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Introduction

This book was born out of a fortuitous meeting. In July of 2012, Eric Carter had just 

returned to the U.S. following a three-year assignment in Germany launching a shopping 

search product for Microsoft to the European market. He was sorely disappointed 

because the effort he had led in Europe was shutting down and so began looking for 

a new gig. While exploring opportunities in Bing, Microsoft’s search engine, he met 

Matthew Hurst. Matthew had joined Microsoft as a member of Live Labs, an innovation 

group tasked with exploring novel solutions and applications around search, the cloud 

and connected technologies. From there he’d worked on various incarnations of maps 

and local search, often on features connecting text with location. What followed was a 

complementary partnership that vastly improved the quality of Bing’s local search and 

ultimately led both on a learning journey of how data engineering projects benefit from 

the application of Agile principles.

The Agile Manifesto (or, The Manifesto for Agile Software Development, to give it its 

full title) came into being in 2001 as a collaboration of the seventeen signatories1. It is 

summarized as four values (individuals and interactions are valued over process and 

tools, working software over comprehensive documentation, customer collaboration 

over contract negotiations, and responding to change over following a plan) and twelve 

principles. In this book, we examine each of the principles in turn, and relate them to 

our experiences in working with data and inference methods in a number of projects 

and contexts.

When the authors met, Bing’s local search product was very much a work-in-

progress. The quality of the catalog of local businesses was improving, but it was still far 

behind the Google, market leader at the time. Matthew was on the local search data team 

and he, along with other members of the team, had been exploring some innovative 

ideas to better leverage the web and integrate machine learning to dramatically improve 

the catalog. Eric saw a number of compelling challenges in the local search space as it 

existed in Bing, and decided to join as the engineering manager of Bing’s local data team.

1�Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin 
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, 
Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas.
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At this point in his career, Eric was no stranger to managing teams at Microsoft, 

having been part of several Visual Studio related products and the now dismantled 

“shopping search” project. However, it was during his time working with Visual Studio 

that he discovered the intrinsic value of Agile, and how much more efficient and happy 

teams were when following Agile principles. Wanting to bring that to his new team, he 

found himself in a quandary— how do you apply Agile to a team that is more about 

producing data than producing software? What would it take to bring Agile to a data 

engineering team?

It wasn’t easy. At first, Agile seemed like an invading foreign agent. The team culture 

was about big ideas discovered through experimentation, long horizon research, and a 

lot of trial and error science projects—all seemingly contrarian to Agile principles like 

scrum, iterative development, predictability, simplicity, and delivering working software 

frequently. With a team focused on producing an exceedingly accurate database of all 

the businesses in the world, defining “done” was nothing short of impossible. After all, 

the singular constant in data is that it contains errors—the work is literally never done. 

Faced with challenges such as communicating to stakeholders how and where the 

team was making progress, determining whether a particular development investment 

was worth making, and ensuring that improvements are delivered at a regular but 

sustainable pace, it became apparent that a modern Agile approach was critical. But how 

does one apply Agile in a team comprised of data scientists and traditional engineers all 

working on data-oriented deliverable?

Traditional Agile processes were intended to reduce unknowns and answer 

questions such as “what does the customer want” and “how can software be delivered 

reliably and continuously”. But in this new project, new world, we already knew what 

the customer wanted (a perfect catalog of local businesses2) but we needed to answer 

questions such as “What’s in the data?” and “What are we capable of delivering based 

on that data?” We needed Agile approaches, but revised for a modern, mixed talent, data 

engineering team.

As we navigated through “next-generation” machine learning challenges, we 

discovered that, without question, Agile principles can be applied to solve problems and 

reduce uncertainty about the data, making for a much happier and efficient team.

2�As we will later see in Chapter 3, what the customer wanted wasn’t quite as simple as I thought.
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Our hope in bringing together this modernized version of Agile methodologies is that 

the proven guidance and hard earned insights found in this book will help individuals, 

technical leads and managers be more productive in the exciting work that is happening 

in machine learning and big data today.

June 2019

Eric Carter

Matthew Hurst
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CHAPTER 1

Early Delivery
Our highest priority is to satisfy the customer through early and continuous 
delivery of valuable [data].

—agilemanifesto.org/principles

Data projects, unlike traditional software engineering projects, are almost entirely 

governed by a resource fraught with unknown patterns, distributions, and biases – the 

data. To successfully execute a project that delivers value through inference over data 

sets, a novel set of skills, processes, and best practices need to be adopted. In this chapter, 

we look at the initial stages of a project and how we can make meaningful progress 

through these unknowns while engaging the customer and continuously improving our 

understanding of the data, its value, and the implications it holds for system design.

To get started, let’s take a look at a scenario that introduces the early stages of a 

project that involved mining local business data from the Web which comes from the 

authors’ experience working on Microsoft’s Bing search engine. There are millions of 

local business locations in the United States. Approximately 50%1 of these maintain  

some form of web site whether in the form of a simple, one-page design hosted by a 

drag-and-drop web hosting service or a sophisticated multi-brand site developed and 

maintained by a dedicated web team. The majority of these businesses update their sites 

before any other representation of the business data, driven by an economic incentive 

to ensure that their customers can find authoritative information about them.2 For 

example, if their phone number is incorrect, then potential customers will not be able to 

reach them; if they move and their address is not updated, then they risk losing existing 

clients; if their business hours change with the seasons, then customers may turn away.

1�Based on analysis of local business feed data.
2�A survey of businesses showed that about 70% updated their web sites first and then other 
channels such as social media or Search Engine Optimization (SEO) representatives.
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A local search engine is only as good as its data. Inaccurate or missing data cannot 

be improved by a pretty interface. Our team wanted to go to the source of the data – the 

business web site – to get direct access to the authority on the business. As an aggregator, 

we wanted our data to be as good as the data the business itself presented on the Web. 

In addition, we wanted a machine-oriented strategy that could compete with the high-

scale, crowd-sourced methods that competitors benefitted from. Our vision was to 

build an entity extraction system that could ingest web sites and produce structured 

information describing the businesses presented on the sites.

Extraction projects like this require a schema and some notion of quality to deliver 

a viable product,3 both determined by the customer – that is, the main consumer of 

the data. Our goal was to provide additional data to an existing system which already 

ingested several feeds of local data, combining them to produce a final conflated output. 

With an existing product in place, the schema was predetermined, and the quality of the 

current data was a natural lower bound on the required quality. The schema included 

core attributes: business name, address, phone number, as well as extended attributes 

including business hours, latitude and longitude, menu (for restaurants), and so on. 

Quality was determined in terms of errors in these fields.

The Metric Is the Customer  The first big shift in going from traditional agile 
software projects to data projects is that much of the role of the customer is 
shifted to the metric measured for the data. The customer, or product owner, 
certainly sets things rolling and works in collaboration with the development team 
to establish and agree to the evaluation process. The evaluation process acts as an 
oracle for the development team to guide investments and demonstrate progress.

Just as the customer-facing metric is used to guide the project and communicate 
progress, any component being developed by the team can be driven by metrics. 
Establishing internal metrics provides an efficient way for teams to iterate on the 

3�Be extremely wary of projects that haven’t, won’t, or can’t define a desired output. If you 
find yourself in the vicinity of such a project, run away – or at least make it the first priority to 
determine exactly what the project is supposed to produce.

Chapter 1  Early Delivery
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inner loop4 (generally not observed by the customer). An inner metric will guide 
some area of work that is intended to contribute to progress of the customer-
facing metric.

A metric requires a data set in an agreed-upon schema derived from a sampling 
process over the target input population, an evaluation function (that takes 
data instances and produces some form of score), and an aggregation function 
(taking all of the instance results and producing some overall score). Each of 
these components is discussed and agreed upon by the stakeholders. Note that 
you will want to distinguish metrics of quality (i.e., how correct is the data) from 
metrics of impact or value (i.e., what is the benefit to the product that is using the 
data). You can produce plenty of high-quality data, but if it is not in some way an 
improvement on an existing approach, then it may not have any actual impact.

�Getting Started
We began as a small team of two (armed with some solid data engineering skills) with 

one simple goal – to drive out as many unknowns and assumptions as possible in the 

shortest amount of time. To this end, we maximized the use of existing components to 

get data flowing end to end as quickly as possible.

Inference  We use the term “inference” to describe any sort of data 
transformation that goes beyond simple data manipulation and requires some form 
of conceptual modeling and reasoning, including the following techniques:

–– Classification: Determining into which bucket to place a piece of data

–– Extraction: Recognizing and normalizing information present in a document

–– Regression: Predicting a scalar value from a set of inputs

–– Logical reasoning: Deriving new information based on existing data rules

4�An “inner loop” is the high-frequency cycle of work that developers carry out when iterating on a 
task, bringing it to completion. It is a metaphorical reference to the innermost loop in a block of 
iterative code.

Chapter 1  Early Delivery
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Structural transformations of data (e.g., joining tables in a database) are not 
included as inference, though they may be necessary components of the systems 
that we describe.

Adopting a strategy of finding technology rather than inventing technology allowed 

us to build something in a matter of days that would quickly determine the potential of 

the approach, as well as identify where critical investments were needed. We quickly 

learned that studying the design of an existing system is a valuable investment in 

learning how to build the next version.

But, before writing a single line of code, we needed to look at the data. Reviewing 

uniform sample of web sites associated with businesses, we discovered the following:

–– Most business web sites are small, with ten pages or less.

–– Most sites used static web content – that is to say, all the information 

is present in the HTML data rather than being dynamically fetched 

and rendered at the moment the visitor arrives at their site.

–– Sites often have a page with contact information on it, though it is 

common for this information to be present in some form on many 

pages, and occasionally there is no single page which includes all 

desired information.

–– Many businesses have a related page on social platforms (Facebook, 

Instagram, Twitter), and a minority of them only have a social 

presence.

These valuable insights, which took a day to derive, allowed us to make quick, 

broad decisions regarding our initial implementation. In hindsight, we recognized 

some important oversights, such as a distinction between (large) chain businesses and 

the smaller “singleton” businesses. From a search perspective, chain data is of higher 

value. While chains represent a minority of actual businesses, they are perhaps the 

most important data segment because users tend to search for chain businesses the 

most. Chains tend to have more sophisticated sites, often requiring more sophisticated 

extraction technology. Extracting an address from plain HTML is far easier than 

extracting a set of entities dynamically placed on a map as the result of a zip code search.

Chapter 1  Early Delivery
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Every Task Starts with Data   Developers can gain insights into the 
fundamentals of a domain by looking at a small sample of data (less than 100). If 
there is some aspect of the data that dominates the space, it is generally easy to 
identify. Best practices for reviewing data include randomizing your data (this helps 
to remove bias from your observations) and viewing the data in as native a form as 
possible (ideally seeing data in a form equivalent to how the machinery will view it; 
viewing should not transform it). To the extent possible, ensure that you are looking 
at data from production5 (this is the only way to ensure that you have the chance to 
see issues in your end-to-end pipeline).

With our early, broad understanding of the data, we rapidly began building out an 

initial system. We took a pragmatic approach to architecture and infrastructure. We 

used existing infrastructure that was built for a large number of different information 

processing pipelines, and we adopted a simple sequential pipeline architecture that 

allowed us to build a small number of stages connected by a simple data schema. 

Specifically, we used Bing’s cloud computation platform which is designed to run 

scripted processes that follow the MapReduce pattern on large quantities of data. 

We made no assumptions that the problem could best be delivered with this generic 

architecture, or that the infrastructure and the paradigms of computation that it 

supported were perfectly adapted to the problem space. The only requirement was that 

it was available and capable of running some processes at reasonable scale and would 

allow developers to iterate rapidly for the initial phase of the project.

Bias to Action  In general, taking some action (reviewing data, building a 
prototype, running an experiment) will always produce some information that is 
useful for the team to make progress. This contrasts with debating options, being 
intuitive about data, assuming that something is “obvious” about a data set, and 
so on. This principle, however, cannot be applied recklessly – the action itself must 
be well defined with a clear termination point and ideally a statement of how the 
product will be used to move things forward.

5�“Production” refers to your production environment – where your product is running and 
generating and processing data.

Chapter 1  Early Delivery
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If we think about the components needed for web mining local business sites to 

extract high-quality records representing the name, address, and phone number of these 

entities, we would need the following:

•	 A means of discovering the web sites

•	 A crawler to crawl these sites

•	 Extractors to locate the names, addresses, and phone numbers on 

these sites

•	 Logic to assemble these extracted elements into a record, or records 

for the site

•	 A pipeline implemented on some production infrastructure that can 

execute these components and integrate the results

Each of these five elements would require design iterations, testing, and so on. In 

taking an agile discovery approach to building the initial system, we instead addressed 

the preceding five elements with these five solutions:

•	 Used an existing corpus of business records with web sites to come 

up with an initial list of sites to extract from – no need to build a 

discovery system yet

•	 Removed the need to crawl data by processing data only found in the 

production web corpus of the web search engine already running on 

the infrastructure we were to adopt for the first phase of work

•	 Used an existing address extractor and built a simple phone number 

extractor and name extractor

•	 Implemented a naïve approach to assemble extracted elements into a 

record which we called “entification”

•	 Deployed the annotators and entification components using an 

existing script-based execution engine available to the larger Bing 

engineering team that had access to and was designed to scale over 

data in the web corpus

Chapter 1  Early Delivery
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We discovered as part of this work that there were no existing off-the-shelf approaches 

to extracting the business name from web sites. This, then, became an initial focus for 

innovation. Later in the project, there were opportunities to improve other parts of the 

system, but the most important initial investment to make was name extraction.

By quickly focusing on critical areas of innovation and leveraging existing systems 

and naïve approaches elsewhere, we delivered the first version of the data in a very short 

time frame. This provided the team with a data set that offered a deeper understanding 

of the viability of the project. This data set could be read to understand the gap between 

our naïve architecture and commodity extractors and those that were required to deliver 

to the requirements of the overall project. Early on, we were able to think more deeply 

about the relationship between the type of data found in the wild and the specializations 

required in architecture and infrastructure to ensure a quality production system.

Going End to End with Off-the-Shelf Components  Look for existing pieces 
that can approximate a system so that you can assess the viability of the project, 
gain insight into the architecture required, recognize components that will need 
prioritized development, and discover where additional evaluation might be 
required for the inner loop. In large organizations, likely many of the components 
you need to assemble are already available. There are also many open source 
resources that can be used for both infrastructure and inference components.

Getting up and running quickly is something of a recursive strategy. The team 

makes high-level decisions about infrastructure choices (you want to avoid any long-

term commitments to expensive infrastructure prior to validating the project) and 

architecture (the architecture will be iterated on and informed by the data and inference 

ecosystem). This allows the team to discover where innovation is required, at which 

point the process recurses.

To build the name extractor, we enlisted a distance learning approach. We had 

available to us a corpus of data with local entity records associated with web site URLs. 

To train a model to extract names from web sites, we used this data to automatically label 

web pages. Our approach was to

	 1.	 Randomly create a training set from the entire population of 

business-site pairs.

	 2.	 Crawl the first tier of pages for each URL.

Chapter 1  Early Delivery
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	 3.	 Generate n-grams from the pages using a reasonable heuristic 

(e.g., any strings of 1–5 tokens found within an HTML element).

	 4.	 Label each n-gram as positive if they match the existing name 

of the business from the record and negative otherwise – some 

flexibility was required in this match.

	 5.	 Train a classifier to accept the positive cases and reject the 

negative cases.

If we think about the general approach to creating a classifier, this method allows 

for the rapid creation of training data while avoiding the cost of manual labeling, for 

example, creating and deploying tools, sourcing judges, creating labeling guidelines, and 

so on.

Important Caveat to Commodity System Assembly  You may state at some 
point that the code you are writing or the system you are designing or the platform 
you are adopting is just a temporary measure and that once you have the “lay of 
the land,” you will redesign, or throw experimental code away, and build the real 
system. To throw experimental code away requires a highly disciplined team and 
good upward management skills. Once running, there is pressure to deliver to the 
customer in a way that starts building dependencies not only on the output but 
on the team’s capacity to deliver more. Often this is at the cost of going back and 
addressing the “temporary” components and designs that you used to get end to 
end quickly.

�Data Analysis for Planning
Now that we have a system in place, it’s time to look at the initial output and get a sense 

of where we are. There is a lot of value in having formal, managed systems that pipe data 

through judges and deliver training data, or evaluation data, but that should never be 

done prior to (or instead of) the development team getting intimate with every aspect of 

the data (both input and output). To do so would miss some of the best opportunities for 

the team to become familiar with the nuances of the domain.

Chapter 1  Early Delivery



9

There are two ways in which a data product can be viewed. The first looks at the 

precision of the data and answers the question “How good are the records coming  

out of the system?” This is a matter of sampling the output, manually comparing it to the 

input, and determining what the output should have been – did the machine get it right? 

The second approach focuses on the recall of the system – for all the input where we 

should have extracted something, how often did we do so and get it right?

The insight that we gained from reviewing the initial output validated the project and 

provided a backlog of work that led to our decision to expand the team significantly:

•	 Overall precision was promising but not at the level required.

•	 Name precision was lower than expected, and we needed to 

determine if the approach was right (and more features were needed) 

or if the approach was fundamentally flawed.

•	 The commodity address extractor was overly biased to precision, and 

so we missed far too many businesses because we failed to find the 

address.

•	 Our understanding of the domain was naïve, and through the 

exposure to the data, we now had a far deeper appreciation of the 

complexity of the world we needed to model. In particular, we started 

to build a new schema for the domain that included the notion of 

singleton businesses, business groups, and chains, as well as simple 

and complex businesses and sites. These concepts had a strong 

impact on our architecture and crawling requirements.

•	 The existing web index we leveraged to get going quickly was not 

sufficient for our scenario – it lacked coverage, but also failed to 

accurately capture the view of certain types of pages as a visitor to the 

site would experience them.

Now that we had a roughed-in system, we could use it to run some additional 

exploratory investigations to get an understanding of the broader data landscape  

that the project had opened up. We ran the system on the Web at large (rather than the 

subset of the Web associated with our existing corpus of business data records). More 

about this later.

Chapter 1  Early Delivery
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Data Evaluation Best Practices  It is common for data engineering teams early 
on in their career to use ad hoc tools to view and judge data. For example, you 
might review the output of a component in plain text or in a spreadsheet program 
like Excel. It soon becomes apparent, however, that even for small data sets, 
efficiency can be gained when specialized tools that remove as much friction as 
possible for the workflows involved in data analysis are developed.

Consider reviewing the output of a process extracting data from the Web. If you 
viewed this output in Excel, you would have to copy the URL for the page and paste 
it into a browser, and then you would be able to compare the extraction with the 
original page. The act of copying and pasting can easily be the highest cost in the 
process. When the activities required to get data in front of you are more expensive 
than viewing the data itself, the team should consider building (or acquiring) a tool 
to remove this inefficiency. Teams are distinguished by their acknowledgement of 
the central importance of high-quality data productivity tools.

Another consideration is the activity of the evaluation process itself. Generally, 
there are judgment-based processes (a judge – that is to say, a human – will look 
at the output and make a decision on its correctness based on some documented 
guidelines) and data-based processes (a data set – often called a ground truth 
set – is constructed and can be used to fully automate the evaluation of a process 
output). Ground truth-based processes can be incredibly performant, allowing the 
dev team to essentially continuously evaluate at no cost.

Both tool development and ground truth data development involve real costs. It 
is a false economy to avoid these investments and attempt to get by with poorly 
developed tools and iteration loops that require manual evaluation.

�Establishing Value
With the basics of the system in place, we next determined how to ship the data and 

measure its value, or impact. The data being extracted from the Web was intended for 

use in our larger local search system. This system in part created a corpus of local entities 

by ingesting around 100 feeds of data and merging the results through conflation/

Chapter 1  Early Delivery
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merge (or record linkage as it is often termed). The conflation/merge system had its 

own machine learning models for determining which data to select at conflation/merge 

time, and so we wanted to do everything we could to ensure our web-extracted data 

got selected by this downstream system. We got an idea of the impact of our system 

by both measuring the quality of the data and how often our data got selected by the 

downstream system. The more attributes from our web-mined data stream were selected 

and surfaced to the user, the more impact it had. By establishing this downstream notion 

of impact, we could chart a path to continuous delivery of increasing impact – the idea 

being to have the web-mined data account for more and more of the selected content 

shown to users of the local search feature in Bing.

We considered several factors when establishing a quality bar for the data we were 

producing. First was the quality of existing data. Surprisingly, taking a random sample 

of business records from many of the broad-coverage feeds (i.e., those that cover 

many types of businesses vs. a vertical feed that covers specific types of businesses 

like restaurants) showed that the data from the broad-coverage feeds was generally 

substandard. We could have made this low bar our requirement for shipping. However, 

vertical and other specialized feeds tended to be of higher quality – around 93% 

precision per attribute. It made sense, then, to use these “boutique” vertical data sources 

as our benchmark for quality.

In addition, we considered the quality of the data in terms of how well that quality can 

be estimated by measurement. Many factors determine the accuracy of a measurement, 

with the most important being sample design and size and human error. These relate to 

the expense of the judgment (the bigger the sample, the more it costs to judge, the lower 

the desired error rate, the more judges one generally requires per Human Intelligence 

Task (HIT)6). Taking all this into account, we determined that a per attribute precision of 

98% was the limit of practically measurable quality. In other words, we aimed to ship our 

data when it was of similar quality to the boutique feeds and set a general target of 98% 

precision for the name, address, and phone number fields in our feed.

6�A Human Intelligence Task (HIT) is a unit of work requiring a human to make a judgment about 
a piece of data.
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Because we had established a simple measurement of impact – the percentage 

of attributes selected from this feed by the downstream system – our baseline impact 

was 0%. We therefore set about analyzing the data to determine if there was a simple 

way to meet the precision goal with no immediate pressure on the volume of data that 

we would produce. The general strategy being to start small, with intentionally low 

coverage, but a high-quality feed. From there, we could work on delivering incremental 

value in two ways. The first involved extending the coverage through an iteration 

of gap analysis (identifying where we failed to deliver data and make the required 

improvements to ensure that we would succeed in those specific extraction scenarios). 

The second involved identifying additional properties of local businesses that we could 

deliver. Local business sites, depending on the type of business, have many interesting 

properties that benefit local search users such as business hours, amenities, menus, 

social media identities, services offered, and so on.

Discovering the Value Equilibrium   By establishing the evaluation process, the 
customer helped frame the notion of value. In many cases, declaring a target – say 
the data has to be 80% precise with 100% coverage – is acceptable, but a worthy 
customer would require more. In many projects, the data being delivered will be 
consumed by another part of a larger system and further inference will be done 
on it. This downstream process may alter the perceived quality of the data you are 
delivering and have implications for the goals being set. There is a tension between 
the lazy customer – for whom the simplest thing to do is to ask for perfect data – 
and the lazy developer, for whom the simplest thing to do is deliver baseline data. 
Setting a target is easy, but setting the right target requires an investment. The 
most important goal to determine is the form and quality of the output that will 
result in a positive impact downstream. This is the exact point at which the system 
delivers value. While managing this tension is a key part of the discussion between 
the customer and the team, it is even better to have the downstream customer 
engage in consuming the data before any initial goal is set, to better understand 
and continuously improve the true requirements.

Of course, determining the exact point at which value is achieved is an ideal. 
If the downstream consumer is unclear on how to achieve their end goal, then 
determining the point-of-value for your product would require them to complete 
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their system. You have something of a data science “chicken and the egg” 
problem. In some cases, it is pragmatic to agree on some approximation of value 
and develop to that baseline. After this, the consumer can determine if it is enough 
for their needs.

There is one situation in which value in a data product can be relatively easily 
determined. If there is an existing product, then the customer can determine value 
in economic terms relative to the comparative quality of the data you provide. They 
may be happy to get slightly lower-quality data in return for lower costs, or pay 
more to get a significantly better product.

�From Early to Continuous Delivery
We left our project, extracting local business data from the Web, open to delivering 

additional value in several ways:

	 1.	 Delivering more entities and covering the greater universe of local 

businesses in the market

	 2.	 Extracting more detailed attributes per business (such as images 

or reviews) and providing richer facets of information to users of 

the data

	 3.	 Applying the approach to different markets (including different 

languages), thereby extending the impact globally

	 4.	 Applying this approach to different verticals and extracting things 

like events or product information from a larger universe of web 

sites

	 5.	 Finding additional consumers of the data

	 6.	 Considering delivering the platform and tool chain itself as a 

product either internally or externally

Each avenue offers an opportunity to continuously deliver value to both the existing 

customer and parent corporation. The more we deliver to our immediate customer, the 

more we can positively and efficiently impact the product and our end users; the greater 

the ROI.
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�More Entities
Once we had established the feed as a viable data source for our first-party customer, 

we set about attacking the coverage problem from a couple of analytical angles. On one 

hand, specific implementation details and presentation formats of the web sites could 

make it easier or harder to extract the desired information. Take the address for example. 

If it was present in a single HTML node (such as a div or span) on the site and the site 

was presented in as a static HTML file, then extraction would be relatively simple. If, 

on the other hand, the site dynamically loaded content or used an image to present the 

address, then a more sophisticated technology would be required. These challenges 

necessitated successive investments in what we termed technical escalation. In other 

words, to get more data, we needed to increase the sophistication of our extraction stack.

Another consideration that our data analysis presented was the complexity of the 

underlying business. A small business with a single location would generally not present 

too much confusing information on their site. It would have a unique address, a single 

phone number, and so on. Now consider something marginally more interesting – a 

local bakery that participates in farmers’ markets during the weekend. Now the site 

might legitimately include additional address information – the addresses of the markets 

where it would appear in the next few weeks. Fully exploring business complexity, we 

discovered that multi-brand, international chains not only present with multiple brands 

at many – potentially thousands – locations but through necessity leverage dynamic and 

interactive web site architecture to implement search engines for their customers to 

locate a chain location.

How to Look at Data  It is always important to view data in a form identical to 
that of your system’s view, especially on the Web. If your system is processing web 
pages, reviewing example pages in a browser will hide many details, for example, 
there may be invisible portions of text in the underlying HTML. Viewing such a 
page in a browser will hide these, but your inference system will read these as 
being equivalent to the visible data. Only when your team has a full understanding 
of the underlying “natural” form of the data should you employ views that 
transform the data in some way.
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With these two rich (and not entirely independent) dimensions to explore, we 

approached the planning by first prioritizing the potential investments in terms of 

expected impact and estimated cost. Second, we iterated on solutions to those areas in a 

tight loop: implement, evaluate, and improve.

In this way, we continuously improved our product by delivering more impact 

through coverage while iterating both on our overall architecture and on individual 

components.

The relationship between the concepts being modeled and the system requirements 

can be illustrated by our need to adapt the system to handle chain web sites. A 

chain, technically, is any business that has multiple locations for which the customer 

experience is interchangeable. An example would be McDonald’s, because you get 

essentially the same experience at any location. Chains often make their location data 

available to site visitors through a search interaction, for example, you enter a zip code 

in the Starbucks store locator and get a response with a list of coffee houses in or near 

that location. To crawl and extract from these pages, we needed to emulate the user 

searching, dynamically render the result page, and follow the links from that page to 

individual store detail pages.

�More Attributes
Another way we iterated on the value the system delivered was through additional 

attributes. Early on, we chose a design for the core of our system that included a 

simple interface for functions we called annotators. An annotator is the computational 

analogy of a human annotator who looks at a page and highlights spans of text that 

denote a specific type of thing. We created name annotators, address annotators, 

phone annotators, and so on. Each could be implemented in complete isolation, tested, 

evaluated, and deployed to the pipeline through a configuration – we call this approach 

a plugin architecture (see Figure 1-1 for an overview).
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Isolation allowed us to work on an annotator, without dependency on other 

components, and deploy with no additional testing to other components. In this way, 

we could expand from our original three properties – name, address, phone – to an 

arbitrary set of properties. Perhaps the most interesting of these was the business hours 

annotator. Understanding how this was developed provides some interesting insights 

into the relationship between the nature of the entities in the real world, the manner in 

which they present themselves on the Web, and the requirements of a system designed 

to extract that data in the context of a local search engine.

Figure 1-1.  In a plugin architecture, components – in this case, annotators – can 
be developed, tested, and managed independently of the runtime. A configuration 
is used to deploy components to a pipeline as required.
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It is possible to model business hours semantically by intuition – many businesses 

have a simple representation of open and closed times, one for each day of the week. 

But it requires looking at the data, that is, actual business web sites, to truly understand 

the sophistication required to both model the domain and build the right extraction 

technology. Businesses may use inclusive and exclusive expressions (“open from 9 to 5 

but closed from 12 to 1 for lunch”), they may be vague (“open until sundown”), and they 

may describe exceptions (“except for national holidays”). In more sophisticated sites, 

business hours may present in the moment, that is, in a way that only makes sense in the 

context of the date the site is visited (“Today: 9–5, Tomorrow: 9–6, etc.).

Studying the data led us to think hard about how we collect data in the first place 

through crawling the Web. While the general web index was fine as a starting point, if 

just 1% of businesses in our corpus were changing their business hours every week, we 

would need to refresh our data far more frequently than that of a large-scale index which 

would not update most business pages as quickly as it would update a more dynamic 

page like that of a news site or social site. In reality, the number of sites required to 

service a local business extraction system is many orders of magnitude smaller than 

that required for the general web search engine. And so, it made perfect sense for us 

to remove our dependency on this initial approach and invest in our own crawling 

schedule.

Finally, business hours are not linguistically similar to names, addresses, or phone 

numbers, having far more internal structure and variance of expression. This meant that 

we had to invest more heavily in the specific annotator to deliver business hours data. 

Again, studying the data informs the next iteration of architecture, requirements, and 

technology choices.

�More Markets
As the project progressed, we began connecting with other teams that were interested in 

the general proposition – leveraging the Web as an alternative to licensed feeds for local 

search. This led to partnerships with teams tasked with delivering local data for other 

markets (e.g., a country-language pair). By taking the pluggable approach to architecture 

and partnering with other teams, we transitioned from being a solution for a single 

scenario to a platform for a growing number of scenarios.

Different markets presented different motivations and variables. In some cases, 

less budget for licensed data incentivized the team for that market to seek out more 

automated approaches to delivering data; in others, there simply weren’t any viable 
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sources of data approaching the quality that the end product demanded. To continue 

delivering on the investment at this level required us to fully support the operational side 

of the system (from deployment automation to DRI7 duties). We provided approaches 

to deliver the pluggable components in a way that could leverage the experience in the 

original instantiation, but was also flexible enough to meet the specific needs of those 

markets, and a commitment to creating, maintaining, and improving tools for every part 

of the developer workflow.

�More Quality
Expanding the coverage of a system requires constantly assessing and maintaining the 

quality of the output. In some cases, this can involve adjusting and evolving the current 

method. In others, it requires investing in a switch to a more general approach or some 

sort of hybrid or ensemble approach. In our journey with local extraction from the Web, 

we encountered many instances of this.

We wanted to switch the method we were using for address extraction. The initial 

commodity solution, which was giving us reasonable precision but lacked recall, had to 

be replaced. We opted for a machine-learned approach (based on sequence labeling) 

and an efficient learning method similar to active learning. To make the transition, we 

created a regression set and continuously improved the model until we were satisfied 

that it was a viable replacement. From there, we could take advantage of a more general 

model to continue to extend our recall and maintain quality.

Another very real aspect of shipping industrial inference systems is managing errors 

that impact the current performance or are otherwise of great importance to one of your 

consumers. A typical problem with extracting from the Web is that the distribution of 

problems in the population changes over time. For example, while the system might 

have happily been delivering data from a specific site for some time, if the site makes 

a change to a presentation format that wasn’t present or was rare in the development 

period, the system may suddenly stop producing quality results, or any results at all. If 

the consuming system was, for some reason, very sensitive to the data from this site, 

then it would be pragmatic to implement either some form of protection or some form of 

rapid mitigation process.

7�A DRI is an acronym for “Designated Responsible Individual.” This is the person who is on call 
on a particular week to resolve any live site issues that may come up with the running product.
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�The Platform as a Product: More Verticals and Customers
Having expanded the contributions made by the investment in web mining through 

coverage, attributes, and markets, the future for additional value lies in transforming the 

platform itself into a product. Getting to this level requires a decision around the business 

model for the product. While our original goal was to deliver business data, expanding 

to ship the platform as a general-purpose capability meant that we would be shipping 

software and services. This path – from solution to platform to product – is not uncommon 

and represents orders-of-magnitude jumps in value of investment at each step.

�Early and Continuous Delivery of Value
Projects that aim to extract value from data through some form of inference are often, 

essentially, research projects. Research projects involve many unknowns and come with 

certain types of risk. These unknowns and risks tend to be markedly different from those 

in traditional application development. Consequently, we need to rethink our notions of 

the customer, the core development iteration, what form our product takes, and how we 

deliver.

At the core of the types of projects we are interested in is some type of inference  

over potentially large data. Your team must have the ability to intelligently explore the 

search space of data and inference solutions in the context of an overall product and 

well-defined business need, so that

•	 The customer is engaged, and their expectations are managed – an 

engaged customer will ensure that the details of the final product 

align with the business case requirements. The customer will see the 

implication of the project – especially how the nature and potential of 

the data can influence the final result and be best consumed.

•	 Progress is articulated appropriately and continuously – including 

prototypes, preliminary improvements that are below the required 

standard for a Minimal Viable Product (MVP), and eventual success 

in delivering and maintaining the data product. An ideal customer 

will even get ahead of delivery and assist in the success of the project 

by building stubs or prototypes of the consuming system if they are 

not already available.
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•	 The customer fulfills the role of helping the team to establish and 

prioritize work. The customer understands that involvement is a vital 

and equal voice that helps guide, shape, and land the project.

Projects, both traditional and data, tend to have the following phases:

	 1.	 Initialization

	 2.	 Delivery of a baseline product, or Minimal Viable Product (MVP)

	 3.	 Delivery to requirements

	 4.	 Maintenance

	 5.	 Expansion

In most of the phases, the central development loop, that is, the process by which 

your team will deliver some sort of inference capability, will be characterized by the 

workflow illustrated in Figure 1-2.

•	 Requirements generation is an iterative process involving the 

customer and the development team, refining the initial tasks 

through analysis of data representative of the population targeted by 

the system.

•	 An approach to evaluation is determined and implemented to allow 

progress toward the targeted data quality to be tracked.

•	 The development team collects data to be used in developing 

inference components, including training data and evaluation data 

for their inner loop.

•	 Evaluation, data analysis, and error analysis are used to improve 

the models but also, where needed, to improve the evaluation 

process itself.

Our goal in this book is to help you navigate delivery through this workflow and to 

understand how the contexts of each process influence the overall success.
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While a lot of focus is given to advances in the core models and training techniques 

in the inner loop, in industrial contexts, it is also important to acknowledge the position 

your contribution will have in the overall workflow of the deployed system. As shown in 

Figure 1-3, you may be responsible for a simple, single-component system or be building 

Figure 1-2.  The process by which a team delivers inference capability
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a larger, multicomponent system or developing a subset of such a system. In any of these 

cases, you may have one or more internal and external customers.8

Finally, there is the selection of an appropriate strategy of progress (Figure 1-4). 

Given a domain of data and an inference problem, we can aim to cover the domain 

entirely from the beginning and make improvements overall to the quality of our 

output, or we can partition the problem into sub-areas of the data domain (with distinct 

characteristics that allow for narrow focus in problem solving) and achieve high quality 

in those sub-areas before moving on to include additional tranches of the domain. For 

example, if we were building a system to identify different types of wildlife in video, 

we could start with building a data set for all types of animals and then training our 

system to recognize them. For a fixed cost, we would have a small amount of data for 

Figure 1-3.  Simple end-to-end system (a) vs. a multi-data, multicomponent 
system (b)

8�The notion of internal and external is somewhat arbitrary, especially in large corporations. 
The reality is that some customers are closer to you organizationally and some are at a greater 
distance.
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each animal, and our recognition quality might be low. For the same cost, we could 

alternatively create labeled data for just a small number of animals and get quickly end 

to end with high quality.

Another example of this is in the domain of information extraction from the Web. 

A “quality first” strategy would focus on simple web sites where there is little variation 

between sites and few technical hurdles (e.g., we could limit our input to plain HTML 

and ignore, for the time being, problems associated with dynamically rendered pages – 

images, flash, embedded content, etc.). A “breadth first” strategy would attempt to 

extract from all these forms of input with the initial system and likely end up with lower-

quality extractions in the output.

Figure 1-4.  Strategy for progress in large-scale inference projects. The top line 
represents prioritizing quality first and then turning attention to scale. Here, 
scale means the ability to handle more and more types of input. In a document 
processing system, for example, this would mean processing many genres of 
document in many file formats. The bottom line represents prioritizing scale first 
and then working on quality – in other words, investing in handling a large variety 
of documents and later driving for quality. In an agile process, the top line is 
preferred as it is the shortest route to delivering value to the customer.
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�Conclusion
In Chapter 1, “Early Delivery”, we looked at ways in which a team can get up and running 

on a new inference project. We touched on the central role of metrics and a culture that 

is biased to action to enable quick iterations using data analysis to inform the evolution 

of all aspects of the project.

In Chapter 2, “Changing Requirements”, we will discuss how you can build systems 

that are designed for change.
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CHAPTER 2

Changing Requirements
Welcome changing requirements, even late in development. Agile processes 
harness change for the customer's competitive advantage.

—agilemanifesto.org/principles

The one constant in data engineering projects is change. Sometimes the change is in the 

data itself – for example, a system to detect fraudulent patterns of data will inevitably 

be outsmarted by future attacks causing the system to become less effective. Ideas 

about what to do to solve a data problem change as the data is explored and analyzed. 

Customers can be fickle and change their mind about what they want and what features 

are most important to them. There is also change in the machine learning algorithms 

and techniques available to use – machine learning research is continually moving 

forward. Finally, competing offerings are changing – a strong competitor is often 

difficult to keep up with and must be tracked closely to ensure they aren’t getting an 

insurmountable competitive advantage.

The most successful data engineering projects consider change to be inevitable 

and build in at the start mechanisms for dealing with change. In this chapter, we will 

consider several strategies for dealing with change which include building models 

that are more resilient to change, monitoring change in the performance of shipped 

features and models, ensuring that models and their features are testable and agile, and 

measuring the performance of your own product and competing offerings.

�Building for Change
Perhaps the hardest culture to develop in a data engineering team, especially one that is 

just starting out, is the idea that “we are in this for the long term.” If you don’t start with that 

cultural principle, the investments that are made will all be short-term wins that will be 

increasingly difficult to maintain over time as requirements and the data landscape change.
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It is also important to not get too attached to a particular component or architecture. 

If systems are designed in a loosely coupled way from the start, rewriting a problematic 

component or system should always be considered as an alternative to refactoring 

or continuing to fix a long tail of bugs in that component. As discussed in Chapter 1: 

Early Delivery, this provides a strategy for getting started – connect a lot of existing 

components together to get something working end to end quickly, but do it in a loosely 

coupled way so you can replace or upgrade parts of the system as needed. You should be 

ready to throw away the first system you build as you learn more about the problem you 

are trying to solve and find that the initial pipeline of components doesn’t work well for 

the problem at hand.

�Measurement Built for Change
As mentioned in Chapter 1: Early Delivery, one of the most important things to establish 

early on in a team is metrics. Once metrics are established, you must fund a dedicated 

effort to keep the metrics aligned to the business goals of the project. We found that on 

a project with about 50 developers, it was a good idea to budget five developers to focus 

solely on measurement. At times it felt like even that was too little of an investment. 

We called this team of five developers the “Measurement Team.”

Measurement  Measurement is to data projects what unit tests are to traditional 
software projects. If you have robust measurement, you can evaluate new 
components, new architectures, and new paradigms against a truth. If you don’t 
take measurement seriously and invest in it extensively, you can never have a 
successful data engineering project.

What did these five developers do? Well, first they provided a firewall for the rest 

of the team to prevent the rest of the development team (and shipping models) from 

being contaminated by test sets. One key principle to follow in machine learning is to 

not contaminate your training data with your test data or developers will start to learn 

patterns in the test data, overfit to the problem being measured, and skew the metrics so 

it looks like you are doing better than you really are. Most significant data problems will 

be apparent in your training data.
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We built an organizational boundary around this principle by keeping the test 

sets only accessible to the measurement team. In practice, we found it was too easy to 

have test data leak into training data or subtly into developers’ minds and effectively 

fool ourselves into thinking we were better than we were without this organizational 

boundary in place. The measurement team also acted as the authority for the official key 

metrics for the team which were calculated and tracked on a regular basis and reported 

out in a portal.

The measurement team created systems that could calculate and track any number 

of data metrics the team would need and helped to maintain and store the hundreds 

of different test sets that the team would need. From the start they built measurement 

systems anticipating that the training and test sets would change and the team metrics 

would change.

They also designed the web-based applications that human judges would use to 

score and label data and systems to manage and track judgments made on the data. 

Some of these judgments were used to evaluate our performance on certain key 

metrics – for example, the accuracy of business phone numbers. Other judgments were 

used as training data for machine learning models.

The labeling web applications were called HIT apps. A HIT (Human Intelligence 

Task) was a judgment made by a judge about a piece of data, and the system was 

designed to maximize the number of judgments a judge could make per hour while 

simultaneously maximizing the accuracy of each judgment. HIT apps were built on a 

general platform that served many similar teams and ensured that each team didn’t 

have to reinvent common functionality used in our scoring and labeling systems. These 

systems were designed with the expectation that the type of HIT apps needed would 

change over time and even that strategies for managing judges would change over time.

Invest in Tools  Many teams underinvest in tools that in the long run will give 
the team great efficiency. Just as a team writing code benefits greatly from a 
high-quality development IDE, source code control, continuous integration and 
deployment system, and so on, a data engineering team benefits greatly from 
high-quality machine learning tools, HIT app creation tools, and data exploration 
and evaluation tools.
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A team creates systems for measurement very differently if they are building them 

for the “long term.” For example, it becomes important to have a HIT app system with 

reusable components that can be quickly leveraged when the team decides they need 

to not only measure the accuracy of business phone numbers but also phone numbers 

of associated departments within more complex businesses. A system to track training 

sets and test sets is built much differently if from day one you assume you will potentially 

have thousands of these sets in the long term. Systems to calculate metrics are designed 

much differently if the team knows they will eventually have to report hundreds of 

different metrics for multiple different markets – for example, not just phone number 

accuracy in the United States, but also for 30 additional countries.

The investment in robust systems like this certainly can slow down initial work – but 

in the long run, the increased velocity more than pays for the increased cost of designing 

for change from the start.

Is “Building for the Long Term” Just Waterfall?  Building for the long term 
sounds suspiciously like waterfall development – the approach of figuring out 
everything you need to build up front before developing seems anathema to 
Agile. What we are talking about here is maybe better expressed as pick flexible 
architecture patterns that enable long-term change. As an example, we didn’t 
immediately build support for 30 markets – we initially built support for just the 
US market. But wherever we could in the code, we ensured we didn’t hard code 
to one market as we knew we had to support many. When then in later iterations 
we began to support our second and third and fourth markets, changes had to be 
made to the existing code, but those changes weren’t as extensive as they would 
have been had we not at least planned with our architecture patterns to support 
multiple markets.

�Pipelines Built for Change
A second large investment we made in our team of 50 was to fund a pipeline and 

infrastructure team. This team provided the infrastructure to deploy and run all the 

models and code that the rest of the team would use to generate a new data catalog every 

day. In a team of 50, we dedicated ten members of the team to pipelines. We called this 

team the “Data Pipeline” team.
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The data pipeline team created the online system or “pipeline” that would ingest all 

updates to our disparate data sources every day, run code to normalize that data, host a 

variety of models to improve and aggregate that data, host a stage of our pipeline that we 

called “conflation/merge” which was how we deduplicated the many data sources that we 

had that all had information about the same entity in the world and tried to pick the best 

data from the multiple sources available, and then ultimately publish the data to our catalog.

Environments or Rings   It is beneficial for teams to deploy their system to 
multiple environments (also sometimes called rings) that progressively increase 
in stability. At Microsoft, we generally had three environments. The “Dev” 
environment had the version of the pipeline with the latest check-ins where 
developers worked actively on the product. Loads on the pipeline in the “Dev” 
environment represented only a fraction of the real load the system needed to 
work with. As code in the “Dev” environment was stabilized and all tests passed 
and pipelines were verified to work, the code would then be moved to the “PPE” 
or pre-production environment. This environment would take on loads more 
representative of production loads and acted as a final smoke test environment 
before moving code to “Prod” or the production environment. We established 
“gates” between the environments – basically a battery of tests and metrics that 
needed to pass and be verified to not regress before code could move from Dev to 
PPE and then from PPE to Prod.

Figure 2-1.  A data pipeline

As a brief explainer for our system as we will discuss aspects of it throughout this book, 

our pipeline as shown in Figure 2-1 ingested data about local businesses from hundreds 

of “feeds” that were provided by multiple data providers across the world. For example, 

we had feeds that came from the system we built to extract local businesses from primary 

web sites on the Web which is discussed in Chapter 1: Early Delivery – for example, we 
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would crawl the Walmart site to get the location, phone number, and other information 

for every Walmart in the world. We also had feeds from third-party data providers like 

Yelp and TripAdvisor that had additional data about businesses such as reviews. We also 

had feeds from third parties that scanned phone books. Each day, all that data was re-

fetched and ingested into our data pipeline. The data was normalized (e.g., capitalization 

was standardized, phone number formats were standardized, etc.). We then geocoded all 

address information to a latitude/longitude point on a map using our geocoder.

The data was then matched using the conflation/merge record linkage system, which 

will be described later in this chapter, consisting of four steps: candidate set generation, 

matching, clustering, and merging. The conflation system could detect that record 

9875 in the TripAdvisor feed was talking about the same business as record 5324 in the 

Yelp feed and record 1945 in the web-extracted feed. These three records (in reality, 

we would often have between 25 and 100 feeds that all had a corresponding record to 

contribute to the more popular businesses) would need to be merged together – each 

provider had subtle differences in their data, so we had to use machine learning to both 

decide if two records matched and were talking about the same business and decide 

whether to use the phone number provided by Yelp, TripAdvisor, or web-extracted data 

when the providers had different opinions about what the phone number was. The 

merged entity was then published to our catalog.

The team created the data pipeline very differently knowing it was going to need to 

process multiple markets worth of data, that it was going to be used by many different 

teams in Microsoft, that other teams would need to extend and configure the pipeline 

in different ways, that data feeds and data sources could be modified and added and 

removed at any time subject to current business deals and available data, and that 

a mechanism was needed to manually correct data and have a “correction” layer to 

override any bad results the data pipeline might produce for a particular entity.

