
www.allitebooks.com

http://www.allitebooks.org

Amazon EC2
Cookbook

Over 40 hands-on recipes to develop and deploy
real-world applications using Amazon EC2

Sekhar Reddy
Aurobindo Sarkar

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Amazon EC2 Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1241115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-004-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Sekhar Reddy

Aurobindo Sarkar

Reviewer
Mark Takacs

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Larissa Pinto

Content Development Editor
Athira Laji

Technical Editor
Prajakta Mhatre

Copy Editor
Charlotte Carneiro

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Sekhar Reddy is a technology generalist. He has deep expertise in Windows, Unix, Linux OS,
and programming languages, such as Java, C# , and Python.

Sekhar possesses 8 years of experience in designing large-scale systems/pipelines using
REST, cloud technologies, NoSQL, relational databases, and big data technologies.

He enjoys new ways of solving difficult problems and brings the same kind of enthusiasm
to design and code. He loves implementing innovative ideas, working on exciting products,
and writing efficient code.

His current interests include IoT platforms, distributed systems, cloud computing, big data
technologies, and web-scale applications.

Sekhar is working with a high-end technology consulting company, Mactores Innovations,
as a senior research engineer, and has a MS in computer science from Kakatiya University.

Aurobindo Sarkar is actively working with several start-ups in the role of CTO/technical
director. With a career spanning more than 22 years, he has consulted at some of the leading
organizations in the US, the UK, and Canada. He specializes in software-as-a-service product
development, cloud computing, big data analytics, and machine learning. His domain expertise
is in financial services, media, public sector, mobile gaming, and automotive sectors. Aurobindo
has been actively working with technology startups for over 5 years now. As a member of the
top leadership team at various startups, he has mentored several founders and CxOs, provided
technology advisory services, developed cloud strategy, product roadmaps, and set up large
engineering teams. Aurobindo has an MS (computer science) from New York University, M.Tech
(management) from Indian Institute of Science, and B.Tech (engineering) from IIT Delhi.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Mark Takacs got his first job in the early 90s as the only applicant with HTML experience.
Since then, his road to DevOps has spanned the traditional MVC software development
on LAMP and Java, the front-end web development in JavaScript, HTML, CSS, network
administration, build and release engineering, production operations, and a large helping
of system administration throughout. Mark currently lives and works in Silicon Valley.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

i

Table of Contents
Preface iii
Chapter 1: Selecting and Configuring Amazon EC2 Instances 1

Introduction 2
Choosing the right AWS EC2 instance types 2
Preparing AWS CLI tools 6
Launching EC2 instances using EC2-Classic and EC2-VPC 9
Allocating Elastic IP addresses 12
Creating an instance with multiple NIC cards and a static
private IP address 13
Selecting the right storage for your EC2 instance 16
Creating tags for consistency 18
Configuring security groups 19
Creating an EC2 key pair 23
Grouping EC2 instances using placement groups 24
Configuring Elastic Load Balancing 26
Architecting for high availability 29
Creating instances for AWS Marketplace 34

Chapter 2: Configuring and Securing a Virtual Private Cloud 37
Introduction 37
Creating and configuring VPC 38
Configuring VPC DHCP options 47
Configuring networking connections between two VPCs (VPC peering) 48
Connecting on-premise network to VPC using VPN 49

Chapter 3: Managing AWS Resources Using AWS CloudFormation 53
Introduction 53
Creating CloudFormation templates 54
Creating CloudFormation templates from existing AWS resources 61

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Deploying applications on EC2 instances 62
Updating a stack 68

Chapter 4: Securing Access to Amazon EC2 Instances 71
Introduction 71
Creating IAM users 72
Creating IAM groups and assigning group-level permissions 74
Creating IAM roles 76
Connecting on-premise AD to AWS IAM 79
Configuring AWS multifactor authentication 86

Chapter 5: Monitoring Amazon EC2 Instances 89
Introduction 89
Collecting EC2 metrics using AWS CloudWatch 90
Collecting custom metrics from EC2 instances 92
Monitoring costs using CloudWatch 97
Sending an e-mail based on a CloudWatch alarm 100
Using CloudWatch Logs 102

Chapter 6: Using AWS Data Services 107
Introduction 107
Using Amazon SimpleDB services from a Java program 108
Using Amazon DynamoDB 113
Using Amazon ElastiCache 120
Using Amazon RDS 125

Chapter 7: Accessing Other AWS Services 129
Introduction 129
Configuring Route 53 130
Accessing AWS S3 from applications 135
Accessing AWS SES from applications 140
Accessing AWS SNS from applications 143
Accessing AWS SQS from applications 148

Chapter 8: Deploying AWS Applications 155
Introduction 155
Using Docker containers for AWS deployments 156
Using Chef for AWS deployments 159
Using Puppet for AWS deployments 165

Index 171

www.allitebooks.com

http://www.allitebooks.org

iii

Preface
With the increasing interest in leveraging cloud infrastructure around the world, AWS Cloud
from Amazon offers a cutting-edge platform to architecture, build, and deploy web-scale cloud
applications. The variety of services and features available from AWS can reduce the overall
infrastructure costs and accelerate the development process for both large enterprises and
startups alike. In such an environment, it is imperative for developers to be able to set up the
required infrastructure and effectively use various cloud services provided by AWS. In addition,
they also should be able to effectively secure access to their production environments and
deploy and monitor their applications.

Amazon EC2 Cookbook will serve as a handy reference to developers building production
applications or cloud-based products. It will be a trusted desktop reference book that you
reach out to first, or refer to often, to find solutions to specific AWS development-related
requirements and issues. If you have a specific task to be completed, then we expect you to
jump straight to the appropriate recipe in the book. By working through the steps in a specific
recipe, you can quickly accomplish the typical tasks and issues related to the infrastructure,
development, and deployment of an enterprise-grade AWS Cloud application.

What this book covers
Chapter 1, Selecting and Configuring Amazon EC2 Instances, provides recipes to choose and
configure the right EC2 instances to meet your application-specific requirements.

Chapter 2, Configuring and Securing a Virtual Private Cloud, contains networking-related recipes
to configure and secure a virtual private cloud (VPC).

Chapter 3, Managing AWS Resources Using AWS CloudFormation, provides recipes to create
and manage related AWS resources in an orderly manner.

Chapter 4, Securing Access to Amazon EC2 Instances, deals with recipes for using the
AWS Identity and Access Management (IAM) service to secure access to your Amazon
EC2 instances.

www.allitebooks.com

http://www.allitebooks.org

Preface

iv

Chapter 5, Monitoring Amazon EC2 Instances, contains recipes for monitoring your EC2
instances using AWS CloudWatch. It will also cover a related topic—autoscaling.

Chapter 6, Using AWS Data Services, contains recipes for using various AWS relational and
NoSQL data services in AWS applications.

Chapter 7, Accessing Other AWS Services, contains recipes for accessing key AWS services
(other than AWS data services). These services include Route 53, Amazon S3, AWS SES,
AWS SNS, and AWS SQS.

Chapter 8, Deploying AWS Applications, talks about the recipes for AWS application
deployments using Docker containers, Chef cookbooks, and Puppet recipes.

What you need for this book
You will need a standard development machine and an Amazon account to execute the
recipes in this book.

Who this book is for
This book is targeted at advanced programmers, who have prior exposure to AWS concepts
and features. The reader is likely to have built small applications and/or created some
proof-of-concept applications. We are targeting developers tasked with building more
complex applications or cloud-based products in startup or enterprise settings.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

Preface

v

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"If Python is already installed on your machine, then skip to the pip installation step."

A block of code is set as follows:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.9.28.1</version>
</dependency>

Any command-line input or output is written as follows:

$ aws ec2 authorize-security-group-ingress

--group-id sg-f332ea96

--protocol tcp

--port 11211

--cidr 0.0.0.0/0

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Choose Columns for
more details."

Preface

vi

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata

Preface

vii

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Selecting and

Configuring Amazon
EC2 Instances

In this chapter, we will cover recipes for:

 f Choosing the right AWS EC2 instance types

 f Preparing AWS CLI tools

 f Launching EC2 instances using EC2-Classic and EC2-VPC

 f Allocating Elastic IP addresses

 f Creating an instance with multiple NIC cards and a static private IP address

 f Selecting the right storage for your EC2 instance

 f Creating tags for consistency

 f Configuring security groups

 f Creating an EC2 key pair

 f Grouping EC2 instances using placement groups

 f Configuring Elastic Load Balancing

 f Architecting for high availability

 f Creating instances for AWS Marketplace

Selecting and Configuring Amazon EC2 Instances

2

Introduction
You need to ask yourself several questions in order to choose the right AWS EC2 instance for
meeting your requirements. These include: What is the primary purpose of the EC2 instance
being provisioned? What is the duration of your need for a particular machine? Do you need
high performance storage? Should you go for dedicated or shared tenancy? Will the machine
be used for compute-intensive or memory-intensive processing? What are the scalability,
availability, and security requirements? What are your networking requirements? There are
several options available for each of these parameters, and we will describe them in our recipes
for making the right choices. For low latency, you can host your application in the AWS region
nearest to the end user. Each AWS region is a separate geographic area, and has multiple
isolated locations called availability zones. These availability zones are individual data centers in
each region. They are used to deploy fault-tolerant and highly available applications. The latency
between these availability zones is very low. If something goes wrong in an availability zone, then
it does not affect the systems in another availability zone.

Choosing the right AWS EC2 instance types
An EC2 instance is a virtual machine hosted on the AWS Cloud. As an instance creator, you
have root privileges on any instances you started. An EC2 instance can be used to host one or
more of web servers, application servers, database servers, or backend processes/services
requiring heavy compute or graphics processing. Depending on your application architecture,
you can choose to host various components distributed across multiple EC2 instances.

AWS offers different types of storage attachments viz. SSD and magnetic. If you require higher
storage performance, then ensure that the EC2 instance type you choose supports SSD.

There are three distinct purchasing options available for provisioning the AWS EC2 instances:

 f On-demand instances: These instances are billed on an hourly basis and no upfront
payments are required. Applications with unpredictable workloads or short-duration
requirements are best handled using on-demand instances. This is the default
purchasing option in AWS.

 f Spot instances: There are no upfront costs for provisioning spot instances, and
the costs are typically much lower than the on-demand instances. The provisioning
is done through a bidding process. If you lose the bid, you will not get the EC2
instances. Usually, applications that are viable only at very low compute prices
are a good use case for using spot instances.

 f Reserved instances: These instances can be 50–60% cheaper than on-demand
instances. This option is available for 1 and 3 year plans. Applications with predictable
workloads that require compute instances for longer durations are a good fit for using
reserved instances.

Chapter 1

3

There are several AWS EC2 instance families available for different types of application
workloads. These include general purpose, memory optimized, compute optimized, storage
optimized, and GPU instances. Choosing the right instance type is a key decision in provisioning
EC2 instances.

Refer to http://aws.amazon.com/ec2/instance-types/ for
descriptions and typical use cases for each of these EC2 instance types.

We recommend that you start with a minimum required instance type that meets your
requirements. In many cases, choosing a general-purpose EC2 instance is a good starting
point. You can then load test your application on this instance for overall performance and
stability. If your applications are not meeting your performance objectives on the current
instance type, you can easily upgrade the size or choose a more specialized instance type,
though this process does require a reboot of your instance. This approach can help you
optimize your instance sizes and types.

To achieve high performance or meet compliance requirements or to just avoid noisy
neighbors, the type of tenancy chosen is a critical decision. On AWS, there are two types
of tenancy, dedicated and shared. In the case of dedicated tenancy, AWS provisions your
instance on dedicated hardware. These instances are isolated from instances created using
the shared tenancy option and instances created by other tenants. Tenancy can be configured
at the instance level or at the VPC level. Once the option is selected, changing the tenancy
type (instance or VPC level) is not allowed. There are cost implications of using dedicated
tenancy versus shared tenancy.

In addition, if we want to set the Provisioned IOPS parameter, then we have to use the EBS-
optimized instance types. Amazon EBS-optimized instances deliver dedicated throughput
to Amazon EBS, with options ranging between 500 Mbps and 2,000 Mbps (depending on
the instance type selected). EBS-optimized flag provides dedicated and more consistent link
between EC2 and EBS. EBS optimized EC2 instances also allocate dedicated bandwidth to
its attached volumes.

How to do it…
In this recipe, we will create and launch an EC2 instance.

1. After you log in to the AWS console, choose Services, and then select EC2 from the
list of AWS services. At this stage, the EC2 Dashboard will appear, then perform the
following operations:

1. Press the Launch Instance button.

http://aws.amazon.com/ec2/instance-types/

Selecting and Configuring Amazon EC2 Instances

4

2. AWS supports two types of virtualization paravirtual (PV) and hardware
virtual machine (HVM). For Windows-based instances, HVM is the only
option available to you. For Linux-based instances, you can use either
PV or HVM. The I/O drivers, which help PV to get rid of the network and
hardware emulation, are now available on HVM. Hence, HVM can give
better performance than PV. Choose an AMI from the list according to
your requirement.

3. Filter instance type:

2. Choose Columns for more details:

Chapter 1

5

3. Choose EBS-Optimized Available instance type in the Choose an Instance Type
wizard to avail this performance benefit:

In EBS-backed instances, the root device for an instance launched using
an AMI is an Amazon EBS volume created from an Amazon EBS snapshot.
If we use an EBS-backed instance type, then we may or may not choose to
use the instance's storage devices. We can also change the instance size,
subsequently, or stop the instances to stop billing.
In case, we choose to use the instance's storage, any data stored on it
will be lost after a restart of the instance. The root device for an instance
launched from the AMI is an instance store volume created from a template
stored in Amazon S3. We can't stop these instances—we can only terminate
them. In addition, we can't change the size of instance, once created.

www.allitebooks.com

http://www.allitebooks.org

Selecting and Configuring Amazon EC2 Instances

6

4. Next, we configure the VPC, subnet, and tenancy details for the instance:

5. If you don't want to customize any further then review and launch the instance.

Preparing AWS CLI tools
AWS CLI is a set of unified command-line tools to work with multiple AWS services. Using AWS
CLI tools you can manage EC2 resources (such as instances, security groups, and volumes)
and your VPC resources (such as VPCs, subnets, route tables, and Internet gateways).

How to do it…
In the following two sections, we list the set of instructions required to accomplish this on
Linux and Windows/Mac platforms.

Getting access key ID and secret access key
You need AWS access key ID and AWS secret access key to access AWS services. Instead of
generating these credentials from the root account, it's always best practice to use IAM users.
You should save these credentials in a secure location. If you lose these keys, you must delete
the access key and then create a new key.

Chapter 1

7

You can get the AWS credentials from AWS management portal by following these steps:

1. Log in to the AWS management portal using your AWS username and password.

2. Select account name from top menu at the right corner in the console.

3. Select security credentials.

4. Click on access keys (access key ID and secret access key).

5. Click on the Create New Access Key button.

6. Click on Download Key File, which will download the file. If you do not download the
key file now, you will not be able to retrieve your secret access key again.

7. Copy this key file to a secure location.

Don't upload your code base with AWS security credentials to public
code repositories such as GitHub. Attackers are scraping GitHub for
AWS credentials. If anyone gets access to these credentials, they
can misuse your AWS account.

Installing AWS CLI using pip in Linux
We can use the pip tool to install the Python packages.

1. Before installing Python, please check whether Python is already installed on your
machine or not using the following command. If Python is already installed on your
machine, then skip to the pip installation step.
$ python --help

2. Start by installing Python. Download the compressed TAR archive file from the Python
site, and then install it using the commands listed below. The following steps target
the apt-based Linux distributions:
$ sudo apt-get install gcc

$ wget https://www.python.org/ftp/python/2.7.8/Python-2.7.8.tgz

$ tar -zxvf Python-2.7.8.tgz

$ cd Python-2.7.8

$./configure

$ make

$ sudo make install

3. Next, check the Python installation:
$ python –help

Selecting and Configuring Amazon EC2 Instances

8

4. Before installing pip, please check whether pip is already installed on your machine
or not by using the following command. If pip is already installed on your machine,
then skip to the awscli installation step:
$ pip –help

5. Move on to installing pip:
$ sudo apt-get install pip

6. Then install AWS CLI. If you have already installed awscli, you can upgrade the
installation using the –upgrade option.
$ sudo pip install awscli

7. Next, configure AWS CLI.

On the command prompt, type the following command, which will prompt for the
AWSAccessKey ID, AWSSecretKey, default AWS region, and default output format.
$ sudo aws configure

8. Finally, check the installation by getting regions list:
$ sudo aws ec2 describe-regions

Installing AWS CLI using pip in Windows/Mac
We can use the pip tool to install the Python packages.

1. Before installing Python, please check whether Python is already installed on your
machine or not by using the following command. If Python is already installed on
your machine, then skip to the pip installation step.
$ python –help

2. Start by installing Python. Download the installer from the following URL and install
Python by using that installer: https://www.python.org/downloads/.

3. Check your Python installation:
$ python –help

4. Before installing pip, check whether pip is already installed on your machine or not
by using the following command. If pip is already installed on your machine, skip to
the awscli installation step.
$ pip –help

5. In the next step, we install pip. Download and run the installation script from
https://bootstrap.pypa.io/get-pip.py. After that, run the following
command:
$ python get-pip.py

 https://www.python.org/downloads/
https://bootstrap.pypa.io/get-pip.py

Chapter 1

9

6. Install AWS CLI. If you have already installed awscli, you can upgrade the
installation using the –upgrade option.
$ pip install awscli

7. Next, we configure AWS CLI. Execute the following command from the
command prompt.
$ aws configure

This command will then prompt you for the AWSAccessKey ID, AWSSecretKey,
default AWS region, and default output format.

8. Check the installation by getting the regions list:
$ aws ec2 describe-regions

Launching EC2 instances using EC2-Classic
and EC2-VPC

Your EC2 instance receives a private IP address from the EC2-Classic range each time it's
started, whereas your instance receives a static private IP address from the address range in
EC2-VPC. You can only have one private IP address in EC2-Classic, but in EC2-VPC, we have
multiple private IP addresses. If you attach an EIP (Elastic IP) to EC2-Classic instance, it will
get dissociated when you stop the instance. But for VPC EC2 instance, it remains associated
even after you stop it. We can create subnets, routing tables, and Internet gateways in VPC.
For on-premise connectivity, we need VPC.

There are different VPC options available, depending on whether
you created your AWS account before or after 2013-12-04.

If you created your AWS account after 2013-12-04, then only EC2-VPC is supported. In this
case, a default VPC is created in each AWS region. Therefore, unless you create your own VPC
and specify it when you launch an instance, your instances are launched in your default VPC.

If you created your AWS account before 2013-03-18, then both EC2-Classic and EC2-VPC are
supported in the regions you used before, and only EC2-VPC in regions that you didn't use.
In this case, a default VPC is created in each region in which you haven't created any AWS
resources. Therefore, unless you create your own VPC and specify it when you launch an
instance in a region (that you haven't used before), the instance is launched in your default
VPC for that region. However, if you launch an instance in a region that you've used before,
the instance is launched in EC2-Classic.

In this recipe, we will launch EC2 instances using EC2-Classic and EC2-VPC.

Selecting and Configuring Amazon EC2 Instances

10

Getting started…
Before we launch the EC2 instances, we need the image ID.

Run the following command to get the list of images. We can apply the filter to identify a
specific image. Record the image ID for later use:

$ aws ec2 describe-images

--filter [Filter]

You can specify one or more filters in this command.

By executing the following command, you obtain the image ID of a 64-bit version of Ubuntu
12.04 image:

$ aws ec2 describe-images

--filter

"Name=virtualization-type,Values=paravirtual"

"Name=root-device-type,Values=ebs" "Name=architecture,Values=x86_64"

"Name=name,Values=ubuntu/images/ebs/ubuntu-precise-12.04-amd64-
server-20130204"

How to do it…
We will see the EC2 instances being launched, one by one:

Launching the EC2 instance in EC2-Classic
Using the following command, we can launch instances in EC2-Classic. You can specify the
number of instances to launch using the count parameter.

$ aws ec2 run-instances

--image-id [ImageId]

--count [InstanceCount]

--instance-type [InstanceType]

--key-name [KeyPairName]

--security-group-ids [SecurityGroupIds]

Chapter 1

11

The parameters used in this command are described as follows:

 f [ImageId]: This is the ID of the image

 f [InstanceCount]: This gives number of instances to be created

 f [InstanceType]: This gives the type of EC2 instance

 f [KeyPairName]: This parameter provides the key/pair name for authentication

 f [SecurityGroupIds]: This one provides security group IDs

The following command will create a micro instance in EC2-Classic (in the Singapore region):

$ aws ec2 run-instances

--image-id ami-7e2c612c

--count 1

--instance-type t1.micro

--key-name WebServerKeyPair

--security-group-ids sg-ad70b8c9

Launching the EC2 instance in VPC
Run the following command to launch instances in EC2-VPC. We need to specify the subnet ID
while creating an instance in EC2-VPC. Before creating the instance in EC2-VPC, you have to
create the VPC and subnets inside it.

$ aws ec2 run-instances

--image-id [ImageId]

--count [InstanceCount]

--instance-type [InstanceType]

--key-name [KeyPairName]

--security-group-ids [SecurityGroupIds]

--subnet-id [SubnetId]

Here, SubnetId specifies the subnet where you want to launch your instance.

Next, run the following command to create a micro instance in EC2-VPC (in the
Singapore region):

$ aws ec2 run-instances

--image-id ami-7e2c612c

--count 1

--instance-type t1.micro

--key-name WebServerKeyPair

--security-group-ids sg-ad70b8c8

--subnet-id subnet-aed11acb

Selecting and Configuring Amazon EC2 Instances

12

See also
 f The Configuring security groups and Creating an EC2 key pair recipes

Allocating Elastic IP addresses
Elastic IP (EIP) address is the static public IP address. You can attach and detach the EIP
from EC2 instance at any time. Instances in EC2-Classic support only one private IP address
and corresponding EIP. Instances in EC2-VPC support multiple private IP addresses, and
each one can have a corresponding EIP. If you stop the instance in EC2-Classic the EIP is
disassociated from instance, and you have to associate it again when you start the instance.
But if you stop the instance in EC2-VPC, the EIP remains associated with the EC2 instance.

In this recipe, we list the commands for allocating an Elastic IP address in a VPC and
associating it with the network interface.

How to do it…
For allocating EIP addresses, perform the following steps:

1. Run the following command to allocate the EIP:
$ aws ec2 allocate-address

--domain [Domain]

You have to specify whether domain is standard or VPC. Record the allocation
ID for further use.

Domain value indicates whether the EIP address is used with instances in
EC2-Classic (standard) or instances in a EC2-VPC (VPC).

2. Next, run the following command to create the EIP in VPC:
$ aws ec2 allocate-address --domain vpc

3. Then, run the following command to associate the EIP to the Elastic Network
Interface (ENI):
$ aws ec2 associate-address

--network-interface-id [NetworkInterfaceId]

--allocation-id [AllocationId]

You need to provide the network interface ID of the ENI and allocation ID of the EIP
you obtained in step 1. If you don't specify the private IP address, then the Elastic
IP address is associated with the primary IP address.

Chapter 1

13

The parameters used in this command are described here:

 � [NetworkInterfaceId]: This gives the ENI ID to attach

 � [AllocationId]: This provides the allocation ID of the EIP for EC2-VPC

4. Finally, run the following command to associate the EIP to ENI:
$ aws ec2 associate-address

--network-interface-id eni-d68df2b3

--allocation-id eipalloc-82e0ffe0

See also
 f The Creating an instance with multiple NIC cards and a static private IP address recipe

Creating an instance with multiple NIC
cards and a static private IP address

With multiple NICs, you can better manage your network traffic. Multiple NICs is one of the
prerequisite for high availability. The number of NICs attached to the EC2 instance will depend
on the type of EC2 instance. ENI's and multiple private IP addresses are only available for
instances running in a VPC. In cases of instance failure, we can detach and then re-attach
the ENI to a standby instance, where DNS changes are not required for achieving business
continuity. We can attach multiple ENIs from different subnets to an instance, but they both
should be in the same availability zone. This enables us to separate the public-facing traffic
from the management traffic.

We can have one primary address and one or more secondary addresses for an NIC. We can
detach and then attach NIC from one instance to another. We can attach one Elastic IP to each
private address. When you launch an instance, a public IP address can be autoassigned to the
network interface for eth0. This is possible only when you create a network interface for eth0
instead of using an existing network interface. You can detach secondary NIC (ethN) when
an instance is running or stopped. However, you can't detach the primary (eth0) interface. In
addition, you can attach security groups to NIC. If you set the instance termination policy to
delete on termination, then the NIC will automatically be deleted, if you delete the EC2 instance.

Selecting and Configuring Amazon EC2 Instances

14

How to do it…
Creating an instance with multiple NIC cards requires us to create a network interface, attach
it to an instance, and finally associate the EIP to the ENI.

Creating a network interface
Use the following steps to create a network interface:

1. Run the following command to create the ENI. You will need to provide the subnet ID,
security group IDs, and one or more private IP addresses.
$ aws ec2 create-network-interface
--subnet-id [SubnetId]
--groups [SecurityGroupIds]
--private-ip-addresses [PrivateIpAddressList]

The parameters used in this command are described as follows:

 � [SubnetId]: This gives the ID of the subnet to associate with the
network interface

 � [SecurityGroupIds]: This parameter provides IDs of one or more
security groups

 � [PrivateIpAddressList]: This is used to show list of private IP addresses

Syntax:
PrivateIpAddress=string,Primary=boolean

2. Next, run the following command to create the ENI with private IP addresses
10.0.0.26 and 10.0.0.27:
$ aws ec2 create-network-interface

--subnet-id subnet-aed11acb

--groups sg-ad70b8c8

--private-ip-addresses PrivateIpAddress=10.0.0.26,Primary=true Pri
vateIpAddress=10.0.0.27,Primary=false

In the next step, we attach the network interface to the instance.

Attaching the network interface to an instance
By running the following command, we can attach the ENI to an EC2 instance. You will need to
provide the ENI ID, EC2 instance ID, and the device index.

$ aws ec2 attach-network-interface
--network-interface-id [NetworkInterfaceId]
--instance-id [InstanceId]
--device-index [DeviceIndex]

Chapter 1

15

The parameters used in this command are described as follows:

 f [NetworkInterfaceId]: This parameter provides the network interface ID to
attach to an EC2 instance

 f [InstanceId]: This one provides an EC2 instance ID

 f [DeviceIndex]: This parameter provides the index of the device for the network
interface attachment

Then, run the following command to attach the ENI to the EC2 instance:

$ aws ec2 attach-network-interface

--network-interface-id eni-5c88f739

--instance-id i-2e7dace3

--device-index 1

Associating the EIP to the ENI
By running the following command, we can associate the EIP to the ENI. You have to provide
the ENI ID, EIP allocation ID, and the private address.

$ aws ec2 associate-address

--network-interface-id [NetworkInterfaceId]

--allocation-id [AllocationId]

--private-ip-address [PrivateIpAddress]

The parameters used in this command are described as follows:

 f [NetworkInterfaceId]: This parameter provides the network interface ID to
attach to an EC2 instance

 f [AllocationId]: This gives the allocation ID of EIP, which is required for EC2-VPC

 f [PrivateIpAddress]: If no private IP address is specified, the Elastic IP address is
associated with the primary private IP address

Next, run the following command to associate the EIP to 10.0.0.26 (the private IP address of
the ENI):

$ aws ec2 associate-address

--network-interface-id eni-5c88f739

--allocation-id eipalloc-d59f80b7

--private-ip-address 10.0.0.26

See also
 f The Configuring security groups recipe

www.allitebooks.com

http://www.allitebooks.org

Selecting and Configuring Amazon EC2 Instances

16

Selecting the right storage for your EC2
instance

Instance storage consists of disks that are physically attached to the host computer. Data on
these disks is lost once the instance restarts. For persistence across restarts, we need to use
EBS volumes.

EBS volumes are automatically replicated within its availability zone to protect against
component failures.

AWS EBS volumes are persisted independently from your EC2 instances. These are connected
through Network Attached Storage (NAS). If you lose the EC2 instance, then the data stored
on EBS will still be available to a newly provisioned EC2 instance. You can attach as many EBS
volumes as you want. However, an EBS volume can only be attached to one EC2 instance at a
time. You can detach EBS volume from one EC2 instance, and then attach to a different EC2
instance. An I/O request of up to 256 Kilobytes is counted as a single I/O operation (IOP).

If we use standard EBS volumes as the boot device volume, then the boot process of a
Windows or Linux machine is fast. We can have storage up to 16 TB and 10,000 IOPS per
volume. General purpose SSD is best for boot device volumes, and small and medium sized
databases. These SSD volumes can deliver a maximum throughput of 160 Mbps when
attached to EBS-optimized instances.

Provisioned IOPS (SSD) volumes deliver within 10% of the IOPS performance 99.9% of the
time over a given year. If we have a 200 GB volume with 1,000 IOPS, then 99.9% of the time,
actual I/O on this volume will be at 900 IOPS or higher. Many database workloads need
provisioned IOPS for consistent performance. We can configure storage up to 16 TB and
20,000 IOPS per volume. Provisioned IOPS volumes can deliver 320 Mbps when attached
to EBS-optimized instances.

Magnetic disks are a lower cost option for EBS volumes. If data read frequency is low then
this type of EBS volume is a good option.

If you want more IOPS than what single EBS volume provides,
configure the RAID array on multiple EBS volumes.

Encryption is also possible while using the EBS volumes. Encryption is done for data at rest,
data in transit, and disk I/O. Using encrypted EBS volumes have a minor effect on I/O latency,
but the performance remains the same. To encrypt EBS volume, you just need to select the
Encrypt this volume checkbox when creating EBS volume from AWS console. In this recipe,
we list the commands for creating an EBS volume, and then attaching it to an EC2 instance.

Chapter 1

17

How to do it…
Run the following command to list the availability zones in a selected region. If the command is
run in the ap-southeast-1 region, you get the list of availability zones in the Singapore region.

$ aws ec2 describe-availability-zones

Creating an EBS volume
Run the following command to create an Amazon EBS volume that can be attached to an
instance in the same availability zone. Record the volume ID for further usage.

$ aws ec2 create-volume

--availability-zone [AvailabilityZone]

--volume-type [VolumeType]

--iops [IOPS]

--size [Size]

The parameters used in this command are described as follows:

 f [AvailabilityZone]: This specifies the availability zone in which to create
the volume. Use the describe-availability-zones command to list the
availability zones.

 f [VolumeType]: This gives the volume type. This can be gp2 for General
Purpose (SSD) volumes, io1 for Provisioned IOPS (SSD) volumes, or standard
for Magnetic volumes.

 f [IOPS]: This is only valid for Provisioned IOPS (SSD) volumes. This parameter
specifies the number of IOPS to provision for the volume.

 f [Size]: This one gives the size of the volume, in GiBs.

Use the following command to create a 90 GiB Provisioned IOPS (SSD) volume with 1000
Provisioned IOPS in availability zone ap-southeast-1b:

$ aws ec2 create-volume

--availability-zone ap-southeast-1b

--volume-type io1

--iops 1000

--size 90

Selecting and Configuring Amazon EC2 Instances

18

Attaching the volume
Run the following command to attach an EBS volumes to an EC2 instance. You will need to
provide the EC2 instance ID, EBS volume ID, and the device name.

$ aws ec2 attach-volume

--volume-id [VolumeId]

--instance-id [InstanceId]

--device [Device]

The parameters used in this command are described as follows:

 f [VolumeId]: This provides the volume ID

 f [InstanceId]: This parameter gives an EC2 instance ID

 f [Device]: This one is used to mention the device name to expose to the instance
(for example, /dev/sdh or xvdh)

Run the following command to attach the EBS volume to an EC2 instance as /dev/sdf:

$ aws ec2 attach-volume

--volume-id vol-64e54f6a

--instance-id i-2e7dace3

--device /dev/sdf

Creating tags for consistency
Tags represent metadata for your AWS resources. Tags are used to separate your AWS
resources from one another. These are key/value pairs. If we use good tags, then it's easy to
filter resources by tag names. It is also helpful for analyzing your bill; we can get the billing
information of all tags by filtering on tags associated with the AWS resources. For example,
you can tag several resources with a specific application name, and then organize your billing
information to see the total cost for that application across several AWS services. If we add a
tag that has the same key as an existing tag, then the new value will override the old value.
You can edit tag keys and values at any time, and you can also remove them at any time.

