

Android	6	Essentials

Table	of	Contents

Android	6	Essentials

Credits

About	the	Author

Acknowledgments

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Android	Marshmallow	Permissions

An	overview	of	Android	permissions

Permissions

Permission	group	definitions

Permissions	that	imply	feature	requirements

Viewing	the	permissions	for	each	app

Understanding	Android	Marshmallow	permissions

An	overview

Permission	groups

Runtime	permissions

Taking	coding	permissions	into	account

Testing	permissions

Coding	for	runtime	permissions

Best	practices	and	usage	notes

Minimalism	is	a	great	option

Asking	for	too	many	permissions	at	once

Honesty	can	be	a	great	policy

Need	support	handling	runtime	permissions?

Some	permissions	are	normal	and	safer	to	use

Summary

2.	App	Links

The	Android	Intent	system

Creating	a	website	association

Why	this	file?

Triggering	app	link	verification

App	link	settings	and	management

Testing	app	links

Checking	manifest	and	listing	domains

The	Digital	Asset	Links	API

Testing	our	intent

Checking	policies	using	adb

Summary

3.	Apps’	Auto	Backup

An	overview

Data	backup	configuration

Including	or	excluding	data

The	backup	configuration	syntax

Opting	out	from	app	data	backup

Backup	configuration	testing

Setting	backup	logs

Testing	the	backup	phase

Testing	the	restore	phase

Troubleshooting

Important	bytes

What	to	exclude	from	the	backup

BackupAgent	and	backup	events

Summary

4.	Changes	Unfold

Power-saving	modes

The	Doze	mode

What	happens	to	apps	when	a	device	is	dozing?

Testing	apps	with	Doze	mode

The	App	Standby	mode

What	happens	to	apps	when	in	the	App	Standby	mode?

Testing	apps	with	the	App	Standby	mode

Excluded	apps	and	settings

Tips

Removable	storage	adoption

Apache	HTTP	client	removal

Notifications

Text	selection

Support	library	notice

Android	Keystore	changes

Wi-Fi	and	networking	changes

Runtime

Hardware	identifier

APK	validation

USB	connection

Direct	Share

What	if	we	have	nothing	to	share?

Direct	Share	best	practices

Voice	interactions

The	Assist	API

Bluetooth	API	Changes

Bluetooth	stylus	support

Improved	Bluetooth	low	energy	scanning

Summary

5.	Audio,	Video,	and	Camera	Features

Audio	features

Support	for	the	MIDI	protocol

MidiManager

Digital	audio	capture	and	playback

Audio	and	input	devices

Information	on	audio	devices

Changes	in	AudioManager

Video	features

android.media.MediaSync

MediaCodecInfo.CodecCapabilities.getMaxSupportedInstances

Why	do	we	need	to	know	this?

MediaPlayer.setPlaybackParams

Camera	features

The	flashlight	API

The	reprocessing	API

android.media.ImageWriter

android.media.ImageReader

Changes	in	the	camera	service

Summary

6.	Android	for	Work

Behavioral	changes

The	work	profile	contacts	display	option

Wi-Fi	configuration	options

The	Wi-Fi	configuration	lock

Work	Policy	Controller	addition

DevicePolicyManager	changes

Single-use	device	improvements

Silently	installing/uninstalling	apps

Improved	certificate	access

Automatic	system	updates

Third-party	certificate	installation

Data	usage	statistics

Managing	runtime	permissions

VPN	access	and	display

Work	profile	status

Summary

7.	Chrome	Custom	Tabs

What	is	a	Chrome	custom	tab?

What	is	WebView?

Customization	options

When	to	use	Chrome	custom	tabs

The	implementation	guide

Can	we	use	Chrome	custom	tabs?

Custom	UI	and	tab	interaction

The	custom	action	button

Configuring	a	custom	menu

Configuring	custom	enter	and	exit	animations

Chrome	warm-up

Connecting	to	the	Chrome	service

Warming	up	the	browser	process

Creating	a	new	tab	session

Setting	the	prefetching	URL

Custom	tabs	connection	callback

Summary

8.	Authentication

The	Fingerprint	authentication	API

How	do	we	use	fingerprint	authentication?

Setting	up	for	testing

Credentials’	Grace	Period

Cleartext	network	traffic

So,	what	do	we	do	with	the	cleartext	network	traffic	flag?

Summary

Index

Android	6	Essentials

Android	6	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2015

Production	reference:	1251115

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-441-2

www.packtpub.com

http://www.packtpub.com

Credits
Author

Yossi	Elkrief

Reviewer

Pavel	Pavlasek

Commissioning	Editor

Edward	Gordon

Acquisition	Editor

Reshma	Raman

Content	Development	Editor

Riddhi	Tuljapurkar

Technical	Editor

Gaurav	Suri

Copy	Editor

Stuti	Srivastava

Project	Coordinator

Sanchita	Mandal

Proofreader

Safis	Editing

Indexer

Hemangini	Bari

Graphics

Kirk	D’Penha

Disha	Haria

Abhinash	Sahu

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Yossi	Elkrief	is	an	Android	enthusiast	with	over	7	years	of	experience	in	the	Android
platform	and	is	currently	working	as	an	Android	architect	and	group	leader	at	Tikal
Knowledge.

Among	his	previous	experiences,	the	noteworthy	ones	include	ooVoo,	Fiverr,	Mobli,	and
Glide,	reaching	out	to	over	135	million	users	worldwide.

Yossi	is	a	mentor	at	Google	Launchpad,	a	lecturer	on	IoT	and	mobile	development,	and
co-tech	lead	on	the	Madgera	accelerator.	He	cofounded	the	GDG	Be’er	Sheva	group	and
co-leads	the	group	today,	holding	technology	events	for	the	technology	community	in
Israel.	He	has	a	spouse	and	a	daughter,	and	he	lives	in	Be’er	Sheva,	Israel.

His	main	interests	are	Liverpool	Football	Club	and	his	Android	mini	collectibles
collection,	with	over	120	different	pieces.	You	can	find	him	on	LinkedIn	at
https://il.linkedin.com/in/yossielkrief,	on	GitHub	at	MaTriXy,	and	on	Google+	at
Yossi.Elkrief.

https://il.linkedin.com/in/yossielkrief

Acknowledgments
First,	I	want	to	thank	my	family	for	their	patience,	love,	and	endurance	with	me	taking	yet
another	challenge,	reducing	the	amount	of	time	I	can	spend	with	them.

To	Irit,	my	wife,	for	the	constant	love	and	support	and	remembering	to	feed	me	when	I
couldn’t	remember	to	feed	myself.

To	Mia,	my	daughter	I	love	you.

To	my	mother	and	father,	whom	I	love	and	cherish.

To	my	friends,	for	being	there	with	their	coding	armor	on	and	for	giving	me	the	chance	to
shine.

To	my	mentor,	friend,	and	family,	Israel	Mali;	thank	you	for	guiding	me	for	15	years,
helping	me	carve	my	career	path.	May	you	rest	in	peace.

I	want	to	thank	Packt	Publishing	for	this	opportunity	and	for	publishing	my	first	book.	A
special	thanks	to	Riddhi	Tuljapurkar	for	all	the	help	and	guidance.

Last	but	not	least,	I	challenge	you	to	try	out	the	Chubby	Bunny	challenge	at
http://icebreakerideas.com/chubby-bunny-challenge/.

http://icebreakerideas.com/chubby-bunny-challenge/

About	the	Reviewer
Pavel	Pavlasek	has	been	an	Android	developer	for	over	5	years,	apart	from	being	a	long-
time	Java	developer.	He	develops	web	information	systems	and	Android	applications,	and
he	is	passionate	about	new	technologies.

I	would	like	to	thank	to	my	family	for	their	support	and	inspiration—my	wife,	Daniela,
and	my	children,	Michaela,	Jakub,	and	Juraj.	I	would	also	like	to	thank	my	colleagues	and
other	Android	developers	I’ve	met.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Android	6	will	primarily	focus	on	improving	the	overall	user	experience,	and	it	will	bring
in	a	few	features,	such	as	a	redesigned	permission	model	in	which	applications	are	no
longer	automatically	granted	all	of	their	specified	permissions	at	the	time	of	installation,
the	Doze	power	scheme	for	extended	battery	life	when	a	device	is	not	manipulated	by	the
user,	and	native	support	for	fingerprint	recognition.

If	you’re	already	an	Android	developer,	you’re	only	a	few	steps	away	from	being	able	to
use	your	existing	development	experience	to	reach	your	users	wherever	or	whenever	they
want	or	need	your	app.

As	a	professional	Android	developer,	you	have	to	create	production-ready	apps	for	your
users.	This	book	will	give	you	what	it	takes	to	ship	polished	apps	as	part	of	a	development
team	at	a	company,	an	independent	app	developer,	or	just	as	a	programmer	using	Android
development	best	practices.

By	the	end	of	the	book,	you’ll	be	able	to	identify	critical	areas	for	improvement	in	an	app
and	implement	the	necessary	changes	and	refinements	to	ensure	it	meets	Android’s	Core
App	Guidelines	prior	to	shipping.

What	this	book	covers
Chapter	1,	Android	Marshmallow	Permissions,	discusses	how	the	Android	permission
system	and	model	are	vast	and	have	made	a	few	changes	that	can	help	app	developers	and
applications	gain	more	traction,	installations,	and	give	users	the	ability	to	decide	when
your	applications	will	be	able	to	use	each	permission-dependent	feature.	Keep	in	mind,
though,	that	this	is	just	a	starting	point	and	Android	Marshmallow	still	needs	to	gain
market	share	and	get	adopted	by	OEMs,	enabling	users	with	the	freedom	of	choice.	You	as
an	app	developer	must	prepare	in	advance	and	make	sure	your	application	development	is
forward-facing,	allowing	new	users	to	enjoy	the	latest	updates	as	soon	as	possible	while
maintaining	a	high	level	of	performance	for	your	applications.