Building for change, extensibility, and configurability did involve more upfront work 

in the beginning; but our long-term goal was to ensure that Bing’s local business catalog 

was competitive with Google through leveraging a variety of data sources, the Web, 

and advanced ML models. We wanted to be competitive with Google in every country, 

not just the United States. So the data pipelines were designed in a way that they were 

very configurable and extensible from the start. Pipeline monitoring and tools were 

designed to anticipate multiple data pipelines – one for each market which could run 

independently from one another. Later as we brought online new countries, the process 

was very quick because we had designed with long-term goals in mind.
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Support Teams for Machine Learning   So far, we have basically described two 
disciplines within our team – a measurement discipline and a big data pipeline 
discipline. Both disciplines had to be conversant with machine learning to ensure 
that measurement and the data pipeline supported the data scientists creating 
the models that would run in production. However, this often led to interesting 
management challenges. Often, people in the “measurement” discipline or the “big 
data pipeline discipline” looked across the org at the developers who were in the 
“data scientist” discipline and building the production models and would say, “I 
want to do that.” In general, we would encourage and support people who wanted 
to do that as much as possible as it helped the entire team get better as knowledge 
from the different disciplines moved throughout the various teams. It helped the 
data scientists understand “what could be so hard about running a data pipeline” 
when someone with that background worked in their area. Curiously though, we 
rarely had data scientists ask to spend more time working on the pipelines. To 
offset the lack of desire of data scientists to work in pipelines, we often required 
data scientists to go further once they had a model working on their machine to not 
just throw the model over the fence to the data pipeline team and say “Please run 
this” but actually have the data scientists also do the work to check in and integrate 
their model to the data pipeline and ensure it ran well in production.

�Models Built for Change
In this section, we will look at how machine learning models can be built for change. The 

example we will consider in this section is Bing’s conflation/merge system which was 

used to link records provided from multiple data providers to create each local entity.

�Introduction to a Conflation System

A third large investment we made in our team of 50 was to fund the conflation/merge 

team. This team owned the complex algorithms and machine learning models that were 

used to do record linkage for the system and pick the best values for each key attribute of 

a business when potentially dozens of different values were available to pick from. This 

was the most complex area of our system and had another ten developers dedicated to it. 

We called this team of ten the “Conflation” team.
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The conflation team created the system that matched data coming from the many 

different local data providers that Bing had licensed data from in addition to data 

we extracted from the Web. This record linkage system followed the classic model 

described in Chapter 1: Early Delivery: it started simple, and then as requirements and 

measurements evolved, the system evolved from a simple rule-based system to a much 

more complex ML-based system.

The record linkage component was identified as a key area for improvement and 

rewrite once metrics were developed that showed weaknesses in our record linkage 

system. For the end user, these weaknesses in our system surfaced as “duplicates” – for 

example, a user might search for Starbucks and where the ground truth was that there 

were five Starbucks in their neighborhood, the search engine might come back with six 

Starbucks. This error would typically be caused by record linkage errors where a record 

that corresponded to the fifth Starbucks in the list was not properly linked to the fifth 

Starbucks due to the variation in the data in the records being too high, so instead it 

became an erroneous sixth entry.

Figure 2-2 shows an actual example of this error that comes from Bing in 2014. These 

two entities were constructed from a set of 18 records from 11 providers that should 

have all been linked together to create a single theater entity. But our record linkage 

system saw enough records out of the 18 that were different enough from the others 

that it decided to create two entities. This happened because of the differences in name, 

phone number, and reviews coming from different providers. All the 18 records and 11 

providers associated with this entity are shown in Table 2-1.

Figure 2-2.  An “undermatch” or duplicate error in the data from Bing in 2014
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Bad Data Proliferates   You may wonder why multiple data providers out of 11 in 
the preceding example had identical bad data. This issue happened frequently in 
our space because of the buying and selling of data sets that occurs in the domain. 
A single data provider might get a bad phone number or name (or more likely an 
old and out-of-date phone number). That data provider might sell their data to 
other data providers. Those data providers typically augment the base data by 
adding reviews or some other value on top. They in turn resell their data passing 
on the bad phone number or name. Bing as a consumer of multiple of these 
purchased data sets would often have multiple providers that seemed to “confirm” 
an entity existed because of their agreement in data, but in reality the seeming 
“confirmation” that this must be a real entity because multiple providers were 
describing it in the same way was actually bad data shared among data providers.

Real-World Data Is Noisy  As you study Table 2-1 which shows the actual 
name, address, closed status, phone number, and web site from 11 providers, 
you will see a lot of variation for each field. There are three choices for names for 
the entity, four different address choices, four choices for phone number once it 
is normalized, and multiple gaps in what each provider knows. For example, the 
web site is only known 11 out of 18 times in this example, and only one provider is 
confident enough to assert the entity is open.

Also, you will note a lot of duplicate data provided by certain providers – for 
example, Provider D has four records all purporting to be the Village Theatre.

As users began to report and complain about these duplicate entities in our system, 

we began to develop a measurement that we called “duplicate rate” to measure the 

problem. We would have human judges run a corpus of queries representative of actual 

queries being made by users on the site and then judge the results of each query to 

see how many duplicates were produced. As you might imagine, the judging process 

was complex as it often isn’t obvious that two returned values are duplicates. Judges 

would have to look more deeply at the records we linked together, make phone calls 

to businesses, or try to find primary web sites to validate that a particular entity was a 

duplicate or not.
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Now that we had a duplicate rate metric developed and measured on a regular basis 

(we would update it about every 2 weeks or more frequently when the engineering 

team needed more frequent updates), we began the process of trying to improve it. The 

team also created extensive labeling of records to indicate which records corresponded 

to a real-world entity. This effectively represented a human doing manually what we 

eventually wanted the system to do. The way we did this was we took all the records for a 

given zip code – which often had dozens of records from different providers representing 

the same business – and manually clustered together these records to generate the 

training data that was used by the system.

The team then used this training data to use more sophisticated techniques for 

record linkage and move beyond a rule-based system. The team had to match, cluster, 

and then merge together multiple pieces of data about the same business provided by 

multiple feeds from different data providers. The team created a machine-learned match 

function that was used in matching in addition to machine-learned models to merge 

data together and sophisticated algorithms to cluster related data together into the same 

cluster. The corpus of human-labeled training data representing record clusters was 

used to determine new features that could be added to the match model or cluster and 

merge models to ensure that our duplicate rate decreased.

As our match model improved and our duplicate rate went down, users started to 

complain about a new problem. The way this problem usually manifested itself was a 

particular entity would have a bad phone number, address, or associated reviews. When 

looking into the issue, we found that our system now was too aggressive at reducing 

duplicate records and was now creating what we called “overmatches” where records 

were linked together for distinct businesses that were close together (such as two 

Starbucks within a block from each other which often happens in Seattle) or a business 

that was contained within another business like a coffee shop inside a supermarket.

Figure 2-3 shows an example of an overmatch. In this case, a record for a “Levi Store” 

got linked with a record for a mall called “Seattle Premium Outlets.” Then the merge 

system would determine which data from all the records were linked together and 

believed to represent a single entity. Based on that determination, it would construct the 

final entity by taking the name from a record provided by one data provider – predicted 

to have the best names – and the web site from a record provided by a second data 

provider, predicted to have the highest-quality web site. Unfortunately, the record 

provided by the first data provider actually represented the real-world entity “Seattle 

Premium Outlets,” and the record provided by the second data provider actually 

represented the real-world entity “The Levi’s Outlet.”
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In response to overmatch problems, we developed a second “overmatch” metric 

that we began to regularly measure in addition to duplicate rate. Now we asked judges 

to run a set of queries and look at records the system picked to create each entity. 

Over time, we learned we had to fine-tune the system to optimize both our duplicate 

rate and overmatch metrics. Often, the work required to improve duplicate rate could 

regress overmatch. Sometimes specific work was required to reduce overmatch that 

didn’t directly impact overmatch rate. For example, one common cause of overmatch 

is the preceding example of a parent entity “Seattle Premium Outlets” being conflated 

with child entities, the “Levi Store” in the outlet mall. Work to reduce this overmatch 

typically ended up creating new entities in the catalog that were previously submerged in 

overmatched entities rather than changing the duplicate rate.

�The Conflation System

We will briefly consider the steps that the conflation system used to link records together 

and ultimately merge those records to create each local business entity in the system in 

Figure 2-4. The system consumed data provided by multiple data providers which had 

already been normalized.

Figure 2-3.  An overmatch in the data – from Bing in 2014
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	 1.	 Candidate set generation: In conflation, the fundamental 

operation is to look at two records in the system and decide  

how similar or dissimilar they are. This is accomplished by a 

machine-learned function we called the “match function” that 

takes as input all the attributes of each entity along with many 

calculated features based on the attributes of each entity and 

outputs a similarity score from 0 to 1. The match function is 

expensive to run – so there is no way you can run it on the entire 

n x n matrix of records in the system when n is in the hundreds of 

millions of records for our system. It also doesn’t make sense to do 

so – it is wasted Compute time to compare records that are clearly 

talking about a McDonald’s in Topeka, Kansas, with records that 

are talking about a McDonald’s in Boise, Idaho.

So the first stage of our conflation system looks through the 

records in the system and generates smaller sets of records (which 

we called candidate sets) which have a high likelihood of being in 

the same physical location. For example, a naïve implementation 

of this would be to select the set of all the records that are in a 

particular zip code and run pairwise the match function on all 

those records.

In reality, we divided the map into smaller tiles we called 

quadkeys (roughly the size of a city block). Any entity in a given 

quadkey would be compared with all businesses in the same 

quadkey and the eight other quadkeys surrounding that quadkey 

as shown in Figure 2-5.

Figure 2-4.  The conflation system
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	 2.	 Match: At this stage, the match function which took as input 

hundreds of features that were inferred and calculated for an 

entity pair would be run doing an n x n comparison of all entities 

within a candidate set. As a further optimization, we had a lower-

cost match function that could be run initially to rule out obvious 

non-matching entities and then a higher-cost match function that 

could be run on entities that the low-cost match function could 

not rule out as being similar or dissimilar.

Figure 2-5.  Quadkeys – an entity (E1) is compared with all entities in the same 
quadkey and the eight adjoining quadkeys. All entities except E7 are compared by 
this algorithm.
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For example, we invested in a set of natural language processing 

(NLP) features that would take the input name of an entity and 

for each word in the entity name would tag words that were 

determined to be a person name [P], the name of a business [B], 

the category of a business [C], the department of a business [D], 

and so on. For a business called “State Farm Insurance – John 

Smith,” the tagger would tag it as “State[B] Farm[B] Insurance[C] – 

John[P] Smith[P].” From these additional inferred tags, we created 

features that the match function learned that took such as “Both 

Entities Have Person Names” or “Person Name Similarity Score” 

that would take as input the tagging data from both entities being 

compared and output a 0-1 score.

The match function was then trained against data labeled by 

judges where a judge would determine whether two records from 

data providers were talking about the same entity (see Table 2-1  

for an example of data coming from data providers) and the match 

function would learn which of the hundreds of features it was 

looking at such as “Both Entities Have Person Names” or “Both 

Entities Have the Same Phone Number” should be weighted 

highest when comparing entities of various types.

	 3.	 Connect and cluster: At this stage in the pipe, the match function 

now has output similarity scores for all pairs of entities that are 

nearby each other. This yielded what we called a “connected 

component” where all entities for which the match function was 

run now have an edge between them. With entities connected, 

we now have a new problem to solve, a problem we called 

“clustering” – which is how to determine which records should be 

combined to create a particular cluster which will in turn yield a 

local business.

Clustering determines how many entities to create from that 

connected graph. For example, Figure 2-6 shows how clustering 

would operate on a simple connected graph. Records are 

represented by the nodes a through f. Match scores are on the 

edges between records. The graph is not completely connected 
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because the records a, b, and c were in a different candidate set 

than d, e, and f (likely because the records are too far away from 

each other). In this example, three entities are created from the 

clusters: abc, e, and df. The match scores (on edges between 

records) that are greater than .5 are considered a match and 

match scores lower than .5 are considered a no match.

	 4.	 Cluster correction: At this stage, we kept lists of known duplicates 

or overmatches in the system that were reported by users that the 

conflation system still wasn’t getting correct. So we would have 

“forced matches” to bring together duplicates that the system 

failed on and “forced unmatches” to force apart entities that were 

overmatched. Over time, as our system improved, less of these 

manual corrections were needed.

	 5.	 ID enrichment: We will discuss this later in this chapter when we 

talk about issues around ID stability.

Figure 2-6.  Creating clusters from a connected graph
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	 6.	 Merge: At merge time, we would take all the records that were 

linked together in a cluster and make a decision as to which data 

we would use from all the records in the cluster to create the final 

entity. Here too, we used machine learning to determine which 

data provider had the most correct or trustworthy data to pick. 

For example, in a cluster with data for a restaurant, the machine-

learned merge function might learn to trust a restaurant-specific 

provider for the name for the entity but to trust a phone book–

scanning provider for the phone number for the entity.

	 7.	 Merge correction: At this stage, we kept lists of known merge 

failures reported by users (e.g., cases when we picked an attribute 

that was bad data from a particular provider but another provider 

provided a correct value for that attribute). We would then force 

picking the data from the provider known to be correct. If none 

of our providers were correct, we also had our own Microsoft-

provided feed of data that would cluster into an entity that we had 

manually curated and knew to be correct.

�Building the Conflation System for Change

Perhaps the most significant way this team designed the conflation system for change 

was through anticipating that one match function would not work equally well for all 

world markets. For example, the match function for the US market is highly dependent 

on accurate addresses and the latitude and longitude for businesses. But in a market 

like Brazil, addresses are much less structured and vague than in the United States – 

for example, Brazil addresses will often only indicate a neighborhood with a location 

relative to some landmark in the neighborhood. By anticipating that multiple match 

functions would be needed, the team built the conflation system in a way that many 

elements could be replaced with different more market-specific elements – for example, 

the candidate generation system that in the United States was highly dependent on 

address could be swapped with a less address-sensitive candidate generation system for 

countries like Brazil.

Also, with the realization that many different match functions would need to be 

built, the team built a library of reusable features that could be leveraged in each market-

specific model. This library of reusable features with support for calculating name 

similarity, address similarity, category similarity, phone number similarity, number of 
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spaces in a string, punctuation, and named entity recognizers could be leveraged by the 

multiple conflation models that were created over time, thereby allowing the team to be 

robust in the face of changing requirements. Also, part of this library of reusable features 

were reusable tools for generating and processing the training data for each feature.

�An Architecture to Enable Change
One tough decision the team made early on was to fundamentally pick an architecture 

for our data pipeline and data catalog that enabled change. That architecture decision 

was referred to as the “build the world from scratch every day” decision. There were pros 

and cons to this decision. We will describe what this decision was, why it was made, how 

it helped us, and how it hurt us.

Early on in the process of creating the Bing local data pipeline, it was clear to us 

that our conflation models were still raw and immature and we had a long ways to go 

to achieve the duplicate rate and overmatch rates we hoped for. Unlike Google, we 

didn’t have an army of people at our beck and call – both paid and unpaid – who would 

correct all the errors in our catalog for us. We decided to bet very heavily on machine 

learning and extracting business entities from the Web rather than human curation 

and correction. For that reason, we decided that we would effectively throw away our 

catalog every night and build it from scratch the next day. Our local data catalog was 

fundamentally built around the principles of MapReduce rather than the principles of a 

database – it was created from scratch every day by hundreds of machines all running in 

parallel with our pipeline and all our algorithms and models.

We did have a mechanism of storing past corrections we had received – these were 

fed into the pipeline as another data feed. But by basically recreating the catalog from 

scratch every night, we could fully leverage any improvements in our machine learning 

models. So as an example, if an improvement was made to our match function that 

dramatically improved our duplicate rate, we could instantly benefit the next day when 

we reran all existing data through our pipeline with the new match function. We also 

reduced the risk of a bug introducing a long-lived corruption or degradation to the 

catalog since we were throwing it away every night anyway. A bad model or bug would 

at most impact the catalog for a couple of days until we caught it and fixed the model or 

bug. We also had the ability to roll back to a previous catalog easily if there was a bug in a 

model or in our pipeline.
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One-Off Corrections  When we had a conflation error in production (e.g., 
duplicate businesses that needed to be merged), a manual correction system 
allowed us to quickly fix those issues. But the storing of past corrections proved to 
be a difficult system to manage. Manual corrections made to the conflation system 
tended to cause major quality issues as those corrections aged. As the conflation 
system got better and as input data changed, the manual corrections often got in 
the way, and corrections went from correcting the data to causing data errors. A 
lot of time was spent trying to figure out how to age out or remove corrections that 
were bad. Ultimately, human judges were used to audit on a regular basis which 
corrections were still correct and which were no longer valid.

As hoped, we did indeed achieve great gains by using the approach of rebuilding 

the catalog from scratch each night. As we improved our conflation models, extraction 

models, attribute selection models, and so forth, we could instantly see large 

improvements across the catalog when these changes were deployed. And we avoided 

the complexity of trying to track these changes in a database and reduced our reliance 

on human editors for data.

There were some significant drawbacks however to this approach. First of all, we 

were shortsighted in building our data pipeline in a fundamental “build the whole world” 

approach rather than supporting incrementality in a meaningful way in our data pipeline. 

Even though on a particular day, for example, Yelp might only be giving us a couple 

thousand local business entities that were different than the day before, our pipeline 

still ingested, processed, conflated, and published everything regardless of whether 

the source data for a particular entity had changed in any way. As the number of data 

feeds we got increased, our pipeline became less performant. As the number of models 

we wrote increased, our pipeline further degraded in performance until it was taking 

multiple days to build a new catalog. This reduced the freshness of our local data catalog.

A second significant drawback we had related to what we called “ID churn.” One 

thing that you get from a database system is a fundamentally stable ID. In a large 

MapReduce system like ours where data is re-clustered every day, those clusters can shift 

from day to day as they are fundamentally linked to the match score which can also shift 

as the match function is improved – ID stability became an issue for us. We incorporated 

several ID stabilization techniques in the “ID enrichment” stage in Figure 2-4, but we 

were never able to achieve the level of ID stability that a database system allows.
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Having a system that “built the world from scratch” every day ended up being a 

competitive advantage for us – enabling us to change our catalog, algorithms, and 

models much more quickly than if we had adopted a database-style architecture.

�Tests and Monitoring to Enable Change
Since we had a “build the world from scratch” system, we had to be innovative about 

how we detected that today’s catalog wasn’t catastrophically different than yesterday’s 

catalog. We did that in three ways: monitoring incremental change in the catalog, 

monitoring “sentinel” entities, and computing a quick quality score for our data.

�Monitoring Incremental Change: The Data DRI
We first developed an extensive and configurable system to monitor and alert on 

significant changes in our data from run to run. For example, we could monitor the 

number of phone numbers we published on Monday and compare it to the number of 

phone numbers we published on Tuesday when we rebuilt the catalog from scratch. 

Thresholds could be configured in the system to determine over time how much of a 

change in the number of phone numbers was alarming and worth investigating. Since 

all our data sources were reacquired every day and we used machine learning models 

to pick the best phone number from many different sources, it was not unreasonable 

to see several thousand phone numbers in the catalog change from day to day. So 

we established baseline thresholds for acceptable change in the catalog through 

observation for several weeks and then set alarms that would go off when those numbers 

changed beyond those thresholds.

When one of those monitors would go off – for example, the “an alarming number of 

phone numbers changed today” – a data DRI would begin to investigate. DRI stands for 

“Designated Responsible Individual,” and each week a team member would be assigned 

to be the DRI. The DRI had a set of tools at his or her disposal to investigate changes in 

the data, and after some investigation of the changes that had been made to the system 

since the last run of the pipeline and some manual verification of some of the phone 

numbers that changed, the data DRI would decide to either continue the publish of the 

catalog or trigger an additional investigation by the team.

With this system, it was very important to invest in tools to speed the ability for the 

data DRI to make a “publish/no publish” decision for the catalog. Also, these alerts could 
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trigger at early stages of the run of the creation of the catalog – so while the data DRI was 

investigating whether to let the run continue, precious time was ticking that delayed the 

publish of our next set of updates to the catalog. So, in addition to making significant 

investments in tooling so the DRI could explore what had gone wrong with the pipeline, 

we also made significant investments in tuning alerts and reducing the number of false 

alarms in the system.

�Sentinel Entities
A second embarrassing occurrence that happened more times than we liked was when a 

very important entity suddenly disappeared from the catalog on a new run – for example, 

we had several occasions where large casinos in Las Vegas mysteriously vanished from 

the catalog, and there were no Vegas magicians involved.

To solve this problem, we created a list of hundreds of “too important to ever lose” 

entities that we would explicitly make sure were in the catalog every day. Dropping one 

of these sentinel entities (also sometimes called “hero” entities) was serious enough that 

we would always stop the publish of the catalog and investigate what had happened.

�Daily Judged Metric
A third way we monitored our “built from scratch every day” system was to do a daily 

human-judged metric. Doing human-judged metrics is expensive and takes time, so we 

did a lot of work to reduce the actual number of judgments we had to make when a new 

catalog was published, taking advantage of the very small rate of change in our problem 

space of local data. Big shifts in this metric were usually due to engineering errors, not 

real shifts in the data.

Our daily metric was based on a set of about 1500 entities that were sampled 

at random from the catalog at the start of a 6-month period based on popularity of 

entities. So more frequently shown entities were more likely to be in the set of 1500 

than less frequently shown entities. At the start of the 6-month period, the entities 

were exhaustively judged for accuracy of name, phone, address, category, latitude and 

longitude, web site, and so on. Then, when each new catalog was published, we used a 

variety of techniques to try to find those 1500 entities in the new catalog (since same ID 

was not already ensured, we would try by ID first but then fall back to other matching 

methods). We would then calculate what attributes changed between the old publish 
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and the current publish and send those attributes immediately to judges to judge, and 

then a recalculated metric assessing the overall accuracy of those changes would come 

back usually within an hour.

This metric was another great tool for detecting unwanted change in our database 

and also provided great insights into how our algorithms and models were affecting 1500 

of our key entities. We were able to build a variety of tools to track these 1500 entities as 

they were created each time our pipeline ran to better understand the performance of 

our system.

Metrics Can Sometimes Double as Integration Tests   If you can develop 
metrics that can be recomputed frequently – ideally daily or even better on each 
build and run of the system – these can be used as integration tests as well. We 
had dedicated integration tests, but often our daily metric would catch regressions 
in our system that the integration tests wouldn’t.

�Testing Features
The basic building blocks of many machine learning projects are the features that are 

extracted from the data. In our system, we had two types of features we implemented 

extensively. The first type was an entity attribute similarity feature that took two entities 

as input and computed a similarity score. The second type was an entity additive data 

feature that took a single entity and some corpus of additional information or algorithms 

which would add additional data to the entity through inference.

For example, some entity attribute similarity features that might be extracted from a 

local business entity that could be used for matching included a feature that calculates 

a similarity score between two attributes of businesses ingested by the system. Possible 

attributes that could be compared included business names, locations, categories, 

phone numbers, and so on. Possible algorithms to use to compute similarity scores 

could include the Euclidean distance between two points or an edit distance between 

two names such as a Levenshtein distance.

Some examples of entity additive data features included comparing the phone 

number of an entity against known catalogs of active phone numbers and adding an 

attribute to the entity called “KnownToBeGoodNumber.” Another example would be 

to do spelling corrections on a name to generate a new attribute on an entity called 

Chapter 2  Changing Requirements



47

“SpellCheckedName” or using an address validation component to add an attribute 

called “ValidatedAddress.” These additional entity attributes could also be combined 

with entity attribute similarity features once created.

The set of features we implemented was continually growing as new inference 

techniques and algorithms were explored and grew over time to include thousands of 

features. To enable change in the set of features, two techniques were useful. First, we 

ensured that all new features had good unit testing coverage. Second, we built many 

of the building blocks that were commonly used in feature development into a shared 

common library that could be used by feature writers to quickly develop and create new 

features.

For a while, there was debate on the team about how much unit testing we needed 

to have. Because features are ultimately composed into larger inferences on the data 

and because the quality of the generated data is measured by metrics, bugs in features 

often are detectable because metrics decrease – for example, the overall quality score 

for phone number accuracy in the catalog would usually reflect the impact of adding a 

bug in the “KnownToBeGoodNumber” feature. Ultimately, metrics regressions are one 

useful way to test your system, but we found we benefited by detecting failure as early 

as possible in the system – and a robust set of unit tests as well as high-quality shared 

common libraries assured that we could rapidly change features and find failures as 

early as possible as well as closer to the point of failure, thereby improving our rate of 

additional feature development.

�Testing Learned Models
All the features that we developed were then leveraged by additional machine-learned 

models – typically boosted decision trees – that learned which of the hundreds of 

features were important to the data problem at hand and which were not. This process is 

known as “feature selection” in machine learning.

For example, one model we had predicted whether a given business entity in our 

catalog was closed. It consumed a number of features and was trained on labeled data 

of entities that were verified in the real world to be closed. Once the model was trained, 

it determined the importance of each feature to whether a business was closed or not. 

Table 2-2 shows some of the most important features as determined by the learned 

model. Provider A looks like it has pretty accurate closed data when it is available for a 
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�Labeled Training Data
Another critical thing to get right in the system is the quality and freshness of labeled 

training data. We utilized many labels in our system. For example, in our conflation 

system, we trained our match function with thousands of examples of entities that match 

and don’t match.

Here, the challenges were to have a wide variety of fresh labeled training examples, 

provide clear judgment guidelines about which two entities were a match and which 

ones were not, and monitor the quality of judgments being provided by the judgment 

team.

Having high-quality labeled training data is really the secret sauce to having a strong 

product. We put a lot of emphasis on judge management and education as well as 

auditing of the training data. The ideal setup for us was we would hire judges who would 

sit in proximity to the development team – ideally on the same floor. The development 

team would work with the judges to write very detailed judgment guides for labels. For 

example, our judgment guide for primary web site for a business was 48 pages long and 

entirely created by the development team to ensure that the labels we were getting for 

web sites (we had six) were correct. The 48-page long guide didn’t happen  

business. Also, the number of records in a cluster that concur on the entity being closed 

is an important feature (again think of a cluster as being what is shown in Table 2-1).

Table 2-2.  Importance of various features as determined by the  

machine-learned closed model

Feature Relative Importance

Provider A says the business was moved or renovated 4.5

Ratio of closed entities in the cluster 4.3

Provider A says the business is closed 2.5

Number of entities in the cluster 1.4

Provider B has an entity in the cluster 1.1

Provider C says the business is closed 1.0

Provider D has an entity in the cluster   .9
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immediately – initially, we thought judging primary web site correctness would be easier. 

But over time the judgment team in the process of judging web sites would discover new 

scenarios, labels required would change, the development team would discover they 

needed more data for one feature or another, and so the guidance to the judges would 

change. Judges would also often come to the development team for judgment advice on 

a particularly tricky issue which would then lead to new features in the system or clearer 

judgment guidelines.

Learn from Judges  Judges look at hundreds of examples of data every day 
and end up understanding the data in some cases better than the development 
team themselves. Keep the judges close and meet with them frequently. Write 
down all the strange cases they come across in judgment guidelines. Judges can 
often inspire the development team to create new features as they describe on 
a regular basis to the team the strange real-world cases they come across. It is 
a good practice to have a weekly meeting between the development team and 
judges to hear what is really going on in the data and the types of issues judges 
are encountering.

As an example, initially in our labeling, we asked judges to answer the question “Is 

the web site for the business – say http://www.walmart.com – the official web site?” The 

initial label was Yes, Not Sure, or No. Initially, the Walmart.com site was acceptable. But 

over time, we realized that users wanted store-specific URLs so https://www.walmart.

com/store/3098/bellevue-wa was preferable to the root Walmart.com domain, and so 

we added the label “No – More Appropriate Primary Site Exists” to give to a web site like 

“www.walmart.com”.

Other techniques we would use to ensure quality labels included having more 

than one judge do the same labeling task for the same entity and then detecting when 

multiple judges disagreed on the label for a particular entity. We would regularly review 

the performance of judges who were providing incorrect labels and work to further train 

those judges and update the judgment guidelines to ensure that labeling challenges were 

clearly documented and explained so future labels were correct.
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We strongly advise that the development team stays fully engaged with the judges 

providing labels and invests in creating better and better judgments. In particular, we did 

not use mechanical turk-style judgments unless they were extremely simple judgments – 

it is very hard to get the quality of label you want from crowdsourcing when your 

judgment guidelines for just judging web site accuracy are 48 pages long.

�Responding to Customer DSAT
In Bing, we used the phrase “customer DSAT” to refer to a specific issue in our data or 

user experience that caused customer dissatisfaction – “DisSATisfaction.” For example, 

a common customer DSAT might consist of a business that we listed as being open 

from 9 to 5 on weekends but it was closed on Sundays. An even worse DSAT would be 

a business that we listed as being open from 9 to 5 on weekends but it had gone out of 

business or moved to a different address.

One of the biggest challenges with customer DSAT was deciding whether it was 

a larger problem that required a big team investment and new strategies to solve or 

whether we should just “hot-fix” the specific issue at hand and continue our current 

work. The best example of this dilemma was when the team would get a much dreaded 

“vice president (VP)”–level DSAT. One example on the team was when a vice president 

went to a nearby city in Vancouver and was going to go to a dress shop. The VP searched 

for the dress shop on Bing – it showed as being open. The VP then walked several blocks 

to the dress shop, but the dress shop was found to be out of business.

In our area – maps and local data – having a DSAT like this has a real-world 

consequence. Someone, in this case our vice president, took a possibly pleasant walk 

that then became unpleasant when it was clear it was a walk to nowhere. And then 

the questions the team was asked were, first, what did we do wrong to provide the bad 

business and, second, does it represent a new class of issues or is it an outlier that there 

really was no way that we could have detected given the data that we knew about that 

business.

In the aggregate, our “closed precision” as we called it was pretty high – it was in the 

high 90s that we would get closed right. Our competitors had similarly high numbers. 

But in a catalog of 10 million local entities with a closed precision of say 98%, you 

would still get 200,000 entities which present the wrong closed value. If you move to 

99% precision, you still have 100,000 entities with the wrong closed value. It is basically 

impossible to achieve 100% precision on something as fluid and changing as whether a 

Chapter 2  Changing Requirements



51

business has gone out of business or not – especially when there is little incentive for the 

person who has a failed business to let the world know about it.

In the case of the out-of-business dress shop, when we looked at everything we 

knew in the system about the dress shop, there was no signal we had that could tell us 

that the dress shop was closed. All of the various data providers we had that provided 

us with information about the dress shop all agreed that the dress shop was open. Our 

competitor also had the dress shop open. So to fix this particular DSAT, we just manually 

corrected the entity with the new piece of knowledge our vice president had gained after 

a multi-block walk to the dress shop.

�Identifying Classes of DSATs
Sometimes though, patterns do emerge in customer DSATs that can lead to the 

generation of a “class” of DSATs that can be solved together rather than as a one-off 

fix. These patterns are seen as the team diligently postmortems each customer DSAT 

to determine what happened and if there was any data in the system that could have 

prevented the DSAT.

When we first launched the Bing application for iPhone and Android, we had a 

feature that listed all the restaurants in an area close to the users. Although we always 

had that data in our catalog, typically the way Bing was presenting restaurants was the 

top ten most popular restaurants in a several-block area. In contrast, the way the mobile 

app worked though was that it would present all the known restaurants in a particular 

area, and it suddenly became clear that the application was displaying more of our 

“tail” or less popular entities which had lower quality than our “head” or more popular 

entities. The mobile application was basically exposing a data issue that previous 

presentations of our catalog had hidden through just not having an effective mechanism 

to present more than ten or so results.

This new application created a data crisis where we began to realize we had real 

issues in our long tail of less popular entities. This had never shown up previously on our 

data metrics because we sampled the entities we judged based on popularity – how often 

users clicked on the entities the search results – we called this an “impression-weighted” 

metric. Basically, every time an entity got clicked on, it got put into a “bag” that we would 

draw out of when generating our measurement sets to measure the quality of our data 

catalog. So a popular restaurant like, say, Thomas Keller’s French Laundry in Yountville, 

California, is much more likely to be measured than a less popular restaurant in the 
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same area or, even worse, a closed restaurant that is still somewhere in the data catalog 

showing as open. We called these “tail” entities that were clearly bad, old, closed entities 

“junk entities.”

As we dove into this new “junk entity” crisis, it became clear that there were some 

specific signals in our data that we could leverage to reduce the number of junk entities. 

Specifically, we found these junk entities often came from data providers that had data 

originating from scanning of phone books and whose corpuses were more geared toward 

generating bulk mailings to people where having a bad entity at worst resulted in an 

envelope being returned to the sender – not a customer walking out to a business that no 

longer existed.

We were then able to focus in on this class of DSATs, and we devised a number of 

projects and model changes to remove these junk entities from our catalog. As one 

example, for restaurants, we trained models that weighted higher a signal that a business 

was opened or closed from a provider whose data strength was restaurants rather than 

phone book scanning. We also generated a new set of metrics that were not “impression 

weighted” where any entity in the catalog had an equal chance of being picked for 

measurement as every other entity. This then generated for us a different set of quality 

metrics which more clearly measured our junk entity problem and the number of 

entities in our overall catalog that were bad.

Junk Pizza Hut Entities   A fun example of the problem of junk entities was 
when a partner team exhaustively listed all the Pizza Huts we had records for 
in a particular metropolitan area. Many of them were no longer open because 
they had gone out of business. This led the authors to discover the particularly 
interesting world of what has happened to all the Red Roof–style Pizza Hut 
buildings that were built en masse in the 1970s and 1980s. The book Pizza Hunt 
(www.pizzahunting.com) shows how many of these out-of-business Pizza Hut 
buildings are still being used today as everything from flower shops to doctor offices.
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�Regular Self-Evaluation: Data Wallow and Quality 
Reviews
Sometimes a data crisis is evident to everyone as was the case with the junk entities 

we were seeing in our new mobile treatment of search results. Other times, it is not 

as evident as the team is busy building new features and a data crisis is not properly 

identified.

Two techniques we found very useful to ensure that we were regularly understanding 

our own data problems were the “data wallow” and the “quality review.”

The data wallow is where a subset of the team – perhaps four to six people – would 

meet for an hour and look very deeply at some slice of the data to understand a 

particular data problem. For example, as we worked to identify ways we could solve our 

junk entity problem in our data corpus, we spent a lot of time looking at long tail entities, 

exploring the provenance of those entities and whether additional signals were available 

on the Web or from other providers or sources to classify a particular entity as being junk 

or not. Since junk entities were primarily entities that were valid at some time in the 

past, one source we discovered through data wallows was that we found that for some 

of our junk entities, we could find reviews on the Web that said things like “this was a 

great restaurant, too bad that it has closed.” So we invested in web extraction and NLP 

to detect these signals in reviews we could find for particular entities. Data wallows are 

described in more detail in Chapter 6: Effective Communication.

Data wallows would be combined with another regular practice that in Bing was 

called the “Search Quality Review.” In this review meeting which typically happened 

every couple of months, we would aggregate together all of the DSAT that was reported 

in the last couple of months and try to identify if there were any patterns of DSAT that 

indicated we had a data crisis as shown in Figure 2-7.
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We also used these regular quality review meetings to look at a scorecard of our 

top-line metrics. Figure 2-8 shows an example report of which numbers had improved 

since the last quality review and which had gotten worse since the last review. We also 

compared these with measurements of our key competitors to see where we were 

relative to key competitors.

Figure 2-7.  Example of top aggregated DSATs compared over three  
months – numbers fictionalized

Figure 2-8.  Example of a local data scorecard – numbers fictionalized. Q is a 
composite weighted score calculated from the other scores.
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Given these as our guiding principles of what needed to be focused on, we would 

create a prioritized list of techniques and projects to improve key DSAT areas and drive 

up metrics where we were either decreasing in quality or where a competitor was far 

ahead of us as shown in Figure 2-9.

Figure 2-9.  Techniques to address key DSATs after a quality review

Elements of a Successful Quality Review  Follow these steps to have a 
successful quality review:

	1.	 Look at and root cause as many DSATs as possible since your last 
review.

	2.	 Categorize the DSATs and rank the DSATs in order of concern.

	3.	 Determine your key top-level metrics and create a scorecard.
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	4.	 Look at both your ranked DSATs and top-level metrics and create a 
prioritized list of areas of focus.

	5.	U se what you have learned from doing root cause analysis of 
DSATs to propose areas to improve and prioritize that work for the 
upcoming time period.

	6.	R epeat at regular intervals.

�Measuring the Competition
One advantage we had in our space is we had very strong competitors that we could 

measure the quality of regularly in addition to our own quality. This often helped us 

to identify areas where a competitor was doing better than us and gave us confidence 

and motivation that we could improve a given area of the product. Although we 

would regularly measure a competitor, we ensured that competitor data did not 

get into our own catalog. The “ground truth” of whether a particular business was 

correct or not was typically determined through calling the business directly. If 

that was not possible, we would rely on the primary web site of the business or data 

provided to us directly from the business owner. We did not consider any competitor 

data to be ground truth.

Through our measurement, we learned several things. First, we learned to be 

skeptical of our own measurements and to adjust and refine our measurements 

over time. As an example, we developed a metric called “Q” for quality. This metric 

was designed to be a composite metric that represented the overall quality of our 

catalog. As a composite metric, it was easy to just communicate it as a short hand for 

several other metrics including things like name accuracy, phone accuracy, phone 

coverage, closed accuracy, and so on. Q was a great goal-setting metric for us – we 

would shoot to gain several points of Q against a competitor over the course of 6 

months, for example.

But it became clear as the Q gap became smaller between us and our competitors 

that Q wasn’t correctly capturing the quality gaps between us and our competitors. We 

measured how well we were capturing the quality gap by also asking end users if they 

preferred a “left” or “right” result where one side would be provided by us and the other 

side by a competitor.

Chapter 2  Changing Requirements



57

We learned several things in these user “preference polls.” First, we observed that 

there is a brand inflation that occurs with certain brands. For example, when presented 

with a left-right comparison between our catalog and Yelp, people tended to think Yelp 

was correct even when the ground truth said that we were correct. People had grown to 

trust Yelp especially for restaurant data.

Another thing we learned was that our composite “Q” metric was too simplistic over 

time to truly reflect the gap in quality between us and competitors. For example, people 

valued Yelp data over our data because of the number and quality of reviews provided of 

restaurants. We noted that people valued Google data over our data because the quality 

of what we called “rooftop lat longs” or the point on the map where the pin is dropped 

was more accurate than our pins were. Our pins were basically initially generated 

based on geocoding the address of the business and tended to be good for driving 

directions. But when people did searches on maps, they wanted that pin to be squarely 

on the building or the entrance to the building on the map rather than street side. So 

we added “roof top lat long” to our composite Q metric. This increased the gap in the 

measurement between us and Google, but more accurately represented our true state 

relative to our competitor and motivated us to find new data sources and techniques to 

improve rooftop lat longs.

Be Skeptical of Your Own Metrics  especially if the metrics say you are winning 
in a particular area over a competitor, but real customers don’t feel that way. It is 
important to continue to evolve your metric and dial it in and refine it over time so 
that the metric motivates and informs the team about where the current gap is with 
a competitor and generates the forward momentum to continue to close the gap.

It is also very important to keep these metrics internal, and especially don’t share 

them with marketing or people outside the team who don’t understand that the metrics 

are an evolving way to measure – otherwise, you may have someone saying how much 

better you are than a competitor where there isn’t really a true advantage. Help people 

understand the margin of error on a metric. For example, in Figure 2-8, the slide says 

that Bing’s name accuracy is 97.7 and Google’s name accuracy is 98.8. We learned over 

time that reporting numbers with this level of specificity – to the first decimal point – is 

misleading because the margin of error on these numbers would vary per measurement 

by as much as two points. So it was within the margin of error that Google’s name 

accuracy was actually 99% and our name accuracy was 95%. Also, as previously 
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discussed in this chapter, our metrics were impression weighted meaning that more 

popular entities were more likely to be measured than tail entities. When we discovered 

our “junk entity” problem, our name accuracy was measured to be much lower when 

we began to measure the quality of the tail. Ultimately, we began reporting out both 

impression-weighted results and un-weighted results to more accurately reflect the 

quality of our catalog.

�Conclusion
In Chapter 2, “Changing Requirements”, we have discussed how you can build and 

develop systems anticipating change; tests, monitoring, and measurement to anticipate 

and measure change; and strategies for responding to DSATs and measured problems in 

your system.

In Chapter 3, “Continuous Delivery”, we will discuss how to ensure that the team is 

continuously building, delivering, and verifying software and data.
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CHAPTER 3

Continuous Delivery
Deliver working software frequently, from a couple of weeks to a couple of 
months, with a preference to the shorter timescale.

—agilemanifesto.org/principles

The Agile principle for this chapter describes how frequently a team delivers working 

software. We extend this to include frequently delivering data as much of what a data 

engineering team delivers is high-quality data. We further extend the principle by 

replacing the word “frequent” with “continuous” – we believe it is important to deliver 

working software and data continuously. Our rewrite of this principle would be “Deliver 

working software and accurate data continuously.” On any given day, the team should 

have software and data available that effectively represents the incremental work done 

on the previous day.

How do you make the move from frequent delivery to continuous delivery? We will 

consider how this is done with software and then with data. With software, modern 

engineering teams practice techniques called “continuous integration” and “continuous 

deployment.” Continuous integration is enabled by developers verifying their code 

changes before submitting them and then running automated systems that fetch 

the latest code changes made by developers, build those changes, run tests on those 

changes, and finally deploy those changes – typically to a series of environments over 

time that include more and more customers.

�Verifying Code Changes
For an automated system to continuously build the product, there must be a mechanism 

to verify code changes before they are checked into the code base. This part of the 

system must be carefully designed and respected by all developers to ensure that only 
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high-quality code changes are submitted. Some of the things that are typically done to 

ensure that code changes are of the highest quality include the following:

–– Coding standards and preferred patterns are well documented and 

understood on the team and, where possible, checked by automated 

tools that a developer can run on their local machine before 

submitting code changes.

–– On a local machine, the developer can build the system they are 

working on and all other dependent or potentially impacted systems 

to verify no build breaks have occurred.

–– The developer can quickly run and verify a modified system either 

on a local machine or in an online developer environment that is 

representative of the final environment where the code will run in.

–– The developer can quickly run some set of unit tests that verify 

assumptions made in developing the system – these unit tests are 

extensive enough that they cover a high percentage of the system (we 

usually shoot for 80% coverage), and the tests are written in a way 

that they can run extremely quickly – typically by using patterns to 

mock parts of the system that are expensive to start up.

–– New code changes are checked in with appropriate unit tests or 

integration tests to ensure that test coverage remains high.

–– A code review process is followed where any changes to the code are 

inspected and double-checked by another developer on the team – 

typically one who is more experienced in the system where possible. 

Any suggested changes as part of that review are made and reverified.

–– The developer can quickly run a small set of integration tests that 

exercise the system end to end – these tests start up the whole system 

in either a local machine environment or an online development 

environment and test critical functionality of the system that must 

always be working.
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–– The developer syncs to the latest changes in the source code base 

and re-merges changes if some other developer has checked in 

conflicting changes to the same area of the system being worked on. 

Whenever a change happens as part of this process, the change is 

rebuilt and reverified by running tests again.

–– Once all has been completed, the developer submits final code changes.

Keeping an Eye on the inner loop   Note that for these steps, every effort should 
be made to keep the number of tests and verifications that are run by a developer 
as fast as possible. Sometimes this stage of verification is called the developer 
“inner loop,” and we will have more to say about measuring the health of this 
inner loop in Chapter 5: Motivated Individuals. More extensive tests that are longer 
running can be placed later in the continuous integration “pipe” which is called the 
developer “outer loop.” If issues are found in a check-in made by a developer later 
in the pipe, the change can be automatically rejected by the system and sent back 
to have the developer figure out what went wrong. But having a change rejected 
later by the outer loop can also be costly, so a balance must be struck between 
finding the problem now in the inner loop before the initial code submission goes to 
the continuous integration system and finding the problem later in the outer loop.

�The Continuous Integration System
Once a verified change is checked in, the continuous integration system takes over. 

Systems like Azure DevOps or the Jenkins build system can automate an integration 

system for code changes. These systems typically watch for new check-ins to verify and 

run a similar set of verification steps to what the developer did locally but now running 

on all build targets and devices the team cares about while running all unit tests and 

integration tests the team has available. If any step fails, the check-in is rejected by the 

system, and the developer is notified along with logs so an investigation can be made into 

what went wrong. Typical continuous integration systems run steps like the following:

•	 Queues an entire clean rebuild of all the code in the team’s repository 

targeting all the build targets that the team cares about. For example, 

the continuous integration system might build code to target AMD-
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64 processors in both debug and release flavors as well as code that 

targets devices like iPhone or Android devices.

•	 Runs a more extensive set of unit tests on all the build targets.

•	 Deploys the system to online development environments that 

simulate the production environments and runs a more extensive set 

of integration tests within that environment.

•	 Deploys compiled code to devices and runs tests on those devices (if 

applicable).

Sometimes this stage becomes too heavyweight, and verification takes too long – 

a good rule of thumb is this stage of verification should take around an hour. If this 

verification length becomes too long, then the number of tests run on an individual 

change should be reduced to bring the verification length down. Tests that now no 

longer run on each individual change should still be run but at a lower frequency on 

batches of changes. For example, all the changes submitted in the past 12 hours can be 

batched together, and the tests that were moved out of the individual change verification 

process can be run on the larger batch of changes. If a failure is detected in this stage, 

more work is required to determine which change in the batch caused the failure, but it 

is typically worth the improved speed of verifying individual changes.

�Continuous Deployment Systems
If all these verification steps are successful in a continuous integration system, the final 

step of such a system is sometimes called a continuous deployment system. Continuous 

deployment systems do what you would expect – they take a set of changes that have been 

verified and deploy them automatically. Typically, deployment doesn’t go straight to all 

your users as there is still significant risk that some additional issue may still be in a code 

change that even the best unit testing and integration testing won’t catch. So continuous 

deployment systems typically deploy sequentially over time to a series of deployment 

environments often called “rings” that represent a continuously growing set of users.

Typically, the first environment where a newly verified code change is deployed to 

is called “Ring 0” or the internal ring as shown in Figure 3-1. This ring is the deployment 

environment that is used daily by the development team and maybe additionally by a 

set of early adopters of the system. Each ring is built in a way that if a change is deployed 
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to that ring that causes live site issues to users of that ring, the change can be quickly 

rolled back and the ring can be reverted to its prior state. As you might expect, the devil 

is in the details, and software systems under continuous deployment must be carefully 

designed to ensure that they can be rolled back to a prior state. As an example, consider 

a change that is deployed to an environment that changes the schema of a database 

being used by the system. If this change fails in a ring, there must be a mechanism to not 

only revert the software but bring the database back to the previous schema. There are 

many techniques to make systems function well under continuous deployment that are 

beyond the scope of this book.

If the team and early adopters don’t encounter any issues in the internal ring, 

the continuous deployment system then pushes the same set of changes to a larger 

environment that impacts more users. Sometimes deploying to the next ring is automatic 

after a certain amount of elapsed time; sometimes teams control this decision manually. 