In this recipe, we describe the command for creating tags for our AWS resources.

How to do it…
Using the create-tags command, you can create tags for one or more AWS resources.

Chapter 1

19

Creating tags for one or more AWS resources
By running the following command, you can create or update one or more tags for one or
more AWS resources:

$ aws ec2 create-tags
--resources [Resources]
--tags [Tags]

The parameters used in this command are described as follows:

 f [Resources]: This parameter is used to provide the IDs of one or more resources
to tag

 f [Tags]: This parameter provides a list of tags

Syntax:
Key=KeyName,Value=ValueToAssign

The following command creates the Name and Group tag with its associated value for the EC2
instance (i-2e7dace3):

$ aws ec2 create-tags

--resources i-2e7dace3

--tags

Key=Name,Value=Tomcat Key=Group,Value='FronEnd Server Group'

Configuring security groups
Security groups are like firewalls for your EC2 instances. If you don't specify the security group
while creating instance in EC2-VPC, then AWS automatically assigns the default security group
of the EC2-VPC to the instance. We can configure the inbound and outbound rules for security
groups. We can also change these inbound and outbound rules while the instance is running.
These changes are automatically applied.

For every VPC, we get a default security group, which we can't delete. You can't use a security
group that you created for EC2-VPC when you launch an instance in EC2-Classic. You also
can't use security group that you created for EC2-Classic, when you launch an instance in
EC2-VPC. After you launch an instance in EC2-Classic, you can't change its security group but
you can add and delete rules, which are then applied, automatically. But after you launch an
instance in EC2-VPC, you can change its security groups, and add and remove rules, which are
then applied, automatically.

When you specify a security group as the source or destination for a rule, the rule affects all
instances associated with the security group The security groups created for EC2-Classic can
only have inbound rules, but security groups created for EC2-VPC can have both inbound and
outbound rules.

Selecting and Configuring Amazon EC2 Instances

20

The limit to create security groups for each region is 500. You can create up to 100 security
groups per VPC. You can also assign an unlimited number of security groups to the instance
launched in EC2-Classic, whereas only 5 security groups can be assigned to an instance
launched in VPC. The number of rules that can be added to each security group on EC2-Classic
is 100 and for VPC it is 50.

How to do it…
In this recipe, we first list the commands for creating a security group for EC2-Classic and EC2-
VPC. Then, we see how to create inbound and outbound rules. Finally, we list the command for
adding the security group to an instance.

Creating a security group for EC2-Classic
By running the following command, you can create the security group in EC2-Classic. You have
to provide the security group name and security group description for the security group.

$ aws ec2 create-security-group

--group-name [SecurityGroupName]

--description [Description]

The parameters used in this command are described as follows:

 f [SecurityGroupName]: This provides the security group name

 f [Description]: This gives the description of the security group

Next, run the following command to create a security group with the
WebServerSecurityGroup name in EC2-Classic:

$ aws ec2 create-security-group

--group-name WebServerSecurityGroup

--description "Web Server Security Group"

Creating a security group for EC2-VPC
By running the following command, you can create a security group in EC2-VPC. You have to
provide the security group name, security group description, and VPC ID for the security group:

$ aws ec2 create-security-group

--group-name [SecurityGroupName]

--description [Description]

--vpc-id [VPCId]

Chapter 1

21

The parameters used in this command are described as follows:

 f [SecurityGroupName]: This parameter provides the security group name

 f [Description]: This one gives the description of the security group

 f [VPCId]: This option provides a VPC ID

The following command will create a security group named WebServerSecurityGroup in
VPC (vpc-1f33c27a). You can get your VPC IDs by running the aws ec2 describe-vpcs
command.

$ aws ec2 create-security-group

--group-name WebServerSecurityGroup

--description "Web Server Security Group"

--vpc-id vpc-1f33c27a

Adding an inbound rule
Run the following command to add an inbound rule to your security group. You will need to
provide the security group ID, protocol (TCP/UDP/ICMP), port, and the CIDR IP range.

$ aws ec2 authorize-security-group-ingress

--group-id [SecurityGroupId]

--protocol [Protocol]

--port [Port]

--cidr [CIDR]

The parameters used in this command are described as follows:

 f [SecurityGroupId]: This is used to provide the security group ID

 f [Protocol]: This one provides the IP protocol of this permission

 f [Port]: This is used to specify the range of ports to allow

 f [CIDR]: This one gives the CIDR IP range

Next, run the following command to create the inbound rule that allows SSH traffic from
IP address 123.252.223.114 in the security group (sg-c6b873a3):

$ aws ec2 authorize-security-group-ingress

--group-id sg-c6b873a3

--protocol tcp

--port 22

--cidr 123.252.223.114/32

Selecting and Configuring Amazon EC2 Instances

22

Adding an outbound rule
Run the following command to add an outbound rule to your security group. You will need to
specify the security group ID, protocol (TCP/UDP/ICMP), port, and the CIDR IP range.

$ aws ec2 authorize-security-group-egress

--group-id [SecurityGroupId]

--protocol [Protocol]

--port [Port]

--cidr [CIDR]

The parameters used in this command are described as follows:

 f [SecurityGroupId]: This parameter provides the security group ID

 f [Protocol]: This option specifies the IP protocol of this permission

 f [Port]: This is used to give the range of ports to allow

 f [CIDR]: This one gives the CIDR IP range

Then, run the following command to create the outbound rule that allows MySQL traffic from
your instance to IP address 123.252.223.114 in the security group (sg-c6b873a3):

$ aws ec2 authorize-security-group-egress

--group-id sg-c6b873a3

--protocol tcp

--port 3866

--cidr 123.252.223.114/24

Adding the security group to an instance
By running the following command, you can attach the security group to your EC2 instance.
You have to provide the EC2 instance ID, and one or more security group IDs:

$ aws ec2 modify-instance-attribute

--instance-id [InstanceId]

--groups [SecurityGroupIds]

The parameters used in this command are described here:

 f [InstanceId]: This option gives an EC2 instance ID

 f [SecurityGroupIds]: This option provides the IDs of one or more security groups

Chapter 1

23

Then, run the following command to add the security groups sg-c6b873a3 and sg-ccb873a9
to EC2 instance i-2e7dace3:

$ aws ec2 modify-instance-attribute

--instance-id i-2e7dace3

--groups sg-c6b873a3 sg-ccb873a9

Creating an EC2 key pair
AWS can authenticate using the public-private key mechanism. The recommended
authentication mechanism is public-private key authentication instead of passwords to
remotely log in to your instances with SSH. We upload the public key to AWS, and store the
private key on our local machine. If anyone has your private key, then they can easily log in to
your EC2 instances. It's a best practice to store these private keys in a secure place. We can
create the public and private key from our machine using tools like PuTTY Key Generator.

You should include a passphrase with the private key to prevent unauthorized persons
from logging in to your EC2 instance. When you include a passphrase, you have to enter
the passphrase whenever you log in to the EC2 instance. A passphrase on a private key is
an extra layer of protection. If you lost your private key for an EBS-backed instance, you can
regain access to your instance by executing the following steps:

1. Stop the EBS-backed EC2 instance.

2. Detach the root volume from EC2 instance.

3. Launch the new EC2 instance for recovery.

4. Attach the EC2 root volume as data volume to the previously created instance.

5. Modify the authorized_keys file.

6. Detach the root volume from recovery instance.

7. Attach the root volume back to the EC2 instance.

8. Start the instance.

How to do it…
Here, we list the commands to create a key pair and then launching the EC2 instance (using
the key pair).

Selecting and Configuring Amazon EC2 Instances

24

Creating a key pair
Use the following steps to create a key pair:

1. Run the following command to create the key pair.

You have to provide the key pair name. You can explicitly specify the text output for
this command using the –output argument for easy cut and paste.
$ aws ec2 create-key-pair

--key-name [KeyPairName]

The [KeyPairName] parameter in this command is used to
specify a name for the key pair.

2. After executing the create-key-pair command, copy the entire output key into file
including the following lines:
----BEGIN RSA PRIVATE KEY----
-----END RSA PRIVATE KEY-----

3. Save the file with ASCII encoding.

4. Run the following command to create the key pair with name WebServerKeyPair.
$ aws ec2 create-key-pair

--key-name WebServerKeyPair

Grouping EC2 instances using placement
groups

EC2 instances can be grouped using placement groups. For example, instances requiring
low latency and high bandwidth communication can be placed in the same placement group.
When instances are placed in this placement group, they have access to low latency, non-
blocking 10 Gbps networking when communicating with other instances in the placement
group (within a single availability zone). AWS recommends launching all the instances within
the cluster placement group at the same time.

How to do it…
In order to group EC2 instances using placement groups, first we create a placement group,
and then add our EC2 instances in it.

Chapter 1

25

Creating a placement group
Run the following command to create placement groups. You have to provide the placement
group name and the placement strategy.

$ aws ec2 create-placement-group

--group-name [GroupName]

--strategy [Strategy]

Here, the GroupName parameter specifies a name for the placement group and the
Strategy parameter specifies the placement strategy.

Next, run the following command to create a placement group with the name
WebServerGroup:

$ aws ec2 create-placement-group

--group-name WebServerGroup

--strategy cluster

Placing instances in the placement group
Run the following command to launch instances in a placement group. You will need to specify
the placement group name along with the EC2 instance properties.

$ aws ec2 run-instances

--image-id [ImageId]

--count [Count]

--instance-type [InstanceType]

--key-name [KeyPairName]

--security-group-ids [SecurityGroupIds]

--subnet-id [SubnetId]

--placement [Placement]

The parameters used in this command are described as follows:

 f [ImageId]: This gives the ID of the image from which you want to create the
EC2 instance

 f [Count]: This one provides the number of instances to create

 f [InstanceType]: This option gives the type of EC2 instance

 f [KeyPairName]: This parameter provides the key pair name for the authentication

 f [SecurityGroupIds]: This parameter gives one or more security group IDs

 f [SubnetId]: This option provides the ID of the subnet where you want to launch
your instance

www.allitebooks.com

http://www.allitebooks.org

Selecting and Configuring Amazon EC2 Instances

26

 f [Placement]: This gives the placement for the instance.

Syntax:
--placement AvailabilityZone=value,GroupName=value,Tenancy=value

Next, execute the following command to launch a c3.large EC2 instance in the
WebServerGroup placement group:

$ aws ec2 run-instances

--image-id ami-7e2c612c

--count 1

--instance-type c3.large

--key-name WebServerKeyPair

--security-group-ids sg-ad70b8c8

--subnet-id subnet-aed11acb

--placement GroupName= WebServerGroup

Configuring Elastic Load Balancing
The Elastic Load Balancer (ELB) works within a single AWS region. You can scale both
horizontally (adding more EC2 instances) and vertically (increasing EC2 instance size)
within AWS, but it's best practice to scale horizontally. It can, however, load balance across
several instances in multiple availability zones. If you don't want to load balance instances
across multiple availability zones, then you can also disable it. If we want to load balance the
instances across multiple regions, then we have to use Route 53 (instead of an ELB). ELB
continuously checks the health of the instances, and only routes traffic to healthy instances.
The health check frequency and the URL parameters are configurable.

If a healthy instance comes online, then the ELB recognizes the instance and routes traffic to it.
ELB can be used to implement high-availability application architectures. If we use Route 53 with
ELB, we can enable failover to a different region. ELB can also be configured with autoscaling,
thereby enabling load balancing across new instances created by auto-scaling groups.

ELB can work with instances in EC2-Classic and VPC. There are two types of load balancers we
can create internal or internet facing. We can't create internal load balancer without VPC. We
can create both internal and internet facing load balancers within VPC. You can also enable
sticky sessions on ELB using either application generated cookies or ELB generated cookies.
In addition, you can assign security groups to ELBs. If you don't assign any security group while
creating the ELB in VPC, it uses the default security group of the VPC. SSL termination is also
supported in ELB, using this obviates the need to install SSL certificate on each and every
EC2 instance.

Chapter 1

27

How to do it…
Here, we list the commands for creating an ELB, configuring the same for performing health
checks, and finally associating specific EC2 instances with it.

Creating an Internet-facing ELB with listeners
Run the following command to create an Internet-facing ELB. You will have to provide the
listeners, subnet IDs, and security group IDs.

$ aws elb create-load-balancer

--load-balancer-name [LoanBalancerName]

--listeners [Listeners]

--subnets [SubnetIds]

--security-groups [SecurityGroups]

The parameters used in this command are described as follows:

 f [LoanBalancerName]: This option provides the name of the load balancer.

 f [Listeners]: This parameter gives a list of the following tuples: Protocol,
LoadBalancerPort, InstanceProtocol, InstancePort, and
SSLCertificateId.

 f [SubnetIds]: This option gives a list of subnet IDs in your VPC to attach to
your load balancer. You can get a list of subnet IDs by running the aws ec2
describe-subnets command.

 f [SecurityGroups]: This option provides the security groups to assign to your
load balancer within your VPC. You can get security group ID by running the aws
ec2 describe-security-groups command. You should provide the security
group name in the preceding command.

Run the following command to create an ELB that receives traffic on port 80, and the load
balances across instances listening on port 8080:

$ aws elb create-load-balancer

--load-balancer-name WebLoadBalancer

--listeners
Protocol=HTTP,LoadBalancerPort=80,InstanceProtocol=HTTP,InstancePort=8080

--subnets subnet-aed11acb

--security-groups sg-c6b873a3

Selecting and Configuring Amazon EC2 Instances

28

Configuring health checks on ELB
Run the following command to add health check configuration to an ELB. You have to provide
the load balancer name and health check configuration:

$ aws elb configure-health-check

--load-balancer-name [LoanBalancerName]

--health-check [HealthCheckup]

The parameters used in this command are described as follows:

 f [LoanBalancerName]: This option provides the name of the load balancer

 f [HealthCheckup]: This parameter provides the health check configuration

Syntax:
Target=HTTP:8080/index.html,Interval=30,UnhealthyThreshold=
2,HealthyThreshold=2,Timeout=3

The following command will add the health check configuration to an ELB. The ELB checks
the instance health at <URL>:8080/index.html. ELB health check interval is set to 30
seconds. UnhealthyThreshold specifies the number of consecutive unsuccessful URL
probes before the ELB changes the instance health status to unhealthy. HealthyThreshold
specifies the number of consecutive successful URL probes before ELB changes the instance
health status to healthy.

$ aws elb configure-health-check

--load-balancer-name WebLoadBalancer

--health-check Target=HTTP:8080/index.html,Interval=30,UnhealthyThreshold
=2,HealthyThreshold=2,Timeout=3

Adding instances to the ELB
By running the following command, you can add instances to the ELB. You have to provide the
ELB name and the list of instance IDs.

$ aws elb register-instances-with-load-balancer

--load-balancer-name [LoanBalancerName]

--instances [Instances]

The parameters used in this command are described as follows:

 f [LoanBalancerName]: This option gives the name of the load balancer

 f [Instances]: This option gives a list of instances for the load balancer

Chapter 1

29

The following command will add ELB to EC2 instances with IDs i-d3ff2c1e and
i-2e7dace3.

$ aws elb register-instances-with-load-balancer

--load-balancer-name WebLoadBalancer

--instances i-d3ff2c1e i-2e7dace3

Architecting for high availability
Application and network errors can render the system unavailable to the user. Multi-availability
zone deployments are used for building high-availability applications at the AWS region level.
For implementing fault tolerance for region level failures, we have to deploy our application
in availability zones spanning across different regions. If we use multiple regions, we have
to use Route 53 for failover. If the primary region goes down, Route 53 fails over to the
secondary region.

Increasing load on system can also cause system availability issues, but the autoscaling
feature can help us solve the problem by autoscaling the number of servers during a spike in
load. The number of servers is automatically reduced when the load comes back to normal
levels. Detailed explanation on autoscaling is in Chapter 3, Managing AWS Resources Using
AWS CloudFormation.

Building loosely coupled applications can also help avoid single points of failure. We can
use Simple Queue Service (SQS) to build loosely coupled applications. Using the SQS
queue size as a parameter, we can auto-scale our EC2 instances. For RDS high availability,
we can configure a multi availability zone-deployment option. This will deploy the primary
and secondary database instances in two different availability zones.

How to do it…
Here, we list the commands required for configuring high availability across two different
regions using Route 53:

1. Create an instance in the first region. Before launching the EC2 instance, create the
required VPC, subnets, key pairs, and security groups in this region.
$ aws ec2 run-instances

--image-id [ImageId]

--count [InstanceCount]

--instance-type [InstanceType]

--key-name [KeyPairName]

--security-group-ids [SecurityGroupIds]

--subnet-id [SubnetId]

Selecting and Configuring Amazon EC2 Instances

30

The parameters used in this command are described as follows:

 � [ImageId]: This option gives the ID of the image

 � [InstanceCount]: This parameter provides the number of instances
to create

 � [InstanceType]: This parameter provides the type of EC2 instance

 � [KeyPairName]: This gives a key/pair name for authentication

 � [SecurityGroupIds]: This option provides the security group ID

 � [SubnetId]: This parameter provides the ID of subnet where you want
to launch your instance

2. Create an instance in the second region. Before launching the EC2 instance,
create the required VPC, subnets, key pairs, and security groups in this region:
$ aws ec2 run-instances

--image-id [ImageId]

--count [InstanceCount]

--instance-type [InstanceType]

--key-name [KeyPairName]

--security-group-ids [SecurityGroupIds]

--subnet-id [SubnetId]

The parameters used in this command are described as follows:

 � [ImageId]: This parameter provides the ID of the image

 � [InstanceCount]: This option gives the number of instances to create

 � [InstanceType]: This one gives the type of EC2 instance

 � [KeyPairName]: This parameter provides a key/pair name for
authentication

 � [SecurityGroupIds]: This option gives a security group ID

 � [SubnetId]: This parameter provides the ID of the subnet where you want
to launch your instance

3. Create an AWS hosted zone in Route 53 service.

The following command will return the name server records. Record the name server
records and the hosted zone ID for the further usage.

$ aws route53 create-hosted-zone

--name [Name]

--caller-reference [CallReference]

Chapter 1

31

The parameters used in this command are described as follows:

 � [Name]: This parameter gives the name of the domain

 � [CallReference]: This parameter gives a unique string that identifies the
request and that allows failed create-hosted-zone requests to be retried
without the risk of executing the operation twice

Change the name servers records with your domain registrar.

Use the following link to understand how to change name servers
with GoDaddy:
https://support.godaddy.com/help/article/664/
setting-nameservers-for-your-domain-names

4. Create health checks for previously created instances in the first region by performing
the following steps:

1. First create a virginiahc.json file with the following JSON. The IP
address used is the public IP address of EC2 instance.
{
"IPAddress":"54.173.200.169",
"Port":8080,
"Type":"HTTP",
"ResourcePath":"/index.html",
"RequestInterval":30,
"FailureThreshold":3
}

2. Execute the following command for the first region:
$ aws route53 create-health-check

--caller-reference [CallReference]

--health-check-config [HealthCheckConfig]

The parameters used in this command are described as follows:

 � [CallReference]: This is a unique string that identifies the request and
that allows failed create-health-check requests to be retried without
the risk of executing the operation twice

 � [HealthCheckConfig]: This option gives the health check configuration

 Syntax:

file://virginiahc.json

https://support.godaddy.com/help/article/664/setting-nameservers-for-your-domain-names
https://support.godaddy.com/help/article/664/setting-nameservers-for-your-domain-names

Selecting and Configuring Amazon EC2 Instances

32

3. Create health check by running the following command. Record the health
check ID for further usage.

$ aws route53 create-health-check

--caller-reference 2014-11-29-17:03

--health-check-config file://virginiahc.json

5. Create health checks for previously created instances in second region by performing
the following steps:

1. Create a second singaporehc.json file with the following JSON. The IP
address used is the public IP address of EC2 instance.
{
"IPAddress":"54.169.85.163",
"Port":8080,
"Type":"HTTP",
"ResourcePath":"/index.html",
"RequestInterval":30,
"FailureThreshold":3
}

2. Execute the following command for the second region:
$ aws route53 create-health-check

--caller-reference [CallReference]

--health-check-config [HealthCheckConfig]

The parameters used in this command are described as follows:

 � [CallReference]: A unique string that identifies the request and that
allows failed create-health-check requests to be retried without the
risk of executing the operation twice

 � [HealthCheckConfig]: This option provides the health check configuration

Syntax:
file:// singaporehc.json

3. Create health check by running the following command. Record the health
check ID for further usage.

$ aws route53 create-health-check

--caller-reference 2014-11-29-17:04

--health-check-config file://singaporehc.json

Chapter 1

33

6. Add a primary and secondary record set to the Route 53-hosted zone by performing
the following steps:

1. Create a recordset.json file with the following JSON. In primary record
set, replace health check ID and IP address with first region health check
ID and EC2 public IP address accordingly. In secondary record set, replace
health check ID and IP address with second region health check ID and EC2
public IP address accordingly.
{
 "Comment":"Creating Record Set",
 "Changes":[
 {
 "Action":"CREATE",
 "ResourceRecordSet":{
 "Name":"DNS Domain Name",
 "Type":"A",
 "SetIdentifier":"PrimaryRecordSet",
 "Failover":"PRIMARY",
 "TTL":300,
 "ResourceRecords":[
 {
 "Value":"54.173.200.169"
 }
],
 "HealthCheckId":"<your first region's
 health check id>"
 }
 },
 {
 "Action":"CREATE",
 "ResourceRecordSet":{
 "Name":" DNS Domain Name",
 "Type":"A",
 "SetIdentifier":"SecondaryRecordSet",
 "Failover":"SECONDARY",
 "TTL":300,
 "ResourceRecords":[
 {
 "Value":"54.169.85.163"
 }
],
 "HealthCheckId":"<your second region's
 health check id>"
 }
 }
]
}

Selecting and Configuring Amazon EC2 Instances

34

2. Execute the following command to add record set:
$ aws route53 change-resource-record-sets

--hosted-zone-id [HostedZoneId]

--change-batch [ChangeBatch]

The parameters used in this command are described as follows:

 � [HostedZoneId]: This option provides the Route 53-hosted zone ID

 � [ChangeBatch]: A complex type that contains an optional comment
and the changes element

Syntax:
file://recordset.json

3. Add the record set to the hosted zone by running the following command:
$ aws route53 change-resource-record-sets

--hosted-zone-id Z3DYG8V5Z07JP8

--change-batch file://recordset.json

7. Test the failover configuration by stopping the server in the primary region. You can stop
your first region EC2 instance by running the aws ec2 stop-instances command.

Creating instances for AWS Marketplace
The AWS Marketplace helps customers find software from a set of third-party vendors. There
is no need to set up a new billing account for another company; those bills can be paid via
the AWS monthly bills. We can read reviews from other customers to help us make the most
appropriate selection. We can also share or sell our AMIs with the public so that the wider
community can use them.

In this recipe, we list the commands for creating AMIs for offering them to other users on
AWS Marketplace.

How to do it…
Here we list the commands for creating AMIs for offering them to other users on
AWS Marketplace.

Creating an AMI from EC2 instance
By running the following command, you can create the image from EC2 instance. You have to
provide the instance ID, image name, and image description.

$ aws ec2 create-image

Chapter 1

35

--instance-id [InstanceId]

--name [Name]

--description [Description]

The parameters used in this command are described as follows:

 f [InstanceId]: This option provides the EC2 instance ID

 f [Name]: This option gives the name of the image

 f [Description]: This one provides the image description

The following command creates an image of the EC2 instance with ID i-2e7dace3:

$ aws ec2 create-image

--instance-id i-2e7dace3

--name "WebServerImage"

--description "Image of web server"

Making the AMI public
By running the following command, you can make your image public. You have to provide the
image ID and launch permissions.

$ aws ec2 modify-image-attribute

--image-id [ImageId]

--launch-permission [LaunchPermission]

The parameters used in this command are described as follows:

 f [ImageId]: This option provides the image ID

 f [LaunchPermission]: This option is used to launch permissions

Syntax:
"{\"Add\": [{\"Group\":\"all\"}]}"

By running following command, you can make your image public.

$ aws ec2 modify-image-attribute

--image-id ami-97e6cbc5

--launch-permission "{\"Add\": [{\"Group\":\"all\"}]}"

www.allitebooks.com

http://www.allitebooks.org

37

2
Configuring and

Securing a Virtual
Private Cloud

In this chapter, we will cover recipes for:

 f Creating and configuring VPC

 f Configuring VPC DHCP options

 f Configuring networking connections between two VPCs (VPC peering)

 f Connecting your on-premise network to VPC using VPN

Introduction
In this chapter, we will focus on recipes to create and configure AWS VPC (Virtual Private
Cloud) against typical network infrastructure requirements. VPCs help you isolate AWS EC2
resources, and this feature is available in all AWS regions. A VPC can span multiple availability
zones in a region. AWS VPC also helps you run hybrid applications on AWS by extending your
existing datacenter into the public cloud. Disaster recovery is another common use case for
using AWS VPC. You can create subnets, routing tables, and internet gateways in VPC. By
creating public and private subnets, you can put your web and frontend services in the public
subnet, while your application databases and backed services are located in a private subnet.
Using VPN, you can extend your on-premise data center. Another option to extend your on-
premise datacenter is AWS Direct Connect, which is a private network connection between
AWS and your on-premise datacenter. In VPC, EC2 resources get static private IP addresses
that persist across reboots, which works in the same way as the DHCP reservation.

Configuring and Securing a Virtual Private Cloud

38

You can also assign multiple IP addresses and Elastic Network Interfaces. You can have a
private ELB accessible only within your VPC. You can use CloudFormation to automate the
VPC creation process. Defining appropriate tags can help you manage your VPC resources
more efficiently.

We will start with a recipe to create and configure a VPC and then follow it up with recipes to
configure DHCP, and connect two VPCs as well as your on-premise network to your AWS VPC,
in the following sections.

Creating and configuring VPC
In this section, we present the recipe to create and configure a VPC. You can assign a single
Classless Inter-Domain Routing (CIDR) block to the VPC. The allowed block size is between a
/28 (16 IP addresses) net mask and /16 (65536 IP addresses) net mask. Public and private
subnets are specified to build multitier applications. To access the Internet from a private
subnet, we have to use Network Address Translation (NAT) instance in the public subnet.
Each subnet must be associated with a routing table. Each route in the routing table contains
the destination CIDR network range and a target Internet gateway/virtual private gateway.

To access the Internet the EC2 instance must either have an Elastic IP (EIP) address or a
public IP address. You can also use a NAT instance, which will have a public IP address and
perform the natting for your instances. Your subnet's route table must contain the route that
directs the Internet bound traffic to the Internet gateway. You have to ensure that network
Access Control List (ACL) and security groups allow the Internet traffic to and from your
instance. To access the on-premise servers or other AWS instances outside your VPC, you
can add public IP addresses of those servers as destination and the Internet gateway as
the target in your subnet routing table.

Network ACL operates at a subnet level. Network ACL controls the subnet's inbound and
outbound traffic. We can configure inbound and outbound rules for network ACL, which
are then evaluated in order. As network ACLs are stateless, you have to explicitly add rules
for return traffic. We can use network ACL as an additional layer of security along with the
security groups. Each subnet must be associated with the network ACL. If you don't specify
the network ACL, then it will be automatically associated with the default network ACL.

How to do it…
Here, we present specific commands to use for creating and configuring a VPC, including
creating a VPC with a CIDR block and dedicated tenancy, adding tags for your VPC, and
viewing the details of the newly created VPC. We then create private and public subnets,
security group for the NAT instance, a NAT instance, an Internet gateway, and route tables
for the private and public subnets. Finally, we test our VPC setup.

Chapter 2

39

1. Create a VPC with CIDR block and dedicated tenancy.

The following command creates a VPC setup with a CIDR network range of
10.0.0.0/16 in dedicated tenancy. Record the VPC ID for further use.
$ aws ec2 create-vpc

--cidr-block 10.0.0.0/16

--instance-tenancy dedicated

Add tags to the VPC.
$ aws ec2 create-tags

--resources vpc-0214e967

--tags Key=Name,Value=TestVPC

2. Describe the VPC.
$ aws ec2 describe-vpcs

--vpc-ids vpc-0214e9670214e9670214e967

3. Create public and private subnets in VPC by performing the following steps:

1. Execute the following command to create a subnet with the name
PublicSubnet. This subnet provides 256 private IP addresses.
Please select availability zone as per your requirement.
$ aws ec2 create-subnet

--vpc-id vpc-0214e967

--cidr-block 10.0.0.0/24

--availability-zone ap-southeast-1a

2. Associate the name with this subnet.
$ aws ec2 create-tags

--resources subnet-0240b575

--tags Key=Name,Value=PublicSubnet

3. Create a subnet with the name PrivateSubnet. Provide the availability
zone as per your requirements.
$ aws ec2 create-subnet

--vpc-id vpc-0214e967

--cidr-block 10.0.1.0/24

--availability-zone ap-southeast-1a

Configuring and Securing a Virtual Private Cloud

40

4. Associate the name with this subnet.
$ aws ec2 create-tags

--resources subnet-49ca1b2c

--tags Key=Name,Value=PrivateSubnet

4. Create a security group for the NAT instance and inbound and outbound rules for
the ports.
$ aws ec2 create-security-group

--group-name NATSecurityGroup

--description "NAT Server Security Group"

--vpc-id vpc-0214e967

1. Add inbound rules for port 80 and 443 from PrivateSubnet and 22 from
the public IP range of your network. WhatsMyIp will return the public IP
address of your workstation. Allow access only from the specified IP address,
by specifying /32 with the IP address.
$ aws ec2 authorize-security-group-ingress

--group-id sg-5173a334

--protocol tcp

--port 22

--cidr 123.252.223.114/32

$ aws ec2 authorize-security-group-ingress

--group-id sg-5173a334

--protocol tcp

--port 80

--cidr 10.0.1.0/24

$ aws ec2 authorize-security-group-ingress

--group-id sg-5173a334

--protocol tcp

--port 443

--cidr 10.0.1.0/24

2. Add the outbound rules for 80 and 443. This allows outbound HTTP and
HTTPS access to the Internet over the Internet gateway.