Chapter	2,	App	Links,	talks	about	how	app	linking	has	become	powerful	in	Android
Marshmallow.	This	allows	you,	the	app	developers,	help	the	system	better	decide	how	to
act.	Handling	web	URLs	will	give	you	wider	exposure,	a	bigger	funnel	into	your	apps,	and
better	experience,	which	you	can	provide	to	your	users	(sums	up	to	better	ratings	and	more
downloads	and	vice	versa).

App	linking	is	simple	to	implement,	easy	to	understand,	and	is	a	must-have	feature	in	the
mobile/web	world	today.	While	app	linking	enables	better	action	handling	for	users	using
your	applications,	users	can	have	multiple	devices,	expecting	the	same	behavior	on	each
device,	and	would	be	more	engaged	if	their	data	and	action	handling	is	all	around.

Chapter	3,	Apps’	Auto	Backup,	informs	you	that	Android	Marshmallow	brings	with	it	a
great	backup	feature	for	apps,	reducing	friction	for	users	migrating	to	new	devices.

In	a	world	full	of	such	diverse	apps,	maximizing	the	benefits	from	automatic	backups
leads	to	excellent	user	experience.	The	goal	of	this	feature	is	to	unload	the	burden	and
shorten	the	time	required	to	set	up	a	new	device	with	the	user’s	favorite	apps.	Allowing
the	users	to	enter	your	app	with	just	a	password	prompt,	if	required,	after	a	new
installation	can	be	a	great	experience.	Try	it	yourself!

Chapter	4,	Changes	Unfold,	goes	over	a	few	of	the	changes	in	Android	Marshmallow.	All
of	these	changes	are	important	to	follow	and	will	help	you	in	your	app	development
cycles.	A	few	more	changes	are	discussed	in	future	chapters	with	a	more	detailed
approach.

Chapter	5,	Audio,	Video,	and	Camera	Features,	covers	quite	a	few	changes	and	additions
to	Android	APIs.	Android	Marshmallow	is	more	about	helping	us,	the	developers,	achieve
better	media	support	and	showcase	our	ideas	when	using	audio,	video,	or	camera	APIs.

Chapter	6,	Android	for	Work,	covers	how	Android	Marshmallow	has	brought	in	quite	a
few	changes	to	the	world	of	Android	for	Work.	As	developers,	we	need	to	always
maintain	a	viable	connection	with	the	needs	of	an	organization.	Making	sure	that	we	go
over	and	understand	the	Android	for	Work	world	with	the	changes	in	Marshmallow	helps
us	build	and	target	enterprise	workflows	with	the	added	benefit	of	a	simpler	API.

Chapter	7,	Chrome	Custom	Tabs,	talks	about	the	newly	added	feature,	Chrome	custom

tabs,	that	allows	us	developers	to	embed	web	content	into	our	application,	modify	the	UI,
and	adjust	it	to	our	app’s	theme	and	colors	and	the	look	and	feel.	This	helps	us	keep	the
user	in	our	application	and	still	provide	a	nice	UI	and	overall	feel.

Chapter	8,	Authentication,	discuss	how	Android	Marshmallow	gives	us	a	new	API	to
authenticate	users	with	the	fingerprint	API.	We	can	use	the	sensor	and	authenticate	the
user	even	within	our	application	and	save	it	for	later	usage	if	we	want	to	save	the	need	of
user	login	using	the	Credentials	grace	period	abilities	Android	Marshmallow	has
introduced.	We	also	covered	a	way	to	make	our	application	more	secure	using	HTTPS
only.	The	StrictMode	policy,	enforced	with	the	help	of	the	usesCleartextTraffic	flag,
allows	us	to	make	sure	that	all	the	nodes	we	connect	to	the	outer	world	are	examined	to
check	if	there’s	a	need	for	a	secure	connection	or	not.

What	you	need	for	this	book
For	this	book,	you	will	require	previous	knowledge	of	the	Android	platform,	APIs,	and	the
application	development	process.	You	will	also	need	to	set	up	your	work	environment	to
have	at	least	the	following:

Android	Studio,	which	can	be	downloaded	from
https://developer.android.com/sdk/index.html
The	latest	Android	SDK	tools	and	platforms.	Make	sure	that	you	upgrade	to	the	latest
versions	and	add	the	Android	6.0	(Marshmallow)	platform	if	it’s	missing
An	Android	device	is	helpful,	but	you	may	use	an	emulator	if	you	prefer,	or	you	may
use	the	great	solution	of	Genymotion	as	an	emulator,	at
https://www.genymotion.com/

https://developer.android.com/sdk/index.html
https://www.genymotion.com/

Who	this	book	is	for
This	book	is	for	Android	developers	who	are	looking	to	move	their	applications	into	the
next	Android	version	with	ease.	In	the	chapters	of	this	book,	the	author	has	referred	to
Android	6	as	Android	Marshmallow.	You	should	have	a	good	understanding	of	Java	and
previous	Android	APIs,	and	you	should	be	able	to	write	applications	with	APIs	prior	to
Marshmallow.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
setTorchMode()	method	has	been	added	to	control	the	flash	torch	mode.”

A	block	of	code	is	set	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<full-backup-content>

		<exclude	domain="database"	path="sensitive_database_name.db"/>

		<exclude	domain="sharedpref"	path="androidapp_shared_prefs_name"/>

		<exclude	domain="file"	path="some_file.file_Extension"/>

		<exclude	domain="file"	path="some_file.file_Extension"/>

</full-backup-content>

Any	command-line	input	or	output	is	written	as	follows:

$	adb	shell	sm	set-force-adoptable	true

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“When	heading	to
Settings	|	More	|	VPN,	you	can	now	view	the	VPN	apps.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/4412OS_ColoredImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites
http://default/files/downloads/4412OS_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Android	Marshmallow
Permissions
Android	permissions	have	been	there	for	as	long	as	we	can	remember—since	Android
1.0,	to	be	exact.	Through	the	years	and	with	the	evolvement	of	platforms,	the	Android
permissions	model	has	been	modified	by	adding	new	permissions	and	trying	to	allow
more	granular	control	over	the	part	of	the	device	hardware/data	the	application	has.

In	this	chapter,	we	will	review	a	bit	of	the	Android	permissions	model	that	was	prior	to
Android	Marshmallow,	and	we’ll	focus	on	the	changes	it	brings	to	the	table.	We	will
also	explain	the	changes	that	you	as	a	developer	must	do	in	order	to	handle	all	the	other
changes	and	make	sure	your	applications	work	as	intended	on	Android	Marshmallow.

In	this	chapter,	we	will	cover	the	following:

An	overview	of	Android	permissions
Understanding	Android	Marshmallow	permissions
Handling	code	permissions	with	best	practices

An	overview	of	Android	permissions
In	Android,	each	application	runs	with	distinct	system	IDs	known	as	Linux	user	ID	and
Group	ID.	The	system	parts	are	also	separated	into	distinct	IDs,	forming	isolated	zones
for	applications—from	each	other	and	from	the	system.	As	part	of	this	isolated	life	cycle
scheme,	accessing	services	or	other	applications’	data	requires	that	you	declare	this	desire
in	advance	by	requesting	a	permission.

This	is	done	by	adding	the	uses-permission	element	to	your	AndroidManifest.xml	file.
Your	manifest	may	have	zero	or	more	uses-permission	elements,	and	all	of	them	must	be
the	direct	children	of	the	root	<manifest>	element.

Trying	to	access	data	or	features	without	proper	permission	would	give	out	a	security
exception	(using	a	SecurityException	class),	informing	us	about	the	missing	permission
in	most	cases.

The	sendBroadcast(Intent)	method	is	exceptional	as	it	checks	permissions	after	the
method	call	has	returned,	so	we	will	not	receive	an	exception	if	there	are	permission
failures.	A	permission	failure	should	be	printed	to	the	system	log.	Note	that	in	Android
versions	prior	to	Marshmallow,	missing	permissions	were	due	to	missing	declarations	in
the	manifest.	Hence,	it	is	important	that	you	keep	permissions	in	mind	when	you	come	up
with	the	feature	list	for	your	app.

Permissions
When	using	Android	platform	as	an	app,	you	have	restrictions	preventing	access	to	some
hardware,	system	APIs,	private	user	data,	and	application	data.

Permission	is	needed	in	order	to	allow	access	to	a	specific	API,	data,	or	hardware;	it	was
asked	upon	the	installation	of	your	app	up	until	Android	Marshmallow.	Most	permissions
are	used	to	restrict	access.	When	a	permission	is	granted,	you	then	have	access	to	that
specific	restricted	area.	A	feature	can	be	protected	by	one	permission	at	most.

The	uses-permission	element	takes	a	name	attribute,	android:name,	which	is	the	name
of	the	permission	your	application	requires:

<uses-permission	android:name="string"	android:maxSdkVersion="integer"	/>

Did	you	know	that	the	android:maxSdkVersion	attribute,	added	in	API	level	19,	is	used	to
notify	the	version	of	the	API	from	which	this	permission	should	not	be	granted?	This	is
useful	if	a	permission	is	no	longer	needed	on	higher	versions	of	the	API.	For	example,
take	a	look	at	the	following:

<uses-permission

		android:name="android.permission.READ_EXTERNAL_STORAGE"

		android:maxSdkVersion="18"	/>

In	API	19,	your	app	doesn’t	need	to	ask	for	this	permission—it’s	granted	to	you.

Your	application	can	also	protect	its	own	components,	such	as	activities,	services,
broadcast	receivers,	and	content	providers	with	permissions.

It	can	employ	any	of	the	permissions	defined	by	Android	and	declared	by	other
applications,	or	it	can	define	its	own.

For	more	information	on	permissions,	you	can	read
http://developer.android.com/reference/android/Manifest.permission.html.

http://developer.android.com/reference/android/Manifest.permission.html

Permission	group	definitions
Permissions	are	divided	into	groups.	According	to	Google,	we	can	say	that	a	permission
group	puts	together	related	permissions	in	a	single	name/tag.	You	can	group	permissions
together	using	the	permissionGroup	attribute	inside	the	<permission>	element.

Permissions	grouped	in	the	same	permission	group	are	shown	as	one	group	when
approving	permissions	or	when	checking	an	app	for	its	permissions.