If the change is successful in the next ring, it is then deployed to additional users until 

the change is visible to all users of the system. Part of the creation of a continuous 

deployment system is deciding how many rings of users you want to support and which 

users will be in each ring. We typically see systems that consist of an internal ring with 

Figure 3-1.  Deployment rings
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mainly team members participating, a company ring which includes everyone in the 

company, then an early adopter ring which begins to include those who have opted in 

to use the latest and greatest changes in the system, and finally an “everyone” ring which 

includes all users of the system.

Eating Your Own Dogfood  There is a rich tradition at Microsoft of what is 
called “dogfooding” which refers to using the product that is still in development. 
This came from an email a Microsoft manager sent with the title “Eating our own 
Dogfood” which was advocating increasing internal usage of a software product 
that was in development. Microsoft Windows has steadily extended dogfooding to 
even participants outside the company with a very active “Insider” testing program 
where external users can opt in to testing early features in Windows. These types 
of programs have been very successful for Microsoft as they allow both early 
feedback on features that previously took years to get into the hands of real users 
and early testing on a wide variety of system configurations that aren’t always 
available within Microsoft.

When something goes wrong in a continuously deployed system, we mentioned 

that rollback is the ideal solution. Other techniques are sometimes used as well for 

more flexibility in fixing a broken feature. Sometimes, a “hot-fix” is employed – these 

are one-off fixes that are deployed directly to a ring to fix something that is broken in 

a ring. Ideally, a hot-fix can be a change to a config file, so whenever possible, features 

are implemented in a way that they can be modified easily with config files. But config 

file hot-fixes, though easier than changing binaries deployed with the system, can be 

just as dangerous and must be well tested. Hot-fixes can also be made by applying some 

small number of code changes, recompiling the impacted binaries, and patching the 

ring with those newly updated binaries. Hot-fixes should be run through the same set of 

automated verification steps in the continuous integration system if possible.

Another technique that is used to ensure a poorly behaving feature can be disabled 

is making sure a newly shipping feature is “flight-able” and can be turned on and off 

easily through configuration settings. Flighting is actually very similar to the system that 

enables rings to function – it is the ability to make a new feature available to a subset of 

your users and compare their experience through metrics gathering to the users who 

don’t have that feature available. A small percentage of your users can be on a flight 
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to try the new search experience your team has just developed, while the rest of your 

users have the old search experience. You can then monitor things like stability of the 

system for the new search experience users vs. the old search experience users. If you see 

significantly poorer numbers for the new search experience, you can then immediately 

turn off the new search experience for all users while you investigate through looking at 

logging what was going wrong in the new system. We talk more about this in Chapter 7: 

Monitoring.

�Verifying Data Changes
All previously discussed techniques for continuously integrating and deploying code 

changes can also be used to continuously integrate and deploy data changes. These 

techniques include the following:

–– Developers on data engineering teams are typically writing code that 

is changing data. Just as code that modifies data must be reviewed, 

the data itself should also be reviewed when it is modified by code. It 

is usually not possible to exhaustively review all of the data changes 

that happen in a system when code that modifies data is changed, but 

a sample of the changes made to data by the code can be taken and 

examined carefully to ensure that no unexpected changes are made.

–– A specific sampling approach should be taken when examining 

changed data. Data that did not change at all should be sampled from 

to verify that the “non-change” is correct. Data that was deleted from 

the system should be examined to make sure the removal of that data 

is correct. Data that was added to the system should be examined 

to make sure the addition of that data is correct. Data that was only 

slightly modified should be sampled and examined. And data that 

was more severely modified should also be sampled and examined.

–– Data standards and preferred patterns for data are well documented 

and understood on the team and, where possible, checked by 

automated tools that a developer can run on a local machine before 

submitting the data change or code that causes data changes.
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–– If the amount of data to be reprocessed due to the change is 

small enough that it can be run on a local machine or in an 

online developer environment that is representative of the final 

environment, all data impacted by the change should be regenerated 

and verified. In many big data projects, this isn’t possible, so instead 

some representative slice of the data should be regenerated and 

verified. This slice should be sampled as widely as possible so that 

the probability of the slice containing all the types of patterns seen in 

the larger data set is high.

–– A data review process is followed where any changes to the data  

are inspected and double-checked by another developer on the 

team – typically one who is more experienced in the system where 

possible. Any suggested changes as part of that review are made and 

reverified.

In addition to just manually inspecting sampled portions of the data, we talked in 

Chapter 2: Changing Requirements about several techniques that can be used to inspect 

the data in an automated way. These techniques can be used on developer machines, as 

part of the continuous integration system, and as part of the continuous deployment and 

ring systems:

–– Data “gates” can measure frequencies of patterns in the data both 

before and after a change is made to examine whether an extreme 

change has taken place to the data that may be a bug. These gates 

are determined by the team through long experience gained from 

manually inspecting and learning about the data they work with. For 

example, in Bing’s local data team, we observed that shifts of greater 

than 1% in things like phone numbers in our corpus were much more 

likely to be caused by a bug in our system than by real-world variance 

and change to actual phone numbers coming from data providers. 

Many such rules of thumb can be learned about the data your team 

works with and can be coded into a data gate system that can be run 

after every change to your data.
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–– Sentinel entities are entities in your data that you know represent 

absolute truth. These entities can be monitored and reverified after 

every change to your system to ensure they remain constant.

–– Human-judged metrics can be recalculated daily on your data to 

ensure that some known set of entities in your system is continually 

improving in quality.

Focus on the Changes  In Bing, we had a set of 1500 entities that was judged 
every day. Actually, we would only judge the changes made in that set of entities 
every day which usually represented only a small number of changes that could be 
looked at by human judges in under an hour. We could constantly monitor whether 
that set of entities was getting better or worse due to code changes made in our 
system. Specific judgments that were judged as worse could be looked at by 
developers to determine if they had introduced a bug in the system or if it was just 
a variance in a learned model.

�Continuous Deployment of Data
Just as with code changes, data changes should be automatically verified by continuous 

integration systems and by continuous deployment systems as a data change rolls out 

to one ring, then another, and then another. Verification occurs via data gates, sentinel 

entities, and judged metrics computed as new data comes online in a new ring. Data 

changes are typically much more extensive than code changes, so it is much more 

difficult to “hot-fix” a data change – although the code change that caused the data 

change can sometimes be hot-fixed. Rollback systems for data are usually expensive 

especially when there is a lot of data involved.

In Bing, we maintained two systems of data storage, and one was amenable to roll 

back and the other was not. We were able to keep a smaller set of entities in a quicker 

to change and roll back system that was our “fast” store. We had a much larger set of 

entities that were kept in a “slow” store that was much slower to change and roll back. 

It turned out that by keeping about 2 million entities in our fast store, we were able to 

cover 80% of our page views – that is, 80% of local queries in the local data space were 

for the most popular 2 million local business entities. The other 20% of queries were for 

our longer tail of local business entities – about 18 million additional entities. So we kept 
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2 million entities in our fast store and 18 million in our slow store. This way, if we had a 

catastrophic data error, we could roll back the 2 million entities in minutes and fix 80% of 

our traffic, but the other 20% of our traffic would suffer until we could rebuild the slower 

18 million–entity index which often took hours.

�Deciding What to Ship
Just because you can deploy data and code continuously doesn’t always mean you 

should. It is just as important to make decisions about what not to ship as what to ship. 

For features that are code only, features that don’t impact data, you should instrument 

the feature with enough telemetry so you can determine whether users are actually using 

the feature and whether it actually meets the needs of the business. We will have more 

to say about telemetry in Chapter 7: Monitoring. Features should be implemented in a 

way that they can be flighted, and metrics with the feature on and off can be compared. 

It is also important to develop a feature in a way that it can be turned off and removed 

from the system easily. If telemetry indicates a feature is not being used or is not meeting 

business needs, it should be removed.

Just Kill It  You have just worked for several weeks on a feature, and you are 
now flighting it and finding that users aren’t using it. Although you may try a 
couple of rounds of adjusting the feature to see if it takes off, you should not get 
too attached to a feature to kill it. It may seem like the several weeks of effort will 
be wasted when you don’t ship the feature. But future maintenance nightmares 
can be far more expensive than the initial development cost of a feature. A simpler 
product that precisely meets customer needs is far better than a complex product 
that customers are only really using a small percentage of.

Decisions about which data changes to ship are trickier and usually need to be made 

earlier in the process. Here is what often happens in a project. A data scientist on the 

team has an improvement to a model that is ready to ship. How do you decide whether 

to ship it or not? There are many metrics that can be used to evaluate the “goodness” 

of a learned model. These are useful and should be measured and used as part of the 

evaluation of whether to ship a new model.

An additional practical way of evaluating a model is to look at the “wins” and “losses” 

of the model and decide whether the model is worth shipping based on that analysis. 
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When we would have an improved model that a data scientist would want to ship, we 

would sample from all the changes that the model made to our data and judge which 

ones were good changes, which were neutral changes, and which were bad changes. It 

was rare that a revised model would not introduce some small number of “bad” changes 

in addition to good ones. Sometimes the quantity of bad and good changes would be 

similar, but the severity of the bad changes would be greater. In this case, additional work 

would be done to see if the model could be further refined to remove enough of the bad 

changes while preserving enough of the good changes to make the model worth hipping.

New models could also introduce changes that weren’t necessarily better but just 

different. It was important to not ship these models because the amount of random 

change they introduced just wasn’t worth it. It would confuse our users to have us ship 

data changes where two correct attributes would be swapped. For example, businesses 

often have multiple phone numbers that all ring through to the same contact person. We 

would have a new model that would change the primary phone number, but this would 

just confuse the user since the number changed for the business but they still reached the 

same person at the front desk. Where possible, we would avoid shipping such models.

A Better Model May Be Too Costly  Although we would typically ship a model 
where the number and impact of good changes exceeded the number and impact 
of bad changes, we also considered an additional factor: the cost and complexity of 
the new model. Sometimes a new model would produce better data, but the cost of 
running it would be significantly higher. For example, the model might take multiple 
times longer to produce a result and thereby slow down the product or increase 
the amount of hardware required to efficiently run it. Sometimes a new model 
would produce better data, but the complexity of the new model meant it would be 
a maintenance nightmare to keep running and healthy. These less obvious aspects 
of an otherwise winning model should be considered and may sometimes lead to 
the rejection of a new model.

�Conclusion
In Chapter 4, “Aligning with the Business”, we will discuss the importance of and 

techniques for coordinating work with the business.
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CHAPTER 4

Aligning with the 
Business

Business people and developers must work together daily throughout 
the project.

—agilemanifesto.org/principles

Ciao was a price comparison and product review web site that was founded in 

Germany and became the top shopping web site (shown in Figure 4-1) in many 

European markets attracting 19.6 million unique visitors per month in Europe by 

2008. Microsoft purchased Ciao in 2008 to bolster its Bing search engine in Europe. 

Eric had the opportunity to work with the Ciao team as its new engineering manager 

after the Microsoft acquisition. What Eric observed was a development team that was 

extremely well aligned with the business – more aligned than he had observed most 

Microsoft teams to be in his prior work. There were many factors that allowed for this 

high degree of alignment. In this chapter, we will examine several of these factors that 

allowed Ciao to be successful.
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�The Importance of Daily
Perhaps the most shocking part for Eric of coming to work at Ciao after 10 years at 

Microsoft was that the business people and engineering people were all together in the 

same building and even often on the same floor. Software developers would go to the 

kitchen to microwave their lunch; and in that same kitchen, they would run into people 

who were selling the ads for the web site, people who were creating content for the 

web site, people who were marketing the web site, and people who were maintaining 

the servers hosting the web site. The people driving the business forward were literally 

found side by side with the people writing the code that the business was running on. In 

contrast, in Eric’s time at Microsoft, he never met a marketing person, a person writing 

content for the product, or a person hosting the product.

This side by side-ness at Ciao didn’t end at the lunch room. Business people having 

problems with the ad system on the web site would drop in to the daily scrums of 

the engineering team to explain their problem or to pitch an improvement. Software 

developers could walk over to the desk of a person having trouble using a content 

labeling system, they would observe what the challenge was, and often they would go 

back to their desk with a concrete idea for an improvement or fix.

Figure 4-1.  The English language version of the Ciao web site in 2012
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For the purpose of this chapter, let’s consider further who were the “customers” 

of the Ciao web site and who were the “business people.” There were three types of 

customers. First, the largest population of customers were those that came to the 

web site to research something they wanted to buy and find the lowest price. The 

second customer group was the review community: people who came to the web site 

to leave a review which was further motivated by reputation and monetary rewards 

for helpful reviews. The last customer group were the merchants – third-party sellers 

that had a product to sell and wanted their price listed on the web site along with a 

link to their web site where the customer would ultimately buy the product they were 

shopping for.

The business people of Ciao were all the non-engineering staff that supported the 

needs of the three customer groups, kept the web site running, kept the money coming 

in, and kept the business moving forward. At Ciao, this included the following:

–– Sales people who convinced merchants to list their prices on the web 

site and then supported merchants with tools to easily upload their 

price data on a regular basis

–– Content people who edited and corrected the catalog of all the things 

one could buy

–– Community people who moderated the review communities and 

made sure they were vibrant and thriving

–– Marketing people who organized special campaigns with other 

companies – for example, they ran campaigns with certain car 

manufacturers to get Ciao members to test drive and review new car 

models coming out in a particular year

–– Billing and finance people who ensured that the merchants that 

listed their prices on the web site were billed and paid for traffic 

redirected to their sites

–– SEO (Search Engine Optimization) people who ensured that the site 

got steadily increasing traffic from popular search engines

–– Operations people who ensured that the datacenter was healthy

In contrast, Eric’s experience at Microsoft to that point had much more separation 

with business people who were playing similar roles for the products he worked on at 

Microsoft. At Microsoft, the “program manager” role interacts with business people 
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and then translates their needs into requirements for the engineering team. Through 

the Program Management (PM) team, Eric would indirectly get guidance representing 

what many business people wanted to have happen in the Visual Studio products. This 

level of indirection was convenient for both business and development, but it also put 

the business people another degree of separation away from him as an engineering 

manager.

The Power of Shipping Daily T he jolt Eric experienced at Ciao of daily 
interactions with other people working in the business was further accelerated by 
the fact that he was moving from working on one of the world’s largest Windows 
C++ applications (Visual Studio) which shipped only every couple of years to an 
application that was delivered via the Web and was updated every couple of days. 
The immediacy of being able to build a feature for the Web and ship it the next day 
to see if people liked the feature or not had startling implications for understanding 
the business and the customers of the business. In Visual Studio, a feature would 
be worked on for several years and finally shipped; and although customers 
were consulted with and demoed to frequently throughout the year, Visual Studio 
would often ship a feature that customers either didn’t like or didn’t use. On the 
Web though, this cycle shrunk dramatically where features could be shipped 
incrementally in a matter of weeks rather than years and the business impact of 
a feature could be immediately measured and quantified. In Bing, we went even 
further – changes were shipped daily thanks to the combination of flighting a new 
change to a small number of users and a system that could run extensive tests on 
any change to the system.

�Advantages of Colocation
Let us list some of the advantages of having the business people on the same floor as the 

engineering people at Ciao and some of the ways that these advantages can be replicated 

even if building space and people location doesn’t allow for true colocation.

One of the first advantages is that when a particular month is going well for the 

business, when sales are good, when traffic is up, there is a definite morale impact to 

have the engineering team drink in the good vibes and excitement among the business 
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people. A successful month can be very motivational for an engineering team, especially 

when they see direct connection between the work they have done and the gains 

made by the business. It is also healthy in a month when things aren’t going so well for 

developers to feel that as well. Often in those poor months, spontaneous conversations 

would happen between business people and engineering people that would lead to new 

feature ideas or improvements to the web site that could address flagging sales, dropping 

traffic, or customer complaints.

It is important to find ways to help the engineers feel some correlation between 

their work and the impact it has on the business. One good practice is to have a monthly 

business review to go over the key numbers of the business. Some of the numbers that 

can be reported including month-over-month changes include the following:

–– Total visits, page views, and unique visitors to the site

–– Organic visits vs. search engine–marketed visits

–– Engagement (number of pages a user views before leaving the site)

–– Time on site/time per visit

–– Number of downloads of apps (if part of the business)

–– Monthly active users (MAUs, unique users who have had some 

meaningful engagement with the site over the past 30 days)

–– Monthly engaged users (MEUs, unique users who are much more 

engaged than the monthly active users – these represent your fans 

and typically are a small subset of your active users)

–– Retention numbers (unique users who are continuously coming 

month after month and conversely unique users that you are losing 

month over month)

–– Total revenue per month

–– Operating metrics – at Ciao, this included how many merchants were 

listed on the site, how many offers (a unique merchant price for a 

particular product) were on the site, how many products were on the 

site, and how many reviews were on the site

–– Availability metrics – how much downtime did the site experience 

over the past month and where
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–– Competitor comparison metrics – how much better/worse is the site 

than key competitors

–– Comscore metrics (Comscore is a site that measures the popularity 

and traffic a web site is receiving)

–– Any other metric that correlates well with business goals that are 

currently being driven

There are many ways to deliver these kinds of business metrics and content to 

developers. Some successful approaches we have seen include monthly business 

reviews conducted as optional meetings for the development team and business 

information sent out in monthly emails, available in always up-to-date self-serve 

dashboards, or presented in all-hands meetings. As development teams often prefer 

building products to reading mail or attending a longer meeting, we also recommend 

having a brief summary of business metrics as part of end-of-sprint demo meetings as 

well. It is well worth having several ways to communicate this information to the team 

to ensure it is received.

Physical Collocation Is Not Required  Of course, physical collocation is just not 
always possible. Chapter 6: Effective Communication talks about the Agile principle 
that face-to-face interaction is valued and provides some ideas for when true 
physical colocation isn’t an option.

�Business-Driven Scrum Teams
One thing that Ciao was very good at was mapping scrum teams directly to key business 

objectives. At a high level, the business goals were the following:

•	 Increase the amount of traffic coming to the site.

•	 Monetize as much of that traffic as possible by increasing the 

conversion rate for the site (the percentage of traffic leaving the site to 

a merchant site which meant revenue for Ciao).
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The key business objectives that Ciao had were the following:

•	 Increase the size and quality of the catalog of products.

•	 Increase the number of offers on the web site provided by merchants 

and match those offers to items in our catalog.

•	 Increase the number of high-quality reviews written by users on the 

web site.

These five business objectives were mapped directly to five scrum teams. Team 

“Traffic” constantly monitored the amount of traffic coming to the site and did 

development work to try to increase traffic to the site. Team “Conversion Rate” 

constantly monitored the conversion rate for the site and did work to increase that 

rate. The “Products” team improved the quality and size of the catalog. The “Offers” 

team improved the volume and match rate of offers to products on the site. And the 

“Reviews” team found new ways to incentivize and improve the quality of reviews and 

the engagement of our community of review writers on the site.

Sometimes the goals and metrics one team would be going after would 

fundamentally oppose the goals another team would be going after. For example, the 

products team sometimes shipped features that increased the time users spent on the 

site but decreased the number of clicks that left the site to go to our merchant sites. 

The products team was achieving their goal of increasing the quality and richness 

of the catalog, so people were engaging more with that content, but then they were 

not moving as quickly or sometimes not at all to merchant sites to buy things which 

impacted the Conversion Rate team. When work one team shipped had impact on 

another teams’ goals and metrics, the business leaders would be consulted to decide 

which priority won.

Keep several things in mind when creating scrum teams. First of all, try to find ways 

to tie scrum teams as closely as possible to business objectives and easily and regularly 

measured business metrics as possible. If a direct daily business metric like “conversion 

rate” is not calculable for a particular scrum team’s metric-driven goal, try to figure out 

a way to quantify and score what the team is driving at. It is extremely effective to have 

a scrum team have a set of metrics they can constantly monitor, examine whether their 

work moves the metric, and if it doesn’t reevaluate their work until it does move the 

metric. The team should set sprint-by-sprint goals for how far they think they can move 

the business metrics they are driving each sprint.
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Table 4-1 shows some examples of concrete business metrics we have used with 

some of the teams we have discussed this far in the book. You can see both calculated 

and judged metrics in this list. Calculated metrics could be computed quite easily from 

data in the system. Judged metrics were more expensive as they required human judges 

to look at data to calculate them – which also made them so they couldn’t be computed 

as often as calculated metrics.

Table 4-1.  Concrete business metrics

Team Metrics Type of Metric

Local Data Conflation 

Team

Overmatch rate

Undermatch rate

Judged (weekly)

Judged (weekly)

Local Data Web  

Extraction Team

Percentage of top 1000 chain businesses 

extracted from the Web

Percentage of traffic on site that shows 

businesses with data extracted from the Web

Accuracy of phone numbers extracted from the 

WebPercentage of businesses extracted from  

the Web with a phone number

Calculated from 

catalog

Local Data Pipeline  

Team

Seconds from new data appearing in a feed to 

being visible on the web site

Calculated from 

catalog and site

Ciao Traffic Team Number of unique users per month Calculated from site

Ciao Products Team Number of products with pictures

Number of products with reviews

Accuracy of product-picture matching

Accuracy of product-review matching

Calculated from 

catalog

Ciao Offers Team Number of clicks out to merchant sites

Number of products with associated  

merchant prices

Calculated from site

Ciao Community and 

Reviews Team

Number of community members who have  

posted a review deemed helpful by other 

community members in the last month

Calculated from site
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As metrics are decided on by each team, find ways to automate the metrics. Track 

them on a daily basis if possible and maintain a dashboard where team members can 

observe whether the metrics are moving in the right direction or not.

The Power of Naming a Team A nother very powerful tool to use with teams 
is how you name the team. A team Eric was working with had two major 
problems with their product. First, it didn’t scale properly to support many 
users and large quantities of data. Second, developers building new features 
for the product were slogging through the existing code and API complexities 
thereby slowing velocity in shipping new features. The teams initially had 
names reflecting the subsystem they owned in the product. For example, the 
“Graphics” team owned the graphics engine for the product. The “Layout” 
team owned the layout engine for the product. The team called “Graphics” 
unsurprisingly spent a lot of their work investing in tweaking and continuing 
to improve the Graphics engine, and the Layout team did the same with their 
layout engine. By renaming the teams to the “Scale” team and the “Velocity” 
team, the work output of the team naturally changed to be aligned with the 
most important problems the team had overall rather than the architecture 
blocks in the architecture diagram for the team.

When possible, it is great to have a single unifying metric that the entire team 

ultimately understands it is driving toward. For web properties, we have seen this 

number often be the monthly active user number – is this number consistently 

going up? On a mobile apps team, the App Store rating and the monthly active users 

were highly valued as the most important numbers to drive toward. For Bing’s local 

data team, the number we thought the most about was “Q” – the composite quality 

score for the catalog of local businesses. But this number was somewhat flawed as 

it assumed that solely a highly accurate catalog would drive usage of the product – 

over time we discovered this metric didn’t hold up very well because it was too 

many degrees away from the real user experience on Bing. Even with a high-quality 

catalog in place, there were still many issues about how and when that catalog was 

presented to users that made Q an imperfect reflection of the user experience with 

local business data on the web site.
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�Working with the Business to Understand Data
One of the most productive experiences we had when working on Bing’s local search 

was to visit some of the data providers that were giving us data feeds that we combined 

together to create the catalog of businesses. By talking with the business people that 

gathered data for us, it gave important insights that allowed us to understand the 

data feeds that we relied on and build better machine-learned models to process and 

prioritize the data.

Early on in our time in Bing Local, we went on a trip to visit the headquarters of 

one of the major data feeds that was used to create our catalog. We had explored their 

data and felt that it was causing a lot of quality issues – in particular, it was creating a lot 

of duplicate businesses. We talked to the engineering team about their deduplication 

system, and it quickly became clear that the system they used was very primitive. Also, 

one engineering leader pointed out that because the primary customer of their data were 

companies that did mailings through the US postal system to other businesses, it often 

was “a good thing to have duplicates” because sending a couple of extra mailings to a 

popular business (the more popular businesses in their catalog were more likely to have 

duplicates) couldn’t be a bad thing as it would increase the chance that your marketing 

mail got opened by a popular business.

Another data provider was providing us with a lot of businesses that were closed. 

By talking more closely with that provider and understanding how they sourced their 

records, we learned that a major source of their data was the scanning of phone books 

using OCR. In some markets, their scanning was less up to date than in other markets. 

In their backend system, they maintained the date that each record was scanned, but 

they didn’t provide that data in the feed. By talking to the business people and engineers, 

we quickly discovered that it would be relatively simple for them to provide us with 

the scan date for each record in their system that was sourced by OCR. This provided a 

valuable additional signal that our machine learning models could use to determine the 

likelihood that a particular business was closed.

Data Providers T alk with third parties providing your data and make sure you 
understand the way they gather data and their business model. Data providers are 
often willing to provide you with extra signals that they may have in their backend 
systems but do not provide you in their feed.
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�Helping the Business to Understand the Limitations 
of Machine Learning
It is common for a business starting out with machine learning-based solutions to 

expect miracles from the development team. Although machine learning can produce 

amazing results, it is helpful to make sure the business understands the limitations of 

machine learning. One of the toughest challenges we have faced with business people 

is helping them to understand the functional characteristics of a particular machine 

learning model.

Although there are many measures that can be used to evaluate a particular machine 

learning model such as an F1 score, we have typically used precision and recall as the 

metrics to communicate to the business about machine learning model performance. 

Here is a quick refresher that should demystify precision and recall.

Imagine a scenario where a dog catcher is tasked with going out and catching all 

the dogs in the city. The dog catcher fails to do this perfectly and accidentally captures 

some cats in addition to not capturing all the dogs in the city. Figure 4-2 shows how this 

story maps to the machine learning concepts of precision and recall. If each dog or cat 

icon represents 1000 dogs or cats, the dog catcher caught 2000 dogs and 3000 cats – but 

there are actually 7000 dogs in the city. The dog catcher caught 3000 false positives 

(cats) and 2000 true positives (dogs). So the precision of the catch is the number of 

dogs caught divided by the number of cats incorrectly caught plus the number of 

dogs caught or 2000/3000+2000 which is 40%. The recall is the number of dogs caught 

divided by the number of dogs caught plus the number of remaining dogs not caught or 

2000/2000+5000 which is about 29%.
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Figure 4-2.  Precision and recall for a dog catcher

As the business begins to understand precision and recall of models which are 

virtual dog catchers of sorts and gets familiar with how to discuss this in terms of the 

precision and recall terms, you can begin to have the nuanced discussions with them 

about how a particular model performs. For example, business people will learn over 

time that it is usually impossible to have models with precision or recall approaching 

100%. A model with 95% precision and 95% recall often requires an enormous amount 

of effort to achieve. Even a model with 99% precision sounds great, but it means that 1 

out of every 100 times you are going to be getting the answer wrong. Also, if the recall of 

that model is 1%, it can be useless. This gap between reality and perfection is a continual 

challenge on machine learning teams – the business has to have a plan to deal with the 

times the algorithm is going to get things wrong.

In the world of local data, we dealt with the reality of models that were achieving 

high precision and high recall but not 100% in either in several ways. First of all, we built 

a system that made it very easy to quickly correct by hand any errors that were found 

on the web site so that the machine-learned models could be overridden when they got 

things wrong. We also put humans in the loop especially on data that was most likely to 

be shown to users. We found that although our catalog of local businesses had millions 

of businesses in it for the US market, 20% of what people would actually search for on 

our site was a set of 50, 000 entities – the most popular local businesses on the site. For 

those 50, 000 entities, we used machine-learned algorithms to create them, but we also 
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used humans to check and double-check them to ensure they were 100% correct rather 

than 98% correct as this had a strong impact on the overall user experience since it 

impacted 20% of our traffic.

Another thing we found was that it was useful to talk frequently with the business 

about things like “the ‘Closed Business classifier precision is now 97% and the recall is 

85%’” because over time the business would know how reasonable it was to expect the 

precision and recall to improve over a given number of months of development. The 

business would learn that the type of work required to move precision was often different 

than the type of work required to move recall. They would learn about the ability to 

trade off recall and precision – for example, it is fairly achievable to increase recall at the 

expense of precision. They would learn that as models began to have precision in the 90s 

and recall in the 90s, that future progress would be more expensive.

The Benefits of a Strong Competitor  One advantage we had in the Bing local 
space was that in addition to reporting the precision and recall for our own models, 
we could evaluate the precision and recall for competitors. When goal setting 
over a 6-month period of time, we often employed a “halve the gap” rule which 
proved a useful rule of thumb in goal setting. In an area where we were behind 
a competitor – for example, we might have measured that Google’s precision on 
phone numbers was 98% and Bing’s precision on phone numbers was 94% – we 
found it was reasonable to plan to be able to halve the gap with Google in a 6-month 
period, meaning we found it achievable to set a goal to get from 94% to 96% if we 
had as an “existence proof” the measurement that another competitor had achieved 
a higher precision than us. In a vacuum, this is harder to do as you don’t really know 
how possible it is to hit 98% precision on a particular data attribute if there is no 
prior art to show that it is possible to hit that high level of precision.

�Communicating the Rhythm of Engineering 
to the Business: How We Do Scrum
Just as it is important for the engineering team to understand what is happening in 

the business, it is important for the business to understand what is happening in the 

engineering team. Failure to do this can result in the business losing confidence in the 
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engineering team’s ability to solve critical business problems in a timely way. We use 

Scrum and Scrum artifacts to communicate effectively with the business. In this section, 

we will describe in more detail the specializations we make to Scrum. This section 

assumes a basic familiarity with the general principles of Scrum. If you are not familiar 

with Scrum, we recommend The Scrum Guide by Ken Schwaber and Jeff Sutherland 

found at www.scrum.org/scrum-guides/ and Scrum and XP from the Trenches by Henrik 

Knibert found at www.infoq.com/minibooks/scrum-xp-from-the-trenches.

�The Scrum Team
For our teams at Microsoft, the product owner is typically a program manager or an 

architect. The scrum master is the development manager or lead or someone on the 

development team that is passionate about driving scrum and helping the team succeed. 

Whoever the scrum master is, they should expect that they can’t be scheduled to do 

coding work at full utilization – they will need to spend some additional time each day 

helping unblock people and keeping the backlog groomed.

�The Portfolio and Product Backlogs
Azure DevOps provides support for the scrum concepts of epics and features. These are 

primarily business concepts to help the business team or product owner manage the 

product plan. Epics and features are sometimes referred to as the “portfolio backlog.” 

Features should be of sufficient size that they support having many user stories 

associated with them – a user story being the primary concept used by the development 

team in what is called the “product backlog.” These relationships are shown in Figure 4-3.

In general, Epics transcend multiple releases and can be pursued by a team for 

multiple quarters (1/4 of a year segments). Features are things that typically can’t be 

delivered in a single sprint but that can be delivered in a single product release cycle. 

Multiple user stories could be completed in a sprint by a five- to seven-person team, but 

sometimes a user story can span multiple sprints. The connection between a feature and 

user story is how the gap is bridged between the business-driven “portfolio backlog” and 

the dev-driven “product backlog”

Scrum teams will usually only talk about features during sprint planning or sprint 

review meetings when they are trying to figure out whether a feature is complete or not 

and what additional user stories have to be planned to complete a given feature.
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Figure 4-3.  Relationship between portfolio backlog and product backlog. Source: 
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/
guidance/agile-process-workflow

Table 4-2 shows some specific examples of Epics, Features, User Stories, and Tasks 

with rules of thumb about typical durations and typical number of these per parent type 

for a hypothetical team that is working on allowing users to search Office 365 content 

(documents, contacts, emails, calendar) within Bing.

Table 4-2.  Epics, Features, User Stories, and Tasks

Concept Example Typical Duration Typical Number of These 
per Parent

Epic Allow users to search their 

Office 365 data in Bing

Multiple releases 

(quarters)

Five to ten total epics for 

major releases

Feature Allow users to search their 

Office 365 contacts in Bing

Release (months) Fifties to hundreds of 

features in an Epic

User Story Build experience to allow users 

to browse their Office 365 

contacts

Sprints (one to three 

sprints)

Tens of user stories to 

finish a feature

Task Write code to get contact  

XML from Office 365 graph

Days (one to five-ish 

days)

Tens of tasks per user 

story
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Our product backlog is composed of Azure DevOps “User Stories” as shown in  

Figure 4-4 which are in turn broken down into tasks. The product backlog records 

everything the team wants to do. The sprint backlog (under “sprints” then “Backlog” 

in Azure DevOps) shows the sprint backlog. The sprint backlog is created as part of the 

sprint planning meeting and can ideally just be pulled from looking at the top-priority 

user stories in the product backlog (under “Work” then “Backlog” in Azure DevOps) and 

adding them to the next sprint in priority order until the sprint is full.

User stories in the product backlog shouldn’t be massive. As a rule of thumb, they 

should be completable within one but at most within three 2-week sprints. As an 

estimation of whether your granularity for user stories is right, a typical scrum team of 

five to six people should be able to take on roughly seven user stories during a sprint. 

This could of course vary, but shoot for having user stories that aren’t too big and aren’t 

too small.

Jira and Other Models of Driving Scrum A lthough this section describes Azure 
DevOps as an environment to drive scrum within, all these principles work within 
Jira as well which Eric used extensively while at Ciao. It is also worth mentioning 
that much of this can work in a paper-based system that is done on physical 
boards. The aforementioned Scrum and XP from the Trenches book describes a 
paper-based system. We have done this as well although depending on where the 
business people are located, you may have to take daily photos of the physical 
boards or transcribe key information and send it out in email regularly to apprise 
the business of your progress.

Figure 4-4.  Example Azure DevOps user story backlog
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User stories can live on from sprint to sprint – but they should be completable within 

a small number of sprints if possible, ideally one. If user stories are too big to complete 

in a small number of sprints, this is a good sign that they should be further decomposed. 

Look for user story names that have “and” in them – this is a good sign that the user story 

should be split into two items.

Backlog Scrubbing A  best practice for managing the product backlog is to 
“scrub” the backlog frequently. Scrubbing involves continuously looking at the top 
“tens” of user stories on the product backlog and making sure they are prioritized 
correctly and well described. Some teams schedule weekly or biweekly meetings 
to scrub the backlog – this can help sprint planning meetings go faster.

�User Stories
Figure 4-5 shows an example User Story in Azure DevOps.

Figure 4-5.  An example User Story in Azure DevOps
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User stories can be optionally associated with a Feature – this ties the “product 

backlog” to the “portfolio backlog” and helps the PM team track progress in their part of 

the world which is the portfolio backlog. User stories can be created by anyone, but only 

the product owner sets the priority, and only the development team estimates the size 

and adds a user story to a sprint.

A user story has many fields including the following:

Feature Backlink: This indicates for which feature in the portfolio 

backlog this story is being implemented. This isn’t required if a 

user story has no connection to a feature – for example, the scrum 

team might decide to do some work on its own developer tools or 

DRI tooling, and this would not have to be parented to a feature if 

the PM team doesn’t really care about it.

ID: A unique identification, just an auto-incremented number. 

This is to avoid losing track of stories when we rename them.

Name: A short, descriptive name of the story. The name should 

be specific enough that developers and the product owner 

understand approximately what we are talking about and clear 

enough to distinguish it from other stories.

Naming User Stories  Because we encourage the business team to look at the 
scrum board, it is important to at least write user story names and descriptions in 
a way that anyone in the business can understand them by avoiding jargon and 
describing the business result we are trying to achieve. So instead of having a user 
story that says “Generate better n-grams to change Match Function to Improve 
Match Rate,” we would write it as “Reduce the number of duplicate businesses 
with better word separation.” Tasks under the user story can and should be 
technical and use jargon as they are for the scrum team in tracking itself – the only 
important information the business team gleans from tasks is who is working on a 
user story, how much work remains, and how much work has been completed.

Description: Can in many cases just be the name again or a more 

detailed explanation of the user story. Once again, this needs to be 

written in language that people outside the team can understand it.
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Business Value: The product owner’s importance rating for this 

story. In Azure DevOps, you indicate this by moving user stories 

up and down vertically in the backlog by dragging them.

Story Points: The unit is story points, and for our teams we have 

this correspond roughly to “typical man-days.” Ask the team, “If 

you can take the optimal number of people for this story (not 

too few and not too many, typically two) and they have a typical 

day with interruptions and meetings where they probably have 

about 5 hours in the flow coding, after how many days will you 

come out with a finished, demonstrable, tested, releasable 

implementation?” If the answer is “With three people it will take 

approximately 4 days,” then the initial estimate is 12 story points.

Once you have an initial story point estimate to a user story, you 

don’t really worry about it again. This is your initial “best guess” 

and is primarily used during sprint planning to estimate how 

many user stories you can load into a given sprint. Once a sprint 

is underway, tracking of the cost of a user story moves from story 

points to breaking the user story down into tasks that are costed in 

ideal dev hours (we assume on our teams that a developer can do 

5 hours of work per day when including interruptions, meetings, 

distractions, etc.)

Story Points  For scrum purists, our adulteration of what story points are is 
probably offensive. The way story points are supposed to work is the team learns 
over time how many story points they can achieve in an iteration and the unit 
is flexible and the team gets a good sense of how much work a ten-story point 
work item is. But we have found this hard to use in practice with large teams 
having several different scrum teams within them – it is also hard to explain to the 
business that “Team A’s story point size is different than Team B’s story point size.” 
So we have not been able to have story points be flexible units in practice and 
have instead fallen back to the “a story point is a typical man-day of work” and 
“when you get to task breakdowns, you can do 5 hours of work in a day.”
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Acceptance Criteria or “How to Demo (HTD)”: This is a high-level 

description of how this story will be demonstrated at the sprint 

demo meeting. This is essentially a simple test spec. “Do this, 

then do that, then this should happen.” With TDD (test-driven 

development), this description can be used as pseudo-code for your 

acceptance test code. This is often put in the “Acceptance Criteria” 

field but can also be in the description – just mark it with “HTD”.

User stories can be assigned to someone – typically the person most 

knowledgeable about the story who could answer questions about 

it from outside people. But in practice, a lot of user stories never 

get assigned to anyone. This is fine as the real “work” on a user 

story is tracked by tasks, and tasks are always assigned to individual 

developers. So if the user story is not assigned, you can see in the 

task board all the developers that have worked on it so far as there 

will typically be multiple tasks with a variety of devs on them.

�Tasks
Figure 4-6 shows a Task associated with a User Story. Tasks can be very lightweight 

and usually just capture these elements: Title, Assigned To, Time Remaining, Status 

(New/Active/Done), and “Which User Story is this associated with.” Tasks are used 

to coordinate who is working on what in a User Story and break down a User Story 

into the logical tasks it takes to complete that story. We don’t use the “Estimate” field. 

Description could be used to capture additional detail – but this is only if it is useful to do 

so for the developer working on the tasks. Mostly a developer uses a task as just a simple 

“TODO” for work they have to code up, and mostly they understand the work from the 

task description. Here we don’t care about whether the business people can read the 

task or not – the customer of the task is the developer working on the task.

We use the Time Remaining field in this way: when a task is first assigned to a dev 

to work on (this is all done in the daily standup or sprint planning meeting), the dev 

does a quick estimation of how much work it is in hours – for example, the dev might 

say, “This will probably take 10 hours” (e.g., 2 dev days). This initial estimation should 

go in the “Time Remaining” field, not the estimate field. Then with each subsequent 

daily standup, each developer with an active task reestimates how many hours are 
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remaining for each active task – for example, “This task still is looking like I have 10 

hours remaining; it was bigger than I thought” or “This task only has 3 hours remaining; 

it was easier than I thought,” or “This task is done” in which case the task is just moved to 

the “Complete” column.

The example task in the following illustrates that often the first task in a user 

story will be to assign an expert in the area to “create a plan for how to deliver this 

user story.”

Figure 4-6.  A simple task

�Task Linking to Pull Request in Git

At Microsoft, we use Git as our version control system. It is valuable to track the pull 

requests that result in tasks being completed. When a developer makes a pull request, he 

or she can specify in that pull request all tasks that are completed once that pull request is 

merged. This allows auditors in the future to connect our backlog to the development work.

�Bugs

Any user story can have a bug logged against it as shown in Figure 4-7. When a bug is 

created against a user story, that bug almost always has priority over other tasks in  

that user story. The principle is to fix the existing bugs before advancing the state of the 

user story.
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If there are bugs filed against already shipped user stories that are P0 (Priority 0)  

bugs, these should be brought into the sprint immediately – they are considered 

sprint breakers. When possible, the already shipped user story should have a bug 

added to it and then be moved into the current iteration path for the sprint – but 

mostly this doesn’t happen in practice. We will describe the approach that seems 

to work more in the following. When the scrum team has their daily standup, they 

should look for these new high-priority bugs and immediately schedule the work 

into the sprint to fix them.

Lower-priority bugs should be considered during the next sprint planning meeting 

and brought into the sprint if they are deemed critical to fix in the subsequent sprint.

It is hard once a project is moving to attach bugs to user stories that have already 

been shipped. So the usual approach we see teams use is they have a “High-Priority 

Bugs,” “Medium-Priority Bugs,” and “Low-Priority Bug” User story that they create in a 

sprint as shown in Figure 4-8. They then associate incoming bugs with one of these three 

user stories and prioritize the work appropriately – for example, they first try to complete 

high-priority bugs, then high-priority user stories, then medium-priority bugs, then 

medium-priority user stories, and so forth.

Figure 4-7.  User Stories can be associated with both tasks and bugs
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Figure 4-8.  Tracking Bugs alongside work in an Azure DevOps task board
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Tasks That Don’t Fit into a Story S ometimes you will have work that the team 
is doing that just doesn’t fit in an existing user story. This is fine – the work should 
still be tracked (you can create a catch-all “Other” user story to capture it). By 
capturing all work that the team does, the team can be more aware of “where did 
the time go this sprint”; and in subsequent sprint planning meetings, they may 
identify a theme to the “Other” work that causes a new User Story to be created 
to track it. For example, a team might identify they are spending a lot of additional 
time fixing the build. They might decide to deep dive into fixing what is wrong after 
they see the time spent there sprint over sprint. Or alternatively, they might just 
continually schedule an “Other” item that takes up five story points (if Other was 
typically taking up a dev week of time) so they can be more realistic about what 
they can achieve in a given sprint.

�The Scrum task board

The Scrum task board (the task board under sprints, not the “Board” under “Boards”) in 

Azure DevOps is where the team goes to see the status of everything being worked on by 

the team. You can configure the task board to filter tasks by developer assigned to them.  

During the sprint planning meeting, the top user stories in the product backlog are 

assigned story points; and based on how many story points the team has learned they 

can commit to for a sprint, the team brings the highest-priority stories in the product 

backlog into the new sprint backlog. Once the stories are in the sprint, the team refines 

them further by breaking each story into tasks (and the initial story point estimates are 

ignored going forward but can be observed later to see how good the team is getting at 

initial estimates).

Tasks are easily added to a user story in the board by clicking the “+” button to 

the right of a user story in the task board. Tasks begin to flow when they are dragged 

horizontally from the “New” column to the “Active” column. Tasks are always assigned 

a developer when they are moved to the Active column and always assigned a “Time 

Remaining” in hours (where 5 hours = 1 dev day). Tasks in the “New” column can be 

preassigned to the dev that will do them and pre-costed, but this is not necessary and is 

timeboxed by the sprint planning meeting and time available in sprint standups.
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As tasks are completed, they are dragged horizontally to “Closed” when the task is 

verified “Done.” We don’t use the Resolved column for User Stories; it is for bugs. The 

Scrum task board is shown in Figure 4-9.

Note that the “Resolved” column is used instead of the “Closed” column when a 

Bug fix is completed in the sprint backlog. The Bug is moved to Active when a developer 

starts working on it. When it is fixed, tested, checked in, and deployed to production, the 

bug is moved to “Resolved”. The original person who opened the bug should verify that it 

was fixed and then move it to Closed.

We use Azure DevOps’s task board to be the single status page for each team. This 

page includes a Burndown graph (in the top right corner) that is automatically kept up to 

date when teams move and update their tasks regularly: updating Time Remaining for a 

task when it is first moved to the Active column and updating Time Remaining for active 

tasks every day thereafter until it is done and moved to the Closed column.

Figure 4-9.  The Scrum task board
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All of this is timeboxed (an Agile term meaning completed in a fixed period of 

time) to the standup meeting – no task updates need be done outside the standup. 

The scrum master is the servant for the team in helping the team keep the task board 

up to date so it doesn’t impact them outside of the standup. During the daily sprint 

meeting, the scrum master projects the scrum dashboard; and each participant can 

report the Time Remaining on their work items in progress, and the scrum master 

updates all active tasks while projecting (update Time Remaining in the bottom 

right corner, assign new tasks by dragging vertically, mark tasks as done by dragging 

horizontally).

�The sprint
For our teams, we usually do 2-week sprints. Sprint length is a controversial topic for any 

team doing scrum, and we find that we debate between 2- and 3-week sprints. Having 

2-week sprints ensures that the planning process doesn’t become too heavy and sprints 

don’t get too far off track without a new planning round.

�The 2-Week Cadence

On our teams, we schedule Scrum meetings according to the calendar in Figure 4-10.  

This specific example is for one five- to seven-person team – we like to ensure that 

other sibling teams have non-overlapping times for their daily standup meetings 

so that on any particular day it is possible for an interested party in the business to 

attend all the standup meetings across the team to get a quick sense of where the 

development effort is.
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�Daily Scrum Standups

Daily Scrum “standups” will be scheduled in a way that two standup meetings aren’t 

running at the same time according to this schedule. Standups are timeboxed to no more 

than 15 minutes.

The daily standup is done in a room with a projector or TV or Surface Hub, and the 

scrum master projects the Azure DevOps task board. The task board is shown in turn 

filtered by each developer in the meeting. Each developer in the room can then refer to 

their active tasks as they answer the Scrum questions “What did I do yesterday?” “What 

will I do today?” and “Am I blocked?” The developer then says for each task either “that 

one is done” in which case the scrum master immediately drags the task to the Closed 

Figure 4-10.  The Scrum Calendar
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column, or the developer estimates the number of hours remaining for active tasks (if 

it has changed since the last standup), and the scrum master immediately updates the 

Time Remaining for the task (in the bottom right corner of the task).

If a developer has completed all active tasks, tasks previously assigned to the 

developer but not yet started are dragged from the “New” column to the “Active” 

column, and the developer estimates the number of hours remaining. The scrum master 

puts the number of hours remaining in the bottom right corner of the task.

Alternatively, a developer may have no unstarted (aka New) tasks assigned, so tasks 

are grabbed from the “New” row or from other developers that need help on their tasks. 

Any time a task is moved into the Active column, the initial Time Remaining must be put 

in the task.

Updating the task board Outside of Standup W e actually ask our 
developers to not update the task board outside of the daily scrum standup 
meeting because the updating of the task board (this task is finished, this task 
has less hours remaining on it now, I am taking this new task) is fundamental 
communication to the rest of the team, and if this communication happens 
out of band from the standup meeting, the communication of each developer’s 
progress is lost to the team.

