Let’s define “how much can you expect to lose” a little more rigorously. VaR is a sim-
ple measure of investment risk that tries to provide a reasonable estimate of the maxi-
mum probable loss in value of an investment portfolio over the particular time
period. A VaR statistic depends on three parameters: a portfolio, a time period, and a
p-value. A VaR of 1 million dollars with a 5% p-value and two weeks indicates the
belief that the portfolio stands only a 5% chance of losing more than 1 million dollars
over two weeks.

We'll also discuss how to compute a related statistic called Conditional Value at Risk
(CVaR), sometimes known as Expected Shortfall, which the Basel Committee on
Banking Supervision has recently proposed as a better risk measure than VaR. A
CVaR statistic has the same three parameters as a VaR statistic, but considers the
expected loss instead of the cutoff value. A CVaR of 5 million dollars with a 5% g-
value and two weeks indicates the belief that the average loss in the worst 5% of out-
comes is 5 million dollars.

In service of modeling VaR, we'll introduce a few different concepts, approaches, and
packages. We'll cover kernel density estimation and plotting with the breeze-viz pack-
age, sampling from the multivariate normal distribution, and statistics functions from
the Apache Commons Math package.

Terminology

This chapter makes use of a set of terms specific to the finance domain. We'll briefly
define them here:

Instrument
A tradable asset, such as a bond, loan, option, or stock investment. At any partic-
ular time, an instrument is considered to have a value, which is the price for
which it could be sold.

Portfolio
A collection of instruments owned by a financial institution.

Return
The change in an instrument or portfolios value over a time period.

Loss
A negative return.

Index
An imaginary portfolio of instruments. For example, the NASDAQ Composite
index includes about 3,000 stocks and similar instruments for major US and
international companies.
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Market factor
A value that can be used as an indicator of macro aspects of the financial climate
at a particular time—for example, the value of an index, the Gross Domestic
Product of the United States, or the exchange rate between the dollar and the
euro. We will often refer to market factors as just factors.

Methods for Calculating VaR

So far, our definition of VaR has been fairly open ended. Estimating this statistic
requires proposing a model for how a portfolio functions and choosing the probabil-
ity distribution its returns are likely to take. Institutions employ a variety of
approaches for calculating VaR, all of which tend to fall under a few general methods.

Variance-Covariance

Variance-Covariance is by far the simplest and least computationally intensive
method. Its model assumes that the return of each instrument is normally dis-
tributed, which allows deriving a estimate analytically.

Historical Simulation

Historical Simulation extrapolates risk from historical data by using its distribution
directly instead of relying on summary statistics. For example, to determine a 95%
VaR for a portfolio, it might look at that portfolios performance for the last hundred
days and estimate the statistic as its value on the fifth-worst day. A drawback of this
method is that historical data can be limited and fails to include “what-ifs.” The his-
tory we have for the instruments in our portfolio may lack market collapses, but we
might wish to model what happens to our portfolio in these situations. Techniques
exist for making historical simulation robust to these issues, such as introducing
“shocks” into the data, but we won’t cover them here.

Monte Carlo Simulation

Monte Carlo Simulation, which the rest of this chapter will focus on, tries weakening
the assumptions in the previous methods by simulating the portfolio under random
conditions. When we can’t derive a closed form for a probability distribution analyti-
cally, we can often estimate its density function (PDF) by repeatedly sampling simpler
random variables that it depends on and seeing how it plays out in aggregate. In its
most general form, this method:

o Defines a relationship between market conditions and each instrument’s returns.
This relationship takes the form of a model fitted to historical data.
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o Defines distributions for the market conditions that are straightforward to sam-
ple from. These distributions are fitted to historical data.

o Poses trials consisting of random market conditions.

o Calculates the total portfolio loss for each trial, and uses these losses to define an
empirical distribution over losses. This means that, if we run 100 trials and want
to estimate the 5% VaR, we would choose it as the loss from the trial with the
fifth-greatest loss. To calculate the 5% CVaR, we would find the average loss over
the five worst trials.

Of course, the Monte Carlo method isn't perfect either. The models for generating
trial conditions and for inferring instrument performance from them must make
simplifying assumptions, and the distribution that comes out won’t be more accurate
than the models and historical data going in.

Our Model

A Monte Carlo risk model typically phrases each instrument’s return in terms of a set
of market factors. Common market factors might be the value of indexes like the S&P
500, the US GDP, or currency exchange rates. We then need a model that predicts the
return of each instrument based on these market conditions. In our simulation, we'll
use a simple linear model. By our previous definition of return, a factor return is a
change in the value of a market factor over a particular time. For example, if the value
of the S&P 500 moves from 2,000 to 2,100 over a time interval, its return would be
100. We'll derive a set of features from simple transformations of the factor returns.
That is, the market factor vector m, for a trial ¢ is transformed by some function ¢ to
produce a feature vector of possible different length f;:

For each instrument, we'll train a model that assigns a weight to each feature. To cal-
culate 7, the return of instrument i in trial ¢, we use ¢, the intercept term for the
instrument; w;, the regression weight for feature j on instrument i; and f;, the ran-
domly generated value of feature j in trial t:

i
i

Ty =6t ].;Wij*ftj

This means that the return of each instrument is calculated as the sum of the returns
of the market factor features multiplied by their weights for that instrument. We can
fit the linear model for each instrument using historical data (also known as doing
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linear regression). If the horizon of the VaR calculation is two weeks, the regression
treats every (overlapping) two-week interval in history as a labeled point.

It’s also worth mentioning that we could have chosen a more complicated model. For
example, the model need not be linear: it could be a regression tree or explicitly
incorporate domain-specific knowledge.

Now that we have our model for calculating instrument losses from market factors,
we need a process for simulating the behavior of market factors. A simple assumption
is that each market factor return follows a normal distribution. To capture the fact
that market factors are often correlated—when NASDAQ is down, the Dow is likely
to be suffering as well—we can use a multivariate normal distribution with a non-
diagonal covariance matrix:

m, ~ N (u, X)

where p is a vector of the empirical means of the returns of the factors and X is the
empirical covariance matrix of the returns of the factors.

As before, we could have chosen a more complicated method of simulating the mar-
ket or assumed a different type of distribution for each market factor, perhaps using
distributions with fatter tails.

Getting the Data

It can be difficult to find large volumes of nicely formatted historical price data, but
Yahoo! has a variety of stock data available for download in CSV format. The follow-
ing script, located in the risk/data directory of the repo, will make a series of REST
calls to download histories for all the stocks included in the NASDAQ index and
place them in a stocks/ directory:

$ ./download-all-symbols.sh

We also need historical data for our risk factors. For our factors, we'll use the values
of the S&P 500 and NASDAQ indexes, as well as the prices of 30-year treasury bonds
and crude oil. The indexes can be downloaded from Yahoo! as well:

$ mkdir factors/

$ ./download-symbol.sh SNP factors
$ ./download-symbol.sh NDX factors

The treasury bonds and crude oil must be copy/pasted from Investing.com.
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Preprocessing

At this point, we have data from different sources in different formats. For example,
the first few rows of the Yahoo!-formatted data for GOOGL looks like:

Date,Open,High,Low,Close,Volume,Adj Close

2014-10-24,554.98,555.00,545.16,548.90,2175400,548.90
2014-10-23,548.28,557.40,545.50,553.65,2151300,553.65
2014-10-22,541.05,550.76,540.23,542.69,2973700,542.69
2014-10-21,537.27,538.77,530.20,538.03,2459500,538.03
2014-10-20,520.45,533.16,519.14,532.38,2748200,532.38

And the Investing.com history for crude oil price looks like:

Oct 24, 2014 81.01 81.95 81.95 80.36 272.51K -1.32%
Oct 23, 2014 82.09 80.42 82.37 80.05 354.84K 1.95%
Oct 22, 2014 80.52 82.55 83.15 80.22 352.22K -2.39%
Oct 21, 2014 82.49 81.86 83.26 81.57 297.52K 0.71%
Oct 20, 2014 81.91 82.39 82.73 80.78 301.04K -0.93%
Oct 19, 2014 82.67 82.39 82.72 82.39 - 0.75%

From each source, for each instrument and factor, we want to derive a list of (date,
closing price) tuples. Using Java’s SimpleDateFormat, we can parse dates in the Invest-
ing.com format:

import java.text.SimpleDateFormat

val format = new SimpleDateFormat("MMM d, yyyy")
format.parse("Oct 24, 2014")
resO: java.util.Date = Fri Oct 24 00:00:00 PDT 201

The 3,000-instrument histories and 4-factor histories are small enough to read and
process locally. This remains the case even for larger simulations with hundreds of
thousands of instruments and thousands of factors. The need for a distributed system
like Spark comes in when were actually running the simulations, which can require
massive amounts of computation on each instrument.

To read a full Investing.com history from local disk:

import com.github.nscala_time.time.Imports._
import java.io.File
import scala.io.Source

def readInvestingDotComHistory(file: File):
Array[ (DateTime, Double)] = {
val format = new SimpleDateFormat("MMM d, yyyy")
val lines = Source.fromFile(file).getLines().toSeq
lines.map(line => {
val cols = line.split('\t')
val date = new DateTime(format.parse(cols(0)))
val value = cols(1).toDouble
(date, value)
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}).reverse.toArray

}

As in Chapter 8, we use JodaTime and its Scala wrapper NScalaTime to represent our
dates, wrapping the Date output of SimpleDateFormat in a JodaTime DateTime.

To read a full Yahoo! history:

def readYahooHistory(file: File): Array[(DateTime, Double)] = {
val format = new SimpleDateFormat("yyyy-MM-dd")
val lines = Source.fromFile(file).getLines().toSeq
lines.tail.map(line => {
val cols = line.split(',")
val date = new DateTime(format.parse(cols(0)))
val value = cols(1).toDouble
(date, value)
}).reverse.toArray

}

Notice that lines.tail is useful for excluding the header row. We load all the data
and filter out instruments with less than five years of history:

val start = new DateTime(2009, 10, 23, 0, 0)
val end = new DateTime(2014, 10, 23, 0, 0)

val files = new File("data/stocks/").listFiles()
val rawStocks: Seq[Array[(DateTime, Double)]] =
files.flatMap(file => {
try {
Some(readYahooHistory(file))
} catch {
case e: Exception => None
}
}).filter(_.slze >= 260%5+10)

val factorsPrefix = "data/factors/"

val factorsl: Seq[Array[(DateTime, Double)]] =
Array("crudeoil.tsv", "us30@yeartreasurybonds.tsv").
map(x => new File(factorsPrefix + x)).
map(readInvestingDotComHistory)

val factors2: Seq[Array[(DateTime, Double)]] =
Array("SNP.csv", "NDX.csv").
map(x => new File(factorsPrefix + x)).
map(readYahooHistory)

Different types of instruments may trade on different days, or the data may have
missing values for other reasons, so it is important to make sure that our different
histories align. First, we need to trim all of our time series to the same region in time.
Then, we need to fill in missing values. To deal with time series that are missing val-
ues at the start and end dates in the time region, we simply fill in those dates with
nearby values in the time region:
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def trimToRegion(history: Array[(DateTime, Double)],
start: DateTime, end: DateTime): Array[(DateTime, Double)] = {
var trimmed = history.
dropWhile(_._1 < start).takeWhile(_._1 <= end) (1]
if (trimmed.head._1 != start) {
trimmed = Array((start, trimmed.head._2)) ++ trimmed
}
if (trimmed.last._1 != end) {
trimmed = trimmed ++ Array((end, trimmed.last._2))

}

trimmed

}

O Implicitly takes advantage of the NScalaTime operator overloading for compar-
ing dates

To deal with missing values within a time series, we use a simple imputation strategy
that fills in an instrument’s price as its most recent closing price before that day.
Unfortunately, there is no pretty Scala collections method that can do this for us, so
we need to write our own:

import scala.collection.mutable.ArrayBuffer

def filllnHistory(history: Array[(DateTime, Double)],
start: DateTime, end: DateTime): Array[(DateTime, Double)] = {
var cur = history
val filled = new ArrayBuffer[(DateTime, Double)]()
var curDate = start
while (curDate < end) {
if (cur.tail.nonEmpty && cur.tail.head._1 == curDate) {
cur = cur.tatl

}
filled += ((curDate, cur.head._2))

curDate += 1.days
// Skip weekends
if (curDate.dayOfWeek().get > 5) curDate += 2.days
}
filled. toArray
}

We apply trimToRegion and fillInHistory to the data:

val stocks: Seq[Array[Double]] = rawStocks.
map(trimToRegion(_, start, end)).
map(fillInHistory(_, start, end))

val factors: Seq[Array[Double] = (factorsl ++ factors2).
map(trimToRegion(_, start, end)).
map(fillInHistory(_, start, end))
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Each element of stocks is an array of values at different time points for a particular
stock. factors has the same structure. All these arrays should have equal length,
which we can verify with:

(stocks ++ factors).forall(_.size == stocks(0).size)
resl7: Boolean = true

Determining the Factor Weights

Recall that Value at Risk deals with losses over a particular time horizon. We are not
concerned with the absolute prices of instruments, but how those prices move over a
given length of time. In our calculation, we will set that length to two weeks. The fol-
lowing function makes use of the Scala collections’ sliding method to transform
time series of prices into an overlapping sequence of price movements over two-week
intervals. Note that we use 10 instead of 14 to define the window because financial
data does not include weekends:

def twoWeekReturns(history: Array[(DateTime, Double)])
: Array[Double] = {
history.sliding(10).
map(window => window.last._2 - window.head._2).
toArray
}

val stocksReturns = stocks.map(twoWeekReturns)
val factorsReturns = factors.map(twoWeekReturns)

With these return histories in hand, we can turn to our goal of training predictive
models for the instrument returns. For each instrument, we want a model that pre-
dicts its two-week return based on the returns of the factors over the same time
period. For simplicity, we will use a linear regression model.

To model the fact that instrument returns may be nonlinear functions of the factor
returns, we can include some additional features in our model that we derive from
nonlinear transformations of the factor returns. We will try adding two additional
features for each factor return: its square and its square root. Our model is still a lin-
ear model in the sense that the response variable is a linear function of the features.
Some of the features just happen to be determined by nonlinear functions of the fac-
tor returns. Keep in mind that this particular feature transformation is meant to
demonstrate some of the options available—it shouldn’t be perceived as a state-of-
the-art practice in predictive financial modeling.

While we will be carrying out many regressions—one for each instrument—the num-
ber of features and data points in each regression is small, meaning that we don’t need
to make use of SparK’s distributed linear modeling capabilities. Instead, we'll use the
ordinary least squares regression offered by the Apache Commons Math package.
While our factor data is currently a Seq of histories (each an array of (DateTime,
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Double) tuples), OLSMultipleLinearRegression expects data as an array of sample
points (in our case a two-week interval), so we need to transpose our factor matrix:

def factorMatrix(histories: Seq[Array[Double]])
: Array[Array[Double]] = {
val mat = new Array[Array[Double]](histories.head.length)
for (1 <- 0 until histories.head.length) {
mat(i) = histories.map(_(1)).toArray

}

mat

}

val factorMat = factorMatrix(factorsReturns)
Then we can tack on our additional features:

def featurize(factorReturns: Array[Double]): Array[Double] = {
val squaredReturns = factorReturns.
map(x => math.signum(x) * x * Xx)
val squareRootedReturns = factorReturns.
map(x => math.signum(x) * math.sqgrt(math.abs(x)))
squaredReturns ++ squareRootedReturns ++ factorReturns

}

val factorFeatures = factorMat.map(featurize)
And then fit the linear models:

import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression

def linearModel(instrument: Array[Double],
factorMatrix: Array[Array[Double]])
: OLSMultipleLinearRegression = {
val regression = new OLSMultipleLinearRegression()
regression.newSampleData(instrument, factorMatrix)
regression

}

val models = stocksReturns.map(linearModel(_, factorFeatures))

We will elide this analysis for brevity, but at this point in any real-world pipeline, it
would be useful to understand how well these models fit the data. Because the data
points are drawn from time series, and especially because the time intervals are over-
lapping, it is very likely that the samples are autocorrelated. This means that common
measures like R* are likely to overestimate how well the models fit the data. The
Breusch-Godfrey test is a standard test for assessing these effects. One quick way to
evaluate a model is to separate a time series into two sets, leaving out enough data
points in the middle so that the last points in the earlier set are not autocorrelated
with the first points in the later set. Then train the model on one set and look at its
error on the other.
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To find the model parameters for each instrument, we can use OLSMultipleLinearRe
gression’s estimateRegressionParameters method:

val factorWeights = models.map(_.estimateRegressionParameters())
.toArray

We now have a 1,867-x-8 matrix where each row is the set of model parameters
(coefficients, weights, covariants, regressors, whatever you wish to call them) for an
instrument.