$ aws ec2 authorize-security-group-egress

--group-id sg-5173a334

Chapter 2

41

--protocol tcp

--port 80

--cidr 0.0.0.0/0

$ aws ec2 authorize-security-group-egress

--group-id sg-5173a334

--protocol tcp

--port 443

--cidr 0.0.0.0/0

5. Create and launch a NAT instance in the public subnet by performing the
following steps:

1. Get the list of Amazon NAT instance images. Use the most recent AMI from
the list of AMI's.
$ aws ec2 describe-images
--filter Name="owner-alias",Values="amazon"
--filter Name="name",Values="amzn-ami-vpc-nat*"

2. Create a key/pair for the NAT instance.
$ aws ec2 create-key-pair

--key-name NATServerKeyPair

3. Launch the NAT instance in the public subnet.
$ aws ec2 run-instances

--image-id ami-70a38222

--count 1

--instance-type t1.micro

--key-name NATServerKeyPair

--security-group-ids sg-5173a334

--subnet-id subnet-0240b575

4. Associate a name with the NAT instance.
$ aws ec2 create-tags

--resources i-1634e7da

--tags Key=Name,Value=NATInstance

5. Disable source/destination check.
$ aws ec2 modify-instance-attribute

--instance-id i-1634e7da

--source-dest-check "{\"Value\": false}"

Configuring and Securing a Virtual Private Cloud

42

6. Create the EIP in VPC.
$ aws ec2 allocate-address

--domain vpc

7. Associate EIP with the NAT instance.

$ aws ec2 associate-address

--instance-id i-1634e7da

--allocation-id eipalloc-37302855

6. Create an Internet gateway by performing the following steps:

1. Execute the following command to create an Internet gateway.
$ aws ec2 create-internet-gateway

2. Attach the Internet gateway to the VPC.

$ aws ec2 attach-internet-gateway

--internet-gateway-id igw-95c22df0

--vpc-id vpc-0214e967

7. Create a route table for the private subnet

1. Execute the following command to create a route table for PrivateSubnet.
$ aws ec2 create-route-table

--vpc-id vpc-0214e967

2. Associate a name with the route table.
$ aws ec2 create-tags

--resources rtb-7c18d919

--tags Key=Name,Value=PrivateRouteTable

3. Add a route in the route table, which routes all traffic to the NAT instance.
$ aws ec2 create-route

--route-table-id rtb-7c18d919

--destination-cidr-block 0.0.0.0/0

--instance-id i-1634e7da

4. Associate the route table.

$ aws ec2 associate-route-table

--route-table-id rtb-7c18d919

--subnet-id subnet-49ca1b2c

Chapter 2

43

8. Create a route table for the public subnet.

1. Execute the following command to create a route table for PublicSubnet.
$ aws ec2 create-route-table

--vpc-id vpc-0214e967

2. Associate a name with the route table.
$ aws ec2 create-tags

--resources rtb-7f1bda1a

--tags Key=Name,Value=PublicRouteTable

3. Add a route in the route table that routes all traffic to the Internet gateway.
$ aws ec2 create-route
--route-table-id rtb-7f1bda1a
--destination-cidr-block 0.0.0.0/0
--gateway-id igw-95c22df0

4. Associate the route table with the subnet.

$ aws ec2 associate-route-table

--route-table-id rtb-7f1bda1a

--subnet-id subnet-0240b575

9. Test the setup.

1. Launch an instance in PublicSubnet with a security group that allows SSH
traffic from the public IP range of your network.
$ aws ec2 create-security-group
--group-name PublicServerSecurityGroup
--description "Public Server Security Group"
--vpc-id vpc-0214e967

2. Add an inbound rule for port 22 that allows traffic from the public IP range of
your network.
$ aws ec2 authorize-security-group-ingress

--group-id sg-0a76a66f

--protocol tcp

--port 22

--cidr 123.252.223.114/32

3. Create a key pair
$ aws ec2 create-key-pair

--key-name PublicServerKeyPair

Configuring and Securing a Virtual Private Cloud

44

4. Launch the instance in PublicSubnet.
$ aws ec2 run-instances

--image-id ami-7e2c612c

--count 1

--instance-type t1.micro

--key-name PublicServerKeyPair

--security-group-ids sg-0a76a66f

--subnet-id subnet-0240b575

5. Launch an instance in the private subnet with a security group that allows
SSH traffic from the public subnet only.
$ aws ec2 create-security-group

--group-name PrivateServerSecurityGroup

--description "Private Server SecurityGroup"

--vpc-id vpc-0214e967

6. Add an inbound rule for port 22 that allows traffic from PublicSubnet only.
$ aws ec2 authorize-security-group-ingress

--group-id sg-d476a6b1

--protocol tcp

--port 22

--cidr 10.0.0.0/24

7. Create a key pair.
$ aws ec2 create-key-pair

--key-name PrivateServerKeyPair

8. Launch the instance in PrivateSubnet.

$ aws ec2 run-instances

--image-id ami-7e2c612c

--count 1

--instance-type t1.micro

--key-name PrivateServerKeyPair

--security-group-ids sg-d476a6b1

--subnet-id subnet-49ca1b2c

Chapter 2

45

How it works…
We first created a VPC with dedicated tenancy by specifying the network range for the VPC,
in the CIDR notation. Each instance launched in a VPC has a tenancy attribute and each VPC
has a related instance tenancy attribute. As we created our VPC with the dedicated attribute,
all instances launched in this VPC will be dedicated instances irrespective of the value of the
instance's tenancy attribute. Note that some instance types cannot be launched in a VPC with
the tenancy attribute set to dedicated. The tenancy information for the VPC is displayed on the
VPC console.

Next, we created a tag to help us identify our VPC resource by associating our own metadata
with it. Tags are specified as key/value pairs. For our VPC, we specify the key as name and
assign TestVPC as the value. You can specify other tags to categorize your VPC or other AWS
resources, for example, you can specify the owner or primary contact for the resource and
the environment (dev, test, staging, production, and so on), to better manage the resources
in your account.

Then, we retrieved the description of our VPC to verify the VPC ID, tenancy (default or dedicated),
tags specified (both key and value), current state of the VPC (pending or available), the CIDR
block, and an indicator whether the VPC is the default VPC (true or false). In addition, executing
the describe-vpcs command also returns the ID of the DHCP options set associated with
your VPC. To assign your own domain name to your instances, you must specify the appropriate
DHCP options to use with the VPC. The DHCP option sets are associated with your AWS account.

We created public and private subnets by dividing the VPC CIDR block, and specifying the
appropriate availability zone. In our example, we ensure that the CIDR blocks for our subnets
do not overlap. If you are defining a single subnet in your VPC, then the CIDR block of your
subnet is the same as that for the VPC. Though VPCs can span multiple availability zones,
each subnet must reside entirely within one availability zone. In our example, we placed
our subnets in the same availability zone, however, you can choose to place your subnets in
separate availability zones to protect against availability zone failures. In this step, we also
create tags to name our subnets PublicSubnet and PrivateSubnet.

Next, we create a security group for our NAT instance with inbound and outbound rules for
specific ports. The inbound rules allow inbound HTTP traffic on port 80 from servers in the
private subnet, HTTPS traffic on port 443 from servers in the private subnet, and inbound
SSH access to the NAT instance from a specific IP your network. The outbound rules allow
outbound HTTP and HTTPS access to the Internet on ports 80 and 443, respectively.

www.allitebooks.com

http://www.allitebooks.org

Configuring and Securing a Virtual Private Cloud

46

In the next step, we create and launch a NAT instance. We use the NAT instance in the public
subnet of our VPC to enable instances in the private subnet to initiate outbound traffic to
the Internet while preventing inbound traffic (from the Internet). We start by executing the
describe-images command that describes one or more images, that is, AMIs available
for you to launch. We filter the results of this command to retrieve Amazon AMIs that are
configured to run as NAT instances. The AMI names contain the amzn-ami-vpc-nat string
with a version number, so we filter the results using this string and choose the most recent
AMI for our use. At this stage, we create a key pair and launch our NAT instance in the public
subnet with the previously created security group.

We have chosen a micro instance in our example, however, you should choose the NAT
instance type based on your intended load. If your application connects to the Internet
occasionally and does not require high-network bandwidth, then a micro instance might
suffice. However, if your application communicates with the Internet constantly and requires
higher bandwidth, then a medium or a large instance may be required.

We can use the describe-instances command to check the state of our instance.
It should be in a running state before we proceed with the next steps. As EC2 instances
perform source/destination checks by default, that is, an instance must be the source or
destination of any traffic it sends or receives. However, a NAT server must be able to send
and receive traffic from sources or destinations other than itself. Therefore, we use the
modify-instance-attribute command to disable the source/destination checks
for our NAT instance.

In the next step, we allocate an EIP address for use with instances in our VPC. The EIP
is associated with our AWS account, and helps in dynamically remapping the address
to another instance in our account in case of instance failures. We associate this EIP
address with our NAT instance.

The next set of commands creates an Internet gateway and attaches the same to our
VPC. This step enables Internet access for instances in our subnets. The NAT instance
is connected to the Internet using the Internet gateway. For example, an instance in the
private subnet can connect to the Internet via the NAT instance, which routes traffic
from/to the instance using the Internet gateway.

In the next two steps we create custom route tables for our private and public subnets.
These route tables explicitly control the routing for each subnet's outbound traffic. After
creating a route table we define routes and associate them with our subnets. Each route
specifies a destination CIDR and a target (for example, we route all traffic to the NAT instance
in the private subnet and to the Internet gateway in the public subnet). As a practice, we
should use the most specific route when determining how to route our traffic. For example,
if we have two routes to the same destination then the route that covers a smaller number
of IP addresses is used.

Finally, we test our VPC by creating instances in our public and private subnets.

Chapter 2

47

Configuring VPC DHCP options
DHCP options sets are associated with your AWS account so that they can be used across
all your VPCs. You can assign your own domain name to your instances by specifying a set
of DHCP options for your VPC. However, only one DHCP option set can be associated with a
VPC. Also, you can't modify the DHCP option set after it is created. In case you want to use
a different set of DHCP options then you will need to create a new DHCP option set and
associate it with your VPC. There is no need to restart or relaunch the instances in the VPC
after associating the new DHCP option set as they can automatically pick up the changes.

How to do it…
In this section, we will create a DHCP option set and then associate it with your VPC.

1. Create a DHCP option set with a specific domain name and domain name servers.
In our example, we execute commands to create a DHCP options set and associate
it with our VPC. We specify domain name testdomain.com and DNS servers
(10.2.5.1 and 10.2.5.2) as our DHCP options.
$ aws ec2 create-dhcp-options

--dhcp-configuration Key=domain-name,Values=testdomain.com
Key=domain-name-servers,Values=10.2.5.1,10.2.5.2

2. Associate the DHCP option set to your VPC (vpc-bb936ede).
$ aws ec2 associate-dhcp-options

--dhcp-options-id dopt-dc7d65be

--vpc-id vpc-bb936ede

How it works…
DHCP provides a standard for passing configuration information to hosts in a network.
The DHCP message contains an options field in which parameters such as the domain
name and the domain name servers can be specified. By default, instances in AWS are
assigned an unresolvable host name, hence we need to assign our own domain name and
use our own DNS servers. The DHCP options sets are associated with the AWS account and
can be used across our VPCs.

First, we create a DHCP option set. In this step, we specify the DHCP configuration parameters
as key/value pairs where commas separate the values and multiple pairs are separated by
spaces. In our example, we specify two domain name servers and a domain name. We can
use up to four DNS servers. Next, we associate the DHCP option set with our VPC to ensure
that all the existing and new instances launched in our VPC will use this DHCP options set.

Configuring and Securing a Virtual Private Cloud

48

Note that if you want to use a different set of DHCP options, then you will need to create a new
set and again associate them with your VPC as modifications to a set of DHCP options is not
allowed. In addition, you can let the instances pick up the changes automatically or explicitly
renew the DHCP lease. However, in all cases only one set of DHCP options can be associated
with a VPC at any given time. As a practice, delete the DHCP options set when none of your
VPCs are using it and you don't need it any longer.

Configuring networking connections
between two VPCs (VPC peering)

In this recipe, we will configure VPC peering. VPC peering helps you connect instances in
two different VPCs using their private IP addresses. VPC peering is limited to within a region.
However, you can create a VPC peering connection between VPCs that belong to different
AWS accounts. The two VPCs that participate in VPC peering must not have matching or
overlapping CIDR addresses. To create a VPC connection, the owner of the local VPC has to
send the request to the owner of the peer VPC located in the same account or a different
account. Once the owner of peer VPC accepts the request, the VPC peering connection is
activated. You will need to update the routes in your route table to send traffic to the peer
VPC and vice versa. You will also need to update your instance security groups to allow
traffic from-to the peer VPC.

How to do it…
In this section, we present the commands to creating a VPC peering connection, accepting a
peering request, and adding the appropriate route in your routing table.

1. Create a VPC peering connection between two VPCs with IDs vpc-9c19a3f4 and
vpc-0214e967. Record the VPC peering connection ID for further use.
$ aws ec2 create-vpc-peering-connection

--vpc-id vpc-9c19a3f4

--peer-vpc-id vpc-0214e967

2. Accept VPC peering connection.

Here, we will accept the VPC peering connection request with ID pcx-cf6aa4a6.
$ aws ec2 accept-vpc-peering-connection

--vpc-peering-connection-id pcx-cf6aa4a6

3. Add a route in the route table for the VPC peering connection.

The following command creates the route with the destination CIDR (172.31.16.0/20)
and VPC peer connection ID (pcx-0e6ba567) in route table rtb-7f1bda1a.
$ aws ec2 create-route

Chapter 2

49

--route-table-id rtb-7f1bda1a

--destination-cidr-block 172.31.16.0/20

--vpc-peering-connection-id pcx-0e6ba567

How it works…
First, we request a VPC peering connection between two VPCs: a requester VPC that we
own (that is, vpc-9c19a3f4)and a peer VPC with that we want to create a connection
(vpc-0214e967). Note that the peering connection request expires after 7 days.

In order to activate the VPC peering connection, the owner of the peer VPC must accept the
request. In our recipe, as the owner of the peer VPC, we accept the VPC peering connection
request. However, note that the owner of the peer VPC may be a person other than you. You
can use the describe-vpc-peering-connections command to view your outstanding
peering connection requests. The VPC peering connection should be in the pending-
acceptance state for you to accept the request.

After creating the VPC peering connection, we created a route in our local VPC subnet's route
table to direct traffic to the peer VPC. You can also create peering connections between
two or more VPCs to provide full access to resources or peer one VPC to access centralized
resources. In addition, peering can be implemented between a VPC and specific subnets or
instances in one VPC with instances in another VPC. Refer to the Amazon VPC documentation
to set up the most appropriate peering connections for your specific requirements.

Connecting on-premise network to VPC
using VPN

By following the recipe in this section, you can extend your on-premise data center into the
cloud by connecting on-premise network to VPC using VPN. Internet Protocol Security (IPSec)
VPN connections are supported by AWS. You can create both statically routed and dynamically
routed VPN connections in a VPC. Virtual private gateway works on the AWS side of the VPN
connection and customer gateway (a physical or a software appliance) works on your side of
the VPN connection. If you already have an OpenVPN Access Server setup on premises and
would like to extend connectivity of your OpenVPN connection to the Amazon Cloud, you can
do so easily without purchasing additional hardware. Each VPC connection on the AWS side
has two tunnels for redundancy, if one tunnel is taken down for maintenance purposes, your
customer gateways can use the second tunnel. Each tunnel has its own unique virtual private
gateway public IP address. To handle failures of customer gateways, you can create a second
VPN connection using a second customer gateway. After creating a successful VPN connection
you have to update your route tables to direct traffic to your on-premise network and update
the security groups of the instances and network ACLs of your subnets.

Configuring and Securing a Virtual Private Cloud

50

The list of VPN devices that are known to work with Amazon VPC are
available at http://aws.amazon.com/vpc/faqs/#C9.

How to do it…
In this section, we present the commands for connecting your on-premise network to the VPC
using VPN. The steps to accomplish this include creating a customer gateway, a virtual private
gateway (and attaching it to your VPC), and static routes for your VPN connection.

1. Create a customer gateway with the ipsec.1 type. You have to provide the
Internet-routable IP address for the customer gateway's external interface.
This IP address must be static.
$ aws ec2 create-customer-gateway

--type ipsec.1

--public-ip 123.252.223.114

--bgp-asn 65000

2. Create a virtual private gateway with the ipsec.1 type.
$ aws ec2 create-vpn-gateway

--type ipsec.1

3. Attach the virtual private gateway (vgw-a74f34f5) to VPC (vpc-0214e967).
$ aws ec2 attach-vpn-gateway

--vpn-gateway-id vgw-a74f34f5

--vpc-id vpc-0214e967

4. Create a VPN connection with static routing.

The following command creates the VPN connection with static routing
between the customer gateway (cgw-762b5124) and virtual private gateway
(vgw-a74f34f5). The response includes information that you need to give to
your network administrator to configure your customer gateway.
$ aws ec2 create-vpn-connection

--type ipsec.1

--customer-gateway-id cgw-762b5124

--vpn-gateway-id vgw-a74f34f5

--options "{\"StaticRoutesOnly\":true}"

http://aws.amazon.com/vpc/faqs/#C9

Chapter 2

51

5. Create static routes for the VPN connection (vpn-d74d3685). The static route
allows traffic to be routed from the virtual private gateway to the VPN customer
gateway. You have to prove the CIDR block associated with the local subnet of
the customer network.
$ aws ec2 create-vpn-connection-route

--vpn-connection-id vpn-d74d3685

--destination-cidr-block 172.30.0.0/16

How it works…
First, we create a customer gateway that has information about our VPN device. For doing
that, we provided the Internet-routable public IP address of our VPN device. Note that the
IP address can't be behind your NAT instance, and it must be static. For dynamic routing,
you will need to specify the gateway's Border Gateway Protocol (BGP) and Autonomous
System Number (ASN); this can be either a public or private ASN (such as those in the
64512–65534 range).

The device on the AWS side of our VPN connection is the virtual private gateway. The virtual
private gateway represents the endpoint of our VPN connection. We create a virtual private
gateway in our net step. Note that ipsec.1 is the only supported connection type for this
virtual private gateway. Then, we attach the virtual private gateway to our VPC.

In the next step, we create a VPN connection between our virtual private gateway and our
customer gateway. We specify the option for static routing, only.

In the final step, we create a static route associated with our VPN connection between the
virtual private gateway and the VPN customer gateway. We specify all IP prefixes of our on-
premise network in static routing to communicate with instances in your VPC. Any networks
not specified here will not be able to communicate with your Amazon instances. For static
routing, the static IP prefixes that you specify for your VPN configuration are propagated to
the route table after you've created the VPN connection.

After creating your VPN connection, you must test the end-to-end connectivity of your
instances. You would typically launch an instance, configure your security group to enable
inbound ICMP, and then use ping to test the connection.

It is recommended to set up a second VPN connection for redundancy. This connection can
help maintain traffic flows in cases of customer gateway failures and during maintenance on
your customer gateway.

53

3
Managing AWS

Resources Using AWS
CloudFormation

In this chapter, we will cover recipes for:

 f Creating CloudFormation templates

 f Creating CloudFormation templates from existing AWS resources

 f Deploying applications on EC2 instances

 f Updating a stack

Introduction
In this chapter, we present recipes for using AWS CloudFormation to create, update, and
delete a collection of related AWS resources. We use CloudFormation templates to define
AWS resources, and any other dependencies and parameters that are required to run a given
specific application. A template is essentially a JavaScript Object Notation (JSON) file. Using
AWS CloudFormation, you can implement version control for your infrastructure and define
new templates, or use existing ones, to create a stack (a running instance of your template).
If the stack creation process fails, then the entire process gets rolled back.

AWS CloudFormation is provided as a free service, you need to
only pay for the AWS resources created.

Managing AWS Resources Using AWS CloudFormation

54

Creating CloudFormation templates
In this section, we present the recipe to create an AWS CloudFormation template to specify
the AWS resources (and their properties). AWS CloudFormation provides editors to help you
to edit your CloudFormation templates. These editors are available for both Visual Studio
(AWS Toolkit for Visual Studio) and Eclipse (AWS Toolkit for Eclipse) environments. Based
on your application-specific requirements, you will need to define parameters, mappings,
resources, and output in the template. Image ID, instance type, VPC ID, subnet IDs, a name
for the instance, and key/pair names are the required parameters to run this recipe. You can
store this template file in a local folder or in S3 storage. Before creating the stack from the
template, you should validate the template using CLI.

You can find sample templates at http://aws.amazon.com/
cloudformation/aws-cloudformation-templates/.

How to do it…
Here, we present the specific commands to use for defining, validating, and then creating
an AWS cloud stack. As an example, we will be creating the CloudFormation template for an
autoscaled web application. This application scenario will require us to define an Elastic Load
Balancer (ELB), launching configurations, and autoscaling groups, cloud watch alarms, and
security groups. We will also include commands to retrieve the AWS resource descriptions,
get access to the stack events, and send event notifications to an SNS topic. Create the stack
by performing the following steps:

1. Create a template file (let's name the file webserverautoscaling.json) with the
JSON string specified as follows:
{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Description" : "AWS CloudFormation template for web
 server auto scaling deployment.",
 "Parameters" : {
 "ImageId" : {
 "Description" : "AMI id.",
 "Type" : "String",
 "Default" : "ami-1e604a4c"
 },
 "InstanceType" : {
 "Description" : "Tomcat EC2 instance type.",
 "Type" : "String",
 "Default" : "m3.medium",

http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/

Chapter 3

55

 "AllowedValues" : ["t2.small", "t2.medium",
 "m1.small", "m1.medium", "m3.medium","m3.large"]
 },
 "VpcId" : {
 "Type" : "String",
 "Description" : "VPC id.",
 "Default" : "vpc-0214e967"
 },
 "Subnets" : {
 "Type" : "CommaDelimitedList",
 "Default" : "subnet-0240b575,subnet-5314c936",
 "Description" : "Subnet id's list."
 },
 "KeyPairName" : {
 "Description" : "EC2 Key Pair to allow SSH access to
 the instances.",
 "Type" : "String",
 "Default" : "ApacheServerKeyPair"
 },
 "NameForNewInstances" : {
 "Description" : "Name for the instances creating in
 Auto Scaling Group.",
 "Type" : "String",
 "Default" : "apacheserver-asg-instance"
 }
 },

 "Mappings" : {

 },

 "Resources" : {
 "SecurityGroup": {
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "GroupDescription": "Enable port 80 access from
 anywhere.",
 "VpcId" : { "Ref" : "VpcId" },
 "SecurityGroupIngress": [{
 "IpProtocol": "tcp",
 "FromPort": "80" ,
 "ToPort": "80" ,
 "CidrIp" : "0.0.0.0/0"
 }]

www.allitebooks.com

http://www.allitebooks.org

Managing AWS Resources Using AWS CloudFormation

56

 }
 },
 "ElasticLoadBalancer" : {
 "Type" : "AWS::ElasticLoadBalancing::LoadBalancer",
 "Properties" : {
 "Subnets" : { "Ref" : "Subnets" },
 "SecurityGroups" : [{ "Ref" : "SecurityGroup"
 }],
 "Listeners" : [{
 "LoadBalancerPort" : "80",
 "InstancePort" : "80" ,
 "Protocol" : "HTTP"
 }],
 "HealthCheck" : {
 "Target" : "HTTP:80/",
 "HealthyThreshold" : "3",
 "UnhealthyThreshold" : "5",
 "Interval" : "30",
 "Timeout" : "5"
 }
 }
 },
 "WebServerAutoScalingGroup" : {
 "Type" : "AWS::AutoScaling::AutoScalingGroup",
 "Properties" : {
 "AvailabilityZones" : { "Fn::GetAZs" : "" },
 "VPCZoneIdentifier" : { "Ref" : "Subnets" },
 "LaunchConfigurationName" : { "Ref" :
 "LaunchConfig" },
 "MinSize" : "1",
 "MaxSize" : "4",
 "LoadBalancerNames" : [{ "Ref" :
 "ElasticLoadBalancer" }],
 "HealthCheckGracePeriod" : 300,
 "HealthCheckType" : "ELB",
 "Tags" : [{"Key" : "Name", "Value" : { "Ref" :
 "NameForNewInstances" },"PropagateAtLaunch" :
 true}]
 }
 },

 "LaunchConfig" : {
 "Type" : "AWS::AutoScaling::LaunchConfiguration",
 "Properties" : {

Chapter 3

57

 "KeyName" : { "Ref" : "KeyPairName" },
 "ImageId" : { "Ref" : "ImageId" },
 "InstanceType" : { "Ref" : "InstanceType" },
 "AssociatePublicIpAddress" : true,
 "SecurityGroups" : [{ "Ref" : "SecurityGroup" }]
 }
 },

 "WebServerScaleUpPolicy" : {
 "Type" : "AWS::AutoScaling::ScalingPolicy",
 "Properties" : {
 "AdjustmentType" : "ChangeInCapacity",
 "AutoScalingGroupName" : { "Ref" :
 "WebServerAutoScalingGroup" },
 "Cooldown" : "60",
 "ScalingAdjustment" : "1"
 }
 },
 "WebServerScaleDownPolicy" : {
 "Type" : "AWS::AutoScaling::ScalingPolicy",
 "Properties" : {
 "AdjustmentType" : "ChangeInCapacity",
 "AutoScalingGroupName" : { "Ref" :
 "WebServerAutoScalingGroup" },
 "Cooldown" : "60",
 "ScalingAdjustment" : "-1"
 }
 },

 "CPUAlarmHigh": {
 "Type": "AWS::CloudWatch::Alarm",
 "Properties": {
 "AlarmDescription": "Scale-up if CPU > 60% for 10
 minutes",
 "MetricName": "CPUUtilization",
 "Namespace": "AWS/EC2",
 "Statistic": "Average",
 "Period": "300",
 "EvaluationPeriods": "2",
 "Threshold": "60",
 "AlarmActions": [{ "Ref": "WebServerScaleUpPolicy"
 }],
 "Dimensions": [
 {

Managing AWS Resources Using AWS CloudFormation

58

 "Name": "AutoScalingGroupName",
 "Value": { "Ref": "WebServerAutoScalingGroup" }
 }
],
 "ComparisonOperator": "GreaterThanThreshold"
 }
 },
 "CPUAlarmLow": {
 "Type": "AWS::CloudWatch::Alarm",
 "Properties": {
 "AlarmDescription": "Scale-down if CPU < 60% for 10
 minutes",
 "MetricName": "CPUUtilization",
 "Namespace": "AWS/EC2",
 "Statistic": "Average",
 "Period": "300",
 "EvaluationPeriods": "2",
 "Threshold": "60",
 "AlarmActions": [{ "Ref":
 "WebServerScaleDownPolicy" }],
 "Dimensions": [
 {
 "Name": "AutoScalingGroupName",
 "Value": { "Ref": "WebServerAutoScalingGroup" }
 }
],
 "ComparisonOperator": "LessThanThreshold"
 }
 }
 },
 "Outputs": {
 "URL": {
 "Value": {
 "Fn::Join": ["", ["http://", {"Fn::GetAtt":
 ["ElasticLoadBalancer", "DNSName"]}]]
 },
 "Description" : "Elastic Load Balancer DNS
 name."
 }
 }
}

Chapter 3

59

2. Validate the template by running the following command to check the syntax of
the template:
$ aws cloudformation validate-template

--template-body file://F:\\webserverautoscaling.json

3. Execute the following command to create a stack called webserverautoscaling
using the webserverautoscaling.json file:
$ aws cloudformation create-stack

--stack-name webserverautoscaling

--template-body file://F:\\ webserverautoscaling.json

--parameters ParameterKey=NameForNewInstances,ParameterValue=apach
eserver-asg-pr-instance

4. Execute the following command to get all the resources descriptions for the the stack:
$ aws cloudformation describe-stack-resources

--stack-name webserverautoscaling

5. Execute the following command to get the list of events for the stack:
$ aws cloudformation describe-stack-events

--stack-name webserverautoscaling

How it works…
In the first step for creating a stack, we use a JSON-based template to declaratively specify
the required AWS resources and their properties. In addition, we can also specify the
dependencies between the resources, for example, we may want the instances to come
up after the load balancer. We also use the template to specify data flows between the
resources, for example, passing the database connection strings to the instances.

A template is divided into multiple sections—resources, parameters, mappings, and outputs.
The resources section contains the list of all the resources and their specific properties
required for the application. These include EC2 instances, RDS databases, security groups,
and many more. The parameters section helps you specify the parameters that can be
customized at the stack creation time. The parameter section in the template can help you
set appropriate values for different environments, for example, you may want to have different
number of instances for your test and production stacks, or you may choose to disable the
Multi-AZ parameter for the RDS service in your testing environment. The mappings section
allows you to perform conditional setting of properties, for example, you may want to have
region-specific values for the properties. The final section is the outputs section. This section
is used to return important data to the user based on the resources created. For example,
we may want to pass the URL for a newly created website to the user. The output values get
shown in the console.

Managing AWS Resources Using AWS CloudFormation

60

We set the version number and provide a simple description for our template. In addition,
we declaratively define the image, instance types, VPC, subnets, and so on, in the parameters
section. For example, for the InstanceType parameter, we have a description for the
parameter, the data type of the parameter is a string, the default value is m3.medium, and
the allowed values for the parameter are specified as a list of instance types allowed.

Mappings in templates are like switch statements. Using the Fn::FindInMap function, you
can get the values from the mappings by giving the key as input. We have not specified any
mappings in our example. However, this section can be used to define mappings between
region names and specific AMI IDs. For example, the region could be the one where the
CloudFromation template is being executed. This region information can be referenced
through a AWS::Region pseudo-parameter. The Fn::FindInMap function will then
use the region name to get the appropriate AMI ID.

The AWS resources are defined in the resource section of the CloudFormation template.
You can add one or more properties to the specified resources. Each resource has a logical
name that you can use to reference the resource in the template. We have also declared
an IAM security group, ELB, launch configuration, autoscaling group, and CloudWatch alarm
resources. Each resource has its own set of properties to be specified. For example, in the
case of the security group resource, we specify the type of resource and the ingress rules.
We use the Ref function at several places, as we do not know the physical ID of the resource
that will be created. This function will return the value of the property based on the actual
physical ID of the resource that is created. The CloudFormation service displays the actual
values of the resources as specified in the outputs section in the template after the stack is
successfully created. We use the Join function to concatenate strings. Here, we concatenate
the http:// string with the DNS name. The DNS name is retrieved using the GetAtt
function on the appropriate resource.

In the next step, we validate the template, which includes checks for structure and API usage,
JSON syntax, presence of circular dependencies, and so on. Validating the template can help
save you a lot of time. However, if AWS CloudFormation fails to create the stack, then you can
use the CloudFormation console to view the failure event and understand the reason for it.
For debugging EC2 provisioning failures, you can view the cloud-init and cfn logs, or
publish these logs to CloudWatch and view them in the AWS Management Console.

After creating and validating the template, you have to provide the template file path to
the create-stack command to create the stack using the specified template. While
creating the stack, we can pass specific parameters in the parameters section, for example,
apacheserver-asg-pr-instance is the autoscaling group for our production environment.

The next command is very helpful in verifying the stack you just created. The response of the
describe-stack command includes the stack name and ID, resource names, physical IDs,
resource types, current status of the resources, and the descriptions of the resources. Finally,
we execute the describe-stack-events command to retrieve all the stack-related events
for our stack.

Chapter 3

61

There's more…
Instead of executing the create-stack command, as specified in step 4, you can execute
the following command to sends the stack event notifications to a Simple Notification Service
(SNS) topic. Execute the following command to send the stack event notifications to a SNS topic
called Test.

$ aws cloudformation create-stack

--stack-name webserverautoscaling

--template-body file://F:\\ webserverautoscaling.json

--parameters ParameterKey=NameForNewInstances,ParameterValue=apacheserv
er-asg-pr-instance

--notification-arns

"arn:aws:sns:ap-southeast-1:968336292411:Test"

Before running this command, you will need to create an SNS topic called Test. You can
subscribe to this topic to receive e-mail notifications.

Creating CloudFormation templates from
existing AWS resources

AWS CloudFormer can be used to create AWS CloudFormation templates from the existing AWS
resources. This section describes the steps for creating a CloudFormation template from your
existing AWS resources using the CloudFormer tool. The AWS CloudFormer tool will automatically
detect the dependent resources for a given AWS resource. For example, if you select an EC2
instance, then CloudFormer will automatically select the associated security groups.

How to do it…
Follow the steps to create your AWS CloudFormation template from your existing AWS
resources:

1. Login to the AWS console.

2. Navigate to the CloudFormation service.

3. Click on Launch CloudFormer and continue with default options. If you want to
restrict the access to CloudFormation tool, specify the appropriate IP address range.
Check the checkbox that says I acknowledge that this template might cause AWS
CloudFormation to create IAM resources.

4. Within minutes, your CloudFormer stack will be created. Get the URL for your
CloudFormer tool in the outputs section.

Managing AWS Resources Using AWS CloudFormation

62

5. After navigating to the tool, select the AWS region from the Select the AWS Region
drop-down box.

6. After selecting the region, click on the Create Template button. This will analyze all
the AWS resources in your account.

7. After analyzing AWS resources in your account, the CloudFormer tool displays an
interface to select the DNS (Route53), VPC, VPC network (subnets, Internet gateways,
customer gateways, DHCP options, VPN connections), VPC security (network ACLs,
route tables), network (ELB, EIP, network interfaces, CloudFront distributions), compute
(autoscaling groups, EC2 instances), storage (EBS volumes, RDS databases instances,
DynamoDB tables, S3 buckets), services (Elastic Cache Clusters, SQS queues, SNS
topics, SimpleDB domains), config (autoscaling launch configurations, RDS DB subnet
groups, RDS DB parameter groups, Elastic Cache Parameter groups), security (EC2
security groups, RDS security groups, Elastic Cache Security groups, SQS queue
policies, S3 bucket policies, operational (autoscaling policies, CloudWatch alarms).
Select the required AWS resources in your AWS account.