The standup should also be used to triage blocking issues the team has. The 

standup should not spend too much time discussing these issues unless they can 

be quickly resolved – remember the 15-minute timebox. If an issue requires more 

discussion, the scrum master sets up another time later in the day to discuss it with 

the involved parties

�End of Iteration Meetings

We like to have all our sibling teams start and stop their sprints on the same day, and we 

combine some meetings across our various five- to seven-person sibling teams to have 

larger demo meetings. So for a typical team of around 50 developers all working on the 

same project – for example, Bing’s local data team – we would have around six scrum 

teams that would participate together in a combined all-hands sprint demo.
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All-Hands sprint demo

On the last Friday of the sprint, the All-Hands sprint demo is held as one combined 

1.5-hour meeting. We do this meeting in person, but we also record the meeting so 

that it acts as another artifact of scrum. The format of the All-Hands sprint demo is 

as follows.

Each team is timeboxed according to the number of devs on their team – each 

team gets 2 minutes per dev. So if one team has seven devs, they get 14 minutes 

to demo, another with five gets 10 minutes, and so on. Demo times are strictly 

timeboxed by Eric’s dreaded countdown timer clock shown in Figure 4-11. When the 

clock beeps, whoever is talking completes their sentence and hands the meeting over 

to the next team. We found a timer was necessary to ensure that the demo meeting 

didn’t drag on – having the timer makes sure that everyone is prompt and presents 

their work quickly.

However, if someone asks a question or has a question or comment during the 

demo, we give time back to the countdown as we don't want to discourage good 

comments, questions, or suggestions. The scrum master has power to give back time on 

the countdown and also suggests that out-of-control discussions be taken offline.

Figure 4-11.  A countdown timer clock – used to timebox sprint demo meetings

Some words on logistics to make this work – we have followed this process for teams 

with up to 50 developers (the meeting lasted about 1.5 hours and had six different teams 

presenting). To ensure that the meeting goes smoothly, we do the following.
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An all-hands sprint demo deck is prepared in advance of the meeting that is shared 

by all the scrum teams. Each scrum team has a “cover slide” that shows their sprint goals, 

whether or not they met them, and key metrics for the team, and what improvements 

they made to those metrics during the sprint. The team can then add their own slides 

after their cover slide for specific work they are going to demo.

sprint goals W e are very transparent about what the sprint goals are and whether 
or not they are being met. As you will see later in this chapter, the sprint goals 
and whether they are met or not are broadcast to the business team and other 
stakeholders. Communicating sprint after sprint that you aren’t hitting sprint goals can 
be a good signal to other teams that they can’t trust that you will complete the work 
you say you are going to complete – so you need to continually emphasize that teams 
need to not think of sprint goals as being too aspirational but achievable. Eric has 
started calling sprint goals “Sprint Commitments” to further press home the notion to 
his team that these need to be thought out and costed to ensure they can be met.

Where possible, demos are prerecorded and can just be linked to from the slide 

deck. However, we encourage teams to not spend a ton of time preparing for the demo 

meeting, so ad hoc demos are also frequent.

We use conferencing software like Skype or Microsoft Teams to project the demo 

deck; and users presenting ad hoc, video, or slide-based demos can connect to the 

conference in progress and share their own screen while demoing.

Sprint Retrospective

The sprint retrospective meeting is usually scheduled for the last Friday of the sprint 

and is not a combined meeting – this is just done separately for each of the smaller five- 

to seven-person team. This meeting acts as the final “standup” for the sprint as well in 

which tasks are closed out, user stories that are not yet completed are moved to the next 

sprint, and the backlog is reviewed and reprioritized.

We try to add at least one user story to the new sprint that is a direct result of a 

suggestion for an improvement in the retrospective section of the meeting.

We also like to roll up to all the other teams in email a report of everyone else’s 

retrospective meeting so that the rest of the team can at least read about how the other 

teams felt about their sprint.
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�Sprint Planning Meeting

The sprint planning meeting is scheduled for the first Monday of the sprint according 

to this schedule. This meeting is staggered where possible so external “chickens” can 

observe – but remember the scrum principle of chicken and pigs.

Scrum Chickens and Pigs T he chicken and pig story relates to a chicken and 
a pig that want to start a ham and eggs breakfast restaurant. The pig begs out 
because he’d be committed to the restaurant, but the chicken would only be 
involved.

Rather than having the sprint demo meeting be the meeting where product backlog 

suggestions are made, we use the sprint planning meeting, although discussions can 

happen during the sprint demo meeting that lead to ideas for the backlog.

The sprint planning meeting is typically conducted in a conference room with a 

projector and is timeboxed to 1.5 hours. All the development team are present. Non-

development team members are also welcome to observe, but their participation 

should be limited. If there isn’t enough seating, pigs sit at the table, and chickens sit 

against the walls.

Ideally, the product backlog has already been scrubbed prior to this meeting – this 

will make this meeting go faster if the product backlog is already prioritized, defined, and 

ready to go.

First in the sprint planning meeting, the previous sprint is closed out, and any 

outstanding user stories are moved from the old sprint into the newly created sprint.

If the product backlog isn’t already scrubbed, the team spends some time looking at 

the product backlog and ensuring that all high-importance user stories that have been 

thought of are in the backlog and prioritized correctly. This is a point where “chickens” 

can chime in and suggest user stories that potentially the team hasn’t thought of but 

need to do. The product owner is very influential in this discussion and helps the team 

understand what needs to be accomplished next.

Sometime during this meeting, the team should also take some time to try to 

determine what their sprint goal or goals are for the sprint. See the section “sprint goal” 

in this document on why a sprint goal is important.
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The team then fills out the “Capacity” tab in Azure DevOps’s “sprint” section. At 

this point, the team determines vacations, whether everyone in the scrum team is full 

time on the sprint this scrum, or whether some people are only partially on the sprint 

and partially on another scrum team (which is undesirable but sometimes happens). 

Team members can also log their vacation for the sprint. Figure 4-12 shows a filled-out 

capacity page. The maximum capacity per day for any developer is always capped at five. 

Looking at the Capacity tab for this sprint, you can tell at a glance that

Azar is taking a week off during the sprint.

Michael and Michael aren’t going to participate in this sprint – 

their capacity is set at 0 (maybe they are in the list because they 

have participated in past sprints).

Nick will only be able to participate at about half-time during the 

sprint (in this case because he is a lead).

The team has 1 day off – maybe a cool morale event!

Figure 4-12.  Azure DevOps Capacity tab
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Once capacity is set, the team immediately knows how many story points they can 

take on in the sprint (total capacity in hours divided by five). The team then looks at  

the top user story and estimates its size in story points (one story point equals 1 dev 

day or 5 hours).

Planning Poker  One useful technique of estimating the size of a user story 
is a technique called planning poker. The main idea of planning poker is to let 
multiple team members simultaneously estimate the cost of a user story and 
then find who estimates high and who estimates low on the team and determine 
what assumptions went into the high and low estimates. Often someone with a 
high estimate will have thought of something the rest of the team hasn’t thought 
of that needs to be considered. Also, someone with a low estimate may have an 
idea for doing the work that is much cleaner and simpler than what everyone 
else thinks has to be done. For more on planning poker, see this blog post: www.
mountaingoatsoftware.com/agile/planning-poker.

Once the capacity of the team is determined and the existing stories that didn’t 

get completed in the previous sprint are deducted from the capacity for the new 

sprint, additional stories to fill the sprint’s capacity are added in the priority order 

that they are listed in the product backlog. The team doesn’t need to estimate story 

points for every user story in the product backlog, just the ones that will fit into 

the sprint backlog plus maybe a few more for buffer in case some stories complete 

earlier than expected and new stories are added from the product backlog to the 

sprint backlog later in the sprint. All User stories in the sprint backlog must have an 

initial story point estimate.

With the sprint backlog filled with enough story points to cover the capacity of 

the team, the team then works to break down each user story into more granular 

tasks if there is remaining time. They do this by adding child Azure DevOps tasks to 

the user story. Some user stories may already be small enough that they are only a 

single task – this is OK, but just create one child task for the user story with the same 

name as the user story. When the timebox for the sprint planning meeting is hit, 

any remaining user stories that haven’t been broken down yet can be assigned to 

individual team members to break into tasks later on during their own time.
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�Communication of Scrum Status  
to the Business via Email
We send two regular emails to the business, one after the Friday end-of-sprint All-Hands 

sprint demo meeting that summarizes what has been done for the past sprint and one 

after the Monday sprint planning meeting for the new sprint which summarizes what 

will be done in the new sprint.

�End-of-Sprint Email

The end-of-sprint demo meeting email contains the following:

•	 A link to the video of the All-Hands sprint demo meeting

•	 A link to the slide deck used in the All-Hands sprint demo meeting

•	 A brief “CliffNotes” version of the meeting that includes in written form 

which goals were met and not met and what was demoed in the meeting 

along with time markers to the video where the demo happened.

An example end-of-sprint demo meeting mail looks something like this:

Hello—this is the sprint 8 summary for Local Data which completed on Oct. 25.  The video of our 

demo meeting is here and the slide deck is here.

Here is what our various teams completed in this sprint:

Pipeline Team
Sprint Goals Completed

    •     �Local Probe V.Next is deployed, supports switching between last 5 full runs and searching 

identifiers

    •     �Publish pipeline optimization (merging jobs and moving to Common Data Access Layer) 

reduces runtime by 1.5 hours

    •     �Markets can now configure unstructured address geocoding with their own market-specific 

logic. The ko-KR team used this to fix 88% of bad geocoded Korean addresses.

Not Completed

    •     �Neighborhood cache refresh to enrich 2.1M more entities with neighborhood information 

for EN-US
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Demos:
Local Probe v. Next Demo (5:15)

Local Probe v.4 has been deployed to autopilot.  Old local probe is now defunct.

You can now switch between the last 5 full runs.

You can also search by identifier.  For example “1x1” lets you search the identifier list for the 

sentinel entity.

Publish Pipeline Optimization Demo (8:30)

We integrated two more jobs into the publish job.  We merged LesGeoOntoloty and Neighborhood 

jobs into the PublishIndex job.  We also migrated the content generation in PublishIndex job to use 

the common DAL.

This work has reduced about 1.5 hours off the publish pipeline runtime.  The new publish pipeline 

runtime is around 5 hours.

Conflation Team
Sprint Goals Completed

    •     �Definitive Feeds Design Proposal

    •     �Corrections Dashboard ships which allows multiple views of corrections including feeds 

that are being corrected, attributes being corrected, and a way to validate that corrections 

on an entity have been applied

Not Completed

    •     �ID churn dashboard

Demos:
TCL Model Bin File Automation (11:15)

We can now automatically prepare TCL bin files during build.

Definitive Feeds Design Proposal (14:29)

We presented a proposal for a new feature called definitive feeds.

Motivation: consider a query like Starbucks in Bellevue.  We display way more Starbucks than 

their actually are due to old/bad data.  Yet we can wrap the Starbucks web site and know exactly 

the current set of Starbucks.  What we need is a feature that can suck in the definitive feed of 

Starbucks from their web site and publish those while simultaneously deleting all other Starbucks 

that don’t match with the definitive feed.

Chapter 4  Aligning with the Business



106

�Beginning-of-Sprint Mail

The beginning-of-sprint mail contains the following:

•	 A link to the task board for each team

•	 A list of the team members on each team and their capacity for the sprint 

(via a link to Azure DevOps capacity page for the team for the sprint)

•	 An “English language” capacity for the business – telling how many 

dev days of capacity the team has available in the next sprint

•	 High-level sprint goals for the new sprint

An example beginning-of-sprint email looks like this:

Hi all.  Platform team completed our planning meetings for the 1812.1 sprint (December 

3-December 14).  Here are the planning results and the sprint task board links and sprint goals for 

all the teams.

Pipeline Team

Sprint task board is linked here  

Scrummaster: Taylor 

Team Members: Abram, Joan, Dave, Emma, Patrick, Shahar, Stan (65 dev day capacity)

Sprint goals:  
Get Mexico market up and running 

Refresh the neighborhood cache 

Reduce overall size of cache files

Conflation Team

Sprint task board is linked here  

Scrummaster: Matt 

Team Members: Ade, Max, Linus, Amy, Leah, Mike (45 dev day capacity)

Sprint goals:  
Ship the ID Churn Dashboard 

Ship Mexico conflation model 

Move force match to run later in the pipeline
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�Retrospective Mail

Another mail that we have occasionally sent to the business is a report of the 

retrospective. In our retrospectives, we gather up verbatim “Good,” “Bad,” and “Meh” 

comments along with specific user stories that were arrived at to schedule as a result of 

the retrospective. Here is an example of a retrospective readout for just one of the local 

data teams after a sprint:

Hi all, the Pipeline team just completed their retrospective for this sprint and here are the results:

Pipeline Team Retrospective

Good 
Holidays 
Excited about codegen 
Gathered more team goals/metrics 
Deletion PRs have gone in 
Good communication with Conflation team lead to two features getting added to the 
platform 
Code reviews lead to helpful feedback and were dealt with quickly 
Felt productive 
Major progress on inval batching design 
Wrapping up pipe event work, excited to move to tooling 
Have a new customer for pipe deref 
Productive meetings

Meh 
Lingering build/infra issues 
Lots of long-tail work remaining from previous teams

Bad 
Common workflow errors go unaddressed because no one complains directly 
We still need to improve build “team” workflow/responsibility delegation 
Forgot to use test-driven development and it lead to wasted time 
No good process for getting in large PRs w/ constant merge conflicts 
Builds failing all the time for sometimes absolutely no reason 
“Hang bug”
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Follow-up 

Get our perf tests running on the CI server 

Better/more thorough bug triage at least once a week 

Figure out how to prevent asserts from hanging the CI server 

Publish a wiki that lists which configurations are supported/work 

Come up with plans for reducing memory usage short-term

�Conclusion
In Chapter 4, “Aligning with the Business”, we have discussed the importance of 

communicating with the business team. We have described how important it is to have 

teams that are aligned as directly as possible to business metrics and business goals. We 

have shared some thoughts on how to work with the business to help them understand 

the limitations of machine learning. We have also described how we do Scrum and how 

we involve and communicate to the business team through scrum meetings, scrum 

artifacts, and emails around our scrum cadence.

In Chapter 5, “Motivated Individuals”, we will consider the importance of building 

projects around motivated individuals and how to increase the number of motivated 

individuals within a team.
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CHAPTER 5

Motivated Individuals
Build projects around motivated individuals. Give them the environment 
and support they need, and trust them to get the job done.

—agilemanifesto.org/principles

Early in the history of Bing’s local search product, we had a much more primitive 

conflation/merge engine that was costly to maintain and produced mediocre results. 

Several individuals that worked with that conflation engine day in and day out felt there 

was a better way to do conflation. The existing conflation system had become a bug 

farm and required a lot of work to keep it working. The new proposed approach seemed 

promising, but the challenge was to find time to build something new while continuing 

to “keep the lights on” in the old system.

Fortunately, the entire data pipeline was designed in a componentized and 

modularized way with a well-defined input boundary to the conflation engine (a set 

of XML files that the conflation engine read) and a clearly defined output boundary 

leaving the conflation engine (a different set of XML files the conflation engine wrote). 

This made it possible to replace the conflation engine without disrupting the rest of the 

system.

Two motivated individuals were empowered to drop all their work in the current 

system and go off on their own to develop a new conflation engine. They were “ring-

fenced” – a term from finance that is used at Microsoft to mean making sure that the 

ring-fenced team is isolated from the main team so they aren’t paying any “taxes” in 

their development time to support the current active production project. Management 

was informed to expect slower progress for the 6 months that a new conflation engine 

was under development. Although initial estimates were more optimistic than the 

actual 6 months the new development took, regular reviews of the progress of the new 

project indicated that it was on track. Management provided needed air cover to buy 

the required time for the new conflation engine to be completed. As the two motivated 
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individuals neared the finish line, additional team members were added to help do 

additional integration work around the new conflation engine to enable it to be used in 

production.

The old conflation engine and the new conflation engine ran head-to-head for 

several weeks which exposed bugs and issues in the new code that were quickly fixed. As 

the quality of the output of the new conflation engine began to exceed the old conflation 

engine, the switch over to the new conflation engine was completed with major gains in 

the quality of our conflation in the local data system.

But the critical success factor in this project were the two motivated individuals. 

They spent a ton of energy and effort to ensure the project would be a success. They felt 

empowered to go fix things that were major problems in the system. That energized and 

motivated their work and led to a successful project result.

�Rewrite Frequently
In Bing, we strove to engineer systems to allow them to be rewritten frequently. This is a 

critical capacity for an agile team – it was completely doable to throw away the existing 

conflation system and write a new one because it was loosely coupled with the rest of the 

data pipeline. Also, it was easy to rewrite a new system and run it side by side with the 

old system – so-called A/B testing – to ensure the new system could run as successfully 

and with the same or better level of quality than the old system.

Fergus Henderson in his paper “Software Engineering at Google” observes that 

Google tries to rewrite most of its software every few years for similar reasons:

This may seem incredibly costly. Indeed, it does consume a large fraction of 
Google’s resources. However, it also has some crucial benefits that are key to 
Google’s agility and long-term success. In a period of a few years, it is typical 
for the requirements for a product to change significantly, as the software 
environment and other technology around it change, and as changes in 
technology or in the marketplace affect user needs, desires, and expecta-
tions. Software that is a few years old was designed around an older set of 
requirements and is typically not designed in a way that is optimal for cur-
rent requirements. Furthermore, it has typically accumulated a lot of com-
plexity. Rewriting code cuts away all the unnecessary accumulated 
complexity that was addressing requirements which are no longer so impor-
tant. In addition, rewriting code is a way of transferring knowledge and a 
sense of ownership to newer team members. This sense of ownership is  
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crucial for productivity: engineers naturally put more effort into developing 
features and fixing problems in code that they feel is “theirs.” Frequent 
rewrites also encourage mobility of engineers between different projects 
which helps to encourage cross-pollination of ideas. Frequent rewrites also 
help to ensure that code is written using modern technology and methodol-
ogy. (https://arxiv.org/ftp/arxiv/papers/1702/1702.01715.pdf).

Rewriting frequently motivates individuals and shows you that you trust them. 

Individuals are not motivated working on old code that they don’t understand, that they 

didn’t write, and that they feel no connection to. Aim to rewrite frequently to create more 

motivated individuals in your organizations.

�Finding and Generating Motivated Individuals
An organization needs to work at not just finding but generating motivated individuals. 

The first source for motivated individuals should be within your existing organization. 

We have often seen organizations that seem to systematically demotivate individuals. 

How can you ensure that you generate a constant flow of motivated individuals within 

your current organization?

Perhaps the most critical thing to do to generate motivated individuals is to create 

compelling goals, metrics, and targets – communicate a very clear vision of what 

the team needs to achieve and provide a set of metrics that will measure progress to 

achieving that vision – but leave the “how” to the team and even more importantly 

communicate your trust that the team will figure out the how. This goes to the “trust 

them to get the job done” part of the manifesto.

As an example of this, we worked for a while with a sister team. In that team, 

there were one or two people who generally “called all the shots” for the organization. 

Everyone else in the organization was expected to follow the game plan set by the few.  

By comparison, our team encouraged many people to chime in and share their best ideas 

and best strategies. Our team left the “how” to the many and trusted the team. The other 

team left the “how” to the few which didn’t convey trust to the rest of the organization. 

Because the leaders of the autocratic team were quite brilliant, we can’t say the other 

team wasn’t successful – they pursued a lot of good ideas and strategies. But we believe 

the people on our team felt more trusted and empowered and certainly more motivated.

For a manager or leader in a team, a good way to think of this is what we call the 

“Peter Jackson Approach to Project Management.” For the Lord of the Rings movies, 

Peter Jackson had a vision of what he wanted the movie to accomplish and be.  
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To communicate this vision to his team, he worked with a storyboard artist to provide a 

set of storyboards that covered the whole movie. He said:

[Storyboards] are a cheap pass at the movie. I get to make the movie at a 
really, really low cost, for the price of a few pencils and some paper, but it 
has effectively put me through the process of making the film. As a director, 
I've had a go, I've done version number one, and I can get to look at the 
movie complete.

His producer Barrie Osborne added:

[The storyboard] was a great tool. It was never intended and never was the 
final version of the movie. I've worked with some directors who will story-
board their film and you'll really see those storyboards on screen. Peter is 
not that kind of a director. Peter uses it for inspiration, for communication 
with the departments, but you know that those storyboards are going to 
change, they are a starting point and not an endpoint for Peter.

The storyboards created by Peter Jackson served to help the team understand very 

clearly “what” it was they were trying to create. But the “what” was created in a low-cost 

way – with simple pencil drawings. The “what” was also used to get everyone on the 

same page, but the storyboard was by its very nature a low-cost simple pencil drawing 

that was easily modified and could be easily discarded if it wouldn’t work or a better idea 

was thought of. Creativity of individuals on the team was encouraged by the light-weight 

vision represented by the storyboards, changes could be made to the plan and were. But 

having an initial plan was essential.

To apply the Peter Jackson school of project management to data engineering 

projects, find ways to create “storyboard-weight” vision documents that are easily 

thrown away, modified, and primarily used to communicate the vision to the team. 

These can often be oriented around a future customer experience. You can, for example, 

storyboard the experience a customer will have with your product a year from now. As 

the team gets a clear idea of what the product is envisioned to be a year hence, they can 

rally around the “how” of making the product vision come to life. By not dictating the 

“how” to the team, motivated individuals naturally emerge who not only come up with 

innovative “how’s” but also feel empowered to change the “what” when they see the 

vision is lightweight and open for innovation. Just be careful to make the storyboards a 

“starting point and not an endpoint.”
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Don’t Forget the Metrics A lways combine “storyboard-weight” vision 
documents with metrics that measure what you are trying to achieve with your 
product. If there is one paramount message in this book, it could be expressed as 
“It’s the metrics, stupid!” Metrics can also counteract the tendency the team will 
have to put too much “how” into the planning documents and vision. For example, 
Amazon’s project to try to deliver packages to houses with drones probably has 
a metric somewhere like “minimize the time it takes from order to delivery” and 
another metric somewhere like “minimize the cost it takes to deliver an order.” 
Should someone on the team come up with an alternate “how” that beats drone 
delivery for those metrics – in-home 3D printing? Teleportation? – the metrics 
trump the vision of drone delivery, and the new “how” can be pursued.

�Interviewing and Recruiting
Communicating vision and metrics while leaving the “how” and some of the “what” 

to your team should go a long way to generating motivated individuals within your 

organization. It is also a reality that you don’t keep motivated individuals on a team for 

their entire careers. People need to grow and learn, and this means they will usually 

spend a certain part of their career with one team and set of technologies and then will 

move to other teams. This is healthy and should be encouraged whenever possible. To 

keep new talent flowing into a team as people move on, a team needs to recruit new 

motivated individuals from outside the organization. There are three phases to recruiting 

new motivated individuals – first attract, then screen, then interview.

�Attracting Motivated Individuals

In order to attract motivated individuals, you need to be able to tell your story to people 

outside your team in a way that helps attract people who would be motivated to work 

on your project. Usually you will use job descriptions to communicate your story. When 

you do this, it is very important to write a job description that not only communicates 

the vision that your team is trying to achieve but is also extremely honest about what you 

are expecting from an individual who would be working in your team. There is nothing 

worse than writing a job description designed to attract a candidate to a job that doesn’t 
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really exist as described. Sometimes with data engineering teams, there is a temptation 

to “overemphasize” the machine learning parts of roles while “underemphasizing” the 

engineering portions of a role. Even worse, occasionally we have seen machine learning 

opportunities being used as bait to attract candidates to roles that in reality are 95% 

traditional engineering roles. An individual who is attracted to a role based on a job 

description that proves false is not going to be a motivated individual.

It is also important to think carefully about the language you use in a job description 

to ensure it is inclusive and attracts the broadest range of candidates. There are lots 

of potential pitfalls that one can fall into when writing a job description that will scare 

candidates away from your position. The following are some tips:

–– Avoid creating large laundry lists of technologies that you expect the 

candidate to have mastered. A good candidate who has experience 

with one particular machine learning toolkit can quickly pick up 

another. Focus instead on broader machine learning techniques that 

you are sure will need to be used in your problem space – broader 

terms like NLP or RNNs as opposed to TensorFlow or PyTorch.

–– Give some idea of the agile processes and approaches you are using. 

Candidates like to hear details like “You will be working with a team 

of five other engineers following Agile principles to make progress 

on the problem in 2-week planning increments. We believe that 

everyone should participate in shaping our direction and planning 

the work we do.”

It is also all too easy to insert gender-specific bias into a job description. The National 

Center for Women and Information Technology (ncwit.org) has provided seven helpful 

tips for writing job descriptions that attract the widest range of candidates:

	 1.	 Avoid superlatives or extreme modifiers, for example, phrases 

like “rock star” or “world-class.” Instead try “truly innovative” or 

“dedicated and committed to creative problem solving.”

	 2.	 Avoid gender-specific pronouns (he or she).

	 3.	 Make sure that all the “required” qualifications are truly required 

and try to build in as much flexibility as possible.

	 4.	 At the beginning of the job description, include a short but 

engaging overview of the job.
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	 5.	 Avoid long bulleted lists of responsibilities or qualifications.

	 6.	 Make sure that all pictures and graphics include a diverse range of 

people.

	 7.	 Examine job descriptions for subtle biases in “masculine/

feminine”-associated language.

For more examples, see www.ncwit.org/jobdescriptionchecklist.

�Screening

Now that people are starting to apply for your job, you will start to get resumes and 

applications. Once again, at this stage, it is important to not let your biases get in the 

way to potentially screen out great candidates. It is all too easy to look through a stack of 

resumes and be biased toward candidates that have similar backgrounds as you. Instead 

of immediately looking at the school a candidate went to or the last company they 

worked for, look instead at the projects they have worked on and think through how those 

projects may prepare or even bring new perspectives to the project you are hiring for.

It is also important at this stage to begin talking face to face with the candidate – we 

typically like to do a 50-minute interview over Skype where we can ask the candidate to 

work through some sort of a technical problem that helps us see how a candidate thinks 

and works through a hard problem. The closer this problem is to real-world things you 

are working on, the better. Try to work on actual code in this phone screen interview. 

Don’t be religious about the coding language used by the candidate. The candidate 

should be able to code in the language they are most familiar with, and as an interviewer, 

it is an opportunity for you to dust off skills in other programming languages that aren’t 

your favorite. In general, we aren’t fans of using pseudo-code as the exclusive “language” 

of the interview – pseudo-code can be a good place for a candidate to start explaining 

the algorithms they are going to use, but we feel it is important to see if the candidate can 

also express their ideas clearly in their favorite programming language.

Paired Programming in an Interview O ne successful technique we’ve used in 
phone interviews is a paired programming approach. As the interviewer, you can 
write a unit test in a shared coding window (some ideas on how to provide that 
shared window follow). The interviewee can then “take over the keyboard” and 
write the code to make the unit test pass.  The interviewee can then write the next 
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needed unit test to solve the next stage of the problem. You can then write the 
code to make the interviewee’s unit test pass – and so on. Skype provides a nice 
shared coding window that can be shared via a browser here: www.skype.com/
en/interviews/. We have also just opened an instance of Visual Studio Code 
and used screen sharing to share an IDE during an interview. Visual Studio also has 
a feature called “Live Share” that makes this easy.

�Interviewing

Ideally, you’ll also have a final opportunity to do additional interviews with the 

candidate with other team members. The ideal situation is that within the span of at 

most a day, a number of employees will interview the candidate on site to determine 

if they would make a strong team member. It is a challenging task to determine if a 

candidate will be a motivating and motivated individual on your team or an individual 

who is demotivating and demotivated. If you reflect on your experience with existing 

teams, you will find that there are individuals that turned out to be solid contributors 

who you may have initially thought were below your standard. Conversely, you will also 

have worked with people who seemed amazing in an interview situation that turned out 

to be pools of toxicity. How can you perfectly determine in the course of a day where 

your candidate fits in this spectrum? The truth is that you can’t, so you need to be a bit 

more Zen about the whole process.1

Firstly, think of the interviewing process as a classifier. You want to set your threshold 

in interviews for high precision. This may mean that you will reject candidates that 

would have been great – but don’t sweat it. But be very careful that the “features” that 

your classifier is using to evaluate fit are ruthlessly pruned of features that reflect your 

own bias. Reject any features to your classifier that are similarity score based – for 

example, this person looks like me, thinks like me, went to the same school as me, or 

likes the same thing as me.

Secondly, keep in mind that beyond very small teams, hiring is a fluid, continuous 

process. If at all stages there is clarity about the goals and expectations of the team, 

1�If you have the opportunity, rather than relying on a limited interview process, having an 
internship program provides a far better picture of how an individual might perform. This allows 
you to see firsthand almost every aspect of the candidate’s capabilities and potential.
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you can optimize the team over time. In other words, you are a business, so you can 

encourage false positives to find other positions.

With that out of the way, let’s explore what to look for in interviews. We generally 

think in terms of capabilities – skills that are already there – and potential, skills desirable 

for your team that the candidate can develop. The former can be determined by direct 

lines of questioning, whereas the latter requires a little more indirection and skill on the 

part of the interviewer. Capabilities and potential capture the current and future skills 

of the candidate; they also capture some idea of the addition to the overall toolset of the 

team and if they will amplify or complement or both.

The best career advice we’ve received is to follow your passion – the employment will 

take care of itself. Passionate individuals tend to self-select for fit in the sense that if their 

work is not aligned with their passion, they will look for other opportunities. With this 

in mind, we find it very useful early on in the interview process to understand what the 

candidate is passionate about. While this may seem like a simple thing to figure out – just 

ask “What are you passionate about?” – we’ve found that many if not most candidates 

don’t believe they are actually passionate about anything. Don’t believe them. While 

many won’t respond with a highly formed definition of their passions (such as “I want to 

build the ultimate AI”), many people have hidden passions that show in non-application 

areas. For example, we’ve interviewed and worked with people who are passionate 

about engineering practices, who are passionate about service architectures, and who 

are passionate about teams and collaboration, particular emerging parts of the science 

applied to their domain, or are passionate about the company itself. As a manager, your 

job is to find passion and leverage it for your team. As a hiring manager, your job is to 

gauge if finding a passion for the candidate you are interviewing is going to be easy or 

hard. When trying to elicit an understanding of areas of passion, you have to act a little 

like a good radio interviewer teasing the story out of a reluctant star. Assume that the 

passion is there, and the effort required to find it is a measure of how easy it is going to be 

to leverage.

When testing for machine learning or data science capabilities, we generally like 

to follow a model of escalating questions that mix both direct testing and asking for 

examples from experience. For example, following our view that metrics are central 

to development, we like to ask a question about evaluation for a simple problem. For 

example: “How would you evaluate a classifier for determining if a web page were a 
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home page of a business or not?” This allows you and the candidate to touch on the 

following:

•	 The basics of classification, including true positives, true negatives, 

false positives, false negatives, precision, recall, accuracy, and so on

•	 Some basic statistics, especially sampling

•	 The pragmatics of dealing with a very large data set – the Web

From this point, you can extend the line of inquiry into architectural details, 

especially as they pertain to scale and machine learning specifics if there is an existing 

capability. When looking for capabilities, you are looking to see if they are a true 

practitioner rather than someone who has downloaded the latest open source model 

and run it according to the recipe found on a blog. When looking for potential, you 

are looking to see if the candidate can recognize common pitfalls – do they recognize 

assumptions that are being made about the data?

When interviewing for more senior positions, we tend to look for qualities that will 

work within an agile development framework. Again, when testing capabilities, this can 

be done by direct questioning. In fact, the agile manifesto principles suggest a number of 

good lines of discussion: How have you dealt with changing requirement? How have you 

worked with customers during the development of a project? Where have you invested 

in technical excellence to support a project? What motivates you?

�Career Management of Motivated Individuals
Once an organization successfully creates motivated individuals and recruits new 

motivated individuals from outside, the next step is to retain and grow those motivated 

individuals. How do you do this?

�Heart Tree Star Chair

An important first step is to make it a priority to talk regularly about what individuals 

are looking for in their jobs and careers. One way to have this conversation is a model 

Barbara Grant developed for employee managers at Microsoft called “Heart Tree Star 

Chair.”
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The “Heart” part of the conversation with an employee focuses on having a 

discussion about what they love about their current job and in general what they love 

doing. Questions you might ask include the following:

–– What do you love doing?

–– What work in your job currently brings you the most satisfaction?

–– In all the prior work you have done, what have you enjoyed working 

on the most?

–– What are the things about your job that you like the least?

The “Tree” part of the conversation is about what an employee would like to do to 

grow and develop in their position. Questions you might ask include the following:

–– What do you see yourself doing 1 year from now? 2 years? 4 years?

–– As you see other people in the organization, whom do you aspire to 

be like in the organization?

–– What do you want to learn next?

–– What skills do you want to develop next or improve?

–– How do you plan to stretch yourself in the next year?

Finally, the “Star” portion of the conversation includes questions about what an 

employee finds rewarding about their job. You should make it clear that it is assumed 

that everyone wants to be fairly compensated for the work they do – this is certainly part 

of the “Star” conversation, and if someone feels they aren’t being properly rewarded 

financially, you should prioritize this. But it is also important to understand other 

aspects of what motivates an employee. For some, they may be motivated by recognition, 

others by taking on the hardest problems in the organization, others by being able to 

impact the most people, and others by being able to work with people they think they 

will learn the most from. Questions you might ask include the following:

–– What makes it worth it for you to continue in this job?

–– In addition to monetary compensation, what is most rewarding about 

working here?
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You can optionally add a fourth element to this discussion called “Chair.” The Chair 

question is to determine what keeps them in their current role and what would cause 

them to leave it. Questions you can ask here include the following:

–– Why are you still in your current position?

–– What would most likely cause you to decide to leave your current 

position?

–– As you think about your next position, what would it be?

–– What is your dream position long term?

Changing Chairs Can Be Good R emember it is not necessarily a bad thing for 
someone to change their chair. Often the quickest way someone can grow and 
progress is by doing something different, even though they are great at what they 
are currently doing. We have had many experiences where a project seemed totally 
dependent on a particular person being in a particular role, only to find that when 
that person left, new people were able to fill the role even better – or at least in a 
different way that overall created a stronger organization.

�From IC to Lead/Architect/Manager

Most reasonable people expect a certain measured progress toward their career goals. 

It is good for a boss and an employee to be clear with one another what the expectation 

is for both career goals and the time frame to achieve those career goals. It is good to 

understand first what path an employee is on. Does the employee want to become a 

manager in the future or do they want to follow an “IC” path? —Microsoft-speak for an 

individual contributor with no management responsibilities.

The most common career paths look like this:

–– Junior to expert developer: This path is for a person who wants to 

be hands on in development throughout their career. People in this 

career path take on more and more challenging projects over time. 

They may choose to become very deep in a particular area which 

is valuable – some developers work in a particular area and similar 

set of applications for their entire careers – while others choose to 
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become knowledgeable about a wide range of techniques across 

multiple areas. Both types of developers – expert specialists and 

expert generalists – are valuable to a team. Someone on this path 

needs to be given assignments that continue to grow and stretch their 

technical ability.

–– The technical leadership path: This path is for a person who naturally 

takes charge of things technically but doesn’t necessarily want to 

manage people. People in this career are excellent at communicating 

and refining technical ideas and naturally provide technical 

leadership to projects they are on. This path ultimately can develop 

into being the team architect and providing technical direction 

for larger and larger projects. Someone on this path needs to have 

opportunity to lead projects that initially are small projects and small 

teams but over time grow to encompass larger projects and larger 

teams. People in this career path need to learn to lead by influence 

and not authority.

–– The people management path: This path is for a person who wants to 

grow and develop high-performing teams and influence and impact 

other people’s careers and lives positively. People in this career 

path should have a passion for creating environments for motivated 

individuals to thrive. They should be given opportunities to take on 

people reports and lead organizational change initiatives to grow into 

these roles.

–– Discipline switch path: Occasionally you will see someone who 

wants to switch disciplines on a team. For example, we have 

seen developers who have moved into program manager roles, 

technical writing roles, and so on. One common challenge on a data 

engineering team is when someone who primarily has a classical 

computer science background with little exposure to machine 

learning wants to fully move to data science roles that are typically 
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filled by people who have more machine learning experience. The 

way we have handled this is as follows:

•	 Careful pairing: Typically, on a data engineering team, you will 

have people who have strong machine learning backgrounds 

who are driving the most important work on the team. It is useful 

to spread their knowledge by pairing them with others who are 

interested in learning and building the same skill sets. But at the 

same time, you don’t want to overwhelm your strong ML people 

with too many “helpers.” Find a balance where you can assign 

people who want to learn more machine learning on teams 

where they will rub shoulders with your machine learning experts 

without slowing down those experts too much.

•	 Prioritize opportunities: Often everyone on the team from the most 

junior developer to the most senior developer wants to get more 

involved in machine learning problems. It isn’t always possible for 

everyone to be involved. There is usually still lots of “non-machine 

learning” engineering work that has to be completed on a team. 

Machine learning opportunities can be used to motivate and retain 

individuals who want to learn. Alternate traditional engineering 

work assignments with more machine learning assignments so that 

you continue to make progress on the non-machine learning work 

while providing opportunities for developers to learn more about 

machine learning on a regular basis.

�Creating a Productive Environment for Motivated 
Individuals
It is important to monitor the engineering environment of the team to ensure that you 

are providing an environment that continues to motivate and empower motivated 

individuals. The team must be mindful of what is sometimes called the “day in the life of 

a developer.” This involves asking questions about a developer’s day like the following:

•	 How much wasted time did you have today?

•	 How long did it take you to make a change to a model, retrain,  

and test it?
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•	 How long did it take to make a code change to a feature and get that 

change checked in?

•	 How long does it take to verify that a change doesn’t break the 

current product?

•	 How long does it take to build the product?

•	 How long does it take to investigate and fix a bug in the product?

�Inner and Outer Loop
As you can see, most of these questions have to do with how effectively the developer’s 

time is being used and how much time is being wasted. At Microsoft, teams talk about 

“the inner loop” and “the outer loop.” The inner loop is the amount of time it takes for 

a developer to change the product on their own machine in some way and test their 

change. The outer loop is the amount of time it takes once a change has been verified on 

a developer’s own machine to actually ship that change into a production environment 

for customers to use. It is good for the team to identify what are some of the most 

frequent things they do in the inner loop and outer loop on the team – for example, 

retrain models, fix bugs in feature code, or modify a web service – and measure the time 

it takes. Then the team can relentlessly drive down the time to do those things.

There are many opportunities for improvement that you will find as you start 

to measure the inner loop and outer loop for your product. Some examples of 

improvements we have seen to the inner loop include the following:

–– An inner loop that included build times of up to 20 minutes was 

optimized to bring build times down to 2 minutes through refactoring 

and componentizing the build so everyone only had to build the part 

of the product they were working on which saved thousands of man 

hours over a year.

–– An inner loop for a data pipeline that could only be verified on a 

server over a several-hour process was optimized by providing a new 

flavor of the data pipeline that could be verified in minutes on a local 

developer machine.

–– An outer loop for deploying changes to a web site that had hours of 

tests was optimized by improving the speed at which the tests ran by 

parallelizing the tests to be run on multiple machines at once.
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How to Be a Hero I f you really want the adoration of your team, do something to 
improve the inner or outer loop. On one of Eric’s teams, the continuous integration 
system had slowly devolved over time from a 1-hour run to take more than 2 
hours to complete verification of any check-in. When a developer stopped his “day 
job” and decided to really dig in and investigate what was happening, he found 
a memory leak that was impacting every test that was run. When he fixed it, the 
integration system was brought back to 1 hour. The team declared a team holiday 
in his honor.

�Tooling, Monitoring, and Documentation
In addition to continually optimizing the Inner and outer loops for your team, you 

should also think about tooling, monitoring, and documentation. These three 

investments further improve the development environment, thereby keeping your team 

motivated.

Tooling: There is nothing better than a tool that makes the developer’s life easier. 

Your team will tell you the parts of the “day in the life of a developer” that are hard and 

will often have ideas for tools that will make those parts easier. These tools may range 

from simple scripts that automate repetitive actions to more complex tools that may 

require much more time to develop. Although you can overinvest in tooling, we much 

more commonly see that good tooling is neglected with the rush to ship a product. 

Make time for tooling. Work it into your regular development process in some way. For 

example, you could choose to do regular tooling sprints, you could choose to rotate 

developers into sprints where they are working on tooling on a regular basis, or you 

could have regular designated weeks of the year where the regular product cadence 

stops to build tooling as described in Chapter 8: Sustainable Development.

Monitoring: There is nothing worse than not being able to figure out why your 

product is failing in the wild. Often, good logging and good tools to search and query 

those logs can make the difference between a feature or site failure that lasts minutes 

and one that lasts for hours. This is discussed further in Chapter 7: Monitoring. A good 

practice is to have a weekly postmortem meeting about any failures of your product 

that happened during the previous week. Bring the people into the room who have 

knowledge of the failure. Do not treat it as an opportunity to lay blame at the feet of the 

Chapter 5  Motivated Individuals



125

developer who broke the product. Instead, treat it as a useful learning opportunity to 

figure out what mitigations can be taken to ensure the same kind of issue doesn’t recur in 

the future. Talk about both “time to detect” and “time to resolve.” Time to detect should 

be tracked for major issues to keep the team honest about how quickly they detected 

an issue impacting customers. Often, time to detect can be reduced by more efficient 

monitoring. Time to resolve can be reduced through better strategies for updating the 

product in place to fix an issue. The output of weekly postmortem meetings should be 

work items that are tracked in subsequent postmortem meetings to ensure the work 

items get completed. This is discussed further in Chapter 8: Sustainable Development.

Documentation: A final piece that is often lacking in a team to support motivated 

individuals is good documentation. Some questions you should ask here include the 

following:

–– Does the team have enough documentation in place that a new 

hire could join the team and get up to speed by just reading those 

documents?

–– Are the most common developer tasks on the team (training a model, 

updating a feature, deploying a feature) documented somewhere in a 

step by step way so a new hire can do those tasks?

–– Can a developer look at your source code repository and find 

appropriate readme documents in key directories that explain the 

contents of those directories?

Investing in documentation is one of the most common tasks that appears in 

developer surveys at Microsoft. Usually you will have motivated individuals on your 

team that are good writers and want to invest in documentation. Make time in your 

schedule and empower those people to write documentation.

DocFX + Git O ne system that we have been successful using for 
documentation is the combination of DocFX and Git. DocFX is a system that can 
take markdown documents and provide a nice navigation and search experience. 
It is used to power docs.microsoft.com. When combined with Git, you can keep 
a change history of the changes made to your documentation and use all the 
power of Git to manage and maintain the documentation. For more on DocFX, 
see http://dotnet.github.io/docfx.
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�Developer NSAT
We have already suggested several quantitative metrics to measure the productivity of 

your environment:

–– What is the “inner loop” time for common developer tasks in the 

inner loop

–– What is the “outer loop” time for common developer tasks in the 

outer loop

–– What is the time to detect an issue in the product

–– What is the time to resolve an issue in the product

In addition to these quantitative metrics, it is useful to gather a qualitative metric 

as well. One metric that we have used at Microsoft that is particularly useful to track is 

known as developer NSAT (net user satisfaction). It is very easy to track developer NSAT 

for your team. On a regular basis (we do it monthly), ask everyone on your team this 

question:

How satisfied are you with your overall developer experience and produc-
tivity on our team?

	 1.	 Very dissatisfied

	 2.	 Dissatisfied

	 3.	 Neither satisfied nor dissatisfied

	 4.	 Satisfied

	 5.	 Very satisfied

You should also ask one additional “fill in the blank” question:

What investment or change would most directly improve your  
overall developer experience and productivity?

Ask these two questions in an anonymous survey and make sure the team knows it 

is anonymous. This will encourage honest responses. Then from that survey, you can 

calculate an NSAT score by this formula:

NSAT = 100 + % of very satisfied – (% of very dissatisfied + % of dissatisfied)
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So if you get these results for your survey

Very dissatisfied: 10% of respondents

Dissatisfied: 18% of respondents

Neither satisfied nor dissatisfied: 31% of respondents

Satisfied: 40% of respondents

Very satisfied: 1% of respondents

your NSAT score would be

NSAT = 100 + 1 – (10 + 18) = 73

Track NSAT regularly and ensure that it is moving up and not down. Invest in the 

work suggested by the “fill in the blank” part of the survey to keep NSAT moving up on 

your team.

�Supporting Motivated Individuals Outside Your 
Organization
One area that teams sometimes forget to leverage is thinking about how to motivate 

individuals working outside of the team and even outside the company. There are 

several major ways to leverage these external individuals. They include engaging with 

the open source community, publishing papers, and providing an extensibility story for 

your project so motivated individuals can build on it and extend it.

Open Source: Leveraging and contributing to open source is a great way to leverage 

motivated people outside your company and a way to motivate people inside your team. 

Developers typically feel good about making a contribution to an open source project 

as it can outlast a contribution made to an internal project. It also can impact many 

more people than code only written for a smaller project. Where possible, find ways to 

contribute to open source projects. Also, by using open source projects, you benefit from 

motivated individuals outside your company who are continuously improving the open 

source projects you use.

Publishing Papers: Publish and communicate the areas in machine learning where 

your team is innovating. Attend machine learning conferences where possible and 

build relationships with researchers in areas that overlap your team’s concerns. Keeping 

involved in the machine learning community can be very motivating for your team and 
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also gives you opportunities to leverage motivated individuals outside your organization 

who are working on the next breakthroughs in machine learning. Often, the problem 

you want to solve on your team will already have multiple published papers that can 

be consulted to get ideas on how to solve your problem. Search the literature and 

leverage the research that has been done in your problem space. Keep up to date on new 

publications impacting your area of interest as they come out.

Extensibility: A final way to motivate individuals outside your team and company 

is to provide a great third-party extensibility model for your product. This might be as 

simple as a REST API to allow other parties to call into key subsystems of your product 

and leverage your results in their applications. Think about all the problems that you 

thought of solving in your product, but you aren’t going to get solved because of limited 

development resources and time. Then consider whether you could expose APIs that 

would allow third parties to leverage your product to solve those problems.

�Conclusion
In Chapter 5, “Motivated Individuals”, we have discussed how you can build projects 

around motivated individuals. We discussed the importance of rewriting frequently. 

We described some leadership ideas around how to set a vision and metric targets 

while trusting motivated individuals to figure out the best way to achieve the vision and 

metrics. We discussed how to find and hire motivated individuals and how to retain and 

grow their careers once they join. We discussed the importance of having a productive 

development environment and measuring inner loop and outer loop times for common 

tasks as well as developer NSAT. Finally, we talked about how to leverage motivated 

individuals outside your team (which also will motivate people within your team).

In Chapter 6, “Effective Communication”, we will describe techniques and strategies 

to facilitate communication around data.
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CHAPTER 6

Effective Communication
The most efficient and effective method of conveying information to and 
within a development team is face-to-face conversation.