Sampling

With our models that map factor returns to instrument returns in hand, we now need
a procedure for simulating market conditions by generating random factor returns.
That is, we need to decide on a probability distribution over factor return vectors and
sample from it. What distribution does the data actually take? It can often be useful to
start answering this kind of question visually. A nice way to visualize a probability
distribution over continuous data is a density plot that plots the distribution’s domain
versus its PDE. Because we don’'t know the distribution that governs the data, we don't
have an equation that can give us its density at an arbitrary point, but we can approxi-
mate it through a technique called kernel density estimation. In a loose way, kernel
density estimation is a way of smoothing out a histogram. It centers a probability dis-
tribution (usually a normal distribution) at each data point. So a set of two-week-
return samples would result in 200 normal distributions, each with a different mean.
To estimate the probability density at a given point, it evaluates the PDFs of all the
normal distributions at that point and takes their average. The smoothness of a kernel
density plot depends on its bandwidth, the standard deviation of each of the normal
distributions. The GitHub repository comes with a kernel density implementation
that works both over RDDs and local collections. For brevity, it is elided here.

breeze-viz is a Scala library that makes it easy to draw simple plots. The following
snippet creates a density plot from a set of samples:

import com.cloudera.datascience.risk.KernelDensity
import breeze.plot._

def plotDistribution(samples: Array[Double]) {
val min = samples.min
val max = samples.max
val domain = Range.Double(min, max, (max - min) / 100).
toList.toArray
val densities = KernelDensity.estimate(samples, domain)

val f = Figure()

val p = f.subplot(0)

p += plot(domain, densities)
p.xlabel = "Two Week Return ($)"
p.ylabel = "Density"
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}

plotDistribution(factorReturns(0))
plotDistribution(factorReturns(1))

Figure 9-1 shows the distribution (probability density function) of two-week returns

for the bonds in our history.
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Figure 9-1. Two-week bond returns distribution
Figure 9-2 shows the same for two-week returns of crude oil.
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Figure 9-2. Two-week crude oil returns distribution
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We will fit a normal distribution to the returns of each factor. Looking for a more
exotic distribution, perhaps with fatter tails, that more closely fits the data is often
worthwhile. However, for the sake of simplicity, we will avoid tuning our simulation
in this way.

The simplest way to sample factors’ returns would be to fit a normal distribution to
each of the factors and sample from these distributions independently. However, this
ignores the fact that market factors are often correlated. If S&P is down, the Dow is
likely to be down as well. Failing to take these correlations into account can give us a
much rosier picture of our risk profile than its reality. Are the returns of our factors
correlated? The Pearson’s correlation implementation from Commons Math can help
us find out:

import org.apache.commons.math3.stat.correlation.PearsonsCorrelation

val factorCor =
new PearsonsCorrelation(factorMat).getCorrelationMatrix().getData()
println(factorCor.map(_.mkString("\t")).mkString("\n"))

1.0 -0.3483  0.2339 0.3975 @
-0.3483 1.0 -0.2198 -0.4429
0.2339 -0.2198 1.0 0.3349
0.3975 -0.4429  0.3349 1.0

© Digits truncated to fit between the margins

Because we have nonzero elements off the diagonals, it doesn’t look like it.

The Multivariate Normal Distribution

The multivariate normal distribution can help here by taking the correlation infor-
mation between the factors into account. Each sample from a multivariate normal is a
vector. Given values for all of the dimensions but one, the distribution of values along
that dimension is normal. But, in their joint distribution, the variables are not
independent.

The multivariate normal is parameterized with a mean along each dimension and a
matrix describing the covariances between each pair of dimensions. With N dimen-
sions, the covariance matrix is N by N, because we want to capture the covariances
between each pair of dimensions. When the covariance matrix is diagonal, the multi-
variate normal reduces to sampling along each dimension independently, but placing
nonzero values in the off-diagonals helps capture the relationships between variables.

The Value at Risk literature often describes a step in which the factor weights are
transformed (decorrelated) so that sampling can proceed. This is normally accom-
plished with a Cholesky Decomposition or Eigendecomposition. The Apache Com-
mons Math MultivariateNormalDistribution takes care of this step for us under
the covers using an Eigendecomposition.
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To fit a multivariate normal distribution to our data, first we need to find its sample
means and covariances:

import org.apache.commons.math3.stat.correlation.Covariance

val factorCov = new Covariance(factorMat).getCovarianceMatrix().
getData()

val factorMeans = factorsReturns.
map(factor => factor.sum / factor.size).toArray

Then, we can simply create a distribution parameterized with them:

import org.apache.commons.math3.distribution.MultivariateNormalDistribution

val factorsDist = new MultivariateNormalDistribution(factorMeans,
factorCov)

To sample a set of market conditions from it:

factorsDist.sample()
resl: Array[Double] = Array(2.6166887901169384, 2.596221643793665,
1.4224088720128492, 55.00874247284987)

factorsDist.sample()
res2: Array[Double] = Array(-8.622095499198096, -2.5552498805628256,
2.3006882454319686, -75.4850042214693)

Running the Trials

With the per-instrument models and a procedure for sampling factor returns, we
now have the pieces we need to run the actual trials. Because running the trials is very
computationally intensive, we will finally turn to Spark to help us parallelize them. In
each trial, we want to sample a set of risk factors, use them to predict the return of
each instrument, and sum all those returns to find the full trial loss. To achieve a rep-
resentative distribution, we want to run thousands or millions of these trials.

We have a few choices in how to parallelize the simulation. We can parallelize along
trials, instruments, or both. To parallelize along both, we would create an RDD of
instruments and an RDD of trial parameters, and then use the cartesian transfor-
mation to generate an RDD of all the pairs. This is the most general approach, but it
has a couple of disadvantages. First, it requires explicitly creating an RDD of trial
parameters, which we can avoid by using some tricks with random seeds. Second, it
requires a shuffle operation.

Partitioning along instruments would look something like this:

val randomSeed = 1496

val instrumentsRdd = ...

def trialLossesForInstrument(seed: Long, instrument: Array[Double])
: Array[(Int, Double)] = {
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}...

instrumentsRdd.flatMap(trialLossesForInstrument(randomSeed, _)).
reduceByKey(_ + _)

With this approach, the data is partitioned across an RDD of instruments, and, for
each instrument a flatMap transformation computes and yields the loss against every
trial. Using the same random seed across all tasks means that we will generate the
same sequence of trials. A reduceByKey sums together all the losses corresponding to
the same trials. A disadvantage of this approach is that it still requires shuffling O(|
instruments| * |trials|) data.

Our model data for our few thousand instruments data is small enough to fit in mem-
ory on every executor, and some back-of-the-envelope calculations reveal that this is
probably still the case even with a million or so instruments and hundreds of factors.
A million instruments times five hundred factors times the eight bytes needed for the
double that stores each factor weight equals roughly 4 GB, small enough to fit in each
executor on most modern-day cluster machines. This means that a good option is to
distribute the instrument data in a broadcast variable. The advantage of each executor
having a full copy of the instrument data is that total loss for each trial can be compu-
ted on a single machine. No aggregation is necessary.

With the partition-by-trials approach (which we will use), we start out with an RDD
of seeds. We want a different seed in each partition so that each partition generates
different trials:

val parallelism = 1000
val baseSeed = 1496

val seeds = (baseSeed until baseSeed + parallelism)

val seedRdd = sc.parallelize(seeds, parallelism)
Random number generation is a time-consuming and CPU-intensive process. While
we don’t employ this trick here, it can often be useful to generate a set of random
numbers in advance and use it across multiple jobs. The same random numbers
should not be used within a single job, because this would violate the Monte Carlo
assumption that the random values are independently distributed. If we were to go
this route, we would replace parallelize with textFile and load a randomNum
bersRdd.

For each seed, we want to generate a set of trial parameters and observe the effects of
these parameters on all the instruments. Let’s start from the ground up by writing a
function that calculates the return of a single instrument underneath a single trial. We
simply apply the linear model that we trained earlier for that instrument. The length
of the instrument array of regression parameters is one greater than the length of the
trial array, because the first element of the instrument array contains the intercept
term:
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def instrumentTrialReturn(instrument: Array[Double],

trial: Array[Double]): Double = {

var instrumentTrialReturn = instrument(0)

var i = 0

while (i < trial.length) { ©@
instrumentTrialReturn += trial(i) * instrument(i+1)
i1i+=1

}

instrumentTrialReturn

}

© We use a while loop here instead of a more functional Scala construct because
this is a performance-critical region

Then, to calculate the full return for a single trial, we simply sum over the returns of
all the instruments:

def trialReturn(trial: Array[Double],
instruments: Seq[Array[Double]]): Double = {
var totalReturn = 0.0
for (instrument <- instruments) {
totalReturn += instrumentTrialReturn(instrument, trial)
}
totalReturn
}

Lastly, we need to generate a bunch of trials in each task. Because choosing random
numbers is a big part of the process, it is important to use a strong random number
generator that will take a very long time to repeat itself. Commons Math includes a
Mersenne twister implementation that is good for this. We use it to sample from a
multivariate normal distribution as described previously. Note that we are applying
the featurize method that we defined before on the generated factor returns in
order to transform them into the feature representation used in our models:

import org.apache.commons.math3.random.MersenneTwister

def trialReturns(seed: Long, numTrials: Int,
instruments: Seq[Array[Double]], factorMeans: Array[Double],
factorCovariances: Array[Array[Double]]): Seq[Double] = {
val rand = new MersenneTwister(seed)
val multivariateNormal = new MultivariateNormalDistribution(
rand, factorMeans, factorCovariances)

val trialReturns = new Array[Double](numTrials)

for (1 <- 0 until numTrials) {
val trialFactorReturns = multivariateNormal.sample()
val trialFeatures = featurize(trialFactorReturns)
trialReturns(i) = trialReturn(trialFeatures, instruments)

}

trialReturns
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With our scaffolding complete, we can use it to compute an RDD where each element
is the total return from a single trial. Because the instrument data (matrix including a
weight on each factor feature for each instrument) is large, we use a broadcast vari-
able for it. This ensures that it only needs to be deserialized once per executor:

val numTrials = 10000000
val bFactorWeights = sc.broadcast(factorWeights)

val trials = seedRdd.flatMap(
trialReturns(_, numTrials / parallelism,
bFactorWeights.value, factorMeans, factorCov))

If you recall, the whole reason we've been messing around with all these numbers was
to calculate VaR. trials now forms an empirical distribution over portfolio returns.
To calculate 5% VaR, we need to find a return that we expect to underperform 5% of
the time, and a return that we expect to outperform 5% of the time. With our empiri-
cal distribution, this is as simple as finding the value that 5% of trials are worse than
and 95% of trials are better than. We can accomplish this using the takeOrdered
action to pull the worst 5% of trials into the driver. Our VaR is the return of the best
trial in this subset:

def fivePercentVaR(trials: RDD[Double]): Double = {
val toplLosses = trials.takeOrdered(math.max(trials.count().toInt / 20, 1))
topLosses. last

}

val valueAtRisk = fivePercentVaR(trials)
valueAtRisk: Double = -1752.8675055209305

We can find the CVaR with a nearly identical approach. Instead of taking the best trial
return from the worst 5% of trials, we take the average return from that set of trials:

def fivePercentCVaR(trials: RDD[Double]): Double = {
val topLosses = trials.takeOrdered(math.max(trials.count().toInt / 20, 1))
topLosses.sum / topLosses.length

}

val conditionalValueAtRisk = fivePercentVaR(trials)
conditionalValueAtRisk: Double = -2353.5692728118033

Visualizing the Distribution of Returns

In addition to calculating VaR at a particular confidence level, it can be useful to look
at a fuller picture of the distribution of returns. Are they normally distributed? Do
they spike at the extremities? As we did for the individual factors, we can plot an esti-
mate of the probability density function for the joint probability distribution using
kernel density estimation (see Figure 9-3). Again, the supporting code for calculating
the density estimates in a distributed fashion (over RDDs) is included in the GitHub
repository accompanying this book:
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def plotDistribution(samples: RDD[Double]) {
val stats = samples.stats()
val min = stats.min
val max = stats.max

val domain = Range.Double(min, max, (max - min) / 100)
.toList.toArray

val densities = KernelDensity.estimate(samples, domain)

val f = Figure()

val p =

f.subplot(0)

p += plot(domain, densities)
= "Two Week Return ($)"

p.xlabel
p.ylabel

"Density"

}

plotDistribution(trials)

Density

. _/ AN
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0
Two Week Return ()

1500

Figure 9-3. Two-week returns distribution

Evaluating Our Results

How do we know whether our estimate is a good estimate? How do we know whether
we should simulate with a larger number of trials? In general, the error in a Monte
Carlo simulation should be proportional to 1/,/n. This means that, in general, quad-

rupling the number of trials should approximately cut the error in half.

A nice way to get a confidence interval on our VaR statistic is through bootstrapping.
We achieve a bootstrap distribution over the VaR by repeatedly sampling with
replacement from the set of portfolio returns that are the results of our trials. Each
time, we take a number of samples equal to the full size of the trials set and compute a
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VaR from those samples. The set of VaRs computed from all the times form an empir-
ical distribution, and we can get our confidence interval by simply looking at its
quantiles.

The following is a function that will compute a bootstrapped confidence interval for
any statistic (given by the computeStatistic argument) of an RDD. Notice its use of
Spark’s sample where we pass true for its first argument withReplacement, and 1.0
for its second argument to collect a number of samples equal to the full size of the
data set:

def bootstrappedConfidenceInterval(
trials: RDD[Double],
computeStatistic: RDD[Double] => Double,
numResamples: Int,
pValue: Double): (Double, Double) = {
val stats = (0 until numResamples).map { i1 =>
val resample = trials.sample(true, 1.0)
computeStatistic(resample)
}.sorted
val lowerIndex = (numResamples * pValue / 2).toInt
val upperIndex = (numResamples * (1 - pValue / 2)).tolInt
(stats(lowerIndex), stats(upperIndex))
}

Then we call this function, passing in the fivePercentVaRr function we defined earlier
that computes the VaR from an RDD of trials:

bootstrappedConfidencelnterval(trials, fivePercentVaR, 100, .05)
(-1754.9059171183192,-1751.0657037512767)

We can bootstrap the CVaR as well:

bootstrappedConfidencelnterval(trials, fivePercentCVaR, 100, .05)
(-2356.2872000503235,-2351.231980404269)

The confidence interval helps us understand how confident our model is in its result,
but it does little to help us understand how well our model matches reality. Backtest-
ing on historical data is a good way to check the quality of a result. One common test
for VaR is Kupiec’s proportion-of-failures (POF) test. It considers how the portfolio
performed at many historical time intervals and counts the number of times that the
losses exceeded the VaR. The null hypothesis is that the VaR is reasonable, and a suffi-
ciently extreme test statistic means that the VaR estimate does not accurately describe
the data. The test statistic, which relies on p, the confidence level parameter of the
VaR calculation; x, the number of historical intervals over which the losses exceeded
the VaR; and T, the total number of historical intervals considered, is computed as:
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The following computes the test statistic on our historical data. We expand out the
logs for better numerical stability:

—2((T—x) In(1-p)+xIn(p)— (T -x) ln(l—%)—xln (%))

var failures = 0
for (1 <- 0 until stocksReturns(0).size) {
val loss = stocksReturns.map(_(i)).sum
if (loss < valueAtRisk) {
failures += 1
}
}

failures
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val failureRatio = failures.toDouble / total

val logNumer = (total - failures) * math.loglp(-confidencelLevel) +
failures * math.log(confidencelevel)

val logDenom = (total - failures) * math.loglp(-failureRatio) +

failures * math.log(failureRatio)
val testStatistic = -2 * (logNumer - logDenom)

96.88510361007025

If we assume the null hypothesis that the VaR is reasonable, then this test statistic is
drawn from a chi-squared distribution with a single degree of freedom. We can use
the Commons Math ChiSquaredDistribution to find the p-value accompanying our
test statistic value:

import org.apache.commons.math3.distribution.ChiSquaredDistribution

1 - new ChiSquaredDistribution(1.0).cumulativeProbability(testStatistic)

This gives us a tiny p-value, meaning we do have sufficient evidence to reject the null
hypothesis that the model is reasonable. Looks like we need to improve it a little...

