
www.allitebooks.com

http://www.allitebooks.org

Alfresco 3 Business Solutions

Practical implementation techniques and guidance for
delivering business solutions with Alfresco

Martin Bergljung

 BIRMINGHAM - MUMBAI

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

Alfresco 3 Business Solutions

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2011

Production Reference: 1030211

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-34-0

www.packtpub.com

Cover Image by Ed Maclean (edmaclean@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Martin Bergljung

Reviewers
Johnny Gee

Sivasundaram Umapathy

Adrián Efrén Jiménez Vega

Acquisition Editor
Steven Wilding

Development Editor
Maitreya Bhakal

Technical Editors
Arun Nadar

Namita Sahni

Aditi Suvarna

Copy Editor
Laxmi Subramanian

Editorial Team Leader
Aditya Belpathak

Project Team Leader
Lata Basantani

Project Coordinator
Leena Purkait

Proofreader
Mario Cecere

Indexers
Tejal Daruwale

Hemangini Bari

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Martin Bergljung is a Principal ECM Architect at Ixxus, a UK platinum Alfresco
partner. He has over 20 years of experience in the IT sector, where he has worked
with the Java platform since 1997.

Martin began working with Alfresco in 2007 developing an e-mail management
extension for Alfresco called OpsMailmanager. In 2009 he started doing Alfresco
consulting projects and has worked with customers such as Virgin Money, ITF,
Unibet, and BNP Paribas.

I would like to thank Steven Wilding at Packt Publishing for
suggesting the project and getting it on track.

A thanks goes also to Leena Purkait, my Project Coordinator,
who was always pushing me to deliver the next chapter. My
Development Editor Maitreya Bhakal was also very helpful the last
couple of months by pushing me to get the chapters finished in time
and in line with the final size of the book. Thank you also to the
entire Packt Publishing team for working so diligently to help bring
out a high quality product.

Thanks to all the book reviewers who gave me invaluable feedback
during the whole project. I must also thank the talented team of
developers who created the Alfresco open source product. It opens
up a new way for everyone that wants to build any kind of ECM
business solution.

I would like to thank Paul Samuel at Ixxus for supporting my
book project.

Finally, I would like to give a special thanks to Robin Bramley for
contributing source code for the chapter about mobile applications,
and to Michael Walton and Oliver Bradley who let me do a lot of
work and research for the book when I was working for Opsera.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Johnny Gee is the Chief Technology Officer at Beach Street Consulting, Inc. In
that role, he is responsible for architecting solutions for multiple clients across
various industries and building Content Enabled Vertical Applications (CEVAs)
on the Documentum platform. He has over 13 years of experience in ECM system
design and implementation, with a proven record of successful ECM project
implementations.

In addition to earning his undergraduate degree in Aerospace Engineering from
University of Maryland, Johnny achieved two graduate degrees—one in Aerospace
Engineering from Georgia Institute of Technology, and another in Information
Systems Technology from George Washington University.

Johnny is an EMC Proven Professional Specialist in Application Development in
Content Management and has helped co-author the EMC Documentum Server
Programming certification exam. He holds the position of top contributor to the
EMC Support Forums and is one of the twenty EMC Community Experts
worldwide. He has been invited on multiple occasions to the EMC Software
Developer Conference and has spoken at EMC World. He also has a blog
dedicated to designing Documentum solutions.

Johnny was the technical reviewer for Pawan Kumar's revision to "Documentum
Content Management Foundations: EMC Proven Professional Certification Exam
E20-120 Study Guide". He was also a technical reviewer for Munwar Shariff's book
on "Alfresco 3 Web Content Management."

www.allitebooks.com

http://www.allitebooks.org

Sivasundaram Umapathy is currently working as a Technical Architect with
Sella Servizi Bancari, the IT division of Gruppo Banca Sella, Italy where he is
leading the organization's transition to Alfresco and Liferay technologies. He has
a "Post Graduate program in Software Enterprise Management" (PGSEM) from
IIM, Bangalore and MS in Software Systems from BITS, Pilani. He has an array of
certifications ranging from CGEIT, TOGAF 8, PMP, SCEA, OCA, SCBCD, SCWCD,
SCMAD, to SCJP. He has co-authored "SCMAD Exam Guide"(ISBN-9780070077881)
and been a technical reviewer of "Head First EJB" (ISBN-9780596005719). His current
interests are Enterprise Architecture, IT Governance, IT-Business mismatch, Tech
Startups and Entrepreneurship. He can be reached at siva@sivasundaram.com or
via his LinkedIn profile at http://bit.ly/sivasundaram

Adrián Efrén Jiménez Vega works at the Center of Information Technologies
(CTI) of the University of the Balearic Islands, in Mallorca (Spain). For four years,
he has built and deployed various applications based on Alfresco.

Since registering in the Alfresco Spanish forum approximately two years ago, he has
dedicated time and openly shared his experience posting more than 600 messages,
and contributed many practical solutions and useful hints for members of the
Community. The 'mini-guides' he developed are now widely used and referenced
among developers in Spain and Spanish speaking countries. He obtained the
"Alfresco Chumby Awards for Community Achievement" in November 2008.

He won the "Web Script Developer Challenge" with a Web Script solution to limit the
space for users, including e-mail notification.

He collaborated as technical reviewer for the book "Alfresco 3 Enterprise Content
Management Implementation" (Packt Publishing) in 2009 and recently he has
reviewed the book "Alfresco 3 Web Services" (Packt Publishing) in 2010.

I would like to thank all the people who made possible my
participation in this project. In particular I would thank my parents
(despite the distance), my sister, and my friends at CTI.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
Fully searchable across every book published by Packt
Copy and paste, print and bookmark content
On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

•
•
•

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to my wife, Veronika, for always believing in me and accepting that
her husband spent most weekends this year in front of the computer, and to my parents

Sven-Erik and Irene, without you nothing would have been possible.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: The Alfresco Platform 7

Platform overview 8
Repository concepts and definitions 10

Repository 10
Stores 12

The Content Store 12
The AVM Store 14
Store reference 15

Nodes 16
Root node 17
Node reference 17
Node properties 18
Node property sheets 19
Node associations 19
QName 19

Permissions 20
User groups 20
Roles 21
Permission groups 22
Owner authority 23
Permission example 23

Multi-Tenant 23
Core platform 23

Open source libraries 24
Services and components 25
Content rules 26
Event model 27
Metadata extraction 35
Content transformation 36
Alfresco Management Beans (JMX) 39

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Table of Contents

[ii]

Application Programming Interfaces (APIs) 39
Subsystems 40
Bootstrap 41

Patches 41
Importers 41

Extension modules 42
Third-party extension modules 42
User interface clients 43

Alfresco Explorer 43
Alfresco Share 43
Alfresco SharePoint 43
Alfresco Mobile 45
Alfresco CIFS 45

The Alfresco installation directory structure 46
The alf_data directory 46

The contentstore directory 47
The contentstore.deleted directory 47
The audit.contentstore directory 48
The lucene-indexes and backup-lucene-indexes directories 48
The mysql directory 48
The oouser directory 48

The amps directories 48
The tomcat directory 49

Getting the Alfresco source code 50
The Alfresco database 50

DB schema 51
Significant tables 51

ALF_NODE 51
ALF_NODE_PROPERTIES 52
ALF_NODE_ASPECTS 52
ALF_QNAME 53
ALF_APPLIED_PATCH 53

Example queries and update statements 53
Querying for number of nodes of a certain type 53
Querying for number of nodes stored in a particular month 54
Running a patch again 54

Summary 54
Chapter 2: The Alfresco APIs 57

Application Programming Interfaces (APIs) 59
In-process APIs 59

The Java Foundation Services API 59
Event management API 77
Metadata Extraction API 81
Content Transformation API 86

Table of Contents

[iii]

The JavaScript API 88
Client-server APIs 94

CMIS API 94
Repository API 95
Custom APIs 95

Bootstrap APIs 98
Patches 98
Importers 99

Summary 100
Chapter 3: Setting Up a Development Environment and
a Release Process 103

Setting up a development environment 105
Alfresco Extension projects 105

Alfresco Explorer and repository extensions 105
Alfresco Share UI extensions 107

Project directory structure 109
_alfresco/config 110
_alfresco/source 114
_share/config 115

Building and deploying 118
The Build file 118
Using the build file to deploy extensions 120
Debugging extensions 122

Setting up a continuous integration solution 124
Setting up a release process 130

Release notes template 133
Updating Change Log 135
Training 135

Summary 136
Chapter 4: Authentication and Synchronization Solutions 137

Authentication and synchronization concepts 138
Basic authentication 138
NTLM authentication 139

Alfresco CIFS and NTLM authentication 141
Alfresco NTLM passthru authentication 141

Kerberos authentication 142
User and service login via KDC AS 144
Accessing Alfresco via KDC TGS 145

LDAP authentication 147
Checking what SASL mechanisms the LDAP server supports 149

LDAP synchronization 150
Alfresco authentication and synchronization subsystems 150
Alfresco authentication and application zones 151

Table of Contents

[iv]

Setting up authentication and synchronization with
Remote Directory servers 152

Configuring authentication and synchronization against OpenLDAP 153
Configuring user authentication with OpenLDAP 153
Configuring user and group synchronizing with OpenLDAP 155

Configuring authentication and synchronization against
Microsoft Active Directory 159

Configuring multiple LDAP authentication subsystems 159
Moving OpenLDAP subsystem configuration to its own directory 160
Configuring authentication and synchronization with Active Directory 161
Customizing group imports 163

Accessing via the CIFS interface 163
Implementing a custom authenticator for CIFS authentication against an LDAP server 165

Making authentication more secure and using SSO 172
Troubleshooting NTLM authentication and SSO 173

Using directory servers in a Development Environment 174
Summary 175

Chapter 5: File System Access Solutions 177
File access concepts 178

CIFS protocol overview 178
CIFS Transport—NetBIOS over TCP/IP (NBT) 179

Naming service 180
Communication services 183

CIFS transport—TCP/IP (Native SMB) 185
CIFS dialect negotiation 187
CIFS authentication and security 189
Next generation CIFS—SMB2 190

Alfresco CIFS server 191
Alfresco CIFS server on Windows 192
Alfresco CIFS server on Linux 193

Alfresco CIFS server configuration 194
Alfresco file server subsystem 195
Windows Vista server, Windows 7, and XP clients configuration 195
Windows 2003 Server and Windows 7 client configuration 200
Windows 2008 Server, Active Directory, and Windows 7 client
configuration 202
Linux server and Windows 7 client configuration 208

Alfresco WebDAV 210
WebDAV clients 212
Windows built-in WebDAV clients 214

Web Folders (XP only) 214
WebDAV Mini Redirector (XP, Vista, and Win7) 214

Table of Contents

[v]

Troubleshooting Alfresco CIFS 215
General 215

Nothing happens in Alfresco when trying to log in via CIFS 215
Server says NTLMv2 is not valid for authentication 216
SMBException: invalid parameter and access denied 216
NetBIOS DLL is not accessible 217
Turning on debug logging for SMB 217
Checking ports from server 217
Checking ports from client 218
Checking that CIFS server NetBIOS name is ok 218
Checking that CIFS server NetBIOS name is resolvable from client 219
Does any debug logging show up during connection attempts? 219
Does the client use the correct authentication method? 219
Are you running in a Citrix environment? 220

Summary 220
Chapter 6: Document and Records Management Solutions 223

Out of the box folder hierarchy 225
The Data Dictionary top folder 226

Designing document management solutions 228
Document Folder Template 229

Folder name 229
Folder title 231
Folder permissions 231
Rules 232
Metadata 233
Document versioning 235
Processes 235

Designing the Best Money document management solution 236
Meetings and Press folder hierarchy 236

The Meetings folder hierarchy 236
The Press folder hierarchy 240

Meeting folder/space hierarchy template 242
Implementing the Best Money document management solutions 246

Setting up users and groups 246
Using a script to set up users and groups 246

Setting up the folder hierarchy 249
Using CIFS to set up folders 250
Using the Alfresco user interfaces to set up folders 250
Using scripts to set up folders 251
Setting up folder permissions 257
Setting up business rules for folders 258

Setting up space templates 269
Configuring details list view for folder and file display 271
Configuring Google-Like search 271
Setting up document review periods 272

Adding the reviewable aspect 272

Table of Contents

[vi]

Setting a review period for a folder 274
Creating script to check folder review periods 275
Setting up a scheduler that runs review folder content script 278

Exporting and importing folders, users, and groups 280
Copying folder hierarchies between Alfresco boxes 280
Copying users and groups between Alfresco boxes 281

Introduction to Records Management 281
Alfresco records management 282

Summary 284
Chapter 7: Content Model Definition Solutions 285

Meta Model XML schema 287
model 287
model.imports 289
model.namespaces 290
model.data-types 291
model.constraints 292
model.types 294

model.types.type.properties 295
model.types.type.associations 298
Type definition examples 301

model.aspects 304
Modeling tips and tricks 306

Not changing the out of the box models 306
Starting small 306

Performance 306
Manageability 307
Changeability 307

Defining a new custom type for a domain 308
When to use a type and when to use an aspect 309

Design patterns 310
Domain document root type 310

Problem 310
Solution 310
Diagram 310
Definition example 311

Composite type 311
Problem 311
Solution 312
Definition example 312

Multiple types inheritance 314
Problem 314
Solution 315
Definition example 315

Table of Contents

[vii]

Configuration object 315
Problem 315
Solution 316
Definition example 316
Code example 316

Defining a new custom content model 320
The model definition 320
Registering the model with the repository 325
Configuring property sheets for UI display 326

Alfresco Explorer 326
Alfresco share 330

Summary 344
Chapter 8: Document Migration Solutions 345

Document migration strategies 346
General migration strategies 346

Document staging area 346
Preserving Modified Date on imported documents 346
Post migration processing scripts 348

Importing documents via CIFS 353
Pros and cons with CIFS import 355

Importing documents via external tool 355
Pros and cons with tool import 356

Importing documents via ACP file 357
Common steps during document migration 358

Planning document migration 358
Implementing document migration 359

Using Alfresco bulk filesystem import tool 359
Running Alfresco bulk import tool 360
Running Alfresco bulk import tool and applying extra metadata 362

Using an ACP Generator tool 364
Summary 367

Chapter 9: Business Process Design Solutions 369
Designing business processes with Swimlane diagrams 370

Introduction to Swimlane diagrams 370
Subprocesses 373
Task metadata 375
Process phases 376
Task naming convention 377

Designing the material production process 378
Job process Swimlane diagram 378
Sign-off process Swimlane diagram 379

Table of Contents

[viii]

Studio process Swimlane diagram 380
Work process Swimlane diagram 381

Summary 382
Chapter 10: Business Process Implementation Solutions: Part 1 383

Implementing the marketing production workflow 385
Implementing the Work subprocess 385

Work process—workflow definition (jPDL) 386
Work process—workflow content model 394
Work process—property files for UI labels 401
Work process—using dynamic descriptions and setting task due date 404
Work process—defining the job data 405
Work process—task property sheets 406
Work process—bootstrapping UI property files and property sheets configuration 411
Work process—testing it 412
Running the work process from the Alfresco Share UI 418

Summary 426
Chapter 11: Business Process Implementation
Solutions: Part 2 427

Completing the implementation of the marketing
production workflow 427

Implementing the Studio subprocess 428
Studio process—workflow definition (jPDL) 428
Studio process—workflow content model 434
Studio process—property files for UI labels 435
Studio process—task property sheets 435
Studio process—bootstrapping UI property files and property sheets configuration 438
Studio process—testing it 439

Implementing the Sign-off subprocess 443
Sign-off process—workflow definition (jPDL) 443
Sign-off process—workflow content model 448
Sign-off process—create and bootstrap the e-mail template 449
Sign-off process—property files for UI labels 451
Sign-off process—task property sheets 451
Sign-off—bootstrapping UI property files and property sheets configuration 453
Sign-off process—testing it 454

Implementing the Job process 455
Job process—workflow definition (jPDL) 455
Job process—workflow content model 467
Job process—property file, property sheets, and bootstrapping 468
Job process—testing it 469

Extending the workflow solution 469
Adding e-mail notification 470
Using customized task dashlets 471

Table of Contents

[ix]

Management dashlets 471
All assigned tasks for all jobs dashlet 472
All job workflows dashlet 473

Exporting the task summary list in an Excel spreadsheet 475
Material folder link 476

Summary 478
Chapter 12: Enterprise Application Integration (EAI) Solutions 479

Introducing portlets 480
Portlet standards 480
Portlet lifecycle 480
Portlet modes and window states 481
Portlet implementation and deployment 482

Implementing portlets that display Alfresco content 483
Portal architecture 483
Alfresco portlet implementation approaches 484
Implementing the "recently added documents" portlet 486

Implementing the "recently added documents" web script 486
Implementing a Java-based "recently added documents" portlet 490
Implementing a GWT/GXT-based "recently added documents" portlet 497

Summary 506
Chapter 13: Types of E-mail Integration Solutions 507

E-mail integration solutions 508
E-mail client talking directly to Alfresco via the IMAP protocol 508
E-mail client talking to Alfresco through custom built plugin and
Web Scripts 510
E-mail server talking to Alfresco through custom module and
Web Scripts 512

Implementing e-mail management solutions 514
Implementing e-mail management solutions with Alfresco IMAP 514

Configure Alfresco to enable the IMAP server 514
Setting up an IMAP account in Outlook 2007 515
Drag-and-drop e-mail into Alfresco folder in Outlook 2007 517
Viewing the e-mail from Alfresco Explorer 518
E-mail attachment extraction 520
Viewing document metadata from the e-mail client 520
Dragging-and-dropping e-mails into Alfresco Share site 522
How to use Mount Points 523

Summary 525

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[x]

Chapter 14: Mobile Phone Access Solutions 527
Alfresco mobile web application for iPhone 528

Installing the Alfresco mobile web application 528
Accessing the Alfresco mobile web application 528

A custom mobile application solution for smartphones 533
Mobile application architecture overview 534
Mobile application feature overview 535

User authentication 535
Folder and document browsing 536
Document search 537

Setting up the mobile Grails application 538
Configuring the mobile Grails application 539
Implementing the CMIS service 540

Fetching the folder root node reference from the CMIS service document 541
Authenticating the user with Alfresco 543
Fetching child content for a folder via CMIS 544
Searching the Alfresco repository via CMIS 545
Implementing the helper methods for the CMIS service 547

Implementing UI controllers 551
Implementing the Groovy Server Pages (GSP) 555
Implementing an authentication filter 558
Running the mobile application 559

Content creation with MobileX 559
Using the Apache chemistry API 559
Summary 560

Index 561

Preface
Alfresco is a renowned and multiple award-winning open source Enterprise Content
Management System that allows you to build, design, and implement your very
own ECM solutions. It offers much more advanced and cutting-edge features than
its commercial counterparts with its modularity and scalability. If you are looking
for quick and effective ways to use Alfresco to design and implement effective and
world class business solutions that meet your organizational needs, your search ends
with this book.

Welcome to Alfresco 3 Business Solutions: Your practical and easy-to-use guide, which
instead of teaching you just how to use Alfresco, teaches you how to live Alfresco.
It will guide you through implementing real-world solutions through real-world
scenarios. Each ECM problem is treated as a separate case study and has its own
chapter, enabling you to uncover the practical aspects of an ECM implementation.
You want more than just the theoretical details—you want practical insights to
building, designing, and implementing nothing less than world class business
solutions with Alfresco—and Alfresco 3 Business Solutions is your solution.

This practical companion cuts short the preamble and you dive right into the world
of business solutions with Alfresco.

Learn all techniques, basic and advanced, required to design and implement
different solutions with Alfresco in easy and efficient ways
Learn all you need to know about document management
Connect Alfresco with directory servers
Learn how to use CIFS and troubleshoot all types of problems
Migrate data when you have an existing network drive with documents and
want to merge them into Alfresco
Implement Business Process Design Solutions with Swimlane diagrams

•

•
•
•
•

•

Preface

[2]

Easily extract content from Alfresco and build mashups in a portal
such as Liferay
Gain insights into mobile access and e-mail integration

This book will teach you to implement all that and more, in real-world environments.

What this book covers
Chapter 1, The Alfresco Platform, introduces the architecture behind the repository and
goes through important concepts such as store, node, and association. It describes
the major features that are available such as rules, events, metadata extractors,
transformers, subsystems, patches, and so on. It also explains the directory structure
and database schema of an Alfresco installation.

Chapter 2, The Alfresco APIs, presents the remote and embedded APIs that are
available out of the box. It focuses on the embedded Foundation API and the
JavaScript API and shows how to create, update, delete, and search for content.

Chapter 3, Setting Up a Development Environment and a Release Process, shows
you how to set up a development environment so you can build both Alfresco
Explorer extensions and Alfresco Share extensions. It also covers how to manage
a release process.

Chapter 4, Authentication and Synchronization Solutions, describes how the
authentication subsystem is working and how to configure it for the LDAP and the
Microsoft Active Directory. It also covers how to synchronize user and group data
with these directories.

Chapter 5, File System Access Solutions, teaches you what CIFS is, how the underlying
technology works, and how to troubleshoot it. It will take you through different
configurations on different platforms. It also covers WebDAV and how to use that
instead of CIFS.

Chapter 6, Document and Records Management Solutions, covers how to design folder
hierarchies with permissions, rules, and custom metadata using a folder template. It
shows a lot of examples on how to use the JavaScript API when implementing DM
solutions. It also introduces the Alfresco RM module.

Chapter 7, Content Model Definition Solutions, explains the XSD Schema/meta model
that describes the Alfresco content modeling language. It shows a lot of examples on
how to design custom content models on top of the out-of-the-box Alfresco content
models and how to display the custom data in Alfresco Explorer and Alfresco Share.
It also shows you a couple of design patterns that can be used for content modeling.

•

•

Preface

[3]

Chapter 8, Document Migration Solutions, teaches you strategies for implementing a
document migration solution. It explains advantages and disadvantages between
different import tools such as ACP file, CIFS, and the Alfresco Bulk File system
Import Tool.

Chapter 9, Business Process Design Solutions, shows you how Swimlane diagrams
can be used to design business processes. It explains how a task-naming convention
can be useful to distinguish between tasks and how to design using phases and
sub-processes.

Chapter 10, Business Process Implementation Solutions: Part 1, introduces the JBoss
jBPM workflow engine that is used by Alfresco. It takes you through implementing a
simple workflow and introduces jPDL concepts such as task node and decision node.

Chapter 11, Business Process Implementation Solutions: Part 2, digs deeper into
implementing workflows with JBoss jBPM and introduces concepts such as fork
node, join node, phases, and sub-processes.

Chapter 12, Enterprise Application Integration (EAI) Solutions, shows you how to build
portlets that fetch content from Alfresco via remote Web Script calls.

Chapter 13, Types of E-mail Integration Solutions, describes different types of e-mail
management solutions and goes through how to configure Alfresco's built-in
IMAP service.

Chapter 14, Mobile Phone Access Solutions, takes you through building a small
mobile client with Groovy and Grails. The CMIS interface is used to fetch content
from Alfresco.

What you need for this book
To build the examples in this book you will need JDK 6, Apache Ant, and Alfresco
SDK 3.x. To run the examples, an Alfresco 3.x (including MySQL) installation is
needed. Some examples (Chapter 4) require a directory server such as OpenLDAP
or the Apache Directory Server. For the portal integration example (Chapter 12), you
will need to install Liferay Portal 6 and download GWT 1.7 and GXT 2.2. For the
mobile application example (Chapter 14), you will need to install Grails 1.3.x.

Who this book is for
This book is designed for system administrators and business owners who want
to learn and implement Alfresco Business Solutions in their teams or business
organizations. General familiarity with Java and Alfresco is required.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Next, we'll add a function to the CModel
class that will allow us to set a given effect to any given mesh part."

A block of code is set as follows:

private LdapTemplate m_ldapTemplate;
private String m_userBase;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<types>
 <type name="{namespace:typeName}">
 <title>{description of file domain type}</title>
 <parent>cm:cmobject</parent>
 ...
 </type>
</types>

Any command-line input or output is written as follows:

18:28:39,842 INFO [management.subsystems.
ChildApplicationContextFactory] Starting 'Authentication' subsystem, ID:
[Authentication, managed, bestmoneyLDAP]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: " This
Swimlane diagram shows a subprocess called Work Process that is called from
a parent process called Studio Process.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for the book
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

The Alfresco Platform
Before we dive into implementing ECM solutions, we are going to have a look at the
Alfresco platform. There are some key concepts and features that are important for
us to know about before implementing anything on top of Alfresco.

It helps to think about Alfresco as a big toolbox for building Content Management
Systems (CMS). Alfresco, out of the box, can obviously be used straightaway but
usually you want to configure it and customize it for the organization that is going
to use it.

This is important to think about, as otherwise you are missing the full potential
of Alfresco. It enables organizations to tweak Alfresco, so that it works with their
business processes and business rules. It does not impose a special way of working
that the organization has to adopt. Instead, Alfresco adapts to the organization.

In a lot of cases, organizations buy proprietary turnkey solutions that look really good
out of the box with predefined content models, domain process definitions, business
rules, and so on. However, after a while they usually realize that things are not
working exactly as they want them to. Then they realize that to customize the solution
will cost way more than if they would have started creating it from scratch, or it might
not even be possible to customize functionality in the proprietary solution.

In this chapter, you will learn:

Important repository concepts
How to use content rules
What a metadata extractor is
Why content transformers are used
How to trigger custom code from events
What a Servlet Command is

•

•

•

•

•

•

The Alfresco Platform

[8]

What a subsystem is
How the system can be bootstrapped in different ways
What user interfaces are available
About the directory structure created by the installation
How to access content information directly from the database

Throughout the book, we will be working with "Best Money"—a fictive financial
institution that offers financial products such as credit cards, loans, and insurances.
Best Money wants to complete its range of financial products by offering personal
banking products. It is therefore under pressure to improve efficiency by automating
business processes, structuring document storage, classifying documents,
implementing document lifecycles, improving the level of auditing, managing e-mail
content, and many other challenges in a complex business environment subject to
heavy regulatory oversight.

Best Money realizes that to do all of this it needs to put in place an Enterprise
Content Management solution and it has selected Alfresco.

Platform overview
Alfresco is an open source content management system written entirely in Java that
can be run in a standard Servlet container, such as Apache Tomcat or a JEE server,
such as JBoss. The Alfresco platform is built using many third-party open source
Java libraries and it's good to know about these libraries as we will use many of
them when building extensions and solutions.

The platform has many Application Programming Interfaces (APIs) and
configuration techniques that we can use to build custom solutions on top
of Alfresco.

•

•

•

•

•

Chapter 1

[9]

The following figure gives an overview of the platform:

The Alfresco-specific components, modules, and user interfaces are depicted in a
lighter color and the third-party libraries are depicted in a darker color. The Alfresco
platform is presented in a layered approach as follows:

Repository: The bottom layer comprises the database, the search indices, and
the content files.
Java Platform: Everything runs on Java, so it is independent of hardware,
operating systems, and also of databases as they are accessed via Hibernate.
Core: This layer contains all of the modules and libraries used by Alfresco
to implement the CMS functionality.

•

•

•

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

The Alfresco Platform

[10]

APIs: The interface layer contains a variety of application programming
interfaces that can be used to communicate with Alfresco both in-process
and remotely.
Sub-systems: This layer consists of self-contained components that
extend the CMS system with important functionality that often need to be
configured during installation. Sub-systems can be started and stopped while
the server is running.
Bootstrap: System integrators can use bootstrap extensions to perform a
variety of tasks, for example, to import content or patch the content with
some custom metadata.
Modules: The modules usually extend the Alfresco system with some major
extra functionality such as web content management or records management.
We will use a module for all new custom functionality we implement for the
Best Money ECM system.
User Interfaces (UI): Alfresco comes with a number of user interfaces that
can be used to upload and manage content.

Now, let's have a detailed look at each layer starting with the Repository.

Repository concepts and definitions
Before doing any custom coding for Alfresco, it is important to get to know the
concepts and definitions around the repository. We need to get familiar with things
such as Store and Association. And what does it mean when we talk about a Node
in the repository.

Repository
When we talk about Alfresco, we often refer to the Alfresco Repository. So what
is the repository more specifically? The repository is an abstract term for where
everything is stored in Alfresco. It is also often called just "repo" and one of the
main packages in the source code is also called repo.

•

•

•

•

•

Chapter 1

[11]

The following figure gives you an overview of the Alfresco Repository:

The repository consists of a hierarchy of different types of nodes. This can be for
example, folder nodes or leaf nodes representing a file. Each node is associated with
a parent node via a parent-child relationship, except the top root node. Nodes can
also be related to each other via source-target associations (that is, peer associations).
If the node represents a file, then it is also associated with a file in the filesystem. This
is a somewhat simplified view of the repository as each node actually resides in a
store as in the following figure:

The Alfresco Platform

[12]

The repository is built up by a number of stores and each one of them contains a node
hierarchy. The nodes make up the metadata for the content and are stored in the
database. The actual content itself, such as document files, is stored in the filesystem.

Stores
There are a couple of stores that you will come in contact with, if you work with
Alfresco for a while. First, we have the Working Store, which is the main store
where metadata for all live content is contained; this store is often referred to as just
DM (Document Management). This is the content that you can access from all the
different user interface clients. The default behavior when something is deleted from
the Working Store via any of the user interfaces is that both the content file and the
content metadata ends up in a store called the Archive Store.

Content is not permanently removed from the disk when it is in
the Archive Store. To physically remove the content from the disk,
you need to manage content via the Admin user profile screen or
configure a content store cleaner (http://wiki.alfresco.com/
wiki/Content_Store_Configuration).

If you turn on "versioning" for a document, then you will see some activity in the
Version Store where all the previous versions of a piece of content will be stored.
This is called the "version history" and there is one Node created per version history.

The complete file for a previous version is stored and the system
does not store the delta between versions.

Whenever you install a new application module such as Records Management or
Web Content Management, the data about this module is stored in the System Store.
The data that is stored is, for example, module version number.

Finally, we have the Content Store that contains all the physical files and it lives on the
disk compared to the other stores that live in the database. It is called Content Store
even though the behavior is not the same as for the stores that live in the database. It
is more of an abstract term for where the physical content files are located.

The Content Store
So why are the physical files stored in the filesystem and not in the database as
Binary Large Objects (BLOBs)? It would be easier to back up the whole system
and also to set up replication if everything was in the database. And system
administrators would not have to manage both database space and filesystem space.

Chapter 1

[13]

There are several reasons why content files are stored in the filesystem:

Random access to files: One of the big advantages with Alfresco is that users
can keep working the way they are used to by accessing Alfresco as a shared
drive (that is, via the CIFS interface). However, this would not be possible if
Alfresco was not storing the files in the filesystem, so they can be randomly
accessed (sometimes also referred to as direct access). To support frequent
updating and reading of database BLOBs would slow down performance
of the CIFS interface to an unacceptable level.
Real-time streaming: It is a lot easier to stream large content such as video
and audio using files. A content file can now be streamed directly back to
the browser as the file input stream is copied directly to the HTTP Response
Output stream. If BLOBs were used, you would first have to read the BLOB
then create a temporary file to stream from. Also, when writing BLOBs to
the database, a lot of databases require you to know the stream size when
inserting the record, so a temp file needs to be created. Further on, some
databases such as MySQL have problems sending very large binaries from
the JDBC driver to the database.
Standard database access: Most database systems support BLOBs with
custom access methods and custom objects. These usually perform much
better than the JDBC BLOB objects and access methods. So it would be
difficult to use Hibernate to access BLOBs in a standard way for all databases.
For example, if you wanted to manage BLOBs with Oracle, you would have
the best performance using their BLOB object. Also, the caching of BLOBs in
databases is known to slow down the rest of the metadata access.
Faster access: It is much faster to access content that is stored as files,
which means that the user experience is much better and this leads
to happier customers.

Content Store policies
Content Store policies let us decide what media we will store the selected content to.
Quite often, content will have a lifetime during which it is relevant and then it will
become obsolete; content store policies help with a solution for this. We do not want
to get rid of the content files but store them on a cheaper, slower-access disk.

So we might use a very fast tier 1, Solid-State Drives (SSD), for our most important
content files, and based on business policies that we control, gradually move the data
to cheaper tier 2 drives such as Fiber Channel (FC) drives or Serial ATA drives as
it becomes less important. In this way, we can manage the storage of content more
cost-effectively.

•

•

•

•

The Alfresco Platform

[14]

So you could have one part of the repository store files on one disk and another part
of the store files on another disk. The following figure illustrates:

In the preceding figure, we can see that the system has been configured to store
images on one disk and documents on another disk. This sort of content store
configuration can be done with Content Store Selectors.

The AVM Store
One store that has not been mentioned so far is the special store introduced for
the Alfresco WCM module. It is called the Advanced Versioning Manager (AVM)
Store and it is modeled after Apache Subversion to be able to support extra features
such as:

File-level version control
File-level branching
Directory-level version control
Directory-level branching
Store-level version control (snapshots)
Store-level branching

These extra features are needed to be able to create user and staging sandboxes, so
that web content can be created and previewed independently between the users. A
staging environment is also supported where different snapshots of the website can
be managed and deployed to production servers.

•

•

•

•

•

•

Chapter 1

[15]

There are some major differences between the Working Store (DM) and the AVM
Store (WCM) that are good to know about when we are planning an ECM project.
The following list explains some of the differences:

Permissions can be set on object level in DM but only on Web Project level
in WCM
Types are defined with XML Schema files in WCM but with XML files in DM
AVM folders do not support rules as in DM
In WCM, we can search only one Web Project at a time, whereas in DM the
complete repository is searchable
E-mailing with SMTP or IMAP is not supported in WCM, but it is in DM

Content can be cross-copied between the DM store and the AVM store and
vice versa.

There are things happening now and in the near future to update Alfresco WCM
to be able to use the normal Alfresco DM Working Store, so that web content can
reside along with all other content and be searchable in the same way.

Store reference
When you work with the application interfaces, you often have to pass a so-called
store reference into a method call. This store reference tells Alfresco what store you
are working with. A store reference is constructed from two pieces—the protocol
and an identifier.

The protocol basically specifies what store you are interested in. For example, two
of the protocols are workspace and archive. You also need an identifier to create
a store reference and it tells us what kind of store it is, for example, does it contain
spaces or is it keeping version information. Most of the time we are accessing a store
with folders (that is, spaces) and the identifier is then called SpacesStore.

So if you wanted to access the Working Store from the previous figures, you would
create the following store reference: workspace://SpacesStore. And this is the
store that you will use most of the time.

The following is a complete list of store references:

workspace://SpacesStore: Contains the live content; this is the store
reference that will be used in most situations
workspace://lightWeightVersionStore: Version history for content
workspace://Version2Store: Next-generation version history for content

•

•

•

•

•

•

•

•

The Alfresco Platform

[16]

archive://SpacesStore: Archived files (that is, deleted files)
user://alfrescoUserStore: User management
system://system: Installed modules information
avm://sitestore: Alfresco WCM content

Nodes
Each store in the repository contains nodes and every piece of content that is saved
in the repository is represented by a node. This can be a document, a folder, a forum,
an e-mail, an image, a person, and so on. Everything in a store is a node. A node is
stored in the database and contains the following metadata for a piece of content:

Type: A node can be of one type.
Aspects: A node can have many aspects.
Properties: A node can have properties defined in the type or the aspects.
One of the properties points to the actual physical content file.
Permissions: Permissions for this node.
Associations: Associations to other nodes.

Each node is of a certain Type such as Folder, Content, VersionHistory, Forum,
and so on. Each type can have one or more properties associated with it. A node can
only be of one type. So a Folder cannot also be a VersionHistory, pretty obvious,
but it is good to mention this anyway so that there are no misunderstandings when
we start creating custom types.

So what if we wanted to have properties from two different types associated with
a node, how would we do that? We would use something called an aspect. A node
can be associated with more than one aspect. An aspect is for example, Versionable,
Emailed, Auditable, and so on. So, this means that a MS Word document could be
of type Content and be Versionable and Emailed.

The following figure shows a folder node called User Guides that contains one
document called userguide.pdf, which in turn is associated with an image node
called logo.png:

•

•

•

•

•

•

•

•

•

Chapter 1

[17]

Some nodes such as folder nodes are not associated with any content; they just
contain metadata, permission settings, and an association to the parent folder.

Root node
All nodes have to have a parent node and the top-level node in the store is called the
store root as it does not have a parent node. The root node has an aspect applied to
it called sys:aspect_root. It might look like a good idea to search for this aspect to
get to the root node in a store, but it does not work as there are other nodes such as
the root node for categories that also have this aspect set.

An easy way to get to the root node in any of the stores is to do a Lucene search with
PATH:"/" or if we are using the Java Foundation Service API, we can use the Node
Service to get the root node for a particular Store Reference.

Node reference
So, we have heard about all these nodes and seen how they can have properties, and
so on. But how can one uniquely identify one node in the repository? This is where
node references come into the picture. They are used to identify a specific node in
one of the stores in the repository. You construct a node reference by combining a
Store Reference such as workspace://SpacesStore with an identifier.

The Alfresco Platform

[18]

The identifier is a Universally Unique Identifier (UUID) and it is generated
automatically when a node is created. A UUID looks something like this:
986570b5-4a1b-11dd-823c-f5095e006c11 and it represents a 128-bit value. A complete
Node Reference looks like workspace://SpacesStore/986570b5-4a1b-11dd-
823c-f5095e006c11.

The node reference is one of the most important concepts when developing custom
behavior for Alfresco as it is required by a lot of the application interface methods.

Node properties
Properties contain all the information about the Node and are often referred to as
metadata. When you create a new node of a certain type, such as Content, there are
certain default number of properties that are set. These are properties such as Name,
Created Date, Author, and so on.

What properties are set, and if they are set automatically, depends on the MIME type
of the content that is being added to the repository.

Multipurpose Internet Mail Extensions (MIME) is an Internet
standard that extends the format of e-mail to support message bodies
with multiple parts, text in character sets other than ASCII, non-text
attachments, header information in non-ASCII character sets, and so on.

The MIME type is these days referred to as a content type after the header
name Content-Type. But in the Alfresco environment they are called
MIME types.

Some MIME types such as the one for a MS Word document have so-called
Metadata Extractors available that automatically extract properties from the
content when it is added. So when we add a MS Word document to the repository,
we will see that some properties have been filled in automatically via the automatic
metadata extraction.

Properties can be defined either as part of a type or as part of an aspect. When you
list the properties in the UI, it does not show what type or aspect they belong to. You
have to programmatically query the system to find out what properties belong to an
aspect or type.

What if we wanted to add a property called Name but it is already defined for
type Content, what do we do then? Every property is scoped within a so called
namespace, so we can have a property called Name in namespace A and in
namespace B without any problem.

Chapter 1

[19]

Node property sheets
So we got all these properties for a node in the repository, how do we display them
in the UI? They are displayed through so-called property sheet definitions. The
default property sheet displays a number of properties depending on the type
of the node and what aspects have been applied to it.

When we add custom types and aspects to a node, we also have to define
appropriate property sheets, so that these custom properties are displayed
every time we look at this node.

Property sheets are used to display custom properties both in the Alfresco Explorer
UI and in the Alfresco Share UI.

Node associations
Most of the nodes in the repository are linked or associated with other nodes. For
example, document nodes are associated with folder nodes and e-mail attachment
nodes are associated with e-mail nodes.

There are two kinds of associations: a parent -> child association that you, for
example, have between a folder and document, and the source -> target association
(that is, peer association) that you have between, for example, a marketing brief and
produced marketing materials.

If we delete a parent node in a parent -> child association, an automatic cascading
delete will be executed deleting all child nodes. This means that if we delete a folder,
all the contained documents and subfolders will also be deleted. Deleting any node
in a source -> target association does not automatically delete the associated node.

Node associations can also be configured to be displayed in property sheets in the
user interface.

QName
When we define a property, aspect, type, and so on for a node in the repository, we
will come in contact with something called QName, which is the fully qualified name
of, for example, a property including the local name and the namespace it has been
defined in.

The Alfresco Platform

[20]

Here are some examples of QNames:

{http://www.alfresco.org/model/content/1.0}description: Defines
the description (that is, description is the local name) property that is part
of the standard Alfresco content namespace. This property is part of the
cm:titled aspect defined in the same namespace.
{http://www.bestmoney.com/model/content/1.0}job: Defines the job
aspect that is part of the "Best Money" content namespace.
{http://www.mycompany.com/model/content/1.0}language_options:
Defines a constraint of languages in some company's namespace.

The QName does not actually tell us if it defines a property, type, constraint, aspect,
and so on, it does not know anything about that. The local name of a QName has
to be unique within a namespace. So there can only be one QName with local name
description within the Alfresco namespace http://www.alfresco.org/model/
content/1.0. If we wanted to have a property description for another aspect
such as the person aspect, we would have to call it something different such as
persondescription. We could also use a different namespace {http://www.
mycompany.com/model/person/1.0}description.

The namespace is written with quite a long string but can be shortened by using the
prefix that has been set for it. The http://www.alfresco.org/model/content/1.0
namespace has the prefix cm. So we can use cm:description to refer to the
description property of the titled aspect in the Alfresco content namespace.

Permissions
We can set individual permissions for every node in the repository. For example,
when we create a new folder node, it can be set up to be accessible by only
one particular person or one specific group of people. We can also just inherit
permissions from the parent node; this is the default behavior if permissions
are not manually specified when a node is created.

User groups
Groups of users can be created to better handle permission settings. Usually it is a
good idea to set permissions for folders and content via a group. Then we can just
add and remove members from the group without having to worry about setting or
removing permissions for individual users. And when permissions are changed for
a group they are immediately propagated to all users.

•

•

•

Chapter 1

[21]

Users and groups can be synchronized with an external directory server and then we
can manage the group membership in a more centralized way.

There are a couple of groups created automatically when Alfresco is installed and
they all have special meanings as follow:

EVERYONE: This is a group that implicitly has all users as members. This
group is not viewable when managing groups via the user interface, but you
can use this group when setting up permissions.
ALFRESCO_ADMINISTRATORS: Any member of this group has
administrator rights, meaning full access to the complete repository. This
group has one member as default, which is the admin user.
E-MAIL_CONTRIBUTORS: One of the Alfresco features is to be able to
receive e-mails via a built-in SMTP service. Any e-mails sent into Alfresco
cannot be stored unless the user sending the e-mail has been authenticated.
The authentication is done via the sender's e-mail address and the user
matching the e-mail address must be a member of this group. If the user is
not a member of this group, then the e-mail will not be stored.

Groups can also be used for other things than permission management,
for example, sending e-mails to members of a particular group or
assigning workflow tasks to members of a group.

Roles
The permission system is role-based where each role groups together one or
more individual permissions such as a Write or Read permission. To configure
permissions for a node, we first choose what person or group—and this is referred to
as the authority—should have access to the node, and then we specify what kind of
access the authority should have to the node by associating it with a role.

There are five roles available out of the box and they are:

Consumer: Gives the authority Read permission to the node
Contributors: Gives the authority Read and Create permission to the node
Collaborator: Gives the authority Read, Create, and Update permission to
the node
Editor: Gives the authority Read and Update permission to the node
Coordinator: Gives the authority full access to the node

•

•

•

•

•

•

•

•

The Alfresco Platform

[22]

The permissions specified for each role in the previous list are a generalization of the
permissions for each role. It is good to think about the roles like that when discussing
with clients and explaining the permissions for each role. For a complete detailed list
of the permissions for each role, see the following page: http://www.alfresco.
com/help/webclient/concepts/cuh-user-roles-permissions.html.

For Alfresco WCM, see the following page: http://wiki.alfresco.com/wiki/
WCM_roles.

Permission groups
Permission groups are used to group together one or more related permissions. We
need to worry about permission groups when we, for example, want to define a new
role. The low-level permissions in Alfresco have been grouped as follows:

Read: Includes permissions groups: ReadProperties, ReadChildren,
and ReadContent
Write: WriteProperties, WriteContent
Delete: DeleteNode, DeleteChildren
AddChildren: CreateChildren, LinkChildren
Execute: ExecuteContent

All low-level permissions have also been defined as groups containing only the
individual permission. The individual permission name is the same as the group
name but with an underscore at the beginning (for example, _ReadProperties).

Then there are higher level permission groups for the roles such as:

Consumer: Includes permission group Read
Contributor: Consumer, AddChildren, ReadPermissions
Editor: Consumer, Write, CheckOut, ReadPermissions
Collaborator: Editor, Contributor
Coordinator: Full control (can do anything)

If you want to have a look at the complete permission model, it is available
in the /tomcat/webapps/alfresco/WEB-INF/classes/alfresco/model/
permissionDefinitions.xml file.

•

•

•

•

•

•

•

•

•

•

Chapter 1

[23]

Owner authority
There is a special authority called Owner, which is basically what we call a user that
created a piece of content. The Owner of content always has full access (that is, same
as the Coordinator role) to it no matter what permissions have been set up. Someone
can take ownership of content if they have Coordinator or Administrator rights. An
extra aspect cm:ownable is then applied to the content with a property cm:owner
that specifies the username for the new owner.

Permission example
For a complete permission example, see the following page: http://wiki.alfresco.
com/wiki/Security_and_Authentication#A_Simple_Permissions_Example.

Multi-Tenant
Alfresco is usually installed and used locally at a company or an organization.
However, sometimes it might be useful to be able to divide the repository, so that
content belonging to one group of users is kept separate from another group.

Maybe we are service providers who want to offer content management solutions
as a service and we want to do this from a single Alfresco installation. This can be
done by using the Multi-Tenant (MT) feature of Alfresco.

The MT feature enables Alfresco to be configured as a single-instance multi-tenant
environment, which enables multiple independent tenants such as companies,
organizations, or groups to be hosted on a single instance. This instance can be
installed either on a single server or across a cluster of servers.

The MT feature is not enabled by default in Alfresco and has to be turned on by
configuration in XML files. There is a special Tenant Administration Console that
can be used to create new tenants, show tenants, enable and disable tenants.

Core platform
The core Alfresco platform is built on Java, which makes it deployable on any
platform with a JVM. Typically, Alfresco is deployed to Apache Tomcat, but it is also
possible to deploy Alfresco to Java Enterprise Edition (JEE) servers, such as JBoss,
WebSphere, and WebLogic. The platform makes use of many of today's best open
source projects to build a first class content management solution.

The Alfresco Platform

[24]

Open source libraries
One of the reasons Alfresco could build such a powerful content management
solution in just a few years is that instead of reinventing the wheel for every needed
feature, they looked at what open source projects were available that could provide
the functionality that was needed. By using the best open source projects, Alfresco
can develop functionality really fast and the solutions are much more stable than if
everything was created from scratch.

The following is a list of the major open source projects that are used to implement
the core platform:

Acegi Security: Used for authentication and method-level authorization
Apache Axis: Web Service container
Apache Abdera: ATOM syndication format and publishing protocol
Apache Chemistry: CMIS AtomPub binding and Abdera CMIS Extension for
Web Services binding
Apache CXF: Service Framework for CMIS Web Services
Apache Commons: A lot of the commons libraries are used such as Codec,
Lang, File Upload, HTTP Client
Apache PDFBox: Document transformations
Apache POI: Access Microsoft Office documents
Chiba: WCM Forms Engine
EHCache: Level 2 caching
FreeMarker: Presentation templates
Greenmail: IMAP support
Hibernate: Database access via Object-relational mapping
iBATIS: SQL mapping layer, replaces Hibernate in some places in
Alfresco 3.3, but will replace Hibernate completely in the future versions
of Alfresco—for scalability and reliability issues
Java Mail: Sending e-mails
JBOSS jBPM: Workflow engine
JGroups: Clustering support via multicast protocol
Lucene: Indexing and searching
OpenOffice: Transforming office documents to text
Spring: Dependency Injection (DI) component container
Mozilla Rhino: Server-side JavaScript engine
OpenSymphony Quartz: Job scheduler

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1

[25]

Services and components
The Alfresco platform is built up around many so-called services such as the Node
Service—that is used to manipulate the nodes in the repository, or the Content
Service—that is used to manipulate the content that the nodes are pointing to.
You can think of a service as the interface to some piece of CMS functionality.
Each service has one or more implementations that are sometimes referred
to as components.

The core platform uses the Spring Framework as its component container,
so anyone familiar with Spring would feel at home looking at the source code and
the configuration files. Spring also makes the platform very flexible and easy
to customize.

Every service is available as a Spring Bean, so we can easily customize them by
overriding with our own implementations, if so, only change a minor feature and
use the rest as is.

The platform also uses the aspect-oriented features of Spring to support transactions
and security in a transparent way. Using an aspect-oriented approach also minimizes
code duplication and intrusiveness in the service implementations.

The following figure illustrates:

These service interfaces are often referred to as the Alfresco Foundation Services and
they are the lowest level of public interfaces giving access to the Alfresco content
management functionality. A Spring client, in the same process as the Alfresco
repository, can inject these services into custom code.

The Alfresco Platform

[26]

The File Folder Service is a little bit different from the rest of the services, as it uses
the other services to implement its functionality. So you could say that it is not at the
lowest level but abstracts some of the other services.

An important point is that the Foundation Services is where the transaction and
security policies are enforced. These policies are declaratively specified and enforced
for each service. The service interfaces are also stateless in the design, so all the data
(that is, state) needed for a method operation has to be passed in to the service call.

Anyone familiar with the Strategy Design Pattern will see several uses of this pattern
in the Alfresco platform. For example, when you configure an authentication
method, you select a particular authentication strategy such as LDAP Authentication.

If the authentication strategy you are looking for is not available, such as LDAP
server authentication when using CIFS, you can create your own authenticator
component and just plug it into the platform. (Chapter 4, Authentication and
Synchronization Solutions shows you a solution on how to do just this.)

Content rules
An important part of any content management platform is to be able to automate
business rules. In Alfresco, you can set up content rules to enforce business rules.
Rules are applied to folders and they consist of the following parts:

General Description: Information about what the rule does
Condition: Consists of two parts:

When to execute the rule (one or more can be selected):
Inbound (when documents are created or added to a folder)
Outbound (when documents are deleted or moved from a folder)
Update (when documents are updated)

Selection criteria (one or more criteria can be specified):
Property Values (for example, if document author is martin, if
document name contains the text security, and so on)
Has Aspect (for example, if document has aspect
e-mailed applied)
Document of Type or Subtype (for example, if document is of
type meeting)
All documents (default)
And more...

•
•

°
•

•

•

°
•

•

•

•

•

Chapter 1

[27]

Action: What to do when the rule is executed (one or more actions can be
selected). A content rule action can be things, such as move a document
to another folder, transform an MS Word document into a PDF, apply
versioning, send an e-mail, run a script, and so on.

We normally set up these content rules from the Alfresco user interface but they can
also be imported into the repository in a bootstrap procedure.

Content Rules are defined per folder and if a rule should apply to a lot of different
folders, such as an "Apply Versioning" rule, it does not have to be defined for all
folders. It is enough to define the rule for one folder and then link to that rule from
all other folders that should have the same rule applied.

If more than one rule is defined, it is possible to specify in what order they should be
executed. For example, let's say, we have the following rules:

Transform MS Word documents to PDF
Apply versioning to MS Word documents

If we run the rules on a new MS Word document, we will end up with a PDF version
of the document without versioning applied, and versioning applied to the MS
Word document. However, if we change the order of the rules so that the versioning
is applied first, then the PDF version of the document will also have versioning
applied. So it is very useful to be able to set the order of execution for the rules.

Rules can be executed asynchronously, which is good, as then operations such as
adding a document to a folder will not be affected by how long it takes to execute all
the enabled rules. The document will just be stored immediately and then at a later
time the rules will be executed. What then happens if there is an error executing the
rules later on? Can something be done to notify the users or send an e-mail? Yes, a
script can be associated with a rule to run if an error occurs.

Event model
Sometimes, using rules might not be enough for what we want to do. Let's say that
we wanted to execute a business rule just before a node is deleted and a business
rule after the node has been deleted. This cannot be done with rules, as they allow
us to execute business rules only when nodes are created, deleted, or updated. Other
examples are executing business logic after version changes for a document or when
an association is deleted.

Also, in some cases the rule will not behave correctly if you add content via CIFS and
then you might have to resort to using the event model.

•

•

•

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The Alfresco Platform

[28]

If we, for example, add a rule that enforces a specific document naming
convention for a particular folder hierarchy, then this rule will work
okay from the Alfresco Explorer and the Alfresco Share user interfaces
where it will prohibit the user from adding the document by throwing
an exception. However, via CIFS the document will still be added even
though an exception was thrown.

In these cases, we can use the Alfresco event model that enables us to execute Java or
JavaScript code when an event happens in the system. In Alfresco, these events are
called behavior policies.

The events that we can listen to are associated with the service that triggers them.
The Content Service events can be found in the org.alfresco.repo.content.
ContentServicePolicies class and look like this:

Event (Behavior policy) Description
onContentUpdate Called when one or more node properties are updated.

If you need to know what properties were updated,
and the before and after value of properties during an
update, then use the onContentPropertyUpdate
method instead.

onContentPropertyUpdate Called once for each node property that has been
updated. The before update and after update value for
the property is available.

onContentRead Called when a content reader is requested for a node
that has content. Could, for example, be used to keep
statistics for when a document was last accessed, how
many times it has been accessed, and so on.

The Copy Service events can be found in the org.alfresco.repo.copy.
CopyServicePolicies class:

Event
(Behavior policy)

Description

getCopyCallback Called just before the copying of the node to find out what
should be copied. By default, all aspects, the type, properties, and
associations will be copied. However, sometimes it is necessary to
be able to customize what should be copied and not copied. For
example, if some properties should not be copied, then implement
this method and exclude these properties from being copied. When
implementing this method all aspects, associations, and properties
that should be copied need to be specified.

Chapter 1

[29]

Event
(Behavior policy)

Description

beforeCopy Called once it has been decided which properties and aspects will
be copied, but before the copy occurs.

This allows us to remove cached data based on the destination
node, before it is overwritten. You are unable to make changes
to what gets copied though, that must be done earlier via a
getCopyCallback.

onCopyComplete Called when the copying has completed (including any cascading).

The Asynchronous Action Execution Queue events can be found in the org.
alfresco.repo.action.AsynchronousActionExecutionQueuePolicies class:

Event (Behavior policy) Description
onAsyncActionExecute Called when an asynchronous action has completed

execution and transaction has committed. This event is
not linked to a content type or aspect, but to a service
implementation.

The Node Service events can be found in the org.alfresco.repo.node.
NodeServicePolicies class and there are a lot of them. Therefore, we can divide
them up into the following groups so that it is easier to overview them:

Store events
Node events
Aspect events
Association events

The following node events are related to the store:

Event
(Behavior policy)

Description

beforeCreateStore Called before a new store is created.
onCreateStore Called just after a new store has been created.

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

The Alfresco Platform

[30]

The following node events are related to any node and its properties:

beforeCreateNode Called before a new node and its parent association is created.
onCreateNode Called just after a new node and its parent association has

been created. Note that this event method is called before
onCreateChildAssociation and onUpdateProperties.

onMoveNode Called when a node has been moved. Note that this method is
not called if the node is moved to another store such as from
Working Store to Archive Store.

beforeUpdateNode Called before a node is updated in the following situations:
Adding or removing aspects
Adding, removing, or updating properties
Adding or removing associations
Updating type

•

•

•

•
onUpdateNode Called when a node is updated in the following situations:

Just before adding aspects
Just after removing aspects
Just after adding, updating, or removing properties
Adding or removing associations
Updating type

•

•

•

•

•
onUpdateProperties Called when a node's properties are updated in these situations:

Just after adding, updating, or removing properties
Just after a node has been created

•

•
beforeDeleteNode Called before a node is deleted. If the node has children, then

this method will be called before each child is deleted. This
method will also be called before a node is moved and the old
source node is about to be deleted.

onDeleteNode Called after a node has been deleted. If the node has children,
then this method will be called after each child is deleted. This
method will also be called after a node is moved and the old
source node has been deleted.

The following node events are related to manipulation of a node aspect:

beforeAddAspect Called before an aspect is added to a node.
onAddAspect Called after an aspect has been added to a node.
beforeRemoveAspect Called before an aspect is removed from a node.
onRemoveAspect Called after an aspect has been removed from a node.

Chapter 1

[31]

The following node events are related to manipulation of a node association:

beforeCreate
NodeAssociation

Never called. (Should be called before a parent<->child or peer
association is created).

onCreate
NodeAssociation

Never called. (Should be called after a parent<->child or peer
association has been created).

beforeCreate

ChildAssociation

Called before a parent<->child association is created in the
following situations:

When a parent<->child association is directly created
When a parent<->child association is indirectly created
as a result of a new node being created
When a parent<->child association is indirectly created
as a result of a node being moved

•

•

•

onCreate

ChildAssociation

Called after a parent<->child association has been created in the
following situations:

When a parent<->child association is directly created
When a parent<->child association is indirectly created
as a result of a new node being created
When a parent<->child association is indirectly created
as a result of a node being moved

•

•

•

beforeDelete

ChildAssociation

Called before a parent<->child association is deleted in the
following situations:

When a parent<->child association is directly deleted
When a parent<->child association is indirectly deleted
as a result of a node being deleted
When a parent<->child association is indirectly deleted
as a result of a node being moved
When a parent<->child association is indirectly deleted
as a result of an aspect being removed from a node

•

•

•

•

onDelete

ChildAssociation

Called after a parent<->child association has been deleted in the
following situations:

When a parent<->child association is directly deleted
When a parent<->child association is indirectly deleted
as a result of a node being deleted
When a parent<->child association is indirectly deleted
as a result of a node being moved
When a parent<->child association is indirectly deleted
as a result of an aspect being removed from a node

•

•

•

•

The Alfresco Platform

[32]

onCreate

Association

Called after a peer association has been created.

onDelete

Association

Called after a peer association has been deleted.

The Records Management events can be found in the org.alfresco.module.org_
alfresco_module_dod5015.RecordsManagementPolicies class:

Event (Behavior policy) Description
beforeRMActionExecution Called before a records management action executes.
onRMActionExecution Called when a records management action has been

executed.
beforeCreateReference Called before creation of a custom reference between two

components of a record, such as between an e-mail and
its attachment.

onCreateReference Called after the creation of a custom reference between
two components of a record, such as between an e-mail
and its attachment.

beforeRemoveReference Called before removal of a custom reference between two
components of a record, such as between an e-mail and
its attachment.

onRemoveReference Called after a custom reference has been removed
between two components of a record, such as between an
e-mail and its attachment.

The Version Service events can be found in the org.alfresco.repo.version.
VersionServicePolicies class:

Event (Behavior policy) Description
beforeCreateVersion Called before a new version is created for a document. Also

called before the version history is checked.
onCreateVersion Called immediately before the new version node is created.

Use it to determine what the versioning policy for a
particular type may be.

afterCreateVersion Called after the version has been created and after any
associations to, for example, root version has been created.

calculateVersionLabel Called when the version label should be calculated.

Implement this method to do version numbering and
labeling in a custom way.

Chapter 1

[33]

Defining custom business logic to be executed when any of these events occur also
requires knowledge of the content model that is implemented. When an event
handler is registered with the system, the following things need to be specified:

Event method name: QName for the event method (for example,
{http://www.alfresco.org}onCreateNode)
Content model class: QName for type or aspect that should be affected (for
example, {http://www.bestmoney.com/content/model/1.0}meeting)
Java method name: Name of the method that implements the business logic
that should be executed when the event happens

This makes it possible to pinpoint exactly what content should be affected by the
business logic when the event occurs. Besides being able to bind the business logic
to a particular content model class (that is, type or aspect), it can also be bound to
either a content model association or a content model property.

When an operation such as adding a document is executed, it is done in a
transaction. During this, any registered event handlers are called in the same
transaction and in the order they were registered. Because of this, a faulty event
handler could prohibit the system from working properly. Let's say, we install
an event handler that triggers when content is added to the system (that is,
onCreateNode) and we have made a mistake when coding it.

If this coding mistake results in an exception being thrown, then that rolls back
the transaction. This would effectively block anybody from adding content to the
system. So if unexpected errors happen after installing a lot of event handlers, it
might be a good idea to remove them and see if they are the cause of the problem.

It is possible to do even more fine-tuning of where in the transaction event handlers
should be called (that is, compared to just before or after an operation). There are
three different stages (Alfresco calls it notification frequencies) where the custom
handler could be configured to be invoked:

EVERY_EVENT: This is the default if the notification frequency is not
specified. The event handler is then just executed wherever it is being
invoked in the code. The name of this notification frequency implies that
the event handler will be called multiple times, but that is not the case.
TRANSACTION_COMMIT: The event handler is queued and invoked at
the end of the transaction after it has been committed. A proxy around the
event handler manages the queuing.
FIRST_EVENT: The event handler is invoked just after the transaction is
started. A proxy around the event handler manages this.

•

•

•

•

•

•

The Alfresco Platform

[34]

The following figure shows an example of how an event handler works:

Here, we have added an event handler that will be called whenever a new document
is added to the repository. When that happens, we send an e-mail. The sequence is
as follows:

1. The event handler, onCreateNode, is registered with the Alfresco Event
Manager to be triggered for any documents of type cm:content.

2. Someone uploads a document.
3. This triggers the Policy Component to check if there are any registered event

handlers for the onCreateNode event.
4. The Policy Component finds one event handler and calls the onCreateNode

method in our custom code.
5. Our custom code sends an e-mail from the onCreateNode method.

When using the event manager it is important to know that it manages
synchronous events. So whatever code we implement in the event handler
will be executed in the same transaction as the main Alfresco code that
triggered the event. This means that the code in the event handler will
impact the performance of general Alfresco operations such as adding a
document. So we need to be careful about this and use this event system
only when it is really necessary.

Chapter 1

[35]

Metadata extraction
The idea with metadata extraction is to automatically do some classification of
content when it is added to the Alfresco repository. The extracted properties are
stored together with the physical content as metadata. The more metadata that is
stored with a piece of content, the more will be the search possibilities that exist.

The whole idea with a content management system is to be able to manage content in
an easier way and metadata plays a big role in that. Metadata helps with:

Search: As it gives the possibility to search on individual properties or
combinations of properties.
Faster access: Metadata is usually indexed, which means that the time it
takes to search for content is reduced.
Sorting: In Alfresco, documents can be tagged to belong to a certain type of
content. For example, you could tag all documents that have to do with, for
example, running with the word "running". It is then very easy to find and
sort all documents that have to do with running.
Management: If, for example, there is a piece of custom code that manages
meeting documents in some way, then it would be very easy for that code
to find relevant documents, if they have proper meeting metadata.
Rights: Content rights management could be handled via metadata.

Metadata extractors are used to automatically extract properties from different
content formats. Alfresco comes with a number of metadata extractors that are used
by default without us having to do anything:

PDF: Extracts the author (as cm:author), title (cm:title), subject
(cm:description), and created (cm:created) from PDF files using
the Apache PDFBox library.
MS Office: Extracts the author (as cm:author), title (cm:title), subject
(cm:description), and createdDateTime (cm:created), and
lastSaveDateTime (cm:modified) from Microsoft Office documents
(97-2003, 2007) using the Apache POI library. There are more MS Office
document properties that can be extracted and saved as metadata, but
they are not at the moment. The following properties could also be saved
as metadata: comments, editTime, format, keywords, lastAuthor,
lastPrinted, osVersion, thumbnail, pageCount, and wordCount.
MSG Email: Extracts the sentDate (as cm:sentDate), originator
(cm:originator), addressee (cm:addressee), addressees (cm:addressees),
and subjectLine (cm:subjectline) from an Outlook e-mail (that is,. msg)
using Apache POI.

•

•

•

•

•

•

•

•

The Alfresco Platform

[36]

HTML: Extracts the author (as cm:author), title (cm:title), and description
(cm:description) from HTML files using the Apache PDFBox library.
OpenOffice: Extracts the creator (as cm:author), title (cm:title), description
(cm:description), and creationDate (cm:created), from OpenOffice.
org documents using the Apache Tika library. There are more Open Office
document properties that can be extracted and saved as metadata, but
they are not at the moment. The following properties could also be saved
as metadata: date, generator, initialCreator, keyword, language,
printDate, printedBy, and subject.
MIME Email: Extracts the messageFrom (as imap:messageFrom), messageTo
(imap:messageTo), messageCc (imap:messageCc), messageSubject
(imap:messageSubject), messageSent (imap:dateSent), Thread-Index
(imap:threadIndex), Message-ID (imap:messageId), and date (imap:
dateReceived) from a MIME e-mail (that is, .eml in RFC822 format)
using "JavaMail".
StarOffice (Oracle Open Office): Extracts the author (as cm:author),
title (cm:title), and description (cm:description) from Oracle Open
Office documents.
DWG: Extracts the author (as cm:author), title (cm:title), and description
(cm:description) from drawings (that is, .dwg) produced by several CAD
packages such as AutoCAD, IntelliCAD, and Caddie. The Apache Tika
library is used for this. There are also a few other drawing properties that
are available to set as metadata: keywords, comments, and lastauthor.

There are also experimental metadata extractors such as the MP3 extractor that you
would have to manually turn on to test out.

Those metadata extractors that have the possibility to extract a few more
properties—than are mapped to metadata—can be configured to set these extra
properties to metadata as well. When there is no metadata extractor available for a
file type, a custom extractor can be written and plugged into the system. For more
information, see http://wiki.alfresco.com/wiki/Metadata_Extraction.

Content transformation
Content transformers are an important part of the Alfresco content management
system as they enable content to be indexed by Lucene. All content that should be
indexed, first needs to be converted to text files, which is done with transformers.

•

•

•

•

•

Chapter 1

[37]

Content transformers are also very useful when you want to create new content
formats for publishing, or the like. For example, when a Word document has been
approved, we might want to automatically create a PDF version of it. Another useful
feature of transformers is that they can be used to convert images into different
formats and sizes.

The Alfresco system comes with a number of content transformers out of the box:

Any text to plain text: Converts any textual format to plain text. For example,
text/xml to text/plain or application/x-javascript to text/plain
(used primarily for indexing).
PDF to plain text: Converts PDF files to plain text files using the Apache
PDFBox library (used primarily for indexing).
Excel to plain text: Converts Microsoft Excel (version 97-2003, 2007) files to
plain text files using the Apache POI library (used primarily for indexing).
Word to plain text: Converts Microsoft Word (version 97-2003, 2007) files to
plain text files using the TextMining library (used primarily for indexing).
HTML to plain text: Converts HTML documents to plain text files using the
HTML Parser library (used primarily for indexing).
E-mail (Outlook) to text: Converts Microsoft Outlook e-mails (that is, .msg)
to plain text files using the Apache POI library (used primarily for indexing).
E-mail (MIME) to text: Converts RFC822 MIME e-mails (that is, .eml) to
plain text files using the Java Mail library (used primarily for indexing).
MediaWiki markup to HTML: Converts MediaWiki Markup pages to
HTML documents using the Java Wikipedia API library.
PDF to image: Converts a PDF file to a PNG image using the Sun PDF
Renderer library or the Apache PDFBox library. Converts a PDF file to a
JPEG or GIF Image using the ImageMagick tool.
This transformer can actually transform to a lot of different image formats
supported by the ImageMagick tool (over 100) including DPX, EXR, GIF,
JPEG, JPEG-2000, PhotoCD, and TIFF (used for thumbnails).
Image to image: Converts an image to a different size or format via the
ImageMagick tool.
Open Office to PDF: Converts OpenDocument, PDF, RTF, Word, Excel,
PowerPoint, and Flash files into PDF files using the JODConverter and
OpenOffice.org.
Open Office to image: Converts Open Office documents into images using
the Open Office to PDF transformer and the PDF to image transformer
(used for thumbnails).

•

•

•

•

•

•

•

•

•

•

•

•

The Alfresco Platform

[38]

Plain Text to PDF: Converts a plain text file into a PDF file using the Apache
PDFBox library.
Plain Text to image: Converts a plain text file into an image using the Plain
Text to PDF transformer and the PDF to Image transformer.

When transformers are configured and set up, this can be done in a couple of ways
to reach the end transformation goal. As we have seen in the previous list, most
transformers convert from one format to the other such as from PDF to plain text.

However, transformers can also be combined to solve a more complex
transformation such as a plain text to Image transformation where two or more
transformers work together. These transformers are called complex transformers
and here is an example of how they work:

In this example, a text document is transformed into a PNG image by first being
transformed to a PDF file.

If we are not sure whether one particular transformer can always successfully
transform one format to the other, we can chain together the so-called failover
transformers. Only one of these transformers will do the transformation. When
the first transformer gets the job to transform, it will either respond with successful
transformation or an exception. If a transformer responds with an exception,
then the turn goes to the next transformer in the chain to see if it can do the
transformation successfully.

The following example shows two transformers in a chain that can do PDF to PNG
transformations:

•

•

Chapter 1

[39]

In some cases, the transformation we would like to do is not possible via a Java
Library but only via a command-line executable file. We can then use a special
transformer called a runtime executable content transformer and it can be used
to run a tool such as ImageMagick or OpenOffice.org from the command line.

For more information, see http://wiki.alfresco.com/wiki/Content_
Transformations.

Alfresco Management Beans (JMX)
The core platform contains management beans (JMX) that can be used to configure
Alfresco when it is running and also to inspect the health of the running system. By
using a standard JMX Console such as JConsole that supports JSR 160 (that is, JMX
Remoting) you can:

Manage and control the subsystems
Change the log level to, for example, debug for some part of the system
Turn on and off file servers such as CIFS
Set the server in read-only mode
Set the server in single user mode
Prevent further logins
View user session tickets

Some of these features are really useful such as the possibility to turn on debug
logging for a specific component without having to stop the server. It might not even
be possible to stop the server whenever we want in a production system. Setting up
the system in read-only mode is also very useful if, for example, you need to take a
snapshot backup of the system's current state for offline debugging.

Application Programming Interfaces
(APIs)
There are several APIs that you can use when extending the platform such as
the low-level Java Foundation Services API or the JavaScript API. When you
implement Java extensions delivered in the form of an Application Module Package
(AMP), you would mostly use the so-called Foundation Service API, but when
you implement Web Scripts and Business Rules it is more convenient to use the
JavaScript API.

•
•
•
•
•
•
•

The Alfresco Platform

[40]

If you access the repository from a remote application using a client-server approach
then there are several REST-based APIs such as the Repository API and the CMIS
API that can be used. The higher-level APIs use the Foundation Service API that
has transaction management and security built in.

See the next chapter for more information on how to use these APIs.

Subsystems
Subsystems are configurable modules responsible for a piece of functionality in the
Alfresco content management system. The functionality is often optional such as the
IMAP server or can have several different implementations, such as authentication.

A subsystem can be thought of as a mini-server that runs embedded within the main
Alfresco server. A subsystem has the following characteristics:

It can be started, stopped, and configured independent of the Alfresco server
It has its own isolated Spring application context and configuration

Subsystems are independent processes that can be brought up and down. This
design lets an administrator of the system change a single configuration without
having to bring down the entire Alfresco system. The advantages are reliability
and availability.

Examples of Alfresco subsystems include:

Audit: Configuration of audit parameters
Authentication: Contains different authentication subsystems such as LDAP
E-mail: SMTP support for sending e-mails
File servers: CIFS, FTP, and NFS servers
IMAP: Internal IMAP server
Open Office transformations: Helps converting office documents to text
Synchronization: LDAP synchronization settings
Sys admin: It allows real-time control across some general repository
parameters
Third-party: Owns the SWFTools and ImageMagick content transformers
WCM development receiver: A built-in WCM deployment target for local
AVM to DM content deployments

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1

[41]

Bootstrap
There are several ways to bootstrap the system with custom functionality or
new content.

Patches
In some situations, we want to add something to the system just once during
installation and then never do it again. And we want to do this in a controlled way,
specifying from what version of the system it is applicable. This is called patching
the system or bootstrapping the system. Alfresco uses patches to handle different
things such as:

Database upgrades
Template installations
Folder creation
Permission updates
Group imports, and so on

Every time we do a new Alfresco installation, or an upgrade, the logs will show
what patches were executed. Every patch execution is logged in the database with
information about whether it was successful or not. If an error occurred, then the
database will contain an error message about it. If a patch did not succeed, then
Alfresco will try and execute it every time you start the system until it is successful.

We can also set in what order patches should be executed, which is important,
as many a times one patch depends on another patch's updates. Patches are
implemented as Java classes and it is possible to create custom patches
(we will have a look at that in the next chapter).

Importers
An importer component is also used to import data into the repository in the same
way as a patch is. However, it is different from a patch—in that the outcome of
executing it is not logged in the database and to control the execution order we
have to use the Spring depends-on configuration. Importer components are also not
usually written in Java. An importer component can be used to import the following
things into the repository via XML files:

Users
Groups
Scripts

•

•

•

•

•

•
•
•

The Alfresco Platform

[42]

Presentation templates
Folder hierarchies
Documents

Data that should be imported can first be exported via the export command-line
tool provided by Alfresco, which produces XML files that can be loaded into the
repository via an importer component. So it might make sense to first create what
you want to import via the user interface and then export it. Next chapter shows
an example of how to configure an importer component.

Extension modules
Extension modules are used to extend Alfresco with significant new functionality,
such as records management. Extension Modules are delivered in so-called
Application Module Packages (AMP) files.

The following extension modules are available from Alfresco:

Web Content Management (WCM) AMP
Records Management (RM) AMP
SharePoint Protocol Support (VTI) AMP
Alfresco Forms Development Kit (FDK) AMP
Lotus Quickr Integration AMP
MediaWiki Integration AMP

Third-party extension modules
A lot of companies develop extensions for Alfresco and deliver them in AMP
modules. The following is a list of some available modules:

Thumbnails AMP: Adds thumbnails to Alfresco Explorer
Enterprise Reporting AMP: Enables running reports from the
Alfresco environment
OpsMailmanager AMP: Enterprise e-mail management
Alfresco Bulk Filesystem Import: Loads content from local filesystem and
can preserve modified date during import (see Chapter 8, Document Migration
Solutions for more information)

•
•
•

•
•
•
•
•
•

•

•

•

•

Chapter 1

[43]

User interface clients
There are a couple of different user interfaces that you can use to access Alfresco
either from a browser or from the filesystem.

Alfresco Explorer
Alfresco Explorer is the traditional Document Management client that most people
use when they access the repository via a web interface. It has access to the complete
repository and also offers administration functionality to handle, for example, users,
groups, import, and export.

This client is successively being replaced by the Alfresco Share client, which has a
much nicer and richer user interface.

However, there are situations when the Alfresco Share client does not yet support
all functionality that Alfresco Explorer provides such as when using advanced
workflows or creating and managing web content. In these cases, we have to
still use the Alfresco Explorer client.

Likewise, the Alfresco Explorer platform does not support the collaboration and
sharing features that are available in Alfresco Share.

Alfresco Share
The Alfresco Share client is the new client for Alfresco that started out life as a pure
collaboration and sharing platform. After a while, it became very popular and people
wanted to use it for more than just collaboration and sharing features. Alfresco
responded by adding more functionality to be able to access the document repository
via Alfresco Share. Now it also has a lot of the administration features previously
only available in Alfresco Explorer.

Alfresco SharePoint
This is not really a standalone client, but more an integration with Microsoft
SharePoint functionality. When the SharePoint protocol is enabled in Alfresco,
a Microsoft Office program can connect to Alfresco thinking it is connecting
to SharePoint.

The Alfresco Platform

[44]

We can connect to Alfresco from, for example, MS Word as follows:

Here, we are creating a new Document Workspace that will be created as an Alfresco
Share site called MyDocSite. We can then save documents directly into Alfresco
without having to go through any other Alfresco user interface. This is how it
looks in Alfresco Share after creating the workspace and saving a Word 2007 test
document called MyTestDoc.docx:

Clicking on this site and then navigating to the document library shows
the following:

Chapter 1

[45]

Unfortunately we cannot save documents anywhere we like in the
Repository, only to an Alfresco Share site.

Alfresco Mobile
Alfresco comes with a special web application to support the iPhone. It presents
a smaller interface adjusted for the iPhone to be able to access content in an Alfresco
Share site.

The interface gives you access to Alfresco Share sites and the possibility to search,
view, and edit documents in the Document Library within sites. Users can also view
tasks and activities.

For more information about mobile application solutions see Chapter 14, Mobile Phone
Access Solutions.

Alfresco CIFS
The possibility to access files in Alfresco via a shared drive is one of the major
benefits with Alfresco, as most people are used to working with a shared drive
already. So the transition to a content management system becomes less
cumbersome when users can work in the way they have always done.

The shared drive access is probably the interface that most people use on a
day-to-day basis. However, there are things that cannot easily be done when
using the CIFS interface:

Searching for documents based on metadata
Enter metadata for added documents
Display error messages from rules, some rules will not even work when
documents are added via this interface
Workflow task management

For more information about the CIFS interface see Chapter 5, File System
Access Solutions.

•

•

•

•

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The Alfresco Platform

[46]

The Alfresco installation directory
structure
After you have installed Alfresco, you will have a directory structure that looks
something like this:

|- Alfresco
 |
 |- /alf_data
 |- /amps
 |- /amps-share
 |- /bin
 |- /extras
 |- /ImageMagick
 |- /install_extension
 |- /licenses
 |- /mysql
 |- /OpenOffice.org
 |- /tomcat
 |- /virtual-tomcat
 |- alf_start.bat (Starts Apache Tomcat and Alfresco)
 |- alf_stop.bat (Stops Apache Tomcat and Alfresco)
 |- alfresco.log (Default location for Alfresco log file)
 |- virtual_start.bat (Starts another Tomcat for WCM preview)
 |- virtual_stop.bat (Stops Apache Tomcat for WCM preview)

It is important to get to know the directory structure of an Alfresco installation. So
you know where to go and look for certain information or to be up to date when you
get questions from clients.

The alf_data directory
The Alfresco data directory is the most important directory as it contains all the
content files and all the content indexes of the repository, for both live content and
deleted content. The location of this directory is specified in the alfresco-global.
properties file located in the tomcat/shared/classes directory with the property
dir.root.

This is the alf_data directory structure:

|- Alfresco
 |- /alf_data
 |- /audit.contentstore
 |- /backup-lucene-indexes

Chapter 1

[47]

 |- /contentstore
 |- /contentstore.deleted
 |- /lucene-indexes
 |- /mysql
 |- /oouser

The contentstore directory
The contentstore directory contains all the live content files. You will notice, as
you start clicking down in the directory hierarchy, that you will not recognize any
of the filenames.

For example, if you upload a file called mytext.doc to a folder, you will not find any
file by that name in the contentstore directory. It has been stored under a different
name that looks more like a reference number.

To find a specific document you have to first go into Alfresco Node Browser and
look up the item and its cm:content field. This field looks something like this:

contentUrl=store://2010/2/12/18/1/62781911-635d-4366-80dc-
13d4a3e5e4fe.bin|mimetype=application/pdf|size=375530|encoding=utf-
8|locale=en_GB_

And in this case the PDF file would be found under: alfresco/alf_data/
contentstore/2010/2/12/18/1.

And it would be called: 62781911-635d-4366-80dc-13d4a3e5e4fe.bin (that is,
UUID.bin). If you change the extension to .pdf you will be able to open it.

File versioning
Every version is stored in its entirety. No delta data is kept. You can look up the
content store location for the master version, such as:

contentUrl=store://2010/2/16/11/18/d3278bd6-2ad0-4d85-b627-
0ce757b985a8.bin

And next to it you will see the .bin files for the other versions.

The contentstore.deleted directory
Whenever you delete a file from the Alfresco repository via any of the user interfaces,
it is not physically deleted from disk, instead it is moved to an archive store. This
store can be found on disk under the contentstore.deleted directory.

If you do not see any files in the contentstore.deleted directory, then your
Alfresco installation might have a custom Content Cleanup Listener configuration.

The Alfresco Platform

[48]

The audit.contentstore directory
Alfresco can be configured to audit all changes to metadata and content and the
audit trail is stored in this directory. This directory will usually be empty in a
standard installation as audit logging is not turned on by default.

The lucene-indexes and backup-lucene-indexes
directories
All content in the repository is indexed via the Lucene index engine (unless you
have turned off indexing for some types of content). The index files are kept in the
lucene-indexes directory.

If the index ever gets corrupted or deleted, it is possible to do a full re-indexing by
setting the index.recovery.mode property to FULL and restart the system. This
property can be found in the repository.properties file located in the tomcat/
webapps/alfresco/WEB-INF/classes/alfresco directory. To do a full re-indexing
every time you start Alfresco, even if it has been re-deployed, put this property in the
alfresco-global.properties file.

Lucene indexes are backed up to the backup-lucene-indexes directory every night
at 3 a.m. by a scheduled job.

The mysql directory
If Alfresco is installed from the "Full Installation" file, then MySQL can be installed
at the same time. In this case, the data files for MySQL are stored in this directory.

The oouser directory
If Alfresco is installed from the "Full Installation" file, then OpenOffice.org can
be installed at the same time. In this case, the user who executes the document
conversions uses this directory.

The amps directories
The application modules (that is, AMPs) that are used to extend Alfresco can be
found in the following two directories:

|- Alfresco
 |- /amps
 |- /amps-share

Chapter 1

[49]

The amps directory is used for modules that extend the Alfresco Explorer web
application (that is, alfresco.war) and the amps-share are used for modules
that extend the Alfresco Share web application (that is, share.war).

After putting the AMP files in these directories, you can use the alfresco/apply_
amps.bat file to install them into the WAR file.

After a full installation of Alfresco 3.3, the following AMPs can be found in
the directories:

|- Alfresco3.3
 |- /amps
 |
 |- alfresco-dod5015.amp (Alfresco RM for Explorer UI)
 |- alfresco-quickr-unsupported.amp (Lotus Integration)
 |- vti-module.amp (MS SharePoint Protocol)
 |- /amps-share
 |- alfresco-dod5015-share.amp (Alfresco RM for Share UI)

The tomcat directory
This is the main application server directory. When you install Alfresco from the
"Full installation" file, it includes an Apache Tomcat installation that ends up in
this directory.

The tomcat directory structure looks as follows:

|- Alfresco
 |- /tomcat
 |- /bin (binaries to start Tomcat)
 |- /conf (Tomcat configuration, configure SSL for example)
 |- /endorsed
 |- /lib (Tomcat libraries)
 |- /logs (Tomcat log files, except Alfresco log)
 |- /shared (Config files that lives over deployments)
 |- /temp (Temporary files such as for EHCache)
 |- /webapps (Alfresco webapps go here)
 |- /work (JSP compiled into Servlets)

The two most important directories here are the shared and the webapps directories.
The shared directory is where you will do all Alfresco configuration that should
live over deployments and Alfresco upgrades. Basically, try and always do the
configuration here because then you know it is not going to be overwritten when
somebody installs a new AMP or does an upgrade.

The Alfresco Platform

[50]

The webapps directory is where you will find the web application WAR files for
Alfresco Explorer (that is, alfresco.war), Alfresco Share (that is, share.war), and
Alfresco Mobile (that is, mobile.war).

You will also use files in the bin directory when you want to install Alfresco as a
Windows service.

Getting the Alfresco source code
If you do not yet have the Alfresco source code downloaded, it is time to do so now.

You can access the trunk from svn://svn.alfresco.com/alfresco/HEAD and
it is a good idea to update it every week to see what new stuff is being added.
More information about the Alfresco development environment can be found here
http://wiki.alfresco.com/wiki/Alfresco_SVN_Development_Environment.

The Alfresco database
Normally, we do not have to bother about the database, but there are situations
when it is necessary to be familiar with it.

In general, one should not do any CRUD operations directly against the database
bypassing the foundation services when building a custom solution on top of
Alfresco. This will cause the code to break in the future if the database design
is ever changed. Alfresco is required to keep older APIs available for backward
compatibility (if they ever change), so it is better to always use the published
service APIs.

Query the database directly only when:

The customization built with available APIs is not providing acceptable
performance and you need to come up with a solution that
works satisfyingly
Reporting is necessary
Information is needed during development for debugging purposes
For bootstrapping tweaking, such as when you want to run a patch again

Almost any RDBMS database can be used as the platform that uses Hibernate as the
database access layer. For Level 2 caching the EHCache library is used, which speeds
up the performance.

•

•

•

•

Chapter 1

[51]

DB schema
The Alfresco database schema cannot be found in any .sql file, as the whole
database is created via Hibernate the first time Alfresco is started after installation.

To access the tables use a tool like the SQuirreL SQL Client or just use the mysql
command-line utility. The database is called alfresco by default and to access it
via JDBC an URL that looks like jdbc:mysql://localhost:3306/alfresco can be
used. Default username/password is alfresco/alfresco.

Significant tables
Let's take a look at some of the tables that we might come in contact with or need to
query for information.

ALF_NODE
This is the parent table for node metadata and many other tables refer to it with a
foreign key. Listing a couple of rows from it looks like this:

What we get is the node UUID, version, what store it is saved in, type QName, and
so on. The ID of the rows is used to look up related rows in other tables, such as
associated properties.

To select a particular node after looking up its node UUID (that is, from the
{http://www.alfresco.org/model/system/1.0}node-uuid property) via the
Alfresco Explorer Node Browser, we can execute the following query:

select * from alf_node where uuid='456822c7-8f3e-4129-9804-
dfaaab54f47a'

This will give us the node ID to use for further queries.

The Alfresco Platform

[52]

ALF_NODE_PROPERTIES
This table contains all the properties that have been set as metadata for a
particular node.

When we have the node ID, we can query for the associated properties as follows:

select * from alf_node_properties where node_id=1016

This table contains all the properties that have been set as metadata for a
particular node:

We can still see only the values for the properties not what their names are. The
name of the property can be looked up via the qname_id.

Notice also that some properties like the default Created Date, Creator, Modifier,
and Modified date are not listed. This is because they are part of the ALF_NODE row.

ALF_NODE_ASPECTS
This table contains all aspects that are associated with a node. When we query this
table, we get the following result:

This is not very helpful as we cannot see the names of the aspects, just their QNames.
We would have to link up with the ALF_QNAME table to see the names.

Chapter 1

[53]

ALF_QNAME
This table contains all the QName definitions and it is referred to from lots of the other
tables. For example, here is how to use it together with the ALF_NODE_ASPECT table:

In this way, we can clearly see what aspects are associated with a node.

ALF_APPLIED_PATCH
This table contains information about all executed patches. It keeps information
about if they were successful or not and any error messages:

Example queries and update statements
The queries are some examples used in real content management deployments.

Querying for number of nodes of a certain type
Let's say you wanted to find out how many e-mails have been stored in the
repository so far. Then you could do that with the following query:

SELECT count(*) from ALF_NODE n, ALF_NODE_ASPECTS a, ALF_QNAME q where
n.ID = a.NODE_ID and a.QNAME_ID=q.ID and q.LOCAL_NAME='imapemail';

The Alfresco Platform

[54]

This query will search for all content nodes that have the aspect imapemail applied
and count them.

Querying for number of nodes stored in a particular
month
If you wanted to build on the previous query and find out how many e-mail nodes
have been stored in a particular month, you could do that as follows:

SELECT count(*) from ALF_NODE n, ALF_NODE_ASPECTS a, ALF_QNAME q where
n.ID = a.NODE_ID and a.QNAME_ID=q.ID and q.LOCAL_NAME='imapemail' and
n.audit_created like '2010-01%';

This will query for the number of e-mail nodes that have been stored in January 2010.

Running a patch again
If you, for some reason, wanted to run a patch again, you can do that as follows:

UPDATE ALF_APPLIED_PATCH SET WAS_EXECUTED=0, SUCCEEDED=0
 WHERE ID='patch.applyImapMailboxAspect';

This will set up the patch to status not successfully run last time and the next time
we start Alfresco, it will execute the patch again.

Summary
This chapter has taken us through most of the features of the Alfresco platform
and by now we should be familiar with repository concepts such as stores, nodes,
associations, aspects, and types. Everything in the Alfresco repository is represented
as a node. If we have business rules that should apply to nodes in the repository,
then these can be enforced by implementing the so-called content rules.

Document properties can be automatically extracted with Metadata extractors while
the document is being added to the repository. When a document is uploaded to
the repository, content transformers can be configured to convert between different
formats, such as from an MS Word document to a PDF. Transformers are also used
to convert any non-text format to text, so that content can be easily indexed by the
Lucene search engine.

Chapter 1

[55]

If we wanted to send an e-mail every time a document was added anywhere in the
repository, then we could use the internal event management system and define a
policy for the "add content" event.

Alfresco comes with quite a few user interfaces out of the box, where the traditional
JSF based one is called Alfresco Explorer and offers management screens for all
features available in Alfresco. This user interface will be replaced by a newer one
called Alfresco Share, which is currently the most developed UI. Alfresco CIFS is
used to emulate a shared drive for easy migration of users into using Alfresco.

Alfresco uses subsystems for functionality that require many different implantations,
such as authentication, or for optional functionality like support for IMAP. The
Alfresco system can be bootstrapped with either patches or importers. Patches are
used extensively by Alfresco to do, for example, database upgrades.

We also had a look at the directory structure of an Alfresco installation and one
of the most important folders is the alf_data folder that contains the content and
the Lucene index. The Alfresco web application is contained under the alfresco/
tomcat/webapps/alfresco folder in an installation.

Finally, some of the more important database tables were examined and a couple of
SQL query examples were shown, and this should give us more confidence in how
things work together and we can also create reports directly against the database
if necessary.

Now you are probably eager to get going and do some coding. The next chapter
introduces the application programming interfaces that can be used to access the
repository. For each API, there will be a number of code examples that you can
dig into.

The Alfresco APIs
The Alfresco platform has many different Application Programming Interfaces
(APIs) that we can use to access content in the repository or extend the content
management functionality. To utilize the full potential of Alfresco, it is important
to know how each API fits into the system and how we can use it.

Alfresco runs on a Java platform, so most of the APIs that we have available are
naturally going to be Java-based APIs. However, one API that is used a lot is the
JavaScript API as it hides much of the complexities found with other APIs.

Also, when we use any of the REST-based APIs, we could use any language we
wanted on the client side, which makes this approach really flexible and scalable.

The following figure gives an overview of the available APIs:

The following list gives a short description of each API:

Foundation Services API: A low-level Java-based API that most other
APIs use
Event API: A Java-based API used when we want to trigger custom code
based on events
Patch API: A Java-based API that can be used to bootstrap the system
in a controlled way

•

•

•

The Alfresco APIs

[58]

Metadata Extractor API: A Java-based API that is useful when we want
to extend the system with more metadata extractors
Content Transformation API: A Java-based API used to build new
content transformations
JavaScript API: A server-side JavaScript used by Web Scripts and Rules
CMIS API: A standard non-lock REST-based API
Repository API: Alfresco's proprietary API that contains extensions to CMIS
to deal with tags, comments, workflow, and other Alfresco specifics
Custom API: Custom remote APIs that we build
Command Servlet API: A Servlet-based API based on the command and
strategy design patterns

There are two other APIs that are not depicted in the figure, but we might come
across them when searching for Alfresco information:

JCR API: This is the Content Repository for Java Technology API as specified
in JSR 170 and 283. It now looks like CMIS is used more and more instead of
this API.
Web Service API: Alfresco also provides a web service interface but the
REST-based interfaces seem to be used more.

We will not cover the JCR and Web Service APIs in this book; however, the
Alfresco 3 Web Service book covers the Web Services API.

In this chapter, you will learn:

About the In-process and Remote APIs
Using the Java Foundation Services API
Using JavaScript to manage content
Implementing event handlers
Creating a bootstrap patch
Configuring a bootstrap importer component
What a Web Script is and how to create one
What CMIS is

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2

[59]

Application Programming Interfaces
(APIs)
There are several APIs that you can use when extending the platform such as
the low-level Java Foundation Services API or the JavaScript API. When you
implement Java extensions delivered in the form of an AMP, you would mostly
use the so-called Foundation Service API, but when you implement business rules
it is more convenient to use the JavaScript API.

If you access the repository from a remote application using a client-server approach,
then there are several REST-based APIs that can be used such as the Repository API
and the CMIS API. The higher level APIs use the Foundation Service API, which has
transaction management and security built in.

In-process APIs
These are application programming interfaces that require the client to be in the
same process context as the Alfresco server. Typically, the client code is delivered
in an Alfresco Module Package (AMP).

The Java Foundation Services API
Knowing the Foundation Service API inside out will help you a lot when developing
Alfresco customizations as most other APIs and modules are built on top of these
low-level services.

The API is designed as a group of services and we will take a look at some of the
most popular ones. It is used only when you develop extensions that are merged
with the Alfresco web application archive (WAR) via an AMP.

Configuration and Transaction Management
To use one of the Foundation Services, such as the Node Service, it is injected
via Spring into the custom bean that wants to use it. There are two ways of doing
this—one way is to inject the so-called public version of the service and the second
is to inject the internal version of the service.

The difference between these versions is that the public version comes with audit
management, transaction management, and security management interceptors
configured. So, whenever we call a method inside a public service, a transaction is
automatically created for us and permissions checked plus any auditing that has
been configured is done.

The Alfresco APIs

[60]

So why would we want to use anything other than the public service despite the fact
that it comes with everything pre-configured for us? Some of the reasons are:

To control the transaction boundaries
To check permissions ourselves when necessary
To make service calls as fast as possible

The first reason is probably the most important one as it can cause problems if not
handled properly. Let's say you want to store a file and set an aspect for it with the
Node Service. This can be done in three steps:

1. Store the metadata.
2. Store the physical content.
3. Apply the aspect.

Now, let's say that there is an error in the system between any of these steps. This
would lead to inconsistent data as the transaction boundaries are between each call.
So when building a new module or customization on top of the foundation services
it is best to manage the transaction boundaries ourselves.

In the following example, we inject the internal version of the Node Service into our
custom bean called myCmsService:

<?xml version='1.0' encoding='UTF-8'?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">
 <bean id="myCmsService"
 class="org.springframework.transaction.interceptor.
 TransactionProxyFactoryBean">

 <property name="proxyInterfaces">
 <value>com.bestmoney.test.MyCmsService</value>
 </property>

 <property name="target">
 <bean class="com.bestmoney.test.MyCmsServiceImpl">
 <property name="nodeService">
 <ref bean="nodeService"/>
 </property>
 </bean>
 </property>

•

•

•

Chapter 2

[61]

 <property name="transactionAttributeSource">
 <bean class= "org.springframework.transaction.annotation.
 AnnotationTransactionAttributeSource"/>
 </property>
 </bean>
</beans>

To inject the public version of the service, we would just change the first
letter to uppercase as follows: <ref bean="NodeService"/>.

Any other foundation service is injected in the same way. To control the transaction
boundaries, we configured the bean to use the Spring Transaction Service by using
the Transaction Proxy and the transaction annotations. The com.bestmoney.cms.
MyCmsService interface looks as follows with transaction annotations for a "write
content" method and a "read content" method:

@Transactional(readOnly = true)
public interface MyCmsService {

 public void readSomething();

 @Transactional(readOnly = false,
 propagation = Propagation.REQUIRED)
 public void writeSomething();
}

When we use a declarative transaction management and put
the transaction annotation at the interface level (that is, @
Transactional(readOnly = true)), it becomes the default
transactional semantics for all methods unless overridden via explicit
method level annotation (that is, @Transactional(readOnly =
false, Propagation.REQUIRED)).

The implementation class for this interface looks like this:

public class MyCmsServiceImpl implements MyCmsService
{

 private NodeService m_nodeService;

 public void setNodeService(NodeService nodeService)
 {
 m_nodeService = nodeService;
 }

The Alfresco APIs

[62]

 public void readSomething() {
 // Calls that only read data go here and
 // they are executed inside a read-only transaction.
 }

 public void writeSomething() {
 // Here we can use methods that require a
 // read/write transaction.
 }
}

When we use the foundation service API, this is the way in which we always define
the custom beans. So, when the different methods of the foundation services are
demonstrated in this section, we will assume that we have this custom bean set up.

Using the Node Service and the Content Service
The Node Service and the Content Service are probably the most used foundation
services as they are used to manipulate the repository nodes and their content in
all the possible ways.

Here is how to create a new file node:

public void writeSomething()
{
 String filename = "helloworld.txt";
 NodeRef parentFolderNodeRef = // get parent node ref
 ChildAssociationRef parentChildAssocRef = null;
 QName associationType = ContentModel.ASSOC_CONTAINS;
 QName associationQName = QName.createQName(
 NamespaceService.CONTENT_MODEL_1_0_URI,
 QName.createValidLocalName(filename));
 QName nodeType = ContentModel.TYPE_CONTENT;

 Map<QName, Serializable> nodeProperties =
 new HashMap<QName, Serializable>();
 nodeProperties.put(ContentModel.PROP_NAME, filename);

 parentChildAssocRef = m_nodeService.createNode(

 parentFolderNodeRef, associationType,
 associationQName, nodeType, nodeProperties);

Chapter 2

[63]

This creates metadata for a file helloworld.txt that will be uploaded or created
sometime in the future.

If we wanted to create a node that is not visible from any of the user
interfaces, we could create it with the type set to ContentModel.
TYPE_CMOBJECT instead of ContentModel.TYPE_CONTENT.

The org.alfresco.model.ContentModel interface contains the QName definitions
for all types, aspects, properties, associations, and so on that are available in the
standard Alfresco content model. So when we do not have our own content model,
this one can be used.

A new node can be created only as a subnode to a parent node,
so we have to have a node reference to a parent folder node to
be able to add a new node. We could get this by searching for it
with Lucene for example, but this is not shown in this particular
example. This example also assumes that we have write permission
to the parent folder node.

We can get the file node reference for the new node from the parent->child association:

 NodeRef newFileNodeRef = parentChildAssocRef.getChildRef();

As we said, the new file node is not yet associated with any physical content, so let's
fix that:

 Boolean updateContentPropertyAutomatically = true;
 ContentWriter writer = m_contentService.getWriter(newFileNodeRef,
 ContentModel.PROP_CONTENT, updateContentPropertyAutomatically);
 writer.setMimetype(MimetypeMap.MIMETYPE_TEXT_PLAIN);
 writer.setEncoding("UTF-8 ");
 String fileContent = "Hello World!";
 writer.putContent(fileContent);

This will automatically set the node's cm:content property to point to the
helloworld.txt file.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The Alfresco APIs

[64]

Here, we are just adding a piece of text as content and it automatically
creates the physical file in the Content Store. If we already have the file
and an input stream for it, then we could add it as content for the node
like this:

File file = new File("helloworld.text");
InputStream fis = new FileInputStream(file);
writer.setMimetype(MimetypeMap.MIMETYPE_TEXT_PLAIN);
writer.setEncoding("UTF-8");
writer.putContent(fis);

The input stream fis is closed automatically, so no need to close it after
the file is stored in the repository. We could also just skip the input stream
step and call the putContent(file).

If we want to add a title and description property to the new file node, we can
do that by adding the Titled aspect:

 Map<QName, Serializable> aspectProperties =
 new HashMap<QName, Serializable>();
 aspectProperties.put(ContentModel.PROP_TITLE, "Hello World!");
 aspectProperties.put(ContentModel.PROP_DESCRIPTION,
 "This is the traditional Hello World example.");
 m_nodeService.addAspect(newFileNodeRef,
 ContentModel.ASPECT_TITLED, aspectProperties);

To create a folder node, we can do the following:

 String folderName = "MyFolder";
 associationType = ContentModel.ASSOC_CONTAINS;
 associationQName = QName.createQName(
 NamespaceService.CONTENT_MODEL_1_0_URI,
 QName.createValidLocalName(folderName));
 nodeType = ContentModel.TYPE_FOLDER;

 nodeProperties = new HashMap<QName, Serializable>();
 nodeProperties.put(ContentModel.PROP_NAME, folderName);

 ChildAssociationRef childAssocRef =
 m_nodeService.createNode(parentFolderNodeRef, associationType,
 associationQName, nodeType, nodeProperties);

As we can see, there is no big difference between creating a file node and creating
a folder node. The main difference is the type you give the node. It is when we add
content that it differs, as only a file node has content.