—agilemanifesto.org/principles

There is no shortage of topics to discuss in a data engineering team: We looked at a 

sample of the input data, and here’s what we found. Is this surprising? Currently, the 

classifier is predicting false positives for these examples. Does the customer care? We 

compared the latest results with those at the beginning of the month and found this weird 

bias. What do you think? Do these examples fit in the current definition, or should we 

update the judgment guidelines? Our labeling team seems to be constantly disagreeing on 

these cases. Are they important? We think it’s okay to get the predictions wrong in these 

cases. What do you think? We believe this is the right metric to capture overall progress. Do 

you agree? We reviewed a sample of the data, and it looks like the object model to capture 

all cases looks like this. Is it too complex?

If you are attempting to deliver any remotely interesting inference over a large and 

varied data set, there’s going to be an almost constant stream of questions, insights, 

partial results, and ambiguities to resolve and decisions to be made. What is the best 

way to answer these questions, read the tea leaves of intermediate results so that you can 

continue to make progress, keep the team in sync regarding the current thinking about 

the model that you are building of the world, and unblock individual developers as they 

navigate the data science search space? The modern development workplace offers a 

plethora of modes of communication both digital (email, IM, video chat, group chats, 

code reviews, digital scrum boards) and corporeal (face-to-face communication) – what 

are the best communication choices to make in the agile data engineering project?

Principle 6 of the agile manifesto advocates face-to-face communication. At the time 

it was written (2001), the alternatives available to development teams were limited when 

compared with the variety of communication platforms enabled by the Internet.  
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You can think of the sixth principle as really saying it’s better to talk face to face than it 

is to start up email threads. So what does face-to-face communication have to offer that 

email lacks?

•	 Face-to-face communication is immediate – when talking face 

to face, ambiguities, misunderstandings, and confusion can be 

identified in real time and corrected right away. Asynchronous 

communication (email, IM, etc.) is at-will, and the latency is a 

function of the priorities of the individuals involved. Often these 

priorities are mismatched – there is one individual for whom the 

topic of the communication is of higher priority than the others.

•	 Face-to-face communication is human – we can take full 

advantage of the richness of human discourse including nonverbal 

communication (I can see that you don’t seem to understand what 

I’m saying). All other forms, including voice and video chat, do not 

have this quality – and no, emojis don’t make up for this deficit :-(

•	 Face-to-face communication is a shared experience – we were 

all there, we saw the same thing, and we agreed to some outcome. 

A contract witnessed by the team is very valuable in ensuring 

accountability (though as we will see later, it is not always sufficient).

•	 Face-to-face communication is rich and interactive – I can talk 

about a data set in a rich way, interacting with the data content 

both physically (pointing to data graphics that are projected) and 

computationally (using an application to transform and interrogate the 

data). I can also draw things on a whiteboard and modify that drawing 

as I learn from others what is unclear about the emerging picture.

All of this adds up to saying that face-to-face communication, in the context of an 

engineering project, is the most efficient form of communication. With these factors in 

mind, we can look at the options for digital communication in the modern engineering 

workspace in terms of immediacy, richness, and shared experiences:

•	 Group messaging systems such as Slack and Microsoft Teams offer 

potential immediacy (real-time chatting – though an immediate 

response is not enforced by the platform). This can be frustrating 

to the instigator if they are blocked by the issue being discussed. 
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They then have the additional burden of wondering “Would it be 

rude to ping?” “Should I drop by their office anyway?” or “Are they 

even in the office?” – a similar degree of richness as one would find 

with email, which is to say very little – and they lack the essential 

interactive nature of face-to-face discussion. You can’t really interact 

with content in a shared way. In addition, many of these systems 

suffer from a threading or interlacing problem. Communication 

channels can mix and interlace different threads between different 

combinations of individuals. Recent improvements to systems like 

Teams and Slack have attempted to address this specific issue by 

introducing the ability to respond to a specific message, but have not 

yet arrived at an ideal solution. At the time of writing, the solutions 

on both platforms introduce some cognitive overhead and are prone 

to user error resulting in thread fragmentation.

•	 Video chat systems offer much of the richness of face-to-face 

communication (participants can read many cues from the video of 

participants, though not all, making it more of a human interaction), 

and through content sharing mechanisms, they offer the rich 

interactions with data. The limitations of video conferencing – a slight 

degradation in the ability to read all the nonverbal cues of participants, 

especially as it pertains to turn taking in discourse – can lead to a 

slightly stilted but therefore more structured interaction. We’ve known 

some executives to require meetings that could be done face to face 

for most of the team but, with some required attendees remote, to be 

done online to make the interactions equitable for all participants (and 

not bias interactions to those who can be present physically).

•	 Modern code review systems (such as Microsoft’s Azure DevOps) 

provide asynchronous, shared, and appropriately rich experiences 

around code. Reviewing code can track quite complex interactions 

between authors, reviewers, and automated components of the 

system – build pipelines, testing pipelines, and so on. Platforms are 

becoming sophisticated enough to integrate chat channels into any 

content system where identity can be used. Similarly, digital scrum 

boards facilitate many forms of interaction. They are essentially the 

object of interactive discussions around planning.
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One big advantage of digitally mediated interaction is the built-in capability to 

capture and add value to the content. For example, using a video conferencing platform 

to host brownbags, scrum team demo meetings, and so on means that the event can 

be recorded. The recording can become a sharable asset for the team. In addition, 

some value can be added in both real time and offline – recent advances in machine 

translation, for example, mean that spoken language can be translated in real time 

during a meeting. In addition, digital platforms mean that APIs can be opened up to 

allow bots (intelligent agents capable of multistep interactions with people and content) 

to contribute to any process. For example, a bot can be built to keep an eye on a code 

base to look for certain conditions, report them to the engineers involved, and mediate 

multistep resolutions with those individuals.

Traditional engineering projects involve discussion around systems (architecture, 

platforms, database schema), processes (planning, execution), operations (deployment, 

monitoring), and experiences (user interfaces and information architecture). The sixth 

principle advocates face-to-face communication to resolve issues on these topics. 

Data engineering projects add to this group interactions around data and inference 

algorithms. As we will see, the types of discussions to be had and the tools to effectively 

support those discussions in an interactive manner are distinct in many ways from the 

traditional engineering context. We will talk about some specific activities that data 

projects require and how these can be facilitated in face-to-face meetings as well as how 

discussions around data in meetings found in the traditional agile workflow can be best 

supported.

The Ephemeral Nature of Face-to-Face Communication   While face-to-face 
communication has many benefits and teams should use it as much as possible 
in day to day interactions, it has one fundamental problem which must be 
confronted in organizations of even a modest size. Face-to-face communication 
is ephemeral – there is no built-in record of decisions, agreements, designs, 
alternatives, hypotheses, and so on. In our experience, the immediacy and 
pragmatism of face-to-face communication needs to be supported and enhanced 
by a number of best practices that produce some form of digital artifact. This is 
particularly important in large organizations.
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Building a culture that can efficiently combine face-to-face communication with 

appropriate and timely creation of supporting digital artifacts (both code and non-code) 

is a challenge that should not be underestimated. Many developers consider the creation 

of code as the only “work” that they signed up for and any additional tasks involving 

documentation, planning, and so on as unnecessary overhead. On top of this, if the 

selection of a content platform and team process is not well thought-out, the team can 

experience the real overhead of refactoring documents within and across content platforms.

Let’s complement our description of the benefits of face-to-face communication 

with the features of content management systems.

•	 Cost of creating and editing content: If a content management 

system makes it easy to create and modify content, it means that the 

team can very quickly get started. Systems like Microsoft OneNote 

allow users to get up and running in a matter of minutes. On the 

downside, unconstrained content creation can very rapidly lead 

to messy, unorganized content. Pages and sections are forgotten 

about and become stale. As the cost of content creation increases, 

it can lead to the team making more considered, better decisions 

about how to organize and create content. On the downside, a high 

cost of maintenance can lead to the team putting off and ultimately 

abandoning the creation and upkeep of documentation.

•	 Search capabilities: The less constrained and more open a content 

system is, the more search becomes an important feature. Poorly 

structured content that can’t be searched becomes almost useless. 

Microsoft’s OneNote, for example, while providing a low cost for 

creation suffers from mediocre search functionality in our opinion.

Platforms that are commonly considered for managing team content include the 

following:

•	 OneNote: Microsoft’s WYSIWYG wiki-like system. It has a very 

low barrier to entry – just start typing – but can lead to large, 

unstructured, and difficult-to-search content.

•	 Checked-in documents to the code management system (e.g., Azure 

DevOps, GitHub): Checking in content allows the team to bring some 

of the discipline of code reviewing and even testing to the document 

space. A human-readable, text format should be chosen (markdown, 

Chapter 6  Effective Communication



134

good; pdf, bad) that works well with the built-in comparison tools 

used for code. If you can establish this culture, then maintaining 

things is not too cumbersome – you need to add “review document 

changes” to your workflow when reviewing code.

•	 Standalone wiki: Systems like the hugely popular MediaWiki platform 

should be familiar to (or easily adopted by) your team. They offer 

more constraint than OneNote, and editing requires more intention 

(which can be a good thing). You can also consider DocFX and Git if 

you need a workflow that more approximates the workflow for code 

(see github.com/dotnet/docfx). Atlassian’s Confluence is another 

good choice.

•	 Word + file system or SharePoint: For important definitional content 

(such as specifications or requirements) where the content doesn’t 

change frequently, the formality of a full-blown word processor 

can be a useful tool. Such documents do best in a well-structured 

document space.

The challenges around non-code artifacts are very human – they relate to discipline, 

behavior, and habit. It is very hard to come up with an analogy for building and testing 

documentation. One general approach to help with success in this area is to limit 

the types of documents that can be created. With this scoped and well-defined set of 

artifacts, it is far easier to say each check-in is required to include comments for public 

methods or demo meetings have to be run directly from the experiment log. Some of the 

artifact types that we have worked with include the following:

•	 Experiment logs: The data science part of our work is, well, a science. 

And like most scientific endeavors, data scientists explore various 

spaces to discover where the good stuff is. Exploring these spaces 

generally involves a data set, an algorithm, some parameters, some 

output, and an analysis. There is great value to the team as a whole 

if records of these experiments are created, made available, and 

searchable. Even better is if this form of documentation can link to 

persistent (and immutable) versions of the data involved – to go even 

further, if some form of serialized version of the experiment can be 

referenced so that others can even rerun the experiment or inspect 

all aspects of it (versions of code, parameters, etc.). As the manager 
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of a team in this space, a deep investment in these capabilities 

(either researching third-party systems or building tool chains 

internally) is an important commitment. Just as we take advantage 

of powerful systems for enabling and integrating unit testing for 

our code, persistent experiment description and reproduction will 

pay dividends to the team. A very popular platform for this is the 

Jupyter Notebook.1 Jupyter documents interlace cells of text for 

human consumption with cells of code which share context for the 

entire document and which can be run, manipulated, and expanded 

interactively by anyone with access.

•	 Schema documentation: Deriving schema for anything but the most 

trivial cases requires a reasonably deep study of the domain. We 

experienced this when modeling the expressions used on web sites 

by businesses to describe the business hours of local entities and 

when designing an abstract document representation that could 

be used to describe web pages, pdf documents, SharePoint pages, 

and PowerPoint documents. Capturing the examples that motivate 

everything from the high-level structure of the schema and the 

inclusion, or deliberate exclusion, of certain cases will help the team 

determine what to implement and how.

•	 Judgment guidelines: Very much related to schema documentation, 

judgment guidelines are, in some sense, the most concrete “truth” for 

the team as they are used to derive the metrics that guide the team’s 

work and the impact (and reward!). Judgment guidelines are the 

interface between the rich model of the world that you are attempting 

to infer for your raw data and the high-volume data labelers that you 

will likely be employing to generate training and evaluation data. As 

you can imagine, it is important to get these right. We’ve developed a 

number of best practices around judgment guidelines. They should 

include standardized descriptions of how to use the specific tools 

for the task. Many tasks will involve annotations of some sort, and 

these should be driven by a common platform. They should include 

an intuitive description of the concept being captured. They should 

1�https://jupyter.org
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describe specific cases for exclusion and inclusion. They should 

all be backed up by concrete examples showing exactly how the 

examples look in the tool and the state of the tool before and after 

the label has been applied. Finally, the document should be strongly 

versioned – using both references to prior versions and a description 

of what changes have been made since the last versions.

As the preceding text suggests, there is no magic bullet when it comes to content. 

This is where the human factor plays an important role. As a manager, can you 

encourage or require the team to keep abreast of content tasks?

�Discussion Around Data Is Necessarily Interactive
Different team members, and members of other teams, will have different views of 

the data sets involved in the project. They will see different aspects of the things being 

modeled in the data; they will have different views of how to evaluate the quality of the 

representation or inference results; they will have different views of where the risks are. 

You will also have team members who are interested in the data with respect to the 

ML tool chain and the production architecture. Bringing these different lenses to the 

discourse around the data can only benefit the team.

In a recent project to improve address extraction from web sites, while our new 

extractor performed better in our well-constructed evaluation sets, members of the 

team responsible for chain businesses, and large, complex entities such as museums 

and hospitals, observed that there was actually a regression on their subset of the data. 

If we were just to use the existing metrics and not work across the team, we would 

have missed this insight. In another setting, a partner team questioned our use of a per 

document average for precision and recall, suggesting rather that we use global precision 

and recall for the classifier we were developing. These different approaches gave quite 

different numbers and helped us look at the data in a different way.

When constructing a new schema to represent the business hours of local entities, 

an in-depth study of the breadth of expressions revealed that the schema would have to 

be quite sophisticated, having to represent rules around holidays, repeated patterns of 

opening and closing, and nonspecific times like “sunset” and “when the last customer 

leaves.” The team responsible for implementing the schema came up with a solution that 

required tools to inspect and understand instantiations. However, when the result of this 

research into the representation was shared with downstream consumer teams, there 
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was considerable pushback on the complexity (which could contribute to additional 

errors in inference) and the form of representation (a simple, textual serialization was 

preferred, which would allow data engineers to very quickly read and understand 

instance of the data when debugging and evaluating the quality of the data).

In another project whose goal was to extract the main content from web pages – 

stripping out the navigational, banner, and other non-primary text – we found that 

our metric was biased to small documents (for which there is less room for error when 

identifying the specific components that make up the rendered page). This led to an 

important conversation with the consumer of the data in which it was established that 

these smaller documents were actually not of particular value and so constructing a 

classifier to identify and remove them was the way to go.

Individuals will also bring different assumptions and biases. Again, by combining the 

views of team members, the team can continually correct and improve their capabilities. 

Discussing data, inference system design, and the results of implementations will also 

provide opportunities for the more experienced data engineers to mentor junior team 

members.

We found that in practice, the only way to have a conversation motivated by differing 

and often conflicting views and theories is to have the data set at hand and the ability to 

interactively answer questions. Any statement about the data that is not supported by 

analysis is a hypothesis which the data will either support or refute. It is very inefficient 

to answer each question with a scheduled work item followed by a discussion. Rather, as 

often as possible, interactive tools should be part of the discussion and used to directly 

select, filter, and transform data sets (or samples).

�Data Tool Basics
To support discussions centered on interactions with data sets, it is important to think 

about best practices including requirements for tools, sampling methods, and data 

presentation. Remember agile practices improve when we can bring efficiencies, even 

micro-efficiencies, to any part of the process. It is important, however, to remember 

that efficiencies have to be at the team level and not greedily applied to individuals. 

For example, if you are presenting data to your team, putting in extra effort before the 

discussion so that the meeting will be as productive as possible is a win. The presenter 

has had to spend more individual time to produce a net win at the team level.
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�Requirements for Data Discussion Tools
There are many options for tools that will support data discussions. Perhaps the most 

obvious is the humble spreadsheet (Excel, Google Sheets, etc.). You will certainly 

consider implementing in-house tools when you come up against the limitations that 

the generality of these tools impose on your analytical scenarios. The basic requirements 

for these tools are as follows:

•	 Loading

•	 An obvious requirement, but be aware of the tool’s performance 

when asked to load large data sets. In addition, some tools, while 

permitting the loading of large data sets, fail to then perform 

when processing that data in any meaningful way. Good tools 

will at least implement data and UI virtualization; better tools will 

be able to subsample data on the fly to provide the user with a 

representative view of the larger data set.

•	 Transforming

•	 To subset data through filtering and the application of additional 

predicates. Once you have the data up, you are going to want to 

filter it to look at different subsets on demand and potentially 

apply arbitrary filters requiring some sort of method invocation.

•	 To generate samples of data interactively for quick, in-place 

evaluation. In some cases, like spreadsheets, sampling can be 

done through a relatively simple workflow involving the addition 

of a column of random numbers that can then be sorted to 

shuffle the rows in the data. A more sophisticated system would 

provide this capability in a built-in manner.

•	 To compute additional data derived from the source data. For 

example, you may want to add a column to your table which 

indicates if the value in another column is above or below a 

certain threshold. This pattern of building up analytics through 

derivatives is very powerful and one that is a basic feature of the 

standard spreadsheet application.
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•	 Aggregation

•	 To perform various aggregation functions such as summing, 

averaging, computing distributions, and so on. Again, basic 

spreadsheets support this type of operation, but only through a 

workflow of sub-steps.

•	 Visualization

•	 To visualize the object data that exists at various stages of your 

system including inputs and outputs.

•	 To subset the factors in the data to allow for easier viewing, for 

example, removing unwanted columns from a table.

•	 Charting to show trends, distributions, and relationships.

�Making Quick Evaluations
The recipe for making quick ad hoc evaluations using a spreadsheet or similar table-

oriented data tool is as follows: firstly, associate each data item with a random number; 

then, sort the data by this random number. In some sense, any contiguous subsequence 

of the data can be considered a random sample. However, when proceeding through 

the data to make judgments, it is important to determine ahead of time how many you 

will look at. If you don’t, you may end up completing the evaluation at a time when the 

results look favorable to you. This also means that if you see a summary of data from 

a colleague which claims that they looked at a sample of some arbitrary number of 

examples, you should question why that number. They may have stopped at a point in 

the data that gave them a nice result, falling for confirmation bias – finding support in 

the data for a preconceived conclusion. Keep in mind that random data can be clumpy – 

which is why if you toss a coin, you don’t generate a sequence of HTHTHT but rather a 

sequence with clusters of Hs and clusters of Ts. Another thing to keep in mind is that if 

there is a large effect in your data, it will probably be exposed by a relatively small – and 

therefore cheap to compute – sample. For example, if something happens in 10% of your 

data, the probability of not observing it in a sample of 50 is about 0.5%.
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Given a sample, we often want to then make a quick analysis of the factors found in 

the data. For example, imagine we are evaluating an extractor for a specific named entity 

operating over web pages. We might list the following reasons for errors:

•	 Data is in an image (our approach is text based and so can’t access 

the content if it is in image form).

•	 Data is not in a text node (the entity might be referenced in an 

attribute node of an element rather than a text node child of an 

element).

•	 Content is missing from HTML (the page might use some render-

time dynamic process to pull up the content from a server and 

modify the DOM to allow the user to see the desired information).

However, what we often see is that it is almost impossible to a priori determine 

such a list – it is only through inspection of the sample that we can really discover the 

factors involved. Consequently, the process that is most commonly adopted is to use a 

spreadsheet with one example per line and, as we analyze, create columns to capture the 

factors of the analysis. After a few examples, you will start seeing repeated factors. If you 

follow the practice of placing a 1 or 0 in each factor column according to the presence 

or absence of the factor, then after reviewing the examples, it is trivial to read off the 

frequencies of the factors in the analysis. Figure 6-1 shows an example of factor analysis 

over some URLs.

Figure 6-1.  Example of factor analysis. Note that after sorting the rows by their 
random numbers, the random numbers appear unordered as Excel regenerates 
them on every view of the sheet.
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�Mining for Instances
Quick evaluations over small samples are good for surfacing types of things in your 

data. Once you’ve a few of these, it is useful to be able to explicitly mine for that type 

to get a better understanding of its frequency and makeup. For example, by looking 

at 50 examples, we can be pretty sure that we will observe things going on at or above 

the 10% frequency. However, we will still be somewhat vague on the true size of this 

phenomenon. By looking at a few cases, we can build some sort of predicate (or 

heuristic) that will allow us to directly pull these examples from the set (hence the need 

for a tool that can support somewhat arbitrary predicate execution).

�Sampling Strategies
The more you learn about sampling strategies from experience with data, the more you 

can look forward to long discussions about which way to sample for a specific data set 

and a specific scenario. The reason for this, and the answer to any question about the 

right way to sample, is that there is no best way to sample and there are many benefits to 

looking at multiple samples. And while there may be no one best way to sample, there 

are many bad ways to sample, so it is useful to understand a few of the basic options:

•	 Simple uniform sampling: This is also called a random sample. In 

spreadsheet applications, it can be generated by assigning a random 

number to each row in your data and sorting the data by that number. 

When dealing programmatically with data sets, the Fisher-Yates2 

shuffle algorithm can be applied; or with larger data sets, potentially 

infinite streams of data, reservoir sampling3 can be used.

•	 Weighted sampling: The simple uniform sample answers the 

question “If I picked a row from the data at random, what is the 

chance that I will see some particular effect?” However, it is very rare 

that your data will be experienced in this way. In web search, for 

example, people browsing web sites do not uniformly sample from 

the trillions of pages out there. Rather, they willingly or unwillingly 

consume a very small portion of the Web. Within that portion, 

2�https://en.wikipedia.org/wiki/Fisher–Yates_shuffle
3�https://en.wikipedia.org/wiki/Reservoir_sampling
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some pages are viewed more than others. Consequently, if you 

want to ask the question “If I were to sample from the population 

of individual viewing events over the space of all users and all web 

pages, what is the probability of observing the particular analytical 

effect I’m interested in?” – for example, if the interesting thing you 

are interested in is the correctness of the address associated with a 

business listing on a search engine – knowing that users view more 

listings associated with chain than with non-chain businesses means 

that you should care more about those cases where errors are found 

in chain listings rather than the population of businesses as a whole. 

Weighted sampling can be carried out by effectively repeating rows 

in the data according to their weight. So if we assign a weight of 2 to 

business A and 1 to business B, our sampling would be looking at a 

population of three data points. Clearly, there is a higher chance of 

pulling an instance of business A when randomly sampling this view 

of the data than if we just had two rows in the data.

•	 Stratified sampling: It is often the case that there are meaningful 

high-level ways in which your data can be subdivided. It is also often 

the case that these subdivisions can be associated with expected (or 

suspected) biases. Let’s consider the example of extracting prices 

from web sites offering products for sale. As, at the time of writing, 

Amazon dominates this space, we can imagine that a sample of 

these web pages (either uniform or weighted) would have a large 

number of pages from the Amazon site. In fact, it is possible that 

you could end up with only pages from the Amazon site. As all 

pages on the Amazon site use the same approach to presenting 

prices, then it is likely that an extractor for prices would either fail 

or succeed on all these pages. While this gives a certain insight into 

the performance of the extractor, it doesn’t help you understand 

how the extractor performs over the full gamut of ways in which 

prices can be displayed. Of course, you are going to fix the Amazon 

example if it isn’t up to snuff, but that would effectively leave you 

blind to non-Amazon ways of presenting prices. Stratified sampling 

uses some form of stratification to provide a set of subsamples that 

are then combined to the complete sample. In this case, we might 
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sample at most ten pages per domain. The sampling algorithm, then, 

would first sample from the space of domains (we may get amazon.

com, bestbuy.com, target.com) and then, for each domain, uniformly 

samples to get ten pages.

�Iterative Differencing
The best approach to tracking and improving quality is to invest in a metric – this 

includes all the requisite data collection, guidelines writing, tool building, and 

maintenance. However, sometimes the overhead is too high, but some sort of evaluation 

is required. An approach that we have found works well is to iteratively diff the output 

of your system and sample the difference. The data that hasn’t changed will have no 

impact on the estimation of the improvement (or regression) that the latest experiment 

has yielded. By taking a small, uniform sample of the examples that have changed, 

you can build a table of the types of changes observed: good to good (both results are 

acceptable), good to bad (we used to get the right inference, but now we don’t), bad to 

good (a win – what used to be an error is now an improvement), and bad to bad (the 

result is still bad; it’s just different). If this approach is taken, then a by-product is actually 

labeled data, the accumulation of which can be developed into a metric or at least a 

regression set for testing.

�Seeing the Data
This book is not intended to provide an in-depth review or detailed guidance on 

presenting data visually. We do want to provide some guidance, however, on how to 

approach this area. Like all of the non-coding areas that we touch on in this book, data 

visualization is another where intention is vital – being a data scientist, a machine 

learning expert, or a data engineer requires that you can communicate and convey 

narratives about data. Consequently, data visualization needs to be recognized as an 

area where one can be continually learning, improving, and innovating. Remember that 

agility requires attention to detail and an investment in efficiency. Clear, memorable, 

and authentic data presentations contribute to this capability. Be aware also that it is 

easy to lose intention in this area because there are so many tools available already. 

However, many of these tools provide access to well-used visualizations that have gained 
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popularity prior to the current era of data projects and prior to the growing body of 

research into the effectiveness of specific approaches to presenting graphic summary of 

large-scale and high-dimensional data.

Perhaps the most celebrated example that illustrates the complexity of data 

visualization is the pie-chart. The issue with pie-charts is one of perception and a whole 

bunch of neuroscience. It turns out that we are not as good at comparing areas (two 

dimensions) as we are at comparing the length of lines (one dimension). In fact, you 

can take this as the first rule of data visualization – don’t introduce dimensions in the 

visualization that are not present in the data. This principle also rejects 3D bar graphs, 

spider or radar charts, and so on. In addition, pie-charts tend to require the use of color – 

introducing further complexity and overhead for our brains. So instead of this

consider doing this
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but certainly not this

 

Our advice, then, is to consider data visualization as an integral part of your toolkit. 

Just as you have invested in understanding how to optimize your code, how to ensure 

thread safety, how to design for testing, and all other deep arts of engineering, so should 

you dive into the literature of data visualization and understand how to help consumers 

of your data analytics understand it accurately and objectively.

Additional Reading M uch has been written about data visualization. Two 
excellent sources for additional reading are Envisioning Information by Edward 
Tufte and Information Dashboard Design by Stephen Few. Also, if you’d like to be 
inspired by examples of masterful data visualizations, see aka.ms/dataviz2018.

�Running an Effective Meeting Is a Skill
Face-to-face meetings are not a simple matter of fixing a time and place. As developers, 

we should be very protective of our dedicated time for focusing on tasks, and as 

managers we should be aware of the cost of getting people together (a 1-hour meeting 

for a modest size group is roughly the same cost as a person-day of work). At a bare 

minimum, a meeting should have a clear goal and a declared process for getting to that 

goal. It is often useful to set some expectations regarding individual preparation for 

meetings (e.g., reading requirements documents, doing individual analysis on a data 

set, etc.). Those charged with running the meeting should also be accountable for the 

technical success of the meeting – the shorter the meeting, the more risk there is from 

techno-fumbles such as projectors that don’t work, laptop batteries that need charging, 

and glitchy video conference integration. In addition, the social side of the meeting 

Chapter 6  Effective Communication



146

can always be finessed – ensure that key stakeholders can make it on time, finding out 

who has meetings before and after and if those meetings are organizationally of higher 

priority than yours. Finally, it is always valuable to think through the data required to 

answer key questions and to ensure that the data is readily available.

Laptops or No Laptops   It can also be useful to set some expectations for 
engagement in a meeting. Do you expect the full attention from everyone throughout 
the meeting? If so, then ensuring that laptops are closed and no one is casually 
reading their news feed is a good idea.

�Moderated Meetings
One useful technique you should consider for larger meetings is the moderated meeting 

format. This format puts some more formality around the meeting and helps everyone 

participate more fairly in the meeting. One person is designated as a moderator. That 

moderator has a list of topics that the meeting is going to cover and a time limit for 

each topic. A primary presenter for the topic is designated to go first. But instead of 

allowing random interruptions of the presenter, people with comments or questions 

raise their hand. The moderator puts those people into a “first in, first out” list that is 

either projected to the screen or kept on a whiteboard in the room so everyone can see 

the order of the queue. When the primary speaker is ready to yield the floor, people 

speak in their ordered turn until they are done. At any time, additional people can raise 

their hands to be added to the queue. The moderator watches the clock and gives time 

warnings when the topic time is about to run out.

The moderated meeting format has many advantages including the following:

•	 It puts people who are participating remotely on an equal  

playing field.

•	 It makes it easier for people to contribute who feel uncomfortable 

trying to wrest the floor away from someone else who is talking.

•	 It helps people who have a tendency to talk too much to listen more 

to what others are saying.

For more ideas on how to run an effective moderated meeting, see Chelsea Troy’s 

blog post at https://aka.ms/moderatedmeetings.
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�Pair and Parallel Labeling
Pair coding is an approach to coding in which two developers work together in a fluid 

and interactive manner writing and testing code. One of the developers leads, hitting the 

keys, and through discussion and iteration the code is generated. Many errors are almost 

immediately avoided due to the second pair of eyes present in the process, and the 

code review effectively happens as the code and tests are written. When embraced, this 

process can be very rewarding – an efficient way to write quality code and a great way for 

both developers to learn from each other.

We found similar efficiencies in labeling training and evaluation data in pairs. 

When labeling web data for a new address extractor, we found that pair labeling had the 

following benefits:

	 1.	 Locating the label targets on the page: Pages can be complex, and 

sometimes the address isn’t always easily located.

	 2.	 Refining the address model: As we were not only labeling the 

full span of the address, but the sub-parts, our discussion during 

labeling led to refinements in how we expressed the overall 

address model in our labels.

	 3.	 Capturing issues: As one of us is labeling, as a pair we can find 

and discuss patterns of issues we see and come up with ways to 

describe and record them.

	 4.	 Shared accountability: A danger in solo work, especially when you 

are tasked with delivering the extractor or classifier, is that you 

may be lenient when labeling evaluation data. By having another 

person present, some degree of balance can emerge through the 

interaction.

We often find situations in which we generally agree at some high level on the 

definition and role of a concept but find that precisely defining it is tricky. For example, 

in a recent project, we wanted to provide a primary topic to a set of news articles so that 

they could be served to users in a content recommendation system. We generated a 

large set of topics by mining the tags found on popular community sites and went about 

building a data set to be labeled in a mechanical turk-like system. However, when we 

started looking in detail at the topics, we started doubting our intuitions about labels.
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To better understand where the issues were and how to resolve them, we conducted 

a number of group labeling sessions. The developer team charged with delivering the 

topic classification system sat together with a labeling task. The group paired off in 

teams responsible for ten topics each and labeled a shared document set individually. 

Whenever a problematic example appeared, the team would discuss the article, figure 

out a resolution (using the shared context of the labeling thus far), and, if appropriate, 

update the judgment guidelines adding additional detail and refactoring existing text to 

reflect the latest thinking.

When appropriate, the teams would discuss issues across the topic. This approach 

means that many definitional issues can be addressed in real time. The alternative is for 

one person or group to carry out an iteration of labeling, summarize issues, report back 

to the team, and then run another iteration.

�Data Wallows
We’ve talked a lot in this book about the central role that metrics take in the execution of 

data projects. They act as a proxy for the customer that the developers can use in every 

experiment and iteration of the project, and they act as a forcing function for a number 

of design decisions, most importantly the schema or data structures used to capture the 

output of the system. However, there are many moments in the lifetime of a project when 

a decision needs to be made where either there is no metric or the metric is too general 

or otherwise insufficient to provide a clean black and white answer. In such situations, 

the team needs to make some sort of judgment call. Precisely how that decision is made 

is up to the team, but we want to introduce a general team-based process that provides 

an efficient and well-informed framework: the data wallow.

Beyond the charming image of data-pigs splashing around in data-mud and having 

a jolly old time, a data wallow is a meeting in which the team makes decisions based on 

getting their hands into the data, interacting with it, and asking questions of it. The basic 

workflow is as follows.

First, the developer facilitating the data wallow (who is primarily responsible for 

getting the team to arrive at a decision) provides the team with a description of the 

decisions they are trying to arrive at, the necessary data sets involved, and the tools to 

interact with the data and, if required, to make inferences on the data.
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Second, the team spends some individual time reviewing the data, forming their own 

opinions regarding the data and the decision to be made and any questions they would 

like to raise.

Third, the data wallow meeting takes place. The facilitator provides context, a review 

of the data, and the team contributes their thoughts and questions. During the meeting, 

questions are answered through inspection of the data – hence the importance of 

interactive tools, running inferences, and so on.

Let’s consider a concrete example end to end and then explore the types of decisions 

that are typically carried out through a data wallow.

The team had been working on a project to extract business hours from web pages. 

The project was precision focused, meaning that the extraction technology implemented 

rules which only generated results if particular constraints were met. In particular, 

business hours were delivered only if the system found a description of opening hours 

for every day of the week. The result of this approach to delivering data was that the data 

quality was very high, but it had limited recall. We wanted to move the needle on recall 

and so ran a number of experiments using different, more relaxed constraints.

To make the decision regarding shipping the data, the developer organized a data 

wallow. To prepare for the wallow, he did some evaluation of the results and prepared a 

deck which captured the evaluation. In addition, he developed an interactive tool that 

would allow the team to see the results of extraction in real time during the meeting in a 

format which showed exactly where in the raw document the extraction came from.

The meeting started with a review of the evaluation method. Firstly, a differential 

analysis was done comparing the data extracted under the new constraints with the 

data currently extracted for the test sites in production. From 57, 000 sites, the net gain 

was 3, 300 sites with hours extracted, 3, 500 were new extractions, 200 were regressions 

(meaning we had extracted them, but the new system now failed to extract), and 200 

were modifications (meaning we still extracted but we got different results). The dev 

projected that we would expect an increase of about 50, 000 extractions over the entire 

corpus and, from a manually evaluated sample of 100 examples, the precision would be 

about 90% - slightly lower than the current production performance.

This first slide allows the team to understand the impact of the work and the details 

of evaluation. Any criticism of the evaluation can be voiced directly in the meeting, and a 

group decision can be made as to whether the evaluation methodology was appropriate 

and if the results support a decision to ship.
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As the team felt that the evaluation looked reasonable, the meeting then shifted to 

looking interactively at extraction results for specific sites. Beyond the random sampling 

done to determine the precision of the extraction, individuals on the team can get an 

immediate look at how well the system performs on parts of the problem domain that 

they are individually working on. There were some regressions mentioned – was there 

any bias toward a specific area? Some sites showed neither wins nor loses but changes to 

extraction – what did they look like and were they positive, negative, or neutral? Because 

the developer was armed with examples of each type of result (win, loss, change), the 

team could view and discuss these cases. Because the developer had an interactive tool 

at hand to run extractions, the team could look at the results for sites individuals were 

interested in.

The result of the meeting was that the team supported shipping the changes.

�Demo Meetings
At the end of a sprint, we have a demo meeting as introduced in Chapter 4:  

Aligning with the Business. The dev team, or group of teams if working on a larger,  

multi-scrum project, gets together to show their work. In formal scrum processes, the 

team demonstrates working software to the customer. One modification to the normal 

scrum process of the individual scrum team doing the demo meeting, we found that 

having a single demo meeting that spanned multiple teams that worked on the same 

overall project, but in a modular fashion, was a useful approach. While there is something 

of an additional cost in terms of the length of the meeting, by having teams that worked 

and depended on each other present together, the work, results, and planning would in a 

way self-regulate across the broader goals of the combined teams’ project.

In data projects, in addition to working software, presenting data analyses, important 

insights, and the reasoning behind major planning and ship decisions is also an effective 

use of this time. With or without a formal customer present, the meeting is a great 

opportunity for the team to bookmark a sprint’s worth of work (a celebration, if you 

will, potentially involving food and beverages) and to report up to direct managers and 

sideways to peer managers.

Like many events in scrum, the meeting is time boxed. Each scrum team is allocated 

a specific amount of time (generally proportional to their size – a five-person team might 

be allocated 10 to 15 minutes). We found that adopting a template for the first, summary 

slide presented by each team was an effective way to keep the mission of the team front 
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and center and to provide a regular check-in with the key metrics for the team. The 

summary slide contains a table of the stories that were planned in the sprint, if the story 

was completed or not, and a table showing the key metrics including the target value, 

the current value, and an indication of improvement over time. Figure 6-2 shows an 

illustrative example of a sprint summary slide.

Figure 6-2.  Example sprint summary slide

Compared with activities like data wallows and group labeling, the sprint demo 

meeting tends to be more constrained. There isn’t as much time for open-ended 

discussion as each team has a limited time slot and, as we’ve observed, teams get 

protective of their time (and rightly so). But this constraint is a good thing – one 

of the key skills in presenting is to aim for clarity and remove opportunities for 

misunderstanding while being as transparent and as objective as possible. It’s 

not great to burn time in presentations responding to audience questions leading 

from confusion around the axes of a chart or the meaning and significance of an 

insight that a data visualization is intended to convey. In other words, the value of 

getting together in this meeting is the unlooked for insights that come from different 

people’s views of the results, and the more presenters can facilitate this through 

principled and clear data presentations, the better. Whenever serendipity  

or confusion strikes, given the timeboxing of the event, we found it a good practice 

for the scrum masters involved to schedule a follow-up meeting – this allows the 

overall flow of the demo meeting to continue while harvesting value from the 

interaction.
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Here are some notes on best practices for presentations:

•	 The audience can read4: Once you put something up on the screen, like 

it or not, people are going to read it. They are going to read it faster than 

you can present it. You should expect them to read it so quickly that 

they won’t be listening to your explanation of why it doesn’t mean what 

it appears to mean. The only things you can control are the sequence of 

presentation – when and how much text is thrown up on the screen – 

and the clarity of the content. If clarity cannot be achieved reasonably 

in the slide, force the audience to pay attention by sequencing the 

reveal of information in a way that allows you to prepare them.

•	 Label your axes: We learned this in elementary school, but it didn’t 

stick. One of the reasons that we get sloppy at this is that some 

popular data manipulation and presentation applications don’t 

always make it trivial or obvious how to do this.

•	 Start with the win, then show how you got there: Presentations 

should be structured as if they could be interrupted by a fire alarm 

at any moment (similarly, documents should be structured as if the 

reader might be distracted at any time). If all you achieved was to get 

through the first slide in the deck, make it count – it should have the 

high-level summary front and center. Once you have people clear on 

what you are claiming, you can then take them on the journey of how 

you got there. The alternative is a meandering walk through some of 

how you got there interrupted by a request to skip to the results when 

you realize you are running out of time.

•	 Prepare for multi-use: You’ve built a deck with some nice animation 

and a tantalizing mix of content on the screen and presenter theatrics 

only to find that the deck was printed on paper and distributed to 

VPs before the meeting. Now they are confused. At least, be aware if 

the deck is intended for consumption as a document to be read and 

design accordingly – our demo meeting decks would be read over 

later so that the team leader could create a monthly update on team 

progress for reporting up the chain.

4�Attributed to Nathan Myhrvold.
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Don’t Forget Testing for Color M att’s heart sank when he brought up his nicely 
designed slides with an awesome color pallet only to discover that what appeared 
with balanced contrast on his laptop screen looked washed out and almost illegible 
when presented. Also remember that many people (1 in 12 men and 1 in 200 
women) have red-green color blindness. Color-blind people can perceive brightness 
shifts, so make sure to vary the brightness of colors and textures for different 
values to make your presentation accessible to them. Wearecolorblind.com gives 
additional tips for making presentations accessible to color-blind users.

�Conclusion
In Chapter 6, “Effective Communication”, we illustrated and contrasted the principle 

with a dive into many of the types of interactions that you will encounter as an agile data 

engineering team. The main message here is that all of this communication is a skill – 

just as writing code and going deep on specific machine learning methods. Like any skill, 

it can’t be learned, maintained, or improved unless it is acknowledged and becomes an 

intentional part of your personal work and the team’s culture.

Chapter 7, “Monitoring”, will discuss how telemetry and mining of telemetry logs 

can provide important data about whether your product is really working as expected, 

why and when the product is malfunctioning, and if you are truly providing a good 

experience to your customer.
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CHAPTER 7

Monitoring
Working software is the primary measure of progress.

— agilemanifesto.org/principles

In Chapter 3: Continuous Delivery, we talked about techniques like continuous 

integration and continuous deployment that ensure that new working software is being 

delivered not just frequently but continuously. The authors of the agile manifesto clearly 

point out in this principle that having actual working software is much more valuable 

than say having a lot of documents that describe some software system that still hasn’t 

been integrated enough to be running. So, in any software project, getting something 

running quickly and then keeping it running while incrementally adding feature is 

essential. Some techniques to doing this were described in Chapter 1: Early Delivery.

But we believe that having working software, while critical, is not sufficient to 

measure your progress. If you don’t truly know what your working software is doing 

while working – if you haven’t built measurement into your working software – having 

working software can be equivalent to the proverbial tree that falls in the forest with no 

one around to hear it fall. It is likely the software is falling in ways that no one is hearing.

�Monitoring Working Software
As part of the development process for shipping working software, you should have a 

plan for the telemetry you want to collect as part of that working software. That telemetry 

can be used to not only ensure the software is working as promised for your users but 

also guide development of future features and measure whether what you have shipped 

truly meets the needs of the business and customers. There are four questions you 

should strive to answer with your telemetry. First, is the software really working correctly 

as designed or is it failing unexpectedly? Second, how correct is the data you are 
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displaying to users? Third, what are the business goals you are trying to meet, and can 

you measure that those goals are actually being met? Finally, what needs does your user 

have, and are you measuring the fulfillment of those needs?

Monitoring and Privacy  We propose that working software can be monitored in 
a way that protects the privacy of your users. Increasingly, customers demand this 
as reflected in laws and regulations being passed around the world such as the 
General Data Protection Regulation or GDPR. We will discuss mechanisms in this 
chapter that can be used to monitor while respecting privacy of users. However, 
it is likely in the future that even this “privacy-aware” monitoring may need to be 
opted into by your users in certain jurisdictions.

�An Example System: Time to Leave
As an example to motivate the discussion in this chapter, we briefly describe a system 

that Eric worked on while working for the Cortana team. The feature was called “Time to 

Leave” (TTL) and was integrated into the Outlook mobile client on the iPhone. There are 

similar features available in Apple Mail and Google Inbox. The feature works like this: if 

you schedule a meeting on your calendar and add a location to the meeting that can be 

located on a map and if you share location data with the Outlook mobile client, then TTL 

calculates the driving directions and length of the drive between where you currently are 

and your next meeting and alerts you on your phone at the correct Time to Leave so you 

can travel to your meeting and arrive on time. TTL does this based on the current traffic 

conditions and expected drive time between your current location and the location 

of the next meeting. So if you had a meeting scheduled at 3 that was 20 minutes away 

in current traffic, TTL would alert you at 2:30 that you better start driving to your next 

meeting to get there on time and show you the current traffic map to your meeting. If the 

meeting was close by and didn’t require significant travel time, TTL would just give you 

the standard upcoming meeting alert without traffic information.

This system had some code in the Outlook mobile client, but most of the business 

logic and code ran on the server as a set of microservices. It interacted with calendar 

data stored on a server to get information about calendar changes that might include 

locations to track. It interacted with Bing’s traffic and routing system to get information 

about current traffic conditions for an upcoming meeting. And it interacted with 
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notification services on the iPhone to trigger the alert at the right time. The iPhone 

app also interacted with the microservices to turn the feature on or off when the user 

activated or deactivated the feature within their Outlook mobile client.

Monitoring is essential for any application to fully understand whether it is working 

as expected, and in this project, it was particularly critical as there were so many moving 

pieces to the system. Also, many logical operations occurred across several execution 

surfaces – for example, to successfully turn the feature on, the following needed to occur 

successfully: code had to run on the Outlook mobile client on the phone, the user had to 

agree to share location data to the application, code on the server had to run to turn the 

feature on, additional code on the server had to be kicked off to scan upcoming calendar 

events for locations, and code had to begin running to listen for future changes to meetings.

�Activity-Based Monitoring
The Time to Leave system had tens of thousands of lines of code in it with thousands of 

methods. It was split across client code and several microservices. How did we monitor it?

We used a technique called activity-based monitoring. We first defined about 50 

activity classes that represented important blocks of functionality in our system. Some 

examples of those activities included the following:

–– RegisterForTTL: Tracks when a user registers to start receiving Time 

to Leave notifications

–– UnregisterForTTL: Tracks when a user turns Time to Leave off

–– StartTrackingEvent: Tracks when an upcoming event with a location 

begins to be monitored for travel time to it

–– StopTrackingEvent: Tracks when an upcoming event with a location 

that was being monitored gets deleted or no longer has a location to 

route to

–– ProcessMeetingWhenUserLocationChanged: Tracks when an 

upcoming event with a location has its location changed

–– ChangeTransportationMode: Tracks when a user in the Outlook 

mobile changes their preferences for how they travel typically – users 

could choose to get routes by car or routes by transit if they used 

buses and trains to travel
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–– SendTTLNotification: Tracks when a Time to Leave notification is 

triggered and sent to a user

Activities wrapped the execution of these logical units of functionality in the system. 

An activity like “RegisterForTTL” would begin on the iPhone and would continue 

through several microservices and then end back on the iPhone once the microservices 

completed successfully. A TraceID was used to track the user’s request from their 

phone through the various backend systems and back to the phone – this TraceID was 

just a GUID (a globally unique identifier that is a unique string for each user request 

and looks something like “360C4783-E414-4CEC-A114-8513AA6A8CCE”) that tracked 

that particular action throughout the system. In C# the wrapping of an operation by an 

activity looked like this:

Activities.RegisterForTTL.ExecuteAsync(async () =>

{

// Perform the operation

//

 return ...;

});

Each activity class had its own unique identifier, a long name like 

ChangeTransportationMode, and a shorter abbreviated name (ChgTranMode). Activities 

could also be nested. For example, the RegisterForTTL (RegForTTL) activity might have 

nested in it several other related activities that happen as part of turning on the feature for 

the first time – the StartTrackingEvent (StTrkEvnt) activity is one example of a potentially 

nested activity that could be triggered if when the Time to Leave feature is turned on, an 

upcoming meeting with a location is found that is close enough in time and far enough 

away from the user’s current location that it needs to start to be tracked to determine when 

to alert the user. When Activities were nested, the system used the shorter abbreviated 

names to create what was called an “activity vector” which represented the nesting of the 

activity, so something like “RegForTTL > StTrkEvnt” shows that the StartTrackingEvent 

activity (StTrkEvnt) was called within the RegisterForTTL activity (RegForTTL). These 

activity vectors are emitted with each trace logged by the activity classes.

In addition, every REST entry point in our microservice API was also wrapped in an 

activity. This allowed you to track execution from the point that a REST API was called on 

the server through its successful (or unsuccessful) execution. There were on the order of 

another 25 or so entry points to the system that were also wrapped with Activities.
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Activities would then log events that occurred during the execution of the operation 

wrapped by each activity to a text-based logging system. The events that an activity 

would track were the following:

–– ActivityStarted: When the activity began, a line of output would 

be emitted with the TraceID, the name of the microservice the 

activity ran within, the abbreviated activity name, the current 

“activity vector,” and the event message text. For example, if the 

StartTrackingEvent occurred, there might be a line of logging emitted 

that looked like this:

16f25a17d5d13aa0ba726a19a0d9801a4 | CortanaTimeToLeaveService 

| StTrkEvnt | RegForTTL>StTrkEvnt | ActivityStarted: Attempt=1

The activity vector uses the abbreviated activity names to provide 

a compact logical call stack of the nesting of various activities 

contained within endpoint activities in the system. This helps to 

understand the flow of the system and allows powerful analysis as 

we will see later. As you can see in the message text, a retry system 

was built into some activities so they would automatically try to re-

execute the code if a particular attempt failed for some reason and 

the number of retries was tracked in the message.