Where to Go from Here

The model laid out in this exercise is a very rough first cut of what would be used in
an actual financial institution. In building an accurate VaR model, a few steps that we
glossed over are very important. Curating the set of market factors can make or break
a model, and it is not uncommon for financial institutions to incorporate hundreds
of factors in their simulations. Picking these factors requires both running numerous
experiments on historical data and a heavy dose of creativity. Choosing the predictive
model that maps market factors to instrument returns is also important. Although we
used a simple linear model, many calculations use nonlinear functions or simulate the
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path over time with Brownian motion. Lastly, it is worth putting care into the distri-
bution used to simulate the factor returns. Kolmogorov-Smirnoff tests and chi-
squared tests are useful for testing an empirical distribution’s normality. Q-Q plots are
useful for comparing distributions visually. Usually, financial risk is better mirrored
by a distribution with fatter tails than the normal that we used. Mixtures of normal
distributions is one good way to achieve these fatter tails. “Financial Economics, Fat-
tailed Distributions”, an article by Markus Haas and Christian Pigorsch, provides a
nice reference on some of the other fat-tailed distributions out there.

Banks use Spark and large-scale data processing frameworks for calculating VaR with
historical methods as well. “Evaluation of Value-at-Risk Models Using Historical
Data”, by Darryll Hendricks, provides a good overview and performance comparison
of historical VaR methods.

Monte Carlo risk simulations can be used for more than calculating a single statistic.
The results can be used to proactively reduce the risk of a portfolio by shaping invest-
ment decisions. For example, if, in the trials with the poorest returns, a particular set
of instruments tends to come up losing money repeatedly, we might consider drop-
ping those instruments from the portfolio or adding instruments that tend to move in
the opposite direction from them.
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CHAPTER 10

Analyzing Genomics Data
and the BDG Project

Uri Laserson

So we need to shoot our SCHPON |[...] into the void.
—George M. Church

The advent of next-generation DNA sequencing (NGS) technology is rapidly trans-
forming the life sciences into a data-driven field. However, making the best use of this
data is butting up against a traditional computational ecosystem that builds on
difficult-to-use, low-level primitives for distributed computing (e.g., DRMAA or
MPI) and a jungle of semi-structured text-based file formats.

This chapter will serve three primary purposes. First, we introduce the general Spark
user to a new set of Hadoop-friendly serialization and file formats (Avro and Parquet)
that greatly simplify many problems in data management. We broadly promote the
use of these serialization technologies to achieve compact binary representations,
service-oriented architectures, and language cross-compatibility. Second, we show the
experienced bioinformatician how to perform typical genomics tasks in the context of
Spark. Specifically, we will use Spark to manipulate large quantities of genomics data
to process and filter data, build a transcription factor binding site prediction model,
and join ENCODE genome annotations against the 1000 Genome project variants.
Finally, this chapter will serve as a tutorial to the ADAM project, which comprises a
set of genomics-specific Avro schemas, Spark-based APIs, and command-line tools
for large-scale genomics analysis. Among other applications, ADAM provides a
natively distributed implementation of the GATK best practices using Hadoop and
Spark.
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The genomics portions of this chapter are targeted at experienced bioinformaticians
familiar with typical problems. However, the data serialization portions should be
useful to anyone who is processing large amounts of data.

Decoupling Storage from Modeling

Bioinformaticians spend a disproportionate amount of time worrying about file for-
mats—.fasta, .fastq, .sam, .bam, .vcf, .gvcf, .bef, .bed, .gff, .gtf, .narrowPeak, .wig, .big-
Wig, .bigBed, .ped, .tped, to name a few—not to mention the scientists who feel it is
necessary to specify their own custom format for their own custom tool. On top of
that, many of the format specifications are incomplete or ambiguous (which makes it
hard to ensure implementations are consistent or compliant) and specify ASCII-
encoded data. ASCII data is very common in bioinformatics, but it is inefficient and
compresses relatively poorly—this is starting to be addressed by community efforts to
improve the specs, like https://github.com/samtools/hts-specs. In addition, the data
must always be parsed, necessitating additional compute cycles. It is particularly trou-
bling because all of these file formats essentially store just a few common object types:
an aligned sequence read, a called genotype, a sequence feature, and a phenotype.
(The term “sequence feature” is slightly overloaded in genomics, but in this chapter
we mean it in the sense of an element from a track of the UCSC genome browser.)
Libraries like biopython are popular because they are chock-full-o-parsers (e.g.,
Bio.SeqIO) that attempt to read all the file formats into a small number of common
in-memory models (e.g., Bio.Seq, Bio.SeqRecord, Bio.SeqFeature).

We can solve all of these problems in one shot using a serialization framework like
Apache Avro. The key lies in Avros separation of the data model (i.e., an explicit
schema) from the underlying storage file format and also the language’s in-memory
representation. Avro specifies how data of a certain type should be communicated
between processes, whether that’s between running processes over the Internet, or a
process trying to write the data into a particular file format. For example, a Java pro-
gram that uses Avro can write the data into multiple underlying file formats that are
all compatible with Avros data model. This allows each process to stop worrying
about compatibility with multiple file formats: the process only needs to know how to
read Avro, and the filesystem needs to know how to supply Avro.

Let’s take the sequence feature as an example. We begin by specifying the desired
schema for the object using the Avro interface definition language (IDL):

enum Strand {
Forward,
Reverse,
Independent
}

record SequenceFeature {
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string featureld;
string featureType; (1)
string chromosome;
long startCoord;

long endCoord;

Strand strand;

double value;
map<string> attributes;

}

» « » <« >

© For example, “conservation,” “centipede,” “gene

This data type could be used to encode, for example, conservation level, the presence
of a promoter or ribosome binding site, a transcription factor binding site, and so on.
One way to think about it is a binary version of JSON, but more restricted and with
much higher performance. Given a particular data schema, the Avro spec then deter-
mines the precise binary encoding for the object, so that it can be easily communica-
ted between processes (even if written in different programing languages), over the
network, or onto disk for storage. The Avro project includes modules for processing
Avro-encoded data from many languages, including Java, C/C++, Python, and Perl;
after that, the language is free to store the object in memory in whichever way is
deemed most advantageous. The separation of data modeling from the storage format
provides another level of flexibility/abstraction; Avro data can be stored as Avro-
serialized binary objects (Avro container file), in a columnar file format for fast quer-
ies (Parquet file), or as text JSON data for maximum flexibility (minimum efficiency).
Finally, Avro supports schema evolvability, allowing the user to add new fields as they
become necessary, while all the software gracefully deals with new/old versions of the
schema.

Overall, Avro is an efficient binary encoding that allows you to easily specify evolva-
ble data schemas, process the same data from many programming languages, and
store the data using many formats. Deciding to store your data using Avro schemas
frees you from perpetually working with more and more custom data formats, while
simultaneously increasing the performance of your computations.

Serialization/RPC Frameworks

There exist a large number of serialization frameworks in the wild. The most com-
monly used frameworks in the big data community are Apache Avro, Apache Thrift,
and Google’s Protocol Buffers. At the core, they all provide an interface definition lan-
guage for specifying the schemas of object/message types, and they all compile into a
variety of programming languages. On top of IDL, which is supported by Protocol
Buffers, Thrift also adds a way to specify RPCs. (Google also has an RPC mechanism
called Stubby, but it has not been open sourced.) Finally, on top of IDL and RPC,
Avro adds a file format specification for storing the data on-disk. It’s difficult to make
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generalizations about which framework is appropriate in what circumstances, because
they all support different languages and have different performance characteristics for
the various languages.

The particular SequenceFeature model used in the preceding example is a bit sim-
plistic for real data, but the Big Data Genomics (BDG) project has already defined
Avro schemas to represent the following objects, as well as many others:

o AlignmentRecord for reads

o Pileup for base observations at particular positions
o Variant for known genome variants and metadata
« Genotype for a called genotype at a particular locus

« Feature for a sequence feature (annotation on a genome segment)

The actual schemas can be found in the bdg-formats GitHub repo. The Global Alli-
ance for Genomics and Health is also starting to develop its own set of Avro schemas.
Hopefully this will not turn into its own http://xkcd.com/927/ situation, where there is
a proliferation of competing Avro schemas. Even so, Avro provides many perfor-
mance and data modeling benefits over the custom ASCII status quo. In the remain-
der of the chapter, we'll use some of the BDG schemas to accomplish some typical
genomics tasks.

Ingesting Genomics Data with the ADAM CLI

This chapter makes heavy use of the ADAM project for genomics
on Spark. The project is under heavy development, including the
documentation. If you run into problems, make sure to check the
latest README files on GitHub, the GitHub issue tracker, or the
adam-developers mailing list.

BDG's core set of genomics tools is called ADAM. Starting from a set of mapped
reads, this core includes tools that can perform mark-duplicates, base quality score
recalibration, indel realignment, and variant calling, among other tasks. ADAM also
contains a command-line interface that wraps the core for ease of use. In contrast to
HPC, these command-line tools know about Hadoop and HDEFS, and many of them
can automatically parallelize across a cluster without having to split files or schedule
jobs manually.

We'll start by building adam like the README tells us to:
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git clone https://github.com/bigdatagenomics/adam.git

cd adam

export "MAVEN_OPTS=-Xmx512m -XX:MaxPermSize=128m"

mvn clean package -DskipTests
ADAM comes with a submission script that facilitates interfacing with Spark’s spark-
submit script; the easiest way to use it is probably to alias it:

export $SADAM_HOME=path/to/adam

alias adam-submit="$ADAM_HOME/bin/adam-submit"
As noted in the README, additional JVM options can be set through $JAVA_OPTS,
or check the appassembler docs for more info. At this point, you should be able to
run ADAM from the command line and get the usage message:

$ adam-submit

e 888~-_ e e e
dsb 888 \ dsb dgb d8b
/Y88b 888 | /Y88b d888bdy88b
/ Y88b 888 | / Y88b / Y88Y Y888b
/____Y88b 888 / /____Y88b / YY Y888b
/ Y88b 888_-~ / Y88b / Y888b

Choose one of the following commands:

ADAM ACTIONS
compare : Compare two ADAM files based on read name
findreads : Find reads that match particular individual
or comparative criteria
depth : Calculate the depth from a given ADAM file,
at each variant in a VCF
count_kmers : Counts the k-mers/q-mers from a read
dataset.
aggregate_pileups : Aggregate pileups in an ADAM reference-
oriented file
transform : Convert SAM/BAM to ADAM format and
optionally perform read pre-processing

transformations
plugin : Executes an ADAMPlugin
[etc.]

We'll start by taking a .bam file containing some mapped NGS reads, converting them
to the corresponding BDG format (AlignedRecord in this case), and saving them to
HDFS. First, we get our hands on a suitable .bam file and put it in HDFS:

# Note: this file is 16 GB

curl -0 ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data\
/HGOO103/alignment/HGOO103 .mapped.ILLUMINA. bwa.GBR\
.low_coverage.20120522.bam

# or using Aspera instead (which is *much* faster)
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ascp -1 path/to/asperaweb_1id_dsa.openssh -QTr -1 10G \
anonftp@ftp.ncbi.nlm.nih.gov:/1000genomes/ftp/data/HGOO103\
/alignment/HGOO103.mapped.ILLUMINA.bwa.GBR\
.low_coverage.20120522.bam .

hadoop fs -put HGOO103.mapped.ILLUMINA.bwa.GBR\
.low_coverage.20120522.bam /user/ds/genomics

We can then use the ADAM transform command to convert the .bam file to Parquet
format (described in “Parquet Format and Columnar Storage” on page 204). This
would work both on a cluster and in local mode:

adam-submit \
transform \ (1)
Juser/ds/genomics/HGOO103.mapped.ILLUMINA.bwa.GBR\
.low_coverage.20120522.bam \ (2]
Juser/ds/genomics/reads/HGO0103

@ The ADAM command itself

©® The rest of the arguments are specific to the transform command

This should kick off a pretty large amount of output to the console, including the
URL to track the progress of the job. Let’s see what we've generated:

$ hadoop fs -du -h /user/ds/genomics/reads/HGO0103

0 /user/ds/genomics/reads/HGOO103/_SUCCESS

516.9 K /user/ds/genomics/reads/HG00103/_metadata

101.8 M /user/ds/genomics/reads/HGO0103/part-r-00000.gz.parquet
101.7 M /user/ds/genomics/reads/HGO0103/part-r-00001.gz.parquet
[...]

104.9 M /user/ds/genomics/reads/HGO0103/part-r-00126.9z.parquet
12.3 M /Juser/ds/genomics/reads/HGO0103/part-r-00127.gz.parquet

The resulting data set is the concatenation of all the files in the /user/ds/genomics/
reads/HG00103/ directory, where each part-* parquet file is the output from one of
the Spark tasks. You’'ll also notice that the data has been compressed more efficiently
than the initial .bam file (which is gzipped underneath) thanks to the columnar
storage:

$ hadoop fs -du -h "/user/ds/genomics/HGOO103.*.bam"
15.9 G /user/ds/genomics/HGO0103. [...] .bam

$ hadoop fs -du -h -s /user/ds/genomics/reads/HGO0103
12.6 G Juser/ds/genomics/reads/HG00103

Let’s see what one of these objects looks like in an interactive session. First we start up
the Spark shell using the ADAM helper script. It takes the same arguments/options as

the default Spark scripts, but loads all of the JARs that are necessary. In the following
example, we are running Spark on YARN:
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export SPARK_HOME=/path/to/spark
$ADAM_HOME/bin/adam-shell

14/09/11 17:44:36 INFO SecurityManager: [...]
14/09/11 17:44:36 INFO HttpServer: Starting HTTP Server
Welcome to

Il /I _

NN N 2

/| . /\_,_/_] /]_J\_\ version 1.2.1
/-1

Using Scala version 2.10.4
(Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_67)
[...lots of additional logging around setting up the YARN app...]

scala>

Note that when youre working on YARN, the interactive Spark shell requires yarn-
client mode, so that the driver is executed locally. It may also be necessary to set
either HADOOP_CONF_DIR or YARN_CONF_DIR appropriately. Now we'll load the aligned
read data as an RDD[AlignmentRecord]:

import org.apache.spark.rdd.RDD
import org.bdgenomics.adam.rdd.ADAMContext._
import org.bdgenomics.formats.avro.AlignmentRecord

val readsRDD: RDD[AlignmentRecord] = sc.adamLoad(
"/user/ds/genomics/reads/HGOO103")
readsRDD. first()

This prints a lot of logging output (Spark and Parquet love to log) along with the
result itself:

res0: org.bdgenomics.formats.avro.AlignmentRecord =
{"contig":

{"contigName": "X", "contiglLength": 155270560,
"contigMD5": "7e0e2e580297b7764e31dbc80c2540dd",
"referenceURL": "ftp:\/\/ftp.1000genomes.ebi.ac.uk\/...",
"assembly": null, "species": null},

"start": 50194838, "end": 50194938, "mapq": 60,

"readName": "SRR062642.27455291",

"sequence": "TGACTCTGATGTTAAGATGCATTGTT...",

"qual": ".LMMQPRQQPRQPILRQQRRIQQRQ...", "cigar": "100M",

"basesTrimmedFromStart": 0, "basesTrimmedFromEnd": 0,

"readPaired": true, "properPair": true, "readMapped":...}

(This output has been modified to fit the page.) You may get a different read, because
the partitioning of the data may be different on your cluster, so there is no guarantee
which read will come back first.
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Now we can interactively ask questions about our data set, all while executing the
computations themselves across a cluster in the background. How many reads do we
have in this data set?

readsRDD.count()
14/09/11 18:26:05 INFO SparkContext: Starting job: count [...]

resl6: Long = 160397565
Do the reads in this data set derive from all human chromosomes?

val unig_chr = (readsRDD
.map(_.contig.contigName.toString)
.distinct()
.collect())
uniqg_chr.sorted.foreach(println)

1

10

11

12

[...]
GLO00249.1
MT
NC_007605
X

Y

hs37d5

Yep. Let’s analyze the statement a little more closely:

val unig_chr = (readsRDD (1)
.map(_.contig.contigName.toString) (2]
.distinct() (3]

.collect()) (4]

RDD[AlignmentRecord]: Contains all our data

RDD[String]: From each AlignmentRecord object, we extract the contig name,
and convert to a String

© ROD[String]: This will cause a reduce/shuffle to aggregate all the distinct contig
names; should be small, but still an RDD

O Array[String]: This triggers the computation and brings the data in the RDD
back to the client app (the shell)

Say we are carrier screening an individual for cystic fibrosis using next-generation
sequencing and our genotype caller gave us something that looks like a premature
stop codon, but it’s not present in HGMD, nor is it in the Sickkids CFTR database.
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We want to go back to the raw sequencing data to see if the potentially deleterious
genotype call is a false positive. To do so, we need to manually analyze all the reads
that map to that variant locus, say, chromosome 7 at 117149189 (see Figure 10-1):

val cftr_reads = (readsRDD
.filter(_.contig.contigName.toString == "7")
filter(_.start <= 117149189)
.filter(_.end > 117149189)
.collect())
cftr_reads.length // cftr_reads is a local Array[AlignmentRecord]

res2: Int =9

chr?
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Figure 10-1. IGV visualization of the HG00103 at chr7:117149189 in the CFTR gene

It is now possible to manually inspect these nine reads, or process them through a
custom aligner, for example, and check whether the reported pathogenic variant is a
false positive. Exercise for the reader: what is the average coverage on chromosome 72
(It’s definitely too low for reliably making a genotype call at a given position.)