Chapter 2

[65]

If we wanted to get all file and subfolder nodes for a node, and then for each child
node check what type and properties they have, we could use the following code:

public void readSomething() {
 List<ChildAssociationRef> childAssocRefs =
 m_nodeService.getChildAssocs(parentFolderNodeRef);

 if (childAssocRefs.isEmpty())
 {
 return;
 }

 for (ChildAssociationRef childAssocRef : childAssocRefs)
 {
 NodeRef childNodeRef = childAssocRef.getChildRef();
 QName nodeTypeQName = m_nodeService.getType(childNodeRef);
 Map<QName, Serializable> nodeProperties =
 m_nodeService.getProperties(childNodeRef);

 if (nodeTypeQName.equals(ContentModel.TYPE_CONTENT))
 {
 // Do something with the file metadata or content
 String filename = (String)nodeProperties.get(
 ContentModel.PROP_NAME);
 }
 else if (nodeTypeQName.equals(ContentModel.TYPE_FOLDER)) {
 // Do something with folder metadata
 Date createdDate = (Date)nodeProperties.get(
 ContentModel.PROP_CREATED);
 }

If we have the node reference for a folder or a file and want to get to the parent folder
containing it, we can use the following code:

public void readSomething() {
 NodeRef fileOrFolderNodeRef = // get this from somewhere
 NodeRef parentFolderNodeRef =
 m_nodeService.getPrimaryParent(fileOrFolderNodeRef).getParentRef();

To check if a node has a particular aspect applied to it, do this:

public void readSomething() {
 NodeRef fileOrFolderNodeRef = // get this from somewhere
 Boolean isVersioned = m_nodeService.hasAspect(
 fileOrFolderNodeRef, ContentModel.ASPECT_VERSIONABLE);

The Alfresco APIs

[66]

In this case, we are checking if a node has versioning turned on. To read the physical
content file associated with a node, use the following code:

public void readSomething() {
 NodeRef fileNodeRef = // get this from somewhere
 ContentReader reader = m_contentService.getReader(
 fileNodeRef, ContentModel.PROP_CONTENT);

 if (reader == null) {
 // Maybe it was a folder after all
 return;
 }

 InputStream is = reader.getContentInputStream();

 try {
 // Read from the input stream
 String contentText = IOUtils.toString(is, "UTF-8");
 } catch (IOException ioe) {
 logger.error(ioe);
 throw new RuntimeException(ioe);
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch (Throwable e) {
 logger.error(e);
 }
 }
 }

When reading content for a node, it is very important to close the input stream after
we are done, as this is not done automatically. If we forget it, we will soon have
eaten up all file descriptors available.

When we want to remove nodes, we do as follows:

public void writeSomething() {
 m_nodeService.deleteNode(newFileNodeRef);
 m_nodeService.deleteNode(newFolderNodeRef);

This removes both the metadata from the database and also moves the physical file
from the Working Store to the Archive Store.

Chapter 2

[67]

Using the File Folder service
The File Folder service is a higher level interface than the Node Service and Content
Service interfaces. The implementation of the File Folder Service uses most of the
other low-level services such as the Node Service, Content Service, Dictionary
Service, Copy Service, and so on.

This service can be good to use if you don't need to manipulate nodes in as much
detail as with the Node Service and the Content Service. When using the File Folder
Service, we think more in terms of files and folders.

Here is how to create a new file with the File Folder service:

public void writeSomething() {
 String filename = "helloworld2.txt";
 NodeRef parentFolderNodeRef = // get parent node ref
 QName nodeType = ContentModel.TYPE_CONTENT;

 FileInfo file = m_fileFolderService.create(
 parentFolderNodeRef, filename, nodeType);

This creates metadata for a file helloworld2.txt that will be uploaded or created
sometime in the future. We can see how differently this was done with the Node
Service, where we also had to set up what association we wanted with the parent
node and what properties should be set up for the new node. Using the File Folder
service, we also get a FileInfo object as return type instead of an association
reference that we got when using the Node Service.

The FileInfo object gives us access to things like the node reference for the newly
created file node:

 NodeRef newFileNodeRef = file.getNodeRef();

To create some content for the file node with the File Service, do this:

 ContentWriter writer = m_fileFolderService.getWriter(
 newFileNodeRef);
 writer.setMimetype(MimetypeMap.MIMETYPE_TEXT_PLAIN);
 writer.setEncoding("UTF-8");
 String fileContent = "Hello World!";
 writer.putContent(fileContent);

This will automatically set the node's cm:content property to point to the
helloworld2.txt file. We can begin to see a pattern—in that the File Folder Service
is doing a lot of stuff under the covers, so we get less code to maintain.

The Alfresco APIs

[68]

The File Folder Service cannot be used to add an aspect to a node. Use the
Node Service for this.

To rename a file with the File Folder Service is easy:

 String newName = "HelloWorld2renamed.txt";
 try {
 m_fileFolderService.rename(newFileNodeRef, newName);
 }
 catch (FileNotFoundException fnfe) {
 logger.info("FileFolderService: Could not rename (
 " + filename + ") to (" + newName + "), file was not found
 [fileNodeRef = " + newFileNodeRef + "][parentFolderRef=" +
 parentFolderNodeRef + "]");
 }

To create a folder node, we can do the following:

 String folderName = "MyFolder";
 NodeRef parentFolderNodeRef = // get parent node ref
 QName nodeType = ContentModel.TYPE_FOLDER;

 FileInfo folder = m_fileFolderService.create(
 parentFolderNodeRef, folderName, nodeType);

If we wanted to get all files and subfolders for a parent folder, and then for each
child check what type and properties they have, we could use the following code:

public void readSomething() {
 List<FileInfo> filesAndFolders = m_fileFolderService.list(
 parentFolderNodeRef);

 if (filesAndFolders.isEmpty()) {
 return;
 }

 for (FileInfo fileOrFolder : filesAndFolders) {
 if (fileOrFolder.isFolder()) {
 // Do something with the folder
 Date createdDate = fileOrFolder.getCreatedDate();
 Date modifiedDate = fileOrFolder.getModifiedDate();
 } else if (fileOrFolder.isLink()) {
 // Do something with a link to a folder or file
 } else {

Chapter 2

[69]

 // Do something with a file
 ContentData contentInfo = fileOrFolder.getContentData();
 String mimetype = contentInfo.getMimetype();
 long size = contentInfo.getSize();
 String encoding = contentInfo.getEncoding();
 }
 }

We can see here that the File Folder service is designed to work more with objects
than with individual properties (which was the case with the Node Service), so we
do not have to cast property values, for example, as there are specific methods to
access the most used properties. It also has features to extract what is contained in
the cm:content property that usually has a value that looks something like this:

contentUrl=store://2010/4/26/11/58/5d8df875-37a7-470d-ad79-
fa4001bf3a13.bin|mimetype=text/plain|size=1570|encoding=utf-
8|locale=en_US_

By using the ContentData contentInfo = fileOrFolder.getContentData() call,
we get direct access to each of the values in this property.

It is also possible to list just folders or files in a parent folder with the
listFiles and listFolders calls.

When we want to remove a file or folder, we do as follows:

public void writeSomething() {
 m_fileFolderService.delete(newFileNodeRef);

This removes both the metadata from the database and also moves the physical file
from the Working Store to the Archive Store.

To read the physical content file associated with a file you can use the same code
as we did with the Node Service, just change it and use the following call to get
the reader:

 ContentReader reader = m_fileFolderService.getReader(fileNodeRef);

The File Folder service can also be used to copy and move nodes:

public void writeSomething()
{
 try
 {
 String newName = null; // Do not change the name

www.allitebooks.com

http://www.allitebooks.org

The Alfresco APIs

[70]

 FileInfo fileCopy = m_fileFolderService.copy(
 fileNodeRef, destFolderNodeRef, newName);
 FileInfo fileMoved = m_fileFolderService.move(
 fileCopy.getNodeRef(), destFolderNodeRef2, newName);
 } catch (FileExistsException fee) {
 // File already exist in destination folder
 } catch (FileNotFoundException fnfe) {
 // Destination folder could not be found
 }

The File Folder service covers most of the functionality that one might need when
working with files and folders in the repository. A recommendation is to use the File
Folder service as much as possible and then resort to the more fine-grained services,
such as the Node Service or the Copy Service, in those situations where it does not
have enough features to perform a specific operation.

Using the Search Service
There are a couple of different ways that can be used to search for content within the
repository. We can either use the Search Service with the LUCENE query language
or XPATH query language, or we can use the Node Service to search with the
XPATH query language.

The recommended approach is to use the Search Service with the LUCENE query
language, as an XPATH query via the Node Service is too slow, and the XPATH
query feature via the Search Service is not fully implemented.

In this book, we will use the LUCENE query language for all searching. Here is how
to search for a user's home folder in the repository:

public void readSomething() {
 StoreRef workspaceStore = StoreRef.STORE_REF_WORKSPACE_SPACESSTORE;
 String query =
 "+PATH:\"/app:company_home/app:user_homes/sys:martin\"";
 ResultSet results = null;
 List<NodeRef> matchingNodes = null;

 try {
 results = m_searchService.query(workspaceStore,
 SearchService.LANGUAGE_LUCENE, query);
 } finally {
 if (results != null) {
 matchingNodes = results.getNodeRefs();
 } else {
 matchingNodes = new ArrayList<NodeRef>();
 }

Chapter 2

[71]

 // Underlying search engine, such as Lucene,
 // might have IO resources open so close them
 results.close();
 }

The preceding code is a standard template for how you can use the Search Service
with Lucene queries. The PATH keyword is used for specifying a folder path in the
repository where we want to start the search. This query will return just one node
reference referring to the martin folder.

The folder path is not specified in a way that we might have expected
such as /Company Home/User Homes/martin, which we can call the
display path, but instead in a different format like /app:company_
home/app:user_homes/sys:martin, which is actually an XPATH
expression. So how can we get the XPATH from a display path?

We can use a combination of the File Folder Service, Node Service, and Namespace
Service as follows (this also shows a different way to get to the Company Home node
reference, instead of searching for it):

 StoreRef workspaceStore =
 StoreRef.STORE_REF_WORKSPACE_SPACESSTORE;
 NodeRef storeRootNodeRef =
 m_nodeService.getRootNode(workspaceStore);

 // Setup Company Home path (i.e. app:company_home)
 QName companyHomePath =
 QName.createQName(m_companyHomeChildname, m_namespaceService);

 // Get node reference for Company Home
 List<ChildAssociationRef> assocRefs =
 m_nodeService.getChildAssocs(storeRootNodeRef,
 ContentModel.ASSOC_CHILDREN, companyHomePath);
 NodeRef companyHomeNodeRef = assocRefs.get(0).getChildRef();

 // Setup list of folders excluding the first one
 List<String> folderList = new ArrayList<String>();
 folderList.add("User Homes");
 folderList.add("martin");

 // Get the file information for the leaf folder
 FileInfo folderInfo = null;
 try {

The Alfresco APIs

[72]

 folderInfo = m_fileFolderService.resolveNamePath(
 companyHomeNodeRef, displayPathFolderList);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }

 // Get the XPath formatted path
 String xpath =
 m_nodeService.getPath(folderInfo.getNodeRef()).toPrefixString(
 m_namespaceService);

It is now just a question of refining and changing the query to what we want. The
preceding query could easily be changed to return everything in the martin folder
as follows:

String query =
 "+PATH:\"/app:company_home/app:user_homes/sys:martin/*\"";

The star (*) is used as a wildcard and by adding it just after the forward slash, we
can search for all content in the martin folder. This searches just one folder level
directly under martin. To do a deep search, we can use a double forward slash
as follows:

String query =
 "+PATH:\"/app:company_home/app:user_homes/sys:martin//*\"";

This will return all the files and folders under the martin folder. Or more
specifically, it will return any node under the martin folder as we have
not specified what node types we are actually looking for.

To narrow down the search to just look for folders, we can change the query
as follows:

String query =
 "+PATH:\"/app:company_home/app:user_homes/sys:martin//*\"";
query +=
 "+TYPE:\"{http://www.alfresco.org/model/content/1.0}folder\"";

This will narrow down the search to include just folders by specifying the type of
nodes we are looking for with the keyword TYPE. What if we did not want to have
system folders included? We can achieve that by excluding that type as follows:

String query =
 "+PATH:\"/app:company_home/app:user_homes/sys:martin//*\"";
query +=
"+TYPE:\"{http://www.alfresco.org/model/content/1.0}folder\"";
query +=
"-TYPE:\"{http://www.alfresco.org/model/content/1.0} systemfolder\"";

Chapter 2

[73]

It is also possible to narrow down searches based on aspects. Let's adjust the query
so we get back only non-system folders with versioning turned on:

String query =
 "+PATH:\"/app:company_home/app:user_homes/sys:martin//*\"";
query +=
"+TYPE:\"{http://www.alfresco.org/model/content/1.0}folder\"";
query +=
"-TYPE:\"{http://www.alfresco.org/model/content/1.0}systemfolder\"";
query +=
"+ASPECT:\"{http://www.alfresco.org/model/content/1.0}versionable\"";

Here, we used another keyword called ASPECT to specify what aspects a node should
have to be included in the search result. Now, let's say we wanted to narrow down
the search further and only look for folders with the name Test. To search on the
cm:name property, add the following to the query:

String query =
 "+PATH:\"/app:company_home/app:user_homes/sys:martin//*\"";
query +=
"+TYPE:\"{http://www.alfresco.org/model/content/1.0}folder\"";
query +=
"-TYPE:\"{http://www.alfresco.org/model/content/1.0}systemfolder\"";
query +=
"+ASPECT:\"{http://www.alfresco.org/model/content/1.0}versionable\"";
query += "+@" + LuceneQueryParser.escape(
"{http://www.alfresco.org/model/content/1.0}name”) + “:\”” +
 LuceneQueryParser.escape("Test") + "\"";

When searching on properties, we use the @ character to specify the name of the
property and the value of it. Remember to escape the property name and the property
value to handle special characters such as + - ! () { } [] ^ " ~ * ? : \. For
more information about search, see http://wiki.alfresco.com/wiki/Search.

Using the Permission Service
When we are using the internal versions of the Foundation Services, it is up to us
to make sure that users are not accessing folders they are not supposed to access
or create content where they should not, and so on. We can easily check a user's
permissions with the Permission Service.

The Alfresco APIs

[74]

To check if a user has permission to add documents or folders in a parent folder, we
can do the following:

public void readSomething() {
 NodeRef parentFolderNodeRef = // get node ref
 boolean hasCreatePermission =
 m_permissionService.hasPermission(parentFolderNodeRef,
 PermissionService.ADD_CHILDREN) == AccessStatus.ALLOWED;

 if (hasCreatePermission) {
 // Go ahead and add document or create folder...
 }

In this case, we are checking if the AddChildren permission group (that is,
CreateChildren permission and LinkChildren permission) is allowed for the user
in the parent folder with passed in node reference. We can check read, update, and
delete permissions in the same way:

 boolean hasReadPermission =
 m_permissionService.hasPermission(parentFolderNodeRef,
 PermissionService.READ) == AccessStatus.ALLOWED;

 if (hasReadPermission) {
 // It is okay to display folder or document for user
 }

By using the READ permission group, we check if the user can access properties
of a node, access child nodes, and access the physical content of a node.

 boolean hasUpdatePermission =
 m_permissionService.hasPermission(parentFolderNodeRef,
 PermissionService.WRITE) == AccessStatus.ALLOWED;

 if (hasUpdatePermission) {
 // It is okay for user to go ahead and update document
 }

By using the WRITE permission group, we check if the user can update properties
of a node, and add physical content for a node.

 boolean hasDeletePermission =
 m_permissionService.hasPermission(parentFolderNodeRef,
 PermissionService.DELETE) == AccessStatus.ALLOWED;

 if (hasDeletePermission) {
 // User can delete folder or document
 }

Chapter 2

[75]

By using the DELETE permission group, we check if the user can delete the actual
node or any of its child nodes.

In none of these calls to the Permission Service have we passed in a username,
so what user is the permission check executed against? The Permission Service
will use the user associated with the current thread.

Using the Dictionary Service
The Dictionary Service can be used to extract definitions from the content models
that have been deployed in the system. It can be used to inspect the content models
as follows:

public void readSomething()
{
 Collection<QName> allDeployedModels =
 m_dictionaryService.getAllModels();
 for (QName model : allDeployedModels) {
 ModelDefinition modelDef = m_dictionaryService.getModel(model);
 QName modelName = modelDef.getName();
 Collection<QName> allTypes =
 m_dictionaryService.getTypes(modelName);
 Collection<QName> allAspects =
 m_dictionaryService.getAspects(modelName);
 ...
}

However, one of the more used functions of the Dictionary Service is probably the
possibility to check if a node reference is of a certain type or a subtype. This can be
done as follows:

 NodeRef someNodeRef = // get node reference
 QName nodeTypeQName = m_nodeService.getType(someNodeRef);

 Boolean isFolder = m_dictionaryService.
 isSubClass(nodeTypeQName, ContentModel.TYPE_FOLDER);

 if (isFolder) {
 // We got some type of folder node
 }

This would match any folder including system folders, as they are a subtype of
folders. If we wanted to check that a node type matches exactly a specific type then
we can just use equals, as follows:

 nodeTypeQName.equals(ContentModel.TYPE_FOLDER);

The Alfresco APIs

[76]

In this case, it will match only if the node type is a normal folder (cm:folder) and it
will not, for example, match a system folder type (cm:systemfolder), even though
it extends the normal folder type.

Logging
It is a good idea to include logging in our code. To set up a logging object we add the
following to our implementation class:

public class MyCmsServiceImpl implements MyCmsService {
 private static Log logger =
 LogFactory.getLog(MyCmsServiceImpl.class);

 private NodeService m_nodeService;

 public void setNodeService(NodeService nodeService) {
 m_nodeService = nodeService;
 }

 public void readSomething() {
 // Here we can use methods that are read-only
 }

 public void writeSomething() {
 // Here we can use methods that require
 // a transaction that is not read-only
 }
}

Use DEBUG logging in most cases as writing INFO logs impacts performance. When
writing DEBUG logs first test if the debug level is enabled or not:

 if (logger.isDebugEnabled()) {
 logger.debug("A log with " + var1 + " a lot " + var2 + "
 of stuff");
 }

In this way, you will not have unnecessary string concatenation going on if debug is
turned off. When writing logs make sure to include as much information as possible;
avoid writing logs such as the following:

 logger.warn("Access denied");

Chapter 2

[77]

A better log would give detailed information about the problem:

 logger.warn("Could not create new folder,
 Add Children permission denied to user
 "+AuthenticationUtil.getFullyAuthenticatedUser()+"
 [folderNodeName= "+name+"][parentFolderName="+parentName+
 "[parentFolderNodeRef="+parentRef+"]");

A system administrator is going to see this log, so it should contain as much
information as possible to be able to track down the problem and fix it. Warning
logs should be such in nature that the system can continue to function after they
have happened.

Error logs should only be written when the problem is irrecoverable. When writing
an error log, we would in most cases also throw a RuntimeException to roll back
the ongoing transaction, so the system is kept in a consistent state:

public void writeSomething() {
 ...

 parentChildAssocRef = m_nodeService.createNode(
 parentFolderNodeRef, associationType, associationQName,
 nodeType,nodeProperties);

 if (parentChildAssocRef == null)
 {
 String msg = "Could not create file node (" + filename + "),
 createNode resulted in null
 [parentFolderNodeRef=" + parentFolderNodeRef + "]
 [username=" + username + "]";
 logger.error(msg);
 throw new RuntimeException(msg);
}

It is highly likely that error logs will be picked up by a system monitoring tool and
will alert the system administrator of a serious problem. So use error logs only if the
problem is really serious.

Event management API
The event management system provided by Alfresco is quite useful when we are
using the foundation services to code an embedded extension to Alfresco. With
the vast number of events that we can listen to, this gives us a lot of possibilities
to automate certain business rules that might be dependent on what happens in
the system.

The Alfresco APIs

[78]

To create an event handler, we first start with the event handler implementation
itself. In this example, we will listen to a couple of document events and do some
logging when they occur:

public class DocumentEventHandler
{
 private static Log logger =
 LogFactory.getLog(DocumentEventHandler.class);

 private PolicyComponent m_eventManager;

 public void setPolicyComponent(PolicyComponent p)
 {
 m_eventManager = p;
 }

 public void setNodeService(NodeService nodeService) {
 m_nodeService = nodeService;
 }

 public void onAddDocument(ChildAssociationRef parentChildAssocRef)
 {
 NodeRef parentFolderRef = parentChildAssocRef.getParentRef();
 NodeRef docRef = parentChildAssocRef.getChildRef();

 // Check if node exists, might be moved,
 // or created and deleted in same transaction.
 if (docRef == null || !m_nodeService.exists(docRef)) {
 // Does not exist, nothing to do
 return;
 }

 logger.info("A new document with ref (" + docRef + ") was just
 created in folder (" + parentFolderRef + ")");
 }

 public void onUpdateDocument(NodeRef docNodeRef) {
 // Check if node exists, might be moved,
 // or created and deleted in same transaction.
 if (docNodeRef == null || !m_nodeService.exists(docNodeRef)) {
 // Does not exist, nothing to do
 return;
 }

Chapter 2

[79]

 NodeRef parentFolderRef =
 m_nodeService.getPrimaryParent(docNodeRef).getParentRef();

 logger.info("A document with ref (" + docNodeRef + ") was just
 updated in folder (" + parentFolderRef + ")");
 }

 public void onDeleteDocument(ChildAssociationRef
 parentChildAssocRef, boolean isNodeArchived)
 {
 NodeRef parentFolderRef = parentChildAssocRef.getParentRef();
 NodeRef docRef = parentChildAssocRef.getChildRef();
 logger.info("A document with ref (" + docRef + ") was just
 deleted in folder (" + parentFolderRef + ")");
 }
}

This just defines our event handling methods and we need to also register them with
the Alfresco Event Manager, so that they get called when these events happens. To
do this, let's create another method that will be used to register our event methods
with the event manager:

public void registerEventHandlers() {
 m_eventManager.bindClassBehaviour(
 NodeServicePolicies.OnCreateNodePolicy.QNAME,
 ContentModel.TYPE_CONTENT,
 new JavaBehaviour(this, "onAddDocument",
 Behaviour.NotificationFrequency.TRANSACTION_COMMIT));

When you register an event handler, there are three things you need to tell the
event manager:

Event: What event method we want to listen to. In this case, we have told
the event manager to notify our event handler when the onCreateNode
event happens.
Content Model Class: We also need to tell the event manager for what
type of content it should notify us. In this case, we want to be notified when
any type of content is created (that is, any content of type cm:content or
subtype thereof).
We are not restricted to use only types; we can also specify aspects such as
anything with versioning turned on (that is, ContentModel.ASPECT_VER-
SIONABLE). If we want the event method to be called for several different
aspects and types, then we have to call bindClassBehaviour several times.

•

•

The Alfresco APIs

[80]

Event Handler: The last thing we need to do is to tell the event manager
what method in our code makes up the actual event handler. In this
case, it is the onAddDocument method that we want to be called when
the onCreateNode event happens for a node of type Content.

The other two event handlers are registered in the same way:

 m_eventManager.bindClassBehaviour(
 NodeServicePolicies.OnUpdateNodePolicy.QNAME,
 ContentModel.TYPE_CONTENT,
 new JavaBehaviour(this, "onUpdateDocument",
 Behaviour.NotificationFrequency.TRANSACTION_COMMIT));

 m_eventManager.bindClassBehaviour(
 NodeServicePolicies.OnDeleteNodePolicy.QNAME,
 ContentModel.TYPE_CONTENT,
 new JavaBehaviour(this, "onDeleteDocument",
 Behaviour.NotificationFrequency.TRANSACTION_COMMIT));

We have decided to bind our event handlers to a class event (that is, Type
or Aspect). It is also possible to bind an event handler directly to a property
event or an association event by using the bindPropertyBehavior or
bindAssociationBehavior property respectively.

For example, to get notified only when the name (that is, cm:name) of a
document changes, we could do this registration:
m_eventManager.bindPropertyBehaviour(
 NodeServicePolicies.OnUpdatePropertiesPolicy.QNAME,
 ContentModel.TYPE_CONTENT, ContentModel.PROP_NAME,
 new JavaBehaviour(this, "onUpdateDocumentName",
 Behaviour.NotificationFrequency.TRANSACTION_
COMMIT));

Note that we have to use a policy method (that is, event) that is on the
property level (that is, onUpdateProperties).

The last thing we need to do is to add the DocumentEventHandler class to the Spring
context and make sure that the registerEventHandlers method is called:

<bean id="documentEventHandler"
 class = "com.bestmoney.repo.policy.DocumentEventHandler"
 init-method = "registerEventHandlers">
 <property name="policyComponent">
 <ref bean="policyComponent"/>
 </property>
</bean>

•

Chapter 2

[81]

So how do we know what the event handler method signatures should look like?
Take the following method signature for example:

 public void onDeleteDocument(ChildAssociationRef
 parentChildAssocRef, boolean isNodeArchived) {

How would we know that the event manager expects to call a method with
that signature? We can find out the correct method signature by looking in the
NodeServicePolicies class:

package org.alfresco.repo.node;

public interface NodeServicePolicies {
...
 public interface OnDeleteNodePolicy extends ClassPolicy {
 public void onDeleteNode(ChildAssociationRef
 childAssocRef, boolean isNodeArchived);
 }
...

If you implement an extension based on the Foundation Service API
and you also use the Event API, this cannot later be changed to use
for example, the CMIS API as it does not provide an event model
with callbacks, or the like.

Metadata Extraction API
The Metadata Extraction API can be used to extend Alfresco with new metadata
extractors. Normally, we would not have to implement any new metadata extractors
as the system comes with a lot of different extractors out of the box (as we have seen
earlier). If you want to check out the metadata extractors installed in your system,
open the alfresco/tomcat/webapps/alfresco/WEB-INF/classes/alfresco/
content-services-context.xml file.

However, sometimes Alfresco does not come with a metadata extractor for a MIME
type. This is the case with, for example, XML documents, as they can come in an
infinite number of formats. However, let's say we have a customer with a specific
XML format looking like this:

<document id="doc_id_2010_02_21_1002">
 <header>
 <date>2010-04-22</date>
 <title>Test text import</title>
 <desc>

The Alfresco APIs

[82]

 This is a description of this text…
 </desc>
 </header>
 <text>Lots of text go here...</text>
</document>

And they want the header fields extracted into some content model metadata fields
each time an XML file with this format is added to the repository. The mapping from
XML field to content model field should be as follows:

date -> Created Date (that is, cm:created)
title -> Title (that is, cm:title)
desc -> Description (that is, cm:description)

To support this, we can implement a new metadata extractor. What we need when
implementing a new metadata extractor is some sort of tool that can be used to
extract the properties, which make up the metadata, from the document format.
When we get that tool, in this case an XML parser, we can go ahead and create
the class as follows:

public class SampleXMLMetadataExtracter extends
 AbstractMappingMetadataExtracter {

 private static final String KEY_CREATION_DATE = "date";
 private static final String KEY_TITLE = "title";
 private static final String KEY_DESCRIPTION = "desc";

 public static String[] SUPPORTED_MIMETYPES = new String[] {
 MimetypeMap.MIMETYPE_XML };

 public SampleXMLMetadataExtracter ()
 {
 super(new HashSet<String>(Arrays.asList(SUPPORTED_MIMETYPES)));
 }

The first thing we do is extend the AbstractMappingMetadataExtracter base
class, so we get a lot of functionality for free, and this base class also implements the
MetadataExtracter interface for us. Then we tell the abstract base class what MIME
types this extractor will support. What we also define is the name of the document
properties that we will extract. These names are used as keys in the Document
Property Key -> Metadata Property Value map.

•

•

•

Chapter 2

[83]

The next thing we need to do is implement the extractRaw method and this method
should extract as many properties as possible from the XML document, even if all of
them are not actually going to be mapped to any metadata in the content model:

 @Override
 public Map<String, Serializable> extractRaw(
 ContentReader reader) throws Throwable
 {
 Map<String, Serializable> rawProperties = newRawMap();

 InputStream is = null;
 try
 {
 is = reader.getContentInputStream();

 // Use some magical tool to parse and extract
 // properties from XML file
 Date dateValue = // extract property
 String titleValue = // extract property
 String descValue = // extract property

 boolean wasAdded = putRawValue(KEY_CREATION_DATE, dateValue,
 rawProperties);
 wasAdded = putRawValue(KEY_TITLE, titleValue, rawProperties);
 wasAdded = putRawValue(KEY_DESCRIPTION, descValue,
 rawProperties);

 } finally {
 if (is != null) {
 try {
 is.close();
 } catch (IOException e) { /* log error */ }
 }
 }

 return rawProperties;
 }
}

The Alfresco APIs

[84]

We now have an XML metadata extractor that will extract all the possible properties
into this raw map of properties (that is, rawProperties). The system needs to know
how to map them to content model properties. This is done in a properties file that
we will need to create:

#
SampleXMLMetadataExtracter - default mapping

Namespaces
namespace.prefix.cm=http://www.alfresco.org/model/content/1.0

Mappings
XML file property -> Content Model Property
Date = cm:created
Title = cm:title
Desc = cm:description

For this mapping, the file that is to be picked up automatically by the system should
have the same name as the class. However, the extension should be .properties
(that is, SampleXMLMetadataExtracter.properties) and it should be put in the
same package as the class. This is called the default property mapping and it can be
overridden later on via Spring configuration if needed.

The last thing we need to do is create a Spring bean definition for the new XML
metadata extractor, so that it is loaded the next time we start Alfresco:

<bean id="extracter.XML" class =
 "com.bestmoney.repo.content.metadata.SampleXMLMetadataExtracter"
 parent="baseMetadataExtracter" />

Make sure to set the baseMetadataExtracter as the parent bean, so that we get all the
necessary bean definitions for the AbstractMappingMetadataExtracter class. This
bean definition also calls the register method in the MetadataExtracterRegistry
class, so the XML metadata extractor will be available next time anybody adds an
XML document to the repository. The bean definition should be added to the
custom-metadata-extractors-context.xml file. (After installation this file is called
custom-metadata-extractors-context.xml.sample, so you need to rename it.)

If someone later on would like to override the property mappings, this can be done
by overriding the bean definition as follows:

<bean id="extracter.XML" class =
 "com.bestmoney.repo.content.metadata.SampleXMLMetadataExtracter"
 parent="baseMetadataExtracter">

Chapter 2

[85]

 <!—Bring with us all the default mappings -->
 <property name="inheritDefaultMapping">
 <value>true</value>
 </property>

 <!— Override just one of the properties -->
 <property name="mappingProperties">
 <props>
 <prop key="namespace.prefix.cm">
 http://www.alfresco.org/model/content/1.0
 </prop>
 <prop key="date">cm:modified</prop>
 </props>
 </property>
</bean>

Here, we override the default mapping of date to Created Date and set it to be
stored in the Modified Date instead. We can use the same technique with existing
metadata extractors to override and change property mappings.

It is also possible to skip the property file all together and specify the property
mappings in the bean definition as follows:

<bean id="extracter.XML" class =
 "com.bestmoney.repo.content.metadata.SampleXMLMetadataExtracter"
 parent="baseMetadataExtracter">

 <property name="mappingProperties">
 <bean class =
 "org.springframework.beans.factory.config.PropertiesFactoryBean">
 <property name="properties">
 <props>
 <prop key="namespace.prefix.cm">
 http://www.alfresco.org/model/content/1.0
 </prop>
 <prop key="date">cm:created</prop>
 <prop key="title">cm:title</prop>
 <prop key="desc">cm:description</prop>
 </props>
 </property>
 </bean>
 </property>
</bean>

The Alfresco APIs

[86]

Content Transformation API
The default content transformers are defined in the alfresco/tomcat/webapps/
alfresco/WEB-INF/classes/alfresco/content-services-context.xml file
(that is, the same file as the metadata extractors are defined in). And as we have seen,
the system comes with lots of transformers and we can often combine them to create
new transformations by using a complex transformer, so there are not that many
cases when we would need to create our own transformer.

To make sure that there is no transformation available for what we want, first try to
do the transformation via the Alfresco user interface and a transformation action. If
it reports that the transformation cannot be done, then it is time to create our own
transformer. This is the case when we try to convert an MS Visio diagram to a PDF
file; it is not a supported transformation.

Most transformers use an external tool to do the transformation and there are plenty
of command-line tools to convert between MS Visio (that is, application/visio)
and PDF (that is, application/pdf) that can be used for this. To create our own
custom transformer that uses a command-line tool for the transformation, we use
a proxy content transformer class as follows:

<bean id="transformer.visio2pdf" class=
 "org.alfresco.repo.content.transform.ProxyContentTransformer"
 parent="baseContentTransformer">
 <property name="worker">
 <ref bean="transformer.worker.visio2pdf"/>
 </property>
</bean>

The proxy transformer delegates to the real content transformer, the worker,
and makes it possible to separate the third-party transformation tool from the
transformer registry. The transformation worker is defined as follows and uses
the runtime executable content transformer:

<bean id="transformer.worker.visio2pdf" class =
"org.alfresco.repo.content.transform.
RuntimeExecutableContentTransformerWorker">
 <property name="mimetypeService">
 <ref bean="mimetypeService"/>
 </property>

 <property name="explicitTransformations">
 <list>
 <bean class =
 org.alfresco.repo.content.transform.ExplictTransformationDetails">
 <property name="sourceMimetype">

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

[87]

 <value>application/visio</value>
 </property>
 <property name="targetMimetype">
 <value>application/pdf</value>
 </property>
 </bean>
 </list>
 </property>

 <property name="checkCommand">
 <bean class="org.alfresco.util.exec.RuntimeExec">
 <property name="commandsAndArguments">
 <map>
 <entry key=".*">
 <list>
 <value>${visio2pdf.exe}</value>
 <value>-help</value>
 </list>
 </entry>
 </map>
 </property>
 <property name="errorCodes">
 <value>2</value>
 </property>
 </bean>
 </property>

 <property name="transformCommand">
 <bean class="org.alfresco.util.exec.RuntimeExec">
 <property name="commandsAndArguments">
 <map>
 <entry key=".*">
 <list>
 <value>${visio2pdf.exe}</value>
 <value>${source}</value>
 <value>-o</value>
 <value>${target}</value>
 </list>
 </entry>
 </map>
 </property>
 <property name="errorCodes">

The Alfresco APIs

[88]

 <value>2</value>
 </property>
 </bean>
 </property>

</bean>

Here we first define the transformation that we support—MS Visio to PDF—by
setting the explicitTransformations property.

Then we define the checkCommand that is used to verify that the command-line tool
is available and that the transformer will be able to function. The transformer will be
disabled if the checkCommand returns an error (defined with errorCode property) or
is inaccessible. With this configuration, we assume that the command-line tool can be
run with the –help option to just check that it is available and working.

The last thing we define is the transformCommand, which does the transformation
from MS Visio to PDF. The transformation mechanism performs substitutions of the
variables ${source} and ${target}, which are the full file paths of the source and
target files for the transformation. It is assumed here also that the command-line
option –o is used to specify output/target files.

The command-line executable is specified as a variable, so we also need to add it
to the repository properties file. Add the location of the visio2pdf executable to
custom-repository.properties (can be found here tomcat/shared/classes/
alfresco/extension).

External executable locations
visio2pdf.exe=/usr/bin/visio2pdf

Add the bean definitions to a file called custom-content-transformers-context.
xml (this file does not exist, you need to create it) and put it in the tomcat/shared/
classes/alfresco/ extension.

The JavaScript API
The JavaScript API is one of the most useful programming interfaces for Alfresco. It
allows us to quickly make customizations to the content management functionality.
And it is easy to do this while the system is running because the development time is
faster than if using Java.

Chapter 2

[89]

It is though, important to know that this is server-side JavaScript implemented with
the Mozilla Rhino JavaScript engine. It does not contain objects (that is, window,
document, location, and alert) or methods for manipulating HTML documents:

Alfresco has extended the Rhino JavaScript implementation with some extra object
such as companyhome, space, and document, as shown in the previous screenshot.

When using the JavaScript API, we implicitly use the Transaction Service and the
Security Service, so if anything goes wrong the transaction is rolled back and the
system is still in a consistent state.

An Alfresco JavaScript is usually called in the context of a space and a document, so
these variables will contain references to the current folder (that is, space variable)
and the current file (that is, document variable).

Here is how to create a new file node:

var filename = "helloworld.txt";
var file = space.createFile(filename);

This creates metadata for a file helloworld.txt that will be uploaded or created
sometime in the future. The space variable will point to the folder where the
script is executed.

We can get the file node reference for the new node:

var newFileNodeRef = file.nodeRef;

As we said, the new file node is not yet associated with any physical content, so let's
fix that:

file.mimetype = "text/plain";
file.content = "Hello World!";

The Alfresco APIs

[90]

This will automatically set the node's cm:content property to point to the
helloworld.txt file.

Here we are just adding a piece of text as content and it automatically
creates the physical file in the Content Store. If we already have the file in
the filesystem and want to read it, and set it as content for the metadata,
we cannot do that with JavaScript as we are normally not allowed to
access the filesystem.
In this case, upload the file first to the repository and then search for it
as follows:
var myFile = companyhome.childByNamePath("/User Homes/
martin/mystuff.doc");

If this is not possible or you need to handle a lot of binary files, use the
Java Foundation Services API instead.

If we want to add a title and description property to the new file node, we can
do that by adding the titled aspect:

var props = new Array(2);
props["cm:title"] = "Hello World!";
props["cm:description"] =
 "This is the traditional Hello World example.";

file.addAspect("cm:titled", props);

To create a folder node, we can do the following:

var folderName = "MyFolder";
var folder = space.createFolder(folderName);

Here we create a folder under the parent folder from where the script was executed.

As we can see, there is no big difference between creating a file node and creating a
folder node. It is when we add content that it differs, as only a file node has content.

If we wanted to get all file and subfolder nodes for a node, and then for each child
node check what type and properties they have, we could use the following code:

var childNodes = space.children;
for each (childNode in childNodes) {
 var nodeRef = childNode.nodeRef;
 var nodeProperties = childNode.properties;
 var type = childNode.type;

Chapter 2

[91]

 if (childNode.isDocument) {
 // Do something with the file metadata or content
 var filename = nodeProperties["cm:name"];
 } else if (childNode.isContainer) {
 // Do something with folder metadata
 var foldername = nodeProperties.name;
 }
}

When we run this script it will loop through all folders and files under the folder
from which the script is run. For each node found, it gets the node reference,
properties, and also the QName for the type of node. It then checks if it is a
document or a folder and extracts the name of the content.

When we want to remove nodes, we do as follows:

file.remove();
folder.remove();

This removes both the metadata from the database and also moves the physical file
from the Working Store to the Archive Store.

If we have the node reference for a folder or a file and want to get to the parent folder
containing it, we can use the following code:

var parentFolder = file.parent;

To check if a node has a particular aspect applied to it, do this:

var isVersioned = file.hasAspect("cm:versionable");

In this case, we are checking if a node has versioning turned on. To read the physical
content file associated with a node, use the following code:

var folder = companyhome.childByNamePath("/User Homes/martin");
var childNodes = folder.children;
for each (childNode in childNodes)
{
 if (childNode.isDocument) {
 if (childNode.mimetype == "text/plain") {
 var text = childNode.content;
 } else if (childNode.mimetype == "text/html") {
 var html = childNode.content;
 }
 }
}

The Alfresco APIs

[92]

Here we are accessing the content of all text and HTML files in the /Company Home/
User homes/martin folder.

When using JavaScript, the security layer is enabled, so it is not possible to access or
create files where we should not be allowed to. However, in some cases, it is good to
be able to check if the user has permission to add a file to a folder, for example.

Here is how to do that:

if (space.hasPermission("CreateChildren"))
{
 // Ok, we can go ahead and create a folder or file
}
else
{
 logger.log("User ("+ person.properties.userName + ") does not have
 permission to create a file in the (" + space.name + ") folder");
}

When checking permissions, we use the hasPermission method and pass in
the permission group name. These are the lower level permission groups, as
mentioned earlier (for example, ReadProperties, ReadChildren, ReadContent,
WriteProperties, WriteContent).

To print out the username of the current user executing the script, we use another
root object called person that references a cm:person object.

To search for nodes with JavaScript is easy and we can use Lucene queries:

var store = "workspace://SpacesStore";
var query = "+PATH:\"/app:company_home//*\"
 +ASPECT:\"cm:versionable\"";
var versionableContentItems = search.luceneSearch(store, query);

for each (versionableContentItem in versionableContentItems)
{
 // Do something with a versionable content
}

This search looks for all nodes that have the "versionable" aspect applied. The way
you create the Lucene queries is the same as we discussed in the Using the Search
Service section under Java Foundation Services.

Chapter 2

[93]

To find out what methods are available to call on a so-called script node (that is, folder
or file node) you can have a look at the org.alfresco.repo.jscript.ScriptNode
class.

For more information about the Java Script API, see http://wiki.alfresco.com/
wiki/3.3_JavaScript_API.

JavaScript event handlers
When we discussed the event API, which is part of the Foundation Service Java
API, we did not mention that we can write event handlers in JavaScript. Here is
an example of how to associate the onUpdateNode event with JavaScript code:

<bean id="eventHandler.onUpdateContent" class =
 "org.alfresco.repo.policy.registration.ClassPolicyRegistration"
 parent="policyRegistration">

 <property name="policyName">
 <value>{http://www.alfresco.org}onUpdateNode</value>
 </property>

 <property name="className">
 <value> {http://www.alfresco.org/model/content/1.0}content
 </value>
 </property>

 <property name="behaviour">
 <bean class="org.alfresco.repo.jscript.ScriptBehaviour"
 parent="scriptBehaviour">
 <property name="location">
 <bean class =
 "org.alfresco.repo.jscript.ClasspathScriptLocation">
 <constructor-arg>
 <value>alfresco/extension/scripts/someOnUpdateNode.js
 </value>
 </constructor-arg>
 </bean>
 </property>
 </bean>
 </property>
</bean>

This bean definition registers the someOnUpdateNode.js JavaScript to be called each
time the onUpdateNode event happens for any cm:content type.

The Alfresco APIs

[94]

Debug logging
It is very useful to have debug logging turned on when developing JavaScript. This
can be done via the /alfresco/tomcat/webapps/alfresco/WEB-INF/classes/
log4j.properties file:

log4j.logger.org.alfresco.repo.jscript=debug
log4j.logger.org.alfresco.repo.jscript.ScriptLogger=debug

JavaScript or Java?
The more you can stick to JavaScript, the more flexible and easier it will be
to maintain and update the code and the faster you will be able to develop
your solutions.

Customers will also have a much easier way of maintaining your solution as they do
not have to rebuild the module and redeploy just to make a little update. JavaScript
can even be updated without restarting the server.

However, there are situations where you might be developing a product extension
to Alfresco and it is delivered as an AMP and you have specific requirements
that require new Java libraries to be used. Then it makes sense to use Java for
this customization.

Client-server APIs
These are Representational State Transfer (REST) based application programming
interfaces where the client is remote in a different process context than the Alfresco
server. They are implemented as Web Scripts, which provide RESTful access to
content held within the Alfresco Repository. Alfresco is delivered with a couple of
these APIs out of the box, for example, the CMIS API and the Repository API.

CMIS API
The Content Management Interoperability Services (CMIS) API was created
to provide users of CMS systems a common and standard way of accessing and
searching for content. It should not matter if your client is accessing an Alfresco
system or another vendor's CMS system, the client code should still be the same
and not have to change if you decide to switch to another CMS system.

We can think of it in the same way we think about SQL for databases. An SQL query
can be used to access data in any database.

Chapter 2

[95]

To use the CMIS API construct an URL and make a HTTP call to the
Alfresco server. For example, if we wanted to access all child folders of the
/Company Home/User Homes folder we could use an URL as follows in any browser:
http://localhost:8080/alfresco/service/cmis/p/User%20Homes/children.

This would return an ATOM feed with the home folders after we have logged
in with admin credentials. The Apache Abdera library may be used to parse the
ATOM-formatted CMIS responses, but we could also use a basic XML parser to do
the same. Unfortunately, the CMIS web scripts do not have the possibility to return
JSON or HTML. However, some browsers such as Mozilla Firefox will show you the
ATOM Feed as HTML for testing.

To see for example, what URL templates are available for a CMIS web script such
as children, you can call another URL as follows: http://localhost:8080/
alfresco/service/script/org/alfresco/cmis/children.get.

CMIS also provides SQL-like query languages so you can do queries like this:

SELECT * FROM Document WHERE IN_FOLDER(
'workspace://SpacesStore/04761070-5e25-11dd-8ab6-b324934c9dae')

This query would return all documents in the folder specified by the
Node Reference.

Repository API
In addition to the CMIS standard, Alfresco has exposed the Repository API for
services such as workflow, activity feed, blogs, tagging, thumb nailing, user
management, and more that are not available when using the CMIS API.

Custom APIs
With Web Scripts, we can build our own RESTful interface using lightweight
scripting technologies such as JavaScript and FreeMarker. A Web Script is simply
a service bound to a URI that responds to HTTP methods such as GET, POST, PUT,
and DELETE.

The Alfresco Web Script Framework is implemented in a standalone fashion, so it
can be run either embedded in the Alfresco server or in an external web server.

The Alfresco APIs

[96]

When talking about Web Scripts, we divide them into two categories:

Data Web Scripts: They encapsulate access and modification of file content
and file metadata stored in the repository. Therefore, these are available only
via the Alfresco server.
Presentation Web Scripts: They allow us to build user interfaces such as a
Dashlet for Alfresco Explorer or Alfresco Share, a portlet for a JSR-168 portal,
an UI component within Alfresco SURF, a website, or a custom application.
They typically render HTML and unlike Data Web Scripts they may be
hosted in the Alfresco server or in a separate web server. When hosted
separately, they usually interact with Data Web Scripts.

To get an idea about how this works, let's implement a Web Script that runs the
Foundation Service test that we have gone through in this chapter. The first thing
we need to do is to define the script in the Spring configuration file as follows:

<bean id="webscript.com.bestmoney.test.foundationservice.testfs.get"
 class="com.bestmoney.test.foundationservice.
 TestFoundationServicesWebScript" parent="webscript">
 <property name="myCmsService">
 <ref bean="myCmsService"/>
 </property>
 </bean>

This defines a new Web Script that the Alfresco server will pick up based on the
naming convention specified in the id attribute:

webscript tells the system that this is a Web Script definition.
com.bestmoney.test.foundationservice is the package name where the
Web Script descriptor file will be found, this package must be located under
alfresco/extension/templates/webscripts in the classpath.
testfs is the name of the Web Script.
get is the HTTP method to be used when calling this Web Script.

The class attribute refers to the class that implements the code that should be
executed when the Web Script is called. And we pass in the Foundation Service
bean (that is, myCmsService) that is used to test different Foundation Services calls.

The TestFoundationServicesWebScript class looks like this:

public class TestFoundationServicesWebScript extends
 AbstractWebScript
{
 private MyCmsService m_myCmsService;

•

•

•

•

•

•

Chapter 2

[97]

 public void setMyCmsService(MyCmsService myCmsService)
 {
 m_myCmsService = myCmsService;
 }

 public void execute(WebScriptRequest req, WebScriptResponse res)
 throws IOException {
 m_myCmsService.writeSomething();
 m_myCmsService.readSomething();

 res.getWriter().write("Done with the Foundation Service
 tests!");
 }
}

It extends the AbstractWebScript class to get some methods implemented
for free and then we just have to implement the execute method to call the
myCmsService bean.

Last thing we need to do is create a descriptor file for the Web Script and put this
file in the alfresco/extension/templates/webscripts/com/bestmoney/test/
foundationservice directory. It should be called testfs.get.desc.xml and
looks like this:

<webscript>
 <shortname>Test Foundation Services</shortname>
 <description>This Web Script is used to test Foundation
 Services</description>
 <url>/3340_04/testfs</url>
 <authentication>user</authentication>
</webscript>

The descriptor defines the URL template, which in this case is /3340_04/testfs
and means that we can call this Web Script with the following URL:
http://localhost:8080/alfresco/service/3340_04/testfs.

This will execute the different calls to the Foundation Services inside a transaction
after we have logged in. We have specified that the user has authentication value,
which means that a user has to log in before this Web Script will be run. This also
means that the Web Script will be run implicitly inside a transaction.

The Alfresco APIs

[98]

Bootstrap APIs
There are several ways to bootstrap the system with custom functionality or
new content.

Patches
We can create our own patches and plug them into the system by creating a class that
implements the org.alfresco.repo.admin.patch.Patch interface. The easiest way
to do this is to extend the org.alfresco.repo.admin.patch.AbstractPatch class
that implements this interface and comes with member variables and setters and
getters for common services:

public class MyPatch extends AbstractPatch
{
 private ImporterBootstrap importerBootstrap;

 public void setImporterBootstrap(
 ImporterBootstrap importerBootstrap)
 {
 this.importerBootstrap = importerBootstrap;
 }

 @Override
 protected String applyInternal() throws Exception
 {
 StoreRef storeRef = importerBootstrap.getStoreRef();
 NodeRef rootNodeRef = nodeService.getRootNode(storeRef);

 // Do some patching of the system...

 return "Success";
 }
}

This patch uses the org.alfresco.repo.importer.ImporterBootstrap object
to get to the store reference and then to the store root node via the Node Service.

The patch is registered with the system as a Spring bean:

<bean id="patch.my" class="com.bestmoney.bootstrap.MyPatch"
 parent="basePatch">
 <property name="id">
 <value>patch.my</value>
 </property>

Chapter 2

[99]

 <property name="description">
 <value>Test patch</value>
 </property>
 <property name="fixesFromSchema">
 <value>0</value>
 </property>
 <property name="fixesToSchema">
 <value>${version.schema}</value>
 </property>
 <property name="targetSchema">
 <value>10000</value>
 </property>
 <property name="importerBootstrap">
 <ref bean="spacesBootstrap"/>
 </property>
 <property name="nodeService">
 <ref bean="nodeService"/>
 </property>
</bean>

If we have several patches to execute and they should be in a specific order, we
can control that with the targetSchema value. The fixesToSchema value is set
to Alfresco's current schema version (that is, via the version.schema variable),
which means that this patch will always be run no matter what version of Alfresco
is being used.

Importers
When using an importer, it is defined in Spring via a bean that is implemented
with the ImporterModuleComponent class, which is a generic module component
that can be configured to import data into the system. The bean extends the
module.baseComponent and the definition looks like this:

<bean id="importer.presentationTemplate"
 class="org.alfresco.repo.module.ImporterModuleComponent"
 parent="module.baseComponent">
 <property name="moduleId" value="com_bestmoney_module"/>
 <property name="name"
 value = "com_bestmoney_module.bootstrapSpaces"/>
 <property name="description" value = "Initial data requirements"/>
 <property name="sinceVersion" value="1.0"/>
 <property name="appliesFromVersion" value="1.0"/>
 <property name="importer" ref="spacesBootstrap"/>
 <property name="bootstrapViews">
 <list>

The Alfresco APIs

[100]

 <props>
 <prop key="path">
/${spaces.company_home.childname}/${spaces.dictionary.childname}/
${spaces.templates.content.childname}
 </prop>
 <prop key="location"> alfresco/module/com_bestmoney_module/
bootstrap/presentation_template.xml</prop>
 </props>
 </list>
 </property>
</bean>

When defining an importer bean, we specify the path in the repository where we
want to store the imported content. And we also specify the location of the content
that should be imported. In this case, the presentation template is defined in an
XML file that could for example, be generated by exporting content via the export
command-line tool.

Summary
This chapter has taken us through most of the available application programming
interfaces for the Alfresco platform. We started off by going through how to set
up an embedded custom service, including transaction management, and we then
used the different Foundation Services, such as the Node Service to do low-level
manipulation of content as an embedded customization.

We then created a Metadata Extractor for an XML document and saw how
node properties can be set automatically when an XML document is added
to the repository.

Alfresco by default does not come with a transformer for MS Visio documents
to PDF documents, so we had a look at how this can be set up by configuring
a custom Content Transformer.

In the first chapter, we learned that rules can be set up on folders to execute certain
business logic when documents are added, deleted, or updated to a specific folder. In
this chapter, we also went through how to implement repository wide rules with the
so-called event handlers.

Chapter 2

[101]

One of the nice things with Alfresco is that it also provides a JavaScript API that can
be used to manipulate content in the repository. Using JavaScript is the preferred
way of manipulating content, as it is quicker to write business logic with JavaScript
than with Java, and the server does not have to be stopped and restarted while we
are updating our customizations.

Finally, we had a look at how third-party applications can talk to Alfresco remotely
via Web Scripts. Web Scripts are basically just HTTP requests that return JSON or
XML. If you want a no-lock in solution, then have a look at CMIS, which is an effort
to provide a standard Web Scripts API between ECM vendors.

In the next chapter, we will look in more detail at how an Alfresco extension project
is set up and how to construct a build process that can be used to build extensions for
both the Alfresco Explorer web application and the Alfresco Share web application.

Setting Up a Development
Environment and a Release

Process
When doing any kind of software development it is a good idea to plan and set up
a development environment at the beginning of a project. So everybody involved
knows how we are going to build the system, debug it, how it is organized, how
continuous integration and testing will be done, and what deployment method will
be used. If we can create a company-wide standard for how this is done, even better.

When setting up a development environment for building extensions for a CMS
system such as Alfresco, we will have to set it up for a lot of CMS specifics, so it is
good to have this documented.

Here are some more reasons why we might want to create a standard development
environment:

To find files based on a standard organization
To set up a naming convention for certain files, making it easy to spot what
they are used for
To organize similar files into the same directory
To organize files according to how they are deployed
To determine and set up the build file structure
To decide how unit testing should be done
To decide how continuous integration should be done to improve
regression testing
To scale the project both with new people and features

•

•

•

•

•

•

•

•

Setting Up a Development Environment and a Release Process

[104]

For the Best Money Content Management project, we will be building three different
kinds of extensions for Alfresco:

Repository extensions: Used to add custom content model, rules, workflows,
web scripts
User Interface customizations: Custom property sheets/forms, wizards,
dashlets, pages
Standalone clients: Mobile client, mashup client

The following figure shows the different extensions and how they relate to the
different Alfresco web applications:

As we can see in the figure, when working with Alfresco, there are two web
applications that we can customize and deploy extensions for. The main Alfresco
web application that includes the Repository and the Alfresco Explorer user interface
(that is, alfresco.war) and the Alfresco Share user interface (share.war).

Any custom clients that we build will most likely communicate with Alfresco via a
REST-based API. Alfresco Share also communicates with the Alfresco repository via
a REST-based API.

Every time we release a new version of the CMS extension to our client Best Money,
we need to have some kind of process in place, so that there is no confusion about
what was released and what tests have been done. To handle this, we will look at
how a release process can be set up.

•

•

•

Chapter 3

[105]

In this chapter, you will learn:

How to set up a project directory structure to manage extensions to Alfresco
Repository and Alfresco UI clients
How to set up the build file that will create the extension modules
How to set up a continuous integration (CI) solution
How to set up a release process

Setting up a development environment
The Best Money content management extensions for Alfresco cover a wide area
of features and functionality, so we need to set up the project directory structure
and build file accordingly. We will build in-process repository extensions that are
delivered via an AMP file, UI extensions delivered via a JAR file, and standalone
remote clients.

Alfresco Extension projects
We will build two different kinds of extensions—one for the Alfresco Explorer
(alfresco.war) web application and one for the Alfresco Share (share.war)
web application.

Alfresco Explorer and repository extensions
The alfresco.war application is usually extended with a so-called Alfresco
Module Package (AMP) file. An AMP file is basically a piece of a web application
archive (WAR). It is merged with the alfresco.war file to enable custom content
management extensions. Alfresco provides the Alfresco Module Management Tool
(that is, alfresco-mmt.jar) to help with the merging and it can be found in the
alfresco/bin directory in a standard installation.

There are several reasons why we need to merge our extensions into the
alfresco.war:

So that resources such as third-party Java libraries are picked up from
WEB-INF/lib

So that any custom Spring configuration is picked up correctly (it contains
beans to load custom content models, message property files, patches,
service implementations, and so on)

•

•

•

•

•

•

Setting Up a Development Environment and a Release Process

[106]

So that JSP pages, CSS, scripts, and images can be loaded from
webapps/alfresco

So that the configuration of customizations for the Alfresco Explorer web
client are picked up

Sometimes we also want to override Alfresco Explorer pages to insert or remove
logic or widgets and this is also handled by the Module Management Tool (MMT).

The MMT does not only manage the merging of the AMP into the WAR file, but it
also manages:

Module versioning: We can specify from what version a particular AMP file
is applicable, and if somebody tries to install the AMP file in an older version
the MMT will not allow it.
Module updates: If an older module is installed, then the MMT will
first remove all files related to the old module before installing the
updated module.
Module listing: The MMT can be used to list installed modules.
Backup of changes: When we use the MMT to install a new AMP it will first
back up any overwritten files and back up the current alfresco.war file.

The MMT tool expects the AMP file to be structured in a certain way. The following
directory structure is the default and expected one:

 |- /config
 |- /lib
 |- /web
 |- /jsp
 |- /css
 |- /images
 |- /scripts
 |- module.properties

These AMP directories are mapped into the WAR as follows:

config: /WEB-INF/classes
lib: /WEB-INF/lib
web/jsp: /jsp
web/css: /css
web/images: /images
web/scripts: /scripts

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3

[107]

The module.properties file is required to exist in the AMP file. It contains metadata
about the module such as the ID and version.

If we want to customize the way the AMP file is mapped into the WAR file with the
MMT application, then we can use the file-mapping.properties file to specify
mapping exceptions.

This file should be put in the root directory together with the module.properties
file. Each property key in the file points to a directory in the AMP file and each
property value points to a directory in the WAR file.

For example, if we wanted to call the web directory, webapp, we could set up the
property file as follows:

/webapp=/

The standard set of mappings will be included by default unless we set the property
include.default=false in the file-mapping.properties file.

Alfresco Share UI extensions
The Alfresco Share web application contained in the share.war file does not need
to be extended in the same way as the alfresco.war via an AMP. The Spring Surf
web framework is used to build UI extensions for the Alfresco Share application and
from Alfresco 3.3 and onwards, these extensions can be packaged in a JAR file and
just dropped into the webapps/share/WEB-INF/lib directory.

The Spring Surf web framework knows how to locate resources such as configuration
files and web resources from inside the JAR file.

The following directory structure is the default and the expected one for an Alfresco
Spring Surf JAR file:

 |- /alfresco
 |- /site-data
 |- /chrome
 |- /components
 |- /component-types
 |- /configurations
 |- /content-associations
 |- /pages
 |- /page-associations
 |- /page-types
 |- /template-instances
 |- /template-types
 |- /themes

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Setting Up a Development Environment and a Release Process

[108]

 |- /site-webscripts
 |- /templates
 |- META-INF

alfresco/site-data
The site-data directory contains the model objects that the Spring Surf web
framework manages and refers to in order to render the web application properly.
These model objects are instantiated in memory as standard Java POJOs and when
written to the disk they are serialized as XML.

The site-data directory contains a subdirectory for each type of model object that is
managed by the Spring Surf web framework.

alfresco/site-webscripts
The site-webscripts directory will contain all the Web Scripts that are used
to render the web application components. There can be both, data Web Scripts
and presentation Web Scripts, but for a Spring Surf application it will be mostly
presentation Web Scripts generating the user interface via Freemarker templates.

These Freemarker templates are stored in the alfresco/templates directory.

META-INF
The web resources/assets required by the web application is saved under the
META-INF directory. This directory is now basically the root for all URLs that are
processed by the Resource Servlet.

For example, to access an image called logo.png under the META-INF/global/
images directory, we can use the following HTML:

The important thing to remember in this URL is the /res part, which is mapped to an
URL Rewriter Filter (org.tuckey.web.filters.urlrewrite.UrlRewriteFilter).
This URL Rewriter will change the /res part to /page/resource/ and the request is
then picked up by the Spring Dispatcher Servlet (that is, the Resource Servlet).

Alfresco has added an extra Spring configuration via a UrlConfigSource bean to be
able to pick up resources in the META-INF folder in JARs (see the tomcat/webapps/
share/WEB-INF/classes/alfresco/slingshot-application-context.xml file.
Note, Slingshot was the first code name for the Alfresco Share web client, so you will
see it a lot in the code).

Chapter 3

[109]

If the Alfresco Share extension is more complex and involves Java
classes and third-party Java libraries such as Spring configuration,
then we are better off using an AMP to extend the Alfresco Share
web application.

Project directory structure
The following directory structure will be used for Best Money's extension projects
and it is general enough to be used for most Alfresco extensions—only some
directory names will have to be changed to adjust it to your implementation:

|- bestmoney
 |- alf_extensions
 |- trunk
 |- /_alfresco
 |- /config
 |- /lib
 |- /source
 |- /test
 |- /web
 |- /_share
 |- /config
 |- /data
 |- /diagrams
 |- /schemas
 |- /sql
 |- alf_clients
 |- mobile
 |- trunk
 |- /lib
 |- /source
 |- /test
 |- /web
 |- mashup
 |- trunk

Setting Up a Development Environment and a Release Process

[110]

The alf_extensions directory contains all of the files for both Alfresco Explorer and
Alfresco Share extensions. The _alfresco directory contains the files for the Alfresco
Explorer (alfresco.war) extension and the subdirectories mean the following:

config: Contains all configuration files including custom content model
definitions, workflow definitions, messages, and web scripts.
lib: Any libraries that are not available in the Alfresco SDK. These are
libraries that we would need for more complex extensions to the Alfresco
repository, such as supporting a new protocol.
source: The Java and JavaScript source code, and any other source code.
test: Java source code for unit tests and libraries related to unit testing.
web: Web application resources such as JSPs and CSS.

The _share directory contains the files for the Alfresco Share (share.war) extension
and the subdirectories mean the following:

config: Contains all configuration files including web application
components, pages, resources, web scripts.

The alf_client directory contains the files for any new web clients that we will
be building.

The other directories contain the following type of files:

data: Contains exported Alfresco Content Packages (ACP). When we set
up more complex folder structures with rules and permission settings, it is a
good idea to export them into ACP packages and store them in the version
control system. The same is true for any space templates that we create.
These packages are also useful to include in releases.
diagrams: Contain UML and workflow diagrams.
schemas: For example, JPBM schemas that are referred to from the editor.
sql: SQL scripts for things such as reporting and status updates.

_alfresco/config
The _alfresco/config directory will contain all of the configuration files for the
Best Money's repository extensions and any UI customizations for the Alfresco
Explorer client. This can be definitions of advanced workflows, UI customizations,
custom content models, audit configuration, i18n messages, web script definitions,
and more.

•

•

•

•

•

•

•

•

•

•

Chapter 3

[111]

It contains the following subfolders and files:

|- config
 |- /alfresco
 |- /extension
 |- /templates
 |- /webscripts
 |- /com
 |- /bestmoney
 |- /cms
 |- /module
 |- /com_bestmoney_module_cms
 |- /bootstrap
 |- /context
 |- /bootstrap-context.xml
 |- /services-context.xml
 |- /messages
 |- /patch-messages.properties
 |- /model
 |- /content-model.xml
 |- /workflow-model.xml
 |- /templates
 |- /ui
 |- /web-client-config-custom.xml
 |- /webclient.properties
 |- /workflows
 |- /log4j.properties
 |- /module-context.xml
 |- /module.properties
 |- /META-INF
 |- /faces-config.xml

When the MMT tool is executed on the AMP, the config/alfresco directory is
merged into the /WEB-INF/classes directory of the Alfresco WAR file.

alfresco/extension
The extension directory is one of the places where Alfresco will always look for
custom configuration files, workflows definitions, and web script definitions. At first,
it might be tempting to put everything in this directory, but that is not a good idea as
other extension projects might have the same idea, which can cause problems like:

Name clashes: Let's say, we do some custom configuration in the
webclient.properties and web-client-config-custom.xml files. If
another extension does the same thing, then the last to deploy with the
MMT tool will be overwriting previous versions of these files.

•

Setting Up a Development Environment and a Release Process

[112]

Confusion: It might be difficult to figure out what file is related to what
module and extension.
Instead, put as much of the custom configuration as possible in the
specific module directory, so that all of the files are kept under the
module namespace.

There are some exceptions to this recommendation and that has to do with Web
Scripts and how they are loaded. For them to be loaded properly, they have to be
put in one of the few places. They can live in the repository as content or in the AMP
file. The following list is specified in the sequence in which Alfresco searches for web
script implementation files:

Repository folder: /Company Home/Data Dictionary/Web
Scripts Extensions

Repository folder: /Company Home/Data Dictionary/Web Scripts
Classpath directory: /alfresco/extension/templates/webscripts
Classpath directory: /alfresco/templates/webscripts

Within any of these folders, we can use subfolders to organize Web Scripts and that
is why we have added the com/bestmoney/cms subdirectory, so that we can put the
Web Scripts related to the Best Money's CMS project into their own namespace.

Another case when we have to use the alfresco/extension directory
is if we wanted to extend the number of available MIME types in
Alfresco. We would then have to add the mimetypes-extension-
context.xml file to the alfresco/extension directory and update it
with a pointer to the file with the custom MIME type definitions, such as
bestmoney-mimetypes-extension.xml.

alfresco/module
The module name has been set to com_bestmoney_module_cms to make it unique,
so that all directories and files under this module will be unique among module
deployments. This module will contain all Alfresco Explorer-related content
management extensions for all Best Money departments.

•

•

•

•

•

Chapter 3

[113]

If we have several teams developing extensions for Alfresco, it might be
a good idea to come up with a standard naming convention for modules.
For example:
* com_bestmoney_module_dm: Document Management extensions
* com_bestmoney_module_workflows: Workflow extensions
* com_bestmoney_module_rm: Records Management extensions
* com_bestmoney_module_wcm: Web Content Management
extensions
Or you could also divide extensions by department:
* com_bestmoney_module_marketing

* com_bestmoney_module_engineering

* com_bestmoney_module_it

Also be sure to use underscores (_) in the module directory name
instead of dots (.). Otherwise, it will not be possible to load, for
example, message property files.

The individual directories and files under the module are used for the following:

bootstrap: Contains bootstrap view XML files that describe import
definitions for content such as groups, users, spaces, e-mail templates,
and presentation templates.
context: Contains all Spring configuration files and any custom property
files used by the extension module. The services-context.xml file is
used to define beans for any new module services that we build—for
example, event handlers. The bootstrap-context.xml file is used for
patch definitions, importers, message loaders, loading custom web client
configuration, and loading custom content model. These two Spring
configuration files are loaded by the module-context.xml file.
message: Should contain all property files for application messages. Patches
are used quite often so we have created a file called patch-messags.
properties to standardize the name of this file. And new content model
properties are stored in the model-messages.properties. These files are
loaded by a Spring configuration in the bootstrap-context.xml file.
model: Contains the custom content models that we create. They can be
divided into custom content models that are used to classify documents in
the repository, contained in the content-model.xml file, and custom content
models used by workflows, contained in the workflow-model.xml file. These
files are loaded by a Spring configuration in the bootstrap-context.xml file.

•

•

•

•

Setting Up a Development Environment and a Release Process

[114]

templates: Contains Freemarker templates such as presentation and e-mail
templates. They are loaded by import definitions specified in XML files in the
bootstrap directory.
ui: Contains the standard Alfresco Explorer custom configuration file,
web-client-config-custom.xml, and the associated webclient.
properties file. These files are loaded by a Spring configuration in the
bootstrap-context.xml file. An example of the XML file can be found
in the /tomcat/shared/classes/alfresco/extension directory.
Workflows: Contains JBPM workflow definitions for all workflows
associated with this extension. Each workflow definition will be kept
in a separate subdirectory.
log4j.properties: Logging configuration for this extension module will
contain only one line to set log levels for this module: log4j.logger.com.
bestmoney.cms=info.
module-context.xml: The main Spring configuration file for this module.
It is picked up by Alfresco's Spring instance and it will in turn load the
services-context.xml and bootstrap-context.xml files.
module.properties: Contains the ID, description, and version number for
this module.

META-INF
The META-INF directory contains the faces-config.xml JSF configuration file that is
used when we want to add custom JSF managed beans. This directory will be part of
the module JAR file that is contained in the module AMP.

If we wanted to overwrite existing Alfresco JSF managed beans or
change the configuration for one of them, then we would have to use
another configuration file called faces-config-custom.xml, which
needs to be put in the alfresco/tomcat/webapps/alfresco/
WEB-INF directory. The MMT tool has some problem updating this file
automatically for us, so at the moment this has to be done manually.

_alfresco/source
The _alfresco/source directory will contain all the Java and JavaScript source code
for the Best Money project. The directory structure under it looks like this:

|- source
 |- /javascript
 |- /java

•

•

•

•

•

•

Chapter 3

[115]

 |- /com
 |- /bestmoney
 |- /cms
 |- /bootstrap
 |- /eventhandler
 |- /model
 |- /service
 |- /util
 |- /web
 |- /ui
 |- /action
 |- /bean
 |- /script
 |- /workflow
 |- /actionhandler

The javascript directory will contain source code for business rules that are part of
the document management setup. These JavaScript files are typically deployed into
the /Company Home/Data Dictionary/Scripts folder and then used by the rules.

The java directory has the following subfolders:

bootstrap: All patch implementations
eventhandler: Any event handler implementation
model: Contains a class that provides constants for content model QNames
service: All custom services implemented for the extension are stored here
util: Different utilities such as an interface with application constants
web/ui/action: Classes related to UI actions such as an action evaluator
web/ui/bean: Different JSF managed bean implementations for things such
as wizards and workflow management
web/ui/script: Web Scripts implemented in Java
workflow/actionhandler: Contains Java action handlers for workflows

_share/config
The _share/config directory will contain all the configuration files for the Best
Money's UI customizations for the Alfresco Share client. This can be definitions of
pages, dashlets, Share client custom configuration, messages, Web Scripts, and more.

•

•

•

•

•

•

•

•

•

Setting Up a Development Environment and a Release Process

[116]

This directory contains the following subfolders:

|- config
 |- /alfresco
 |- /messages
 |- /extension-app.properties
 |- /site-data
 |- /chrome
 |- /components
 |- /component-types
 |- /configurations
 |- /content-associations
 |- /pages
 |- /page-associations
 |- /page-types
 |- /template-instances
 |- /template-types
 |- /themes
 |- /site-webscripts
 |- /com
 |- /bestmoney
 |- /cms
 |- /components
 |- /utils
 |- /templates
 |- /com
 |- /bestmoney
 |- /cms
 |- /web-extension
 |- /custom-slingshot-application-context.xml
 |- /fdk-config-custom.xml
 |- /share-config-custom.xml
 |- /web-framework-config-custom.xml
 |- /webscript-framework-config-custom.xml
 |- /META-INF
 |- /components
 |- /dashlets
 |- /images

This directory structure has had some extra directories added compared to the
standard Alfresco Share JAR extension structure. The messages directory has been
added and will contain all Web Scripts-related properties for this custom extension.
The properties will be contained in the extension-app.properties file. This
properties file is loaded via the custom-slingshot-application-context.xml
Spring configuration file.

Chapter 3

[117]

We have also added the com/bestmoney/cms subdirectory in some places. This is so
we can put Web Scripts and templates in their unique Best Money namespace. This
is important as there might be JAR extensions deployed from many different third
parties in the future, and we do not want to have any name clashes between
JAR extensions.

We also want to organize resources under META-INF into directories, so for example,
Dashlet components will be saved in the META-INF/components/dashlets directory
and associated Dashlet images in the dashlets/images directory.

The last thing we have added is the web-extension directory, which contains five
configuration files that can be used to customize the following:

custom-slingshot-application-context.xml: The custom Spring bean
configuration file for Alfresco Share. Here you can override the Web Script
search path and the template and script search path. This file also loads the
extension-app.properties file.
fdk-config-custom.xml: Form definitions for the new Alfresco Forms
Development Kit (FDK) that can be used in Spring Surf applications
such as Alfresco Share and Alfresco Mobile.
share-config-custom.xml: Used for customizations of the Alfresco Share
web client. We can customize for example, search term minimum and
maximum length, username minimum length, and so on.
web-framework-config-custom.xml: Can be used to enable or disable the
cache for components and pages. We can also set up what theme we want
the Alfresco Share web client to use.
webscript-framework-config-custom.xml: We can use this file to
override the endpoints for the remote Alfresco server when we want to
run the Alfresco Repository and Alfresco Explorer (alfresco.war) on one
machine and the Alfresco Share web application (share.war) on another
machine. The structure and syntax of this file is similar to the
share-config-custom.xml file.

Examples of these four configuration files can be found in the tomcat/shared/
classes/alfresco/web-extension after a normal installation.

If you are familiar with the web-client-config-custom.xml file, which is used
to customize the Alfresco Explorer web client, then it should be easy to use the *-
config-custom.xml files, as they have a similar concept of how to configure things.

•

•

•

•

•

Setting Up a Development Environment and a Release Process

[118]

Building and deploying
Now we have a good idea of what the project directory structure looks like for both
an AMP extension and a JAR extension. Let's see how we can create an Apache Ant
script to build and deploy these extensions.

The Build file
The Apache Ant build file is constructed to be able to build both the AMP to extend
the alfresco.war and the JAR to extend the share.war.

It is recommended that you download the files associated with this chapter from
the Packt website, so that you can easily follow the walkthrough of the build file
(build.xml + build.properties), as not all Ant targets are explained—only the
ones that are related to building Alfresco extension artefacts.

Ant targets for the alfresco.war AMP Extension
The first Ant target that we will look at is the one that packages the files needed for
the JAR file that goes into the AMP; it is called package-alfresco-jar and looks
like this:

<target name="package-alfresco-jar"
 depends="clean, mkdirs, compile">
 <jar destfile="${alfresco.jar.file}">
 <zipfileset dir="${classes.alfresco.dir}" includes="**/*.class"/>
 <zipfileset dir="${source.alfresco.dir}"
 includes="**/*.xml,**/*.properties"/>
 </jar>
</target>

This Ant target is dependent on some standard targets such as clean, mkdirs, and
compile. Nothing special with these targets and they are usually found in most build
files and so are not explained here.

What the package-alfresco-jar target does then is uses the jar task to create
the JAR file with the classes and any configuration files. The name of the JAR file
comes from a property definition, alfresco.jar.file, which is specified in the
build.properties file that usually accompanies the build.xml file. This JAR
file will be contained in the AMP file that is generated by the next target called
package-alfresco-amp:

<target name="package-alfresco-amp" depends="package-alfresco-jar">
 <zip destfile="${alfresco.amp.file}">
 <zipfileset dir="${project.dir}/build" includes="lib/*.jar"/>
 <zipfileset dir="${project.dir}" includes="lib/*.jar"/>

Chapter 3

[119]

 <zipfileset dir="${alfresco.ext.dir}" includes="config/**/*.*"
 excludes="**/module.properties, **/file-mapping.properties"/>
 <zipfileset
 dir="${config.alfresco.dir}/alfresco/module/${module.id}"
 includes="module.properties, file-mapping.properties"/>
 <zipfileset dir="${alfresco.ext.dir}" includes="web/**/*.*"/>
 </zip>
</target>

This Ant target builds an extension AMP with a name that comes from the
alfresco.amp.file property that is specified in the build.properties file.

The AMP is built by including:

Any library from the project's build/lib directory that would be the JAR file
built with the first Ant target, package-alfresco-jar.
Any library from the project's _alfresco/lib directory and this can be
any extra JAR file not available in the Alfresco distribution but needed
by the extension.
All files under _alfresco/config except the module.properties and
file-mapping.properties files.
The module.properties and file-mapping.properties files and they will
be at the top level in the AMP.
All web resources stored under the project's _alfresco/web directory.

The last target we need for the AMP management is the one that deploys the AMP
into the alfresco.war file. This target is called deploy-alfresco-amp and looks
like this:

<target name="deploy-alfresco-amp"
 depends="clean-reset-war, package-alfresco-amp">
 <java dir="." fork="true"
 classname= "org.alfresco.repo.module.tool.ModuleManagementTool">
 <classpath refid="src.class.path"/>
 <arg line="install ${alfresco.amp.file}
 ${alfresco.war.file} -force -verbose -nobackup"/>
 </java>
</target>

To deploy the AMP, we will use the MMT, which can be run from an Ant task. We
configure a Java task to do this and we supply it with the AMP filename and the
alfresco.war file location and name. The MMT is also instructed not to make a
backup of the original alfresco.war (that is, –nobackup). We do not want a backup
as the build script will automatically restore the original alfresco.war file from an
alfresco.war.bak file that we have created before running this target. This is done
via the clean-reset-war target that this deploy target is dependent on.

•

•

•

•

•

Setting Up a Development Environment and a Release Process

[120]

When working with AMP extensions, it is quite important to know that
every time I do a new deployment, the alfresco.war will contain only
the exact files that are in the AMP and not some old extension file(s) that
has been removed in this new version of the AMP, for example, a library.

This is why the deploy target always restores the original alfresco.war
before each new deployment. If we are working with several AMPs, then
the original alfresco.war might not be a clean alfresco.war, as seen
after installation of Alfresco, but one with some extra AMPs in it, except
the AMP that we are currently working on.

Ant targets for the share.war JAR extension
The Ant targets for the Alfresco Share JAR extension are quite simple as the
packaging is simple and the deployment is just about copying a file. Here is
the first Ant target, package-share-jar, used to package the JAR:

<target name="package-share-jar"
 depends="clean, mkdirs, compile">
 <delete file="${share.jar.file}" />
 <jar destfile="${share.jar.file}">
 <zipfileset dir="${config.share.dir}" includes="**/*.*" />
 </jar>
</target>

What this target does is basically packages all files under the _share/config
directory into a JAR file with a name specified with the share-jar-file
property. The deployment target that copies this file into the tomcat/webapps/
share/WEB-INF/lib directory looks like this:

<target name="deploy-share-jar" depends="package-share-jar">
 <copy file="${share.jar.file}"
 todir="${tomcat.webapps.dir}/share/WEB-INF/lib"/>
</target>

Using the build file to deploy extensions
When we have coded an alfresco.war extension and a share.war extension, we
can build and deploy as follows. But first change the following properties in the
build.properties file, so that they match your installation:

alfresco.dir=C:/Alfresco3.3Book
alfresco.sdk.dir=C:/tools/alfresco-community-sdk-3.3
jdk.dir=C:/Program Files/Java/jdk1.6.0_11

Chapter 3

[121]

During the various builds and deployments, we will see a new temporary build
directory structure created:

|- trunk
 |- /build
 |- /classes
 |- /dist
 |- /lib

This directory structure is safe to delete at any time as it is created during each build.

The dist directory will contain the built AMPs and the lib directory will contain
any built JARs, if we wanted to get hold of them.

Deploying the AMP extension
Make sure that the Alfresco server is stopped by executing
alfresco/alf_stop.bat.

Create a backup copy of alfresco.war called alfresco.war.bak and put it also
in the alfresco/tomcat/webapps directory. This is done so that we do not have to
manually restore the alfresco.war to its original state between builds. The build
script copies alfresco.war.bak to alfresco.war before each build to prevent old
files that might have been deleted hanging around.

Run the deploy-alfresco-amp Ant target to build and deploy the AMP:

C:\3340_03_Code\bestmoney\alf_extensions\trunk>ant -q deploy-alfresco-amp

 [echo] Deleting webapps/alfresco dir and copying back original
alfresco.war from alfresco.war.bak

 [echo] Packaging extension JAR for AMP

 [echo] Packaging extension AMP file for alfresco.war

 [echo] Installs extension AMP file into alfresco.war

BUILD SUCCESSFUL

Total time: 9 seconds

To test the new extension that was just installed, start the Alfresco server by
executing alfresco/alf_start.bat. When the server starts, we should see a log
indicating that the new extension module has been successfully installed:

11:02:50,756 INFO [org.alfresco.repo.module.ModuleServiceImpl] Starting
module 'com_bestmoney_module_cms' version 1.0.

Setting Up a Development Environment and a Release Process

[122]

The AMP deployment will remove the webapps/alfresco directory,
as this is necessary for the AMP to be picked up by the Tomcat server. If
the exploded WAR directory was not removed, then the AMP would not
be loaded. The same problem exists if we would deploy any AMP from
command line with the alfresco/bin/alfresco-mmt.jar tool.
So in this case, it is important that we have not done any configuration
of Alfresco via any configuration file found in the exploded WAR file.
Instead, all configuration should be done in the configuration files that
can be found in the tomcat/shared directory.

Deploying the Share JAR extension
When working with Spring Surf extensions for Alfresco Share it is not necessary to
stop and start the Alfresco server between each deployment. We can set up Apache
Tomcat to watch the JAR file we are working with and tell it to reload the JAR every
time it changes.

Update the tomcat/conf/context.xml configuration file to include the
following line:

<WatchedResource>WEB-INF/lib/3340_03_Share_Code.jar</WatchedResource>

Now every time we update this Share extension, JAR Tomcat will reload it for us
and this shortens the development cycle quite a bit. The Tomcat console should
print something like this when this happens:

INFO: Reloading context [/share]

To deploy a new version of the JAR just run the deploy-share-jar ant target:

C:\3340_03_Code\bestmoney\alf_extensions\trunk>ant -q deploy-share-jar

 [echo] Packaging extension JAR file for share.war

 [echo] Copies extension JAR file to share.war WEB-INF lib

BUILD SUCCESSFUL

Total time: 0 seconds

Debugging extensions
Sooner or later we will come into a situation when we have a problem and it is no
longer possible to figure out what is going on by just looking at the source code.
Then we have to start debugging.

Chapter 3

[123]

Alfresco Explorer and repository debugging
To debug AMP extensions, start the Alfresco server so that it listens for remote
debugging connections; or more correctly, start the JVM so that it listens for remote
debugging connection attempts. This can be done by adding the following line
to the operating system as an environment variable:

CATALINA_OPTS=-Dcom.sun.management.jmxremote -Xdebug -
Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

This means that any Alfresco installation that we have installed locally on our
development machine will be available for debugging as soon as we start it.

Change the address as you see fit according to your development environment.

With this setting we can now debug both into Alfresco's source code and our own
source code at the same time.

Alfresco Share debugging
When we develop extensions for Alfresco Share, it is going to be more about UI
development; so install, for example, Firefox and the Firebug extension. This will
give you the possibility to debug JavaScript, inspect CSS, and so on.

To be able to debug client-side JavaScript with a default Alfresco Share installation,
we first have to change some debug settings. Open up the share-config-custom.
xml file in the config/web-extension folder and add the following configuration:

 <alfresco-config>
...
 <config replace="true">
 <flags>
 <client-debug>true</client-debug>
 <client-debug-autologging>false</client-debug-autologging>
 </flags>
 </config>
....
 </alfresco-config>

The first flag, client-debug, sets up debug mode for client scripts in the browser.
So why do we need to do this and should it not be enough to use Firebug? Alfresco
has done some performance improvements to the JavaScript code and Alfresco
Share will include minimized versions of its client-side JavaScript files during page
rendering, and it will also combine some of the files. Setting the debug flag to true
forces Alfresco Share to load the original uncompressed JavaScript source with all
comments and formatting intact. It also ensures the various YUI library files
are uncompressed.

Setting Up a Development Environment and a Release Process

[124]

Setting the client-debug-autologging flag to true automatically activates
the logging output window in Alfresco Share, so we can use traditional Log4J
statements, as follows, in our JavaScript code:

if (Alfresco.logger.isDebugEnabled()) {
 Alfresco.logger.debug("Foo Bar");
}

We can use the standard Log4J INFO, WARN, ERROR, and FATAL levels.

After changing the share-config-custom.xml file, a server
restart is required.

Setting up a continuous integration
solution
In most development projects, it is a good idea to set up a Continuous Integration
(CI) solution to be able to catch problems at an early stage. All extensions that we are
building should be continuously built and regression testing should be carried out as
soon as somebody checks in any changes to the project files.

One open source build server that we can use is Hudson. It can be configured to
use project files in a Subversion repository and can be built with Apache Ant. In
this section, we will have a look at how we can get started with continuous
integration builds.

We will set up the following CI environment:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[125]

So the only thing we need in addition to our development environment is another
Windows box. We will then set up Alfresco, Tomcat, and Subversion on this server.

Here is what we need to download to the build server:

JDK
Apache Ant
Alfresco—the full installation including MySQL
Apache Tomcat
Hudson (download the WAR file—hudson.zip)
CollabNet Subversion Server

After downloading these software packages, install them starting with the JDK,
then Alfresco, followed by Apache Ant. During these installs, just follow the default
options. Now copy the alfresco/tomcat/webapps/alfresco.war to alfresco.
war.bak.

Then install Apache Tomcat and when this is done change the connector port
to 8081 and the server port to 8006, so that it does not clash with Alfresco's
Tomcat installation.

Last thing we need to do is install the Subversion server and during installation
we can just follow the default options. The Subversion server needs at least one
repository created, so let's do that:

c:\svn_repository\svnadmin create repo

For the Subversion client on the development machine to be able to access the build
server, we need to open port 3690 in Windows firewall on the build server. We can
test access to Subversion from the developer box by doing:

telnet <build server hostname> 3690.

Now, let's start all the servers as follows:

Alfresco
Tomcat
Subversion server

Deploy Hudson in the Tomcat server by renaming hudson.zip to hudson.war and
then copy it to /Program Files/Apache Software Foundation/Tomcat 6.0/
webapps. To check if Hudson is up, access the http://localhost:8081/hudson URL.

•

•

•

•

•

•

•

•

•

Setting Up a Development Environment and a Release Process

[126]

We also need to import the code into Subversion and we can do this from the
command line as follows:

C:\work>svn import -m "Initial Import" bestmoney http://<hostname>/svn/
repo

Adding bestmoney\alf_extensions

Adding bestmoney\alf_extensions\trunk

Adding bestmoney\alf_extensions\trunk\sql

Adding bestmoney\alf_extensions\trunk_share

Adding bestmoney\alf_extensions\trunk_share\config

...

Okay, so we got the code in Subversion and Hudson is up and running. Now we
just need to tell Hudson about the code and what Ant targets to build. We do this
by configuring Apache Ant in Hudson and then setting up a job:

1. Access Hudson: http://<hostname>:8081/hudson.
2. Configure Apache Ant location by clicking on the Manage Hudson link and

then Configure System: set the name of this Ant instance to Apache Ant 1.8
and Home to C:\apache-ant-1.8.1.

3. Click on the New Job link.
4. Set name of Job to Best Money Alfresco CMS Extensions.
5. Select Job Type: Build a free-style software project.
6. Under Source Code Management, click on Subversion.

Set up Subversion URL: http://localhost/svn/repo.
7. Under Build, select Invoke Ant.

Pick Apache Ant 1.8.
Targets: package-alfresco-amp,package-share-jar.
Click on the Advanced button.
Build File: alf_extensions/trunk/build.xml.

°

°

°

°

°

Chapter 3

[127]

To check if the build will work, click on the Build Now link. If things go well, we
should see something like this:

So far, this does not use the Alfresco server. What we want is the build to stop the
server and install the AMP and the JAR extensions. Then, start the server and see if
that worked okay.

To do this, we need a couple of new Ant targets. We are going to need one Ant target
that we can use to start the Alfresco server and the MySQL server. For this, we will
use the alf_start.bat file that comes with the installation:

<target name="start-alfresco">
 <exec executable="cmd" dir="${alfresco.dir}" spawn="true">
 <arg line="/c alf_start.bat"/>
 </exec>
 <waitfor maxwait="10" maxwaitunit="second" checkevery="5000">
 <http url="http://localhost:8080"/>
 </waitfor>
</target>

Once we have called the BAT file to start Alfresco and MySQL, we will wait in a
loop for Tomcat to become available on http://localhost:8080. When that URL
is accessible we know that the server is up and running.

If we are running on Linux, we would have to change the script we are
using to the alfresco.sh start script and also update the exec task.

The next Ant target that we are going to need is the one that can be used to stop the
Alfresco server. When we want to stop the server, it is first easy to just assume that
we can use the same technique as when we started it and call alf_stop.bat. This
will not work as that BAT file will not be able to completely stop Tomcat.

Setting Up a Development Environment and a Release Process

[128]

We could then resort to trying and controlling Tomcat deployments and
undeployments with specific Tomcat Ant tasks. However, that will not work either as
JARs used by the web application will still be locked by Tomcat, and they will not be
removed during an undeployment. This prevents us from doing a deployment again.
We could then try and set up so that resource locking is disabled in Tomcat (that is,
<Context antiJARLocking="true" antiResourceLocking="true">).
This will not work either as the web application will not start properly after this.

So, because of these reasons, we will use an Ant target that completely kills the
Tomcat process. Any JVM process can be found by using the jps.exe tool that
comes with the JDK and it returns a list of PID and Process Name:

<target name="kill-tomcat-server">
 <exec executable="${jdk.dir}/bin/jps" output="procidlist.out"/>
 <loadfile srcfile="procidlist.out" property="pid.out">
 <filterchain>
 <linecontains>
 <contains value="Bootstrap"/>
 </linecontains>
 <tokenfilter>
 <deletecharacters chars="Bootstrap"/>
 <trim/>
 <ignoreblank/>
 </tokenfilter>
 <striplinebreaks/>
 </filterchain>
 </loadfile>
 <exec spawn="true" executable="taskkill">
 <arg line="/PID ${pid.out}"/>
 <arg line="/F"/>
 </exec>
 <delete file="procidlist.out"/>
</target>

This target stores the output of jps in a file called procidlist.out, which is then
loaded and filtered to find the process with the name Bootstrap. The process ID
(PID) for this process is used when calling the taskkill command.

This way of killing the process will work only on Windows. On
Linux, this Ant target has to be rewritten. On Linux, it might even
work to just use alfresco.sh stop.

Chapter 3

[129]

This just kills the Tomcat process and we also need a target to stop MySQL, as it is
started by the start-alfresco Ant target. Here is how we can do that:

<target name="stop-mysql-server">
 <exec executable
 ="${alfresco.dir}/mysql/bin/mysqladmin.exe">
 <arg line="-u root shutdown"/>
 </exec>
</target>

We have now got enough functionality to be able to create a new Ant target that we
can call from Hudson, which will run all JUnit tests, stop Alfresco, deploy new AMP,
start Alfresco, and run Web Script tests:

<target name="stop-deploy-start-test"
 depends="unit-test, kill-tomcat-server,
 stop-mysql-server, deploy-alfresco-amp,
 start-alfresco, webscript-test">
</target>

To test Share extensions, just change the deploy-alfresco-amp target to
deploy-share-jar. Now just change the following setting in Hudson to use
the new target:

Under Build, select Invoke Ant.
Pick Apache Ant 1.8.
Targets: stop-deploy-start-test.
Click on the Advanced button.
 Build File: alf_extensions/trunk/build.xml.

To get these builds to kick off automatically whenever something is checked in to
Subversion, we can use a plug-in that comes with Hudson. The plug-in is bundled
with hudson.war and once it is installed, you'll see Subversion as one of the options
in the SCM. This means that Hudson can now poll Subversion for changes. However,
the best way is to let Subversion call Hudson whenever something is checked in.
We can set up a post-commit-hook in Subversion that triggers Hudson to start
the build.

This should give us a good starting point for building a continuous integration
solution for an Alfresco extension project.

•

°

°

°

°

www.allitebooks.com

http://www.allitebooks.org

Setting Up a Development Environment and a Release Process

[130]

Setting up a release process
When we start implementing a content management solution for a client, we
will most likely start working in a development environment. The development
environment is likely to be quite different from the production environment in terms
of what hardware it runs on, what operating system it uses, how authentication and
synchronization of users and groups are done, the number of users accessing it and
what operating system they use, the amount of data processed and stored, and so on.

Because of this, a testing or staging environment is often put in place that mirrors
the production environment as much as possible. So when we have implemented a
new version and want to release it, this is done first to the test environment where
a selected group of real users will take the new version for a spin. If everything is
working out okay, the new version is later deployed to production.

We can call the process of packing up a new version, deploying it to test for user
acceptance testing, and then finally deploying it to production for the release
process. The following figure illustrates:

Here, we can see that the build server and the configuration management server
have also been included in the development environment. This is because they
are part of the development process.

Chapter 3

[131]

To get the best result when releasing a new version of an Alfresco CMS extension,
it is important to put in place as much testing as possible before the new version is
deployed to production.

Testing is usually done in different stages—we have unit testing and smoke testing
in the development environment and then user acceptance testing and load testing in
the test environment.

A smoke test in this context is when the developer runs thru a list
of the most used use cases/requirements and verifies that they all
pass. This is different from unit tests that just verify the internal
logic of one specific component or service. Also, the unit tests do not
require the Alfresco server to be started, which a smoke test does, as
it should test the system through complete usage scenarios.

During the user acceptance testing phase, we need a way to organize and manage
any issues that the users experience. They need a way of logging problems that they
are experiencing. For this we can put in place a change management system and it
can also be used to manage the requirements for upcoming versions.

When releasing a new version to production, a change log should be kept of what
was updated. This change log will contain more things than just information about
new module extension deployments. It will also contain information about major
changes to folder hierarchies, folder hierarchy templates, configuration changes
unrelated to the module extension deployment, and so on.

When releasing to either the test environment or the production environment, release
notes should accompany the release package. This is so that everybody involved will
know exactly what features have been fixed in the release and what new features are
included, and what files might need to be manually updated.

Setting Up a Development Environment and a Release Process

[132]

The release process figure now looks a little bit more crowded:

In a lot of cases, the development environment will not consist of three servers
(like in the preceding figure), but instead the configuration management system,
build system, and change management system will run on the same server.

If we look at an iteration of a typical development and release process scenario,
it might look something like this:

1. (Developer) implements some new features and fixes bugs.
2. (Developer) builds package locally and runs unit tests.
3. (Developer) checks in new features and fixed bugs.
4. (Build Server) is triggered by Subversion and runs automated tests and

builds a new package.
5. (Developer) does a smoke test (that is, deploys the package onto local

Alfresco and goes thru a list of the most used use cases and verifies that
they do not break).

6. (Developer) writes a release note to follow with the release package.
7. (Developer) tags the new release in Subversion (so that it is always possible

to get the source code for the package that runs in production, for emergency
patching, if necessary).

Chapter 3

[133]

8. (Developer) deploys package in test environment and gives release notes to
system integrators and testers at the client side.

9. (Test Users) runs through a list of tests that have to pass for the release to
be accepted. If a bug is found, it is reported via the Change Management
system. If the acceptance test was successful, then we go on to the next step,
otherwise we go back to Step 1 again.

10. (System Administrator) deploys new version to production and updates
change log.

11. (End Users) reports any issues via the Change Management system.

The build server step in this setup could be left out in smaller development
environments where there is just one developer implementing the whole solution.
But the test and staging environment is needed for any kind of implementation. If we
do not have a test environment, it is going to be too costly to discover all problems in
the live environment.

Release notes template
The following template can be used to describe a release. The top section contains
information about the release from the implementer and the bottom section contains
information about the release from the client:

RELEASE NOTES
Release version number: major.minor.patch

Date released to <client name>
Implementer (Consulting Company)
Sent by
Description of Content (business words):

Issues fixed in this release
Deploy AMP (Explorer & Repo) [yes|no]
Deploy JAR (Share) [yes|no]
Update space templates [yes|no]
Deploy workflows [yes|no]
Update faces-config-custom.xml [yes|no]
Included files:

Setting Up a Development Environment and a Release Process

[134]

RELEASE NOTES
<client name>
Date received: Received by:
Comments:

Due to release in Test:
Due to release in Production:

The following example shows how we can use this template when dealing with the
Best Money client:

RELEASE NOTES
Release Version Number: 1.2
Date released to Best Money 2010-05-26
Implementer (Consulting Company) Opsera Ltd
Sent by Martin Bergljung
Description of Content (business words):
Updated Content Model and added a Meeting type and it is now possible to search for
content based on the meeting type.
Updated the Activity property in the Workflow Model and removed the mandatory
setting. This is to let old ongoing Job process instances use the new Workflow Model
without having to assign a value to the Activity property.
Added extra Presentation folder to the Meeting Folder Template.
Issues Fixed in this Release BM-2, BM-4, BM-12
Deploy AMP (Explorer & Repo) Yes
Deploy JAR (Share) No
Update Space Templates Yes
Deploy Workflows No
Update faces-config-custom.xml No
Included files:
best_money_cms_1.2.0.amp
best_money_meeting_folder_template_1.2.0.acp
Best Money
Date received: 2010-05-27 Received by: John Sysadmin
Comments:

Due to release in Test: 2010-05-30
Due to release in Production:

Chapter 3

[135]

Updating Change Log
The change log that is updated every time there is a change in the production
environment can have many formats. It should be kept on a wiki page for easy
access. Here is one format that can be used:

Change Log for Best Money CMS
Date Description Who

2010-02-15 Best Money AMP upgraded to 1.3.0. Fixed BM-28, BM-30,
BM-38, BM-42, BM-46. mbergljung

2010-01-27 Upgraded Alfresco from 3.1.1 to 3.2.2. Fixes problems with
opening office docs from CIFS. mbergljung

2010-01-15

Changed name of folder:

/Company Home/Internal/Consulting to

/Company Home/Internal/Customers & Prospects.

kanderson

2010-02-23 Updated space template Project with new Technical
Doc folder. ojonson

Training
In any content management system implementation, there is going to be a need to
train users in both Alfresco and in the Alfresco extensions that we build. The test
environment is usually used for this.

The best way to manage the training is probably to split it up into a number of steps:

1. Step 1 teaches the users how to use a standard Alfresco installation with
focus on Document Management. We should try and cover interaction via
Alfresco Explorer, Alfresco Share, and CIFS.

2. Step 2 (optional) teaches users how to use the Alfresco Share collaboration
and sharing features.

3. Step 3 (optional) teaches users how to use the Records Management (RM)
module of Alfresco Share.

4. Step 4 (optional) teaches users how to manage store and e-mails in Alfresco.
5. Step 5 teaches the users about the content management extensions that

have been implemented to support their business needs, business rules,
and business processes.

Setting Up a Development Environment and a Release Process

[136]

Step 2 is optional and needs to be included only if we are going to use the Alfresco
Share collaboration and sharing environment with Share sites. The same goes for
Step 3, which is necessary only to include if the project involves records management
with the Alfresco Share RM Module. Step 4 is also optional as not all projects are
going to manage e-mails in Alfresco.

Summary
This chapter has walked through how to set up a development environment and a
release process when implementing Alfresco content management extensions. In this
chapter, you have learned how to set up a project directory structure so that a project
can scale, fit deployment structure, and be easy for people to get up to speed on.

We created a build file that can build and deploy both Alfresco Explorer AMP
extensions and Alfresco Share JAR extensions. The build file also had targets for
automatically starting Alfresco, installing extensions, running tests, and then
stopping Alfresco.

We saw how continuous integration can be integrated into the development
environment for continuous regression testing as soon as something is checked into
Subversion. When we have built our Alfresco extension, a release process can be
used to manage project releases with a release notes template, production site change
log, and so on.

In the next chapter, we will look at how to hook up Alfresco to directory servers for
authentication and synchronization of user and group information. We will also see
how Single sign-on (SSO) can be set up. This chapter also gives an example of how
a custom authenticator can be implemented.

Authentication and
Synchronization Solutions

Most companies will have some kind of directory service setup where they manage
all users, groups, and the members of each group. So it is quite natural that when we
are about to install Alfresco at a client site, they will sooner or later want us to hook
it up to this directory service. Otherwise, they would be forced to manage users and
groups in two different systems, which is not ideal to say the least.

There are also different authentication mechanisms that we might have to integrate
with such as HTTP basic authentication, NTLM, or Kerberos. So we need to know
how they work and how to set up Alfresco to authenticate with them.

In this chapter, we will look at:

How different authentication mechanisms such as HTTP Basic, NTLM, and
Kerberos work
How directory servers such as OpenLDAP and MS Active Directory work,
and what is the difference between them when we want to integrate
with Alfresco
Setting up an authentication solution that allows both users in MS Active
Directory and users in an Apache Directory server to log in to Alfresco
Enabling users in both OpenLDAP and Active Directory to connect to
Alfresco via CIFS
Configuring single sign-on (SSO), so that users do not have to log in every
time they want to access Alfresco
Using Apache Directory Studio to inspect LDAP directory data
Building our own authenticator

•

•

•

•

•

•

•

Authentication and Synchronization Solutions

[138]

Authentication and synchronization
concepts
Before we go into looking at configuring directory services, authentication,
and synchronization, we will go through some concepts that might be useful
to understand.

Basic authentication
After installing Alfresco, it will be configured to authenticate users via its internal
database. This is handled via normal HTTP Basic authentication in the browser.

The following diagram illustrates this:

The advantages with this authentication method are that it is supported by most
browsers and we can get going with our Alfresco installation immediately without
any further configuration. However, if we are not using HTTPS then the passwords
are basically sent in plain text over the wire. They are sent as base64 encoded, but
that is easy to decode with lots of available libraries.

Chapter 4

[139]

Note that if we access Alfresco after a default installation, we will be
logged in as a guest and not prompted for username and password. In
this case, we have to click on the login link to authenticate. Automatic
guest login can be turned off as we will see later in this chapter.