8. After verifying the template, you can save the template in an S3 bucket.

9. Using this CloudFormation template, you can recreate your infrastructure.

10. After creating the CloudFormer template, remember to delete the CloudFormer stack
to avoid additional billing.

How it works…
AWS CloudFormer is itself a CloudFormation stack, so we need to launch it. As a result of
launching the stack, a t1.micro EC2 instance is created, automatically, and the URL is
displayed in the output section. We access the URL to get access to the CloudFormer tool.
CloudFormer helps you create a template from your running resources. It runs through all the
resources in your account, and then lets you select the resources you want to include in your
template. In addition, you can customize the names and define new outputs. CloudFormer
will fill in the values for various properties in the starter template, for example, the Availability
Zone for an EC2 instance. You will need to edit the starter template to include additional
parameters or abstract away various properties. After generating the CloudFormation
templates from the existing AWS resources, you can delete the CloudFormer stack to avoid
additional billing for the t1.micro EC2 instance.

Deploying applications on EC2 instances
You can deploy your applications on EC2 instances using AWS CloudFormation. In this AWS
CloudFormation template, for example, we will install an Apache server and deploy code to
it. We also create EIP, SecurityGroup, and EC2 resources. Image ID, instance type, VPC ID,
subnet ID, a name for the instance, and key/pair names are required parameters to run this
recipe. As this is a public facing web application, use the public subnet in your VPC.

Chapter 3

63

How to do it…
Follow the steps to install an Apache server and deploy some code to it:

1. Create the CloudFormation template file JSON file (named
apachewebserverdeployment.json) with the following content:
{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Description" : "AWS CloudFormation template for Apache
 Server.",
 "Parameters" : {
 "ImageId" : {
 "Description" : "AMI Id.",
 "Type" : "String",
 "Default" : "ami-7e2c612c"
 },
 "InstanceType" : {
 "Description" : "Tomcat EC2 instance type.",
 "Type" : "String",
 "Default" : "m3.medium",
 "AllowedValues" : ["t2.small", "t2.medium",
 "m1.small", "m1.medium", "m3.medium","m3.large"]
 },
 "VpcId" : {
 "Type" : "String",
 "Description" : "VPC Id.",
 "Default" : "vpc-0214e967"
 },
 "Subnet" : {
 "Type" : "String",
 "Default" : "subnet-0240b575",
 "Description" : "Subnet Id."
 },
 "KeyPairName" : {
 "Description" : "EC2 Key Pair to allow SSH access to
 the instances.",
 "Type" : "String",
 "Default" : "ApacheServerKeyPair"
 },
 "InstanceName" : {
 "Description" : "Name for the instance.",
 "Type" : "String",
 "Default" : "apacheserver-01"

Managing AWS Resources Using AWS CloudFormation

64

 }
 },

 "Mappings" : {

 },

 "Resources" : {
 "ApacheServer" : {
 "Type" : "AWS::EC2::Instance",
 "Metadata" : {
 "Comment" : "Deploy HTML application to Apache
 Web Server",
 "AWS::CloudFormation::Init" : {
 "config" : {
 "packages" : {
 "apt" : {
 "apache2" : []
 }
 },
 "sources" : {
 "/var/www/" : "https://s3-ap-
 southeast-1.amazonaws.com/c3htmlapp
 /application.zip"
 },
 "services" : {
 "sysvinit" : {
 "apache2" : { "enabled" :
 "true", "ensureRunning" :
 "true" }
 }
 }
 }
 }
 },
 "Properties" : {
 "UserData": {"Fn::Base64": {"Fn::Join": ["", [
 "#!/bin/bash\n",
 "sudo apt-get update\n",
 "sudo apt-get -y install python-setuptools
 python-pip\n",
 "sudo easy_install
 https://s3.amazonaws.com/cloudformation-
 examples/aws-cfn-bootstrap-
 latest.tar.gz\n",

Chapter 3

65

 "sudo /usr/local/bin/cfn-init -s ",
 { "Ref" : "AWS::StackName" },
 " -r ApacheServer",
 " --region ",
 { "Ref" : "AWS::Region" },
 "\n"
]]}},
 "ImageId" : { "Ref" : "ImageId" },
 "KeyName" : { "Ref" : "KeyPairName" },
 "SecurityGroupIds" : [{ "Ref" : "SecurityGroup"
 }],
 "InstanceType" : { "Ref" : "InstanceType" },
 "SubnetId" : { "Ref" : "Subnet" },
 "Tags" : [{"Key" : "Name", "Value" : { "Ref" :
 "InstanceName"} }]
 }
 },
 "IPAddress" : {
 "Type" : "AWS::EC2::EIP",
 "Properties" : {
 "Domain" : "vpc",
 "InstanceId" : { "Ref" : "ApacheServer" }
 }
 },
 "SecurityGroup": {
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "GroupDescription": "Enable port 80 access from
 anywhere.",
 "VpcId" : { "Ref" : "VpcId" },
 "SecurityGroupIngress": [{
 "IpProtocol": "tcp",
 "FromPort": "80" ,
 "ToPort": "80" ,
 "CidrIp" : "0.0.0.0/0"
 },
 {
 "IpProtocol": "tcp",
 "FromPort": "22" ,
 "ToPort": "22" ,
 "CidrIp" : "0.0.0.0/0"
 }]
 }
 }

www.allitebooks.com

http://www.allitebooks.org

Managing AWS Resources Using AWS CloudFormation

66

 },

 "Outputs": {
 "URL": {
 "Value": {
 "Fn::Join": ["", ["http://",
 {"Fn::GetAtt": ["ApacheServer",
 "PublicIp"]}]]
 },
 "Description" : "Apache Server Public Ip
 Address."
 }
 }
}

2. Execute the following command to create the stack using the preceding
CloudFormation template specified:
$ aws cloudformation create-stack

--stack-name apachewebserverdeployment

--template-body file://F:\\apachewebserverdeployment.json

--parameters ParameterKey=InstanceName,ParameterValue=apacheserv
er-pr-01

How it works…
In the first step for creating a stack, we use a JSON-based template to declaratively specify
the required AWS resources and their properties. In addition, we can also specify the
dependencies between the resources, for example, we may want the instances to come
up after the load balancer. We also use the template to specify data flows between the
resources, for example, passing the database connection strings to the instances.

A template is divided into multiple sections—resources, parameters, mappings, and outputs.
The resources section contains the list of all the resources and their specific properties
required for the application. These include EC2 instances, RDS databases, security groups,
and so on. The parameters section helps you specify the parameters that can be customized
at the stack creation time. The parameter section in the template can help you set appropriate
values for different environments, for example, you may want to have different number of
instances for your test and production stacks, or you may choose to disable the Multi-AZ
parameter for the RDS service in your testing environment. The mappings section allows
you to do conditional setting of properties, for example, you may want to have region-specific
values for the properties. The final section is the outputs section. This section is used to return
important data to the user, based on the resources created. For example, we may want to pass
the URL for a newly created website to the user. The output values get shown in the console.

Chapter 3

67

We set the version number and provide a simple description for our template. In addition,
we declaratively define the image, instance types, VPC, subnets, and so on in the parameters
section. For example, for the InstanceType parameter, we have a description for the
parameter, the data type of the parameter is a string, the default value is m3.medium, and
the allowed values for the parameter are specified as a list of instance types allowed.

Mappings in templates are like switch statements. Using the Fn::FindInMap function,
you can get the values from the mappings by giving the key as input. We have not specified
any mappings in our example. However, this section can be used to define mappings between
region names and specific AMI IDs. For example, the region could be the one where the
CloudFromation template is being executed. This region information can be referenced
through a AWS::Region pseudo parameter. The Fn::FindInMap function will then
use the region name to get the appropriate AMI ID.

The AWS resources are defined in the resource section of the CloudFormation template.
You can add one or more properties to the specified resources. Each resource has a logical
name that you can use to reference the resource in the template. We have also declared an
Elastic IP (EIP) address and an IAM security group. The IPAddress resource associates an EIP
with the instance. Each resource has its own set of properties to be specified. For example,
in case of the security group resource we specify, the type of resource and the ingress rules.

As we want to download and install our application on our instance, we can use a set of
CloudFormation helper functions. These are functions that run on the instance to pull down
the files, packages, and so on, need to run on the instance as it starts up. These functions
are installed by default on Amazon Linux and Windows AMIs. You can complete the following
tasks using the Cloudformation helper functions:

1. Create files, groups, and users.

2. Install packages and services.

3. Get source code from your source control system.

Metadata defined in the AWS::CloudFormation::Init key, which is then read by the
cfn-init helper script. The config section is used to specify packages, files to pull down,
services to start, and so on. In this recipe, we specify the download and installation of
Apache web server (when the instance starts up) in the packages subsection. In the sources
subsection, we specify the location of the ZIP file we want to pull from S3 storage and where
to put it (/var/www). In the services subsection, we specify the startup of the Apache
daemon and ensure that it is enabled and running.

The UserData property of EC2 instance complete the listed tasks:

1. Update the aptcache.

2. Install PHP tools.

3. Install CloudFormation helper scripts using easy_install tools.

Managing AWS Resources Using AWS CloudFormation

68

4. Run the cfn-init scripts. When you run the cfn-init script, it reads metadata
from AWS::CloudFormation::Init property, installs the apache2 server,
downloads the code from the S3 bucket, and copies it to the /var/www/ folder.
It will also ensure that the Apache server will be started automatically upon boot.

The output of the preceding CloudFormation template is the EIP address of EC2 instance.
Apache server installation and code retrieval from the S3 bucket can take time. By default,
CloudFormation shows stack complete status after all the resources have been created.
Instead, if you want to wait for the installation and configuration on EC2 instances to be
fully completed, then you have to create CreationPolicy on the EC2 resource and
send success signals after the installation and configuration is completed.

We use the Ref function at several places, as we do not know the physical ID of the resource
that will be created. This function will return the value of the property based on the actual
physical ID of the resource that is created. The CloudFormation service displays the actual
values of the resources as specified in the outputs section in the template after the stack is
successfully created. We use the Join function to concatenate strings. Here, we concatenate
the http:// string with the public IP address. The IP address is retrieved using the GetAtt
function on the appropriate resource.

Updating a stack
When you update a stack using AWS CloudFormation, it compares the current version of the
template with the previous one and then updates the AWS resources accordingly. You can
specify stack policies to avoid accidental updates to your AWS resources. You can also use
a single stack policy to specify the restrictions for multiple resources. However, you can only
apply one stack policy for the stack at any given time. Stack policies are specified in the JSON
format. If you don't specify a stack policy for your stack then, by default, you will be able to
update any of the resources. Also, if a stack policy is specified, then, by default, it will restrict
all updates unless you explicitly specify Allow statements for your resources.

How to do it…
Follow these steps to update your stack:

1. Create a stack policy as a JSON file (name it webserverautoscalingpolicy.
json) with the following content:
{
"Statement" : [
{
"Effect" : "Deny",
"Action" : "Update:*",
"Principal": "*",

Chapter 3

69

"Resource" : "LogicalResourceId/SecurityGroup"
},
{
"Effect" : "Allow",
"Action" : "Update:*",
"Principal": "*",
"Resource" : "*"
}
]
}

2. Associate the preceding policy with your stack using the following command:
$ aws cloudformation set-stack-policy

--stack-name webserverautoscaling

--stack-policy-body

file://F:\\webserverautoscalingpolicy.json

3. After applying the preceding policy, if you update your stack by changing your
SecurityGroup resource in the template, you will get an error. You can update
stack by executing the following command:
$ aws cloudformation update-stack

--stack-name webserverautoscaling

--template-body file://F:\\webserverautoscaling.json

How it works…
You can update your stack in response to evolving requirements of your application.
These updates can include properties of existing resources, adding and/or removing
resources, and updating the software running on your instances. These are typically
achieved by making changes to your template file. When you submit an updated template,
AWS CloudFormation updates the resources based on the differences between your currently
running stack and the updated template. Certain updates can be made without interruptions,
while others may require your resources to be replaced. In order to restrict modifications,
you use the Effect parameter in your stack policy.

The Effect parameter in the policy is for allowing or denying actions to the security group.
Update actions are either Allowed or Denied. These include the Update:Modify,
Update:Replace, Update:Delete, Update:* options. You can explicitly specify multiple
update actions or use regular expression such as Update:* to denote all update actions. If
you want to exclude some update actions, you can use NotAction. Here we are denying the
all update actions. You will need to specify the logical IDs of the resources to which the policy
applies. You can also use regular expressions for this purpose. If you want to exclude some
resources you can use NotResource.

Managing AWS Resources Using AWS CloudFormation

70

In the next step, we set the stack policy to the webserverautoscaling stack. At this stage,
if you try to update the stack you will get an error. In the final step, we run the command to
update the stack.

Downloading the example code
You can download the example code files from your account
at http://www.packtpub.com for all the Packt Publishing
books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

71

4
Securing Access to

Amazon EC2 Instances

In this chapter, we will cover recipes for:

 f Creating IAM users

 f Creating IAM groups and assigning group-level permissions

 f Creating IAM roles

 f Connecting on-premise AD to AWS IAM

 f Configuring AWS multifactor authentication

Introduction
AWS Identity and Access Management (IAM) enables centralized control to secure access
to AWS services and resources for your users. Using IAM, you can create and manage AWS
users and groups, and use fine-grained permissions to allow and deny their access to AWS
resources.

In this chapter, we present recipes for using AWS IAM to create users and roles, and assign
appropriate permissions to securely access AWS services. Users can also be added to a
group using the IAM groups feature and permissions can be assigned at the group level.
You can integrate your on-premise active directory with IAM. You can also assign policies
to users, groups, and roles where the policies contain one or more permissions. Finally, we
present a recipe to configure multifactor authentication (for enhanced security) to access
certain AWS services.

Securing Access to Amazon EC2 Instances

72

Creating IAM users
As a best practice, you should create individual users rather than share your credentials to
be used by other users. This ensures that you create unique users with their own individual
credentials. In addition, this allows you to rotate individual credentials and assign users
individual permissions. Typically, you would identify the IAM users in your organization,
create their credentials, and assign suitable permissions to them.

You can create IAM users using AWS console, API or CLI. After creating an IAM user, you need
to configure the password, access keys, and MFA devices for that user. By default, a new user
created in IAM does not have any permission, that is, the user exists but does not have access
to any of the services. To assign permissions to the user, you will have to create a policy. The
policy is a JSON document that contains one or more permissions. You can use predefined
policy templates or use the policy generator.

How to do it…
1. Create an IAM user.

Execute the following command to create a user named ethanhunt:

$ aws iam create-user

--user-name ethanhunt

2. Set the password for IAM user.

Execute the following command to set a new password for the user:
$ aws iam create-login-profile

--user-name ethanhunt

--password P@ssw0rd

3. Create an inline IAM policy for the user.

Create a new JSON file with the contents listed and save the file as S3ReadAccess.
json. The following sample policy gives permissions to list all the S3buckets, and
to list, upload, get, and delete objects in the bucket named ethanhunt.
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:ListAllMyBuckets"],
 "Resource": "arn:aws:s3:::*"
 },

Chapter 4

73

 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::ethanhunt"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject"
],
 "Resource": "arn:aws:s3:::ethanhunt/*"
 }
]
}

4. Execute the following command to create a policy, S3ReadAccess, using the JSON
document (S3ReadAccess.json):
$ aws iam put-user-policy

--user-name ethanhunt

--policy-name S3ReadAccess

--policy-document file://F:\\S3ReadAccess.json

How it works…
First, we create an IAM user, and then we assign the permissions and the password. As a best
practice, we always follow the principle of assigning the least privilege to any given user. For
example, if a user doesn't make API calls, then we don't create the access keys for that user.
This practice will ensure a more granular control over API and resource usage, and a lesser
chance of a user making mistakes. The assigned password is required to log in into the AWS
console. Ensure that you store the password in a secure location because if the password is
lost, then you can't recover it. In addition, as a best practice reduce or eliminate the use of
root account because this account cannot be controlled by IAM policies. Typically, we delete
the access keys and assign a MFA device to the account to achieve this.

Policies contain one or more permissions. In our example, upon creation of a new user,
we create a policy to assign permissions to the user to be able to access the AWS services
(EC2, S3, DynamoDB, and so on.) However, there are policy templates readily available or
most scenarios that you can use to customize for your own use.

Securing Access to Amazon EC2 Instances

74

There are two types of policies—managed and inline. Managed policies can be attached to
multiple users, groups, and roles. Inline policies are directly embedded in a user, group, or
role definition. In the next step, we create an inline policy and attach it to the user. We need
to specify the following parameters in the policy-version, effect (whether the user is allowed
to access or not), action (specific actions that are allowed or denied), and resource (identifies
the specific AWS resource).

Creating IAM groups and assigning group-
level permissions

You can manage users better using IAM groups than by managing them as individual users.
Using groups, you can assign same permissions to multiple users. This makes it easier to
assign the same permissions to multiple users. In addition, it also becomes simpler to update
or reassign permissions for multiple users, or move users between groups.

Typically, you would map permissions to a specific business function in your organization
followed by assigning users to that function. After creating groups, you have to create a policy
and assign it to the group. Policy variables and groups allow you to manage your users without
hardcoding each user in the policy.

How to do it…
1. Create IAM group.

Execute the following command to create a group called developers:

$ aws iam create-group

--group-name developers

2. Add a user to the group.

Execute the following command to add the previously created user, ethanhunt, to
the developers group:
$ aws iam add-user-to-group

--user-name ethanhunt

--group-name developers

3. Create an inline IAM policy for the group.

Chapter 4

75

Follow these steps to create an inline IAM policy. After creating the policy, you can
attach it to the developers group.

1. Create a JSON policy document with the following content, and then save the
file as EC2DevGroupPolicy.json. The first statement allows all users in the
developers group to list all the EC2 instances, and the second statement
allows the users in the developers group to terminate instances with the
dev resource tag. Here, the users in the developers group don't have the
permission to launch an EC2 instance. In the resource parameter, replace
the region name and account number with your own values. To find your AWS
account ID number in the AWS Management Console, click on Support in the
navigation bar in the upper-right corner, and then click on Support Center.
Your currently signed-in account ID appears below the Support menu.
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ec2:DescribeInstances",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:TerminateInstances",
 "Resource": "arn:aws:ec2:ap-southeast-
 1:968336292411:instance/*",
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/stack": "dev"
 }
 }
 }
]
}

2. Get the list of users in the group using the following command.
$ aws iam get-group --group-name developers

3. Execute the following command to assign the inline policy to the
developers group:
$ aws iam put-group-policy

--group-name developers

--policy-name EC2DevGroupPolicy

--policy-document file://F:\\EC2DevGroupPolicy.json

www.allitebooks.com

http://www.allitebooks.org

Securing Access to Amazon EC2 Instances

76

How it works…
As the first step, we create an IAM group so that we can add users to it. As a best practice,
create a group even if you have a single user in it. This helps any future users having the
same requirements to be added quickly to the same group. Creating groups also helps in
managing a set of users, as users may be added or removed from the group at any time.

You can restrict access further using conditions. Conditions allow for additional granularity
in permissions. There are some conditions that are common across AWS services and others
that are service specific. However, ensure that you don't overuse conditions, as it can result
in a very restrictive environment.

Creating IAM roles
An IAM role is a container for a policy. Using IAM roles for EC2 instances allows for easy
management of access keys and for their automatic rotation, that is, Amazon rotates the
keys several times a day without requiring any specific action from your end. Hence, you
should not have the access keys as a part of the AMI or your application, as their rotation
becomes unnecessarily complicated. We just need to create an IAM role, assign permissions
to the role, and then launch the EC2 instances to make this work.

After creating a role, you will also need to create a policy and assign it to the newly created
role. For example, if an EC2 instance needs access to other AWS services, such as S3 buckets
or DynamoDB tables, then you can create a role for it. You will assign the role permissions that
allow access to S3/DynamoDB, and finally launch the EC2 instance with that role. You can
create one role and attach it to multiple EC2 instances.

How to do it…
1. Create an IAM role for EC2.

Execute the following commands to create a role for an AWS service. You will need to
specify who can assume this role in the JSON document.

1. Create a new JSON document with the following content and save as
S3RoleForEC2.json:
{
"Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
}

Chapter 4

77

2. Execute the following command to create the S3RoleForEC2 role using the
JSON document:
$ aws iam create-role

--role-name S3RoleForEC2

--assume-role-policy-document

file://F:\\S3RoleForEC2.json

2. Create an inline policy for the role.

After creating a role, you need to assign permissions to it. For example, in our sample
policy, we are allowing access to an S3 bucket named appconfiguration from the
EC2 instance.

1. Create the JSON document with the following content. We are giving the
appropriate permissions to list objects in the bucket, and to put, get, and
delete objects from the bucket. Save the file as S3RoleForEC2Policy.
json.
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": "arn:aws:s3:::appconfiguration"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject"
],
 "Resource":
 "arn:aws:s3:::appconfiguration/*"
 }
]
 }

2. Execute the following command to assign the new inline policy to the
S3RoleForEC2 role.
$ aws iam put-role-policy

--role-name S3RoleForEC2

Securing Access to Amazon EC2 Instances

78

--policy-name S3RoleForEC2Policy

--policy-document

file://F:\\S3RoleForEC2Policy.json

3. Create and assign an instance profile to the role.

Execute the following commands to first create an instance profile, and then add the
role to the instance profile.

1. Create an instance profile.

Execute the following command to create an instance profile named
S3RoleForEC2Profile:
$ aws iam create-instance-profile

--instance-profile-name S3RoleForEC2Profile

2. Add the role to the instance profile.

3. The following command adds the role named S3RoleForEC2 to the
instance profile named S3RoleForEC2Profile.
$ aws iam add-role-to-instance-profile

--instance-profile-name S3RoleForEC2Profile

--role-name S3RoleForEC2

4. Launch an EC2 instance with the role.

After creating the role you can launch your EC2 instance with IAM roles. Execute
the following command to create the EC2 instance with the instance profile created
earlier. Before executing the command, you should have already created the key
pairs, security groups, VPC, and subnet.
$ aws ec2 run-instances
--image-id ami-7e2c612c
--count 1
--instance-type t2.micro
--key-name MyKeyPair
--security-group-ids sg-ad70b8c8
--subnet-id subnet-aed11acb
--iam-instance-profile Name=S3RoleForEC2Profile

5. Test the installation.

Execute the following command to get the list of objects in the
appconfiguration bucket:
s3 ls s3://appconfiguration/

If you try to access other buckets, you should get an access denied message. In addition,
test uploading and deleting files in the appconfiguration bucket from your EC2 instance.

Chapter 4

79

How it works…
As a first step, we create an IAM role. In order to do that, we create a policy containing the
requisite permissions and specify the policy in the create role command. If you use the AWS
console for creating role, AWS automatically creates the instance profile with same name
as role. But if you a create role from command line, you have to create the instance profile
yourself. Hence, we create an instance profile and add the role to it. You have to provide both
role name and instance profile name. Finally, we launch the instance specifying the image,
number of instances to create, type of EC2 instances, key/pair name, security group IDs, and
the subnet, as a good practice test and verify the installation.

Following a least privilege approach, we would typically create and assign roles to provide
appropriate access to an application running on an EC2 instance rather than to the
instance itself.

There's more…
Roles are also used to share access without sharing the actual access credentials. This is
particularly useful for giving a user temporary access to perform a task and in cases where
you want to provide cross-account access. For example, if you have separate AWS dev and
prod accounts, then you can use roles to give your dev users temporary credentials to access
the prod environment.

In order to implement these use cases, you need to create a new role and use policies to
specify who can assume this role and what they can do (after they assumed this role). After
the role is created, you just need to share the role name and the account ID with the user.
For example, if you want to give a specific developer belonging to the dev account read access
to an RDB database in the production account. For this, you will need to define a new role
name and specify in the policy that IAM users from your dev account are allowed read-only
access to the resource. The developer's access policy (in the dev account) is also changed to
allow him/her to assume the newly defined role in the production account. When developer
requests access to the production database using his/her own credentials, and receives a
set of temporary credentials to enable the access to the production database.

Connecting on-premise AD to AWS IAM
You can access AWS services using your corporate credentials as defined in your existing
Active Directory Federation Services (ADFS) setup. You can also integrate AWS with ADFS to
implement single sign-on functionality. When using ADFS with AWS, ADFS acts as the identity
provider and AWS acts as a relying party. This recipe includes commands and instructions to
create a proxy server to get the temporary credentials from AWS Security Token Service (STS)
and a client application that accesses an S3 bucket (using the temporary credentials) from a
C# application.

Securing Access to Amazon EC2 Instances

80

How to do it…
1. Create a proxy application.

Create a simple Windows Communication Foundation (WCF) application and add
a WCF service class. WCF is a framework for building service-oriented applications.
Using WCF, you can send data as asynchronous messages from one service endpoint
to another. A service endpoint can be a part of continuously available service hosted
by IIS, or it can be a service hosted in an application. In the class, create a Get
method that calls STS service for the temporary credentials.
TemporaryCredentials IProxyService.GetToken()
{
//Get username from client request.
string userName =
HttpContext.Current.Request.LogonUserIdentity.Name;

TemporaryCredentials objTemporaryCredentials = new
TemporaryCredentials();

//Get the app settings from web.config file.
NameValueCollection appConfig =
ConfigurationManager.AppSettings;
string accessKeyId = appConfig["accessKeyId"];
string secretAccessKey = appConfig["secretAccessKey"];
string bucketName = appConfig["bucketName"];

// Create a client.
AmazonSecurityTokenServiceConfig config = new
AmazonSecurityTokenServiceConfig();
AmazonSecurityTokenServiceClient client = new
AmazonSecurityTokenServiceClient(
accessKeyId,
secretAccessKey,
config);

//Split the user name.
string[] usernameParts01 = userName.Split('\\');

// Build the aws username.
string awsUsernameDomain = usernameParts01[1] + "@" +
usernameParts01[0];

// Split username@domain to retrieve the username only.
string[] usernameParts02 = awsUsernameDomain.Split('@');

Chapter 4

81

//Get username only.
string awsUsername = usernameParts02[0];

string policy = appConfig["policy_" + awsUsername];

// Replace the [*] values with real values at runtime.
policy = policy.Replace("[BUCKET-NAME]", bucketName);
policy = policy.Replace("[USER-NAME]",
awsUsername.ToLowerInvariant());
policy = policy.Replace("'", "\"");

//Request to get temporary credentials.
GetFederationTokenRequest request = new
GetFederationTokenRequest
{
DurationSeconds = 3600 * 8,
Name = awsUsername,
Policy = policy
};

//Get temporary credentials.
GetFederationTokenResponse objGetFederationTokenResponse =
client.GetFederationToken(request);

//Get federation token result.
GetFederationTokenResult objGetFederationTokenResult =
objGetFederationTokenResponse.GetFederationTokenResult;

//Get credentials.
Credentials objCredentials =
objGetFederationTokenResult.Credentials;

//Set user name.
objTemporaryCredentials.User = userName;

//Set access key id.
objTemporaryCredentials.AccessKeyId =
objCredentials.AccessKeyId;

//Set secret access key.
objTemporaryCredentials.SecretAccessKey =
objCredentials.SecretAccessKey;

//Set expiration.

Securing Access to Amazon EC2 Instances

82

objTemporaryCredentials.Expiration =
objCredentials.Expiration;

//Set token.
objTemporaryCredentials.Token =
objCredentials.SessionToken;

//Return result.
return objTemporaryCredentials;
}

2. Create a policy in the app settings section with the policy_username key.

Using policy file specified, the user can list objects in the specified bucket and get
objects from the folder with his name:
{
'Statement':
[
{
'Sid': 'PersonalBucketAccess',
 'Action': ['s3:GetObject'],
 'Effect': 'Allow',
 'Resource': 'arn:aws:s3:::[BUCKET-NAME]/[USER-
 NAME]/*'
},
{
 'Sid': 'GeneralBucketList',
 'Action': ['s3:ListBucket'],
 'Effect': 'Allow',
'Resource': 'arn:aws:s3:::[BUCKET-NAME]'
}
]
}

3. Host the WCF service and set the authentication to Windows Authentication for
this application on IIS. You will need to add the following binding configuration
in your web.config file. The configuration sets the security mode to
TransportCredentialOnly.
<bindings>
<webHttpBinding>
<binding name="default">
 <security mode="TransportCredentialOnly">
 <transport clientCredentialType="Windows"
 proxyCredentialType="Windows" />
 </security>

Chapter 4

83

</binding>
</webHttpBinding>
</bindings>

4. Create a client application.

Create a C# console application that accomplishes the following tasks:

 � Call the proxy server and get temporary credentials

 � Get list of object in the specified bucket

 � Get file data from the specified bucket

If you try to access the folder belonging to a user other than the logged-in user, you
will get an access denied message.
//Web request to call proxy service.
HttpWebRequest request =
(HttpWebRequest)WebRequest.Create("
http://ProxyServiceURL/ProxyService.svc/GetToken ");

request.UseDefaultCredentials = true;
request.Credentials =
System.Net.CredentialCache.DefaultCredentials;

//Get the response.
HttpWebResponse response = response = (HttpWebResponse)request.
GetResponse();

//Check for status code.
if (response.StatusCode == HttpStatusCode.OK)
 {
//Get response stream.
using (StreamReader reader = new
StreamReader(response.GetResponseStream()))
 {
//Read response.
 string json = reader.ReadToEnd();

//Initialize DataContractJsonSerializer.
 DataContractJsonSerializer serializer =
 new
 DataContractJsonSerializer
 (typeof(TemporaryCredentials));

 //Get memory stream.

Securing Access to Amazon EC2 Instances

84

 MemoryStream ms = new
 MemoryStream
 (Encoding.Default.GetBytes(json));

 //Get deserialized object.
 TemporaryCredentials
 objTemporaryCredentials =
 (TemporaryCredentials)
 serializer.ReadObject(ms);

 //Bucket name.
 string bucketName = "clientdocs01";

 //File name.
 string fileName =
 "administrator/Note.txt";

 //Set AWS credentials and token.
 SessionAWSCredentials
 objSessionAWSCredentials = new
 SessionAWSCredentials(
 objTemporaryCredentials.AccessKeyId,
 objTemporaryCredentials.SecretAccessKey,
 objTemporaryCredentials.Token);

 //Create S3 client object to access S3 service.
 AmazonS3Client objAmazonS3Client = new
 AmazonS3Client(objSessionAWSCredentials,
 Amazon.RegionEndpoint.APSoutheast1);

 //Prepare list object request.
 ListObjectsRequest
 objListObjectsRequest = new
 ListObjectsRequest();

 //Set bucket name.
 objListObjectsRequest.BucketName =
 bucketName;

 //Get response from AWS S3.
 ListObjectsResponse
 objListObjectsResponse =
 objAmazonS3Client.ListObjects
 (objListObjectsRequest);

Chapter 4

85

 //Iterate over S3 objects.
 for (int i = 0; i <
 objListObjectsResponse.S3Objects.Count;
 i++)
 {
 //Display object name.
 Console.WriteLine("\t" +
 objListObjectsResponse.
 S3Objects[i].Key);
 }

 //Prepare get object request.
 GetObjectRequest objGetObjectRequest =
 new GetObjectRequest();

 //Set bucket name.
 objGetObjectRequest.BucketName =
 bucketName;

 //Set file name.
 objGetObjectRequest.Key = fileName;

 //Get object data.
 GetObjectResponse objGetObjectResponse
 = objAmazonS3Client.GetObject
 (objGetObjectRequest);

 //Get response stream.
 using (StreamReader objStreamReader =
 new StreamReader
 (objGetObjectResponse.ResponseStream))
 {
 //Read response.
 Console.WriteLine("Contents :" +
 objStreamReader.ReadToEnd());
 }
 }
 }

Securing Access to Amazon EC2 Instances

86

How it works…
AD FS integration is an important organization because their users don't need to use a
different set of credentials for AWS access. The proxy application used to get temporary
credentials from AWS Security Token Service (STS) should be a domain-joined machine.
The proxy server stores the mapping between the user and the policy. To retrieve temporary
credentials, the proxy server needs AccessKeyId and SecretAccessKey. We create an
IAM user, assign the permissions, and create access keys for the user.

Before creating the sample application, download the .Net SDK using NuGet packager.
In Visual Studio's NuGet console, run the following command. After running the command,
add the namespace to your project.

Install-Package AWSSDK

The machine running the client application should be a domain-joined machine. In the client
application, you call proxy service to get the temporary credentials and access the S3 data
from user folder.