Say we're running a clinical lab that is performing such carrier screening as a service
to clinicians. Archiving the raw data using Hadoop ensures that the data stays rela-
tively warm (compared with, say, tape archive). In addition to having a reliable sys-
tem for actually performing the data processing, we can easily access all of the past
data for quality control (QC) or for cases where there need to be manual interven-
tions, like the CFTR example presented earlier. In addition to the rapid access to the
totality of the data, the centrality also makes it easy to perform large analytical stud-
ies, like population genetics, large-scale QC analyses, and so on.
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Parquet Format and Columnar Storage

In the previous section, we saw how we can manipulate a potentially large amount of
sequencing data without worrying about the specifics of the underlying storage or the
parallelization of the execution. However, it's worth noting that the ADAM project
makes use of the Parquet file format, which confers some considerable performance
advantages that we introduce here.

Parquet is an open source file format specification and a set of reader/writer imple-
mentations that we recommend for general use for data that will be used in analytical
queries (write once, read many times). It is largely based on the underlying data stor-
age format used in Google’s Dremel system (see “Dremel: Interactive Analysis of
Web-scale Datasets” Proc. VLDB, 2010, by Melnik et al.), and has a data model that is
compatible with Avro, Thrift, and Protocol Buffers. Specifically, it supports most of
the common database types (int, double, string, etc.), along with arrays and records,
including nested types. Significantly, it is a columnar file format, meaning that values
for a particular column from many records are stored contiguously on disk (see
Figure 10-2). This physical data layout allows for far more efficient data encoding/
compression, and significantly reduces query times by minimizing the amount of
data that must be read/deserialized. Parquet supports specifying different encoding/
compression schemes for each column, and for each column supports run-length
encoding, dictionary encoding, and delta encoding.

Another useful feature of Parquet for increasing performance is “predicate push-
down?” A “predicate” is some expression or function that evaluates to true or false
based on the data record (or equivalently, the expressions in a SQL WHERE clause). In
our earlier CFTR query, Spark had to deserialize/materialize the entirety of every sin-
gle AlignmentRecord before deciding whether or not it passes the predicate. This
leads to a significant amount of wasted I/O and CPU time. The Parquet reader imple-
mentations allow us to provide a predicate class that only deserializes the necessary
columns for making the decision, before materializing the full record.
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Logical table representation
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encoding
A v
encoded chunk encoded chunk encoded chunk

Figure 10-2. Differences between a row-major and column-major data layout

For example, to implement our CFTR query using predicate pushdown, we must first
define a suitable predicate class that tests whether the AlignmentRecord is in the tar-
get locus:

import org.bdgenomics.adam.predicates.ColumnReaderInput._
import org.bdgenomics.adam.predicates.ADAMPredicate
import org.bdgenomics.adam.predicates.RecordCondition
import org.bdgenomics.adam.predicates.FieldCondition

class CftrLocusPredicate extends ADAMPredicate[AlignmentRecord] {
override val recordCondition = RecordCondition[AlignmentRecord](

FieldCondition(

"contig.contigName", (x: String) => x == "chr7"),
FieldCondition(

"start", (x: Long) => x <= 117149189),
FieldCondition(

"end", (x: Long) => x >= 117149189))
}

Note that for the predicate to work, the Parquet reader must instantiate the class
itself. This means we must compile this code into a JAR and make it available to the
executors by adding it to the Spark classpath. After that’s done, the predicate can be
used like so:
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val cftr_reads = sc.adamLoad[AlignmentRecord, CftrLocusPredicate](
"/user/ds/genomics/reads/HGOO103",
Some(classOf[CftrLocusPredicate])).collect()

This should execute faster because it no longer must materialize all of the Alignmen
tRecord objects.

Predicting Transcription Factor Binding Sites from
ENCODE Data

In this example, we will use publicly available sequence feature data to build a simple
model for transcription factor binding. Transcription factors (TFs) are proteins that
bind to specific sites in the genome and help control the expression of different genes.
As a result, they are critical in determining the phenotype of a particular cell, and are
involved in many physiological and disease processes. ChIP-seq is an NGS-based
assay that allows the genome-wide characterization of binding sites for a particular
TF in a particular cell/tissue type. However, in addition to ChIP-seq’s cost and techni-
cal difficulty, it requires a separate experiment for each tissue/TF pair. In contrast,
DNase-seq is an assay that finds regions of open-chromatin genome-wide, and only
needs to be performed once per tissue type. Instead of assaying TF binding sites by
performing a ChIP-seq experiment for each tissue/TF combination, wed like to pre-
dict TF binding sites in a new tissue type assuming only the availability of DNase-seq
data.

In particular, we will be predicting the binding sites for the CTCF transcription factor
using DNase-seq data along with known sequence motif data (from HT-SELEX) and
other data from the publicly available ENCODE data set. We have chosen six different
cell types that have available DNase-seq and CTCF ChIP-seq data. A training example
will be a DNase hypersensitivity (HS) peak, and the label will be derived from the
ChIP-seq data.

We will be using data from the following cell lines:

GM12878
Commonly studied lymphoblastoid cell line

K562
Female chronic myelogenous leukemia

BJ
Skin fibroblast

HEK293
Embryonic kidney
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H54
Glioblastoma

HepG2
Hepatocellular carcinoma

First, we download the DNase data for each cell line in .narrowPeak format:

hadoop fs -mkdir /user/ds/genomics/dnase
curl -s -L <...DNase URL...>\

| gunzip \ (2]
| hadoop fs -put - /user/ds/genomics/dnase/sample.DNase.narrowPeak

[...]

© See accompanying code repo for actual curl commands

® Streaming decompression

Next, we download the ChIP-seq data for the CTCF transcription factor, also in .nar-
rowPeak format, and the GENCODE data, in GTF format:

hadoop fs -mkdir /user/ds/genomics/chip-seq
curl -s -L <...ChIP-seq WRL...> \ @

| gunzip \
| hadoop fs -put - /user/ds/genomics/chip-seq/samp.CTCF.narrowPeak

[...]
@ See accompanying code repo for actual curl commands

Note how we unzip the stream of data with gunzip on the way to depositing it in
HDFS. Now we download a few additional data sets from which we'll derive features
for prediction:

# the hgl9 human genome reference sequence
curl -s -L -0\
"http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit"

Finally, the conservation data is available in fixed wiggle format, which is difficult to
read as a splittable file. It is not possible to predict how far back in a file a particular
task must read in order to obtain the metadata about the contig coordinates. There-
fore, we convert the .wigFix data to BED format on the way into HDEFS as well:

hadoop fs -mkdir /user/ds/genomics/phylop
for 1 in $(seq 1 22); do
curl -s -L <...phyloP.chr$i URL...> \ (1)
| gunzip \
| adam-submit wigfix2bed \
| hadoop fs -put - "/user/ds/genomics/phylop/chr$i.phyloP.bed"
done

[...]
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© See accompanying code repo for actual curl commands

Finally, we perform a one-time conversion of the phyloP data from the text-
based .bed format to Parquet in a Spark shell:

(sc
.adamBEDFeatureLoad("/user/ds/genomics/phylop_text")
.adamSave(" /user/ds/genomics/phylop"))

From all of this raw data, we want to generate a training set with a schema like the
following:

DNase HS peak ID

Chromosome

Start

End

Highest TF motif PWM score
Average phyloP conservation score
Maximum phyloP conservation score

Minimum phyloP conservation score

¥ N o w D

Distance to closest transcription start site (TSS)
TF identity (always “CTCF” in this case)

. Cell line

12. TF binding status (boolean; the target variable)

—_
= O

Now we generate the data set that can be used to create the RDD[LabeledPoint]. We
need to generate the data for multiple cell lines, so we will define an RDD for each cell
line and concatenate them at the end:

(1]
val celllLines = Vector(

"GM12878", "K562", "BJ", "HEK293", "H54", "HepG2")
val dataByCellLine = cellLines.map(cellLine => { (2]
b
(4]

© Load the necessary annotation data

® For each cell line...
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e .. generate an RDD suitable for conversion to RDD[LabeledPoint]

O Concatenate the RDDs and carry through into MLIib, for example

Before we start, we load some data that will be used throughout the computation,
including conservation, transcription start sites, the human genome reference
sequence, and the CTCF PWM as derived from HT-SELEX:

// Load the human genome reference sequence
val bHg19Data = sc.broadcast(
new TwoBitFile(
new LocalFileByteAccess(
new File("/user/ds/genomics/hg19.2bit"))))

val phylopRDD = (sc.adamLoad[Feature, Nothing]("/user/ds/genomics/phylop")
// clean up a few irregularities in the phylop data
.filter(f => f.getStart <= f.getEnd))

val tssRDD = (sc.adamGTFFeaturelLoad(
"Juser/ds/genomics/gencode.v18.annotation.gtf")
.filter(_.getFeatureType == "transcript")
.map(f => (f.getContig.getContigName, f.getStart)))

val bTssData = sc.broadcast(tssRDD
// group by contig name
.groupBy(_._1)
// create Vector of TSS sites for each chromosome
.map(p => (p._1, p._2.map(_._2.tolLong).toVector))
// collect into local in-memory structure for broadcasting
.collect().toMap)

// CTCF PWM from http://dx.doi.org/10.1016/j.cell.2012.12.009

val bPwmData = sc.broadcast(Vector(
Map('A'->0.4553,'C'->0.0459,'G'->0.1455,'T'->0.3533),
Map('A'->0.1737,'C'->0.0248,'G'->0.7592,'T'->0.0423),
Map('A'->0.0001,'C'->0.9407,'G'->0.0001,"'T'->0.0591),
Map('A'->0.0051,'C'->0.0001,'G'->0.9879,'T'->0.0069),
Map('A'->0.0624,'C'->0.9322,'G'->0.0009,'T'->0.0046),
Map('A'->0.0046,'C'->0.9952,'G'->0.0001,"'T'->0.0001),
Map('A'->0.5075,'C'->0.4533,'G'->0.0181,'T'->0.0211),
Map('A'->0.0079,'C'->0.6407,'G'->0.0001,"'T'->0.3513),
Map('A'->0.0001,'C'->0.9995,'G'->0.0002,'T'->0.0001),
Map('A'->0.0027,'C'->0.0035,'G'->0.0017,'T'->0.9921),
Map('A'->0.7635,'C'->0.0210,'G'->0.1175,'T'->0.0980),
Map('A'->0.0074,'C'->0.1314,'G'->0.7990,'T'->0.0622),
Map('A'->0.0138,'C'->0.3879,'G'->0.0001,'T'->0.5981),
Map('A'->0.0003,'C'->0.0001,'G'->0.9853,'T'->0.0142),
Map('A'->0.0399,'C'->0.0113,'G'->0.7312,'T'->0.2177),
Map('A'->0.1520,'C'->0.2820,'G'->0.0082,'T'->0.5578),
Map('A'->0.3644,'C'->0.3105,'G'->0.2125,'T'->0.1127)))
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Now we define some utility functions that will be used in the feature generation,
including the labeling, PWM scoring, and TSS distance:

// fn for finding closest transcription start site

// naive...make this better

def distanceToClosest(loci: Vector[Long], query: Long): Long = {
loci.map(x => abs(x - query)).min

}

// compute a motif score based on the TF PWM
def scorePWM(ref: String): Double = {
val scorel = ref.sliding(bPwmData.value.length).map(s => {
s.zipWithIndex.map(p => bPwmData.value(p._2)(p._1)).product
}).max
val rc = SequenceUtils.reverseComplement(ref)
val score2 = rc.sliding(bPwmData.value.length).map(s => {
s.zipWithIndex.map(p => bPwmData.value(p._2)(p._1)).product
1) .max
max(scorel, score2)

}

// functions for labeling the DNase peaks as binding sites or not;
// compute overlaps between an interval and a set of intervals
// naive impl - this only works because we know the ChIP-seq peaks
// are non-overlapping (how do we verify this? exercise for the
// reader)
def isOverlapping(il: (Long, Long), 12: (Long, Long)) =

(11..2 > 12._1) && (i1._1 < 12._2)

def isOverlappinglLoci(loci: Vector[(Long, Long)],
testInterval: (Long, Long)): Boolean = {

def search(m: Int, M: Int): Boolean = {
valmid=m+ (M -m) /2

if (M <=m) {
false

} else if (isOverlapping(loci(mid), testInterval)) {
true

} else if (testInterval._2 <= loci(mid)._1) {
search(m, mid)

} else {
search(mid + 1, M)

}

}
search(0, loci.length)

}

Finally, we define the body of the “loop” for computing the data on each cell line.
Note how we read the text representations of the ChIP-seq and DNase data, because
the data sets are not so large that they will hurt performance.

First, we load the DNase and ChIP-seq data as RDDs:
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val dnaseRDD = sc.adamNarrowPeakFeaturelLoad(
s" /user/ds/genomics/dnase/ScellLine.DNase.narrowPeak")

val chipsegRDD = sc.adamNarrowPeakFeaturelLoad(
s"/user/ds/genomics/chip-seq/$cellLine.ChIP-seq.CTCF.narrowPeak")

Then we define the function that will generate the target labels on the DNase features
as either “binding” or “not binding” This function requires access to all the ChIP-seq
peaks together, so we process the raw ChIP-seq data into an in-memory data struc-
ture and broadcast it to all the nodes, as the broadcast variable bBindingData:

val bBindingData = sc.broadcast(
chipseq
// group peaks by chromosome
.groupBy(_.getContig.getContigName.toString) (1)
// for each chr, for each ChIP-seq peak, extract start/end
.map(p => (p._1, p._2.map(f =>
(f.getStart: Long, f.getEnd: Long)))) (2]
// for each chr, sort the peaks (non-overlapping)
.map(p => (p._1, p._2.toVector.sortBy(x => x._1))) (3]
// collect them back into a local in-memory data structure for
// broadcasting
.collect().toMap)

© RDD[(String, Iterable[Feature])]
® RDD[(String, Iterable[(Long, Long)])]

© RDD[(String, Vector[(Long, Long)1)]

This operation provides us with a Map where the key is the chromosome name and
the value is a Vector of nonoverlapping (start, end) pairs sorted by position. Now
we define the actual labeling function:

def generatelLabel(f: Feature) = {
val contig = f.getContig.getContigName
if (!bBindingData.value.contains(contig)) {
false
} else {
val testInterval = (f.getStart: Long, f.getEnd: Long)
isOverlappinglLoci(bBindingData.value(contig), testInterval)
}
}

To compute the conservation features (using the phyloP data), we must join the
DNase peaks with the phyloP data. Because we are joining intervals, we will use the
BroadcastRegionJoin implementation in ADAM, which collects one side of the join
(in this case, the smaller DNase data), computes nonoverlapping regions, and then
implements a replicated join by broadcasting the collected data:

val dnaseWithPhylopRDD = (
BroadcastRegionJoin.partitionAndJoin(sc, dnaseRDD, phylopRDD)
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// group the conservation values by DNase peak
.groupBy(x => x._1.getFeatureld)
// compute conservation stats on each peak
.map(x => {
val y = x._2.toSeq
val peak = y(0)._1
val values = y.map(_._2.getValue)
// compute phylop features
val avg = values.reduce(_ + _) / values.length
val m = values.max
val M = values.min
(peak.getFeatureld, peak, avg, m, M)
1))

Now we compute the final set of features on each DNase peak, including the target
variable:

// generate the final set of tuples
dnaseWithPhylopRDD.map(tup => {
val peak = tup._2
val featureld = peak.getFeatureld
val contig = peak.getContigName.getContigName
val start = peak.getStart
val end = peak.getEnd
val score = scorePWM(
bHg19Data.value.extract(ReferenceRegion(peak)))
val avg = tup._3
val m = tup._4
val M = tup._5
val closest_tss = min(
distanceToClosest(bTssData.value(contig), peak.getStart),
distanceToClosest(bTssData.value(contig), peak.getEnd))
val tf = "CTCF"
val line = celllLine
val bound = generatelLabel(peak)
(featureld, contig, start, end, score, avg, m, M, closest_tss,
tf, line, bound)
b

This final RDD is computed in each pass of the loop over the cell lines. Finally, we
union each RDD from each cell line, and cache this data in memory in preparation
for training models off of it:

val preTrainingData = dataByCelllLine.reduce(_ ++ _)
preTrainingData.cache()

preTrainingData.count() // 801263
preTrainingData.filter(_._12 == true).count() // 220285

At this point, the data in preTrainingData can be normalized and converted into an
RDD[ LabeledPoint] for training a classifier, as described in Chapter 4. Note that you
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should perform cross-validation, where in each fold, you hold out the data from one
of the cell lines.