An MD4 message digest of the password is stored in the database and CIFS
authentication relies on this for authentication. So any authentication we set
up that should work with CIFS has to store the MD4 hash of the password.

This authentication mechanism is stateless, so it will not remember that we have
logged in when the browser is closed and the session ends.

CIFS authentication is always using NTLM or Kerberos. So if your
Windows credentials do not correspond with a username and password
in Alfresco's database then CIFS will not work. However, when mapping
a network drive, you can specifically set what username and password
to use so it matches an existing account, or just use admin/admin if it is a
brand new installation and you want to try out CIFS.

NTLM authentication
Alfresco can be set up to support NTLM authentication in order to achieve single
sign-on (SSO) for the users, so they never have to log in to Alfresco. Instead, their
Windows credentials will be used to log in automatically as soon as they go to the
Alfresco URL in the browser.

NTLM, or NT LAN Manager, is a Microsoft authentication protocol and it is
embedded in several Microsoft implementations of protocols such as HTTP, SMTP,
POP3, and CIFS.

The protocol is a challenge-response protocol that requires the transmission of three
messages between the client and the server:

Client sends message 1 (type 1—negotiation) with features it supports
(such as encryption key sized).
Server sends message 2 (type 2—challenge) with similar content of what
features it supports, and a random challenge generated by the server.
Client uses the challenge obtained from message 2 and its credentials to
calculate a response.
Client sends the calculated response in message 3 (type 3—authentication) to
the server. MD4 hash is usually used to encode the response.

•

•

•

•

Authentication and Synchronization Solutions

[140]

Alfresco implements NTLM via a Servlet Filter that handles the NTLM message
communication for web client requests and a CIFS Authenticator to manage CIFS
connections. The following diagram illustrates this:

NTLM is a lot more secure than HTTP Basic Auth as it never ships the password
over the wire. There are different versions of NTLM depending on how secure the
communication should be such as LM—DES, NTLMv1—MD4, and NTLMv2—MD5.

The more secure NTLMv2 is supported and if the client does not
support it then an automatic downgrade to NTLMv1 happens.

When NTLM is enabled, Internet Explorer will use your Windows login credentials
when requested by Alfresco. Mozilla Firefox also supports the use of NTLM, but
you need to add the URI to the Alfresco site that you want to access to network.
automatic-ntlm-auth.trusted-uris option (to update this property enter
about:config in the URL field) to allow the browser to use your current credentials
for login purposes.

Chapter 4

[141]

NTLM has mostly been replaced by Kerberos as authentication protocol
for Microsoft domain-based scenarios. However, Kerberos is a trusted
third-party scheme and cannot be used when there is no trusted third
party. For example, a server that is not part of the domain, local Windows
accounts, and resources is in an un-trusted domain. In these cases, NTLM
authentication has to be used.

Alfresco CIFS and NTLM authentication
Microsoft CIFS clients and Mac Finder use NTLM for authentication and this is
handled in Alfresco via an Enterprise CIFS Authenticator (this is the default CIFS
authenticator after installation). It can handle a number of ways in which the CIFS
client might want to connect:

NTLMv1: MD4 hashed passwords
NTLMv2: MD5 hashed passwords/blob
NTLMSSP: Two stage session setup with NTLMv1/NTLMv2
SPNEGO: Session setup with Kerberos or NTLMSSP

Because CIFS uses NTLM or Kerberos, we usually do not have to log in more than
the first time when we access Alfresco via the CIFS drive. Any later access of the
drive, even if Alfresco is restarted, does not require a login.

Alfresco NTLM passthru authentication
In Alfresco, we can set up passthru authentication so the NTLM authentication is
handled by a Windows domain controller or other server on the network, and not
by Alfresco. This is called passthru authentication in the Alfresco world. To handle
this in Alfresco, we use a different authentication component and another CIFS
authenticator specially designed for passthru authentication.

•

•

•

•

Authentication and Synchronization Solutions

[142]

Alfresco implements passthru authentication via an NTLM Authentication Filter,
NTLM Authentication Component and a special Passthru CIFS Authenticator. The
following diagram illustrates this:

When a client successfully logs in via NTLM passthru authentication for the first
time, a minimal user account is also created in the Alfresco database. This is how a
home folder can be associated with the user and so the user can easily be added to
groups. It also makes it easier to set up permissions for the individual user.

When NTLM passthru authentication is used, we cannot use NTLMv2 as it will
protect against man-in-the-middle attacks, and this is just what Alfresco is in
this case.

Quite often passthru authentication is used in combination with
LDAP authentication when an organization has Microsoft Active
Directory installed. This is so CIFS can authenticate. It is also safer
to let the passthru authenticator handle all authentications and let
the LDAP authenticator handle only synchronization of users and
groups; more on this later.

Kerberos authentication
Kerberos is a computer network authentication protocol that allows nodes
communicating over a non-secure network to prove their identity to one another in a
secure manner. Windows 2000 and later use Kerberos as their default authentication
method. Most Unix-like operating systems such as Red Hat, Mac OS, Sun Solaris,
AIX, and so on include software for Kerberos authentication.

Chapter 4

[143]

Kerberos makes use of a trusted third party called the Key Distribution Center
(KDC), which contains two logically separate parts: an Authentication Server (AS)
and a Ticket Granting Server (TGS). Users and services log in via the AS and users
request tickets to access services via TGS.

Some of the key points and characteristics of the Kerberos protocol are:

The user's password never travels over the network.
The user's password is never stored in any form on the client machine.
The user's password is never stored in an unencrypted form even in the
Authentication Server database.
The user is asked to enter a password only once per work session. Therefore
users can transparently access all the services they are authorized for without
having to re-enter the password during this session, achieving single sign-on.
Authentication information management is centralized and resides on the
Authentication Server. The application servers such as Alfresco do not
contain the authentication information for their users.
The administrator can disable the account of any user by acting in a single
location without having to act on the several application servers providing
the various services.
When a user changes his/her password, it is changed for all services at the
same time.

The following list contains definitions for the components and terms that we will
come in contact with when managing a Kerberos installation:

Realm: The term realm indicates an authentication administrative domain. It
is used to establish the boundaries within which an authentication server has
the authority to authenticate a user, host, or service. The name of a realm is
case sensitive, but upper case letters are usually used. It is also good practice,
in an organization, to make the realm name the same as the DNS domain, for
example, BESTMONEY.COM.
Principal: A principal is the name used to refer to the entries in the
Authentication Server database. A principal is associated with each
user, host, or service of a given realm. A principal in Kerberos 5 is of the
following type: component1/component2/.../componentN@REALM.
For an entry referring to a user, the principal takes the following form:
Name[/Instance]@REALM. The instance is optional and is normally used to
better qualify the type of user, such as administrator users normally have
the admin instance. For example: martin@BESTMONEY.COM, admin/admin@
BESTMONEY.COM. If, instead, the entries refer to services, the principals
assume the following form: Service/Hostname@REALM. For example:
cifs/alfresco.bestmoney.com@BESTMONEY.COM.

•
•
•

•

•

•

•

•

•

Authentication and Synchronization Solutions

[144]

Ticket: A ticket is something a client presents to an application server to
demonstrate the authenticity of its identity. Tickets are issued by the Ticket
Granting Server and are encrypted using the secret key of the service they
are intended for.
GSS-API: The Generic Security Services Application Program Interface
(GSSAPI) is an application programming interface for programs to access
security services. The main GSSAPI implementation in use is Kerberos.
GSS-SPNEGO: SPNEGO (Simple and Protected GSSAPI Negotiation
Mechanism) is a GSSAPI "pseudo mechanism" that is used when a client
application wants to authenticate to a remote server, but neither end is sure
what authentication protocols the other supports. SPNEGO's most visible
use is in Microsoft's "HTTP Negotiate" authentication extension. It was
first implemented in Internet Explorer 5.01 and IIS 5.0 and provided single
sign-on capability, later marketed as Integrated Windows Authentication.
The negotiable submechanisms included NTLM and Kerberos, both used
in Active Directory.

User and service login via KDC AS
The first thing that happens in a Kerberos authentication is that users and services
log in to the KDC via the Authentication Server:

•

•

•

Chapter 4

[145]

The communication sequence in the preceding picture is as follows:

I am the Alfresco CIFS server please authenticate me, my username is
alfrescocifs and here is my password.
I am the Alfresco HTTP server please authenticate me, my username is
alfrescochttp and here is my password.
I am the Martin user and need a Ticket Granting Ticket (TGT). My
username is martin and here is my password.
Here is a TGT—if you can decrypt this response with your password hash.
You can use it later to get service tickets for accessing Alfresco HTTP
and CIFS.

For this to happen, accounts must exists in Active Directory for user martin and for
the alfrescocifs and alfrescohttp services. Users log in to the Windows domain
at the start of the day and when the Alfresco server is started the CIFS and HTTP
server will also log in to the KDC.

Accessing Alfresco via KDC TGS
Every server on the network has an implicit trust in the KDC, as they share a secret.
Users gain access to the Alfresco HTTP or CIFS servers by presenting tickets with
encrypted information from the KDC, which the server can verify.

As the KDC is the only place that knows every encryption key, it can share secrets
with users and servers throughout the network to verify their authenticity. This way,
as each principal trusts the KDC, the entire network is secure as long as the Kerberos
server is secure.

•

•

•

•

Authentication and Synchronization Solutions

[146]

The KDC contains a database of all users and services in the Kerberos realm. Each
entry in this database is called a SPN (Service Principal Name), and includes an
associated encryption key. For users, this encryption key is derived from the user's
password. Kerberos works with tickets that prove the identity of users and tickets
are acquired via the Ticket Granting Server (TGS):

The communication sequence in the preceding picture is as follows:

1. User martin accesses Alfresco.
2. Alfresco responds with unauthorized, not logged in, and wants to negotiate

about the authentication protocol to use.
3. Hi, I am user martin and here is my TGT, please give me a Service Ticket for

Alfresco HTTP.
4. Here is your Alfresco HTTP Service Ticket (ticket and session key for both

the client and the remote server—cached locally).
5. Here is my Service Ticket (session key for the remote server),

authenticate me.
6. Client Server session starts.

Chapter 4

[147]

As we can see, Kerberos is much more secure and it offloads the user from having
to remember loads of passwords for different computers and different services on
those computers.

Internet Explorer does not support the "WWW-Authenticate: Kerberos"
header. It does support "WWW-Authenticate: Negotiate". The setting
"Enable Integrated Windows Authentication" controls whether IE
responds to the Negotiate header or not. This is particularly important
because of one shortcoming of IE's authentication. As the Negotiate SSPI
supports both Kerberos and NTLM, IE has the choice when presented
with the Negotiate header of which authentication protocol to use. If
you've set up your server and client correctly to enable Kerberos auth, it
will use Kerberos over Negotiate; if you haven't, you'll get NTLM over
Negotiate. The shortcoming is that there's no mechanism to restrict the
Negotiate package to use only Kerberos, never NTLM.

LDAP authentication
If a company or organization is not a Microsoft shop then they will probably manage
their users via an LDAP server such as Apache Directory Server or OpenLDAP
on Linux.

Microsoft Active Directory server is compatible with the LDAP protocol.

LDAP is primarily a directory access protocol. NTLM and Kerberos are on the other
hand authentication protocols. They do different things. LDAP has a primitive
authentication mechanism called "simple bind" that applications can use to verify
credentials, if they can't handle other authentication protocols.

Simple binds can send a user's password in plain text, so it's a good idea to use SSL.
In fact, Alfresco is configured to use simple LDAP authentication by default, so
passwords will be sent in plain text.

Authentication and Synchronization Solutions

[148]

The following diagram shows a typical setup when Alfresco is used with
LDAP Authentication:

When a client successfully logs in via LDAP authentication for the first time, a
minimal user account is also created in the Alfresco database. This is so a home
folder can be associated with the user and so the user can easily be added to groups.
It also makes it easier to set up permissions for the individual user.

As we can see, there is no support for authenticating CIFS connections. This is
because there is no provider of MD4 hashed passwords and no component driving
the NTLM authentication.

If CIFS is absolutely necessary—which it often is, being the main interface that
users use when working with Alfresco—we can install Samba on the Linux box and
configure it to use the LDAP server as the account database. To hook up Alfresco
with the Samba server, we can use the NTLM passthru authentication mechanism.

Chapter 4

[149]

If a Samba server is not an option for some reason, then we can extend the LDAP
accounts with some extra Samba properties to store the password as MD4 or so. We
can then build an extra NTLM Authenticator that uses the Samba object in LDAP to
authenticate CIFS connections. An example of how to build such an authenticator
will be presented later in this chapter.

LDAPv3 also includes an extensible authentication framework called
Simple Authentication and Security Layer (SASL) that allows alternate
authentication protocols to be added. If we are using Active Directory
then it supports GSS-API (Kerberos), GSS-SPNEGO (Windows negotiate
authentication, which selects between Kerberos and NTLM), Digest and
External (for client cert auth). Thus, if the client understands any of those
SASLmechanisms, it can actually use that for the authentication. As such,
Kerberos may be used by an application during an LDAP bind operation
if the client understands this.

Checking what SASL mechanisms the LDAP server
supports
We can use an LDAP browser such as Apache Directory Studio to check the values of
the supportedSASLMechanisms attributes on the root node of your LDAP server.

If we are using OpenLDAP, then we can do this query via the ldapsearch command
line tool:

ldapsearch -h localhost -p 389 -x -b "" -s base -LLL
supportedSASLMechanisms

dn:

supportedSASLMechanisms: DIGEST-MD5

supportedSASLMechanisms: NTLM

supportedSASLMechanisms: CRAM-MD5

The simple bind authentication method will not be reported as it is not a
SASL mechanism.

Authentication and Synchronization Solutions

[150]

LDAP synchronization
Alfresco can be set up to import users and groups from external directory services
such as Microsoft Active Directory. This is called synchronizing Alfresco's database
with the external directory. By default Alfresco will create minimal accounts in
Alfresco even when an external directory service is used solely for authentication
and user management (that is, synchronization is turned off).

However, to get First Name, Last Name, and Email Address imported from LDAP
and set up for each new account, we have to set up synchronization properly.

Alfresco authentication and synchronization
subsystems
Many organizations have more than one directory server and multiple ways for
users to authenticate themselves to different services. To be able to handle this
in Alfresco, so-called 'subsystems' are used to configure different authentication
mechanisms and synchronization properties. Using subsystems is good as they are
independent and they can be chained together to form an authentication chain, in
which each authenticator will be tried until one succeeds.

Out of the box Alfresco comes with several pre-configured authentication and
synchronization subsystems. Each authentication subsystem pretty much matches
the authentication concepts and methods that we previously talked about in this
chapter. In a new Alfresco installation, we can find these subsystem definitions in the
tomcat/webapps/alfresco/WEB-INF/classes/alfresco/subsystems location:

Chapter 4

[151]

Subsystems are organized according to category (for example, Authentication)
and type (for example, alfrescoNtlm). By default, Alfresco is configured to use
the alfrescoNtlm authentication subsystem. This is set up in the repository.
properties file (located in the tomcat/webapps/alfresco/WEB-INF/classes/
alfresco directory) with the authentication.chain=alfrescoNtlm1:
alfrescoNtlm property.

The property value format is logical-name:type,logical-name:type,… where
we can use the logical name as a reminder of what server or directory service the
authentication subsystem is authenticating against.

The logical name of the authentication subsystem in this case is alfrescoNtlm1
as it will just authenticate locally with Alfresco's database. The logical name
of a subsystem instance can be anything we like as long as it is unique in the
authentication chain.

The alfrescoNtml subsystem instance name suggests that by default Alfresco is
actually set up with NTLM authentication. This is not so as NTLM (that is, SSO) is
turned off by default, so basic authentication will be used instead.

This configuration setting can be found in the ntlm-filter.properties file
(located in the tomcat/webapps/alfresco/WEB-INF/classes/alfresco/
subsystems/alfrescoNtlm directory) and the ntlm.authentication.sso.
enabled=false property.

Alfresco authentication and application zones
When users and groups are imported into Alfresco, they are grouped under a
so-called 'authentication zone'. A zone is related to the directory server from which
the users and groups were imported. For example, the authentication configurations
that we will set up in this chapter will result in the following authentication zones
being created:

AUTH.EXT.bestmoneyLDAP

AUTH.EXT.bestmoneyAD

Here AUTH stands for authentication zone and EXT stands for authorities defined
externally. The last name is the name we gave the authentication subsystem.

Authorities that have been defined and created in the Alfresco database are
organized under the authentication zone AUTH.ALF (that is, they have not been
synchronized/imported).

Authentication and Synchronization Solutions

[152]

There are also application zones that are used to contain users and groups that
should not show up in any of the user interfaces. Some of these zones are:

APP.SHARE: All hidden authorities related to Alfresco Share
APP.RM: All hidden authorities related to Alfresco Records Management

One application zone APP.DEFAULT is an exception—in that it contains all default
users and groups that should show up in normal searches in the Alfresco UIs.

Setting up authentication and
synchronization with Remote
Directory servers
In this section, we will look at setting up Best Money's Alfresco server so it can
authenticate against both the OpenLDAP server and the MS Active Directory server
that they have:

They also need First Name, Last Name, and Email Address from each account
in the directory services to be imported into Alfresco, so we will see how to set
up synchronization.

•

•

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

[153]

Configuring authentication and
synchronization against OpenLDAP
To configure Alfresco to authenticate and synchronize against an OpenLDAP server
means using the predefined ldap subsystem and customize the configuration for
it. First let's add this subsystem to the authentication chain. To do this we do not
change any files under tomcat/webapps/alfresco as those will be overwritten as
soon as Tomcat decides to redeploy the web application; we install a new AMP, or
upgrade Alfresco to a new version.

Instead un-comment the authentication.chain=alfrescoNtlm1:alfrescoNtlm
property in the alfresco-global.properties file located in the tomcat/shared/
classes directory.

The alfresco-global.properties file is the preferred file
to do all custom configurations in. It will not be overwritten by
any upgrades or redeployments and it is nice to have all custom
configurations in one place.

Now change the property value so it uses the ldap authentication subsystem instead:

authentication.chain=bestmoneyLDAP:ldap

This disables anyone from logging in with an account in the Alfresco database.

Configuring user authentication with OpenLDAP
To set up authentication with OpenLDAP, we have to tell the ldap subsystem how
to connect to the Best Money OpenLDAP server. Best Money also wants the guest
login feature to be turned off and the OpenLDAP user Administrator to have
administrator privileges in Alfresco.

The properties that we can configure for the ldap subsystem can be found in the
ldap-authentication.properties file located in the tomcat/webapps/alfresco/
WEB-INF/classes/alfresco/subsystems/Authentication/ldap directory. We
are particularly interested in the following properties:

ldap.authentication.allowGuestLogin: Turn on and off guest
access. Default is on which will bypass the login dialog when you
hit the http://localhost:8080/alfresco URL.

•

Authentication and Synchronization Solutions

[154]

ldap.authentication.userNameFormat: This is a template that defines
how Alfresco user IDs, that we enter in the login dialog, are mapped into
OpenLDAP user principal names. The default LDAP authentication method
is simple, so we can specify the template in clear text and use the %s
placeholder variable where we want the Alfresco username to be inserted.
ldap.authentication.java.naming.provider.url: This is the URL used
to access the LDAP server.
ldap.authentication.defaultAdministratorUserNames: A list of
OpenLDAP user names that should be considered administrators in Alfresco.
When we are turning off the alfrescoNtlm authentication subsystem we do
not have an admin anymore, so we need to set one up. It is enough to have
one user as admin as he or she can add more admin users by adding their
usernames to the ALFRESCO_ADMINISTRATORS group.

Copy these four properties to the alfresco-global.properties file and set the
property values as follows:

ldap.authentication.allowGuestLogin=false

ldap.authentication.userNameFormat= uid\=%s,ou\=People,dc\
=bestmoney,dc\=com

ldap.authentication.java.naming.provider.url= ldap://ldap.bestmoney.
com:389

ldap.authentication.defaultAdministratorUserNames=Administrator

To figure out what userNameFormat to use, we can use an LDAP client like Apache
Directory Studio and navigate to where the users are stored. We should see
something like the following screenshot:

•

•

•

Chapter 4

[155]

Here it is easy to see what organizational unit (ou=Opsera,ou=People) the users
are under and what domain component (dc=opsera,dc=com) the organizational
unit is under.

Before starting Alfresco, we need to turn off synchronization as it is turned on by
default and we have not configured enough properties for it to work. So copy the
following property to the alfresco-global.properties file and set it to false:
ldap.synchronization.active=false

We will be able to start Alfresco now and it will test the access to the LDAP server.
We should see the following lines in the log if things went okay:
18:28:39,842 INFO [management.subsystems.
ChildApplicationContextFactory] Starting 'Authentication' subsystem, ID:
[Authentication, managed, bestmoneyLDAP]

18:28:40,325 INFO [management.subsystems.
ChildApplicationContextFactory] Startup of 'Authentication' subsystem,
ID: [Authentication, managed, bestmoneyLDAP] complete

18:28:40,326 WARN [org.alfresco.fileserver] No enabled CIFS
authenticator found in authentication chain. CIFS Server disabled

It is now possible to log in to Alfresco via an LDAP account and we should see that
the guest login is not active, which means that the login dialog is always displayed
when accessing Alfresco.

Worth noting here is that the CIFS server has been turned off as there is no
authentication subsystem available to support NTLM authentication or provide
MD4 hashed passwords.

Configuring user and group synchronizing with
OpenLDAP
If we look at the bare bones user account created after a successful login to LDAP,
it contains only the username, which is also set as first name. It would be nice to
import First Name, Last Name, and Email Address from LDAP and have it set
in the Alfresco account database.

For this we need to turn on synchronization again and configure a couple more
properties, so Alfresco can log in to the LDAP server and do queries for user and
group information:

ldap.synchronization.active=true

ldap.synchronization.java.naming.security.principal= cn\=alfresco,ou\
=Services,dc\=bestmoney,dc\=com

ldap.synchronization.java.naming.security.credentials=<password>

Authentication and Synchronization Solutions

[156]

It is a good idea to create a new user in LDAP, such as alfresco in this case, which
is used by Alfresco to log in and query for user and group information. This user is
also not put under the People organizational unit but under Services instead to
distinguish it from normal users. This service user has to have access to all users and
groups in LDAP.

Besides these properties, we also need to set up the search base in LDAP for where
to find users and groups (if you are unsure about what search base to use then
navigate to the users and groups from Apache Directory Studio and you will see
what base to use):

ldap.synchronization.userSearchBase=ou\=People,dc\=bestmoney,dc\=com

ldap.synchronization.groupSearchBase=ou\=Groups,dc\=bestmoney,dc\=com

Copy these five properties to the alfresco-global.properties file and
restart Alfresco.

The logs should look something like this now:

19:05:47,057 User:System INFO [security.sync.
ChainingUserRegistrySynchronizer] Synchronizing users and groups with
user registry 'bestmoneyLDAP'

...

19:05:49,474 WARN [security.sync.ChainingUserRegistrySynchronizer]
Updating group 'ALFRESCO_ADMINISTRATORS'. This group will in future be
assumed to originate from user registry 'bestmoneyLDAP'.

...

19:05:52,487 User:System INFO [security.sync.
ChainingUserRegistrySynchronizer] bestmoneyLDAP Group Creation and
Association: Processed 53 entries out of 53. 100% complete. Rate: 20 per
second. 0 failures detected.

...

19:05:53,778 User:System WARN [security.sync.
ChainingUserRegistrySynchronizer] Updating user 'martin'. This user will
in future be assumed to originate from user registry 'bestmoneyLDAP'.

...

19:05:58,841 User:System INFO [security.sync.
ChainingUserRegistrySynchronizer] opseraLDAP User Creation and
Association: Processed 31 entries out of 31. 100% complete. Rate: 4 per
second. 0 failures detected.

...

19:05:58,948 User:System INFO [security.sync.
ChainingUserRegistrySynchronizer] Finished synchronizing users and groups
with user registry 'opseraLDAP'

Chapter 4

[157]

The user martin that I logged in with, when synchronization was turned off– has
now been updated with First Name, Last Name, and Email Address and all other
users and groups have been imported into the Alfresco database.

If the First Name, Last Name, and Email Address has not been imported correctly for
some reason, then have a look at the following properties and make sure they match
the properties in LDAP:

ldap.synchronization.userIdAttributeName=uid

ldap.synchronization.userFirstNameAttributeName=givenName

ldap.synchronization.userLastNameAttributeName=sn

ldap.synchronization.userEmailAttributeName=mail

ldap.synchronization.userOrganizationalIdAttributeName=o

Open up a user via, for example, Apache Directory Studio and check that the LDAP
user properties match:

We can also verify that the user's query set by the following property really works:

ldap.synchronization.personQuery=(objectclass\=inetOrgPerson)

Authentication and Synchronization Solutions

[158]

Use Apache Directory Studio as follows:

This should give us a list of all the users if things are set up correctly in the LDAP
installation. We can test the groups query in the same way:

ldap.synchronization.groupQuery=(objectclass\=groupOfNames)

After the first initial import of users and groups, Alfresco does delta imports,
meaning it will only import when LDAP information changes (that is, new users,
new groups, delete group, update user, and so on). The queries that handle this
can be configured with the following properties:

ldap.synchronization.personDifferentialQuery=(&(objectclass\
=inetOrgPerson)(!(modifyTimestamp<\={0})))

ldap.synchronization.groupDifferentialQuery=(&(objectclass\
=groupOfNames)(!(modifyTimestamp<\={0})))

There are also a couple of other synchronization-related properties that are useful
to know about. These properties cannot be found in the LDAP properties file
but instead in the default-synchronization.properties file located in the
synchronization subsystem directory (that is, tomcat/webapps/alfresco/WEB-INF/
classes/alfresco/subsystems/Synchronization/default):

synchronization.synchronizeChangesOnly: This determines whether
the delta updates/differential synchronizing should be turned on or off
(default is on).
synchronization.import.cron: The time when there should be a cron job
kicking off an import of users and groups (default is to kick off an import
every night).
synchronization.syncWhenMissingPeopleLogIn: This specifies if the
system should trigger a delta/differential import for a user if they login
successfully but the First Name, Last Name, and Email is missing in the
Alfresco database (default is true).

•

•

•

Chapter 4

[159]

synchronization.syncOnStartup: This tells the system if an import should
be performed as soon as Alfresco has started up (default is true).
synchronization.autoCreatePeopleOnLogin: This is true if a user
should be autocreated in the Alfresco database, if missing, after a successful
authentication with LDAP.

Now let's move on and hook up the Alfresco server with Best Money's Microsoft
Active Directory server.

Configuring authentication and
synchronization against Microsoft Active
Directory
To configure Alfresco to authenticate and synchronize with an MS Active Directory
server, we have to use the predefined ldap-ad subsystem and customize the
configuration for it.

Let's start by adding this subsystem to the authentication chain. Open up the
alfresco-global.properties file located in the tomcat/shared/classes
directory. Now change the property value so it also uses the ldap-ad
authentication subsystem:

authentication.chain=bestmoneyLDAP:ldap,bestmoneyAD:ldap-ad

This will make Alfresco first try the OpenLDAP server to authenticate a user, and
if that does not work, Alfresco will try and authenticate the user against the Active
Directory server.

Configuring multiple LDAP authentication
subsystems
To set up authentication with Active Directory (AD) we have to tell the ldap-ad
subsystem how to connect to the Best Money AD server. This LDAP subsystem
uses the same properties as the ldap subsystem that we just used to connect to
OpenLDAP.

This presents a problem. How do we set up these properties to connect to two LDAP
servers at the same time? The solution is to not keep the properties in the alfresco-
global.properties file but instead in separate directories under tomcat/shared.

•

•

Authentication and Synchronization Solutions

[160]

Create the ldap/bestmoneyLDAP and ldap-ad/bestmoneyAD directories, as shown
in the following screenshot:

Copy the ldap-authentication.properties file located in the
tomcat/webapps/alfresco/WEB-INF/classes/alfresco/subsystems/
Authentication/ldap directory to the ldap/bestmoneyLDAP directory and
then copy the ldap-ad-authentication.properties file located in the
tomcat/webapps/alfresco/WEB-INF/classes/alfresco/subsystems/
Authentication/ldap-ad directory to the ldap-ad/bestmoneyAD directory.

The structure of these directories follows this template: alfresco/extension/
subsystems/[category]/[type]/[logical name] where logical/instance name is
the name we specified in the alfresco-global.properties file.

Moving OpenLDAP subsystem configuration to its
own directory
After this, we need to remove the ldap subsystem properties from the
alfresco-global.properties file and set them in the properties file located
in the tomcat/shared/.../ldap/ldap-authentication.properties file. The
global property file now only contains the following property that sets up the
authentication chain:

authentication.chain=bestmoneyLDAP:ldap,bestmoneyAD:ldap-ad

Note that the property that turns off guest login should be set to false in both LDAP
properties configuration files:

ldap.authentication.allowGuestLogin=false

Chapter 4

[161]

Any property configuration in any file in a subdirectory to the
tomcat/shared/classes/alfresco/extension directory will
override the same property configuration in the tomcat/shared/
classes/alfresco-global.properties file.

Configuring authentication and synchronization
with Active Directory
Now open up the tomcat/shared/…/ldap-ad/ldap-ad-authentication.
properties file and set up the properties to connect to the AD server:

ldap.authentication.userNameFormat=%s@win.bestmoney.com

ldap.authentication.java.naming.provider.url=ldap://ad.bestmoney.
com:389

ldap.synchronization.java.naming.security.principal=alfresco@win.
bestmoney.com

ldap.synchronization.java.naming.security.credentials=<password>

ldap.synchronization.userSearchBase=CN\=Users,dc\=win,dc\
=bestmoney,dc\=com

ldap.synchronization.groupSearchBase=CN\=Users,dc\=win,dc\
=bestmoney,dc\=com

Best Money's AD server has all groups stored under the Users container, so that's
why the search base queries are the same for users and groups.

If we are unsure about the userNameFormat and the userSearchBase then we can
use the Apache Directory Studio to find this out. If we connect and navigate to the
users, we should see something like the following screenshot:

Authentication and Synchronization Solutions

[162]

In this case, we can see that the userSearchBase must be CN\=Users,
dc\=wintest,dc\=opsera,dc\=com and if we have a look at one of the users,
we can figure out the user name format:

In this case, it should be set up as %s@wintest.opsera.com where %s will contain
the username that is entered in the Alfresco login dialog.

If we start up Alfresco, we should see a log where both the Best Money
authentication subsystems are loaded:

11:52:07,711 INFO [alfresco.config.JndiPropertiesFactoryBean]
Loading properties file from file [C:\Alfresco\tomcat\shared\classes\
alfresco\extension\subsystems\Authentication\ldap\bestmoneyLDAP\ldap-
authentication.properties]

11:52:07,749 INFO [alfresco.config.JndiPropertiesFactoryBean] Loading
properties file from file [C:\Alfresco\tomcat\shared\classes\alfresco\
extension\subsystems\Authentication\ldap-ad\bestmoneyAD\ldap-ad-
authentication.properties]

…

19:48:55,813 INFO [org.alfresco.repo.management.subsystems.
ChildApplicationContextFactory] Starting 'Authentication' subsystem, ID:
[Authentication, managed, bestmoneyLDAP]

19:48:55,836 INFO

[org.alfresco.repo.management.subsystems.ChildApplicationContextFactory]
Startup of 'Authentication' subsystem, ID: [Authentication, managed,
bestmoneyLDAP] complete

19:48:56,286 INFO [org.alfresco.repo.management.subsystems.
ChildApplicationContextFactory] Starting 'Authentication' subsystem, ID:
[Authentication, managed, bestmoneyAD]

19:48:56,881 INFO [org.alfresco.repo.management.subsystems.
ChildApplicationContextFactory] Startup of 'Authentication' subsystem,
ID: [Authentication, managed, bestmoneyAD] complete

19:48:56,882 WARN [org.alfresco.fileserver] No enabled CIFS
authenticator found in authentication chain. CIFS Server disabled

We should now be able to log in to Alfresco with any user in either Best Money's
OpenLDAP server or in Best Money's Active Directory server.

Chapter 4

[163]

Customizing group imports
If we want to narrow down the number of groups that are imported into Alfresco,
we can do that by extending the query as in the following example:

ldap.synchronization.groupQuery=(&(objectclass\=group)(CN\=Denied
RODC Password Replication Group))
ldap.synchronization.groupDifferentialQuery=(&(objectclass\
=group)(CN\= Denied RODC Password Replication Group)(!(modifyTimestam
p<\={0})))

This example imports only those groups that are members of the Denied RODC
Password Replication Group. Don't forget to also specify the differential query in the
same way. To find out what containers/groups an entry is a member of check out the
following attribute:

Accessing via the CIFS interface
We now got authentication and synchronization working with OpenLDAP and
Active Directory. However, we cannot connect via CIFS to the Alfresco server and
Best Money requires that all users in both the directory servers are able to access
Alfresco via CIFS.

We could add passthru authentication with the Windows Domain Controller, which
runs Active Directory, and then any user in AD would be able to connect to Alfresco
via CIFS.

This does not solve the problem for the OpenLDAP users, but it is needed by
the AD users. So to configure passthru authentication for AD users add the
bestmoneyADPassthru authentication component to the authentication chain
specified in alfresco-global.properties:

authentication.chain=bestmoneyLDAP:ldap,bestmoneyAD:ldap-
ad,bestmoneyADPassthru:passthru

passthru.authentication.domain=win.bestmoney.com

passthru.authentication.servers=ad.bestmoney.com

For passthru to work, we need to also specify what Windows Domain Controller
(the machine that runs AD) server to connect to when doing NTLM authentication.
This is done with the passthru.authentication.servers property.

Authentication and Synchronization Solutions

[164]

We can specify all passthru properties in the alfresco-global.properties file as
there is only one passthru authentication subsystem in use.

The passthru properties can be copied from the passthru-authentication-
context.properties file located in the tomcat/webapps/alfresco/WEB-INF/
classes/alfresco/subsystems/Authentication/passthru directory.

Starting Alfresco should display the following in the logs:

15:49:32,843 INFO [management.subsystems.
ChildApplicationContextFactory] Starting 'Authentication' subsystem, ID:
[Authentication, managed, bestmoneyADPassthru]

15:49:34,316 INFO [management.subsystems.
ChildApplicationContextFactory] Startup of 'Authentication' subsystem,
ID: [Authentication, managed, bestmoneyADPassthru] complete

It is now possible for a user in Best Money's Active Directory to connect to Alfresco
via the CIFS interface. However, if we now try to log in via a web browser that
might not work as Alfresco will try and do an automatic login via NTLM as the
ntlm.authentication.sso.enabled property is set to true by default in the
passthru subsystem.

This setting overrides the basic authentication that the bestmoneyLDAP and
bestmoneyAD subsystem supports. And if the windows user credentials do not
match any user in the AD directory then it will not be possible to log in via the web
browser. So disable SSO by setting the ntlm.authentication.sso.enabled=false
in the alfresco-global.properties file. After a restart of Alfresco, we should get
the login dialogs again in the browser and it should be possible to log in.

Best Money does not have a Samba server installed on the Linux box that runs
OpenLDAP, so we cannot use that approach for passthru authentication with
OpenLDAP. We need to come up with another solution such as creating a custom
Authenticator that can authenticate against an extra Samba object stored with each
LDAP account.

If there was a Samba server available to connect to OpenLDAP, then we
could just add that server address to the passthru.authentication.
servers property and the problem is solved.
In this case, we should also turn off authentication for the two LDAP
subsystems and have authentication done via the passthru authentication
subsystems as it is much more secure NTLM authentication than the
LDAP simple bind.

Chapter 4

[165]

Implementing a custom authenticator for CIFS
authentication against an LDAP server
For users to be able to use the CIFS interface, we normally need to have Alfresco
set up to authenticate with its internal database or via an MS Active Directory.
Both these databases/directories support MD4 hashed passwords and both
servers support NTLM authentication.

This is not available when we use an LDAP server such as OpenLDAP. We have
to come up with a solution that:

Provides a directory that supports MD4 hashed passwords
Supports NTLM authentication

Nothing like this exists out of the box, but one possible solution is to add an extra
Samba object to the LDAP structure and then create an authenticator that can
authenticate against this new Samba account. What we need to do to implement this
solution is:

Add a sambaSamAccount object to each OpenLDAP user's account
Have each user create MD4 hashed passwords via a custom change
password dialog
Implement an NTLM Authenticator that uses the sambaSamAccount object
for authentication
Configure a new subsystem and add to the authentication chain

This is not an ideal solution as each user would have to reset their password to have
the new sambaSamAccount generated, but it is a good solution if a Samba server is
not available to hook up to OpenLDAP. It can also be a good solution if there is a
problem getting the Samba and LDAP combination to work.

Adding a sambaSamAccount to LDAP structure
Each LDAP user needs to store the password as an MD4 hash and we will solve
this by adding a sambaSamAccount object class to the user profile. This object class
and its attributes are defined in the samba.schema file, which is part of the
samba-doc package.

To install this new schema, have a look at the documentation for your Linux
distribution in the sections talking about how to add an LDAP schema to
OpenLDAP.

•

•

•

•

•

•

Authentication and Synchronization Solutions

[166]

When this Samba schema is installed, we should see something like the following
screenshot for an LDAP user account entry:

A sambaSamAccount has been added to this martin entry and he has also changed
his password via the new password change dialog that updates the LM and NT
password hashes.

Generating MD4 passwords
Most companies and organizations have a page where its employees can reset or
change their password. Best Money's OpenLDAP users have a special custom built
Change Password page. What we need to do is update the logic behind it to set
up the Samba account attributes (specifically generate the MD4 password hash)
whenever a user changes his or her password.

This is out of the scope for this chapter.

Building a custom NTLM authenticator
So, now we have got the LDAP user entries prepared with Samba accounts and there
is a way for users to update their LDAP entries with Samba account information. Let's
implement an authenticator that can use this new Samba account for authentication.

Chapter 4

[167]

This authenticator is basically the same as Alfresco's standard authentication
component except that we want to get the password MD4 hash from LDAP instead
of from Alfresco's database. The easiest way to implement our authenticator is to
extend Alfresco's standard authenticator and then re-implement the method that
gets the MD4 hash.

Start by creating a new authentication component class as follows:

public class LdapCifsAuthenticationComponentImpl
 extends AuthenticationComponentImpl {

The new authentication component class extends the org.alfresco.repo.
security.authentication.AuthenticationComponentImpl class, which in
turn implements the NTLMAuthenticator interface. This is the key to enabling
the authenticator for CIFS authentication.

Now add the Spring LDAP Template class org.springframework.ldap.core.
LdapTemplate so we can talk to the LDAP server. We also need to store the LDAP
base for user entries:

private LdapTemplate m_ldapTemplate;
private String m_userBase;

The LDAP Template class is available in Spring's LDAP library (for example,
spring-ldap-core-1.3.0.jar). Add a constructor that calls the super class and
Spring DI setters as follows:

public LdapSambaAuthenticationComponentImpl() { super(); }
public void setLdapTemplate(LdapTemplate ldapTemplateObj) {
 m_ldapTemplate = ldapTemplateObj; }
public void setUserBase(String userBase) { m_userBase =
 userBase; }
Next thing we need to do is to override the method that gets the MD4
hash:
@Override
public String getMD4HashedPassword(String userName) {
 final SambaSamAccount sam = getSambaSamAccount(userName);
 if (sam == null) {
 logger.error("SambaSamAccount was null for user " +
 userName + ", please set it up in LDAP directory.");
 return null;
 } else {
 return sam.getSambaNtPassword();
 }
}

Authentication and Synchronization Solutions

[168]

This method calls the getSambaSamAccount method with the passed in username.
The getSambaSamAccount method will do the job of talking to LDAP and extracting
the MD4 hash for the username and put it in a custom mapping class called
SambaSamAccount:

private SambaSamAccount getSambaSamAccount(String uid) {
 String andFilter = new AndFilter()
 .and(new EqualsFilter(SambaSamAccount.ATTR_OBJECT_CLASS,
 SambaSamAccount.OBJECT_CLASS))
 .and(new EqualsFilter(SambaSamAccount.ATTR_UID,
 uid)).encode();

The first thing we do is to create an LDAP search filter that will extract information
from LDAP entries with objectClass=sambaSamAccount and attribute
uid=username. So if the username matches an entry and this entry has the
sambaSamAccount object class then it will match.

A mapper class will be used to pass the LDAP data from the LDAP context to the
Authenticator Java class context:

 ContextMapper mapper = new ContextMapper() {
 public Object mapFromContext(final Object o) {
 final String dUid = ((DirContextOperations)
 o).getStringAttribute(SambaSamAccount.ATTR_UID);
 final String dHash = ((DirContextOperations)
 o).getStringAttribute(SambaSamAccount.ATTR_NT_PASS);
 return new SambaSamAccount(dUid, dHash);
 }
 };

The mapper extracts the data from LDAP and puts it in this new custom class
SambaSamAccount that we will create in a second. The last thing that needs to be
done is to do the search with the user base, filter, and the context mapper:

 try {
 return (SambaSamAccount)
 m_ldapTemplate.searchForObject(m_userBase, andFilter, mapper);
 } catch (Exception e) {
 logger.error(e.getClass().getSimpleName() + " when searching for
 SambaSamAccount for user " + uid +
 " [message=" + e.getMessage() + "]");
 return null;
 }
 }
}

Chapter 4

[169]

Finally, create the mapper class as follows:

public class SambaSamAccount {
 public static final String OBJECT_CLASS = "sambaSamAccount";
 public static final String ATTR_OBJECT_CLASS = "objectClass";
 public static final String ATTR_NT_PASS = "sambaNTPassword";
 public static final String ATTR_UID = "uid";

 private final String m_sambaNtPassword;
 private final String m_uid;

 public SambaSamAccount(final String uid, final String hash) {
 m_uid = uid;
 m_sambaNtPassword = hash;
 }

 public String getUid() { return m_uid; }
 public String getSambaNtPassword() { return
 m_sambaNtPassword; }
}

We can put these two classes in a new package called com.bestmoney.cms.
authentication located in the following directory bestmoney/alf_extensions/
trunk/_alfresco/source/java/com/bestmoney/cms/authentication.

Custom authentication subsystem configuration
To configure this new authenticator, we can create a new subsystem directory in the
same place as the other subsystems we have configured. Add a subsystem called
bestmoneySambaLDAP under the new authenticator type ldap-samba-account
under the Authentication subsystem category:

Authentication and Synchronization Solutions

[170]

Add a property file called ldap-samba-account-authentication.properties in
the bestmoneySambaLDAP directory. Then add the following properties to it:

ldap.samba.authentication.java.naming.provider.url=ldap://ldap.
bestmoney.com:389

ldap.samba.authentication.base=dc=bestmoney,dc=com

ldap.samba.authentication.userbase=ou=People

ldap.samba.java.naming.security.principal=cn\=alfresco,ou\
=Services,dc\=bestmoney,dc\=com

ldap.samba.java.naming.security.credentials=<password>

alfresco.authentication.authenticateCIFS=true

alfresco.authentication.allowGuestLogin=false

We are making most of these properties unique (that is, using ldap.samba) so
they can be set independently of the standard LDAP properties if needed. These
properties are set in the associated Spring configuration file ldap-samba-account-
authentication-context.xml.

A good starting point for this file is the alfresco-authentication-context.xml
Spring configuration file from the tomcat/webapps/alfresco/WEB-INF/classes/
alfresco/subsystems/Authentication/alfrescoNtlm directory. After copying
the contents of this file, add the following LDAP-related bean definitions to the
beginning of the file:

<beans>
 <bean id="ldapContextSource" class=
 "org.springframework.ldap.core.support.LdapContextSource">
 <property name="url"
 value="${ldap.samba.authentication.java.naming.provider.url}"/>
 <property name="base" value=
 "${ldap.samba.authentication.base}"/>
 <property name="userDn"
 value="${ldap.samba.java.naming.security.principal}"/>
 <property name="password"
 value="${ldap.samba.java.naming.security.credentials}"/>
 </bean>

 <bean id="ldapTemplate" class=
 "org.springframework.ldap.core.LdapTemplate">

Chapter 4

[171]

 <constructor-arg ref="ldapContextSource"/>
 <property name="ignorePartialResultException"
 value="true"/>
 </bean>

This defines the two LDAP beans that the custom authentication component needs
when talking to OpenLDAP. Now add the bean for the custom authenticator by
copying the definition from the existing authenticationComponent bean. Then
change the class name to the new custom class and add two properties for the
LDAP template and the user base:

 <bean id="authenticationComponent"
 class="com.bestmoney.cms.authentication.LdapSambaAuthentication
 ComponentImpl"
 parent="authenticationComponentBase">
 <property name="ldapTemplate" ref="ldapTemplate"/>
 <property name="userBase"
 value="${ldap.samba.authentication.userbase}"/>
 <property name="authenticationManager">
 <ref bean="authenticationManager"/>
 </property>
 <property name="allowGuestLogin">
 <value>${alfresco.authentication.allowGuestLogin}</value>
 </property>
 <property name="nodeService">
 <ref bean="nodeService"/>
 </property>
 <property name="personService">
 <ref bean="personService"/>
 </property>
 <property name="transactionService">
 <ref bean="transactionService"/>
 </property>
 </bean>

Last thing we need to do is to comment out the original authenticationComponent
bean definition and we are ready to go.

Deploying the needed classes for the custom authenticator
If we have both the LdapSambaAuthenticationComponentImpl.java and the
SambaSamAccount.java files in the bestmoney/alf_extensions/trunk/_
alfresco/source/java/com/bestmoney/cms/authentication directory,
it is easy to create a JAR that we can deploy.

Authentication and Synchronization Solutions

[172]

Just run the package-alfresco-jar ant target and it will create a JAR file in the
3340_04_Code\bestmoney\alf_extensions\trunk\build\lib directory that
can be dropped into the tomcat/webapps/alfresco/WEB-INF/lib directory.

Then restart the Alfresco server.

Testing the new custom authenticator
It should now be possible for users in the OpenLDAP directory to also use the
CIFS interface to interact with Alfresco.

Making authentication more secure and
using SSO
At the moment, the bestmoneyLDAP and bestmoneyAD authentication subsystems
are handling the authentication. This is not secure as a normal LDAP simple bind is
used where the passwords are sent in plain text.

It would be better if we could let the NTLM authenticators (that is,
bestmoneyADPassthru and bestmoneySambaLDAP) handle all authentications,
not just CIFS authentications. We can do this by turning off authentication for the
bestmoneyLDAP and bestmoneyAD subsystems.

Set the following property to false for both of these subsystems:

ldap.authentication.active=false

This effectively makes the bestmoneyLDAP subsystem and the bestmoneyAD
subsystem to only manage synchronization of user and group information.

After restarting Alfresco users in the OpenLDAP directory, we will be able to login
to Alfresco via a browser. This works as the bestmoneySambaLDAP authentication
subsystem is pretty much the same as the alfrescoNtlm subsystem and therefore
supports the standard Authentication Filter that supports HTTP basic authentication.

Active Directory users will not be able to log in via a browser as the
bestmoneyADPassthru subsystem does not support HTTP basic authentication but
only NTLM authentication and Single Sign-on (SSO). NTLM authentication is turned
off by us in the alfresco-gloabal.properties file:

ntlm.authentication.sso.enabled=false

authentication.chain=bestmoneyLDAP:ldap,bestmoneyAD:ldap-
ad,bestmoneyADPassthru:passthru,bestmoneySambaLDAP:ldap-samba-account

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

[173]

passthru.authentication.domain=win.bestmoney.com

passthru.authentication.servers=ad.bestmoney.com

When NTLM is turned off, the associated NTLM Servlet Filter is also turned off
so users will not be logged in. So change the configuration and turn on NTLM by
commenting out the ...sso.enabled configuration line:

#ntlm.authentication.sso.enabled=false

Now when Internet Explorer (IE) is used to browse to the Alfresco site, we are
logged in automatically if the Windows user has an account in Active Directory
with matching username and password.

If we use FireFox (FF) to browse to the Alfresco site, we will be presented with
a login dialog as FF has to be configured to pick up the Windows credentials
automatically. If we logout the following dialog will be displayed:

If we click the Re-login link we will be automatically logged in. To set up the
Alfresco site to be trusted in FF and NTLM to be enabled correctly, enter
about:config in the URL field and set up the following property:

Now FF users will also get logged in automatically.

Troubleshooting NTLM authentication and SSO
If we access Alfresco via the IE or FF browser and get the following error:

net.sf.acegisecurity.AuthenticationServiceException: Failed to open
passthru auth session
at org.alfresco.repo.security.authentication.ntlm.
NTLMAuthenticationComponentImpl.authenticatePassthru(NTLMAuthenticationCo
mponentImpl.java:783)
at org.alfresco.repo.security.authentication.ntlm.
NTLMAuthenticationComponentImpl.authenticate(NTLMAuthenticationComponentI
mpl.java:554)
...

Authentication and Synchronization Solutions

[174]

Then we have a problem with the setup of NTLM or the Windows machine. To
figure out what is going on, we should turn on debug logging for the NTLM filter.
Open the log4j.properties file located in the tomcat/webapps/alfresco/WEB-
INF/classes directory and set up debug mode for the following package:

log4j.logger.org.alfresco.web.app.servlet.NTLMAuthenticationFilter=de
bug

Restart the server and try logging in again, something like the following logs
might appear:

14:45:39,432 DEBUG [app.servlet.NTLMAuthenticationFilter] Received type1
[Type1:0xa208b207,Domain:WORKGROUP,Wks:MBERGLJUNG-PC]

14:45:39,434 DEBUG [app.servlet.NTLMAuthenticationFilter] Client domain
WORKGROUP

14:45:39,493 DEBUG [app.servlet.NTLMAuthenticationFilter] Processing
request: /alfresco/wcservice/api/search/keyword/description.xml SID:null

14:45:39,494 DEBUG [app.servlet.NTLMAuthenticationFilter] Found
webscript with no authentication - set NO_AUTH_REQUIRED flag.

14:45:39,495 DEBUG [app.servlet.NTLMAuthenticationFilter] Authentication
not required (filter), chaining ...

The NTLM Filter is set up to work with users in one or more domains and we have
set the domains as follows:

passthru.authentication.domain=win.bestmoney.com

This will not really work in this case as the domain is WORKGROUP and the NTLM
filter will just ignore this user as he or she is not logged into a Windows domain. We
have to make sure that the Windows machine is connected to the correct domain and
that the user is logged into the domain.

Using directory servers in a Development
Environment
In a lot of cases, Alfresco is run in both the Development Environment and the
Test Environment without being hooked up to a directory server until a very later
stage. Maybe we are getting within a few weeks of the go-live date before we are
configuring Alfresco to integrate with the directory service.

Chapter 4

[175]

This might be because we do not have access to a directory service during
development and testing. However, there are some good reasons for installing
our own directory service at an early stage of the project:

We have a chance to test authentication and synchronization in the way the
client wants it done.
If there are several developers involved in the project then they do not all
have to set up the same number of users, groups, and assign members to
each group. This is done once in the directory and then everybody can use it.
If we need to test the module we build with different versions of Alfresco, we
can easily hook up each Alfresco installation to the directory.
We can spot any problems caused by using external authentication on an
early stage, instead of having to figure them out a week or two before we
are supposed to go live.

Summary
This chapter has really shown us the vast possibilities that exist in the Alfresco
platform for authentication with all kinds of different systems and being able to
easily import users and groups from different directory servers.

In the first part of this chapter, we looked closer at how different authentication
mechanisms such as LDAP and NTLM work and how they are supported by
different components in Alfresco.

We then went on to set up and configure Alfresco to authenticate with both
OpenLDAP and MS Active Directory at the same time. We saw that Alfresco comes
out of the box with authentication subsystem configurations for these two types of
directory servers.

After setting up authentication with the directory servers we extended the Alfresco
configuration to also synchronize/import user and group data with these directories.
When configuring Alfresco to talk to these directory servers, it is helpful to use a tool
such as Apache Directory Studio to inspect LDAP directory structure and data.

Sometimes it might not be enough with the out of the box authentication subsystems
and we saw how a custom authenticator can be implemented and configured in a
separate subsystem.

•

•

•

•

Authentication and Synchronization Solutions

[176]

Finally, we got a lot of tips for how to troubleshoot problems. For example, CIFS
requires NTML authentication to be supported by one of the authenticators,
otherwise, the CIFS server will not start. Also, Windows versions newer than
2000 might try and use NTLMv2, which does not work with Alfresco.

In the next chapter, we will dig into CIFS and see how it works and how we can
troubleshoot any problems with CIFS. We will also look at WebDAV filesystem
access solutions as this protocol is becoming more and more common.

File System Access Solutions
The Alfresco repository can be accessed from many different client interfaces and
which one of them to use is often dependent on the task at hand. There are the
web interfaces Alfresco Explorer and Alfresco Share that have to be used when
participating in for example, workflows, collaboration scenarios, and records
management, and we have the mobile interface, e-mail interfaces, and so on.
However, when it comes to document management most users prefer to work
through a filesystem interface on a day-to-day basis.

Alfresco provides an SMB (Server Message Block) protocol implementation known
as Alfresco CIFS (Common Internet File System) that gives the user access to the
document repository in the form of a shared drive. CIFS is an open version of SMB
with Internet-specific modifications. In the rest of this chapter, we can assume that
CIFS and SMB are synonymous.

CIFS gives the user the possibility to work in a familiar Windows Explorer, Mac
Finder, or SMB Client environment when accessing documents in Alfresco. This
chapter will give you an overview of CIFS and walk through how to configure
CIFS on Windows and Linux.

Although this chapter is primarily about CIFS, it might not always be the best
solution for larger installations or in situations when a lot of the client computers are
connecting remotely, then CIFS might not achieve the performance or stability that is
needed. In these cases, the Alfresco WebDAV (Web-based Distributed Authoring
and Versioning) interface might be a better solution. We will have a look at a couple
of different WebDAV clients.

In this chapter, you will learn:

How CIFS uses NetBIOS over TCP/IP for transport
How CIFS uses NetBIOS Naming Service for name registration
and resolution

•
•

File System Access Solutions

[178]

How CIFS can use TCP Directly for transport and DNS for name resolution
How Alfresco CIFS is installed by default on Windows and Linux
What the File Servers subsystem is
Configuring the Alfresco CIFS server on different Windows versions and
on Linux
How to connect to Alfresco through a WebDAV client
Troubleshooting CIFS connections

File access concepts
Before we start configuring the CIFS server in Alfresco, let's have a look at the
underlying protocol and how it works.

CIFS protocol overview
CIFS is a client-server application and protocol that is mainly used to access files
and printers in a Microsoft Windows network. CIFS clients can work with files and
directories on remote servers as if they were on a local hard-disk.

CIFS Server support comes preinstalled in Microsoft's operating systems, so no
need to install any software to support it. CIFS makes it possible to see hard disks
and printers on other Windows computers through the Network Neighborhood
feature. If a CIFS server is needed on Linux, we would have to install Samba.

Some of the high level features offered by the Common Internet File System are:

Access: CIFS servers are accessible from multiple client operating system
platforms including Windows (NT, XP, 2003 Server, Vista, 7, 2008 Server)
Macs (OS/X 10.x) Linux, and UNIX.
Security and Granularity: CIFS servers support both anonymous transfers
and secure, authenticated access to named files. File and directory security
policies are easy to administer.
Data Integrity: CIFS supports the usual set of file operations; open, close,
read, write, and seek. CIFS also supports file and record lock and unlocking.
CIFS allows multiple clients to access and update the same file while
preventing conflicts by providing file sharing and file locking.
Optimization for Slow Links: The CIFS protocol has been tuned to run well
over slow-speed dial-up lines.
Unicode File Names: File names can be in any character set, not just
character sets designed for English or Western European languages.

•
•
•
•

•
•

•

•

•

•

•

Chapter 5

[179]

CIFS works by sending a request such as open file to the server. The server receives
the request, verifies that the client has appropriate permissions, then processes the
request and returns a response to the client:

CIFS is a fairly high-level network protocol. In the OSI model, it is probably best
described at the Application/Presentation layer. This means CIFS relies on other
protocols for transport. The most common protocol used for reliable transport is
NetBIOS over TCP (NBT) or TCP directly. Other protocols have been used for the
transport layer, however, with the enormous popularity of the Internet, NBT, or
Direct TCP has become the de-facto standard.

Although file sharing is CIFS's primary purpose, there are other functions that
CIFS is commonly associated with. Most CIFS implementations are also capable
of determining other CIFS servers on the network (browsing), printing, and even
complicated authentication techniques.

To connect to a CIFS server in Windows we typically use Windows Explorer and
through the Tools menu we select Map Network Drive. We can also map a drive
from command line as follows:

net use z: \\AlfrescoServerA\Alfresco <password> /USER:<username>

CIFS Transport—NetBIOS over TCP/IP (NBT)
The most commonly used transport protocol for CIFS/SMB is NetBIOS over TCP/
IP (NBT). NetBIOS was developed in the 1980s and it defines both a programming
interface (API) and a transport protocol. The NBT specifications (RFC1001 and 1002)
define three services:

Naming service: Provides a mapping between a name and an address•

File System Access Solutions

[180]

Two communication services:
Session service: Connection-oriented data transmission between
NetBIOS computers
Datagram service: Connectionless data transmission between
NetBIOS computers

The following figure gives an overview of CIFS and NBT on a Windows box:

Naming service
The naming service uses human readable names to identify computers and they
can typically be seen in the network neighborhood in a Windows system. These
names can be a maximum of 16 characters long (you can only use 15 as the last
character is used to specify service type such as file sharing service) and exist in a flat
namespace (that is, not dot-separated namespaces as in DNS names). NetBIOS names
have the same purpose as domain names used by the DNS system in the TCP/IP
environment.

With NetBIOS names end users can refer to specific computers by a name instead
of by a transport address, such as an IP. NetBIOS provides a system for mapping
a name to an IP address. In a Windows environment, the implementation of the
NetBIOS Naming Service is called WINS (Windows Internet Naming Service). The
naming service is available on UDP port 137 for registration and resolution of names:

•
°

°

Chapter 5

[181]

Besides using a NetBIOS naming server to register and resolve names, a broadcasting
mechanism can also be used. In this case, the CIFS server broadcasts a registration
packet to the subnet via UDP port 137. The CIFS server repeats this three times
and the registration is successful, if no other workstation or server on the subnet
responds with a message that the name is already taken.

A workstation wishing to resolve a name via broadcast sends a resolve message
with the name to the subnet via UDP port 137. This message is sent three times
with five seconds between the messages and if the resolve message is successful
an IP address will be returned:

File System Access Solutions

[182]

Broadcasts aren't meant to cross subnet boundaries, so if we've got
computer nodes separated by routers we might have to resort to
using WINS.

There are different NetBIOS Node Types depending on if they are using a naming
service, broadcast, or both:

Broadcast: Uses broadcast registration and resolution only.
Peer-to-Peer: Uses naming service registration and resolution only.
Mixed: Uses broadcast for registration. If successful, it notifies the naming
service of the result. Uses broadcast for resolution; uses the naming service
if broadcast is unsuccessful.
Hybrid: Uses the naming service for registration and resolution; uses
broadcast if the naming service is unresponsive or inoperative.

It is easy to find out what node type a workstation or server is configured with by
using for example, ipconfig. On my Windows 7 box I get the following result:

C:\Users\mbergljung>ipconfig /all

Windows IP Configuration

 ...

 Node Type : Broadcast

 ...

In this case, the Node Type was Broadcast. Trying this on a Windows 2003 Server
gives Node Type Hybrid:

C:\>ipconfig /all

Windows IP Configuration

 ...

 Node Type : Hybrid

 ...

•
•
•

•

Chapter 5

[183]

To see what NetBIOS names are registered on a particular NBT computer we can
use the Windows command utility nbtstat. On my Windows 7 box I get the
following names:

C:\Users\mbergljung>nbtstat -a mbergljung-PC

Local Area Connection:

Node IpAddress: [192.168.0.2] Scope Id: []

 NetBIOS Remote Machine Name Table

 Name Type Status

 MBERGLJUNG-PC <00> UNIQUE Registered

 WORKGROUP <00> GROUP Registered

 MBERGLJUNG-PC <20> UNIQUE Registered

 WORKGROUP <1E> GROUP Registered

 WORKGROUP <1D> UNIQUE Registered

Here we can see that the MBERGLJUNG-PC NetBIOS name has been registered
twice—one for service type 00, which is the Workstation Service (that is machine/
computer name registration), and one for service type 20, which is the File Server
Service (it means the computer can share files and printers).

A NetBIOS name does not have to be UNIQUE; it can also denote a GROUP,
as in this case when the computer belongs to the WORKGROUP.

Communication services
So, now we have got a way to find out the IP address of a NetBIOS service name for
a File Server, but how do we start communicating with it? For this we use the NBT
Session Service and Datagram Service.

Session service
The NBT Session service is used to establish long lived connections from client
computers to file sharing services on a server. The client sends information to the
file sharing service about what files it wishes to open, what data it wants to send,
and so on. These communications can take place over a very long time, sometimes
days, and if there is ever an error there will be retransmissions until data is
received successfully.

File System Access Solutions

[184]

The NetBIOS Session service has three phases:

Session establishment: It is during this phase that the IP address and TCP
port of the called name is determined, and a TCP connection is established
with the remote server and service.
Steady state: It is during this phase that NetBIOS data messages are
exchanged over the session. Keep-alive packets may also be exchanged
if the participating clients and servers are so configured.
Session close: A session is closed whenever either a client or a server
(in the session) closes the session or it is determined that one of them has
gone down.

The session service functionality takes place over TCP port 139 and is very similar
to TCP with a few exceptions. The main difference is that TCP is stream-oriented
and does not preserve message boundaries. This is in contrast to the session service,
which sends one message at a time over the network and is expected to read one
message at a time from the network.

The session service primitives offered by NetBIOS are:

Call—a client opens a session to a remote NetBIOS name on top of a
TCP stream
Listen—a server listens for attempts to open a session to a NetBIOS name
on top of a TCP stream
Hang Up—closes a session
Send—sends a packet to the computer on the other end of a session
Send No Ack—similar to Send, but doesn't require an acknowledgment
Receive—waits for a packet to arrive from a Send on the other end of
a session

The session service makes it possible to handle many NetBIOS names (that is
services) on the same TCP/IP connection. We will see later whether a Windows
Share and an Alfresco Share can coexist on the same computer.

CIFS uses the session service to send and to receive all upper layer commands,
including all file and printer operations. Therefore, the first step in any CIFS
network communication is usually to establish a NetBIOS session between
the client and server.

•

•

•

•

•

•
•
•
•

Chapter 5

[185]

Datagram service
The NBT Datagram service is an unreliable, non-sequenced, and connectionless
service. The datagram service is used by NetBIOS applications as a fast, broadcast-
capable, and low-overhead method of transferring data. The UDP port 138 is used to
implement the NetBIOS datagram service within the TCP/IP suite of protocols. UDP
is very similar to the NetBIOS datagram service, but still must be slightly modified to
emulate all of the datagram service functionality.

All NetBIOS datagram packets that are to be sent over UDP have a header
prepended to them. This header contains two important pieces of information—the
NetBIOS name of the packet sender, and whether or not the NetBIOS datagram was
fragmented to be sent via UDP. With this information, the NetBIOS datagram service
can be completely emulated over the UDP protocol.

CIFS implementations typically use the NetBIOS datagram service for browsing.
Browsing is the process of discovering the NetBIOS names of CIFS servers that are
on the network (Windows then displays this list in the Network Neighborhood).

Browsing is not a part of the standard CIFS protocol. Although most
CIFS implementations also implement browsing, they are separate
entities. Therefore, a pure CIFS implementation would not need to
implement the NetBIOS datagram service, only the session and name
services described earlier.
For example, the CIFS transport described next—Native SMB does not
use NetBIOS at all.

CIFS transport—TCP/IP (Native SMB)
Starting with Windows 2000, Microsoft added the possibility to run SMB/CIFS
directly over TCP/IP, without the extra layer of NBT. For this they use TCP port 445
with names resolved via the standard Domain Name Service (DNS). The protocol
diagram looks as follows with both Native and NBT transport depicted:

File System Access Solutions

[186]

To identify active SMB transport protocols on a Windows system, the net config
rdr (rdr = redirector) and net config srv (srv = server) commands can be used:

C:\Users\mbergljung>net config rdr

Computer name \\MBERGLJUNG-PC

Full Computer name mbergljung-PC

User name mbergljung

Workstation active on

 NetBT_Tcpip_{969D7610-993F-4D3A-AD39-5DC0A0671FD4} (002170D01F98)

 NetBT_Tcpip_{9B01A15C-6B63-4C9F-8F47-EBF898E6FDF0} (00215DCA7076)

 NetBT_Tcpip_{0C0862E1-B0AC-4FD6-A43F-2FC8AF956462} (00FF0C0862E1)

Here, we can see that my Windows 7 box is using NBT (NetBT_Tcpip_...). An
instance of NetBT_Tcpip is shown for each network adapter that it is bound to. If I
run it on a Windows 2003 development server I get this:

C:\>net config rdr

Computer name \\ALFRESCO2_DEV

Full Computer name alfresco2_dev.opsera

User name Administrator

Workstation active on

 NetbiosSmb (000000000000)

 NetBT_Tcpip_{D90C6492-0779-4784-9B65-5C8831B03E85} (005056A43270)

The NetbiosSmb device binding line means that this server also supports the
NETBIOS-less protocol where SMB runs directly on top of TCP. NetbiosSmb is a
global device, and is not bound on a per-adapter basis.

To disable Native SMB on TCP port 445, the File and Printer Sharing
service has to be turned off completely. This does not free up port
445, windows still listens on it even though the File and Printer
Sharing service is not using it.
To release TCP 445 so other applications can bind to it stop the
"Server" Windows service with the description "Supports file, print,
and named-pipe sharing over the network for this computer. ..." and
restart the computer.

Chapter 5

[187]

If I issue the server command on my Windows 7 box, I get the following result:

C:\Users\mbergljung>net config srv

Server Name \\MBERGLJUNG-PC

Server Comment

Software version Windows 7 Ultimate

Server is active on

 NetbiosSmb (MBERGLJUNG-PC)

 NetBT_Tcpip_{9B01A15C-6B63-4C9F-8F47-EBF898E6FDF0} (MBERGLJUNG-
PC)

 NetBT_Tcpip_{0C0862E1-B0AC-4FD6-A43F-2FC8AF956462} (MBERGLJUNG-
PC)

 NetBT_Tcpip_{969D7610-993F-4D3A-AD39-5DC0A0671FD4} (MBERGLJUNG-
PC)

So my workstation's CIFS server is listening on native SMB connections on TCP 445.
And NBT transport is also bound to all adapters. I get a similar result when doing
this on the Windows 2003 server:

C:\>net config srv

Server Name \\ALFRESCO2_DEV

Server Comment

Software version Microsoft Windows Server 2003 R

Server is active on

 NetbiosSmb (000000000000)

 NetBT_Tcpip_{D90C6492-0779-4784-9B65-5C8831B03E85} (005056a43270)

A Windows system with both SMB transports active tries to connect to 445/TCP and
139/TCP at the same time. If the connection to 445/TCP is accepted, the connection
to port 139 is closed.

CIFS dialect negotiation
Since the SMB/CIFS protocol's inception, it has been extended from time to time
with new commands, creating new versions of the protocol. Each new version is
compatible with older versions of the protocol. The following list contains some of
the major versions of the SMB/CIFS protocol:

NT LAN Manager 1.0—used by Windows NT 4.0 (ID = NT LM 0.12)
Samba's NT LM 0.12—used by Samba (ID = Samba)

•
•

File System Access Solutions

[188]

Common Internet File System—used by Windows 2000/XP (ID = CIFS 1.0)
SMB2—used by Windows Vista and later (ID = SMB 2.0)

The first thing that happens when a CIFS client and a server wants to talk to each
other is to negotiate what protocol version to use. On my Windows 7 workstation,
a message as follows is sent for a protocol negotiation request, captured with the
Wireshark product:

So my workstation is telling the server that it can support a whole lot of SMB dialects
and which one would it like to use. The server responds:

So, in this case, the NT LM 0.12 dialect will be used.

A tip when capturing network traffic with the Wireshark product is to use
a filter that captures only TCP and SMB traffic between the CIFS client
and the CIFS server. A filter like that has the following format: ((ip.src
== 192.168.17.83 && ip.dst == 192.168.17.149) || (ip.src
== 192.168.17.149 && ip.dst == 192.168.17.83)) && (smb ||
tcp). To also capture NetBIOS name service add nbns as protocol.

•
•

Chapter 5

[189]

CIFS authentication and security
The CIFS protocol has two levels of security:

User: A user must authenticate with the CIFS server during the initial
connection. The supplied username and password determine what resources
the user can access.
Share: This level of security operates on an individual shared resource. The
resource has a single password. Anyone with access to the password can
access the resource.

CIFS uses NTLM for authentication and NTLM is a suite of authentication and session
security protocols used in various Microsoft network protocol implementations and
supported by the NTLM Security Support Provider (NTLMSSP).

The NTLMSSP provides authentication, integrity, and confidentiality services within
the Windows Security Support Provider Interface (SSPI) framework. NTLM has
been largely supplanted by Kerberos as the authentication protocol of choice for
Windows domain-based scenarios. However, Kerberos is more complicated and
relies on a trusted third party.

Under both the User and Share security levels, the password is encrypted before
it is sent to the server. NTLMv1 (that is MD4) and the older LAN Manager (LM)
encryption are supported by Microsoft CIFS protocol. However, the newer Windows
operating systems such as Vista, 7, and 2008 server will try and authenticate with the
newer, more secure NTLMv2 that uses stronger encryption (that is MD5).

The encryption methods use challenge-response authentication, where the server sends
the client a random string and the client returns a computed response string that
proves the client has sufficient credentials for access.

A typical NTLM two stage Session Setup negotiation looks like the following
network captures that was taken with the Wireshark product on a Windows 7 box.
The client starts by sending a negotiate message:

•

•

File System Access Solutions

[190]

Then the server responds with a challenge message:

And the client sends an authentication message:

And the server responds with a success status message:

Next generation CIFS—SMB2
Microsoft introduced a new version of the Server Message Block (SMB) protocol
(SMB 2.0 or SMB2) with Windows Vista in 2006. SMB2 is proprietary but its
specification has been published to allow other systems to interoperate with
Microsoft operating systems that use the new protocol.

SMB2 reduces the chattiness of the protocol by reducing the number of commands
and subcommands from over a hundred to just nineteen. It has mechanisms for
pipelining, that is, sending additional requests before the response to a previous
request arrives.

Chapter 5

[191]

The notion of durable file handles is introduced, which allow a connection to an
SMB2 server to survive brief network outages, such as with a wireless network,
without having to construct a new session. SMB2 also implements support for
symbolic links.

SMB2 uses TCP port 445 for communication and does not need NBT for
communication. The service is in practice same as the NBT Session Service
but without the additional NBT protocol around the SMB Session.

Alfresco CIFS server
Now we know that Windows workstations and servers come preinstalled with CIFS
servers and clients for file and printer sharing. So how does the Alfresco server fit
into all this? The Alfresco platform comes with its own CIFS server built in. Alfresco
acquired the JLAN technology back in 2005 and it is the only available CIFS server
implementation in Java.

JLAN provides a number of enterprise features:

Only pure Java client and server implementation of CIFS, NFS, and FTP.
High performance which is similar to the native filesystem.
Enterprise authentication—NTLM, NTLMSSP, SPNEGO, Kerberos.
Real-time access—no copy to local disk and conflict resolution issues.
Offline Access—integration to Microsoft Briefcase

The Alfresco JLAN project supports not only CIFS but also FTP and NFS. This
chapter is focusing on the CIFS Server.

The Alfresco CIFS server can be run in the following configurations:

Configuration Default
configuration
for

Supported
Server OS

Windows
File Server
can run
alongside

Supports
Native
SMB (port
445)

Supports
NBT
(port 139)

Java socket-based
implementation

Linux,
Solaris, Mac

Any No Yes,
Windows
2000 or
later clients

Yes, all
Windows
clients

Windows
Socket based
implementation
via Win32
NetBIOS API (JNI)

Windows Windows Yes No,
Windows
Native
CIFS Server
has it open

Yes, all
Windows
clients

•
•
•
•
•

File System Access Solutions

[192]

Alfresco CIFS server on Windows
When the Alfresco CIFS Server is running on a Windows platform it has to coexist
with the native Windows CIFS Server for easy installation and use. It does this by
using the Win32 NetBIOS API with Windows Sockets instead of Java Sockets:

We can see that there are two new NetBIOS name registrations for the Alfresco CIFS
server DEATHSTARA, one for the Computer and one for the File Sharing service. On
Windows installations, it is common to use the computer name and append an A
to it to compile the NetBIOS name for the Alfresco CIFS service, where A stands
for Alfresco.

If we use the Windows utility nbtstat on a Windows computer running Alfresco,
from a standard installation and configuration, we should see something like this:

C:\>nbtstat -a alfresco2_dev

Local Area Connection:

Node IpAddress: [192.168.15.22] Scope Id: []

 NetBIOS Remote Machine Name Table

 Name Type Status

 ALFRESCO2_DEV <00> UNIQUE Registered

 ALFRESCO2_DEV <20> UNIQUE Registered

 ALFRESCO2_DEVA <20> UNIQUE Registered

 ALFRESCO2_DEVA <00> UNIQUE Registered

Chapter 5

[193]

To verify that the SMB service is listening on the TCP SMB ports, use the
following command:

C:\>netstat -an |find /i "listening"

...

 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING

...

 TCP 192.168.15.22:139 0.0.0.0:0 LISTENING

Here the Windows CIFS server is listening on port 445 and the Alfresco CIFS server
is listening on port 139.

If we are running Alfresco in an external Tomcat (Alfresco usually comes bundled
with Tomcat) and want to use CIFS, we also need to copy the Win32Utils.dll and
Win32NetBIOS.dll Alfresco DLLs into the TOMCAT_HOME/bin, they can be found in
the <alfrescoinstalldir>\bin directory.

If Windows 2000 or later clients are trying to connect via TCP 445
they will never reach the Alfresco CIFS server. If we want to use
native SMB for the Alfresco CIFS server then the Windows File
and Printer sharing service has to be disabled. To do this, we might
also have to disable any dependent services such as the Windows
Backup service. Make sure to disable the services, and not just
stop them and set up manual start, as that will sometimes start the
services anyway.

Alfresco CIFS server on Linux
When the Alfresco CIFS Server is running on a Linux/Unix-based platform it does
not have to worry that another native CIFS server is already running. Because of this
the Java socket-based CIFS server implementation is used by default on Linux:

File System Access Solutions

[194]

Here, we can see that Alfresco CIFS Server is responsible for opening Java Sockets
and listening to Native SMB or NBT session attempts. This configuration is probably
the least error prone as we do not have to worry whether Native SMB (port 445)
connection attempts are picked up by the Windows CIFS Server.

The configuration here requires the Alfresco server to be run via the root user
account as otherwise privileged ports like 445 cannot be used. Normally, we
would configure Alfresco to startup with ports 1445, 1139, 1138, and 1137 instead,
and configure firewall rules to forward requests, such as for example, TCP port
445 -> 1445.

To check if the CIFS server started correctly and that the Java Sockets are listening
to the SMB ports, we can run the following command:

alfresco:/home/mbergljung# netstat -anp | egrep -i "(445.*LISTEN)|(139.*L
ISTEN)"

tcp6 0 0 :::1445 :::*
LISTEN 20500/jsvc

tcp6 0 0 :::1139 :::*
LISTEN 20500/jsvc

When my Windows 7 workstation connects via CIFS to the Linux server the
established connection can be seen as follows:

alfresco:/home/mbergljung# netstat -anp | egrep -i "(445.*ESTABLISHED)|(1
39.*ESTABLISHED)"

tcp6 0 0 192.168.12.30:1445 192.168.9.34:58361
ESTABLISHED 20500/jsvc

Note that a Windows 7 workstation will connect via Native SMB (port 445) so it
would not work out of the box against a Windows installation, but works without
problem against a Linux installation.

Alfresco CIFS server configuration
Configuring the Alfresco CIFS Server is normally not a big problem. However,
in some setups with firewalls, routers, different clients, and Active Directory
authentication it can be a little bit tricky. The following section takes you through
how to setup the Alfresco CIFS Server on Windows and Linux in different setups,
and it also gives some ideas on how to troubleshoot problems.

Chapter 5

[195]

Alfresco file server subsystem
As with most other major components in the Alfresco platform, the CIFS server
is configured and run as a subsystem. This subsystem is called the File Server
subsystem and the default configuration for it can be found in the file-servers.
properties configuration file located in the tomcat/webapps/alfresco/WEB-INF/
classes/alfresco/subsystems/fileServers/default directory.

Windows Vista server, Windows 7, and XP
clients configuration
Let's start with a simple configuration where a Windows Vista box runs as the
Alfresco CIFS server and a Windows 7 box and a Windows XP box run as the
CIFS clients on the same subnet. Here is how that looks:

The default Alfresco configuration is used and the CIFS server will do all
authentications against the internal Alfresco database (which supports CIFS
authentication). When working with an installation on Windows there are not really
that many CIFS configuration properties that we have to deal with, usually none
at all.

Now, if we try connecting through the Windows XP CIFS client using the
\\DEATHSTARA\Alfresco NetBIOS name and folder it will not work. This is because
the Windows Vista internal firewall blocks all incoming connection attempts on
port 139 and 445. We cannot even connect through browser and Alfresco Explorer.

File System Access Solutions

[196]

To solve this, open up the Windows Firewall so it lets through File Sharing traffic,
which means it will allow NetBIOS session connection attempts. First, uncheck the
Block all incoming connections setting, as shown in the following screenshot:

Then make sure File and Printer Sharing is allowed as an exception:

You can double check that port 139 and 445 are really reachable from the Windows
XP client by using telnet, as follows:

telnet 192.168.11.2 139

Chapter 5

[197]

If port 139 is open we should get a blank window, if not we should get a message
that connection could not be established. To make sure the NetBIOS name
DEATHSTARA is available on the server, run the following on the command line:

C:\Users\mbergljung>nbtstat -A 192.168.11.2

Wireless Network Connection:

Node IpAddress: [192.168.11.4] Scope Id: []

 NetBIOS Remote Machine Name Table

 Name Type Status

 --

...

 DEATHSTARA <20> UNIQUE Registered

 DEATHSTARA <00> UNIQUE Registered

Then make sure the NetBIOS name is resolvable from the client:

C:\Users\mbergljung>ping DEATHSTARA

Pinging DEATHSTARA [192.168.11.2] with 32 bytes of data:

Reply from 192.168.11.2: bytes=32 time=162ms TTL=127

Reply from 192.168.11.2: bytes=32 time=190ms TTL=127

So now things are looking up and we can try setting up the CIFS connection again.
The Windows XP client can now successfully connect via CIFS to the Windows
Vista CIFS Server.

Now try the Windows 7 client and see if this also connects. There is no response
when trying to connect. Let's turn on logging and see if we get any clues as to what
is going on. Set the following lines to debug in the log4j.properties file located
in the tomcat/webapps/alfresco/WEB-INF/classes directory:

log4j.logger.org.alfresco.smb.protocol=debug

log4j.logger.org.alfresco.smb.protocol.auth=debug

log4j.logger.org.alfresco.fileserver=debug

And add the following line in alfresco-global.properties:

cifs.sessionDebug=NEGOTIATE,SOCKET

File System Access Solutions

[198]

The NEGOTIATE parameter will enable logging of CIFS dialect negotiation and the
SOCKET parameter will enable logging of NetBIOS socket setup.

What we should see now in the alfresco.log is the host announcer announcing the
NetBIOS name every now and then:

19:53:21,933 DEBUG [org.alfresco.fileserver] HostAnnouncer: Announced
host DEATHSTARA

19:54:42,128 DEBUG [org.alfresco.fileserver] HostAnnouncer: Announced
host DEATHSTARA

If I try and login now via CIFS, I still see absolutely nothing happening in the logs.
Doing a Wireshark network traffic capture shows that the Windows 7 client is setting
up a connection to microsoft-ds (that is Direct SMB on port 445):

...

Transmission Control Protocol, Src Port: 55379 (55379), Dst Port:
microsoft-ds (445), Seq: 0, Len: 0

This means that the Windows 7 client will never be able to connect to the Alfresco
CIFS server as it does not have control of the Native SMB port 445, which is used
by the native Windows File Sharing services.

Looking further in the Wireshark output, we can see that SMB2 is eventually
negotiated as the protocol to use (the Alfresco CIFS Server does not support
this protocol):

41 14.849795 192.168.11.3 192.168.11.2 SMB Negotiate Protocol
Request

42 14.857771 192.168.11.2 192.168.11.3 SMB2 NegotiateProtocol
Response

What we have to do now is either turn off Native SMB in the Windows 7 client or
turn off the native File and Printer Sharing in Windows Vista, so the Alfresco CIFS
Server can also listen on port 445 for native SMB connection attempts.

It is better to fix this on the server side so we do not have to go around and fix every
workstation in Best Money's organization. Open up the Network and Sharing Center
and turn off File and Printer Sharing for Microsoft Network, as shown in the
following screenshot:

Chapter 5

[199]

Now it works to connect from the Windows 7 workstation. The logs should show
something like the following when XP or W7 workstations log on to the CIFS server:

08:49:25,457 DEBUG [org.alfresco.fileserver] [SMB] Winsock NetBIOS
session request received, caller=[VBERGLJUNG-LTXP:WorkStation,Unique,]

08:49:25,535 DEBUG [org.alfresco.fileserver] [SMB] Waiting for Win32
NetBIOS session request (Winsock) ...

08:49:25,535 DEBUG [org.alfresco.fileserver] [WSNB0] Server session
started

08:49:25,535 DEBUG [org.alfresco.fileserver] [WSNB0] Negotiated SMB
dialect - NT LM 0.12

08:49:25,581 DEBUG [org.alfresco.fileserver] [WSNB0] Assigned protocol
handler - org.alfresco.jlan.smb.server.NTProtocolHandler

08:49:40,671 DEBUG [org.alfresco.smb.protocol.auth] NT Session setup
NTLMSSP, MID=8, UID=0, PID=65279

08:49:40,672 DEBUG [org.alfresco.smb.protocol.auth] Using Write
transaction

08:49:41,100 DEBUG [org.alfresco.smb.protocol.auth] Logged on using
NTLMSSP/NTLMv2SessKey

08:49:41,116 DEBUG [org.alfresco.smb.protocol.auth] User mbergljung
logged on (type Normal)

08:49:41,163 DEBUG [org.alfresco.smb.protocol.auth] Using Write
transaction

08:49:41,210 DEBUG [org.alfresco.smb.protocol.auth] Allocated UID=0 for
VC=[0:0,[mbergljung:null,Windows 2002 Service Pack 3 2600,Windows 2002
5.1],Tree=0,Searches=0]

File System Access Solutions

[200]

Here, we can see that a Windows Socket Session is set up for workstation
VBERGLJUNG-LTXP, which is the Windows XP box.

So far we have seen that most of the problems with getting CIFS to work have to do
with network configuration and native File and Printer sharing on Windows. We
have not set any property for the CIFS server so far, just used the default settings
from the installation.

If we want to force the Windows 7 work station (or any other
Windows 2000 or newer workstations or server) to use port 139
and SMB over NetBIOS, we can update the following registry
key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Services \NetBT \Parameters\SMBDeviceEnabled and
set it to 0. This effectively disables SMB use of port 445.

Windows 2003 Server and Windows 7 client
configuration
In this example, the CIFS server runs on a Windows 2003 Server installed on a
separate subnet to the CIFS client, which is a Windows 7 workstation running on
another subnet. The Alfresco server does all authentications via its internal database:

In this scenario, there are a couple of things we need to fix before we start trying
to connect to the CIFS server:

The first thing we need to do here is to make sure all the necessary ports are
open in the company firewall, so it will not stop NetBIOS and Direct SMB
traffic. So this means that ports 139 (TCP), 445 (TCP), 137 (UDP), and 138
(UDP) need to be open.
Then we need to make sure that the Windows 7 workstation can resolve the
DEATHSTARA NetBIOS name. We cannot rely on broadcasting the NetBIOS
name as a broadcast message will not be allowed to pass through the routers.
And we also want to make sure there is no Windows Firewall running on
the Windows 2003 server that will also stop NetBIOS and Direct SMB traffic
(as in the Windows Vista example).

•

•

•

Chapter 5

[201]

After fixing the firewalls so they are letting through CIFS traffic test it by using
telnet from the Windows 7 box as follows:

telnet 192.168.22.15 139

We should also make sure to test port 445 for direct SMB. If these ports are open in
the firewall then we should get a blank window, if not we should get a message that
the connection could not be established.

To make sure the NetBIOS name DEATHSTARA is available on the server, run the
following on the command line:

C:\Users\mbergljung>nbtstat -A 192.168.22.15

Wireless Network Connection:

Node IpAddress: [192.168.0.2] Scope Id: []

 NetBIOS Remote Machine Name Table

 Name Type Status

 --

...

 DEATHSTARA <20> UNIQUE Registered

 DEATHSTARA <00> UNIQUE Registered

Then make sure the NetBIOS name is resolvable from the client:

C:\Users\mbergljung>ping DEATHSTARA

Ping request could not find host DEATHSTARA. Please check the name and
try again.

Because there is no broadcasting of the DEATHSTARA NetBIOS name, or the name
registered with a WINS server, it will not be possible for the client to resolve it. To
get around this we have to hook up the Windows 2003 server to a WINS server and
tell Alfresco to use it.

By default the CIFS server will try and auto detect any available WINS
servers. The default configuration is setup as follows:
cifs.WINS.autoDetectEnabled=true

cifs.WINS.primary=1.2.3.4

cifs.WINS.secondary=5.6.7.8

If that does not work then hardcode the addresses for the WINS servers
and turn off auto detection in alfresco-global.properties.

File System Access Solutions

[202]

We can also temporarily put the name in the hosts file or the lmhosts file, which
will also be looked at during NetBIOS name resolution. These files are located in
the C:\Windows\System32\drivers\etc directory.

Add an entry as follows to the hosts file:

192.168.22.15 DEATHSTARA

Now the name resolution will work as expected, so we can move on and get the CIFS
access to work. Unfortunately, the Windows 7 box will—as in the first example– try
and setup a Direct SMB connection via port 445, which will not work as Windows
CIFS server is using it.

So we need to turn off File and Printer Sharing for Microsoft Networks on the
Windows 2003 Server for this to work.

Now when we connect, everything works as expected. However, it would be
nice to connect the server to a WINS server, so that naming resolution could be
done automatically without the end users having to enter the NetBIOS name ->
IP mapping in the local hosts or lmhosts file.

Also all authentications are done locally with the Alfresco, which is not usually the
case. The next example will show how to setup the Alfresco server to authenticate
with Active Directory and how to use a WINS server for naming resolution.

Windows 2008 Server, Active Directory, and
Windows 7 client configuration
In this example, the CIFS server runs on a Windows 2008 server installed on a
separate subnet to the CIFS client, which is a Windows 7 workstation running on
another subnet. The Alfresco server does all authentications via a Domain Controller
that runs Active directory.

Chapter 5

[203]

The Domain Controller also works as a WINS server for the NetBIOS name
resolution. This is the setup that Best Money is using:

The first thing we are going to do here is to make sure that the authentication
is setup correctly. Start by configuring authentication against Active Directory
(more information about this is available in the previous chapter) as follows in
alfresco-global.properties:

authentication.chain=alfrescoNtlm1:alfrescoNtlm,bestmoneyAD:ldap-ad,
bestmoneyADPassthru:passthru
ldap.authentication.java.naming.provider.url=ldap://ad.bestmoney.
com:389
ldap.authentication.userNameFormat=%s@win.bestmoney.com
ldap.synchronization.active=false
passthru.authentication.servers=win.bestmoney.com \\ad.bestmoney.
com,ad.bestmoney.com

Here, we define an authentication chain that will first try and authenticate against
Alfresco's internal database, then against Active Directory via LDAP simple bind,
and finally Alfresco will try and authenticate with NTMLv1 against Active Directory,
which is known as passthru authentication.

The bestmoneyADpassthru authenticator has been configured with what AD server
to use when authenticating.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

File System Access Solutions

[204]

The bestmoneyADpassthru authenticator can also be configured to
lookup domain controllers for authentication dynamically. Specify the
domain with the passthru.authentication.domain property.
Make sure that you use the Windows NetBIOS domain name, not
the forest name. The network broadcast does not work in all network
configurations, such as when there are routers between the Alfresco
server and the domain controller.
The passthru.authentication.domain, passthru.
authentication.servers, and passthru.authentication.
useLocalServer properties are mutually exclusive, so no need to
specify more than one of them.

Alfresco will only allow one of the built-in authenticators to handle CIFS
authentication, so if the first one fails (that is alfrescoNtml1), Alfresco will not let
the second one (that is bestmoneyADPassthru) try and authenticate. Because of this
we turn off CIFS authentication for the alfrescoNtlm1 authenticator, so Alfresco
will go directly to the bestmoneyADPassthru authenticator for that:

alfresco.authentication.authenticateCIFS=false

We also want to be able to use different usernames and passwords to login via
Alfresco Explorer. As it stands now, with current configuration, we would be logged
in automatically with the Windows credentials when using Alfresco Explorer. Single
Sign-on needs to be disabled, so we can try different usernames and passwords:

ntlm.authentication.sso.enabled=false

Now verify that the AD user that will be used when connecting via CIFS can be used
to login via Alfresco Explorer. If that works then we should be able to move on to get
the CIFS authentication working (when using Alfresco Explorer, authentication will
be done via the bestmoneyAD authenticator or the alfrescoNtlm1 authenticator).

The CIFS server is running in a Windows domain and sometimes it cannot detect the
domain by itself, so we need to configure it. Use the following property for that:

cifs.domain=win.bestmoney.com

We should also configure CIFS logging, so we can see what is going on. See the
previous section on how to do that. When the Alfresco server has been started,
verify that the following type of log can be seen:

09:22:07,346 DEBUG [org.alfresco.fileserver] Passthru server online,
[win.bestmoney.com\ad.bestmoney.com:192.168.17.2:Online:0,0]

Chapter 5

[205]

This shows that Alfresco has contact with the Passthru authentication server and that
it is online and serving domain win.bestmoney.com.

Now if we try and setup a CIFS connection to the Alfresco server locally on the
Windows 2008 server and use the same username and password that was used
when testing login via Alfresco Explorer, it will not work.

This is because the Windows 2008 server will try and use Direct SMB in the same
way as Windows 7 does. And there will be nothing in the logs about it. So there
is no use in trying to connect from the remote Windows 7 box until we fix this.

The Alfresco CIFS server needs to have control over the port 445 and the Windows
File and Printer Sharing needs to be turned off. To do this in Windows 2008, go to
Control Panel | Network and Internet | Network and Sharing Center and click
on the Local Area Connection link and then on the Properties button:

Uncheck the File and Printer Sharing for Microsoft Networks and restart the
Windows server and Alfresco. Now try the CIFS connection again locally on
the Windows 2008 server. It should work and you should see the log printing
something like this:

10:36:36,090 DEBUG [org.alfresco.fileserver] [SMB] Winsock NetBIOS
session request received, caller=[DEATHSTARA:WorkStation,Unique,]

10:36:36,277 DEBUG [org.alfresco.fileserver] [SMB] Waiting for Win32
NetBIOS session request (Winsock) ...

10:36:36,277 DEBUG [org.alfresco.fileserver] [WSNB0] Server session
started

10:36:36,277 DEBUG [org.alfresco.fileserver] [WSNB0] Negotiated SMB
dialect - NT LM 0.12

10:36:37,240 DEBUG [org.alfresco.fileserver] [WSNB0] Assigned protocol
handler - org.alfresco.jlan.smb.server.NTProtocolHandler

File System Access Solutions

[206]

10:36:37,240 DEBUG [org.alfresco.smb.protocol.auth] Mapped client null to
domain null

10:36:37,240 DEBUG [org.alfresco.fileserver] Open authenticate session to
[ad.bestmoney.com:192.168.11.3:Online:0,0]

10:36:37,472 DEBUG [org.alfresco.smb.protocol.auth] Passthru sessId=3,
auth ctx=[NTLM,Challenge=5a9bedbfdb955a34]

10:36:37,488 DEBUG [org.alfresco.fileserver] [SMB] NT Session setup from
user=mbergljung, password=d26a4e3cec703df4a1c6f9165b39933f929543220b76489
b, ANSIpwd=d26a4e3cec703df4a1c6f9165b39933f929543220b76489b, domain=WIN.
BESTMONEY.COM, os=Windows Server 2008 R2, VC=0, maxBuf=61440, maxMpx=4,
authCtx=[NTLM,Challenge=5a9bedbfdb955a34]

10:36:37,488 DEBUG [org.alfresco.fileserver] [SMB] MID=8, UID=0,
PID=65279

10:36:37,488 DEBUG [org.alfresco.smb.protocol.auth] Using Write
transaction

10:36:37,566 DEBUG [org.alfresco.smb.protocol.auth] Setting current user
using person mbergljung (username mbergljung)

10:36:37,566 DEBUG [org.alfresco.smb.protocol.auth] Passthru authenticate
user=mbergljung, FULL

10:36:37,566 DEBUG [org.alfresco.fileserver] [SMB] User mbergljung logged
on (type Normal)

10:36:37,581 DEBUG [org.alfresco.fileserver] [SMB] Allocated UID=0 for
VC=[0:0,[mbergljung:[B@1e9db60,WIN.BESTMONEY.COM,Windows Server 2008
R2],Tree=0,Searches=0]

If it still does not work that means that the client is trying to use
Ntlmv2, which is not supported in a passthru authentication scenario.
Ntlmv2 protects against man-in-the-middle attacks, which is just what
the Alfresco CIFS server is in this case.
We can get around this by setting the Windows Vista, 7, or 2008 server
to use Ntlmv1 by default. Set the following Registry key "HKEY_
LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\
LMCompatibilityLevel" to "1".
If the key does not exist, create it as a DWORD.
If there are a lot of workstations running Windows Vista and 7, we
might be better off using Kerberos instead of NTLM.

We have now got CIFS working locally and authenticating successfully against
the Domain Controller with Active Directory. It is time to get this working for
remote clients.

Chapter 5

[207]

As with the other examples, we need to make sure that the NetBIOS and Direct SMB
ports are open. In Windows 2008 server, we can open up the NetBIOS ports in the
internal Windows Firewall by enabling incoming rules for this:

Test with telnet to verify that the server can be reached. Finally, fix so the WINS
server is used for NetBIOS name registration and resolution. Alfresco auto-detects
available WINS servers on Windows, so no need to set any variables.

To see what WINS servers are available, we can use Windows utility ipconfig /all
to find out if there is a WINS server:

Primary WINS Server : 192.168.11.3

File System Access Solutions

[208]

In some cases, we might see logs like the following when trying to
authenticate via CIFS:
09:28:00,535 DEBUG [smb.protocol.auth] Mapped client
null to domain null
...

This means that Alfresco was not able to map the user to a domain
during login. We can fix this by adding a domain mapping
configuration for users not associated with a domain. Add the
following properties to the alfresco-global.properties:
filesystem.domainMappings=WIN

filesystem.domainMappings.value.WIN.
subnet=192.168.17.0

filesystem.domainMappings.value.WIN.
mask=192.168.17.255

Linux server and Windows 7 client
configuration
In this example, the CIFS server runs on a Debian Lenny 64-bit Server installed on
a separate subnet to the CIFS client, which is a Windows 7 workstation running on
another subnet.

The Alfresco server does all authentications via an LDAP server and a custom
CIFS LDAP authenticator (see previous chapter for more information about
this authenticator):

Chapter 5

[209]

Normally, an Alfresco Linux installation uses non-privileged ports for CIFS.
However, let's make sure that is the case by first finding out what ports the CIFS
server is using, non-privileged (for example, 1445) or privileged (for example, 445):

alfresco:/home/mbergljung# netstat -anp | egrep -i "(445.*LISTEN)|(139.*L
ISTEN)"

tcp6 0 0 :::1445 :::*
LISTEN 20500/jsvc

tcp6 0 0 :::1139 :::*
LISTEN 20500/jsvc

In this case, the Alfresco CIFS server has been configured to use non-privileged ports
as follows (This is not the default setting so you would have to put this in alfresco-
global.properties, if Alfresco is not running as root):

cifs.tcpipSMB.port=1445
cifs.netBIOSSMB.namePort=1137
cifs.netBIOSSMB.datagramPort=1138
cifs.netBIOSSMB.sessionPort=1139

So, we need to make sure firewall rules have been setup to forward incoming
request on privileged ports to non-privileged ports. Use the iptables utility
to list current settings:

alfresco:/home/mbergljung# iptables --list -t nat

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

DNAT tcp -- anywhere anywhere tcp dpt:
netbios-ssn to:192.168.12.30:1139

DNAT tcp -- anywhere anywhere tcp dpt:
microsoft-ds to:192.168.12.30:1445

Now, we can test this from the Windows 7 client with telnet:

C:\Users\mbergljung>telnet alfresco.opsera.com 445

<blank screen>

C:\Users\mbergljung>telnet alfresco.opsera.com 139

<blank screen>

If the ports are open all the way, we should get a blank screen as response. If the
connection is cancelled, verify with the System Administrator that the ports 137
(UDP), 138 (UDP), 139 (TCP), and 445 (TCP) are open in the company firewall.

File System Access Solutions

[210]

Now, we should be able to setup the CIFS connection from the Windows 7 client.
This is all there is to it on Linux, which is not that difficult to get to work with CIFS
as there is no native CIFS server running. And the CIFS server name is not looked up
via NetBIOS name resolving but via a DNS query.

If the Samba file sharing daemon (smbd) is running then that can cause
port conflicts with Alfresco's built-in CIFS server. These conflicts may be
eliminated by assigning multiple IP addresses and binding the Samba
CIFS server and the Alfresco CIFS server to different IPs.

Alfresco WebDAV
We have now covered most things around CIFS and you might think that it should
be enough for most deployments and installations. However, CIFS is a very chatty
protocol and when we have clients connecting remotely they might experience
problems uploading files and browsing through the repository. Also, in installations
with thousands of users Alfresco CIFS can experience performance problems and
occasional interruptions. Further on, if you are using a virtualized application
environment like Citrix XenApp, it can be a configuration challenge to get
CIFS working.

The solution in these cases is to turn to WebDAV, which communicates with Alfresco
via the familiar HTTP protocol and is much easier to get up and running, and to test
that it is working.

Using WebDAV instead of CIFS does have a disadvantage—in that we will have to
install client software on each PC, which could be a maintenance/support problem
in many organizations, unless we are using Windows XP all around or a virtualized
application environment like Citrix XenApp.

We can access Alfresco's WebDAV interface via the http://localhost:8080/
alfresco/webdav URL. Try it from a browser to see that it works in your
installation. You should see something like the following folder listing:

Chapter 5

[211]

Alfresco WebDAV support is enabled by default and the URL we just used is
mapped to a Servlet in the web.xml file located in the /tomcat/webapps/alfresco/
WEB-INF directory. The following entries are relevant:

<servlet>
 <servlet-name>WebDAV</servlet-name>
 <servlet-class>org.alfresco.repo.webdav.WebDAVServlet
 </servlet-class>
 <load-on-startup>5</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>WebDAV</servlet-name>
 <url-pattern>/webdav/*</url-pattern>
</servlet-mapping>

WebDAV authentication is configured with the following Filter configuration:

 <filter>
<filter-name>WebDAV Authentication Filter</filter-name>
 <filter-class>
 org.alfresco.repo.web.filter.beans.BeanProxyFilter
 </filter-class>
 <init-param>
 <param-name>beanName</param-name>
 <param-value>WebDavAuthenticationFilter</param-value>
 </init-param>
</filter>

<filter-mapping>
 <filter-name>WebDAV Authentication Filter</filter-name>
 <url-pattern>/webdav/*</url-pattern>
</filter-mapping>

When we access Alfresco via WebDAV and a web browser as mentioned earlier, this
only gives us read-only access to the Alfresco repository. This is usually not enough
and most of the time we want to use a client that enables us to create, update, and
delete content. And ultimately, we want to map a drive to an Alfresco resource so we
can work with a familiar interface like Windows Explorer.

File System Access Solutions

[212]

WebDAV clients
There are several tools out there that we can use on Windows to talk to Alfresco
via WebDAV. One such free tool is BitKinex that can be downloaded from
http://www.bitkinex.com/webdavclient.