Configuring AWS multifactor authentication
AWS multifactor authentication (MFA) adds an extra layer of security for your AWS users. MFA
verifies your identity through something you know (user ID and password) and something you
have with you (hardware device or software token). In addition to the user name and password,
the user will need to enter a one-time authentication code while logging into the AWS console.
As a best practice always configure multifactor authentication for the root account and other
highly privileged IAM users. MFA is also used to control access to a specific resource and to
AWS service API calls.

Using conditions in the policy, you can specifically allow a user access to a set of services only
if the user was authenticated using the MFA code. For example, you can specify a condition
that a user is allowed to create or terminate EC2 instances in the production environment
only if they are authenticated using MFA.

There are two types of MFA—virtual and hardware. The virtual MFA device uses an application
to generate an authentication code that is compatible with time-based one-time password
(TOPT) standard. There are several different virtual MFA apps that you can use however note
that AWS requires the virtual MFA app to generate a six-digit code. Virtual MFA is free to use,
and you will need to either download the official MFA app or use Google Authenticator from
your smartphone to implement MFA.

In case you want to implement hardware-based MFA, then you will need to purchase the
hardware MFA device from third-party vendors such as Gemalto.

In this recipe, we configure a virtual MFA device (Google Authenticator) with AWS IAM.

Chapter 4

87

How to do it…
1. Create a virtual MFA device.

Execute the following command to create a virtual MFA device for the ethanhunt
user. Record the serial number for further use.

$ aws iam create-virtual-mfa-device

--virtual-mfa-device-name ethanhuntmfadevice

--outfile F:\\ethanhuntmfadevice.txt

--bootstrap-method Base32StringSeed

2. Enable the virtual MFA device.

Execute the following command to enable the MFA device. The user-name parameter
specifies ethanhunt, the user for whom you want to enable the MFA device.
$ aws iam enable-mfa-device

--user-name ethanhunt

--serial-number arn:aws:iam::968336292411:mfa/ ethanhuntmfadevice

--authentication-code-1 244672

--authentication-code-2 705514

How it works…
First, we create the virtual MFA device. In the command, we specify the name of the virtual
MFA device, output file path where the bootstrap information stored, and the method to be
used to seed the virtual MFA, for example, QRCodePNG or Base32StringSeed. The seed
information should be destroyed after the virtual device is provisioned.

After executing the command, the result file contains the configuration key. Manually, enter
this configuration key in your Google Authenticator app. Make sure to select the Time base
checkbox. After entering the configuration key, copy two consecutive codes from Google
Authenticator app, which are required to associate virtual MFA device with the specific user.

In the command used to enable the MFA device, we associate the MFA device with the user,
specify the IAM user name, the device ARN (MFA serial number), and the authentication code
emitted by the device.

Securing Access to Amazon EC2 Instances

88

There's more…
The virtual MFA app can run on smartphones, which makes them more convenient than
hardware MFA devices. However, this also makes virtual MFA less secure than hardware
MFA. Save the secret key in a secure place when you configure the virtual MFA device. This
will help you reconfigure the app to use the same virtual MFA in case you lose your phone.

As you need to have physical access to the smartphone or hardware device to configure
the virtual MFA, it is preferable to grant the users access to provision and manage their
MFA devices. In addition, you can deny these users access to AWS resources until they
authenticate using their provisioned MFA device.

89

5
Monitoring Amazon EC2

Instances

In this chapter, we will cover recipes for:

 f Collecting EC2 metrics using AWS CloudWatch

 f Collecting custom metrics from EC2 instances

 f Monitoring costs using CloudWatch

 f Sending an e-mail based on a CloudWatch alarm

 f Using CloudWatch Logs

Introduction
Amazon CloudWatch is AWS's monitoring service. It can be used to monitor your applications
and AWS resources. AWS CloudWatch works with all key AWS services including EC2, RDS,
DynamoDB, Elastic MapReduce, Kinesis, CloudSearch, and so on. CloudWatch provides
several out-of-the-box metrics such as CPU utilization, network utilization, and disk I/O metrics
from EC2 instances. However, you can also collect custom metrics from your applications.

AWS Management Console can be used to view, search, and graph the metrics data loaded by
Amazon CloudWatch. CloudWatch stores data as a series of time stamped data points.

One of most common use cases for CloudWatch is to use it to set alarms and take actions,
based on the metrics. For example, you can stop, terminate, recover, or reboot an EC2
instance in response to a CloudWatch alarm being raised. CloudWatch Logs lets you collect
your application, system, and custom log files into AWS CloudWatch Logs for analysis.

Monitoring Amazon EC2 Instances

90

AWS CloudWatch dashboard is used to visualize the metrics. You can also build customized
dashboards for your CloudWatch metrics. The data for these dashboards can be pulled in from
multiple regions to provide an overall view of your environment.

In addition, you can create specific CloudWatch alarms to alert the user via e-mail or
autoscale your application tiers based on the metrics. CloudWatch can also be used to
manage your costs, for example, deleting idle instances or alerting you when costs exceed a
certain threshold.

Collecting EC2 metrics using AWS
CloudWatch

You can collect basic metrics such as CPU utilization, network I/O, and disk I/O metrics
from your EC2 instances. There are two types of CloudWatch monitoring services—basic and
detailed. In basic monitoring, the Amazon EC2 metrics data is collected at 5 minute periods
and retained for 2 weeks, at no charge. The metrics are preselected and limited in number.
Basic monitoring is automatically enabled for all EC2 instances. In detailed monitoring, the
metrics are collected at 1-minute intervals and charged per hour per instance.

Regardless of the monitoring type, the metrics are aggregated by autoscaling group and EBS
(if you are using autoscaling or EBS). If you want detailed monitoring, you can enable it, both
while creating a new EC2 instance and for existing EC2 instances. You can access the metrics
data using either the CloudWatch API or the AWS Management Console.

How to do it…
1. Enable detail monitoring when launching an instance.

Execute the following command to create an EC2 instance with detail monitoring
enabled. Create VPC, subnet, security group, and key/pair before running the
following command:

$ aws ec2 run-instances

--image-id ami-7e2c612c

--count 1

--instance-type t1.micro

--key-name ApacheServerKeyPair

--security-group-ids sg-f332ea96

--subnet-id subnet-5314c936

--monitoring Enabled=value??

Chapter 5

91

2. List metrics.

Execute the following command to list the metrics you are collecting for AWS EC2:

$ aws cloudwatch list-metrics --namespace AWS/EC2

3. Get metric statistics.

Execute the following command to retrieve specific statistics, for example, the
average CPU utilization of our EC2 instance (i-54cfb999):

$ aws cloudwatch get-metric-statistics

--metric-name CPUUtilization

--start-time 2015-04-09T15:00:00

--end-time 2015-04-09T16:00:00

--period 300

--namespace AWS/EC2

--statistics Average

--dimensions Name=InstanceId,Value=i-54cfb999

How it works…
In the first step, we enable detail monitoring for our EC2 instance while creating it, by
specifying the monitoring parameter. In AWS CloudWatch, namespaces are containers for
metrics. All AWS services that provide Amazon CloudWatch data use a namespace string,
beginning with AWS/. For example, the namespace for EC2 is AWS/EC2. Metrics in different
namespaces are isolated from each other.

Dimension is a name/value pair that uniquely identifies a metric. AWS services that provide
AWS CloudWatch data also attach dimensions to each metric. You can use the dimensions for
EC2 instances, for example, ImageId, InstanceId, InstanceType, and so on, to refine or
filter the metrics returned.

The list-metrics command returns a list of metrics stored for the AWS account. The
output of the list-metrics command contains a token to paginate through the results. The
namespace parameter in the list-metrics command helps in filtering the results for EC2
instances.

After listing the metrics, we retrieve statistical data for a given metric (using the get-
metrics-statistics command) based on the namespace, metric, start and end times,
period or granularity of the data points (in seconds), the return values, and the dimensions.
In our example, we compute the average CPU utilization for a specific instance.

Monitoring Amazon EC2 Instances

92

For a list of namespaces, refer to the following link:
http://docs.aws.amazon.com/AmazonCloudWatch/
latest/DeveloperGuide/aws-namespaces.html

Collecting custom metrics from EC2
instances

You can collect custom metrics from your applications, for example, the number of active
sessions, response latency, and many more. More importantly, you can report custom metrics
in application and business terms. For example, average number of orders processed per
minute, today, on an e-commerce site. These business metrics can help you with capacity
planning and allocating suitable budgets for your cloud infrastructure based on the
business impact.

Custom metrics help you monitor your applications, directly, from CloudWatch. Using these
custom metrics, you can create alarms that can, for example, add instances in the autoscaling
group. There is a simple PUT API call to collect custom metrics. AWS also provides monitoring
scripts for Linux and Windows that send custom metrics to the AWS CloudWatch.

How to do it…
1. Installing AWS Java SDK.

It helps you access AWS CloudWatch service from Java applications. In your Maven
dependency section, add the following dependency for AWS Java SDK Version
1.9.28.1:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.9.28.1</version>
</dependency>

2. Collecting custom metrics from the EC2 instance.

In our example program here, we collect custom metrics into AWS CloudWatch.
The Java program inserts session metric into AWS CloudWatch:

// Insert custom metrics into CloudWatch.
 public static void InsertMetric() {

// Create BasicAWSCredentials with Access Key Id and Secret
Access Key.

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/aws-namespaces.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/aws-namespaces.html

Chapter 5

93

 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

// Create CloudWatch client.
 AmazonCloudWatchClient cloudWatchClient = new
 AmazonCloudWatchClient(
 credentials);

// Set endpoint.
 cloudWatchClient.setEndpoint("monitoring.ap-
 southeast-1.amazonaws.com");

// Initialize PutMetricDataRequest.
 PutMetricDataRequest putMetricDataRequest = new
 PutMetricDataRequest();

// Set Namespace.
 putMetricDataRequest.setNamespace("Production");

// Initialize Dimension.
 Dimension dimension = new Dimension();

// Set dimension name.
 dimension.setName("ApacheInstance");

// Set dimesion value.
 dimension.setValue("app01");

// Initialize MetricDatum.
 MetricDatum sessionMetric = new MetricDatum();

// Add dimension.
 sessionMetric.getDimensions().add(dimension);

// Set metric name.
 sessionMetric.setMetricName("SessionMetric");

// Set timestamp.
 sessionMetric.setTimestamp
 (Calendar.getInstance().getTime());

// Set value.
 sessionMetric.setValue(1.0);

Monitoring Amazon EC2 Instances

94

// Add metric to request.
 putMetricDataRequest.getMetricData()
 .add(sessionMetric);

// Send metric request to CloudWatch.
 cloudWatchClient.putMetricData
 (putMetricDataRequest);
}

3. Get metric statistics.

The following Java program retrieves statistics for the metric we created earlier:

// Retrieve statistics for the specified metric.
 public static void GetMetricStatistics() {

// Create BasicAWSCredentials with Access Key Id and Secret
Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials("Access Key Id",
 " Secret Access Key ");

// Create CloudWatch client.
 AmazonCloudWatchClient cloudWatchClient = new
 AmazonCloudWatchClient(credentials);

// Set endpoint.
 cloudWatchClient.setEndpoint("monitoring.ap-
 southeast-1.amazonaws.com");

// Initialize GetMetricStatisticsRequest.
 GetMetricStatisticsRequest
 getMetricStatisticsRequest=new
 GetMetricStatisticsRequest();

// Set namespace.
 getMetricStatisticsRequest.setNamespace
 ("Production");

// Initialize Dimension.
 Dimension dimension = new Dimension();

// Set dimension name.
 dimension.setName("ApacheInstance");

// Set dimesion value.

Chapter 5

95

 dimension.setValue("app01");

// Add dimension to request.
 getMetricStatisticsRequest.getDimensions()
 .add(dimension);

// The metric statistics to return. Valid values are
Average, Sum,
// SampleCount, Maximum and Minimum.
 List<String> statistics = new ArrayList<String>();

// Get average value.
 statistics.add("Average");

// Add to request.
 getMetricStatisticsRequest.setStatistics
 (statistics);

// The granularity, in seconds, of the returned data
points.
 getMetricStatisticsRequest.setPeriod(300);

// Get the calender object.
 Calendar cal = Calendar.getInstance();

// Get the current time.
 Date now = cal.getTime();

// Reset hours.
 cal.add(Calendar.HOUR, -1);

// Get one hour back time.
 Date oneHourBack = cal.getTime();

// The time stamp to use for determining the first data
point to return.
 getMetricStatisticsRequest.setStartTime
 (oneHourBack);

// The time stamp to use for determining the last data
point to return
 getMetricStatisticsRequest.setEndTime(now);

// Set metric name

Monitoring Amazon EC2 Instances

96

 getMetricStatisticsRequest.setMetricName
 ("SessionMetric");

// Get metric statistics.
 GetMetricStatisticsResult result = cloudWatchClient
 .getMetricStatistics(getMetricStatisticsRequest);

// Get the label.
 String lable = result.getLabel();

// Get the data points of specified metric.
 List<Datapoint> datapoints =
 result.getDatapoints();

// Iterate through data points.
 for (Datapoint datapoint : datapoints) {

// The average of metric values that correspond to the
datapoint.
 double avg = datapoint.getAverage();

// The time stamp used for the datapoint.
 Date timeStamp = datapoint.getTimestamp();
 }
 }

How it works…
In this recipe, we showed you the steps for collecting custom metrics from a Java program.
In the first step, we need to install the AWS Java SDK. In our example, we used Production
as our namespace. In order to uniquely identify each Apache server in our production
deployment, we added the ApacheInstance dimension with a value of app01. Each Apache
server in the production deployment is going to have this value for the dimension. Instead
of hardcoding access key ID and secret access key, we can create the EC2 instance with an
IAM role that has the access to CloudWatch. Using CloudWatch API, you can create your own
dashboards and graphs based on the statistics. In our example, we insert the active user
count metric into CloudWatch.

Chapter 5

97

There's more…
We can use Elastic Beanstalk to gather and analyze additional health information on your
environment. Elastic Beanstalk uses a health agent to monitor server logs and system metrics
along with EBS data ad autoscaling to provide detailed health-related information on the EC2
instances. This information uses colors (green, red, and yellow), an indicator for the severity
of the issues and a message indicating the cause. The health status can be viewed in real
time on the AWS Management Console or through CLI commands. To record and track the
enhanced health reporting over time, the information gathered by Elastic Beanstalk can be
published to Amazon CloudWatch.

Monitoring costs using CloudWatch
AWS CloudWatch can help you track and manage your cloud costs. This is especially useful
where your AWS resource usage varies significantly and you need to log in to the AWS portal
several times a day to track the usage. You can set appropriate alarms when the charges
exceed a certain predefined threshold. To enable billing alerts for your AWS account, you
have to log in as the account owner and edit the configuration settings. Hence, you can send
notifications based on these metrics as e-mails and/or route them to other applications for
further processing.

The estimated charges are calculated and sent several times a day to CloudWatch. These
metrics include estimated total charges and charges by service. In addition, if you are using
the consolidated billing option, then your CloudWatch metrics for estimated charges by linked
account and estimated charges by linked account and service are also stored. This data is
stored for 2 weeks, and it includes the estimated charges for every AWS service you use,
as well as the total costs.

How to do it…

Enabling the monitoring of your estimated charges
You can enable the monitoring of your estimated charges in the AWS portal. To enable detail
monitoring follow these steps:

1. Open AWS billing console at https://console.aws.amazon.com/billing/
home#/.

2. Log in to the AWS console using the username and password.

3. Click on Preferences.

https://console.aws.amazon.com/billing/home#/
https://console.aws.amazon.com/billing/home#/

Monitoring Amazon EC2 Instances

98

4. Select the Receive Billing Alerts checkbox:

5. Create an SNS topic.

Execute the following command to create the SNS topic called BillingTopic.
Record TopicArn for further usage.

$ aws sns create-topic

--name BillingTopic

6. Subscribe to the SNS topic by running the following command. A user with e-mail ID
ethan@awscloud.com is subscribed to an SNS topic called BillingTopic.
$ aws sns subscribe

--topic-arn

arn:aws:sns:ap-southeast-1:968336292411:BillingTopic

--protocol email

--notification-endpoint ethan@awscloud.com

7. Create the billing alarm.

Execute the following command to create an alarm that sends e-mail notifications to
user when your estimated month-to-date charges for Amazon EC2 exceeds $50.

$ aws cloudwatch put-metric-alarm

--alarm-name ec2billing

--comparison-operator GreaterThanOrEqualToThreshold

Chapter 5

99

--evaluation-periods 1

--metric-name EstimatedCharges

--namespace AWS/Billing

--dimensions Name=Currency,Value=USD

--period 21600

--statistic Maximum

--threshold 50

--actions-enabled

--alarm-actions arn:aws:sns:ap-southeast-
1:968336292411:BillingTopic

How it works…
First, we enable detail monitoring using the AWS console. Next, we create an SNS topic and
subscribe to it. After the user subscribes to the topic, he/she will receive a confirmation mail
from AWS. After the user confirms the subscription, he/she will start receiving the alerts as
e-mail from AWS.

The protocol parameters let us specify the protocol from the supported protocols (HTTP,
HTTPS, e-mail, email-JSON, SMS, SQS, etc). You can construct systems that react to the
alarms via a HTTP(S) endpoint poke from these alerts. We also specify the endpoint for the
notifications. The endpoints vary by the protocol selected. For example, for the in the e-mail
protocol, the notification endpoint is the e-mail address.

We create the billing alarm based on the metric data. In our example, we send out an e-mail
notification when the charges hit a certain amount. The alarm action here is the SNS topic
with name BillingTopic, and the users subscribed to this topic will receive e-mails when
the alarm is triggered. We assign a name to the alarm, the arithmetic operation to use when
comparing the specified statistic and threshold, the number of periods over which data
is compared to the specified threshold, the metric, namespace, period, statistic, and the
threshold value.

If you are new to the AWS environment, then a good starting point is to
set up a billing alert for restricting your usage to remain within the free
usage tier. Later on, you can set the limit to remain within your assigned or
planned budgets.

The actions-enabled parameter also indicates whether or not actions should be executed
during any changes to the alarm's state and the AlarmActions parameter lists the actions
to execute when this alarm is triggered. Each action is specified as an Amazon Resource
Name (ARN).

Monitoring Amazon EC2 Instances

100

Sending an e-mail based on a CloudWatch
alarm

This recipe is similar to the previous one. However, in this case, we set up metrics, alarms,
and notifications that are vital to the operations team. CloudWatch alarms help you notify
users by e-mail, if any of the specified metrics cross their predefined thresholds. For example,
you can collect latency metrics from the ELB and trigger an alarm that sends an e-mail
notification to the operations team, if the latency exceeds 60 milliseconds. CloudWatch uses
Simple Notification Service (SNS) to send these e-mails. The administrators and operations
teams subscribe to this SNS topic to receive the CloudWatch notifications.

How to do it…
1. Create an SNS topic.

In the following example, the command creates the SNS topic called
EC2CpuHighTopic. Record TopicArn for further usage.

$ aws sns create-topic

--name EC2CpuHighTopic

2. Subscribe to the SNS topic.

Execute the following command to specify the e-mail ID ethan@awscloud.com
subscribed to the SNS topic called EC2CpuHighTopic.

$ aws sns subscribe

--topic-arn

arn:aws:sns:ap-southeast-1:968336292411:EC2CpuHighTopic

--protocol email

--notification-endpoint ethan@awscloud.com

3. Send an e-mail notification based on the CloudWatch alarm.

Execute the following command to create a CloudWatch alarm that sends an e-mail
notification to the operations team when the average CPU utilization goes above 70%.
Replace InstanceId with your instance ID.

$ aws cloudwatch put-metric-alarm

--alarm-name cpuhigh

--alarm-description "Alarm when CPU exceeds 70 percent"

--metric-name CPUUtilization

--namespace AWS/EC2

--statistic Average

Chapter 5

101

--period 300

--threshold 70

--comparison-operator GreaterThanThreshold

--dimensions Name=InstanceId,Value=i-54cfb999

--evaluation-periods 2

--alarm-actions

arn:aws:sns:ap-southeast-1:968336292411:EC2CpuHighTopic

4. Test CloudWatch alarm.

Execute the following command to set the alarm state from INSUFFICIENT_DATA
to OK. The possible states are OK (the metric is within the defined threshold), ALARM
(the metric is outside of the defined threshold), and INSUFFICIENT_DATA (the
alarm has just started, the metric is not available, or not enough data is available for
the metric to determine the alarm state).

$ aws cloudwatch set-alarm-state

--alarm-name cpuhigh

--state-reason "Alarm Testing"

--state-value OK

5. Execute the following command to change the alarm state from OK to ALARM:

$ aws cloudwatch set-alarm-state

--alarm-name cpuhigh

--state-reason "Alarm Testing"

--state-value ALARM

How it works…
The steps in this recipe are exactly the same as the previous one except that we included a
testing step to test the alarm. Note that alarms invoke actions for sustained state changes
over a defined number of time periods.

As a best practice, you should always test your alarms and alerts to ensure that they are
functioning as expected. You can test your CloudWatch alarms using AWS CLI. We execute
commands to temporarily set the state of the alarm for our testing. We specify the alarm
name, the reason for setting the alarm to the specific state, and the value of the state. Ensure
that you receive the e-mail notification setup for the alarm.

Monitoring Amazon EC2 Instances

102

Using CloudWatch Logs
AWS CloudWatch Logs helps you store, monitor, and analyze your application, system
and custom logs, centrally. Using CloudWatch Logs you can monitor your logs in near real
time for specific errors and exceptions in your application. For example, you might want to
monitor exceptions such as NullPointerException, ArrayIndexOutOfBounds, and
ArithmeticException in your Java application.

We will need to aggregate the logs from multiple hosts in an environment where instances are
added and deleted, dynamically. AWS CloudWatch is not restricted to work with EC2 instances
only, it can also be used for on-premise servers and servers hosted on other public clouds.
You can analyze your logs and archive them for access later.

You can extract metrics from logs as they come into AWS CloudWatch using the metric filter.
For example, you may want to monitor your web server logs for 4xx and 5xx status codes or
monitor your server's log files for OS specific error conditions. In addition, you may also create
alarms with predefined thresholds, notifications, and actions for these conditions.

How to do it…
1. Create an IAM role for the EC2 instance.

Create a JSON document with the content specified here, and save it as
CloudWatchRoleForEC2.json:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
}

2. Execute the following command to create the CloudWatchRoleForEC2 using the
JSON document:
$ aws iam create-role

--role-name CloudWatchRoleForEC2

--assume-role-policy-document

file://F:\\CloudWatchRoleForEC2.json

3. Assign permissions to the role.

Chapter 5

103

4. Create an inline policy for the role.

Create a JSON document with the following content. Save the file as
CloudWatchRoleForEC2Policy.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:*"
],
 "Resource": "arn:aws:logs:*:*:*"
 }
]
}

5. Execute the following command to assign the inline policy
(CloudWatchRoleForEC2Policy) to the role:
$ aws iam put-role-policy

--role-name CloudWatchRoleForEC2

--policy-name CloudWatchRoleForEC2Policy

--policy-document

file://F:\\CloudWatchRoleForEC2Policy.json

6. Create an instance profile.

Execute the following command to create an instance profile named
CloudWatchRoleForEC2Profile:

$ aws iam create-instance-profile

--instance-profile-name CloudWatchRoleForEC2Profile

7. Add role to an instance profile.

Execute the following command to add a role named CloudWatchRoleForEC2 to
the instance profile named CloudWatchRoleForEC2Profile.

$ aws iam add-role-to-instance-profile

--instance-profile-name CloudWatchRoleForEC2Profile

--role-name CloudWatchRoleForEC2

Monitoring Amazon EC2 Instances

104

8. Launch the EC2 instance with role.

Execute the following command to create an EC2 instance using the instance profile.
However, before executing the command, you must create the key pairs, security
groups, VPC, and the subnet.

$ aws ec2 run-instances

--image-id ami-7e2c612c

--count 1

--instance-type t1.micro

--key-name ApacheServerKeyPair

--security-group-ids sg-f332ea96

--subnet-id subnet-5314c936

--iam-instance-profile Name=CloudWatchRoleForEC2Profile

9. Configure the CloudWatch Log agent to capture specific events from the /var/log/
messages files.

10. By running the following command, you can download the CloudWatch Log agent.

Execute the following commands on earlier created EC2 instance:

wget

https://s3.amazonaws.com/aws-cloudwatch/downloads/latest/awslogs-
agent-setup.py

11. Set up the agent.

Execute the following command to set up the agent:

python ./awslogs-agent-setup.py --region ap-southeast-1

Chapter 5

105

12. Retrieve logged events.

Execute the following command to retrieve the logged events from AWS CloudWatch
Logs for instance with ID i-07eb9aca in the log group with the name webserver.

$ aws logs get-log-events

--log-group-name webserver

--log-stream-name i-07eb9aca

Monitoring Amazon EC2 Instances

106

How it works…
We need to install an agent on the Linux or Windows machines to get the logs into AWS
CloudWatch Logs. If you have lots of machines to install, then you can use Chef or AWS
CloudFormation. We started by creating a role and assigning suitable permissions using
a policy. We created a policy for allowing access to AWS CloudWatch Logs from the EC2
instance. If you use the AWS console for creating the role, AWS automatically creates the
instance profile with the same name as role. However, as we created the role from the
command line, we needed to create the instance profile, and then added the role to the
instance profile.

After creating the role, we launched our EC2 instance with the IAM role. We specified the
ID of the image, number of instances to create, type of EC2 instance, key/pair name (for
authentication), security group IDs, the subnet, and the IAM instance profile name.

Running AWS CloudWatch Logs agent requires AWS access key ID and AWS secret access key.
However, we launched the EC2 instance with the IAM role so that we could ignore these two
values (by pressing enter). We specified the log stream name, log group name, timestamp,
and the AWS region. Here, we logged the /var/log/messages file into AWS CloudWatch.

Log stream is a sequence of log events that share the same source.
For example, all log events coming from particular application instance.

A log group is a group of log streams that share the same retention and
access controls.

Finally, we retrieved the logged events by specifying the log group and log stream parameters.

There's more…
For capturing security-related events, such as failed login attempts, you can define the metric
filter on the /var/log/security file. You can set an alarm and send a notification to the
appropriate people in case the threshold for too many failed login attempts is exceeded.

If you want to monitor API calls made against your account, then you need to leverage Amazon
CloudWatch's integration with AWS CloudTrail, and you can configure CloudTrail to send logs
to CloudWatch Logs. This enables you to monitor CloudTrail Log events. Furthermore, you can
create alarms, set up SNS notifications, use metric filter, or execute actions against events
triggered by a specific API activity (as captured by AWS CloudTrail). For example, you can
create such alarms for changes to CloudTrail events such as changes to the security group
configuration and/or network ACLs.

You can use AWS CloudFormation templates to create CloudWatch metric filters and alarms.
For example, you can download and edit a sample CloudFormation template, containing filters
and alarms that enable you to receive notifications when certain CloudTrail events such as
security-related API calls are made.

107

6
Using AWS Data

Services

In this chapter, we will cover recipes for:

 f Using Amazon SimpleDB services from a Java program

 f Using Amazon DynamoDB

 f Using Amazon ElastiCache

 f Using Amazon RDS

Introduction
Typical multi-tier cloud applications are built using one or more of the AWS data services.
These data services include options for both relational and NoSQL workloads. Running and
operating NoSQL and relational database servers on premise not only adds to your operations
and administrative burden, but also towards the overall cost. AWS provides these highly
available and scalable services out of the box. These services have their own programming
SDKs to support several different languages such as C#, Java, and others. AWS data services
include SimpleDB and DynamoDB NoSQL workloads and AWS ElastiCache for in-memory
caching as a service. For relational database workloads, AWS provides the RDS service that
is essentially a relational database service.

This chapter focuses on recipes for using these services from Java.

Using AWS Data Services

108

Using Amazon SimpleDB services from a
Java program

Amazon SimpleDB is a highly available and flexible NoSQL data store. Unlike schema-driven
relational databases, SimpleDB's flexibility allows you to change your data model on the fly.
The infrastructure provisioning, software installation and maintenance, and high availability
feature for SimpleDB is managed by AWS; thereby, alleviating the need for typical database
administration tasks.

SimpleDB consists of domains where each domain stores a set of records or items. Each
of the items has a unique key, and is described by a set of attribute/value pairs. It is not
necessary for the items to contain all the attributes. The data in a domain is automatically
indexed by each of the attributes, hence enabling access by any one or more attributes. There
is no need for a predefined schema and schema changes, in response new attributes are
added later on. However, you can run queries on the data stored within a specific domain
only. You can also choose between consistent and eventually consistent read requests for
additional flexibility in meeting the specific performance versus consistency requirements of
your application.

You can store, query, and update data items via API/web service calls. SimpleDB provides
SDKs to access the stored data from several programming languages. SimpleDB integrates
with other AWS services such as EC2, S3, and IAM to provide you with a complete
environment to develop secure web-scale applications.

Typical use cases include storing your application logs, centrally, versus storing them on each
of your running servers. This is a significant benefit for monitoring and troubleshooting issues
in an autoscaled environment. Another good use case for SimpleDB usage is to store Simple
Storage Service (S3) metadata information. SimpleDB can easily provide storage, indexing,
and querying abilities on this metadata. For example, you can store your videos on S3 and the
associated metadata, including the pointers to the S3 object locations on SimpleDB.

How to do it…
In this section, we present a recipe to use SimpleDB services from a Java program. Follow the
steps listed below:

1. Install AWS Java SDK.

In your Maven dependency section, add the following dependency for AWS Java SDK
Version 1.9.28.1:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.9.28.1</version>
</dependency>

Chapter 6

109

2. Initialize SimpleDB client.

The following code initializes and returns a SimpleDB client:

 // Initialize SimpleDB client.
 public static AmazonSimpleDBClient Initialize() {

 // Create BasicAWSCredentials with Access Key Id and
 Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

// Create SimpleDB client.
 AmazonSimpleDBClient simpleDBClient = new
 AmazonSimpleDBClient(
 credentials);

// Set endpoint.
 simpleDBClient.setEndpoint("sdb.ap-southeast-
 1.amazonaws.com");

// Return client.
 return simpleDBClient;
 }

3. Create a domain.

The following code creates a domain with the name "user":

 // Create SimpleDB domain.
 public static void CreateDomain() {

 // Get SimpleDB client.
 AmazonSimpleDBClient simpleDBClient = Initialize();

 // Create domain request.
 CreateDomainRequest request = new
 CreateDomainRequest(
 "user");

 // Creates domain.
 simpleDBClient.createDomain(request);
 }

Using AWS Data Services

110

4. Insert data into SimpleDB domain.

The following code inserts a single user item with the item name "Andrew" in the
"user" domain:

 // Insert item.
 public static void InsertItem() {

 // Get SimpleDB client.
 AmazonSimpleDBClient simpleDBClient = Initialize();

 // Name attribute.
 ReplaceableAttribute nameAttribute = new
 ReplaceableAttribute();
 nameAttribute.setName("Name");
 nameAttribute.setValue("Andrew");

 // Age attribute.
 ReplaceableAttribute ageAttribute = new
 ReplaceableAttribute();
 ageAttribute.setName("Age");
 ageAttribute.setValue("28");

 // City attribute.
 ReplaceableAttribute cityAttribute = new
 ReplaceableAttribute();
 cityAttribute.setName("City");
 cityAttribute.setValue("San Francisco");

 // Create collection for attributes.
 Collection<ReplaceableAttribute> item = new
 ArrayList<>();
 item.add(nameAttribute);
 item.add(ageAttribute);
 item.add(cityAttribute);

 // Put request.
 PutAttributesRequest request = new
 PutAttributesRequest();

 // Set domain name.
 request.setDomainName("user");

 // Set item name.
 request.setItemName("andrew");

Chapter 6

111

 // Set item attributes.
 request.setAttributes(item);

 // Insert item into domain.
 simpleDBClient.putAttributes(request);
 }

5. Retrieve the item from the domain.

The following code retrieves the item with item name "Andrew":

 // Retrieve item.
 public static void GetItem() {

 // Get SimpleDB client.
 AmazonSimpleDBClient simpleDBClient = Initialize();

 // Prepare get request.
 GetAttributesRequest request = new
 GetAttributesRequest();

 // Set domain name.
 request.setDomainName("user");

 // Set item name.
 request.setItemName("andrew");

 // Get item from domain.
 GetAttributesResult result =
 simpleDBClient.getAttributes(request);

 // Iterate through all attributes.
 for (Attribute attribute : result.getAttributes())
 {

 // Get attribute name.
 String name = attribute.getName();

 // Get attribute value.
 String value = attribute.getValue();
 }
 }

Using AWS Data Services

112

How it works…
In the first step, we downloaded AWS Java SDK. This SDK helps us access AWS services from
Java applications. Before interacting with SimpleDB, we need to specify the access key ID
and secret access key of our AWS account. Instead of hardcoding AWS credentials in our Java
code, we can create an IAM role with SimpleDB access permissions and launch the instance
with that role.