The	permission	group	is	what	you	see	when	installing	an	application	from	the	Play	Store;
for	example,	take	a	look	at	the	following	screenshot:

Let’s	take	a	look	at	the	structure	of	the	permission-group	tag:

<permission-group	android:description="string	resource"

																		android:icon="drawable	resource"

																		android:label="string	resource"

																		android:name="string"	/>

The	elements	of	the	preceding	structure	can	be	explained	as	follows:

android:description:	This	refers	to	simple	text	used	to	describe	the	group.
android:icon:	This	refers	to	an	icon	from	a	drawable	resource	that	represents	the
permission.
android:label:	This	refers	to	a	simple	text	name	for	the	group.
android:name:	This	is	the	name	of	the	group.	It	is	used	to	assign	permissions	to	a
specific	group.

The	following	table	shows	you	the	various	categories	of	permissions	that	are	there	in	a
permissions	group:

Permissions	group

In-app	purchases Device	and	app	history

Contacts Calendar

Phone Photos,	media,	and	files

Wi-Fi	connection	information Bluetooth	connection	information

Identity Cellular	data	settings

SMS Location

Microphone Camera

Device	ID	and	call	information Wearable	sensors/activity	data

Other

Note
Any	permissions	that	are	not	part	of	a	permissions	group	will	be	shown	as	Other.	When
an	app	is	updated,	there	may	be	changes	to	the	permissions	group	for	that	app.

Permissions	that	imply	feature	requirements
Some	permissions	are	implied	by	feature	requirements;	we	will	cover	this	next.

When	declaring	a	feature	in	the	manifest,	we	must	also	request	the	permissions	that	we
need.

Let’s	say,	for	example,	that	we	want	to	have	a	feature	that	sets	pictures	for	our	contacts.	If
we	want	to	take	a	picture	via	the	Camera	API,	then	we	must	request	a	Camera	permission.

The	<users-feature>	tag	makes	sure	we	declare	that	we	need	devices	that	support	the
required	feature	for	our	application	to	work	and	use	that	feature.	If	this	feature	is	not	a
required	feature	and	our	app	can	work	without	it	but	with	fewer	features,	we	can	use
android:required="false",	keeping	it	in	mind	that	this	feature	is	optional.

The	<uses-feature>	declarations	always	take	precedence	over	features	implied	by
permissions.	The	complete	list	of	permission	categories	that	imply	feature	requirements
can	be	found	at	http://developer.android.com/guide/topics/manifest/uses-feature-
element.html#permissions.

http://developer.android.com/guide/topics/manifest/uses-feature-element.html#permissions

Viewing	the	permissions	for	each	app
You	can	look	at	the	permissions	for	each	app	using	the	settings	app	or	the	adb	shell
command.

To	use	the	settings	app,	go	to	Settings	|	Apps.	Pick	an	app	and	scroll	down	to	see	the
permissions	that	the	app	uses	You	can	see	the	Lollipop	version	in	the	following
screenshot:

In	Android	Marshmallow,	the	UI	is	different.

The	second	option	is	to	use	the	adb	shell	commands	with	the	aapt	command:

1.	 List	all	the	applications	along	with	their	installation	paths.	As	an	example,	let’s	try	to
find	out	Facebook	groups’	app	permissions	using	the	following	command:

adb	shell	pm	list	packages	–f

We	can	use	the	-3	flag	to	just	show	the	third-party	apps	instead	of	the	entire	list.

2.	 Once	we	get	the	package	location	(apk),	we	need	to	pull	it	from	the	device	via	the
adb	pull:

adb	pull	/data/app/com.facebook.groups-1/base.apk

3.	 Our	final	step	to	show	permissions	is	to	use	aapt	found	in	the	build-tools	folder	of
your	specific	build	tools	version:

aapt	d	permissions	base.apk

This	gives	us	the	following	screenshot	as	a	result:

To	view	the	permissions	for	the	entire	device,	take	a	look	at	the	following	screenshot:

Using	an	adb	command,	you	can	print	all	known	permissions	on	the	device.	The	package
manager	(pm)	command	inside	the	adb	command	looks	something	like	the	following:

$	adb	shell	pm	list	permissions	[options]	<GROUP>

List	permissions	get	the	[options]	and	<GROUP>	arguments	(both	optional).

Here,	options	can	be	as	follows:

-g:	This	refers	to	a	list	of	permissions	organized	by	a	group
-f:	This	prints	all	the	information
-s:	This	prints	a	short	summary,	and	this	is	what	the	user	sees	on	screen	when
checking	permissions	or	approving	them
-d:	This	looks	up	and	prints	only	permissions	that	are	considered	dangerous
-u:	This	lists	permissions	visible	to	the	user	only

Understanding	Android	Marshmallow
permissions
Android	Marshmallow	introduces	a	new	application	permissions	model,	allowing	a
simpler	process	for	users	when	installing	and/or	upgrading	applications.	Applications
running	on	Marshmallow	should	work	according	to	a	new	permissions	model,	where	the
user	can	grant	or	revoke	permissions	after	the	installation—permissions	are	not	given	until
there	is	user	acceptance.

Supporting	the	new	permissions	model	is	backward-compatible,	which	means	your	apps
can	still	be	installed	and	run	on	devices	running	older	versions	of	Android	using	the	old
permissions	model	on	those	devices.

An	overview
With	the	Android	Marshmallow	version,	a	new	application	permissions	model	has	been
introduced.

Let’s	review	it	a	bit	more	thoroughly:

Declaring	permissions:	All	permissions	an	app	needs	are	declared	in	the	manifest,
which	is	done	to	preserve	backward	compatibility	in	a	manner	similar	to	earlier
Android	platform	versions.
Permission	groups:	As	discussed	previously,	permissions	are	divided	into
permission	groups	based	on	their	functionalities:

PROTECTION_NORMAL	permissions:	Some	of	the	permissions	are	granted
when	users	install	the	app.	Upon	installation,	the	system	checks	your	app’s
manifest	and	automatically	grants	permissions	that	match	the
PROTECTION_NORMAL	group.
INTERNET	permission:	One	important	permission	is	the	INTERNET
permission,	which	will	be	granted	upon	installation,	and	the	user	can’t	revoke	it.

App	signature	permissions	granted:	The	user	is	not	prompted	to	grant	any
permissions	at	the	time	of	installation.
Permissions	granted	by	users	at	runtime:	You	as	an	app	developer	need	to	request
a	permission	in	your	app;	a	system	dialog	is	shown	to	the	user,	and	the	user	response
is	passed	back	to	your	app,	notifying	whether	the	permission	is	granted.
Permissions	can	be	revoked:	Users	can	revoke	permissions	that	were	granted
previously.	We	must	learn	how	to	handle	these	cases,	as	we’ll	learn	later	on.

Note
If	an	app	targets	an	Android	Marshmallow	version,	it	must	use	the	new	permissions
model.

Permission	groups
When	working	with	permissions,	we	divide	them	into	groups.	This	division	is	done	for
fast	user	interaction	when	reviewing	and	approving	permissions.	Granting	is	done	only
once	per	permission	group.	If	you	add	a	new	permission	or	request	a	new	permission	from
the	same	permission	group	and	the	user	has	already	approved	that	group,	the	system	will
grant	you	the	added	permission	without	bothering	the	user	about	the	approval.

For	more	information	on	this,	visit
https://developer.android.com/reference/android/content/pm/PermissionInfo.html#constants

When	the	user	installs	an	app,	the	app	is	granted	only	those	permissions	that	are	listed	in
the	manifest	that	belongs	to	the	PROTECTION_NORMAL	group.

Requesting	permissions	from	the	PROTECTION_SIGNATURE	group	will	be	granted	only	if	the
application	is	signed	with	the	same	certificate	as	the	app	with	the	declared	permission.

Note
Apps	cannot	request	signature	permissions	at	runtime.

System	components	automatically	receive	all	the	permissions	listed	in	their	manifests.

https://developer.android.com/reference/android/content/pm/PermissionInfo.html#constants

Runtime	permissions
Android	Marshmallow	showcased	a	new	permissions	model	where	users	were	able	to
directly	manage	app	permissions	at	application	runtime.	Google	has	altered	the	old
permissions	model,	mostly	to	enable	easier	and	frictionless	installations	and	auto-updates
for	users	as	well	as	for	app	developers.	This	allows	users	to	install	the	app	without	the
need	to	preapprove	each	permission	the	application	needs.	The	user	can	install	the	app
without	going	through	the	phase	of	checking	each	permission	and	declining	the
installation	due	to	a	single	permission.

Users	can	grant	or	revoke	permissions	for	installed	apps,	leaving	the	tweaking	and	the
freedom	of	choice	in	the	users’	hands.

Most	of	the	applications	will	need	to	address	these	issues	when	updating	the	target	API	to
23.

Taking	coding	permissions	into	account
Well,	after	all	the	explanations,	we’ve	reached	the	coding	part,	and	this	is	where	we	will
get	our	coding	hands	dirty.	The	following	are	key	methods	used	for	handling	permissions:

Context.checkSelfPermission():	This	checks	whether	your	app	has	been	granted	a
permission
Activity.requestPermission():	This	requests	a	permission	at	runtime

Even	if	your	app	is	not	yet	targeting	Android	Marshmallow,	you	should	test	your	app	and
prepare	to	support	it.

Testing	permissions
In	the	Android	Marshmallow	permissions	model,	your	app	must	ask	the	user	for
individual	permissions	at	runtime.	There	is	limited	compatibility	support	for	legacy	apps,
and	you	should	test	your	app	and	also	test	a	version	to	make	sure	it’s	supported.