During installation specify the address to Alfresco WebDAV, as shown in the
following screenshot:

In the next screen, enter the username and password for an Alfresco account. Make
sure to specify the /alfresco/webdav path as a Directory (WebDAV). If it is setup
as a file then it will not work to connect.

When you are connected you will see a screen with split windows where the left
pane shows Alfresco content and the right pane shows local content:

Chapter 5

[213]

Through this interface we can do most things like browsing the repository,
downloading files, and drag-and-drop local files into Alfresco. What we cannot do
however is edit a file directly through the interface by double-clicking on it and then
update and save it. It would be good if we could map a drive and update files like
we do via Windows Explorer.

There is another tool called WebDrive that can be used for this and it can be
downloaded from http://www.webdrive.com/products/webdrive/index.html.
It is a commercial tool but you can download a trial to test it out.

In the Sites configuration screen, enter properties for an Alfresco WebDAV
connection as follows:

During configuration, we separately specify port 8080 or any other port that we
use that is not port 80. If we now Connect to this site, we will see a new drive letter
(configurable) popup in Windows Explorer (W: in this case):

File System Access Solutions

[214]

This WebDrive solution is probably better than the BitKinex solution for end users as
it integrates very well with Windows Explorer.

Windows built-in WebDAV clients
Microsoft Windows provides two different WebDAV clients—Web Folders and
WebDAV mini Redirector. These clients are integrated into windows and come
preinstalled with Windows.

Web Folders (XP only)
Web Folders is the first generation of Windows WebDAV clients and it works only
with Windows XP. It allows us to drag-and-drop files between a remote Alfresco
WebDAV server and our local computer.

To connect to Alfresco via Web Folders do the following:

1. Go to My Network Places, and click on Add Network Place at the top of the
left-sidebar.

2. The window that pops up is the Add Network Place Wizard. Click Next.
3. On the next page, enter the http://<server:port>/alfresco/webdav URL

of the WebDAV folder in the box named Internet or network address and
click Next.

4. A window asking for your username and password will pop up at this point.
Enter username and password for your Alfresco account, and click OK.

5. On the next page, enter a name for this share—this is the name that will show
up in the My Network Places listing.

6. Click Finish on the next page.

WebDAV Mini Redirector (XP, Vista, and Win7)
These are the next generation Windows WebDAV clients that allow us to map a
drive to an Alfresco WebDAV location in much the same way we did with CIFS
and WebDrive.

WebDAV Mini Redirector limitations:

No support for HTTPS, that is, no support for secure connections.
Your WebDAV server must be using port 80, the default port. This makes
it impossible to connect directly to Alfresco tomcat, which usually runs on
port 8080.

•
•

Chapter 5

[215]

Can sometimes fail when transferring large files.
Gets confused if the user does not have access to read and/or write to a file
or folder.

A workaround for the port problem could be to install a Web Server like Apache
HTTP server in front of Alfresco Tomcat and connect them via the AJP protocol.

This is how you can connect to Alfresco with this client:

1. Right-click on My Computer and select Map Network Drive.
2. In the Folder "entry field", enter the http://<server>/alfresco/webdav

URL, and click Finish.
3. Enter your Alfresco username and password in the authentication box

that appears.

Troubleshooting Alfresco CIFS
The following sections can be used to track down any issues with the CIFS installation.

General
Some general tips.

Nothing happens in Alfresco when trying to log in
via CIFS
There are Windows 2000 or later clients that will try and login via Native SMB and
that does not work when running Alfresco CIFS server in parallel with Windows
CIFS server. Only one server can listen to port 445 at a time and that is the Windows
CIFS Server in this case.

Close down Windows CIFS Server to get around the problem. Usually, you have to
stop Printer and File Sharing.

Also, make sure there is no firewall blocking the connection, try and telnet to the
server and port.

•
•

File System Access Solutions

[216]

Server says NTLMv2 is not valid for authentication
This can happen if the CIFS client or HTTP client is trying to use NTLMv2
authentication when the Alfresco server is setup for passthru authentication
with Microsoft Active Directory.

If, for example, the Alfresco Explorer client is trying to do passthru authentication
via NTLMv2, as follows:

09:22:48,901 DEBUG [org.alfresco.fileserver] Open authenticate session to
[opsera-w2k8dc01:192.168.17.2:Online:0,0]

09:22:51,729 ERROR [org.alfresco.web.app.servlet.
NTLMAuthenticationFilter] Client MBERGLJUNG using NTLMv2 logon, not valid
with passthru authentication

Then this means that the workstation running the browser and Alfresco Explorer is
using NTLMv2 by default. Windows Vista, 7, and 2008 server will use Ntlmv2 by
default. Passthru authentication does not work with NTLMv2 as it protects against
man-in-the-middle attacks, and in this case Alfresco is the man in the middle.

To get around this, we can configure the Windows workstation to use NTLMv1
as follows. Set the following Registry key "HKEY_LOCAL_MACHINE\System\
CurrentControlSet\Control\Lsa\LMCompatibilityLevel" to "1". If the
key does not exist add it.

When a CIFS client tries to authenticate with NTLMv2 in this scenario, we might not
see an NTLMv2 warning log. Instead, the logs might show something like this:

17:15:49,463 ERROR [org.alfresco.smb.protocol.auth] org.alfresco.jlan.
smb.SMBException: Invalid parameter

17:15:49,478 DEBUG [org.alfresco.fileserver] [SMB] User opsera_test,
access denied

Which actually might mean that the client tried to use NTLMv2, and not that the
client specified the wrong password or username.

You might want to consider using Kerberos in a case like this, if there are many
Windows Vista and 7 clients.

SMBException: invalid parameter and access denied
See the previous tips.

Chapter 5

[217]

NetBIOS DLL is not accessible
You will see an error message like the following in the log:

09:08:16,358 ERROR [org.alfresco.fileserver] Error accessing Win32
NetBIOS, check DLL is on the path

Which means that you need to copy the Win32NetBIOS.dll and Win32Utils.
dll into the TOMCAT_HOME/bin directory. These DLLs can be found in the
<alfrescoinstalldir>\bin directoryTroubleshooting strategies

Do the following in sequence when you have problems getting CIFS to work.
But first, get yourself a network packet capture tool so you can really see what is
going on. In this chapter, Wireshark was used on Windows. On Linux, use for
example, tcpdump.

Turning on debug logging for SMB
Turn on logging and see if we get any clues as to what is going on. Set the
following lines to debug in the log4j.properties file located in the
tomcat/webapps/alfresco/WEB-INF/classes directory:

log4j.logger.org.alfresco.smb.protocol=debug

log4j.logger.org.alfresco.smb.protocol.auth=debug

log4j.logger.org.alfresco.fileserver=debug

And add the following line in alfresco-global.properties:

cifs.sessionDebug=NEGOTIATE,SOCKET

The NEGOTIATE parameter will enable logging of CIFS dialect negotiation and the
SOCKET parameter will enable logging of NetBIOS socket setup.

Checking ports from server
On the server side, check that the CIFS ports are active and sockets listening on them:

On Windows do:

C:\>netstat -an |find /i "listening"

...

 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING

...

 TCP 192.168.15.22:139 0.0.0.0:0 LISTENING

File System Access Solutions

[218]

On Linux do:

alfresco:/home/mbergljung# netstat -anp | egrep -i "(445.*LISTEN)|(139.*L
ISTEN)"

tcp6 0 0 :::1445 :::*
LISTEN 20500/jsvc

tcp6 0 0 :::1139 :::*
LISTEN 20500/jsvc

Checking ports from client
From the client verify that you can reach the 2 TCP ports (the UDP ports are
connectionless, so you cannot use telnet to verify that they are open):

C:\Alfresco3.2rE\bin>telnet alfresco2_dev 445

C:\Alfresco3.2rE\bin>telnet alfresco2_dev 139

Checking that CIFS server NetBIOS name is ok
From the client verify that the server has registered NetBIOS name for Alfresco
CIFS server:

C:\Alfresco3.2rE\bin>nbtstat -a alfresco2_dev

Local Area Connection:

Node IpAddress: [192.168.17.61] Scope Id: []

 NetBIOS Remote Machine Name Table

 Name Type Status

 ALFRESCO2_DEV <00> UNIQUE Registered

 ALFRESCO2_DEV <20> UNIQUE Registered

 ALFRESCO2_DEVA <20> UNIQUE Registered

 ALFRESCO2_DEVA <00> UNIQUE Registered

Here, we can see that there are two names registered for the File Server Service (that
is <20>), the Windows CIFS server (ALFRESCO2_DEV) and the Alfresco CIFS server
(ALFRESCO2_DEVA). This will cause problems for clients with Windows 2000 or newer
OS. An XP client will connect fine over TCP port 139, but a Windows 7 client will not
be able to connect to the Alfresco CIFS server as it will try TCP port 445, which the
Windows CIFS server is listening to.

Chapter 5

[219]

This can be fixed by disabling the Windows File and Printer Sharing and then
restarting the computer. Check that nothing is listening on TCP port 445 and then
start Alfresco. You should now see the following NetBIOS status:

 ALFRESCO2_DEV <00> UNIQUE Registered

 ALFRESCO2_DEVA <20> UNIQUE Registered

 ALFRESCO2_DEVA <00> UNIQUE Registered

On Linux, the DNS entry would have to be checked.

Checking that CIFS server NetBIOS name is
resolvable from client
From the client verify that the CIFS server NetBIOS name is resolvable:

C:\Users\mbergljung>ping DEATHSTARA

Pinging DEATHSTARA [192.168.11.2] with 32 bytes of data:

Reply from 192.168.11.2: bytes=32 time=162ms TTL=127

On Linux, the DNS entry would have to be checked.

Does any debug logging show up during
connection attempts?
If no debug logging shows up during connection attempts then the client is probably
a Windows 2000 client or later. They will use Native SMB on port 445, which is
controlled by the Windows File and Printer Sharing service. See previous examples
in this chapter for how to turn off Windows File and Printer Sharing.

Does the client use the correct authentication
method?
Alfresco CIFS server only accepts the NTLMv1 authentication mechanism and any
client that tries to authenticate with NTMLv2 will fail. Windows Vista, 7, and 2008
server will use NTLMv2 by default. To downgrade to NTLMv1, do the following
registry key update: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
Lsa\ LMCompatibilityLevel to 1. If this property does not exist, create it.

File System Access Solutions

[220]

Are you running in a Citrix environment?
If you are running in a Citrix XenApp virtualization environment it might not work
to connect to Alfresco CIFS from a virtualized Windows session. Only the first
session will work to connect to \\serverA\Alfresco and the next session using
this address will break the first connection.

To work around this we can use the host file on the Citrix server and configure it as
follows with an entry per user (in this case the Alfresco server's IP is 192.168.10.10):

192.168.10.10 user1
192.168.10.10 user2
...
192.168.10.10 usern

Then each user session maps the CIFS drive with its username such as for example,
\\user1\Alfresco and so on.

Summary
In this chapter, we have gone through the SMB/CIFS technology quite extensively
and seen that to get it to work properly is more of a network issue than an Alfresco
configuration issue.

We have learned what NetBIOS is and that it has a Naming Service similar to DNS
for registering and resolving computer services, a Session Service for establishing a
client-server session between the CIFS client and the CIFS server. NetBIOS is usually
transported over TCP/IP and is then called NBT with session setup done on
TCP port 139.

CIFS can be used without NetBIOS and is then called Native SMB or Direct SMB
with session setup done on TCP port 445.

In a default Windows installation, the Alfresco CIFS server runs alongside Windows
CIFS server and only the Windows CIFS server is managing the Direct SMB
connections on port 445. This is usually one of the main problems and can be
solved by stopping Windows CIFS server.

In a default Linux installation, we do not have any problems with Alfresco CIFS
server and it listens to both TCP port 139 (NBT) and TCP port 445 (Direct SMB).
However, if the smbd is running, we need to stop it as it will interfere with the
Alfresco CIFS server.

Chapter 5

[221]

CIFS is working fine in most situations except in some cases when we have a lot of
clients connecting to Alfresco remotely or we are using an application virtualization
environment like Citrix. Then we might experience interruptions, problems
uploading files, and so on. In these cases, we can instead turn to using the WebDAV
interface that Alfresco provides. We saw examples of how to use the BitKinex and
the WebDrive WebDAV clients.

We also went through a strategy for how to troubleshoot an Alfresco CIFS server
when things are not working as they should. Usually it is all about testing that the
Alfresco CIFS server is reachable and is listening to both the 139 and 445 ports.

In the next chapter, we will finally dig into how to design and implement document
management (DM) in Alfresco. We will also have a look at records management (RM).

Document and Records
Management Solutions

In this chapter, we will look at Document Management (DM) solutions and
introduce the Records Management module. Managing documents is usually the
main reason for companies to invest in an ECM solution. Like Best Money, most
companies often have a gigantic network drive with hundreds of thousands of
documents that are getting more and more difficult to manage.

So what is a DM solution in the context of an ECM system? When we implement a
new DM solution we are often asked the question 'Why do we need this, we have the
network drive and that works just fine for managing and sharing files?'. This is a really
important and relevant question, and we need to be able answer it with confidence.

Some of the reasons for moving from a network drive solution to a document
management solution are:

Extended search: A network drive provides limited file name search whereas
a DM solution provides search on filename, full text search (FTS), and
property search.
Classification: A DM solution will allow us to associate files with properties
that can be used for classification, searching, executing rules, and so on.
A network drive does not provide this functionality.
Versioning: A DM solution will allow us to manage versions of a file
automatically, so no more mydoc_v1.doc, my_doc_v2.doc, and so on.
A network drive does not have this feature.
Auditing: A document management solution will allow us to keep an audit
log of changes to a document, so we can view who changed what and when.
A network drive does not have this feature.

•

•

•

•

Document and Records Management Solutions

[224]

Applying business rules: Sometimes we might want to apply business rules
in the form of, for example, a script to be run whenever a file is added to a
folder, this can be achieved with a DM solution. A network drive does not
provide this functionality.
Process automation: By using a DM solution, we can take advantage of the
built-in workflow engine and kick off, for example, review processes. This is
not available with a network drive.
Automatic transformations: Sometimes it is useful to be able to transform
one file format into another when a file is added to a folder. For example, we
might want to transform an MS Word document into a PDF. This feature is
not available with a network drive.
Fine grain permissions: With a document management solution, we can
set up quite sophisticated permission structures. We can control who has
the right to create folders, update files, create content, delete content, read
content, and we can do it either by role or by individual user. The permission
structure can also be integrated with existing directory servers, for example,
OpenLDAP and Microsoft Active Directory. This makes it easier to have a
central system where you control permissions for groups/roles.
3rd party application integration: Many organizations have more than
one user interface where they present information from the ECM system.
For example, in the case of Best Money they want to create a custom
mobile application for BlackBerry and other smart phones that can display
document information. They also want to display some information from
the ECM system in their portal.

So, now we can see that we have to think about a lot more things than just files and
directories when designing and implementing a DM solution, compared to when
setting up a network drive solution.

Document management solutions are also closely related to records management
solutions, so we need to think about both of them at the same time during the design
phase. Whenever we hear about things such as review periods and a need to save
a document for a number of years because of a policy, it's time to have a look at
records management and what it can do for us.

In this chapter, you will learn:

About the out of the box folder hierarchy
Using a template when designing folders and space templates
Setting up a library of rulesets

•

•

•

•

•

•

•

•

Chapter 6

[225]

Using scripts to create users and groups
Importing groups based on content in an Excel file
Implementing simple document review periods
What Alfresco RM module is?

Out of the box folder hierarchy
Alfresco comes pre-configured with a folder hierarchy and it is important to get
familiar with it before designing a domain-specific folder hierarchy for the company
or organization that we are working with.

As soon as we have installed Alfresco and viewed the repository from any of the
clients, we will see the following top folders:

These top folders have the following meanings:

Data Dictionary: This contains all scripts, metadata model definitions, folder
templates, e-mail templates, form definitions, and so on. Most DM solutions
have some kind of data dictionary where all definitions and logic that makes
the DM solution smarter is stored.
Guest Home: When anonymous access/guest access is enabled, which it is
by default, this folder is displayed when a user accesses the system.
Sites: This is the top folder for the Alfresco Share client. The Alfresco Share
client is a collaboration environment where users create the so-called 'sites' in
which they share information. Every time a new collaboration site is created
a new folder is created under this top folder.
User Homes: Each logged in user will have his or her own folder, called
home folder, under this folder.

•

•

•

•

•

•

•

•

Document and Records Management Solutions

[226]

Web Deployed: Web content can be deployed into an application server
independently of Alfresco or it can be deployed into an Alfresco instance.
If the web content is deployed into an Alfresco instance from an Alfresco
WCM authoring environment, then it ends up in this top folder.
Web Projects: Every web project that is managed with the Alfresco WCM
module will have its own folder under this top folder.

The Data Dictionary top folder
Now let's look closer at the Data Dictionary top folder as we will come in
contact with several of its subfolders when building the document management
implementation. These subfolders have the following meaning:

Email Actions: This is used by the IMAP subsystem.
Email Templates: This contains templates for e-mails sent out by Alfresco in
situations such as when a user or group of users are invited to a folder. These
templates are usually written in the FreeMarker language.
Imap Configs: The IMAP interface to Alfresco can display e-mails that wrap
document metadata and these e-mails have FreeMarker templates stored in
this folder.
Messages: These are custom domain messages for new document
management implementations.
Models: These are custom domain models for new document management
implementations.
Presentation Templates: Any folder can have a custom view and the
templates driving these views are stored in this folder. They are usually
FreeMarker templates.
Records Management: When the records management module is installed, it
creates this folder that contains custom model, e-mail templates, scripts, and
so on for the records management functionality. This deviates a little bit from
the convention of how to store things. For example, the e-mail templates
should really have been stored under Email Templates and the custom model
under Models, and so on, but I guess this makes it easy to find things that
have to do with the records management functionality.
Rendering Actions Space: This is a folder used by the system to persist
rendering actions.
RSS Templates: Modifications to the document repository can be tracked
via RSS feeds. A folder can be configured as an RSS feed and the feed can be
configured from an RSS template stored in this directory. This is usually
a FreeMarker template.

•

•

•

•

•

•

•

•

•

•

•

Chapter 6

[227]

Saved Searches: Whenever we do a search via the Alfresco Explorer client,
we can save the search criteria for later use. This folder contains these
saved searches.
Scripts: This contains JavaScripts used by rules or for manual document
management via the Run Action feature.
Space Templates: These are folder hierarchy templates used by the
document management solution. Folders can be created based on these
templates via the Advanced Spaced Wizard.
Transfers: This folder is used by the transfer subsystem.
Web Client Extension: This folder contains customization configurations
for the Alfresco Explorer web client. Instead of loading the web-client-
config-custom.xml file via a bootstrapping procedure, when an AMP is
installed, we can just store this file in this folder directly.
Web Forms: These are the web forms used by the Alfresco web content
management system.
Web Scripts: The REST-based scripts can be stored in this folder. They can
also be loaded via a bootstrapping procedure. The web scripts stored in this
folder are usually Alfresco product web scripts, custom web scripts should
be stored in the Web Scripts Extension folder.
Web Scripts Extensions: This folder is used to deploy domain-specific
custom web scripts used by the DM solution that we implement.
Workflow Definitions: The workflow definitions for the JBOSS JBPM
workflow engine can be deployed via this folder. They can also be loaded via
a bootstrapping procedure or via the Workflow Admin console.

It is important to know that definitions, templates, and scripts can be added to the
dictionary in different ways. We can either add them directly via the UI to the folder
above, or via a bootstrap procedure. There are advantages and disadvantages to
both ways.

Advantages Disadvantages
Adding via UI: They can test definitions,

scripts, and templates
directly without restarting
the Alfresco server.

It is not so easy to manage all scripts,
definitions, and templates when different
environments should be updated with the
latest dictionary content.

It can be very timesaving
when, for example, a
JavaScript or Web Script is
being developed or we are
designing a FreeMarker
template.

It also requires a lot of installation
documentation for someone not familiar
with the customizations when the
solution should be delivered.

•

•

•

•
•

•

•

•

•

Document and Records Management Solutions

[228]

Advantages Disadvantages
It takes longer than an AMP installation.

Adding via
Bootstrapping::

Easy installation and
deployment of definitions,
scripts, and templates.

It is not ideal during development as it
takes time to re-deploy an AMP.

All related customizations
are contained in one
installation file.
It is easy to deliver and
document.

The best solution is probably to use a combination of direct deployment via UI and
bootstrapping via AMP installation.

Designing document management
solutions
When designing the domain-specific document management features for a company
or organization, we need some kind of system or method to do that as there are a lot
of things to think about. We will use a special Document Folder Template as a tool to
design the folder structure.

This folder template includes fields that can be used to specify permissions, rules,
versioning, metadata, name, description, and so on for the folder. We will design
the folder structure together with the Best Money client. They are after all the only
ones who know what should be stored, how it should be stored, how it should be
processed, and who should have the right to access it in different ways. Our job will
be to advise on how to best construct the metadata, set up permissions, implement
rules, and so on.

Defining a proper folder hierarchy for the DM solution is really important for
the success of the project. When the folder structure for the Alfresco repository is
designed, it will become clear how many of the Alfresco document management
features we will need to use. When we design the DM solution, we will also
indirectly generate the needed data for the content model.

Another important role for the Document Folder Template is to be the bridge
between the Business Analysts that we talk to at the client site and the Software
Architect that is going to implement the DM solution. The template should be
specified in enough detail, so the Software Architect does not have to consult the
Business Analyst very frequently, if at all.

Chapter 6

[229]

Document Folder Template
The following template will be used to define new folders in the Alfresco repository:

Folder
Name Folder name including path from Company Home.
Icon [folder|paper|disk]: The icon to be used for the folder. Only

relevant in Alfresco Explorer UI.
Description Description of this folder.
Title (Optional) Title for this folder.
Permissions [Group | Username (Permission),...]
Inherit Permissions? [yes|no]
Rules Description of the rules that should be active for this folder.
Apply Rules to
Subfolders?

[yes|no]

Apply Versioning? [yes|no] Include subfolders? [yes|no]
Metadata Extra metadata for the folder.
Processes Description of any processes that should be active for this folder.
Stored Documents
Description Optional document description.
Metadata Describe any metadata that can/should be applied to documents

in this folder.
Processes Description of any processes that should be active for documents

in this folder.

Some of these fields require a bit more explanation, so we will go through them one
by one.

Folder name
Folder names are specified in relation to the /Company Home folder, as in the
following examples:

Folder name specification Explanation
Meetings Create a folder called Meetings under /Company Home.
Meetings/Congress Create a folder called Congress under /Company Home/

Meetings.
Press/[year] Create a folder named after current year and located

under the Press folder: /Company Home/Press/2010.

Document and Records Management Solutions

[230]

Folder name specification Explanation
Affiliates/[Countries*]

Countries List:

{Sweden, England,
Germany, Spain, Italy}

Sometimes when the folder template is used to specify
a number of very similar folders we might not want to
repeat the same specification over and over again.
In these cases we can use patterns or pointers to lists in
the folder name specification.
This example specification refers to a Countries list that
looks like this:
{Sweden,England,Germany,Spain,Italy}
And the following folders should then be created:
/Company Home/Affiliates/Sweden
/Company Home/Affiliates/England
/Company Home/Affiliates/Germany
/Company Home/Affiliates/Spain

/Company Home/Affiliates/Italy
Affiliates/[Countries* from
affiliate-countries.xls]

If we receive a list of folders in an Excel spreadsheet or
some other file, then we could just directly refer to it
in the folder specification. These long folder lists will
probably be created by a script anyway, and the script
would read directly from the Excel spreadsheet.

Affiliates/[Countries*]/
Affiliated

This folder name specification means that we should
create an Affiliated folder under each country folder.
For example:
/Company Home/Affiliates/Sweden/Affiliated

London 2010/[Hotel,Venue,
Participants, Documents]/
[Correspondence, -
Documents]

In some cases, we can specify the lists inline. Here, we
have specified the folder list { Hotel, Venue, Participants,
Documents} inline. The specification then says that
the Correspondence folder should be created as a
subfolder for each folder in the inline list, except for the
Documents folder.
This means that we should create the following folders in
this case:
London 2010/Hotel/Correspondence
London 2010/Venue/Correspondence
London 2010/Participants/Correspondence

Chapter 6

[231]

Folder title
In some cases, it can be useful to use the Title property for a short code or
something similar. Let's say we have a situation where each folder name is quite
long, but there also exists a short code for the folder, then the short code can be
specified in the title property.

This gives the end user the possibility to search with the short code or the longer
name. For example:

Name /Meetings/Meetings for UK 2010
Title MTUK2010

Folder permissions
Permissions are set up based on the groups and users that exist in the system and
what access they should have to the different folders. Best is to follow a role-based
access control (RBAC) setup, as that is easiest to maintain and integrate with
external directory systems such as OpenLDAP and Active Directory.

The following pattern is used to define permissions:

[Group| Username (Permission),...]

Where an Alfresco Group or Username is used with the permission they should
have on the folder. Permission is a combination of C = Create document or folder,
R = Read document or folder, U = Update document or folder, and D = Delete
document or folder.

Depending on what permission has been set, the following roles are used
in Alfresco:

C: Contributor
R: Consumer
CR: Contributor
U: Editor
CU or CRU: Collaborator
D in any combination: Coordinator

•

•

•

•

•

•

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Document and Records Management Solutions

[232]

When creating new group names remember to keep the group name at least three
characters long as that is a limitation by default. When setting up permissions
for everyone/all make sure to use the built-in EVERYONE group. Here are
some examples:

Permissions EVERYONE (CR)
SYSTEM_ADMINS (CRUD)

Inherit Permissions? yes

Permissions MARITIME (CRU)
SYSTEM_ADMINS (CRUD)

Inherit Permissions? no

Permissions EDUCATION (CRU)
MBERGLJUNG (CRU)
SYSTEM_ADMINS (CRUD)

Inherit Permissions? Yes

Make sure to talk to System Administrators at an early stage, so they are aware of
the groups that you intend to use when setting up the Alfresco permission structure.
Chances are that there are already groups and a permission structure in use on a
company wide scale that can be used with not too many changes when we define
the Alfresco access control.

And the System Administrators do not usually want to maintain different groups
for almost the same thing. So, we do not want to have 30 groups defined and
specified all over the folder hierarchy and then have the System Administrators
telling us that we have to change the name of all groups or use a different number
of groups, and so on.

Rules
Each folder that is specified can have business rules associated with it. When we
discuss the document management functionality with the client they will often talk
about business rules without specifically referring to the functionality as business
rules. It is our job to extract this functionality as business rules and specify it in the
Document Folder Template. Here are some examples of business rule specifications:

Chapter 6

[233]

Rules 1. Check Meeting Document Naming convention.
2. Apply Meeting Document type (metadata).
3. Extract Meeting Metadata from filename.

Apply Rules to
Subspaces?

1. Yes
2. Yes
3. Yes

Rules 1. Convert MS Word 2003 and 2007 documents into
PDFs and save PDFs in the Published folder.

Apply Rules to
Subspaces?

1. No

Metadata
When each folder is specified we need to think about what kind of documents are
going to be stored in the folder and how they are going to be classified. One way
of doing this is to ask the Business Analyst what data they would like to be able
to search on and extract the classification information from that.

It can be helpful to think about the classification in two levels. The first high level
classification is just a document type classification. So we would, for example, ask
the Best Money Business Analyst what types of documents are going to be stored in
the folder and they might say it is going to be meeting documents. So, we got our
first type Meeting, and so on. We should always have one base type that all other
domain-specific types inherit from, as in the following example:

In this example, the bmc:document is the base type (for Best Money and bmc is the
namespace) where we can add generic properties that are common for all other
types. The base type extends the Alfresco base content type cm:content.

Document and Records Management Solutions

[234]

When we have got the type structure sorted, we can continue and talk about what
properties should be part of each type. Then we end up with a diagram looking
something like this:

The properties need to be specified in more detail to make implementation easier.
The following template will be used for that:

Name Description Data
type

Constraint Mandatory Multi Example Advanced
Search

And here is a property example definition:

Name Description Data
type

Constraint Mandatory Multi Example Advanced
Search

Department The Best
Money
department
that
created the
document.

Text See department
codes in
BestMoneyDoc
Codes.doc,
plus ""

False No HR Yes

Chapter 6

[235]

The fields have the following meaning:

Name: This is the name of the property (<property name=).
Description: This is the description of the property, so the Software Architect
knows what it is used for and how it fits into the whole picture. (<title>).
Data Type: This is the data type that should be used when specifying this
property in the Alfresco custom content model (<type>).
Constraint: This is an optional specification of a constraint for this property.
Here we can refer to an external document with lists and codes. Add any
other constraint that should be added to the list such as an "" empty selection.
(<constraints>).
Mandatory: This property is mandatory and should appear with a star in the
UI (<mandatory>).
Multi: It should be possible to select more than one value for this property
(<multiple>).
Example: This is an example of a value for this property.
Advanced Search: This property should be available in the Advanced Search
form in Alfresco Explorer.

Document versioning
To specify that versioning should be enabled for documents in the folder we use the
Apply Versioning field. If document versioning should be applied to all subfolders
then we also specify yes for the Include Subfolders field.

Versioning is also implemented via rules but it is a common enough feature to have
its own field. It is also easier to remember to think about versioning during the
document management design phase when it has its own field.

Processes
When a document is uploaded to the folder there is sometimes a business process
associated with it, such as a review and approval process. This process should be
described in this field. The best way to describe the business process is with a Swim
Lane diagram, unless it only consists of a couple of steps.

For more information about business process design with Swim Lane diagrams see
Chapter 9, Business Process Design Solutions.

•

•

•

•

•

•

•

•

Document and Records Management Solutions

[236]

Designing the Best Money document
management solution
We now have some useful templates and ideas on how to go about designing
document management solutions. So let's take Best Money as an example and
define part of their folder hierarchy.

Meetings and Press folder hierarchy
We will define the Press and Meetings folder hierarchy and the associated Meeting
space template. Defining the complete folder hierarchy for the Best Money client is
out of scope for this chapter. It would be far too long a chapter and once we get the
hang of it, it is quite the same job whether we define 20 top folders or just a couple
as in this case.

After talking to Best Money's Business Analyst, we have found out that the Press and
Meetings folder structure should look something like the following screenshot:

The Meetings folder hierarchy
So let's start by defining the Meetings top folder as follows:

Folder
Name Meetings
Icon Folder
Description All arrangements and documentation around meetings,

conferences, committees, forums, projects, and seminars,
and so on.

Title --

Chapter 6

[237]

Folder
Permissions EVERYONE (CR)

SYSTEM_ADMINS (CRUD)
Inherit Permissions? yes
Rules 1. Apply standard Best Money Meeting Document metadata

via Form, nothing is mandatory.
Apply Rules to
Subfolder?

1. Yes

Apply Versioning? Yes Include subfolders? Yes
Metadata --
Processes --
Stored Documents
Description --
Metadata Meeting metadata:

Department (constraint by department list)

Language (constraint by language list)

Country (constraint by country list)

Meeting Code
Processes Keep permanently.

Here we have specified a top folder called Meetings that should have the folder
icon (that is, default icon). We have set up permissions so everyone can access
the folder, create subfolders, and upload documents into this folder. The System
Administrators can do anything but they are not the same administrators as the
Alfresco administrators, so a new group called SYSTEM_ADMINS needs to be created.
The folder inherits permissions from the Company Home folder, so everyone with
access to Alfresco will be able to read the Meetings folder.

When something is uploaded into the Meetings folder, we have specified a rule that
will apply a new type to the document. This type should be called Meeting and have
properties such as Department, Language, Country, and Meeting Code. This rule
should also be active for any subfolders.

We also want any meeting document to be versioned, so we can go back and see
previous versions and comments around updates. The documents in this folder or
subfolders should be kept permanently, so there are no rules or processes regarding
review periods, retention policies, and so on.

Document and Records Management Solutions

[238]

Next follow a couple of subfolders for different kinds of meetings:

Folder
Name Meetings/Committee
Icon Paper
Description All arrangements and documentation around committee meetings.
Title --
Permissions SECTION_COMMITTEE (CRU)

STEERING_COMMITTEE (CRU)
EXECUTIVE_COMMITTEE (CRU)

Inherit Permissions? yes
Rules Inherited
Apply Rules to
Subfolder?

--

Apply Versioning? Yes—inherited Include subfolders? --
Metadata --
Processes --
Stored Documents
Description Minutes, Agendas, and Presentations.
Metadata Inherited
Processes --

The Committee meetings subfolder should contain all documentation for committee
meetings and it should have the paper icon with a pen. The permissions from
the Meetings top folder are inherited, so we only need to add permissions for
the committee members that should have the right to do anything except delete
documents. Three groups SECTION_COMMITTEE, STERING_COMMITTEE, and
EXECUTIVE_COMMITTEE have been set up with the Collaborators role (that is, CRU).
We have to make sure they are synchronized properly from the directory system
that Best Money has.

Rules regarding versioning and metadata are inherited from the top folder, so not
much else to specify for this subfolder.

Folder
Name Meetings/Executive Board
Icon Paper
Description All arrangements and documentation around executive

board meetings.

Chapter 6

[239]

Folder
Title --
Permissions EXECUTIVE_BOARD (CRU)

SYSTEM_ADMINS (CRUD)
Inherit Permissions? False
Rules Inherited
Apply Rules to
Subfolders?

--

Apply Versioning? Yes—inherited Include subfolders? --
Metadata --
Processes --
Stored Documents
Description --
Metadata Inherited
Processes --

The Executive Board subfolder is a little bit different from the other subfolders as
it does not inherit permissions from the top Meetings folder. Because of this, we
have to redefine the SYSTEM_ADMINS permission. Rules are inherited as for the other
subfolder, so metadata and versioning will be set.

The other Meetings subfolders such as Congress, Forum, Project, and Group are
very similar to either the Committee or Executive Board folder specifications, so we
are not going to specify them here, but they would be done in a similar way as the
other two subfolders.

When we are done with the folder specifications, we should also define the metadata
in detail with the special template discussed before. For the Meeting metadata type it
would look like this:

Name Description Data
type

Constraint Mandatory Multi Example Advanced
Search

Department The Best
Money
department
that created
the document.

Text See department
codes in
BestMoneyDoc
Codes.doc,
plus ""

False No HR Yes

Language Language that
the document
is written in.

Text Languages

Plus ""

False No En Yes

Document and Records Management Solutions

[240]

Name Description Data
type

Constraint Mandatory Multi Example Advanced
Search

Country The country/
countries
relevant to the
document.

Text Countries plus
""

False Yes UK,
France

Yes

MeetingCode The unique
code for this
meeting.

Text False No Yes

The Press folder hierarchy
The Press top folder specification looks like this:

Folder
Name Press
Icon Folder
Description All press releases
Title --
Permissions PRESSTEAM (CRU)

SYSTEM_ADMINS (CRUD)
Inherit Permissions? yes
Rules 1. Apply standard Best Money Document metadata via

Form, nothing is mandatory.
Apply Rules to
Subfolders?

1. Yes

Apply Versioning? Yes Include subfolders? Yes
Metadata Reviewable:

Review Period in Years (Set review period to five years)
Include Subfolders Flag (Set to true for this folder)

Processes At the end of each month, scan all folders that are reviewable and
check last modified date against review period. If the review is
up then send an e-mail to the new group called DOC_REVIEWERS.
Finally, set the modified date to today's date so the review is not
repeated next month.

Chapter 6

[241]

Folder
Stored Documents
Description --
Metadata Press release metadata:

Department (constraint by department list)
Language (constraint by language list)
Country (constraint by country list)

Processes --

The Press top folder inherits permissions from parent folder /Company Home, so all
users will be able to read this folder. A new group is also defined called PRESSTEAM
with members that have the rights to upload and create content in this folder.

A rule is defined to apply the general document metadata department, language,
and country to any document uploaded or created in this folder. Documents in
this folder should also be reviewed after a certain number of years so we describe
a review process and a new reviewable type (this type could be applied to any
folder in the future).

All press releases for a year are saved in a separate folder defined like this:

Folder
Name Press/[year]
Icon Disc
Description All press releases for [year]
Title --
Permissions Inherited
Inherit Permissions? yes
Rules Inherited
Apply Rules to
Subspaces?

--

Apply Versioning? Yes—inherited Include subfolders? --
Metadata Inherited
Processes Inherited
Stored Documents
Description --
Metadata Inherited
Processes --

Document and Records Management Solutions

[242]

This folder inherits pretty much all settings from the Press top folder except the
folder icon, which should be a disk.

Meeting folder/space hierarchy template
When it is time to upload documentation for a meeting for the first time, the user has
to decide into which of the Meeting subfolders (that is, Committee, Congress, and so
on) the documentation should go. Then a new Meeting folder structure needs to be
created. It is a good idea to base the Meeting folder structure on a template as then
users will recognize it from one meeting to another.

Folder Templates, or Space Templates as they are called in Alfresco, are defined
in the same way as folder hierarchies, using the same template with some minor
additions. The Meeting folder hierarchy looks like this:

And in this case, the meeting name is Finance 2010-May London. Here we have
quite a lot of subfolders, so we want to use as many short codes as possible when
defining each folder specification so we do not end up with too many specifications.

Chapter 6

[243]

For the Meeting space template we start by defining the top folder for a meeting:

Folder Template Meeting
Applied to Folder Meetings/{Meeting Name}
Name /[Hotel,Venue,Participants, Documents]/[Correspondence, -

Documents]
Icon Paper
Description Documents relating to hotel bookings, venue, participants for

Best Money meetings.
Title --
Permissions --
Inherit Permissions? True
Rules Inherited +

1. Check Naming Convention, abort upload if not correct
2. Parse and Set Language and Department Metadata from

Filename
Example: 10En-FM.02_3_annex1.doc

10 = last 2 digits of the year
En = language
FM = department code
02 = sequence number
3 = Agenda item
annex1 = annex for that agenda item

RegExp:
^\d{2}(En|Fr|Ge|Sp|Sw|Ru|Jp|Po|Ar|Ch)-
(A|HR|FM|FS|FU|IT|M|L)\.\d{2}_\d{1,3}_annex.*

A = Audit, HR = Human Resources, FM = Financial Markets, FS
= Financial Services, FU = Funds Management, IT = Information
Technology, M = Marketing, L = Legal

•

•

•

•

•
•

Apply Rules to
Subfolders?

1. Yes
2. Yes

Apply Versioning? Yes—inherited Include subfolders? --
Metadata --
Processes --
Stored Documents
Description --
Metadata Inherited
Processes --

Document and Records Management Solutions

[244]

The template that we use to specify a folder that is part of a space template is
almost exactly the same as the one used for a normal folder specification. The only
difference is one extra field at the beginning called Applied To Folder. This field
specifies what parent folder the folder specification should be applied to.

The name of the parent folder is unknown and therefore specified as {Meeting
Name}. It is specified by the user when a new folder hierarchy is created based
on the space template that we are defining.

The folder name is specified as /[Hotel,Venue,Participants, Documents]/
[Correspondence, -Documents] and this means that this specification is the
same for all these folders. We should create the Hotel, Venue, Participant, and
Documents subfolders and for each of these subfolders a Correspondence subfolder
should be created, except for the Documents folder. This saves us from creating a lot
of redundant folder specifications, as they are the same in this case.

There are no new permissions specified and they are instead inherited from the parent
folders. A new rule has been added to check the naming convention of all documents
uploaded to this folder and its subfolders. If the document has an incorrect filename
then it should not be saved and an error message should be displayed.

It is important to go through an example of the naming convention rule so it is
completely clear how it should work and be applied. Nothing should be ambiguous
when the Software Architect is about to implement the rule. That is also why we try
and specify what regular expression could be used to enforce the rule. The more we
can do upfront, the more communication we save later on.

Next, we specify the subfolder for the Participants folder as follows:

Folder Template Meeting
Applied to Folder Meetings/{Meeting Name}/Participants
Name /[Lists,Interpreters]Interpreters]]
Icon Paper
Description Lists = Lists of participants attending meetings attended or

hosted by the Best Money.
Interpreters = Documents relating to interpreters at meetings
attended or hosted by the Best Money.

Title --
Permissions --
Inherit Permissions? True
Rules Inherited

Chapter 6

[245]

Folder Template Meeting
Apply Rules to
Subfolders?

--

Apply Versioning? Yes—inherited Include subfolders? --
Metadata --
Processes --
Stored Documents
Description --
Metadata Inherited
Processes -

And finally we define the subfolders for the Documents folder:

Folder Template Meeting
Applied to Folder Meetings/{Meeting Name}/Documents
Name /[Agenda,Briefing,Minutes,Reports]Briefing,Minutes,Reports]]
Icon Paper
Description Documents relating to meetings.
Title --
Permissions --
Inherit Permissions? True
Rules Inherited
Apply Rules to Subfolders? --
Apply Versioning? Yes—inherited Include subfolders? --
Metadata -
Processes -
Stored Documents
Description --
Metadata Inherited
Processes --

Defining folder specifications is something we, as Software Architects, can do
together with the client's Business Analyst, or they can do most of it themselves
after some training in how to use the templates.

Usually, we would create a separate document for the folder specifications and
folder template specifications. This is the document that the Software Architect
will use as a base for the implementation.

Document and Records Management Solutions

[246]

Implementing the Best Money document
management solutions
When the folder specification has been completed by the Business Analyst and the
Software Architect, it is time to implement the DM solution. It is usually a good idea
to start by setting up the groups as they are going to be needed when setting up the
folder hierarchy. We are also going to need some test users belonging to the different
groups, so we can test the permission settings.

Setting up users and groups
In the beginning of the project, it is highly unlikely that we will be able to connect
to Best Money's Active Directory where the groups and users are managed. So we
need a temporary solution in the development and testing environment before we
have everything hooked up to the directory and the groups and users in sync with
the directory.

When we start the implementation, we usually just want to create the groups and
users locally in our development Alfresco instance. If there are only a few groups
then we can just add them manually via the Alfresco Explorer User Interface but
otherwise it might be good to use a JavaScript for that.

Setting up the users and groups manually or via scripts is a temporary
solution, so it is really important that everyone has approved the folder
specification and the groups in it. So the System Administrator does not
come along when the implementation is almost done and point out that
the groups you guys have used do not at all match the groups we use in
the directory, you will have to update.

Using a script to set up users and groups
Sometimes it is useful to be able to automatically populate the repository with users
and groups for testing or training purposes. In this case, a script can come in handy,
so we do not have to do this manually every time we want to set up a new Alfresco
instance with the Best Money environment.

Chapter 6

[247]

The following JavaScript shows how to create all the Best Money groups that we
have used in the folder specification and also how to create 20 test users that are
members of one or more of the groups:

logger.log("Start creating users and groups");

var bestMoneyParentGroupName = "BEST_MONEY";
var sysAdminsGroupName = "SYSTEM_ADMINS";
var sectionCommitteeGroupName = "SECTION_COMMITTEE";
var steeringCommitteeGroupName = "STEERING_COMMITTEE";
var executiveCommitteeGroupName = "EXECUTIVE_COMMITTEE";
var executiveBoardGroupName = "EXECUTIVE_BOARD";
var pressTeamGroupName = "PRESSTEAM";

var baseUserName = "bmuser";
var firstName = "BM";
var baseLastName = "USER";
var startEmailAddress = baseUserName;
var endEmailAddress = "@bestmoney.com";
var password = "1234";
var startUserNumber = 1;
var endUserNumber = 20;

// Create the Best Money groups that we need
var parentGroup = groups.getGroup(bestMoneyParentGroupName);
if (parentGroup != null) {
 logger.log("Root group " + bestMoneyParentGroupName + " already
 exists, aborting user and group creation.");
} else {
 var parentGroup = groups.createRootGroup(bestMoneyParentGroupName,
 bestMoneyParentGroupName);
 var sysAdmins = parentGroup.createGroup(sysAdminsGroupName,
 sysAdminsGroupName);
 var sectionCommittee =
 parentGroup.createGroup(sectionCommitteeGroupName,
 sectionCommitteeGroupName);
 var steeringCommittee =
 parentGroup.createGroup(steeringCommitteeGroupName,
 steeringCommitteeGroupName);
 var executiveCommittee =
 parentGroup.createGroup(executiveCommitteeGroupName,
 executiveCommitteeGroupName);
 var executiveBoard =
 parentGroup.createGroup(executiveBoardGroupName,
 executiveBoardGroupName);

Document and Records Management Solutions

[248]

 var pressTeam = parentGroup.createGroup(pressTeamGroupName,
 pressTeamGroupName);

 // Loop and create test users
 for (var userNumber = startUserNumber; userNumber <=
 endUserNumber; userNumber++) {
 var userName = baseUserName + userNumber;
 var lastName = baseLastName + " " + userNumber;
 var emailAddress = startEmailAddress + userNumber +
 endEmailAddress;

 // Create new user and
 // enable account so user can login and so admin can edit user
 var enableAccount = true;
 var newUser = people.createPerson(userName,firstName,
 lastName, emailAddress, password, enableAccount);

 // Make sure home folders can be seen only by the owner
 var homeFolder = newUser.properties["cm:homeFolder"];
 homeFolder.setInheritsPermissions(false);

 // Populate all groups with some users
 var username = newUser.properties["cm:userName"];
 if (userNumber == 1) {
 sysAdmins.addAuthority(username);
 logger.log("Created new system admin user: " + userName + " and
 added to group: " + sysAdminsGroupName);
 } else if (userNumber > 1 && userNumber <= 5) {
 executiveCommittee.addAuthority(username);
 executiveBoard.addAuthority(username);
 logger.log("Created new user: " + userName + " and added to
 groups: " + executiveCommitteeGroupName + ", " +
 executiveBoardGroupName);
 } else if (userNumber > 5 && userNumber <= 10) {
 sectionCommittee.addAuthority(username);
 logger.log("Created new user: " + userName + " and added to
 group: " + sectionCommitteeGroupName);
 } else if (userNumber > 10 && userNumber <= 15) {
 steeringCommittee.addAuthority(username);
 logger.log("Created new user: " + userName + " and added to
 group: " + steeringCommitteeGroupName);
 } else if (userNumber > 15 && userNumber <= 20) {
 pressTeam.addAuthority(username);

Chapter 6

[249]

 logger.log("Created new user: " + userName + " and added to
 group: " + pressTeamGroupName);
 }
 }

 logger.log("Users and groups created");
}

To create the groups and the users we use the special root script objects groups and
people. The groups are organized under the BEST_MONEY root group, which makes it
easy to find them if there are other group hierarchies.

The first user that is created is the Best Money system administrator and then five
users are added to the different groups, so it is easy to test the permissions that will
be set up. Each user's home folder has been set up so only the owner can view it.

There is no need to add the users to the EVERYONE group as that is a special
pseudo system group that will automatically contain all users. You can see it when
you invite users to a space but you cannot see it when managing groups via the
Alfresco Explorer UI and you cannot add users to it.

To use this script log in as admin and just add it to the /Company Home/Data
Dictionary/Scripts folder and then it can be run as an action from any folder.

To execute a script action, select the More Actions link and then the View
Details link followed by the Run Action link. Now select the Execute
script action and then as a value select the uploaded JavaScript.

Setting up the folder hierarchy
The folder hierarchy that we have defined in the specification for Best Money can be
set up in different ways. We can just create it manually via the Alfresco Explorer UI,
Alfresco Share UI, or CIFS. We can also use a script to create the folder hierarchy.
A combination of manual set up and scripting is probably a good way to go in
many cases.

Remember to be logged in as admin when setting up the folder
hierarchy as otherwise you might not have permission to set up
folders and permissions.

Document and Records Management Solutions

[250]

Using CIFS to set up folders
The CIFS interface is a good starting point when creating folders as it is easy
and very fast to create folders this way. We can also easily copy similar folder
hierarchies via this interface. However, as soon as we want to set metadata for
folders, configure permissions, set up rules, change icon, and so on we need
to use one of the Alfresco UIs.

Using the Alfresco user interfaces to set up folders
We can set up folders from both the Alfresco Explorer UI and the Alfresco Share UI.
However, the Share UI is nicer, easier, and more intuitive than the Explorer UI. The
Share UI will eventually replace the Explorer UI so we will use the Share UI at all
times, except when the functionality is only available in the Explorer UI.

The Alfresco Share UI was originally designed as a sharing and collaboration
environment where users worked with content belonging to a so-called site. These
days a lot of the Alfresco Explorer document management functionality is also
available in the Share UI. We can access it by clicking on the Repository icon
in the top toolbar:

To start creating the folders that we have specified, click on the New Folder button
above the folder list. Then we fill in the properties for the folder, as shown in the
following screenshot:

Chapter 6

[251]

Currently, it is not possible to set a different folder icon via the Alfresco Share UI and
it will also not display any other icon than the standard folder/directory icon, even if
a different icon is set from the Alfresco Explorer UI.

The rest of the folders from the folder template specification are created in the
same way.

Using scripts to set up folders
There are situations when using any of the Alfresco clients to set up folders manually
is just too time consuming and some kind of bulk upload/update functionality
is needed. We might have many folders, and maybe also documents, that should
have the same or very similar title, descriptions, or other metadata. A customer
could supply a list of folders (maybe in the thousands) in, for example, an Excel
spreadsheet and we have the task to set them up in the repository.

Alfresco does not really provide a bulk change functionality to, for example, set the
description of 20 nodes at the same time. So it can be quite time consuming to start
doing all these updates manually. Some things we can do quickly via CIFS, but most
things that have to do with updating the metadata we cannot.

A good solution for this is to use JavaScripts as helpers. They can easily apply
changes to multiple repository nodes at the same time.

Updating folder icons
For example, to update the folder icon for all subfolders in a particular folder, we
would use a script as follows:

// Get all children under current space
var children = space.children;

// Loop through and set icon for sub-folders
for (var i = 0; i < children.length; i++) {
 if (children[i].isContainer) {
 children[i].properties["app:icon"] = "space-icon-doc";
 children[i].save();
 }
}

This script gets all children, including folders and documents, under the current
folder and then updates the icon for any child that is a folder (that is, the
isContainer method checks if it is a folder, uses isDocument to check if it is a file).
Current folder is the folder from which the script was run.

Document and Records Management Solutions

[252]

To find out what properties you can update, and what values can be set for them, it
is usually a good idea to do it manually first for one node and then check out what
property and value was set via the Alfresco Node Browser.

Adding groups of folders to other folders
Another common scenario is that you have a group of folders with special
permission settings and rules that you want to copy to several other folders. To start
doing this via the Alfresco UI will take you a lot of time or be unpractical, if this
needs to be done for hundreds of folders.

Also, when you copy folders in the Alfresco Explorer UI, the permissions are not
copied with the folders. Doing it from CIFS does not work either, as neither the
permissions nor the custom folder properties are copied.

To get around these problems and limitations we will create a "copy set of folders"
script. This script will copy all subfolders from the /Company Home/CopyFrom folder
to all the subfolders of the folder from where the script is executed.

The script looks like this:

// Get Set of subfolders to copy
var tempFolder = companyhome.childByNamePath("CopyFrom");
var foldersToCopy = tempFolder.children;

// Get all children under current space
var children = space.children;

// Loop thru subfolders and add set of folders to each one
for each (child in children) {
 if (child.isContainer) {
 for each (folderToCopy in foldersToCopy) {
 // Copy folder and its properties
 var copy = folderToCopy.copy(child);

 // Copy local folder permissions
 var permissions = folderToCopy.directPermissions;
 if (permissions != undefined) {
 for each (permission in permissions) {
 if (permission != undefined) {
 var permissionTokens = permission.split(";");
 var authorityId = permissionTokens[1];
 var permissionName = permissionTokens[2];
 copy.setPermission(permissionName, authorityId);
 }

Chapter 6

[253]

 }
 }
 copy.setInheritsPermissions(folderToCopy.inheritsPermissions());

 // Rules are copied automatically
 }
 }
}

To use the script mentioned earlier, set up the folders you want to copy including
rules and permissions under the /Company Home/CopyFrom folder and then navigate
to the top folder that has all the subfolders that should have all folders in CopyFrom
copied to them.

The script first copies the folder and its properties (that is, metadata) from CopyFrom
to the destination subfolder. Then the folder's permissions are copied; only the
local permissions for the folder are copied. If we also wanted to copy the inherited
permissions then we can change the following line:

var permissions = folderToCopy.directPermissions;

to:

var permissions = folderToCopy.permissions;

These methods return a list of permissions in the following format:

"[ALLOWED|DENIED];[USERNAME|GROUPNAME];PERMISSION"

Such as for example:

"ALLOWED;SYSTEM_ADMINS;Coordinator"

Before running this script make sure to test it first on some temporary folders, so you
are aware of exactly what will be copied and also the end result.

Importing folders from an Excel file
Another thing that is often needed is to create folders from a Microsoft Excel file.
Let's say you are on a project and the client tells you, here is an Excel file with a list
of folders that should be created including related metadata. And when you open
the file there are hundreds of folders, maybe even thousands, with extra metadata.
What to do? In these cases, we need to be able to automatically create the folders via
a script.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Document and Records Management Solutions

[254]

In the following example, we assume that Best Money has lots of affiliates around
the world and we have been given an Excel file with all these affiliates and we are
supposed to create folders for them under correct country and correct affiliate status.
The Excel file looks something like this:

The Primary Name plus the Affiliate No should be used as cm:name and the Short
Name should be used as cm:title. The Country and Affiliate Status fields indicate
under which folders the affiliate should be organized. The cm:description property
should be set to "The top folder for this affiliate" for all affiliates.

The existing folder structure under which these affiliate folders should be created
looks like this:

The Excel file needs to be uploaded to some folder in Alfresco for the script to be able
to read it. Before uploading it, we should convert it to a CSV file so it is easy to read
from the script.

The script looks like this:

// Read content from current document and split it into separate lines
var affiliateLines=document.properties.content.content.split("\r\n");

if (affiliateLines == null) {
 logger.log("No text lines available");
} else {

Chapter 6

[255]

 logger.log(affiliateLines.length + " lines available for
 processing");
}

var primaryName = null;
var shortName = null;
var number = null;
var status = null;
var country = null;

if (affiliateLines != null) {
 for each (affiliateLine in affiliateLines) {
 // Extract the different affiliate fields
 var affiliateTokens = affiliateLine.split(",");
 primaryName = affiliateTokens[0].trim();
 shortName = affiliateTokens[1].trim();
 number = affiliateTokens[2];
 status = affiliateTokens[3].trim();
 country = affiliateTokens[4].trim();

 logger.log("Processing : " + primaryName + ", " + shortName + ","
 + number + "," + status + "," + country);

 // Setup Affiliate folder name
 var numberString = "";
 if (number != null && number != "") {
 numberString = " - " + number;
 }
 var affiliateFolderName = primaryName + numberString;
 // Replace stuff that is not valid in a filename
 affiliateFolderName = affiliateFolderName.replaceAll("/", "-");
 affiliateFolderName = affiliateFolderName.replaceAll("\"", "");

 // Find folder to create Affiliate folder under
 // /Company Home/Affiliates/[Countries*]/[Affiliate Status*]
 var affiliateParentFolderPath = "Affiliates/" + country + "/" +
 status;
 affiliateParentFolder =
 companyhome.childByNamePath(affiliateParentFolderPath);

 if (affiliateParentFolder != null) {
 // Check if folder already exists
 var affiliateFolder =
 companyhome.childByNamePath(affiliateParentFolderPath + "/" +
 affiliateFolderName);
 if (affiliateFolder == null) {
 // Create Affiliate folder

Document and Records Management Solutions

[256]

 affiliateFolder =
 affiliateParentFolder.createFolder(affiliateFolderName);
 if (affiliateFolder != null) {
 affiliateFolder.properties["app:icon"] = "space-icon-doc";
 affiliateFolder.properties["cm:title"] = shortName;
 affiliateFolder.properties["cm:description"] = "The top
 folder for this affiliate.";
 affiliateFolder.save();

 affiliateFolder.setPermission("Coordinator",
 "SYSTEM_ADMINS");
 } else {
 logger.log("Affiliate folder: " + affiliateFolderName + "
 could not be created");
 }
 } else {
 logger.log("Affiliate folder: " + affiliateFolderName + "
 already exists, no need to create it");
 }
 } else {
 logger.log("Could not find affiliate parent folder: " +
 affiliateParentFolderPath + ", affilate folder " +
 affiliateFolderName + " has not been created");
 }
 }
}

So for each line in the CSV file, we extract the value of each property and then we
locate the parent folder for the affiliate. If the parent folder is found, then we create
the affiliate folder and set its metadata. In this example, we also set permissions for
the new affiliate folder, but it is probably better to set up common permissions on
parent folders. Otherwise, it will be quite time consuming later on if we ever need
to change these permissions.

When uploading a CSV file into the Alfresco repository, we need to
be careful to set correct character encoding. The encoding might be in,
for example, Windows-1252 but Alfresco will sometimes set it to, for
example, UTF-8 as default, which will make characters from many
different languages not display correctly.

Cleanup folders
Now, let's say you created all these new affiliate folders but discovered that they
weren't created correctly for some reason and you need to change the script and run
it again. How do we rollback the created folders? We can create a cleanup script such
as the following:

Chapter 6

[257]

function removeAllChildren(folder) {
 var nodes = folder.children;
 for each (node in nodes) {
 node.remove();
 }
}

var countries = space.children;
for each (country in countries) {
 var affiliated = country.childByNamePath("Affiliated");
 var disaffiliated = country.childByNamePath("Disaffiliated");
 var lapsed = country.childByNamePath("Lapsed");
 var prospect = country.childByNamePath("Prospect");
 var suspended = country.childByNamePath("Suspended");

 removeAllChildren(affiliated);
 removeAllChildren(disaffiliated);
 removeAllChildren(lapsed);
 removeAllChildren(prospect);
 removeAllChildren(suspended);
}

This JavaScript can be run from the top Affiliates folder and it will remove all the
affiliates folders created before.

Setting up folder permissions
To set up folder permissions, we will use the Alfresco Share UI as it provides a nicer
and easier-to-use interface. The Share interface also offers more functionality such
as displaying inherited permissions. To set up permissions for a folder, click on the
More... menu item in the folder's menu on the right side. Then in the drop-down
menu, select Manage Permissions:

Document and Records Management Solutions

[258]

When the SYSTEM_ADMINS group has been set up with Coordinator role for the
/Company Home/Meetings folder, it looks like this:

To add more permissions, click on the Add User/Group button in the upper-right
corner. Then type in at least three characters of the username or group name and
hit Enter. If a username or group matched, then we can select it by clicking on the
Add button. The role that the group or username should have is set via the screen
displayed next that we can see in the earlier screenshot.

Setting up business rules for folders
The folder specifications contain some business rules that we need to set up. The
following rules need to be implemented, note that the Apply Versioning field is
also implemented as a rule:

Apply standard Best Money Meeting Document metadata via Form, nothing
is mandatory
Apply Versioning
Check Naming Convention, abort upload if not correct
Parse and Set Language and Department Metadata from Filename

Rules can be defined directly on a folder or we can link to a ruleset in another folder.
If we have a set of rules, or just one rule, that are used over and over again in the
folder hierarchy it might be useful to define them in one place and then link to them
from all other places where they are used. This will make it easier to maintain/
update the rules, if they ever change.

•

•

•

•

Chapter 6

[259]

This can be done by first defining the ruleset for one folder and then link to this
ruleset from all other folders that use the same rule. The rules cannot be defined in a
library, so we have to create some kind of rules folder hierarchy for the project.

The Meetings top folder specification has two rules specified (the first two rules
from the previous list) and the top folder specification for the Meeting folder
template has two rules specified (that is, the last two rules of the previous list).

So it makes sense to define two reusable rulesets as follows for the Best
Money project:

The ruleset's folder hierarchy can be created anywhere in the repository but it makes
more sense to put it under the /Company Home/Data Dictionary folder as this is
where all other document management functionality is located. This folder is usually
not visible to end users, so they will also not be confused by the rule folders if we put
them in the dictionary.

When looking at this, initially, it might make more sense to define one
reusable rule per folder, making it possible to select and link to any
number of rules when setting up folders. This is not possible as we can
only link to one ruleset from a folder.

Document and Records Management Solutions

[260]

Defining the Apply Best Money Document Type rule
Let's start by defining the Apply Best Money Document Type rule. It requires the
bmc:document custom type to be available. Creating the custom content model is the
topic for the next chapter, but we will define a minimal type here so we can go ahead
and create the rule. Open up the content-model.xml file located in the chapter_6_
Code\bestmoney\alf_extensions\trunk_alfresco\config\alfresco\module\
com_bestmoney_module_cms\model directory and add the following type:

<type name="bmc:document">
 <title>Best Money Document</title>
 <parent>cm:content</parent>
 <properties>
 <property name="bmc:department">
 <title>The Best Money Department that created the
 document</title>
 <type>d:text</type>
 <multiple>true</multiple>
 </property>
 <property name="bmc:language">
 <title>Language that the document is written in</title>
 <type>d:text</type>
 </property>
 </properties>
</type>

In order for this new type to show up in Action wizards when we define rules,
some custom web client configurations are needed. For the Alfresco Share web
client, update the share-config-custom.xml file located in the chapter_6_Code\
bestmoney\alf_extensions\trunk_share\config\alfresco\web-extension
directory as follows:

<config evaluator="string-compare" condition="DocumentLibrary"
replace="true">
 <types>
 <type name="cm:content">
 <subtype name="bmc:document" />
 </type>
 </types>
</config>

Chapter 6

[261]

For the new type to show up in Alfresco Explorer, open up the web-client-custom-
config.xml file located in the chapter_6_Code\bestmoney\alf_extensions\
trunk_alfresco\config\alfresco\module\com_bestmoney_module_cms\ui
directory and add the following configuration:

<alfresco-config>
 <config evaluator="string-compare" condition="Action Wizards">
 <subtypes>
 <type name="bmc:document"/>
 </subtypes>
 <specialise-types>
 <type name="bmc:document"/>
 </specialise-types>
 </config>
</alfresco-config>

Now stop Alfresco and run the deploy-alfresco-amp ant target available in the
build.xml file located in the chapter_6_Code\bestmoney\alf_extensions\trunk
directory. This updates the Alfresco Explorer client and adds the new content type.
Run also the deploy-share-jar ant target to update the Alfresco Share web client.
Start Alfresco again and the new type should be available together with the
UI customizations.

If the Repository icon has disappeared from the Alfresco Share top toolbar
when you restart Alfresco then make sure the following configuration is
in the share-config-custom.xml file:

<config evaluator="string-compare" condition="Repositor
yLibrary" replace="true">
 <visible>true</visible> . . .

To set up the rule we will use the Alfresco Share UI as it provides a nicer and
easier-to-use interface. The Share interface also offers the rule linking functionality
that is not available in Alfresco Explorer.

Document and Records Management Solutions

[262]

Navigate to the /Company Home/Data Dictionary/Rules folder and click on the
More... menu item in the Apply Best Money Document Type and Versioning folder's
menu on the right side. Then in the drop-down menu, select Manage Rules:

To create the rule, click on the Create Rules link on the initial page. Then fill in the
following data for the Apply Versioning rule:

Chapter 6

[263]

After the Create button is clicked, the following page will be displayed with the rules
for the current folder:

Defining the Apply Versioning rule
To set up the versioning rule, we can click on the New Rule button directly as this
rule should be part of the same ruleset. Then fill in the following data for the Apply
Versioning rule:

Document and Records Management Solutions

[264]

Click the Create button so the rule is created and saved.

Make sure to only apply versioning to content and not folders by
setting Content of type or subtype = Content.
Folders are not versionable unless the WCM module is used, which
supports a more advanced versioning management (AVM) system.

Defining the Check Naming Convention rule
The filenames for documents that are stored in any of the meeting folders have
to follow a naming convention. We will enforce the naming convention with a rule
that is implemented with a JavaScript.

The script looks like this:

// Regulars Expression Definition
var re = new RegExp("^\\d{2}(Ar|Ch|En|Fr|Ge|In|Jp|Po|Ru|Sp|Sw|Ta|Tu)-
(A|HR|FM|FS|FU|IT|M|L)\\.\\d{2}_\\d{1,3}_annex.*");

logger.log("Check Meeting Naming Convention RegExp = "+ re);

if (re.test(document.name) == false) {
 var exampleNamingConvention = "06En-FM.02_3_annex1.doc";
 var errorMsg = "<<ERROR: Filename " + document.name + " does not
 follow naming convention for this folder. Example of naming
 convention: " + exampleNamingConvention + ". Regular Expression
 used: " + re + ">>";
 logger.log(errorMsg);

 // Cancel Transaction so document is not stored
 throw errorMsg;
}

Store this script as checkMeetingNamingConvention.js in the /Company Home/Data
Dictionary/Scripts folder. Make sure the Mimetype is set to Java Script otherwise
the script will not show up when selecting script to execute when defining a rule.

Chapter 6

[265]

Navigate to the /Company Home/Data Dictionary/Rules folder and click on the
More... menu item in the Check Meeting Naming Convention and Extract Filename
Metadata folder's menu on the right side. Then in the drop-down menu, select
Manage Rules followed by Create Rules on the following page. Then fill in the
following data for the rule as follows:

The rule is applied to all content added to the folder or subfolders. Note
that if a folder is created, this rule will not be executed as we have specified
Content of type or sub-type = Content. The rule action is specified as the
checkMeetingNamingConvention.js script that we uploaded earlier. Click
on the Create button, so the rule is created and saved.

Document and Records Management Solutions

[266]

Defining the Extract Meeting Filename Metadata rule
This rule is closely related to the Check Meeting Naming Convention rule. It is
defined to be run just after that rule in some folder specifications. It should extract
some metadata that can be found in the filename. The metadata will be extracted
with a JavaScript.

The script looks like this:

if (document.hasAspect("bmc:document_data")) {
 var language = document.name.substring(2, document.name.indexOf("-
 "));
 var department = document.name.substring(document.name.indexOf("-")
 + 1);
 department = department.substring(0, department.indexOf("."));

 logger.log("Language = " + language);
 logger.log("Department = "+ department);

 document.properties["bmc:language"] = language;
 document.properties["bmc:department"] = department;
 document.save();
} else {
 logger.log("Aspect bmc:document_data is not set for document " +
 document.name);
}

Store this script as extractMeetingFilenameMetadata.js in the /Company Home/
Data Dictionary/Scripts folder. Make sure the Mimetype is set to Java Script
otherwise the script will not show up when selecting script to execute when
defining a rule.

Navigate to the /Company Home/Data Dictionary/Rules folder and click on the
More... menu item in the Check Meeting Naming Convention and Extract Filename
Metadata folder's menu on the right side. Then in the drop-down menu, select
Manage Rules followed by Create Rules on the following page. Then fill in the
following data for the rule as follows:

Chapter 6

[267]

The rule is applied to all content added to the folder or subfolders. Note
that if a folder is created, this rule will not be executed as we have specified
Content of type or sub-type = Content. The rule action is specified as the
extractMeetingFilenameMetadata.js script that we uploaded earlier. Click
on the Create button so the rule is saved.

In this case, the execution order of the rules is important, so make sure the order is as
shown in the following screenshot:

Document and Records Management Solutions

[268]

Linking to the rules
Now, we have a library of rulesets that we can reuse throughout the document
management implementation. To demonstrate how to link to a ruleset we will
implement the rules for the Meeting folder specification that requires the
Apply Best Money Document Type and Apply Versioning rules.

Start by navigating to the /Company Home folder (that is, this folder is just called
Repository in Alfresco Share) and click on the More... menu item in the Meetings
folder's menu on the right side. Then in the drop-down menu, select Manage Rules.
The following page will be displayed where we should click on the Link to Rule
Set link:

Then click on the Repository Destination and then navigate to the Rules folder and
select the Apply Best Money Document Type and Versioning ruleset:

Create the link by clicking on the Link button.

Chapter 6

[269]

Error handling
When a rule is executed, there might be an error state as a result or we might, for
example, throw an exception to abort a document upload. In these cases, it would be
good to be able to run a script to display some useful information.

This is possible to do when the rule is defined; we can then specify what script that
should be run in, in case of an error state.

This is only available if the rule is set up via Alfresco Share.

Setting up space templates
The Best Money folder specification has one space template defined for meetings
called Meeting. For a folder hierarchy to be recognized as a space template, it needs
to be located under the /Company Home/Data Dictionary/Space Templates folder.
Creating the folders that are part of the space template is no different from creating
folders somewhere else in the Repository.

Create the following folder hierarchy according to the Meeting specification:

Document and Records Management Solutions

[270]

There are two rules defined in the specification for the Meeting folder template and
they correspond to the Check Meeting Naming Convention and Extract Filename
Metadata ruleset. To link to this ruleset start by navigating to the /Company Home/
Space Templates folder and click on the More... menu item in the Meeting folder's
menu on the right side. Then in the drop-down menu, select Manage Rules. The
following page is displayed where we should click on the Link to Rule Set link.

Now click on the Repository Destination and then navigate to the Rules folder and
select the Check Meeting Naming Convention and Extract Filename Metadata:

Create the link by clicking on the Link button. The Meeting hierarchy folder
template is now ready to be used.

To create a new folder based on this template in Alfresco Explorer, we first
navigate to the Meetings subfolder that fits our meeting type. For example, if it is a
committee-related meeting then we would navigate to /Company Home/Meetings/
Committee and then click on the Create link. Then in the drop-down menu, select
Advanced Space Wizard. In step One, choose to create the space Using a template.
Then select the Meeting template.

In Alfresco Share it is not, at the time of writing, possible to create a folder hierarchy
based on a space template. We would have to use Alfresco Explorer for this. Until
Alfresco Share has been extended to support all features available in Alfresco
Explorer, we are likely to be using both UIs for some time.

Chapter 6

[271]

Configuring details list view for folder and
file display
By default, the Alfresco Explorer UI client displays folders and files in an icon view.
Most customers like Best Money are going to want to change that to a details list
view instead to get more information on each page.

To change from icon view to details list view open up the web-client-custom-
config.xml file located in the chapter_6_Code\bestmoney\alf_extensions\
trunk_alfresco\config\alfresco\module\com_bestmoney_module_cms\ui
directory and add the following configuration:

<config evaluator="string-compare" condition="Views">
 <views>
 <view-defaults>
 <browse>
 <view>details</view>
 <page-size>
 <list>10</list>
 <details>25</details>
 <icons>10</icons>
 </page-size>
 </browse>
 </view-defaults>
 </views>
</config>

At the same time we also change the number of items per page to 25, which is more
suitable for a list view.

Now, stop Alfresco and run the deploy-alfresco-amp ant target available in the
build.xml file located in the chapter_6_Code\bestmoney\alf_extensions\trunk
directory. This updates the Alfresco Explorer client and adds the new content type.

In Alfresco Share, we can also manually switch between different list views (that is,
Simple View and List View) that show more or less data for each folder or document.
However, it is not possible to permanently set this via share-config-custom.xml.

Configuring Google-Like search
When we search via Alfresco Explorer, and specify multiple search terms, an implicit
OR is by default used between search terms. It would be better if it was an implicit
AND as that is how it works in Google and most people are used to that.

Document and Records Management Solutions

[272]

To configure this, open up the web-client-custom-config.xml file located in
the chapter_6_Code\bestmoney\alf_extensions\trunk_alfresco\config\
alfresco\module\com_bestmoney_module_cms\ui directory and add the
following configuration:

<config>
 <client>
 <search-and-terms>true</search-and-terms>
 </client>
</config>

Setting up document review periods
The Best Money folder specification specifies that documents in the Press folder
should be reviewed every fifth year. This is closely related to Records Management
but it is not complex enough to require the use of the records management module.
Instead, we can use the built-in Scheduler in Alfresco to set up a review process
based on review period metadata that has been set on the folder.

A JavaScript will be used to check if a document is up for review and this script will
also take care of notifying the members of the DOC_REVIEWERS group as required.

Adding the reviewable aspect
Let's first start with defining the document review properties that should be applied
to the folder. As these properties can be applied to any folder, and they are not
related to what type of folder it is, we will define these properties in an Aspect
as follows:

<aspect name="bmc:reviewable">
 <title>Reviewable Folder</title>
 <properties>
 <property name="bmc:reviewPeriod">
 <title>The number of years until documents in this folder
 should be reviewed</title>
 <type>d:int</type>
 <mandatory>true</mandatory>
 <default>5</default>
 </property>
 <property name="bmc:includeSubFolders">
 <title>Should sub folders also be affected by this review
 period</title>
 <type>d:boolean</type>
 <mandatory>true</mandatory>

Chapter 6

[273]

 <default>true</default>
 </property>
 </properties>
</aspect>

The first property reviewPeriod will contain the number of years between reviews
and is used when checking the modified date for a document. The second property
includeSubFolders tells us if the folders' subfolders should also be reviewable
folders with the same review period.

Add the above aspect definition to the content-model.xml file located in the
chapter_6_Code\bestmoney\alf_extensions\trunk_alfresco\config\
alfresco\module\com_bestmoney_module_cms\model directory.

In order for this new aspect to show up in the UI, some custom web client
configurations are needed. For the Alfresco Share web client, update the
share-config-custom.xml file located in the chapter_6_Code\bestmoney\
alf_extensions\trunk_share\config\ alfresco\web-extension directory as
follows and add the bmc:reviewable aspect:

<config evaluator="string-compare" condition="DocumentLibrary"
replace="true">
 <aspects>

 <!-- Aspects that a user can see -->

 <visible>

 <aspect name="cm:generalclassifiable" />

 <aspect name="cm:complianceable" />

 <aspect name="cm:dublincore" />

 <aspect name="cm:effectivity" />

 <aspect name="cm:summarizable" />

 <aspect name="cm:versionable" />

 <aspect name="cm:templatable" />

 <aspect name="cm:emailed" />

 <aspect name="emailserver:aliasable" />

 <aspect name="cm:taggable" />

 <aspect name="app:inlineeditable" />

 <aspect name="bmc:reviewable" />

 </visible>

 <!-- Aspects that a user can add. Same as "visible" if left empty
 -->

 <addable></addable>

Document and Records Management Solutions

[274]

 <!-- Aspects that a user can remove. Same as "visible" if left
 empty -->

 <removeable></removeable>

 </aspects>

 <types>
 <type name="cm:content">
 <subtype name="bmc:document" />
 </type>
 </types>
 </config>

For the new aspect to show up in Alfresco Explorer, open up the web-client-
custom-config.xml file located in the chapter_6_Code\bestmoney\alf_
extensions\trunk\ _alfresco\config\alfresco\module\com_bestmoney_
module_cms\ui directory and add the following configuration:

<alfresco-config>
 <config evaluator="string-compare" condition="Action Wizards">
 <aspects>

 <aspect name="bmc:reviewable"/>

 </aspects>

 <subtypes>
 <type name="bmc:document"/>
 </subtypes>
 <specialise-types>
 <type name="bmc:document"/>
 </specialise-types>
 </config>
</alfresco-config>

Now, stop Alfresco and run the deploy-alfresco-amp ant target available in
the build.xml file located in the chapter_6_Code\bestmoney\alf_extensions\
trunk directory. This updates the Alfresco Explorer client and adds the new content
type. Also run the deploy-share-jar ant target to update the Alfresco Share web
client. Start Alfresco again and the new type should be available together with
the UI customizations.

Setting a review period for a folder
To set up the five year review period for the Press folder, do the following. Click on
/Company Home (that is, Repository) so the top folders are listed. Then click on the
More... menu item for the Press folder and then select the Manage Aspects menu
item in the pop-up menu:

Chapter 6

[275]

In the next dialog, click the plus icon after the bmc_reviewable aspect:

We have not yet defined any i18n properties for the aspect, so it is displayed with
the aspect.bmc_reveiwable name (we will see how to do this in the next chapter).
Click Apply changes so the aspect is applied to the Press folder. The next thing
we need to do is set up a script that uses this aspect when it looks at the documents
stored in this folder or any of its subfolders.

Creating script to check folder review periods
To check the review period settings for folders we will create a JavaScript. This script
will start searching from /Company Home for folders with the bmc:reviewable aspect
and then inspect the contained documents and decide if they are up for review or
not. The first part of the script that searches for all the reviewable folders looks
like this:

var today = new Date();
var docReviewList = new Array();
var store = "workspace://SpacesStore";
var query = "+PATH:\"/app:company_home//*\"
 +ASPECT:\"bmc:reviewable\"";
var reviewableFolders = search.luceneSearch(store, query);

Document and Records Management Solutions

[276]

When we have got all the reviewable folders, we loop through them and extract the
bmc:reviewPeriod property, which we will use to calculate the latest date when
documents should be reviewed. This last review date will be compared with the
modified date for the documents that are contained in the folder. We also extract the
bmc:includeSubFolders property, so we know if we should search for documents
in subfolders:

for each (reviewableFolder in reviewableFolders) {
 var reviewPeriod =
 reviewableFolder.properties["bmc:reviewPeriod"];
 var lastReviewDate = new Date(new Date(today).setYear(1900 +
 today.getYear() - reviewPeriod));
 var includeSubfolders =
 reviewableFolder.properties["bmc:includeSubFolders"];

Next, we construct the documents query and search for all documents in the folder
and subfolders. Then we loop through the documents and extract the cm:modified
date, so we can compare that to the last review date for the folder. If the documents
modified date is less than or equal to the last review date then this document is
added to a list of documents that are up for review. To protect against the document
being added to the review list next month also, we update the modified date for the
document to today's date:

 var wildcard = includeSubfolders ? "//*" : "/*";
 query = "+PATH:\""+reviewableFolder.qnamePath + wildcard + "\"";
 var nodes = search.luceneSearch(store, query);
 for each (node in nodes) {
 if (node.isDocument) {
 var modifiedDate = node.properties["cm:modified"];
 if (modifiedDate <= lastReviewDate) {
 var docToReview = node.name + "
 ("+reviewableFolder.displayPath + "/" +
 reviewableFolder.name + ")";
 docReviewList.push(docToReview);
 node.properties["cm:modified"] = today;
 node.save();
 }
 }
 }
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 6

[277]

Now when we got the list of documents that should be reviewed, we compile an
e-mail with this list and send it to the members of the DOC_REVIEWERS group:

// Setup email body text
var emailBodyText = "The following documents need to be reviewed:\n\r\
n\r";
for each (docToReview in docReviewList) {
 emailBodyText = emailBodyText + docToReview + "\n\r";
}

// Create an array with all users and groups that the email should be
sent to
var reveiwersGroupName = "GROUP_DOC_REVIEWERS";
var reviewerGroups = new Array(reveiwersGroupName);

// Create mail action and send emails
var mail = actions.create("mail");
mail.parameters.to_many=reviewerGroups;
mail.parameters.subject = "Documents For Reviewing";
mail.parameters.from = "do-not-reply@bestmoney.com";
mail.parameters.text = emailBodyText;
// execute action against current space
mail.execute(space);

This script is now ready to be tested:

Upload a couple of documents.
Set date on the development machine to more than five years in the future.
Upload the script to the /Company Home/Data Dictionary/Scripts
directory and call it checkReviewPeriodAndSendEmail.js.
In Alfresco Explorer, click on the More Action link for some folder.
Click View Details.
Then Run Action.
Followed by Execute Script.
As script value select checkReviewPeriodAndSendEmail.js.

•

•

•

•

•

•

•

•

Document and Records Management Solutions

[278]

Setting up a scheduler that runs review folder
content script
When the script has been tested and verified to work as expected, we need to set up a
scheduled action that executes this script at the end of each month. We can do this by
using the Quartz Scheduler that Alfresco embeds and a Cron job.

We will start by configuring an action template that points out the script that
the Cron job will run. Open up the services-context.xml file located in the
chapter_6_Code\bestmoney\alf_extensions\trunk_alfresco\config\
alfresco\module\com_bestmoney_module_cms\context directory and add the
following configuration:

<bean id="com.bestmoney.dm.runCheckReviewPeriodScriptAction"
class="org.alfresco.repo.action.scheduled.
SimpleTemplateActionDefinition">
 <property name="actionName">
 <value>script</value>
 </property>
 <property name="parameterTemplates">
 <map>
 <entry>
 <key>
 <value>script-ref</value>
 </key>
 <!-- element and value has to be on the same line -->
 <value>selectSingleNode('workspace://SpacesStore', 'lucene',
 'PATH:"/app:company_home/app:dictionary/app:scripts/
 cm:checkReviewPeriodAndSendEmail.js"')</value>
 </entry>
 </map>
 </property>
 <property name="templateActionModelFactory">
 <ref bean="templateActionModelFactory"/>
 </property>
 <property name="dictionaryService">
 <ref bean="DictionaryService"/>
 </property>
 <property name="actionService">
 <ref bean="ActionService"/>
 </property>
 <property name="templateService">
 <ref bean="TemplateService"/>
 </property>
 </bean>

Chapter 6

[279]

Then set up the Cron Job to run the action we just defined, every month:

<bean id="com.bestmoney.dm.invokeCheckReviewPeriodScriptActionEveryMo
nth"
 class="org.alfresco.repo.action.scheduled.
 CronScheduledQueryBasedTemplateActionDefinition">
 <property name="transactionMode">
 <value>UNTIL_FIRST_FAILURE </value></property>
 <property name="compensatingActionMode">
 <value>IGNORE</value></property>
 <property name="searchService">
 <ref bean="SearchService"/></property>
 <property name="templateService">
 <ref bean="TemplateService"/></property>
 <property name="queryLanguage"><value>lucene</value>
 </property>
 <property name="stores">
 <list><value>workspace://SpacesStore</value></list>
 </property>
 <!-- A query is not being used, just set the path to company home,
 which results in one hit that we will run the script against -->
 <property name="queryTemplate">
 <value>PATH:"/app:company_home"</value>
 </property>
 <!-- Execute the check review period action at the end of every
 month. -->
 <property name="cronExpression">
 <value> 0 0 22 L * ?</value></property>
 <property name="jobName">
 <value>checkReviewPeriodForFolders</value></property>
 <property name="jobGroup"><value>BestMoney</value>
 </property>
 <property name="triggerName">
 <value>lastDayOfMonthTrigger</value></property>
 <property name="triggerGroup">
 <value>BestMoneyTriggerGroup</value></property>
 <property name="scheduler">
 <ref bean="schedulerFactory"/></property>
 <property name="actionService">
 <ref bean="ActionService"/></property>
 <property name="templateActionModelFactory">
 <ref bean="templateActionModelFactory"/></property>
 <property name="templateActionDefinition"><ref
 bean="com.bestmoney.dm.runCheckReviewPeriodScriptAction"/>

Document and Records Management Solutions

[280]

 </property>
 <property name="transactionService">
 <ref bean="TransactionService"/></property>
 <property name="runAsUser">
 <value>System</value></property>
</bean>

To test and verify that the script is actually run by the Cron job, we can set the
Cron expression so the script is executed every three minutes, use the expression
0 0/3 * * * ? in this case.

The last Spring we need to define is the following:

<bean id="templateActionModelFactory" class="org.alfresco.repo.action.
scheduled.FreeMarkerWithLuceneExtensionsModelFactory">
 <property name="serviceRegistry">
 <ref bean="ServiceRegistry"/>
 </property>
</bean>

Now, stop Alfresco and run the deploy-alfresco-amp ant target available in the
build.xml file located in the chapter_6_Code\bestmoney\alf_extensions\trunk
directory. This will install the scheduled Cron job.

Exporting and importing folders, users, and
groups
Sooner or later we are going to need a convenient way of copying folders and users,
and so on between Alfresco installations. Here are a couple of tips.

Copying folder hierarchies between Alfresco boxes
One good way to backup folders and space templates during development and
deployment is to use Alfresco Content Packages (ACP). We can export folders or
space templates into ACP files from the Alfresco Explorer UI.

It is a good idea to have some kind of naming convention for the ACP files so
everybody knows what they contain.

We can, for example, use the following naming convention for top folders
(it is usually a good idea to split the ACP files into one per top folder):

<company>_<top folder>_FOLDER_HIERARCHY.acp

Chapter 6

[281]

For the Meetings top folder, the file would then be called:

BM_MEETINGS_FOLDER_HIERARCHY.acp

And for space templates, we can use a similar naming convention (use one ACP file
per space template):

<company>_<top folder>_FOLDER_TEMPLATE.acp

For the Meeting space template the ACP file would then be called:

BM_MEETING_FOLDER_TEMPLATE.acp

These ACP files can then be backed up and they can also be used when deploying
the system in the different development, test, and production environments.

Copying users and groups between Alfresco boxes
Use a JavaScript for this, as explained earlier in this chapter.

Another way of doing this is to keep all the users and groups in a directory.
Then we just need to hook Alfresco up to this directory and sync users and groups.
This is probably a very good way of doing it if there are a lot of developers
and environments, so we are sure everyone is using the same data.

Introduction to Records Management
During the design and implementation of the document management solution, we
might get requirements from clients such as "keep the final version of this file for six
years then destroy it", "retain this file for three years and then review", and so on.
When requirements like this start popping up, we are entering the area of records
management and need to think about if we should use a proper records management
system, or if some customizations to the document management system would be
enough to cover these sorts of requirements.

So what is records management then? It is a solution that provides a process for
managing documents both in electronic form and in paper-based form. The process
covers the whole lifecycle of the documents from creation to disposal and it provides
controlled retention and destruction.

But this sounds like something that could be implemented with the DM solution,
what is really the difference? The DM solution does not come with these kind of
document management processes. We would have to create them from scratch
like we did with the Review Period aspect that was applied to folders and then the
Review Script that was kicked off at the end of each month by a Cron job.

Document and Records Management Solutions

[282]

The external requirements that usually drive records management implementations
are legal and regulatory compliance. A record can be explained as an electronic or
paper-based file or group of files that is maintained as evidence by an organization
in pursue of legal obligations.

Examples of business records are meeting minutes, e-mails, employment contracts,
accounting documents, business plans. Most business records have retention periods
based on legal or regulatory requirements or internal company policies.

To understand why it might be a good idea to use an "off-the-shelf" product like the
Alfresco RM module, we should have a look at the things involved in implementing
an RM solution. Implementing an RM solution is not just about putting in place
software that supports this. There is a lot of planning and information gathering
that needs to take place before we start configuring stuff in the RM software.

We will have to:
Identify records requiring capture
Find out who should have access to what records inside and outside
the organization
Develop a records storage plan/file plan

So an RM solution needs to support:
Management of Filing Plans
Execution of retention policies
Searching for records

Alfresco records management
The Alfresco records management functionality is implemented as an Alfresco Share
site. This is how it relates to the Alfresco document management functionality:

•
•

•

•
•
•

Chapter 6

[283]

Here, we can see that the RM module is implemented as an Alfresco Share site. The
main function is the File Plan Management. The structure of the File Plan hierarchy
reflects business functions and comprises the following predefined levels:

Record
series

A container that holds filing categories.
Comparable to the filing cabinet when filing paper based records.
Example: Legal

Record
category

Created under a record series and contains the retention and disposition
instructions for its contained filing folders. All filing folders and records
under a category have the same retention period and disposition schedule.
Comparable to a drawer in a filing cabinet.
Example: Shareholder

Record
folder

A record folder is created within a record category and it inherits the
attributes of the record category.
The record folder is also considered to be under the control of the record
category. Once the record folder is created, and a disposition schedule is
defined, restrictions apply. A record folder can be open or closed. A closed
record folder cannot accept records for filing.
Comparable to a folder in a drawer in a filing cabinet.
Example: 2010Q2Public

Record A record is a document under the control of records management, which is
filed in a record folder.

Vital record A vital record is considered to be essential to the operation of an
organization. A vital record must be reviewed on a periodic basis, which
is defined in the review schedule. The review schedule is defined on the
record category or folder.
Just as record folders appear to exist even though they are really no more
than aggregations of records, so higher levels of the File Plan hierarchy
seem to exist, though they are no more than aggregations of record folders
and/or higher levels.

Each user is given a role that may or may not grant them permission to create the
elements of the File Plan structure. You can file records and create the structure
within the File Plan level in which you have permission.

To manage the File Plan, you need to:

Design the File Plan structure using the record series, record category, and
record folder hierarchy
Upload electronic files and specify the location of non-electronic physical files
Declare files as records

•

•

•

Document and Records Management Solutions

[284]

The records folders and filing hierarchies are actually stored in the DM system,
but the underlying Node structure and Type of record nodes are different from
the document nodes.

To file/create a new record we have to copy or move the file from the document
management folder to the records management folder. The document that should be
filed as a record does not actually have to be stored in the DM system; we could just
upload it from our local hard disk or from a network drive.

The record does not even have to be an electronic one but could be a paper-based
one and in this case, we would just store the location of the record in the RM system.

Summary
In this chapter, we have gone through how to design and implement document
management solutions. We saw how a Folder Template could be used to specify/
design everything that has to do with a folder such as properties (that is, metadata),
permissions, rules, processes, and so on. The template could also be used to specify
space templates.

Both the Alfresco Explorer client and the Alfresco Share client were used to
implement document management functionality such as rules and permissions. The
Alfresco Share client is the preferred choice because of its nicer UI. It's only in some
cases that we really need to use Alfresco Explorer, such as when we want to create
folder structures based on space templates.

We used JavaScripts to perform a lot of the document management functionality and
it is really an excellent tool to use as we do not need to restart the server and we can
update and create JavaScript code on the fly.

We also looked at how to manually implement records management functionality,
such as review documents after a certain period. And finally, we introduced the
Alfresco records management module and explained how it is related to the Alfresco
DM functionality.

In the next chapter, we will look at how to define content models and this is closely
related to what we did in this chapter, as when we design folders we also think
about what domain metadata is needed.

Content Model Definition
Solutions

One of the main differences between a network drive and a document management
system is that the latter provides extra classification features. If we look at a
document management system behind the scenes, we can see that everything in the
repository is typically a node or an object, depending on what we want to call it.
Properties are then set on the nodes so they become folders, files, categories, rules,
forums, web pages, e-mails, people, groups, and so on. Basically, the nodes are
classified so it is easier to search for them, so we know how to display them in the
user interface, what they can be used for, and so on.

The properties that can be used to classify nodes, or if you prefer content, cannot
be just any properties, as then the system would not know what each one of these
properties represents. Because of this a document management system usually
comes preconfigured with properties that can be used to classify content in the
repository. These properties are usually organized into groups that are called either
Types or Aspects.

Nodes do not live by themselves in the repository. They are related to one
another in different ways. How the nodes are related to each other is defined
with so-called Associations.

The Types, Aspects, Properties, and Associations are in turn organized into models
that we call Content Models. Alfresco comes with a number of Content Models out
of the box for different things like general folder and file content, workflow-related
content, records content, web content, and so on.

It is also useful to be able to create content models related to specific domains such as
Finance or Marketing. Alfresco cannot possibly know about all kinds of content that
will be stored in the repository, so they just supply some generic standard content
models that we can build on to be able to classify the particular domain that we
happen to work in for the current project.

Content Model Definition Solutions

[286]

When we designed and created the Best Money folder structure, it also became
apparent what custom types and properties we would need. There were the Best
Money Document type and also the Best Money Meeting type. A meeting type is
probably quite common, so why is Alfresco not providing such a type out of the
box? This is because the properties that are part of the type will probably differ
a lot from one domain/project to another.

So we can define new types and aspects forming new content models, but how
do we know how to specify a type and a property with, for example, a data type
integer? Alfresco also comes with a Meta Model. The Meta model defines what syntax
we can use when defining our content models. It will, for example, define the syntax
for how a type or an integer property should be defined.

The following diagram gives a simplified overview of the relationship between
Alfresco meta model, Alfresco content models, and custom content models:

In the image, we can see two nodes in the repository: one folder node and one
Best Money Meeting document node. The Meeting type extends the Best Money
Generic Document type, which in turn extends the Alfresco Content type. The
Meeting document node also got versioning turned on by having the Versionable
aspect applied.

Chapter 7

[287]

Both the custom content model and the Alfresco content model is defined by the
Alfresco Data Dictionary Schema, which is the same as the Meta Model.

The whole thing with content models, types, aspects, and properties are not that far
away from object-oriented concepts in programming. If we are familiar with object-
oriented modeling, then we should not have any problem with content modeling.

This chapter will show you how to define new content models and what different
entities can be used to define a content model.

You will learn:

Interpreting the XSD Schema/meta model that describes Alfresco's content
modeling language
Using the content models that come out of the box with Alfresco
Creating content models with some useful design patterns
Defining a new content model
Showing new custom types and aspects in Alfresco Explorer and
Alfresco Share

Meta Model XML schema
The Alfresco meta model contains the constructs or syntax that can be used to define
content models. The meta model is defined in an XML Schema definition file called
modelSchema.xsd located in the alfresco-enterprise-sdk/lib/server/config/
alfresco/model directory. It is a good idea to load this file into our programming
environment (that is Eclipse, IDEA, and so on) as it will then "help out" with the
syntax when we create content models.

model
The model definition is the container of all other definitions and it contains
the following:

Name Type Multiplicity Description
name attribute (string) required The name of the content model
description element (string) [0..1] Description of the content model
author element (string) [0..1] The name of the author of this content

model
published element (date) [0..1] The date for when this new model was

first published

•

•

•

•

•

Content Model Definition Solutions

[288]

Name Type Multiplicity Description
version element (string) [0..1] Current version number for this model
imports element [0..1] Container for one or more imports of

other content models referred to by this
model

namespaces element [1..1] Mandatory container for one or more
namespace definitions. Every model
requires at least one new namespace.

data-types element [0..1] Container for data type definitions
constraints element [0..1] Container for constraints definitions
types element [0..1] Container for type definitions
aspects element [0..1] Container for aspect definitions

Example:

<?xml version="1.0" encoding="UTF-8"?>
<model name="cm:contentmodel"
 xmlns="http://www.alfresco.org/model/dictionary/1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <description>Alfresco Content Domain Model</description>
 <author>Alfresco</author>
 <published>2009-06-04</published>
 <version>1.1</version>

 <imports>...</imports>
 <namespaces>...</namespaces>
 <constraints>...</constraints>
 <types>...</types>
 <aspects>...</aspects>
</model>

Note that the order in which the elements are specified is important. It
will not work to specify them in any other order than in the example. This
is because in the meta model they are defined within a <xs:sequence>
element. This is true throughout the model schema so be careful to always
use the elements in the right order.

Chapter 7

[289]

model.imports
The imports definition is the container for import definitions of other content
models referred to by the model being defined:

Name Type Multiplicity Description
import element [0..*] Zero or more import definitions for

other content models referred to by this
content model.

The import definition:

Name Type Multiplicity Description
uri attribute (string) required The unique URI for the content model

that should be imported into this model.
prefix attribute (string) required The prefix or short code by which the

imported content model will be known in
this model.
This prefix does not have to be the same
as the one defined in the original model,
it can be remapped in this model.
So, if we are importing the cm namespace,
we could actually call it something else
like cm2.

Example:

<imports>
 <import uri="http://www.alfresco.org/model/dictionary/1.0"
 prefix="d"/>
 <import uri="http://www.alfresco.org/model/system/1.0"
 prefix="sys"/>
</imports>

This example imports the data dictionary model with all the data-type definitions
and it also imports the system model with types such as base, descriptor,
container, reference and aspects such as referenceable and temporary.

Content Model Definition Solutions

[290]

model.namespaces
The namespaces definition is the container for all new custom namespace definitions
that will be used by this model:

Name Type Multiplicity Description
namespace element [0..*] Zero or more import definitions for

other content models referred to by this
content model

The namespace definition:

Name Type Multiplicity Description
uri attribute (string) required The unique URI for the new namespace

that will be used by this new content
model

prefix attribute (string) required The prefix or short code by which the
namespace will be referred to

Example:

<namespaces>
 <namespace uri="http://www.alfresco.org/model/content/1.0"
 prefix="cm"/>
</namespaces>

This example defines the namespace for the new content model to cm. All definitions
done in the model will be prefixed with cm. We could also define more than one
namespace to be used in the model, such as in the following example:

<namespaces>
 <namespace uri="http://www.bestmoney.com/model/content/1.0"
 prefix="bmc" />
 <namespace uri="http://www.bestmoney.com/model/workflow/1.0"
 prefix="bmw" />
</namespaces>

Here, we have defined one namespace bmc that will be used for document content
classification and another namespace bmw that will be used exclusively for
workflow-related content.

A good idea is to use the following format for the URI:

http://<company website address>/model/[content|workflow|…]/1.0

Chapter 7

[291]

Where content is for the main domain content model and workflow denotes a
model that has to do with only workflow definitions.

model.data-types
The data-types definition is the container for all new data type definitions to be
used by this new content model:

Name Type Multiplicity Description
data-type element [0..*] Zero or more data type definitions to

be used by this content model

The data-type definition:

Name Type Multiplicity Description
name attribute (string) required The name of the data type
title element (string) [0..1] The title of the data type
description element (string) [0..1] The description of the data type
analyser-class element [0..1] The analyzer class that will build

token streams for Lucene. These
classes represent a policy for extracting
index terms from text.

java-class element [0..1] The Java class that will represent this
data type.

Example:

<data-types>
 <data-type name="d:text">
 <analyser-class> org.alfresco.repo.search.impl.lucene.analysis.
AlfrescoStandardAnalyser
 </analyser-class>
 <java-class>java.lang.String</java-class>
 </data-type>

 <data-type name="d:int">
 <analyser-class> org.alfresco.repo.search.impl.lucene.analysis.
IntegerAnalyser
 </analyser-class>
 <java-class>java.lang.Integer</java-class>
 </data-type>
</data-types>

Content Model Definition Solutions

[292]

This example shows the definition of two data types text and int from the out
of the box Alfresco Dictionary model dictionaryModel.xml located in the
alfresco-enterprise-sdk/lib/server/config/alfresco/model directory.
This model contains most of the data types that we will need when defining new
content models. It is not very often that we will have to define new data types.

model.constraints
The constraints definition is the container for all new constraints to be used by
the model:

Name Type Multiplicity Description
constraint element [1..*] One or more constraints to be used

throughout this model or other models

The constraint definition:

Name Type Multiplicity Description
name attribute (string) required The name of this constraint
type attribute (string) optional The type of constraint that is being

defined. Currently the following types
are recognized:
LIST = value must match entry in a list
REGEXP = value must match regular
expression
MIN-MAX= value must be numeric
within this range
LENGTH = value must be string and
within min and max length
<java class> = the java class that
implements the constraint

ref attribute (string) optional Only used when referencing a constraint
definition like this from a property
definition

parameter element (string) [0..*] One or more constraint values that
should be used to restrict the value

Chapter 7

[293]

The parameter definition:

Name Type Multiplicity Description
name attribute (string) required The name of this parameter
value element (string) [0..1] Parameter value
list element [0..1] Container for a list of values

Here, we can use either the value element or the list element.

The list definition:

Name Type Multiplicity Description
value element (string) [0..*] Parameter value

LIST example from the forms development kit content model (fdk-model.xml):

<constraints>
 <constraint name="fdk:type" type="LIST">
 <parameter name="allowedValues">
 <list>
 <value>Phone</value>
 <value>Audio Visual</value>
 <value>Computer</value>
 </list>
 </parameter>
 </constraint>

LENGTH example from the forms development kit content model:
 <constraint name="fdk:summary" type="LENGTH">
 <parameter name="minLength">
 <value>5</value>
 </parameter>
 <parameter name="maxLength">
 <value>100</value>
 </parameter>
 </constraint>

MINMAX example from the forms development kit content model:
 <constraint name="fdk:percentage" type="MINMAX">
 <parameter name="minValue">
 <value>0</value>
 </parameter>
 <parameter name="maxValue">
 <value>100</value>
 </parameter>
 </constraint>

Content Model Definition Solutions

[294]

REGEXP example from the forms development kit content model:

 <constraint name="fdk:email" type="REGEX">
 <parameter name="expression">
 <value><![CDATA[[A-Za-z0-9._]+@[A-Za-z0-9.\-]+\.[A-Za-
 z]{2,4}]]>
 </value>
 </parameter>
 <parameter name="requiresMatch">
 <value>true</value>
 </parameter>
 </constraint>

Custom Java class constraint from the standard content model (contentModel.xml):

 <constraint name="cm:userNameConstraint" type=
 "org.alfresco.repo.dictionary.constraint.UserNameConstraint" />
</constraints>

model.types
The types definition is the container for all new type definitions:

Name Type Multiplicity Description
type element [1..*] One or more type definitions

The type definition:

Name Type Multiplicity Description
name attribute (string) required The name of the type
title element (string) [0..1] The title of the type
description element (string) [0..1] The description of the type
parent element (string) [0..1] Reference to another type that this type

extends. Single inheritance is supported.
archive element

(boolean)
[0..1] true = content with this type should be

archived when deleted. This means that
it will end up in the Archive Store and it
can be restored from the recycle bin.
false = content with this type is not
archived when deleted and is therefore
permanently gone and can never be
restored.