Next, we create the SimpleDB client object that is used to interact with SimpleDB service.

All service calls made using the SimpleDB client are blocking calls,
and it will not return until the service call is completed.

SimpleDB domains are like database tables. You must create a domain before inserting data
into it. So, in the next step, we created a SimpleDB domain. The createDomain operation
creates a new domain. The domain name should be unique among all the domains associated
with the access key. The client can create a maximum of up to 100 domains per account. If
additional domains are required, then they need to be specifically requested from Amazon.

In SimpleDB, items are like rows in a relational database table. Each item has an item name
to uniquely identify the item in a given domain. Each item contains attributes, similar to
columns. Each attribute has an attribute name and an attribute value. In the next step, we
inserted an item using the putAttributes operation. The client may specify new attributes
using a combination of name/value parameters. The attributes are also uniquely identified
in an item by their name/value pairs. Note that you cannot have an empty string as an
attribute name, and two attribute instances cannot have the same names and values. We
create PutAttributesRequest as a container for our request, and then pass it to the
putAttributes operation for inserting our item.

Lastly, we retrieved the newly inserted item to verify our insert into SimpleDB.

As Amazon SimpleDB makes multiple copies of the data and uses an
eventual consistency update model, an immediate getAttributes
operation following a putAttributes operation may not return the
requested data.

We use GetAttributesRequest as a container for our request, and then pass it to the
getAttributes operation for retrieving our item.

Chapter 6

113

There's more…
Relational databases are typically normalized to minimize duplication of data. These
databases contain tables with primary and foreign keys to represent relationships between
various tables in the database. We use joins to combine data from the tables to form the
result sets for the queries. However, there is no equivalent join operation available in Amazon
SimpleDB. Hence, if you need to access the data from multiple domains, you will typically
need to execute multiple queries.

In order to avoid multiple queries, it is common to de-normalize your data to better reflect the
nature of your queries. This is often achieved by combining the data from multiple domains
into a single domain or duplicating the data across multiple domains to support your queries,
efficiently. For example, if you have two separate domains for your employee and employee
address, then you would need two separate queries to access a specific employee's name and
the associated address information. In such a situation, you may want to combine the items
in the two domains into one domain, and then pull the employee name and the associated
address with a single query.

Similarly, if we had the employee and role information in two separate domains, then we may
want to duplicate the employee data in the role domain and vice versa. This data duplication
can help support queries, such as the role of a specific employee and employees in a specific
role, more efficiently. You have to understand your data and queries really well in order to
finalize the degree of de-normalization required in your design.

Data is stored as character strings in Amazon SimpleDB. This can present some challenges
in your queries due to lexicographic comparisons. This is true especially for numeric and
date data types. For resolving these issues for numeric values, you will need to pad them
appropriately. For negative numbers, you will need to add offsets while storing them and
subtract the same offset value during retrieval. To reduce your costs, you should do these
operations only for the fields used in query comparisons. For resolving issues related to date
comparisons, a good approach is to use the ISO 8601 format dates.

Using Amazon DynamoDB
AWS DynamoDB is a widely used NoSQL data store. Typically, relational databases are not the
best option for large-scale, data-centric applications. In addition, operating these database
servers at scale is complex and expensive. For such use cases, NoSQL data stores, such as
Amazon DynamoDB, are an effective solution. DynamoDB can be used as a key/value store
or as a document store. It is common to store data as JSON documents.

Using AWS Data Services

114

DynamoDB stores data in tables, and each table contains items. An item is a group of
attributes that is uniquely identifiable among all the other items in the table. An item is similar
to rows in a relational database table, and an attribute is a data element similar to fields or
columns in a relational database. There is no upper limit to the number of items that can be
stored in a DynamoDB table. A primary key uniquely identifies the items in a table, and the
key values need to be supplied for CRUD operations on a given table.

DynamoDB's flexible schema means that not all the items necessarily contain all the
attributes. Amazon DynamoDB lets you specify your throughput needs in terms of units of
read capacity and writes capacity for your table. During the creation of a table, you specify
your required read and write capacity needs, and Amazon DynamoDB automatically partitions
and reserves the appropriate amount of resources to meet your throughput requirements.

DynamoDB runs on Solid State Disks (SSDs) to give predictable performance. You can update
the throughput capacity using the AWS console or DynamoDB API to match your application
traffic. AWS manages the infrastructure provisioning, software installation and maintenance,
and high availability for the DynamoDB service.

DynamoDB is integrated with other AWS and non-AWS services. For example, you can monitor
it using CloudWatch, use IAM to control access to DynamoDB resources, log API calls using
Cloutrail, search content using Elasticsearch, and so on.

How to do it…
1. Installing AWS Java SDK.

In your Maven dependency section, add the following dependency for AWS Java SDK
Version 1.9.28.1:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.9.28.1</version>
</dependency>

2. Initialize DynamoDB client.

The following code initializes and returns a DynamoDB client.

 // Initialize DynamoDB client.
 public static AmazonDynamoDBClient Initialize() {

 // Create BasicAWSCredentials with Access Key Id and
 Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 " Secret Access Key");

Chapter 6

115

 // Create DynamoDB client.
 AmazonDynamoDBClient dynamoDBClient = new
 AmazonDynamoDBClient(
 credentials);

 // Set endpoint.
 dynamoDBClient.setEndpoint("dynamodb.ap-southeast-
 1.amazonaws.com");

 // Return client.
 return dynamoDBClient;
 }

3. Create the DynamoDB table.

The following code creates DynamoDB table with the name "user" and uses
UserId as the primary key:

 // Create table.
 public static void CreateTable() {

 // Get DynamoDB client.
 AmazonDynamoDBClient dynamoDBClient = Initialize();

 // Create attribute definition collection.
 ArrayList<AttributeDefinition> definitions = new
 ArrayList<AttributeDefinition>();

 // Add attribute definition for UserId.
 definitions.add(new
 AttributeDefinition().withAttributeName("UserId")
 .withAttributeType("N"));

 // Create key schema element collection.
 ArrayList<KeySchemaElement> schema = new
 ArrayList<KeySchemaElement>();

 // Set UserId as primary key and type as HASH.
 schema.add(new
 KeySchemaElement().withAttributeName("UserId")
 .withKeyType(KeyType.HASH));

 // Set provisioned throughput.
 ProvisionedThroughput throughput = new
 ProvisionedThroughput()

Using AWS Data Services

116

 .withReadCapacityUnits(10L)
 .withWriteCapacityUnits(10L);

 // Prepare create table request.
 CreateTableRequest request = new
 CreateTableRequest()
 .withTableName("user").withKeySchema(schema)
 .withProvisionedThroughput(throughput);

 // Set attribute definitions.
 request.setAttributeDefinitions(definitions);

 // Creates table.
 dynamoDBClient.createTable(request);
 }

4. Create the User class.
@DynamoDBTable(tableName = "user")
public class User {

 public int UserId;

 public String Name;

 public int Age;

 public String City;

 @DynamoDBHashKey(attributeName = "UserId")
 public int getUserId() {
 return UserId;
 }

 public void setUserId(int userId) {
 UserId = userId;
 }

 public String getName() {
 return Name;
 }

 public void setName(String name) {
 Name = name;
 }

Chapter 6

117

 public int getAge() { return Age;
 }

 public void setAge(int age) {
 Age = age;
 }

 public String getCity() {
 return City;
 }

 public void setCity(String city) {
 City = city;
 }

}

5. After creating the User class, you can use the following function to save the user
object into the DynamoDB user table:
// Insert item.
 public static void InsertItem() {

 // Get DynamoDB client.
 AmazonDynamoDBClient dynamoDBClient = Initialize();

 // Create mapper object.
 DynamoDBMapper mapper = new
 DynamoDBMapper(dynamoDBClient);

 // Initialize user object.
 User objUser = new User();

 // Set user id.
 objUser.UserId = 123;

 // Set user name.
 objUser.Name = "Andrew";

 // Set age.
 objUser.Age = 28;

 // Set city.
 objUser.City = "San Francisco";

Using AWS Data Services

118

 // Save user item.
 mapper.save(objUser);
 }

6. Retrieve item from the table.

The following code illustrates a query for retrieving a user from user table with the
UserId value 123:

 // Retrieve item.
 public static void GetItem() {

 // Get DynamoDB client.
 AmazonDynamoDBClient dynamoDBClient = Initialize();

 // Create mapper object.
 DynamoDBMapper mapper = new
 DynamoDBMapper(dynamoDBClient);

 // Initialize user object.
 User objUser = new User();

 // Set user id.
 objUser.UserId = 123;

 // Prepare query.
 DynamoDBQueryExpression<User> query = new
 DynamoDBQueryExpression<User>()
 .withHashKeyValues(objUser);

 // Retrieve items from DynamoDB.
 List<User> list = mapper.query(User.class, query);

 // Iterate through all items.
 for (User user : list) {

 // Get user name.
 String userName = user.getName();

 // Get user age.
 int userAge = user.getAge();
 }

Chapter 6

119

How it works…
In the first step, we downloaded AWS Java SDK. This SDK helps us access AWS services from
Java applications. The AWS Java SDK provides an object persistence model to define the
relationships between the database tables and the objects. After the mapping is done, the
objects map to items in your table, and you can use the object methods for CRUD operations.
In turn, the appropriate low-level APIs are invoked for you. The SDK also provides a set of
annotations, for example, to map your class to a database table and the class attributes to the
corresponding item attribute.

Before interacting with DynamoDB, we need to specify the access key ID and secret access
key. Alternatively, we can create an IAM user and assign DynamoDB permissions to him/her,
and then use his/her credentials to access DynamoDB.

Next, we create the DynamoDB client object that is used to interact with DynamoDB service.

Next, we create a DynamoDB table. When creating a DynamoDB table, you have to specify a
primary key. This primary key uniquely identifies each row in the table. DynamoDB distributes
the data based on the hash key element into multiple partitions. DynamoDB supports two
types of primary keys, hash-type primary key and the hash and range type primary key.

You can specify the provisioned throughput capacity for read and write operations when
you create or update a table. DynamoDB will reserve the required resources to meet your
throughput requirements.

A unit of read capacity represents one strongly consistent read per second (or two eventually
consistent reads per second) for items of size up to 4 KB. A unit of write represents one write
per second for items of size up to 1 KB. You cannot group multiple items in a single read or
write operation even if the items are 4 KB or smaller or 1 KB or smaller, respectively.

Items larger than 4 KB require more than one read operation. For example, the number of
read operations required for a 7-KB item is 2, and for a 10-KB item is 3. The AWS console can
be used to monitor the provisioned and actual throughput, and the provisioned throughput
can be appropriately tuned to avoid throttling.

After creating the DynamoDB table, you can insert items into it. An item represents a
database row, and each item can have multiple attributes. An attribute represents the
database columns. DynamoDB supports multiple data types, including scalar types (number,
string, binary, Boolean, and null), multivalued types (string set, number set, and binary set),
and document types (list and map). The primary key must be a string, number, or binary.

We specify the DynamoDB table name and primary key attribute name using
DynamoDB annotations. Hence, in our create User class, we annotate the class with
@DynamoDBTable(tableName = "user") and the getUserId function with @
DynamoDBHashKey(attributeName = "UserId").

Using AWS Data Services

120

Lastly, we test our insert by retrieving items from our DynamoDB table. DynamoDB supports
both eventually consistent and strongly consistent read options. In eventual consistency, when
you read data immediately following a write operation, the response might not reflect the
results of the write. However, note that data consistency across the multiple copies of the data
is typically reached within a second. Hence, if the read operation is retried after a short time,
the result of the write operation is reflected in the response. In the case of strongly consistent
reads, the latest post-write operation data is returned. If you use eventually consistent reads
versus strongly consistent reads, then you will get twice as many reads per second.

There's more…
DynamoDB supports two kinds of primary keys, a primary key consisting of a hash attribute
and a primary key consisting of hash and range attributes. In the first type, the primary key
consists of a single attribute—the hash attribute. In the second type, there are two attributes—
the hash attribute and the range attribute.

DynamoDB also supports secondary indexes. If you want to access the data using non-key
attributes, then you would create these secondary indexes. However, DynamoDB consumes
additional capacity units to update the indexes on write operations. You might need to adjust
your provisioned capacity over a period of time as more secondary indexes are added to
your tables.

There are two querying operations available—query and scan. You can use the query operation
to query a table using the hash attribute and an optional range filter or the secondary index
key. The Scan operation reads every item in the table or the secondary index, and is an
expensive operation for large tables and secondary indexes.

You can download and run DynamoDB on your computer. This can be a good way to learn to
work with DynamoDB as well as use it reduce your cloud development costs.

Using Amazon ElastiCache
Amazon ElastiCache is a managed cache service that improves latency and throughput
for read-intensive applications. Amazon ElastiCache provides a caching layer for your
applications. Instead of querying the databases each time, you can use a caching layer in
front of the database layer to get higher query performance.

Each node runs an instance of either Memcached or Redis. However, each node in the cluster
is of the same instance type and runs the same caching engine. You basically launch the
cluster, get the node names, and then connect the client to it. No changes are required in your
application code to access ElastiCache, and you can use your existing Redis and Memcached
libraries to connect to the ElastiCache's Redis or Memcached clusters, respectively.

Chapter 6

121

Amazon is responsible for tasks such as provisioning hardware, installing caching software,
patch management, failure detection, and recovery. Supported in-memory caching engines
are Memcached and Redis. ElastiCache clusters are only accessible from EC2 instances. The
cache cluster and its related EC2 instances must be in the same VPC. If you want to access
cache cluster from outside its VPC, then you will need to setup EC2 inside the cache VPC to
act as a proxy for the outside world.

How to do it…
1. Before creating the ElasticCache cluster, you need to create cache subnet

group. Execute the following command to create a cache subnet group named
appcachesubnetgroup:
$ aws elasticache create-cache-subnet-group

--cache-subnet-group-name appcachesubnetgroup

--cache-subnet-group-description "Application Cache Subnet Group"

--subnet-ids subnet-5314c936 subnet-49ca1b2c subnet-0240b575

2. Create a Memcached cluster.

Execute the following command to create an ElastiCache cluster with three nodes.
This cluster uses Memcached as the cache engine.

$ aws elasticache create-cache-cluster

--cache-cluster-id appcachecluster

--engine memcached

--cache-node-type cache.t2.small

--num-cache-nodes 3

--engine-version 1.4.14

--cache-subnet-group-name appcachesubnetgroup

3. Add an ingress rule for the Memcached port.

Execute the following command to add an ingress rule for the security group sg-
f332ea96:

$ aws ec2 authorize-security-group-ingress

--group-id sg-f332ea96

--protocol tcp

--port 11211

--cidr 0.0.0.0/0

4. Get ElastiCache information to verify your cluster.

$ aws elasticache describe-cache-clusters

--cache-cluster-id appcachecluster

Using AWS Data Services

122

Working with ElasticCache
The following steps illustrate how you can use ElastiCache from your code.

1. Sign in to the AWS console at https://console.aws.amazon.com/
elasticache/.

2. Click on ElastiCache Cluster Client, and then click on Download.

3. After downloading client, extract the ZIP file and add the
AmazonElastiCacheClusterClient-1.0.jar to the Java application build
path.

4. The following sample code connects to the ElastiCache cluster and calls the setter
and getter methods. You can retrieve the ElasticCache cluster information like cache
cluster DNS name using the describe-cache-clusters command.

// Create memcached client.
 MemcachedClient client = new MemcachedClient(new
 InetSocketAddress(
 "appcachecluster.nzrwy7.cfg.apse1.cache.amazonaws.com",
 11211));

 // Set value for key andrew.
 client.set("andrew", 3600, 43);

 // Get value.
 int value = (int) client.get("andrew");

How it works…
If you want to launch the cache cluster inside the VPC, then you have to create a cache subnet
group by defining the appropriate subnet IDs. In the first step, we create the cache subnet
group by specifying a name for it, a description, and the subnet IDs.

You can create the ElastiCache cluster with the Memcached engine or Redis engine. Next,
we execute the command for creating an ElastiCache cluster with the Memcached engine.
For this, we supply the cache cluster ID, the cache engine to use, the compute, and memory
capacity of the nodes in the cache cluster, the initial number of cache nodes, the version
of the cache engine, and the cache subnet group name. Note that you can retrieve the
cache engine version information by executing the describe-cache-engine-versions
command.

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

Chapter 6

123

As a best practice, you should restrict ElastiCache node access to applications running on EC2
instances within certain subnet and VPC security groups. In the next step, we add an ingress
rule for the Memcached port to allow access from EC2 instances to the cache cluster inside
your VPC. We have to add the ingress rule for the cache cluster VPC's default security group.
The ingress rule is added by specifying the security group ID, the protocol, the range of ports
allowed, and the CIDR IP range. After creating the ElastiCache cluster, we check the details of
it by retrieving the cluster information.

Finally, we present some code to illustrate how you can use ElastiCache. You can use your
Memcached libraries to access the Memcached engine in the ElastiCache cluster. If you have
multiple cache nodes in your cluster, then you have to define all these endpoints in your client
code. However, if you use ElastiCache Auto Discovery library, then you don't need to specify
the endpoints for all these nodes. In this situation, you have to connect to the configuration
endpoint, and then the Auto Discovery library connects to all the other nodes in the
cache cluster.

There's more…
You can cache just about anything, including database records, full HTML pages, page
fragments, and remote API calls. There are several factors that impact what you should
cache. For example, join-based queries, and relatively static but frequently accessed data,
are typically good candidates for caching.

Depending on the caching engine, the clustering configurations can vary; for example,
Memcached clusters can partition or shard your data across the nodes, whereas Redis
supports single node clusters and replication groups, and you cannot partition your data
across multiple Redis clusters. In Redis, scaling is achieved by choosing a different node
instance type. However, if your application is read-intensive, then you can create multiple
read replicas to distribute the load.

Typically, due to its support for sharding, Memcached clusters will tend to use more and
smaller nodes while Redis deployments will use fewer, large node instance types. The total
memory capacity of your cluster is the product of the number of cache nodes in the cluster
and the RAM capacity of each node. You can reduce the impact of a failed node by spreading
your caching capacity over a larger number of cache nodes, each with smaller capacity, rather
than using a fewer number of high capacity nodes.

You can use the describe-cache-clusters command to list the endpoints for a
cluster. This command will return the configuration endpoint for a Memcached cluster
and the cluster endpoint for a Redis cluster. Additionally, if you specify the show-cache-
node-info parameter, then this command will also return the endpoints of the individual
nodes in the cluster.

Using AWS Data Services

124

A replication group is a collection of Redis clusters, with one primary read-write cluster and
several read-only clusters called read replicas. The read replicas are updated asynchronously
to remain in sync with the primary cluster. For endpoints in a replication group, you can use the
describe-replication-groups command. This command returns the replication group's
primary endpoint and a list of all the clusters in the replication group with their endpoints.

With Auto-Discovery, your application does not need to manually connect to individual nodes,
instead, your application connects to a configuration endpoint. There is no need to hard code
individual cache node endpoints in your application because the configuration endpoint DNS
entry contains CNAME entries for each of the cache node endpoints. Node Auto-Discovery
for Memcached enables automatic discovery of cache nodes by the clients when nodes are
added or removed from the cluster. Setup an Amazon SNS topic for ElastiCache, and have an
app listen for the add and remove cache node events.

Connecting to a Memcached cluster is done using the cluster's configuration endpoint, while
connecting to a Redis cluster is done using its endpoint. Connecting to Redis clusters in a
replication group is done using the primary endpoint for all write operations and the individual
cluster endpoints for read operations.

Reference to the ElastiCache user guide is available at https://aws.
amazon.com/documentation/elasticache/ for best practices for
using Memcached and Redis clusters in an AWS environment.

Higher availability can be configured through replication across multiple availability zones.

ElastiCache monitors the health of the nodes in a Multi-AZ Replication Group. In case of a
failure of the primary node, ElastiCache selects a Read Replica and upgrades it to a primary
node. This process can take several minutes and the application design should take this into
consideration and continue to operate in the absence of a cache.

Lazy loading is a caching strategy that loads data into the cache only when necessary.
Most data is never accessed and only requested data is cached. Cache nodes fail, but the
application continues to function, though with increased latency and scale, But a cache miss
results in noticeable delay, and the cache data can go stale as it is only updated on a cache
miss. However, this can be handled by updating the data in cache whenever the database
is updated.

Lazy loading ensures cache is always current. But missing data on scale up can create an
issue because the missing data is missing until it is added or updated on the database.
Implementing lazy loading in conjunction with a write through strategy can minimize this
effect. There can be a lot of data in the cluster that is never read—adding a TTL can help
minimize the wasted space.

https://aws.amazon.com/documentation/elasticache/
https://aws.amazon.com/documentation/elasticache/

Chapter 6

125

Using Amazon RDS
Amazon Relational Database Service (RDS) is a scalable relational database service in the
cloud. Supported database engines are MySQL, PostgreSQL, Oracle, Microsoft SQL Server,
and MySQL compatible Amazon Aurora engine. No changes are required in your application
code to connect to RDS, that is, the code you are already using to connect to databases can
be used with Amazon RDS.

Amazon manages the infrastructure provisioning, installing, and maintaining the database
software. Database instances using Amazon RDS's MySQL, Oracle, SQL Server, and Oracle
engines can be provisioned with General Purpose (SSD) storage, Provisioned IOPS (SSD)
storage, or Magnetic storage. If your application needs predictable and consistent I/O
performance, you can choose Provisioned IOPS (SSD) instead of using General Purpose (SSD)
or Magnetic storage.

You can access RDS via the AWS Management Console, CLI, or API calls. RDS allows to you to
efficiently scale compute and storage capacities. In addition, you can launch Read Replicas to
offload read-based traffic from your primary database. High-availability features such as Multi-
AZ can be configured to synchronously replicate the data to another instance in a different
availability zone. In addition, support for automated backups and database snapshots can
aid the DR process. SSD-backed storage option provides higher performance for frequently
accessed or updated data. You can secure your data by isolating your instances in the VPC,
and encrypt your data at rest.

How to do it…
1. Create an RDS DB instance.

Execute the following command to create an RDS DB instance named appdb and
size 30 Gb.

$ aws rds create-db-instance

--db-instance-identifier appdb

--allocated-storage 30

--db-instance-class db.m1.small

--engine mysql

--master-username admin

--master-user-password Passw0rd123$

2. Retrieve DB instance information.

Execute the following command to retrieve information about DB instance with name
appdb in order to verify the details of the RDS instance created:

$ aws rds describe-db-instances

--db-instance-identifier appdb

Using AWS Data Services

126

3. Download the database driver.

Add the Maven dependency for the MySQL connector to access the database from
the Java code.

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.35</version>
 </dependency>

4. Create an application database.

The following sample code illustrates how to create our sample application database,
called websupport database, on the RDS instance. Replace RDS DB endpoint, user
name, and password with your own specific details.

// Create database.
public static void CreateDatabase() throws Exception {

// Register database driver.
 Class.forName("com.mysql.jdbc.Driver");

// Database credentials.
 String userName = "username";
 String password = "password";

// RDS url.
 String dbUrl = "jdbc:mysql://RDS db endpoint/";

// Create connection to RDS instance.
 Connection con = DriverManager.getConnection(dbUrl,
 userName, password);

// Creates a Statement object for sending SQL statements to
the
// database.
 Statement stm = con.createStatement();

// Create database query.
 String sql = "CREATE DATABASE websupport;";

// Execute query.
 stm.executeUpdate(sql);
 }

Chapter 6

127

5. Create a table.

The following code sample creates a table in the application database. Replace
the RDS DB endpoint, user name, password, and database name with your own
specific details.

 // Create table.
 public static void CreateTable() throws Exception {

 // Register database driver.
 Class.forName("com.mysql.jdbc.Driver");

 // Database credentials.
 String userName = "username";
 String password = "password";

 // RDS url.
 String dbUrl = "jdbc:mysql://RDS db
 endpoint/websupport";

 // Create connection to RDS instance.
 Connection con = DriverManager.getConnection(dbUrl,
 userName, password);

 // Creates a Statement object for sending SQL
 statements to the
 // database.
 Statement stm = con.createStatement();

 // Create database query.
 String sql = "CREATE TABLE tickets (ID int, frm
 VARCHAR(20),msg VARCHAR(2000));";

 // Execute query.
 stm.executeUpdate(sql);
 }

6. Insert rows into the table.

The following sample code inserts a ticket record into the tickets table. Replace
RDS DB endpoint, user name, password, and database name with your own
specific details.

// Insert record.
 public static void InsertRecord() throws Exception {

 // Register database driver.

Using AWS Data Services

128

 Class.forName("com.mysql.jdbc.Driver");

 // Database credentials.
 String userName = "username";
 String password = "password";

 // RDS url.
 String dbUrl = "jdbc:mysql://RDS db
 endpoint/websupport";

 // Create connection to RDS instance.
 Connection con = DriverManager.getConnection(dbUrl,
 userName, password);

 // Creates a Statement object for sending SQL
 statements to the
 // database.
 Statement stm = con.createStatement();

 // Create database query.
 String sql = "INSERT INTO tickets(ID, frm, msg)
 VALUES(1, 'andrew@gmail.com', 'Issue while logging
 into site...');";

 // Execute query.
 stm.executeUpdate(sql);
 }

How it works…
In the first step, we created an RDS DB instance with a MySQL database engine. The main
parameters, we specify, include a name for the instance, the amount of storage to be initially
allocated, compute and memory capacity, the database engine to use, and the user name and
password for the master user. After creating the DB instance, you can use the endpoint URL to
access the database. Next, we retrieve the information about the newly created DB instance
to verify the details (including the endpoint address).

In the next step, we downloaded the database driver, to access the application database
from our Java code, by adding a Maven dependency for the MySQL connector. You can use
the Connection and Statement classes to access database from your Java programs.
The next several steps list the sample code to create an application database, a table,
and finally insert a record.

129

7
Accessing Other

AWS Services

In this chapter, we will cover recipes for:

 f Configuring Route 53

 f Accessing AWS S3 from applications

 f Accessing AWS SES from applications

 f Accessing AWS SNS from applications

 f Accessing AWS SQS from applications

Introduction
In this chapter, we will cover other services from AWS that help you store files and messages
and send e-mails and notifications.

AWS Route 53 provides domain name registration service, DNS, and a health-checking
service for your application. You can use any combination of these services. For example,
you can use Route 53 as the DNS service to convert domain names to IP addresses for
your registered domain name.

AWS Simple Storage Service (S3) provides a highly scalable and reliable data storage
service. You can use S3 to store and retrieve any amount of data, including images, videos,
and other content. You can also host and serve your static website from AWS S3.

AWS Simple Email Service (SES) is an e-mail platform that allows you to send and receive
e-mail using your own e-mail address. You add e-mail functionality to any of your applications
running on Amazon EC2 via AWS SDKs or the SES API. AWS manages the IP address
reputation and the e-mail server and network infrastructure.

Accessing Other AWS Services

130

AWS Simple Notification Service (SNS) manages sending messages to the consumers, or
subscribers, of the messages. The producers or publishers of messages publish messages
to a topic, and the consumers subscribe to the same topic in order to consume the messages.
Typical consumers include e-mail addresses, Amazon SQS queues, web servers, and many
more. For example, you can use SNS to build push notification functionality for your
mobile applications.

Building loosely coupled applications require a queuing service and AWS SQS. A highly
available and scalable distributed queuing service is an excellent choice for that.

Configuring Route 53
AWS Route 53 provides domain name registration service, DNS, and a health-checking service
for your application. There are SDKs available for many popular programming languages,
including Java, Python, NodeJS, Go, .Net, and PHP. If you have a VPC, you can make use
of a Private Hosted Zone for Amazon VPC. Using this private DNS, your resources are not
accessible outside the VPC. Route 53 supports latency-based routing, if your application is
hosted on two different AWS data centers, when the user makes a request, Amazon Route
53 chooses to respond to the DNS query based on which data center gives your user the
lowest latency.

How to do it…
1. Installing AWS Java SDK.

In your Maven dependency section, add the following dependency for AWS
Java SDK Version 1.9.28.1. You can find the latest Java SDK version in this link
http://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.9.28.1</version>
</dependency>

2. Create a hosted zone.

The following sample program creates a public hosted zone for the cloudinternals.
in domain. Before creating the hosted zone, you have to register this domain with the
registrar. You can use a registrar such as GoDaddy or AWS Route 53 to register this
domain. Record the hosted zone ID for further usage.

 // Create Hosted Zone.
 public static void CreateHostedZone() {

http://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk

Chapter 7

131

 // Create BasicAWSCredentials with Access Key Id and
 Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

 // Create Route53 client.
 AmazonRoute53Client route53Client = new
 AmazonRoute53Client(credentials);

 // Set endpoint.
 route53Client.setEndpoint("route53.amazonaws.com");

 // Prepare hosted zone request.
 CreateHostedZoneRequest request = new
 CreateHostedZoneRequest();

 // Set hosted zone name.
 request.setName("cloudinternals.in");

 // Configuration for hosted zone.
 HostedZoneConfig config = new HostedZoneConfig();

 // Set comment for hosted zone.
 config.setComment("Cloud Internals hosted zone");

 // Set hosted zone configuration.
 request.setHostedZoneConfig(config);

 // Caller reference.
 String callerReference = new Date().toString();

 // Set caller reference.
 request.setCallerReference(callerReference);

 // Create hosted zone.
 CreateHostedZoneResult result =
 route53Client.createHostedZone(request);

 // Get the hosted zone id.
 String hostedZoneId =
 result.getHostedZone().getId();

 // Get delegation set.

Accessing Other AWS Services

132

 DelegationSet delegationSet =
 result.getDelegationSet();

 // Get name servers information.
 List<String> nameservers =
 delegationSet.getNameServers();
 }

3. Update the registrar's NS records.

For example, we update our domain's name server records on the GoDaddy website
as follows:

1. Log in to GoDaddy website using link https://in.godaddy.com/.

2. Click on Domains.

3. Click on Manage My Domains.

4. In domain list, select the domain you want to add name server records to.

5. Click on the Settings section.

6. Click on the Manage hyperlink button under the Nameservers section.

7. Select the Custom checkbox.

8. Click on ADD NAMESERVER to add name server records.

9. Add name server records one-by-one and click on OK. You can find name
server records in the delegationSet.getNameServers() response.

10. Click on SAVE to save the changes.

4. Add a recordset to the hosted zone.

The following sample program adds a record in your hosted zone. This program
creates a mapping between a domain named api.cloudinternals.in and an IP
address 52.74.74.131.

 // Create record set.
 public static void CreateRecordSet() {

 // Create BasicAWSCredentials with Access Key Id and
 Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

 // Create Route53 client.
 AmazonRoute53Client route53Client = new
 AmazonRoute53Client(credentials);

https://in.godaddy.com/

Chapter 7

133

 // Set endpoint.
 route53Client.setEndpoint("route53.amazonaws.com");

 // Collection of resource records.
 Collection<ResourceRecord> resourceRecords = new
 ArrayList<ResourceRecord>();

 // Create resource record.
 ResourceRecord resourceRecord = new
 ResourceRecord();

 // Set IP address.
 resourceRecord.setValue("52.74.74.131");

 // Add resource record to the list.
 resourceRecords.add(resourceRecord);

 // Create resource record set.
 ResourceRecordSet resourceRecordSet = new
 ResourceRecordSet();

 // Set domain name for the record set.
 resourceRecordSet.setName("api.cloudinternals.in");

 // Set record type.
 resourceRecordSet.setType(RRType.A);

 // Resource record cache time to live in seconds.
 resourceRecordSet.setTTL((long) 300);

 // Set resource records list.
 resourceRecordSet.setResourceRecords
 (resourceRecords);

 // Create change object.
 Change change = new Change();

 // Set action to create.
 change.setAction(ChangeAction.CREATE);

 // Set resource record set.
 change.setResourceRecordSet(resourceRecordSet);

 // Collection of changes.