Querying Genotypes from the 1000 Genomes Project

In this example, we will be ingesting the full 1000 Genomes genotype data set. First
we will download the raw data directly into HDFS, unzipping in-flight, and then run
an ADAM job to convert the data to Parquet. The following example command
should be executed for all chromosomes, and can be parallelized across the cluster:

curl -s -L ftp://.../1000genomes/.../chri.vcf.gz \ (1]

| gunzip \
| hadoop fs -put - /user/ds/genomics/1kg/vcf/chri.vcf (2]

export SPARK_JAR_PATH=hdfs:///path/to/spark.jar
adam/bin/adam-submit --conf spark.yarn.jar=$SPARK_JAR_PATH \
vcf2adam \ (3]
-coalesce 5\
Juser/ds/genomics/1kg/vcf/chri.vcf \
Juser/ds/genomics/1kg/parquet/chri

© See the accompanying repo for the actual curl commands
© Copy the text VCF file into Hadoop

©® Run the VCF to ADAM (Parquet) conversion cluster-wide

Note how we specify -coalesce 5; this will ensure that the map tasks will compact
the data into a smaller number of large Parquet files. Then, from an ADAM shell, we
load and inspect an object like so:

import org.bdgenomics.adam.rdd.ADAMContext._
import org.bdgenomics.formats.avro.Genotype

val genotypesRDD = sc.adamLoad[Genotype, Nothing](
"/user/ds/genomics/1kg/parquet")
val gt = genotypesRDD.first()

Say we want to compute the minor allele frequency across all our samples for each
variant genome-wide that overlaps a CTCF binding site. We essentially must join our
CTCF data from the previous section with the genotype data from the 1000 Genomes
project:
val ctcfRDD = sc.adamNarrowPeakFeaturelLoad(
"/user/ds/genomics/chip-seq/GM12878.ChIP-seq.CTCF.narrowPeak")
val filtered = (BroadcastRegionJoin.partitionAndJoin(

sc, ctcfRDD, genotypesRDD) (1)
.map(_._2)) (2]
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© BroadcastRegionJoin’s inner join also accomplishes the filtering

©® This mapper finally produces an RDD[Genotype]

We also need a function that will take a Genotype and compute the counts of the ref-
erence/alternate alleles:

def genotypeToAlleleCounts(gt: Genotype): (Variant, (Int, Int)) = {
val counts = gt.getAlleles.map(allele match {
case GenotypeAllele.Ref => (1, 0)
case GenotypeAllele.Alt => (0, 1)
case _ => (0, 0)
}).reduce((x, y) => (x._1 +y._ 1, x._2 +y._2))
(gt.getvariant, (counts._1, counts._2))
}

Finally, we generate the RDD[ (Variant, (Int, Int))]and perform the aggregation:

val counts = filtered.map(genotypeToAlleleCounts)
val countsByVariant = counts.reduceByKey(
(X, y) => (x._1+y. 1, x._2 +y._2))
val mafByVariant = countsByVariant.map(tup => {
val (v, (r, a)) = tup
valn=r+a
(v, math.min(r, a).toDouble / n)
b
Traversing the entire data set is a sizable operation. Because we're only accessing a few
fields from the genotype data, it would certainly benefit from predicate pushdown
and projection, which we leave as an exercise to the reader.

Where to Go from Here

Many computations in genomics fit nicely into the Spark computational paradigm.
When you're performing ad hoc analysis, the most valuable contribution that projects
like ADAM provide is the set of Avro schemas that represents the underlying analyti-
cal objects (along with the conversion tools). We saw how once data is converted into
the corresponding Avro schemas, many large-scale computations become relatively
easy to express and distribute.

While there may still be a dearth of tools for performing scientific research on
Hadoop/Spark, there do exist a few projects that could help avoid reinventing the
wheel. We explored the core functionality implemented in ADAM, but the project
already has implementations for the entire GATK best-practices pipeline, including
BQSR, indel realignment, and deduplication. In addition to ADAM, many institu-
tions have signed on to the Global Alliance for Genomics and Health, which has
started to generate schemas of its own for genomics analysis. The Hammerbacher lab
at Mount Sinai School of Medicine has also developed Guacamole, a suite of tools
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mainly aimed at somatic variant calling for cancer genomics. All of these tools are
open source with liberal Apache v2 licenses, so if you start using them in your own
work, please consider contributing improvements!
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CHAPTER 11

Analyzing Neuroimaging Data with
PySpark and Thunder

Uri Laserson

We are not interested in the fact that the brain has the consistency of cold porridge.
—Alan Turing

Advances in imaging equipment and automation have led to a glut of data on the
function of the brain. While past experiments might have generated time series data
from only a handful of electrodes in the brain, or a small number of static images of
brain slices, technologies today can sample brain activity from a large number of neu-
rons in a large region while organisms are actively behaving. Indeed, the Obama
administration has endorsed the BRAIN initiative, which has lofty technology devel-
opment goals to enable, for example, simultaneously recording the electrical activity
of every neuron of the mouse brain over an extended period of time. While break-
throughs in measurement technology are certainly necessary, the amount of data gen-
erated will create completely new paradigms for biology.

In this chapter, we will introduce the PySpark API for interacting with Spark through
Python, as well as the Thunder project, which is developed on top of PySpark for pro-
cessing large amounts of time series data in general, and neuroimaging data in partic-
ular. PySpark is a particularly flexible tool for exploratory big data analysis, because it
integrates well with the rest of the PyData ecosystem, including matplotlib for visuali-
zation, and even IPython Notebook (Jupyter) for “executable documents.”

We will marshal these tools for the task of understanding some of the structure of
zebrafish brains. Using Thunder, we will cluster different regions of the brain (repre-
senting groups of neurons) to discover patterns of activity as the zebrafish behaves
over time.

217


http://spark.apache.org/docs/latest/api/python/
http://thefreemanlab.com/thunder/

Overview of PySpark

Python is a favorite tool for many data scientists, due to its high-level syntax and
extensive library of packages, among other things. The Spark ecosystem has recog-
nized Python’s importance in the data analytics milieu, and has begun to invest in a
Python API for using Spark, despite Python’s historical difficulties integrating with
the JVM.

Python for Scientific Computing and Data Science

Python has become a favorite tool for scientific computing and data science. It is now
being used for many applications that would have traditionally used MATLAB, R, or
Mathematica. The reasons include the following:

o Python is a high-level language that is easy to use and learn.

o It has an extensive library system ranging from niche numerical calculations to
web-scraping utilities to data visualization tools.

« It interfaces easily with C/C++ code, allowing access to high-performance libra-
ries, including BLAS/LAPACK/ATLAS.

Some libraries to keep in mind in particular include:

numpy/scipy/matplotlib
These libraries recapitulate typical MATLAB functionality, including fast array
operations, scientific functions, and a widely used MATLAB-inspired plotting
library.

pandas
This library provides functionality similar to Rs data. frame, and oftentimes with
much higher performance to boot.

scikit-learn/statsmodels
These libraries provide high-quality implementations of machine learning algo-
rithms (e.g., classification/regression, clustering, matrix factorization) and statis-
tical models.

nltk
A popular library for natural language processing.

You can find a large list of many other available libraries at https://github.com/vinta/
awesome-python.

Start PySpark just like Spark:
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export IPYTHON=1 # PySpark can use the IPython shell
pyspark --master ... --num-executors ...

© pyspark takes the same Spark arguments as spark-submit and spark-shell

We can submit Python scripts using spark-submit, which will detect the .py exten-
sion on our scripts. PySpark supports the use of the IPython shell by setting the envi-
ronment variable IPYTHON=1, which is something we recommend universally. When
the Python shell starts, it creates a Python SparkContext object through which we
interact with the cluster. Once the SparkContext is available, the PySpark API is very
similar to the Scala API. For example, to load some CSV data:

raw_data = sc.textFile('path/to/csv/data') # RDD[string]
# filter, split on comma, parse floats to get a RDD[list[float]]
data = (raw_data
.filter(lambda x: x.startswith("#"))
.map(lambda x: map(float, x.split(','))))
data.take(5)

Just like in the Scala API, we load a text file, filter out rows that start with #, and parse
the CSV data into a list of float values. The Python functions passed to, for example,
filter and map, are very flexible. They must take a Python object and return a
Python object (in the case of filter, the return value is interpreted as a boolean).
The only restrictions are that the Python function objects must be serializable with
cloudpickle (which includes anonymous lambda functions), and any necessary
modules referenced in the closures must be available on the PYTHONPATH of the execu-
tor Python processes. To ensure the availability of referenced modules, either the
modules must be installed cluster-wide and available on the PYTHONPATH of the execu-
tor Python processes, or the corresponding module ZIP/EGG files must be explicitly
distributed around by Spark, which will then add them to the PYTHONPATH. This latter
functionality can be accomplished by a call to sc.addPyFile().

The PySpark RDDs are just RDDs of Python objects: like Python lists, they can store
objects with mixed types (because underneath, all the objects are instances of
PyObject).

The PySpark API can lag behind the Scala API to a certain extent, so in some cases,
features become available in Scala more rapidly. However, in addition to the core AP],
there already exists a Python API to MLIib, for example, which is used in Thunder.

PySpark Internals

It is useful to understand a bit about how PySpark is implemented in order to sim-
plify debugging and also to be conscious of possible performance pitfalls (see
Figure 11-1).
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Figure 11-1. PySpark internal architecture

When PySparKk’s Python interpreter starts, it also starts a JVM with which it commu-
nicates through a socket. PySpark uses the Py4] project to handle this communica-
tion. The JVM functions as the actual Spark driver, and loads a JavaSparkContext
that communicates with the Spark executors across the cluster. Python API calls to
the SparkContext object are then translated into Java API calls to the JavaSparkCon
text. For example, the implementation of PySpark’s sc.textFile() dispatches a call
to the . textFile method of the JavaSparkContext, which ultimately communicates
with the Spark executor JVMs to load the text data from HDFS.

The Spark executors on the cluster start a Python interpreter for each core, with
which they communicate data through a pipe when they need to execute user code. A
Python RDD in the local PySpark client corresponds to a PythonRDD object in the
local JVM. The data associated with the RDD actually lives in the Spark JVMs as Java
objects. For example, running sc.textFile() in the Python interpreter will call the
JavaSparkContexts textFile method, which loads the data as Java String objects in
the cluster. Similarly, loading a Parquet/Avro file using newAPIHadoopFile will load
the objects as Java Avro objects.

When an API call is made on the Python RDD, any associated code (e.g., Python
lambda function) is serialized via cloudpickle and distributed to the executors. The
data is then converted from Java objects to a Python-compatible representation (e.g.,
pickle objects) and streamed to executor-associated Python interpreters through a
pipe. Any necessary Python processing is executed in the interpreter, and the result-
ing data is stored back as an RDD (as pickle objects by default) in the JVMs.
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Python’s built-in support for serializing executable code is not as powerful as Scala’s.
As a result, the authors of PySpark had to use a custom module called “cloudpickle”
built by the now defunct PiCloud.

Setting Up PySpark with IPython Notebook (Jupyter)

IPython Notebook is a fantastic environment for exploratory analytics and for use as
a computational “lab notebook”” It allows the user to integrate text, images, and exe-
cutable code (in Python and now other languages), and also supports a hosted plat-
form, among other features. While IPython Notebook works well with Spark, it
requires some care to configure correctly because PySpark must be initialized in a
particular way. Refer to this blog post for details: http://bit.ly/186UfIE.

Overview and Installation of the Thunder Library

Thunder Examples and Documentation

The Thunder package has excellent documentation and tutorials. The following
examples draw from the provided data sets and tutorials.

Thunder is a Python tool set for processing large amounts of spatial/temporal data
sets (i.e., large multidimensional matrices) on Spark. It makes heavy use of NumPy
for matrix computations and also the MLIib library for distributed implementations
of some statistical techniques. Python also makes it very flexible and accessible to a
broad audience. In the following section, we introduce the Thunder API, and attempt
to classify some neural traces into a set of patterns using MLIibs K-means implemen-
tation as wrapped by Thunder and PySpark.

Thunder requires Spark, as well as the Python libraries NumPy, SciPy, matplotlib, and
scikit-learn. Installing Thunder can be as easy as pip install thunder-python,
though it requires checking out the Git repo itself in order to use anything other than
Spark 1.1 and Hadoop 1.x (see the following box). Thunder also includes scripts for
easily deploying on Amazon EC2, and has also been demonstrated on traditional
HPC environments.

Using Thunder with Different Versions of Hadoop/Spark

At the time of this writing, Thunder is by default built against the Hadoop 1.x API,
without any direct support for building against the Hadoop 2.x API (necessary for
running against YARN, for example). Installing Thunder via pip will also include a
prebuilt Thunder JAR compiled against Hadoop 1.x and Spark 1.1. To build against
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Hadoop 2.x, change the scala/build.sbt file in the Thunder repo to reflect the desired
version of Hadoop. The Thunder Hadoop version should match the Spark Hadoop
version (which can also be changed in the SBT file).

After installation, and setting the SPARK_HOME environment variable, we can invoke
the Thunder shell like so:

$ export IPYTHON=1 # recommended as usual
$ thunder

[...some logging output...]
Welcome to

I /_

NN N 2

/| . /\_,_/_] /]_/\_\ version 1.1.0
/-1

Using Python version 2.7.6 (default, Apr 9 2014 11:54:50)
SparkContext available as sc.

Running thunder version 0.5.0_dev
A thunder context is available as tsc

In [1]:

This shows us that the thunder command is basically wrapping the PySpark shell.
Similarly to PySpark, the start of most computations is the ThunderContext variable
tsc, which wraps the Python SparkContext with Thunder-specific functionality.

Loading Data with Thunder

Thunder was designed especially with neuroimaging data sets in mind. Therefore, it
is geared toward analyzing data from large sets of images that are often captured over
time.

Let’s start by loading some images of zebrafish brains from an example data set pro-
vided in the Thunder repository, at python/thunder/utils/data/fish/tif-stack. For the
purposes of demonstration, the examples presented are performed on enormously
downsampled data. Full-scale data sets are available on AWS via—for example, the
ThunderContext. loadExampleEC2() function. The zebrafish is a commonly used
model organism in biology research. It is small, reproduces quickly, and is used as a
model for vertebrate development. It’s also interesting because it has exceptionally
fast regenerative capabilities. In the context of neuroscience, the zebrafish makes a
great model because it is transparent and the brain is small enough that it is essen-
tially possible to image it entirely at a high-enough resolution to distinguish individ-
ual neurons. Here is the code to load the data set:
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path_to_1images = (
'path/to/thunder/python/thunder/utils/data/fish/tif-stack"')

imagesRDD = tsc.loadImages(path_to_1images,
inputformat="tif-stack') (1]

print imagesRDD
print imagesRDD.rdd

<thunder.rdds.images.Images object at 0x109aa59de>
PythonRDD[8] at RDD at PythonRDD.scala:43

O tif-stackisaformat where each file contains multiple planes in a z-dimension

This created an Images object that ultimately wraps an RDD, accessible as
imagesRDD.rdd. The Images object exposes the relevant similar functionality (like
count, take, etc.) as well. The objects stored in Images are key-value pairs:

print imagesRDD.first()

(0 array([[[26, 25],
[26, 25],
[26, 25],
[26, 261,
[26, 26],
[26, 2611,
[[25, 251,
[25, 25],
[25, 25],
[26, 261,
[26, 26],
[26, 26]]], dtype=uint8))

The key 0 corresponds to the zeroth image in the set (they are ordered lexicographi-
cally from the data directory), and the value is a NumPy array corresponding to the
image. All of the core data types in Thunder are ultimately backed by Python RDDs
of key-value pairs, where the keys are typically some kind of tuple and the values are
NumPy arrays. The keys and values always have a homogeneous type across the
RDD, even though PySpark generally allows RDDs of heterogeneous collections.
Because of the homogeneity, the Images object exposes a .dims property describing
the underlying images:

print imagesRDD.first()[1].shape (1)
(76, 87, 2) ©
print imagesRDD.dims (2]

Dimensions: min=(0, 0, 0), max=(75, 86, 1), count=(76, 87, 2)
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print imagesRDD.nimages
20
© The shape of the NumPy array of the first key-value pair
® A Thunder Dimensions object corresponding to the data in this RDD

© Each “image” in the RDD is actually a stack of two 76 x 87 images

Our data set is composed of 20 “images” where each image is a 76 x 87 x 2 stack.
Thunder provides a Dimensions object for keeping track of the shape of the data in
the RDD.