Chapter 7

[295]

Name Type Multiplicity Description
properties element [0..1] Container for all properties that are

members of this type class
associations element [0..1] Container for all parent-child and peer

associations for this type
overrides element [0..1] Property overrides of super type class

properties
mandatory-
aspects

element [0..1] Mandatory aspects for this type. When
content of this type is created these
aspects will be created/populated
automatically.

model.types.type.properties
The properties definition:

Name Type Multiplicity Description
property element [0..*] Zero or more properties

The property definition:

Name Type Multiplicity Description
name attribute

(string)
required The name of the property. The name has to be

unique between all types and aspects that are
defined in the namespace.
It is different from object-oriented programming
where a member variable of one class can be
named the same as in another class.

title element
(string)

[0..1] The title of the property.
Will be used as the property label in the UI in
many places, such as in Advanced Search.
Note: For proper i18n support use property files.

description element
(string)

[0..1] The description of the property.

type element
(string)

[1..1] Mandatory data type reference. This
references a data-type definition in the
dictionaryModel.xml content model.

Content Model Definition Solutions

[296]

Name Type Multiplicity Description
protected element

(boolean)
[0..1] true = this property cannot be edited after the

value has been set. If true then there will be a
* before the input field in the UI to indicate that
this property is mandatory.
false = it is optional and this is the default if
this field is not specified.

mandatory element
(boolean)

[0..1] true = this property has to be specified when
this type is created. If true then there will be a
* before the input field in the UI to indicate that
this property is mandatory.
false = it is optional and this is the default if
this field is not specified.

multiple element
(boolean)

[0..1] true = this property can have a list of values.
If true then there will be a special UI widget
generated to be able to input multiple values for
this property.
false = only one value can be entered and this
is the default if this field is not specified.

default element
(any)

[0..1] Default value for this property if the user does
not specify any value. The UI input field will be
pre-populated with this value.
false = value should be empty and this is the
default if this field is not specified.

index element [0..1] Lucene index configuration
constraints element [0..1] Container for property constraints.

The mandatory aspect can be further configured with a boolean
attribute called enforced. If set to true, content with this type cannot be
saved if this property is not specified (this is the default behavior).
This might cause problems for certain non-UI processes uploading
content and not being able to set certain properties. Then this attribute can
be set to false, which means that the mandatory check will be relaxed
and if the property value is not provided the content will have the sys:
incomplete aspect applied.
This way the content can be processed again after being uploaded to fix
the missing mandatory properties.

Chapter 7

[297]

The indexing behavior of each property can be configured. If we do not configure
any indexing behavior then the default configuration is:

To index atomically, which means the indexing is synchronized with the
commit of an update content transaction
The property value is not stored in the index
The property value is tokenized when it is indexed

This basically means that the default index configuration for properties is as follows:

<index enabled="true">
 <atomic>true</atomic>
 <stored>false</stored>
 <tokenised>true</tokenised>
</index>

Here is the index definition:

Name Type Multiplicity Description
enabled attribute

(boolean)
required true = this property will be indexed

by Lucene
false = this property will not be indexed and
hence not searchable.

atomic element
(boolean)

[0..1] true = if the indexing of this property should
be done in the same transaction as for example
the document upload.
false = the indexing process should be done
asynchronously in the background.
Indexing of content that requires
transformation before being indexed
(for example, PDFs) will only obey
atomic=true if the transformation takes
less time than the value specified for
lucene.maxAtomicTransformationTime.
Also, properties with data type cm:content
are usually indexed in the background.

•

•

•

Content Model Definition Solutions

[298]

Name Type Multiplicity Description
stored element

(boolean)
[0..1] true = the property value is stored in the

index and may be obtained via the Lucene
low-level query API.
false = the property value is not stored in the
Lucene index, so cannot be inspected via tools
that can read the Lucene index.
This can be useful while debugging systems to
see exactly what is being indexed, but do not
set this to true on production systems.

tokenised element

(string,
true,false,
both)

[0..1] true = the property value should be
tokenized before indexing.
false = the whole property value should be
indexed as is, without any tokenization.
both = index both the complete value and
the tokens.

The constraints definition:

Name Type Multiplicity Description
constraint element [1..*] One or more constraints

The constraint definition:

Name Type Multiplicity Description
name attribute (string) optional Only used when defining constraints
ref attribute (string) optional A reference to the constraint definition
type attribute (string) optional Only used when defining constraints
parameter element (string) [0..*] Only used when defining constraints

model.types.type.associations
The associations definition:

Name Type Multiplicity Description
association element [0..*] List of peer associations
child-
association

element [0..*] List of child associations

Chapter 7

[299]

The association definition:

Name Type Multiplicity Description
name attribute (string) required The name of the peer association.
title element (string) [0..1] The title of the peer association.
description element (string) [0..1] The description of the peer

association.
source element [0..1] Information about the source node

in this peer association, such as
what role it is playing. In a peer
association, the source node has this
type applied (that is the type that
defined the association).

target element [1..1] Mandatory information about the
target node in this peer association,
such as what role it is playing and
what class it is of.

The source definition:

Name Type Multiplicity Description
role element (string) [0..1] The role that the source node in this

peer association is playing.
For example: referencedBy, you can
add namespace prefix if you want to:
cm:referencedBy

However, this is not a reference to a
type or an aspect, just a string

mandatory element (boolean) [0..1] true = association is mandatory
false = optional association

many element
(boolean)

[0..1] true = node can be the source in
many of these associations
false = node can be the source in
only one of these associations

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Content Model Definition Solutions

[300]

The target definition:

Name Type Multiplicity Description
class element (string) [1..1] Mandatory target class (that is type or

aspect reference) that we are linking to.
role element (string) [0..1] The role that the target node in this peer

association is playing.
For example: references, you can
add namespace prefix if you want to:
cm:references

However, this is not a reference to a
type or an aspect, just a string.

mandatory element
(boolean)

[0..1] true = target node has to exist in
this association
false = target node is optional
Note: We can also use the enforced
attribute to relax the mandatory aspect

many element

(boolean)

[0..1] true = node with this association can
be linked to many other target nodes
false = node with this association can
be linked to only one target node

The child-association definition:

Same as the peer association with the following extra properties:

Name Type Multiplicity Description
child-name element

(string)
[0..1] An optional name of the child

association such as for example,
"contains"

duplicate element
(boolean)

[0..1] true = the node names of all
target nodes (children) have
to be unique

false = duplicate target node
names are allowed

propagateTimestamps element
(boolean)

[0..1] true = set parent node cm:
modified if any child node cm:
modified is changed

false = do not propagate
changes in children to parent

Chapter 7

[301]

When setting the cardinality for an association, the following example guide can
be used:

Source
cardinality

Source
configuration

Target
cardinality

Target configuration

[0..1] mandatory = false
many = false

[0..1] mandatory = false
many = false

[1..1] mandatory = true
many = false

[1..1] mandatory = true
many = false

[0..1] mandatory = false
many = false

[0..*] mandatory = false
many = true

[0..*] mandatory = false
many = true

[1..*] mandatory = true
many = true

Type definition examples
A minimal type definition from the Alfresco Forum Model (forumModel.xml):

<types>
 <type name="fm:post">
 <parent>cm:content</parent>
 </type>

This kind of type definition could be called a content type marker. It tells us that this
is a forum post but does not add any properties or associations. We could do a search
on only forum posts by selecting to search on content, which has this type applied.

Almost all types that we define that should model domain content will extend the
Alfresco base content type cm:content. If you wanted to create a type that is not
visible in the UI then you can extend the cm:cmobject instead. Both these types
can be found in the contentModel.xml file.

To define our own domain folder type we can extend the cm:folder type, this
example is from the Forum Model:

<type name="fm:forums">
 <parent>cm:folder</parent>
</type>

This domain type will mark a node as a folder for forums. All types that should be
extensions to folders should extend the Alfresco base folder type cm:folder.

Content Model Definition Solutions

[302]

A simple type definition with some properties from our Best Money project looks
like this:

<type name="bmc:document">
 <title>Best Money Document</title>
 <parent>cm:content</parent>
 <properties>
 <property name="bmc:department">
 <title>The Best Money Department that created the
 document</title>
 <type>d:text</type>
 </property>
 <property name="bmc:language">
 <title>Language that the document is written in</title>
 <type>d:text</type>
 </property>
 </properties>
</type>

Here, we can see two text properties being defined by setting the type to d:text
(the d namespace will have to be imported and it refers to the namespace defined
in the dictionaryModel.xml).

A more complex type definition with property constraints, index definition, and
mandatory aspect is as follows:

<type name="cm:cmobject">
 <title>Object</title>
 <parent>sys:base</parent>
 <properties>
 <property name="cm:name">
 <title>Name</title>
 <type>d:text</type>
 <mandatory enforced="true">true</mandatory>
 <index enabled="true">
 <atomic>true</atomic>
 <stored>false</stored>
 <tokenised>both</tokenised>
 </index>
 <constraints>
 <constraint ref="cm:filename" />
 </constraints>
 </property>
 </properties>

Chapter 7

[303]

 <mandatory-aspects>
 <aspect>cm:auditable</aspect>
 </mandatory-aspects>
</type>

When we define a new domain content type it will also extend cm:cmobject as
cm:content extends it. This object type defines the cm:name property as mandatory
and it is enforced as mandatory. So no documents (that is content) can enter the
repository without having at least a name, no matter from what protocol or interface
the content is uploaded.

The cm:name property is constrained by the cm:filename constraint, which will
make sure the filename is Windows compliant. So you could not use, for example,
a "/" in the filename. The name property is also defined to be indexed, both the
complete name and the tokenized name. The indexing will be done within the
same transaction as the content upload.

An aspect cm:auditable has been set as mandatory for this type and will always be
set on content with this type applied.

Let's also look at an example with a type that has an association definition (from the
contentModel.xml):

<type name="cm:folder">
 <title>Folder</title>
 <parent>cm:cmobject</parent>
 <archive>true</archive>
 <associations>
 <child-association name="cm:contains">
 <source>
 <mandatory>false</mandatory>
 <many>true</many>
 </source>
 <target>
 <class>sys:base</class>
 <mandatory>false</mandatory>
 <many>true</many>
 </target>
 <duplicate>false</duplicate>
 <propagateTimestamps>true</propagateTimestamps>
 </child-association>
 </associations>
</type>

Content Model Definition Solutions

[304]

This folder type defines one child association called cm:contains. This is the
association that controls the folder and documents relationship in the user interfaces.
The association is many to many and this means that a folder can contain many
documents, or none (as mandatory is false) and a document can be contained in
many different folders.

The child association does not allow a folder to contain two documents with the
same name (that is duplicate is false). And when a document in a folder is updated
and its cm:modified property is updated, the cm:modified is also updated for the
folder (that is propagateTimestamps is true).

model.aspects
The definition of aspects does not differ that much from type definitions. In fact, in
the schema they are both based on the same class definition. The main difference
is that an aspect does not usually have a parent, it can extend another aspect, but
it is more common that they live by themselves. Aspects are used to implement
cross-cutting concerns independently of what type of node it is. A type definition
can have zero or more mandatory aspects.

Let's have a look at the cm:auditable aspect that is a mandatory aspect for the
cm:cmobject type that we were looking at:

<aspect name="cm:auditable">
 <title>Auditable</title>
 <properties>
 <property name="cm:created">
 <title>Created</title>
 <type>d:datetime</type>
 <protected>true</protected>
 <mandatory enforced="true">true</mandatory>
 <index enabled="true">
 <atomic>true</atomic>
 <stored>false</stored>
 <tokenised>both</tokenised>
 </index>
 </property>

This aspect defines five well-known properties that are set on all content in the
repository, both folders and documents. The first property cm:created is protected
and this is also true for the other properties. This is important to know as after the
content has been created, and these properties set, we cannot change them. The rest
of the audit properties look like this:

Chapter 7

[305]

 <property name="cm:creator">
 <title>Creator</title>
 <type>d:text</type>
 <protected>true</protected>
 <mandatory enforced="true">true</mandatory>
 </property>
 <property name="cm:modified">
 <title>Modified</title>
 <type>d:datetime</type>
 <protected>true</protected>
 <mandatory enforced="true">true</mandatory>
 <index enabled="true">
 <atomic>true</atomic>
 <stored>false</stored>
 <tokenised>both</tokenised>
 </index>
 </property>
 <property name="cm:modifier">
 <title>Modifier</title>
 <type>d:text</type>
 <protected>true</protected>
 <mandatory enforced="true">true</mandatory>
 </property>
 <property name="cm:accessed">
 <title>Accessed</title>
 <type>d:datetime</type>
 <protected>true</protected>
 <index enabled="true">
 <atomic>true</atomic>
 <stored>false</stored>
 <tokenised>both</tokenised>
 </index>
 </property>
 </properties>
</aspect>

These properties are totally controlled by the core repository logic. If we try to
change the cm:created date, which is always set to current date and time when
content is added to the repository, we would not be successful no matter what we do
to try and change it. In fact, right now one of the only ways to create content with a
different cm:created date is to use an ACP file and import content.

Content Model Definition Solutions

[306]

Modeling tips and tricks
This section contains some tips and tricks around content modeling.

Not changing the out of the box models
When looking at the out of the box content models it might sometimes be tempting
to just make a small change to one of them to get what we want. Avoid this at all
costs as it is going to give you a maintenance problem. Every time a new version of
Alfresco is released, and we want to use it, the model has to be updated manually.
We have to update it manually, as we do not know if something was added to it in
the new version.

Also, when someone not familiar with the project is upgrading the system, they
might not realize that we have updated an out of the box model and it might take
awhile before they realize why some feature is not working as expected.

Starting small
It is often easy to start adding loads of types, aspects, associations, and properties to
a new model just to be sure to cover all domain information that the customer might
want to associate with a document or a folder. But be careful not to end up with
classes and properties that are not actually used. Then why is this important? There
are several reasons:

Performance
The more properties we have, the slower it will be to manage content in the
repository. This is because of how the properties are stored in the database.
Normally, you would have the type or aspect and its properties in the same
table as follows:

JOB_TYPE {
 ID INTEGER,
 NAME TEXT,
 DESCRIPTION TEXT,
 . . .
}

And it is then easy to get all properties at once with SELECT * FROM JOB_TYPE WHERE
ID = X. On the other hand, in Alfresco the main node information is stored in the
ALF_NODE table, the node property values in the ALF_NODE_PROPERTIES table, and
the node names in another table called ALF_QNAME. The following diagram illustrates:

Chapter 7

[307]

We can also see that the way the property value is stored is not normalized. For
example, a long value is stored in one column and a string value in another. There
will be one row per property value. This is all necessary if we want such a flexible
and extensive system as Alfresco where properties can be added dynamically.

Manageability
As in all programming and software development it is not advisable to have code
and definitions that are not actually used, as this causes confusion for anyone
looking at it and trying to understand. As far as possible try and avoid having any
type, aspect, association, or property in the definition that is not actually used.
Better to add it later on, if needed.

Changeability
The major disadvantage of having more definitions in the model than are used is that
as soon as we start using a type or an aspect from the model, we cannot remove it
without causing content integrity errors when the system is restarted.

This is because there are going to be database rows created for property names,
default values, and so on and if we remove the definitions for these from the
model we are breaking the integrity of the data in the repository.

Instead, add properties to types and aspects later on, even if they have been used,
as this is handled without problem by Alfresco.

Content Model Definition Solutions

[308]

Defining a new custom type for a domain
When the domain is modeled, we will come up with all kinds of domain objects
such as Marketing Document, Meeting, Forums, and so on. To define these, we just
need to think whether they are containers or contained. In this case, the Marketing
Document and the Meeting file are both contained in a folder and the Forums object
is a container for Forum objects.

A container is best defined by extending the cm:folder container as follows:

<types>
 <type name="{namespace:typeName}">
 <title>{description of folder domain type}</title>
 <parent>cm:folder</parent>
 ...
 </type>
</types>

If the domain content is a contained file, then the following definition template can
be used where we extend the cm:content type:

<types>
 <type name="{namespace:typeName}">
 <title>{description of file domain type}</title>
 <parent>cm:content</parent>
 ...
 </type>
</types>

If the domain content should be stored in the repository but not be visible in any of
the user interfaces, we can extend the cm:cmobject type instead of cm:content:

<types>
 <type name="{namespace:typeName}">
 <title>{description of file domain type}</title>
 <parent>cm:cmobject</parent>
 ...
 </type>
</types>

We should also think of what extra domain properties we will define for the
new domain type. If we or the client cannot come up with any properties, then we
have to ask ourselves the question, what are we going to use the new type for? If
the type will be used to narrow down searches then it is a good idea to keep it. It
will then act as a kind of type marker and we can select it as a criterion when doing
advanced searches.

Chapter 7

[309]

A marker type might also be useful if we are searching for content programmatically
and want to narrow down the searches.

When to use a type and when to use an aspect
A rule of thumb is to look at a description of the domain and write down all nouns,
adjectives, and verbs. They would then be converted to types or aspects as follows:

Noun—a type
Adjective—a subtype
Verb—an aspect

Take the following sentence for example:

"Best Money Documents in this folder are finance whitepapers that should be versioned and
that should be allowed to be published on the Web, where there should also be a marker for if
the document was e-mailed into us or not."

From this sentence, we can extract the following types and aspects:

Document—type
Folder—type
Whitepaper—type
Finance (whitepaper)—subtype of Whitepaper
Versioned—aspect
Published—aspect
E-mailed—aspect

For the Document object we could just settle for using the out of the box type
cm:content. However, it is often a good idea to define an enterprise-wide root
document type. This is what we have done with the Best Money Document Type
that we designed in the last chapter. For the Folder object, it usually makes sense
to just use the Alfresco cm:folder type.

At first, it seems that defining a new type for Whitepaper that extends the Best
Money Document Type would be alright. This is not always the case as several
different document types might be classified as whitepapers. For example, we might
also have a marketing document that is a whitepaper, and it might already extend
the marketing document type—and Multiple Inheritance is not supported.

•

•

•

•

•

•

•

•

•

•

Content Model Definition Solutions

[310]

So when defining a type, think about if it can be applied in any way as a
cross-cutting concern; can it be applicable to several different types of domain
objects? If this is the case, then change it to be defined as an aspect.

The versioned, published, and e-mailed characteristics are perfect as aspects as they
can be applied all over the repository, on many different types of nodes.

Design patterns
When new content models are designed there are a few patterns that come back over
and over again. A couple of them are described here.

Domain document root type
This is one of the most used patterns in document management solutions as the main
use of the CMS repository is to manage and classify documents.

Problem
We want to be able to classify generic files that cannot be classified under any
specific subtype. We want to be able to search through all documents in the
enterprise via a root type. We want a way to add generic properties for all subtypes,
usually non-UI related properties.

Solution
Implement a generic base type that all other document types extend.

Diagram
The following figure shows an example of an inheritance hierarchy with a generic
enterprise-wide base type for Best Money called bmc:document:

Chapter 7

[311]

Definition example
The following content model definition example code shows how this content type
hierarchy can be built up:

<types>
 <type name="bmc:document">
 <parent>cm:content</parent>
 </type>
 <type name="bmc:financeDoc">
 <parent>bmc:document</parent>
 </type>
 <type name="bmc:marketingDoc">
 <parent>bmc:document</parent>
 </type>
</types>

Composite type
This pattern is useful when we have a document type hierarchy where the base type
has a number of properties that should be displayed in the UI for each subtype. It is
also useful when we want to add some properties at different levels in the hierarchy.

Problem
Let's say we have defined a document type hierarchy as follows:

Content Model Definition Solutions

[312]

This looks quite alright at first until we start defining property sheets to display the
properties. Then we discover that we have to define property sheets for every single
type, otherwise the properties will not be displayed. And we do not want to break
the Don't Repeat Yourself (DRY) rule and create a maintenance problem and a more
error prone solution.

Solution
Use the Composite design pattern to build the types using aspects.

The following figure shows the document hierarchy re-designed using aspects
to keep the property data:

Definition example
The composite type example can be defined like this:

<types>
 <type name="bmc:document">
 <parent>cm:content</parent>
 <mandatory-aspects>
 <aspect>bmc:documentData</aspect>
 </mandatory-aspects>
 </type>

 <type name="bmc:circular">
 <parent>bmc:document</parent>
 </type>

 <type name="bmc:meeting">
 <parent>bmc:document</parent>
 <mandatory-aspects>

Chapter 7

[313]

 <aspect>bmc:meetingData</aspect>
 </mandatory-aspects>
 </type>

 <type name="bmc:boardMeeting">
 <parent>bmc:meeting</parent>
 </type>

 <type name="bmc:financeDoc">
 <parent>bmc:document</parent>
 </type>
</types>

<aspects>
 <aspect name="bmc:documentData">
 <properties>
 <property name="bmc:department">
 <type>d:text</type>
 </property>
 <property name="bmc:language">
 <type>d:text</type>
 </property>
 <property name="bmc:countries">
 <type>d:text</type>
 </property>
 </properties>
 </aspect>

 <aspect name="bmc:meetingData">
 <properties>
 <property name="bmc:meetingCode">
 <type>d:text</type>
 </property>
 </properties>
 </aspect>
</aspects>

It is then easy to define property sheets for the aspects. When a type is displayed, no
matter which one, the custom properties will always be displayed without having
any property sheets for the types.

Content Model Definition Solutions

[314]

Then we will only need property sheets for the aspects:

<config evaluator="aspect-name" condition="bmc:documentData">
 <property-sheet>...</property-sheet>
</config>

<config evaluator="aspect-name" condition="bmc:meetingData">
 <property-sheet>...</property-sheet>
</config>

And no type property sheet, like the following, is needed for any of the types:

<config evaluator="node-type" condition="bmc:document">
 <property-sheet>...</property-sheet>
</config>

Multiple types inheritance
Use this pattern when you see the need to extend two or more types.

Problem
Sometimes, during the domain design, we can end up with a type hierarchy that
seems to really need multiple inheritances. Take the following example:

Here, we have defined a marketing document type and a whitepaper document
type. Then we extend these two types to create a marketing whitepaper type. This
is a quite common scenario but we need to think about each type here and see if it
should really be defined as a type. We also have the web document type that denotes
a document published on the Web.

Chapter 7

[315]

When defining a domain type, think if it really represents a domain object. For
example, the marketing document can definitely be said to be a domain object
that has do with marketing. However, if we look at the whitepaper document
type, it does not really represent a domain object, it just classifies a document as a
whitepaper. The same goes for the web document that just classifies a document as
published on the website.

Solution
Use aspects instead of types when the object is not a domain object and then use the
Composite design pattern to build the domain types. We can compose a type from as
many aspects as we like (similar to multiple inheritance).

The following figure shows the document hierarchy re-designed using aspects for
non-domain objects:

We might not even want to have a marketing whitepaper type, but instead just apply
the whitepaper and web aspects as necessary.

Definition example
See the previous Composite Type pattern for an example of how to define this.

Configuration object
Use this pattern when you need to manage some configuration data that is not going
to be directly displayed in the user interface.

Problem
For example, let's say we have a wizard or an action that creates folders based on
data that the user inputs and based on what has previously been created. In this case,
we need to store information about what was previously created. How do we do that
without having to create new database tables?

Content Model Definition Solutions

[316]

Solution
Define a type that is not visible in the user interface and store it under the store root.
The type should extend the sys:base type as this is a low-level type that has nothing
to do with content.

Definition example
This example defines a marketing campaign configuration type that holds the next
available sequence number for campaigns:

<type name="bmc:marketingCampaignConfig">
 <title>Campaign Config node</title>
 <parent>sys:base</parent>
 <properties>
 <property name="bmc:nextNumber">
 <title>Next Campaign Number</title>
 <type>d:long</type>
 </property>
 </properties>
</type>

Code example
To use the example configuration type, we can use the following code. First define
some QNames for the model definitions:

public static final String CONTENT_NAMESPACE_URI =
 "http://www.bestmoney.com/model/content/1.0";
public static final QName CONTENT_MODEL_NAME =
 QName.createQName(CONTENT_NAMESPACE_URI, "contentModel");
public static final QName TYPE_CAMPAIGN_CONFIG =
 QName.createQName(CONTENT_NAMESPACE_URI,
 "marketingCampaignConfig");
public static final QName PROP_NEXT_CAMPAIGN_NUMBER =
 QName.createQName(CONTENT_NAMESPACE_URI, "nextNumber");

Get the next available sequence number to use for the campaign:

private long getNextCampaignSequenceNumber(StoreRef storeRef){
 NodeRef campaignConfigNode = getCampaignConfigNode(storeRef);
 if (campaignConfigNode == null) {
 throw new IllegalArgumentException(
 "Campaign Config not found");
 }

Chapter 7

[317]

// Get the next available sequence number for campaign
QName propQName = PROP_NEXT_CAMPAIGN_NUMBER;
long nextNumber = (Long) getNodeService().getProperty(
 campaignConfigNode, propQName);

 // Update the config node with the next
 // available sequence number
 getNodeService().setProperty(
 campaignConfigNode, propQName, nextNumber + 1);

return nextNumber;
}

Here is the sample code for how to get the configuration node reference:

private NodeRef getCampaignConfigNode(StoreRef storeRef) {
 StringBuilder luceneQuery = new StringBuilder(100);
 luceneQuery.append("+PATH:\"/*\" +TYPE:\"");
 luceneQuery.append(TYPE_CAMPAIGN_CONFIG.toString());
 luceneQuery.append("\"");

 // Search for the campaign config node ref
 List<NodeRef> nodes = search(storeRef, luceneQuery);
 if (nodes.isEmpty()) {
 throw new RuntimeException(
 "Could not find campaign config node");
 }

 if (nodes.size() > 1) {
 logger.error("Found more than one campaign config node under store
 " + storeRef);
 }

 return nodes.get(0);
}

It uses a Lucene query to search through the repository on the top node level and
then matches with any node that has the bm:marketingCampaignConfig type set.
It then picks the first one of these.

And finally, here is the patch class that creates the node if it does not exist when we
start Alfresco:

public class CreateCampaignConfigNodePatch extends AbstractPatch {
 private static final String MSG_SUCCESS =
 "patch.createCampaignConfigNodePatch.result";

Content Model Definition Solutions

[318]

 private ImporterBootstrap m_importerBootstrap;
 private PermissionService m_permissionService;

 public void setImporterBootstrap(ImporterBootstrap
 importerBootstrap) {
 m_importerBootstrap = importerBootstrap;
 }

 public void setPermissionService(PermissionService
 permissionService) {
 m_permissionService = permissionService;
 }

The patch class extends the AbstractPatch class to hook into the patch functionality
of Alfresco and then we set up some setters, as we will need the ImporterBootstrap
service and the PermissionService. Then we implement the applyInternal
method, which is the method that Alfresco calls to run the patch:

 @Override
 protected String applyInternal() throws Exception {
 StoreRef storeRef = m_importerBootstrap.getStoreRef();
 if (storeRef == null) {
 throw new PatchException(
 "Bootstrap store has not been set");
 }

 NodeRef configNodeRef = createCampaignConfigNode(
 storeRef);
 if (configNodeRef == null) {
 throw new PatchException(
 "Campaign Config node could not be created");
 }

 // Set EDITOR Role permission for everyone
 // so they can update the properties of this node
 m_permissionService.setPermission(configNodeRef,
 PermissionService.ALL_AUTHORITIES,
 PermissionService.EDITOR, true);

 return I18NUtil.getMessage(MSG_SUCCESS);
 }

Chapter 7

[319]

The method starts off by getting a store reference to the store in which we will save
the campaign configuration node. It then creates the configuration node by calling
the createCampaignConfigNode method that we will implement next. The last thing
the applyInternal method does is to set the permissions for the node to EDITOR
for everyone, so they can update the configuration that the node holds. Next, we
implement the method that creates the configuration node:

 private NodeRef createCampaignConfigNode(
 StoreRef storeRef) {
 Map<QName, Serializable> nodeProperties =
 new HashMap<QName, Serializable>();
 nodeProperties.put(PROP_NEXT_CAMPAIGN_NUMBER, 1L);

 ChildAssociationRef childRef = nodeService.createNode(
 nodeService.getRootNode(storeRef),
 ContentModel.ASSOC_CHILDREN,
 QName.createQName(CONTENT_NAMESPACE_URI,
 QName.createValidLocalName("campaignconfignode")),
 TYPE_CAMPAIGN_CONFIG,
 nodeProperties);

 if (childRef == null || childRef.getChildRef() == null) {
 throw new RuntimeException(
 "Could not create Campaign Config Node");
 }

 return childRef.getChildRef();
 }
}

Finally, register the patch:

<bean id="patch.createCampaignConfigNodePatch"
 class="com.bestmoney.marketing.bootstrap.
 CreateCampaignConfigNodePatch" parent="basePatch">
 <property name="id">
 <value>patch.createCampaignConfigNodePatch</value>
 </property>
 <property name="description">
 <value>patch.createCampaignConfigNodePatch.description</value>
 </property>
 <property name="fixesFromSchema">
 <value>0</value></property>
 <property name="fixesToSchema">
 <value>${version.schema}</value></property>
 <property name="targetSchema">

Content Model Definition Solutions

[320]

 <value>10000</value></property>
 <property name="importerBootstrap">
 <ref bean="spacesBootstrap"/></property>
 <property name="permissionService">
 <ref bean="permissionService"/></property>
 <property name="nodeService">
 <ref bean="nodeService"/></property>
</bean>

When registering the patch, it is good to set the fixesFromSchema to 0 and
fixesToSchema to version.schema, which is Alfresco's current version number, so
we can be sure that the patch will be executed. The targetSchema property should
be set to the schema version that this patch attempts to take the existing schema to.
This is for informational purposes only, acting as an indicator of intention rather
than having any specific effect.

Defining a new custom content model
In the previous chapter, we designed the folder specifications needed for the Best
Money project. During this design process, we also extracted the properties that were
needed for the different types. So, we have the required input to be able to create the
custom content model for Best Money.

The model definition
When defining a new model, we always start by specifying the model name and
what namespace should be used for the model and what other namespaces we are
going to need (to do this in the content-model.xml file located in the chapter_
7_Code\bestmoney\ alf_extensions\trunk_alfresco\config\alfresco\
module\com_bestmoney_module_cms\model directory):

<?xml version="1.0" encoding="UTF-8"?>
<model name="bmc:contentModel"
 xmlns="http://www.alfresco.org/model/dictionary/1.0">

 <description>Best Money Content Model</description>
 <author>Martin Bergljung</author>
 <version>1.0</version>

 <imports>
 <import uri=
 "http://www.alfresco.org/model/dictionary/1.0"
 prefix="d" />

Chapter 7

[321]

 <import uri=
 "http://www.alfresco.org/model/content/1.0"
 prefix="cm" />
 </imports>

 <namespaces>
 <namespace uri=
 "http://www.bestmoney.com/model/content/1.0"
 prefix="bmc" />
 </namespaces>

The namespace with prefix d is needed to get to the data types we are going to use in
our type and aspect definitions and the cm namespace contains the base content type
cm:content that we will base our new domain content types on.

Next thing we define are the constraints that will be used by property definitions.
The folder specification has defined a list of languages and a list of departments
that can be set up as constraints:

<constraints>
 <constraint name="bmc:language_options" type="LIST">
 <parameter name="allowedValues">
 <list>
 <value></value> <!—Empty value is valid -->
 <value>En</value><!-- English -->
 <value>Fr</value><!-- French -->
 <value>Ge</value><!-- German -->
 <value>Sp</value><!-- Spanish -->
 <value>Sw</value><!-- Swedish -->
 <value>Ru</value><!-- Russian -->
 <value>Jp</value><!-- Japanese -->
 <value>Po</value><!-- Portuguese -->
 <value>Ar</value><!-- Arabic -->
 <value>Ch</value><!-- Chinese -->
 <value>Ta</value><!-- Tagalog -->
 <value>In</value><!-- Indonesian -->
 <value>Tu</value><!-- Turkish -->
 </list>
 </parameter>
 </constraint>

Content Model Definition Solutions

[322]

Make sure to add an empty value in the list as content can be added via an interface
that does not allow setting any metadata. It is also important to sort the constraint
list values in the order we want to see them in the UI combo box widget. Add a
country list constraint:

 <constraint name="bmc:country_options" type="LIST">
 <parameter name="allowedValues">
 <list>
 <value></value>
 <value>Albania</value>
 <value>Algeria</value>
... other countries we might need go here...
 </list>
 </parameter>
 </constraint>

It is a good idea to end the constraint name with _options so it differs from the
property name. Also add a department constraint list according to departments
identified in the folder specification:

 <constraint name="bmc:department_options" type="LIST">
 <parameter name="allowedValues">
 <list>
 <value></value>
 <value>A</value><!-- Audit -->
 <value>HR</value><!-- Human Resources -->
 <value>FM</value><!-- Financial Markets -->
 <value>FS</value><!-- Financial Services -->
 <value>FU</value><!-- Funds Management -->
 <value>IT</value><!-- Information Technology -->
 <value>M</value><!-- Marketing -->
 <value>L</value><!-- Legal -->
 </list>
 </parameter>
 </constraint>
</constraints>

Next thing we define is the type hierarchy and we will use the Composite Type design
pattern and keep the properties in an aspect:

<types>
 <type name="bmc:document">
 <title>Best Money Document</title>
 <parent>cm:content</parent>
 <mandatory-aspects>

Chapter 7

[323]

 <aspect>bmc:documentData</aspect>
 </mandatory-aspects>
 </type>
 <type name="bmc:circular">
 <title>Best Money Circular Document</title>
 <parent>bmc:document</parent>
 </type>
 <type name="bmc:meeting">
 <title>Best Money Meeting Document</title>
 <parent>bmc:document</parent>
 <mandatory-aspects>
 <aspect>bmc:meetingData</aspect>
 </mandatory-aspects>
 </type>
 <type name="bmc:financeDoc">
 <title>Best Money Finance Document</title>
 <parent>bmc:document</parent>
 </type>
 <type name="bmc:marketingDoc">
 <title>Best Money Finance Document</title>
 <parent>bmc:document</parent>
 </type>
 <type name="bmc:legalDoc">
 <title>Best Money Finance Document</title>
 <parent>bmc:document</parent>
 </type>
 <type name="bmc:prDoc">
 <title>Best Money Public Relations Doc</title>
 <parent>bmc:document</parent>
 </type>
 <type name="bmc:itDoc">
 <title>Best Money IT Doc</title>
 <parent>bmc:document</parent>
 </type>
</types>

Finally, we define the aspects. Let's start with the base document data:

<aspects>
 <aspect name="bmc:documentData">
 <title>Best Money Document Data</title>
 <properties>
 <property name="bmc:departments">
 <title>The Best Money department(s) that created the
 document</title>

Content Model Definition Solutions

[324]

 <type>d:text</type>
 <multiple>true</multiple>
 <constraints>
 <constraint ref="bmc:department_options"/>
 </constraints>
 </property>
 <property name="bmc:language">
 <title>Language that the document is written in</title>
 <type>d:text</type>
 <constraints>
 <constraint ref="bmc:language_options"/>
 </constraints>
 </property>
 <property name="bmc:countries">
 <title>The country/countries relevant to the document</title>
 <type>d:text</type>
 <multiple>true</multiple>
 <constraints>
 <constraint ref="bmc:country_options"/>
 </constraints>
 </property>
 </properties>
 </aspect>

Here we can see several examples of how to define a constraint for a property. Two
of the properties also have the multiple element specified to true, which means
that the property can have more than one value specified and in the UI we will see a
widget that can be used to enter multiple values for the property. Define the meeting
metadata aspect:

 <aspect name="bmc:meetingData">
 <title>Best Money Meeting Document Data</title>
 <properties>
 <property name="bmc:meetingCode">
 <title>Unique Meeting Code</title>
 <type>d:text</type>
 <mandatory>true</mandatory>
 </property>
 </properties>
 </aspect>

The meeting code property has the mandatory element specified to true. So,
whenever this aspect is applied to content it has to be set or the content upload
will not work.

Chapter 7

[325]

The last aspect has to do with making a folder reviewable:
 <aspect name="bmc:reviewable">
 <title>Reviewable Folder</title>
 <properties>
 <property name=" bmc:reviewPeriod">
 <title>The number of years until documents in this folder
 should be reviewed</title>
 <type>d:int</type>
 <mandatory>true</mandatory>
 <default>5</default>
 </property>
 <property name=" bmc:includeSubFolders">
 <title>Should sub folders also be affected by this review
 period</title>
 <type>d:boolean</type>
 <mandatory>true</mandatory>
 <default>true</default>
 </property>
 </properties>
 </aspect>
</aspects>
</model>

This aspect specification also has some properties that are specified as mandatory.
However, they will have their values set to default values if not specified, as the
default element has been defined for both properties.

Registering the model with the repository
For Alfresco to recognize our new model, we need to register it with the repository.
Open up the bootstrap-context.xml file located in the chapter_7_Code\
bestmoney\alf_extensions\trunk_alfresco\config\alfresco\module\com_
bestmoney_module_cms\context directory and make sure the following Spring
bean is present:

<bean id="com.bestmoney.dictionaryBootstrap"
 parent="dictionaryModelBootstrap"
 depends-on="dictionaryBootstrap">
 <property name="models">
 <list>
 <value>alfresco/module/com_bestmoney_module_cms/model/content-
 model.xml</value>
 </list>
 </property>
</bean>

If we start Alfresco now, we will not actually be able to use the new model for much
as its types and aspects are not visible in any wizards.

Content Model Definition Solutions

[326]

Configuring property sheets for UI display
Any custom type or aspect that we define needs extra configuration for the
properties and associations to be displayed in the UI.

Alfresco Explorer
The Alfresco Explorer user interface client is customized by updating the
web-client-config-custom.xml file located in the chapter_9_Code\bestmoney\
alf_extensions\trunk_alfresco\config\alfresco\module\com_bestmoney_
module_cms\context directory. Any strings that should be localized are added to
the webclient.properties file in the same directory.

Displaying properties in content details pages
For the extra Best Money custom aspect properties to be displayed in the Details
pages for documents, we need to add the following property sheet configuration:

<config evaluator="aspect-name" condition="bmc:documentData">
 <property-sheet>
 <separator name="sep-1" display-label-id="bmDocumentDataHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmc:departments"
 display-label-id="departments"/>
 <show-property name="bmc:language"
 display-label-id="language"/>
 <show-property name="bmc:countries"
 display-label-id="countries"/>
 </property-sheet>
</config>
<config evaluator="aspect-name" condition="bmc:meetingData">
 <property-sheet>
 <separator name="sep-1" display-label-id="bmMeetingDataHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmc:meetingCode"
 display-label-id="meetingCode"/>
 </property-sheet>
</config>
<config evaluator="aspect-name" condition="bmc:reviewable">
 <property-sheet>
 <separator name="sep-1" display-label-id="reviewableHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmc:reviewPeriod"
 display-label-id="reviewPeriod"/>

Chapter 7

[327]

 <show-property name="bmc:includeSubFolders"
 display-label-id="includeSubFolders"/>
 </property-sheet>
</config>

Localize the UI Labels as follows:

bmc:document_data
#
bmDocumentDataHeader=Best Money Document Data
departments=Departments
language=Language
countries=Countries

bmc:meeting_data
#
bmMeetingDataHeader=Best Money Meeting Data
meetingCode=Meeting Code

#bmc:reviewable
#
reviewableHeader=Reviewable Content
reviewPeriod=Review Period
includeSubFolders=Include Sub-folders?

These properties are referred to from the property sheets with the
display-label-id attribute.

Displaying types in add and create content wizards
To get the new types to show up when we add content, the following configuration
needs to be added:

<config evaluator="string-compare" condition="Content Wizards">
 <content-types>
 <type name="bmc:document"/>
 <type name="bmc:meeting"/>
 <type name="bmc:circular"/>
 <type name="bmc:financeDoc"/>
 <type name="bmc:marketingDoc"/>
 <type name="bmc:legalDoc"/>
 <type name="bmc:itDoc"/>
 <type name="bmc:prDoc"/>
 </content-types>
</config>

Content Model Definition Solutions

[328]

Displaying types and aspects in rules wizards
To get the new types and aspects to show up in Rules Wizards, we need to do some
more configurations:

<config evaluator="string-compare" condition="Action Wizards">
 <aspects>
 <aspect name="bmc:documentData"/>
 <aspect name="bmc:meetingData"/>
 <aspect name="bmc:reviewable"/>
 </aspects>

 <subtypes>
 <type name="bmc:document"/>
 <type name="bmc:meeting"/>
 <type name="bmc:circular"/>
 <type name="bmc:financeDoc"/>
 <type name="bmc:marketingDoc"/>
 <type name="bmc:legalDoc"/>
 <type name="bmc:itDoc"/>
 <type name="bmc:prDoc"/>
 </subtypes>

 <specialise-types>
 <type name="bmc:document"/>
 <type name="bmc:meeting"/>
 <type name="bmc:circular"/>
 <type name="bmc:financeDoc"/>
 <type name="bmc:marketingDoc"/>
 <type name="bmc:legalDoc"/>
 <type name="bmc:itDoc"/>
 <type name="bmc:prDoc"/>
 </specialise-types>
</config>

Displaying properties in advanced search
If properties from custom aspects or types should be searchable via the Advanced
Search screen, then we need to add the following configuration:

<config evaluator="string-compare" condition="Advanced Search">
 <advanced-search>
 <content-types>
 <type name="bmc:document"/>
 <type name="bmc:meeting"/>

Chapter 7

[329]

 <type name="bmc:circular"/>
 <type name="bmc:financeDoc"/>
 <type name="bmc:marketingDoc"/>
 <type name="bmc:legalDoc"/>
 <type name="bmc:itDoc"/>
 <type name="bmc:prDoc"/>
 </content-types>
 <custom-properties>
 <meta-data aspect="bmc:documentData"
 property="bmc:departments"/>
 <meta-data aspect="bmc:documentData"
 property="bmc:language"/>
 <meta-data aspect="bmc:documentData"
 property="bmc:countries"/>
 <meta-data aspect="bmc:meetingData"
 property="bmc:meetingCode"/>
 </custom-properties>
 </advanced-search>
</config>

Registering the property sheets and the resource file
For the new property sheets and the localization property file to be picked up by
Alfresco, we need to register them too in bootstrap-context.xml:

<bean id="com.bestmoney.webclient.configBootstrap"
 class="org.alfresco.web.config.WebClientConfigBootstrap"
 init-method="init">
 <property name="configs">
 <list>
 <value>classpath:alfresco/module/com_bestmoney_module_cms/ui/
 web-client-config-custom.xml</value>
 </list>
 </property>
</bean>

<bean id="com.bestmoney.webclient.properties.webResourceBundles"
 class="org.alfresco.web.app.ResourceBundleBootstrap">
 <property name="resourceBundles">
 <list>
 <value>alfresco.module.com_bestmoney_module_cms.ui.webclient
 </value>
 </list>
 </property>
</bean>

Content Model Definition Solutions

[330]

Alfresco share
The Alfresco Explorer web client presents forms for data viewing, editing, and
creation throughout its user interface (DM and WCM). In Alfresco Explorer, these
forms are implemented in multiple ways, from JSF property sheets to declaring an
XSD rendered by the XForms engine.

The Alfresco Share web client is being built on the Surf web framework that
is designed to enable the development of all kinds of websites. Forms play an
important part of the websites and as such Alfresco needs to provide a standard
way of implementing them.

The forms architecture in version 3.2 and onwards replaces the monolithic and
duplicated approach of the JSF property sheet component and XForms in version 2.
The same services will be used for both DM and WCM forms, meaning there will be
only one configuration syntax and one set of user interface controls.

Alfresco Share now uses the forms engine for the simple and full edit metadata
pages, creating content dialog, and data lists. Some of the underlying forms
technology is also used for a majority of the other forms we will find in Share.

Displaying properties in metadata pages
In Alfresco Share, we use the forms engine to display metadata for content. It
generates and renders forms dynamically and it relies on configuration to manage
all aspects of a form, such as what fields should appear in what order and what user
interface control should be used to edit the value of a field.

The default forms configuration is defined in the form-config.xml file, which can
be found in the tomcat/webapps/share/WEB-INF/classes/alfresco directory.
This file contains all the default user interface controls and constraint handlers for
the Alfresco content model.

Each application then has its own form configuration file that defines the forms
for the built-in cm:content and cm:folder types. For Alfresco Share, this file is
named share-form-config.xml and can be found in the tomcat/webapps/share/
WEB-INF/classes/alfresco when deployed.

It is not recommended to change the out of the box files as these modifications will
typically be removed when you update the share.war file. Each application has its
own custom extensions file and for Alfresco Share this file is named share-config-
custom.xml.

Chapter 7

[331]

To display custom properties from, for example, the bmc:meeting type, we don't
have to do anything if we are happy with the default layout. If we look at metadata
for a document that has been uploaded to one of the Meetings folders, it will look as
follows (a rule applies the bmc:meeting type automatically) in the view screen:

Here we can see that the three Best Money document aspect properties bmc:
departments, bmc:language, and bmc:countries have been automatically included
in the view form and laid out randomly. The bmc:meetingCode property that
is specific to meeting document type has also been added to the preview. These
properties have also got labels with the texts from the property title in the
content model.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Content Model Definition Solutions

[332]

If we click on Edit Metadata for the document, we will see an edit screen, which also
contains the Best Money properties. They are laid out randomly here also. So, it is
most likely that we would want to control how the custom Best Money properties
are laid out.

We can do that via configuration in the share- config-custom.xml file located
in the chapter_7_Code\bestmoney\ alf_extensions\trunk_share\config\
alfresco\web-extensions directory.

For the view and edit screens, we need to add a node-type configuration for each
of the content types that we wish to display and fill in the field-visibility
element with the properties that should be visible and in what order they should
be displayed.

It would make sense to define one generic node-type configuration for the base
bmc:document type as follows:

<config evaluator="node-type" condition="bmc:document">
 <forms>
 <form>
 <field-visibility>
 <show id="bmc:countries"/>
 <show id="bmc:departments"/>
 <show id="bmc:language"/>
 </field-visibility>
 </form>
 </forms>
</config>

This will however, not make any difference for a document with the bmc:meeting
document type as each node-type configuration is only used when the condition
value matches exactly the type to be displayed. It does not work even if it is a
subtype. And in our case, we also need the bmc:meetingCode property displayed.

So, we need to add one node-type configuration per custom type that we define.
Add the following configuration for the Best Money meeting document type:

<config evaluator="node-type" condition="bmc:meeting">
 <forms>
 <form>
 <field-visibility>
 <show id="bmc:countries"/>
 <show id="bmc:departments"/>
 <show id="bmc:language"/>
 <show id="bmc:meetingCode"/>

Chapter 7

[333]

 </field-visibility>
 </form>
 </forms>
</config>

Now, this works but we only see these four properties:

So what happened to the properties in the cm:content type, why are they not
displayed? The reason is that we need to configure all properties that should be visible.
These are type properties, subtype properties, and included aspect properties.

Update the node-type configuration as follows:

<config evaluator="node-type" condition="bmc:meeting">
 <forms>
 <form>
 <field-visibility>
 <!-- cm:content data -->
 <show id="cm:name"/>
 <show id="cm:title" force="true"/>
 <show id="cm:description" force="true"/>
 <show id="mimetype"/>
 <show id="cm:author" force="true"/>
 <show id="size" for-mode="view"/>
 <show id="cm:creator" for-mode="view"/>
 <show id="cm:created" for-mode="view"/>
 <show id="cm:modifier" for-mode="view"/>
 <show id="cm:modified" for-mode="view"/>

 <!-- bmc:meeting data -->
 <show id="bmc:countries"/>

Content Model Definition Solutions

[334]

 <show id="bmc:departments"/>
 <show id="bmc:language"/>
 <show id="bmc:meetingCode"/>
 </field-visibility>
 </form>
 </forms>
</config>

Now the Alfresco content model properties will also be visible and displayed before
the meeting document properties. However, there is no line or divider between those
properties and the meeting document type properties.

To exclude a field from the edit screen we can use for-mode="view"
attribute and to force a field to be visible even if it is empty we can use the
force="true" attribute. For example, an aspect might not be applied to
a piece of content but we still want to display the empty aspect properties.

The mimetype and size properties are known as transient properties, as
they don't actually exist as properties in the model, they are formed from
the cm:content property.

It would be nice if we could have a header just before the meeting properties. This
can be done by defining the so-called sets or groups of fields. We do this in a special
appearance element where we can set up things like grouping of fields, what
controls should be used to display the field, if the field should be read-only,
and so on.

For some of the cm:content fields, we copy the appearance configuration from the
default configuration in share-form-config.xml located in the tomcat\webapps\
share\WEB-INF\classes\alfresco directory:

<config evaluator="node-type" condition="bmc:meeting">
 <forms>
 <form>
 <field-visibility>
 …
 </field-visibility>
 <appearance>
 <field id="cm:title">
 <control template=
 "/org/alfresco/components/form/controls/textfield.ftl" />
 </field>
 <field id="cm:description">
 <control>

Chapter 7

[335]

 <control-param name="activateLinks">
 true
 </control-param>
 </control>
 </field>
 <field id="mimetype">
 <control template=
 "/org/alfresco/components/form/controls/mimetype.ftl" />
 </field>
 <field id="size">
 <control template=
 "/org/alfresco/components/form/controls/size.ftl" />
 </field>
 <field id="cm:taggable">
 <control>
 <control-param name="compactMode">
 True
 </control-param>
 <control-param name="params">
 aspect=cm:taggable
 </control-param>
 <control-param name="createNewItemUri">
 /api/tag/workspace/SpacesStore
 </control-param>
 <control-param name="createNewItemIcon">
 Tag
 </control-param>
 </control>
 </field>
 <field id="cm:categories">
 <control>
 <control-param name="compactMode">
 true
 </control-param>
 </control>
 </field>
 </appearance>
 </form>
 </forms>
</config>

Content Model Definition Solutions

[336]

The previous appearance configuration shows how we can set the controls to
be used when displaying different fields and how we can pass in parameters to
controls. The default controls for field types are defined in the forms-config.xml
file located in the tomcat/webapps/share/WEB-INF/classes/alfresco directory.

Normally, it is fine with the default configuration and we do not have to specify the
control element. This is the case when we specify the appearance for the meeting
metadata, which we want in its own group/set:

<config evaluator="node-type" condition="bmc:meeting">
 <forms>
 <form>
 <field-visibility>
 …
 </field-visibility>
 <appearance>
 …
 <set id="meetingMetadata" appearance="title"
 label-id="meeting.metadata.header" />
 <field id="bmc:countries"
 label-id="meeting.metadata.countries"
 set="meetingMetadata"/>
 <field id="bmc:departments"
 label-id="meeting.metadata.departments"
 set="meetingMetadata"/>
 <field id="bmc:language"
 label-id="meeting.metadata.language"
 set="meetingMetadata"/>
 <field id="bmc:meetingCode"
 label-id="meeting.metadata.meetingCode"
 set="meetingMetadata"/>
 </appearance>
 </form>
 </forms>
</config>

We also need to add the label-ids for the different fields and the groups/set
header, the labels we defined for the Alfresco Explorer client will not be picked up.
Add them to the extension-app.properties file located in the bestmoney\alf_
extensions\trunk_share\config\alfresco\messages directory:

meeting.metadata.header=Meeting Document Info
meeting.metadata.countries=Countries
meeting.metadata.departments=Departments
meeting.metadata.language=Language
meeting.metadata.meetingCode=Meeting Code

Chapter 7

[337]

Now, we should see something like this when previewing a meeting document (after
stopping Alfresco, running the deploy-share-jar ant target, and starting Alfresco):

We can see the meeting metadata clearly separated from the standard document
metadata and that the label texts have been picked up correctly. To change the
group/set appearance change the appearance attribute of the set element.
For example, to surround the meeting data by a bordered panel use
appearance="bordered-panel":

Content Model Definition Solutions

[338]

The same appearance configurations also work in the edit screen. If we now look
at the Create Content screen, we will see that it does not display the extra meeting
document properties:

If we would like the user to be able to specify some of these properties when they, for
example, select Create Content... followed by Plain Text... , then we have to add a
configuration for the model-type. Because the out of the box Create Content screen
will assume that we are creating cm:content, we need to specify the condition as
that type:

<config evaluator="model-type" condition="cm:content">
 <forms>
 <form>

Then we configure the field-visibility section where the cm:content fields have
been copied from the default configuration in share-form-config.xml:

 <field-visibility>
 <show id="cm:name" />
 <show id="cm:title" force="true" />
 <show id="cm:description" force="true" />
 <show id="cm:content" force="true" />
 <show id="mimetype" />
 <show id="app:editInline" force="true" />

Chapter 7

[339]

 <show id="bmc:countries" force="true" />
 <show id="bmc:departments" force="true" />
 <show id="bmc:language" force="true" />
 <show id="bmc:meetingCode" force="true"/>
 </field-visibility>

Note that the meeting metadata fields have to be specified with force="true" as they
are not part of cm:content and would not be displayed in the screen unless we force
it. Next, we copy the appearance configuration for the cm:content fields from the
default configuration in share-form-config.xml:

 <appearance>
 <field id="cm:title">
 <control template=
 "/org/alfresco/components/form/controls/textfield.ftl" />
 </field>
 <field id="cm:content">
 <control>
 <control-param name="editorAppearance">explorer
 </control-param>
 </control>
 </field>
 <field id="mimetype">
 <control template=
 "/org/alfresco/components/form/controls/hidden.ftl">
 <control-param name="contextProperty">mimeType
 </control-param>
 </control>
 </field>
 <field id="app:editInline">
 <control template=
 "/org/alfresco/components/form/controls/hidden.ftl">
 <control-param name="contextProperty">editInline
 </control-param>
 </control>
 </field>

And finally, we add the appearance configuration for the meeting metadata the same
way we did for the view and edit screen configuration:

 <set id="meetingMetadata"
 appearance="bordered-panel"
 label-id="meeting.metadata.header" />
 <field id="bmc:countries"
 label-id="meeting.metadata.countries"
 set="meetingMetadata"/>

Content Model Definition Solutions

[340]

 <field id="bmc:departments"
 label-id="meeting.metadata.departments"
 set="meetingMetadata"/>
 <field id="bmc:language"
 label-id="meeting.metadata.language"
 set="meetingMetadata"/>
 <field id="bmc:meetingCode"
 label-id="meeting.metadata.meetingCode"
 set="meetingMetadata"/>
 </appearance>
 </form>
 </forms>
</config>

The create screen will now look like the following screenshot:

There are a lot more Alfresco Share forms configurations that we can do, but this
is all we have room for in this chapter. There will be more forms configuration
in Chapter 10, Business Process Implementation Solutions: Part 1 when we start
implementing workflow.

Chapter 7

[341]

There is also a lot of information available at the Alfresco Wiki:
http://wiki.alfresco.com/wiki/Forms_Examples

http://wiki.alfresco.com/wiki/Forms

Displaying aspects and types
To have the new types and aspects available in Alfresco Share when adding an
aspect or changing type, the following configuration needs to be added:

<config evaluator="string-compare" condition="DocumentLibrary"
 replace="true">
 <aspects>
 <!-- Aspects that a user can see -->
 <visible>
 <aspect name="cm:generalclassifiable" />
 <aspect name="cm:complianceable" />
 <aspect name="cm:dublincore" />
 <aspect name="cm:effectivity" />
 <aspect name="cm:summarizable" />
 <aspect name="cm:versionable" />
 <aspect name="cm:templatable" />
 <aspect name="cm:emailed" />
 <aspect name="emailserver:aliasable" />
 <aspect name="cm:taggable" />
 <aspect name="app:inlineeditable" />
 <aspect name="bmc:documentData"/>
 <aspect name="bmc:meetingData"/>
 <aspect name="bmc:reviewable"/>
 </visible>

 <!-- Aspects that a user can add. Same as "visible" if left empty
 -->
 <addable>
 </addable>

 <!-- Aspects that a user can remove. Same as "visible" if left
 empty -->
 <removeable>
 </removeable>
 </aspects>

 <types>
 <type name="cm:content">
 <subtype name="bmc:document" />

Content Model Definition Solutions

[342]

 </type>
 <type name="bmc:document">
 <subtype name="bmc:meeting"/>
 <subtype name="bmc:circular"/>
 <subtype name="bmc:financeDoc"/>
 <subtype name="bmc:marketingDoc"/>
 <subtype name="bmc:legalDoc"/>
 <subtype name="bmc:itDoc"/>
 <subtype name="bmc:prDoc"/>
 </type>
 </types>
</config>

With this new Alfresco Share configuration, we will be able to select from the new
Best Money types when using the +More… followed by Change Type menu item.
The new aspects will be available when selecting the +More… followed by Manage
Aspects menu item.

For the aspects and types to have nicer labels in the user interface, we need to add
label texts in the extension-app.properties located in the bestmoney\alf_
extensions\trunk_share\config\alfresco\messages directory:

type.bmc_document=Best Money Document
type.bmc_meeting=Best Money Meeting
type.bmc_circular=Best Money Circular
type.bmc_financeDoc=Best Money Finance Doc
type.bmc_marketingDoc=Best Money Marketing Doc
type.bmc_legalDoc=Best Money Legal Doc
type.bmc_itDoc=Best Money IT Doc
type.bmc_prDoc=Best Money PR Doc
aspect.bmc_documentData=Best Money Document Data
aspect.bmc_meetingData=Best Money Meeting Data
aspect.bmc_reviewable=Best Money Reviewable

Displaying properties in advanced search
To be able to search on Best Money Meeting metadata via the Advanced Search
Screen an extra form configuration is needed in the model-type configuration:

<config evaluator="model-type" condition="cm:content">
 <forms>
 <form>. . .
 </form>

Chapter 7

[343]

Add it just after the default form configuration:

 <form id="search">
 <field-visibility>

Again, the default field visibility configuration for cm:content fields is copied from
the share-form-config.xml as follows:

 <show id="cm:name"/>
 <show id="cm:title" force="true"/>
 <show id="cm:description" force="true"/>
 <show id="mimetype"/>
 <show id="cm:modified"/>
 <show id="cm:modifier"/>
 <show id="bmc:countries" force="true"/>

Then the meeting metadata fields:

 <show id="bmc:departments" force="true"/>
 <show id="bmc:language" force="true"/>
 <show id="bmc:meetingCode" force="true"/>
 </field-visibility>

And the appearance configuration for the cm:content fields. This is also copied from
the share-form-config.xml:

 <appearance>
 <field id="mimetype">
 <control template=
 "/org/alfresco/components/form/controls/mimetype.ftl"/>
 </field>
 <field id="cm:modifier">
 <control>
 <control-param name="forceEditable">true</control-param>
 </control>
 </field>
 <field id="cm:modified">
 <control template=
 "/org/alfresco/components/form/controls/daterange.ftl"/>
 </field>

Content Model Definition Solutions

[344]

And finally the meeting metadata appearance configuration:

 <set id="meetingMetadata"
 appearance="bordered-panel"
 label-id="meeting.metadata.header"/>
 <field id="bmc:countries"
 label-id="meeting.metadata.countries"
 set="meetingMetadata"/>
 <field id="bmc:departments"
 label-id="meeting.metadata.departments"
 set="meetingMetadata"/>
 <field id="bmc:language"
 label-id="meeting.metadata.language"
 set="meetingMetadata"/>
 <field id="bmc:meetingCode"
 label-id="meeting.metadata.meetingCode"
 set="meetingMetadata"/>
 </appearance>
 </form>
 </forms>
</config>

Summary
In this chapter, we have learned that a content model is used to classify content
stored in a CMS system. A meta model defines the syntax that we can use when
defining our new domain-specific content models.

Alfresco's meta model offers a comprehensive syntax that enables us to build content
models in an object-oriented way, enabling re-use. There are quite a few content
models available out of the box that it is important to check out before we start
building our own models.

From the content models available out of the box, the core Alfresco content model
defined in the contentModel.xml file is probably the most important one to study,
as it contains the base types for document content and folder content.

We also went through some useful content model design patterns such as Composite
Type and Domain Document Root Type and finally we defined our own model and
saw how to configure Alfresco to recognize the custom model in the different
UI clients.

In the next chapter, we will look at some solutions for how to do data migration
when you have an existing network drive with documents and want to merge
them into Alfresco.

Document Migration
Solutions

The Best Money CMS project is now in full swing and we have the folder structure
with business rules designed and implemented and the domain content model
created. It is now time to start importing any existing documents into the Alfresco
repository. Most companies that implement an ECM system, and Best Money is no
exception, will have a substantial amount of files that they want to import, classify,
and make searchable in the new CMS system.

The planning and preparation for the document migration actually has to start a lot
earlier, as there are a lot of things that need to be prepared:

Who is going to manage sorting out files that should be migrated?
What is the strategy and process for the migration?
What sort of classification should be done during the import?
What filesystem metadata needs to be preserved during the import?
Do we need to write any temporary scripts or rules just for the import?

In this chapter, you will learn:

Different strategies for implementing document migration
Planning the document migration
Implementing document migration using CIFS or purpose-built tools

•

•

•

•

•

•

•

•

Document Migration Solutions

[346]

Document migration strategies
The first thing we need to do is to figure out how the document migration is actually
going to be done. There are several ways of making this happen. We will discuss a
couple of different ways, such as via the CIFS interface and via tools. There are also
some general strategies that apply to any migration method.

General migration strategies
There are some common things that need to be done no matter which import method
is used, such as setting up a document migration staging area.

Document staging area
The end users need to be able to copy or move documents—that they want to
migrate—to a kind of staging area that mirrors the new folder structure that we have
set up in Alfresco. The best way to set up the staging area is to copy it from Alfresco
via CIFS. When this is done the end users can start copying files to the staging
area. However, it is a good idea to train the users in the new folder structure before
they start copying documents to it. We should talk to them about folder structure
changes, what rules and naming conventions have been set up, the idea behind it,
and why it should be followed.

If we do not train the end users in the new folder structure, they will not honor it and
the old structure will get mixed up with the new structure via document migration,
and this is not something that we want. We did plan and implement the new
structure for today's requirements and future requirements and we do not want it
broken before we even start using the system.

The end users will typically work with the staging area over some time. It is good
if they get a couple of weeks for this. It will take them time to think about what
documents they want to migrate and if any re-organization is needed. Some
documents might also need to be renamed.

Preserving Modified Date on imported documents
We know that Best Money wants all their modified dates on the files to be preserved
during an import, as they have a review process that is dependent on it. This means
that we have to use an import method that can preserve the Modified Date on the
network drive files when they are merged into the Alfresco repository. The CIFS
interface cannot be used for this as it sets Modified Date to Current Date.

Chapter 8

[347]

There are a couple of methods that can be used to import content into the repository
and preserve the Modified Date:

Create an ACP file via an external tool and then import it
Custom code the import with the Foundation API and turn off the Audit
Aspect before the import
Use an import tool that also has the possibility to turn off the Audit Aspect

At the time of writing (when I am using Alfresco 3.3.3 Enterprise and Alfresco
Community 3.4a) there is no easy way to import files and preserve the Modified
Date. When a file is added via Alfresco Explorer, Alfresco Share, FTP, CIFS,
Foundation API, REST API, and so on, the Created Date and Modified Date is set
to "now", so we lose all the Modified Date data that was set on the files on the
network drive.

The Created Date, Creator, Modified Date, Modifier, and Access Date are all so called
Audit properties that are automatically managed by Alfresco if a node has the
cm:auditable aspect applied. If we try and set these properties during an import
via one of the APIs, it will not succeed.

Most people want to import files via CIFS or via an external import tool. Alfresco
is working towards supporting preserving dates when using both these methods
for import. Currently, there is a solution to add files via the Foundation API and
preserve the dates, which can be used by custom tools. The Alfresco product itself
also needs this functionality in, for example, the Transfer Service Receiver, so the
dates can be preserved when it receives files.

The new solution that enables the use of the Foundation API to set Auditable
properties manually has been implemented in version 3.3.2 Enterprise and 3.4a
Community. To be able to set audit properties do the following:

1. Inject the policy behavior filter in the class that should do the
property update:
<property name="behaviourFilter" ref="policyBehaviourFilter"/>

2. Then in the class, turn off the audit aspect before the update, it has to be
inside a new transaction, as in the following example:
RetryingTransactionCallback<Object> txnWork = new
 RetryingTransactionCallback<Object>() {
 public Object execute() throws Exception {
 behaviourFilter.disableBehaviour
 (ContentModel.ASPECT_AUDITABLE);

•

•

•

Document Migration Solutions

[348]

3. Then in the same transaction update the Created or Modified Date:

 nodeService.setProperty(nodeRef,
 ContentModel.PROP_MODIFIED, someDate);
 . . .
 }
};

With JDK 6, the Modified Date is the only file data that we can access,
so no other file metadata is available via the CIFS interface. If we
use JDK 7, there is a new NIO 2 interface that gives access to more
metadata. So, if we are implementing an import tool that creates an
ACP file, we could use JDK 7 and preserve Created Date, Modified
Date, and potentially other metadata as well.

Post migration processing scripts
When the document migration has been completed, we might want to do further
processing of the documents such as setting extra metadata. This is specifically
needed when documents are imported into Alfresco via the CIFS interface, which
does not allow any custom metadata to be set during the import. There might also be
situations, such as in the case of Best Money, where a lot of the imported documents
have older filenames (that is, following an older naming convention) with important
metadata that should be extracted and applied to the new document nodes.

For post migration processing, JavaScript is a convenient tool to use. We can easily
define Lucene queries for the nodes we want to process, as the rules have applied
domain document types such as Meeting to the imported documents, and we can
use regular expressions to match and extract the metadata we want to apply to
the nodes.

Search restrictions when running post migration scripts
What we have to think about though, when running these post migration scripts, is
that the repository now contains a lot of content, so each query we run might very
well return much more than 1,000 rows. And 1,000 rows is the default max limit that
a search will return.

Chapter 8

[349]

To change this to allow for 5,000 rows to be returned, we have to make some changes
to the permission check configuration (Alfresco checks the permissions for each
node that is being accessed, so the user running the query is not getting back content
that he or she should not have access to). Open the alfresco-global.properties
file located in the alfresco/tomcat/shared/classes directory and add the
following properties:

The maximum time spent pruning results (was 10000)
system.acl.maxPermissionCheckTimeMillis=100000
The maximum number of results to perform permission checks against (was
1000)
system.acl.maxPermissionChecks=5000

Unwanted Modified Date updates when running scripts
So we have turned off the audit feature during document migration, or made
some custom code changes to Alfresco, to get the document's Modified Date to be
preserved during import. Then we have turned on auditing again so the system
behaves in the way the users expect.

The last thing we want now is for all those preserved modified dates to be set to
current date when we update metadata. And this is what will happen if we are
not running the post migration scripts with the audit feature turned off. So this
is important to think about unless you want to start all over again with the
document migration.

Versioning problems when running post migration scripts
Another thing that can cause problems is when we have versioning turned on
for documents that we are updating with the post migration scripts. If we see the
following error:

org.alfresco.service.cmr.version.VersionServiceException: 07120018 The
current implementation of the version service does not support the
creation of branches.

by default new versions will be created even when we just update properties/
metadata. This can cause errors such as the preceding error and we might not even
be able to check-in and check-out the document. To prevent this error from popping
up, and turn off versioning during property updates once and for all, we can set
the following property at the same time as we set the other domain metadata in
the scripts:

legacyContentFile.properties["cm:autoVersionOnUpdateProps"] = false;

Document Migration Solutions

[350]

Setting this property to false, effectively turns off versioning during any property/
metadata update for the document.

Another thing that can be a problem is, if folders have been set up as versionable
by mistake. The most likely reason for this is that we probably forgot to set up the
Versioning Rule to only apply to cm:content (and not to "All Items"). Folders in the
workspace://SpacesStore store do not support versioning.

The WCM system comes with an AVM store that supports advanced
folder versioning and change sets. Note that the WCM system can also
store its data in the Workspace store.

So we need to update the versioning rule to apply to the content and remove the
versionable aspect from all folders, which have it applied, before we can update any
content in these folders. Here is a script that removes the cm:versionable aspect
from any folder having it applied:

var store = "workspace://SpacesStore";
var query = "PATH:\"/app:company_home//*\" AND TYPE:\"cm:folder\" AND
ASPECT:\"cm:versionable\"";
var versionableFolders = search.luceneSearch(store, query);

for each (versionableFolder in versionableFolders) {
 versionableFolder.removeAspect("cm:versionable");
 logger.log("Removed versionable aspect from folder: " +
 versionableFolder.name);
}

logger.log("Removed versionable aspect from " +
 versionableFolders.length + " folders");

Post migration script to extract legacy meeting metadata
Best Money has a lot of documents that they are migrating to the Alfresco repository.
Many of the documents have filenames following a certain naming convention. This
is the case for the meeting documents that are imported. The naming convention for
the old imported documents are not exactly the same as the new meeting naming
convention, so we have to write the regular expression a little bit differently.

An example of a filename with the new naming convention looks like this:
10En-FM.02_3_annex1.doc and the same filename with the old naming convention
looks like this: 10Eng-FM.02_3_annex1.doc. The difference is that the old
naming convention does not specify a two-character code for language but instead
a list that looks like this: Arabic,Chinese,Eng|eng,F|Fr,G|Ger,Indonesian,Jpn,

Chapter 8

[351]

Port,Rus|Russian,Sp,Sw,Tagalog,Turkish. What we are interested in extracting
is the language and the department code and the following script will do that with a
regular expression:

// Regulars Expression Definition
var re = new RegExp("^\\d{2}(Arabic|Chinese|Eng|eng|F|Fr|G|Ger|Indone
sian|Ital|Jpn|Port|Rus|Russian|Sp|Sw|Tagalog|Turkish)-(A|HR|FM|FS|FU|
IT|M|L).*");

var store = "workspace://SpacesStore";
var query = "+PATH:\"/app:company_home/cm:Meetings//*\" +TYPE:\"cm:
content\"";
var legacyContentFiles = search.luceneSearch(store, query);

for each (legacyContentFile in legacyContentFiles) {
 if (re.test(legacyContentFile.name) == true) {
 var language = getLanguageCode(RegExp.$1);
 var department = RegExp.$2;
 logger.log("Extracted and updated metadata (language=" + language
 + ")(department=" + department + ") for file: " +
 legacyContentFile.name);
 if (legacyContentFile.hasAspect("bmc:document_data")) {
 // Set some metadata extracted from file name
 legacyContentFile.properties["bmc:language"] = language;
 legacyContentFile.properties["bmc:department"] = department;

 // Make sure versioning is not enabled for property updates
 legacyContentFile.properties["cm:autoVersionOnUpdateProps"] =
 false;

 legacyContentFile.save();
 } else {
 logger.log("Aspect bmc:document_data is not set for document
 " + legacyContentFile.name);
 }
 } else {
 logger.log("Did NOT extract metadata from file: " +
 legacyContentFile.name);
 }
}

/**
 * Convert from legacy language code to new 2 char language code
 *

Document Migration Solutions

[352]

 * @param parsedLanguage legacy language code
 */
function getLanguageCode(parsedLanguage) {
 if (parsedLanguage == "Arabic") {
 return "Ar";
 } else if (parsedLanguage == "Chinese") {
 return "Ch";
 } else if (parsedLanguage == "Eng" || parsedLanguage == "eng") {
 return "En";
 } else if (parsedLanguage == "F" || parsedLanguage == "Fr") {
 return "Fr";
 } else if (parsedLanguage == "G" || parsedLanguage == "Ger") {
 return "Ge";
 } else if (parsedLanguage == "Indonesian") {
 return "In";
 } else if (parsedLanguage == "Ital") {
 return "";
 } else if (parsedLanguage == "Jpn") {
 return "Jp";
 } else if (parsedLanguage == "Port") {
 return "Po";
 } else if (parsedLanguage == "Rus" || parsedLanguage == "Russian") {
 return "Ru";
 } else if (parsedLanguage == "Sp") {
 return "Sp";
 } else if (parsedLanguage == "Sw") {
 return "Sw";
 } else if (parsedLanguage == "Tagalog") {
 return "Ta";
 } else if (parsedLanguage == "Turkish") {
 return "Tu";
 } else {
 logger.log("Invalid parsed language code: " + parsedLanguage);
 return "";
 }
}

This script can be run from any folder and it will search for all documents under the
/Company Home/Meetings folder or any of its subfolders. All the documents that are
returned by the search are looped through and matched with the regular expression.
The regular expression defines two groups: one for the language code and one for
the department. So after a document has been matched with the regular expression
it is possible to back-reference the values that were matched in the groups by using
RegExp.$1 and RegExp.$2.

Chapter 8

[353]

When the language code and the department code properties are set, we also set
the cm:autoVersionOnUpdateProps property, so we do not get any problem with
versioning during the update.

Importing documents via CIFS
When the new staging area has been populated by the end users, it is time to do
the actual migration. One way to do this is to use the CIFS interface as it is a simple
and well-known way of copying files from one drive to another. When copying the
files it's a good idea to copy them in batches, selecting one top folder per batch,
for example.

Before starting the migration it is also often necessary to turn off rules that check
things such as naming conventions. In Best Money's case, there are going to be
documents that do not follow the new naming conventions that we have defined.
And when the rules throw an error the document migration will halt.

If we do not turn off rules Alfresco might throw errors after different
kinds of checks, then we will most likely get "Could not find this
item" error in Windows Explorer. This is because the node was not
added to the repository after the rule error, and when Windows Explorer
tries to make updates to it via CIFS it gets back this message that the file
was not found by Alfresco.
Also, note that any error message that is being displayed in the Alfresco
Explorer UI because of a rule is not going to be displayed in Windows
Explorer in the same way. Most likely we will get the "Could not find
this item" message.

When we are ready to start the document migration, it is best to do it first on a Test
Box and sort out any problems. Then when we are confident that the document
migration works nicely, we can move onto the Production Box.

An alternative way is to do the migration on Test and then export the
complete Test folder structure including migrated documents to an ACP
file. Remember that you might have to split the exported data up into
several ACP files if there is a lot of content and the ACP file gets bigger
than 4 GB. This is the max ZIP file size that Java handles (you can try
using JDK7 as it is supposed to handle larger ZIP files). Then wipe out the
folder structure on the Production Box and import the ACP file from the
Test Box. That will be faster and easier than doing the import via CIFS.
We can export several ACP files if there are a lot of documents.

Document Migration Solutions

[354]

Make sure to always copy all documents that should be migrated to the local disk
where Alfresco is running for best performance. One should also take an ACP
backup of the new file structure on the Test Box before doing the migration. This
way it will be easy to go back to the initial start state if something goes wrong with
the migration.

When using CIFS for document migration, it is not going to be the fastest way of
doing an import. The CIFS interface is quite "chatty" and as an example, importing
13,500 documents (9 GB) took around four hours on a Windows 2008 R2 64-bit box,
Xeon E5520 2.34 GHz, 4 CPUs, and 4 GB RAM. The documents were then stored on
the same disk as Alfresco was running. So if you are looking at significantly more
data to import, it might be better to look at another import method such as using
a purpose-built tool.

The following picture shows an overview of CIFS-based document migration:

Chapter 8

[355]

The picture shows the legacy file server that has all documents that should be
migrated over to Alfresco. On the legacy server, we have set up the staging area that
mirrors the folder structure in Alfresco. End users are then over time, at their own
pace, copying files into the staging area.

When the population of the staging area is completed, it is copied via CIFS into
Alfresco and any temporary migration rules are executed and permanent rules
are also executed setting custom types, for example.

Pros and cons with CIFS import
The following are the advantages and disadvantages when using the CIFS interface
for importing documents.

Advantages:

Easy and well-known interface to work with
Does not require any use of external tool or coding

Disadvantages:

Slow—CIFS is a rather "chatty" protocol, so it takes much longer to do the
import than for example, an in-process method
Cannot apply custom metadata during import

Importing documents via external tool
We have talked about using CIFS for the import but it has some disadvantages,
such as being slow, which we could overcome by using a tool for the import. One
good open source tool that we can use is called Alfresco bulk filesystem import
and can be downloaded from http://code.google.com/p/alfresco-bulk-
filesystem-import/.

This tool provides a bulk import process that loads content into the Alfresco
repository from the local filesystem. It will update an imported document if it already
exists in the repository. This tool is not designed to do a full synchronization of the
filesystem with Alfresco, so it will not delete files.

This tool assumes that the imported files are on the disk that is locally accessible to
the Alfresco server. This will allow the import code to directly stream from the disk
into the repository. Typically this means disk-to-disk streaming, which is far more
efficient than any kind of mechanism that requires network I/O.

•

•

•

•

Document Migration Solutions

[356]

This tool is different from some other tools—in that it executes all import logic
in-process via Foundation API calls. This makes it very fast and eliminates any RPC
calls over the network. The tool also breaks up large imports into multiple batches,
where each batch runs in its own transaction, eliminating problems with long
running transactions.

We can compare the speed of this tool to CIFS by looking at one Alfresco
implementation that regularly loaded thousands of image files, each one being
several MBs in size. The CIFS import took approximately an hour to load 1,500 image
files while this tool could load the same image files into the repository in less than
five minutes. So this tool will make a huge difference when there is a lot of content
to be imported.

This tool will also allow us to set metadata on any document or folder that is
imported into Alfresco. This is supported by plugins so we can easily custom
code what metadata should be set. Some plugins exist out of the box, such as:

Basic metadata loader: It checks the type of data and sets either cm:content
or cm:folder depending on if it is a file or a directory. Also populates
the cm:name and cm:title with the filename as on the disk. This plugin
is mandatory as it sets the types and names of the nodes. This is done
automatically when CIFS is used.
Properties file metadata loader: It reads a properties file that is associated
with the imported file and sets type, aspects, and properties according to the
property file.

Finally, this tool supports preserving the modified dates of imported files. It uses
the technique of disabling the Audit Aspect before the import. So if you are building
your own import tool it might be worth having a look at the source code for this tool,
if you plan to support preserving dates.

Pros and cons with tool import
The following are the advantages and disadvantages of using an external tool for
importing documents.

Advantages:

Very fast in-process tool that doesn't do RPC calls over the network
Splits up import into multiple transactions
This tool can be used to apply metadata such as types and aspects during
the import
Preserves modified dates of imported files

•

•

•

•

•

•

Chapter 8

[357]

Disadvantages:

More complicated than the easy CIFS interface and might require some Java
coding to get the best out of the tool.
Requires you to install an AMP and restart Alfresco

Importing documents via ACP file
Another way of importing documents is via the so called Alfresco Content Package
(ACP) files. An ACP file can be generated from an existing Alfresco installation via
Alfresco Explorer UI or from several available command-line tools.

When importing ACP files from the Alfresco Explorer interface, the folder hierarchy
cannot exist as this will give you duplicate name errors. So the folder hierarchy
would have to be wiped out before importing the ACP.

If we did not want to wipe out the folder structure in Production, we could use
Alfresco's import command-line tool to do the import. This tool can be told to update
nodes if they exist. Unfortunately, the node UUID in the ACP file has to match the
node UUID in the folder structure; so this is highly unlikely to work unless the tool
can query Alfresco for UUIDs during runtime.

The following are the advantages and disadvantages with using an ACP file for
importing documents.

Advantages:

It is fast and the import is in-context, so it will be much faster than CIFS as it
uses the Foundation API
The Alfresco server does not have to be stopped
The import is done in one transaction, so either everything gets imported
or nothing
It preserves Created and Modified Dates (using ACP import might be the
only way to preserve dates if you are running an older version of Alfresco)
The tool that generates the ACP file can apply metadata such as types to
nodes that it adds to the ACP file

Disadvantages:

Import is done in a single transaction so might cause long-running
transaction problems if a huge amount of data is being imported
The ACP file itself has to be copied into Alfresco before import starts
More complicated than the easy CIFS interface and might require some Java
coding to get the best out of the ACP Generator tool.

•

•

•

•
•

•

•

•

•
•

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Document Migration Solutions

[358]

Common steps during document migration
No matter what method we use for the actual document import, there are some
general steps that we can follow for the document migration process. They are in
chronological order:

1. Set up staging area on the file share (that is, network drive). It should mirror
the new folder structure in Alfresco.

2. Train end users in the new folder structure.
3. End users copy files to the staging area over a period of time.
4. Set up any temporary migration rules in Alfresco (Test Box).
5. Turn off rules that might throw errors and stop migration process (Test Box).
6. Copy the staging area to the Test Box running Alfresco.
7. Do the document migration, copy staging area via CIFS or use purpose-built

tool (Test Box).
8. Remove any temporary document migration rules (Test Box).
9. Turn on any rules that were turned off during migration (Test Box).
10. Run post migration processing scripts (Test Box).
11. If Test box migration went OK, do the same thing on the Production Box.

Alternatively, if the amount of data is not that huge, export all necessary top
folders from the Test Box and then import the ACPs into the Production Box.

Planning document migration
Now we have got a strategy for how to do the document migration and we have
several import methods to choose from, but we have not yet thought about planning
the document migration. The end users will need time to select and organize the
files they want to migrate and we might need some time to write temporary import
scripts. So we need to plan this well ahead of production day.

The end users will have to go through all their documents and decide which ones
they want to keep and which ones they will no longer need. Sometimes the decision
to keep a document is not up to the end user but instead might be controlled by
regulations, so this requires extra research.

Chapter 8

[359]

The following screenshot shows the Best Money schedule for document migration:

It is not only electronic files that might need to be imported, sometimes there are
paper-based files that need to be scanned and imported. This needs to be planned
into the schedule too.

Implementing document migration
So we have a document migration strategy and we have a plan. Now let's see a
couple of examples of how we can implement document migration in practice.

Using Alfresco bulk filesystem import tool
A tool such as the Alfresco bulk filesystem import tool is probably what most people
will use and it is also the preferred import tool in the Best Money project. So let's
start looking at how this tool is used. It is delivered in an AMP and is installed by
dropping the AMP into the ALFRESCO_HOME/amps directory and restarting Alfresco.

However, we prefer to install it manually with the Module Management Tool
(MMT) as we have other AMPs, such as the Best Money AMP, that have been
installed with the MMT tool.

Document Migration Solutions

[360]

Copy the alfresco-bulk-filesystem-import-0.8.amp (or newest version) file
into the ALFRESCO_HOME/bin directory. Stop Alfresco and then install the AMP
as follows:

C:\Alfresco3.3\bin>java -jar alfresco-mmt.jar install alfresco-bulk-
filesystem-import-0.8.amp C:\Alfresco3.3\tomcat\webapps\alfresco.war
–verbose

Running Alfresco bulk import tool
Remove the ALFRESCO_HOME/tomcat/webapps/alfresco directory, so the files
contained in the new AMP are recognized when the updated WAR file is exploded
on restart of Alfresco.

The tool provides a UI form in Alfresco Explorer that makes it very simple to do the
import. It can be accessed via the http://localhost:8080/alfresco/service/
bulk/import/filesystem URL, which will display the following form (you will
be prompted to log in first, so make sure to log in with a user that has access to the
spaces where you want to upload the content):

Here, the Import directory field is mandatory and specifies the absolute path to the
filesystem directory from where to load the documents and folders from. It should be
specified in an OS-specific format such as for example C:\docmigration\meetings
or /docmigration/meetings. Note that this directory must be locally accessible to
the server where the Alfresco instance is running. It must either be a local filesystem
or a locally mounted remote filesystem.

The Target space field is also mandatory and specifies the target space/folder to load
the documents and folders into. It is specified as a path starting with /Company Home.
The separator character is Unix-style (that is, "/"), regardless of the platform Alfresco
is running on. This field includes an AJAX auto-suggest feature, so you may type
any part of the target space name, and an AJAX search will be performed to find
and display matching items.

Chapter 8

[361]

The Update existing files checkbox field specifies whether to update files that
already exist in the repository (checked) or skip them (unchecked).

The import is started by clicking on the Initiate Bulk Import button. Once an import
has been initiated, a status Web Script will display that reports on the status of
the background import process. This Web Script automatically refreshes every
10 seconds until the import process completes.

For the Best Money project, we have set up a staging area for the document
migration where users can add documents to be imported into Alfresco. Let's
import the Meetings folder, which looks as follows, in the staging area:

One Committee meeting has been added and that is what we will test to import with
the tool. Fill out the Bulk Import form as follows:

Document Migration Solutions

[362]

Click Initiate Bulk Import button to start the import. The form should show the
progress of the import and when finished we should see something like this:

In this case, the import took 9.5 seconds and 31 documents (totaling 28 MB) were
imported and five folders created. If we look at the document nodes, we will see
that they all have the bmc:document type applied and the bmc:documentData aspect
applied. This is because of the "Apply Best Money Document Type" rule that we
created in a previous chapter and added to the Meetings folder. All documents also
have the cm:versionable aspect applied via the "Apply Versioning" rule, which
again we created in a previous chapter and added to the Meetings folder.

Running Alfresco bulk import tool and applying
extra metadata
What would be nice though is if the bmc:language property would be populated
with the language that the document was written in as we have three subfolders
under the committee meeting "Staff Committee, 12 Nov" for documents in English,
French, and Spanish.

Chapter 8

[363]

We can solve this by using metadata property files for each document. So for
example, if we have a document in the doc_migration_stagingarea\Meetings\
Committee\2009\Staff Committee, 12 Nov\Eng folder with the name 09Eng-ABC
Report.pdf, we can create a property file for it called 09Eng-ABC Report.pdf.
metadata.properties with the following content:

bmc\:language=En

Note that the language has to be specified according to the bmc:language_options
constraints that have been defined in the content model. The filename pattern for
these "shadow" property files is <filename>.<extension>.metadata.properties.
Other property files will be imported like any other file.

Now just re-run the import, with the Update existing files checkbox checked, and
this particular file should be updated with the language property set to En. If we look
at the details page for this document, we will see the following screenshot:

Document Migration Solutions

[364]

We can now use this metadata when searching via Advanced Search dialog in
Alfresco Explorer:

Creating these "shadow" property files is of course not going to be
very practical when there are thousands of files to import. Then it
is better to have some temporary migration rules handling it or do
some post migration processing of documents with JavaScript.

Using an ACP Generator tool
Sometimes it is useful to be able to do the document migration using an ACP file.
For once, it preserves modified dates, which is useful when we use older Alfresco
versions that do not support preserving modified dates by turning off the Audit
aspect. In other cases it might be useful to do a document migration without having
to restart the Alfresco server or install extra modules in the Alfresco server, and an
ACP import does not require any of this.

There are a couple of different "ACP generators" that can be found on the Internet,
written in different languages and working with different Alfresco versions. The
source code for this chapter comes with an ACP Generator implemented in Java.

Chapter 8

[365]

This is to be able to get the ACP Generator to work with the latest Alfresco version,
use the Java NIO API for file copy, and be able to extend it with custom functionality.
We will use this ACP Generator in the following example:

The executable jar file for the ACP Generator can be found in the 3340_08_Code\
bestmoney\alf_extensions\trunk_acp_generator\build\dist directory
and is called acp_gen-1.0.jar. If you want to build it from scratch, use the
package-acpgen-jar ant target located in the 3340_08_Code\bestmoney\alf_
extensions\trunk_acp_generator directory.

Let's try out the ACP Generator by creating a content package from the same
documents and folders that we imported with the Alfresco bulk filesystem import
tool. To do this we feed the ACP Generator with the source path on the local disk
where the documents and folders exist and what name the ACP file should have:

C:\tools\acpgen>java -jar acp_gen-1.0.jar C:\doc_migration_stagingarea\
Meetings MEETINGS_FOLDER_HIERARCHY.ACP

ACP File will be created from content in: C:\doc_migration_stagingarea\
Meetings

Temp directory for ACP: C:\tools\acpgen\ACPtmp

Temp directory for ACP content: C:\tools\acpgen\ACPtmp\import

ACP Metadata file: C:\tools\acpgen\ACPtmp/import.xml

---- Generating Metadata XML for directory: C:\doc_migration_stagingarea\
Meetings

About to navigate directory tree: C:\doc_migration_stagingarea\Meetings

---- Generating Metadata XML for directory: C:\doc_migration_stagingarea\
Meetings\Committee

...

Added file (C:\doc_migration_stagingarea\Meetings\Committee\2009\Staff
Committee, 12 Nov\Eng\09Eng-ATS Report.pdf) as /import/content0.pdf

...

The ACP Generator will log what it's doing and here we can see that it prints logs
about navigating directories, generating metadata, and adding files to the ACP
package. We can now import the MEETINGS_FOLDER_HIERARCHY.ACP file from the
Alfresco Explorer UI. However, when we stand on the /Company Home folder and
import the ACP file, it will not work and a "Duplicate child name not allowed:
meetings" error message will be displayed.

Document Migration Solutions

[366]

This is because the import via the Alfresco Explorer UI does not support updating
nodes. We can import the ACP file to, for example, /Company Home/Test and it
would work fine as there are no duplicate folders in that case. Alfresco supports
updating nodes during import by using a command-line tool for the import. The
import tool can be passed a parameter called uuidBinding that specifies what
to do when encountering duplicate nodes.

The importer tool should be run from the Alfresco\tomcat\webapps\alfresco\
WEB-INF directory and the ACP file should be copied into this directory. The
importer tool also starts its own embedded Alfresco, so the Alfresco server needs
to be shut down before doing the import. Note that the MySQL server needs to be
running though. Here is how to use it:

Alfresco\tomcat\webapps\alfresco\WEB-INF>java -cp "classes\alfresco\
module;..\..\..\shared\classes;classes;..\..\..\lib*;..\..\..\common\
endorsed*;lib*" org.alfresco.tools.Import -user admin -pwd admin -store
workspace://SpacesStore -path /app:company_home -uuidBinding UPDATE_
EXISTING -verbose MEETINGS_FOLDER_HIERARCHY.ACP

Alfresco Repository Importer

. . .

This is however, not working either and we will see the
"DuplicateChildNodeNameException: Duplicate child name not allowed:
meetings" error in the console window. This is because we do not have the correct
UUIDs in the metadata XML for folders that exist in the repository. For the import
tool to update a folder when it exists, the metadata XML in the ACP file must
specify the same UUID as the folder has in the repository.

The ACP Generator tool does not add any UUIDs, if we do not tell it to. The
ACP Generator can take an extra parameter that specifies the name of a property
file with UUID mappings. This UUID mapping file can be generated with the
following JavaScript:

var filename = "uuidMapping.properties";
var file = companyhome.childByNamePath(filename);

if (file == null) {
 file = space.createFile(filename);
}

if (file != null){
 var store = "workspace://SpacesStore";
 var query = "+PATH:\"/app:company_home//*\" +TYPE:\"cm:folder\"";
 var folders = search.luceneSearch(store, query);

Chapter 8

[367]

 var content = "";
 for each (folder in folders) {
 var uuid = folder.properties["sys:node-uuid"];
 var pathAndName = folder.displayPath + "/" + folder.name;
 content += pathAndName + "=" + uuid + "\r\n";
 }
 file.content = content;
}

This script will generate a file with mappings as in the following example:

/Company Home/Meetings=a98682d2-217a-45dd-86cb-73fe01e8dde8

The only thing we need to do now is feed this mapping file into the ACP Generator
and it will make sure each existing folder has the correct <sys:node-uuid> entity
value, so when we run the import tool again it will work even if folders exist. Here is
how to run the ACP Generator with the UUID mapping file specified:

C:\tools\acpgen>java -jar acp_gen-1.0.jar C:\doc_migration_stagingarea\
Meetings MEETINGS_FOLDER_HIERARCHY.ACP uuidMapping.properties

Now run the Alfresco import tool again and it should work fine.

Summary
This chapter has talked about a very important subject in Document Management
projects, the document migration phase. Most companies have documents on a
network drive that they want to migrate over to Alfresco before it goes live. We have
talked about setting up a strategy for document migration and how to plan it. We
have also looked at different ways to import documents into Alfresco.

When starting a document migration project it is important to plan ahead and set up
a staging area where users can start copying over documents that they want to be
migrated over to Alfresco.

The Alfresco bulk filesystem import tool is probably the most efficient and fastest
tool to use at the moment and will probably be many people's favorite tool for
document migration. And it supports the very important feature of being able
to preserve modified dates during imports.

CIFS is also used by many for document imports because of its simplicity and
non-intrusiveness (that is, you do not have to install anything). It is however,
slow if you have a lot of data to import and cannot handle metadata.

Document Migration Solutions

[368]

ACP files can also be used to import documents and this chapter comes with a tool
that can create ACP files from the local filesystem. ACP files can be imported with
the modified dates for files preserved.

In the next chapter, we will take a look at the embedded workflow engine that
Alfresco comes with. We will look at how to design business processes and how
to implement them with the JBoss jBPM workflow engine.

Business Process Design
Solutions

So far we have seen that the Alfresco platform is quite powerful when it comes
to being able to implement business rules or doing different kinds of document
processing with scripts. However, sometimes the processing that is needed is
too complex to handle with just rules or scripts. This is where business process
automation and workflows come into the picture.

This chapter will take you through how to design advanced workflows with
Alfresco. Or more specifically, how to use Swimlane diagrams to design workflows
that can be easily converted into jPDL, the process's definition language used by
JBoss jBPM workflow engine, which is embedded in the Alfresco platform.

The Best Money's project has a requirement to implement a marketing production
business process, so we are going to design this process in this chapter.

In this chapter, you will learn:

How to define business processes with Swimlane diagrams, so it is easy
to see who is supposed to complete what task
What is jPDL
How to use naming conventions for tasks, so they are easy to tell apart
during discussions
How to design with phases to make the process more comprehensible
How to design with subprocesses to be able to reuse process constructs

•

•

•

•

•

Business Process Design Solutions

[370]

Designing business processes with
Swimlane diagrams
Before starting any implementation of workflows, it is always good to have the
design completed. Just as you would not start building a house without having
the blueprints completed.

Introduction to Swimlane diagrams
One very good way to define or describe business processes is to use a so-called
Swimlane diagram. A Swimlane diagram is unique in that it keeps the tasks in the
lanes grouping them together. Each lane is represented by a user or a group that will
execute the tasks in that lane. A Swimlane diagram looks something like this:

As a System Architect, you will—in most cases—work together with a Business
Analyst to map out the business processes that will be automated with the workflow
engine. It is a good idea to spend some time with the Business Analyst to agree on
how to best design the workflows with Swimlane diagrams. One good tool to use
when creating the Swimlane diagrams is Microsoft Visio, which has been used to
create the Swimlane diagrams that you see in this book.

Decide what symbols to use for tasks, subprocesses, decisions, parallel flows, and
so on (if you do not have access to MS Visio or do not want to use Swimlane
diagrams then another option is to use the standard BPMN syntax and a GUI
tool supporting it).

Chapter 9

[371]

Make sure that the Swimlane diagram is easily mapped to the process definition
language (PDL) that you will use when implementing the workflow. In our case,
we will use the jBPM Process Definition Language (jPDL). jPDL is the workflow
definition language used by the JBoss jBPM workflow engine that is embedded in the
Alfresco platform. The previous Swimlane diagram would look as follows in jPDL
Graphical representation (using an Eclipse plug-in):

Here, we can see that the Swimlane diagram is a good compliment to the jPDL
diagram as it also shows you what role or user is responsible for executing a
particular task.

In the beginning, it might be a good idea for the System Architect to work closely
with the Business Analyst when defining the Swimlane diagrams that will represent
the business processes. By doing so they are both on the same page on how to do this
and the Swimlane diagrams will be created in a way so as to be easily represented
in jPDL.

Business Process Design Solutions

[372]

If we do not follow this, and let the Business Analyst work alone, then we could
encounter problems as in the following example where a Business Analysts starts
off by drawing a piece of a Marketing Material Production process like this:

At first, this might look okay, but there are several things that need to be clarified
before they can be mapped into the process definition language (that is jPDL):

The "Produce or Update Material Brief" task for the ANALYST probably
needs to be split into two tasks as you might want to display different Title,
Description, other data, and so on for when the brief is first created and when
it is updated. The Update Material Task would also come at a different point
in the flow.
The "Is Material OK? (If Applicable)" decision for the TEAM MANAGER
would have to be preceded with a task where the TEAM MANAGER decides
if the material brief looks okay, and then this can be followed with a decision
node. Also, what does "If Applicable" mean in this case?
The "Is Material OK?" decision for the OWNER would have to be preceded
with a task where the OWNER decides if the material brief looks okay, and
then this can be followed with a decision node.
The "On Request Review Output" task seems to be put in the diagram
to only be executed some times, which will not work.

•

•

•

•

Chapter 9

[373]

Every task and decision in the Swimlane diagram has to be clear and non-
ambiguous. A better version of the Swimlane diagram would look like this:

Here, we can see that every task and decision is clear and specified in such a way
that it is easy to know how to map this business process into the process definition
language. Make sure to work together with the Business Analyst a lot in the
beginning; it will save you loads of time in the implementation phase. You will avoid
lots of questions like "What do you mean here?", "Do you want it to take this path or
that path, you cannot have it both ways?", "Is this a task or a decision, should this be
a subprocess or what?", and so on.

If the Business Analyst understands how you have to write the process definition,
it is going to help a lot and increase productivity enormously.

Subprocesses
Another thing that you might want to make the Business Analyst aware of and that
will again save you a lot of time is the use of subprocesses. As in any programming,
apply the DRY (Do not Repeat Yourself) principle. If you see that a group of nodes in
a Swimlane diagram occur in several places, for example, a sign-off procedure, it is
time to think about lifting them out into a separate subprocess.

Business Process Design Solutions

[374]

Subprocesses are depicted in the following way:

This Swimlane diagram shows a subprocess called Work Process that is called from
a parent process called Studio Process.

Using subprocesses has many advantages:

You save implementation time as you do not have to define and implement
the same group of nodes in several places in the main process.
You will have less chance of errors as you have less process definition and
implementation to maintain.
You will only have to test this group of nodes once, in the subprocess, and
not in every place in the main process where they might be needed.
Updates to this group of nodes have to be done only in one place, which
makes maintenance a lot easier.
Over viewing and discussing around the complete/main process becomes
much easier.

So, subprocesses can be used not only to re-use process definitions and
implementation code but also to divide processes into more comprehensible pieces.
So when you feel you begin to have a problem following the process definition
from start to end, it might be a good time to start extracting some parts of it
into subprocesses.

•

•

•

•

•

Chapter 9

[375]

Further on, when you use subprocesses it is easier to track down problems.
Subprocesses are deployed separately from the main process. So if you suddenly get
an error after deploying a new version of a subprocess, you can just focus on that
particular subprocess and if you cannot immediately figure out what the problem is,
you can just re-deploy the previous working version.

If you just have one big mega process it gets much harder to track down where the
problem is in the process compared to if you are focusing on a smaller part of a
process definition.

You have heard only about positive things with subprocesses, isn't there any
negative stuff about using them? Well, there is actually. When you use subprocesses,
you do not see their task history from task dialogs in the main process or vice versa.
So, if I am in a Sign-off subprocess I do not see any of the previously completed tasks
from the main process that called the Sign-off process. So when I open up a task
dialog and look in the task history section I only see completed tasks from the
Sign-off process. It's the same thing in the main process, I do not see any completed
tasks from the Sign-off subprocess.

To get a complete task history for the main process including all involved
subprocesses, you will have to do some custom coding. We will look at one way of
doing this by generating an Excel spreadsheet at the end of the main process with
all the involved process's completed tasks.

Task metadata
When defining a business process, it is also a good idea to think about what
information (that is, metadata) should be carried through the process and displayed
in the different task dialogs. I find it beneficial to actually have the Business Analyst
specify what properties (that is, metadata) should be displayed or input for a task
when they define the Swimlane diagram. After all, the Business Analyst should
know the domain inside out for the system that should be built.

So we can for example, use annotations when we specify the properties for the
different tasks. If we think about the Swimlane diagram in the previous figure,
we could specify properties for the Create Material Brief task as follows:

Business Process Design Solutions

[376]

Here, the Business Analyst has told the process implementer that the end user
should be able to assign a reviewer, set a job name, and set a work type when
completing this task. If the work type has some constraints then the Business Analyst
would specify that also such as, for example, "Set Work Type [concept, design]".

Process phases
If you have a rather big process with loads of tasks, it is sometimes good to divide
it into different phases. These phases can be graphically depicted in the Swimlane
diagram and they can also be defined in the process definition language as
Super States.

The following Swimlane diagram illustrates:

In this Swimlane diagram, we have specified four different phases, first the Brief
Definition phase, then it transitions into the Sign-off phase, then to the Review
phase, and finally it transitions into the Production phase.

Phases are useful as you quite often get requests to keep some kind of process status
as the process progresses. Setting this status is best done when you enter each phase,
(that is, when you enter the Super State during implementation in jPDL) as you then
do not have to worry about setting it for each node in the phase. And when nodes
are added to a phase or moved outside a phase you can be confident that the process
status is still accurate for a particular node.