Accessing Other AWS Services

134

 Collection<Change> changes = new
 ArrayList<Change>();

 // Add the change.
 changes.add(change);

 // Create change batch object.
 ChangeBatch changeBatch = new ChangeBatch();

 // Set changes list.
 changeBatch.setChanges(changes);

 // Prepare resource record set request.
 ChangeResourceRecordSetsRequest request = new
 ChangeResourceRecordSetsRequest();

 // Set change batch.
 request.setChangeBatch(changeBatch);

 // Set hosted zone id.
 request.setHostedZoneId("Z2RBSZ6TBBCOGZ");

 // Create A record.
 route53Client.changeResourceRecordSets(request);
 }

How it works…
First, we install the AWS SDK, as the AWS Java SDK is required to access the AWS services
from Java applications.

A hosted zone contains collection of recordsets, such as a traditional DNS zone file. Each
hosted zone contains mapping between domain names and IP addresses. You can manage
all your recordsets for a domain in a single hosted zone. After creating the hosted zone, you
receive the name server records. Next, we update our register's NS records to route queries
for our domain to the Route 53 name servers.

For the hosted zones, resource recordsets, health checks, and cost allocation tags, you have
to use the endpoint route53.amazonaws.com. The resource recordsets in a hosted zone
must have the same suffix. Domain names, including domains, hosted zones, and resource
recordsets consists of labels separated by dots where each label can be up to 63 bytes long
and the total length of the domain name is up to 255 bytes.

Chapter 7

135

Finally, we add the recordset to the hosted zone. Creating resource recordsets and choosing
a routing policy tells the DNS how you want route the traffic for that domain. For example,
you could route the traffic for domain to an on-premise server. There are various types of
routing policies available to be used with Route 53, including latency routing policy (based on
minimum latency) and geolocation routing policy (based on the location of your users).

There's more…
You can register your domain name with Amazon Route 53 or transfer the registration of existing
domains from other registrars to Amazon Route 53. You can use the Route 53 console, Route
53 API, or the AWS SDK for registering and managing your domains. The Route 53 registered
domains are configured to renew, automatically. When you register your domain with Amazon
Route 53, it is automatically configured as the DNS service for the domain.

Refer to Amazon Route 53 Developer Guide for lists of top-level domains
and domain extensions by geography that you can register with Amazon
Route 53.

You can use Amazon Route 53 to route queries to AWS resources such as the ELB (public-
hosted zones only), Amazon EC2 instances, website hosted in an Amazon S3 bucket (public-
hosted zones only), Amazon RDS, and more.

You can configure Route 53 to send automated requests to monitor the health of your web
servers. In addition, you can configure CloudWatch alarms for these health checks to send
notifications and route traffic to an alternate web server in case one of your web servers
becomes unavailable.

Route 53 integrates with IAM, so you control the users who can create a new hosted zone and
change resource recordsets. Route 53 is integrated with CloudTrail, so the API calls to Route
53 can be tracked via the CloudTrail Logs.

Accessing AWS S3 from applications
AWS S3 is highly scalable and durable object storage. You only have to pay for the storage
you actually use. S3 replicates data in multiple data centers within the region. Further, AWS
S3 introduces cross-region replication that replicates your data across AWS regions. In this
recipe, we cover both uploading objects to and downloading objects from AWS S3.

How to do it…
1. Installing AWS Java SDK.

In your Maven dependency section, add the following dependency for AWS Java SDK
Version 1.9.28.1:

Accessing Other AWS Services

136

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.9.28.1</version>
</dependency>

2. Create a bucket.

The following sample Java program creates a S3 bucket called
laurenceluckinbill in the Singapore region:

 // Create S3 bucket.
 public static void CreateBucket() {

 // Create BasicAWSCredentials with Access Key Id
 and Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

 // Create S3 client.
 AmazonS3Client s3Client = new
 AmazonS3Client(credentials);

 // Set endpoint.
 s3Client.setEndpoint("s3-ap-southeast-
 1.amazonaws.com");

 // Create bucket.
 s3Client.createBucket("laurenceluckinbill");

 }

3. Upload an object into the S3 bucket. The following sample Java program uploads the
Readme.txt file into the bucket called laurenceluckinbill:
 // Upload object.
 public static void UploadObject() {

 // Create BasicAWSCredentials with Access Key Id
 and Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

Chapter 7

137

 // Create S3 client.
 AmazonS3Client s3Client = new
 AmazonS3Client(credentials);

 // File to upload.
 File file = new File("D:\\Readme.txt");

 // Upload object into bucket.
 s3Client.putObject("laurenceluckinbill",
 "Readme.txt", file);
 }

4. Download an object.

The following sample program downloads the Readme.txt object from a bucket
called laurenceluckinbill into a local folder:

 // Download object.
 public static void DownloadObject() {

 // Create BasicAWSCredentials with Access Key Id
 and Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

 // Create S3 client.
 AmazonS3Client s3Client = new
 AmazonS3Client(credentials);

 // Local file path.
 String path = "D:\\Readme.txt";

 // Download object.
 s3Client.getObject(new
 GetObjectRequest("laurenceluckinbill",
 "Readme.txt"), new File(path));
 }

Accessing Other AWS Services

138

How it works…
Objects are stored in containers called buckets on S3. In our example, the object is a file
called Readme.txt and is stored in a bucket called laurenceluckinbill. This object can
be accessed using http://laurenceluckinbill.s3.amazonaws.com/Readme.txt.
S3 provides, both, a REST and a SOAP interface to store and retrieve objects. In addition,
AWS SDKs are also provided for building applications that use Amazon S3.

You can configure buckets to be created in a specific region to minimize costs or latency, or
meet regulatory requirements. While a bucket is the container on S3, an object is the entity
stored in Amazon S3. The objects are uniquely addressed by a combination of the endpoint,
bucket, key, and version ID.

First, we install the AWS SDK, as the AWS Java SDK is required to access the AWS services
from Java applications.

Next, we create an S3 bucket. We have to create buckets in one of the AWS regions before
uploading any data into Amazon S3. We can upload any number of objects inside a bucket.
As a best practice, always use DNS-compliant bucket names as it provides support for
virtual-host style access to the buckets.

After creating the bucket, you can upload your objects into the bucket or access/download
objects from the bucket. In order to upload an object to our bucket, we create an instance
of AmazonS3Client, and then execute the putObject method. The putObject method
is overloaded. You need to select the appropriate version, depending on whether you are
uploading data from a file or a stream. In our example, we are uploading a file from our local
drive to our bucket.

The GetObjectRequest object provides several options. In our example, we use it to
retrieve the object and write to a File object on our local drive. Alternatively, the data can be
streamed directly from S3, and you can read from it. However, this should be done as quickly
as possible because the network connection remains open till you finish reading and close
the input stream.

There's more…
Amazon S3 replicates your data across multiple servers, hence your object writes,
replacements, and deletes may not be reflected immediately. S3 does not support object
locking and the latest request wins. If such a behavior is unacceptable for your application,
then you will need to build this functionality. You can also replicate objects to different AWS
regions. You can filter by key prefixes to replicate specific objects to specific regions for
regulatory or reducing latency.

http://laurenceluckinbill.s3.amazonaws.com/Readme.txt

Chapter 7

139

Each object in Amazon S3 has a storage class associated with it. There are two storage types
most commonly used—standard and reduced redundancy storage. You can reduce your costs
using the S3 Reduced Redundancy Storage option for storing non-critical data. This option
replicates the data fewer number of times than the standard S3 storage, and hence the
associated costs are lower as well.

You can enable versioning on your buckets. If enabled, Amazon S3 assigns a unique version
ID to your objects. This helps protect you from unintended overwrites and deletes, and
retrieving prior versions of your objects. You can also retrieve specific versions of your objects.

For uploading large objects, you can use the multipart upload API. After all the parts are
uploaded, Amazon S3 constructs the object and makes it available for you. When you request
a multipart upload, S3 returns you an upload ID. You need to use this ID and a part number
(to identify the part and its position in the object being uploaded). You can also retrieve the
entire object or retrieve it in parts.

You can list your object keys by prefix. Hence, if you choose a common prefix for the names
of your related keys, then you can use the list operation to select or browse the keys in a
hierarchical manner using the bucket name and the prefix (similar to your local filesystem).

For deleting objects from Amazon S3, you can use the delete API or the Multi-Object delete
API depending on whether you are deleting a single or multiple objects, respectively. You need
to create an instance of AmazonS3Client, and then execute the deleteObject method.
If versioning is not enabled, then the object is deleted otherwise the operation puts a delete
marker on the version and the object disappears from the bucket. Note that if you specify the
version in the delete request, the version ID maps to a delete marker for that object. Then, S3
deletes the marker and the object reappears in your bucket.

You can create policies to control access to the buckets and objects. The policies govern
the creation, deletion, and listing the contents of buckets. Every request to S3 can be
authenticated or anonymous. You can use IAM user access keys or temporary security
credentials to access the services. There are two options for protecting your data at rest
on S3—server-side encryption and client-side encryption. In server-side encryption you can
let Amazon S3 to encrypt and decrypt your data. If you use Client-Side encryption then you
encrypt the data in the client and upload it for storage on S3.

You can host static websites in S3 by configuring your bucket for website hosting. This can
be done via the AWS Management Console or using the AWS SDKs. All requests to your
registered domain are routed to the appropriate S3 website endpoint. You will also need to
create appropriate policies to make your S3 content accessible to the public.

You can configure Amazon S3 notifications for certain S3 events such as object creation,
object removal, delete marker created for a versioned object, and so on. These events can
be published to an SNS topic, SQS queue, or AWS Lambda function. You can also configure
notifications to be filtered by the key prefix.

Accessing Other AWS Services

140

In addition, Amazon S3 is integrated with CloudWatch, so you can collect and analyze metrics
for your S3 buckets. You can also create alarms and send notifications if the threshold is
exceeded for a specific S3 metric. API calls to S3 can be tracked via CloudTrail Logs.

Accessing AWS SES from applications
Sending e-mails to users from your applications is a very common requirement. Provisioning
hardware and installing the mail server software in your own data center adds to the upfront
costs, aside from the security and high-availability concerns. AWS Simple Email Service
(SES) is an e-mail platform from AWS. For example, when you want to send e-mail messages,
Amazon SES is your outbound e-mail server. Alternatively, you can configure your existing
e-mail server to send the e-mails via Amazon SES.

You can track deliveries, bounced messages, complaints, and rejects from the AWS console,
or access the same via the SES API. You can view the e-mail volume limits for your account.
You can request an increase in your quota by providing some basic information on e-mail
content, and many more to AWS. You can use any standard SMTP library or the AWS SDK to
interact with SES.

How to do it…
1. Verify the e-mail address.

Execute the following sample command to verify the e-mail address, for example,
ethan@gmail.com:

$ aws ses verify-email-identity

--email-address ethan@gmail.com

2. Installing AWS Java SDK.

In your Maven dependency section, add the following dependency for AWS Java SDK
Version 1.9.28.1:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.9.28.1</version>
</dependency>

3. Send an e-mail using the AWS SES SDK.

Execute the sample program to send an e-mail. The program uses the N. Virginia
region for this purpose.

 // Send Email.
 public static void SendEmail() {

Chapter 7

141

 // List of to addresses.
 String[] TO = new String[] { "ethan@awscloud.com" };

 // Email from address.
 String FROM = "ethan@gmail.com";

 // Email subject.
 String MAILSUBJECT = "Test Email";

 // Email body.
 String BODY = "This is test email.";

 // Set to addresses.
 Destination destination = new
 Destination().withToAddresses(TO);

 // Create email subject.
 Content subject = new
 Content().withData(MAILSUBJECT);

 // Create email body.
 Content textBody = new Content().withData(BODY);
 Body body = new Body().withText(textBody);

 // Create a message with the specified subject and
 body.
 Message message = new
 Message().withSubject(subject).withBody(body);

 // Assemble the email.
 SendEmailRequest request = new
 SendEmailRequest().withSource(FROM)
 .withDestination(destination).withMessage(message);

 // Create BasicAWSCredentials with Access Key Id and
 Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

 // Create SES client.
 AmazonSimpleEmailServiceClient sesClient = new
 AmazonSimpleEmailServiceClient(
 credentials);

Accessing Other AWS Services

142

 // Set endpoint.
 sesClient.setEndpoint("email.us-east-
 1.amazonaws.com");

 // Send the email.
 sesClient.sendEmail(request);
 }

How it works…
In the first step, we verify our e-mail address. You have to verify the sender e-mail address
before sending e-mails from that address in order to prove that you own it. If you have a list
of e-mail addresses, then you can also verify your entire domain with SES.

We will receive a verification e-mail from AWS SES service, and after we click on the
verification link, the process is completed. You can track the verification status using the
AWS console.

Next, we install the AWS SDK, as the AWS Java SDK is required to access the Amazon SES API
from our Java application.

You can use any SMTP libraries or AWS SDK to interact with AWS SES service. In our sample
program, we use the AWS SDK to send an e-mail. At this time, AWS SES is available in N.
Virginia, Oregon, and Ireland regions only. It is recommended to use the nearest AWS region
to reduce network latency.

There's more…
You can send an e-mail using Amazon SES using the SES console, SES SMTP interface, or
SES API. Typically, the SMTP and SES APIs are used to send bulk e-mails. You can also use
the SMTP interface to integrate your existing e-mail server with SES. As a best practice,
choose an SES endpoint in a region that is closest to your application.

When you send a message, Amazon SES constructs an e-mail message that consists of a
header, a body, and an envelope that is as per the Internet Message Format specification
(RFC 5322).

The Amazon SES account can regulate the number and rate at which you can send e-mails.
This can protect from getting classified as a spammer and have your e-mails blocked by an
ISP. The sending quota defines the maximum number of e-mails you can send in a given 24-
hour period. Over time, both your sending limit and the rate are increased. If you try to send
an e-mail after you have hit the sending limits, you will encounter a throttling error and your
e-mail will be dropped.

Chapter 7

143

Excessive bounce rates and complaints by the e-mail recipients can lead
to a reduction or termination of your SES account.

As a best practice, you should test out your e-mail functionality. Use the mailbox simulator
provided by Amazon SES. The simulator is basically a set of test e-mail addresses that are
used for testing your sending scenarios without impacting sending quota.

Refer to the Amazon SES Developer Guide for best practices for sending
e-mail using Amazon SES.

You can also use Amazon SES to receive e-mails. For receiving e-mails, handle all the
underlying operations including communicating with other mail servers, scanning for spam,
scanning for viruses, and rejecting e-mails from untrusted sources. It can also route the
received e-mails to S3 buckets.

You can create IAM policies to specify the users permitted to perform SES actions.

Accessing AWS SNS from applications
AWS SNS helps you send e-mail, SMS, and mobile push notifications very efficiently.
The subscribers of the messages receive the messages over one of the supported
protocols such as HTTP/S, SMS, e-mail, and Amazon SQS.

If you are targeting an HTTP(S) endpoint from SNS, then it is highly recommended that your
HTTP(S) application be highly available to avoid message drops. For reliable messaging, you
can store the notification messages to Amazon SQS.

Mobile push notifications are typically used for application alerts, push e-mails and SMS,
and mobile push notifications. A use case for mobile push notifications could be to prompt
your inactive users back to using your application again. Targeting mobile platforms for mobile
notifications requires integration with different libraries for different platforms. AWS SNS
provides a single interface for all these platforms. You send a single push message to SNS,
and then SNS sends this message to different platforms, such as the, iOS, Android,
and Windows phones.

A topic is the communication channel between publishers and subscribers. Publishers
send messages to a topic and subscribers of those messages subscribe to the same topic.
Whenever the publisher publishes a message to a topic, AWS SNS delivers the message to
all the subscribers of that specific topic.

Accessing Other AWS Services

144

How to do it…
1. Installing AWS Java SDK.

In your Maven dependency section, add the following dependency for AWS Java SDK
Version 1.9.28.1:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.9.28.1</version>
</dependency>

2. Create a topic.

The following sample program creates a topic called emailalerts. Replace
endpoint with your own value. Record topic ARN for further usage.

 // Create topic.
 public static void CreateTopic() {

 // Create BasicAWSCredentials with Access Key Id
 and Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

 // Create SNS client.
 AmazonSNSClient snsClient = new
 AmazonSNSClient(credentials);

 // Set endpoint.
 snsClient.setEndpoint("sns.ap-southeast-
 1.amazonaws.com");

 // Create topic.
 CreateTopicResult result =
 snsClient.createTopic("emailalerts");

 // Get the topic Arn.
 String topicArn = result.getTopicArn();
 }

3. Subscribe to a topic.

In the following sample program, we subscribe to the topic with name emailalerts
using the e-mail protocol.

Chapter 7

145

 // Subscribe to a topic.
 public static void Subscribe() {

 // Create BasicAWSCredentials with Access Key Id
 and Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

 // Create SNS client.
 AmazonSNSClient snsClient = new
 AmazonSNSClient(credentials);

 // Set endpoint.
 snsClient.setEndpoint("sns.ap-southeast-
 1.amazonaws.com");

 // Subscribe to a topic by email protocol.
 snsClient.subscribe(
 "arn:aws:sns:ap-southeast-
 1:968336292411:emailalerts", "email",
 "ethan@awscloud.com ");
 }

4. Confirm the subscription.

The user receives a confirmation e-mail from AWS and has to click on the link
contained in the message.

5. Publish to a topic.

The following sample program publishes the message to the topic called
emailalerts:

 // Publish to a topic.
 public static void Publish() {

 // Create BasicAWSCredentials with Access Key Id
 and Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

 // Create SNS client.

Accessing Other AWS Services

146

 AmazonSNSClient snsClient = new
 AmazonSNSClient(credentials);

 // Set endpoint.
 snsClient.setEndpoint("sns.ap-southeast-
 1.amazonaws.com");

 // Publish to a topic.
 snsClient.publish(
 "arn:aws:sns:ap-southeast-
 1:968336292411:emailalerts",
 "This is test message.");
 }

How it works…
First, we install the AWS SDK, as the AWS Java SDK is required to access the AWS services
from Java applications.

As AWS SNS topic acts as a communication point for publishers and subscribers to
communicate with each other, we first create a topic called emailalerts. Copy the ARN
topic for use in the subsequent steps.

In the next step, we subscribe an endpoint to our topic. We configure the subscription to send
the topic messages to our e-mail address.

At this stage, we receive a confirmation e-mail from AWS. The following screenshot shows a
sample confirmation e-mail from AWS:

After the user clicks on the Confirm subscription link, he/she will see a subscription
confirmed message.

Chapter 7

147

After the confirmation of the subscription, he/she will start getting e-mails from SNS when a
new message is published to the topic.

Next, we publish a message to our topic. Here, we publish a message to our e-mail address
as defined in a previous step. At this stage, you can access the message in your e-mail
application.

There's more…
You can define access control policies to restrict access to specific producers and consumers
for a given topic. SNS policies also support cross-account access.

Each SNS policy must cover only a single topic or queue. Also, each policy
must have a unique policy ID, and each statement within the policy must
have a unique statement ID.

Amazon SNS also integrates with IAM, so you can specify which SNS-related actions a user is
permitted to perform. Hence, you can use IAM policies and/or SNS policies to for setting up
your user permissions.

Mobile push notifications are common use case for Amazon SNS. You can send push
notifications to mobile devices using one of the supported push notification services. These
services include Apple Push Notification Service (APNS) for iOS, Google Cloud Messaging
(GCM) for Android, and Microsoft Push Notification Service (MPNS) for Windows Phone.

You can use Amazon SNS with Amazon SQS to store messages to a queue where it can be
processed by other application components, asynchronously. You can subscribe a SQS queue
to an SNS topic so that when your application publishes a message to the topic, SNS sends
an SQS message to the queue.

Accessing Other AWS Services

148

You can use Amazon SNS to send and receive SMS notifications to mobile phones. A typical
use case for this is to send SMS alerts. For example, you can associate a CloudWatch alarm to
an SNS topic to send SMS notifications.

In the case of sending notifications to HTTP(S) endpoints, when you publish a notification to
the topic, Amazon SNS sends an HTTP POST request to the subscribed endpoint. You have to
ensure that your application is ready to handle these HTTP(S) POST requests. Your application
should read the HTTP header for messages. There are two key message types that need to
be handled—the subscription confirmation and the notifications. For the HTTPS endpoint,
you must have a server certificate signed by a trusted Certificate Authority (CA) that Amazon
SNS recognizes.

Refer to SNS Developers Guide for a list of CAs recognized by Amazon SNS
for HTTPS endpoints.

In addition, Amazon SNS is integrated with CloudWatch, so you can collect and analyze
metrics for every SNS topic. You can also create alarms and send notifications if the
threshold is exceeded for a specific SNS metric, for example, the number of messages failed
notifications. API calls to SNS can be tracked via CloudTrail Logs.

Accessing AWS SQS from applications
SQS is a scalable, fast, and fully managed distributed queuing service from AWS. AWS SQS
helps you build loosely coupled applications. This allows the application components to run
independently with SQS managing the message flow between them. SQS can act as a buffer
between the writers and the readers of the messages, and each queue can support multiple
writers and readers.

Minimum SQS message size is 1 KB, maximum message size is 256 KB. Messages in SQS
queues are stored for 4 days; however, you can increase the retention period from 1 minute to
14 days. You can create an unlimited number of queues, and a queue can contain unlimited
number of messages.

AWS SQS supports long polling, so instead of querying SQS every 10 seconds with no results,
you can send the request to the SQS. It responds whenever there is a message present in that
specific queue.

There is no upfront cost to pay, and you only pay for what you use. Note that due to the
distributed nature of the queues, SQS does not guarantee first in, first out delivery of messages.

If the order of messages is important in your application, then you will need
to include sequencing information in your messages and reorder them in
the correct order after retrieving them from the queue.

Chapter 7

149

However, SQS does guarantee the delivery of your messages at least once. As AWS SQS
stores your messages on multiple servers, it is possible that a message was not deleted on a
temporarily unavailable server. This can result in your message being received and processed
again. Hence, ensure your application is designed to take care of this situation.

How to do it…
1. Installing AWS Java SDK.

In your Maven dependency section, add the following dependency for AWS Java SDK
Version 1.9.28.1:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.9.28.1</version>
</dependency>

2. Creating a queue.

Execute the following sample program to create a queue called
thumbnailjobinput:

 // Create queue.
 public static void CreateQueue() {

 // Create BasicAWSCredentials with Access Key Id
 and Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

 // Create SQS client.
 AmazonSQSClient sqsClient = new
 AmazonSQSClient(credentials);

 // Set endpoint.
 sqsClient.setEndpoint("sqs.ap-southeast-
 1.amazonaws.com");

 // Create queue.
 sqsClient.createQueue("thumbnailjobinput");
 }

Accessing Other AWS Services

150

3. Insert a message in the queue.

Execute the following sample program to insert messages into the queue named
thumbnailjobinput. Here, we are inserting messages with a user ID, and a
background thumbnail creation job that monitors this queue, processes the message
and creates a thumbnail image for that specific user ID.

 // Insert message.
 public static void InsertMessage() {

 // Create BasicAWSCredentials with Access Key Id
 and Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

 // Create SQS client.
 AmazonSQSClient sqsClient = new
 AmazonSQSClient(credentials);

 // Set endpoint.
 sqsClient.setEndpoint("sqs.ap-southeast-
 1.amazonaws.com");

 // Insert message.
 sqsClient.sendMessage(new
 SendMessageRequest().withQueueUrl(
 "thumbnailjobinput")
 .withMessageBody("123"));

 }

4. Receive the message in your program.

Execute the following sample program to retrieve one message at a time from a
queue named thumbnailjobinput:

 // Receive message.
 public static void ReceiveMessage() {

 // Create BasicAWSCredentials with Access Key Id
 and Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

Chapter 7

151

 // Create SQS client.
 AmazonSQSClient sqsClient = new
 AmazonSQSClient(credentials);

 // Set endpoint.
 sqsClient.setEndpoint("sqs.ap-southeast-
 1.amazonaws.com");

 // Prepare the request.
 ReceiveMessageRequest request = new
 ReceiveMessageRequest(
 "thumbnailjobinput");

 // Set number of messages to retrieve from queue.
 request.setMaxNumberOfMessages(1);

 // Get messages.
 List<Message> lstMessage = sqsClient
 .receiveMessage("thumbnailjobinput")
 .getMessages();

 // Iterate through messages.
 for (Message message : lstMessage) {

 // Get the message body.
 String msg = message.getBody();
 }
 }

5. Alternatively, you can also retrieve and delete message from the queue. The following
sample program illustrates this:

 // Receive and Delete message.
 public static void ReceiveAndDeleteMessage() {

 // Create BasicAWSCredentials with Access Key Id
 and Secret Access Key.
 BasicAWSCredentials credentials = new
 BasicAWSCredentials(
 "Access Key Id",
 "Secret Access Key");

 // Create SQS client.
 AmazonSQSClient sqsClient = new
 AmazonSQSClient(credentials);

Accessing Other AWS Services

152

 // Set endpoint.
 sqsClient.setEndpoint("sqs.ap-southeast-
 1.amazonaws.com");

 // Prepare the request.
 ReceiveMessageRequest request = new
 ReceiveMessageRequest(
 "thumbnailjobinput");

 // Set number of messages to retrieve from queue.
 request.setMaxNumberOfMessages(1);

 // Get messages.
 List<Message> lstMessage = sqsClient
 .receiveMessage("thumbnailjobinput")
 .getMessages();

 // Iterate through messages.
 for (Message message : lstMessage) {

 // Get the message body.
 String msg = message.getBody();

 // Process the message.

 // Delete the message after processing message.
 String receiptHandle =
 message.getReceiptHandle();

 // Prepare request.
 DeleteMessageRequest deleteRequest = new
 DeleteMessageRequest();

 // Set queue name.
 deleteRequest.setQueueUrl("thumbnailjobinput");

 // Set receipt handle.
 deleteRequest.setReceiptHandle(receiptHandle);

 // Delete message.
 sqsClient.deleteMessage(deleteRequest);
 }
 }

Chapter 7

153

How it works…
AWS Java SDK helps you access AWS services from Java applications. You have to create a
queue before inserting any data into it. When creating queues, you need to provide unique
name for each one of them. SQS assigns each queue a URL that must be used used in all
subsequent operations on that queue. SQS returns a message ID for each message in the
response to the send message request.

The default polling method for messages is the short or standard polling. In short polling, SQS
samples a subset of servers and returns messages from them. Hence, a request need not
return all the messages in the distributed queue. If you continue to retrieve the messages,
then SQS will sample all the servers and return your messages. SQS also supports long polling
which reduces the number of empty responses when the queue is empty. Additionally, in long
polling SQS queries all the servers for your messages. We can enable long polling in SQS by
setting parameters in ReceiveMessage, CreateQueue, and SetQueueAttributes API
calls. In our example, we are using the default polling method, that is, short polling.

While retrieving messages from the queue, you can also specify the number of messages to
retrieve. In our example, we specify a value of 1 for the number of messages in our receive
message request. Each time a message is received from the queue, you receive a receipt
handle with it. This receipt handle is used for deleting the message or changing the
message visibility.

When your processing component receives a message, Amazon SQS does
not delete the message, automatically. Hence, your processing component
must delete the message from the queue after receiving and processing it.

As the message remains in the queue, SQS blocks it with a visibility timeout, which is the
time period during which other processing components in your application cannot receive
and process the same message. The default visibility timeout for messages in the queue is
30 seconds, that is, if you don't delete the message after retrieving and processing it within
30 seconds, then SQS makes the message visible again. You can also extend or terminate
a message's visibility timeout through the API.

There's more…
SQS provides support for message attributes. These attributes can be used to provide
metadata about your message, for example, timestamps. This metadata is useful to
processing component to decide on how to process the message without processing
the message body.

Accessing Other AWS Services

154

SQS provides a batch message processing functionality for receiving, sending, and deleting
messages, and also for changing the message visibility timeout values. These operations
can process 10 messages in a single call. As more work is carried in the batch request, it
makes more efficient use of threads and connections; thereby, improving the throughput.
Overall costs are also reduced because the number of requests to process the messages
is significantly reduced.

Amazon SQS supports dead letter queues. As a best practice, if some messages are not
processed successfully, then they should be sent to a dead letter queue. This effectively
isolates such messages and avoids repeated processing failures. You can analyze these
messages to determine the reason for the processing failures. Dead letter queues should
be located in the same region as your other queues.

You can use SQS access policies and/or IAM policies for setting up your access permissions.
The main difference between the two is that SQS policies can be used to set up cross-account
access to your queues. In addition, Amazon SQS is integrated with CloudWatch, so you can
collect and analyze metrics such as the number of empty receives while polling for new
messages. You can also create alarms and send notifications if the threshold is exceeded for
a specific SQS metric, for example, the number of messages received. API calls to SQS can be
tracked via CloudTrail Logs.

155

8
Deploying AWS

Applications

In this chapter, we will cover recipes for:

 f Using Docker containers for AWS deployments

 f Using Chef for AWS deployments

 f Using Puppet for AWS deployments

Introduction
There are several options for deployment, configuration management, and infrastructure
management on AWS. These options include Puppet and Chef as configuration management
systems, AWS Elastic Beanstalk, AWS OpsWorks, and Ansible as deployment frameworks, and
AWS CloudFormation for infrastructure management.

This chapter covers recipes for using open source DevOps tools such as Docker, Chef, and
Puppet. Docker implements virtualization and runs both on virtual machines and bare metal.
You can directly ship Docker containers to your cloud environments. Chef and Puppet help
automate your server and application deployments. These tools treat infrastructure as code,
and you can version and test your infrastructure just like any application. These tools will work
both on-premise infrastructure and cloud platforms such as Amazon EC2 and OpenStack. In
addition, you can use AWS CloudFormation with Chef and Puppet.

Refer to Wikipedia for more information on DevOps at
http://en.wikipedia.org/wiki/DevOps.

http://en.wikipedia.org/wiki/DevOps

Deploying AWS Applications

156

Using Docker containers for AWS
deployments

Docker containers are like lightweight VMs and allow you to run your application in an isolated
environment. Using Docker, you can package your application inside a lightweight container
and ship it to your dev, QA, staging, and production environments. Docker's simplified API
helps you with the creation and deployment of containers, and its versioning feature helps
you easily manage your containers across your environments (that is, dev, test, staging, and
production). You can share your Docker images using public registry, Docker hub, maintained
by Docker, Inc.

Managing and scheduling these containers in a fleet of machines adds complexity. However,
Amazon EC2 Container Service solves this problem for you. Amazon ECS is a container
management service that makes it easier to manage Docker containers on an AWS EC2
cluster. This service lets you launch container-enabled application using an API. ECS
eliminates the need for your own cluster management and configuration management
systems. AWS EC2 Container Service is free to use, you only pay for the resources used.
There are open source container orchestration softwares, such as Marathon, that run on
top of Apache Mesos, Kubernetes by Google, Docker swarm, and CoreOS fleet.

How to do it…

Installing Docker
The following sample command installs Docker in a Ubuntu 12.04.5 LTS machine:

sudo wget -qO- https://get.docker.com/ | sh

After installing Docker, verify the Docker version by executing the following command:

sudo docker --version

Creating a Dockerfile
Create a folder called myapp and a file inside that folder called Dockerfile. Our sample
Dockerfile contains commands for installing Java and Tomcat.

Specify the base image.
FROM ubuntu:12.04

Update the local repository.
RUN apt-get update

Add Java 7 repository.

Chapter 8

157

RUN apt-get -y install software-properties-common python-
software-properties
RUN add-apt-repository ppa:webupd8team/java
RUN apt-get -y update

Accept the Oracle Java license.
RUN echo "oracle-java7-installer shared/accepted-oracle-
license-v1-1 boolean true" | debconf-set-selections

Install Oracle Java.
RUN apt-get -y install oracle-java7-installer

Install Tomcat7.
RUN apt-get -y install tomcat7
RUN echo "JAVA_HOME=/usr/lib/jvm/java-7-oracle" >>
/etc/default/tomcat7

Set environment variable.
ENV CATALINA_BASE=/var/lib/tomcat7

Set entry point.
ENTRYPOINT ["/usr/share/tomcat7/bin/catalina.sh", "run"]

Building an image from the Dockerfile
By running the following command, you can build an image from Dockerfile. Before executing
this command, change the directory to myapp.

sudo docker build -t sekhar/javatomcat:v1 .