Pixels, Voxels, and Stacks

“Pixel” is a portmanteau of “picture element” Digital images can be modeled as sim-
ple two-dimensional (2D) matrices of intensity values, and each element in the matrix
is a pixel. (A color image would require three of these matrices, one each for a red,
green, and blue channel.) However, because the brain is a three-dimensional object, a
single 2D slice is not nearly enough to capture its activity. To address this, multiple
techniques will either acquire multiple 2D images in different planes on top of each
other (a z-stack), and some will even generate 3D information directly (e.g., light field
microscopy). This ultimately produces a 3D matrix of intensity values, where each
value represents a “volume element,” or “voxel.” Consistent with this, Thunder models
all images as 2D or 3D matrices, depending on the specific data type, and can read file
formats like .tiff that can natively represent 3D stacks.

One of the features of working in Python is that we can easily visualize our data while
working with the RDDs, in this case using the venerable matplotlib library (see
Figure 11-2):

import matplotlib.pyplot as plt

img = imagesRDD.values().first()

plt.imshow(img[:, : ,0], interpolation='nearest', aspect='equal',
cmap='gray')
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Figure 11-2. A single slice from the raw zebrafish data

The Images API offers useful methods for working with the image data in a dis-
tributed fashion—for example, to subsample each image down (see Figure 11-3):

subsampled = imagesRDD.subsample((5, 5, 1)) (1]

plt.imshow(subsampled.first()[1][:, : ,0], interpolation='nearest',
aspect='equal', cmap='gray')

print subsampled.dims

Dimensions: min=(0, 0, 0), max=(15, 17, 1), count=(16, 18, 2)

@ The stride to subsample each dimension; note that this is an RDD operation, so it
returns immediately, waiting for an RDD action to trigger computation
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Figure 11-3. A single slice from the subsampled zebrafish data

While analyzing the collection of images may be useful for certain operations (e.g.,
normalizing images in certain ways), it’s difficult to take the temporal relationship of
the images into account. To do so, wed rather work with the image data as a collec-
tion of pixel/voxel time series. This is exactly what the Thunder Series object is for,
and there is an easy way to convert:

seriesRDD = imagesRDD.toSeries()

This operation executes a large-scale reorganization of the data into a Series object,
which is an RDD of key-value pairs where the key is a tuple of the coordinates of each
image (i.e., the voxel identifier) and the value is a one-dimensional NumPy array cor-
responding to the time series of values:

print seriesRDD.dims
print seriesRDD.1index
print seriesRDD.count()

Dimensions: min=(0, 0, 0), max=(75, 86, 1), count=(76, 87, 2)
[6 1 2 3 45 6 7 8 910 11 12 13 14 15 16 17 18 19]
13224

Whereas imagesRDD was a collection of 20 images with dimensions (76 x 87 x 2),
seriesRDD is a collection of 13,224 (76 x 87 x 2) time series of length 20. Also note
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that executing seriesRDD.dims induces a job, because we can only compute the
dimensions by analyzing all of the key values of the Series object. The ser

1esRDD. index property is a Pandas-style index that can be used to reference each of
the arrays. Because our original images were three-dimensional, the keys are 3-tuples:

print seriesRDD.rdd.takeSample(False, 1, 0)[0]

((30, 84, 1), array([35, 35, 35, 35, 35, 35, 35, 35, 34, 34,
34, 35, 35, 35, 35, 35, 35, 35, 35, 35], dtype=uint8))

The Series API offers many methods for performing computations across the time
series, either at the per-series level or across all series. For example:

print seriesRDD.max()

array([158, 152, 145, 143, 142, 141, 140, 140, 139, 139, 140, 140,
142, 144, 153, 168, 179, 185, 185, 182], dtype=uint8)

computes the maximum value across all voxels at each time point, while:

stddevRDD = seriesRDD.seriesStdev()
print stddevRDD.take(3)
print stddevRDD.dims (1]

[((6, 0, 0), 0.4), ((1, 0, 0), 0.0), ((2, 0, 0), 0.0)]

Dimensions: min=(0, 0, 0), max=(75, 86, 1), count=(76, 87, 2)
computes the standard deviation of each time series and returns the result as an RDD,
preserving all the keys.

© This property is intelligently inherited from the parent RDD, so this time there is
no Spark calculation because we've computed the Dimension for seriesRDD

We can also locally repack the Series into the shape of the Dimension (76 x 87 x 2 in
this case):

repacked = stddevRDD.pack()

plt.imshow(repacked[:,:,0], interpolation='nearest', cmap='gray',
aspect="equal')

print type(repacked)

print repacked.shape

<type 'numpy.ndarray's

(76, 87, 2)
This allows us to plot the standard deviation of each voxel using the same spatial rela-
tionships (see Figure 11-4). We should take care to make sure that we’re not trying to
return too much data to the client, because it will consume significant network and
memory resources.
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Figure 11-4. Standard deviation of each voxel in the raw zebrafish data

Alternatively, we can look at the centered time series directly, by plotting a subset of
them (see Figure 11-5):

plt.plot(seriesRDD.center().subset(50).T)
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Figure 11-5. A random subset of 50 of the centered time series

It’s also very easy to apply any user-defined function to each series (including lambda
functions), using the apply method, which calls the RDD’s .values().map()
underneath:

seriesRDD.apply(lambda x: x.argmin())

Thunder Core Data Types

More generally, the two core data types in Thunder, Series and Images, both inherit
from the Data class, which wraps a Python RDD object and exposes part of the RDD
API. The Data class models RDDs of key-value pairs, where the key represents some
type of semantic identifier (e.g., a tuple of coordinates in space), and the value is a
NumPy array of actual data. For the Images object, the key could be a time point, for
example, and the value is the image at that time point formatted as a NumPy array.
For the Series object, the key might be an n-dimensional tuple with the coordinates
of the corresponding voxel, while the value is a one-dimensional NumPy array repre-
senting the time series of measurements at that voxel. All the arrays in Series must
have the same dimensions. Some useful bits of the objects’ APIs are summarized here:

class Data:
property dtype:
# The dtype of the numpy array in this RDD's value slot
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# lots of RDD methods, like first(), count(), cache(), etc.

# methods for aggregating across arrays, like mean(),
# variance(), etc., that keep the dtype constant

class Series(Data):
property dims:

# lazily computes Dimension object with information about

# the spatial dimensions encoded in the keys of this RDD

property index:
# a set of indices into each array, in the style of a
# Pandas Series object

# lots of methods to process all of the 1D arrays in parallel
# across the cluster, like normalize(), detrend(), select(),
# and apply(), that keep the dtype constant

# methods for parallel aggregations, like seriesMax(),
# seriesStdev(), etc., that change the dtype

def pack():
# collects the data at the client and repacks from the
# sparse representation in the RDD to a dense
# representation as a NumPy array with shape corresponding
# to dims

class Images(Data):
property dims:
# the Dimension object corresponding to the NumPy shape
# parameter of each value array

property nimages:
# number of images in RDD; lazily executes an RDD count
# operation

# multiple methods for aggregating across images or processing
# them in parallel, like maxProjection(), subsample(),
# subtract(), and apply()

def toSeries():
# reorganize data as a Series object

We can typically represent the same data set as either an Images or Series object,
converting between the two through a (possibly expensive) shuffle operation (analo-
gous to switching between row-major and column-major representations).

Data for Thunder can be persisted as a set of images, with the ordering encoded by
lexicographic ordering of the individual image filenames; or the data can be persisted
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as a set of binary 1D arrays for Series objects. See the documentation for more
details.

Categorizing Neuron Types with Thunder

In this example, we'll use the K-means algorithm to cluster the various fish time ser-
ies into multiple clusters in an attempt to describe the classes of neural behavior. We
will use data already persisted as Series data packaged in the repo that is larger than
the image data used previously. However, the spatial resolution of this data is still too
low to define individual neurons.

First we load the data:

seriesRDD = tsc.loadSeries(
'path/to/thunder/python/thunder/utils/data/fish/bin')

print seriesRDD.dims

print seriesRDD.index

Dimensions: min=(0, 0, 0), max=(75, 86, 1), count=(76, 87, 2)

[ 6 1 2 3 4 5 6 ... 234235236 237 238 239]
We see this represents images with the same dimensions as earlier, but with 240 time
points instead of 20. We must normalize our features to get the best clustering:

normalizedRDD = seriesRDD.normalize(baseline='mean') (1)

© The baseline=mean option we specified is actually not documented. The Thun-
der code is quite clear, and in multiple cases, there may be hidden functionality
that expresses what we want.

Lets plot a few of the series to see what they look like. Thunder allows us to take a
random subset of the RDD and filter only collection elements that meet a certain cri-
terion, like minimum standard deviation by default. To choose a good value for the
threshold, let’s first compute the stddev of each series and plot a histogram of a 10%
sample of the values (see Figure 11-6):

stddevs = (normalizedRDD
.seriesStdev()
.values()
.sample(False, 0.1, 0)
.collect())

plt.hist(stddevs, bins=20)
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Figure 11-6. Distribution of the standard deviations of the voxels

With this in mind, we'll choose a threshold of 0.1 to look at the most “active” series
(see Figure 11-7):

plt.plot(normalizedRDD.subset(50, thresh=0.1, stat='std').T)
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Figure 11-7. Fifty of the most active time series, based on standard deviation

Now that we have a feel for the data, let’s finally cluster the voxels into the various
patterns of behavior. Thunder has implemented a scikit-learn-style API for working
with RDDs. In some cases, Thunder contains its own implementations (e.g., the
matrix factorization code). In this case, Thunder’s K-means abstraction calls out to
the MLIib Python API. We will perform K-means for multiple values of k:

from thunder import KMeans

ks = [5, 10, 15, 20, 30, 50, 100, 200]

models = []

for k in ks:
models.append(KMeans(k=k).fit(normalizedRDD))

Now we'll compute two simple error metrics on each of the clusterings. The first will
simply be the sum across all time series of the Euclidean distance from the time series
to its cluster center. The second will be a built-in metric of the KMeansModel object:

def model_error_1(model):
def series_error(series):
cluster_id = model.predict(series)
center = model.centers[cluster_1id]
diff = center - series
return diff.dot(diff) ** 0.5

return (normalizedRDD
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.apply(series_error)

.sum())

def model_error_2(model):
return 1. / model.similarity(normalizedRDD).sum()

We will compute both error metrics for each value of k and plot them (see
Figure 11-8):

import numpy as np
errors_1 = np.asarray(map(model_error_1, models))
errors_2 = np.asarray(map(model_error_2, models))
plt.plot(

ks, errors_1 / errors_1.sum(), 'k-o',

ks, errors_2 / errors_2.sum(), 'b:v')
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Figure 11-8. K-means error metrics as a function of k (black circles are model_error_1
and blue triangles are model_error_2)

Wed expect these metrics to generally be monotonic with k; it seems like k=20 might
be a sharper elbow in the curve. Let’s visualize the cluster centers that we've learned
from the data (see Figure 11-9):

model20 = models[3]
plt.plot(model20.centers.T)
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Figure 11-9. Model centers for k=20

It’s also easy to plot the images themselves with the voxels colored according to their
assigned cluster (see Figure 11-10):

from matplotlib.colors import ListedColormap
by_cluster = model20.predict(normalizedRDD).pack()
cmap_cat = ListedColormap(sns.color_palette("hls", 10), name='from_list')
plt.imshow(by_cluster[:, :, 0], interpolation='nearest',
aspect="equal', cmap='gray')
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Figure 11-10. Voxels colored by cluster membership

It’s clear that the learned clusters recapitulate certain elements of zebrafish brain anat-
omy. If the original data were high resolution enough to resolve subcellular struc-
tures, we could first perform clustering of the voxels with k equal to an estimate of
the number of neurons in the imaged volume. This would allow us to effectively map
out the entire neuron cell bodies. We would then define time series for each neuron,
which could be used for clustering again to determine different functional categories.

Where to Go from Here

Thunder is still a new project, but already includes a pretty rich set of functionality. In
addition to statistics on time series and clustering, it has modules for matrix factori-
zations, regression/classification, and tools for visualization. It has fantastic docu-
mentation and tutorials covering a large array of its functionality. To see Thunder in
action, see the recent article by Thunder authors in Nature Methods (July 2014).
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APPENDIXA
Deeper into Spark

Sandy Ryza

Understanding Spark at the level of transformations, actions, and RDDs is vital for
writing Spark programs. Understanding Spark’s underlying execution model is vital
for writing good Spark programs—for making sense of their performance characteris-
tics, for debugging failures and slowness, and for interpreting the user interface.

A Spark application consists of a driver process, which in spark-shell’s case, is the
process that the user is interacting with, and a set of executor processes scattered
across nodes on the cluster. The driver is in charge of the high-level control flow of
work that needs to be done. The executor processes are responsible for executing this
work, in the form of tasks, as well as for storing any data that the user chooses to
cache. Both the driver and the executors typically stick around for the entire time the
application is running. A single executor has a number of slots for running tasks, and
will run many concurrently throughout its lifetime.

At the top of the execution model are jobs. Invoking an action inside a Spark applica-
tion triggers the launch of a Spark job to fulfill it. To decide what this job looks like,
Spark examines the graph of RDDs that the action depends on and formulates an exe-
cution plan that starts with computing the farthest back RDDs and culminates in the
RDDs required to produce the action’s results. The execution plan consists of assem-
bling the job’s transformations into stages. A stage corresponds to a collection of tasks
that all execute the same code, each on a different partition of the data. Each stage
contains a sequence of transformations that can be completed without shuffling the
full data.

What determines whether data needs to be shuffled? For the RDDs returned by so-
called narrow transformations like map, the data required to compute a single parti-
tion resides in a single partition in the parent RDD. Each object is only dependent on
a single object in the parent. However, Spark also supports transformations with wide
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dependencies like groupByKey and reduceByKey. In these, the data required to com-
pute a single partition may reside in many partitions of the parent RDD. All of the
tuples with the same key must end up in the same partition. To satisfy these opera-
tions, Spark must execute a shuffle, which transfers data around the cluster and
results in a new stage with a new set of partitions.