You	can	use	the	following	test	guide	and	conduct	app	testing	with	the	new	behavior:

Map	your	app’s	permissions
Test	flows	with	permissions	granted	and	revoked

The	adb	command	shell	can	be	quite	helpful	to	check	for	permissions:

Listing	application	permissions	and	status	by	group	can	be	done	using	the	following
adb	command:

adb	shell	pm	list	permissions	-g

You	can	grant	or	revoke	permissions	using	the	following	adb	syntax:

adb	shell	pm	[grant|revoke]	<permission.name>

You	can	grant	permissions	and	install	apk	using	the	following	adb	command:

adb	install	-g	<path_to_apk>

Coding	for	runtime	permissions
When	we	want	to	adjust	our	application	to	the	new	model,	we	need	to	make	sure	that	we
organize	our	steps	and	leave	no	permission	stranded:

Check	what	platform	the	app	is	running	on:	When	running	a	piece	of	code	that	is
sensitive	at	the	API	level,	we	start	by	checking	the	version/API	level	that	we	are
running	on.

By	now,	you	should	be	familiar	with	Build.VERSION.SDK_INT.

Check	whether	the	app	has	the	required	permission:	Here,	we	get	ourselves	a
brand	new	API	call:

Context.checkSelfPermission(String	permission_name).

With	this,	we	silently	check	whether	permissions	are	granted	or	not.

This	method	returns	immediately,	so	any	permission-related	controls/flows	should	be
dealt	with	by	checking	this	first.

Prompting	for	permissions:	We	have	a	new	API	call,
Activity.requestPermissions	(String[]	permissions,	int	requestCode).
This	call	triggers	the	system	to	show	the	dialog	requesting	a	permission.	This	method
functions	asynchronously.

You	can	request	more	than	one	permission	at	once.	The	second	argument	is	a	simple
request	code	returned	in	the	callback	so	that	you	can	recognize	the	calls.	This	is	just
like	how	we’ve	been	dealing	with	startActivityForResult()	and
onActivityResult()	for	years.

Another	new	API	is	Activity.shouldShowRequestPermissionRationale(String
permission).

This	method	returns	true	when	you	have	requested	a	permission	and	the	user	denied
the	request.	It’s	considered	a	good	practice	after	verifying	that	you	explain	to	the	user
why	you	need	that	exact	permission.	The	user	can	decide	to	turn	down	the	permission
request	and	select	the	Don’t	ask	again	option;	then,	this	method	will	return	false.

The	following	sample	code	checks	whether	the	app	has	permission	to	read	the	user’s
contacts.	It	requests	the	permission	if	required,	and	the	result	callback	returns	to
onRequestPermissionsResult:

if	(checkSelfPermission(Manifest.permission.READ_CONTACTS)	!=	

PackageManager.PERMISSION_GRANTED)	{

		requestPermissions(new	String[]{Manifest.permission.READ_CONTACTS},	

SAMPLE_MATRIXY_READ_CONTACTS);

}

//Now	this	is	our	callback

@Override

public	void	onRequestPermissionsResult(int	requestCode,	String	

permissions[],	int[]	grantResults)	{

		switch	(requestCode)	{

		case	SAMPLE_MATRIXY_READ_CONTACTS:

				if	(grantResults[0]	==	PackageManager.PERMISSION_GRANTED)	{

						//	permission	granted	-	we	can	continue	the	feature	flow.

				}	else	{

						//	permission	denied!	-	we	should	disable	the	functionality	that	

depends	on	this	permission.

				}

		}

}

Just	to	make	sure	we	all	know	the	constants	used,	here’s	the	explanation:

public	static	final	int	PERMISSION_DENIED=-1:

Since	it’s	API	level	1,	permission	has	not	been	granted	to	the	given	package

public	static	final	int	PERMISSION_GRANTED=0:

Since	it’s	API	level	1,	permission	has	been	granted	to	the	given	package.

If	the	user	denies	your	permission	request,	your	app	should	take	the	appropriate	action,
such	as	notifying	the	user	why	this	permission	is	required	or	explaining	that	the	feature
can’t	work	without	it.

Note
Your	app	cannot	assume	user	interaction	has	taken	place	because	the	user	can	choose	to
reject	granting	a	permission	along	with	the	do	not	show	again	option;	your	permission
request	is	automatically	rejected	and	onRequestPermissionsResult	gets	the	result	back.

Best	practices	and	usage	notes
The	new	permissions	model	has	brought	to	life	a	smoother	experience	for	users	and	a	bit
more	code-handling	for	developers.	It	makes	it	easier	to	install	and	update	apps	and	feel
comfortable	with	what	the	apps	are	doing.

Minimalism	is	a	great	option
Don’t	be	a	permission	hog!	In	our	application	life	cycle,	we	should	try	to	minimize	our
permission	requests.	Asking	for	a	lot	of	permissions	and	maintaining	them	can	seem
hazardous	for	some,	and	we	should	try	and	make	the	feature	smooth	and	ask	for	the
smallest	number	of	permissions	as	far	as	possible	in	order	to	allow	relaxed,	undisturbed
usage.	Consider	using	intents	whenever	possible—rely	on	other	applications	doing	some
of	the	work	for	us	(fewer	permissions	means	less	friction,	turning	a	good	app	into	a	great
one).

Asking	for	too	many	permissions	at	once
Users	can	get	distracted	by	too	many	dialogs	popping	up,	asking	them	for	more	and	more
permissions.	Instead,	you	should	ask	for	permissions	as	and	when	you	need	them.

However,	we	have	some	exceptions	to	every	rule.	Your	app	may	require	a	few	permissions
to	begin	with,	such	as	a	camera	application	showing	the	camera	permissions	right	at	the
beginning.	However,	setting	the	photo	to	your	contact	can	be	done	and	requested	only
when	the	user	triggers	that	specific	action.	Try	to	map	your	flow	and	make	it	easier	for
users	to	understand	what	is	going	on.	Users	will	understand	that	you’ve	requested
permissions	for	contacts	if	they	have	asked	to	set	information	to	a	contact	via	your	app.

One	more	suggestion:	apps	with	a	tutorial	can	integrate	the	essential	permissions’	request
in	the	tutorial,	allowing	the	users	to	better	understand	the	flow	and	why	each	permission	is
used.

Honesty	can	be	a	great	policy
When	asking	for	a	permission,	the	system	shows	a	dialog	stating	which	permission	your
app	wants,	but	it	doesn’t	say	why.	Consider	users	who	hate	being	left	in	the	dark	thinking
why	this	permission	is	needed	now	or	users	who	deny	the	permissions	due	to	speculation.
Things	can	be	even	worse:	sometimes,	a	user’s	cursor	may	be	2	cm	away	from	the	1-star
rating	or	the	uninstall	button.

This	is	why	it’s	a	good	idea	to	explain	why	your	app	wants	the	permissions	before	calling
requestPermissions().

Keep	in	mind	that	most	developers	will	choose	a	tutorial	but	a	lot	of	users	may	choose	to
skip	tutorials	whenever	possible,	so	you	must	make	sure	that	you	can	provide	information
about	permissions,	apart	from	the	ones	in	the	tutorial.

Need	support	handling	runtime
permissions?
Managing	permissions	is	easier	with	the	latest	revision	of	the	v4	or	v13	support	libraries
(23,	which	is	the	same	as	the	Android	Marshmallow	API	version,	so	it’s	easy	to
remember)

The	support	libraries	now	provide	several	new	methods	to	manage	permissions	and	work
properly	on	any	device	that	can	use	these	libraries.	This,	for	instance,	saves	you	the	time
required	to	check	for	a	sufficient	API	level	regardless	of	whether	the	device	runs	Android
Marshmallow	or	not.	If	an	app	is	installed	on	a	device	running	Android	Marshmallow,
proper	behavior	is	achieved—as	if	you’re	running	the	same	framework	calls.	Even	when
running	on	lower	versions,	you	get	the	expected	behavior	from	the	support	library
methods.

The	v4	support	library	has	the	following	methods:

ActivityCompat.checkSelfPermission	(Context	context,	String	permission):

This	checks	whether	your	app	has	a	permission.	PERMISSION_GRANTED	is	returned	if
the	app	has	the	permission;	otherwise,	PERMISSION_DENIED	is	returned.

ActivityCompat.requestPermissions	(Activity	activity,	String[]

permissions,	int	requestCode:

This	requests	permissions,	if	required.	If	the	device	is	not	running	Android	6.0,	you
will	get	a	callback.

ActivityCompat.OnRequestPermissionsResultCallback(int	requestCode,

String[]	permissions,	int[]	grantResults):

This	passes	PERMISSION_GRANTED	if	the	app	already	has	the	specified	permission	and
PERMISSION_DENIED	if	it	does	not.

ActivityCompat.shouldShowRequestPermissionRationale	(Activity	activity,

String	permission):

This	returns	true	if	the	user	has	denied	a	permission	request	at	least	once	and	has	not
yet	selected	the	Don’t	ask	again	option.

According	to	the	design	patterns,	we	should	now	give	our	users	more	information	about
the	feature	and	why	these	permissions	are	so	important	to	the	app.

Note
If	the	device	is	not	running	Android	Marshmallow,
shouldShowRequestPermissionRationale	will	always	return	false.

The	PermissionChecker	class	is	also	included	in	v4.

This	class	provides	several	methods	for	apps	that	use	IPC	to	check	whether	a	particular

package	has	a	specified	permission	when	IPC	calls	are	made.

Android	has	a	compatibility	mode,	allowing	users	to	revoke	access	to	permission-
protected	methods	for	legacy	apps.	When	a	user	revokes	access	in	the	compatibility	mode,
the	app’s	permissions	remain	the	same	but	access	to	the	APIs	is	restricted.

The	PermissionChecker	method	verifies	app	permissions	in	normal	as	well	as	legacy
modes.

Note
If	your	app	acts	as	a	middleman	on	behalf	of	other	apps	and	needs	to	call	platform
methods	that	require	runtime	permissions,	you	should	use	the	appropriate
PermissionChecker	method	in	order	to	ensure	that	the	other	app	is	allowed	to	perform	the
operation.

The	v13	support	library	provides	the	following	permission	methods:

FragmentCompat.requestPermissions():

This	requests	permissions,	if	required.	If	the	device	is	not	running	Android	6.0,	you
will	get	a	callback.