–– ActivitySucceeded: When the activity completed successfully, a 

line of output would be emitted with the TraceID, the name of the 

microservice the activity ran within, the abbreviated activity name, 

the current “activity vector,” and the event message text. For example, 

if the StartTrackingEvent finished successfully, there would be a line 

of logging emitted that looked like this:

16f25a17d5d13aa0ba726a19a0d9801a4 | CortanaTimeToLeaveService 

| StTrkEvnt | RegForTTL>StTrkEvnt | ActivitySucceeded: 

duration=330, Attempt=1

–– In this event, notice that the end to end duration of the activity is 

tracked from the time it started to the time it completed which in this 

case took 330 microseconds.

–– ActivityFailed: If the activity failed for some reason, a line of output 

would be emitted with the TraceID, the name of the microservice 
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the activity ran within, the abbreviated activity name, the current 

“activity vector,” and the event message text with exception details 

and error message. For example, if the StartTrackingEvent threw an 

exception during execution, there would be a line of logging emitted 

that looked like this:

16f25a17d5d13aa0ba726a19a0d9801a4 | CortanaTimeToLeave 

Service | StTrkEvnt | RegForTTL>StTrkEvnt | ActivityFailed: 

duration=320, Attempt=1, Exception=Null Reference Exception in 

‘register.cs’ line 239

In this event, notice that error details are reported that help 

developers understand what went wrong in the system and where.

–– In addition to the three basics, “ActivityStarted,” “ActivitySucceeded,” 

and “ActivityFailed,” custom messages could be emitted into the 

trace. These messages would be stored in the same basic format with 

Correlation ID, activity name, activity vector, and message; but in this 

case, the message would be the custom logging message defined by 

the developer.

�Azure Data Explorer for Analyzing Traces
What really makes this system powerful is the addition of Azure Data Explorer to the 

mix. Azure Data Explorer is a log analytics cloud platform optimized for ad hoc big data 

queries of semi-structured text logs. All of the logs created by activity logging in the 

system were fed into Azure Data Explorer. With Azure Data Explorer, you can then do 

sophisticated ad hoc queries on the entire set of logs emitted by Activities. For example, 

you could look at just an arbitrary set of activity logs that have at least one level of nesting 

with a query like this:
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You can also do more sophisticated aggregate queries with Azure Data Explorer. In 

this example, we use Azure Data Explorer to determine performance characteristics for a 

common activity vector that occurs in the system (GetStiCrts > UpdStiCrts). In this case, 

Azure Data Explorer uses the fact that we consistently emit “duration=” in the message 

of each ActivitySucceeded event and uses its “summarize” capability to calculate 

percentiles of performance for that particular sequence of activities across the entire 

system (GetStiCrts has to do with getting some needed Certificates in the system).

 

The combination of thoroughly covering your code with activity-based logging 

and using Azure Data Explorer to analyze that logging is a powerful combination that 

truly allows you to measure the progress of working software in multiple ways. If you 

haven’t used Azure Data Explorer yet, prepare to be amazed – it is an extremely powerful 

tool, and as you begin to realize the power of both specific and aggregate queries on 

your monitoring data, it will completely reshape how you think about measuring your 

product. More information about Azure Data Explorer is available at aka.ms/kdocs.

Azure Data Explorer vs. a Database  You might wonder why you would use 
Azure Data Explorer over another database. Where Azure Data Explorer excels is in 
doing fast queries over terabytes of semi-structured text data. Similar products you 
could also consider include Splunk, Logstash, InfluxDB, or Elasticsearch.
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�What Monitoring Can Tell You
With activity-based monitoring in place and a system like Azure Data Explorer to query 

the resulting log data, you can now truly measure your product. Here are some areas you 

will want to dive into and begin to create Azure Data Explorer queries to analyze in your 

product.

�Is the Working Software Really Working Software?
One immediate benefit of activity-based monitoring is you can now quantify how often 

your system is succeeding and how often your system is failing. This is subject of course 

to bugs or gaps in your activity monitoring, so make it a regular priority and part of your 

continuous integration process to ensure that gaps in your activity-based monitoring do 

not occur and as new functionality is added to the system, new Activities are defined to 

track that functionality. Assessing the health of the system is only an Azure Data Explorer 

query away. You can create an Azure Data Explorer query that tells you how many times 

an activity failed in the past day – something like this: In this example, our activity-based 

events are stored in an Azure Data Explorer table called “traceevent”:

traceevent

| where EventInfo_Time > ago(1d)

| where Message startswith "ActivityFailed"

| count

You can put this in context with how many Activities succeeded with a similar query:

traceevent

| where EventInfo_Time > ago(1d)

| where Message startswith "ActivitySucceeded"

| count

You can dig into individual failures and what went wrong with a query like this:

traceevent

| where EventInfo_Time > ago(1d)

| where Message startswith "ActivityFailed"

| take 5
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�What Went Wrong?
You can dig into individual failures and what went wrong with a query like this:

traceevent

| where EventInfo_Time > ago(1d)

| where Message startswith "ActivityFailed"

| take 5

This will display five recent failures. You can grab the TraceID out of a failure and see 

the entire set of activities that happened during a session with an Azure Data Explorer 

query like this:

traceevent

| where TraceID == "paste the entire TraceID from a failure here"

| project TraceID, ServiceID, ActivityName, ActivityVector, Message

This will output a whole set of activity tracings with activity vectors so you can 

explore the exact sequence of events that happened before the failure occurred.

�How Fast Is It?
As we saw earlier, you can examine a particular activity vector or entry point and see how 

long it is taking for most users with a query like this:

traceevent

| where EventInfo_Time > ago(7d)

| where ActivityVector == "RegForTTL > StTrkEvnt"

| where message startswith "ActivitySucceeded"

| �extend duration = extract("ActivitySucceeded: Duration=(.*?),", 1, 

Message, typeof(int))

| �summarize percentiles(duration, 50, 75, 90, 95, 99) by bin(EventInfo_

Time, 5m)
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You can look into a set of Activities that is taking a particularly long amount of time 

relative to other Activities with a query like this (which observes that the highest time in 

the previous query were in the 500 ms range):

traceevent

| where EventInfo_Time > ago(7d)

| where ActivityVector == "RegForTTL > StTrkEvnt"

| where message startswith "ActivitySucceeded"

| �extend duration = extract("ActivitySucceeded: Duration=(.*?),", 1, 

Message, typeof(int))

| where duration > 500

If you suspect that the slower times are happening because of a particular issue – 

for example, maybe tracking an event is slower if that event is a recurring event – you 

can add to your logging a custom message something like “RecurringEvent,” and then 

construct a new query to look for it. Note that this assumes that your activity-based 

logging implementation also emits duration when a custom event is logged:

traceevent

| where EventInfo_Time > ago(7d)

| where ActivityVector == "RegForTTL > StTrkEvnt"

| where message startswith "RecurringEvent"

| �extend duration = extract("RecurringEvent: Duration=(.*?),", 1, Message, 

typeof(int))

| where duration > 500

�Are the Business Goals Really Being Met?
As part of the design of your monitoring, you should assess what are the business 

metrics you will track to evaluate a successful project. One commonly used business 

metric is MAUs or monthly active users. Our definition of a MAU for Time To Leave was 

the number of users who were actively registered to receive notifications. This number 

proved to be somewhat meaningless for the business as it was quickly discovered 

through monitoring the system that there were a far larger number of people who turned 

the feature on than those who received a Time to Leave notification. Common reasons 

for a user receiving no notifications were they didn’t enter the location for enough 
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meetings on their calendar, they didn’t have very many meetings on their calendar, or all 

meetings were close to where they were already located.

So it is a good business practice to define a second metric – a MEU (pronounced like 

a cat would say it). A MEU is a monthly engaged user. There are lots of ways to define this 

metric, but in the Time to Leave system, we consider an engaged user someone who had 

received at least one meeting alert from the system in the past month. The activity that 

tracked the sending of a notification was called “SendTTLNotification” or “SendTTLNot.” 

A query to figure out how many TTL notifications were sent in the last month looked  

like this:

traceevent

| where EventInfo_Time > ago(30d)

| where ActivityVector == "SendTTLNotification"

| where message startswith "ActivitySucceeded"

| count

Of course, this query doesn’t measure the monthly engaged users since one user 

could receive multiple notifications in a month. A more advanced query was needed to 

determine the number of unique users who received a notification.

Determining the number of unique users begins to get into the area of privacy – 

clearly the system knows the unique identity of the user, but we don’t want that 

knowledge to be exposed to the logging as it represents a potential leak of information 

about the user to developers who shouldn’t be able to make Azure Data Explorer queries 

and determine unique or private information about any individual user such as their 

email address, the name or location of a meeting, and so on. So to identify a user, a one-

way hashing algorithm would be used to store a unique user ID calculated from uniquely 

identifying information about the user that the system has access to. Then this identity 

hash can be used to create an Azure Data Explorer query to determine the number of 

unique users in a month without leaking any personally identifying information into the 

logging system.
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Aggregate and Anonymize  It is not necessary to store information about the 
user in perpetuity. For our system, we would purge the system of any logging 
data about a user after about 30 days. We would run regular Azure Data Explorer 
queries to store aggregate monthly data about key business metrics and other 
user metrics we wanted to track in the currently available logging data and store 
aggregate information longer.

�Are the Customer’s Needs Really Being Met?
Monitoring is also a useful way to determine if the customer’s needs are really being met 

and, if not, why are they not being met. Through monitoring and logging, we were able to 

determine that one of the times many of our users experienced the Time to Leave feature 

was when they had a flight going out of the airport. This was surprising to us as we never 

did any special work to make this a priority. But we discovered that alerts to the airport 

happened frequently and they were useless to the user – airport alerts were being fired in 

a way that got the user to the airport 10 minutes before their flight was to leave.

As we investigated why this type of alert happened so frequently, we discovered 

an unexpected multiplier in a related system. Cortana had a system that would 

automatically add flight meetings to your calendar when it detected you received a flight 

confirmation email in your inbox. Cortana created the flight meetings with the address 

of the airport. So now we understood why there were so many of these meetings on 

people’s calendars that were causing Time to Leave notifications to be raised.

We then worked with the team that built the inference system that created these 

meetings automatically so that we could recognize these meetings as flights. We then 

modified our system to fire alerts for a flight such that the user would arrive at the  

airport 2 hours before the flight departed from the airport.

�How Are the Data and Models Being Used?
It is also useful to consider ways to monitor the data that your system produces and 

presents to customers as well as the models that run in production. There are important 

things to be learned with effective monitoring.

One surprisingly useful piece of data that we collected in Bing’s local data team was 

we recorded how often a particular business was actually displayed to a user. We would 
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record each time a local data entity was shown on the search results page, each time it 

was displayed as a top of page answer, each time it was displayed in a map, each time 

the detailed description of a local data entity was shown, and so on. This gave us a very 

good idea of which businesses were actually being displayed and surfaced by our search 

engine. Close monitoring of how often businesses were being displayed helped us to 

track the types of businesses users cared the most about. We were able to determine 

which kinds of businesses were getting searched for the most and invest in those 

categories. For example, we had an internal list of categories that had the most number 

of views, and we made decisions of where to focus our efforts based on the categories 

that were being searched for and displayed most often. We would also track categories 

that were rising the most rapidly month over month. As an example, this led us to make 

the food trucks category a focus during one particular year when that category was rising 

rapidly.

Monitoring which businesses were being displayed and how often businesses were 

being displayed also helped us detect issues in our site. We could track month over 

month which entities in our system were getting a lot of views, and sudden changes 

would be flagged for review. By monitoring display counts for entities, we detected that 

one of our frequently viewed entities – a casino in Las Vegas – suddenly went from tens 

of thousands of views per month to no views. Upon investigating, we discovered that our 

conflation system had overmatched the casino to a restaurant with a similar name and 

so the casino had completely disappeared from our system. We also could detect abuse 

of the system through tracking suspicious entities that began from zero views and started 

to amass thousands of views per month. These were sometimes fraudulent businesses 

that had been submitted to us and slipped through the verification process.

Often, a machine learning model will be running in production and must be 

carefully monitored for changes to its performance. The canonical example are models 

that are designed to detect fraud and thereby have built into the problem space an 

adversarial relationship with an external bad guy. The bad guy wants to figure out how 

to get around a fraud detection model and deceive the system. It is important to monitor 

over time the number of fraudulent transactions a model detects, and the number 

of transactions it determines includes no fraud. If the ratio of good transactions to 

fraudulent transactions changes significantly over several months, it is unlikely that it 

is a result of evil reducing in the world and the fraud going away. It is much more likely 

that the bad actor has determined new ways to defeat the system. Models subject to 

adversaries need to be monitored and frequently retrained and enhanced.
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�Conclusion
In Chapter 7, “Monitoring”, we discussed how activity-based monitoring can be used 

to truly measure your working software. We would rewrite this agile principle as 

“Monitoring of working software and data provides the primary measure of progress.” 

We discussed how an activity-based monitoring system works and the kinds of things 

that it logs and tracks. We talked about Azure Data Explorer which allows you to do 

sophisticated ad hoc queries of large amounts of logging data. We examined the various 

kinds of things that good monitoring can tell you: about whether your software is really 

working as expected, about why and when the software is malfunctioning, about what 

performance users are actually experiencing from your system, about whether the 

business goals are being met, about whether your customers’ needs are being met, and 

about how data and machine-learned models can be monitored in production.

In Chapter 8, “Sustainable Development”, we will talk about how to determine if you 

are working too fast or too slow and how to adjust the pace down and up. We’ll also talk 

about goal setting and keeping team engagement high.
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CHAPTER 8

Sustainable Development
Agile processes promote sustainable development. The sponsors, developers, 
and users should be able to maintain a constant pace indefinitely.

—agilemanifesto.org/principles

VentureBeat.Com reporter Alex Banayan describes Qi Lu, executive vice president at 

Microsoft of Bing:

Growing up in a village outside of Shanghai with no running water or elec-
tricity, Qi Lu (pronounced: chee loo) had no idea that one day he would 
have a corner office at one of the world’s biggest technology companies. As 
the President of Online Services at Microsoft, Lu has made a drastic journey 
to the top thanks to what his colleagues call “Qi Time.”

“During college, the amount of time I spent sleeping really started to bother 
me,” Lu explained to me. “There are so many books I can read and so many 
things to learn. It feels like, for humans, 20% of our time is wasted [during 
sleep] in the sense that you’re not putting that time towards a purpose that 
you care about.”

Although he admits it wasn’t easy, Lu has engineered his body to function 
on four hours of sleep a night thanks to an unusual regimen that ranges 
from timed cold showers to daily three-mile runs.

Driven by an unusual hunger to do more, Lu’s sleeping schedule has added 
an extra day’s worth of work time per week, which aggregates to nearly two 
months of productivity latched on to every calendar year. And he did it 
while still in college.

As part of Bing Local, we worked in Qi’s organization and witnessed his amazing 

ability to work long hours. Colleagues would see Qi running laps through the building 

early in the morning or on weekends and holidays. Ultimately, Qi’s amazing ability 
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to work certainly drove a certain amount of urgency and longer days into the Bing 

organization. There was no organizational expectation that anyone worked as long 

hours as Qi worked, but his ability to work long hours certainly drove a culture of people 

aspiring to work more than a basic 9 to 5 schedule.

But more than Qi’s long hours, the rallying cry of trying to “beat Google” was 

probably a greater motivating factor that naturally drove people, especially the 

competitive ones, to work longer hours. A love for the technology and fascination 

for the problems being worked on also combined to drive just the right amount of 

engagement and urgency.

On other teams we’ve worked on, we’ve witnessed the opposite problem – a lack 

of urgency and people appearing to work shorter days. It is difficult to measure the 

intensity and amount of work being done just by how long people are in the office in a 

world of telecommuting and VPNs where anyone can be at work at any given time of day. 

But on teams where the urgency wasn’t high, common issues that drove this opposite 

end of sustainable development were lack of vision, poor communication about 

schedules and expectation of what needed to be completed when, and programming 

environments and developer experience that was frustrating and unrewarding.

�Are We on the Right Sustainable Pace?
So how do you determine whether the pace the team is on is too fast and unsustainable 

or too slow and sustainable? Typically, it is much easier determining the team is on an 

unsustainable pace. Common signs include not just continually long days and long 

weeks but short tempers, illness on the team, poor decision making, decreased morale, 

and fatalism intermixed with black humor.

Determining that the team is on a pace that is too slow is trickier. Common signs 

include not just continually short days and short weeks but short tempers, illness on the 

team, poor decision making, decreased morale, and fatalism intermixed with black humor.

Yes, that is not a misprint – the signs for being on a sustainable pace and an 

unsustainable pace are often the same. A better way to measure whether you are 

on the right sustainable pace is determining whether people are engaged and 

enthusiastic about the work. Engagement and enthusiasm will naturally generate an 

amount of work.
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Microsoft has an annual poll in which they measure among other things something 

that they call an “Engagement Index.” The Engagement Index is a combination of several 

components, but enthusiasm is gauged by questions like these:

•	 Do people go beyond their day-to-day work responsibilities to help 

the team succeed?

•	 Are you excited to come to work most days?

•	 Do you spend most of your time doing work you truly enjoy?

When teams are doing work they are excited about and enjoy, the pace they maintain 

will be sustainable.

�Adjusting the Pace Down
Unsustainable paces are ones that are forced by edicts or demands of the business 

that can only be met through long hours. Clearly, you can’t always avoid these types 

of things coming up – but you can work to try to eliminate edicts and unreasonable 

demands. Typically this is done through communicating better to the business what is 

reasonably challenging to complete in a period of time vs. what is impossible. Teams that 

truly understand the incremental development of software will work hard to establish 

meaningful regular goals that are both challenging and also achievable.

In machine learning projects, one challenging thing that must be understood by 

the entire team including the business is the rate at which improvements can be made 

to models. Typically, early on in a development process, models improve quickly to a 

particular level. But once models achieve a high level of performance, future movement 

is more difficult. It will often cost twice as much to move a model from 90% accuracy to 

95% accuracy as it did to move the model from 70% accuracy to 90% accuracy.

One way to help the business understand this is to regularly review with them the 

improvements to measurements being made of models being shipped and to plot those 

improvements on a time line. Over time, with repeated exposure to the rates of progress 

made in particular domains, the team and business will gain confidence about how 

much improvement to expect in a given period of time. Possibly some rules of thumb 

will emerge.

In Bing, in areas where we were behind Google in terms of precision and recall of our 

models, we developed a rule of thumb over time that we could typically halve the gap 

with Google during a 6-month period. If a goal for improving the models fell behind this 
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level, we pushed to increase it. Unfortunately, this law also applied in reverse – in areas 

where we were ahead of Google, they typically could halve the gap in a 6-month period 

of time as well. So in areas where we were ahead, it was important to continue to make 

progress as well.

Another rule of thumb was that the closer you would get to 100% precision and 

100% recall (obviously not possible), the more skeptical you would be about making 

multipoint climbs within a period of time. It was not impossible to go from 97% precision 

and 97% recall to 98% precision and 98% recall, but everyone had a healthy respect of 

how challenging it would be to gain a point like that in the face of our noisy data sources.

Demos Can Be Dangerous A  pitfall teams often fall into is showing the flashy 
but ultimately unattainable demo to the business that indicates that something 
that may take months to achieve is achievable in weeks. Be very careful when 
demoing features that have massive amounts of work to be able to apply generally 
to all possible inputs or that will require a long amount of time to be performant, 
scalable, compliant, or architecturally sound enough to turn into real product. We 
have all too often been in a scenario where a half-baked demo communicated to 
the business a feature that seemed to be eminent only to find it took months or 
even years to deliver on the promise shown in the demo.

�Adjusting the Pace Up
Everything we said in the previous section also applies to adjusting the pace up. Metric 

goals can also be not aggressive enough. In an area where a goal was significantly below 

a rule of thumb, the team pushed themselves to increase the goal. If it became clear that 

a goal was going to be met in a shorter period of time than was originally expected, the 

goal would be revised upward for the 6-month period.

It is also important to address the root cause of lack of engagement that is at the 

heart of a low pace. Dig in more to why people don’t go beyond their day-to-day work 

responsibilities to help the team succeed. Common reasons may be that people don’t 

feel empowered to make decisions on their own or they feel left out of team decisions 

and design discussions. People on the team may not feel they were included in the goal-

setting process. Having a mixture of top-down goals and bottoms-up goals can help the 

team to feel more engaged.
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If a significant portion of the team is reporting they aren’t excited to come to work 

most days, the team should retrospect on what is causing this lack of excitement. Is it 

the developer experience? Allocate some development time to focus on the issues in the 

developer experience and improve tools and processes. Are people not excited by the 

vision? Try to clarify and help people see what the team is trying to achieve and why it could 

make a big difference for the world. Sometimes you may find that the kind of work people 

are excited about just won’t be available in your area – this is an opportunity to encourage 

people to find positions where they can do work they are excited about and recruit new 

people who have a natural affinity for and excitement for your problem domain.

Occasional edicts and harder demands are not all bad either. Sometimes a hardship 

date or an edict that something has to be done or the business is at risk can help a team 

to coalesce and move toward an “we’re all in this together” mentality. As an example, 

Microsoft and the entire computer industry faced a hard deadline on May 25 of 2018 

to make sure all services were GDPR compliant. As that deadline approached and 

teams realized how much there was to do to meet the GDPR guidelines, we witnessed 

teams around Microsoft rally and rise to the challenge. During that period, engagement 

increased despite the longer hours because people could truly see they were involved in 

something worthwhile that they could be proud of – ensuring privacy for the individual 

against big tech.

�The Importance of Changes of Pace
Even a high-performing team on a sustainable pace needs changes of pace on a regular 

basis. We recommend two practices to break up the pace and change things up on a 

frequent basis.

The first practice to break up the pace is what is known in agile as “slack weeks.” 

Slack weeks are an opportunity to take a week, maybe 2, and give people a chance 

to work toward the secondary goals that seem to continually get pushed aside to hit 

milestones and schedules. Common activities during slack weeks can include spending 

more time investing in improving dev processes and tooling, reducing technical debt in 

the product, refactoring or rewriting problematic portions of the product that are slowing 

people down, and training and app building on new technologies the team is thinking 

about using. We typically have slack weeks around holiday times when teams aren’t 

at full capacity anyways (July and December) and then find time a couple more times 

during the year to insert slack weeks into the schedule.
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When the team knows a slack week is coming on a regular basis, they can queue up 

work items in their backlog that are targeted for that slack week – work that just doesn’t 

seem to get prioritized high enough to be scheduled otherwise but the team still agrees 

is worth doing.

During a slack week, we usually will stop much of the scrum processes described in 

Chapter 4: Aligning with the Business. We will still hold a daily standup, but the idea is to 

give a change of pace and give people a break from “business as usual.” Just make sure 

you do return to business as usual when you start your next sprint.

A second practice to change pace is to have regular hackathons. These are typically 

shorter-lived changes of pace – maybe two to three days repeated three to four times a 

year. These break up the pace in a different type of way – during a hackathon, the team is 

encouraged to work on some different problem area or idea but in a much more intense 

way than they would normally work. So whereas a slack week is a time to slow down, 

a hackathon is where the emphasis is on speeding up and making a lot of progress in a 

short amount of time on areas where architecture spikes need to be made to understand 

whether the team should invest further in that direction. During a hackathon, teams 

encourage longer hours through having more aggressive goals in terms of what gets  

done during the hackathon but with the additional expectation that anything that is 

done during the hackathon is exploratory, lower quality, and “Hackey” and will be  

thrown away after the hackathon (although the hackathon might result in a new product 

idea or direction that would then be reimplemented in a proper higher-quality way). 

hackathons are great opportunities to work fast and dirty for a change and maybe in the 

process discover significant new product directions that can be pursued later in a more 

quality way.

For hackathons, the team will basically think as part of their regular sprint planning 

about some area or feature that they are interested in exploring but they think is high 

risk. But they want to spend some intense time investigating that new direction. They 

will then schedule a 2- to 3-day period to completely context switch into that new 

direction and see how much they can prove out in a quick and dirty way during that 

period of time.

A team’s half-year schedule might look like this. This schedule alternates regular 

paced two week sprints with slower paced slack weeks and faster paced hackathon weeks:

•	 Slack week

•	 Four 2-week sprints
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•	 Half-week hackathon

•	 Four 2-week sprints

•	 Slack week

•	 Four 2-week sprints

•	 Half-week hackathon

�Live Site and Sustainable Pace
One of the things that can most easily move a team from a sustainable pace to a non-

sustainable one and can cause burn out the quickest are live site issues. Live site issues 

can disturb sleep and schedules as teams frantically try to figure out why the product 

isn’t working in production.

If you are fortunate enough to work on a product that doesn’t have a live site 

component, then you may not relate to this topic. But in a world of 24 × 7 services aiming 

for four nines of availability, live site issues can cause teams to melt down.

We will briefly share some best practices used by Bing around managing live site and 

making sure that it doesn’t lead to unsustainable pace on your team.

In some teams, there may be a smaller operations team that handles all live site 

issues for a service. But in Bing and many other online engineering organizations, 

allowing all engineers to witness and troubleshoot what can go wrong on the live site is 

an important learning opportunity that leads to better code and better architectures long 

term. There is nothing like having to get up at 2 AM in the morning to fix an issue caused 

by buggy code you checked in or an architecture that you thought was going to scale but 

now doesn’t work properly in production to motivate you to figure out a better way to do 

it next time.

So to that end, engineers typically participate in a rotation program where they are 

“on call” for a particular week and are the first responder to any live site issue during 

that week. Typically that “on call” week is prefaced by an additional week where they are 

“on backup” for the person who is on call. This allows the on call developer to be aware 

of what happened the previous week so when they are fully in charge of issues for the 

subsequent week, there is continuity in understanding what is going on in the web site 

since issues from the previous week can easily recur or cause some new side effect the 

subsequent week.
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On call developers should have lots of available documentation on how to 

troubleshoot and detect and resolve issues in various parts of the system. Diagnostic 

tools and playbooks to use them were prepared so even new developers on the team 

could follow a set of basic steps to determine what was going wrong and, if not the root 

cause, at least a quick fix to bring the site back to its previously functioning status.

In Bing, we also kept a close eye on three metrics. The first was time to detect. 

This measured how long it took us from something going wrong on the live site to an 

automated system or customer detecting it. The second metric we measured was time 

to engage. This measured how long it took us from knowing something was going wrong 

to having an engineer engaged start to figure out what was wrong. The final metric we 

measured was time to mitigate. This measured how long it took us to apply enough of a 

fix – sometimes a quick fix or a rollback – so that the issue was resolved.

All three metrics, time to detect, time to engage, and time to mitigate, were 

monitored and continually discussed to figure out new ways to shorten each time. 

Goals were set to reduce and improve these three numbers each quarter. To improve 

time to detect, we often deployed additional monitoring or found new ways to detect a 

potential failure before it ever got deployed to the live site. In time to engage, we typically 

would improve processes to ensure the right engineer answered the phone as quickly as 

possible. In time to mitigate, we devised new ways of quickly rolling back or switching off 

new features in production that were causing problems.

On a weekly basis, it is important to postmortem all the live site issues that occurred 

during the previous week and try to figure out specific countermeasures to prevent 

them from happening again. These measures may include anything from architecture 

changes to process changes to better monitoring to additional documentation for on call 

engineers.

In the postmortem process, we would prioritize live site events to discuss by severity 

based on customer impact and high lengths of time to detect/engage/mitigate. Impact 

on the customer was investigated further to understand how many users were impacted 

by the issue and what the actual impact was on the user experience on the web site. Root 

causes for live site events would be determined by the engineering teams. Then items to 

repair would be identified and followed up on until they were fixed.

If live site training, involvement by engineers, documentation, rotations, 

postmortems, and follow-up on repair items are rigorously followed, the unsustainable 

pace of continual live site issues can be considerably reduced. It provides a virtuous 

cycle that ensures that everyone on the team thinks closely about the code and 

architectures they use to minimize those late-night phone calls.
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�Sustainable Pace and Multiple Development 
Geographies
A final area of challenge in sustainable pace is working with multiple development 

geographies. This can be sustainable if set up right, but can be a sustainable nightmare if 

set up in the wrong ways.

In Bing, we worked with development teams in India and China which were on 

substantially different time zones than the US offices in Seattle. Working across these 

time zones can become painful for teams and cause both unsustainable fast paces and 

unhealthy slow paces.

The unsustainable fast paces typically occur when there is a concept of the “main 

team” and the “remote team,” and everything the remote team does has to be signed off 

on by the main team. This leads to the remote team sitting idle waiting for approval of 

work they want to do and the main team feeling overwhelmed and on an unsustainable 

pace because of all the remote hand holding they have to continually do in the evening 

or early morning hours of their workdays.

The solution to this, of course, is to not have the concept of a main team and a 

remote team. All teams should be empowered to fully own the area that they are working 

on and be able to make all of their own choices during their own business hours. Points 

of integration can be specified via interface design and building in natural points of 

transfer of information and concerns between system areas owned by the different 

teams.

Remote Teams Can Make for More Sustainable Pace T eams in multiple 
geographies can also help to improve the sustainability of live site engineering. 
A team in one geography can man the live site during their daytime hours, while 
a team in another geography and time zone can get some much-needed rest. 
Then the teams can exchange the favor, taking over live site responsibilities 
when the sun comes up in their geography.
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�Conclusion
In Chapter 8, “Sustainable Development”, we talked about how to determine if you 

are working too fast or too slow and how to adjust the pace down and up. We would 

rewrite this agile principle as “Agile processes promote sustainable development. The 

sponsors, developers, and users should be able to maintain a constant pace indefinitely, 

but varying the pace up and down occasionally can produce an even better result.” We 

talked about how to set goals and ensure that goals are both sufficiently ambitious and 

also achievable. We talked about the importance of engagement on a team to get the 

pace to the right level. We also talked about the importance of having some changes 

of pace built into development schedules with slack weeks to slow down the pace and 

hackathons to speed up the pace. We also talked about special issues around sustainable 

pace in managing live site issues and in working with multiple geographies.

In Chapter 9, “Technical Excellence”, we will discuss how an investment in excellence 

in software engineering can optimize developer productivity while maximizing the value 

of data.
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CHAPTER 9

Technical Excellence
Continuous attention to technical excellence and good design  
enhances agility. 

— agilemanifesto.org/principles

When we think of agility, we think of efficiency of movement and an ability to change 

direction in the face of a complex and changing terrain all in the pursuit of a specific goal. 

Usain Bolt running 100 meters in 9.58 seconds is impressive, but it isn’t an expression 

of agility. Lionel Messi, on the other hand, weaving in and out of a lattice of defenders 

while keeping the soccer ball constantly under his influence is more like it.1 Agility 

requires quick movement for sure, but it also requires the behaviors that allow us to do 

this without distraction (Messi doesn’t walk onto the pitch with his bootlaces undone); it 

requires the mobility, or dexterity, to manipulate the environment or change course while 

maintaining stability; it requires the awareness and presence of mind to read the shifting 

terrain and environment in real time to anticipate and adjust without missing a step.

Many developers confuse the desire for quick progress with the fundamentals 

of agility. Agility is compounded efficiency. It’s the effects of low-level interactions 

on a network of processes and people. Much of what an engineer does should yield 

a multiplier in return. You write a test, and you save every developer who uses your 

code hours of time debugging complex errors in downstream systems; you automate 

deployment, and you reduce the time taken to ship your update by an order of 

magnitude; you enable continuous integration and save everyone who clones your 

code countless headaches in debugging the build process; you invest in design, and 

developers will use your system for applications you didn’t imagine.

1�Messi is also good at the tenth principle – maximizing the amount of work not done – which is 
why he often appears to be wandering around aimlessly in midfield.
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It can be difficult to take the time and effort to invest in efficiency when it is not 

directly on the path to shipping code. Why build a labeling tool when we can copy and 

paste data in a couple of hours? Why write tests when it obviously works and I could get 

on to the next task? We recognize that there is something of a leap of faith here – if you 

haven’t both been bitten by the downside of cutting corners and experienced the wins of 

efficiencies built into your culture, it can be hard to make that leap.

In this chapter, we will examine a number of scenarios in which attention to 

technical excellence and good design will help you build a culture of efficient, sustained 

development and delivery of data projects. We will do this by first persuading you that 

investment in quality is good for agility, and then we will discuss what investment in 

quality means for data projects. Before we do, a word on continuous attention. This 

term is really a signal to indicate that it takes work, focus, and not a little cajoling to get 

a team to improve on these behaviors. As a leader, you have to be looking for ways to 

demonstrate to your team that these really are good things to do. As a developer, you 

have to keep an open mind and be willing to invest in something that will cost you up 

front but will pay you and your team a dividend down the line.

�Software Engineering Practices for Agility
One way to think about agile teams is via the notion of developer productivity. Every tool, 

behavior, and process that you put in place should be primarily concerned with making 

everyone productive. Of course, productivity is not sufficient – it needs to be focused 

and guided, but we find the mantra “optimize for developer productivity” to be pithy 

and effective as a general guide. If your team can’t fundamentally get things done in an 

efficient manner then, well, you’re never going to ship. If you’re managing a team, you 

want to be continuously figuring out if you are enabling and investing in your team’s 

ability to get stuff done.

When the agile manifesto principles talk about the role of technical excellence, it is 

addressing a core truth of the engineering discipline: all actions and decisions have a 

network effect through the team and product. Good actions are those that have positive 

multiplier effects as they cascade through the network. A good API design makes it easier 

and safer for developers to build on top of; good planning makes it easier to hit goals.

Let’s think about these network effects in terms of unit testing – a great example of 

technical excellence for general software engineering. Unit testing not only contributes 

to an individual’s productivity but also the entire team’s as well as that of partners 
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and collaborators. When writing code, starting with a test (i.e., practicing test-driven 

development) enables the developer to get clarity on the exact nature of the function to 

be computed. There is a moment where any lack of clarity can be circled back to others 

on the team or the customer. The developer can think first about what success looks 

like. Writing the code then becomes an exercise in satisfying the test. This modularizes 

the work – the tests become the manifestation of the requirements. The code is then 

submitted for some form of review. A reviewer can look at the test and get an idea of 

what the function should be doing (they will also review the test to ensure that it is 

meaningful and useful). Once the code is checked in, it may be used, extended, or 

modified by another developer. Because tests are in place, that developer can be sure 

that others using the code are protected (if their tests break, then something has gone 

wrong, and the semantics of the function are no longer intact). The investment in testing 

pays off for the developer, the code reviewer, the immediate team, and partner teams.

The fun doesn’t stop there – if testing is embraced, then it means that code is 

designed for testing. If code is designed for testing, then units of computation are kept 

small and modular – making them understandable to reviewers and maintainers; testing 

can enhance the abstractions and encapsulation of object oriented-programming; when 

it comes to refactoring, a built-out set of tests will help guarantee that the code may have 

changed but the functionality is preserved.

You will sometimes hear people say “Yes, but you can still write bad tests” or “Tests 

give a false sense of security.” That is like saying that just because a rock climber has a 

safety harness on, they could still fall. It turns out that rock climbers are well motivated 

to ensure that their safety equipment works – and so should software engineers be 

motivated to ensure that their code works – through testing. Writing good tests, like 

writing good code, is a skill. Those who embrace it will develop that skill and help their 

peers improve also.

Other areas where we can see the positive network effects through technical 

excellence include the following:

•	 Continuous integration: When a change is submitted for review, it 

should also trigger a build. This build should include running all tests 

in the repository. This allows the team to get immediate feedback 

about obvious defects at no cost. Continuous integration is offered as 

a standard feature on Azure DevOps.

Chapter 9  Technical Excellence



182

•	 Push button deployment: When your code is deployed to a number 

of targets (a production service, testing tools, applications), it can 

make a release a tedious business if each step is manual. Whenever 

teams are faced with mundane tasks to perform, they will find other 

things to do. The result is inconsistent and error-prone releases – 

your test tool has a different version of the code to that currently 

running in production. Providing your team with a button that 

automates the whole thing (including validation tests) is a big win.

•	 Code hygiene: Teams that practice good code hygiene avoid copying 

code, invest in packaging, avoid checking in binaries, avoid checking 

in auto-generated classes, follow coding style guidelines consistently, 

write comments, and so on. Many of these benefits come with 

an upfront cost – but that down payment is tiny once you start 

benefitting from the results.

These techniques are discussed in more detail in Chapter 3: Continuous Delivery. 

In summary, technical excellence in general software development helps maximize 

developer productivity by removing friction points.

The second clause of principle 9 addresses good design. Technical excellence is, 

perhaps, easy to prescribe. But what is good design? Plenty has been written on this 

topic, often distilled as distinct principles or groups of principles: the SOLID principles 

(attributed to Robert C. Martin), the KISS principle (attributed to the US Navy), and the 

Einstein principle (“everything should be made as simple as possible but no simpler”). 

These are often complemented by process guidance principles such as building a Zero 

Feature Release (ZFR) or establishing a Minimal Viable Product (MVP). In our experience, 

establishing the team’s attitude to certain engineering practices can really help.

The first is the attitude to programming languages. On the one hand, you can fix 

the language so that all developers share a common point of reference. This makes 

code reviews, testing, and collaboration easier. At the other extreme is complete 

flexibility around languages. This allows for better selection of the right tool for the 

job, but has the downside of less concentration of expertise. In Bing’s local data team, 

we generally decided to stick to object-oriented programming, specifically using C#, 

while leveraging other systems for scripting and some non-production code. Object-

oriented programming offers a compelling framework that is flexible enough to model 

data and processes but, with some discipline, can be constrained enough to help 

guide design through well-established patterns. The core principles of object-oriented 
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design are abstraction, encapsulation, inheritance, and polymorphism. Every design 

and code review can be inspected for these principles, and the team can share them 

as a framework for discussion. There are other options to be considered – functional 

programming is enjoying something of an upswing, and less structured coding styles 

such as those enabled by Python are in fashion.

The second is the team’s attitude toward design. In our web mining team, we 

developed the expression a code review is not a design review unless it is. What this 

means is if you don’t run a design review for your feature, then you are at the mercy of 

the reviewers who may hold up the code review not on code quality issues, but on design 

quality issues.

The third is a commitment to a specific operational paradigm. This is similar to the 

team’s attitude to programming languages but involves the choice around distributed 

compute and storage and can very much depend on the system context in which you are 

working. For example, if your company has built out a large proprietary infrastructure 

around MapReduce, then you are probably going to be designing to that paradigm. On 

the other hand, if you find yourself in a service-oriented culture, then your solution 

will be quite different. While one approach might be better than the other, there are 

two things to keep in mind. Firstly, ensure that your core computational asset is built 

in libraries that are not dependent on the operational paradigm; secondly, isolate 

the optimizations for the operational paradigm from the optimizations for the core 

functionality. This will allow you to be flexible when the inevitable switch happens 

without incurring any significant upfront cost.

Be Open but Commit  There are an almost infinite number of choices regarding 
coding and platforms, and good developers and managers need to be aware of 
the space as it evolves. However, decisions and commitment are required if the 
team is to have a hope of delivering. It is not acceptable to be closed to those 
options – technical leads and managers, in fact, should be continuously scouting 
and keeping up to date; but it is also foolhardy to constantly change to something 
that might be better. The start of a project is a good time to review options and 
experiment, and architectural modularity and decision deferment are good 
practices to help the team remain open.
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�Technical Excellence for Data Projects
Considering developer productivity and the network effect of good (and bad) 

contributions gave us an idea of the role of technical excellence for software engineering 

in general. How does this translate to the data aspects of data projects? Our discussion of 

network effects explains why technical excellence is important. The parallel to “optimize 

for developer productivity” on the data project side is to “maximize the value of data 

assets.” Let’s break this down.

As we progress through a data project, we generate many data assets. These include 

schema, samples, labeled data, models, analytics (e.g., the performance of a model on 

a test set), comparisons, and so on. The value of the data can be thought of in two ways: 

the immediate value and the long-term value. The immediate value is the reason it 

was created – it solves a problem, provides knowledge, or somehow moves the project 

forward. For example, a labeled data set provides value by allowing us to train a model 

which can then, if acceptable, be shipped to production. The long-term value, however, 

is the value we get out of the data later. This may be planned or unplanned. Planned 

long-term value may be, for example, the continuous use of a ground truth data set for 

a metric. Unplanned long-term value describes the value we get that is unlooked for. 

For example, we may benefit from an old model when running comparisons against 

new methods using a new test set (one not available when the old model was created). 

We may want to apply a new method to cleanse labels to an older label set to see if it 

improves on the models originally generated. Value can also be found in the systems and 

tools that we use to process and inspect our data, for example, sampling scripts, custom 

labeling and data browsing tools, and data cleanup workflows.

Perhaps surprisingly, it is common for data projects to underinvest in ensuring  

the planned for long-term value of data, let alone invest in the potential of unplanned  

for value.

�You Are What You Measure
If you are working on a reasonably interesting problem, you probably have a pipeline or 

other form of process workflow with several stages. Data can be harvested at multiple 

points in the pipeline. When it comes to metrics, it is important that you are clear on 

what you are measuring. This is especially true if you are reporting official metrics that a 

partner or customer team will rely on. It is essential that you are clear on what your data 

product is and that you measure just that.
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A common model for offline data pipelines, and one that we adopted for Bing’s 

local search product, is to deliver an XML product. XML is used due to its ubiquity (any 

platform can consume it), its standards (there is little ambiguity regarding what is correct 

XML), and its reasonable human readability.2 This XML format was what we sampled 

from and what was used in our measurement system. Many consumers of the system 

required the data in a different format – especially those that had clear requirements 

for space (XML is verbose) and computational performance. For those customers, 

either they wrote their own transformations of the data or we provided them. This final 

serialization is something that can be rigorously tested to ensure that it doesn’t in any 

way undermine the statements that you make based on your production metrics. This 

means that the measurement system pulls data from a well-defined bottleneck point in 

your system from which all views of your data emanate.

With this setup, you can also build validation processes that take the data product 

output for any input and validate the other versions of your data that you may be 

providing for your users. For example, you can take the fields of an XML document and 

see if they are preserved in your space-efficient, binary serialization.

There are many reasons why you may be tempted to take some other view of your 

data. It may be simpler due to your architecture to harvest the data prior to it being 

written at the bottleneck stage; it may be that the form in which the user consumes 

the data doesn’t work well with an existing measurement pipeline. It may be because 

the output format has changed and you built your measurement system to consume 

the legacy format, and it lacks the flexibility to retarget to the new format. Whatever 

the reason, you should resist this temptation at all costs. If you do anything other than 

measure a well-defined product, you run the risk of a transformation which introduces 

some change that renders your metrics incorrect. Figure 9-1 illustrates these different 

measurement scenarios.

2�JSON is another format with these qualities. Technically, XML is a markup language – something 
that is interleaved with object content – so JSON would have been a better option to capture a 
data structure.
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Avoid Unintentional Transformations3   As your data passes through your 
system, it undergoes one or more transformations. As the term suggests, 
intentional transformations are exactly those which you want the system to 

Figure 9-1.  Measure this, not that – In the upper diagram, the system produces 
a singular data product which is a reliable place to measure quality. Quality 
should not be measured at a stage prior to the data product nor from different, 
client-specific views of the data product. In the lower diagram, two different data 
products are produced with no singular artifact, and so no reliable measurements 
can be made.

3�Also good advice for werewolves.
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execute. They are adding the value. Unintentional transformations are those that 
have a material effect on the data which is either unknown or about which your 
assumptions don’t hold. These can happen in any number of places, but two of 
the most common are data serialization and data labeling. When we serialize data, 
we have to transform it from an in-memory format to a disc (or stream) format. If 
we don’t pay attention, then errors can creep in here – encoding errors (for textual 
data), data structure loss (e.g., turning a tree structure into a sequential form), 
reducing color depth (for images), and so on.

When we are labeling data, we need to show it to the user somehow. This may 
involve some form of serialization, but transformations may also occur in the labeling 
tool and even the display device that being used by the labeler. Labeling web 
data is notorious for this problem. Web pages are rendered for the user when the 
browser downloads the bytes from a URL, applies the associated CSS styling, and 
runs any JavaScript that is present on the page. All of this can transform the data 
considerably, and so when we save web data, we must go to great lengths to ensure 
that it is persisted in a format that allows for it to be viewed accurately later on.

Another way to think about this issue is to understand that your data product should 

primarily be designed for you – not your customer. This may sound counterintuitive 

given the focus we all have on the customer. What the customer consumes is a 

specific view, a serialization, of the data product. Your data product needs to take 

into consideration the development team’s needs – transforming it to something 

for the customer should be a last-mile, simple, and well-tested step. Excellence 

in measurement, then, means measuring what you produce and ensuring that 

downstream, last-mile serializations do not transform your data.

We’ve talked about the details of the output of your system and how it relates to the 

measurement process. Let’s talk now about the input in the context of measurement. It 

seems intuitive to require that the input to your labelling system is identical to the input 

to your process. This brings a certain coherence to all the components. However, when 

humans are judging or labeling the data, there are legitimate reasons why the view of the 

data that they see may be different from that which is the input to your system. Imagine 

an inference pipeline tasked with classifying images. The classifier has to determine if 

the image contains a mountain lion. Because this system is going to be deployed with 

many low-cost digital cameras, the budget dictates that the cameras must all be black 
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and white. While developing the judgment tools to create labeled data, you discover that 

the judges have a hard time classifying the images due to the lack of color. To improve 

the process for creating labeled data, it makes sense to show the judges the richer color 

images.

�Developing Models While Building Metrics
Congratulations! The project that you pitched has been funded, and you are about to 

start work with your small team to deliver it. You have 4 weeks to go from zero to the first 

live deployment. You have no metrics. You cost out the time taken to define the metrics, 

implement the tools, train the judges, and integrate the dev set into your inner loop and 

discover that it will take around 3 weeks to do so. This would leave you no time to work 

on your inference components in the ideal metric-driven manner. What do you do?

Even for teams that have some form of metrics framework in place, a new metric can 

take time to develop. The concept being measured will take multiple iterations between 

writing guidelines for judges, training them, reviewing their output, and adjusting the 

guidelines to accommodate emergent ambiguity or confusion. While the metric-driven 

approach should always be preferred, you will find that often your team will have to get 

started without them.

The trick to navigating this stage of the project is to rely on the fact that major 

problems (i.e., challenges in your inference problem that are worth addressing) should 

be observable in a small sample of data. This means that devs can spend an hour or 

2 manually labeling data to find areas of improvement that have a high probability of 

impacting the final metric. If 20% of your system’s output suffers from a specific issue, 

you should be confident in observing this through the inspection of a few 100 examples.