You can list the images in your host by running the following command:

sudo docker images

Creating Docker container
By executing the following command, you can spawn a new container:

sudo docker run -d -t -i -p 80:8080 sekhar/javatomcat:v1

At this stage, you should be able to browse your web application using the URL http://
host-ip/.

Checking the container status
Use the following command to list the container ID, image, and ports information:

sudo docker ps

Deploying AWS Applications

158

How it works…
Docker uses resource isolation features of the Linux kernel to sandbox the application, its
dependencies, and interfaces in a container. A container can run on any host system having
relevant kernel components, while shielding the application from variances of the software
installed on any given host. Also, multiple containers can run independently on a single host
OS without a hypervisor.

In Docker, images are used to create Docker containers. For example, an image could contain
an operating system with Java, Tomcat server, and your web application. You can create these
Docker images or use images that other developers created. In this recipe, we used Dockerfile
to build images. The Dockerfile is a text document containing a set of commands you would
normally execute manually in order to build an image.

The parameters in the Dockerfile are explained as follows:

 f FROM: This is a very important directive in your Dockerfile. It defines the base image
to start the build process. You can use previously created images. If an image is not
found on the host, Docker will then try to find it in the Docker image index.

 f RUN: Using this directive, you can execute your commands in the build process, for
example, installing Java and Tomcat.

 f ENV: Using this directive you, can set up the environment variables. You can access
these environment variables in your application inside the container.

 f ENTRYPOINT: You can define your target application using this directive. Whenever a
container is created from that image, your application will be the target.

After creating the Dockerfile, we built our Docker image from that Dockerfile. We pass
the repository name (sekhar/javatomcat) and tag (v1) for the image. We can use the
previously created images to create new containers. You can also spawn as many containers
as required from that image.

Finally, we created the Docker container. We specified the host and container port mapping
using the –p argument. Here, Tomcat's default port inside container is 8080, so we map
the host port 80 to Tomcat port 8080. The –d value indicates that this container will run in
detached mode. We also specified the repository name and tag name.

There's more…
Typically, the container is built on the developer's machine. This can make deployments
simpler and faster, as it simply involves moving the container to your target environment. In
addition, consistency and predictability can be maintained when moving your application code
between various environments. The containers can be deployed in AWS environments using
AWS Elastic Beanstalk and Amazon ECS.

Chapter 8

159

AWS Beanstalk can deploy your application containers to Amazon ECS. You will need to
specify your container images, CPU, memory, ports, and so on. Beanstalk will provision the
infrastructure, and place your containers in the cluster and monitor the container's health.

Amazon ECS has been specifically designed to manage containers deployed in a cluster.
Amazon ECS provides the cluster management infrastructure and integrates with other AWS
services such as ELB, EBS volumes, and IAM. A cluster here is a set of EC2 instances running
the Amazon ECS container agent that communicates with the cluster manager and the Docker
daemon. The agent registers with the specified cluster and sends EC2 instance and container
information. An autoscaling group is associated with the cluster to ensure that the cluster
grows appropriately, to meet the container workloads.

Amazon has developed an ECS-optimized Amazon Linux AMI that includes
the ECS agent and the Docker daemon. This AMI is available in the
AWS marketplace.

Amazon ECS provides two schedulers—the RunTask action (for random distribution of
tasks across your cluster) and the service scheduler (for long-running stateless services).
The schedulers use the cluster state information from the ECS API to make the placement
decisions. Amazon ECS also allow integration of custom and third-party schedulers.

Amazon ECS supports using CloudWatch to monitor the EC2 instances in the cluster. You
can view the metrics for Amazon ECS in the ECS and the CloudWatch consoles. The average,
minimum, and maximum values for the last 24 hours for cluster CPU and memory and service
metrics are available in the ECS console. The CloudWatch console provides a more detailed
view of the ECS cluster and service metrics. These metrics include the cluster utilization
and service utilization metrics. In addition, you can create CloudWatch alarms. For example,
you can create an autoscaling group for the ECS cluster based on cluster memory utilization
metric. Amazon ECS is integrated with AWS CloudTrail, so you can use to track the API calls
made by Amazon ECS.

Container security can be implemented using AWS IAM, security groups, and VPC
configurations. For example, you can create an IAM role and associate it with your container
instances (when launch them) so that the ECS container instances calls to ECS and EC2 APIs
are authenticated. In addition, you can also leverage Dockers isolation capabilities or use
other isolation frameworks such as iptables and SELinux.

Using Chef for AWS deployments
As Chef treats infrastructure as code, you can version control it. Using Chef it's easy to
recreate infrastructure again and again. Chef uses a pure Ruby domain-specific language
for defining its recipes. Versioning allows you to test your cookbooks before pushing them
into the production environment. Resources are the fundamental building blocks of Chef
configurations, these represents a piece of the system and its desired state. Resources are
gathered into recipes. These recipes are stored in cookbooks.

Deploying AWS Applications

160

Chef server holds all the recipes, cookbooks, and policies. You can use a hosted Chef server
[by Opscode] or install your own. Chef client on each node download the desired system
configuration from the Chef server, and then update the node to comply with the policy.

A node is any physical, virtual, or cloud machine that is configured to be maintained by a Chef
client. A Chef role allows us to group configurations for the types of nodes together. Knife is a
command-line tool that is used to communicate with Chef server. This is primary tool to create
recipes and cookbooks. Chef Knife plugin for EC2 gives knife the ability to create, bootstrap,
and manage EC2 instances.

Chef provisioning has an extensible driver system that works with many clouds, virtual
machines, containers, and even bare metal. Using the AWS driver, you can work with other
AWS resources such as VPCs, S3, and security groups. The drivers available for Microsoft
Azure, LXC, Docker, and so on.

How to do it…

Installing the knife-ec2 plugin
In our sample, we will be installing the Chef Development Kit in the C:\opscode\chefdk
folder. Before executing the following command, change your working directory to C:\
opscode\chefdk\embedded\bin.

gem install knife-ec2

Configuring Chef Provisioner node with knife-ec2 plugin
The following sample command creates an Ubuntu machine; hence, we specify the default
SSH username to be ubuntu. We also specify the AWS access key ID and secret access key.
Execute the following command from your workstation:

knife ec2 server create

--image "AMI id"

--flavor "t1.micro"

--ssh-key "ProvisionerKeyPair"

--identity-file "ProvisionerKeyPair.pem"

--ssh-user "ubuntu"

--aws-access-key-id "Access Key Id"

--aws-secret-access-key "Secret Access Key"

--region "us-east-1"

The preceding command creates an Ubuntu machine in the N. Virginia region. You have to
set this client as admin in your Chef server. The following steps show how to set the client as
admin from the Chef server web console:

Chapter 8

161

1. Click on the Clients option on the top menu from Chef server console.

2. Select the provisioner client (client name is the same as EC2 instance ID) from the
client list.

3. Click on the Edit option from sub menu.

4. Select the Admin checkbox.

5. Click on Save Client.

Configuring Chef Provisioner node
You can install the Chef Development Kit using the following command. Execute the following
commands as the root user:

1. Download the package using the following command:
wget https://opscode-omnibus-packages.s3.amazonaws.com/
ubuntu/12.04/x86_64/chefdk_0.5.1-1_amd64.deb

2. After the download completes, run the following command to install the Chef
Development Kit:
sudo dpkg -i chefdk_0.5.1-1_amd64.deb

3. Set the Chef driver to aws.
export CHEF_DRIVER=aws

4. Create an IAM user with the required EC2 permissions such as permission to launch
EC2 instance and generate access credentials for that user. You have to set these
credentials in the ~/.aws/config file. Create the ~/.aws/config file and add
the following lines, replace the access key ID and secret access key with your own
AWS credentials:

[default]
output = json
region = us-east-1
aws_access_key_id = Access Key ID
aws_secret_access_key = Secret Access Key

Creating cookbooks and recipes
In our sample, we provision EC2 instances and then install Nginx server on the EC2 instances.

1. Create a cookbook with name nginx. This cookbook has recipes to install Nginx
server on EC2 instance.
knife cookbook create nginx

Deploying AWS Applications

162

2. Add the resources here to nginx cookbook's default [the default.rb file] recipe.
This recipe downloads the list of available packages, installs nginx, starts the nginx
service, and copies the index.html file from the files/default subdirectory in
the cookbook to the EC2 server's nginx folder.
execute "apt-get update" do
 command "apt-get update"
end

package 'nginx' do
 action :install
end

service 'nginx' do
 action [:enable, :start]
end

cookbook_file "/usr/share/nginx/www/index.html" do
 source "index.html"
 mode "0644"
end

3. Add the index.html file to the folder specified at this path .../your-chef-
repo/cookbooks/nginx/files/default/.

4. Create cookbook with name aws_configure. This cookbook has recipes to
provision EC2 instances.
knife cookbook create aws_configure

5. Add the resources here to the aws_configure cookbook's default [the default.
rb file] recipe. In this recipe, we specify a machine resource called frontendsrv01.
This EC2 machine will use the image specified in bootstrap_options, and the
default key/pair generated by Chef client in provisioning node. You can also specify
your own key/pair in bootstrap_options. In machine resource's, run list we
specify the nginx recipe.
require 'chef/provisioning'

with_machine_options :bootstrap_options => {
 :instance_type => 't1.micro',
 :image_id => 'AMI id'
}

machine 'frontendsrv01' do
 run_list ['nginx']
end

Chapter 8

163

6. In the aws_configure cookbook's metadata.rb file, specify the nginx
dependency by adding the following line:
depends "nginx"

7. Upload both cookbooks to Chef server using the following commands:

knife cookbook upload nginx

knife cookbook upload aws_configure

Starting Chef client from the provisioning node
After uploading cookbooks, you can run Chef client from the provisioning node. Provide the
recipe name when running the chef-client command:

chef-client -o aws_configure

After executing the preceding command, you can see the EC2 instances in your AWS console.
These instances are preconfigured with the nginx server. You can browse your index.html
page using http://EC2 Instance Public DNS/.

How it works…
The Knife EC2 plugin is distributed as a Ruby gem. First, we install the Knife EC2 plugin and
configure the Chef Provisioner node with it. The Chef client in this new EC2 instance adds this
node as client to your Chef server. The client name is same as EC2 instance ID.

We assume that you installed Chef server and workstation before proceeding with the recipes.
The Provisioner node can be your local workstation machine or a node in cloud. Here, we are
bootstrapping an EC2 instance using the Knife EC2 plugin. It installs Chef, and then runs the
Chef client with the specified run list. Later, we use this node as Chef Provisioner node. Before
executing the command for configuring the Chef Provisioner node, create a key/pair with the
name ProvisionerKeyPair, download the key/pair into your local machine, and specify
the key/pair file path to the following command using the --identity-file argument.
Chef provisioning is included in the latest Chef Development Kit. We have to install the Chef
Development Kit in our Ubuntu machine.

Next, we create and upload our cookbooks and recipes. Finally, we start the Chef client
from the provisioning node. Chef provisioning node communicates with AWS to create the
EC2 instances.

Deploying AWS Applications

164

There's more…
You can use Chef, a configuration management tool, with AWS CloudFormation. This helps
avoid manually building a custom AMI and running your own scripts. Instead, you can use
Chef to consistently configure and deploy your application. For example, you can use AWS
CloudFormation template to provision your web server and database.

After the Amazon EC2 instance is started, AWS CloudFormation installs and configures Chef
on the instance. Then, you can use a Chef recipe to configure and deploy your application
on the web server. Hence, you can consistently provision the same setup by reusing the
CloudFormation template while using Chef to bootstrap your instances. You must have a
valid Amazon EC2 key/pair in the region you are launching the template in. In addition, do
not hardcode properties that change from stack to stack, or sensitive information (such as
passwords), in the template. These can be provided as input parameters in the Parameters
section of the template.

There are several AWS tools such as AWS OpsWorks and AWS CodeDeploy that help with
cloud deployments and software releases. AWS OpsWorks provides a flexible way to create
and manage stacks and applications. A stack basically contains Amazon EC2 instances, RDS
instances, and many more that need to be managed as a group.

A stack has layers where each layer serves a specific function such as hosting an application
server or a database server. AWS OpsWorks includes built-in layers, for example, a stack
may include built-in layers for application servers, database servers, load balancers, caches,
and so on. AWS OpsWorks uses Chef cookbooks to handle installation and configuration of
packages and deployment of applications. It includes a set of built-in cookbooks that support
the built-in layers.

A cookbook typically includes attribute files (containing values to be used in recipes and
templates), template files (used by recipes to create other files such as configuration files),
and recipes (Ruby applications that is required to configure an application—folders, packages,
services, and so on). Additionally, you can have a set of recipes assigned to lifecycle events
(setup, configure, deploy, underlay, and shutdown). These recipes are executed at the
appropriate time. For customization to the layers, you need to override or extend the built-in
cookbooks.

AWS CodeDeploy deploys your application code to EC2 instances while ensuring it leaves as
many of your instance online as possible. CodeDeploy can also be used in conjunction with
Chef recipes.

Chapter 8

165

Using Puppet for AWS deployments
Puppet is an open source platform for provisioning, configuring, and patching applications
and OS components. A Puppet deployment has two components: Puppet master and Puppet
client. The Puppet master is a centralized configuration server that holds the definitions and
instructions needed to install your applications. A Puppet client connects to the Puppet server
and downloads the necessary instructions to install and update the software running on it.

In Puppet, you have to describe machine configurations in Puppet's own Domain Specific
Language (DSL). Central to using Puppet is declaring resources. Each resource describes
some aspect of a system, like a file that must be copied or a package that must be installed.
Resources are often grouped into classes that are organized into modules. Groups of resource
declarations and conditional statements can be specified in a class.

Manifests are files containing Puppet code and are text files saved with a .pp extension. Most
manifests are arranged into modules so that they can be automatically located and loaded by
the Puppet master. Modules can contain many Puppet classes.

You can find hundreds of modules in the puppet forge website. Puppet comes with a module
tool to interact with forge. Geppeto is an Eclipse-based editor for writing Puppet code. Before
starting these recipes, you must have a working Puppet master setup with Puppet Version 3.4
or greater and Ruby Version 1.9.

How to do it…

Installing Puppet AWS module in Puppet master
Execute the following steps to install the Puppet AWS module:

1. Install the AWS SDK gem using the following command:
gem install aws-sdk-core

2. Install Retries gem using the following command:
gem install retries

3. Export the AWS access key ID. Replace the AWS access key ID with your own.
export AWS_ACCESS_KEY_ID=Access Key Id

4. Export the AWS secret access key. Replace the AWS secret access key with your own.
export AWS_SECRET_ACCESS_KEY=Secret Access Key

5. Install the Puppet AWS module using the following command:

puppet module install puppetlabs-aws

Deploying AWS Applications

166

Launching an EC2 instance with Puppet agent
Execute the following steps in the Puppet master. Our Puppet master is running on an Ubuntu
12.04 LTS machine.

1. Go to the /etc/puppet/modules folder.

1. Create a new module with the name aws_prod.

2. Inside the aws_prod module folder, create a new folder called manifests.

3. Inside the manifests folder, create a file called init.pp with the
following content:

class aws_prod {

 ec2_instance { 'instance-02':
 ensure => present,
 key_name => 'ApacheServerKeyPair',
 region => 'us-east-1',
 image_id => 'ami-a6afb8ce',
 instance_type => 't1.micro',
 user_data => template('aws_prod/install-agent.sh')
 }

}

The Puppet AWS module allows you to manage AWS using the Puppet DSL. The
following code sets up a very basic instance. Here we are passing a shell script that
installs Puppet agent in this new EC2 instance.

2. Create a new folder with the name templates inside the aws_prod module folder.

3. Inside the templates folder, create a new file with the name install-agent.sh.

4. Add the following content in the install-agent.sh file. Replace Puppet server
URL with your Puppet server URL.
#!/bin/bash
set -e -x
PuppetServer=Puppet Server URL
AgentCertName=$(curl -s http://169.254.169.254/latest/meta-data/
instance-id)
cd ~; wget https://apt.puppetlabs.com/puppetlabs-release-trusty.
deb
dpkg -i puppetlabs-release-trusty.deb
apt-get update
apt-get -y install puppet
echo "
[agent]

Chapter 8

167

server=$PuppetServer
certname=$AgentCertName
runinterval=5
" >> /etc/puppet/puppet.conf
sed -i /etc/default/puppet -e 's/START=no/START=yes/'
service puppet restart

5. You can apply individual manifests using the following command:

puppet apply --modulepath=/etc/puppet/modules -e "include aws_
prod"

After executing the preceding command, you can see the new EC2 instance,
preconfigured with Puppet agent, in the AWS console.

Instead of writing our own module, we can also install the module hosted on the Puppet
Module Forge using the following commands. For example, if we want to install Apache server
on EC2 instance, then execute the following command on Puppet master:

puppet module install puppetlabs-apache

Create a sample index.html file in the folder specified at path /etc/puppet/modules/
apache/files.

In the /etc/puppet/manifests/site.pp file add the following content:

node 'i-6e3553b8' {

 class { 'apache':
 default_vhost => false
 }
 apache::vhost { 'example.com':
 port => '80',
 docroot => '/var/www'
 }
 file { '/var/www/index.html':
 source => "puppet:///modules/apache/index.html"
 }

}

When the Puppet agent runs, it will install Apache server on your EC2 instance, and you can
browse your index.html at http://EC2 Instance Public DNS/.

Deploying AWS Applications

168

How it works…
Before installing Puppet AWS module, you must install AWS Ruby SDK gem and the Retries
gem. If you are using the open source puppet, these gems should be installed into the same
Ruby instance used by Puppet. The Puppet module allows you to specify AWS resource types
in your manifest files. You can configure AWS resources such as EC2 instances, security
groups, VPCs, and so on.

The first time Puppet runs in an agent node, it will send a certificate-signing request to the
Puppet master. Before the master is able to communicate and control the agent node, it must
sign that particular agent node's certificate. If you want to autosign any new client certificates
that are sent to the puppet master, add the following configuration in the [master] section
of puppet configuration file (by default, it is located at /etc/puppet/puppet.conf):

autosign = true

Do not enable autosigning in your production deployments. Instead of
enabling autosigning, you can use basic autosigning or policy-based
autosigning.

We also specified the key/pair name, AWS region, image ID, and instance type for our new
EC2 instance. When you launch an instance in Amazon EC2, you have the option of passing
user data to the instance that can be used to perform common automated configuration tasks
and even run scripts after the instance starts.

We created the install-agent.sh file in the templates folder of the aws_prod Puppet
module. This shell script gets the instance ID from EC2 instance metadata URL. This is also
used for the certificate name, install Puppet agent [Puppet agent Version 3.7.5], and roll out
the node with Puppet. The frequency with which the puppet agent applies the catalog is based
on the run interval value; here, we have specified it to be 5 minutes (the default value is
30 minutes).

In the case of installing from the Puppet Module Forge, a node statement allows you to assign
specific configurations to specific nodes. We specify the previously created EC2 instance ID as
the node value and add a virtual host, specify a port, and copy the index.html file from the
Apache module to the Apache document root folder.

There's more…
Puppet integrates with AWS CloudFormation. CloudFormation provisions the resources
required for your applications. You can use a CloudFormation template to bootstrap a Puppet
master. The template specifies the location for content that is used to populate the Puppet
master with the application and OS configurations. These configurations can be downloaded
to Puppet clients.

Chapter 8

169

AWS CloudFormation also provides a facter plugin that interprets the template metadata
to configure applications and roles deployed via Puppet. Using template metadata, you can
bootstrap a base OS and the Puppet client, configure roles for the client, and install and run
the software packages.

For installing the Puppet client, you can create a template that creates an EC2 instance
running the Puppet client (configured to install a server role from the Puppet master). Note
that for highly available and scalable applications, you can create multiple instances using
an autoscaling group and span across multiple availability zones. You will need to provide
the security group and Puppet master DNS name. The Puppet client metadata defines the
packages to run, deploy, and configure the client software to access the Puppet master.

AWS CodeDeploy deploys your application code to EC2 instances while ensuring it leaves as
many of your instance online as possible. CodeDeploy can also be used in conjunction with
Puppet scripts.

171

Index
A
Access Control List (ACL) 38
actions-enabled parameter 99
Active Directory Federation Services

(ADFS) 79
Amazon CloudWatch. See CloudWatch
Amazon Resource Name (ARN) 99
Apple Push Notification Service (APNS) 147
applications

deploying, on EC2 instances 62-68
S3, accessing from 135-140
SES, accessing from 140-143
SNS, accessing from 143-147
SQS, accessing from 148-154

Autonomous System Number (ASN) 51
availability zones 2
AWS CLI

installing, with pip in Linux 7, 8
installing, with pip in Windows/Mac 8, 9

AWS CLI tools
access key ID, obtaining 6
preparing 6
secret access key, obtaining 6

AWS CloudFormation 53
AWS deployments

Chef, using 159-164
Docker containers, using 156-159
Puppet, using 165-169

AWS Marketplace
EC2 instances, creating 34

AWS Namespaces
URL 92

AWS VPC (Virtual Private Cloud) 37

B
basic monitoring 90
Border Gateway Protocol (BGP) 51

C
Certificate Authority (CA) 148
Chef

cookbooks and recipes, creating 161, 162
knife-ec2 plugin, installing 160
provisioning 160
using, for AWS deployments 159-164

Chef Provisioner node
configuring 161
configuring, with knife-ec2 plugin 160

Classless Inter-Domain Routing (CIDR) 38
CloudFormation

templates, creating 54-61
templates, creating from existing AWS

resources 61, 62
using 38

CloudWatch
about 89, 90
use case 89
used, for collecting EC2 metrics 90-92
used, for monitoring costs 97-99

CloudWatch Logs
about 102
using 102-106
working 106

costs
estimated charges, monitoring 97, 98
monitoring, with CloudWatch 97-99

custom metrics
collecting, from EC2 instances 92-97

172

D
data services 107
describe-cache-clusters command 123
detailed monitoring 90
DevOps

URL 155
Docker

installing 156
Docker containers

creating 157
status, checking 157
using, for AWS deployments 156-159
working 158

Dockerfile
creating 156
image, building from 157
parameters 158

Domain Specific Language (DSL) 165
DynamoDB

about 113, 114
query operation 120
scan operation 120
secondary indexes 120
using 114-120

E
EC2-Classic

EC2 instance, launching 10
security groups, creating 20
used, for launching EC2 instances 9, 10

EC2 instances
about 2
adding, to Elastic Load Balancer (ELB) 28
AMI, creating 34, 35
AMI, making public 35
applications, deploying on 62-68
creating 3-6
creating, for AWS Marketplace 34
creating, with multiple NICs 13
creating, with static private IP address 13
custom metrics, collecting from 92-97
EIP, associating to ENI 15

grouping, placement groups used 24
launching 3-6launching, in VPC 11
launching, with EC2-Classic 9, 10
launching, with EC2-VPC 9, 10
launching, with Puppet agent 166, 167
network interface, attaching to 14
network interface, creating 14
placing, in placement groups 25
right storage, selecting 16
security group, adding 22
types, selecting 2, 3
URL 3

EC2 key pair
about 23
access, regaining 23
creating 24

EC2 metrics
collecting, with CloudWatch 90, 91

EC2-VPC
security groups, creating 20
used, for launching EC2 instances 9, 10

ElastiCache
about 120
automatic failover, for Redis 124
user guide, URL 124
using 120-122
working 122-124

Elastic IP (EIP) address
about 12, 38, 67
allocating 12

Elastic Load Balancer (ELB)
about 26
configuring 26
EC2 instances, adding 28
health checks, configuring 28

Elastic Network Interface (ENI)
EIP, associating to 15

e-mail, based on CloudWatch alarm
sending 100, 101

F
Fn::FindInMap function 60

173

G
GetAtt function 60
get-metrics-statistics command 91
GoDaddy

URL 31, 132
Google Cloud Messaging (GCM) 147
group-level permissions

assigning 74-76
groups, IAM

creating 74-76

H
hardware virtual machine (HVM) 4
high availability

architecting 29
configuring 29-34

I
Identity and Access Management (IAM)

about 71
groups, creating 74-76
on-premise AD, creating 79-86
roles 76
roles, creating 76-79
users, creating 72-74

inbound rule
adding 21

Internet-facing Elastic Load Balancer (ELB)
creating, with listeners 27

Internet Protocol Security (IPSec) 49

J
Java program

SimpleDB services, using 108-113
JavaScript Object Notation (JSON) 53
Java SDK

URL 130
Join function 60, 68

K
knife-ec2 plugin

Chef Provisioner node, configuring with 160
installing 160

L
lazy loading 124
Linux

AWS CLI, installing with pip 7, 8
list-metrics command 91
log group 106
log stream 106

M
Microsoft Push Notification Service

(MPNS) 147
multifactor authentication (MFA)

about 86
configuring 87

multiple NICs
used, for creating EC2 instances 13

N
Network Attached Storage (NAS) 16
networking connections, between two

VPCs (VPC peering)
configuring 48, 49

O
on-premise AD

creating, to IAM 79-86
on-premise network, to VPC

connecting, VPN used 49-51
outbound rule

adding 22

P
parameters, Dockerfile

ENTRYPOINT 158
ENV 158
FROM 158
RUN 158

paravirtual (PV) 4
pip

URL, for installation 8

174

placement groups
creating 25
EC2 instances, placing 25
used, for grouping EC2 instances 24

Puppet
client 165
master 165
using, for AWS deployments 165-169
agent, used for launching EC2

instances 166, 167
Puppet AWS module

installing, in Puppet master 165
Puppet master

about 165
Puppet AWS module, installing 165

purchasing options, EC2 instances
on-demand instances 2
reserved instances 2
spot instances 2

PuTTY Key Generator 23
Python

URL, for installation 8

R
Readme.txt

URL 138
Redis

automatic failover, for Amazon
ElastiCache 124

Ref function 60, 68
Relational Database Service (RDS)

about 125
using 125-128

replication group 124
roles, IAM

about 76
creating 76-79

Route 53
about 129, 130
configuring 130-135

S
security groups

adding, to EC2 instances 22

configuring 19, 20
creating, for EC2-Classic 20
creating, for EC2-VPC 20
inbound rule, adding 21
outbound rule, adding 22

Security Token Service (STS) 79, 86
SimpleDB services

using, from Java program 108-113
Simple Email Service (SES)

about 129, 140
accessing, from applications 140-143

Simple Notification Service (SNS)
about 61, 100, 130, 143
accessing, from applications 143-148

Simple Queue Service (SQS)
about 29, 148
accessing, from applications 148-154

Simple Storage Service (S3)
about 108, 129, 135
accessing, from applications 135-140

Solid State Disks (SSDs) 114
stack

updating 68, 69
storage, selecting for EC2 instances

about 17
EBS volume, attaching 18
EBS volume, creating 17
EBS volumes, using 16

T
tags

about 18
create-tags command, using 18
creating, for AWS resources 19
creating, for consistency 18

time-based one-time password (TOPT) 86

U
users, IAM

creating 72-74
inline policies 74
managed policies 74

175

V
VPC

about 37
configuring 38-46
creating 38-46
DHCP options, configuring 47, 48
EC2 instance, launching 11

VPC peering
configuring 48, 49

VPN
devices, URL 50
used, for connecting on-premise

network to VPC 49-51

W
Windows Communication Foundation

(WCF) 80
Windows/Mac

AWS CLI, installing with pip 8

Thank you for buying
Amazon EC2 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge books
for communities of developers, administrators, and newbies alike. For more information, please visit our
website at www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home to books
published on enterprise software – software created by major vendors, including (but not limited to) IBM,
Microsoft, and Oracle, often for use in other corporations. Its titles will offer information relevant to a
range of users of this software, including administrators, developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it
first before writing a formal book proposal, then please contact us; one of our commissioning editors will
get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing experience,
our experienced editors can help you develop a writing career, or simply get some additional reward for
your expertise.

www.PacktPub.com

Amazon Web Services:
Migrating your .NET
Enterprise Application
ISBN: 978-1-84968-194-0 Paperback: 336 pages

Evaluate your Cloud requirements and successfully
migrate your .NET Enterprise Application to the Amazon
Web Services Platform

1. Get to grips with Amazon Web Services from a
Microsoft Enterprise .NET viewpoint.

2. Fully understand all of the AWS products including
EC2, EBS, and S3.

3. Quickly set up your account and manage
application security.

Amazon SimpleDB Developer
Guide
ISBN: 978-1-84719-734-4 Paperback: 252 pages

Scale your application's database on the cloud using
Amazon SimpleDB

1. Offload the time, effort, and capital associated
with architecting and operating a simple, flexible,
and scalable web database.

2. A complete guide that covers everything from
installation to advanced features aimed at
optimizing your application.

3. Examine SimpleDB and the relational database
model and review the Simple DB data model.

Please check www.PacktPub.com for information on our titles

Amazon S3 Cookbook
ISBN: 978-1-78528-070-2 Paperback: 280 pages

Over 30 hands-on recipes that will get you up and
running with Amazon Simple Storage Service (S3)
efficiently

1. Learn how to store, manage, and access your data
with AWS SDKs.

2. Study the Amazon S3 pricing model and learn
how to calculate costs by simulating practical
scenarios.

3. Optimize your Amazon S3 bucket by following
step-by-step instructions of how to deliver your
content with CloudFront, secure the S3 bucket
with IAM, and lower costs with object life cycle
management.

AWS Development Essentials
ISBN: 978-1-78217-361-8 Paperback: 226 pages

Design and build flexible, highly scalable, and cost-
effective applications using Amazon Web Services

1. Integrate and use AWS services in an application.

2. Reduce the development time and billing cost
using the AWS billing and management console.

3. This is a fast-paced tutorial that will cover
application deployment using various tools along
with best practices for working with AWS services.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Selecting and Configuring Amazon EC2 Instances
	Introduction
	Choosing the right AWS EC2 instance types
	Preparing AWS CLI tools
	Launching EC2 instances using EC2-Classic and EC2-VPC
	Allocating Elastic IP addresses
	Creating an instance with multiple NIC cards and a static private IP address
	Selecting the right storage for your EC2 instance
	Creating tags for consistency
	Configuring security groups
	Creating an EC2 key pair
	Grouping EC2 instances using placement groups
	Configuring Elastic Load Balancing
	Architecting for high availability
	Creating instances for AWS Marketplace

	Chapter 2: Configuring and Securing a Virtual Private Cloud
	Introduction
	Creating and configuring VPC
	Configuring VPC DHCP options
	Configuring networking connections between two VPCs (VPC peering)
	Connecting on-premise network to VPC using VPN

	Chapter 3: Managing AWS Resources Using AWS CloudFormation
	Introduction
	Creating CloudFormation templates
	Creating CloudFormation templates from existing AWS resources
	Deploying applications on EC2 instances
	Updating a stack

	Chapter 4: Securing Access to Amazon EC2 Instances
	Introduction
	Creating IAM users
	Creating IAM groups and assigning group-level permissions
	Creating IAM roles
	Connecting on-premise AD to AWS IAM
	Configuring AWS multifactor authentication

	Chapter 5: Monitoring Amazon EC2 Instances
	Introduction
	Collecting EC2 metrics using AWS CloudWatch
	Collecting custom metrics from EC2 instances
	Monitoring costs using CloudWatch
	Sending an e-mail based on a CloudWatch alarm
	Using CloudWatch Logs

	Chapter 6: Using AWS Data Services
	Introduction
	Using Amazon SimpleDB services from a Java program
	Using Amazon DynamoDB
	Using Amazon ElastiCache
	Using Amazon RDS

	Chapter 7: Accessing Other AWS Services
	Introduction
	Configuring Route 53
	Accessing AWS S3 from applications
	Accessing AWS SES from applications
	Accessing AWS SNS from applications
	Accessing AWS SQS from applications

	Chapter 8: Deploying AWS Applications
	Introduction
	Using Docker containers for AWS deployments
	Using Chef for AWS deployments
	Using Puppet for AWS deployments

	Index