FragmentCompat.OnRequestPermissionsResultCallback:

This	passes	PERMISSION_GRANTED	if	the	app	already	has	the	specified	permission	and
PERMISSION_DENIED	if	it	does	not.

FragmentCompat.shouldShowRequestPermissionRationale():

This	returns	true	if	the	user	has	denied	a	permission	request	at	least	once	and	has	not
yet	selected	the	Don’t	ask	again	option.

According	to	the	design	patterns,	we	should	now	give	our	users	more	information	about
the	feature	and	why	this	permission	is	so	important	to	the	app.

Note
If	the	device	is	not	running	Android	Marshmallow,	it	will	always	return	false.

You	can	check	out	the	sample	project	for	the	three	ways	to	handle	permissions:

https://github.com/MaTriXy/PermissionMigrationGuide

For	more	information	on	permission	design	patterns,	read	Patterns	–	Permissions	by
Google	at	https://www.google.com/design/spec/patterns/permissions.html.

https://github.com/MaTriXy/PermissionMigrationGuide
https://www.google.com/design/spec/patterns/permissions.html

Some	permissions	are	normal	and	safer	to	use
The	Android	system	flags	permissions	according	to	their	protection	levels.	The	levels	are
describes	at
http://developer.android.com/reference/android/content/pm/PermissionInfo.html.

The	level	that	is	relevant	to	our	discussion	is	PROTECTION_NORMAL,	in	which	permissions
are	considered	to	have	little	or	no	risk	when	applications	have	them.

Let’s	say	you	want	to	build	a	flashlight	app;	allowing	your	app	to	turn	on	the	flash	is	not
considered	a	huge	risk	to	privacy	or	security,	and	this	is	why	flashlight	permission	is
flagged	PROTECTION_NORMAL.

When	you	declare	normal	permissions	in	the	manifest,	the	system	grants	these	permissions
automatically	at	the	time	of	installation.	There	is	no	prompt	to	grant	permissions	for	a
normal	permissions	group,	and	these	permissions	can’t	be	revoked	by	users.

This	means	that	you	can	be	sure	that	normal	permissions	are	granted	at	the	time	of
installation.

Currently,	the	permissions	classified	as	PROTECTION_NORMAL	are	as	follows:

android.permission.ACCESS_LOCATION_EXTRA_COMMANDS

android.permission.ACCESS_NETWORK_STATE

android.permission.ACCESS_WIFI_STATE

android.permission.ACCESS_WIMAX_STATE

android.permission.BLUETOOTH

android.permission.BLUETOOTH_ADMIN

android.permission.BROADCAST_STICKY

android.permission.CHANGE_NETWORK_STATE

android.permission.CHANGE_WIFI_MULTICAST_STATE

android.permission.CHANGE_WIFI_STATE

android.permission.DISABLE_KEYGUARD

android.permission.EXPAND_STATUS_BAR

android.permission.FLASHLIGHT

android.permission.GET_ACCOUNTS

android.permission.GET_PACKAGE_SIZE

android.permission.INTERNET

android.permission.KILL_BACKGROUND_PROCESSES

android.permission.MODIFY_AUDIO_SETTINGS

android.permission.NFC

android.permission.PERSISTENT_ACTIVITY

android.permission.READ_SYNC_SETTINGS

android.permission.READ_SYNC_STATS

android.permission.READ_USER_DICTIONARY

android.permission.RECEIVE_BOOT_COMPLETED

android.permission.REORDER_TASKS

android.permission.SET_TIME_ZONE

http://developer.android.com/reference/android/content/pm/PermissionInfo.html

android.permission.SET_WALLPAPER

android.permission.SET_WALLPAPER_HINTS

android.permission.SUBSCRIBED_FEEDS_READ

android.permission.TRANSMIT_IR

android.permission.VIBRATE

android.permission.WAKE_LOCK

android.permission.WRITE_SETTINGS

android.permission.WRITE_SYNC_SETTINGS

android.permission.WRITE_USER_DICTIONARY

com.android.alarm.permission.SET_ALARM

com.android.launcher.permission.INSTALL_SHORTCUT

Summary
As	you	saw,	the	Android	permission	system	and	model	is	vast	and	has	introduced	a	few
changes	that	can	help	app	developers	and	applications	gain	more	traction	and	installations
and	give	the	users	the	ability	to	decide	when	your	applications	will	be	able	to	use	each
permission-dependent	feature.	Keep	in	mind,	though,	that	this	is	just	a	starting	point	and
Android	Marshmallow	still	needs	to	gain	market	share	and	get	adopted	by	OEMs,
enabling	users	with	freedom	of	choice.	You	as	an	app	developer	must	prepare	in	advance
and	make	sure	your	application	development	is	forward-facing,	allowing	new	users	to
enjoy	the	latest	updates	as	soon	as	possible	while	maintaining	a	high	level	of	performance
for	your	applications.

In	the	next	chapter,	we	will	go	over	a	small	yet	important	feature	in	the	Android
Marshmallow	version:	app	linking.

Chapter	2.	App	Links
One	of	the	major	improvements	to	the	new	Android	Marshmallow	version	is	powerful
app	linking.	It	allows	the	association	of	your	app	with	your	owned	web	domain.	With	this
association,	you	as	a	developer	allow	the	system	to	determine	the	default	app	that	should
handle	a	particular	web	link	and	skip	prompting	users	to	select	an	app.	Saving	clicks
means	less	friction,	which	means	that	you	reach	the	content	faster;	this	leads	to	users	and
developers	being	happy.	In	this	chapter,	we	will	cover	the	following	topics:

The	Android	Intent	system
Creating	a	website	association
Triggering	app	link	verification
App	link	settings	and	management
Testing	app	links

The	Android	Intent	system
Almost	every	developer	knows	what	an	Android	Intent	system	is,	but	we	will	explain	it	a
bit	and	lay	out	the	basic	principles	required	to	understand	the	app	links	feature.	The
Android	Intent	system	can	be	found	in	the	Android	platform;	this	allows	the	passing	of
data	in	a	small,	simple	package.	Intent	means	that	we	want	to	perform	an	action.	You	may
already	know	about	the	basic	intents:

startActivity()

startActivityForResult()

startService()

sendBroadcast()

The	following	figure	shows	an	Android	Intent	system	for	the	startActivity()	and
onCreate()	intents:

Source:	http://developer.android.com/guide/components/intents-filters.html

The	Android	Intent	system	is	a	flexible	mechanism	that	is	used	to	enable	apps	to	handle
content	and	requests.	Multiple	apps	may	declare	matching	URI	(short	for	Uniform
Resource	Identifier)	patterns	in	their	intent	filters.	When	a	user	clicks	on	a	web	link	that
does	not	have	a	default	launch	handler,	the	platform	may	display	a	dialog	for	the	user	to
select	from	a	list	of	apps	that	have	declared	matching	intent	filters.

Intents	are	also	used	to	trigger	actions	across	the	system,	and	some	of	these	actions	are
system-defined,	such	as	ACTION_SEND	(referred	to	as	the	share	action),	where	you	as	an
app	developer	can	share/send	specific	information	to	another	application	in	order	to
complete	an	action	required	by	a	user.

Until	Android	Marshmallow,	browsers	handled	each	link	clicked	on	the	Web,	and	the
system	checked	whether	a	custom	URI	scheme	was	available.	Your	application	could
handle	specific	custom	actions	via	the	custom	URI	scheme.	This	was	tricky	at	times	and
didn’t	allow	the	handling	of	links	under	an	entire	web	domain.	Now,	it’s	possible.	Android
Marshmallow’s	added	support	for	app	links	allows	you,	as	an	app	developer,	to	associate
an	app	with	a	web	domain.	Automatically,	this	will	allow	you	to	determine	the	default	app

that	will	handle	a	particular	web	link	instead	of	showing	the	selected	application	to	handle
the	dialog.

Note
If	you	wish	to	read	more	about	intents,	you	can	go	to	the	following	link:

http://developer.android.com/guide/components/intents-filters.html

http://developer.android.com/guide/components/intents-filters.html

Creating	a	website	association
You	as	an	app	developer	as	well	as	a	website	owner	need	to	declare	a	website	association
with	an	app.	The	declaration	is	done	by	hosting	a	JSON	file,	which	is	specifically	named
assetlinks.json.	The	file	must	reside	in	a	specific	location	on	the	domain	in	question,
such	as:
https://<domain>:<optional	port>/.well-known/assetlinks.json

Note
This	file	is	accessed	and	verified	over	the	HTTPS	protocol	and	not	HTTP.

Why	this	file?
The	JSON	file	holds	information	about	the	Android	application	that	will	be	the	default
handler	for	the	URLs	under	this	domain.	In	the	JSON	file,	you	must	have	the	following
structure:

[{

		"relation":	["delegate_permission/common.handle_all_urls"],

		"target":	{

				"namespace":	"android_app",

				"package_name":	"com.yourapp.androidapp",

				"sha256_cert_fingerprints":	[""]

		}

}]

The	following	are	some	elements	of	the	preceding	structure:

package_name:	This	is	the	package	name	from	your	app’s	manifest
sha256_cert_fingerprints:	This	is	the	SHA-256	fingerprint	of	your	app

Use	the	following	command	if	you	don’t	have	this	SHA	(short	for	Secure	Hash
Algorithm):

keytool	-list	-v	-keystore	app_release_signing.keystore

Triggering	app	link	verification
You	can	request	automatic	verification	for	any	app	links	declared	in	the	assetlinks.json
file.	Requesting	a	verification	is	done	by	adding	the	android:autoVerify	attribute	to	each
intent	filter	in	the	manifest	and	setting	it	to	true.

Let’s	say	we	own	a	WhatsApp	application	and	domain.	We	want	to	autoverify	an	intent
filter	that	has	the	android.intent.action.VIEW	action.