�Writing Tests for Inference Systems
When developing a machine-learned model to deliver some form of inference while 

working with the same evaluation data, we will generate any number of candidate 

models. As these models progress toward an acceptable performance in terms of the 

precision and recall we measure, there will be variations in their output. Many of the 

examples in our evaluation set will produce the same results (these are the easier cases 

captured by the model). However, net improvements will also result in some marginal 

regressions where good results will flip to being incorrect. The same is true across 
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releases of the system – we will generally be looking for net improvements and make 

calls about regressions of previously correct results. With procedural systems, unless 

the semantics of the functions being implemented change, we would not expect to see 

tests failing as we make progress unless a real bug has appeared. However, if we were to 

test inference systems in the same way (given an input, expect to always get the same 

output), we would be dealing with tests that flip-flop between passing and failing. Let’s 

walk through a typical inference pipeline and take a look at how we might go about 

writing tests.

An obvious place to start is at the feature generation phase.4 Computing features for 

an input is a textbook scenario for writing tests. Each feature being computed should 

be tested, including tests for cases where the feature is not present in the input. There 

is nothing worse than discovering a bug in feature computation for a deployed system 

only to find that fixing the feature – which will only impact the runtime inference, not the 

trained data used to build the deployed model – results in a regression.

You also want to ensure that your code paths for generating features during training 

and during runtime inference are identical. This can, of course, be enforced at the code 

level – it should really be exactly the same code. Whether or not that can be enforced, 

parity can still be checked through testing. Testing for parity, while not exhaustive, can 

be relatively easily done by taking documents and running through the featurization 

in training and then in testing and simply testing to see if they are identical. This is an 

approach to testing that is also very useful when testing other forms of parity such as 

serialize/deserialize parity. It is worth calling out that to do this, we need to build on a 

basic engineering excellence practice – writing and testing equality between objects. 

With a correctly implemented and maintained equality implementation, writing parity 

tests in any scenario becomes almost trivial – simply generate two objects and test for 

equality. Implementing (and testing) serialization of features is also fundamentally 

important to the overall design of your pipeline as we will see later.

4�Feature generation, or featurization, is the process in the ML pipeline by which raw input is 
converted into a set of fixed variables used as the input to training and prediction.
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Now we come to the challenge of writing tests for a specific inference in your 

system. As we have discussed above, the models deployed in your code will change 

over time; and while an increasingly large core of your data population will enjoy stable 

predictions, there will be fluctuations in the margins as you continue to deliver net 

improvements. If we are building, say, a person name extractor, then your best model 

might no longer find all ten person names in document A even though the previous 

release of your model did. In addition, the component you are testing may be built on 

other components. For example, your person name extractor may be running after a 

subsystem that you have developed which identifies the main content in a web page 

(and discards the navigational, banner, footer, and other irrelevant content on the web 

page). This subsystem may also be based on statistical methods which exhibit the same 

sort of net gain progress.

There are several strategies involved in testing for this type of situation. First, 

construct a distinct regression testing framework which will allow you to run different 

models, diff the outputs, and inspect them. This should not be part of your unit testing 

suite as they aren’t unit tests and they are long running tests which should be avoided 

in the inner loop. Second, different modules in the overall inference pipeline should be 

isolated. Rather than feed the output of module A into the input of module B in the test, 

the input to B should be the ideal output from module A. In other words, you test the 

performance of B assuming that module A delivered perfect output. Third, you should 

write tests for a specific version of a model. Rather than write a test for your person 

name extractor, you should write a test for version 3 of your person name extractor. This 

ensures that the test is deterministic and will always work in the same way. It will fail if 

something fundamentally changes in the implementation of your inference system, but 

it won’t fail because you have improved your product with a net gain that has resulted in 

a regression of the specific case that you have tested.

We think of tests as pins that are holding up a large, strangely shaped picture on the 

wall. Put in one pin and fix one degree of freedom. Put in another and ensure that one 

flap of the shape remains fixed on the wall. The more pins put in, the more constrained 

the picture is until there are enough pins to guarantee that the picture will remain exactly 

where it is desired. The best tests are those that fail in completely unexpected ways, 

alerting you to code paths and input scenarios that you didn’t anticipate.
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�Custom Labeling Tools
Labeling tools are the applications which humans use to create data sets for training 

and evaluation systems. They provide a view of the data as well as some controls that 

allow the user to enter or edit some sort of metadata. A simple example: If you are 

building a binary classifier for an image, then the tool might be showing the image and 

provide a button or instrument a keystroke to capture positive or negative judgments. 

We include the labeling tool in this chapter on technical and design excellence because 

understanding the purpose of these tools, the fidelity of the presentation, and the 

manner in which labels are created is important to the quality of your overall product. 

Let’s break it down.

Viewing data might seem like a simple part of the overall puzzle. You are dealing with 

images, you need to view images; You are dealing with web pages, you need to view web 

pages. But it is worth digging in to the considerations in presenting data to humans.

First, are you showing the judge the same thing that your system is seeing? Certainly, 

when dealing with web data, it is easy to end up showing something to the judge that 

is quite different from what the machine will “see.” If you save the HTML bytes of a web 

page to disc and then open them at some later date, your browser will start to pull in 

additional streams of information that it will use to render the page. This could be as 

trivial as the CSS styling information that determines the size of fonts, colors, and so 

on of elements on the page. It could also be imagery used on the page. Perhaps you are 

looking at a page relating to the news and there is a banner widget which pulls in latest 

headlines above the main content of the page. In addition, whenever additional data 

is used to change the look and content of the page, there is a chance that it is no longer 

present, resulting in unintended layouts, missing images, and so on.

Some of these presentational defects may not matter. But let’s imagine you are 

building a classifier to determine if a page is “spammy” or not. If the junk content is no 

longer available to present to the user, then it won’t be seen, and so the judgment can’t 

be accurately made.

We have seen some more extreme cases of this type of problem when dealing with 

HTML data that is in some way restricted. For example, your data acquisition system 

might have access to servers hosted in a certain environment; but when you look at the 

same URL locally, as the permissions will be different for the individual user, the content 

of the page may be completely or partially blocked.

The web examples illustrate potential pitfalls in which the object being shown to the 

judge may be different from that seen by the system. We can also find examples where 
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the human and the machine will see transformations of the data. It is very common 

for image processing systems to transform images to a common, lower-resolution 

version due to the capacity requirements for the training and inference system. In these 

situations, you have a choice as to showing the judge either the original source image or 

the reduced smaller image that the machine will see.

�Storing and Versioning Training and Evaluation Data
There are two types of labeled data – the bountiful consequence of existing processes 

(e.g., queries in a search engine that resulted in either a click – success – or no click, 

failure) and the human-judged variety. The former is freely available, but the latter costs 

time and money. When working rapidly (not to be confused with agilely), it can be easy 

to complete your classifier, demonstrate its effectiveness, satisfy the customer, and move 

on to other tasks avoiding the overhead of persisting the data. When it comes time for 

you to update the model, the data’s location and provenance are lost. As is the case with 

many processes in the agile world, the solution to this problem – this loss of value – is 

in setting up the right behaviors, processes, and tool chains that can be used during 

development. This means that at the end of the task – when your model is showing those 

net gains in the metric – there is no additional work; it’s all taken care of.

The main considerations for managing data sets are the following:

•	 The population: Is the population an immutable set of objects? Any 

alternative means that you run the risk of high variance between 

samples. Let’s imagine you have a store which is continuously 

changing – any time you take a sample, the nature of that sample 

will change. If this is by design, then well and good – perhaps you are 

building a new metric set every month. But if it is unintentional, then 

you will end up making assumptions regarding the equivalence of 

your samples.

•	 The sample: You can either sample by reference – in which case you 

create a list of references into your population – or sample by value, 

in which case you make a copy of the object data. There are pros and 

cons to each approach. If you sample by reference, then you ensure 

that there is only one unique version of the data point – it’s the one 

in the population set. If you sample by value, then you have created 
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a copy of the data which insulated you from any permanence issues 

your population data set might have. But now you have set up a 

situation in which the two objects may diverge for some reason.

•	 Versions of labels: When labeling data either for evaluation or for 

training and development purposes, you will want to revisit and 

correct labels. It is important that you keep versions of your labeled 

data. Why? Agility is about progress, and an efficiency in progress 

requires the ability to measure differences between experiments. It 

is very natural for anyone tracking the project to ask for comparisons 

that can be quantified, and you will certainly come up with new 

questions for models built on the latest round of labels that didn’t 

occur to you several versions ago.

There are several practical approaches to managing data sets. For larger volumes, 

a basic strategy is to have some form of storage to manage your population and then 

handle smaller overlays of the data – references to subsets of the population that 

represent samples, labels associated with data objects – in the same infrastructure used 

to handle code. Git LFS (large file storage) is one example of a solution that follows 

this model. The basic workflow is to store your data set in the large file repository. Git 

LFS places references to the data in the main repository so that the Git interactions are 

seamless. A sample can now be defined by a reference to the objects in Git and label files 

(e.g., text files which reference a data object and serialize some label information) and 

handled in exactly the same way as code.

�Managing Models
During development, and continuing as your product improves, the team will be 

producing many models and many versions of models that infer the same output. For 

example, when you launch your product, you may have arrived at version 7 of your 

steam engine name extractor. As you progress, you may create versions 8, 9, and 10 and 

arrive at version 11 when the next release goes out. Similarly, you may realize that the 

approach you were taking for that particular task was not ideal, and you want to go with 

a different type of model for the next round of experiments and release.

You have a choice when managing your models – you can either overwrite 

them or you can check in explicit instances of the model that can be referenced 

in the code. For example, if you encapsulate your name extractor in the class 
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SteamEngineNameExtractor, the overwrite approach would simply refactor this class 

with every iteration of the model. On the other hand, the explicit approach would create 

a class for each version: SteamEngineNameExtractorV3, SteamEngineNameExtractorV4, 

and so on. This latter approach allows you to explicitly run comparative experiments at 

any time between versions, allowing for both continual comparative metrics and on-

demand comparisons with different data sets.

Compute as Much as Possible Inside the Tool Chain  Everything we do in the 
context of a data project can be characterized as

inputData + (process + parameters) → outputData.

Training is

labeledData + (trainingAlgorithm + trainingParameters) → model.

Inference is

inputData + (modelRuntime + model) → prediction.

With this in mind, we have a choice to make: how much of the process is run 
outside of our tool chain and how much inside? For example, we can train 
models outside our build framework and check in the parameters. This is a very 
reasonable thing to do if our training paradigm involves large data sets, lots of 
machines, and lots of time. However, if we are dealing with training systems 
that involve relatively small data sets and short training times, then there are 
advantages to training the model at build time. Fundamentally, it ensures that all of 
our systems are coherent. It guarantees that there are no bits of code known only 
to individual developers that are necessary to complete the training of the model.  
We can aggregate our metrics using a script saved only on our local machine; or 
we can have that script checked in, code reviewed, and tested. Even better, we can 
have our evaluation script executed with every check-in or automated to run every 
day.  The more of our code we bring inside our process, the more efficient we will 
be; the more exercise code gets, the more likely we are to find problems with it 
and correct them.
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�Good Design for Data Projects
We’ve talked about technical excellence for data projects, so let’s now move on to good 

design, in particular schema design – how to represent the input and output of your 

system. If you are building a system for analyzing PDF documents to deliver a logical 

document structure, what is the input – is it just the PDF? And what is the output – how 

do you design a suitable data model for your document? If you are building a system to 

extract business names from web pages, how do you represent the data at the end of the 

URL, and how do you deliver the business names found on the page?

We’ll start at the end – what is the right schema for a business record? Table 9-1 

shows a starting point, a simple string-based set of attributes. This looks reasonable 

initially, but let’s consider some of the assumptions being made. First, we represent 

the address as a string. This poses a number of problems. Addresses have a reasonably 

well-understood structure. By representing them as a string, we are passing on to the 

consumer the task of figuring out what the structure is. There are three distinct things 

that we want to do with our addresses – display them to users, index them for search 

scenarios, and reason about them with respect to alternate forms and our data set as 

an aggregate. Displaying an address would seem like a scenario for which a string is 

perfectly adequate. But when your UX team wants to ensure that certain normalizations 

are guaranteed in the display component, you realize that even for that simple scenario, 

some internal structure would be preferred. Otherwise, you are asking the UX team to 

develop the domain knowledge required to normalize these strings – and that domain 

knowledge defines the value of your team!

Table 9-1.  A simple business schema

Attribute Type Example

Name String Eric and Matt’s Game Store

Address String 1138 Lucas Street, Seattle, WA

Phone number String 206 555 1970

So let’s replace our address with a structured address object as shown in Table 9-2. 

In doing so, we need to acknowledge a requirement for data sources, producers, and 

consumers in our system – they have to be able to either generate or consume the new 

structured address format.
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Now we have a more useful representation of the business. We are thinking in 

more detail about the decomposition of the concepts being represented. Compare the 

idea of a string representing the address with having a structured object decomposing 

the concepts that go to make up the address. The string is simple and versatile, but 

it is opaque. The structured address brings value to the customer but requires more 

work. Of course, data is messy. A deeper review of the world of addresses reveals that 

not all locales conform to the street-oriented hierarchy common in European and 

Commonwealth countries. In Japan, for example, address structure is block based (lot 

number, block, city district); in some rural areas of many nations, addresses are more 

like location descriptions for the post office to decipher. This leads to a dilemma – do you 

attempt to create a universal data model for all addresses? Or do you incorporate a back 

off strategy that will allow at least some form of representation to be included when your 

structured object is insufficient?

An approach to back off representation is to permit a text representation in your 

data structure for any node in your hierarchy. In our address, for example, a further level 

of structure would be to bundle BuildingNumber, StreetName, and StreetType into a 

Street node. This node could have an additional property storing the string version of the 

decomposition. This would allow cases where the street wasn’t decomposed or where 

it didn’t fall into the model to at least have some record. Similarly, the top node in the 

model (the entire address) would have a text node which could hold the string form of 

the entire address. Table 9-3 shows the schema enriched with back off content.

Table 9-2.  Refining the address structure

Attribute Type Example

Name String Eric and Matt’s Game Store

Address StructuredAddress BuildingNumber String 1138

StreetName String Lucas

StreetType Enum Street

City String Seattle

State Enum WA

Phone number String 206 555 1970
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Table 9-3.  Business schema with back off text nodes

Attribute Type Example

Name String Eric and Matt’s Game Store

Address StructuredAddress BuildingNumber String 1138

StreetName String Lucas

StreetType Enum Street

City String Seattle

State Enum WA

Address text String 1138 Lucas Street, Seattle, WA

Phone number String 206 555 1970

Open Graph Representations  An approach to enable the modeling of 
structured but unknown schema is to have an open graph representation in 
which the names of the relationships (or parts) are undefined initially and 
represented simply as strings. This has the drawback of no compile time-type 
checking, but the advantage of being able to represent structured data with no a 
priori known schema.

�Denotation and Identity in Data Models
Discussing data modeling leads us to the notion of identity. How do we determine if two 

records denote the same thing in the real world? To answer this, we need to firstly clearly 

define the concept that is being represented. What does our example record denote? It 

is easy to get overly philosophical about such things. So let’s start with an exercise. Let’s 

think about how we, as humans, talk about the business. We might say, “You should 

visit Eric and Matt’s Game Store,” to which you might reply, “Where is it?” At this point, 

you have hinted that the store is independent of its location. It could be anywhere (so 

the location doesn’t define it). This gives us the idea that the business operates at, or 

out of, a location. But is this always true? What if we say, “Have you been to my favorite 

Chapter 9  Technical Excellence



198

Starbucks?” You might reply, “Which one is it?” The answer would obviously be a 

location. What we’ve stumbled upon here is the distinction between an aggregate concept 

like a chain or a franchise and a “singleton” business like Eric and Matt’s Game Store.

This type of inspection, it turns out, can lead to fundamental insights regarding how 

to represent the core concepts in your domain. Our local search system had, for largely 

legacy reasons, a somewhat flat structure like that shown in Table 9-2. As we got more 

sophisticated with our project, we uncovered a variety of concepts:

•	 Singleton businesses: A business with only one location

•	 Business groups: Collections of differentiated businesses with a 

common owner – the primary example of this was a restaurant group 

in which a single company owned, for example, a sushi restaurant, a 

steak restaurant, a seafood restaurant, and so on

•	 Chains: A business with multiple of locations each of which offered 

the same service or experience (you expect to get the same burger at 

any McDonald’s restaurant)

•	 Franchises

•	 Cooperatives

•	 Complex entities: Universities, hospitals, airports, governments, and 

so on

The biggest challenge that we faced wasn’t understanding the structure of these 

concepts or even finding data sources that we could use in some way to populate a 

model with the required rich structure. It was the ability to migrate our schema from  

the original simple format to a structure that could represent the richness of the evolving 

model.

The strategy that we ended up adopting when it came to enriching our model was 

to think of the underlying, simple business representation as a base type and layer on 

complexity either as new attributes in the model or by creating additional models which 

captured new parts of the conceptual space and which could refer to other parts of the 

representation. For example, it is relatively straightforward to take the trivial schema 

shown earlier and add in a new field to represent, say, the category of the business. 

When dealing with chains, we created a new conceptual space of chain brands. The 

schema is shown in Table 9-4.
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Table 9-4.  Chain brand schema

Attribute Example

Name String Josh’s Poke Place

Locations Array of references [1, 88, 421]

Corporate phone number Phone number 206 555 9943

�Representing Ambiguity
Of course, the only thing we know for sure about our data is that it will contain errors. 

You will encounter enthusiastic declarations from the agents of particular sources of data 

stating that there are no errors in their data – don’t believe them. We have found that 

even the business will not have accurate information about itself. Chains will include 

closed locations in their databases of active stores, phone numbers will have been left 

unchanged after an alteration, and so on. For you as a data designer, you may want to 

consider how you may represent ambiguity or confidence in your data. Deciding to do 

this is something of an important decision. The more you pass on ambiguity to your 

customers, the more you are asking them to apply some form of reasoning to your 

product to make it useful for their scenario. Is it useful to say, “Eric and Matt’s Game 

Store is either at address A or address B – we just aren’t sure”? Ultimately, someone, 

somewhere, must make a call. If you leave it to your customer, they will inevitably be 

forced to introduce an additional layer of reasoning to address the issues in your data 

resulting in uncomfortable dependencies and no real transactional trust. We have found 

that ensuring that your system has a well-designed mitigation path is just as important as 

the quality of your data. There will always be errors, but if you can immediately respond 

to those errors, you will get a lot of forgiveness. Designing for mitigation  

allows you to take a slightly stronger stance on the statements that you publish in your 

data – essentially you can make decisions, but you can fix them.

There are certain types of ambiguity that we feel are reasonable to pass along. 

Perhaps the most salient example is provided by the business name. While someone 

somewhere probably has a good idea of the unique name of a business, it is valuable to 

be able to capture two types of related names. The first is variations on the true name. 

Is it “Starbucks” or “Starbucks Coffee”? Is it “Home Depot” or “The Home Depot”? 

Capturing alternates like “Matt and Eric’s Game Store” for “Eric and Matt’s Game 
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Store” can also be useful. This type of alternate information can be further enhanced 

by including some indication of the distribution of use of the alternatives. This type of 

information is of particular importance in search scenarios. The second type of related 

information that is useful in our business listings scenario is associating the name of 

previous occupants with a particular store.

But let’s catch ourselves. We are starting to go down the path of “attribute stuffing.” 

We are adding attributes to our model to support specific customer scenarios. What is 

at the heart of this scenario? In recognizing the value of recording former occupants of 

a location, we have uncovered some additional key concepts. Firstly, that businesses 

are temporal. It is accurate to say that between date 1 and date 2, Eric and Matt’s Game 

Store occupied a specific location. It is also accurate to say that at that time, the phone 

number which could be used to contact them at that location was phone number 1. 

The current occupant of the business unit at that location is Josh’s Poke Place. There is 

an opportunity here to decompose the model and link statements in such a way that a 

consumer could compile a suitable representation for their scenario trivially from your 

factored model. This is the same principle that we discussed in defining and measuring 

the data product of your system. It is better to err on the side of the factors of the world 

you are describing than on the specifics of a particular customer or scenario. This is the 

analog in the data world of good class design in object-oriented software.

�Representing Input
Thus far, we have discussed the data model of the output of our system. Inference 

systems generally deal with moving between different levels of representation. For our 

web extraction project, we start with some object data – a document – and end up with a 

semantic model of the content of that document. When we started the project, we used 

raw HTML data downloaded from the web site of the business as our input. This is a 

pretty common approach for applications that do classification or entity extraction from 

the Web. However, as we progressed with the project, we observed a couple of issues. First 

was the time of the download. This is important as without it we can’t accurately track 

when an extracted field has been updated. Second, we noticed that we would sometimes 

either extract data that was not visible on the page and, at other times, not extract data 

that we would find on the page. In the first case, the problem was that we were treating all 

text nodes the same – even if the HTML was designed to hide some text from the user. In 

the second case, what the user saw when visiting the page in the browser was composed 
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from not just the HTML byte stream that was downloaded when they navigated to that 

page, but also the CSS used to style the page, content dynamically loaded while the page 

was rendering, and modifications to the page that were carried out by scripts.

The temporal aspect of the data is an example of storing the context, or conditions 

of data acquisition. This data in and of itself constitutes valuable information for the 

overall system, and it is also useful for managing data sets – imagine a data set of images 

with the additional information of the time of day and location of the picture. The 

rendering issues which resulted in over- and underextraction of content are examples of 

fundamentally being able to describe the requirements of the system. While the general 

idea of the project was to extract business data from web pages, the implementation 

initially attempted to extract business data from only a partial and imperfect view of the 

data used to present the web page to the user. As we looked harder at this problem, we 

determined two slightly different scenarios. The first was to extract business data from 

web pages by emulating a person looking at those pages. The second was to reconstitute 

the database underlying the listing pages on the web site of a chain or other large, 

multi-location business. Thinking in those terms had a considerable impact on the 

abstractions used in our system as well as the design and implementation of extractors.

�Conclusion
It might be fair to say that the most common confusion about agile engineering practices 

is the idea that agility involves cutting corners and avoiding tasks that don’t appear to 

be on a direct line to the stated objective. But like any endeavor, efficiency of execution 

comes from a solid foundation in the basics. This is true of the foundational skills of 

the individual engineer, but also true of the foundations on which a team runs and the 

foundations on which a project operates. Early and continuous investment in quality will 

drive efficiency throughout the project.

In Chapter 9, “Technical Excellence”, we have motivated the investment in excellence 

in software engineering in general – optimize for developer productivity – and discussed 

the parallels in data projects – maximize the value of data.

In Chapter 10, “Simplicity”, we will describe how having a keen eye every day for 

work that should and shouldn’t be done to move the project forward can make all the 

difference in a project.
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CHAPTER 10

Simplicity
Simplicity – the art of maximizing the amount of work not done – is essential.

—agilemanifesto.org/principles

Agile development emerged in part as a reaction to top-down, committee-driven 

approaches to software engineering. At the time the agile manifesto was written, a 

number of innovations were starting to get traction in the development community, 

including eXtreme programming and Scrum, while various existing methods, such as 

Kanban, were being applied to the new faster-paced world of software development. 

Agile methods move the focus of problem solving from the upstream committee 

discussion to the in-flow engineering activity. Principle 10 underlines the reaction to 

this shift of focus, advocating the protection of the engineering capacity from the distant 

influence of the waterfall, putting decisions in the moment where the greatest relevant 

context can be found. As the old-school approaches are all but gone, the original 

motivation for this principle is less of a problem. However, it is still an essential skill 

of productive developers and teams to understand how to optimize the effect of their 

contribution by being selective of the work they do in the interests of the project. In 

addition, the dialogue that emerges from the permission to be selective is an excellent 

way to hone the focus of work and scope the project.

The terms used in this principle are a little too open to interpretation. Rather than 

worrying about what “simplicity” means with respect to engineering processes, let’s 

consider the spirit of the principle.1 The principle is not about avoiding work, but 

1�Steve Jobs said, “Simple can be harder than complex: You have to work hard to get your thinking 
clean to make it simple. But it’s worth it in the end because once you get there, you can move 
mountains.” On the other hand, Benoît Mandelbrot said, “To simplify, complexify.” Jobs was 
talking about reducing the dimensions in a solution to achieve elegance; Mandelbrot was talking 
about introducing degrees of freedom to better understand and manipulate the problem space.
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rather ensuring that the work being done is intentionally and clearly driving the project 

forward. This type of focus is an important part of the feedback loop between doing 

things and deciding what things to do.

�Being Diligent with Task Descriptions
In scrum, much of the planning and decision-making process culminates in writing 

user stories and task descriptions. These provide a useful inflection point in the ongoing 

project process where the potential for embarking on unnecessary work can be checked. 

A few straightforward tests can be applied to the language used to describe planned 

work that will help avoid some obvious less productive investments.

�Underspecified Work
Underspecified tasks can lead to work that doesn’t move things forward. A frequent 

example we’ve found that crops up in data projects is the improvement task: “improve 

the person name extractor,” “improve the business page classifier,” or “improve the 

regression testing framework.” This example gets at the fundamentals of managing data 

projects – balancing the unknowns in the data and models with the knowns of discrete 

chunks of estimable work. A metric goal is achieved by a series of tasks that explore the 

search space of possibilities in developing a model. For example, a gain of ten points 

of precision with no regression in recall for a classifier might be achieved after running 

20 experiments that involve cleaning training data, parameter sweeps, additional 

features implementation, adding the ability to view false negatives in the data viewer, 

and so on. A minority of these experiments will be on the ultimate path that leads to 

the desired metric goal. Adding features to the tool chain will result in further insights 

that will allow for the refining of the plan. Each of the tasks involved in setting up and 

running an experiment, or building up features in the tool chain, can be managed in the 

traditional manner with costing being estimated with reasonable accuracy. If the team 

could perfectly plan a single path through this search space of data and models, then 

achieving the goal would be done in a predictable set of steps. However, this is, of course, 

impossible. And so, the team has to use some general strategy and intuition to prune the 

search space as it progresses toward the goal. This is done in the iterations of planning 

for the project – the sprint. Distinguishing goals from tasks gets you to a point where you 

can actually plan work and manage the team’s resources. Layering the metric on top of 
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this activity with short iterations and frequent experiments allows you to see the trends 

in progress. This will give you a handle on estimating to some degree the effort required 

to get to a metric goal.

The word “improve” indicates two conditions – first, that the component is not as 

good as desired and, second, that there is no clarity on how good it needs to be. Any 

developer given this task should first push back and ask, “What is the current state? 

What is the desired state once this task is complete?” In addition, even with clearly 

defined metric goals, better tasks can be written that describe exactly the work that is 

to be done – the application of the strategy, not the goal of the work. Any task that can’t 

be estimated should be decomposed into either tasks that can or tasks that are aimed at 

reducing unknowns that prevent later tasks from being properly estimated.

If the improvement is intended to address a specific error case, for example, an 

area of the data population where the classifier systematically does poorer than in 

general, the task description can be rewritten. Instead of “improve,” start talking 

about increasing the metric (precision, recall, etc.) for that well-defined case or 

subpopulation, and then decompose to discrete tasks. This will naturally lead to 

subtasks involving sampling the population for this case, measurement, and analysis, 

as well as the experiments through the model space – new feature extractors, 

additional data labeling, label correction, and so on.

Now that you know what you are working on and the starting point, what about 

the target? There are a number of ways to gain clarity here. Firstly, consider the role of 

the improvement. While the most obvious case is to deliver value, you might also find 

yourself working on a phase of the project where the goal is to demonstrate capability. 

In this scenario, you are interested in gaining knowledge regarding the amount of effort 

required to see a meaningful change in the metric. Consequently, the target should be 

something that demonstrates potential. Think in terms of the error rate. Can you reduce 

it by 10%? If you are aiming to deliver value to the end customer, then you want to 

consider metric changes that are visible and meaningful to them.

If you are dealing with particularly hard problems, then it might be important to 

structure the work in terms of the trend of improvements. A 1% metric gain might not 

be something that your customer cares about, but showing a constant gain in the metric 

over time toward a meaningful goal is a great demonstration of capability.

In all these cases, where a metric is involved in setting targets or tracking progress, 

consider the power of the metric. Is the change statistically likely to have occurred given 

the sample size and quality of judgment? We have seen cases where progress toward a 
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metric goal falters. Upon analysis, we’ve found that the noise in the measurement data 

(due to the complexity of the judgment task, the sophistication of the tools, the clarity of 

the guidelines, etc.) can swamp any improvement.

Without drilling down into the details of the “improvement” task, you run a real risk 

of taking on work that has no observable completion. You’ll meander on, not knowing 

that you’ve already created value, without integrating the insights you’ve gained back 

into the priorities in your planning. Ironically, it may be wasteful to exceed in improving 

an inference component due to the opportunity cost of other higher-priority investments 

that the customer would prefer be made.

�Deadly Conjunctions
In the previous section, we looked for the word “improve” in task descriptions. Another 

problem word is “and.” If you see “and” in a task description, raise your red flag high. 

By conjoining tasks, say “analyze classifier errors and improve recall,” you assume that 

the insights from the first won’t impact your decision to do the second. In addition, 

you prevent the completion of tasks – an important behavior in keeping a nimble and 

motivated team running. You also run the risk of mixing estimates of cost for the tasks. 

An analysis, for example, should generally be timeboxed. Making improvements – as 

discussed above – brings its own complexities and unknowns. There is great value to the 

team in completing a task. Splitting conjoined tasks into two doubles the completion 

moments that you can celebrate.

�Cross-Task Dependencies and Assumptions
Poorly worded task titles and descriptions can lead to miscommunication in the team, 

resulting in confusion about who is doing what and how individual pieces of work fit 

together. If you expect another developer to deliver something as per your interpretation 

of the task but in fact they are working on a different interpretation, then the work that 

either or both of you are doing may be heading in the wrong direction.

In a recent project, an agreement to produce and automate a metric computation on 

our predictions was split between two teams. Once both work items were complete, we 

discovered that the metric automation was delivered for a different, extant metric, while 

the results of the new metric computation were left untouched.
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When participating in planning processes, if you are aware of assumptions you have 

about a particular task, it is best to voice them to help reduce potential for confusion and 

wasted effort down the line.

There are several things we have found that greatly help with chasing out dangerous 

assumptions:

•	 Planning poker: This is a planning game that uses the estimates for 

the cost of a task from two or more people to surface disconnects 

in what the task actually is. In summary, the players each give an 

estimate (without knowing the estimates of the other players), and 

the numbers are compared. If they are similar, then no further 

discussion is had. If they are quite different (e.g., one estimate is 

twice that of another), then a further round of discussion is carried 

out, digging deeper into the specifics of the task. It’s a great tool to 

find these disconnects as it only requires a few moments thought to 

form a rough estimate, and this is exactly where assumptions will 

be used. For example, let’s say the task is to build a simple labeling 

tool to annotate phrases in text. Your estimate is 2 days, but mine 

is 5. Our coding skills are not dissimilar, so why the difference? In 

discussing the task, it turns out that I’m assuming that we need 

to implement management for different labeler identities, while 

you are assuming that you will just write the labels to disc in an 

unadorned format.

•	 Pair programming: If the producer and the consumer can sit down 

together to implement the API, component, or data transformation, 

it can obviate the need for a more formal documentation process 

and allow each side of the exchange to quickly iterate to get to a final 

result that will have minimized assumptions on both sides.

•	 Synthetic data: Even before the API is created or any data has 

been processed, it is useful to manually (or through some simple 

automated process) produce some synthetic data. This unblocks the 

consumer from having to wait not only on the design but also the 

implementation before they can code against the data and discover 

issues with the data model or the interchange format.
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Words Matter  We touch on communication as a core skill at a number of 
places in this book. Like good code, clearly articulated descriptions of work can 
prove crucial to the team’s ability to do real work in a sprint. Developing a critical 
attitude to the quality of the language that is used around your project can help you 
navigate the landscape of data projects.

�Early Integration
A common decomposition in large projects with multiple ML components is to work 

toward metric targets at the integration points. Your team will produce data at 90% 

precision and 80% recall, and my team will produce a search ranking function with 

a ten-point improvement of DCG2 over the current ranker. In reality, it is difficult to 

predict what the upstream team needs to deliver in order for the downstream team to 

build on that improvement to deliver their goals. Consequently, the downstream team is 

motivated to request a metric goal that is safe for them – in other words, it is likely to be 

higher than required.

In an ideal world, you would ensure that the two systems are integrated as soon as 

possible. In addition, the downstream system would be designed to support low-cost 

experimentation. By doing this, the metric target at the point of integration becomes 

less of a concern – you can directly observe the effects of the upstream improvements on 

the final product. In comparison with the more decoupled approach, this provides the 

opportunity to complete the project earlier.

�Baselines and Heuristics
Given a new problem, it is common to see an inexperienced team dive in with the 

latest machine learning methods, eager to show their chops – they are asking the 

question “What happens when we apply this method to this data?” Complimentary to 

the importance of establishing metrics, coming up with some sort of baseline system 

can deliver useful insights for very little investment. This can be as simple a method 

which always outputs the positive class for a binary classifier. More informative is an 

2�Discounted Cumulative Gain – a metric for measuring the accuracy of a predicted ranking with a 
known, correct ranking.
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implementation of a small number of “obvious” rules capturing your intuitions and 

assumptions about the problem. For a little more effort, you could train a simple logistic 

regression model as a baseline for more sophisticated ML methods. By coding these up 

and evaluating them against your metric, you will learn something about the complexity 

of the problem space. Furthermore, by looking at the errors your simple heuristics make 

against the metric set, you will get a feel for the variance in the population.

In our system for extracting business listings from web pages, we were well set up to 

support a number of approaches to entity extraction using machine-learned methods. 

We supported both sequential models and classification models. However, when it came 

to deliver a phone number extractor, we started with a simple regular expression. As 

the project progressed, we learned more about the patterns for legal phone numbers 

in different countries (e.g., in the United States, not all sequences of ten digits are valid 

phone numbers, which is why numbers in films always include a 555). The combination 

of this knowledge and the pattern-based approach was sufficient for extracting phone 

numbers at the required level of precision and recall so we didn’t even invest in training 

a model.

In comparison, our investment in address extraction started with a legacy pattern-

based approach using a finite state transducer. While this approach was convenient in 

that it already existed, we soon found its limits and switched to a full ML approach.

�Recognizing Limits
As data scientists, we are keen to remind people of two universal truths: the data is 

always noisy, and no inference system is perfect. With the latter, we are setting the 

expectation that there will always be errors in the output. We have talked in Chapter 9: 

Technical Excellence about ensuring that your system is designed with mitigation as a 

primary capability. This allows you to react to errors as they are discovered and fix them. 

This is great for addressing highly visible and potentially embarrassing or dangerous 

errors. However, it is an after-the-fact solution. The error was already exposed.

Most large-scale, ML-based engineering teams will have already built systems 

around crowdsourcing data. These involve data and job management systems as well as 

tools and processes for training and managing pools of remote or on-site judges. These 

judges will either select or be assigned work which they perform for a small unit price. 

This type of pool of human intelligence can be integrated into your data processing 

workflow – we call this the human-in-the-loop model.
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In the world of local search, all records appear the same: the name, address, phone 

number, and so on of the business or local entity. However, depending on the scenario 

that your data is used for, the importance of the entities can vary greatly. In fact, in 

search, a large percentage of entities get shown to any user only a handful of times and 

some percentage never at all. Consequently, the quality of your system is more sensitive 

to errors in the important, hero entities3 than it is to those entities that never show their 

face. With this in mind, we want to make sure that changes the system infers to those 

hero entities are not only more likely to be accurate but are actually verified by a person. 

It would be very unlikely that the address of the White House changed, but if it did, you 

don’t want to be embarrassed by not reflecting it in your product.

To handle this through the human-in-the-loop method, we identified a set of entities 

that we would monitor. Whenever a change was computed for those entities, rather than 

allow the change to carry through the system as with other entities, we take them on a 

little detour. They are marshalled for review by human judges. If the changes are verified, 

then the information simply flows back through the system. If not, the error is not only 

discarded but recorded so that the system doesn’t fail for the same problem again. For 

the cost of a little latency, we can ensure that important entities are protected.

The nice thing about this approach is that it scales easily to the capacity of your 

human judges. You can simply rank entities by their importance as reflected in the 

number of times they are presented to users. Whenever a judge is free, they can review 

the next entity on the list that has had changes in the current cycle.

By designing for a human-in-the-loop, you avoid the increasingly difficult and 

expensive task of finding ML-driven approaches to solving the last few points of quality 

in your system. In addition, this avoids the increased expense of funding a metric system 

that is sensitive enough to even measure with any accuracy changes at that level.

�Managing HiPPOs
The further away someone is from your project, the less context they have about the 

trials and tribulations of the developers in the trenches and the less understanding 

they have about what is easy and what is hard in the problem space. We have all had 

the experience of looking from the outside in on a problem space that another team 

3�The term “hero” is often used to indicate entities, results, or scenarios in data-driven projects 
that are too important to fail.
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is attacking and thinking – “how hard can it be?” When the person with this view is 

somewhere above you in the management chain, it can be an easy choice to make to 

react to their input immediately, breaking the sprint, throwing planning out the window, 

and generally rushing around. It is important to be aware of the impact that these people 

can have – we call their input HiPPO (Highest Paid Person’s Opinion).

There are two general approaches that are worth considering. First is a strategy we 

might call transfer of decision. When asked by someone with influence to take some 

action, you should respond by asking them which of the current priorities should be 

changed. This is an effective way of handling the situation as it provides an opportunity 

for education and also makes the consequences of any sort of veto power clear. Of 

course, this can only be done well if you have a well-managed backlog and sprint plan. If 

you are running by the seat of your pants with ad hoc, just in time planning “methods,” 

then you are wide open to vicarious course correction.

The second approach is to rely on data. If asked to do X instead of Y, you can respond 

by either referring to existing data or doing some quick, but principled, analysis. If the 

insight of the HiPPO was valid, then good. You have been nudged to better understand 

your data.

In both of these approaches, the key investment is what happens before the 

intervention. Your planning should be worked out (in the scrum sense, not the waterfall 

sense), and your metrics and data should be mature enough to facilitate informed 

discussion. In general, we find it useful to be one step ahead of any potential interlocutor 

of our data and metrics. If your metrics are going to be used in any interaction or some 

analysis of your data set, having the next level of detail, the distribution of subtypes, the 

breakdown of error cases, and so on in your pocket will go a long way to ensuring that 

the right decisions are made efficiently.

�Failing Fast
Agile development for data projects fundamentally changes that landscape of risk in 

comparison to traditional engineering projects. The space of options is compounded 

by the unknowns in the data and the challenge of the inference problem at hand. 

It is reasonable to assume that the paths to success are reasonably limited given 

the dimensionality of the data. Consequently, the ability to prune the search space 

expediently is fundamental.
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Fail fast4 is a strategy by which you orient your work to determine as rapidly as 

possible if the general approach is viable or not. You want to demonstrate that the 

approach will fail as quickly as possible to avoid longer investment in a solution that 

will not work. The corollary is, of course, that if you fail to demonstrate this, then the 

approach under consideration may well have legs.

General considerations around fail fast include the following:

•	 Understanding and testing your assumptions about the component 

or problem: Work hard to surface assumptions in your plan – which 

things must necessarily work well for you to deliver. What evidence 

do you have that they will? You are almost certainly applying the 

method in a new scenario, or to a different type of data.

•	 Scale: What happens to the component when it has to scale? It is 

not necessary to implement scaling, but you should certainly look 

for opportunities to figure out the key aspects of a scaling strategy 

and do some quick testing, possibly with synthetic data or simulated 

workloads.

•	 Labeled data generation: Is there a path to synthesize or otherwise 

automate the collection or creation of data? If you require human 

judges, is it a task that can be accomplished with your current tools? 

We’ve found that if you do some quick labeling yourself, you might 

learn that the central concept of the problem you are trying to solve is 

actually quite vague and may run the risk of low-quality labeled data 

production.

�Build or Buy or Open Source
Strategies addressing the amount of ownership a team has in a solution define the 

identity of the team. On the one hand, a complete ownership approach establishes the 

team as a center of excellence for that problem space. At the other extreme, a strategy 

that is committed to integrating external components and data sources identifies the 

4�Fail fast when used to describe a strategy for system design and implementation is actually a 
metaphor referring to the fail fast approach to implementation, in which code is designed to 
raise exceptions, or otherwise fail, as early as possible to avoid wasted time and computation.
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team as a platform and integration team, potentially with a considerable requirement for 

business relationships. It is important to keep this in mind as it will influence the type of 

team member that you will want to attract.

There are several ways in which the buy vs. build consideration comes in to play 

when your team is tasked with delivering data products:

•	 Buying or licensing completed data sets and the services to update 

and maintain them

•	 Buying data sets that will form a part of your solution, which you will 

improve and augment

•	 Buying inference components that you can apply as is to the raw 

input data that you acquire yourself

•	 Buying tool chains that will support your team in developing the 

models that are required for the delivery of your product

In all these scenarios, the key thing to consider is how agility will be managed 

through the dependency. For example, how will DSATs5 be reacted to? How will 

extraction errors be addressed in the extraction software? How will buckets of false 

positives be prioritized and improved upon in a classifier?

If you take a full dependency on a data source, there will be an expectation that 

prioritized problems and individual errors will be reported to the source of the data 

and addressed and then a new version of the data will be published with the expected 

changes. A third-party data source is of interest because the provider has more resources 

to put into the data. The dependency makes economic sense because the costs are 

shared across multiple customers. However, this reduces your ability to influence 

the priorities of issues being addressed. Ideally, the third-party provider will have a 

mechanism that will allow you to post reports of problems or actual data corrections. 

Potentially, the validation and application of corrections can be part of the service – you 

might pay per correction.

The alternative to this is to apply patches to data on your side. This is essentially the 

conflation scenario – the third-party data is a signal which is mixed with at least your 

corrections data and potentially other third-party data sets.

5�A DSAT (antonym: SAT) is a customer experience that is dissatisfying. It is generally styled as a 
capitalized word.
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In summary, a data dependency is either a strategy that is wholly dependent on 

the latency and prioritization of error correction on the side of the service provider or 

a strategy that requires investment in conflation and correction data management on 

your side.

When it comes to dependencies on third-party inference components, there are 

similar considerations – how to manage improvements to the system to address buckets 

of errors and specific DSATs. Improvements on your side can be managed by wrapping 

the third-party component and applying appropriate lightweight rules to correct specific 

inference errors.

Establishing an Integration Framework   Something that we realized after a 
number of projects involving a mixture of first-party and third-party components 
was that rather than thinking of the third-party selection and integration decision 
as a one-off consideration resulting in specific designs around integrating that 
specific implementation, it was better to think of the problem as providing a 
general framework for integrating any number of potential solutions to the 
problem. This approach has the benefit of allowing you to swap solutions in and 
out as needed, but also it allows you to mix and match solutions as they apply to 
different areas of the problem space.

For example, if you are evaluating solutions for document understanding – that is, 
inference components that determine the logical structure of a document given its 
raw input – you might find that one solution is good at general high-level layout 
while another is good specifically at recognizing and structuring tables. You want 
to have the advantage of the latter in the context of the general value of the former. 
To do this, you can build a framework within which both can run. The framework 
will then compose the results into the final output.
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�Conclusion
In Chapter 10, “Simplicity”, we have introduced methods for ensuring that individuals 

and teams can focus and act efficiently through the planning and execution of 

well-considered work. You are a member of, or a manager of, a team of smart data 

developers eager to make an impact on the world through your services and data 

products. You should come in to work every day with a keen eye for relevant work 

that is aimed at moving a project forward. You should challenge your customers to be 

engaged and present in the progress of the work. Within the team, you should help 

guide the progress through the unknown and un-navigated landscape of your data 

problem by helping to scope the problem, look for knowledge gaps, and articulate 

well-defined experiments.

In Chapter 11, “Self-Organizing Teams”, we will describe the personalities that can be 

found in many teams working on data projects and how to leverage diversity in the team 

to produce a better product.
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CHAPTER 11

Self-Organizing Teams
The best architectures, requirements, and designs emerge from self-
organizing teams.

—agilemanifesto.org/principles

Top-down planning processes and hierarchical team control impart a certain kind of 

comfort to management. This warm feeling, however, is only really experienced at the 

top and rarely by those executing the actual work at the bottom. There is nothing too 

mystical about this principle – on agile teams, the low-latency communication within 

the team combined with the license to experiment, make mistakes, and course correct 

allows the design of components, APIs, data structures, and so on to be just what is 

needed and just in time for the task at hand. Sometimes what is happening within the 

team isn’t as apparent to management, although the techniques discussed in Chapter 4: 

Aligning with the Business go a long way toward helping management regain the warm 

feelings they lost when waterfall went away.

In the context of data projects, teams are often formed around areas of data, and so 

team members are the most experienced and knowledgeable about the intimate details 

of that data – far more than any external person or person higher up the management 

chain. As the data is a huge factor in what the team can accomplish and how it 

accomplishes it, having the data experts be the primary voice in all aspects of team 

process, planning, and execution makes a lot of sense.

In Empirical Findings in Agile Methods, Lindvall et al.1 describe agile methods as: 

iterative, incremental, self-organizing, and emergent. Self-organizing they define 

as: the team has the autonomy to organize itself to best complete the work items; 

emergent as: technology and requirements are allowed to emerge through the product 

development cycle. Both definitions point to the absence of top-down approaches to 

1�www.cs.umd.edu/~mvz/pub/agile.pdf

http://www.cs.umd.edu/~mvz/pub/agile.pdf
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planning, design, and execution; but they don’t imply that the team determines the 

high-level tasks or goals. A self-organizing team is not a team with complete autonomy. 

At some level, projects, targets, and business necessarily will be determined by some 

external agency. What is inherent in self-organization is autonomy over how something 

is carried out. Furthermore, a team cannot function without process. Process enables 

productivity. This can be hard for some to grasp as they may perceive process as a 

hindrance – an unnecessary layer of administration sitting above the more important 

work of writing code and training models. Managers of data teams must figure out how 

to enable their team via processes that work.

�Team Compositions
In projects at Bing and elsewhere, we have observed several types of team composition, 

all with different pros and cons. These team composition types include balanced 
capabilities, mixed capabilities, stratified capabilities, and the surgeon team.

Balanced capabilities occur when members of a team are, for all intents and 

purposes, interchangeable. There is no real difference in outcome if individual A 

or individual B picks up a task. It is very unusual to have a team composed of just 

these individuals; it is also inadvisable. Given that you want to be able to cover the 

full stack, you would need to populate your team with the mythical full-stack data 

scientist – an almost impossible task. It is important to recognize this when building 

teams and in the planning process for sprints as well as the day to day running of  

the team.