Chapter 9

[377]

Quite often permissions and status information is updated when documents pass
through the different phases of the process. For example, when a document enters
the production phase, we probably want to make it read-only and put in a "live"
folder. Alfresco supports setting permissions on documents and folders via both
embedded and remote APIs.

The process status is also often used when you produce reports. Another thing that
you can also use phases for is to use them in task naming conventions, which is the
next thing we are going to talk about.

Task naming convention
When the business process you have developed is going live, (that is, deployed
into production) it is sometimes useful to have some kind of naming convention
for all the tasks. This makes it easier for End Users, Business Analysts, and System
Architects to know exactly what task is referred to in a discussion around something.

The tasks could for example, be named and numbered according to what phase they
are in and where in the phase they are located:

Here, we have used a task naming convention that starts with the Phase (that is,
BD = Brief Definition, S = Sign-Off, R = Review, and P = Production) followed by
where in the flow the task is located (that is, 1st, 2nd, 3rd ... task in the phase).

Business Process Design Solutions

[378]

Now, when I talk about task BD01, everyone knows that I am talking about the
Create Material Brief task and there are no misunderstandings.

Designing the material production process
This section takes you through how to design the complete Best Money marketing
material process with its subprocesses using Swimlane diagrams.

Job process Swimlane diagram
For Best Money, the Job process is the main process for marketing material
production. The following Swimlane diagram has been created for it by the
Business Analyst:

The Job Process is started by the Job Owner who creates a brief (BD01) with
information about what marketing material should be created. This brief then goes
into a sign-off procedure where there can be up to three levels of sign-off depending

Chapter 9

[379]

on what Brief Approval Level has been set by the Job Owner. If the brief is approved
then it goes to the Studio Team Managers, if it is not approved then it goes back to
the Job Owner for an update (BD02).

After approval, one of the Studio Team Managers takes ownership of the task
to validate the brief (P00). If validation is successful then the brief is passed on to
the Studio Process where the material is created according to the marketing brief.
Once the material has been created by the Studio Team, it goes into the sign-off
procedure again.

The Production sign-off procedure is the same here as it is when the brief is
approved, so we reuse the same subprocess. At the same time as the production
sign-off, (that is, in parallel) the produced material is sent off to an External
Reviewer via e-mail for approval (SO00).

When the marketing material has been approved by the External Reviewer and the
production sign-off process has approved the material, its status is set to Live and it
is copied to an Approved Material folder and the Job data is applied to all content.
Also, a list of all completed tasks is created in the form of an Excel Spreadsheet and
stored in the material folder.

Sign-off process Swimlane diagram
The sign-off process has been designed in a generic way so it can be used for both
Brief and Production sign-off. The Sign-Off subprocess looks as follows:

Business Process Design Solutions

[380]

There are three levels of approval in this diagram:
Level 1: Director level approval
Level 2: Marketing Manager level approval
Level 3: Group Manager level approval

So, it starts off by the Level 3 Approver reviewing the marketing brief or produced
material (SO01). The Level 3 Approver is mandatory. If the Level 3 Approver
approves the brief or material then it is passed on to the Level 2 Approver—if level 2
approvals have been selected by the Job Owner when the brief was created.

The Level 2 Approver reviews the brief or material, (SO02) and if approved it is
passed on to the Level 1 Approver—if Job Owner has selected level 1 approval. The
Level 1 approver reviews the brief or material (SO03) and rejects or approves.

If the Level 2 Approver is rejecting the brief or material then an e-mail is sent to the
Level 3 Approver. Finally, if the Level 1 Approver rejects the brief or material an
e-mail is sent to the Level 2 Approver. Anytime the brief is rejected by an approver
the sign-off process aborts and the sign-off result is set to Rejected and passed back
into the Job Process.

A successfully approved marketing brief or produced material is passed on to the Job
Owner so he or she can check any comments (SO04) made by the approvers before
the brief or material is passed on back into the Job Process as Approved.

Studio process Swimlane diagram
The studio process is where the material described in the brief is produced. The
Studio subprocess looks as follows:

•
•
•

Chapter 9

[381]

When the marketing brief has been approved it is passed on into the Studio Process
where one of the Studio Team managers will start by allocating one or more
copywriters or designers to do the Concept work (P01). The Concept work is also
handled by a subprocess as all the work done in the Studio Process is the same,
so no need to repeat these nodes everywhere.

After Concept work is completed by all workers assigned to it, we fork out into two
parallel paths to do the design (P03) and copywriting (P02) work. When all work
is completed it is approved/validated (P04) by one of the Studio Team managers
before it goes back into the Job Process.

As you can see, this process contains both joins and forks. There is one node
depicting this "Join and Fork" and there is also an implicit join. Sometimes it can be
good to use a node to depict a Join or a Fork and other times it might do with just
drawing the transition lines.

In this process, we can see that the P01 task node allows the user to allocate one or
more concept workers to work in parallel. So here we will need a special construct
for this and it will probably include more nodes than just this one task node in jPDL.

Work process Swimlane diagram
The work process is designed in a generic way so it can be reused in several places.
Its Swimlane diagram looks as follows:

Business Process Design Solutions

[382]

The Work Process starts with the worker producing the marketing material (W01).
This Swimlane has an Abstract person called Worker, so this process would have to
have the concrete Designer or Copywriter passed into it. When the work is produced
it is validated first by one of the Studio Team Managers (W02) and then the Job
Owner (W03).

If the work is not approved then the Worker amends (W04) it and then it is validated
again and so on, until approved and passed back up to the Studio process.

Summary
In this chapter, we have learned how to use Swimlane diagrams to design business
processes that can be easily converted into the JBoss jBPM process definition
language (that is jPDL). We designed one main Job process that uses a Sign-Off
subprocess and a Studio subprocess. The Studio subprocess also uses a Work
subprocess in several places.

A Swimlane diagram has the advantage that it is laid out in a way that makes it
easy to see what role or user is supposed to complete a task in the business process.
Swimlane diagrams are a very good compliment to jPDL diagrams and they are
easy to discuss for people from different backgrounds, such as end users, business
analysts, software architects, and so on.

We have seen how we can use reusable subprocesses when designing business
processes and how this makes it easier to overview the process, saves time, and
gives a lower maintenance burden in the long run.

Using a naming convention for task names also makes it easier to maintain the
business process and end users, the business analyst, and the software architect will
have an easy way to distinguish between all the tasks in the business processes. The
task naming convention also tells everyone about what phase the task belongs to.

Finally, we had a look at how a process can be divided into different phases to make
it easier to manage. During implementation it is also good to use phases as that
sometimes make life easier when setting variables related to a specific phase.

In the next chapter, we will implement the complete Marketing Production process
based on these Swimlane diagram designs.

Business Process
Implementation Solutions:

Part 1
In the last chapter, we saw how to design business processes with the help of
Swimlane diagrams and we designed Swimlane diagrams for the Best Money's
Marketing job process. In this chapter and the next, we will go through how to build
advanced workflows and implement the Marketing Job process with Alfresco's built-
in workflow engine.

This chapter, which is part 1 of implementing the complete Job process, starts off by
going through how to implement the generic Work subprocess. It shows us the basic
techniques needed to implement workflows in the Alfresco environment.

Alfresco implements workflow support by embedding the JBoss jBPM workflow
engine and integrating it with Alfresco features such as the client UI, content model,
and resource management.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Business Process Implementation Solutions: Part 1

[384]

The following figure shows how the Alfresco workflow feature is built up:

The jBPM workflow engine basically handles all the runtime execution of a
registered process definition. When a process is started from a definition, a process
instance is created. The workflow engine will create a task instance whenever there
is something for an Alfresco user to do.

A process instance can also create variables that will follow the process throughout
its life. Task instances can also create variable instances and in that case the variables
are accessible only from the task instance.

Tasks are completed by a physical person while for example a node
that executes a script is managed by the system and does not involve
a task instance.

All variable instances are based on Alfresco properties from standard content
model definitions. The user sees task information via standard Alfresco property
sheet definitions. The task dialogs are localized via standard Alfresco resource
file management.

In this chapter, you will learn:

Implementing business processes with jPDL
Defining workflow data as a standard Alfresco content model
Using process and task variables
Using standard Alfresco property sheets to define task dialogs for data input
Externalizing the labels in the task dialogs

•

•

•

•

•

Chapter 10

[385]

Deploying a workflow definition
Testing a workflow definition

Implementing the marketing production
workflow
When the Business Analyst has finished the Swimlane diagrams for the Job, Studio,
Sign-off, and Work processes, it is time for the architect to turn those into workflow
definitions so they can be implemented and deployed into the Alfresco jBPM
workflow engine.

To do this we are going to use the jBPM plug-in for Eclipse so we can get the
skeleton workflow definitions (that is, the start of the jPDL files) from just drawing
the workflows graphically. The jBPM Process Designer can be downloaded from
http://sourceforge.net/projects/jbpm/files.

We are going to start implementing the generic Work subprocess, which is used
by the Studio process in several places, as it is a rather simple one and we can
explain some of the most important concepts when defining and implementing
this subprocess.

Start up Eclipse and create a new Java project from the existing source (that is, from
3340_10_Code\bestmoney\alf_extensions\trunk_alfresco). Then add a new
process definition for the work process by right-clicking on the workflows directory
and then select New | Other.... Give this process the name work.

Implementing the Work subprocess
This chapter will take us through everything that is needed to implement a workflow
with the JBoss jBPM workflow engine and its integration with Alfresco. We will do
the implementation of the Work subprocess in the following order:

1. Create the process definition (jPDL).
2. Define content model for task data.
3. Create property files for UI labels.
4. Setting dynamic descriptions and due date.
5. Defining Job data.
6. Creating task property sheets.
7. Bootstrapping UI property files and the task property sheets.
8. And finally testing the workflow implementation.

•

•

Business Process Implementation Solutions: Part 1

[386]

Work process—workflow definition (jPDL)
Now define a process definition graphically that looks like this for the Work
subprocess (Note: Use underscore (_) instead of dash (-) when naming the tasks, it
will make life easier later on when specifying the resource file property names):

For the Work subprocess, we have decided to prefix all task node names with
W<sequence number>_, so it is easy to recognize the task as belonging to the Work
process. We have added an extra transition after each ValidateWork task to show
that there are two paths (that is, reject or approve) that the process can take when
completing these tasks. This will also result in two buttons in the Task dialog in
Alfresco Explorer (that is, Approve and Reject) for a ValidateWork task (compared
to just one Complete button).

Note also that we have added 2 to the WorkValid2? decision node name as it has to
differ from the other decision node (that is, the WorkValid? node). Other than that, it
was quite straightforward to create this jPDL process definition graphically.

Chapter 10

[387]

If you now switch from the Diagram tab to the Source tab in Eclipse, you will see a
skeleton process definition looking something like this:

<?xml version="1.0" encoding="UTF-8"?>

<process-definition xmlns="urn:jbpm.org:jpdl-3.2"
 name="bmw:workProcess">

 <start-state name="Start">
 <transition to="W01_ProduceWork"></transition>
 </start-state>
 <task-node name="W01_ProduceWork">
 <transition to="W02_ValidateWork"></transition>
 </task-node>
 <task-node name="W02_ValidateWork">
 <transition to="WorkValid?" name="reject"></transition>
 <transition to="WorkValid?" name="approve"></transition>
 </task-node>
 <task-node name="W03_ValidateWork">
 <transition to="WorkValid2?" name="approve"></transition>
 <transition to="WorkValid2?" name="reject"></transition>
 </task-node>
 <task-node name="W04_AmendWork">
 <transition to="W02_ValidateWork"></transition>
 </task-node>
 <decision name="WorkValid?">
 <transition to="W03_ValidateWork" name="yes"></transition>
 <transition to="W04_AmendWork" name="no"></transition>
 </decision>
 <decision name="WorkValid2?">
 <transition to="End" name="yes"></transition>
 <transition to="W04_AmendWork" name="no"></transition>
 </decision>
 <end-state name="End"></end-state>
</process-definition>

The process definition name has manually been set to bmw:workProcess (we will
define the bmw namespace later when we create the Workflow Content Model). The
jPDL XML Schema version has also been updated to 3.2 (from 3.1) as the jBPM jPDL
designer is targeted towards version 3.2; it also enables us to add a description
element to the node definitions.

Business Process Implementation Solutions: Part 1

[388]

Here you can see that using the Eclipse plug-in quickly gets you going with the
process definition and you don't have to know too much about jPDL syntax.
However, this process definition basically does not do anything useful, it needs
some tasks with Swimlane definitions, logic, and variables to work properly.

First, we are going to need the so-called swimlanes for the users and groups that are
going to execute the different tasks in the Work Process. So let's define the jobOwner,
studioTeamManagers, and worker swimlanes, as follows, at the top of the file:

<?xml version="1.0" encoding="UTF-8"?>
<process-definition xmlns="urn:jbpm.org:jpdl-3.2"
 name="bmw:workProcess">

 <swimlane name="jobOwner">
 <assignment class=
 "org.alfresco.repo.workflow.jbpm.AlfrescoAssignment">
 <actor>#{jobOwner}</actor>
 </assignment>
 </swimlane>
 <swimlane name="studioTeamManagers">
 <assignment class=
 "org.alfresco.repo.workflow.jbpm.AlfrescoAssignment">
 <pooledactors>#{people.getGroup(studioTeamMgrsGroupName)}
 </pooledactors>
 </assignment>
 </swimlane>
 <swimlane name="worker">
 <assignment class=
 "org.alfresco.repo.workflow.jbpm.AlfrescoAssignment">
 <actor>#{bpm_assignee}</actor>
 </assignment>
 </swimlane>
...

</process-definition>

Here, we can see that the actors of the swimlanes are all specified as variables and
are going to be passed into the subprocess from the parent process. The #{jobOwner}
and #{bpm_assignee} variable expressions are Person objects, while the #{people.
getGroup(studioTeamMgrsGroupName)} variable expression uses the passed-in
Studio Team Manager's group name to fetch a Group object to act as a pooled actor.
We want to pass in group names and other literals from the parent process as we do
not want them defined in more than one place.

Chapter 10

[389]

When pooled actors are used, all members of the group will get the
task assigned. And the task will show up in the My Pooled Tasks
dashlet in Alfresco Explorer. Then one member takes ownership of
the task and completes it (only one person can complete it). Also
note that the My Pooled Tasks dashlet is not displayed by default
in the dashboard and has to be added via configuration.

The bpm_assignee variable will be set to the currently selected worker (that is,
designer or copywriter) in the parent process before being passed into the
Work subprocess.

The next thing that we want to do is save the process ID for the subprocess into a
process variable and we do that in the start-state node just before we leave it:

<start-state name="Start">
 <transition to="W01_ProduceWork"></transition>
 <event type="node-leave">
 <script>
 var procId = executionContext.processInstance.getId();
 executionContext.setVariable("procId", procId);
 </script>
 </event>
</start-state>

So why do we save the subprocess ID? We want to keep a process ID in the parent
process for each subprocess that has been executed as part of the parent process. This
will become useful later on when you want to create reports, query the task database,
and so on. So this variable will actually be passed back up into the parent process.

Here we save the process ID as a process variable called procId. There are two
ways of storing variables—either as process variables or as task variables. If you
have a value and you want it to live throughout the lifecycle of the process instance,
you should define it as a process variable. On the other hand, if you only need the
variable when handling a task then you should store the variable as a task variable,
of which we will see examples later on.

We have now seen quite a bit of jPDL syntax and when we set the process
variable we did that in an event handler and we then needed to know what
events were available to use. So how do we find out what syntax is legal, and
what options are available, and so on? For example, there are many events that
can be used in a node to do some processing, but which ones we can use depends
on the node type. So to have an idea of what event(s) can be used in a certain
node, it is a good idea to use an editor that recognizes the jPDL syntax (that is,
an editor that has imported the jPDL Schema, which can be downloaded from
http://docs.jboss.org/jbpm/xsd/jpdl-3.2.xsd).

Business Process Implementation Solutions: Part 1

[390]

The Eclipse JBoss jPDL plug-in recognizes the jPDL schema and it gives you the
possibility to see what events are available to use by clicking Ctrl + Space as follows:

Unfortunately, the event type list that we can see in the preceding screenshot is the
complete list of event types available in jPDL and not all of them can be used for a
start-state node, in fact only the node-leave event is allowed. The jPDL schema
does not restrict the event type per node type so we have to look elsewhere for
information about what event types can be used for a node. The best is to look up the
JBoss jBPM documentation at http://docs.jboss.org/jbpm/v3/userguide/jpdl.
html. The jPDL xml Schema section contains information about each element in jPDL.

If we look at the documentation for the start-state node we can see that it says
that the event element description is supported event types: {node-leave}.

So if we tried to set the subprocess instance ID in the node-enter event of the
start-state node it would result in it being set to null. The process syntax would
however be correct and the process definition would be deployable and executable.
This is something to watch out for, otherwise we can spend significant time tracking
down why an event definition is not working the way we want it to.

You are probably wondering now what this script syntax is that we are using to set
the process variable. A script tag is an action that executes a BeanShell script or an
Alfresco JavaScript. When using jBPM with Alfresco you can choose between two
different script languages depending on what you want to do.

Either you can use a BeanShell script (http://www.beanshell.org/home.html) as
we have done here, or you can use an Alfresco JavaScript (http://wiki.alfresco.
com/wiki/JavaScript_API) if you need access to Alfresco-specific things, such
as a variable pointing to the company home folder. We will discuss more around
scripting as we go along.

Chapter 10

[391]

We have got the swimlanes and what we need now are some tasks that use them.

So why do we need to define tasks when we already defined a task-node
element? Good question, the task-node element is just a container for
all behavior having to do with a task. It does not specify who should
do the task or where to transit after the task is completed or any event
processing, and so on.

So in each task node we are going to define task elements as follows:

 <task-node name="W01_ProduceWork">
 <task name="bmw:W01_ProduceWorkTask"
 swimlane="worker"></task>
 <transition to="W02_ValidateWork"></transition>
 </task-node>
 <task-node name="W02_ValidateWork">
 <task name="bmw:W02_ValidateWorkTask"
 swimlane="studioTeamManagers"></task>
 <transition to="WorkValid?" name="reject"></transition>
 <transition to="WorkValid?" name="approve"></transition>
 </task-node>
 <task-node name="W03_ValidateWork">
 <task name="bmw:W03_ValidateWorkTask" swimlane="jobOwner">
 </task>
 <transition to="WorkValid2?" name="approve"></transition>
 <transition to="WorkValid2?" name="reject"></transition>
 </task-node>
 <task-node name="W04_AmendWork">
 <task name="bmw:W04_AmendWorkTask" swimlane="worker">
 </task>
 <transition to="W02_ValidateWork"></transition>
 </task-node>

For each task-node we have added a task and named it according to the following
naming convention:

{namespace from workflow content model}:{task node name}Task

And for each task we have set what swimlane should be used. Basically, we
specify who should execute the task, either a person or a group of people
(that is, pooled assignment).

Business Process Implementation Solutions: Part 1

[392]

In the workflow content model, (which we will define later) we will define a type for
each task with the same name and namespace as the task name. You do not have to
follow this naming convention, but it makes life easier when you look at a definition
in the workflow content model and you want to know what it is used for.

Last thing we need to do to get this workflow going is to define one variable in
the W02_ValidateWork task node and one in the W03_ValidateWork task node that
holds the result of the validation (that is, reject or approve). And then check these
variables in the WorkValid? and WorkValid2? decision nodes:

<task-node name="W02_ValidateWork">
 <event type="node-enter">
 <script>
 <variable name="workApprovedByTeamMgr" access="write"/>
 <expression>workApprovedByTeamMgr = false;
 </expression>
 </script>
 </event>
 <task name="bmw:W02_ValidateWorkTask"
 swimlane="studioTeamManagers"></task>
 <transition to="WorkValid?" name="reject"></transition>
 <transition to="WorkValid?" name="approve">
 <script>
 <variable name="workApprovedByTeamMgr"
 access="read,write"/>
 <expression>workApprovedByTeamMgr = true;
 </expression>
 </script>
 </transition>
</task-node>
<decision name="WorkValid?">
 <transition to="W04_AmendWork" name="no"></transition>
 <transition to="W03_ValidateWork" name="yes">
 <condition>#{workApprovedByTeamMgr == true}</condition>
 </transition>
</decision>
<task-node name="W03_ValidateWork">
 <event type="node-enter">
 <script>
 <variable name="workApprovedByJobOwner" access="write"/>
 <expression>workApprovedByJobOwner = false;
 </expression>
 </script>
 </event>

Chapter 10

[393]

 <task name="bmw:W03_ValidateWorkTask" swimlane="jobOwner"></task>
 <transition to="WorkValid2?" name="reject"></transition>
 <transition to="WorkValid2?" name="approve">
 <script>
 <variable name="workApprovedByJobOwner"
 access="read,write"/>
 <expression>workApprovedByJobOwner = true;
 </expression>
 </script>
 </transition>
</task-node>
<decision name="WorkValid2?">
 <transition to="W04_AmendWork" name="no"></transition>
 <transition to="End" name="yes">
 <condition>#{workApprovedByJobOwner == true}</condition>
 </transition>
</decision>

Here we have used the workApprovedByTeamMgr and workApprovedByJobOwner
Boolean variables to keep track of what the approver's result is.

One thing to note here is that we have changed the location of the no
transition element in both decision nodes so that it sits before the
yes transition element. This is because there is a problem with some
Alfresco versions to get it to work if the no transition is not first, the
condition then always evaluates to true no matter what is selected
(that is, approved or rejected).

You might have noticed that a different script syntax has been used here to set the
process variable. A variable element has been defined to specify the variable name
that should be written (that is, because of the access="write") to the execution
context and the script code is inside an expression element.

By default (that is, by using the executionContext.setVariable and not using the
variable and expression elements), all process variables are available as script
variables (that is, inside the script element) but no new script variables (that is,
variables defined as var procId = ...) will be written to the execution context as
process variables without using the executionContext.setVariable.

To customize the default behavior of loading and storing variables into the script,
the variable element can be used as a sub-element of the script element. In that
case, the script code also has to be put in a sub-element called expression. And then
the process variables specified with the variable element will be the only custom
variables available to use in the script.

Business Process Implementation Solutions: Part 1

[394]

Note that when using the variable element, only one variable can be written
back to the process context (that is, you can have only one variable defined with
access="write") but multiple variables can be loaded into the script (that is, with
access="read").

Further on, the following script variables will always be available to use in a script:

executionContext: Current execution context, which can be used to get to
process instance ID, write new custom process variables.
token: Current execution path's token. A token is the runtime concept that
maintains a pointer to a node in the graph.
node: Current node instance.
Task: Current task container.
taskInstance: The task instance that can be used to read and write
task variables.

Try to keep your execution context as tidy as possible and only keep/store process
variables that are used to control the process or used as a help to fetch data for
reporting, for example. Do not use the execution context to store model data in
process variables (model data is stuff from your local domain, in our case Job data).

If we were to start storing Job data as process variables we would
eventually end up duplicating the variable definitions as we would also
have to define the Job data in the Alfresco workflow content model.
Each task is associated with a type in the workflow model. This type
defines all the data or variables that the task will manage. We might
define jobStatus as a process variable but we would also have to map it
to the corresponding content model variable such as bmw:jobStatus.

This is mostly what we need for the Work subprocess definition. Let's move on
to define a workflow content model and document content model to support this
workflow definition.

Work process—workflow content model
In the 3340_10_Code\bestmoney\alf_extensions\trunk_alfresco\config\
alfresco\ module\com_bestmoney_module_cms\model directory we have two
model definition files called content-model.xml and workflow-model.xml:

•

•

•

•

•

Chapter 10

[395]

They contain the domain document content model and the domain workflow content
model. These two content models could be defined in the same file but it is easier
to keep track of what model definitions have to do with document classification
and what model definitions have to do with workflows, if we keep two files.

To define the supporting types for the Work subprocess open up the
workflow-model.xml file.

When defining a new model we always start by importing the Alfresco namespaces
that we are going to need when defining our new model. The d namespace is used
when you set the data type (for example, d:text) for a property. The cm namespace
is used when you refer to objects in the Alfresco content model, for example,
cm:person. And the bpm namespace is used when we define our workflow model
(for example, when defining a new task it extends, bpm:workflowTask):

<model name="bmw:workflowModel"
 xmlns="http://www.alfresco.org/model/dictionary/1.0">
 <imports>
 <import uri="http://www.alfresco.org/model/dictionary/1.0"
 prefix="d"/>
 <import uri="http://www.alfresco.org/model/content/1.0"
 prefix="cm"/>
 <import uri="http://www.alfresco.org/model/bpm/1.0"
 prefix="bpm"/>

After importing the Alfresco namespaces we also import the existing Best Money
document content namespace (bmc). Then we define a new Best Money workflow
namespace (bmw) to be used for all workflow-related model definitions. They have
the following meaning:

bmw: Workflow Content Model Namespace that will contain all types,
aspects, properties, and associations that have to do with the workflows
that we are implementing. Types and aspects from this model are never
applied to any documents/files in the repository (located in the
workflow-model.xml file).

•

Business Process Implementation Solutions: Part 1

[396]

bmc: Document Content Model Namespace that is used to define types,
aspects, and properties that are used by both the workflow tasks and
are also applied to documents for classification purpose. In our case,
we have defined the bmc:job aspect in this namespace (located in the
content-model.xml file).

Here is how this should look:

 <import uri="http://www.bestmoney.com/model/content/1.0"
 prefix="bmc"/>
 </imports>
 <namespaces>
 <namespace uri="http://www.bestmoney.com/model/workflow/1.0"
 prefix="bmw"/>
 </namespaces>

After the namespace imports definitions, we define all the types we are going to
need. For the workflows we need one type per task. Because these task types will
have pretty much the same properties, it is a good idea to define some base types
first with the general data that is going to be needed for all task types. In that way
you do not have to duplicate properties in every task, and it is easy to add stuff
to all tasks:

<types>
 <type name="bmw:baseJobTask">
 <parent>bpm:workflowTask</parent>
 <overrides>
 <property name="bpm:packageActionGroup">
 <default>add_package_item_actions</default>
 </property>
 </overrides>
 <mandatory-aspects>
 <aspect>bmc:job</aspect>
 <aspect>bmw:job</aspect>
 <aspect>bmw:assigneeApprover1Person</aspect>
 <aspect>bmw:assigneeApprover2Person</aspect>
 <aspect>bmw:assigneeApprover3Person</aspect>
 </mandatory-aspects>
 </type>
 <type name="bmw:baseAssignJobTask">
 <parent>bmw:baseJobTask</parent>
 <mandatory-aspects>
 <aspect>bpm:assignee</aspect>
 </mandatory-aspects>
 </type>

•

Chapter 10

[397]

 <type name="bmw:baseWorkTask">
 <parent>bmw:baseAssignJobTask</parent>
 <properties>
 <property name="bmw:workType">
 <title>Current work type such as for example
 Concept</title>
 <type>d:text</type>
 </property>
 </properties>
 </type>

We can now add a type for each task and extend the generic base types that we
just defined:

 <type name="bmw:W01_ProduceWorkTask">
 <parent>bmw:baseWorkTask</parent>
 </type>
 <type name="bmw:W02_ValidateWorkTask">
 <parent>bmw:baseWorkTask</parent>
 </type>
 <type name="bmw:W03_ValidateWorkTask">
 <parent>bmw:baseWorkTask</parent>
 </type>
 <type name="bmw:W04_AmendWorkTask">
 <parent>bmw:baseWorkTask</parent>
 <overrides>
 <property name="bpm:packageItemActionGroup">
 <default>edit_package_item_actions</default>
 </property>
 </overrides>
 </type>
</types>

Finally, add a new aspect called bmw:job that will contain data needed only
during the workflow execution (that is, the data that will not be used for document
classification; document classification data is contained in the bmc:job aspect):

 <aspects>
 <aspect name="bmw:job">
 . . .
 </aspect>
 </aspects>
</model>

Business Process Implementation Solutions: Part 1

[398]

When defining the workflow content model it is quite important to know what is
available in the Alfresco models. Specifically, the workflow-related model (bpm)
as that is what we are currently interested in. If you have not done so already, you
should download the Alfresco SDK (http://wiki.alfresco.com/wiki/Alfresco_
SDK). To see what types, aspects, and so on are available in the bpm model open up
the bpmModel.xml file located in the sdk\lib\server\config\alfresco\model
directory.

You might have been thinking that a priority property could come in handy for
the tasks and why did we not define it. A priority property and other properties
such as description, startDate, completionDate, dueDate, status, and so on are
already available in the bpm:task definition. So it is really important to study the
Alfresco models first. In this way, we do not create duplicate definitions of stuff that
is already defined and available.

Our workflow model has an inheritance hierarchy that looks like this:

Chapter 10

[399]

So basically, we have created one type for each task in the workflow definition.
And these types extend the base Work subprocess task type bmw:baseWorkTask
that contains current work type bmw:workType that will be set when the Work
subprocess is initiated.

Then this type extends the base assign job task bmw:baseAssignJobTask that
contains the bpm:assignee property, which corresponds to the worker swimlane.
The worker swimlane is an association to a person and can be used to assign a
user to a task. In our case, it will point to the person that will complete the W01_
ProduceWork task and optionally, the W04_AmendWork task. The bpm:assignee
value will also be passed into the Work subprocess from the parent process.

The W02_ValidateWorkTask is associated with the studioTeamManagers swimlane,
which is a pooled actor's swimlane. So it does not really have to inherit from the
bmw:baseAssignJobTask as it does not need the bpm:assignee property and is
instead backed by the bpm:pooledActors property of the bpm:task. The same goes
for the W03_ValidateWorkTask that also would not have to extend the base assign
Job task as it is associated with the jobOwner swimlane that will be defined in the
parent process as an initiator swimlane and is handled in a special way. However,
it makes the diagram much clearer to have all four tasks extend the same type.

The user who starts a workflow will be available in a special
swimlane called initiator.

The last type we extend is the base job task type bmw:baseJobTask and this type
will be used by all task types that we define in all our workflows. It contains the
bmc:job aspect with job information that is used to classify documents and it
contains the bmw:job aspect that contains workflow-related job information. The
bmc:job aspect is defined in the content-model.xml file as it is used for document
classification. The base job task also contains the three approver aspects used in the
sign-off subprocess.

We can also see that a property from the Alfresco BPM model has been overridden. We
have overridden the bpm:packageActionGroup property in the bmw:baseJobTask to
make it possible to add documents via the task dialogs in Alfresco Explorer. By default
we can only read the document that was used to start the workflow.

Documents that are managed by a workflow instance are available via the
bpm:package property of the bpm:workflowTask. Further on, in the bmw:W04_
AmendWorkTask type we have overridden the bpm:packageItemActionGroup
property so each document attached to the workflow instance is editable/updatable
via the Amend Work task dialog.

Business Process Implementation Solutions: Part 1

[400]

The last thing we need to define are the three aspects for the approvers used in
the sign-off subprocess. They are defined as aspects with associations; start off by
defining the director-level approval person association as follows:

<aspects>
 <aspect name="bmw:assigneeApprover1Person">
 <associations>
 <association name="bmw:assigneeApprover1Person">
 <source>
 <mandatory>false</mandatory>
 <many>false</many>
 </source>
 <target>
 <class>cm:person</class>
 <mandatory>false</mandatory>
 <many>false</many>
 </target>
 </association>
 </associations>
</aspect>

Because the mandatory property is set to false, this person field will not be
mandatory in the property sheet UI that we will define. Define the second-level
approval person as follows (it is the same configuration as for the previous one):

<aspect name="bmw:assigneeApprover2Person">
 <associations>
 <association name="bmw:assigneeApprover2Person">
 <source>
 <mandatory>false</mandatory>
 <many>false</many>
 </source>
 <target>
 <class>cm:person</class>
 <mandatory>false</mandatory>
 <many>false</many>
 </target>
 </association>
 </associations>
</aspect>

Chapter 10

[401]

The third and lowest level of approval person is defined as follows; note that it is
defined as mandatory by setting the mandatory field to true, which means that
the Job Owner has to assign a user to the Approver Level 3 property to be able
to complete the task that is used to set the approvers:

<aspect name="bmw:assigneeApprover3Person">
 <associations>
 <association name="bmw:assigneeApprover3Person">
 <source>
 <mandatory>true</mandatory>
 <many>false</many>
 </source>
 <target>
 <class>cm:person</class>
 <mandatory>true</mandatory>
 <many>false</many>
 </target>
 </association>
 </associations>
</aspect>
</aspects>

Setting the mandatory property to true will also mean that an asterisk (*) is
displayed in the Alfresco Explorer UI to denote that this property is mandatory.

The many property can be used to control a "many-to-many" relationship, but in our
case, we just need one approver per approval level and Job so this property is set
to false for all definitions.

Work process—property files for UI labels
When the Alfresco task dialogs are displayed in Alfresco Explorer, the labels for the
task property fields need to be specified somewhere. This is where i18n property files
come into the picture. We are going to set up a property file for the Work process
and it will contain labels for things like the workflow name and description, the
reject and approve transition names, and task names and descriptions. The values
for these properties are used in Alfresco Explorer in the following places:

Starting advanced workflow dialog
Task details dialog
Task lists in to-do dashlets

•

•

•

Business Process Implementation Solutions: Part 1

[402]

We will create one property file for each process definition so it is easy to maintain
(compared to one big property file containing all properties for all workflows). For
the Work process create a property file called labels-work-workflow.properties
in the UI directory as shown:

We will use a naming convention for these property files as follows:

labels-{process name}-workflow.properties

You do not need to follow this naming convention but it will make life easier if
you have some kind of system when you name files for all the workflows. We will
define a Spring Bean later that loads this property file. For now, add the following
workflow definition-related properties to it:

#
Best Money Marketing Workflows
Properties for the Generic Work subprocess.
#

Workflow Definition strings
bmw_workProcess.workflow.title=Generic Work
bmw_workProcess.workflow.description=Do the actual Studio Work
bmw_workProcess.node.W02_ValidateWork.transition.approve.
 title=Approve
bmw_workProcess.node.W02_ValidateWork.transition.approve.
 description=Approve Completed Work
bmw_workProcess.node.W02_ValidateWork.transition.reject.title=Reject
bmw_workProcess.node.W02_ValidateWork.transition.reject.
 description=Reject Completed Work
bmw_workProcess.node.W03_ValidateWork.transition.approve.
 title=Approve
bmw_workProcess.node.W03_ValidateWork.transition.approve.
 description=Approve Completed Work

Chapter 10

[403]

bmw_workProcess.node.W03_ValidateWork.transition.reject.
 title=Reject
bmw_workProcess.node.W03_ValidateWork.transition.reject.
 description=Reject Completed Work

We have now got labels for the workflow name itself and the different transitions
that are part of the workflow. The workflow model-related properties also need
to be defined as follows:

Workflow Model strings
bmw_workflowModel.type.bmw_W01_ProduceWorkTask.title=W01-Produce Work
bmw_workflowModel.type.bmw_W01_ProduceWorkTask.description=
 Create material in the Studio
bmw_workflowModel.type.bmw_W02_ValidateWorkTask.title=
 W02-Validate Completed Work
bmw_workflowModel.type.bmw_W02_ValidateWorkTask.description=
 Validate or reject completed work
bmw_workflowModel.type.bmw_W03_ValidateWorkTask.title=
 W03-Validate Completed Work
bmw_workflowModel.type.bmw_W03_ValidateWorkTask.description=
 Validate or reject completed work
bmw_workflowModel.type.bmw_W04_AmendWorkTask.title=W04-
 Amend Completed Work
bmw_workflowModel.type.bmw_W04_AmendWorkTask.description=
 Amend completed work after it has been rejected

These property names are going to look rather confusing at first. But if you
look at them you can see that the property names actually refer to both the
workflow definition (that is, bmw_workProcess…) and the workflow model
(bmw_workflowModel…).

The Alfresco workflow property naming convention can be specified as something
like this:

{namespace from workflow model}_{process name from jPDL}.(workflow|nod
e|type)[.{node name}|{type name}][.transition.{transition name}].(titl
e|description)={value}

So, the following example sets the title for the Work process in the bmw namespace:

bmw_workProcess.workflow.title=Generic Work

And the following example sets the title for the reject transition leading out from
the W03_ValidateWork node in the bmw namespace (this will set the button name to
Reject in the Task Details dialog):

bmw_workProcess.node.W03_ValidateWork.transition.reject.title=Reject

Business Process Implementation Solutions: Part 1

[404]

The name and description for a task is set by using the type defined for the task in
the workflow model. The following example shows how to set the description for
the W01_ProduceWork task:

bmw_workflowModel.type.bmw_W01_ProduceWorkTask.description=
 Create material in the Studio

In the workflow model you would normally find scope definitions belonging to
a certain namespace by using a colon (:), as in the following example:

<type name="bmw:W01_ProduceWorkTask">

However, in the property file you cannot use colons as part of a property name but
have to instead use an underscore in place of them.

Work process—using dynamic descriptions and
setting task due date
The Work process is a generic process and when we set the description of, for
example, the W01_ProduceWork task in the property file it is just set to W01-Produce
Work—this does not tell the end user what kind of work should be produced. It
would be nice to set the description dynamically via the parent process. Current
work type is passed in from the parent process and available in the bmw_workType
variable. So it would be good to be able to update the description with this value
before it is displayed.

To do this we have to intercept the process before the task is displayed and change
the task description. We can do this by listening to a task-create event and when
it happens we set the description. At the same time as we do this, we can also take
the opportunity to set the due date for the task so it is displayed correctly in the
My Tasks ToDo dashlet:

<task-node name="W01_ProduceWork">
 <task name="bmw:W01_ProduceWorkTask" swimlane="worker">
 <event type="task-create">
 <script>
 <variable name="bmw_workType" access="read"/>
 <variable name="bpm_dueDate" access="read"/>
 <expression>
 taskInstance.description =
 "W01-Produce Work (" + bmw_workType + ")";
 if (bpm_dueDate != null)
 taskInstance.dueDate = bpm_dueDate;
 </expression>

Chapter 10

[405]

 </script>
 </event>
 </task>
 <transition to="W02_ValidateWork"></transition>
</task-node>

In this BeanShell script, we first specify that we want to access the value of the
current work type and the due date variables. Then we use the taskInstance
variable (which is always accessible) to set the task description and the task due date
(note that we use _ instead of : when referring to variables such as bmw_workType).
Make sure to check the due date before we set it for the task instance, it would cause
a process exception if it was set to null.

We can set the description for the other three tasks in the same way. See source code
for this chapter for an example.

Setting the due date does not mean that the user will receive a reminder
e-mail or a new task notification in the UI. It is just information for the
user and for any manager looking at a list of tasks.

Work process—defining the job data
So far, we have not talked about what properties are part of the bmc:job aspect
or the bmw:job aspect. First of all, why is the job information split up into two
different aspects? This has to do with how it is used. Part of the Job information
such as Campaign ID and related Product is going to be used to classify the material
(that is, documents and files) that are produced via the Job workflow, and will
be stored in the bmc:job aspect. Other Job information is needed just during the
execution of the workflow, such as Job status and Work types, and will be stored in
the bmw:job aspect.

Let's start with the properties for the bmc:job aspect—update the job aspect in the
content-model.xml file with the following properties:

Property name Data
type

Mandatory? Default Multiple? Constraint

bmc:campaignId d:text true - - -
bmc:product d:text true Credit

Card
- bmc:product_

options

bmc:jobType d:text true - - bmc:jobType_
options

Business Process Implementation Solutions: Part 1

[406]

The Job Owner will associate each Job with a marketing campaign and one of
Best Money's products. A job type will be specified telling the studio what type of
material should be produced, for example, e-mail, logo, advert, web page, and so on.

Now add properties to the bmw:job aspect, update the job aspect in the
workflow-model.xml file with the following properties:

Property name Data type Mandatory? Multiple? Constraint
bmw:jobStatus d:text false - bmw:jobStatus

_options

bmw:briefSignOffCategory d:text false - bmw:
signOffCategory
_options

bmw:
productionSignOffCategory

d:text false - bmw:
signOffCategory
_options

bmw:workTypes d:text true true bmw:workType
_options

bmw:conceptWorkDueDate d:
datetime

bmw:designWorkDueDate d:
datetime

bmw:copywriteWorkDueDate d:
datetime

The status of a job will be kept in the jobStatus property, so management reports
can be created with status for all ongoing campaign jobs. Both the Job Brief and the
produced Job Material is signed off and there are two properties that the Job owner
can use to specify what level of sign-off is required for the brief and for the material.

The Work type is used to tell the studio what type of work is needed—either concept,
design, or copywriter (or a combination). Due dates are required for each work
type and have to be specified separately as there is no way of defining a composite
property such as Work Info (that would contain work type and work due date).

Work process—task property sheets
For a Workflow task to be displayed with the correct properties in the Alfresco
Explorer UI, we have to define a property sheet for it. For more information about
property sheets see Chapter 9, Content Model Definition Solutions.

The first thing that we want to do is fix it so all documents and files that have been
produced via a Marketing production workflow will show the bmc:job properties
when the Details View page is displayed in Alfresco Explorer (Note: This aspect
will be set on all produced material at the end of the Job process).

Chapter 10

[407]

All files that we update and add configuration to in this section are located in
the 3340_10_Code\bestmoney\alf_extensions\trunk_alfresco\config\
alfresco\module\com_bestmoney_module_cms\ui directory.

Open up the web-client-config-custom.xml file and add the following
property sheet:

<config evaluator="aspect-name" condition="bmc:job">
 <property-sheet>
 <separator name="sep-1" display-label-id="jobDataHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmc:campaignId"
 display-label-id="campaignId" read-only="true"/>
 <show-property name="bmc:product" display-label-id="product"
 read-only="true"/>
 <show-property name="bmc:jobType" display-label-id="jobType"
 read-only="true"/>
 </property-sheet>
</config>

Make sure to make each property read-only as the users are not supposed to edit
these properties.

This property sheet uses some label properties that we need to define too. Open up
the webclient.properties file and add the following properties:

bmc:job
#
jobDataHeader=Marketing Production Material
campaignId=Camapign Id
product=Associated Product
jobType=Job Type

Now, for the property sheets related to the Work process tasks, we will use a
separate web client configuration file called web-client-config-work-workflow.
xml. Here, we also use a naming convention so property sheets for each workflow
are kept in their own file:

Web-client-config-{process name}-workflow.xml

Define the property sheet for the W01 task first:

<config evaluator="node-type" condition="bmw:W01_ProduceWorkTask">
 <property-sheet>
 <separator name="sep-1" display-label-id="generalJobDesc"
 component-generator="HeaderSeparatorGenerator"/>

Business Process Implementation Solutions: Part 1

[408]

 <show-property name="bmw:jobStatus" display-label-id="jobStatus"
 read-only="true"/>
 <separator name="sep-2"
 display-label-id="workAndPriorityHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:workType"
 display-label-id="workType" read-only="true"/>
 <show-property name="bpm:priority"
 display-label-id="workPriority"/>
 <show-property name="bpm:dueDate"
 display-label-id="workDueDate"/>
 </property-sheet>
</config>

Because it is types that we are defining property sheets for, we need to use the
node-type evaluator. The property sheet is associated with the type by setting
the condition. Then we can display any property in that type or subtype.

The bmw:jobStatus and the bmw:workType properties have been defined as read-only
as nobody should be able to change them after they have been set by the Job Owner
in the parent Job process.

Define the next property sheet for the W02 task as follows:

<config evaluator="node-type"
 condition="bmw:W02_ValidateWorkTask">
 <property-sheet>
 <separator name="sep-1" display-label-id="generalJobDesc"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:jobStatus"
 display-label-id="jobStatus" read-only="true"/>
 <separator name="sep-2" display-label-id="workAndPriorityHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:workType"
 display-label-id="workType" read-only="true"/>
 <show-property name="bpm:priority"
 display-label-id="workPriority"/>
 <show-property name="bpm:dueDate"
 display-label-id="workDueDate"/>
 <show-association name="bpm:assignee"
 display-label-id="worker" read-only="true"/>
 </property-sheet>
</config>

Chapter 10

[409]

The validate tasks also display the bpm:assignee property, so they can see who
was producing the work. When the work is validated, the bpm:assignee cannot be
changed and is set to read-only. The other validate task looks similar:

<config evaluator="node-type" condition="bmw:W03_ValidateWorkTask">
 <property-sheet>
 <separator name="sep-1"
 display-label-id="generalJobDesc"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:jobStatus"
 display-label-id="jobStatus" read-only="true"/>
 <separator name="sep-2"
 display-label-id="workAndPriorityHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:workType"
 display-label-id="workType" read-only="true"/>
 <show-property name="bpm:priority"
 display-label-id="workPriority"/>
 <show-property name="bpm:dueDate"
 display-label-id="workDueDate"/>
 <show-association name="bpm:assignee"
 display-label-id="worker" read-only="true"/>
 </property-sheet>
</config>

The last property sheet that we need for the Work process tasks is for the W04 task
that is used when the work is not approved and needs to be amended:

<config evaluator="node-type" condition="bmw:W04_AmendWorkTask">
 <property-sheet>
 <separator name="sep-1"
 display-label-id="generalJobDesc"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:jobStatus"
 display-label-id="jobStatus" read-only="true"/>
 <separator name="sep-2"
 display-label-id="workAndPriorityHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:workType"
 display-label-id="workType" read-only="true"/>
 <show-property name="bpm:priority"
 display-label-id="workPriority"/>
 <show-property name="bpm:dueDate"
 display-label-id="workDueDate"/>
 </property-sheet>
</config>

Business Process Implementation Solutions: Part 1

[410]

These property sheets do not contain any property display information for the
bmc:job aspect because their properties will automatically be displayed, as all
task types have the bmc:job aspect applied.

We can see here that the four property sheet definitions look almost the same. So
it would have been good to be able to for example, inherit a base property sheet
definition and then just add any extra properties. This is not possible and we cannot
really use just one property sheet for the bmw:job aspect as there are other properties
in the bpm namespace that we also want to display for the task.

We also want to display the task properties divided into two sections. So in most
cases we are going to end up defining lots of property sheets with almost the same
configurations in them.

There is a way to reuse property sheet configurations and that is to
use property sheet definitions for aspects instead of types. If we have a
simpler property sheet that we want to display for a couple of tasks, and
we want to display the same properties for each task, then we can just
define the properties in an aspect (which we usually do any way) and
then define a property sheet for that aspect. However, when we have
properties from several aspects in a type and some properties defined
directly in the task, then it is usually necessary to define a new property
sheet per type to get what we want.

Finally, we need to add the label properties used by the property sheets to a UI
property file. We will add a new UI property file specifically for Workflow property
sheet labels. Create a file called webclient-workflow.properties and put it in the
ui directory. Then add the following label properties to it:

#
Best Money Marketing - Workflow property sheet labels
#
jobWorkflowHeader=General information about this job
jobStatus=Job Status
workAndPriorityHeader=Work Item and Priority
workType=Work Type
workPriority=Work Priority
workDueDate=Work Due Date
worker=Worker

This file will be loaded by some Spring bootstrap configuration, which we are going
to do next.

Chapter 10

[411]

Work process—bootstrapping UI property files and
property sheets configuration
The label property files and the property sheet configuration file need to be
bootstrapped so Alfresco knows about them when displaying the different dialogs
and windows in Alfresco Explorer. This is done in the boostrap-context.
xml Spring configuration file located in the 3340_10_Code\bestmoney\alf_
extensions\trunk_alfresco\config\ alfresco\module\com_bestmoney_
module_cms\context directory.

1. Add the following bean configuration for the Work process properties that
has to do with labels for workflow definition and workflow types:
<bean id=
 "com.bestmoney.marketing.properties.workflowBootstrap"
 parent="workflowDeployer">
 <property name="labels">
 <list>
 <value>alfresco.module.com_bestmoney_module_cms.ui.
 labels-work-workflow
 </value>
 </list>
 </property>
</bean>

2. Then update the bean, which bootstraps resource bundles with general
workflow properties for property sheet labels:
<bean id=
 "com.bestmoney.webclient.properties.webResourceBundles"
 class="org.alfresco.web.app.ResourceBundleBootstrap">
 <property name="resourceBundles">
 <list>
 <value>alfresco.module.com_bestmoney_module_cms.ui.webclient
 </value>
 <value>alfresco.module.com_bestmoney_module_cms.ui.
 webclient-workflow</value>
 </list>
 </property>
</bean>

Business Process Implementation Solutions: Part 1

[412]

3. And finally, bootstrap the Work process task property sheets:

<bean id="com.bestmoney.webclient.configBootstrap"
 class="org.alfresco.web.config.WebClientConfigBootstrap"
 init-method="init">
 <property name="configs">
 <list>
 <value>classpath:alfresco/module/com_bestmoney_module_cms/
 ui/web-client-config-custom.xml
 </value>
 <value>classpath:alfresco/module/com_bestmoney_module_cms/
 ui/web-client-config-work-workflow.xml</value>
 </list>
 </property>
</bean>

Work process—testing it
So now we are ready to test this new Work process. However, this process is designed
to be part of a bigger parent process so we need a way of testing it without depending
on information being passed in from the parent process. A couple of changes to it are
necessary before we can test it standalone. Create a copy of the processdefinition.
xml file located in the 3340_10_Code\bestmoney\alf_extensions\trunk_
alfresco\config\ alfresco\module\com_bestmoney_module_cms\workflows\
work directory and name it processdefinition_test.xml.

Then update the first swimlane part of the Work processes definition in this copy
as follows:

 <swimlane name="initiator"/>

 <swimlane name="jobOwner">
 <assignment class=
 "org.alfresco.repo.workflow.jbpm.AlfrescoAssignment">
 <actor>#{people.getPerson('jobOwner')}</actor>
 </assignment>
 </swimlane>

 <swimlane name="studioTeamManagers">
 <assignment class=
 "org.alfresco.repo.workflow.jbpm.AlfrescoAssignment">
 <pooledactors>#{people.getGroup(
 'GROUP_STUDIO_TEAM_MANAGERS')}
 </pooledactors>
 </assignment>
 </swimlane>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 10

[413]

 <swimlane name="worker">
 <assignment class=
 "org.alfresco.repo.workflow.jbpm.AlfrescoAssignment">
 <actor>#{people.getPerson('worker')}</actor>
 </assignment>
 </swimlane>

So, what we have done here is changed the swimlane assignments so that they are
independent of any values passed in from the parent Job process. We also added
a special initiator swimlane that is necessary to have when the process is to be run
standalone—the initiator refers to the person that started the process instance.

Now, update the start node so that it contains a start task and initialization of
necessary variables:

<start-state name="Start">
 <task name="bmw:startTestProcessTask" swimlane="initiator"></task>
 <event type="node-leave">
 <action class=
 "org.alfresco.repo.workflow.jbpm.AlfrescoJavaScript">
 <script>
 executionContext.setVariable("bmc_campaignId", "Campaign 1");
 executionContext.setVariable("bmc_jobType", "Poster");
 executionContext.setVariable("bmw_jobStatus", "Start Up");
 executionContext.setVariable("bmw_workTypes", "[Concept]");
 executionContext.setVariable("bmw_workType", "Concept");
 executionContext.setVariable("bmw_assigneeApprover3Person",
 people.getPerson("admin").getNodeRef());
 executionContext.setVariable("bpm_assignee",
 people.getPerson("worker").getNodeRef());

 var procId = executionContext.processInstance.getId();
 executionContext.setVariable("procId", procId);
 </script>
 </action>
 </event>
 <transition to="W01_ProduceWork"></transition>
</start-state>

A workflow that is not a subworkflow always needs a start task that kicks things
off. So that is why we have added the bmw:startTestProcessTask to the node
definition. Then we changed to using AlfrescoJavaScript as we would like to use
the root object people to get to Person nodes. Note that we assign the node reference
as a string to the assignee variables and that is how it is stored in the jBPM database.

Business Process Implementation Solutions: Part 1

[414]

We need to set up all variables here that have been defined as mandatory in the
content model. If the variable has a constraint (for example, bmc_jobType) then we
must set a value that is valid for the constraint. If the variable is defined as multiple
then we need to enclose the value in [value1,value2...] to indicate that it is an
array (for example, bmw_workTypes).

The startTestProcessTask task needs to be backed by a type defined in the
Workflow Content Model. So we have added the following definition to the
workflow-model.xml file:

<type name="bmw:startTestProcessTask">
 <parent>bpm:startTask</parent>
</type>

Note that this start task extends another task type called bpm:startTask while all
the other task types extend the bpm:workflowTask.

Now, we can build and deploy this new workflow. Stop Alfresco and run the
Ant target, deploy-alfresco-amp and that should build the Best Money AMP
and deploy it into the Alfresco installation that we have configured in
build.properties.

Start Alfresco and log in as administrator so that you can get to the Administration
Console. For this test, we are using two new users and one new group, which
we need to add to the repository. Via the Manage System Users screen add the
following users:

And via the Manage System Groups screen, add the following group and member:

Chapter 10

[415]

It's now time to deploy the new workflow. We do this via the Workflow Console
that can be accessed via the http://localhost:8080/alfresco/faces/jsp/
admin/workflow-console.jsp URL. Note that we need to be logged in as admin
to access this console.

In the input field type in the following command:

deploy alfresco/module/com_bestmoney_module_cms/workflows/work/
 processdefinition_test.xml

And then click on the Submit button. You should see something like the following if
the deployment went okay.

deployed definition id: jbpm$8 , name: jbpm$bmw:workProcess , title:
Generic Work , version: 1

definition: jbpm$8 , name: Generic Work , version: 1

workflow: None

path: None

Sometimes, you need to click on the Submit button twice for it to react
and deploy the workflow.

The workflow definition is now ready to be used. What we now need is just a
document from which to start the workflow. So upload some document and then
select Start Advanced Workflow from the drop-down pop-up menu:

In the first screen of the Start Advanced Workflow wizard select the new workflow
that we just deployed. Then click on Next and then Next again, followed by clicking
on the Finish button to start the workflow. This creates a new W01_ProduceWork task
and assigns it to the worker user that we just created. If we log in as with the worker
username and password, we will see a new task in the My Tasks To Do dashlet:

Business Process Implementation Solutions: Part 1

[416]

We can see that the description is correct with the Concept part being added. To
complete this task, and move the workflow instance forward, click on the description
to open the Task dialog screen:

The preceding screenshot of the Task dialog has been updated with information
about where the different texts and available actions come from. Clicking on the
Task Done button will complete the task and the W02_ValidateWorkTask will
be created and assigned to all Studio Managers that are part of the STUDIO_TEAM_
MANAGERS group, which is currently just one manager called studiomgr1. Log in as
Studio Team Manager 1, the Dashboard appears to be empty and there is no task in
the My Tasks To Do dashlet:

Chapter 10

[417]

This is because this task is a pooled task and will be assigned to every user that is a
member of the STUDIO_TEAM_MANAGERS group. And these pooled tasks are available
via another dashlet called My Pooled Tasks. Click on the Configure link on the
dashboard to add this dashlet. Then complete the task by clicking on the Approve
button in the Task dialog:

The Reject and Approve buttons are the result of the possible transitions that we
defined in the workflow's definition. And the button labels come from the resource
definitions in the labels-work-workflow.properties file.

If there are a lot of Studio Managers around, it is probably a good idea to first
click on the Take Ownership button, which will move this task over to the Studio
Manger's My Tasks To Do dashlet and remove it from all other Studio Managers'
My Pooled Tasks dashlets.

If a user does not first take ownership of a pooled task, and just
completes it at the same time as another user does, then the
outcome will be the result of the actions of the user who first
completes the transaction.

When this task is completed, a new task W03_ValidateWorkTask is created and
assigned to the jobOwner user. Approve this task and the workflow instance is
completed. In one of the validate tasks we could also choose to reject the work—this
would mean that the workflow would go back to the W04_AmendWork task, where the
worker can update the material and then submit it again for validation.

If a user wants to see completed tasks he or she can do that by using the My
Completed Tasks dashlet. We have now designed, implemented, and tested
a workflow and are ready to move on to more complex scenarios with a parent
process calling subprocesses.

Business Process Implementation Solutions: Part 1

[418]

For more information on how the workflow instance is actually executed and what
controls the different execution paths read on. A workflow definition represents a
formal specification of a business process and is based on a directed graph. The graph
is composed of nodes and transitions between them. Every node in the graph is of
a specific type.

The type of the node defines the runtime behavior. A workflow definition has exactly
one start state. When a new advanced workflow is started, a workflow instance is
created based on the latest deployed version of the process definition. A so-called
token represents one path of execution in an active workflow instance. A token is
the runtime concept that maintains a pointer to a node in the graph.

A workflow instance is one execution of a workflow definition. When a workflow
instance is created, a token is created for the main path of execution. This token is
called the root token of the process instance and it is positioned in the start state of
the process definition.

A signal instructs a token to continue graph execution. When receiving an unnamed
signal, the token will leave its current node over the default leaving transition. When
a transition-name (for example, Approve) is specified in the signal, the token will
leave its node over the specified transition. A signal given to the workflow instance
is delegated to the root token.

After the token has entered a node, the node is executed. Nodes themselves are
responsible for the continuation of the graph execution. Continuation of graph
execution is done by making the token leave the node. Each node type can
implement a different behavior for the continuation of the graph execution.
A node that does not propagate execution will behave as a state.

Running the work process from the Alfresco
Share UI
Now when we have got the generic work process up and running with Alfresco
Explorer it would be good to know how much effort it is to get this workflow
going in Alfresco Share. As we know, Alfresco Share is the new UI client that
will supersede the Alfresco Explorer UI client.

From version 3.4a and onwards Alfresco Share supports custom advanced
workflows, before that the available workflows for Alfresco Share were hardcoded.
Now with the newer versions, any deployed workflow is visible in Alfresco Share
and can be started from Alfresco Share.

We don't even have to configure any property sheets or forms as they are called in
Alfresco Share. There will be a default layout for all tasks including the start task. So
let's try this out.

Chapter 10

[419]

Log in to Alfresco Share (http://localhost:8080/share) as the admin user. This
is a sharing and collaboration environment where we create sites that are then used
to share documents, wiki pages, blogs, event calendars, and so on.

In Alfresco Share, we can start a workflow without the need for a document. The
My Tasks dashlet contains the Start Workflow link that can be used for this:

We are not going to start the workflow directly like this but it is useful to know that
we can start workflows without content. Instead, let's create a Best Money site, add
a document to its document library, and start a workflow from the document.

Start by clicking on the Create Site link in the My Sites dashlet as depicted in the
following screenshot:

In the next dialog, enter site information as per the following screenshot:

Business Process Implementation Solutions: Part 1

[420]

Then click on OK to create the site. Now click on the Document Library link and
add a document to the library via the Upload button. To start a workflow for this
document click on the More… | Start Workflow (to the right-hand side of the
screen) link, as shown in the following screenshot:

This brings up a dialog where we can select from the deployed workflows:

We can see here that the Generic Work workflow has been picked up and the text
labels are working.

Chapter 10

[421]

It is quite easy to hide any workflow that we do not want to see in this
dialog. This is done via configuration in share-config-custom.xml.
For example, the WCM workflows are hidden like this:

<config evaluator="string-compare"
condition="Workflow">
 <hidden-workflows>
 <workflow name="jbpm$wcmwf:*"/>
 <workflow name="jbpm$wf:articleapproval"/>
 <workflow name="jbpm$inwf:invitation-
nominated"/>
 <workflow name="jbpm$imwf:invitation-
moderated"/>
 </hidden-workflows>
 <hidden-tasks>
 <task type="wcmwf:*"/>
 </hidden-tasks>
</config>

Now click on the link for the Generic Work workflow. This brings up the form for
the start task and it has got some default fields such as Comment, Description, Due
Date, Status, Priority, and so on. This form can be customized as we will see in a bit.
For now, click on the Start Workflow button at the bottom of the form.

This creates the W01 task for the worker user and if we log in to Alfresco Share as
this user we will see a new task in the My Tasks dashlet:

Business Process Implementation Solutions: Part 1

[422]

We can see here too that the labels for the task description and the name have been
picked up automatically from the previous configurations that we have done. Click
on the W01-Produce Work (Concept) link to open the task form:

We can see that the task form does not look very appealing and this is the default
layout that we get if we do not customize the task form for a task—the properties
are just listed as the system finds them.

We can see though that constraints for things like Job Type have been picked up and
the combo boxes are loaded with the correct options and the selected values have
been set. Also, labels for Job type, Workflow assignee, and so on have been picked up
correctly. However, the form will show all properties that we definitely do not want.
So we have got to find some way of customizing the layout.

We can do that by defining a form layout in the share-config-custom.xml
configuration file located in the 3340_10_Code\bestmoney\alf_extensions\
trunk_share\config\ alfresco\web-extension directory. Open it up and
add the following form configuration for the W01 task:

<config evaluator="task-type" condition="bmw:W01_ProduceWorkTask">
 <forms>
 <form>

Chapter 10

[423]

 <field-visibility>
 <show id="bmc:campaignId"/>
 <show id="bmc:product"/>
 <show id="bmc:jobType"/>
 <show id="bmw:jobStatus"/>
 <show id="bmw:workType"/>
 <show id="bpm:priority"/>
 <show id="bpm:dueDate"/>
 <show id="message" />
 <show id="packageItems" />
 <show id="transitions" />
 </field-visibility>

We start off by specifying what task type the form should be for and what fields
(that is, properties) should be visible. Then we move on and configure how these
fields should appear in the form:

 <appearance>
 <!-- Field sets -->
 <set id="" appearance="title" label-id="workflow.set.task.info" />
 <set id="jobWorkflowHeader" appearance="title"
 label-id="jobWorkflowHeader
 template="/org/alfresco/components/form/2-column-set.ftl" />
 <set id="workAndPriorityHeader" appearance="title"
 label-id="workAndPriorityHeader" />
 <set id="documents" appearance="title" label="Documents" />
 <set id="response" appearance="title"
 label-id="workflow.set.response" />

 <!-- Field set "" -->

The first thing that we configure in the Appearance section is fieldsets (that is,
grouping of fields) and we define the same fieldsets that we used in the Alfresco
Explorer property sheet, with the same label IDs. We also need to include a fieldset
for the documents attached to the workflow and a fieldset for the response area with
the transition buttons.

After this, we just need to define each individual field and set up what fieldset it
should appear under:

 <field id="message">
 <control template=
 "/org/alfresco/components/form/controls/info.ftl" />
 </field>

Business Process Implementation Solutions: Part 1

[424]

 <!-- Field set "jobWorkflowHeader" -->
 <field id="bmc:campaignId" label-id="campaignId"
 set="jobWorkflowHeader" read-only="true"/>
 <field id="bmc:product" label-id="product"
 set="jobWorkflowHeader" read-only="true"/>
 <field id="bmc:jobType" label-id="jobType"
 set="jobWorkflowHeader" read-only="true"/>
 <field id="bmw:jobStatus" label-id="jobStatus"
 set="jobWorkflowHeader" read-only="true"/>

 <!-- Field set "workAndPriorityHeader" -->
 <field id="bmw:workType" label-id="workType"
 set="workAndPriorityHeader" read-only="true"/>
 <field id="bpm:priority" label-id="workPriority"
 set="workAndPriorityHeader" />
 <field id="bpm:dueDate" label-id="workDueDate"
 set="workAndPriorityHeader" />

 <!-- Field set "documents" -->
 <field id="packageItems" set="documents" />

 <!-- Field set "response" -->
 <field id="transitions" set="response" />
 </appearance>
 </form>
 </forms>
</config>

Unfortunately, the externally defined labels, which we previously defined in the
labels-work-workflow.properties file, and the other property files, are not going
to be picked up in Alfresco Share. So open up the extension-app.properties file
located in the 3340_10_Code\bestmoney\alf_extensions\trunk_share\config\
alfresco\messages directory and add the following properties to it:

jobWorkflowHeader=General information about this job
campaignId=Camapign Id
product=Associated Product
jobType=Job Type
jobStatus=Job Status
workAndPriorityHeader=Work Item and Priority
workType=Work Type
workPriority=Work Priority
workDueDate=Work Due Date

Chapter 10

[425]

To deploy these custom Share configurations stop Alfresco and run the
deploy-share-jar Ant target. Then start Alfresco again. If we now look
at the task form again, it should look something like this:

So as we can see, Alfresco Share can now be used to drive any custom workflow that
we might want to use and it is very easy to configure the task forms needed.

For more information about Alfresco Share and Advanced Workflow support
have a look at this Wiki page http://wiki.alfresco.com/wiki/Custom_Share_
Workflow_UI.

Business Process Implementation Solutions: Part 1

[426]

Summary
This chapter has given us a thorough walkthrough of how to implement a basic
workflow with the embedded jBoss jBPM workflow engine and its capabilities. It is
a powerful workflow system that allows us to implement very complex workflows.

We have seen how easy it is to define the process definition with the jPDL process
definition language based on the Swimlane diagram that we designed in the
previous chapter. We then went on to define the workflow content model that is
used to define the data managed by each task. One type definition is needed
for each task in the workflow definition.

The task data was displayed in the Alfresco UI by defining the so-called property
sheets. One property sheet is needed for each task type that we have. The labels
in each property sheet were externalized by standard property files. The property
sheet file and the label file were bootstrapped into the Alfresco system via
Spring configurations.

We have also learned that process definitions are versioned when deployed into
Alfresco. When we start a new workflow instance it is based on the latest deployed
version of the process definition.

The jBPM workflow engine is very well integrated with Alfresco and we have seen
that we can directly assign users and groups from Alfresco when creating the
process definition.

The Alfresco Share client from version 3.4a can now also be used to drive custom
workflows and we have seen how easy it is to define task forms used by this
UI client.

In the next chapter, we will continue implementing the rest of the Swimlane
diagrams for the main Job process and we will see how to call subprocesses, how
to implement parallel process flows, how to use JavaScript in a node, how to send
e-mails, how to implement phases, and more.

Business Process
Implementation Solutions:

Part 2
In the last chapter, we saw how to implement the generic Work process based on the
Swimlane diagram we designed earlier. In this chapter, we will dig deeper into the
functionality that is available in the JBoss jBPM workflow engine.

In this chapter, you will learn:

Implementing parallel flows
Implementing subprocesses and calling them from a parent process
Using Alfresco JavaScript in a business process
Sending template-based e-mails from a business process
Implementing phases with jPDL
Adding useful workflow management Dashlets

Completing the implementation of the
marketing production workflow
We already have the generic Work process implemented. It is used by the Studio
process in several places. We will start implementing the Studio process followed by
the Sign-Off process and finally tie everything together with the Job process.

•

•

•

•

•

•

Business Process Implementation Solutions: Part 2

[428]

Implementing the Studio subprocess
In this section, we will implement the Studio subprocess. Start up Eclipse and add a
new process definition for the Studio process and call it studio (that is right-click on
the workflows directory and then select New followed by Other...).

Studio process—workflow definition (jPDL)
Define a process definition graphically for the Studio subprocess. It is usually a good
idea to have the Swimlane diagram printed out or on a second screen when doing
this. The process diagram should look something like this when we are done:

When we implemented the Work process we used only two types of nodes—Task
nodes and Decision nodes. With the Studio process we bring in a couple of other
types of nodes. We will use the Fork node to split up the execution path into two
concurrent parallel execution paths. The Studio Team Manager can assign more than
one concept worker, so we use a Join node to bring all the concept work together
before continuing with design and copywrite work.

Chapter 11

[429]

The Copywriter and the Designer will be able to do their work at the same time in
parallel. To bring those parallel paths back together into one execution path we will
use the Join node.

The Process State node type is used when we want to call a subprocess such as
the Work process. There is also a plain Node that we use to loop through all Studio
workers that have been assigned by the Job Owner to do Concept work. We will see
in a bit how this node uses a foreach loop to fork off one Work subprocess for each
Studio worker that is assigned to do Concept work.

Now, set the process definition name manually to bmw:studioProcess. The jPDL
XML Schema version also needs to be updated to 3.2. The Studio process is going
to use two Swimlanes called the jobOwner and the studioTeamManagers, and the
definitions for these are the same as in the Work process so we are not going to
repeat them here, just add them to the workflow definition.

For this subprocess, we are also going to save the process ID in the procId variable.
This is done in the start-state node just before we leave it. The definition is the
same as in the Work process.

The task nodes need tasks and they in turn need to be assigned to a Swimlane. Add
the task elements as follows:

 <task-node
 name="P01_SetConceptPriorityAndAssignDesignerOrCopywriter">
 <task name=
 "bmw:P01_SetConceptPriorityAndAssignDesignerOrCopywriterTask"
 swimlane="studioTeamManagers">
. . .
 <task-node name="P02_SetCopyPriorityAndAssignCopywriter">
 <task name="bmw:P02_SetCopyPriorityAndAssignCopywriterTask"
 swimlane="studioTeamManagers">
. . .
 <task-node name="P03_SetDesignPriorityAndAssignDesigner">
 <task name="bmw:P03_SetDesignPriorityAndAssignDesignerTask"
 swimlane="studioTeamManagers">
. . .
 <task-node name="P04_ApproveWorkAsCompleteAndOutOfStudio">
 <task name="bmw:P04_ApproveWorkAsCompleteAndOutOfStudioTask"
 swimlane="studioTeamManagers"></task>

By the look of it, here we are not using the jobOwner Swimlane, so why is it defined?
It is defined as it needs to be passed into the Work subprocess, which has a task that
should be assigned to the Job Owner.

Business Process Implementation Solutions: Part 2

[430]

There are three decision nodes in the Studio process and each one of them needs a
variable to look at to be able to decide which path to take. These three variables are
going to be passed in from the parent Job process where the Job Owner has decided
what work to be executed as part of the material production (that is specified in
the bmw:workTypes variable, which in turn is parsed for the value of these three
variables). Let's use these variables as follows in the decision nodes:

<decision name="ConceptWork?">
 <transition to="fork1" name="no"></transition>
 <transition
 to="P01_SetConceptPriorityAndAssignDesignerOrCopywriter"
 name="yes">
 <condition>#{conceptWork == true}</condition>
 </transition>
</decision>
. . .
<decision name="CopyWork?">
 <transition to="join1" name="no"></transition>
 <transition to="P02_SetCopyPriorityAndAssignCopywriter" name="yes">
 <condition>#{copyWork == true}</condition>
 </transition>
</decision>

<decision name="DesignWork?">
 <transition to="join1" name="no"></transition>
 <transition to="P03_SetDesignPriorityAndAssignDesigner" name="yes">
 <condition>#{designWork == true}</condition>
 </transition>
</decision>

A decision node is used when the process needs to make a decision of where to
continue in the process graph. There are two ways to specify the decision criteria,
the simplest one is to just add condition element to the transition(s). Conditions
are BeanShell script expressions that return a boolean. At runtime, the decision
node will loop over its leaving transitions (in the order as specified in the XML), and
evaluate each condition. The first transition for which the conditions resolve to true
will be taken.

The other way that a decision node can calculate the decision is to use a
DecisionHandler. Then the decision is calculated in a Java class and the selected
leaving transition is returned by the decide method of the DecisionHandler
implementation.

Chapter 11

[431]

Each of the work types also has an associated due date (that is bmw_
conceptWorkDueDate, bmw_copywriteWorkDueDate, and bmw_designWorkDueDate)
that is set by the Job Owner. They should also be set up for each of the tasks in the
Studio workflow definition. Look at the Work process definition for an example of
how to do this. Then set up the task variable dueDate in the P01, P02, and P03 tasks
by adding a task-create event handler.

Now we are coming to the StartConceptWork node that needs to be updated, so it
kicks off the Concept work subprocess for each Studio worker assigned by the Job
owner to do concept work. The selected Studio workers will be contained in the
bpm_assignees variable when we implement the Job process. Update the node
as follows:

<node name="StartConceptWork">
 <action class="org.alfresco.repo.workflow.jbpm.ForEachFork">
 <foreach>#{bpm_assignees}</foreach>
 <var>bpm_assignee</var>
 </action>
 <transition to="GenericWorkConcept" />
</node>

Here we use a special Alfresco workflow action that implements a for loop that can be
used to walk through a collection (that is bpm_assignees) and then assign a variable
(that is bpm_assignee) to each item in the collection. For each loop, the transition
GenericWorkConcept is taken with the bpm_assignee and assigned the value of
current item in the collection.

The GenericWorkConcept node is a process-state node type used to initiate
a Work subprocess for each concept work that is to be done. We have to update
this node with a few things before it will work. Start by adding the name of the
subprocess we want to call and set the work type variable:

<process-state name="GenericWorkConcept">
 <sub-process name="bmw:workProcess"/>

 <event type="node-enter">
 <script>
 <variable name="bmw_workType" access="write"/>
 <expression>
 bmw_workType = "Concept";
 </expression>
 </script>
 </event>

Business Process Implementation Solutions: Part 2

[432]

The sub-process name should match the process-definition name specified for
the subprocess. We cannot specify a specific version of the subprocess definition, the
latest one deployed will be used, and this is also true when we run a normal process
without any subprocesses. We set the bmw_workType variable to Concept so we can
set up task description correctly in the Work subprocess. This makes it possible for
the worker to differ between concept, copywrite, and design work tasks.

To run a process instance with a previous version of a process definition,
we would have to redeploy the previous version of the definition first.

The next thing we need to do before the subprocess call will work properly is to
specify what variables we want to pass into the subprocess from the parent process.
We can leave this out and the parent process should pass all variables into the
subprocess instance. However, this is not usually what we want and sometimes
we want to map a variable to a different name in the subprocess.

As soon as we start specifying what variables should be passed into the subprocess,
we have to think about all variables that are going to be needed in the subprocess as
none of the variables will be passed in automatically in this case. We can divide the
variables we pass into the subprocess into three categories:

Outbound—These are variables that will be set up by the subprocess and
passed back up to the parent process.
Inbound—These are variables that have been set by the parent process and
then passed into the subprocess and used by it.
Unused Inbound—These are variables that have been set by the parent
process and then passed into the subprocess, but are never used by the
subprocess. However, they are mandatory variables that are needed to be
able to complete tasks in the subprocess.

We are going to need one outbound variable to keep the process ID for the Work
subprocess that is to be executed as part of the Studio process. Add it as follows:

<variable name="studioConceptWorkProcId" access="write" mapped-
name="procId"/>

Outbound variables are specified by using the access attribute and setting it to
write. The outbound variable studioConceptWorkProcId has a different name in
the subprocess and we specify that with the mapped-name attribute. Next, we specify
all the inbound variables that are going to be used by the Work subprocess:

<variable name="bmc_campaignId" access="read" />
<variable name="bmc_product" access="read" />
<variable name="bmc_jobType" access="read" />

•

•

•

Chapter 11

[433]

<variable name="bmw_jobStatus" access="read"/>
<variable name="bmw_workTypes" access="read" />
<variable name="bmw_workType" access="read" />
<variable name="bmw_conceptWorkDueDate" access="read" mapped-
 name="bpm_dueDate"/>
<variable name="bpm_package" access="read"/>
<variable name="bpm_assignee" access="read"/>
<variable name="bpm_priority" access="read"/>
<variable name="jobOwner" access="read"/>
<variable name="studioTeamMgrsGroupName" access="read"/>

The last couple of inbound variables that we need to pass into the work subprocess
are not really used by it in any way, but they cannot be null, as in the workflow
model they are defined as mandatory. A task cannot be completed if there are
mandatory variables that are null:

<variable name="bmw_briefSignOffCategory" access="read"/>
<variable name="bmw_productionSignOffCategory" access="read"/>
<variable name="bmw_assigneeApprover3Person" access="read"/>

Okay, that is all we need to pass into the Concept Work subprocess. When we call the
Copy and Design Work subprocesses, there are only a few things that differ in the
definitions. The due date is passed in from another variable and the bpm_assignee is
set from a fixed variable (that is not from the bpm_assignees collection). So we can
copy the sub-process, event, and variables from the GenericWorkConcept node
definition into both the GenericWorkCopy and GenericWorkDesign node definitions.
Then change the following for the GenericWorkCopy node:

bmw_workType = "Concept" => bmw_workType = "Copy"
bmw_conceptWorkDueDate => bmw_copywriteWorkDueDate
<variable name="bpm_assignee" access="read"/> => <variable
name="bmw_assigneeCopywriter" access="read" mapped-name="bpm_
assignee"/>

And for the GenericWorkDesign node change the following:

bmw_workType = "Concept" => bmw_workType = "Design"
bmw_conceptWorkDueDate => bmw_designWorkDueDate
<variable name="bpm_assignee" access="read"/> => <variable
name="bmw_assigneeDesigner" access="read" mapped-name="bpm_
assignee"/>

This is it; we are now finished with the definition of the Studio subprocess.

•

•

•

•

•

•

Business Process Implementation Solutions: Part 2

[434]

Studio process—workflow content model
To define the supporting types for the Studio subprocess, open up the
workflow-model.xml file. Define the new task types to support the workflow
task node definitions as follows:

<type
 name="bmw:P01_SetConceptPriorityAndAssignDesignerOrCopywriterTask">
 <parent>bmw:baseAssignMultipleJobTask</parent>
</type>
<type name="bmw:P02_SetCopyPriorityAndAssignCopywriterTask">
 <parent>bmw:baseJobTask</parent>
 <mandatory-aspects>
 <aspect>bmw:assigneeCopywriter</aspect>
 </mandatory-aspects>
</type>
<type name="bmw:P03_SetDesignPriorityAndAssignDesignerTask">
 <parent>bmw:baseJobTask</parent>
 <mandatory-aspects>
 <aspect>bmw:assigneeDesigner</aspect>
 </mandatory-aspects>
</type>
<type name="bmw:P04_ApproveWorkAsCompleteAndOutOfStudioTask">
 <parent>bmw:baseJobTask</parent>
</type>

The P01 task type uses a new base task that allows for multiple assignments. Define
it as follows:

<type name="bmw:baseAssignMultipleJobTask">
 <parent>bmw:baseJobTask</parent>
 <mandatory-aspects>
 <aspect>bpm:assignees</aspect>
 </mandatory-aspects>
</type>

The P02 and P03 tasks go on in parallel so we cannot use the bpm_assignee for
the worker person assignment. We need to define two new variables that will hold
the copywriter person and the designer person (you could also use the existing
bpm_assignee and just define one more variable, but our approach is clearer). Define
the bmw:assigneeCopywriter aspect and the bmw:assigneeDesigner aspect in the
same way we did defined the bmw:assigneeApprover1Person aspect.

Chapter 11

[435]

Studio process—property files for UI labels
For the Studio process UI label resources create a new property file called labels-
studio-workflow.properties and put it in the com_bestmoney_module_cms/ui
directory. Then add the following properties to it:

bmw_studioProcess.workflow.title=Studio
bmw_studioProcess.workflow.description=Do the Studio work
bmw_workflowModel.type.bmw_P01_
SetConceptPriorityAndAssignDesignerOrCopywriterTask.title=P01-Set
Concept Priority and Assign Worker(s)
bmw_workflowModel.type.bmw_P01_SetConceptPriorityAndAssignDesignerOr
 CopywriterTask.description=Set concept work priority and assign
designer and/or copywriter
bmw_workflowModel.type.bmw_P02_SetCopyPriorityAndAssignCopywriterTask
 .title=P02-Set Copy Priority and Assign Copywriter
bmw_workflowModel.type.bmw_P02_SetCopyPriorityAndAssignCopywriterTask
 .description=Set copy work priority and assign copywriter
bmw_workflowModel.type.bmw_P03_SetDesignPriorityAndAssignDesignerTask
 .title=P03-Set Design Priority and Assign Designer
bmw_workflowModel.type.bmw_P03_SetDesignPriorityAndAssignDesignerTask
 .description=Set design work priority and assign designer
bmw_workflowModel.type.bmw_P04_ApproveWorkAsCompleteAndOutOfStudio
 Task.title=P04-Approve Studio Work
bmw_workflowModel.type.bmw_P04_ApproveWorkAsCompleteAndOutOfStudio
 Task.description=Approve studio work as completed and out of studio

Studio process—task property sheets
For the property sheets related to the Studio process tasks, we will use a separate
web client configuration file called web-client-config-studio-workflow.xml.

The Studio process property sheets are very much like the ones we used for the
Work process. The thing that differs is what is being displayed under the second
header separator called priorityAndWorkerAssigneeHeader. There we display
the priority, due date, and assignee(s) fields, so the Studio Manager can fill those in.

The property sheet for the P01 task looks like this:

<config evaluator="node-type" condition=
 "bmw:P01_SetConceptPriorityAndAssignDesignerOrCopywriterTask"
 replace="true">
 <property-sheet>
 <separator name="sep-1" display-label-id="jobWorkflowHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:jobStatus" display-label-id="jobStatus"
 read-only="true"/>

Business Process Implementation Solutions: Part 2

[436]

 <separator name="sep-2" display-label-
 id="priorityAndWorkerAssigneeHeader" component-
 generator="HeaderSeparatorGenerator"/>
 <show-property name="bpm:priority" display-label-
 id="workPriority"/>
 <show-property name="bmw:conceptWorkDueDate" display-label-
 id="conceptWorkDueDate" />
 <show-association name="bpm:assignees" display-label-
 id="workers"/>
 </property-sheet>
</config>

The bpm:assignees association will enable the Studio manager to assign one or
more users to complete work. We use the bmw:conceptWorkDueDate property from
the bmw:job aspect to keep the due date for concept work. You might be thinking
that we could have used the already available bpm:dueDate property, but we want
to keep more than one due date so we need to define more due date properties.

The next property sheet is for the P02 task and looks almost identical to the
previous one:

<config evaluator="node-type" condition="bmw:P02_
SetCopyPriorityAndAssignCopywriterTask" replace="true">
 <property-sheet>
 <separator name="sep-1" display-label-id="jobWorkflowHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:jobStatus" display-label-id="jobStatus"
 read-only="true"/>
 <separator name="sep-2" display-label-
 id="priorityAndWorkerAssigneeHeader" component-
 generator="HeaderSeparatorGenerator"/>
 <show-property name="bpm:priority" display-label-
 id="workPriority"/>
 <show-property name="bmw:copywriteWorkDueDate" display-label-
 id="copywriteWorkDueDate" />
 <show-association name="bmw:assigneeCopywriter" display-label-
 id="worker"/>
 </property-sheet>
</config>

The only thing that differs is that here we collect the due date for copywrite work
with the bmw:copywriteWorkDueDate property and we input the copywriter person
via the bmw:assigneeCopywriter association. The next property sheet is used
to collect data for the design work specified by task P03:

<config evaluator="node-type" condition="bmw:P03_
SetDesignPriorityAndAssignDesignerTask" replace="true">
 <property-sheet>

Chapter 11

[437]

 <separator name="sep-1" display-label-id="jobWorkflowHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:jobStatus" display-label-id="jobStatus"
 read-only="true"/>
 <separator name="sep-2" display-label-
 id="priorityAndWorkerAssigneeHeader" component-
 generator="HeaderSeparatorGenerator"/>
 <show-property name="bpm:priority" display-label-
 id="workPriority"/>
 <show-property name="bmw:designWorkDueDate" display-label-
 id="designWorkDueDate" />
 <show-association name="bmw:assigneeDesigner" display-label-
 id="worker"/>
 </property-sheet>
</config>

The last property sheet for the Studio process should present the Studio work
that has been used as an input by the previous tasks, so it can be approved. All
properties are therefore read-only:

<config evaluator="node-type"
 condition="bmw:P04_ApproveWorkAsCompleteAndOutOfStudioTask"
 replace="true">
 <property-sheet>
 <separator name="sep-1" display-label-id="jobWorkflowHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:jobStatus" display-label-id="jobStatus"
 read-only="true"/>
 <separator name="sep-2" display-label-id="workItemsHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:workTypes" display-label-id="workTypes"
 read-only="true"/>
 <show-property name="bmw:conceptWorkDueDate" display-label-
 id="conceptWorkDueDate" read-only="true"/>
 <show-property name="bmw:designWorkDueDate" display-label-
 id="designWorkDueDate" read-only="true"/>
 <show-property name="bmw:copywriteWorkDueDate" display-label-
 id="copywriteWorkDueDate" read-only="true"/>
 </property-sheet>
</config>

Business Process Implementation Solutions: Part 2

[438]

Finally, we need to add the label properties used by the property sheets to a
UI property file. Open up the webclient-workflow.properties file and add the
following label properties to it:

priorityAndWorkerAssigneeHeader=Priority and Worker assignee(s)
conceptWorkDueDate=Concept Work Due Date
designWorkDueDate=Design Work Due Date
copywriteWorkDueDate=Copy Work Due Date
workers=Workers
workTypes=Work Types
workItemsHeader=Work items

In the next section, we will see how the property sheet file and associated UI label
files are loaded via Spring configuration.

Studio process—bootstrapping UI property files
and property sheets configuration
The workflow bootstrapping beans now need to be updated with the two new files
that we have created for the Studio process. This is done in the boostrap-context.
xml Spring configuration file located in the com_bestmoney_module_cms\context
directory.

Update the following bean configuration to include the Studio process properties:

<bean id="com.bestmoney.marketing.properties.workflowBootstrap"
 parent="workflowDeployer">
 <property name="labels">
 <list>
 <value>
 alfresco.module.com_bestmoney_module_cms.ui.labels-work-
 workflow</value>
 <value>
 alfresco.module.com_bestmoney_module_cms.ui.labels-studio-
 workflow</value>
 </list>
 </property>
</bean>

Then bootstrap the Studio process task property sheets:

<bean id="com.bestmoney.webclient.configBootstrap"
 class="org.alfresco.web.config.WebClientConfigBootstrap"
 init-method="init">
 <property name="configs">
 <list>

Chapter 11

[439]

 <value>classpath:alfresco/module/com_bestmoney_module_cms/ui/
 web-client-config-custom.xml</value>
 <value>classpath:alfresco/module/com_bestmoney_module_cms/ui/
 web-client-config-work-workflow.xml</value>
 <value>classpath:alfresco/module/com_bestmoney_module_cms/ui/
 web-client-config-studio-workflow.xml</value>
 </list>
 </property>
</bean>

Studio process—testing it
So now we are ready to test this new Studio process. However, this process is
also designed to be part of a bigger parent process, so we need a way of testing
it without depending on information being passed in from the parent process. A
couple of changes to it are necessary before we can test it standalone. Create a copy
of the processdefinition.xml file located in the com_bestmoney_module_cms\
workflows\studio directory and name it processdefinition_test.xml. Then
update the first Swimlane part of the Studio processes definition in this copy
as follows:

 <swimlane name="initiator"/>
 <swimlane name="jobOwner">
 <assignment
 class="org.alfresco.repo.workflow.jbpm.AlfrescoAssignment">
 <actor>#{people.getPerson('jobOwner')}</actor>
 </assignment>
 </swimlane>
 <swimlane name="studioTeamManagers">
 <assignment
 class="org.alfresco.repo.workflow.jbpm.AlfrescoAssignment">
 <pooledactors>
 #{people.getGroup('GROUP_STUDIO_TEAM_MANAGERS')}
 </pooledactors>
 </assignment>
 </swimlane>

These are exactly the same changes as we did for the Work process test
definition. Update the start node so it contains a start task and initialization
of the necessary variables:

<start-state name="Start">
 <task name="bmw:startTestProcessTask" swimlane="initiator"></task>
 <event type="node-leave">
 <action
 class="org.alfresco.repo.workflow.jbpm.AlfrescoJavaScript">

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Business Process Implementation Solutions: Part 2

[440]

 <script>
 executionContext.setVariable("bmc_campaignId", "Campaign 1");
 executionContext.setVariable("bmc_jobType", "Poster");
 executionContext.setVariable("bmw_jobStatus", "Start Up");
 executionContext.setVariable("bmw_workTypes",
 "[Concept,Design]");
 executionContext.setVariable("conceptWork", true);
 executionContext.setVariable("designWork", true);
 executionContext.setVariable("studioTeamMgrsGroupName",
 "GROUP_STUDIO_TEAM_MANAGERS");
 executionContext.setVariable("jobOwner",
 people.getPerson("jobOwner").getNodeRef());
 executionContext.setVariable("bmw_assigneeApprover3Person",
 people.getPerson("admin").getNodeRef());
 var procId = executionContext.processInstance.getId();
 executionContext.setVariable("procId", procId);
 </script>
 </action>
 </event>
 <transition to="ConceptWork?"></transition>
</start-state>

There are quite a few differences to the Work process start node, as we can see.
We do not set the bmw_workType, as it is set by the Studio process, and we do not
set the bpm_assignee (that is worker), as this is also set by the Studio process. We
have added a work type Design so we can test with more than one work type. The
bmw_workTypes collection is split up into separate Boolean variables in the Job
process, so we need to set them (that is conceptWork and designWork) as well.

We also set the studioTeamMgrsGroupName as it is needed by the Studio process.
Finally, the jobOwner variable is needed as we are not using the default initiator
user that is normally assigned automatically to the user who starts a workflow.

Now we can build and deploy this new workflow. Stop Alfresco and run the ant
target deploy-alfresco-amp and that should build the Best Money AMP and deploy
it into the Alfresco installation that we have configured in build.properties.

It's now time to deploy the new Studio workflow. However, we need to deploy the
Work process first as currently the test version of the Work process is deployed. So
deploy it as follows:

deploy alfresco/module/com_bestmoney_module_cms/workflows/work/
processdefinition.xml

Chapter 11

[441]

And then deploy the Studio test process as follows:

deploy alfresco/module/com_bestmoney_module_cms/workflows/studio/
processdefinition_test.xml

Note that the order in which these workflow definitions are deployed is very
important. If we were to deploy the Studio workflow definition first, it would use the
test version of the Work process, even if we deployed a newer version of the Work
process afterwards.

The Studio test workflow definition is now ready to be used. What we now need is
just a document from which to start the workflow. So upload some document and
then select Start Advanced Workflow from the drop-down pop up menu:

In the first screen of the Start Advanced Workflow wizard, select the new
Studio workflow that we just deployed. Then click Next and then Next again,
followed by clicking on the Finish button to start the workflow. This creates a new
P01_SetConceptPriorityAndAssignDesignerOrCopywriter task and assigns it
to every member of the STUDIO_TEAM_MANAGERS group. Log in with the studiomgr1
user and you will see the following task in the My Pooled Tasks Dashlet:

Business Process Implementation Solutions: Part 2

[442]

To complete this task, and move the workflow instance forward, click on the
description to open the task dialog screen:

Here, the Studio Manager can select the Concept work priority, due date, and the
workers that should complete the Concept.

If we do not see the Campaign Id, Associated Product, and Job Type
properties then we might have to specify them manually for each Studio
task property sheet. Sometimes Alfresco picks up the bmc:job property
sheet and other times it does not. In most cases, we have to duplicate the
specification for these properties in every task property sheet.

Now select the worker user that we previously created and choose a due date for the
task. Then complete the task. This should kick off the Work subprocess and if we log
in as the worker user we should see that it has been assigned the W01_ProduceWork
task, and the due date is set properly to the date that was selected by the Studio
Manager. Let the worker complete this task that creates the W02 task and assigns it
to Studio Manager 1. When the W02 task is completed the W03 task is created and
assigned to the Job Owner.

Chapter 11

[443]

When the Job Owner completes the W03 task the P03 task is created where the Studio
Manager is supposed to assign the Designer, set due date, and priority. That kicks off
a new Work subprocess for the Design and when that is finished the Studio Manager
will assign the last task P04 off the Studio process. When P04 is completed the Studio
process is also completed.

Note that if we change the Work process we also have to redeploy the
Studio process so it picks up the new Work process.

Implementing the Sign-off subprocess
The last sub-process that is used by the Job process is the Sign-off process. Start up
Eclipse and add a new process definition for the Sign-off process and call it signoff.

Sign-off process—workflow definition (jPDL)
Define a process definition graphically for the Sign-off subprocess. It is usually a
good idea to have the Swimlane diagram printed out or on a second screen when
doing this. The process diagram should look something like this when we are done:

Business Process Implementation Solutions: Part 2

[444]

The sign-off workflow definition does not use any new node types; we are familiar
with all of them. Worth noticing is that the two Send Email to Approver nodes in
the Swimlane diagram have been replaced by one node in the jPDL diagram.
Sometimes it is possible to pass in variables to a node instead of having two
almost duplicate nodes.

This process will use a new feature that is available to us and that is sending
e-mails from the workflow process. Whenever a level 1 or level 2 approver rejects
a marketing brief or marketing production (that is the sign-off process is used by
the Job process in two places) a rework e-mail is sent to the previous approver to let
him or her know that it was not signed off in the end.

Now set the process definition name manually to bmw:signoffProcess. The jPDL
XML Schema version also needs to be updated to 3.2. The Studio process is going to
need a jobOwner Swimlane, as defined for the Studio and Work processes, and one
Swimlane for each approver. The approver Swimlanes all look like this:

<swimlane name="lev1Approver">
 <assignment
 class="org.alfresco.repo.workflow.jbpm.AlfrescoAssignment">
 <actor>#{bmw_assigneeApprover1Person}</actor>
 </assignment>
</swimlane>

The only thing that differs between the approver Swimlanes are the numbers 1, 2, or
3. The approvers are assigned by the Job Owner when the marketing job is created.

For this subprocess, we are also going to save the process ID in the procId variable.
This is done in the start-state node just before we leave it. The definition is the
same as in the Studio and Work process.

The task nodes need tasks and they in turn need to be assigned to a Swimlane. Add
task elements for all task nodes in the Sign-off process. When the task elements are
added, define a task-create event that sets the task description. We also need a
variable to keep track of the approver's decision (that is approve or reject), initialize it
in a task-enter event. The following shows the updated SO01_Level3SignOff node:

<task-node name="SO01_Lev3SignOff">
 <event type="node-enter">
 <script>
 <variable name="lev3Approved" access="write"/>
 <expression>
 lev3Approved = false;
 </expression>
 </script>
 </event>

Chapter 11

[445]

 <task name="bmw:SO01_Lev3SignOffTask" swimlane="lev3Approver">
 <event type="task-create">
 <script>
 <variable name="bmw_signOffPhase" access="read"/>
 <expression>
 taskInstance.description = "SO03-Sign-off Phase (" +
 bmw_signOffPhase + ")";
 </expression>
 </script>
 </event>
 </task>
 <transition to="isLev3Approved?" name="reject"></transition>
 <transition to="isLev3Approved?" name="approve">
 <script>
 <variable name="lev3Approved" access="read,write"/>
 <expression>
 lev3Approved = true;
 </expression>
 </script>
 </transition>
</task-node>

By dynamically updating the task description the approver can see what phase
he or she is signing off (that is marketing brief or produced material). The
bmw_signOffPhase is set by the Job process depending on what is being signed off.

The SO02_Level2SignOff and SO03_Level1SignOff nodes should look the same
as the SO01_Level3SignOff node, so they will not be displayed here. After each
sign-off node there is a decision node that checks if it was approved or rejected,
update it as follows:

<decision name="isLev3Approved?">
 <transition to="end" name="no"></transition>
 <transition to="isLev2SignOff?" name="yes">
 <condition>#{lev3Approved == true}</condition>
 </transition>
</decision>

After Level 2 and Level 1 approval, the decision nodes also need to set up a couple
of variables in case the approver rejected the job:

<decision name="isLev2Approved?">
 <transition to="SendReworkEmailToApprover" name="no">
 <script>
 <variable name="rejectPerson" access="write"/>
 <variable name="sendRejectEmailToPerson" access="write"/>

Business Process Implementation Solutions: Part 2

[446]

 <expression>
 rejectPerson = bmw_assigneeApprover2Person;
 sendRejectEmailToPerson = bmw_assigneeApprover3Person;
 </expression>
 </script>
 </transition>
 <transition to="isLev1SignOff?" name="yes">
 <condition>#{cat2Approved == true}</condition>
 </transition>
</decision>

In case the job was rejected, we set up who did the rejection and who was the
previous approver. This information will be used when sending the rework
e-mail in case of a rejection. The isLev1Approved decision node looks the same
as the isLev2Approved node.

Before Level 2 and Level 1 sign-off, we need to check if the particular level of sign-off
has been selected by the Job Owner. This information is kept in the signOffLevel
variable, update the nodes as follows:

<decision name="isLev2SignOff?">
 <transition to="CheckSignoffComments" name="no"></transition>
 <transition to="Lev2SignOff" name="yes">
 <condition>#{signOffLevel == "LEV2" or signOffLevel == "LEV1"}</
condition>
 </transition>
</decision>
. . .
<decision name="isLev1SignOff?">
 <transition to="SO04_CheckSignoffComments" name="no"></transition>
 <transition to="SO03_Lev1SignOff" name="yes">
 <condition>#{signOffLevel == "LEV1"}</condition>
 </transition>
</decision>

When we get to the SO04_CheckSignOffComments node, we consider the job as
successfully signed off and set the signedOff variable to true. We also add the
task and it should be completed by the Job Owner:

<task-node name="SO04_CheckSignoffComments">
 <event type="node-enter">
 <script>
 <variable name="signedOff" access="write"/>
 <expression>
 signedOff = true;
 </expression>

Chapter 11

[447]

 </script>
 </event>
 <task name="bmw:SO04_CheckSignoffCommentsTask" swimlane="jobOwner">
 <event type="task-create">
 <script>
 <variable name="bmw_signOffPhase" access="read"/>
 <expression>
 taskInstance.description = "SO04-Check Sign-off (" +
 bmw_signOffPhase + ")";
 </expression>
 </script>
 </event>
 </task>
 <transition to="end"></transition>
</task-node>

The last thing we need to sort out for the sign-off process is the
SendReworkEmailToApprover node that will send the e-mail to the previous
approver in case of a rejection. Add a node-enter event as follows:

<node name="SendReworkEmailToApprover">
 <event type="node-enter">
 <action
 class="org.alfresco.repo.workflow.jbpm.AlfrescoJavaScript">
 <script>
 var template = companyhome.childByNamePath("Data
 Dictionary/Email Templates/Best Money/Marketing/signoff-
 rework-email.ftl");
 var args = [];
 args["signOffPhase"] = bmw_signOffPhase;
 args["campaignId"] = bmc_campaignId;
 args["rejectorPersonNodeRef"] =
 rejectPerson.nodeRef.toString();
 var txtMail =
 bpm_package.children[0].processTemplate(template, args);
 var mail = actions.create("mail");
 mail.parameters.to =
 sendRejectEmailToPerson.properties.email;
 mail.parameters.from = "alfresco@bestmoney.com";
 mail.parameters.subject = "The " + bmw_signOffPhase + " for
 the " + bmc_campaignId + " campaign has been rejected";
 mail.parameters.text = txtMail;
 mail.execute(bpm_package);
 </script>
 </action>
 </event>
 <transition to="end"></transition>
</node>

Business Process Implementation Solutions: Part 2

[448]

The first thing we do in the script is fetching the e-mail template that we are going to
use. It will be stored in the /Company Home/Data Dictionary/Email Templates/
Best Money/Marketing folder and called signoff-rework-email.ftl.

The companyhome root variable that usually is available without
us having to do anything will not be available in a subprocess. It
is important that we do not forget to pass it in from the parent Job
process. This is because we are specifically setting what variables
should be used in the subprocess and this also includes Alfresco
JavaScript root variables.

Next we set up the parameters that will be passed into the template when we process
it via one of the documents in the content package that is associated with the workflow
instance (that is bmp_package). To send the e-mail we use an Alfresco mail action.

Sign-off process—workflow content model
By now we are quite familiar with how to add supporting workflow task types to the
Workflow Content Model. Add the following types to the workflow-model.xml file:

<type name="bmw:SO01_Lev3SignOffTask">
 <parent>bmw:baseSignOffTask</parent>
</type>
<type name="bmw:SO02_Lev3SignOffTask">
 <parent>bmw:baseSignOffTask</parent>
</type>
<type name="bmw:SO03_Lev3SignOffTask">
 <parent>bmw:baseSignOffTask</parent>
</type>
<type name="vmmw:SO04_CheckSignoffCommentsTask">
 <parent>bmw:baseSignOffTask</parent>
</type>

All these task types use a new base task type called bmw:baseSignOffTask that has
an extra property to store the sign-off phase that we are in, add it as follows:

<type name="bmw:baseSignOffTask">
 <parent>bmw:baseJobTask</parent>
 <properties>
 <property name="bmw:signOffPhase">
 <title>Current sign-off phase such as for example Brief</title>
 <type>d:text</type>
 </property>
 </properties>
</type>

Chapter 11

[449]

The bmw:signOffPhase property will be used in the description of sign-off tasks
and in the property sheets, so users know which phase of the material production
they are actually signing off.