The	following	is	a	sample	activity	from	WhatsApp	that	handles	app	links	and	the
autoverification	attribute:

<activity	android:name="com.whatsapp.XXX"	…>

		<intent-filter	android:autoVerify="true">

				<action	android:name="android.intent.action.VIEW"/>

				<category	android:name="android.intent.category.DEFAULT"/>

				<category	android:name="android.intent.category.BROWSABLE"/>

				<data	android:scheme="http"	android:host="www.whatsapp.com"/>

				<data	android:scheme="https"	android:host="www.whatsapp.com"/>

		</intent-filter>

</activity>

The	android:autoVerify	attribute	alerts	the	platform	to	verify	app	links	when	the	app	is
installed.	If	the	app	link’s	verification	fails,	your	app	will	not	be	set	as	the	preferred	app	to
handle	these	links.	If	there	is	no	preferred	app	to	handle	these	links	whenever	a	user	opens
one	of	them,	a	dialog	to	choose	an	app	is	displayed.

If	a	user	has	used	the	system	settings	and	set	an	app	as	the	preferred	app,	then	the	link	will
go	directly	to	the	app	but	not	because	the	verification	was	successful.

App	link	settings	and	management
For	easy	management,	you	can	enter	the	system	settings	and	tweak	the	URL	handling	by
navigating	to	Settings	|	Apps	|	App	info	|	Open	by	default.

Testing	app	links
As	with	every	new	feature	we	add,	we	must	test	the	app	links	feature	that	we	will	add	to
our	application.

Checking	manifest	and	listing	domains
Our	first	step	is	to	go	over	the	manifest	and	make	sure	all	the	domains	are	registered
correctly	and	all	intent	filters	are	well	defined.	Only	the	links/domains	under	all	the
criteria	mentioned	in	the	following	bullets	are	the	ones	we	need	to	test:

The	android:scheme	attribute	with	a	value	of	HTTP	or	HTTPS
The	android:host	attribute	with	a	domain	URI	pattern
The	category	element,	which	can	be	one	of	the	following:

android.intent.action.VIEW

android.intent.category.BROWSABLE

The	Digital	Asset	Links	API
We	can	use	the	Digital	Asset	Links	API	to	confirm	that	our	link’s	JSON	file	is	properly
hosted	and	defined	using	the	following	syntax:

https://digitalassetlinks.googleapis.com/v1/statements:list?

source.web.site=https://<DOMAIN>:<port>&	

relation=delegate_permission/common.handle_all_urls

Testing	our	intent
Now	that	we	have	confirmed	that	the	hosted	JSON	file	is	valid,	we	will	install	the	app	on
our	device	and	wait	for	at	least	20-30	seconds	for	the	verification	process	to	complete.
After	this,	we	can	check	whether	the	system	has	verified	our	app	and	set	the	correct	link-
handling	policies	using	the	following	syntax:
adb	shell	am	start	-a	android.intent.action.VIEW	\	-c

android.intent.category.BROWSABLE	\	-d	"http://<DOMAIN>:<port>"

For	example,	if	we	take	YouTube	videos,	we	can	trigger	the	YouTube	app	to	open	the
video	directly	using	the	following	command:

adb	shell	am	start	-a	android.intent.action.VIEW	-c	

android.intent.category.BROWSABLE	-d	"http://youtu.be/U9tw5ypqEN0"

Checking	policies	using	adb
Android	Debug	Bridge	(adb)	can	help	us	check	existing	link-handling	policies	for	all
applications	in	our	device	using	the	following	command:

adb	shell	dumpsys	package	domain-preferred-apps

The	following	screenshot	is	the	result	of	the	preceding	command:

Another	option	is	as	follows:

adb	shell	dumpsys	package	d

The	following	screenshot	is	the	result	of	the	preceding	command:

Note
We	must	wait	at	least	20-30	seconds	after	the	installation	for	the	system	to	complete	the
verification	process.

The	following	listing	indicates	apps’	association	with	domains	per	user:

Package:	This	refers	to	the	app’s	package	name,	as	declared	in	its	manifest
Domains:	This	refers	to	the	list	of	hosts	whose	web	links	are	handled	by	this	app;
blank	spaces	are	used	as	delimiters
Status:	This	refers	to	the	current	link-handling	setting	for	this	app

Passing	the	verification	and	android:autoVerify="true"	will	show	a	status	of	always.

The	hexadecimal	number	after	the	status	(as	shown	in	the	preceding	screenshot)	is	the
Android	system’s	record	of	the	user’s	app	linkage	preferences.	It	does	not	indicate	that	the
verification	has	succeeded.

Note
The	user	can	change	the	app	link	settings	before	the	end	of	the	verification	process,	which
means	that	we	may	see	a	false	positive	for	a	successful	verification.	User	preferences	take
precedence	over	programmatic	verification,	so	we	will	see	that	the	link	goes	directly	to
our	app	without	displaying	a	dialog,	as	if	verification	had	succeeded.

Summary
As	we	saw,	app	linking	has	become	powerful	in	Android	Marshmallow.	This	allows	you,
the	app	developers,	help	the	system	better	decide	how	to	act.	Handling	web	URLs	will
give	you	wider	exposure,	a	bigger	funnel	for	your	apps,	and	better	experience,	which	you
can	provide	to	your	users	(which	in	turn	leads	to	better	ratings,	more	downloads,	and	vice
versa).

App	linking	is	simple	to	implement,	easy	to	understand,	and	is	a	must-have	feature	in	the
mobile/web	world	today.	While	app	linking	enables	better	action	handling	for	those	using
your	applications,	users	can	have	multiple	devices,	expecting	the	same	behavior	on	each
device,	and	would	be	more	engaged	if	their	data	and	action	handling	happens	smoothly.
This	brings	us	to	our	next	chapter,	which	will	teach	you	how	to	back	up	user	settings	and
more.

Chapter	3.	Apps’	Auto	Backup
Have	you	ever	taken	the	time	to	set	up	an	app	on	your	phone,	use	it	for	a	while,	pour	in	a
lot	of	content,	and	switch	phones	due	to	a	mishap	just	to	discover	that	your	data	and
settings	have	gone	with	the	wind?

One	of	the	key	features	of	Android	Marshmallow	is	that	it	supports	full	automatic	data
backup	and	restore	for	user	apps.	This	improves	the	user	experience,	makes	the	overall
engagement	more	fun,	and	shortens	the	boarding	time	for	multiple	devices.	Like	we
discussed	in	the	previous	chapters,	happy	users	lead	to	happy	developers.

You	can	unload	the	burden	of	setting	up	a	new	device;	it	doesn’t	matter	whether	it’s	an
added	device	or	a	replacement.	The	user	will	end	up	with	the	same	app	configuration	and
data,	allowing	work	to	be	more	device-agnostic.	For	this	feature	to	be	enabled	on	your
applications,	you	must	target	the	Android	Marshmallow	SDK’s	version	23;	no	extra	code
is	needed	by	default	even	though	you	can	configure	the	feature	and	allow	specific
behavior	whenever	required.	Data	is	automatically	restored	when	a	user	changes	or
upgrades	the	device.

In	this	chapter,	we	will	learn	how	this	feature	works	and	configure	the	information	that	we
want	to	back	up.	We’ll	cover	the	following	topics:

An	overview
Data	backup	configuration
Backup	configuration	testing
Important	bytes

An	overview
The	automatic	backup	feature	is	created	by	taking	the	data	created	within	your	app	and
uploading	it	to	the	user’s	Google	Drive	account,	keeping	it	encrypted.	This	doesn’t	affect
the	user’s	drive	quota	or	your	quota,	for	that	matter.	Each	app	is	limited	to	25	MB	backup
per	user,	and	once	you	reach	that	amount,	your	app	will	stop	backing	up.	Also,	note	that
it’s	completely	free!

Backup	is	done	in	cycles	of	24	hours,	nights	only,	and	it’s	done	automatically,	usually
when	the	device	is	idle,	charging,	and	connected	to	a	Wi-Fi	network.	These	conditions	are
there	for	battery	efficiency,	data	charges,	and,	of	course,	to	keep	the	user	interference	to	a
minimum.	Android	systems	have	a	Backup	Manager	service,	which	uploads	all	the
available	backup	data	to	the	cloud.	Switching	to	a	new	device	or	uninstalling	and
reinstalling	the	app	will	trigger	the	restore	operation,	which	in	turn	copies	the	data	into	the
app’s	data	directory.

Note
This	new	behavior	allows	you	to	keep	using	your	existing	backup	service	calls	as	well.

To	read	more	about	the	Android	Backup	Service	that	was	used	prior	to	Android
Marshmallow,	head	to:

https://developer.android.com/guide/topics/data/backup.html

https://developer.android.com/guide/topics/data/backup.html

Data	backup	configuration
We	have	a	lot	of	data	that	we	want	to	back	up	for	our	users,	but	we	also	don’t	want	to	back
up	all	the	data.	Let’s	say	we	all	agree	not	to	back	up	users’	passwords	or	other	sensitive
data,	but	what	if	you	have	a	specific	app	configuration	that	is	generated	based	on	the
device	the	user	is	using?	This	too	should	be	excluded	in	a	manner	similar	to	device	tokens
such	as	Google	Cloud	Messaging	(GCM)	and	others.	I	would	recommend	that	you	figure
out	which	data	your	app	keeps	persistently	and	whether	this	data	should	and	can	be
device-agnostic.

You	can	configure	what	is	being	backed	up	besides	the	automatically	excluded	files
mentioned	earlier.	This	configuration	should	be	declared	in	your	app’s	manifest	via	the
android:fullBackupContent	attribute.	You	will	need	to	create	a	new	XML	file	that
should	reside	in	your	res/xml	folder,	and	this	will	have	specific	rules	for	the	backing	up
of	your	app’s	data.

Including	or	excluding	data
XML	file	configuration	includes	a	simple	batch	of	include/exclude	tags,	which	indicate
whether	or	not	you	need	to	back	up	a	directory	or	a	specific	file.	Keep	in	mind	that	by
default,	the	XML	is	reductive,	which	means	that	you	back	up	everything	possible	unless
there	is	an	instruction	to	exclude	it	in	your	XML.

Another	possible	configuration	is	the	constructive	configuration	in	which	you	specify	only
the	things	you	want	to	back	up,	and	they	will	be	added	to	the	backup.	This	configuration
behavior	is	done	by	adding	an	include	tag	to	your	XML,	and	from	then	onward,	it	will
remain	constructive.