Mixed capabilities are found in a team of equally adept but complimentary 

developers. This is perhaps the most effective team composition to have. There will 

be some individuals with deeper data science expertise, some with more of a backend 

engineering focus, and so on. Self- and group-learning will happen if the team members 

are passionate in their field and supportive of each other. The key thing with mixed 

capability teams is to ensure that knowledge and know-how doesn’t get trapped within 

a silo of individuals with similar capabilities and is constantly socialized within the 

team, especially with individuals with different capabilities. For example, the data 

scientist focused team members should regularly pair with the backend focused team 

members – either by coding side by side or at least sharing design and architecture 

insight and ideas with one another. Specialized capabilities can produce great results 
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and great dynamics in the team, but hidden know-how and tools can lead to disaster 

and lack of productivity, especially when someone leaves. And often the best ideas come 

when individuals with different capabilities work together on the same problem – a data 

scientist can often have an insight that the backend engineering team hasn’t considered 

and vice versa.

Stratified capabilities are found generally when the team contains junior and more 

senior individuals. Again, this a very normal and constructive type of difference to 

have in a team. Senior individuals can be supported by more junior members who 

gain experience from the interaction. In addition, in the fast-paced world of machine 

learning and data science, new college hires in particular are great conveyors of new 

norms in how particular problems are being solved. They can help to shake things up 

in a positive way.

The surgeon team is centered on a small set of high-performing individuals. The 

surgeons are like the surgeon in an operating theater – the main conduit through which 

progress is made and the person whom others pay attention to and generally follow. 

This can be an extremely difficult team to effectively land results in a data engineering 

project. Too much is centered on one individual, and in typical data engineering 

projects, the data is too dense for one individual to fully consider. While the surgeons 

may be highly capable, their centrality in the team process can block the team as a whole 

from reaching its full potential.

�Teams Are Made of Individuals
Part of the fun of working in a team is the spectrum of capabilities and personalities that 

you will work with. We now consider some examples – caricatures to some extent – of 

types of individuals that often show up in data-oriented projects: the new hire, the 

journeyman engineer, the philosopher engineer, the principled applied scientist, the 

surgeon, the minimalist, and the off-roader.

The new hire, fresh from graduate school with a PhD in a machine learning- or an 

AI-related area, is a great source of new methods, new perspectives, and energy. This 

team member has been living in a world of cutting-edge techniques, unencumbered by 

the pragmatic friction of the industry, and has been optimizing for solutions to complex 

problems rather than the engineering matrix required to ship products. They bring fresh 

insights and can challenge the team. They often have little experience in production 

quality code, so they need to fully embrace software engineering practices as dictated by 
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the team’s culture. In an open and welcoming team, you should find many candidates 

interested in mentoring new hires like this.

The more senior journeyman engineer is a solid, dependable contributor. They are 

perhaps less experienced in machine learning methods but make a large and important 

contribution in ensuring that designs take into consideration production concerns 

such as scaling, testing, and deployment automation. They are very experienced in 

collaboration, especially with complimentary contributors who provide capabilities in 

the overall system that are outside the journeyman’s purview. They may be interested in 

some serious career development through learning about ML, but even if not, they are 

invaluable to the team.

The philosopher engineer is a little less motivated by the pace of delivery and the 

business behind the project, but is very motivated by ensuring that data models, 

architectures, planning, and any other declarative aspect of the project are done “right.” 

They have a powerful sense of the natural and intuitive decomposition of problems 

(often in a manner independent of the computationally optimal approach). They will 

balk at any sign of an architecture shaped by the organizational structure rather than 

the nature of the problem. Their palms will sweat when they see data structures with 

overloaded semantics. They may get hung up on design and need to learn to balance 

their interests against the required velocity of the team. They may well make principled 

but unlooked for investments in refactoring code that doesn’t sit well with them, and so 

managers need to think about when and how to encourage this or channel the energy 

elsewhere. The sustainable pace ideas in Chapter 8: Sustainable Development can help 

with this.

The principled applied scientist is a little like the philosopher engineer – they care 

a bit more about doing things right than other product considerations – but their 

obsession is the details of machine learning. They are invaluable in ensuring that all the 

small details of machine learning are taken care of so that the team gets the most out 

of their accumulated wisdom. Junior and less experienced ML practitioners would do 

well to listen to them to pick up a broad spectrum of tricks of the trade: how to clean and 

balance data sets, how to normalize feature values, how to analyze outliers for clues to 

classifier improvements, and so on.

The surgeon is a highly productive, charismatic, and principled developer who 

has an inordinate influence on the team primarily due to the velocity at which they 
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work.2 By being productive, they become involved in many of the components in the 

product. They are a blessing in that they keep things moving (sometimes at an alarming 

rate), but they may also introduce challenges in that they can accumulate bottlenecks 

and to a large extent dictate what other individuals should be doing. In the best cases, 

there is a clear net win for the team being generated by a surgeon. In the worst cases, 

their negative influence is greater than the benefit of their expertise and the team ends 

up being herded down a path that is more to do with force of will and less to do with 

principles.

The minimalist finds themselves in a team with burgeoning opportunities and more 

work than can be carried out effectively by the group. They become focused on ensuring 

that the work assigned to them is completed, but are reluctant to stray into unknown 

areas or take on problems which they don’t “own.” They lack the natural exploratory 

nature of a data scientist and don’t feel empowered to take on unknowns where they 

might fail. They like well-structured work where the accountability is externalized.

The off-roader can’t stop prototyping. They often show up with fully functional 

prototypes in areas that were not originally central to the thrust of the project but 

which, by their mere existence, influence the direction of the team. They tend to ask 

for forgiveness not permission. They don’t feel limited by “official” statements of vision 

or mission and through their enthusiasm will contribute to both. Their prototypes can 

give a sense of possible directions to the team, but must be carefully managed as the 

requirements put on a prototype often don’t represent the real-world conditions of the 

product. Off-roaders can often generate prototypes that don’t scale well when actually 

exposed to real data.

�Individual Traits to Encourage in a Team
From these caricatures of individuals, we can pull out some key traits to be encouraged: 

communication, relating the small to the big, keeping an open mind, and equitable 
participation.

Communication is key: A good communicator knows how to express current state, 

how to participate in a constructive group discussion, and how to get information out 

of others no matter what others’ communication capabilities might be. They know 

2�C.f. the 10× programmer from Exploratory Experimental Studies Comparing Online and Offline 
Programming Performance (Sackman, Erikson, and Grant, 1968).
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how communication works within the team, across teams, and up the management 

chain. A good communicator understands that clarity is a key leadership quality and 

demonstrates this at a personal level while expecting it from others, especially those in 

leadership positions. They nurture the skill of communication within themselves and 

within the team.

Relating the small to the big: This trait leads to sampling data to understand the 

population, writing unit tests for even apparently trivial methods to ensure that 

the code’s foundations are strong, caring about the details while keeping the big 

picture in focus, and helping team members be accountable. An elevated position 

or a leadership role shouldn’t mean that only high-level, high-scale concepts are 

considered.

Keeping an open mind: When CEO Satya Nadella began his work on transforming 

Microsoft’s culture, he tapped into the idea of a “growth mindset.”3 Having a growth 

mindset means you are able to listen, you are able to consider things from another’s 

point of view, and you are aware of how assumptions influence your thinking and 

decision making. Without this key attitude, teams can become dysfunctional. Opinions 

become entrenched, trust is lost, and morale suffers.

Equitable participation: A self-organizing team, to a large extent, should be self-

sufficient. This means that a complete spectrum of work needs to be handled. With a 

growth mindset, this leads to opportunities to mentor (you can help me understand 

a part of the system that I’m less familiar with), motivation to build productivity 

tools to support repetitive tasks (you and I both dislike doing something, so we can 

agree that building a tool to automate it is a good investment of our time and will 

make us more productive in the future), and easier interactions (I don’t need to 

feel bad pointing out that you haven’t been pulling your weight in a certain area). 

Managers don’t want to have to remind begrudging team members to participate, 

and colleagues don’t want to experience awkward meetings where their peers are 

shamed.

There will always be outliers in the interests and passions of your team. In some 

cases, these will be complementary. Matt really enjoys labeling data and building 

3�Growth mind-set is a term created by Carol Dweck, a professor of psychology at Stanford 
University, and described in her book Mindset: The new Psychology of Success.
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tools to make viewing, interacting, and annotating data easier, for example, but has 

found that there are many who are less excited about this – and that’s fine. Many 

guides to agile processes assume that all team members are fungible. In reality, 

this is not the case (of course). What is important is for the team to not have vital 

information, code, and know-how locked up in a single engineer’s head. A good 

autonomous team will ensure this doesn’t happen. Behaviors that help guard against 

this sort of knowledge isolation generally socialize the code and workflows involved. 

These include the following:

•	 Reviewing and checking in code in the open so that others have 

a chance to look at the code and ideally to understand its design. 

Azure DevOps provides great tools for doing code reviews on pull 

requests so that everyone can comment on and view code going 

into the system.

•	 Ensuring that all code is built on the server so that there are 

no peculiar configurations or other dependencies local to the 

individual’s setup that prevent others from easily using the code. 

This was discussed in more detail in Chapter 3: Continuous 

Delivery.

•	 Evangelizing, demonstrating, and supporting code, tools, and 

processes will provide a trial by fire. If no one can be persuaded to 

use something, then perhaps it doesn’t yet fill a clear need.

�Managing Across Multiple Self-Organizing Teams
Bing’s local search was comprised of several teams all following agile processes 

and executing in a self-organizing manner. We found that there were areas where 

it was advantageous to institute shared practices and tools as well as assign certain 

tasks across the broader pool of engineers from the combined teams. Some of these 

requirements can leverage a central tool, for example, if a certain level of code 

coverage for unit tests is required, there is no need to invent a new way for each team 

to measure this.
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As the teams were collectively responsible for the product, the basic life cycle 

elements that enable progress and underpin the maintenance of the production system 

were at least known to all team members. This basic knowledge helps keep a general 

sensibility about the product present in all components, but also means that any 

individual can contribute to any number of failures. For example, a common tool for 

immediately addressing errors in the data is available to any team member and allows 

them to correct any data that is formally or informally reported. This type of knowledge – 

including deployment, rollback, maintaining the build, ensuring the integrity of the code 

base, and so on – is necessary for the DRI4 role.

Coding best practices and style requirements are enforced primarily through 

the use of specific tools. Coding productivity tools – in this case, ReSharper – are 

used in the IDE, while other code policy checking systems were deployed to prevent 

code being checked in if it didn’t conform to certain rules. These stylistic policies 

are important when it comes to sharing and reusing code across teams, as well as 

supporting future engineers who have to maintain the system long after the original 

author has left. Code should not only be functional; it should be understandable. 

The code itself can be written in an opaque manner (abstract variable names, 

uninformative method names, poor formatting, long lines, lack of namespace 

structure, etc.) and worse, lack in comments and documentation. The best code 

would require no documentation but would be “self-documenting.” That isn’t always 

possible, and so paying attention to the details of style will help later engineers 

understand. Code style adds future value. 

�Empowered Teams Drive Team Development 
and Product Evolution
Our experience in the local search team at Bing led us to some useful insights regarding 

the value of autonomy within teams especially as it relates to data-intensive projects.

Data projects continuously surface new knowledge regarding the problem space, 

the data, and the efficacy of particular approaches to delivering on a target. It is 

4�Designated Responsible Individual: It is common practice in teams responsible for live 
production code such as that running an online search engine or other services to rotate 
members through this role which requires that they be on call in case of critical system outages 
and other problems impacting customers.
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vital that this information is effectively communicated outside the team to ensure 

that progress is transparent. Metrics should be tested for how easily they can be 

communicated – do they make intuitive sense to those to whom you are going to 

report? Iterations should be short enough so that a trend can be generated – this is 

your key expression of progress and a useful way to help others get a sense of when 

something will be completed.

Discoveries relating to the data being processed and the particular goal of the project 

can provide a great source of ideas for new features. Teams can champion these data-

driven insights and help drive innovation at the higher product level. When working on 

delivering hours of operation for local businesses, we learned a lot about the frequency 

with which businesses changed their hours (as indicated by the changing hours on their 

web sites). While an individual business doesn’t change its hours too often, at any given 

time a significant number of businesses will have changed their hours within a country. 

In addition, a number of chain businesses in specific consumer areas such as DIY and 

tax services will change the hours of all their stores according to a seasonal schedule. 

When comparing what we were extracting from the Web against the alternate signals we 

were getting from traditional sources, we found discrepancies. Sometimes a business 

would change the hours on their site before updating their data through other channels. 

In other cases, they would change their hours first through their SEO channels and then 

on the Web. It occurred to us that there was an opportunity to inform the businesses of 

these discrepancies and ask them which version of their hours was correct. This was 

proposed as a feature and, in collaboration with a partner team, delivered to the Bing 

experience for small business owners.

Active, passionate teams can be self-educating – organizing paper reading groups, 

participating in online courses en masse, and presenting and attending data-oriented 

deep dives or brownbags on relevant topics of interest. This interest in education is 

incredibly important. It’s not a simple matter of self-improvement, but a great way for 

the team to keep abreast of new research, open source models, and so on. The passion 

motivating these types of activities often comes from individuals, but the license to do 

them comes from the culture of a self-organizing team.

Teams evolve their own operating culture influenced primarily by the members of 

the team and their values and their experience and comfort with the various tools and 

processes available to support agile engineering. There seems to be a very noticeable 

difference between teams of three to five individuals and teams of five to ten individuals. 

In the smaller team, the individual in the role of managing the team is almost certainly 

also operating as a line engineer: writing code, reviewing code, and so on just like 
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everyone else. Consequently, it may be attractive to ditch as much process “overhead” 

as possible as it gets in the way of coding. However, in slightly larger teams, the manager 

may be playing a less critical role as a developer and spending more time on topics like 

design, architecture, metrics, and team function. Consequently, the manager of the 

larger team may be more inclined to put real effort into the processes that make their 

team efficient.

Interactions between teams that don’t necessarily work in the same way, but 

which contribute collaboration on the same project, highlight the importance of good 

communication skills and the role of data analysis and insights to drive agreement.

�How Good Things Emerge
Let’s get the semantics out of the way first. “Emerge” generally means that something 

comes into view that was previously occluded. This is not the nature of the process 

we are talking about here. Rather, we are capturing the idea that the form of an 

artifact (plan, design, architecture) is a product of multiple individuals interacting 

and iterating over time.5 In the field of agile development, we are tapping into two 

key ideas: first, a self-organizing team can determine for itself the best subset of 

individuals to drive design and other conceptual work in specific areas as and when 

they become important; second, a design will improve through iterations of statement, 

criticism, and adjustment.

The right subset of individuals to drive a design varies with context and the relative 

importance of the component and state of work. Being able to establish if the design 

in question is critical (e.g., customer facing, relating to a component that will be hard 

to modify in the future, etc.) greatly informs the process. The most important designs 

should solicit information not just from within the team, but also from partners, 

customers, colleagues in other teams who have worked with the putative solution 

platforms, and so on.

Take, for example, a project involving determining the low-level serialization for 

a logical document representation. An initial implementation was created within the 

team while the system for inferring the logical document structure was being developed. 

This early implementation proved extremely useful for the development phase where 

inspecting the data and comparing it with the results of earlier models was a priority. 

5�This is closer to the artistic notion of emergence.
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It also aligned with several existing tools and so made it easy to integrate into existing 

practices. However, when it came to delivering the data product to partners, it was clear 

that the performance of the representation in terms of deserialization and enumerating 

content was far more important than the qualities of the design that we had appreciated 

during the early development stages. A new, compact format was designed through 

discussion within the team, and this was ultimately the shipping vehicle for the data. The 

shipped design, which included an API to interact with the basic representation, was 

intentionally scoped to leave out capabilities that we anticipated would be useful, but 

for which the consumer had not expressed a need. We had plenty of discussion about 

ensuring that our general approach was open to extension should the need for those 

anticipated capabilities arise.

We often find that it is only through implementation that the best designs suggest 

themselves, and so exploratory implementations can often happen in the margins 

culminating in at least an initial design idea. Various engineering decisions such as the 

platform and programming languages used in the project will influence the details of 

any design, and so design through implementation can be an efficient way of not only 

exploring the design space but integrating the constraints and opportunities of those 

external factors in real time during the process.

Another key part of our experience has been the relationship between components 

in our ecosystem. If a new type of data challenges internal tooling critical to the 

workflows that the team carries out frequently, it is important that you consider evolving 

the tools rather than contorting the design to fit the established systems. This type of 

flexibility is in a sense the core principle of agility.

�Nurturing a Self-Organizing Team
The autonomy of the team is not something that happens simply by decree. You can’t 

just let a team wander off by itself and assert that it is now self-organizing. It requires 

a certain attitude from all members of the team as well as guidance from anyone in a 

management role within the team or anyone in a hierarchical leadership role outside 

the team. As a manager of a self-organizing team, you should pay close attention to the 

process by which you get things done and how things can be developed and improved to 

get the most from the spectrum of individuals you work with.
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One of the hardest principles to teach a team that is newly operating in an agile 

way is the “we’re all in this together” principle. Individuals may be used to a model 

where they are told specific tasks to do and they accomplish those tasks at high quality 

and on time. In Agile, the important deliverable is not a particular task but a team goal 

or deliverable. Individuals need to look up from their specific task and see the bigger 

picture and figure out how their contribution can help to achieve the larger goal. They 

need to be willing to jump in and work on other tasks to help the team achieve their 

goal, even tasks that aren’t in their area of expertise or comfort zone. They need to fully 

engage their brain in planning meetings and keep the bigger picture in mind. They need 

to become more accountable for estimations and hitting their sprint goals.

Often a team undergoes an awkward period where they aren’t quite fully engaging 

their brains and are still task and individual accomplishment oriented rather than 

thinking about the larger deliverables and how the team can accomplish them. During 

this period, it is important to let the team flail to some extent and avoid the temptation to 

jump in and micromanage every task the team does.

One natural way this happens is as the team follows the processes described in 

Chapter 4: Aligning with the Business, around “sprint goals,” the team inevitably will not 

hit many of their goals for the first several sprints. It is important to be transparent about 

the fact that the team isn’t hitting their goals and encourage the team to think harder 

about how to set team goals that are achievable in a sprint. This exercise will help the 

team to work harder at estimation, planning, and organizing themselves to start hitting a 

larger percentage of their sprint goals sprint after sprint.

�Engineering Principles and Conceptual Integrity
The general approach we have described so far – that design comes from interactive 

and iterative processes in the team – may seem to conflict with the well-known 

alternate expressed in Fred Brooks’ The Mythical Man-Month. In particular, the 

notion of a chief architect or chief programmer who is accountable for the design of 

the system seems to conflict with Agile development. As in all things agile, processes 

themselves are flexible, and so we prefer to think of a spectrum of team types. At one 

extreme is the top-down, chief architect model. At the other is the fully fluid, emergent 

model. The reality is that teams will always have internal or external oversight, and it 

is a matter of judgment for individuals in those positions (managers, tech leads, etc.) 

to determine when and how ego-driven design should occur. Some types of more 
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complex systems may need to have much more oversight than others. Conceptual 

integrity is certainly important; and so, like many of the topics we’ve touched on in this 

book, it is another non-coding skill that everyone should at least be aware of and at 

best figure out how they contribute to.

One area where we do feel a little more control is required, and rewarded, is in the 

engineering principles adopted by the team and across teams in a multi-team product 

organization. We’ve covered many of these principles in Chapter 9: Technical Excellence.

�Conclusion
In Chapter 11, “Self-Organizing” Teams, we’ve described the personalities that can 

be found in many teams working on data projects. We’ve highlighted the diversity in 

the team and the dynamics that ensue and how this contributes to the processes that 

establish, iterate, and improve on the designs and other declarative artifacts produced by 

the team.

In Chapter 12, “Tuning and Adjusting”, we will discuss techniques for looking back 

and reflecting on past progress with an aim to become more effective.
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CHAPTER 12

Tuning and Adjusting
At regular intervals, the team ref lects on how to become more effective, 
then tunes and adjusts its behavior accordingly.

—agilemanifesto.org/principles

�Looking Back
We’ve talked about several mechanisms in this book for looking back and reflecting on 

past progress with an aim to becoming more effective as individuals, managers, and 

teams. To recap those mechanisms, they include Retrospectives, Data Wallows, Quality 
Reviews, Live Site Reviews, Engineering Reviews, and Surveys.

Retrospectives as discussed in Chapter 4: Aligning with the Business are a regular 

opportunity to reflect on what has gone well and what needs improvement on the 

team. We have used the process of having a board with three columns: “Good,” “Bad,” 

and “Meh.” Meh is a great modern word that is used to express indifference or mild 

disappointment. This is a good middle ground category that will sometimes get feedback 

where people are reluctant to go so far as to label an issue as being a “Bad” one just 

yet. In the Retrospective meeting, we give everyone a pad of sticky notes and about 10 

minutes to think of as many “Good,” “Bad,” and “Meh” observations about the sprint as 

possible. Team members then put their sticky notes on the board. Then someone on the 

team looks through all the sticky notes in a column and organizes similar sticky notes 

into groups. The team then discusses each sticky note grouping and brainstorms on 

ideas to fix the issues that are expressed in the “Meh” and “Bad” columns as well as how 

to keep the good things going that are expressed in the “Good” column. Specific user 

stories are devised that can be added in the next sprint to address the issues discussed in 

the Retrospective.
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Of course, a Retrospective is of limited use if no action is taken as a result, so it 

is important for the team to prioritize and complete action items determined as a 

result of Retrospectives. In addition to regularly completing user stories inspired by 

retrospectives, slack weeks as discussed in Chapter 8: Sustainable Development are 

another opportunity to work on user stories discovered through retrospectives.

In addition to considering the prior sprint in terms of how well specific stories or 

tasks were executed, we use retrospectives to address two other elements of the process. 

The first is interruption. By discussing work that was unplanned, but which for a variety 

of reasons the team was obliged to pick up, the team can reflect on the context within 

which they operate and any adjustments to planning or communication that could be 

made to better insulate the team from interruptions, thereby reducing uncertainty from 

the sprint. We have found cases of additional work cropping up where we have failed 

to do a good job of planning at the beginning of the sprint as well as where we have less 

than ideal automation and tooling support for certain parts of a live service.

The second is a core part of scrum – reflecting on the scrum process itself and any 

changes that the team can make to better execute. For example, if the team finds that 

mistakes were made due to the use of physical artifacts (sticky notes, a whiteboard used 

to capture state, etc.), they may decide to take the action of adopting a digital board 

system. Another example might be in adjusting the sprint length if the current length is 

determined to be too long or too short due to some aspects of the project having more 

or fewer unknowns. Team members might also discuss general performance impacting 

issues such as the number and frequency of meetings which they and their manager can 

immediately act on. A key attitude to this part of improvement is not to attempt to fix 

everything at once, but to make some clear, real changes. It’s great for a team to see the 

process issues that they care about being continuously improved.

Data wallows as discussed in Chapter 6: Effective Communication are another great 

way to find opportunities to become more effective. A number of skills are used in these 

active, data-focused collaborations. Team members have the opportunity to practice 

and improve meeting and presentation preparation, data science skills which will be 

interrogated (in helpful and constructive ways) by the rest of the team, driving for clarity 

in determining and taking action based on data, the use of any number of applicable 

data presentation and manipulation tools, and, of course, the key skill of running an 

effective meeting.
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Quality reviews as discussed in Chapter 2: Changing Requirements should be 

scheduled regularly so the group looks at and considers patterns of DSATs and what is 

being done to address those patterns. This is also an opportunity to look at trends in 

key metrics and make specific plans to continue improving those trends or address and 

fix any metrics that are trending downward. Review the information you are receiving 

from your monitoring as discussed in Chapter 7: Monitoring to ensure your product is 

behaving as expected.

In Chapter 8: Sustainable Development, we discussed the Live Site Review. This is an 

opportunity to further dive into live site issues and make sure they are understood and 

addressed. In this meeting, the team focuses on time to detect, time to engage, and time 

to mitigate and finds ways to drive these numbers down.

Engineering Reviews are discussed in Chapter 5: Motivated Individuals. This is an 

opportunity to monitor the key metrics around developer agility including inner loop 

and outer loop times for engineering. This is also a good opportunity to consider the 

results from a regular developer NSAT survey.

And in general, Anonymous Surveys are another important tool for determining how 

the team is doing. Sometimes individuals are hesitant to bring up an issue in one of the 

team settings described above, but they will respond to a quick anonymous survey about 

a particular issue or theme. Use surveys to make sure you give everyone a chance to give 

their opinion, even those who are reluctant to speak out in a group setting.

�The Five Whys
One useful technique the team should use when determining why something went 

wrong is known as the “Five Whys” technique. This is a technique that was used at 

Toyota as they developed their manufacturing processes. The technique recursively 

questions the cause of a problem until an actionable reason is found. The insight here is 

that the first explanation of why something went wrong is too shallow and doesn’t get at 

the true root cause.

For example, in Bing local data, we had the following issue:

Problem: The customer reports they can’t reach the business by phone.

Five Whys:

	 1.	 Why can’t they reach the business? On calling the phone number 

on the web site, the phone number is wrong.
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	 2.	 Why is the phone number wrong? On finding the right phone 

number for the business, the business reports they recently 

changed their phone number.

	 3.	 Why do we not have the changed phone number? After examining 

our source data providers, we see the phone number in two of our 

providers, but it wasn’t picked as the final phone number.

	 4.	 Why didn’t we pick the correct phone number? On evaluating the 

model for selecting the number, we find that the model picked the 

right number, but a correction was in the system that overrode the 

model.

	 5.	 Why did the system override the model? The system should have 

expired out an out-of-date correction that was older than the new 

correct value provided by a trusted provider.

In this case by going deep with the Five Whys (or you might need even more than 

five), we were able to determine that the real root cause for the bad phone number was 

a correction system that should have been aware that an old correction is of lesser value 

than a new data update from a trusted data provider.

�Tuning Metrics
In addition to “tuning behavior” as described in the Agile manifesto, it is important to 

continue to tune metrics as well. The team will naturally over time begin to get better 

and better on their metrics. Most metrics are at best an approximation of the user 

experience expressed as a number. The approximation can be a successful measure 

to optimize against, but as you get closer and closer to “perfection” on a metric, the 

approximation can begin to degrade. At some point, it is worth tuning the metric to make 

it more representative of the customer experience.

For example, we have mentioned in this book that one of the metrics we had in 

Bing’s local data team was a composite metric called Q. This metric aggregated together 

several content metrics: the business name precision, phone number precision and 

coverage, address precision and coverage, and open precision. We calculated this 

metric on our data and on Google’s data. Over time, our “Q” number began to approach 

Google’s Q number. But from a user experience standpoint, the number did not reflect 
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the actual experience on Bing vs. Google – although we were better in some ways, we 

often fell short. The “Q” metric wasn’t appropriately representing the gap between Bing 

and Google.

We did a series of analyses to develop a new metric which we called Qv2. Qv2 

incorporated a bunch of additional factors that we realized were important in measuring 

our user experience such as duplicate rate and precision and coverage of the latitude 

and longitude of the business. Qv2 also added more specific judging guidance to further 

tune the way we judged that a name, phone number, or address was correct. As an 

example, for a chain business like McDonald’s, we no longer gave ourselves as much 

credit if we could only point to the root domain of McDonald’s (www.mcdonalds.com) but 

reserved full credit for a URL being correct only if it pointed to the specific store page of 

the business in question (www.mcdonalds.com/us/en-us/location/wa/bellevue/...).

�Looking Forward
In addition to having regular times to look backward and evaluate progress and areas for 

improvement, it is also useful to have regular times to look forward and set new goals 

and tighten up business objectives and metrics.

In our teams, we’ve found a quarterly “product team meeting” to be a useful forcing 

function to help us to regularly look forward and revise the plan for the team. This is a 

regular opportunity to revise

–– Product vision (as described in Chapter 5: Motivated Individuals)

–– Top-level metrics

–– Business objectives and goals

–– Engineering system objectives

–– Process objectives

–– Live site objectives

It is amazing how much these things can shift within a 3-month period on many 

teams. So it is valuable to always have a current “master plan” document for the 

team that summarizes these areas and is regularly updated each quarter and can be 

referenced by new team members or external stakeholders. This can be as simple as a 

wiki page, a PowerPoint deck, or whatever is convenient – what is important is to have 

some agreed-on way of documenting the latest product team master plan.
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�Conclusion
At this point, we have accrued a wealth of tools to be able to reflect on how to become 

more effective and drive improvements in an Agile data engineering team. We discussed 

tools like Retrospectives, Data Wallows, Quality Reviews, Live Site Reviews, Engineering 

Reviews, and Surveys. We also discussed the use of the Five Whys to properly root cause 

issues on the team. Metrics are only approximations of the user experience and must be 

updated regularly to better reflect the user experience over time. Finally, a regular team 

meeting to force the team to update the team’s written master plan for vision, metrics, 

business objectives, engineering system objectives, process objectives, and live site 

objectives is an effective way to keep a clear focus on what the team needs to achieve next.
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CHAPTER 13

Conclusion
What follows are the principles of the Agile Manifesto (agilemanifesto.org/principles) 

with our suggested modifications for Agile machine learning teams underlined. We also 

repeat the recap for each chapter.

	 1.	 Our highest priority is to satisfy the customer through early and 

continuous delivery of valuable data.

In Chapter 1, “Early Delivery”, we looked at ways in which a team 

can get up and running on a new inference project. We touched 

on the central role of metrics and a culture that is biased to 

action to enable quick iterations using data analysis to inform the 

evolution of all aspects of the project.

	 2.	 Welcome changing requirements, even late in development. 

Agile processes harness change for the customer’s competitive 
advantage.

In Chapter 2, “Changing Requirements”, we discussed how 

you can build and develop systems anticipating change; tests, 

monitoring, and measurement to anticipate and measure change; 

and strategies for responding to DSATs and measured problems in 

your system.

	 3.	 Deliver working software and accurate data continuously, from 

a couple of weeks to a couple of months, with a preference to the 

shorter timescale.

In Chapter 3, “Continuous Delivery”, we described techniques 

to not just deliver working software frequently but to deliver 

working software and accurate data continuously. These include 

techniques like applying sufficient rigor at development time 
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to ensure code and data changes are correct, using continuous 

integration systems to further verify those changes, deploying 

continuously to an ever-increasing number of users to test 

changes in production, and having systems to quickly roll back 

data and code changes if something goes wrong. We also talked 

about using techniques like flighting combined with telemetry 

and “win/loss” analysis to decide what to ship.

	 4.	 Business people and developers must work together daily 

throughout the project.

In Chapter 4, “Aligning with the Business”, we discussed the 

importance of communicating with the business team. We 

described how important it is to have teams that are aligned as 

directly as possible to business metrics and business goals. We 

have shared some thoughts on how to work with the business 

to help them understand the limitations of machine learning. 

We also described how we do Scrum and how we involve and 

communicate to the business team through scrum meetings, 

scrum artifacts, and emails around our scrum cadence.

	 5.	 Build projects around motivated individuals. Give them the 

environment and support they need, and trust them to get the 

job done.

In Chapter 5, “Motivated Individuals”, we discussed how you can 

build projects around motivated individuals. We discussed the 

importance of rewriting frequently. We described some leadership 

ideas around how to set a vision and metric targets while trusting 

motivated individuals to figure out the best way to achieve the 

vision and metrics. We discussed how to find and hire motivated 

individuals and how to retain and grow their careers once 

they join. We discussed the importance of having a productive 

development environment and measuring inner loop and outer 

loop times for common tasks as well as developer NSAT. Finally, 

we talked about how to leverage motivated individuals outside 

your team (which also will motivate people within your team).
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	 6.	 The most efficient and effective method of conveying 

information to and within a development team is face-to-face 
conversation.

In Chapter 6, “Effective Communication”, we illustrated and 

contrasted the principle with a dive into many of the types of 

interactions that you will encounter as an agile data engineering 

team. The main message here is that all of this communication is 

a skill – just as writing code and going deep on specific machine 

learning methods. Like any skill, it can’t be learned, maintained, 

or improved unless it is acknowledged and becomes an 

intentional part of your personal work and the team’s culture.

	 7.	 Monitoring of working software and data provides the primary 

measure of progress.

In Chapter 7, “Monitoring”, we discussed how activity-based 

monitoring can be used to truly measure your working software. 

We discussed how an activity-based monitoring system works 

and the kinds of things that it logs and tracks. We talked about 

Azure Data Explorer which allows you to do sophisticated ad hoc 

queries of large amounts of logging data. We examined the various 

kinds of things that good monitoring can tell you: about whether 

your software is really working as expected, about why and when 

the software is malfunctioning, about what performance users 

are actually experiencing from your system, about whether the 

business goals are being met, about whether your customers’ 

needs are being met, and about how data and machine-learned 

models can be monitored in production.

	 8.	 Agile processes promote sustainable development. The sponsors, 

developers, and users should be able to maintain a constant pace 

indefinitely, but varying the pace up and down occasionally can 

produce an even better result.

In Chapter 8, “Sustainable Development”, we talked about how 

to determine if you are working too fast or too slow and how to 

adjust the pace down and up. We talked about how to set goals 

and ensure that goals are both sufficiently ambitious and also 
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achievable. We talked about the importance of engagement on 

a team to get the pace to the right level. We also talked about 

the importance of having some changes of pace built into 

development schedules with slack weeks to slow down the pace 

and hackathons to speed up the pace. We also talked about special 

issues around sustainable pace in managing live site issues and in 

working with multiple geographies.

	 9.	 Continuous attention to technical excellence and good design 
enhances agility.

In Chapter 9, “Technical Excellence”, we motivated the investment 

in excellence in software engineering in general – optimize for 

developer productivity – and discussed the parallels in data 

projects – maximize the value of data. It might be fair to say that 

the most common confusion about agile engineering practices 

is the idea that agility involves cutting corners and avoiding tasks 

that don’t appear to be on a direct line to the stated objective. 

But like any endeavor, efficiency of execution comes from a solid 

foundation in the basics. This is true of the foundational skills of 

the individual engineer, but also true of the foundations on which 

a team runs and the foundations on which a project operates. 

Early and continuous investment in quality will drive efficiency 

throughout the project.

	 10.	 Simplicity – the art of maximizing the amount of work not 
done – is essential.

In Chapter 10, “Simplicity”, we described how diligence and focus 

in ensuring that the work being done clearly drives the project 

forward is the central goal of Simplicity. You are a member 

of, or a manager of, a team of smart data developers eager to 

make an impact on the world through your services and data 

products. You should come in to work every day with a keen eye 

for relevant work that is aimed at moving a project forward. You 

should challenge your customers to be engaged and present in 

the progress of the work. Within the team, you should help guide 
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the progress through the unknown and un-navigated landscape 

of your data problem by helping to scope the problem, look for 

knowledge gaps, and articulate well-defined experiments.

	 11.	 The best architectures, requirements, and designs emerge from 

self-organizing teams.

In Chapter 11, “Self-Organizing Teams”, we described the 

personalities that can be found in many teams working on 

data projects. We highlighted the diversity in the team and the 

dynamics that ensue and how this contributes to the processes 

that establish, iterate, and improve on the designs and other 

declarative artifacts produced by the team.

	 12.	 At regular intervals, the team reflects on how to become more 

effective, then tunes and adjusts its behavior accordingly.

In Chapter 12, “Adjusting and Tuning”, we discussed tools like 

Retrospectives, Data Wallows, Quality Reviews, Live Site Reviews, 

Engineering Reviews, and Surveys. We also discussed the use of 

the Five Whys to properly root cause issues on the team. Metrics 

are only approximations of the user experience and must be 

updated regularly to better reflect the user experience over time. 

Finally, a regular team meeting to force the team to update the 

team’s written master plan for vision, metrics, business objectives, 

engineering system objectives, process objectives, and live site 

objectives is an effective way to keep a clear focus on what the 

team needs to achieve next.
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data continuous deployment, 67, 68
decisions, 68, 69
deployment systems, 62–65
integration continuous deployment, 59
ring systems, 66

D
Data analysis, 8–10
Deployment systems, 62–65
Designated Responsible Individual (DRI), 44
Dogfooding, 64

E, F, G
Early and continuous delivery, 1, 13

attributes, 15–17
delivering value, 13
entities, 14, 15
markets, 17
plugin architecture, 16
quality, 18
value of, 19

central development loop, 20
end-to-end system, 22
strategy progress, 23
team delivers inference  

capability, 21
traditional and data, 20
type of, 19

verticals and customers, 19
Effective communication
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content management system
code management system, 133
features of, 133
OneNote, 133
Search capabilities, 133
Standalone wiki, 134
Word + file system/SharePoint, 134

data engineering team, 129
data tool, 137

data visualization, 145
effective meeting, 145
evaluations, 139, 140
iterative differencing, 143
mining for instances, 141
moderated meeting format, 146
pie-charts, 144
requirements, 138, 139
sampling strategies, 141–143

data wallows, 148–150
demo meetings, 150–153

presentations, 152
experiment logs, 134
face-to-face communication

code and non-code, 133
ephemeral nature, 132
human, 130
immediate, 130
principle of, 129
rich and interactive, 130
shared experience, 130

interactive of data, 136, 137
judgment guidelines, 135
modern engineering workspace, 130

advantage of, 132
group messaging systems, 130
modern code review systems, 131
traditional engineering projects, 132
video chat systems, 131

non-code artifacts, 134
pair and parallel labeling, 147, 148
schema documentation, 135
sprint summary slide, 151–153
timeboxing, 151

H
Human Intelligence Task (HIT), 11, 27

I, J, K
Inference, 3
Inner/outer Loop, 123, 124
Integration, 208
Integration framework, 214

L
Labeled training data, 48
Labeling tools, 191, 192
Laptops, 146

M
Machine learning, 31

dog catcher, 81, 82
limitation of, 81–84

Minimal Viable Product (MVP), 182
Monitoring

activities, 158–161
activity vector/entry point, 163, 164
Azure Data Explorer, 160, 161
business goals, 164, 165
customer needs, 166
data and models, 166, 167
development process, 155
individual failures, 163
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productive environment, 124
TTL, 156, 157
working software, 162

Monitoring data
data DRI, 44
incremental change, 44, 45
integration tests, 46
matching methods, 45
metrics, 45
sentinel entities, 45

Motivated individuals, 127
career management, 118

discipline switch path, 121, 122
expert developer paths, 120
Heart Tree Star Chair, 118–120
lead/architect/manager, 120–122
people management path, 121
prioritize opportunities, 122
technical leadership path, 121

extensibility, 128
finding and generating models

organization views, 111–113
history of, 109, 110
interviewing and recruiting team

attraction, 113–115
classification, 118
communicating vision and metrics, 113
interviewing, 116–118
paired programming, 115
screening, 115, 116

metrics, 113
outside organization

open source, 127
publishing papers, 127

productive environment (see 
Productive environment)

rewrite frequently, 110, 111

N
Natural language processing (NLP), 39

O
Off-the-shelf approaches, 7
Open graph representations, 197

P, Q
Pair and parallel labeling, 147, 148
Pipelines, 28–31
Planning poker, 103
Productive environment

documentation, 125
inner and outer loop, 123, 124
monitoring, 124
NSAT developer, 126, 127
skill view, 122
tooling, 124

R
Regular self-evaluation, 53–57
Rings, 29

S
Scrum, 84

Azure DevOps, 86
backlog scrubbing, 87
email communication, 104

beginning of sprint mail, 106, 107
end-of-sprint demo, 104–106
retrospective mail, 107, 108

models of, 86
portfolio and product backlogs, 84–87
sprint, 96
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calendar, 96
capacity tab, 102
chicken and pig story, 101
countdown timerclock, 99
goals, 100
iteration meetings, 98
planning meeting, 101–103
retrospective, 100
sprint demo, 99, 100
standups, 97, 98

tasks
bugs, 91–94
elements, 90
pull requests, 91
task board, 94–96
user story, 91

team development, 84
user stories, 87–90

Search Engine Optimization (SEO), 73
Self-organization

across multiple team, 223, 224
aspects of, 217
code and workflows, 223
communication and keys, 221
emerge, 226, 227
empowered drive team  

development, 224–226
engineering principles, 228–229
equitable participation, 222
individuals

applied scientist, 220
data-oriented projects, 219
journeyman engineer, 220
minimalist, 221
philosopher engineer, 220
surgeon, 220

nurturing team, 227, 228
open mind, 222

product evolution, 224–226
team compositions

balanced capabilities, 218
mixed capabilities, 218
stratified capabilities, 219
surgeon team, 219
types of, 218

Sentinel entities, 45
Simple uniform sampling, 141
Simplicity

baselines and heuristics, 208, 209
buildbuyopen source, 212–214
fail fast, 211, 212
HiPPOs management, 210, 211
integration, 208
labeled data generation, 212
principles, 203, 204
recognizing limits, 209, 210
task descriptions

conjoining tasks, 206
cross-task dependencies and 

assumptions, 206–208
improvement, 205
pair programming, 207
planning poker, 207
synthetic data, 207
underspecified tasks, 204–206

Singleton businesses, 4
Stratified sampling, 142
Sustainable development, 169, 170

changes of pace, 173–175
Engagement Index, 171
live site, 175, 176
multiple development geographies, 177
pace down, 171, 172
pace up, 172, 173
postmortem process, 176
unsustainable pace, 170
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T
Technical escalation, 14
Technical excellence, 179

agility, 179
continuous attention, 180
data projects, 184

address structure, 196
ambiguity, 199, 200
business schema, 195, 197
chain brand schema, 199
data browsing tools, 184
data modeling, 197, 198
developing models, 188
evaluation data, 192, 193
generation phase, 189
good design, 195
inference systems, 188–190
input representation, 200, 201
labeling tools, 191, 192
measurement, 184–188
metrics, 188
models, 193, 194
storing and version training, 192, 193
testing, 190

software engineering practices
agility, 180
code hygiene, 182
continuous integration, 181
engineering discipline, 180
positive network effects, 181

programming languages, 182
push button deployment, 182
unit testing, 180

temporal aspect, 201
Testing data

features, 46, 47
judges, 49
labeled training data, 48
machine-learned models, 47, 48

Time to Leave (TTL), 156, 157
Tunes and adjusts

effective communication, 232
engineering reviews, 233
Five Whys technique, 233, 234
forward team, 235
perfection, 234
quality reviews, 233
retrospectives, 231, 232
scrum process, 232
tuning metrics, 234

U
Unintentional transformations, 186

V
Value equilibrium, 12

W, X, Y, Z
Weighted sampling, 141

INDEX


	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Early Delivery
	Getting Started
	Data Analysis for Planning
	Establishing Value
	From Early to Continuous Delivery
	More Entities
	More Attributes
	More Markets
	More Quality
	The Platform as a Product: More Verticals and Customers

	Early and Continuous Delivery of Value
	Conclusion

	Chapter 2: Changing Requirements
	Building for Change
	Measurement Built for Change
	Pipelines Built for Change
	Models Built for Change
	Introduction to a Conflation System
	The Conflation System
	Building the Conflation System for Change

	An Architecture to Enable Change

	Tests and Monitoring to Enable Change
	Monitoring Incremental Change: The Data DRI
	Sentinel Entities
	Daily Judged Metric
	Testing Features
	Testing Learned Models
	Labeled Training Data

	Responding to Customer DSAT
	Identifying Classes of DSATs
	Regular Self-Evaluation: Data Wallow and Quality Reviews
	Measuring the Competition

	Conclusion

	Chapter 3: Continuous Delivery
	Verifying Code Changes
	The Continuous Integration System
	Continuous Deployment Systems
	Verifying Data Changes
	Continuous Deployment of Data
	Deciding What to Ship
	Conclusion

	Chapter 4: Aligning with the Business
	The Importance of Daily
	Advantages of Colocation
	Business-Driven Scrum Teams
	Working with the Business to Understand Data
	Helping the Business to Understand the Limitations of Machine Learning
	Communicating the Rhythm of Engineering to the Business: How We Do Scrum
	The Scrum Team
	The Portfolio and Product Backlogs
	User Stories
	Tasks
	Task Linking to Pull Request in Git
	Bugs
	The Scrum task board

	The sprint
	The 2-Week Cadence
	Daily Scrum Standups
	End of Iteration Meetings
	All-Hands sprint demo
	Sprint Retrospective

	Sprint Planning Meeting

	Communication of Scrum Status to the Business via Email
	End-of-Sprint Email
	Beginning-of-Sprint Mail
	Retrospective Mail


	Conclusion

	Chapter 5: Motivated Individuals
	Rewrite Frequently
	Finding and Generating Motivated Individuals
	Interviewing and Recruiting
	Attracting Motivated Individuals
	Screening
	Interviewing

	Career Management of Motivated Individuals
	Heart Tree Star Chair
	From IC to Lead/Architect/Manager


	Creating a Productive Environment for Motivated Individuals
	Inner and Outer Loop
	Tooling, Monitoring, and Documentation
	Developer NSAT

	Supporting Motivated Individuals Outside Your Organization
	Conclusion

	Chapter 6: Effective Communication
	Discussion Around Data Is Necessarily Interactive
	Data Tool Basics
	Requirements for Data Discussion Tools
	Making Quick Evaluations
	Mining for Instances
	Sampling Strategies
	Iterative Differencing

	Seeing the Data
	Running an Effective Meeting Is a Skill
	Moderated Meetings

	Pair and Parallel Labeling
	Data Wallows
	Demo Meetings
	Conclusion

	Chapter 7: Monitoring
	Monitoring Working Software
	An Example System: Time to Leave
	Activity-Based Monitoring
	Azure Data Explorer for Analyzing Traces

	What Monitoring Can Tell You
	Is the Working Software Really Working Software?
	What Went Wrong?
	How Fast Is It?
	Are the Business Goals Really Being Met?
	Are the Customer’s Needs Really Being Met?
	How Are the Data and Models Being Used?

	Conclusion

	Chapter 8: Sustainable Development
	Are We on the Right Sustainable Pace?
	Adjusting the Pace Down
	Adjusting the Pace Up

	The Importance of Changes of Pace
	Live Site and Sustainable Pace
	Sustainable Pace and Multiple Development Geographies
	Conclusion

	Chapter 9: Technical Excellence
	Software Engineering Practices for Agility
	Technical Excellence for Data Projects
	You Are What You Measure
	Developing Models While Building Metrics
	Writing Tests for Inference Systems
	Custom Labeling Tools
	Storing and Versioning Training and Evaluation Data
	Managing Models

	Good Design for Data Projects
	Denotation and Identity in Data Models
	Representing Ambiguity
	Representing Input

	Conclusion

	Chapter 10: Simplicity
	Being Diligent with Task Descriptions
	Underspecified Work
	Deadly Conjunctions
	Cross-Task Dependencies and Assumptions

	Early Integration
	Baselines and Heuristics
	Recognizing Limits
	Managing HiPPOs
	Failing Fast
	Build or Buy or Open Source
	Conclusion

	Chapter 11: Self-Organizing Teams
	Team Compositions
	Teams Are Made of Individuals
	Individual Traits to Encourage in a Team
	Managing Across Multiple Self-Organizing Teams
	Empowered Teams Drive Team Development and Product Evolution
	How Good Things Emerge
	Nurturing a Self-Organizing Team
	Engineering Principles and Conceptual Integrity
	Conclusion

	Chapter 12: Tuning and Adjusting
	Looking Back
	The Five Whys
	Tuning Metrics
	Looking Forward
	Conclusion

	Chapter 13: Conclusion
	Index