For example, the following code would execute in a single stage, because none of the
outputs of these three operations depend on data that can come from different parti-
tions than their inputs:

sc.textFile("someFile.txt").
map(mapFunc).
flatMap(flatMapFunc).
filter(filterFunc).
count()

The following code, which finds how many times each character appears in all the
words that appear more than 1,000 times in a text file, would break down into three
stages. The reduceByKey operations result in stage boundaries, because computing
their outputs requires repartitioning the data by keys:

val tokenized = sc.textFile(args(0)).flatMap(_.split(' "))

val wordCounts = tokenized.map((_, 1)).reduceByKey(_ + _)

val filtered = wordCounts.filter(_._2 >= 1000)

val charCounts = filtered.flatMap(_._1.toCharArray).map((_, 1)).
reduceByKey(_ + _)

charCounts.collect()

At each stage boundary, data is written to disk by tasks in the parent stage and then
fetched over the network by tasks in the child stage. Thus, stage boundaries can be
expensive and should be avoided when possible. The number of data partitions in the
parent stage may be different than the number of partitions in the child stage. Trans-
formations that may trigger a stage boundary typically accept a numPartitions argu-
ment that determines how many partitions to split the data into in the child stage.
Just as the number of reducers is an important parameter in tuning MapReduce jobs,
tuning the number of partitions at stage boundaries can often make or break an
application’s performance. Choosing too few partitions can result in slowness when
each task is forced to handle too much data. The amount of time it takes a task to
complete often increases nonlinearly with the size of the data assigned to it, because
aggregation operations must spill to disk when their data does not fit in memory. On
the other side, a large number of partitions leads to increased overhead in tasks on
the parent side when sorting records by their target partition, as well as more of the
overhead associated with scheduling and launching each task on the child side.
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Serialization

As a distributed system, Spark often needs to serialize the raw Java objects it operates
on. When data is cached in a serialized format, transferred over the network for a
shuffle, Spark needs a byte stream representation of RDD contents. Spark accepts a
pluggable Serializer for defining this serialization and deserialization. By default,
Spark uses Java Object Serialization, which can serialize any Java object that imple-
ments the Serializable interface. Nearly always, Spark should be configured to
instead use Kryo serialization. Kryo defines a more compact format that serializes and
deserializes far faster. The “catch” is that, to get this efficiency, Kryo requires register-
ing any custom classes defined in the application up front. Kryo will still work
without registering the classes, but the serialization will take up more space and time
because the class name must be written out before each record. Turning on Kryo and
registering classes in code looks like:

val conf = new SparkConf().setAppName("MyApp")
conf.registerkKryoClasses(
Array(classOf[MyCustomClass1l], classOf[MyCustomClass2]))

We can also register classes with Kryo through configuration. When you’re using
spark-shell, this is the only way to do so. Something like the following can be placed
in spark-defaults.conf:

spark.kryo.classesToRegister=org.myorg.MyCustomClass1,org.myorg.MyCustomClass2
spark.serializer=org.apache.spark.serializer.KryoSerializer

Spark libraries like GraphX and MLIlib may have their own set of custom classes, with
a utility method for registering them all:

GraphXUtils.registerKryoClasses(conf)

Accumulators

Accumulators are a Spark construct that allow collecting some statistics “on the side”
while a job is running. The code executing in each task can add to the accumulator,
and the driver can access its value. Accumulators are useful in situations like counting
the number of bad records a job encounters or computing the summed error during a
stage of an optimization process.

For example, Spark MLIibs K-means clustering implementation uses accumulators
for the latter. Each iteration of the algorithm starts with a set of cluster centers,
assigns each point in the data set to its closest center, and then uses the assignment to
compute a new set of cluster centers. The cost of a clustering, which the algorithm is
attempting to optimize, is the sum of distances from each point to its closest cluster
center. To know when the algorithm should terminate, it is useful to compute this
cost after assigning points to their clusters:
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var prevCost = Double.MaxValue
var cost = 0.0
var clusterCenters = initialCenters(k)
while (prevCost - cost > THRESHOLD) {
val costAccum = sc.accumulator(0, "Cost")
clusterCenters = dataset.map {
// Find the closest center to the point and the distance from
// that center
val (newCenter, distance) = closestCenterAndDistance(_,
clusterCenters)
costAccum += distance
(newCenter, _)
}.aggregate( /* average the points assigned to each center */ )

prevCost = cost
cost = costAccum.value

}

This example defines the accumulator’s add function as integer addition, but accumu-
lators can also support other associative functions like set unions.

A task only contributes to the accumulator the first time it runs. For example, if a task
completes successfully, but its outputs are lost and it needs to be rerun, it will not
increment the accumulator again.

Accumulators are an optimization in the sense that, instead, the RDD could be
cached and a separate action run over it to calculate the same results. Accumulators
allow this to be achieved much more efficiently by avoiding caching the data and
avoiding executing another job.

Spark and the Data Scientist’s Workflow

A few of Sparks transformations and actions are particularly useful when youre
exploring and trying to get a feel for a new data set. Some of these operators employ
randomness. These operators use a seed to ensure determinism in the cases that task
results are lost and need to be recomputed or multiple actions take advantage of the
same uncached RDD.

take enables inexpensively looking at the first few elements of an RDD. If there are
no operations preceding it that require shuffles, it only requires computing the ele-
ments in the first partition:

myFirstRdd. take(2)

14/09/29 12:09:13 INFO SparkContext: Starting job: take ...
14/09/29 12:09:13 INFO SparkContext: Job finished: take ...
resi: Array[Int] = Array(1, 2)

takeSample is useful for pulling a representative sample of the data into the driver for
charting, playing with locally, or exporting for nondistributed analysis in a different
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environment like R. Its first argument withReplacement determines whether the
sample may contain multiple copies of the same record:

myFirstRdd.takeSample(true, 3)

14/09/29 12:14:18 INFO SparkContext: Starting job: takeSample ...
14/09/29 12:14:18 INFO SparkContext: Job finished: takeSample ...
resil: Array[Int] = Array(2, 1, 1)

myFirstRdd. takeSample(true, 5)

14/09/29 12:14:18 INFO SparkContext: Starting job: takeSample ...
14/09/29 12:14:18 INFO SparkContext: Job finished: takeSample ...
resil: Array[Int] = Array(2, 1, 1, 2, 4)

myFirstRdd.takeSample(false, 3)

14/09/29 12:14:18 INFO SparkContext: Starting job: takeSample ...
14/09/29 12:14:18 INFO SparkContext: Job finished: takeSample ...
resil: Array[Int] = Array(2, 1, 4)

top collects the k largest records in a data set according to a given Ordering. It is use-
ful in a variety of situations, such as, after giving each record a score, examining the
records with the highest scores. Its opposite is takeOrdered, which finds the smallest
records. The following snippet generates random numbers between 0 and 100 and
finds the ones that occur most and least often:

import scala.util.Random

val randNums = Seq.fill(10000)(Random.nextInt(100))
val numberCounts = sc.parallelize(randNums).map(x => (x, 1)).
reduceByKey(_ + _)

numCounts.top(3)(0rdering.by(_._2))

14/09/30 23:38:42 INFO SparkContext: Starting job: top ...
14/09/30 23:38:42 INFO SparkContext: Job finished: top ...
res6: Array[(Int, Int)] = Array((58,127), (25,120), (28,120))

numCounts.takeOrdered(3)(0Ordering.by(_._2))

14/09/30 23:39:54 INFO SparkContext: Starting job: takeOrdered ...
14/09/30 23:39:54 INFO SparkContext: Job finished: takeOrdered ...
res7: Array[(Int, Int)] = Array((74,78), (92,79), (8,80))

top functions by first finding the k largest values within each partition in a dis-
tributed fashion, pulling these onto the driver, and then finding the largest kK among
all of them. This works well when k is small, but ends up pulling the entire data set
onto the driver when k is as large or larger than the size of data in a single partition.
For these cases, it is wiser to sort the full data set in a distributed manner using sort
ByKey and then take the first k elements:

numberCounts.map(_.swap).sortByKey().map(_.swap).take(5) (1)

14/10/06 13:19:08 INFO SparkContext: Starting job: sortByKey ...

14/10/06 13:19:08 INFO DAGScheduler: Job 2 finished: take ...

res3: Array[(Int, Int)] = Array((87,73), (19,76), (75,76), (25,81), (22,81))
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© Swap the order of the tuples to sort on the numbers instead of the counts

This code pulls data into the driver, but often sampling is useful for creating dis-
tributed data sets as a step in a pipeline. sample creates an RDD by sampling its par-
ent RDD. Like takeSample, it can function with and without replacement. It accepts
an argument that determines the number of elements to sample as a fraction of the
size of the parent RDD. When sampling with replacement, Spark accepts a value
greater than one, which is useful for blowing up the size of a data set to stress-test a
pipeline. sample is also useful for permuting data, which is good practice before run-
ning online algorithms over it like stochastic gradient descent:

val bootstrapSample = rdd.sample(true, .6)

val permuted = rdd.sample(false, 1.0)

randomSplit returns multiple RDDs that, combined, would make up their parent. It
is particularly useful for tasks like splitting data into train and test sets:

fullData.cache()
val (train, test) = fullData.randomSplit(Array(0.6, 0.4))

File Formats

Spark examples commonly employ textFile, but it is usually recommended to store
large data sets in binary formats, both to take up less space and to enforce typing.
Avro and Parquet files are the standard row and columnar formats respectively used
to store data on Hadoop clusters. Avro also refers to an in-memory representation of
on-disk data from both of these formats.

The following example demonstrates reading Avro fields with name and favor
ite_color fields:

import org.apache.hadoop.io.NullWritable

import org.apache.hadoop.mapreduce.Job

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.avro.generic.GenericRecord

import org.apache.avro.mapred.AvroKey

import org.apache.avro.mapreduce.AvroKeyInputFormat

val conf = new Job()

FileInputFormat.setInputPaths(conf, inPaths)

val records = sc.newAPIHadoopRDD(conf.getConfiguration,
classOf[AvroKeyInputFormat[GenericRecord]],
classOf[AvroKey[GenericRecord]],
classOf [NullWritable]).map(_._1.datum)

val namesAndColors = records.map(x =>
(x.get("name"), x.get("favorite_color")))
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Similarly, for Parquet:

import org.apache.hadoop.mapreduce.Job

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.avro.generic.GenericRecord

import parquet.hadoop.ParquetInputFormat

val conf = new Job()
FileInputFormat.setInputPaths(conf, inPaths)
val records = sc.newAPIHadoopRDD(conf.getConfiguration,
classOf[ParquetInputFormat],
classOf[Void],
classOf[GenericRecord]).map(_._2)

val namesAndColors = records.map(x =>
(x.get("name"), x.get("favorite_color")))

Note that Avro supports two kinds of in-memory representation:

o Avro generics represent records as a map from String keys to Object values.
They are the easiest to get started with when youre exploring a new data set, but
they suffer from some inefficiencies, such as the need to wrap primitive types in
objects.

o Avro specifics use code generation to create Java classes that correspond to the
Avro types. They are omitted here for the sake of brevity, but the GitHub reposi-
tory associated with this book includes an example.

Spark Subprojects

Spark Core refers to Spark’s distributed execution engine and the core Spark APIs. In
addition to Spark Core, Spark contains a gaggle of subprojects that offer functionality
on top of its engine. These subprojects, detailed in the following sections, lie at differ-
ent stages of development. While the core Spark APIs will remain stable and maintain
compatibility, the APIs of subprojects marked alpha or beta are subject to change.

MLlib

MLIib provides a set of machine learning algorithms written on top of Spark. The
project aims for high-quality implementations of standard algorithms, focusing on
maintainability and consistency over breadth. At the time of this writing, MLIlib sup-
ports the algorithms listed in Table A-1.
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Table A-1. MLIib algorithms

Discrete Continuous

Supervised  Decision Forests, Naive Bayes, Linear Support Linear Regression, and Reqularized Variants (Ridge/L2,
Vector Machines, Logistic Regression and LASSO/L1), Decision Forests
Regularized Variants

Unsupervised  K-means Clustering Singular Value Decomposition, UV Decomposition through
Alternating Least Squares

MLIib represents data as Vector objects, which may be sparse or dense. It contains
some light linear algebra functionality for operating on Matrix objects, which repre-
sent local matrices, and RowMatrix objects, which represent distributed collections of
vectors. For laying out and manipulating data under the covers, it relies on Breeze, a
Scala linear algebra library.

At the time of this booK’s writing, MLIib is a beta component, meaning that some
APIs may change in future releases.

Several chapters in this book make use of MLIib’s algorithms:

o Chapter 3 uses MLIibs alternating least squares implementation for making
recommendations.

o Chapter 4 uses MLIibs random decision forests implementation for classification.

o Chapter 5 uses MLIibs K-means clustering implementation for anomaly
detection.

o Chapter 6 uses MLIibs singular value decomposition implementation for text
analysis.

Spark Streaming

Spark Streaming purposes the Spark execution engine for processing data continu-
ously. Where SparK’s typical batch processing executes jobs over large data sets at
once, Spark Streaming aims for low-latency (in the hundreds of milliseconds): as data
becomes available, it needs to be transformed and dealt with in near real time. Spark
Streaming functions by running jobs over the small batches of data that accumulate
in small time intervals. It is useful for rapid alerting, for supplying dashboards with
up-to-date information, as well as for cases that require more complex analytics. For
example, a common use case in anomaly detection is to run K-means clustering on
batches of data, and to trigger a warning if the cluster centers deviate from what is
normal.
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Spark SQL

Spark SQL uses the Spark engine to execute SQL queries—either on data sets stored
persistently in HDES or on existing RDDs. It enables manipulating data with SQL
statements within a Spark program:

import org.apache.spark.sql.hive.HiveContext
val sglContext = HiveContext(sc)

val schemaRdd = sqlContext.sql("FROM sometable SELECT columnl, column2, column3")
schemaRdd.collect().foreach(println)

Spark SQLs core data structure is a SchemaRDD, an RDD with Schema information
that gives a name and type for each column. You can create a SchemaRDD by program-
matically annotating existing RDDs with type information, or by accessing already
Schemad data stored in Hive, as shown in the preceding example.

At the time of this booK’s writing, Spark SQL is an alpha component, meaning that
some of its APIs may change in future releases.

GraphX

Spark contains a subproject called GraphX that leverages its engine for graph process-
ing. In computer science, the word graph refers to a structure consisting of a set of
vertices connected by a set of edges. Graph algorithms are useful for tasks like examin-
ing the connections between users in a social network, understanding the importance
of pages on the Internet based on what pages link to them, or running any analyses
that depend on the connectivity structure between entities. GraphX represents graphs
with a pair of RDDs—an RDD of vertices and an RDD of edges. It exposes an API
similar to that of Google’s Pregel graph processing system, and can express common
algorithms like PageRank in only a handful of lines of code.

At the time of this book’s writing, GraphX is an alpha component, meaning that some
of its APIs may change in future releases. Chapter 6 makes use of a variety of
GraphX’s capabilities for analyzing citation graphs.
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APPENDIX B
Upcoming MLIib Pipelines API

Sean Owen

The Spark project moves fast. When we started writing in August 2014, version 1.1.0
was nearing release. As this book goes to print in April 2015, Spark 1.2.1 is hot off the
presses. In this version alone, almost 1,000 improvements and fixes were added.

The project carefully maintains binary and source compatibility for stable APIs in
minor releases, and most of MLIib is considered stable. The examples in the book
should therefore continue to work with Spark 1.3.0 and future 1.x releases; those
implementations wont be going anywhere. However, new releases often add or
change experimental or developer-only APIs, which are still evolving.

Spark MLIib has, of course, featured prominently in these chapters, and a book cover-
ing Spark 1.2.1 would not be complete without mentioning a significant new direc-
tion for MLIib that appears, in part, as an experimental API: the “Pipelines” API.

It’s officially only a month or so old, subject to change, and not nearly complete, and
so it has not been possible to build the book around it. However, it's worth knowing
about, having already seen what MLIib offers today.

This appendix will give a quick look at the new Pipelines AP]I, the result of work dis-
cussed in SPARK-3530 in the Spark project issue tracker.

Beyond Mere Modeling

In purpose and scope, the current MLIib resembles other machine learning libraries.
It provides an implementation of machine learning algorithms, and just the core
implementation. Each takes preprocessed input as an RDD of LabeledPoint or Rat
ing objects, for example, and returns some representation of the resulting model.
That's all. This is quite useful, but solving a real-world machine learning problem
requires more than just running an algorithm.
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You may have noticed that in each chapter of the book, most of the source code exists
to prepare features from raw input, transform the features, and evaluate the model in
some way. Calling an MLIib algorithm is just a small, easy part in the middle.

These additional tasks are common to just about any machine learning problem. In
fact, a real production machine learning deployment probably involves many more
tasks:

Parse raw data into features

Transform features into other features

Build a model

Evaluate a model

Tune model hyperparameters

Rebuild and deploy a model, continuously

Update a model in real time

® N Uk W=

Answer queries from the model in real time

Viewed this way, MLIib provides only a small part: #3. The new Pipelines API begins
to expand MLIib so that it’s a framework for tackling tasks #1 through #5. These are
the very tasks that we have had to complete by hand in different ways throughout the
book.

The rest is important, but likely out of scope for MLIlib. These aspects may be imple-
mented with a combination of tools like Spark Streaming, JPMML, REST APIs,
Apache Kafka, and so on.

The Pipelines API

The new Pipelines API encapsulates a simple, tidy view of these machine learning
tasks: at each stage, data is turned into other data, and eventually turned into a model,
which is itself an entity that just creates data (predictions) from other data too
(input).

Data, here, is always represented by a specialized RDD borrowed from Spark SQL,
the org.apache.spark.sql.SchemaRDD class. As its name implies, it contains table-
like data, wherein each element is a Row. Each Row has the same “columns,” whose
schema is known, including name, type, and so on.