Sign-off process—create and bootstrap the e-mail
template
The e-mail template that is used by the SendReworkEmailToApprover node
needs to be specified and registered in a way so it is loaded automatically. Create
the signoff-rework-email.ftl Freemarker template file and put it in the
com_bestmoney_module_cms\templates directory. Open it up and add the
following text as the template:

<#assign signOffPhase=args["signOffPhase"]/>
<#assign campaignId=args["campaignId"]/>
<#assign rejectorPersonNodeRef=args["rejectorPersonNodeRef"]/>
<#assign rejectorPerson=companyhome.nodeByReference[rejectorPersonNod
eRef]/>

The ${signOffPhase} for the ${campaignId} campaign has been
rejected by ${rejectorPerson.properties.firstName} ${rejectorPerson.
properties.lastName}.

Best Money

We also need to bootstrap the template so it is loaded automatically into the /
Company Home/Data Dictionary/Email Templates/Best Money/Marketing
folder. For this create a file called signoff-rework-email-template.xml and put
it in the com_bestmoney_module_cms\bootstrap directory. Add the following
bootstrapping XML to it:

<?xml version="1.0" encoding="UTF-8"?>
<view:view xmlns:view="http://www.alfresco.org/view/repository/1.0">
 <cm:content
 xmlns:view="http://www.alfresco.org/view/repository/1.0"
 xmlns:sys="http://www.alfresco.org/model/system/1.0"
 xmlns:app="http://www.alfresco.org/model/application/1.0"
 xmlns:cm="http://www.alfresco.org/model/content/1.0"
 xmlns="" view:childName="cm:signoff-rework-email.ftl">
 <view:aspects>
 <cm:titled></cm:titled>
 <app:inlineeditable></app:inlineeditable>
 </view:aspects>
 <view:properties>

Business Process Implementation Solutions: Part 2

[450]

 <sys:store-protocol>workspace</sys:store-protocol>
 <sys:store-identifier>SpacesStore</sys:store-identifier>
 <sys:node-uuid>signoff_rework_email_template_1_0</sys:node-
 uuid>
 <app:editInline>true</app:editInline>
 <cm:description>Sign-Off Rejection Email Template when rework
 is required</cm:description>
 <cm:content>
 contentUrl=classpath:alfresco/module/
 com_bestmoney_module_cms/templates/signoff-rework-
 email.ftl|mimetype=text/plain|size=668|encoding=UTF-8
 </cm:content>
 <cm:title>signoff-rework-email.ftl</cm:title>
 <cm:name>signoff-rework-email.ftl</cm:name>
 <cm:created>2010-08-11T15:00:00.000+01:00</cm:created>
 </view:properties>
 <view:associations></view:associations>
 </cm:content>
</view:view>

This XML file just defines how the template should be imported but it actually
does not import it. We need to add an Importer bean for that in the bootstrap-
context.xml Spring configuration file (located in the com_bestmoney_module_cms\
context directory):

<bean id="com.bestmoney.cms.bootstrapEmailTemplates"
class="org.alfresco.repo.module.ImporterModuleComponent"
 parent="module.baseComponent">
 <property name="moduleId" value="com_bestmoney_module_cms"/>
 <property name="name"
 value="com.bestmoney.cms.bootstrapEmailTemplates"/>
 <property name="description" value="Initial email template
 requirements"/>
 <property name="sinceVersion" value="1.0"/>
 <property name="appliesFromVersion" value="1.0"/>
 <property name="importer" ref="spacesBootstrap"/>
 <property name="bootstrapViews">
 <list>
 <props>
 <prop key="path">
 /${spaces.company_home.childname}
 /${spaces.dictionary.childname}
 /${spaces.templates.email.childname}
 /cm:Best_x0020_Money/cm:Marketing
 </prop>

Chapter 11

[451]

 <prop key="location">
 alfresco/module/com_bestmoney_module_cms/bootstrap/
 signoff-rework-email-template.xml
 </prop>
 </props>
 </list>
 </property>
</bean>

For this import to work, the …/Best Money/Marketing folders have to exist.

Sign-off process—property files for UI labels
For the Sign-off process, UI label resources create a new property file called labels-
signoff-workflow.properties and put it in the com_bestmoney_module_cms/ui
directory. Then add the properties in the same way as we have done previously. We
are not showing it here as it is straightforward, have a look in the source code.

Sign-off process—task property sheets
For the property sheets related to the Sign-off process tasks, we will use a separate
web client configuration file called web-client-config-signoff-workflow.xml.

Start by defining the following property sheet for the SO01 task:

<config evaluator="node-type" condition="bmw:SO01_Lev3SignOffTask">
 <property-sheet>
 <separator name="sep-0" display-label-id="signOffPhaseHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:signOffPhase" display-label-
 id="signOffPhase" read-only="true"/>
 <separator name="sep-1" display-label-id="jobWorkflowHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmc:campaignId" display-label-
 id="campaignId" read-only="true"/>
 <show-property name="bmc:product" display-label-id="product"
 read-only="true"/>
 <show-property name="bmc:jobType" display-label-id="jobType"
 read-only="true"/>
 <show-property name="bmw:jobStatus" display-label-id="jobStatus"
 read-only="true"/>
 <separator name="sep-2" display-label-
 id="signoffCatAndAssigneesHeader" component-
 generator="HeaderSeparatorGenerator"/>

Business Process Implementation Solutions: Part 2

[452]

 <show-property name="bmw:briefSignOffCategory" display-label-
 id="briefSignOffCategory" read-only="true"/>
 <show-property name="bmw:productionSignOffCategory" display-
 label-id="productionSignOffCategory" read-only="true"/>
 <show-association name="bmw:assigneeApprover1Person" display-
 label-id="approver1Person" read-only="true"/>
 <show-association name="bmw:assigneeApprover2Person" display-
 label-id="approver2Person" read-only="true"/>
 <separator name="sep-3" display-label-id="workItemsHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:workTypes" display-label-id="workTypes"
 read-only="true"/>
 <show-property name="bmw:conceptWorkDueDate" display-label-
 id="conceptWorkDueDate" read-only="true"/>
 <show-property name="bmw:designWorkDueDate" display-label-
 id="designWorkDueDate" read-only="true"/>
 <show-property name="bmw:copywriteWorkDueDate" display-label-
 id="copywriteWorkDueDate" read-only="true"/>
 </property-sheet>
</config>

The property sheets for the SO02 and SO03 tasks are pretty much the same except
that we display approver 1 and 3 for SO02 and approver 2 and 3 for SO03.

The last property sheet looks like this for SO04:

<config evaluator="node-type" condition="bmw:SO04_
CheckSignoffCommentsTask">
 <property-sheet>
 <separator name="sep-0" display-label-id="signOffPhaseHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmw:signOffPhase" display-label-
 id="signOffPhase" read-only="true"/>
 <separator name="sep-1" display-label-id="jobWorkflowHeader"
 component-generator="HeaderSeparatorGenerator"/>
 <show-property name="bmc:campaignId" display-label-
 id="campaignId" read-only="true"/>
 <show-property name="bmc:product" display-label-id="product"
 read-only="true"/>
 <show-property name="bmc:jobType" display-label-id="jobType"
 read-only="true"/>
 <show-property name="bmw:jobStatus" display-label-id="jobStatus"
 read-only="true"/>
 </property-sheet>
</config>

Chapter 11

[453]

There are new labels that we use for these property sheets and they need to be added
as follows to the webclient-workflow.properties file:

signOffPhaseHeader=Sign-off Phase
signOffPhase=Sign-off Phase
signoffCatAndAssigneesHeader=Sign-off categories and assignees
briefSignOffCategory=Brief Sign-off Category
productionSignOffCategory=Production Sign-off Category
approver1Person=Level 1 Approver (Director)
approver2Person=Level 2 Approver (Marketing Manager)
approver3Person=Level 3 Approver (Group Manager)

Sign-off—bootstrapping UI property files and
property sheets configuration
The workflow bootstrapping beans now need to be updated with the two new
files that we have created for the Sign-off process. This is done in the boostrap-
context.xml Spring configuration file located in the com_bestmoney_module_cms\
context directory.

Update the following bean configuration to include the Sign-off process properties:

<bean id=
 "com.bestmoney.marketing.properties.workflowBootstrap"
 parent="workflowDeployer">
 <property name="labels">
 <list>
. . .
 <value>
 alfresco.module.com_bestmoney_module_cms.ui.labels-signoff-
 workflow
 </value>
 </list>
 </property>
</bean>

Then bootstrap the Sign-off process task property sheets:

<bean id="com.bestmoney.webclient.configBootstrap"
 class="org.alfresco.web.config.WebClientConfigBootstrap"
 init-method="init">
 <property name="configs">
 <list>
. . .

Business Process Implementation Solutions: Part 2

[454]

 <value>
 classpath:alfresco/module/com_bestmoney_module_cms/ui/web-
 client-config-signoff-workflow.xml
 </value>
 </list>
 </property>
</bean>

Sign-off process—testing it
So now we are ready to test this new Sign-off process. This process is also designed
to be part of a bigger parent process so we need a way of testing it without
depending on information being passed in from the parent process. We have done
this for the Work and Studio processes so we are not going to show it again here.
The source code contains a processdefinition_test.xml file that is located in
the com_bestmoney_module_cms\workflows\signoff directory and it can be used
to test the Sign-off process individually. It requires the approver1, approver2, and
approver3 users to be created for it to work. It has the signOffLevel set to LEV3 so
only one approver on the group level will be needed to approve when we test. If you
want to test other levels then change this variable.

To deploy the Test version of the Sign-off process do as follows:

deploy alfresco/module/com_bestmoney_module_cms/workflows/signoff/
processdefinition_test.xml

If approver 2 or approver 1 rejects the job then an e-mail should be sent. For this to
work we have to configure Alfresco with what SMTP server to use. This can be done
in the tomcat/shared/classes/alfresco-global.properties file:

mail.host=smtp.bestmoney.com
mail.username=anonymous
mail.password=
mail.encoding=UTF-8
mail.from.default=alfresco@bestmoney.com
mail.smtp.auth=false

If you get an error when starting Alfresco it is probably because the /Data
Dictionary/Email Templates/Best Money/Marketing folder structure does not
exist. Comment out the bean called com.bestmoney.cms.bootstrapEmailTemplates
in the bootstrap-context.xml file and restart Alfresco. Then create the required
folders. Stop Alfresco and enable the bean again and you should be fine.

Chapter 11

[455]

Implementing the Job process
Okay, we are finally at the parent Job process that is going to tie everything together.
Start up Eclipse and add a new process definition for the Job process and call it job.

Job process—workflow definition (jPDL)
In the Job process Swimlane diagram, we use phases to divide the process into
different stages or phases. The Job process definition will make use of a new feature
in jPDL called 'Super States' to implement this. A super state is used to enclose one or
more nodes and is usually used to depict a certain phase of the business process.

The Job process diagram looks like this:

Business Process Implementation Solutions: Part 2

[456]

When designing the workflow definition with phases there are a couple of things
that are good to think about:

Always start with the super states: You can put new nodes in a super state
but not drag-and-drop existing nodes into a super state.
Name the super state as soon as you have created it: This is useful as
otherwise it can be tricky to remember to change the name in all places
where it is used, and then you will be wondering why the process is not
behaving the way you want.

In the previous diagram, we will name our phases/super states as follows,
top to down:

BriefDefinitionPhase

BriefSignOffPhase

ProductionPhase

ProductionSignOffPhase

LivePhase

The easiest way to name a super-state is to switch to the Source window in Eclipse
and do it as soon as you have dragged-and-dropped it in the diagram window. We
can also see the use of another node type called state that will be used as a waiting
state for the external reviewer to decide if the produced material should be approved
or not.

Now set the process definition name manually to bmw:jobProcess. The jPDL XML
Schema version also needs to be updated to 3.2. The Job process is going to need an
initiator Swimlane, which is always needed for a process that is not a subprocess.
It will contain the person that started the workflow, in our case this will be the Job
Owner. To define this Swimlane do this:

<swimlane name="initiator"/>

We then update the start-state node as follows:

<start-state name="Start">
 <task name="bmw:startJobProcessTask" swimlane="initiator"/>
 <transition to="BriefDefinitionPhase/BD01_CreateMaterialBrief"/>
 <event type="node-leave">
 <script>
 <variable name="studioTeamMgrsGroupName" access="write"/>
 <expression>
 studioTeamMgrsGroupName = "GROUP_STUDIO_TEAM_MANAGERS";

•

•

•

•

•

•

•

Chapter 11

[457]

 </expression>
 </script>
 </event>
</start-state>

The first thing we have done here is to add a task and assign it to the initiator
Swimlane. This is the special start task needed to get the workflow going and we
will only require the user to enter a comment when he or she starts the workflow.

We could have defined the start node in a way so the start task
required the user to enter all bmc:job and bmw:job data. This
also works, only problem is if the user has filled in almost all data
and then wants to save it and start the workflow later on, this is
not possible with a start task. And that is why we do this in the
BD01 task instead, where the user can save the task if he or she
wants to before completing it.

Then we add a node-leave event handler that sets up the name of the Studio Team
Managers group. This name will be used throughout the processes and it is good to
set it in one place only.

Notice how transitions are specified now when we have phases involved, the phase
name needs to be included like a path to the node we are transitioning to.

Now let's start adding a few things to the BriefDefinitionPhase:

<super-state name="BriefDefinitionPhase">
 <event type="superstate-enter">
 <script>
 <variable name="bmw_jobStatus" access="write"/>
 <expression>
 bmw_jobStatus = "Brief Definition";
 </expression>
 </script>
 </event>

Here we have used a new event handler for the super-state called superstate-
enter. We use it to set the status for the job. The event handlers on the phase level
are good when we want to set variables that are relevant for all nodes in the phase.

Let's continue updating the BD01_CreateMaterialBrief task node:

<task-node name="BD01_CreateMaterialBrief">
 <task name="bmw:BD01_CreateMaterialBriefTask" swimlane="initiator">
 <event type="task-create">

Business Process Implementation Solutions: Part 2

[458]

 <action
 class="org.alfresco.repo.workflow.jbpm.AlfrescoJavaScript">
 <script>
 taskInstance.setVariable(
 "bmw_briefSignOffCategory", "LEV3");
 taskInstance.setVariable(
 "bmw_productionSignOffCategory", "LEV3");
 </script>
 </action>
 </event>
 </task>
 <transition to="../BriefSignOffPhase/BriefSignOff"/>
</task-node>

As usual, we are adding a task for the task node. The task has a handler for
task-create events. We use the handler to set default values for two of the
variables. So why do we not just set these default values in the Workflow content
model? This is because when the property sheets for a subprocess, such as Sign-off,
are displayed they will overwrite any property value with the default value—if any
is defined in the content model.

Also add a task to the BD02_UpdateMaterialBrief node:

<task-node name="BD02_UpdateMaterialBrief">
 <task name="bmw:BD02_UpdateMaterialBriefTask"
 swimlane="initiator"/>
 <transition to="../BriefSignOffPhase/BriefSignOff"/>
</task-node>

Note how the "../" is used to navigate out of the current phase to be able to step into
the phase we are going to next. We finish up the BriefDefinitionPhase by setting
a couple of variables that control what type of work should be done:

 <event type="superstate-leave">
 <script>
 <variable name="bmw_workTypes" access="read"/>
 <variable name="conceptWork" access="write"/>
 <variable name="designWork" access="write"/>
 <variable name="copyWork" access="write"/>
 <expression>
 conceptWork = false;
 designWork = false;
 copyWork = false;
 if (bmw_workTypes.contains("Concept")) {
 conceptWork = true;
 }

Chapter 11

[459]

 if (bmw_workTypes.contains("Design")) {
 designWork = true;
 }
 if (bmw_workTypes.contains("Copywrite")) {
 copyWork = true;
 }
 </expression>
 </script>
 </event>
</super-state>

For this we use a handler for the superstate-leave event. The work that should be
done (that is concept, design, and/or copywrite) is specified in a multi-value variable
called bmw_workTypes and here we check what specific work types it contains and
set the conceptWork, designWork, and copyWork process variables accordingly.

If we for example, select Concept and Copywrite work
then the bmw_workTypes variable value will look like
[Concept,Copywrite].

Next up is the BriefSignOffPhase where we should call the Sign-off subprocess
to sign off the Material Brief. Start by setting the job status as follows:

<super-state name="BriefSignOffPhase">
 <event type="superstate-enter">
 <script>
 <variable name="bmw_jobStatus" access="write"/>
 <expression>
 bmw_jobStatus = "Brief Sign-Off";
 </expression>
 </script>
 </event>

Then update the BriefSignOff process-state so it calls the Sign-off process:

<process-state name="BriefSignOff">
 <sub-process name="bmw:signoffProcess"/>
 <event type="node-enter">
 <script>
 <variable name="bmw_signOffPhase" access="write"/>
 <expression>
 bmw_signOffPhase = "Material Brief";
 </expression>
 </script>
 </event>

Business Process Implementation Solutions: Part 2

[460]

In the node-enter event handler, we set up a variable bmw_signOffPhase with
a name that distinguishes this particular sign-off process from the other sign-off
processes further down in the Job Process. In this case, we call it Material Brief,
which will be reflected in the task descriptions that the users will see, for example:
"SO03-Sign-off Phase (Material Brief)".

There are quite a few variables we need to pass into the sign-off process, but let's
start with the variables that should be set by the subprocess and passed back to the
Job process:

 <variable name="briefSignedOff" access="write" mapped-
 name="signedOff"/>
 <variable name="briefSignOffProcId" access="write" mapped-
 name="procId"/>

The first variable briefSignedOff will be set when the subprocess finishes and it
will contain the outcome of the sign-off. The other briefSignOffProcId variable
contains the process ID for the Sign-off process if we should need it for reporting.

Next we pass in all the variables from the bmc:job and bmw:job aspects:

 <variable name="bmc_campaignId" access="read"/>
 <variable name="bmc_product" access="read"/>
 <variable name="bmc_jobType" access="read"/>
 <variable name="bmw_jobStatus" access="read"/>
 <variable name="bmw_workTypes" access="read"/>
 <variable name="bmw_conceptWorkDueDate" access="read"/>
 <variable name="bmw_designWorkDueDate" access="read"/>
 <variable name="bmw_copywriteWorkDueDate" access="read"/>
 <variable name="bmw_briefSignOffCategory" access="read"/>
 <variable name="bmw_productionSignOffCategory" access="read"/>
 <variable name="bmw_assigneeApprover1Person" access="read"/>
 <variable name="bmw_assigneeApprover2Person" access="read"/>
 <variable name="bmw_assigneeApprover3Person" access="read"/>
 <variable name="bmw_externalReviewerEmail" access="read"/>
 <variable name="bmw_signOffPhase" access="read"/>
 <variable name="bmw_briefSignOffCategory" access="read" mapped-
 name="signOffCategory"/>

The last bmw_briefSignOffCategory variable that we pass in tells the Sign-off
process what level of approval we need (default is LEV3). We also need to pass
in a few variables that might not be obvious at first:

 <variable name="bpm_package" access="read"/>
 <variable name="companyhome" access="read"/>
 <variable name="initiator" access="read" mapped-name="jobOwner"/>
 <transition to="BriefOK?"/>
</process-state>

Chapter 11

[461]

As we mentioned before, when we start specifying what variables should be passed
into the sub-process we have to specify all that can possibly be needed. The last thing
we need to do in the BriefSignOffPhase is to check in the BriefOk? node whether
the material brief was signed-off or not:

<decision name="BriefOK?">
 <transition to="../BriefDefinitionPhase/BD02_UpdateMaterialBrief"
 name="no"/>
 <transition to="../ProductionPhase/P00_ValidateMaterialBrief"
 name="yes">
 <condition>#{briefSignedOff == true}</condition>
 </transition>
</decision>
</super-state>

If the brief was signed off then we enter into the ProductionPhase where we start
by setting the job status and adding a task to the P00 task node:

<super-state name="ProductionPhase">
 <event type="superstate-enter">
 <script>
 <variable name="bmw_jobStatus" access="write"/>
 <expression>
 bmw_jobStatus = "Production";
 </expression>
 </script>
 </event>
 <task-node name="P00_ValidateMaterialBrief">
 <task name="bmw:P00_ValidateMaterialBriefTask">
 <assignment
 class="org.alfresco.repo.workflow.jbpm.AlfrescoAssignment">
 <pooledactors>#{people.getGroup(studioTeamMgrsGroupName)}
 </pooledactors>
 </assignment>
 </task>
 <transition to="../BriefDefinitionPhase/BD02_UpdateMaterialBrief"
 name="notValid"/>
 <transition to="MaterialProduction" name="valid"/>
 </task-node>

We do not always have to use Swimlanes when assigning tasks to users. Here we can
see how the special AlfrescoAssignment class can be used to assign tasks to users
or groups of users. In this case, we use the Studio Team Managers group name and
assign this task to all members of this group.

Business Process Implementation Solutions: Part 2

[462]

The material specified in the brief is produced in the Studio process, so configure it
as follows:

<process-state name="MaterialProduction">
 <sub-process name="bmw:studioProcess"/>

 <variable name="studioProcId" access="write" mapped-name="procId"/>
 <variable name="studioConceptWorkProcId" access="write"/>
 <variable name="studioCopyWorkProcId" access="write"/>
 <variable name="studioDesignWorkProcId" access="write"/>

The first couple of variables we define are the outbound variables that will store the
process IDs for all the subprocesses. Some of these variables might be empty, for
example, if the Job Owner has not selected any Copywrite work to be done. Then
the studioCopyWorkProcId variable would be null.

Then pass in the required variables from bmc:job and bmw:job aspects:

 <variable name="bmc_campaignId" access="read"/>
 <variable name="bmc_product" access="read"/>
 <variable name="bmc_jobType" access="read"/>
 <variable name="bmw_jobStatus" access="read"/>
 <variable name="bmw_workTypes" access="read"/>
 <variable name="bmw_conceptWorkDueDate" access="read"/>
 <variable name="bmw_designWorkDueDate" access="read"/>
 <variable name="bmw_copywriteWorkDueDate" access="read"/>

We also pass in the Studio Team Managers Group name as there are tasks in the
Studio and Work processes that should be assigned to the members of this group.
Also pass in the work type variables that we set up in the BriefDefinitionPhase
so the studio knows what to do:

 <variable name="studioTeamMgrsGroupName" access="read"/>
 <variable name="conceptWork" access="read"/>
 <variable name="designWork" access="read"/>
 <variable name="copyWork" access="read"/>

Then pass in the content package and the initiator person:
 <variable name="bpm_package" access="read"/>
 <variable name="initiator" access="read" mapped-name="jobOwner"/>

The bpm_package contains the document from which the workflow was started.
Users can also decide to add more documents to this package as the workflow
progresses. But nobody is forced to add any documents to this package during the
process. In fact all the material that is produced by the studio might just be stored in
the folder from where the workflow was started (that is, where the document is from
when the workflow was started).

Chapter 11

[463]

The following properties are also defined:

 <variable name="bmw_briefSignOffCategory" access="read"/>
 <variable name="bmw_productionSignOffCategory" access="read"/>
 <variable name="bmw_assigneeApprover3Person" access="read"/>
 <variable name="bmw_externalReviewerEmail" access="read"/>
<transition to="fork1" name=""/>
</process-state>

None of these properties are actually used or displayed by the Studio process or the
Work process. However, they need to be passed into the Studio process anyway as
they are mandatory in the bmw:job aspect definition. If not passed in, it would not be
possible to complete a task that is based on a type that has this aspect.

When the material is produced and approved as okay out of the Studio, we end up
in the ProductionSignOffPhase phase where there is another sign-off of the new
material. The call to the Sign-off subprocess is pretty much the same as when the
material brief was signed off so we are not repeating it here (see the source code).
However, there is an extra sign off (that is, SO00_ExternalReview) by an external
person going on in parallel. So let's have a look at that and see how it is defined
and implemented.

The way the external sign-off works is that the Job Owner specifies an e-mail address
for an external reviewer when the brief is created. You might have noticed that there
is a new property called bmw_externalReviewerEmail that we need to add to the
bmw:job aspect.

When we get to the SO00_ExternalReview node we call a custom action from a
script in a node-enter event handler. This custom action sends an e-mail based on
a template to the e-mail address specified with the bmw_externalReviewerEmail
property. Here is how it looks:

<state name="SO00_ExternalReview">
 <event type="node-enter">
 <script>
 <variable name="externallySignedOff" access="write"/>
 <variable name="notificationRecipient"
 access="read,write"/>
 <variable name="bmw_externalReviewerEmail"
 access="read"/>
 <expression>
 externallySignedOff = false;
 notificationRecipient = bmw_externalReviewerEmail;
 </expression>
 </script>

Business Process Implementation Solutions: Part 2

[464]

 <action class="com.bestmoney.cms.workflow.actionhandler
 .ExternalSignOffNotification"/>
 </event>
 <transition to="join1" name="reject"/>
 <transition to="join1" name="approve">
 <script>
 <variable name="externallySignedOff"
 access="read,write"/>
 <expression>
 externallySignedOff = true;
 </expression>
 </script>
 </transition>
</state>

The ExternalSignOffNotification action is implemented as a
JBPMSpringActionHandler and Alfresco Mail action to send the e-mail. See the
source code delivered with this chapter for more info on how to write these kinds
of jBPM actions. The action constructs an e-mail looking something like this:

You have been assigned to a task named SO00_ExternalReview. To sign-off click on the
link below.

Documents that are waiting sign-off:

Alfresco Training Guide.pdf

Reject:http://<hostname>:8080/alfresco/service/bestmoney/marketing/bpm/
signoff?id=jbpm$34-@externalReview2&action=reject&guest=true

Approve:http://<hostname>:8080/alfresco/service/bestmoney/marketing/bpm/
signoff?id=jbpm$34-@externalReview&2action=approve&guest=true

There are two links, one for each transition out of the SO00_ExternalReview state
node. So when the external reviewer clicks one of these links it moves the process
forward by signaling one of the transitions. The way the process is signaled is handled
by a Web Script that accompanies the custom action. It is registered as follows:

<webscript>
 <shortname>External Sign-off</shortname>
 <description>External sign-off via email of produced
 material</description>
 <url>/bestmoney/marketing/bpm/signoff?id={argument}&action={
 transArgument}</url>
 <format default="html">extension</format>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 11

[465]

 <authentication>guest</authentication>
 <transaction>none</transaction>
</webscript>

And it kicks off a class called ExternalSignOffWebScript, see source code, that is
a DeclarativeWebScript. This java-based web script takes the id parameter from
the URL and the action parameter from the URL and calls the workflowService.
signal(id, action) method.

Note that in a production deployment we would want to
change the Web Script authentication from guest to user so
not everyone can approve or reject by just getting their hands
on the URLs.

The SO00_ExternalReview node keeps track of the external review outcome with
the externallySignedOff variable. Then we just have to also check the material
production sign-off outcome to know if the material should go live:

 <decision name="MaterialOK?">
 <transition to="../BriefDefinitionPhase/BD02_UpdateMaterialBrief"
 name="no"></transition>
 <transition to="../LivePhase/MakeJobLive" name="yes">
 <condition>#{productionSignedOff == true and
 externallySignedOff == true}</condition>
 </transition>
 </decision>
</super-state>

We now enter into the last LivePhase where we classify the produced material, if it
is stored in the folder from where the Job workflow was started. The MakeJobLive
node looks as follows:

<super-state name="LivePhase">
. . .
 <node name="MakeJobLive">
 <event type="node-enter">
 <action
 class="org.alfresco.repo.workflow.jbpm.AlfrescoJavaScript">
 <runas>admin</runas>
 <script>
 var props = new Array();
 props["bmc:campaignId"] = bmc_campaignId;
 props["bmc:product"] = bmc_product;
 props["bmc:jobType"] = bmc_jobType;

Business Process Implementation Solutions: Part 2

[466]

 var jobfolder = bpm_package.children[0].parent;

 for (var i = 0; i <
 jobfolder.children.length; i++) {
 var document = jobfolder.children[i];
 if (document.isDocument) {
 document.addAspect("bmc:job", props);
 document.save();
 }
 }
 </script>
 </action>
 </event>
 <transition to="../End"/>
 </node>
</super-state>

Here, we apply the bmc:job aspect to all the produced material. Note that we do
not loop through the items in the bpm_package as it might just contain the initial
document that was used to start the process. Instead, we use the bpm_package
variable to get to the folder where the new material hopefully has been uploaded.

When setting variables in an Array be careful with date variables and
check that they are defined (that is, not null) as follows:
if (typeof(bmc_someDate) !== 'undefined') props["bmc:
someDate "] = bmc_someDate;
And any multi-value variable needs to be handled as follows, let's say
that we could specify multiple products for example:
bmc_products = bmc_products.replace('[', '').
replace(']', '');
props["bmc:products "] = bmc_products.split(',');

If we take a look at one of the documents produced via this job process, we will see
that it has been classified with the bmc:job aspect. Here is an example of what we
should see in the View Details page:

Chapter 11

[467]

When using JavaScript it is important to think about how we use
comments. If we comment with "//", we will effectively comment out all
the code after that as Alfresco JavaScript is formatting code on a single
line only.
The action scripts are stored in the JBPM_DELEGATION table in the
CONFIGURATION_ column. And the size is just 4,000 bytes when using
the Derby database. When using MySQL, it is a TEXT type so no problem
with size there. Any comments inside the script will be stored too, even if
you do an XML comment (<!—) when inside the action tag.

Job process—workflow content model
As usual, we need to create Types for each task in the workflow definition, so the
data used by the tasks has to be stored somewhere. Add the following types to the
workflow-model.xml file:

<type name="bmw:startJobProcessTask">
 <parent>bpm:startTask</parent>
</type>
<type name="bmw:BD01_CreateMaterialBriefTask">
 <parent>bmw:baseJobTask</parent>
</type>
<type name="bmw:BD02_UpdateMaterialBriefTask">
 <parent>bmw:baseJobTask</parent>
 <overrides>
 <property name="bpm:packageItemActionGroup">
 <default>edit_package_item_actions</default>
 </property>
 </overrides>
</type>
<type name="bmw:P00_ValidateMaterialBriefTask">
 <parent>bmw:baseJobTask</parent>
</type>

If a task is rejected and needs updating we allow the bpm:package content
to be updated. This is done by setting the bpm:packageItemActionGroup
as shown previously.

Business Process Implementation Solutions: Part 2

[468]

Job process—property file, property sheets, and
bootstrapping
We have done this a few times now, so we are not going to repeat it. Have a look
at the source code and specifically the labels-job-workflow.properties and
web-client-config-job-workflow.xml files. For information about how these
files are bootstrapped see the boostrap-context.xml Spring configuration file.

The configuration produces the following UI for creating a new Job:

Chapter 11

[469]

Job process—testing it
We have now finally completed the whole Job process, including all subprocesses.
We have tested the subprocesses, so now we just have to try out the whole job
process and see if everything works together.

The first thing we should do is log in as administrator and redeploy all workflows,
and do this in the correct order. The following list is in the order in which the
workflows need to be deployed:

deploy alfresco/module/com_bestmoney_module_cms/workflows/work/
processdefinition.xml

deploy alfresco/module/com_bestmoney_module_cms/workflows/studio/
processdefinition.xml

deploy alfresco/module/com_bestmoney_module_cms/workflows/signoff/
processdefinition.xml

deploy alfresco/module/com_bestmoney_module_cms/workflows/job/
processdefinition.xml

The way we should always deploy workflows is in the other way around from how
they are used. For example, the Job process uses the Studio process, which in turn
uses the Work process. So we need to deploy them in the order Work, Studio, and
Job. The Job process also uses the Sign-off process, which then needs to be deployed
before the Job process. The order in which the Studio and Sign-off process definitions
are deployed does not matter.

Extending the workflow solution
Now people can start using the Best Money Job Workflow to control and manage the
production of marketing material. However, it will not be long before we will get
questions and requests like:

How about e-mail notifications, can the system send me an e-mail when I am
assigned a new task?
Is it possible to have some custom fields in the My Tasks To Do, My Pooled
tasks, and so on?
We need a management Dashlet where we can see all assigned tasks for all
ongoing workflows, is it available?
Is it possible to have a list of all tasks completed for a Job workflow, for
auditing reasons?

•

•

•

•

Business Process Implementation Solutions: Part 2

[470]

And the list goes on. This section will go through a couple of solutions for these
kinds of requests. The scope of this chapter does not allow us to go through all the
source code for the solutions, just how they are used in the workflow. Download the
source code for this chapter for more detailed information about the implementation.

Adding e-mail notification
One really useful feature that we are going to need is the possibility to have
e-mail notifications sent out automatically when a user or users of a group has
been assigned a task. This can be done easily with a jBPM action handler called
TaskAssignmentNotificationActionHandler. It is used as follows in the process
definition to send an e-mail when a user has been assigned a task:

<task name="bmw:BD01_CreateMaterialBriefTask" swimlane="initiator">
<event type="node-enter">
 <action class="org.alfresco.repo.workflow.jbpm.AlfrescoJavaScript">
 <script>
 executionContext.setVariable(
 "taskNotificationRecipientGroup","");
 executionContext.setVariable(
 "taskNotificationRecipientEmail",
 initiator.properties.email);
 </script>
 </action>
 <action class="com.bestmoney.cms.workflow.actionhandler.
TaskAssignmentNotificationActionHandler"/>
</event>

There are two variables that are set in the execution context and used by the
action handler. The taskNotificationRecipientGroup variable should
be used when the e-mail should be sent to members of a group. And the
taskNotificationRecipientEmail should be used when the e-mail should
be sent to one individual, usually the Swimlane person.

The BD01_CreateMaterialBriefTask has this configured, so you can see how
it works.

Remember to redeploy the workflow definition after a change like this and make
sure that the user has a valid e-mail address specified.

Chapter 11

[471]

Using customized task dashlets
The My Task To Do and My Pooled Tasks Dashlets do not really display any
information about what Campaign the job is associated with or what Job type it is. It
would be good to add this to the task listing. The source code comes with three new
dashlets that adds the Campaign ID and Job Type columns:

These dashlets are available after installing the Best Money AMP. If you want to
inspect the Dashlet JSP files, they are available in the alf_extensions\trunk_
alfresco\web\jsp\bestmoney\dashlet directory. Basically, the standard task
dashlet JSPs are just copied to new filenames and then two columns are added to
each one of them. They are added to the Web Client via configuration in the
web-client-config-custom.xml file.

Management dashlets
When the workflow project goes live, it will not take long until there are lots of Job
processes running simultaneously, making it harder and harder for managers to get
an overview of what is going on.

Business Process Implementation Solutions: Part 2

[472]

All assigned tasks for all jobs dashlet
One very useful dashlet is one that displays what tasks have been assigned for each
workflow instance (that is job), and to whom they have been assigned, and so on.

So sooner or later we will get requests for a dashlet that can show all assigned tasks
for all ongoing workflows. This dashlet will be useful in the following situations:

When we want to answer questions like "who is currently assigned to do
work on this job"?
Could you reassign this task to user X, the user it is assigned to, is on
vacation, is sick, has left the company, and so on.

The source code comes with a dashlet that supports this request. It looks like this:

There are a couple of groups that this dashlet relies on when it displays its UI. There
is one group called Marketing-All Users that needs to be created and contains the
user(s) that should have access to this Dashlet. A user that adds this Dashlet to his
or her Dashboard but is not a member of this group will not be able to access this
Dashlet, an error message is displayed.

There are also functionalities in the dashlet such as view Task dialog and
Reassign task that require the user to be a member of the Marketing-Admins
group. If the user is not a member of this group, the dashlet will display the UI
with limited functionality.

•

•

Chapter 11

[473]

There is a backing bean for this dashlet JSP that is called CustomWorkflowBean and it
uses SQL queries to get the task information. It is also possible to use the Workflow
Service and query for information, as in the following example:

List<Node> allTasks = new ArrayList<Node>();

WorkflowTaskQuery query = new WorkflowTaskQuery();
query.setTaskState(WorkflowTaskState.IN_PROGRESS);
query.setProcessName(processDefinition);
// Do not use order by as then the sorting by clicking on
// column header does not work
// query.setOrderBy(new WorkflowTaskQuery.OrderBy[]{
// WorkflowTaskQuery.OrderBy.TaskCreated_Desc,
// WorkflowTaskQuery.OrderBy.TaskActor_Asc});

// Do the query
List<WorkflowTask> tasks = getWorkflowService().queryTasks(query);

// Loop thru each workflow task and create task object to
// hold task data
for (WorkflowTask task : tasks) {
 Node node = createTask(task);
 allTasks.add(node);
}

This works but it will be very difficult to get acceptable performance. For example,
you would have to make the calls mentioned above for each process definition and
it would not be possible to do any Joins like you can with SQL.

The query response time will pretty soon be unmanageable with requests taking as
much as minutes. If this dashlet is used a lot it will not be acceptable.

All job workflows dashlet
Another request that will come up after a while is for a dashlet that can show all
ongoing Job workflows, and have features for deleting a workflow, and changing
the owner of a workflow. Out of the box you cannot delete a workflow so the tasks
disappear from the Completed Tasks Dashlet, which means it will fill up pretty
quickly and make the system unmanageable. Therefore, it is important to have a way
of deleting a workflow instance that has been completed and is no longer needed.

Business Process Implementation Solutions: Part 2

[474]

It is also very useful to be able to change the owner of the workflow, basically change
the initiator of the workflow. Sometimes people go on vacation, get sick, leave the
company and so on, and in those cases we need a way to continue with the process
anyway. This is not the same thing as re-assigning a single task. When we change
the workflow owner, every task afterwards will be assigned to the new owner if
it is associated with the initiator Swimlane.

Here is how this Dashlet looks:

If we click on the delete action link, the following screen is displayed:

Click on the Delete button to delete this Job workflow permanently. This will
automatically delete all involved subprocesses (that is, sign-off, studio, and work)
by looking at the saved procIds for them.

Chapter 11

[475]

If we click on the Change Owner link, the following screen will be displayed:

Here, we can specify the username for the new job owner and then click the Change
Owner button. This changes the owner of the Job workflow and all its subprocesses.

Exporting the task summary list in an Excel
spreadsheet
As Best Money is a financial institution, they want to have an audit trail of exactly
what tasks were completed to produce marketing material. It should be available
as an Excel spreadsheet and created in the folder where the material is at the end
of the process.

We can use a jBPM action called CreateTaskListForJobActionHandler and add
it to the MakeJobLive node in the beginning of the node-enter event:

<event type="node-enter">
 <action
 class="com.bestmoney.cms.workflow.actionhandler
 .CreateTaskListForJobActionHandler"/>

After running through a job process we should find an Excel spreadsheet in the
materials folder, as in the following screenshot:

Business Process Implementation Solutions: Part 2

[476]

The task list will look something like this:

Note that this report contains all the tasks from all involved subprocesses.

Remember to redeploy the workflow definition after a change like this.

Material folder link
For the Studio team users to be able to easily locate the folder where they should
upload the produced material, a folder link in the property sheets would be helpful.
We can easily add a folder link to all the property sheets as follows. First start off by
adding a new property to the base job type:

<type name="bmw:baseJobTask">
 <parent>bpm:workflowTask</parent>
 <properties>
 <property name="bmw:jobFolderLink">
 <title>A link/URL to the job folder</title>
 <type>d:text</type>
 </property>
 </properties>
 <overrides>

This job folder property is set up when we enter the BriefSignOffPhase as follows:

<super-state name="BriefSignOffPhase">
 <event type="superstate-enter">
 <script>
 <variable name="bmw_jobStatus" access="write"/>
 <expression>

Chapter 11

[477]

 bmw_jobStatus = "Brief Sign-Off";
 </expression>
 </script>
 <action
 class="org.alfresco.repo.workflow.jbpm.AlfrescoJavaScript">
 <script>
 <variable name="bmw_jobFolderLink" access="write"/>
 <expression>
 var jobfolder = bpm_package.children[0].parent.parent;
 if (jobfolder != null) {
 bmw_jobFolderLink = "/alfresco" +
 jobfolder.getUrl();
 } else {
 logger.log("jobfolder = null");
 }
 </expression>
 </script>
 </action>
 </event>

Then add this property to all the property sheets as needed:

<show-property name="bmw:jobFolderLink" display-label-id="jobFolder"
read-only="true" component-generator="CustomLinkGenerator"/>

This property uses a new component generator called CustomLinkGenerator, see
chapter source code for how it has been implemented.

When a property sheet is displayed it will now contain the folder link such as in
this example:

Remember to redeploy the workflow definition after a change like this.

Business Process Implementation Solutions: Part 2

[478]

Summary
In the previous chapter, we saw how to implement a basic workflow with jBoss
jBPM. In this chapter, we have taken this further to see the full potential of Alfresco's
embedded workflow engine. Implementing parallel flows was explorer and we
saw how super-states could be used to implement phases. Super-states were good
because we could just move a node inside a super state and it would have access
to the variables defined inside the super state.

We also looked at how to use subprocesses to reuse common process definitions,
using subprocesses also makes it easier to overview a business process. However,
there are also things to think about when using subprocesses, such as how to be able
to generate a task list for a parent process and all involved subprocesses. For this we
used a special process identifier that was propagated up to the parent process so it
could keep track of all subprocesses that were part of the execution.

The jBPM workflow engine is very well-integrated with Alfresco and we have seen
that we can directly assign users and groups from Alfresco when creating the process
definition. The Alfresco JavaScript language is also available to use in the process
definition, which gives access to a lot of the Alfresco JavaScript root objects such as
companyhome and bpm_package (that is, all documents managed by the workflow).

E-mail notifications do not come out of the box but we saw how that can be
implemented with some custom Java coding and using Actions to call the code from
the process definition. E-mails can also be sent directly from a process definition by
using JavaScript.

Alfresco does not come with a lot of features for managing workflows when
everything is deployed into production. We saw how custom Dashlets can be
built to manage all active tasks, manage active workflows, and much more.

In the next chapter, we will look at enterprise application integration and see how
we can integrate Alfresco content with other enterprise content. We will see how to
use Portlets to display Alfresco content and how to use CMIS to extract the content
from Alfresco.

Enterprise Application
Integration (EAI) Solutions

These days people are often used to applications that aggregate content from
many sources of information in the enterprise. Sometimes, these applications
are referred to as mashups. Typically, there is one central portal deployed where
users can see content from many different enterprise applications, if they have the
permission to do so. So, it is becoming more and more important to have an idea
of how to extract content from Alfresco and implement Enterprise Application
Integration (EAI) solutions.

Best Money has deployed the Liferay portal as its main information centre, where
content from many different financial applications is aggregated. Now, they are
interested in creating a couple of new portlets to show information from Alfresco.
They would like to start with a portlet, which shows recently created or added
documents during the day.

In this chapter, we will look at:

Building a web script that returns documents and folders modified during
the current day
Building a Java/HTML portlet that fetches recently modified content from
a remote Alfresco repository
Building a Java/GWT/GXT portlet that fetches recently modified content
from a remote Alfresco repository
Deploying these portlets in the Liferay portal
Managing authentication so that users do not have to log in to both the portal
and to Alfresco

•

•

•

•

•

Enterprise Application Integration (EAI) Solutions

[480]

Introducing portlets
The main feature of portals is to aggregate content from different sources. Each piece
of content is displayed in a small window called a portlet. Each portlet is usually
independent of other portlets and can run an application. We can say that portlets
are small web applications that run within a so-called portlet container. We can
compare it to servlets running inside a servlet container.

Portlet standards
Portlets are standardized by the Java Community Process (JCP), as opposed to
portals, which are not. There are a couple of different portlet standards:

JSR168: The basic standard for portlets (also known as Portlet version 1.0).
JSR286: Adds support for inter-portlet communication via events. So, if
you have a portlet showing the Alfresco folder structure, you could have
that portlet sending out events when someone selects a new folder. Then
another portlet displaying documents in a folder could change the view
automatically when receiving events (also known as Portlet version 2.0).
JSR301 and JSR329: Supports displaying JSF content in the portlet.

The Liferay portal server implements both the JSR-168 specification and the JSR-286
specification. We will be focusing on basic portlet implementations in this chapter
and will therefore not cover inter-portlet communication.

Portlet lifecycle
Portlets are living in the portlet container where they go through a clearly defined
lifecycle. It is quite similar to the servlet lifecycle but it has some special features:

•

•

•

Chapter 12

[481]

Before portlets are made available they run through the initialization phase and
the container calls the init method in the portlet implementation (implements the
javax.portlet.Portlet interface). The init method is called only once. When
a portlet should be rendered and displayed, the render method is called by the
container. This can happen for many reasons:

The portlet has just been initialized and is about to be displayed for the
first time
An action such as someone clicking on a button in the portlet is executed
Another portlet is rendered, which also renders this portlet again (if Ajax
was used this might not happen)

The action and render phase is implemented separately so the render method can
produce only markup and the processAction method focuses on business logic
processing. When the portlet is removed from the portal view the destroy method
is called by the container once.

Portlet modes and window states
A portlet can be rendered in different modes depending on what the user wants
to do. There are three modes that need to be handled:

View: This is the mandatory display mode that every portlet needs
to support.
Edit: A portlet can also support edit mode where the user can input
some data.
Help: A portlet can support a help page.

When a portlet is displayed in the container, a different amount of content can be
displayed depending on the current window state for the portlet. There are three
window states as follows:

Normal: This is the normal view state where you see the portlet next to the
other portlets.
Minimized: In this state, the portlet will be displayed as a single line of text
with only the title of the portlet visible.
Maximized: In this state, the portlet takes over the portal completely, and no
other portlets are displayed.

•

•

•

•

•

•

•

•

•

Enterprise Application Integration (EAI) Solutions

[482]

Portlet implementation and deployment
A portlet is usually implemented by extending the javax.portlet.GenericPortlet
as it has predefined methods for the different modes, and it implements the
javax.portlet.Portlet interface.

The simplest portlet implementation looks something like this:

import javax.portlet.GenericPortlet;
import javax.portlet.PortletException;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;
import java.io.IOException;
import java.io.PrintWriter;

public class HelloWorldPortlet extends GenericPortlet {
 protected void doView(RenderRequest request,
 RenderResponse response) throws PortletException, IOException {
 response.setContentType("text/html");
 PrintWriter writer = response.getWriter();
 writer.println("Hello World!");
 }
}

Just as we need to tell a servlet container about a servlet via the web.xml file, a
portlet also needs to be specified in a deployment descriptor to be picked up by the
portlet container. A portlet descriptor is specified in the portlet.xml file and an
example for the HelloWorldPortlet looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app xmlns=
 "http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/
 portlet-app_2_0.xsd http://java.sun.com/xml/ns/portlet/
 portlet-app_2_0.xsd" version="2.0 ">
 <portlet>
 <description>Hello World</description>
 <portlet-name>HelloWorldPortlet</portlet-name>
 <portlet-class>
 com.bestmoney.cms.web.ui.portlet.HelloWorldPortlet
 </portlet-class>
 <expiration-cache>0</expiration-cache>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>VIEW</portlet-mode>

Chapter 12

[483]

 </supports>
 <supported-locale>en</supported-locale>
 <portlet-info>
 <title>HelloWorld</title>
 <keywords>Hello, world, test</keywords>
 </portlet-info>
 </portlet>
</portlet-app>

Implementing portlets that display
Alfresco content
Here, we will look at implementing two different portlets that fetch recently
modified content from Alfresco. These portlets will be configured to deploy
in the Liferay portal.

Portal architecture
Best Money uses the Liferay portal running on a dedicated server and it should talk
to the remote Alfresco server to fetch document and folder content. The Alfresco
system offers an easy way to fetch information remotely through the web scripts
framework. With web scripts we can build complete HTML fragments that can be
displayed inside the portlet or we can have the web script send back JSON objects or
Atom entries, which we can process and display as we like in the portlet.

The following figure shows the Best Money portal architecture:

Enterprise Application Integration (EAI) Solutions

[484]

When the Liferay portlets fetch content from Alfresco they first need to authenticate
with the Alfresco server. Both the Liferay portal and the Alfresco server are
configured to do all authentication via the Microsoft Active Directory.

Alfresco portlet implementation approaches
When we implement a new portlet that should display content from the Alfresco
repository this can be done in a couple of different ways:

Alfresco presentation web script: This approach means that the Alfresco
developer will develop both the business logic and the presentation and
return an HTML fragment that can be directly displayed in the portlet.

Advantages: Usually quick to implement as Alfresco comes with
many presentation web scripts out of the box; so if one fits the
requirement it might be a way to go.
Disadvantages: Portal developer has no control over look and feel;
paging and other links takes you outside the portal.

Alfresco data web script: Here, the Alfresco developer returns just the
content in XML or JSON format and the portlet developer has to create
the UI for the content returned from Alfresco.

Advantages: Any type of content can be fetched from Alfresco; data
can be formatted in any way using XML, JSON, and so on; portal
developer can use any UI framework such as JSP, Grails, Seam,
GWT/GXT, and so on; and links can be generated to work within
the portal.
Disadvantages: Portal developers have to code custom parsing of
response in some cases.

CMIS web script: This is a standardized way to call a CMS system and fetch
data in ATOM publishing format.

Advantages: Standardized common API based on web scripts,
standard XML parsing based on ATOM publishing protocol. Portal
developer has control over UI.
Disadvantages: Usually more complicated APIs, the APIs do not
cover all of the features in Alfresco, does not return JSON.

The approach that we will use depends on a lot of different factors. If we, for
example, are building a portlet that should display the Alfresco folder hierarchy
then it is probably a good idea to use the CMIS approach and build a standard folder
hierarchy portlet that can be reused for many different CMS systems. The same goes
for a portlet that lists documents in a folder.

•

°

°

•

°

°

•

°

°

Chapter 12

[485]

On the other hand, if we want to build a portlet that displays workflow information
such as assigned tasks, then we would have to use proprietary Alfresco web scripts,
as this is not part of the CMIS standard.

The UI framework that we use will also play a major role in deciding what
type of web scripts to use. Best Money, for example, has done a lot of its portlet
development, and other web application development with GXT—a commercial
UI Framework built on top of GWT—and wonders if that framework can be used
to develop the portlets that should display the content from Alfresco. GXT works
very well with JSON or XML, so it is good if the web script can return that as then
we would not need to do any manual parsing of responses.

So if we want to use a particular UI framework for developing the portlets, then
we will have to use data web scripts. The question then is, should it be a CMIS-based
data web script or not? In the case of GXT, we would be better off building our
own web scripts returning JSON, as then we can also choose to wrap the returned
JSON in a JavaScript function call. And this leads us into the next issue with
cross-domain calls.

If the UI framework uses a lot of Ajax calls such as GXT, we also have another issue
on our hands. Web applications cannot make HTTP calls to web servers other than
the one from which they were loaded—that breaks the security model. So this is a
problem in the case of Best Money, how do we use GXT to display Alfresco content
when direct calls to the Alfresco server will not be allowed. See the following figure:

In the preceding figure, the GET http://alfresco.bestmoney.com/... call will not
be allowed by the web browser, not even as a sub-domain to bestmoney.com. So that
is something we have to get around with a proxy or using a script tag.

Enterprise Application Integration (EAI) Solutions

[486]

If the UI should be run in a mobile or wireless environment, we might have to
start thinking about bandwidth consumption and see to it that we send content as
efficiently as possible over the air. Then again data web scripts returning JSON might
be a good approach as it is not as chatty as Atom.

Implementing the "recently added
documents" portlet
This portlet will display all documents and folders that have been created
or modified during the day. We will implement two different versions of the
portlet—one without GXT, using only Java and HTML and one with GWT/GXT
as requested by Best Money.

Implementing the "recently added documents"
web script
The first thing that we need to do is create a web script that can be used by the
portlet to fetch the content modified today. Create a new web script descriptor
called recent.get.desc.xml and put it in the bestmoney\alf_extensions\
trunk_alfresco\config\alfresco\ extension\templates\webscripts\com\
bestmoney\cms directory. Open the file and define the web script as follows:

<webscript>
 <shortname>Get recently added documents and folders</shortname>
 <url>/bestmoney/recent</url>
 <authentication>user</authentication>
 <transaction allow="readonly"/>
 <format default="json">argument</format>
 <family>BestMoney</family>
</webscript>

This web script is read-only and returns recently added or modified documents
and folders in a JSON structure, if the user has permission to see them (that is,
authentication is set to user). Now create the controller for the web script. We
will implement the controller with JavaScript in a file called recent.get.js:

function main() {
 var store_type = "workspace";
 var store_id = "SpacesStore";
 var store = store_type + "://" + store_id;
 var query = "+PATH:\"/app:company_home//*\" AND
 (TYPE:\"cm:content\" OR TYPE:\"cm:folder\") AND NOT
 TYPE:\"cm:systemfolder\" AND @cm\\:modified:NOW";

Chapter 12

[487]

 var itemsCreatedToday = search.luceneSearch(store, query);
 var results = {};
 results.content = itemsCreatedToday;
 results.content.sort(sortNames);
 results.totalCount = results.content.length;
 model.results = results;
}
function sortNames(a, b) {
 var nameA = a.name.toLowerCase(), nameB = b.name.toLowerCase();
 if (nameA < nameB) //sort string ascending
 return -1;
 if (nameA > nameB)
 return 1;
 return 0; //default return value (no sorting)
}
main();

The way this controller script works is that it does a Lucene search for all content
under the /Company Home folder that is of type cm:content (that is, documents) or
type cm:folder (that is, standard folders) and that is created or modified today.
When that is done, the content nodes are sorted on the cm:name property.

The sorted nodes (that is, the model) are then passed on to the script that generates
the presentation or view, or as in this case the JSON response, which we will create
with a FreeMarker template called recent.get.json.ftl:

<#assign content = results.content>
<#assign contentLength = results.totalCount>
{ "contentLength":"${contentLength}", "content":[
<#list content as item>
{
 "locked":"${item.isLocked?string}",
 "cmName":"${item.properties.name}",
 "cmTitle":"${item.properties.title!''}",
 "cmDescription":"${item.properties.description!''}",
 "cmModified":"${item.properties.modified?datetime}",
 "cmModifier":"${item.properties.modifier!''}",
 "path":"${item.displayPath!''}",
 "id":"${item.id}",
 "childrenSize":"${item.children?size}"
}
 <#if (item_has_next)>,</#if>
</#list>
]
}

Enterprise Application Integration (EAI) Solutions

[488]

This FreeMarker template will loop through all the content nodes (that is, results)
in the model and create a JSON structure looking like this:

 {
 "contentLength":"1", "content":[
 {
 "locked":"false",
 "cmName":"Alfresco_Getting_Started_Guide.pdf",
 "cmTitle":"",
 "cmDescription":"",
 "cmModified":"05-Sep-2010 08:03:59",
 "cmModifier":"admin",
 "path":"/Company Home/docs/Alfresco",
 "id":"2c712a49-28a8-448f-87e3-de95c5ff8d52",
 "childrenSize":"0"
 }
]
 }

This is all we need for the web script and we can now test it. Build the Best Money
AMP using the deploy-alfresco-amp Ant target. The web script will be deployed
automatically when the AMP is installed.

To test the web script, it is best to use some external command-line tool,
as we might not get it right the first time around. Download the curl tool
(http://curl.haxx.se/) and use the following syntax to test the new web script:

C:\tools\curl7.21>curl -v -u admin:admin "http://localhost:8080/alfresco/
service/bestmoney/recent"

* About to connect() to localhost port 8080 (#0)

* Trying 127.0.0.1... connected

* Connected to localhost (127.0.0.1) port 8080 (#0)

* Server auth using Basic with user 'admin'

> GET /alfresco/service/bestmoney/recent HTTP/1.1

> Authorization: Basic YWRtaW46YWRtaW4=

> User-Agent: curl/7.21.1 (i386-pc-win32) libcurl/7.21.1 OpenSSL/0.9.8o
zlib/1.2.5

> Host: localhost:8080

> Accept: */*

>

< HTTP/1.1 200 OK

< Server: Apache-Coyote/1.1

< Cache-Control: no-cache

Chapter 12

[489]

< Pragma: no-cache

< Content-Type: application/json;charset=UTF-8

< Transfer-Encoding: chunked

< Date: Sun, 05 Sep 2010 12:33:50 GMT

<

{ "contentLength":"8",

"content":[

{

"locked":"false",

"cmName":"Alfresco",

"cmTitle":"",

"cmDescription":"",

"cmModified":"05-Sep-2010 08:06:59",

"cmModifier":"admin",

"path":"/Company Home/docs",

"id":"e845ac7a-f8c8-4045-bbcd-afd2a8a9d2a5",

"childrenSize":"5"

}

 ,

. . .

Notice how you can pass in authentication information with the –u switch and the
–v switch will print the request and response information. The curl tool is invaluable
during development as it gives us a very easy and quick way of testing our new
web scripts.

Note that the web script will not return anything if you have not added or
modified any documents or folders today.

Now if we see that we need to change something in the FreeMarker templates
then we do not have to go through the whole procedure of generating a new AMP
and then deploying it and restarting Alfresco. The only thing that we need to do
is to open up the recent.get.json.ftl template file directly in the exploded war
directory and make the necessary changes and save it (see the tomcat\webapps\
alfresco\WEB-INF\classes\alfresco\extension\templates\webscripts\
com\bestmoney\cms directory). Now we can run curl again to see how the change
affected the output, without restarting Alfresco.

Enterprise Application Integration (EAI) Solutions

[490]

If we need to update the controller then we have to do a bit more. Make the update
to the recent.get.js file and save it. Then go to http://localhost:8080/
alfresco/service/index page and click on the Refresh Web Scripts button.
Now we can run curl again to see the changes take effect.

Before going on to develop the portlet, stop Alfresco and configure debug logging for
web scripts. This is important when we are not calling Alfresco from the command
line with curl and have full control over what is being passed on in the URL. When
an application is constructing the URL to the web script it is good to know exactly
how that URL looks like when it reaches Alfresco. In that way, we will be able to
spot any errors if the response is not what we were expecting.

Change the following settings in the log4j.properties file (located in the
tomcat/webapps/alfresco/WEB-INF/classes directory):

log4j.logger.org.springframework.extensions.webscripts=debug

log4j.logger.org.springframework.extensions.webscripts.ScriptLogger=debug

log4j.logger.org.alfresco.repo.web.scripts=debug

log4j.logger.org.alfresco.repo.jscript=debug

log4j.logger.org.alfresco.repo.jscript.ScriptLogger=debug

This also turns on debug logging for JavaScript.

Implementing a Java-based "recently added
documents" portlet
The first version of this portlet will be implemented as a simple Java-based portlet
that just creates HTML directly in the doView method.

Tools for calling the web service and parsing the response
We are going to need some tool to use when calling the web script and another tool
to parse the response. For this, we will use Apache HTTP Commons
(http://hc.apache.org/httpclient-3.x/) and the Jackson JSON parser
(http://jackson.codehaus.org/). In the bestmoney\alf_clients\portal\ web\
WEB-INF\lib directory, we have added the following libraries to be able to use
these tools:

commons-codec-1.3.jar

commons-httpclient-3.1.jar

commons-logging-1.1.jar

jackson-core-lgpl-1.4.2.jar

Chapter 12

[491]

jackson-jaxrs-1.4.2.jar

jackson-mapper-lgpl-1.4.2.jar

jackson-xc-1.4.2.jar

Creating the portlet class
Now create a new portlet java class called RecentlyAddedDocumentsPortlet and
put it in the com.bestmoney.cms.web.ui.portlet.rad package in the bestmoney\
alf_clients\portal\source directory. Start by implementing the doView method
as follows:

public class RecentlyAddedDocumentsPortlet extends GenericPortlet {
 @Override
 protected void doView(RenderRequest renderRequest,
 RenderResponse renderResponse) throws PortletException,
 IOException {
 PrintWriter writer = renderResponse.getWriter();
 String json = callAlfrescoWebScript(
 "http://localhost:8080/alfresco/service/bestmoney/recent",
 writer);
 List<ContentModel> contentItems = readContentJSON(json);
 writer.write(convert2HtmlTable(contentItems));
 writer.close();
 }

The first thing that we do is to get a writer so we can write HTML to the response
stream. We then call the Alfresco web script that we just created and get JSON back
with the recently added documents and folders. This JSON is then parsed into a list
of ContentModel objects (explained later). Finally, we write the list of content items
out as an HTML table.

Let's have a look at the method that calls the web script, it looks like this:

private String callAlfrescoWebScript(String url, PrintWriter writer) {
 HttpClient client = new HttpClient();
 Credentials defaultcreds = new UsernamePasswordCredentials("admin",
 "admin");
 client.getState().setCredentials(AuthScope.ANY, defaultcreds);
 GetMethod getMethod = new GetMethod(url);
 getMethod.setDoAuthentication(true);

 try {
 int statusCode = client.executeMethod(getMethod);
 if (statusCode == HttpStatus.SC_OK) {
 return getMethod.getResponseBodyAsString();
 } else {

Enterprise Application Integration (EAI) Solutions

[492]

 writer.write("Got Error" + statusCode + "when calling
 Alfresco: " + getMethod.getURI());
 }
 } catch (HttpException e) {
 writer.write("Fatal protocol violation: " + e.getMessage());
 } catch (IOException e) {
 writer.write("Fatal transport error: " + e.getMessage());
 } finally {
 getMethod.releaseConnection();
 }

 return "";
}

Here we use the Apache HTTP client to make a HTTP GET call to the URL that is
mapped to the web script. If we get HTTP Status 200 (HttpStatus.SC_OK) back
from Alfresco, we return the JSON as is.

Note that normally we should fetch current username and password from
the portlet session and then use that instead of admin/admin. As an
administrator you have access to everything in Alfresco, which might not
be what we want.

The next method is the one that parses the JSON string into a list of content items. It
uses the ContentModel object, so let's look at this first:

public class ContentModel {
 public String id;
 public String locked;
 public String path;
 public String childrenSize;
 public String cmName;
 public String cmTitle;
 public String cmDescription;
 public String cmModified;
 public String cmModifier;
}

It is basically a class with members for each attribute we parse from each entry in the
JSON string. The parsing method looks as follows:

private List<ContentModel> readContentJSON(String json) {
 List<ContentModel> contentItems = new ArrayList<ContentModel>();

 if (json == null || json.trim().length() == 0) {

Chapter 12

[493]

 return contentItems;
 }

 try {
 ObjectMapper mapper = new ObjectMapper();
 JsonNode rootNode = mapper.readValue(json, JsonNode.class);
 JsonNode contentNodes = rootNode.path("content");

 for (JsonNode itemNode : contentNodes) {
 ContentModel contentItem = new ContentModel();
 contentItem.id = itemNode.path("id").getTextValue();
 contentItem.locked = itemNode.path("locked").getTextValue();
 contentItem.path = itemNode.path("path").getTextValue();
 contentItem.childrenSize =
 itemNode.path("childrenSize").getTextValue();
 contentItem.cmName = itemNode.path("cmName").getTextValue();
 contentItem.cmTitle = itemNode.path("cmTitle").getTextValue();
 contentItem.cmDescription =
 itemNode.path("cmDescription").getTextValue();
 contentItem.cmModifier =
 itemNode.path("cmModifier").getTextValue();
 contentItem.cmModified =
 itemNode.path("cmModified").getTextValue();
 contentItems.add(contentItem);
 }
 } catch (IOException e) {
 System.err.println("Fatal JSON Parsing error: " +
 e.getMessage());
 e.printStackTrace();
 }
 return contentItems;
}

It starts off by checking that there is actually some JSON passed in, otherwise the
processing will fail. Then we create a mapper that is used to read values from the
JSON structure. We start off by getting a reference to the root node in the JSON
structure. With the rootNode we can just navigate into the structure and get to the
content node that contains the list of documents and folders. For each JSON object
node, we create a ContentModel object and set it up with the values from the
JSON node.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Enterprise Application Integration (EAI) Solutions

[494]

When we get the list of content items created, we just need to turn it into HTML,
which we will do with the last method that looks like this:

private String convert2HtmlTable(List<ContentModel> contentItems) {
 StringBuffer sb = new StringBuffer("<table id=\"docsTable\"'>");
 sb.append("<thead>");
 sb.append("<tr>");
 sb.append("<th scope=\"col\">Name</th>");
 sb.append("<th scope=\"col\">Path</th>");
 sb.append("<th scope=\"col\">Modified</th>");
 sb.append("<th scope=\"col\">Modifier</th>");
 sb.append("</tr>");
 sb.append("</thead>");
 sb.append("<tbody>");
 for (ContentModel item : contentItems) {
 sb.append("<tr>");
 sb.append("<td>");sb.append(item.cmName);
 sb.append("</td>");
 sb.append("<td>");sb.append(item.path);
 sb.append("</td>");
 sb.append("<td>");sb.append(item.cmModified);
 sb.append("</td>");
 sb.append("<td>");sb.append(item.cmModifier);
 sb.append("</td>");
 sb.append("</tr>");
 }
 sb.append("</tbody>");
 sb.append("</table>");

 return sb.toString();
}

This method creates an HTML table and populates it with the list of content items.

Creating the standard portlet deployment descriptor
The portlet is now completed but to be able to deploy it we need to fill in a couple
of descriptor files. Let's start with the standard portlet.xml file located in the
bestmoney\alf_clients\portal\web\WEB-INF directory, and add the following
portlet descriptor:

<portlet>
 <description>Recently added documents presented in simple HTML
 table</description>
 <portlet-name>RecentlyAddedDocumentsPortlet</portlet-name>

Chapter 12

[495]

 <portlet-class> com.bestmoney.cms.web.ui.portlet.rad.
 RecentlyAddedDocumentsPortlet
 </portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>VIEW</portlet-mode>
 </supports>
 <portlet-info>
 <title>Recently Added Documents</title>
 <keywords>Recently, added, documents</keywords>
 </portlet-info>
 <security-role-ref><role-name>administrator</role-name>
 </security-role-ref>
 <security-role-ref><role-name>guest</role-name>
 </security-role-ref>
 <security-role-ref><role-name>power-user</role-name>
 </security-role-ref>
 <security-role-ref>
 <role-name>user</role-name>
 </security-role-ref>
</portlet>

Here we tell the portlet container that we have a new portlet called
RecentlyAddedDocumentsPortlet and that it is implemented in the specified class.
We also tell the container what security roles should have access to the portlet.

Creating the Liferay portlet deployment descriptor
Now to the Liferay-specific Portlet descriptors; first add an entry into the
liferay-portlet.xml file:

<portlet>
 <portlet-name>RecentlyAddedDocumentsPortlet</portlet-name>
 <instanceable>true</instanceable>
</portlet>

We also map the security roles in this file:

<role-mapper>
 <role-name>administrator</role-name>
 <role-link>Administrator</role-link>
</role-mapper>
<role-mapper>
 <role-name>guest</role-name>
 <role-link>Guest</role-link>
</role-mapper>

Enterprise Application Integration (EAI) Solutions

[496]

<role-mapper>
 <role-name>power-user</role-name>
 <role-link>Power User</role-link>
</role-mapper>
<role-mapper>
 <role-name>user</role-name>
 <role-link>User</role-link>
</role-mapper>

There is also another file that we need to add the portlet to, so that it is displayed in
the UI and available for users to add it via the Personalize Pages screen. Open up the
liferay-display.xml file and add the following:

<display>
 <category name="Best Money">
 <portlet id="RecentlyAddedDocumentsPortlet" />
 </category>
</display>

This file also tells the portal which category the portlet will be listed in, such as in
this case when it will be listed under the Best Money category.

Building and testing the portlet
The portlet is now implemented and described for the portlet container, so the last
thing to do is to build the Portlet WAR file and deploy it in Liferay. First, set up
the properties in the build.properties file and then run the war Ant target in
the build.xml file. Both files are located in the bestmoney\alf_clients\portal
directory.

When we get the RecentlyAddedDocumentsPortlet.war we can upload it via the
Liferay UI (this is in Liferay version 6.0.5). Log in as the admin user and select Add
| More..., which displays a window with a list of portlet applications. At the bottom
of the list, you can select Install More Applications. This displays the Control Panel
where you can select the Upload File link under Plugin Installer. Select the WAR file
that we just created and it will install the portlets in it.

Now to add the portlet to a page, select the Back to Liferay link at the top. Then
select Add | More... again, which should now display a new Best Money portlet
application as follows:

Chapter 12

[497]

Select the portlet by clicking on Add and it will be added and displayed on the
current page:

If you want to run Liferay and Alfresco on the same box, then open the
Liferay config file—server.xml file located in the liferay-portal-
6.0.5\tomcat-6.0.26\conf directory and change port numbers by
swapping 8 -> 9, so 8080 becomes 9090, and so on.

Implementing a GWT/GXT-based "recently added
documents" portlet
In the case of Best Money, they want to base their portlet development on
GWT/GXT, so we need to develop the portlet based on this framework.
We can still use the same web script.

Enterprise Application Integration (EAI) Solutions

[498]

Creating the portlet class
Now create a new portlet Java class called RecentlyAddedDocumentsPortletGXT
and put it in the com.bestmoney.cms.web.ui.portlet.rad package in the
bestmoney\alf_clients\portal\source directory. Start by implementing the
doView method as follows:

public class RecentlyAddedDocumentsPortletGXT extends GenericPortlet {
 @Override
 protected void doView(RenderRequest renderRequest,
 RenderResponse renderResponse) throws PortletException,
 IOException {
 renderResponse.setContentType("text/html");
 PrintWriter writer = renderResponse.getWriter();
 String ticket = getAlfrescoTicket("admin", "admin", writer);
 writer.println("<script language='javascript'>" +
 "function getAlfrescoTicket() {\n" +
 " return '" + ticket + "';" + "}\n</script>");
 writer.println("<script language='javascript' src='" +
 renderRequest.getContextPath() +
 "/recentlyAddedDocumentsApp.nocache.js'></script>");
 writer.println("<div id='" +
 RecentlyAddedDocumentsApp.HTML_DIV_ID + "'></div>");
 writer.close();
}

As with the other portlet, we start by getting a writer so we can write HTML to the
response stream. We then call a method that will get the admin user a ticket that
can be used in subsequent web script calls as an authentication token.

We then create a JavaScript function called getAlfrescoTicket that can be called to
get current authentication ticket. This is necessary as we can then use this ticket from
the GWT code when doing Ajax calls to the web script.

After this, we insert another JavaScript that basically starts the GWT application. The
GWT application will insert itself into the div with the ID set by the HTML_DIV_ID
constant defined in the GWT module class RecentlyAddedDocumentsApp, which
we will implement next.

We also need to implement the getAlfrescoTicket method, as follows, using the
Apache HTTP client library:

private String getAlfrescoTicket(String userName, String password,
 PrintWriter writer) {
 HttpClient client = new HttpClient();

Chapter 12

[499]

 GetMethod getMethod = new GetMethod(
 "http://localhost:8080/alfresco/service/api/login?u=" +
 userName + "&pw=" + password);

 try {
 int statusCode = client.executeMethod(getMethod);
 if (statusCode == HttpStatus.SC_OK) {
 return getMethod.getResponseBodyAsString()
 .replace("<?xml version=\"1.0\" encoding=\"UTF-8\"?>","")
 .replace("<ticket>", "")
 .replace("</ticket>", "").trim();
 } else {
 writer.write("Got Error " + statusCode + " when calling
 Alfresco: " + getMethod.getURI());
 }
 } catch (HttpException e) {
 writer.write("Fatal protocol violation: " + e.getMessage());
 } catch (IOException e) {
 writer.write("Fatal transport error: " + e.getMessage());
 } finally {
 getMethod.releaseConnection();
 }

 return "";
}

We use the http://localhost:8080/alfresco/service/api/login URL, which
is standard for getting an Alfresco ticket that can be used as an authentication token,
so we do not have to log in when doing the web script call. The ticket is returned in
some XML, so we strip that off before we return the ticket as a string.

Create the GWT module class
Now create a new class that will represent the GWT entry point and implement
the EntryPoint interface, call it RecentlyAddedDocumentsPortletApp and put
it in the com.bestmoney.cms.web.ui.portlet.rad.gwt.client package in the
bestmoney\alf_clients\portal\source directory.

Start by defining some constant that we will need for JSON properties and div ID,
and so on:

public class RecentlyAddedDocumentsApp implements EntryPoint {
 public static final AppIcons ICONS = GWT.create(AppIcons.class);
 public static final String HTML_DIV_ID = "recentlyAddedDocs";
 public static final String ROOT_JSON_PROPERTY = "content";

Enterprise Application Integration (EAI) Solutions

[500]

 public static final String LENGTH_JSON_PROPERTY = "contentLength";
 public static final String ID_PROPERTY = "id";
 public static final String LOCKED_PROPERTY = "locked";
 public static final String PATH_PROPERTY = "path";
 public static final String CHILDREN_SIZE_PROPERTY = "childrenSize";
 public static final String CM_NAME_PROPERTY = "cmName";
 public static final String CM_TITLE_PROPERTY = "cmTitle";
 public static final String CM_DESC_PROPERTY = "cmDescription";
 public static final String CM_MODIFIED_DATE_PROPERTY =
 "cmModified";
 public static final String CM_MODIFIER_PROPERTY = "cmModifier";
 public static final int MAX_ROWS_PER_PAGE = 25;
 public static final String DATETIME_FORMAT =
 "dd-MMM-yyyy HH:mm:ss";

Now implement the onModuleLoad method as follows, to create the complete UI for
the portlet:

public void onModuleLoad() {
 String url =
 "http://localhost:8080/alfresco/service/bestmoney/recent";
 ScriptTagProxy<PagingLoadResult<ModelData>> proxy =
 new ScriptTagProxy<PagingLoadResult<ModelData>>(url);

 ModelType type = getModelType();
 JsonPagingLoadResultReader<PagingLoadResult<ModelData>> reader =
 new JsonPagingLoadResultReader<PagingLoadResult<ModelData>>(type);
 final PagingLoader<PagingLoadResult<ModelData>> loader =
 new BasePagingLoader<PagingLoadResult<ModelData>>(proxy, reader);

 setupBeforeLoadListener(loader);
 loader.setSortDir(Style.SortDir.DESC);
 loader.setSortField(CM_NAME_PROPERTY);
 loader.setRemoteSort(true);

 final ListStore<ModelData> store =
 new ListStore<ModelData>(loader);

 Grid<ModelData> grid = createGrid(store, loader);
 ContentPanel panel = createPanelForGrid(grid, loader);
 RootPanel.get(HTML_DIV_ID).add(panel);
}

Chapter 12

[501]

The most important bit to note here is the use of the ScriptTagProxy, which enables
us to do cross-domain HTTP calls. It will require the web script that we use to be
updated a little bit, so that it can wrap the JSON in a JavaScript function call. The
script tag proxy will create a <script src=… and put the URL to call the web
service as the source. Then when the JSON is returned as a JavaScript, it needs to be
wrapped in a function.

We then go on to create a ModelType that will represent the format of the JSON
returned from the web script. The GXT grid that we use will use a store and a
loader and the loader in turn will use the script tag proxy to get to the JSON
data. The result returned from the script tag proxy is paged via the reader that
we have defined.

We also set up a load listener (that is, setupBeforeLoadListener) that will be called
just before the script tag proxy will make its call to the web script, giving us a
chance to add extra parameters to the HTTP Get.

The last thing that we do is create the grid and a panel for it and then add the panel
to the div we defined in the portlet class implementation.

The setupBeforeLoadListener method is implemented as follows to add the extra
alf_ticket parameter:

private void setupBeforeLoadListener(
 PagingLoader<PagingLoadResult<ModelData>> loader) {
 loader.addListener(Loader.BeforeLoad,
 new Listener<LoadEvent>() {
 public void handleEvent(LoadEvent loadEvent) {
 BasePagingLoadConfig loadConfig =
 loadEvent.<BasePagingLoadConfig>getConfig();
 loadConfig.set("alf_ticket",
 getAlfrescoTicket());
 }
 });
 }

And the getAlfrescoTicket method is implemented as a native JavaScript method
that calls the JavaScript method that we defined in the portlet class:

 public native String getAlfrescoTicket()
 /*-{
 return $wnd.getAlfrescoTicket();
 }-*/
 ;

Enterprise Application Integration (EAI) Solutions

[502]

The rest of the methods that we call in the onModuleLoad method are pure GXT code
and if you are interested, it can be downloaded together with the build file for the
whole GWT/GXT project from the book website.

Updating the "recently added documents" web script
The script tag proxy that we are using will send a parameter with the callback
function name that it wants the web script to wrap the JSON in. We need to update
the web script controller and FreeMarker template so that it can handle this.

Start with the controller recent.get.js and add the following:

function main() {
 var store_type = "workspace";
 var store_id = "SpacesStore";
 var callbackFunctionName = args["callback"];
 var store = store_type + "://" + store_id;
 var query = "+PATH:\"/app:company_home//*\" AND
 (TYPE:\"cm:content\" OR TYPE:\"cm:folder\") AND NOT
 TYPE:\"cm:systemfolder\" AND @cm\\:modified:NOW";
 var itemsCreatedToday = search.luceneSearch(store, query);

 var results = {};
 results.callbackFunctionName = callbackFunctionName;
...

Then update the FreeMarker template, recent.get.json.ftl, and add the
following:

<#assign content = results.content>
<#assign contentLength = results.totalCount>
<#if results.callbackFunctionName??>
 <#assign callback = results.callbackFunctionName>
</#if>

<#if (callback??)>${callback}(</#if>
. . .
"childrenSize":"${item.children?size}"
}
 <#if (item_has_next)>,</#if>
</#list>
]
}
<#if (callback??)>);</#if>

Chapter 12

[503]

Now, test the new web script as follows:

C:\tools\curl7.21>curl -v -u admin:admin http://localhost:8080/
alfresco/service/bestmoney/recent?callback=testFunc

testFunc(
{ "contentLength":"8",
"content":[
{
"locked":"false",
"cmName":"Alfresco",
"cmTitle":"",
"cmDescription":"",
"cmModified":"05-Sep-2010 08:06:59",
"cmModifier":"admin",
"path":"/Company Home/docs",
"id":"e845ac7a-f8c8-4045-bbcd-afd2a8a9d2a5",
"childrenSize":"5"
}]});

Creating the standard portlet deployment descriptor
The portlet is now completed, but to be able to deploy it we need to fill in a couple
of descriptor files. Let's start with the standard portlet.xml file located in the
bestmoney\alf_clients\portal\web\WEB-INF directory; add the following
portlet descriptor:

<portlet>
 <description>Recently added documents presented with
 GWT/GXT</description>
 <portlet-name>RecentlyAddedDocumentsPortletGXT</portlet-name>
 <portlet-class>
 com.bestmoney.cms.web.ui.portlet.rad.
 RecentlyAddedDocumentsPortletGXT
 </portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>VIEW</portlet-mode>
 </supports>
 <portlet-info>
 <title>Recently Added Documents (GXT)</title>
 <keywords>Recently, added, documents, GXT</keywords>
 </portlet-info>
 <security-role-ref>
 <role-name>administrator</role-name>

Enterprise Application Integration (EAI) Solutions

[504]

 </security-role-ref>
 <security-role-ref>
 <role-name>guest</role-name>
 </security-role-ref>
 <security-role-ref>
 <role-name>power-user</role-name>
 </security-role-ref>
 <security-role-ref>
 <role-name>user</role-name>
 </security-role-ref>
</portlet>

Here we tell the portlet container that we have a new portlet called
RecentlyAddedDocumentsPortletGXT and that it is implemented in the specified
class. We also tell the container what security roles should have access to the portlet.

Creating the Liferay portlet deployment descriptor
Now to the Liferay-specific portlet descriptors; first add an entry into the
liferay-portlet.xml file:

<portlet>
 <portlet-name>RecentlyAddedDocumentsPortletGXT</portlet-name>
 <instanceable>true</instanceable>
 <header-portlet-css>/css/gxt-all.css</header-portlet-css>
 <header-portlet-css>/css/gxt-gray.css</header-portlet-css>
 <header-portlet-css>/gwt/standard/standard.css</header-portlet-css>
</portlet>

There are a couple of extra stylesheets used by the GXT and GWT frameworks, so we
add them here. There is also another file that we need to add the portlet to, so that
it is displayed in the UI and available for users to add it via the personalize pages
screen. Open up the liferay-display.xml file and add the following:

<display>
 <category name="Best Money">
 <portlet id="RecentlyAddedDocumentsPortlet" />
 <portlet id="RecentlyAddedDocumentsPortletGXT" />
 </category>
</display>

This file also tells the portal which category the portlet will be listed in, such as in
this case when it will be listed under the Best Money category.

Chapter 12

[505]

Building and testing the portlet
The portlet is now implemented and described for the portlet container, so the last
thing to do is to build the Portlet WAR file and deploy it in Liferay. First, set up
the properties in the build.properties file and then run the war Ant target in
the build.xml file. Both files are located in the bestmoney\alf_clients\portal
directory.

When we get the RecentlyAddedDocumentsPortlet.war we can upload it via the
Liferay UI. Log in as the admin user and upload as we did with the other portlet.

To update an already installed portlet application, remove it from the
tomcat/webapps directory and then install it again.

Now to add the new portlet to a page, select Add | More... again, which should now
display a new Best Money portlet application as follows:

Select the GXT version of the portlet by clicking on Add and it will be added and
displayed on the current page:

Enterprise Application Integration (EAI) Solutions

[506]

When working with GWT/GXT, it is useful to install Mozilla Firebug JavaScript
debugger for Mozilla Firefox. In this way, we can see if something goes wrong,
what HTTP calls are being made; do some debugging, and so on.

Summary
This chapter has shown us that it is quite easy to extract content from Alfresco and
build mashups in a portal like Liferay. We created two different types of portlets—one
that displayed content with plain HTML and another portlet that used the more
Ajax-friendly GWT/GXT framework.

The HTML portlet fetched content from Alfresco with Apache HTTP Client and
Jackson JSON parser. All requests were made from the server–side, so there was no
problem with cross-domain requests. The GXT portlet on the other hand made Ajax
calls from the client to get the Alfresco content, this caused problems as these calls
are cross-domain calls, which are not allowed. We solved this by using a script
tag proxy.

Both these portlets used a custom web script and the controller for it used a
JavaScript to return content created or modified the same day by using a Lucene
query. We used the curl tool to test the web script and we could see that this tool is
quite handy when it comes to testing web scripts during development.

We also saw how we can handle authentication so the user does not have to log into
Alfresco when he or she is already logged into the portal.

In the next chapter, we will have a look at how we can also integrate and manage
e-mail content in Alfresco, which is becoming more and more important in
the enterprise.

Types of E-mail Integration
Solutions

It is becoming more and more common that an ECM solution should include the
possibility of storing e-mails in the repository, so they can be managed and searched
in the same way all other content can. The long-term vision for most ECM systems
is to be able to handle almost any kind of content, and for many organizations
e-mails are often next in line to manage after content such as documents, images,
web content, and records.

When we talk about managing e-mails in the content management system, it is
important to know exactly what we mean by that. Today most companies and
organizations want to use Alfresco for e-mail archiving, which is not something that
is easily supported out of the box. Alfresco can be used as an e-mail management
solution and we will discuss what the difference is between that and an e-mail
archiving solution.

In this chapter, we will look at the advantages and disadvantages between three
different e-mail integration solutions:

E-mail client talking directly to Alfresco via the IMAP protocol
E-mail client talking to Alfresco via custom built plugin and Web Scripts
E-mail server talking to Alfresco via custom module and Web Scripts

You will also learn how to use Alfresco's built in IMAP solution to:

Enable dragging-and-dropping of e-mails into the Alfresco repository
Enable e-mail attachment extraction
Enable viewing of document metadata from the e-mail client
Set up different folder mount points
Enable e-mail management in an Alfresco Share site

•

•

•

•

•

•

•

•

Types of E-mail Integration Solutions

[508]

E-mail integration solutions
There are a number of different ways that an e-mail system can be integrated with
the Alfresco CMS system. We will look at three of these and present advantages and
disadvantages with each one.

E-mail client talking directly to Alfresco via
the IMAP protocol
This is the solution that is available out of the box with Alfresco. From version 3.2
and onwards Alfresco supports the IMAP protocol, which is one way an e-mail client
can talk to e-mail servers (the other way is POP). So, with this solution Alfresco can
behave like an IMAP e-mail server.

The following image illustrates how this solution works:

The e-mail clients typically receive an e-mail in their Inbox and then they can
drag-and-drop that e-mail into an Alfresco folder via the IMAP channel. Any
attachment can be extracted and handled separately to the e-mail in the
Alfresco repository.

Chapter 13

[509]

This is a manual process that requires the end user to manage what e-mails he or she
wants to be stored in Alfresco. Nothing happens automatically and no e-mails are
stored in Alfresco unless a user manually drag-and-drops them there.

To achieve automatic archiving of e-mails, a user could set up
an e-mail rule in their e-mail client that automatically files some
or all e-mails into an Alfresco folder. However, we would still
have to manually set up this rule on all users' e-mail clients. So
we could not say that this would be an archiving solution that
is transparent to the user, as it does not automatically force all
e-mails to be saved for auditing purposes. Further on, the e-mail
client has to be running in order for the e-mail rule to execute.

This solution is best thought of as an e-mail management solution where users
collaborate and share information in e-mails.

The advantages of this solution are:

No client installation: In most e-mail clients we can set up an extra IMAP
account connecting to Alfresco without the need to install any extra software
on the client workstation. This includes Outlook, Lotus Notes, Mozilla
Thunderbird, and GroupWise.
Users don't have to change working style: This is a big thing, users do
not want to start learning a complete new way of managing e-mails, they
just want to work in the same way they always have. The Alfresco account
just shows up as another e-mail inbox in the e-mail client. Users can
drag-and-drop e-mails between mailboxes just as they normally do. They
do not have to learn any extra functionality.
Supported out-of-the-box: No need to install any extra Alfresco modules,
just configure some properties and the solution is ready to go.

The disadvantages of this solution are:

No document search: Users cannot search for documents in Alfresco and
then attach them to an e-mail they want to send.
Cannot set custom metadata: Because this solution does not use any custom
plugin on the e-mail client side there is no possibility of setting custom
metadata for an e-mail, such as for example customer ID, before it is stored
in Alfresco. However, you can often solve this problem by creating business
rules on the server-side and apply custom metadata based on which folder
an e-mail is dropped into.

•

•

•

•

•

Types of E-mail Integration Solutions

[510]

No archiving solution: This is an e-mail collaboration and e-mail sharing
solution, it does not force e-mail to be stored in the repository for compliance
and regulatory reasons.

Because this solution doesn't require any client installation, or updates to the
Alfresco server, it will probably be the most popular e-mail management solution.
It can also easily be extended with folder rules to create sophisticated e-mail
filing solutions.

E-mail client talking to Alfresco through
custom built plugin and Web Scripts
There are one or two products out there that have taken a different approach to
integrating e-mail clients with Alfresco. One of these products is Anovio Email
Management solution for Outlook 2007 (http://www.anovio.de/aem). This product
provides a solution that enables you to also work with documents from the e-mail
client, and search for documents via the e-mail client.

To do this they had to implement a plugin for the e-mail client that is almost
exclusively Outlook, and use Web Scripts to talk to Alfresco. The IMAP channel
approach is not used as it can only handle e-mails.

The following picture gives us an overview of this solution:

•

Chapter 13

[511]

This solution is also an e-mail management solution as it is up to the end user to
actually save the e-mail into the repository. There is no automatic archiving going on.

The advantages of this solution are:

Document search: You can do a full text search for documents in the
repository via the e-mail client. A document can then be attached to an e-mail
that is about to be sent.
Users don't have to change working style: Users can drag-and-drop e-mails
into the Alfresco repository in a way they are used to. They do not have to
use, and learn, the extra document management functionality in the Outlook
plugin if they do not want to.
Stores attachments directly: Attachments can be stored directly into the
repository without storing the e-mail.
Usually works with other CMS systems: The solution from Anovio,
mentioned above, works with other CMS systems as it uses CMIS.

The disadvantages of this solution are:

Client installation: It requires you to install this Outlook plugin on every
PC that in most cases is a show stopper as it brings along too much support
work for the IT support department.
Does not work for all e-mail clients: It works only with certain e-mail
clients, such as for example Outlook 2007, in the case of the Anovio product.
Users have to learn new functionality: If users want to handle documents
from the e-mail client then they have to learn new functionality. Also, there
are usually new menus and features users have to learn even for the standard
e-mail management functionality.
No archiving solution: This is an e-mail collaboration and sharing solution,
it does not force e-mail to be stored in the repository for compliance and
regulation reasons.
Not supported out of the box: It is not a part of the Alfresco package, so will
need to be purchased separately.

This kind of solution can be very good for users that frequently need to attach
documents from the Alfresco repository to e-mails that they are sending. However, if
there is a larger user base, the maintenance burden could be quite substantial as you
would need to install the plugin on every user's PC.

•

•

•

•

•

•

•

•

•

Types of E-mail Integration Solutions

[512]

E-mail server talking to Alfresco through
custom module and Web Scripts
This is the classical e-mail archiving solution where the e-mail system integration
has been done on the e-mail server-side. This solution is totally transparent for the
end users and usually complies with security regulations. What this means is that
all e-mails are archived automatically without the user having to do anything,
which guarantees that every incoming and outgoing e-mail has been filed and
can be audited later.

There are—unfortunately, at the time of writing—no such solutions available for Alfresco.
But for reference purposes this is how such a solution would typically look:

This solution would require us to build an extension module for the e-mail server
that captures all inbound and outbound e-mails and stores them in Alfresco without
the users having to do anything. So all e-mails are captured and stored for archiving
and auditing purposes.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 13

[513]

Users can then for example, access the e-mails through the standard IMAP
channel, if they are stored as standard MIME messages according to RFC-822
(http://tools.ietf.org/html/rfc822).

The advantages of this solution are:

Supports archiving and auditing: This is the only solution that would be
compliant with security regulations as users are not involved, and cannot
decide if an e-mail should be stored or not.
Users don't have to change working style: Users can use their standard
e-mail client to view archived e-mails.

The disadvantages of this solution are:

Requires server installation: We need to have access to the e-mail server and
be able to install the integration module. This might be challenging in many
situations when you might not be allowed to install anything on the e-mail
server, or the e-mail server might be hosted externally so we would not have
access to it.
Attachments are not extracted: The attachments would probably not be
extracted and sorted into their own subfolder. This is assumed as the
purpose of an e-mail archiving solution to store the complete original
e-mail for auditing reasons, and not for e-mail management use.
Not a collaboration and sharing solution: E-mails are stored in an archiving
structure and not in a project or case structure. Users would have more
difficulty in collaborating around e-mail content.
Duplicate e-mails exist: There would be a lot of duplicate e-mails because
of security regulations such as Sarbanes-Oxley that requires all e-mails to be
stored for auditing purpose, even if it is a duplicate.
Not supported out of the box: It is not a part of the Alfresco package so will
need to be purchased separately, if it is available.

This solution is mentioned here so we can easily tell the difference between an
e-mail management solution and an e-mail archiving solution when we discuss this
with potential clients. There has been a lot of misunderstanding around what e-mail
integration solutions are currently available for Alfresco, where they are sometimes
referred to as e-mail archiving solutions, which they are not.

•

•

•

•

•

•

•

Types of E-mail Integration Solutions

[514]

Implementing e-mail management
solutions
Best Money has a couple of e-mail management requirements that they would
like to implement. The first one is that they want to be able to use the MS Outlook
e-mail client for dragging-and-dropping e-mails straight into Alfresco folders.
They also want to be able to do automatic filing of e-mails based on patterns
in the e-mail subject.

The solutions we will implement in this chapter will be based on the IMAP
channel integration approach, which is the only solution available out of the
box with Alfresco.

Implementing e-mail management solutions
with Alfresco IMAP
We will start with a drag-and-drop solution that uses the out of the box IMAP server.

Configure Alfresco to enable the IMAP server
To enable the IMAP server we just have to set a couple of properties as follows in the
alfresco-global.properties file:

imap.server.enabled=true
imap.server.port=143
imap.server.host=mbergljung-PC

When specifying the imap.server.host don't use localhost as that
will not work. The IMAP server will be bound to the wrong network
interface and you will not be able to successfully connect to the server
from the e-mail client. An IP address would also work here.

Now start the server and the following should appear in the logs:

15:59:06,400 INFO [repo.imap.AlfrescoImapServer] IMAP service
started on host:port mbergljung-PC:143.

The Alfresco server is now ready to act as an IMAP server for e-mail clients to
connect to. It listens to IMAP port 143 that is for plain non-secure connections.
The Alfresco IMAP solution does not, at the time of this writing, support secure
connections on port 993.

Chapter 13

[515]

To test the Alfresco IMAP solution, we first need a user that we can set up an account
for in Microsoft Outlook. When we log in to Alfresco Explorer we will also see a new
top folder called Imap Home as shown in the following screenshot:

This folder will be populated with mailboxes for the different users that connect
through IMAP. For this example, we have set up a new user called martin.

Setting up an IMAP account in Outlook 2007
In the Outlook 2007 client, we set up a new IMAP account by selecting Tools
followed by Account Settings… in the drop-down menu. Then select New… in the
Account Settings dialog.

In the Choose E-mail Service dialog, we select Microsoft Exchange, POP3, IMAP,
or HTTP and then click Next… and here we click the checkbox called Manually
configure server settings or additional server types. In the next dialog window,
choose Internet E-mail and then click Next. We should now see the following dialog:

Types of E-mail Integration Solutions

[516]

Fill in the values as in the previous screenshot, use whatever username and
password you created through Alfresco Explorer. Fill in the same hostname or
IP for the SMTP server as for the IMAP server, this field needs to be specified
even if we are not going to send e-mails from this account.

If the IMAP connection test is not successful when you test it via the Test Account
Settings… button then first try and log in to Alfresco Explorer with the username
and password that was used. If that works then check what IP address the IMAP
server is bound to as follows:

C:\Users\mbergljung>netstat -an|find "143"

 TCP 192.168.0.2:143 0.0.0.0:0 LISTENING

Now make sure that the same IP address is used as Incoming mail server, and when
the connection test is successful click on the Next button to finish the setup of the
new IMAP account.

We will see something like this in Outlook at this point:

The folders we see correspond to the same folders that user martin has permission
to see when he logs in via the Alfresco Explorer user interface.

Note that it might take a minute or two before Outlook has
updated the account so you can actually see all these folders.
So do not panic if you do not see these folders at once, wait a
bit and they should pop up.

Alfresco's IMAP solution will by default subscribe the user to all folders they have
access to in Alfresco. This way the user does not have to subscribe to the folders
before they are visible (that is in Outlook we can subscribe to folders via the IMAP
Folders… menu item).

Chapter 13

[517]

Users cannot unsubscribe to folders on an individual basis as the
subscribe/unsubscribe feature in the Alfresco IMAP server is
implemented globally for all users. So if for example, the admin user
unsubscribes to a folder then all other users will also be unsubscribed
to this folder.
If we need users to be able to subscribe and unsubscribe to folders on
an individual basis then we can look at the OpsMailmanager product
that supports this.

If we now log in to Alfresco Explorer, we will see some new folders created under
the Imap Home top folder. These folders are only created for the user when he or
she accesses the system via an IMAP connection:

These folders are special folders that are created by the E-mail client, such as for
example the Junk E-mail mailbox that Outlook creates for all new accounts. Alfresco
needs to store these "special" mailboxes somewhere and this is why the Imap Home
top folder has been created.

Drag-and-drop e-mail into Alfresco folder in
Outlook 2007
Now when we have everything set up, it is a simple task of dragging-and-dropping
an e-mail from the standard Outlook Exchange Inbox into one of the folders under
/Company Home that we have write permissions to.

Types of E-mail Integration Solutions

[518]

For the initial testing of the drag-and-drop feature we can use the user's Alfresco
home folder, as we can be sure that the user will have write permissions to it. In the
following picture, we have dragged an e-mail from the Outlook Exchange Inbox
to the user's Alfresco home folder /Company Home/User Homes/martin:

As we can see, the way we use the Alfresco e-mail account is exactly the same way
we use any other e-mail account in Outlook. Just drag-and-drop e-mails between the
accounts. If you want to keep the e-mail in the Outlook Exchange Inbox, and also
store it in Alfresco, then you have to use copy and paste instead of drag-and-drop
that will always move the e-mail.

Viewing the e-mail from Alfresco Explorer
Now, when we have an e-mail stored in the Alfresco repository it would be
interesting to see how it is presented there. Log in to Alfresco Explorer with the
same username and password that was used to set up the Alfresco IMAP account in
Outlook, and then click on the My Home link at the top. You should see the e-mail
displayed as follows:

The name of the e-mail node will have the format Message_<sequence number>.eml
and cannot easily be changed without customizing the Alfresco source code. There
is no naming plugin that we can implement to customize the naming convention of
these e-mail nodes.

Chapter 13

[519]

If we click on the link, (that is, Message_3285.eml) a preview page is displayed with
all the properties of the e-mail and the e-mail body. This e-mail will now also be
indexed and included in content searches.

If we click on the View Details button, we will see that a couple of extra e-mail
metadata have been added to the node:

With the OpsMailmanager product a naming plugin can be created where
the e-mail node name can be formatted in whatever way we want.

Types of E-mail Integration Solutions

[520]

E-mail attachment extraction
The Alfresco IMAP solution supports e-mail attachment extraction so when an
e-mail with one or more attachments is dragged-and-dropped into an Alfresco
folder all the attachments are extracted into a subfolder:

One subfolder per e-mail will be created. E-mail attachment extraction is turned on
by default; if you look in repository.properties (located in webapps/alfresco/
WEB-INF/classes/alfresco) you will find the following property that controls this:

imap.server.attachments.extraction.enabled=true

If for some reason attachment extraction is not working even though it
is clearly turned on in the repository.properties file, then you can
try and put the imap.server.attachments.extraction.enabled
configuration in alfresco-global.properties instead—that has
worked for me a couple of times.
If you would like to store all extracted attachments into the same
subfolder, control what attachment types are extracted (Word, Excel, PPT,
and so on), and what folders are enabled for attachment extraction, then
have a look at the OpsMailmanager product.

Viewing document metadata from the e-mail client
One thing that is really cool is that you can browse the metadata for documents from
the e-mail client and then decide to download a document if you like. This can be
quite useful for mobile devices.

The way this works is that whenever a folder contains documents the metadata for
them is wrapped into e-mails. This happens dynamically when you click on a folder.
The metadata e-mails are then generated and you will see something like this
in Outlook:

Chapter 13

[521]

If we open one of these e-mails, we will see the metadata for the document and links
to download the document and much more:

The e-mail body is controlled by a FreeMarker template that we can customize if we
do not want to show all the information in the above e-mail body. This template is
called emailbody-textplain.ftl and can be found in the /Company Home/Data
Dictionary/Imap Configs/Templates folder.

Types of E-mail Integration Solutions

[522]

Dragging-and-dropping e-mails into Alfresco
Share site
If we look in the /Company Home/Sites folder we will see that it is empty even if
there are Alfresco Share sites that the user is a member of. A user who wishes to
upload e-mails into an Alfresco Share site has to select it as an IMAP favorite in
the Alfresco Share UI:

Then the Alfresco Share site will show up in the e-mail client as follows:

Here we have set up a Share site called alfres and the document library has
been updated with two new subfolders. A user will not be able to add any e-mails
into these folders until he or she has been invited to the Share site as at least
a Contributor.

To be able to view metadata for documents in the document library the user must be
at least a Collaborator in the site.

If a Share site does not show up in the e-mail client after we have selected
it as an IMAP favorite in Alfresco Share, then we need to manually force
an update of the folder list. In Outlook, we can do that by right-clicking
on the account name and then selecting Update Folder List.

Chapter 13

[523]

How to use Mount Points
So far a user can see all folders in Alfresco that he or she has read access to and the
user can upload e-mails to any folder where he or she has write access. Further on,
document metadata will be displayed for documents in any folder where the user
is a Collaborator.

This is probably not what we want as e-mail clients (that is, the IMAP protocol)
are usually not built to handle thousands of folders. What we want to do is mount
certain folders as e-mail management folders and certain folders as document
metadata viewing folders.

In Alfresco we can manage this by using the so-called Mount Points. There are
three types of Mount Points (http://wiki.alfresco.com/wiki/IMAP#Mount_
Point_Modes) that we can use:

ARCHIVE: Using a folder mount point of this type enables the folder for e-mail
management (that is, we can write and read e-mails in this folder)
VIRTUAL: This mount point type enables the folder for document metadata
viewing by dynamically generating a metadata e-mail/document
MIXED: It is a combination of ARCHIVE and VIRTUAL

The Alfresco IMAP system has one default mount point called AlfrescoIMAP
defined with mount point type set to MIXED. The configuration looks like this:

imap.config.server.mountPoints=AlfrescoIMAP
imap.config.server.mountPoints.default.mountPointName=IMAP
imap.config.server.mountPoints.default.modeName=ARCHIVE
imap.config.server.mountPoints.default.store=${spaces.store}
imap.config.server.mountPoints.default.rootPath=/${spaces.company_
home.childname}
imap.config.server.mountPoints.value.AlfrescoIMAP.
mountPointName=Alfresco IMAP
imap.config.server.mountPoints.value.AlfrescoIMAP.modeName=MIXED

All properties in the imap.config.server.mountPoints.default namespace are
default mount point property definitions. If we are happy with them then we do not
need to specifically set them when defining a new mount point.