As	we	can	see	in	our	example,	we	specify	a	backup	scheme	configuration	in	the	app’s
manifest:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest	xmlns:android="http://schemas.android.com/apk/res/android"	

xmlns:tools="http://schemas.android.com/tools"	

package="com.yourapp.androidapp">

		<uses-sdk	android:minSdkVersion="16"	/>

		<uses-sdk	android:targetSdkVersion="23"	/>

		<app	android:fullBackupContent="@xml/androidapp_backup_config">

		</app>

</manifest>

After	declaring	the	file	in	our	manifest,	we	also	need	to	construct	it	in	our	res/xml	folder;
for	example,	take	a	look	at	the	following:

<?xml	version="1.0"	encoding="utf-8"?>

<full-backup-content>

		<exclude	domain="database"	path="sensitive_database_name.db"/>

		<exclude	domain="sharedpref"	path="androidapp_shared_prefs_name"/>

		<exclude	domain="file"	path="some_file.file_Extension"/>

		<exclude	domain="file"	path="some_file.file_Extension"/>

</full-backup-content>

This	example	backup	configuration	excludes	only	specific	data	from	being	backed	up.	All
other	files	are	backed	up.

The	backup	configuration	syntax
Although	you	should’ve	sorted	out	your	app’s	specific	persistent	data,	we	can	go	over	the
configuration	syntax	that	should	be	in	the	XML.	The	syntax	for	the	configuration	XML
file	is	as	follows:

<full-backup-content>

		<include	domain=["root"	|	"sharedpref"	|	"database"	|	"file"	|	

"external"]	path="string"	/>

		<exclude	domain=["root"	|	"sharedpref"	|	"database"	|	"file"	|	

"external"]	path="string"	/>

</full-backup-content>

Don’t	forget	to	read	the	explanation	for	each	attribute	and	element	here:

<include>:	You	should	use	this	tag	whenever	you	want	to	specifically	add	a	resource
from	any	of	the	approved	sorts	to	the	backup.	Remember	that	whenever	you	specify
an	<include>	tag,	the	backup	behavior	changes	to	constructive,	and	the	system	only
backs	up	resources	specified	with	the	<include>	tags.
<exclude>:	You	should	use	this	tag	whenever	you	want	to	exclude	any	of	the	app’s
resources	from	the	backup.	As	mentioned	earlier,	you	should	exclude	sensitive	data
and	your	app’s	device-specific	data.	Here,	the	behavior	is	like	this:	the	system	backs
up	all	of	your	app’s	data	except	the	resources	specified	with	the	<exclude>	tag.
domain:	This	appears	on	include	as	well	as	exclude	tags.	It	allows	you	to	declare	the
resource	type	you	want	to	include	or	exclude	from	the	backup.	The	domain	has
specific	valid	values	that	you	can	choose	from:

root:	This	implies	that	the	resource	should	be	in	the	app’s	root	directory
file:	This	implies	that	the	resource	is	a	file	located	in	the	Files	directory	and	is
accessible	via	the	getFilesDir()	method
database:	This	implies	that	your	resource	is	a	database	file	that	can	be	located
via	the	getDatabasePath()	method	or	the	SQLiteOpenHelper	class
sharedpref:	This	implies	that	your	resource	is	a	SharedPreferences	object	that
can	be	accessed	via	the	getSharedPreferences()	method
external:	This	implies	that	your	resource	is	a	file	in	an	external	storage	located
in	a	directory	accessed	by	the	getExternalFilesDir()	method
path:	This	a	String	path	to	the	resource	that	you	want	included	in	or	excluded
from	backup

Opting	out	from	app	data	backup
On	some	occasions,	you	might	decide	that	you	wish	not	to	use	the	app	data	backup	feature
in	your	app.	In	such	a	situation,	you	will	be	able	to	notify	the	system	that	your	app	has
opted	out.

Setting	the	android:allowBackup	attribute	to	false	in	your	manifest	is	done	using	the
following	command:

android:allowBackup="false"

Backup	configuration	testing
By	now,	you	have	created	a	backup	configuration	and	you	might	(should)	test	it	and	make
sure	that	your	app	saves	the	data,	restores	it,	and	works	without	any	issues.

Setting	backup	logs
Before	you	test	your	app’s	configuration,	you	might	want	to	enable	logging;	this	is	done
via	adb,	where	you	set	the	parser	log	property	to	VERBOSE:

$	adb	shell	setprop	log.tag.BackupXmlParserLogging	VERBOSE

Testing	the	backup	feature	can	be	split	into	two	parts:

Testing	the	backup	phase
Testing	the	restore	phase

Testing	the	backup	phase
The	backup	can	be	run	manually,	but	first,	you	must	run	the	Backup	Manager	via	the	adb
command:

$	adb	shell	bmgr	run

After	the	Backup	Manager	is	up	and	running,	we	can	trigger	the	backup	phase	via	adb	and
run	our	app’s	package	name	as	the	<PACKAGE.NAME>	parameter:

$	adb	shell	bmgr	fullbackup	<PACKAGE.NAME>

Testing	the	restore	phase
We	executed	the	backup	phase	and	all	went	well.	Now,	we	want	to	test	the	restore	phase
and	verify	that	all	the	backed-up	data	is	restored	properly	and	we	didn’t	miss	out	on	any
resource.	We	manually	run	a	restore	(must	be	done	after	your	app	data	is	backed	up).	This
is	done	via	the	adb	shell,	specifying	the	package	name	for	your	app	as	the
<PACKAGE.NAME>	parameter:

$	adb	shell	bmgr	restore	<PACKAGE.NAME>

Note
The	restore	action	stops	your	app	and	wipes	its	data	before	actually	performing	the
restore	operation.

Troubleshooting
Issues	can	occur	in	any	place,	including	our	case.	If	you	run	into	issues,	you	should	try
and	clear	the	data	by	turning	backup	on	and	off	by	navigating	to	Settings	|	Backup	&
reset,	factory	resetting	the	device:

You	can	clear	the	data	using	this	command:

$	adb	shell	bmgr	wipe	<TRANSPORT>	<PACKAGE.NAME>

The	<TRANSPORT>	tag	is	prefixed	by	com.google.android.gms/.	To	view	the	list	of
transports,	you	can	run	following	adb	command:

$	adb	shell	bmgr	list	transports

The	following	screenshot	is	the	result	of	the	preceding	command:

Important	bytes
Before	we	jump	into	the	next	chapter,	let’s	go	through	a	couple	of	important	subtopics
within	the	Android	apps’	backup	feature.

System	backup	does	not	include	the	following:

Files	located	in	CacheDir	via	the	getCacheDir()	method	(API	1	and	above)
Files	located	in	CodeCacheDir	via	the	getCodeCacheDir()	method	(API	21	and
above)
Files	located	in	the	external	storage	and	not	in	ExternalFilesDir	via	the
getExternalFilesDir(String	type)	method,	where	the	type	can	be	as	follows:

null	for	the	root	of	the	file	directory
Any	of	these	types	for	a	specific	subfolder/directory:

android.os.Environment.DIRECTORY_MUSIC

android.os.Environment.DIRECTORY_PODCASTS

android.os.Environment.DIRECTORY_RINGTONES

android.os.Environment.DIRECTORY_ALARMS

android.os.Environment.DIRECTORY_NOTIFICATIONS

android.os.Environment.DIRECTORY_PICTURES

android.os.Environment.DIRECTORY_MOVIES

Files	located	in	NoBackupFilesDir	via	the	getNoBackupFilesDir()	method	(API	21
and	above)

What	to	exclude	from	the	backup
Though	we	have	discussed	this	earlier,	you	may	need	to	revise	which	app	data	is	eligible
for	backup.

Among	the	excluded	data,	you	must	exclude	any	device-specific	identifiers	that	are	either
issued	by	a	server	or	generated	on	the	device,	including	the	GCM	registration	token.

You	must	also	add	the	excluding	logic	for	any	account	credentials	or	other	sensitive
information.

BackupAgent	and	backup	events
You	can	implement	your	own	BackupAgent	attribute,	which	allows	you	to	listen	to	events.
BackupAgent	has	several	callbacks	that	you	can	override,	one	of	which	is	the
onRestoreFinished()	method,	which	is	called	after	a	successful	restore	takes	place.	You
should	add	the	android:fullBackupOnly="true"	attribute	to	your	manifest	in	addition	to
android:backupAgent;	this	will	indicate	that	while	your	application	has	a	BackupAgent
attribute,	Android	Marshmallow	and	other	devices	will	only	perform	full-data	backup
operations.

This	technique	can	come	in	handy	when	you	want	to	exclude	a	few	keys	from	your
SharedPreferences	backup	(device-specific	tokens,	GCM	tokens,	and	so	on).	Instead	of
partitioning	SharedPreferences	into	multiple	files,	you	can	simply	remove	the	keys	at
restore	time	when	onRestoreFinished()	is	called.

Keep	in	mind	that	other	sensitive	data	is	not	supposed	to	be	backed	up	anyway.	You	can
read	more	about	BackupAgent	at:

http://developer.android.com/reference/android/app/backup/BackupAgent.html.

http://developer.android.com/reference/android/app/backup/BackupAgent.html

Summary
Android	Marshmallow	has	brought	in	a	great	backup	feature	for	apps,	reducing	friction	for
users	migrating	to	new	devices.

In	a	world	full	of	diverse	apps,	maximizing	the	benefits	from	automatic	backups	leads	to
better	user	experience.	The	goal	of	this	feature	is	to	unload	the	burden	and	shorten	the
time	required	to	set	up	a	new	device	with	the	user’s	favorite	apps.