This enables convenient SQL-like operations to transform, project, filter, and join this
data. Along with the rest of Spark’s APIs, this mostly answers task #1 in the previous
list.
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More importantly, the existence of schema information means that the machine
learning algorithms can more correctly and automatically distinguish between
numeric and categorical features. Input is no longer just an array of Double values,
where the caller is responsible for communicating which are actually categorical.

The rest of the new Pipelines API, or at least the portions already released for preview
as experimental APIs, lives under the org.apache.spark.ml package—compare with
the current stable APIs in the org.apache.spark.mllib package.

The Transformer abstraction represents logic that can transform data into other data
—a SchemaRDD into another SchemaRDD. An Estimator represents logic that can build
a machine learning model, or Model, from a SchemaRDD. And a Model is itself a
Transformer.

org.apache.spark.ml.feature contains some helpful implementations like
HashingTF for computing term frequencies in TF-IDF, or Tokenizer for simple pars-
ing. In this way, the new API helps support task #2.

The Pipeline abstraction then represents a series of Transformer and Estimator
objects, which may be applied in sequence to an input SchemaRDD in order to output a
Model. Pipeline itself is therefore an Estimator, because it produces a Model!

This design allows for some interesting combinations. Because a Pipeline may con-
tain an Estimator, it means it may internally build a Model, which is then used as a
Transformer. That is, the Pipeline may build and use the predictions of an algo-
rithm internally as part of a larger flow. In fact, this also means that Pipeline can
contain other Pipeline instances inside.

To answer task #3, there is already a simple implementation of at least one actual
model-building algorithm in this new experimental API, org.apache.spark.ml.clas
sification.LogisticRegression. While its possible to wrap existing
org.apache.spark.mllib implementations as an Estimator, the new API already
provides a rewritten implementation of logistic regression for us, for example.

The Evaluator abstraction supports evaluation of model predictions. It is in turn
used in the CrossValidator class in org.apache.spark.ml.tuning to create and
evaluate many Model instances from a SchemaRDD—so, it is also an Estimator. Sup-
porting APIs in org.apache.spark.ml.params define hyperparameters and grid
search parameters for use with Crossvalidator. These packages help with tasks #4
and #5, then—evaluating and tuning models as part of a larger pipeline.
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Text Classification Example Walkthrough

The Spark Examples module contains a simple example of the new API in action, in
the org.apache.spark.examples.ml.SimpleTextClassificationPipeline class. Its
action is illustrated in Figure B-1.

id,text,score words
0/abcdespark’,1 a,b,c,d,e spark
1/bd"0 P Tokenizer b,d
2/'spark fg h'}1 spark,f.g.h
spark
1
0

id,te)gt.
4'55‘)?* Inj"k Logist'!c
6/mapreduce spark” Regression
Pipeline
y
prediction
1
0
0

Figure B-1. A simple text classification Pipeline

The input are objects representing documents, with an ID, text, and score (label).
Although training is not a SchemaRDD, it will be implicitly converted later:

val training = sparkContext.parallelize(Seq(
LabeledDocument(OL, "a b ¢ d e spark", 1.0),
LabeledDocument(1L, "b d", 0.0),
LabeledDocument(2L, "spark f g h", 1.0),
LabeledDocument(3L, "hadoop mapreduce", 0.0)))

The Pipeline applies two Transformer implementations. First, Tokenizer separates
text into words by space. Then, HashingTF computes term frequencies for each word.

Finally, LogisticRegression creates a classifier using these term frequencies as input
features:

val tokenizer = new Tokenizer().
setInputCol("text").
setOutputCol("words")
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val hashingTF = new HashingTF().
setNumFeatures(1000).
setInputCol(tokenizer.getOutputCol).
setOutputCol("features")

val lr = new LogisticRegression().
setMaxIter(10).
setRegParam(0.01)

These operations are combined into a Pipeline that actually creates a model from
the training input:

val pipeline = new Pipeline().
setStages(Array(tokenizer, hashingTF, 1r))
val model = pipeline.fit(training) (1)

© Implicit conversion to SchemaRDD

Finally, this model can be used to classify new documents. Note that model is really a
Pipeline containing all the transformation logic, not just a call to a classifier model:

val test = sparkContext.parallelize(Seq(
Document(4L, "spark i j k"),
Document(5L, "L m n"),
Document(6L, "mapreduce spark"),
Document(7L, "apache hadoop")))
model.transform(test).
select('id, 'text, 'score, 'prediction). (1]
collect().
foreach(println)

© Not strings; syntax for Expressions

The code for an entire pipeline is simpler, better organized, and more reusable com-
pared to the handwritten code that is currently necessary to implement the same
functionality around MLIib.

Look forward to more additions, and change, in the new org.apache.spark.ml Pipe-
line API in Spark 1.3.0 and beyond.
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inputting LabeledPoint objects, 67
making predictions with, 79
model building, 68
positive and negative classes, 69
random decision forests, 62, 77
regression vs. classification, 59
rule evaluation, 72
simple example of, 63
training examples and sets, 61
tuning, 73
vectors and features, 60
def keyword, 21
degree distribution, 123, 135-138
degrees method, 136
dependencies, managing with Maven, 18
digital images, 224
dimensions, 61
directed acyclic graph (DAG), 5
distributed processing frameworks, 122
document frequencies, 105
document space vector, 108
document-document relevance, 115
Dremel system, 204
driver process, 237

E
edge weighting scheme, 138
EdgeRDD, 130
edges, 121, 245
EdgeTriplet, 139
Eigendecomposition, 185
eigenfaces facial recognition, 119
encoding

1-of-n, 66

one-hot, 66
entity resolution, 11

(see also data cleansing)
entropy, 72, 95
Esri Geometry API, 155-159
Euclidean distance, 82, 87
executor processes, 237
Expected Shortfall (see Conditional Value at

Risk (CVaR))

external libraries, referencing, 18

F

facial recognition applications, 119
factors, market, 175, 181
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features
categorical, 61, 66, 75
feature vectors, 61
in weather prediction, 60
normalization of, 91
numeric, 61
file formats
Parquet, 204, 242
producing multiple with Avro, 196, 242
used in bioinformatics, 196
filter() function, 45
financial risk estimation
Conditional Value at Risk (CVaR), 174
data preprocessing for, 178
data retrieval, 177
data visualization, 189
determining factor weights, 181
evaluating results, 190
model for, 176
Monte Carlo Simulation, 173
sampling, 183
terminology used, 174
trial runs, 186
Value at Risk (VaR), 173, 175
first method, 18
flatMap() function, 45
for loops, 20
foreach function, 20
foreach(println) pattern, 20
functions
anonymous, 21
closure of, 47
declaring, 21
partially applied, 53
special, 23
specifying return type of, 21
testing, 21

G

Gaussian mixture model, 98
genomics data (see big data)
GeoJSON, 157
GeometryEngine, 156
geospatial data analysis
data preparation, 159-167
data retrieval, 152
sessionization in Spark, 167-171
taxi application, 151, 164
with Esri Geometry API and Spray, 155-159

with Spark, 153
Gini impurity, 72, 95
graph theory, 121
GraphX, 129, 245

H
hashCode method, 131
histograms, 29
historical simulation model, 175
hockey-stick graph, 100, 119
homogeneity, 95
HPC (high-performance computing), 2
hyperparameters
effect on accuracy, 79
evaluating, 74
in decision trees, 68, 71
in recommender engines, 53
lambda, 53
trainImplicit() and, 48

|
images, digital, 224
implicit feedback, 40
implicit type conversion, 24
impurity, measures of, 72,95
index (financial), 174
index (search), 99
information gain, 72
information retrieval
entropy and, 72
Receiver Operating Characteristic curve, 51
innerJoin method, 137
interactions, observed vs. unobserved, 41
interface definition language (IDL), 196
invalid records, 160
inverse document frequencies, 106
IPython Notebook, 221
iteration, importance in data science, 3

J

Java Object Serialization, 239
jobs, 237

JodaTime, 153

Jupyter, 221

K

k selection, 87
k-fold cross validation, 52
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K-means clustering, 82, 231-236

Kaggle competition, 65, 84

KDD Cup, 84

kernel density estimation, 183

keystrokes, reducing number of, 22

Kupiec's proportion-of-failures (POF) test, 191
Kyro serialization, 239

L
lab notebooks, 221
lambda hyperparameter, 53
Latent Dirichlet Allocation (LDA), 119
Latent Semantic Analysis (LSA)
benefits of, 113
concept discovery via, 99, 109
data preprocessing for, 102
document-document relevance, 115
example data set, 102
filtering results, 111
lemmatization in, 101, 104
multiple-term queries, 117
relevance scores, 112
singular value decomposition in, 100, 107
term frequency computation, 105
term-document matrix, 100
term-document relevance, 116
term-term relevance, 113
latent-factor models, 41
learning algorithms, 61
lemmatization
definition of term, 101
in latent semantic analysis, 104
libraries, referencing external, 18
list washing, 11
(see also data cleansing)
local clustering coefficient, 143
logistic regression, 80
low-dimensional representation, 112
low-rank approximation, 100

M

machine learning
anomaly detection, 81-98
decision trees, 59-80
definition of term, 39
recommender engines, 39-57
Mahalanobis distance, 98
MAP (mean average precision), 51
Map class, 29

map() function, 26, 45
MapReduce, 4, 122
mapTriplets operator, 140
market factors
definition of term, 175
determining weights, 181
examples of, 176
matrix factorization model, 41
Maven, 18
maximum bins, 71
maximum depth, 71
MD5 hashing algorithm, 131
MEDLINE citation index, 122
merge-and-purge, 11
(see also data cleansing)
MeSH (Medical Subject Headings), 123
metric recall, 69
Michael Mann's hockey-stick graph, 100, 119
MLIib
algorithms supported, 243
decision trees and forest implementation, 62
K-means clustering implementation, 82
least squares implementation, 41
Pipelines API, 247-251
singular value decomposition implementa-
tion, 107
vector objects in, 244
models
importance of well-performing, 4
recommender engines, 46
topic, 119
Monte Carlo Simulation
benefits of Spark for, 173
general steps of, 175
(see also financial risk estimation)
MulticlassMetrics, 68
multigraphs, 132
multiple-term queries, 117
multivariate normal distribution, 177, 185
music recommendations (see recommender
engines)

N

narrow transformations, 237

negative class, 69

Netflix Prize, 43

network average clustering coefficient, 144
network intrusion, 83

network science, 121
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(see also co-occurrence network analysis)
neuroimaging data (see time series data)
non-diagonal covariance matrix, 177
normalization, 91
NScalaTime, 153
numeric features, 61
numPartitions argument, 238

0

one-hot encoding, 66
Option class, 45
overfitting
accuracy and, 74
avoiding, 65, 71

P
PageRank algorithm, 122
parameters, 53
parent stage, 238
Parquet format, 204
parse function, 26
partially applied functions, 53
partition-by-trials approach, 187
Pearson's chi-squared test, 138
Pearson's correlation implementation, 185
Pipelines API, 247-251
pixels, 224
plots, creating with breez-viz, 183
polysemy, 101
portfolio density function (PDF), 175, 183
positive class, 69
precision
evaluating, 67
Vvs. accuracy, 69
predicate pushdown, 204
predict() method, 52
predictive models (see big data; decision trees;
recommender engines)
predictors, 61
Pregel, 144
principal component analysis, 90, 119
println function, 20
proportion-of-failures (POF) test, 191
PubGene search engine, 123
purity, measures of, 72, 95
PySpark
benefits of, 217
implementation of, 219
overview of, 218

using with IPython Notebook, 221
Python, 218

Q

q-value, 174
QR decomposition, 43

R

R statistical package, 89-91
random decision forests
accuracy of, 78
benefits of, 62, 78
feature consideration in, 78
key to, 77
random number generation, 187
Range construct, 31
rank, 42, 53
Rating objects, 46
recall, metric, 69
Receiver Operating Characteristic (ROC)
curve, 51
recommender engines
ALS recommender algorithm, 41
AUC computation, 51
common deployments for, 39
data preparation, 43
evaluating recommendation quality, 50
example data set, 40
hyperparameter selection, 53
making recommendations, 55
model creation, 46
spot checking recommendations, 48
record deduplication, 11
(see also data cleansing)
record linkage, 11
(see also data cleansing)
regression to the mean, 59
regression, vs. classification, 59
relevance scores
cosine similarity score, 112
document-document, 115
term-document, 116
term-term, 113
REPL (read-eval-print loop), 13
Resilient Distributed Datasets (RDDs)
benefits of, 5
bringing data to the client, 18
creating, 15
extending functionality of, 30
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invoking actions on, 19
K-means clustering and, 86
parallelize method, 16
persisting data in, 27

reusable code, 31-36

ROC (Receiver Operating Characteristic)
curve, 51

row-major data layout, 204

RPC frameworks, 197

S

sampling
in financial risk simulation, 183
multivariate normal distribution, 185
saveAsTextFile action, 19
Scala
aggregations, 28
anonymous function support, 21
benefits of, 10
collection types in, 29
declaring functions in, 21
histogram creation, 29
reusable code, 31-36
structuring data, 23-27
XML library, 125
scores, standard, 91
search indexes, 99
sequence feature, 196
serialization frameworks
Apache Avro, 196
compatible with Spark, 239
types available, 197
sessionization, 167-171
setEpsilon(), 89
setRuns(), 89
shuffles, 237
Silhouette coefficient, 98
singular value decomposition (SVD), 90, 100,
107,119
sliding method, 181
small-world networks
cliques and clustering coefficients, 143
common properties of, 142
computing average path length, 144
real vs. idealized, 142
sortBy function, 30
span() method, 44
Spark
advanced operations

accumulators, 239
file formats, 242
serialization, 239
underlying execution model, 237
workflow in data science, 240
basic operations
aggregations, 28
bringing data to the client, 18-22
histogram creation, 29
interactive shell vs. compilation, 18
programming overview, 11
record linkage, 11
reusable code, 31-36
shipping code from client, 22
Spark Shell/SparkContext, 13-18
benefits of, ix, 4-6
benefits of for Monte Carlo simulation, 173
benefits of using Scala with, 10
directed acyclic graph of operators, 5
enhanced development with, 5
in-memory processing, 5
interfacing with Adam, 198
Python API, 218
sessionization in, 167-171
subprojects of, 243
temporal and geospatial data in, 153
version 1.2.1, 247
vs. MapReduce, 4
Spark Core, 243
Spark SQL, 245
Spark Streaming, 97, 244
Spray, 157
stacks, 224
stages, 237
standard scores, 91
Stanford Core NLP project, 104
stats() method, 44
stemming, 104
stop words, 104
StorageLevel values, 27
StringOps class, 24
strings, parsing into structured format, 23-27
summary statistics, 30-36
supervised learning, 60, 80, 81
(see also machine learning)
syntax, abbreviated, 22

I

take method, 19
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tasks, 237

temporal data analysis
data preparation, 159-167
data retrieval, 152
sessionization in Spark, 167-171
taxi application, 151
with JodaTime and NScalaTime, 153
with Spark, 153

term frequency, 105

term space vector, 108

term-document matrix, 100

term-document relevance, 116

term-term relevance, 113

TE-IDF vectors, 105

Thunder library
core data types, 229
Hadoop/Spark versions, 221
installation of, 222
K-means clustering with, 231-236
loading data with, 222-231
overview of, 221

time series data
analyzing with PySpark, 218-221
analyzing with Thunder, 221-236
in neuroimaging, 217

toBoolean method, 24

tolnt method, 24

topic models, 119

trainClassifier, 68

training examples/sets, 61

trainRegressor, 68

transcription factor binding sites, predicting
from ENCODE data, 206-213

triangle count, 143

try-catch blocks, 161

tuples, 23-25

type conversion, implicit, 24

type inference, 17

typing, reducing keystrokes, 22

U

UC Irvine Machine Learning Repository, 13

unsupervised learning, 82
(see also anomaly detection)
benefits of, 82
clustering, 82
purpose of, 82

vV
Value at Risk (VaR)
confidence interval, 190
methods of calculation, 175
role in financial risk estimation, 173
variables
broadcast, 46
categorical, 94
continuous, 30-36
in decision trees, 61
mutability of, 17
selection and scoring, 36
variance-covariance model, 175
vectors, 61
in Latent Semantic Analysis, 108
TE-IDF vectors, 105
vertex attribute, 130
VertexRDD, 130
vertices, 121, 245
visualization, 89-91, 119, 189
voxels, 224
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XML documents
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