The AlfrescoIMAP mount point is using MIXED mount point type/mode and as the
default mount point type/mode is set to ARCHIVE we need to specifically override
it and set MIXED:

imap.config.server.mountPoints.value.AlfrescoIMAP.modeName=MIXED

•

•

•

Types of E-mail Integration Solutions

[524]

The mount point name is also overridden to be Alfresco IMAP instead of just IMAP.

Now let's define two new mount points as follows:

Meeting e-mails: ARCHIVE mount point with root path set to
/Company Home/Meetings
Documents: VIRTUAL mount point with root path set to /Company Home/docs

The configuration for these two mount points look like this:

imap.config.server.mountPoints=MeetingEmails,Documents
imap.config.server.mountPoints.value.MeetingEmails.
mountPointName=Meeting Emails
imap.config.server.mountPoints.value.MeetingEmails.rootPath=/${spaces.
company_home.childname}/Meetings
imap.config.server.mountPoints.value.Documents.
mountPointName=Documents
imap.config.server.mountPoints.value.Documents.modeName=VIRTUAL
imap.config.server.mountPoints.value.Documents.rootPath=/${spaces.
company_home.childname}/docs

The first thing we do when creating new mount points is to give them a name (not
the visible name but a name to use when configuring them) and then specify these
names in the imap.config.server.mountPoints property. By excluding the
AlfrescoIMAP mount point from the property value it will no longer be active.

Then we override the default mount point values as needed. The MeetingEmails
mount point has not specified any mount point type/mode, as the default ARCHIVE
setting is correct.

After restarting the Alfresco server, we will see something like the following in the
Outlook client:

•

•

Chapter 13

[525]

As we can see, this view now looks a lot cleaner for the user and filters out all
unnecessary folders and content.

Summary
This chapter has explained the different e-mail integration solutions that are
available for Alfresco. The most common one is the support of the IMAP protocol
in the Alfresco server that makes it easy for e-mail clients to configure a connection
to Alfresco and drag-and-drop e-mails into the repository. No client software
installation is required.

There are also other products, such as Anovio Email Management Solution,
that require a plugin installation on the client-side, but also allows document
management and search from the e-mail client.

We have learned that e-mail archiving is not currently supported for Alfresco
and the solutions that are available for Alfresco are e-mail management solutions.
They require the user to be involved in storing an e-mail in Alfresco, and this is in
contrast to an e-mail archiving solution that is transparent to the users and stores
all e-mails automatically.

In the next chapter, we will look at what is available for a mobile CMS user who
wants to access content in Alfresco.

Mobile Phone Access
Solutions

The number of people who use mobile phones to access enterprise applications
increases every year. IDC (www.idc.com) forecasts that by 2013 the mobile worker
population will reach nearly 1.2 billion. This is boosted by the fast-paced development
of next generation mobile networks referred to as 4G—the successor of 3G—and the
increasing number of public Wi-Fi hotspots. The proliferation of smartphones also
contributes by providing a greater experience when accessing applications.

There is also a new generation of workers who are accustomed to always being
connected and being able to work with content wherever they are. So it is important
that an ECM system like Alfresco can offer multiple ways for users to access its
content from a mobile device.

Best Money has a lot of mobile workers and they need access to the documents in
Alfresco—when out of the office—from their BlackBerry and iPhone devices. This
chapter goes through how you can set up a solution to support this.

In this chapter, you will learn:

The mobile application support that is available with Alfresco
Creating a mobile application with Grails that uses CMIS to talk to Alfresco
Building CMIS requests and responses

•

•

•

Mobile Phone Access Solutions

[528]

Alfresco mobile web application for
iPhone
Alfresco comes with a web application that can be used to access content from
an iPhone. In this section, we will see how it works and what features are and
aren't available.

Installing the Alfresco mobile web application
The Alfresco mobile web application is delivered as part of the standard community
download in the mobile.war file and when the Alfresco server is started, this web
application is also deployed.

Note that the mobile application is not delivered in the Alfresco
Community Edition 3.3g or 3.4b download. You would have to resort to
Community version 3.3 or compile the source code to get to it. Likewise,
for Alfresco Enterprise Edition 3.3.0, 3.3.1, 3.3.2, the mobile application is
not delivered with these versions. Alfresco is working on a new mobile
client but it is not available at the time of this writing.

Accessing the Alfresco mobile web application
The mobile application is accessible via the http://<hostname>:8080/mobile URL
and the first screen you will see is the "login" screen as follows:

Chapter 14

[529]

Some versions of the Alfresco mobile web application require you to
access it with the http://<hostname>:8080/mobile/p URL.

After logging in, the following screen will be displayed:

Here, we can see that the Alfresco Mobile web application is focused on presenting
a mobile interface for the Alfresco Share web application.

There is no way of accessing content in the standard DM repository.
Only content under /Company Home/sites can be accessed.

So, to be able to see something when we click on Sites in the previous screen, we
have to first create a site via Alfresco Share. I have created a site to store information
around Alfresco called Alfresco Knowledgebase. If we click on Sites, the following
will be displayed:

Mobile Phone Access Solutions

[530]

Now click on the All button and the Alfresco Knowledgebase site (or whatever
sites you have created) should be displayed.

If we click on the Alfresco Knowledgebase row, it will take us to the main page for
this site, as follows:

Here, we can see that it is only the Document Library that is exposed from all the
features available in Alfresco Share. No other features such as wiki, calendar, blogs,
data lists, and so on are available. To list available documents in the Document
Library click on All Documents and the following type of page will be displayed:

Chapter 14

[531]

Clicking on one of the documents will display a page with a document thumbnail
icon and metadata information:

Mobile Phone Access Solutions

[532]

From this page you can start a "Review & Approve" workflow by clicking on the
Assign Workflow button, and you can load the document into preview mode by
clicking on the document icon:

It is also possible to search for documents, if for example, I search for the term
benchmark, I get the following result:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 14

[533]

I can search for people and sites in the same way.

If your company is already using Alfresco Share as a project collaboration platform
then the Alfresco mobile web application might be a good starting point—it does not
offer all the features of Alfresco Share but at least it gives the users instant access to
the documents when they are out and about.

A custom mobile application solution for
smartphones
The Alfresco mobile web application for iPhone is the only application available
from Alfresco that is targeted at mobile phones. Unfortunately, it does not
give us access to the whole repository and it is specifically implemented for the
iPhone device. Best Money's BlackBerry users want to be able to access all folders
under /Company Home, so we need to find another solution.

The best thing in this case is probably to create a custom Alfresco client that can
be accessed via most mobile phones. Then we would have the freedom to include
whatever functionality the end users want.

This might sound like a bad idea. Are we not going to end up with lots of extra code
to maintain for this new custom application? And are we really going to be product
developers? Should we not focus on the business domain and consulting solutions
and let Alfresco do the product development?

It sure is going to mean extra code to maintain and develop further. But wouldn't we
rather have some extra code to maintain than a very unhappy customer? We can find
a middle way—a good tool that enables us to create this kind of application very fast.

In this section, we will use the Grails framework (http://www.grails.org/) to
develop a small web application that can be used by most smartphones available
today. We will call this application MobileX.

The combination of Groovy and Grails will enable us to create this MobileX
application very rapidly as the Grails framework uses convention over configuration,
making it really quick to put together web applications. And the Groovy
scripting language makes the code very small and neat.

If you are not familiar with Groovy, I recommend spending 1-2 hours
reading a tutorial about it before implementing the MobileX application
(http://groovy.codehaus.org/Beginners+Tutorial).

Mobile Phone Access Solutions

[534]

The code used to build the MobileX application is based on
an implementation originally developed by Robin Bramley at
Ixxus. He has agreed to let me use it as a demonstration for this
chapter. Thanks Robin!

Mobile application architecture overview
When implementing web applications that are targeted at mobile phones it is
important to think about what content we send over-the-air (OTA). Mobile devices
are restricted in how much memory they have, screen size, CPU speed and so on,
so it is important to keep the payload of our communication to a minimum and the
screen layout small.

The MobileX web application will be using CMIS to talk to Alfresco and then process
the response from the CMIS requests into small HTML pages that are then sent to the
mobile device over HTTP.

Most mobile devices today, at least smartphones, are capable of handling HTTP and
HTML and this is a lot different from the time (a couple of years back) when you
had to use Wireless Markup Language (WML) and Wireless Application Protocol
(WAP) to build web applications for mobile phones.

The architecture for MobileX looks like this:

In this architecture, the MobileX web application and the Alfresco web application
are deployed on different servers. This does not have to be the case—they could both
be deployed in the Tomcat instance running on the Alfresco Server.

Chapter 14

[535]

Mobile application feature overview
We will implement the following features in the MobileX web application.

User authentication
The first thing that we need to sort out is how users will be authenticating with
Alfresco via this new mobile application. All users need to be authenticated before
they can access any folders or documents in the repository.

The MobileX application will present a login screen whenever the user is trying to
access any application URL unauthenticated. The login screen will look like this:

The users will enter their normal Alfresco username and password and then press
the Login button.

For this application, the BlackBerry Bold 9700 Simulator has been used. It is always
best to try out our mobile application in a proper simulator so that we can see exactly
how the UI is going to look.

This BlackBerry simulator can also emulate a connection to a 3G mobile network
but during development it is easiest to connect to the local WLAN. To do that, we
have to scan for the WLAN and then set up a profile; this is done via WiFi Protected
Setup (WPS), if the router supports that.

The BlackBerry simulators will not just let us go to the browser
and type in an URL as in most other phone emulators. We have
to set up a proper network connection first.

Mobile Phone Access Solutions

[536]

When the user has successfully logged in he or she is presented with a menu
as follows:

Folder and document browsing
In the main menu, a user can select Browse Folders and when first clicked the user is
presented with the top-level folders in the Alfresco repository, as follows:

Chapter 14

[537]

Clicking on one of these folders navigates into that folder. If there are documents and
e-mails in the folder then they will also be displayed as follows:

Clicking on one of the content items kicks off the download via the internal mobile
device browser and the content item, such as a Word document is processed by the
network provider's server, which might be a BlackBerry Enterprise Server (BES).
The processed version of the content item is then displayed.

Clicking on the Up button navigates to the parent folder and clicking on the Home
button navigates back to the initial main menu.

Document search
If the user clicks on the Search button the following dialog is displayed:

Mobile Phone Access Solutions

[538]

Here the user can do a full text search and content name search for any word entered
into the text input field. Clicking on the Search button executes the search. The
search result is presented in a list.

Setting up the mobile Grails application
Start by downloading Grails (version 1.3.4 was used for this example) and unpacking
it into a directory of your choice. Then set the GRAILS_HOME variable and add the
%GRAILS_HOME%/bin directory to the system PATH (http://grails.org/doc/
latest/guide/2.%20Getting%20Started.html).

Now create the Grails MobileX application in the 3340_14_Code\bestmoney\alf_
clients directory:

3340_14_Code\bestmoney\alf_clients>grails create-app mobilex

After that create the following controllers, filters, and services that we are going
to need:

3340_14_Code\bestmoney\alf_clients\mobilex>grails create-controller
 com.bestmoney.mobilex.controllers.Authentication

3340_14_Code\bestmoney\alf_clients\mobilex>grails create-controller
 com.bestmoney.mobilex. controllers.FolderNavigation

3340_14_Code\bestmoney\alf_clients\mobilex>grails create-controller
 com.bestmoney.mobilex. controllers.Search

3340_14_Code\bestmoney\alf_clients\mobilex>grails create-filters
 mobilex.authentication

3340_14_Code\bestmoney\alf_clients\mobilex>grails create-service
 com.bestmoney.mobilex.services.Cmis

Chapter 14

[539]

The architecture of the MobileX application looks something like this:

Configuring the mobile Grails application
We are going to create our own configuration section called mobilex in the
grails-app/conf/Config.groovy file. It will define well-known Alfresco URLs,
XML namespaces, and so on. Put it under the development environment section
(http://grails.org/doc/latest/guide/3.%20Configuration.html) as follows:

environments {
 production {
 grails.serverURL = "http://www.changeme.com"
 }
 development {
 grails.serverURL = "http://localhost:8081/${appName}"

 mobilex {
 serverBase = "http://localhost:8080/alfresco/service"
 alfrescoApiUrl = "${serverBase}/api"
 cmisUrl = "${serverBase}/cmis" // Also gives access to CMIS
 // Service document
 cmisQueryUrl = "${cmisUrl}/queries"
 adminUsername = "admin" // Used to lookup CMIS Service document
 adminPwd = "admin"

Mobile Phone Access Solutions

[540]

 // childrenPath will be appended with <node-guid> then
 //children
 childrenPath = "${cmisUrl}/s/workspace:SpacesStore/i"
 cmisNamespaces =
 [cmis: 'http://docs.oasis-open.org/ns/cmis/core/200908/',
 cmisra: 'http://docs.oasis-open.org/
 ns/cmis/restatom/200908/',
 alf: 'http://www.alfresco.org',
 app: 'http://www.w3.org/2007/app',
 opensearch: 'http://a9.com/-/spec/opensearch/1.1/']
 atomVersion = 'http://www.w3.org/2005/Atom'
 }
 }
 test {
 grails.serverURL = "http://localhost:8081/${appName}"
 }
}

The username and password for the Alfresco administrator is kept in this
configuration as it is needed the first time we talk to Alfresco to get the CMIS service
document. We also set up the MobileX web application to be started on port 8081,
so that we can run the Alfresco server at the same time locally on port 8080.

Implementing the CMIS service
Let's start implementing the CMIS service as it is going to be needed when we
implement the controllers. Open up the CmisService.groovy class located in
alf_clients\mobilex\grails-app\services\com\bestmoney\mobilex\services.

There are not going to be any write operations performed by this sample
implementation, so set the transactional variable to false. Make sure a CMIS
service instance is created for the scope of the session. The CMIS service should also
implement the org.springframework.beans.factory.InitializingBean, so we
can read the CMIS service document when the bean is loaded by Spring. And finally,
load the application configuration that we specified in the Config.groovy file:

class CmisService implements InitializingBean {
 static transactional = false
 static scope = "session"
 def config = ConfigurationHolder.config

Chapter 14

[541]

To communicate with Alfresco via CMIS we are going to use the Apache HTTP
client (download the commons-codec.jar, commons-httpclient.jar, and
commons-logging.jar and place them in the alf_clients\mobilex\lib directory).
Create an Apache HTTP client variable like this:

def httpClient = new HttpClient()

The user's credentials will be stored in the httpClient object during the session and
that is one reason why the service scope needs to be set as session. The last member
variable that we are going to define will contain the current root folder (that is,
/Company Home) node reference for the Alfresco repository instance we are talking to:

def rootFolderNodeRef

Fetching the folder root node reference from the
CMIS service document
The root folder node reference is set up in the Spring initialization method
by fetching the so-called CMIS service document, which is available at the
http://<hostname>:<port>/alfresco/service/cmis URL. This service
document looks something like this:

<?xml version="1.0" encoding="utf-8"?>

<service xmlns=http://www.w3.org/2007/app
 xmlns:atom=http://www.w3.org/2005/Atom
 xmlns:cmisra=http://docs.oasis-open.org/ns/cmis/restatom/200908/
 xmlns:cmis=http://docs.oasis-open.org/ns/cmis/core/200908/
 xmlns:alf="http://www.alfresco.org">
 <workspace>
 <atom:title>Main Repository</atom:title>
 <collection href=
 "http://localhost:8080/alfresco/service/cmis/s/
 workspace:SpacesStore/i/26cef395-d9c5-40f7-b1f4-
 6e4954462adb/children">
 <atom:title>root collection</atom:title>
 <cmisra:collectionType>root</cmisra:collectionType>
 </collection>
. . .

First, we can see the same namespaces declared that we defined in the configuration
file. Then inside the workspace element there are a number of collection elements
that contain URLs for different types of operations that we might want to execute.
These are URLs for getting all folders and documents under /Company Home, getting
the types supported by the repository, doing searches, and so on.

Mobile Phone Access Solutions

[542]

We are interested only in the collection type called root that contains the Alfresco
node reference for the root folder in the repository. This is how we implement the
code to extract the root folder node reference:

void afterPropertiesSet() {
 def usercreds = new
 UsernamePasswordCredentials(config.mobilex.adminUsername,
 config.mobilex.adminPwd)
 httpClient.getState().setCredentials(AuthScope.ANY, usercreds)

 def xmlString = executeGetRequest(config.mobilex.cmisUrl)
 def cmisDocXml = new
 XmlSlurper().parseText(xmlString).declareNamespace(
 config.mobilex.cmisNamespaces)

 def rootFolderChildrenURL
 cmisDocXml.workspace.collection.each {
 if (it.collectionType.text() == "root") {
 rootFolderChildrenURL = it.@href as String
 }
 }

 def rootFolderNodeId =
 rootFolderChildrenURL.substring(
 rootFolderChildrenURL.indexOf('/i/') + 3,
 rootFolderChildrenURL.lastIndexOf('/'))
 rootFolderNodeRef = "workspace://SpacesStore/${rootFolderNodeId}"

 httpClient.getState().clear()
 }

First, we set up the httpClient object with the Alfresco administrator credentials
and then we execute a HTTP GET request with the executeGetRequest method
(which we will implement later) to get the CMIS service document. We then use the
very handy Groovy class XmlSlurper to parse the returned XML. We loop through
all collection elements under the workspace element until we find the root one.

The collection's href attribute is then extracted from the XML document as a string.
To get the node reference from the href URL, we search for /i/, which is followed
by the node reference identifier. We then put together the complete node reference
by prefixing the ID with the store. The store is hardcoded here but could also be
extracted from the href URL by searching for /s/.

Chapter 14

[543]

The final thing that we do is clear the admin user credentials from the httpClient.

We are also going to need a method that can be used by a controller to get to the root
folder node reference:

def getRootFolderNodeRef() {
 return rootFolderNodeRef
}

Authenticating the user with Alfresco
Authentication is not specified in the CMIS specification and it just says
"Authentication SHOULD be handled by the transport protocol." We want a custom
login screen and not the one presented by the device browser, and the user should be
able to log out of the session. This means that we need a login and a logout method
that the AuthenticationController can use.

The login method will take a username and a password and set them up in the
httpClient. The httpClient will then be used to authenticate the user via the
alfresco/service/api/login?u=${username}&pw=${password} URL, which
is available out of the box from Alfresco.

Calling the /alfresco/service/api/login URL does not require
any credentials to be set in the httpClient but we set them up so that
they are available in future request.

If Alfresco successfully authenticates the user, then a ticket will be returned and this
ticket will be used to check if the user is logged in or not:

def login(username, password) {
 def usercreds = new UsernamePasswordCredentials(username, password)
 httpClient.getState().setCredentials(AuthScope.ANY, usercreds)

 def url =
 "${config.mobilex.alfrescoApiUrl}/login?u=${username}&
 pw=${password}"
 def xmlString = executeGetRequest(url)
 def ticket

 try {
 ticket = new XmlSlurper().parseText(xmlString)
 } catch (org.xml.sax.SAXParseException spe) {
 log.error "Login error: ${spe}"
 httpClient.getState().clear()

Mobile Phone Access Solutions

[544]

 ticket = ""
 }

 return ticket as String
 }

The executeGetRequest method that makes the HTTP GET request will
be implemented later as we said. A successful authentication returns the
authentication ticket in the following XML format:

<ticket>TICKET_b196a552be25dfd0b66ab0be5240f47bdba59b03</ticket>

The XmlSlurper is used here to extract the ticket value and return it to the caller. If
there is an error during the authentication then we just return an empty string.

The logout method is fairly simple as it just clears the state of the httpClient object:

 def logout() {
 httpClient.getState().clear()
 }

The user session will be invalidated in the controller as we will see later on.

Fetching child content for a folder via CMIS
Now let's move on and implement the methods that will be needed by the
FolderNavigationController class. Only one method is needed and it should take
a parent folder node reference and then return a map of content items contained in
that folder:

def fetchChildrenForFolder(String nodeRef) {
 def nodeGuid = extractNodeGuid(nodeRef)
 def url = "${config.mobilex.childrenPath}/${nodeGuid}/children"
 def xmlString = executeGetRequest(url)
 return parseAtomFeed(xmlString)
}

Here, we again use the executeGetRequest method to make a call to a CMIS URL
with the /alfresco/service/cmis/s/workspace:SpacesStore/i/26cef395-d9c5-
40f7-b1f4-6e4954462adb/children format. When calling this CMIS URL, Alfresco
will get all the content contained in the folder referenced in the URL and construct an
ATOMPub feed XML document and send it back as a response. This response is then
parsed by the parseAtomFeed method, which we will implement later. The method
will return a list with map entries (property name ¢ property value).

Chapter 14

[545]

Searching the Alfresco repository via CMIS
To support the search feature, we will use the CMIS query URL /alfresco/
service/cmis/queries—it accepts application/cmisquery+xml with the query
statement and other search parameters. To query the repository, we POST data to this
URL looking something like this:

<cmis:query xmlns:cmis='http://docs.oasis-open.org/ns/
 cmis/core/200908/'>
 <cmis:statement>SELECT * FROM cmis:Document</cmis:statement>
 <cmis:searchAllVersions>false</cmis:searchAllVersions>
 <cmis:includeAllowableActions>false</cmis:includeAllowableActions>
 <cmis:includeRelationships>none</cmis:includeRelationships>
 <cmis:renditionFilter>*</cmis:renditionFilter>
 <cmis:maxItems>-1</cmis:maxItems>
 <cmis:pageSize>-1</cmis:pageSize>
 <cmis:skipCount>0</cmis:skipCount>
</cmis:query>

In our search scenario, users will be able to enter a keyword and we will search the
content of documents and the name property of documents for matching the content.
Here is how this is implemented:

def keywordSearch(String keyword) {
 def queryStatement = "SELECT cmis:ObjectTypeId, cmis:ObjectId,
 cmis:Name, cmis:ContentStreamLength, cmis:CreatedBy,
 cmis:LastModificationDate FROM cmis:Document WHERE
 CONTAINS('$keyword') OR cmis:name LIKE '%$keyword%'"
 def headers = ['Content-type': 'application/cmisquery+xml',
 'Accept': 'application/atom+xml;type=feed']
 def queryWriter = new StringWriter()
 def queryXMLBuilder = new MarkupBuilder(queryWriter)
 queryXMLBuilder.'cmis:query'('xmlns:cmis':
 config.mobilex.cmisNamespaces.cmis) {
 'cmis:statement'(queryStatement)
 'cmis:searchAllVersions'(false)
 'cmis:includeAllowableActions'(false)
 'cmis:includeRelationships'('none')
 'cmis:renditionFilter'('*')
 'cmis:maxItems'(-1)
 'cmis:pageSize'(-1)
 'cmis:skipCount'(0)
 }

Mobile Phone Access Solutions

[546]

 def xmlString = executePostRequest(config.mobilex.cmisQueryUrl,
 queryWriter.toString(), headers)
 def list = []

 if (!xmlString) {
 log.warn "No documents were found with keyword $keyword"
 } else {
 list = parseAtomFeed(xmlString)
 }

 return list
 }

Here again we use a very handy Groovy class called MarkupBuilder, which can
be used to build the XML document that we are going to POST to the server. In our
case, we use the following query statement:

SELECT cmis:ObjectTypeId,
 cmis:ObjectId,
 cmis:Name,
 cmis:ContentStreamLength,
 cmis:CreatedBy,
 cmis:LastModificationDate
FROM cmis:Document
WHERE CONTAINS('$keyword') OR cmis:name LIKE '%$keyword%'

We select only the properties that we will send back to the client. The query syntax
is very much like a SQL query so it is easy to understand. The CONTAINS predicate is
used to perform a full-text search in document content.

The CONTAINS predicate is an extension to the SQL 92 standard.

To execute the query we call the executePostRequest method, which will be
implemented in a later section. It also takes a list of HTTP headers and we tell
the server that we are going to send CMIS query XML (Content-type:
application/cmisquery+xml) and that we accept ATOMPub feed (Accept:
application/atom+xml;type=feed) back as a response.

The ATOMPub feed response is then parsed with the same parseAtomFeed method
that was used in the fetchChildrenForFolder method.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 14

[547]

Implementing the helper methods for the CMIS
service
There are a couple of helper methods that we have used that need to be
implemented. Let's start with the executeGetRequest method:

def executeGetRequest(url) {
 def method = new GetMethod(url)
 method.setDoAuthentication(true)
 def statusCode = httpClient.executeMethod(method)
 log.debug "Response status ${statusCode} from ${url}"
 def responseBody = method.getResponseBodyAsString()
 method.releaseConnection()
 return responseBody
 }

This is pretty much the standard way of using the Apache HTTP client when
making GET requests. Note that we call the setDoAuthentication method to do
pre-emptive authentication, so that we do not get login dialogs when calling CMIS
URLs. Implement the executePostRequest method in a similar way:

 def executePostRequest(url, xmlData, headers) {
 def method = new PostMethod(url)
 method.setDoAuthentication(true)
 headers.each { k, v -> method.setRequestHeader(k, v) }
 method.setRequestBody(new StringBufferInputStream(xmlData))

 def responseBody
 try {
 def statusCode = httpClient.executeMethod(method)
 responseBody = method.getResponseBodyAsString()
 } catch (IOException ioe) {
 responseBody = ""
 throw new Exception("Error accessing CMIS", ioe)
 } finally {
 try {
 method.releaseConnection()
 } catch (Exception ex) {
 log.warn "Failed to release connection (possibly due to an
 earlier error): ${ex}"
 }
 }
 return responseBody
 }

Mobile Phone Access Solutions

[548]

We start off by adding the extra HTTP headers to the POST method and then we
set the CMIS query data. The response XML is returned without being processed
as that will be done by the next method that we will implement, which is called
parseAtomFeed. This method takes a parameter with the ATOMPub feed XML,
which looks something like this:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom"
 xmlns:app="http://www.w3.org/2007/app"
 xmlns:cmisra="http://docs.oasis-open.org/ns/cmis/restatom/200908/"
 xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
 xmlns:alf="http://www.alfresco.org"
 xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/">
 . . .
 <generator version="3.3.0 (2765)">Alfresco (Community)</generator>
 . . .
 <opensearch:totalResults>13</opensearch:totalResults>
 <opensearch:startIndex>0</opensearch:startIndex>
 <opensearch:itemsPerPage>-1</opensearch:itemsPerPage>
 <cmisra:numItems>13</cmisra:numItems>
 <entry>
 <author>
 <name>System</name>
 </author>
 <content>b2275521-005b-4580-ba5c-106ccdd389d9</content>
 <id>urn:uuid:b2275521-005b-4580-ba5c-106ccdd389d9</id>
 <link rel="self" . . .
 <link rel="edit" . . .
 . . .
 <link rel="up" . . .
 <published>2010-05-24T13:56:41.313+01:00</published>
 <summary>Site Collaboration Spaces</summary>
 <title>Sites</title>
 <updated>2010-05-24T13:56:41.332+01:00</updated>
 <app:edited>2010-05-24T13:56:41.332+01:00</app:edited>
 <alf:icon>http://localhost:8080/alfresco/images/icons/
 space-icon-default-16.gif</alf:icon>
 <cmisra:object>
 <cmis:properties>
 . . .
 <cmis:propertyString
 propertyDefinitionId="cmis:lastModifiedBy"
 displayName="Last Modified By"
 queryName="cmis:lastModifiedBy">

Chapter 14

[549]

 <cmis:value>System</cmis:value>
 </cmis:propertyString>
 . . .
 <cmis:propertyString
 propertyDefinitionId="cmis:name"
 displayName="Name" queryName="cmis:name">
 <cmis:value>Sites</cmis:value>
 </cmis:propertyString>
 . . .
 </cmis:properties>
 </cmisra:object>
 <cmisra:pathSegment>Sites</cmisra:pathSegment>
 </entry>
 . . .
</feed>

In the beginning, you have information about how many items were found
(opensearch:totalResults) how many items were returned (opensearch:
totalResults) and so on . Then there is one entry element per content item
that was returned.

One of the first elements in the entry element is the content element:

<content>b2275521-005b-4580-ba5c-106ccdd389d9</content>

If it is not a folder, then this content entry contains information about the
content-mime type and the URL to download the content, for example:

<content type="application/vnd.openxmlformats-
 officedocument.wordprocessingml.document"
 src="http://localhost:8080/alfresco/service/cmis/s/
 workspace:SpacesStore/i/bbb487b2-3d70-4f8c-be67-e5d9300561fe/
 content.docx"/>

Then follow some links to be able to navigate from the folder node to, for example,
the parent node (link rel="up"). Further down it contains an icon element
(alf:icon), which we will use to get to the icon for the content item so that
we can display it in the UI.

The parseAtomFeed method looks like this:

def parseAtomFeed(xmlString) {
 def feed
 try {
 feed = new XmlSlurper().parseText(xmlString).declareNamespace(
 config.mobilex.cmisNamespaces)
 } catch (org.xml.sax.SAXParseException spe) {

Mobile Phone Access Solutions

[550]

 // Workaround for 3.1.1 bug
 def xmlString4 = xmlString.replaceAll("&(?!amp;)", "&")
 log.debug xmlString4
 feed = new XmlSlurper().parseText(xmlString4).declareNamespace(
 config.mobilex.cmisNamespaces)
 }

 def list = feed.entry.collect {
 def objectId = getCmisProperty(it, 'cmis:objectId') as String
 def docName = getCmisProperty(it, 'cmis:name') as String
 def fileSize = getCmisProperty(it, 'cmis:contentStreamLength')
 as String
 if (fileSize) {
 fileSize = Integer.valueOf(fileSize)
 }
 def author = getCmisProperty(it, 'cmis:createdBy') as String
 def updatedDate = parseDate(getCmisProperty(it,
 'cmis:lastModificationDate') as String)
 def nsPrefixedType = getCmisProperty(it, 'cmis:objectTypeId')
 as String
 def type = ''
 if (nsPrefixedType) {
 // remove the xmlns prefix (e.g. cmis:)
 type = nsPrefixedType.substring(nsPrefixedType.
 lastIndexOf(':') + 1)
 }

 return [name: docName,
 type: type,
 contentId: objectId,
 iconUrl: it.'alf:icon' as String,
 documentUrl: it.content.@src,
 fileSize: fileSize,
 modifiedDate: updatedDate,
 author: author]
 }

 return list
}

This method starts off by parsing the passed-in ATOMPub feed XML to get a
handle to the feed element. The feed variable is then used to loop through each
entry element and extract the CMIS properties that we are after. We use a custom
getCmisProperty method to get to a specific property, if we know that it is a date
then we use the parseDate custom method.

Chapter 14

[551]

At the end of the loop, we create a map with all the properties and add it to the list.
This list is then returned to the caller.

The last couple of helper methods look like this:

def getCmisProperty(xmlRootObj, propName) {
 return xmlRootObj.'cmisra:object'.'cmis:properties'.'**'.grep
 { it.@'cmis:propertyDefinitionId' == propName}.'cmis:value'[0]
 }

def parseDate(strDate) {
 if (strDate) {
 return new Date().parse("yyyy-MM-dd'T'HHmmss.SSSZ",
 strDate.replace(':', '').replace('Z', '+0000'))
 }

def extractNodeGuid(nodeRef) {
 return nodeRef?.substring((nodeRef?.lastIndexOf('/') ?: 0) + 1)
}

This completes the CMIS service, so we can start on the controllers.

Implementing UI controllers
Having built the CMIS service it is straightforward to implement the UI controllers.
Let's start with the AuthenticationController.groovy class located in
alf_clients\mobilex\grails-app\controllers\com\bestmoney\mobilex\
controllers:

class AuthenticationController {
 def cmisService

 def showLoginPage = {
 render(view: 'authentication')
 }

 def authenticateUser = {
 flash.message = "Credentials set"

 try {
 def ticket = cmisService.login(params.j_username,
 params.j_password)
 session.alf_ticket = ticket
 } catch (ConnectException ce) {

Mobile Phone Access Solutions

[552]

 flash.message = "Cannot connect to CMIS repository."
 }

 redirect(uri: '/')
 }

 def logout = {
 cmisService.logout()
 session.invalidate()
 redirect(uri: '/')
 }
}

The CMIS service is dependency injected via the cmisService variable declaration
(this uses Spring autowiring by name). We then define the showLoginPage method
that will display the login page by rendering the authentication view, which
points to the authentication.gsp page. The authenticateUser method is called
when the user has entered the username and password in the login page and clicks
on the Login button. It uses the CMIS service to log in to Alfresco. If the login is
successful then the Alfresco ticket (alf_ticket) is stored in the session.

The logout method will just log out via the CMIS service, invalidate the session, and
redirect the user to the home page.

The next UI Controller is the FolderNavigationController.groovy class and the
first part of it looks like this:

class FolderNavigationController {
 def cmisService
 def config = ConfigurationHolder.config

 def index = {
 redirect(action:list)
 }

 def list = {
 if (!params.parentFolderNodeRef) {
 def topLevelContentList = []
 def folderRootNode = cmisService.getRootFolderNodeRef()

 try {
 topLevelContentList =
 cmisService.fetchChildrenForFolder(folderRootNode)
 } catch (Exception e) {

Chapter 14

[553]

 log.error "Exception: ${e.message}"
 flash.message = "Could not access Alfresco via CMIS"
 }

 session.currentNode = folderRootNode
 session.folderNodeRefStack = new Stack()

 [contentList: topLevelContentList, parentFolderNodeRef: null]

The list method basically has two paths—one when the user is on the menu
page and selects Browse Folders (which is the code part you see above) and a
second one, when the user is already navigating around in the folder hierarchy
and the current parent folder node reference is passed in as a parameter
(params.parentFolderNodeRef) as shown:

 } else {
 def childContentList = []

 try {
 childContentList = cmisService.fetchChildrenForFolder(
 params.parentFolderNodeRef)
 } catch (Exception e) {
 log.warn "Exception accessing CMIS: ${e.message}"
 flash.message = "Could not access Alfresco via CMIS"
 }

 def parentFolderNodeRef = null
 def topFolderNodeRef = null

 if (!session.folderNodeRefStack.empty()) {
 topFolderNodeRef = session.folderNodeRefStack.peek()
 }

 if (topFolderNodeRef == params.parentFolderNodeRef) {
 session.folderNodeRefStack.pop()
 if (!session.folderNodeRefStack.empty()) {
 parentFolderNodeRef = session.folderNodeRefStack.peek()
 }
 } else {
 parentFolderNodeRef = session.currentNode
 session.folderNodeRefStack.push(parentFolderNodeRef)
 }

 session.currentNode = params.parentFolderNodeRef

Mobile Phone Access Solutions

[554]

 [contentList: childContentList,
 parentFolderNodeRef: parentFolderNodeRef]
 }
 }
}

If the parent node reference is not known, then we call the CMIS service with the
root folder node reference to get the top folders:

cmisService.fetchChildrenForFolder(folderRootNode)

If a folder node reference is passed in, then we select the child content for that
node reference:

cmisService.fetchChildrenForFolder(params.parentFolderNodeRef)

When we navigate around in the folder hierarchy we also create a folder node
reference stack and store it in the session (session.folderNodeRefStack = new
Stack()). We then use this stack to push a node reference on it when we navigate
down into a folder and pop a node reference from it when we go up to the parent
folder. In this way, we can manage when the user is using the Back button in the
browser and not the buttons and link in the application UI.

The child content list (that is, contentList) is returned to the list.gsp page that
will display it.

The last controller that we need to implement is the SearchController.groovy class:

class SearchController {
 def cmisService

 def index = {
 render(view: 'search')
 }
 def search = {
 if (!params.keyword?.trim()) {
 return [:]
 }

 def resultList
 try {
 resultList = cmisService.keywordSearch(params.keyword)
 } catch (Exception e) {
 log.error "Exception: ${e.message}"
 flash.message = "Could not access Alfresco via CMIS"
 }

Chapter 14

[555]

 return [searchResult: resultList]
 }
}

Once the user has entered a keyword and clicked on the Search button, we execute
the search via the CMIS service. The search result is returned to the search.gsp
page that displays it.

Implementing the Groovy Server Pages (GSP)
The only parts left to complete the Model-View-Controller (MVC) pattern are the
views that are implemented as Groovy Server Pages (GSP). The authentication.gsp
page looks like this:

<html>
<head>
 <title>MobileX - Login</title>
 <meta name="layout" content="main"/>
</head>
<body>
<div class="body">
 <h1>Login</h1>
 <g:if test="${flash.message}">
 <div class="message">${flash.message}</div>
 </g:if>
 <g:form action='authenticateUser' method='post'>
 <p>
 <label for='j_username'>Username:</label>
 <input type='text' name='j_username' id='j_username'/>
 </p>
 <p>
 <label for='j_password'>Password:</label>
 <input type='password' name='j_password' id='j_password'/>
 </p>
 <p>
 <input type='submit' value='Login'/>
 </p>
 </g:form>
</div>
</body>
</html>

Mobile Phone Access Solutions

[556]

It will display a username field, a password field, and a Login button. When the
Login button is clicked, the form action authenticateUser is kicked off; this calls
a method with the same name in the AuthenticationController.groovy.

After a successful login, the user is redirected to the main menu defined in the
index.gsp page that looks like this:

<html>
 <head>
 <title>Welcome to MobileX</title>
 <meta name="layout" content="main"/>
 </head>
 <body>
 <g:if test="${flash.message}">
 <div class="message">${flash.message}</div>
 </g:if>
 <div class="dialog" style="margin-left:20px;width:60%;">

 <g:link controller="folderNavigation">
 Browse Folders</g:link>
 <g:link controller="search">
 Search for Documents</g:link>
 <g:link controller="authentication"
 action="logout">Logout</g:link>

 </div>
 </body>
</html>

The menu has links so the users can browse folders, search, or log out if they want to.

The folder navigation page is defined in the list.gsp page and the first part that
creates the top menu/toolbar looks like this:

<html>
<head>
 <title>MobileX - Folder Browsing</title>
 <meta name="layout" content="main"/>
</head>
<body>

<div class="nav">

 <a class="home" href="${resource(dir: '',
 file: 'index.gsp')}">Home

Chapter 14

[557]

 <g:link class="list" controller="search">Search</g:link>

 <g:if test="${parentFolderNodeRef}">

 <g:link class="edit" action="list"
 params="[parentFolderNodeRef:parentFolderNodeRef]">Up
 </g:link>

 </g:if>
</div>

Clicking on the Home button takes you to index.gsp with the main menu and if we
click on the Search button, the default action method in the SearchController will
be invoked so that the search.gsp page is displayed. The Up link is displayed only
if the user has navigated one level down in the folder hierarchy.

The body of this page will list the child folders and documents of the current parent
folder node reference:

<div class="body">
 <div class="list">
 <table>
 <thead>
 <tr>
 <th> </th>
 <th>Name</th>
 <th>Size</th>
 <th>Owner</th>
 <th>Modified</th>
 </tr>
 </thead>
 <tbody>
 <g:each in="${contentList}" status="i" var="contentItem">
 <tr class="${(i % 2) == 0 ? 'odd' : 'even'}">
 <td style=
 "vertical-align:middle;horizontal-align:center;">
 <img src="${contentItem.iconUrl}"
 alt="${contentItem.type}" height="16" width="16"/>
 </td>
 <td>
 <g:if test="${contentItem.type == 'document'}">
 <a href="${contentItem.documentUrl}?
 alf_ticket=${session.alf_ticket}"
 target="_blank">${contentItem.name}

Mobile Phone Access Solutions

[558]

 </g:if>
 <g:else>
 <i><g:link action="list"
 params="[parentFolderNodeRef:contentItem.contentId]">
 ${contentItem.name}</g:link></i>
 </g:else>
 </td>
 <td>${contentItem.fileSize}</td>
 <td>${contentItem.author}</td>
 <td><g:formatDate date="${contentItem.modifiedDate}"
 type="datetime" style="SHORT"/>
 </td>
 </tr>
 </g:each>
 </tbody>
 </table>
 </div>
</div>
</body>
</html>

Worth noting here is that we need to add the alf_ticket parameter stored in the
session for every document download link, as for this implementation the URL
will not be targeting the MobileX application but Alfresco directly. So there are no
httpClient user credentials that can be automatically used for the request.

It is possible to build a CMIS-based application that is totally independent of the
vendor; however, this would require proxying the content.

Finally, the search.gsp looks very much like the list.gsp when it displays the
search result, so you can resort to the source code that comes with the book for
the code for this page.

Implementing an authentication filter
Whenever the user is not authenticated he or she should be redirected to the
login page no matter which URL is being called. This is best implemented with
a "before" filter that can be used across a whole group of controllers. We already
generated a filter in the beginning so we just need to implement it. Open up the
AuthenticationFilter.groovy class located in the grails-app/conf/mobilex
folder and change it to look like this:

class AuthenticationFilters {
 def filters = {
 loginCheck(controller: '*', action: '*') {

Chapter 14

[559]

 before = {
 if ((session == null || !session?.alf_ticket) &&
 !controllerName.equals('authentication')) {
 redirect(controller: 'authentication',
 action: 'showLoginPage')
 return false
 }
 }
 }
 }
}

We basically just check the alf_ticket session variable and if it is not there
then we send the user to the login page. This is mapped to all controllers and all
actions though doesn't apply the logic to the authentication controller to prevent
an infinite loop.

Running the mobile application
We are now done with the coding and we can try out the application by running the
following Grails command:

3340_14_Code\bestmoney\alf_clients\mobilex> grails -Dserver.port=8081
run-app

Access the application from any browser with http://<hostname>:8081/mobilex.

Content creation with MobileX
This is beyond the scope of this chapter, but it would be quite easy to extend
MobileX to add functionality to meet user stories such as "As a mobile user, I want
to store attachments received by e-mail". This would involve operations such
as creating folders, creating documents, and so on, which are all part of the
CMIS specification.

Using the Apache chemistry API
There is also the Apache Chemistry OpenCMIS subproject that could be used instead
of implementing the MobileX CMIS service from scratch. However, there are things
like getting to the content icon that are not possible via that API and it is also useful
to understand the inner workings of the CMIS interface.

It might be worth checking out Apache Chemistry (http://incubator.apache.
org/chemistry) because it evolves all the time.

Mobile Phone Access Solutions

[560]

Summary
In this chapter, we have seen two solutions to how we can access content in the
Alfresco repository via a mobile device such as an iPhone or a BlackBerry. The
mobile.war web application that comes with the Alfresco package can be used to get
to site content created via Alfresco Share. However, if we need to get to all content in
the repository then we need to come up with a custom solution such as the MobileX
application that we developed in this chapter.

In this chapter, we have learned how to use the mobile application that comes
with Alfresco out of the box and how it can be used to access content in Alfresco
Share-created sites from iPhones.

We saw how a web application framework like Grails that is built on top of Groovy,
can be very productive when creating a custom web application like MobileX,
targeting mobile device users with, for example, BlackBerry smartphones.

When developing the MobileX application, we explored CMIS and discovered that it
is a good interface to use from Groovy as there are classes like MarkupBuilder and
XmlSlurper that really make it easy to handle CMIS requests and responses.

CMIS requests for child content are just standard GET requests and the response is
coded in ATOMPub Feed XML format. Searching via CMIS uses a POST where we
can specify the search query in an SQL-like language. CMIS does not specify how
authentication with the content server should be done and it is up to us to solve
it via the transport layer.

Index
Symbols
<xs:sequence> element 288
_alfresco/config directory 110, 111
_alfresco/source directory 114
_share/config directory

about 115, 116
subfolders 116

_share directory 110
3G 527
4G 527

A
Acegi Security 24
ACP 110, 280
ACP file import

about 357
advantages 357
disadvantages 357

ACP Generator tool 364, 365
Active Directory. See AD
AD

about 159, 160
authentication, configuring with 161, 162
synchronization, configuring with 161, 162

Advanced Search
properties, displaying in 328, 342, 343

advanced versioning management (AVM)
system 264

Advanced Versioning Manager Store. See
AVM Store

afterCreateVersion event 32
ALF_APPLIED_PATCH table 53
alf_client directory 110

alf_data directory
about 46
structure 46

alf_extensions directory 110
ALF_NODE_ASPECTS table 52
ALF_NODE_PROPERTIES table 52
ALF_NODE table 51
ALF_QNAME table 53
alf_ticket parameter 558
alf_ticket session variable 559
Alfresco

about 8, 57
accessing, via KDC TGS 145, 146
application zones 152
authentication subsystems 150, 151
authentication zones 151
bootstrap 41
CMIS service, implementing 540
components 25
content rules 26, 27
content transformers 36, 37
custom mobile application solution, for

smartphones 533
directory structure 46
event model 27
extension modules 42
folder hierarchy 225, 226
Grails MobileX application, configuring

539
Grails MobileX application, creating 538
groups 20, 21
metadata extraction 35
metadata extractors 35, 36
Meta Model XML schema 287

[562]

MT feature 23
open source projects 24
services 25
store reference 15
stores 12
subsystems 40
synchronization subsystems 150, 151
third-party extensions 42
UI controllers, implementing 551-554
user interfaces clients 43, 45
users, authenticating with 543, 544

alfresco-global.properties file 153
alfresco.war AMP Extension 118
alfresco.war file 104, 105
alfresco/module

about 112, 113
directories 113, 114
files 113, 114

ALFRESCO_ADMINISTRATORS group 21
Alfresco boxes

folder hierarchies, copying between 280,
281

Alfresco Bulk Filesystem Import 42
Alfresco bulk import tool

about 360
Import directory field 360
Target space field 360
Update existing files checkbox 361

Alfresco CIFS
about 45, 177
troubleshooting 215
troubleshooting strategies 217

Alfresco CIFS server
about 191
configurations 191
configuring 194
on Linux 193, 194
on Windows 192, 193

Alfresco CIFS server configuration
Alfresco File Server subsystem 195
Linux Server and Windows 7 client configu-

ration 208-210
Windows 2003 Server and Windows 7 client

configuration 200-202
Windows 2008 Server, Active Directory,

and Windows 7 client configuration
202-207

Windows Vista Server, Windows 7, and XP
clients configuration 195-200

Alfresco Content Package (ACP) files 357
Alfresco Content Packages. See ACP
Alfresco database 50
Alfresco database schema 51
Alfresco data web script

about 484
advantages 484
disadvantages 484

Alfresco Explorer
about 43, 105-107, 326
aspects, displaying in rules wizards 328
properties, displaying in Advanced Search

328
properties, displaying in content details

pages 326, 327
property sheets, registering 329
resource file, registering 329
types, displaying in add content wizards

327
types, displaying in create content wizards

327
types, displaying in rules wizards 328

Alfresco Extension projects
about 105
Alfresco Explorer 105-107
Alfresco Share UI extensions 107
repository extensions 105-107

Alfresco Forum Model
type definition examples 301-304

Alfresco JavaScript
URL 390

Alfresco Knowledgebase 529
Alfresco Management Beans (JMX) 39
Alfresco meta model

and Alfresco content models, differences
286

and custom content models, differences 286
Alfresco Mobile 45
Alfresco mobile web application

accessing 528-532
installing 528

Alfresco Module Management Tool 105
Alfresco Module Package (AMP) 59, 105

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[563]

Alfresco namespaces
bmc namespace 396
bmw namespace 395
bpm namespace 395
cm namespace 395
d namespace 395

Alfresco Node Browser 47
alfrescoNtml subsystem 151
Alfresco platform

about 7, 8, 23
layered approach 9, 10
overview 9, 10

Alfresco portlet implementation approaches
Alfresco data web script 484
Alfresco presentation web script 484
CMIS web script 484

Alfresco presentation web script
about 484
advantages 484
disadvantages 484

Alfresco records management
about 282, 283
File Plan, managing 283

Alfresco repository
Document Folder Template 229
overview 11, 12
searching, with CIMS 545, 546

Alfresco Share
about 43, 330, 530
aspects, displaying 341, 342
debugging 123
properties, displaying in Advanced Search

342, 343
properties, displaying in metadata pages

330-340
types, displaying 341, 342
URL 419
using 533

Alfresco SharePoint 43, 44
Alfresco Share UI extensions

about 107
META-INF directory 108
site-data directory 108
site-webscripts directory 108

Alfresco source code
downloading 50

Alfresco Spring Surf JAR file
directory structure 107

Alfresco user interfaces
folders, setting up 250, 251

Alfresco WCM
URL 22

Alfresco WebDAV
about 177, 210
accessing 210, 211
WebDAV clients 212
Windows built-in WebDAV clients 214

Alfresco workflow feature
diagrammatic representation 384

AMP extensions
debugging 123
deploying 119-122

amps directories 48
Anovio Email Management solution

about 510
URL 510

Ant targets
for alfresco.war AMP Extension 118, 119
for share.war JAR extension 120

Apache Abdera 24, 95
Apache Ant build file 118
Apache Axis 24
Apache Chemistry 24
Apache chemistry API

using 559
Apache Commons 24
Apache CXF 24
Apache Directory Studio 158
Apache HTTP Commons 490
Apache PDFBox 24
Apache POI 24
Application Module Package (AMP) 39
Application Programming Interfaces (APIs)

about 8, 39, 57, 59
Client-server APIs 94
In-process APIs 59

Apply Best Money Document Type rule
defining 260-262

Apply Versioning rule
defining 263, 264

Archive Store 12
AS 143

[564]

aspect events
about 30
beforeAddAspect 30
beforeRemoveAspect 30
onAddAspect 30
onRemoveAspect 30

aspects
about 16, 285
displaying 341, 342
displaying, in rules wizards 328
uses 309

association events 31, 32
associations 285
associations definition

about 298
association 298
child-association 298
description 299
name 299
source 299
target 299
title 299

asynchronous action execution event
about 29
onAsyncActionExecute 29

ATOMPub feed XML document 544
audit.contentstore directory 48
authenticateUser method 552
authentication

about 543
configuring, against Microsoft Active Direc-

tory 159
configuring, against OpenLDAP 153
configuring, with Active Directory 161, 162
making, more secure 172
setting up, with Remote Directory servers

152
authentication.gsp page 555
authentication and security, CIFS 189
authentication concepts 138
AuthenticationController 543
authentication filter

implementing 558
AuthenticationFilter.groovy class 558
Authentication Server. See AS
authentication subsystem

configuring 169, 170

authentication zones 151
AVM Store

about 14
versus Working Store 15

B
backup-lucene-indexes directory 48
base64 encoded 138
BeanShell script

about 390
URL 390

beforeAddAspect event 30
beforeCopy event 29
beforeCreateNode event 30
beforeCreateReference event 32
beforeCreateStore event 29
beforeCreateVersion event 32
beforeDeleteNode event 30
beforeRemoveAspect event 30
beforeRemoveReference event 32
beforeRMActionExecution event 32
beforeUpdateNode event 30
BES 537
Best Money 8, 527
Best Money document management solu-

tion
designing 236
implementing 246

Best Money document management solu-
tion, designing

about 236
meeting folder 242-245
meetings folder hierarchy 236-239
press folder hierarchy 236-242
space templates 242-245

Best Money document management
solution, implementing

about 246
details list view for folder, configuring 271
document review periods, setting up 272
file display, configuring 271
folder hierarchy, setting up 249
Google Like search, configuring 271
groups, setting up 246-249
space templates, setting up 269, 270
users, setting up 246-249

[565]

Best Money portal architecture 484
Binary Large Objects. See BLOBs
BitKinex

about 212
download link 212

BlackBerry Bold 9700 Simulator 535
BlackBerry Enterprise Server. See BES
BLOBs 12
bmc:job aspect 399
bmc namespace 396
bmw:assigneeCopywriter association 436
bmw:conceptWorkDueDate property 436
bmw:copywriteWorkDueDate property 436
bmw:signOffPhase property 449
bmw:baseAssignJobTask job task 399
bmw:baseWorkTask task type 399
bmw:workType work type 399
bmw_workTypes collection 440
bmw_workType variable 404
bmw namespace 395
bootstrap, Alfresco

about 41
importer component 41, 42
patches 41

Bootstrap APIs
about 98
importer 99, 100
patches 98, 99

bootstrapping 41
bpm:assignees association 436
bpm:dueDate property 436
bpm:assignee property 399
bpm:packageActionGroup property 399
bpm_assignee variable 389
bpm_package 462
bpm namespace 395
build server, downloading

requisites 125
business processes

designing, with Swimlane diagram 370, 372
business rules

linking to 268
setting up, for folders 258, 259

business rules, for folders
Apply Best Money Document Type rule,

defining 260-262

Apply Versioning rule 263, 264
Check Naming Convention rule 264, 265
Extract Meeting Filename Metadata rule

266, 267

C
calculateVersionLabel event 32
Check Naming Convention rule

defining 264, 265
Chiba 24
child-association definition

about 300
child-name 300
duplicate 300
propagateTimestamps 300

child content, for folder
fetching, via CMIS 544

CI environment
about 124
setting up 125-129

CIFS
about 177, 178
connecting to 179
features 178
folders, setting up 250
working 179

CIFS-based document migration
diagrammatic representation 354, 355

CIFS authentication
about 139
custom authenticator, implementing for

165
CIFS dialect negotiation 187, 188
CIFS features

access 178
data integrity 178
optimization for slow links 178
security and granularity 178
unicode file names 178

CIFS import
about 353, 354
advantages 355
disadvantages 355

CIFS interface
used, for accessing 163, 164

[566]

Citrix XenApp 210
classes

deploying, for custom authenticator 171
client-debug-autologging flag 124
client-debug flag 123
Client-server APIs

about 94
CMIS API 94, 95
Custom APIs 95-97
Repository API 95

CMIS
about 534
Alfresco repository, searching with 545, 546
child content folder, fetching with 544

CMIS API
about 58, 94
using 95

CMIS service
about 552
helper methods, implementing for 547-551
implementing 540

CMIS web script
about 484
advantages 484
disadvantages 484

cm namespace 395
com.bestmoney.cms.MyCmsService inter-

face 61
Command Servlet API 58
Common Internet File System. See CIFS
communication services, NBT

Datagram service 185
datagram service 180
Session service 183
session service 180

completionDate property 398
complex transformers 38
components, Alfresco 25
composite type, content model design pat-

tern
about 311
example 312, 313
issues 311, 312
solution 312

conditions 430

configuration, Java Foundation Services API
59-62

configuration object, content model design
pattern

about 315
code example 316-319
definition example 316
issues 315
solution 316

constraint definition. See model.constraints,
Meta Model XML schema

CONTAINS predicate 546
content-model.xml file 399
content details pages

properties, displaying in 326, 327
content element 549
content files, storing in filesystem

reasons 13
Content Management Interoperability Serv-

ices API. See CMIS API
Content Management Systems (CMS) 7
content model

about 285
and Alfresco meta model, differences 286
and custom content models, differences 286
custom 320
design patterns 310

content model, design patterns
about 310
composite type 311-313
configuration object 315-319
domain document root type 310, 311
multiple types inheritance 314, 315

ContentModel objects 491
content rules, Alfresco

about 26
setting up 26, 27

content service 62
content service events

about 28
onContentPropertyUpdate 28
onContentRead 28
onContentUpdate 28

Content Store
about 12
policies 13, 14

[567]

contentstore.deleted directory 47
contentstore directory

about 47
file versioning 47

Content Store Selectors 14
Content Transformation API 58 86, 88
content transformers, Alfresco

about 36
Any text to plain text 37
benefits 37
E-mail (MIME) to text 37
E-mail (Outlook) to text 37
Excel to plain text 37
HTML to plain text 37
Image to image 37
MediaWiki markup to HTML 37
Open Office to image 37
Open Office to PDF 37
PDF to image 37
PDF to plain text 37
Plain Text to image 38
Plain Text to PDF 38
Word to plain text 37

Continuous Integration. See CI environ-
ment

copy service events
about 28
beforeCopy 29
getCopyCallback 28
onCopyComplete 29

custom-slingshot-application-context.xml
117

Custom APIs 58, 95
custom authenticator

implementing, for CIFS authentication 165
custom content model

about 320
and Alfresco content model, differences

286
and Alfresco meta model, differences 286
new model, defining 320-324
property sheets, configuring for UI display

326
registering, with repository 325

customized task dashlets
using 471

CustomLinkGenerator 477

custom mobile application solution
for smartphones 533

custom NTLM authenticator
building 166-169

D
Dashlet components 117
data-types definition. See model.data-types,

Meta Model XML schema
database schema, Alfresco 51
Data Dictionary top folder

subfolders 226, 227
Data Web Scripts 96
DEBUG logging 76
decide method 430
DecisionHandler 430
decision node 428, 430
DELETE permission group 75
description property 398
development environment

directory servers, using in 174
setting up 105

development environment, setting up
about 105
Alfresco Extension projects 105
Apache Ant script, creating 118
extensions, deploying 118
project directory structure 109

Dictionary Service 75
directory servers

using, in development environment 174
directory service, installing

reasons 175
directory structure, Alfresco

about 46
alf_data directory 46
amps directories 48
tomcat directory 49

dist directory 121
DM (Document Management) 12
DM repository 529
d namespace 302, 395
Document Folder Template, Alfresco re-

pository
about 229
document versioning 235

[568]

folder name 229, 230
folder permissions 231, 232
folder title 231
metadata 233-235
processes 235
rules 232

document management solutions
about 223
designing 228
features 223, 224

document management solutions, features
3rd party application integration 224
about 223
auditing 223
automatic transformations 224
business rules, applying 224
classification 223
extended search 223
fine grain permissions 224
process automation 224
versioning 223

document migration
common steps 358
implementing 359
planning 358

document migration, implementing
about 359
ACP Generator tool, using 364-367
Alfresco bulk filesystem import tool, using

359
Alfresco bulk import tool, running 360-362
extra metadata, applying 362-364

document migration staging area
setting up 346

document migration strategies
about 346
documents, importing via ACP file 357
documents, importing via CIFS 353
documents, importing via external tool 355
general migration strategies 346

document review periods, setting up
about 272
reviewable aspect, adding 272, 274
review folder content script, running 278-

280
for folder 274, 275

scripts, for folder review periods check 275,
277

document search feature
for MobileX application 537, 538

document versioning 235
domain

new custom type, defining for 308
domain document root type, content model

design pattern
about 310
example 311
issues 310
solution 310

Do not Repeat Yourself. See DRY principle
doView method 490
DRY principle 373
dueDate property 398
DWG 36
dynamic descriptions

using, in Work process 404, 405

E
E-MAIL_CONTRIBUTORS group 21
e-mail client talking to Alfresco, through

custom built plugin and Web Scripts
about 510
disadvantages 511
overview 510, 511

e-mail client talking to Alfresco, through
custom module and Web Scripts

about 512
advantages 513
disadvantages 513
overview 512

e-mail client talking to Alfresco, via IMAP
protocol

about 508
advantages 509
disadvantages 509, 510
working 508

e-mail integration solutions
about 508
e-mail client talking to Alfresco through

custom built plugin and Web Scripts
510, 511

[569]

e-mail client talking to Alfresco through
custom module and Web Scripts 512,
513

e-mail client talking to Alfresco via IMAP
protocol 508, 509

e-mail management solutions
implementing 514
implementing, with Alfresco IMAP 514

e-mail management solutions implementa-
tion

about 514
document metadata, viewing, from e-mail

client 520, 521
e-mail, drag-and-drop in Alfresco folder

517, 518
e-mail, viewing from Alfresco Explorer

518, 519
e-mail attachment extraction 520
e-mails, dragging-and-dropping in Alfresco

Share site 522
IMAP account, setting up in Outlook 2007

515-517
IMAP server, enabling 514
Mount Points, using 523, 524

e-mail notification
adding 470

e-mail template, sign-off process
bootstrapping 449, 451

EAI solutions 479
Eclipse 428
Eclipse JBoss jPDL plug-in 390
ECM solution 223
EHCache 24
Enterprise Application Integration. See EAI

solutions
Enterprise Reporting AMP 42
entry element 549
Event API 57
event handler

creating 78, 79
registering 79, 80
registering, requisites 33
working 34

Event management API
about 77
event handler, creating 78, 79

event model, Alfresco 27

EVERY_EVENT 33
EVERYONE group 21
Excel file

folders, importing from 253-256
Excel spreadsheet

task summary list, exporting in 475, 476
executeGetRequest method 542, 544, 547
executionContext, script variables 394
export command 100
extension directory 111, 112
extension modules, Alfresco 42
extensions

debugging 122
deploying, build file used 120

extensions, merging into alfresco.war
reasons 105, 106

ExternalSignOffNotification action 464
Extract Meeting Filename Metadata rule

defining 266, 267

F
failover transformers 38
fdk-config-custom.xml 117
fetchChildrenForFolder method 546
Fiber Channel (FC) 13
file-mapping.properties file 107
file access concepts

about 178
CIFS protocol 178
CIFS Transport 179

File Folder service
about 67
file, renaming with 68
nodes, copying 69
nodes, moving 69
using 67-69

FileInfo object 67
File Plan

managing 283
FIRST_EVENT 33
folder and document browsing feature

for MobileX application 536, 537
folder hierarchies

copying, between Alfresco boxes 280, 281
folder hierarchy, Alfresco

about 225

[570]

Data Dictionary 225, 226
Guest Home 225
Sites 225
User Homes 225
Web Deployed 226
Web Projects 226

folder icons
updating 251

folder link
adding, to property sheets 476, 477

folder name 229, 230
FolderNavigationController class 544
folder permissions

about 231, 232
setting up 257, 258

folders
business rules, setting up for 258, 259
cleaning up 256
importing, from Excel file 253-256
setting up, Alfresco user interfaces used

250, 251
setting up, CIFS used 250
setting up, scripts used 251

folder title 231
foreach loop 429
Fork node 428
Foundation Services API 26, 57
FreeMarker 24
FreeMarker template 108, 488
full text search (FTS) 223
functions, MMT

about 106
backup of changes 106
module listing 106
module updates 106
module versioning 106

G
general migration strategies

about 346
document migration staging area, setting

up 346
Modified Date, preserving 346, 347
post migration processing scripts 348

general steps, document migration 358

Generic Security Services Application Pro-
gram Interface. See GSS-API

GenericWorkConcept node 431
getAlfrescoTicket function 498
getCmisProperty method 550
getCopyCallback event 28
Google Like search

configuring 271
Grails framework

URL 533
Grails MobileX application

configuring 539
creating 538

Greenmail 24
Groovy 533
Groovy Server Pages. See GSP
group

folder hierarchies, copying between 281
synchronizing, with OpenLDAP 155, 156,

157, 158
group imports

customizing 163
groups, Alfresco

about 20
ALFRESCO_ADMINISTRATORS 21
E-MAIL_CONTRIBUTORS 21
EVERYONE 21

GSP
implementing 555-558

GSSAPI 144
GWT/GXT-based 497-499, 503-506
GWT module class

creating 499-501
GXT 485

H
helper methods

implementing, for CIMS service 547-551
Hibernate 24
higher level permission groups 22
href attribute 542
HTML 36
HTTP Basic authentication

about 138, 139
advantages 138

[571]

httpClient object 542
HTTP GET call 492
Hudson 124

I
iBATIS 24
IDC

URL 527
identifier 15, 17
import definition. See model.imports, Meta

Model XML schema
importer component 41, 99, 100
ImporterModuleComponent class 99
In-process APIs

about 59
Content Transformation API 86, 88
Event management API 77-81
Java Foundation Services API 59
JavaScript API 88-92
Metadata Extraction API 81-85

inbound variables 432, 433
index.recovery.mode property 48
index definition

about 297
atomic 297
enabled 297
stored 298
tokenised 298

initiator swimlane 399
init method 481
installation, directory service

reasons 175
iPhone 528
Is Material OK? (If Applicable) decision

372
Is Material OK? decision 372

J
Jackson JSON parser 490
Java-based 490-497
Java Community Process (JCP) 480
java directory

about 115
subfolders 115

Java Enterprise Edition (JEE) servers 23

Java Foundation Services API
about 59
configuring 59- 62
content services, using 62-66
Dictionary Service 75
File Folder service 67-69
node services, using 62-66
Permission Service 73, 74
Search Service 70-73
transaction management 59-62

Java Mail 24
JavaScript API

about 57, 58, 88
debug logging 94
event handlers 93
info site 93
using 89-92

javascript directory 115
JavaScript event handlers 93
javax.portlet.Portlet interface 482
JBoss 8
JBOSS jBPM 24
jBPM Process Definition Language. See

jPDL
jBPM Process Designer

downloading 385
URL 385

JBPM workflow definitions 114
jBPM workflow engine

about 384
implementing 385
Work subprocess, implementing 385

JCR API 58
JGroups 24
JLAN technology

about 191
features 191

job data, Work process
defining 405, 406

jobOwner swimlane 388, 399
Job process

about 378, 379
implementing 455
property file 468
property sheets 468
testing 469

[572]

workflow content model 467
workflow definition (jPDL) 455-466

jobStatus property 406
Join node 428
jPDL 371, 372
jPDL Schema 389
jPDL syntax 389
jPDL XML Schema version 429
JSR168 480
JSR286 480
JSR301 480
JSR329 480

K
KDC 143
KDC AS

service login, performing 144, 145
user login, performing 144, 145

KDC TGS
Alfresco, accessing 145, 146

Kerberos
about 142
characteristics 143

Kerberos authentication 143, 144
Key Distribution Center. See KDC

L
label property files, Work process

bootstrapping 411, 412
layered approach, Alfresco platform 9, 10
LDAP

about 147
synchronizing 150

ldap.authentication.allowGuestLogin prop-
erty 153

ldap.authentication.defaultAdministra-
torUserNames property 154

ldap.authentication.java.naming.provider.
url property 154

ldap.authentication.userNameFormat prop-
erty 154

LDAP authentication 148
ldapsearch command 149
LDAP structure

sambaSamAccount, adding to 165, 166
LDAP synchronization 150

LDAPv3 149
Liferay portal 479
Liferay portlet deployment descriptor

creating 495, 496, 504
list method 553
logging object

setting up 76, 77
login method 543
logout method 544, 552
low-level permissions 22
Lucene 24
lucene-indexes directory 48
LUCENE query language 70

M
management dashlets 471-474
mapper class 168
Marketing-Admins group 472
Marketing-All Users 472
marketing production workflow

implementing 427
MarkupBuilder class 546
mashups 479
material production process

designing 378
material production process, designing

about 378
job process Swimlane diagram 378, 379
sign-off process Swimlane diagram 379,

380
studio process Swimlane diagram 380, 381
work process Swimlane diagram 381

MD4
hash 168
message digest 139

MD4 passwords
generating 166

Meetings folder hierarchy 236-239
META-INF directory 108, 114
metadata 233-235
metadata extraction, Alfresco 35
Metadata Extraction API 81-85
Metadata Extractor API 58
metadata extractors, Alfresco

about 35
DWG 36

[573]

HTML 36
MIME Email 36
MSG Email 35
MS Office 35
OpenOffice 36
PDF 35
StarOffice 36

metadata pages
properties, displaying in 330-340

Meta Model XML schema
about 287
model 287, 288
model.aspects 304, 305
model.constraints 292-298
model.data-types 291
model.imports 289
model.namespaces 290
model.types 294

Microsoft Active Directory
about 150
authentication, configuring against 159
synchronization, configuring against 159

Microsoft Visio 370
MIME 18
MIME Email 36
MMT

about 106
functions 106

mobile.war file 528
mobile web application, Alfresco

accessing 528-532
for iPhone 528
installing 528

MobileX application
about 533
architecture 534, 539
document search feature 537, 538
folder and document browsing feature 536,

537
running 559
user authentication feature 535

MobileX web application 533
model

registering, with repository 325
Model-View-Controller. See MVC
model.aspects 304, 305

model.constraints, Meta Model XML
schema

about 292, 298
constraint 292
list 293
name 292, 293
parameter 292
ref 292
type 292
value 293

model.data-types, Meta Model XML schema
about 291
analyser-class 291
data-type 291
description 291
java-class 291
name 291
title 291

model.imports, Meta Model XML schema
about 289
import 289
prefix 289
uri 289

model.namespaces, Meta Model XML
schema

about 290
namespace 290
prefix 290
uri 290

model.types. See types definition
model.types.type.associations. See associa-

tions definition
model.types.type.properties. See properties

definition
model definition

about 287
aspects 288
author 287
constraints 288
data-types 288
description 287
imports 288
name 287
namespaces 288
published 287
types 288
version 288

[574]

modeling
tips 306, 307
tricks 306, 307

modelSchema.xsd file 287
Modified Date

preserving 346, 347
module.properties file 107
module listing 106
Module Management Tool. See MMT
module updates 106
module versioning 106
Mozilla Rhino 24
MS Active Directory See Microsoft Active

Directory
MSG Email 35
MS Office 35
MT feature 23
Multi-Tenant feature. See MT feature
multiple LDAP authentication subsystems

configuring 159, 160
multiple types inheritance, content model

design pattern
about 314
example 315
issues 314
solution 315

Multipurpose Internet Mail Extensions. See
MIME

MVC 555
myCmsService custom beam 60
MyDocSite 44
mysql command-line utility 51
mysql directory 48

N
name property 545
namespace 18
namespace definition. See model.namespac-

es, Meta Model XML schema
Naming Service 180
NBT

about 179
communication services 180, 183
Naming Service 179, 180

NBT Datagram service 185

NBT Session service
about 183
Session close 184
Session establishment 184
steady state 184

NEGOTIATE parameter 198
NetBIOS 179
NetBIOS Node Type 182
NetBIOS Node Types

Broadcast 182
Hybrid 182
Mixed 182
Peer-to-Peer 182

NetBIOS over TCP/IP. See NBT
NetbiosSmb device 186
network.automatic-ntlm-auth.trusted-uris

option 140
new custom type

defining, for domain 308
node, script variables 394
node-leave event handler 457
node associations

about 19
types 19

node events
about 30
beforeCreateNode 30
beforeDeleteNode 30
beforeUpdateNode 30
onCreateNode 30
onDeleteNode 30
onMoveNode 30
onUpdateNode 30
onUpdateProperties 30

node properties 18
node property sheets 19
node references 17, 18
nodes

about 11, 16
associations 19
copying, File Folder service used 69
metadata 16
node reference 17, 18
properties 18
property sheets 19
root node 17

node service 62

[575]

node service events
about 29
aspect 30
association 31, 32
node 30
store 29

NodeServicePolicies class 81
NT LAN Manager. See NLTM
NTLM 139
NTLM authentication

about 139-141
troubleshooting 173

NTLMSSP 141
NTLMv1 141
NTLMv2 141

O
onAddAspect event 30
onAsyncActionExecute event 29
onContentPropertyUpdate event 28
onContentRead event 28
onContentUpdate event 28
onCopyComplete event 29
onCreateNode event 30
onCreateReference event 32
onCreateStore event 29
onCreateVersion event 32
onDeleteNode event 30
onModuleLoad method

implementing 500
onMoveNode event 30
onRemoveAspect event 30
onRemoveReference event 32
On Request Review Output task 372
onRMActionExecution event 32
onUpdateNode event 30
onUpdateProperties event 30
oouser directory 48
OpenLDAP

authentication, configuring against 153
group, synchronizing with 155-158
synchronization, configuring against 153
user, configuring with 155-158
user authentication, configuring 153-155

OpenLDAP subsystem configuration
moving, to its own directory 160

OpenOffice 24, 36
open source projects, Alfresco

about 24
Acegi Security 24
Apache Abdera 24
Apache Axis 24
Apache Chemistry 24
Apache Commons 24
Apache CXF 24
Apache PDFBox 24
Apache POI 24
Chiba 24
EHCache 24
FreeMarker 24
Greenmail 24
Hibernate 24
iBATIS 24
Java Mail 24
JBOSS jBPM 24
JGroups 24
Lucene 24
Mozilla Rhino 24
OpenOffice 24
OpenSymphony Quartz 24
Spring 24

OpenSymphony Quartz 24
OpsMailmanager AMP 42
org.alfresco.model.ContentModel interface

63
org.alfresco.repo.action.AsynchronousAc-

tionExecution QueuePolicies class 29
org.alfresco.repo.admin.patch.AbstractPatch

class 98
org.alfresco.repo.admin.patch.Patch inter-

face 98
org.alfresco.repo.content.ContentService-

Policies class 28
org.alfresco.repo.copy.CopyServicePolicies

class 28
org.alfresco.repo.importer.ImporterBoot-

strap object 98
org.alfresco.repo.node.NodeServicePolicies

class 29
org.alfresco.repo.version.VersionService-

Policies class 32
OTA 534

[576]

outbound variables 432
over-the-air. See OTA
owner authority 23

P
package-alfresco-jar 118
parseAtomFeed method 544-550
passthru authentication

about 141
implementing 142

Patch API 57
patches

about 98
creating 98, 99

patching 41
PATH keyword 71
PDF 35
permission groups 22
Permission Service 73, 74
portal architecture 483
portlet class

creating 491-499
portlet container 480
portlet descriptor 482
portlet implementation 482
portlets

about 480
Alfresco content, fetching 483
lifecycle 480, 481
modes 481
standards 480
window states 481

portlets, modes
about 481
edit 481
help 481
view 481

portlets, window states
about 481
maximized 481
minimized 481
normal 481

portlet standards
JSR168 480
JSR286 480

JSR301 480
JSR329 480

Portlet version 1.0. See JSR168
Portlet version 2.0. See JSR286
post migration processing scripts

about 348
legacy meeting metadata, extracting 350,

352, 353
problems, versioning 349
restrictions, searching 348
unwanted Modified Date updates 349

Presentation Web Scripts 96
Press folder hierarchy 240-242
principal 143
priorityAndWorkerAssigneeHeader 435
priority property 398
processAction method 481
process phase, Swimlane diagram 376
Process State node 429
procId variable 389, 429
Produce or Update Material Brief task 372
project directory structure

_alfresco/config directory 110, 111
_alfresco/source directory 114
_share/config directory 115, 116
about 109

properties
about 285
displaying, in Advanced Search 328, 342,

343
displaying, in content details pages 326,

327
displaying, in metadata pages 330-340

properties, for bmc:job aspect in content-
model.xml file

bmc:campaignId 405
bmc:jobType 405
bmc:product 405

properties, for bmc:job aspect in workflow-
model.xml file

bmw:briefSignOffCategory 406
bmw:conceptWorkDueDate 406
bmw:copywriteWorkDueDate 406
bmw:designWorkDueDate 406
bmw:jobStatus 406
bmw:productionSignOffCategory 406
bmw:workTypes 406

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[577]

properties definition
about 295
constraints 296
default 296
description 295
index 296
mandatory 296
multiple 296
name 295
property 295
protected 296
title 295
type 295

property files for UI labels, Work process
creating 401-403

property sheet definitions 19
property sheets

configuring, for UI display 326
folder link, adding to 476, 477
registering 329

property sheets, sign-off process
about 451-453
bootstrapping 453

property sheets, studio process
about 435-437
bootstrapping 438
configuring 438

property sheets configuration, work process
bootstrapping 411, 412

protocol 15

Q
QName

about 19
examples 20

R
RBAC 231
READ permission group 74
real-time streaming 13
realm 143
RecentlyAddedDocumentsPortlet 495
record management events

about 32
beforeCreateReference 32

beforeRemoveReference 32
beforeRMActionExecution 32
onCreateReference 32
onRemoveReference 32
onRMActionExecution 32

Records Management (RM) 135, 281
release notes template 133, 134
release process

setting up 130-132
release process, setting up

about 130-132
change log, updating 135
release notes template 133, 134
training 135

Remote Directory servers
authentication, setting up 152
synchorization, setting up 152

render method 481
repo 10
repository, Alfresco

about 10
overview 11, 12

Repository API 58 95
Repository extensions 104-107
Representational State Transfer (REST) 94
resource file

registering 329
role-based access control. See RBAC
roles 21, 22
root folder node reference

about 541
fetching, from CMIS service document 541,

542
root node 17
rules wizards

aspects, displaying in 328
types, displaying in 328

runtime executable content transformer 39

S
samba-doc package 165
sambaSamAccount

adding, to LDAP structure 165, 166
Samba server 149
SASL 149

[578]

script element 393
scripts

folders, setting up 251
script tag 390
script variables

executionContext 394
node 394
task 394
taskInstance 394
token 394

SearchController.groovy class 554
Search Service 70-73
SendReworkEmailToApprover node 447

449
service login

performing, via KDC AS 144, 145
Service Principal Name. See SPN
services, Alfresco

about 25
File Folder Service 26
Foundation Services 26

Servlet Filter 140
session service primitives, NetBIOS

about 184
call 184
hang up 184
listen 184
receive 184
send 184
send no ack 184

setDoAuthentication method 547
setupBeforeLoadListener method 501
share-config-custom.xml 117
share.war file 104
Share JAR extension

deploying 122
showLoginPage method 552
Sign-off process

about 379, 380
e-mail template 449, 451
property files, for UI labels 451
task property sheet, bootstrapping 453
task property sheets 451-453
testing 454
workflow content model 448
workflow definition (jPDL) 443-448

Sign-off subprocess
implementing 443

signoff 443
Simple and Protected GSSAPI Negotiation

Mechanism. See SPNEGO
Simple Authentication and Security Layer.

See SASL
single sign-on. See SSO
site-data directory 108
site-webscripts directory 108
Slingshot 108
smartphones 534
SMB (Server Message Block) protocol 177
SMB2 190
SMB transport protocols

identifying 186
smoke test 131
Solid-State Drives (SSD) 13
source code, Alfresco

downloading 50
source definition

about 299
mandatory 299
many 299
role 299

SpacesStore 15
space templates

setting up 269, 270
SPN 146
SPNEGO 141, 144
Spring 24
Spring Dispatcher Servlet 108
Spring Surf 107
SQuirreL SQL Client 51
SSO

about 137, 139
using 172

Standalone clients 104
standard development environment

creating, reasons 103
standard portlet deployment descriptor

creating 494, 495, 503
StarOffice 36
start-state node 390 429
StartConceptWork node 431
startDate property 398

[579]

status property 398
store events

about 29
beforeCreateStore 29
onCreateStore 29

store reference
about 15
identifier 15
list 15, 16
protocol 15

store root 17
stores, Alfresco

about 12
Archive Store 12
AVM Store 14
Content Store 12
System Store 12
Version Store 12
Working Store 12

studio 428
Studio process

about 380, 381
property files, for UI labels 435
property sheets, configuring 438
task property sheets 435-437
task property sheets, bootstrapping 438
testing 439-443
workflow content model 434
workflow definition (jPDL) 428-433

Studio subprocess
implementing 428

Studio Team Manager 428
studioTeamManagers swimlane 388
subfolders, Data Dictionary top folder

about 226
Email Actions 226
Email Templates 226
Imap Configs 226
Messages 226
Models 226
Presentation Templates 226
Records Management 226
Rendering Actions Space 226
RSS Templates 226
Saved Searches 227
Scripts 227

Space Templates 227
Transfers 227
Web Client Extension 227
Web Forms 227
Web Scripts 227
Web Scripts Extensions 227
Workflow Definitions 227

subprocesses, Swimlane diagram
about 373
advantages 374

subsytems, Alfresco
about 40
characteristics 40
examples 40

super states 455
Swimlane diagram

about 370, 385, 428
better version 373
business processes, designing with 370, 372
features 370, 372
process phase 376
subprocesses 373, 375
task metadata 375, 376
task naming convention 377

swimlanes
about 388
jobOwner 388
studioTeamManagers 388
worker 388

synchronization
configuring, against Microsoft Active Direc-

tory 159
configuring, against OpenLDAP 153
configuring, with Active Directory 161, 162
setting up, with Remote Directory servers

152
synchronization.autoCreatePeopleOnLogin

property 159
synchronization.import.cron property 158
synchronization.synchronizeChangesOnly

property 158
synchronization.syncOnStartup property

159
synchronization.syncWhenMissingPeopleL-

ogIn property 158
sys:aspect_root 17
System Store 12

[580]

T
target definition

about 300
class 300
mandatory 300
many 300
role 300

task, script variables 394
task-create event 444 404
task-node element 391
TaskAssignmentNotificationActionHandler

470
task due date, Work process

setting 404, 405
taskInstance, script variables 394
taskInstance variable 405
taskkill command 128
task metadata, Swimlane diagram 375, 376
task naming convention, Swimlane diagram

377
Task nodes 428
task property sheets, Work process

creating 406-410
task summary list

exporting, in Excel spreadsheet 475, 476
TCP/IP 185
template

dealing, with Best Money client 134
Tenant Administration Console 23
terms, Kerberos installation

about 143
GSS-API 144
GSS-SPNEGO 144
principal 143
realm 143
ticket 144

TGS 143
TGT 145
third-party extensions, Alfresco

about 42
Alfresco Bulk Filesystem Import 42
Enterprise Reporting AMP 42
OpsMailmanager AMP 42
Thumbnails AMP 42

Thumbnails AMP 42

ticket 144
Ticket Granting Server. See TGS
Ticket Granting Ticket. See TGT
token 418
token, script variables 394
tomcat directory

about 49
structure 49

tool import
about 355, 356
advantages 356
disadvantages 357

training
about 135
steps 135

TRANSACTION_COMMIT 33
transaction management, Java Foundation

Services API 59-62
transient properties 334
troubleshooting, Alfresco CIFS

about 215
general tips 215, 216

troubleshooting strategies, Alfresco CIFS
about 217
CIFS server NetBIOS name, verifying 219
Citrix XenApp virtualization environment,

checking 220
debug logging, enabling 217
NetBIOS name registration, verifying 218
ports, checking from client 218
ports, checking from server 217

types
about 285
displaying 341, 342
displaying, in add content wizards 327
displaying, in create content wizards 327
displaying, in rules wizards 328
uses 309

types definition
about 294
archive 294
associations 295
description 294
mandatory-aspects 295
name 294
overrides 295

[581]

parent 294
properties 295
title 294
type 294

U
UI controllers

implementing 551-554
UI display

property sheets, configuring for 326
UI framework 485
UI Labels

localizing 327
unit testing 131
Universally Unique Identifier. See UUID
unused inbound variables 432
URL Rewriter Filter 108
user

authenticating, with Alfresco 543, 544
configuring, with OpenLDAP 155-158
folder hierarchies, copying between 281

user authentication
configuring, with OpenLDAP 153-155

user authentication feature
for MobileX application 535

User Interface customizations 104
user interfaces clients, Alfresco

about 43
Alfresco CIFS 45
Alfresco Explorer 43
Alfresco Mobile 45
Alfresco Share 43
Alfresco SharePoint 43, 44

user login
performing, via KDC AS 144, 145

UUID 18

V
ValidateWork task 386
variable element 393
version history 12
version service events

about 32
afterCreateVersion 32

beforeCreateVersion 32
calculateVersionLabel 32
onCreateVersion 32

Version Store 12

W
W01_ProduceWork task 399, 404
W03_ValidateWork task node 392
W04_AmendWork task 399
WAP 534
WCM development receiver 40
Web-based Distributed Authoring and Ver-

sioning. See WebDAV
web-extension directory

configuration files 117
web-framework-config-custom.xml 117
web application archive (WAR) 59
webapps directory 50
WebDAV 177
WebDAV clients

about 212
BitKinex 212
WebDrive 213

WebDAV Mini Redirector
about 214
limitations 214

WebDrive 213
Web Folders

about 214
using, for connecting to Alfresco 214

webscript-framework-config-custom.xml
117

Web Scripts
about 95
types 96

Web Service API 58
WiFi Protected Setup. See WPS
Windows built-in WebDAV clients

about 214
WebDAV Mini Redirector (XP, Vista, and

Win7) 214
Web Folders (XP only) 214

WINS 180
Wireless Application Protocol. See WAP

[582]

Wireless Markup Language. See WML
WML 534
workApprovedByJobOwner, Boolean vari-

ables 393
workApprovedByTeamMgr, Boolean vari-

ables 393
worker swimlane 388, 399
Workflow Content Model 387
workflow content model 394-401
workflow content model, job process 467
workflow content model, sign-off process

448
workflow content model, studio process 434
workflow definition 418
workflow definition (jPDL), job process

455-466
workflow definition (jPDL), sign-off process

443-448
workflow definition (jPDL), studio process

428-433
workflow definition, Work process

defining 386-394
workflow instance 418
workflow solution

extending 469
workflow solution, extending

about 469
customized task dashlets 471
e-mail notification, adding 470
management dashlets 471-474
task summary list, exporting in Excel 475,

476

Working Store
about 12
versus AVM Store 15

work process 381, 429
workspace element 541
Work subprocess

about 385
dynamic descriptions, using 404, 405
job data, defining 405, 406
property files for UI labels 401-403
property sheets configuration, bootstrap-

ping 411, 412
running, from Alfresco Share UI 418-425
task due date, setting 404, 405
task property sheets, creating 406-410
testing 412-418
UI property files, bootstrapping 411, 412
workflow content model 394-401
workflow definition 386-394

WPS 535
WRITE permission group 74

X
XForms engine 330
XmlSlurper 544
XPATH query feature 70

Thank you for buying
Alfresco 3 Business Solutions

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Alfresco 3 Enterprise Content
Management Implementation
ISBN: 978-1-847197-36-8 Paperback: 600 pages

How to customize, use, and administer this powerful,
Open Source Java-based Enterprise CMS

1. Manage your business documents with version
control, library services, content organization,
and advanced search

2. Create collaborative web sites using document
libraries, wikis, blogs, forums, calendars,
discussions, and social tagging

3. Integrate with external applications such as
Liferay Portal, Adobe Flex, iPhone, iGoogle,
and Facebook

Alfresco 3 Web Services
ISBN: 978-1-849511-52-0 Paperback: 436 pages

Build Alfresco applications using Web Services,
WebScripts and CMIS

1. Gain a comprehensive overview of the
specifications of Web services

2. Implement the Alfresco specific Web Services

3. Get to grips with the Alfresco WebScripts and
the Alfresco extensible RESTful API

4. Manipulate contents in Alfresco using different
operations and APIs

5. Learn about the CMIS specification and its
Alfresco implementation

Please check www.PacktPub.com for information on our titles

Alfresco 3 Web Content
Management
ISBN: 978-1-847198-00-6 Paperback: 440 pages

Create an infrastructure to manage all your web
content, and deploy it to various external production
systems

1. A complete guide to Web Content Creation and
Distribution

2. Understand the concepts and advantages of
Publishing-style Web CMS

3. Leverage a single installation to manage
multiple websites

4. Integrate Alfresco web applications with
external systems

Alfresco Developer Guide
ISBN: 978-1-847193-11-7 Paperback: 556 pages

Customizing Alfresco with actions, web scripts, web
forms, workflows, and more

1. Learn to customize the entire Alfresco platform,
including both Document Management and
Web Content Management

2. Jam-packed with real-world, step-by-step
examples to jump start your development

3. Content modeling, custom actions, Java API,
RESTful web scripts, advanced workflow

4. This book covers Alfresco Enterprise Edition
version 2.2

Please check www.PacktPub.com for information on our titles

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Alfresco 3 Records Management
ISBN: 978-1-849514-36-1 Paperback: 488 pages

Comply with regulations and secure your
organization’s records with Alfresco Records
Management

1. Successfully implement your records program
using Alfresco Records Management, fully
certified for DoD-5015.2 compliance

2. The first and only book to focus exclusively on
Alfresco Records Management

3. Step-by-step instructions describe how
to identify records, organize records, and
manage records to comply with regulatory
requirements

Alfresco Enterprise Content
Management Implementation
ISBN: 978-1-904811-11-4 Paperback: 356 pages

How to Install, use, and customize this powerful, free,
Open Source Java-based Enterprise CMS

1. Manage your business documents: version
control, library services, content organization,
and search

2. Workflows and business rules: move and
manipulate content automatically when
events occur

3. Maintain, extend, and customize Alfresco:
backups and other admin tasks, customizing
and extending the content model, creating your
own look and feel

Please check www.PacktPub.com for information on our titles

Liferay Portal 6 Enterprise
Intranets
ISBN: 978-1-849510-38-7 Paperback: 692 pages

Build and maintain impressive corporate intranets
with Liferay

1. Develop a professional Intranet using Liferay's
practical functionality, usability, and technical
innovation

2. Enhance your Intranet using your innovation
and Liferay Portal's out-of-the-box portlets

3. Maximize your existing and future IT
investments by optimizing your usage of
Liferay Portal

Liferay Portal 5.2 Systems
Development
ISBN: 978-1-847194-70-1 Paperback: 552 pages

Liferay Portal 5.2 Systems Development

1. Learn to use Liferay tools to create your own
applications as a Java developer, with hands-on
examples

2. Customize Liferay portal using the JSR-286
portlet, extension environment, and Struts
framework

3. Build your own Social Office with portlets,
hooks, and themes and manage your own
community

4. The only Liferay book aimed at Java developers

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Alfresco Platform
	Platform overview
	Repository concepts and definitions
	Repository
	Stores
	The Content Store
	The AVM Store
	Store reference

	Nodes
	Root node
	Node reference
	Node properties
	Node property sheets
	Node associations
	QName

	Permissions
	User groups
	Roles
	Permission groups
	Owner authority
	Permission example

	Multi-Tenant

	Core platform
	Open source libraries
	Services and components
	Content rules
	Event model
	Metadata extraction
	Content transformation
	Alfresco Management Beans (JMX)

	Application Programming Interfaces (APIs)
	Subsystems
	Bootstrap
	Patches
	Importers

	Extension modules
	Third-party extension modules
	User interface clients
	Alfresco Explorer
	Alfresco Share
	Alfresco SharePoint
	Alfresco Mobile
	Alfresco CIFS

	The Alfresco installation directory structure
	The alf_data directory
	The contentstore directory
	The contentstore.deleted directory
	The audit.contentstore directory
	The lucene-indexes and backup-lucene-indexes directories
	The mysql directory
	The oouser directory

	The amps directories
	The tomcat directory

	Getting the Alfresco source code
	The Alfresco database
	DB schema
	Significant tables
	ALF_NODE
	ALF_NODE_PROPERTIES
	ALF_NODE_ASPECTS
	ALF_QNAME
	ALF_APPLIED_PATCH

	Example queries and update statements
	Querying for number of nodes of a certain type
	Querying for number of nodes stored in a particular month
	Running a patch again

	Summary

	Chapter 2: The Alfresco APIs
	Application Programming Interfaces (APIs)
	In-process APIs
	The Java Foundation Services API
	Event management API
	Metadata Extraction API
	Content Transformation API
	The JavaScript API

	Client-server APIs
	CMIS API
	Repository API
	Custom APIs

	Bootstrap APIs
	Patches
	Importers

	Summary

	Chapter 3: Setting Up a Development Environment and a Release Process
	Setting up a development environment
	Alfresco Extension projects
	Alfresco Explorer and repository extensions
	Alfresco Share UI extensions

	Project directory structure
	_alfresco/config
	_alfresco/source
	_share/config

	Building and deploying
	The Build file
	Using the build file to deploy extensions
	Debugging extensions

	Setting up a continuous integration solution
	Setting up a release process
	Release notes template
	Updating Change Log
	Training

	Summary

	Chapter 4: Authentication and Synchronization Solutions
	Authentication and synchronization concepts
	Basic authentication
	NTLM authentication
	Alfresco CIFS and NTLM authentication
	Alfresco NTLM passthru authentication

	Kerberos authentication
	User and service login via KDC AS
	Accessing Alfresco via KDC TGS

	LDAP authentication
	Checking what SASL mechanisms the LDAP server supports

	LDAP synchronization
	Alfresco authentication and synchronization subsystems
	Alfresco authentication and application zones

	Setting up authentication and synchronization with Remote Directory servers
	Configuring authentication and synchronization against OpenLDAP
	Configuring user authentication with OpenLDAP
	Configuring user and group synchronizing with OpenLDAP

	Configuring authentication and synchronization against Microsoft Active Directory
	Configuring multiple LDAP authentication subsystems
	Moving OpenLDAP subsystem configuration to its own directory
	Configuring authentication and synchronization with Active Directory
	Customizing group imports

	Accessing via the CIFS interface
	Implementing a custom authenticator for CIFS authentication against an LDAP server

	Making authentication more secure and using SSO
	Troubleshooting NTLM authentication and SSO

	Using directory servers in a Development Environment
	Summary

	Chapter 5: File System Access Solutions
	File access concepts
	CIFS protocol overview
	CIFS Transport—NetBIOS over TCP/IP (NBT)
	Naming service
	Communication services

	CIFS transport—TCP/IP (Native SMB)
	CIFS dialect negotiation
	CIFS authentication and security
	Next generation CIFS—SMB2

	Alfresco CIFS server
	Alfresco CIFS server on Windows
	Alfresco CIFS server on Linux

	Alfresco CIFS server configuration
	Alfresco file server subsystem
	Windows Vista server, Windows 7, and XP clients configuration
	Windows 2003 Server and Windows 7 client configuration
	Windows 2008 Server, Active Directory, and Windows 7 client configuration
	Linux server and Windows 7 client configuration

	Alfresco WebDAV
	WebDAV clients
	Windows built-in WebDAV clients
	Web Folders (XP only)
	WebDAV Mini Redirector (XP, Vista, and Win7)

	Troubleshooting Alfresco CIFS
	General
	Nothing happens in Alfresco when trying to login via CIFS
	Server says NTLMv2 is not valid for authentication
	SMBException: invalid parameter and access denied
	NetBIOS DLL is not accessible
	Turning on debug logging for SMB
	Checking ports from server
	Checking ports from client
	Checking that CIFS server NetBIOS name is ok
	Checking that CIFS server NetBIOS name is resolvable from client
	Does any debug logging show up during connection attempts?
	Does the client use the correct authentication method?
	Are you running in a Citrix environment?

	Summary

	Chapter 6: Document and Records Management Solutions
	Out of the box folder hierarchy
	The Data Dictionary top folder

	Designing document management solutions
	Document Folder Template
	Folder name
	Folder title
	Folder permissions
	Rules
	Metadata
	Document versioning
	Processes

	Designing the Best Money document management solution
	Meetings and Press folder hierarchy
	The Meetings folder hierarchy
	The Press folder hierarchy

	Meeting folder/space hierarchy template

	Implementing the Best Money document management solutions
	Setting up users and groups
	Using a script to set up users and groups

	Setting up the folder hierarchy
	Using CIFS to set up folders
	Using the Alfresco user interfaces to set up folders
	Using scripts to set up folders
	Setting up folder permissions
	Setting up business rules for folders

	Setting up space templates
	Configuring details list view for folder and file display
	Configuring Google-Like search
	Setting up document review periods
	Adding the reviewable aspect
	Setting a review period for a folder
	Creating script to check folder review periods
	Setting up a scheduler that runs review folder content script

	Exporting and importing folders, users, and groups
	Copying folder hierarchies between Alfresco boxes
	Copying users and groups between Alfresco boxes

	Introduction to Records Management
	Alfresco records management

	Summary

	Chapter 7: Content Model Definition Solutions
	Meta Model XML schema
	model
	model.imports
	model.namespaces
	model.data-types
	model.constraints
	model.types
	model.types.type.properties
	model.types.type.associations
	Type definition examples

	model.aspects

	Modeling tips and tricks
	Not changing the out-of-the-box models
	Starting small
	Performance
	Manageability
	Changeability

	Defining a new custom type for a domain
	When to use a type and when to use an aspect

	Design patterns
	Domain document root type
	Problem
	Solution
	Diagram
	Definition example

	Composite type
	Problem
	Solution
	Definition example

	Multiple types inheritance
	Problem
	Solution
	Definition example

	Configuration object
	Problem
	Solution
	Definition example
	Code example

	Defining a new custom content model
	The model definition
	Registering the model with the repository
	Configuring property sheets for UI display
	Alfresco Explorer
	Alfresco share

	Summary

	Chapter 8: Document Migration Solutions
	Document migration strategies
	General migration strategies
	Document staging area
	Preserving Modified Date on imported documents
	Post migration processing scripts

	Importing documents via CIFS
	Pros and cons with CIFS import

	Importing documents via external tool
	Pros and cons with tool import

	Importing documents via ACP file
	Common steps during document migration

	Planning document migration
	Implementing document migration
	Using Alfresco bulk filesystem import tool
	Running Alfresco bulk import tool
	Running Alfresco bulk import tool and applying extra metadata

	Using an ACP Generator tool

	Summary

	Chapter 9: Business Process Design Solutions
	Designing business processes with Swimlane diagrams
	Introduction to Swimlane diagrams
	Subprocesses
	Task metadata
	Process phases
	Task naming convention

	Designing the material production process
	Job process Swimlane diagram
	Sign-off process Swimlane diagram
	Studio process Swimlane diagram
	Work process Swimlane diagram

	Summary

	Chapter 10: Business Process Implementation Solutions: Part 1
	Implementing the marketing production workflow
	Implementing the Work subprocess
	Work process—workflow definition (jPDL)
	Work process—workflow content model
	Work process—property files for UI labels
	Work process—using dynamic descriptions and setting task due date
	Work process—defining the job data
	Work process—task property sheets
	Work process—bootstrapping UI property files and property sheets configuration
	Work process—testing it
	Running the work process from the Alfresco Share UI

	Summary

	Chapter 11: Business Process Implementation Solutions—Part 2
	Completing the implementation of the marketing production workflow
	Implementing the Studio subprocess
	Studio process—workflow definition (jPDL)
	Studio process—workflow content model
	Studio process—property files for UI labels
	Studio process—task property sheets
	Studio process—bootstrapping UI property files and property sheets configuration
	Studio process—testing it

	Implementing the Sign-off subprocess
	Sign-off process—workflow definition (jPDL)
	Sign-off process—workflow content model
	Sign-off process—create and bootstrap the e-mail template
	Sign-off process—property files for UI labels
	Sign-off process—task property sheets
	Sign-off—bootstrapping UI property files and property sheets configuration
	Sign-off process—testing it

	Implementing the Job process
	Job process—workflow definition (jPDL)
	Job process—workflow content model
	Job process—property file, property sheets, and bootstrapping
	Job process—testing it

	Extending the workflow solution
	Adding e-mail notification
	Using customized task dashlets
	Management dashlets
	All assigned tasks for all jobs dashlet
	All job workflows dashlet

	Exporting the task summary list in an Excel spreadsheet
	Material folder link

	Summary

	Chapter 12: Enterprise Application Integration(EAI) Solutions
	Introducing portlets
	Portlet standards
	Portlet lifecycle
	Portlet modes and window states
	Portlet implementation and deployment

	Implementing portlets that display Alfresco content
	Portal architecture
	Alfresco portlet implementation approaches
	Implementing the "recently added documents" portlet
	Implementing the "recently added documents" web script
	Implementing a Java-based "recently added documents" portlet
	Implementing a GWT/GXT-based "recently added documents" portlet

	Summary

	Chapter 13: Types of E-mail Integration Solutions
	E-mail integration solutions
	E-mail client talking directly to Alfresco via the IMAP protocol
	E-mail client talking to Alfresco through custom built plugin and Web Scripts
	E-mail server talking to Alfresco through custom module and Web Scripts

	Implementing e-mail management solutions
	Implementing e-mail management solutions with Alfresco IMAP
	Configure Alfresco to enable the IMAP server
	Setting up an IMAP account in Outlook 2007
	Drag-and-drop e-mail into Alfresco folder in Outlook 2007
	Viewing the e-mail from Alfresco Explorer
	E-mail attachment extraction
	Viewing document metadata from the e-mail client
	Dragging-and-dropping e-mails into Alfresco Share site
	How to use Mount Points

	Summary

	Chapter 14: Mobile Phone Access Solutions
	Alfresco mobile web application for iPhone
	Installing the Alfresco mobile web application
	Accessing the Alfresco mobile web application

	A custom mobile application solution for smartphones
	Mobile application architecture overview
	Mobile application feature overview
	User authentication
	Folder and document browsing
	Document search

	Setting up the mobile Grails application
	Configuring the mobile Grails application
	Implementing the CMIS service
	Fetching the folder root node reference from the CMIS service document
	Authenticating the user with Alfresco
	Fetching child content for a folder via CMIS
	Searching the Alfresco repository via CMIS
	Implementing the helper methods for the CMIS service

	Implementing UI controllers
	Implementing the Groovy Server Pages (GSP)
	Implementing an authentication filter
	Running the mobile application

	Content creation with MobileX
	Using the Apache chemistry API
	Summary

	Index