Allowing	the	users	to	enter	your	app	with	merely	a	password	prompt	after	the	new
installation	can	be	a	great	experience;	try	it	yourself!	You	can	check	out	the	sample	code
that’s	included	or	go	to	the	GitHub	repository	at:

https://github.com/MaTriXy/apps_autobackup_example

In	our	next	chapter,	we	will	dive	into	more	changes	executed	in	Android	Marshmallow	as
we	unfold	its	awesomeness.

https://github.com/MaTriXy/apps_autobackup_example

Chapter	4.	Changes	Unfold
Android	Marshmallow	holds	some	changes	that	might	get	overlooked.	A	lot	of	these
changes	are	short	but	will	require	your	full	attention	to	fully	understand	them	and	make
sure	you	don’t	miss	out	when	trying	to	use	a	removed/deprecated	API,	a	new	flow,	or	a
new	and	improved	API.

I’ve	bundled	up	a	group	of	changes	that	you	might	use	or	need	to	know	and	understand
when	building	your	applications	for	Android	6.0	(Marshmallow):

Power-saving	modes
Removable	storage	adoption
Apache	HTTP	client	removal
Notifications
Text	selection
Support	library	notice
Android	Keystore	changes
Wi-Fi	and	networking	changes
Runtime
Hardware	identifier
APK	validation
USB	connection
Direct	Share
Voice	interactions
The	Assist	API
Bluetooth	API	changes

The	preceding	group	doesn’t	include	a	separate	chapter	for	major	changes,	for	example,
the	permissions	model	covered	in	Chapter	1,	Android	Marshmallow	Permissions,	or	an
improved	API,	such	as	the	video/audio/camera	API	that	we	will	cover	in	the	next	chapter.

Power-saving	modes
Android	6.0	has	added	new	power-saving	modes,	Doze	and	App	Standby,	prolonged
battery	life	by	up	to	2	times	according	to	Google’s	measurements.	The	Doze	mode	has
been	created	to	improve	the	sleep	efficiency	of	idle	devices,	while	the	App	Standby	mode
has	been	designed	to	prevent	apps	from	eating	up	power	while	in	the	idle	state.	On	both
occasions,	plugging	in	the	device	to	chargers	allows	normal	operations	to	resume.

The	Doze	mode
Dozing	is	when	a	device	is	unplugged,	the	screen	is	off,	and	it’s	stationary	(this	can	be
determined	via	sensors,	such	as	the	accelerometer)	for	a	determined	period	of	time.	What
we	get	is	a	state	where	the	system	is	kept	in	the	sleep	state	as	long	as	possible.	When	an
Android	6.0	device	is	in	the	Doze	mode,	not	much	will	happen	in	the	background,	as
shown	in	the	following	figure:

In	short,	everything	you	think	will	happen	in	the	background	will	not	actually	happen.

What	happens	to	apps	when	a	device	is	dozing?
When	a	device	enters	the	dozing	state,	you	will	encounter	some	battery-efficient	system
behavior,	which	will	include	the	following:

Network	access	is	restricted	unless	your	app	receives	a	high-priority	GCM
Wake	locks	are	ignored	but	are	granted	to	apps
Syncs	and	jobs	are	deferred	using	the	following:

Sync	adapters
JobScheduler	(not	allowed	to	run;	this	is	enforced	by	the	system)

Alarms	are	deferred

Note
If	you	have	important	alarms	and	need	to	trigger	the	UI:

Use	the	setAndAllowWhileIdle()	method
Can’t	be	abused;	this	is	allowed	once	every	15	minutes
Wi-Fi	scans	are	off
GPS	is	off

The	Doze	mode	will	end	shortly	before	any	setAlarmClock()	alarms;	it	can	also	end
when	the	states	of	being	stationary	and	unplugged	are	exchanged.	Exiting	the	Doze	mode

will	trigger	the	device	to	execute	any	jobs	and	syncs	that	are	pending.

Testing	apps	with	Doze	mode
Test	apps	using	your	device	(with	Android	6.0)	and	adb	commands:

1.	 Simulate	an	unplugged	device	using	the	following	command:

$	adb	shell	dumpsys	battery	unplug

This	will	cause	your	battery	icon	to	show	as	if	the	device	is	not	plugged	in.

2.	 Take	the	step	to	the	next	state	using	the	following	command:

$	adb	shell	dumpsys	deviceidle	step

This	can	be	seen	in	the	following	screenshot:

3.	 Reset	the	battery	state	back	to	its	normal	condition	using	the	following	command:

$	adb	shell	dumpsys	battery	reset

You	can	also	list	the	available	commands	using	the	following	command:

$	adb	shell	dumpsys	deviceidle	-h

This	prints	more	information	about	the	deviceidle	usage,	as	shown	in	the	following
screenshot:

The	App	Standby	mode
App	Standby	is	a	special	mode	that	apps	will	be	in	when	a	system	determines	that	an	app
is	idle.	An	app	is	considered	idle	after	a	period	of	time	unless	the	app	exhibits	the
following	features:

It	has	a	foreground	process	at	that	time	(an	activity	or	service)
It	displays	notifications	on	the	lock	screen	or	in	the	notification	tray
It	was	explicitly	launched	by	the	user
It	was	marked	as	excluded	from	optimizations	via	the	settings	app

What	happens	to	apps	when	in	the	App	Standby	mode?
If	the	device	is	unplugged,	syncs	and	jobs	are	deferred	and	network	access	is	restricted.

If	the	device	is	plugged	in,	the	system	releases	the	app	lock	in	the	standby	state,	allowing
the	device	to	resume	access	to	the	network	and/or	execute	any	pending	jobs	and	syncs.

Note
When	in	the	idle	state	for	a	long	period	of	time,	the	system	allows	idle	apps	to	access	the
network	just	once	a	day.

Testing	apps	with	the	App	Standby	mode
Test	apps	using	your	device	(with	Android	6.0)	and	adb	commands:

1.	 Simulate	the	app	that’s	going	into	the	standby	mode:

$	adb	shell	am	broadcast	-a	android.os.action.DISCHARGING

$	adb	shell	am	set-inactive	<App	Package	Name	>	true

2.	 Simulate	by	waking	your	app:

$	adb	shell	am	set-inactive	<App	Package	Name	>	false

3.	 See	what	happens	when	your	app	awakens.	Test	recovering	gracefully	from	standby
mode.	Check	whether	your	app’s	notifications	and	background	jobs	function	as	you
would	anticipate.

You	can	set	your	app	as	inactive	via	the	following	command:

$	adb	shell	am	set-inactive	<App	Package	Name	>	true

You	can	also	check	the	status	of	your	app	via	the	following	command:

$	adb	shell	am	get-inactive	<App	Package	Name	>

Note
The	sample	test	was	done	on	Google	Photos	behavior;	all	rights	are	reserved.

The	console	output,	for	example,	is	as	follows:

~	adb	shell	am	set-inactive	com.google.android.apps.photos	false

~	adb	shell	am	get-inactive	com.google.android.apps.photos

Idle=false

~	adb	shell	am	set-inactive	com.google.android.apps.photos	true

~	adb	shell	am	get-inactive	com.google.android.apps.photos

Idle=true

Excluded	apps	and	settings
You	can	exclude	apps	from	the	App	Standby	mode	via	the	settings	apps,	as	mentioned
earlier.	The	procedure	to	do	this	is	as	follows:

1.	 Go	to	Settings	|	Apps.

2.	 Click	on	the	cog/gear	icon	to	open	the	Configure	apps	screen.

3.	 Choose	Battery	optimization.

4.	 The	following	screenshot	shows	a	list	of	the	apps	excluded	from	the	App	Standby
mode—that	is,	the	ones	that	are	not	optimized.	You	can	open	the	selection	for	all
apps	and	choose	the	exact	behavior	you	require	for	each	application.

Tips
Here	are	a	few	points	and	tips	for	you	to	note	and	remember:

Use	isIgnoringBatteryOptimizations()	with	a	PowerManager	instance	and	check
whether	your	app	is	on	the	whitelist
Navigate	the	user	directly	to	the	configuration	screen	using	the	following:

startActivity(new	

Intent(Settings.ACTION_IGNORE_BATTERY_OPTIMIZATION_SETTINGS));

Perform	the	following	steps	to	display	a	system	dialog	asking	about	adding	a	specific
app	to	the	whitelist:

1.	 Add	the	REQUEST_IGNORE_BATTERY_OPTIMIZATIONS	permission	to	the
application’s	manifest.

2.	 Create	a	URI	package	pointing	to	your	application.
3.	 Wrap	the	URI	in	an	intent	and	call	startActivity()	with	it	as	shown	in	the

following	code:

Intent	intent	=	new	

Intent(Settings.ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS	,	

Uri.parse("package:"	+	getPackageName()));

startActivity(intent);

Note	that	if	our	app	is	already	whitelisted,	the	dialog	won’t	be	displayed	again

Removable	storage	adoption
Android	Marshmallow	allows	users	to	adopt	external	storage	devices,	such	as	SD	cards.
Such	adoptions	will	format	and	encrypt	the	storage	device	and	mount	it	as	internal	storage.
Once	done,	users	can	move	apps	and	apps’	private	data	between	storage	devices.	The
android:installLocation	preference	in	the	manifest	will	then	be	used	by	the	system	to
determine	the	available	locations	for	each	app.	What	you	need	to	keep	in	mind	is	that
using	Context	methods	for	directories	or	files	and	ApplicationInfo	fields	will	return
values	that	can	change	between	runs.	You	should	always	call	these	APIs	dynamically.
Don’t	use	hardcoded	file	paths	or	persist	fully	qualified	file	paths.

The	Context	methods	are	as	follows:

getFilesDir()

getCacheDir()

getCodeCacheDir()

getDatabasePath()

getDir()

getNoBackupFilesDir()

getFileStreamPath()

getPackageCodePath()

getPackageResourcePath()

The	ApplicationInfo	fields	are	as	follows:

dataDir

sourceDir

nativeLibraryDir

publicSourceDir

splitSourceDirs

splitPublicSourceDirs

You	can	debug	this	feature	and	enable	the	adoption	of	a	USB	drive	connected	via	an	OTG
(short	for	On	The	Go)	cable	using	the	following	command:

$	adb	shell	sm	set-force-adoptable	true

For	more	on	USB,	head	to
https://developer.android.com/guide/topics/connectivity/usb/index.html.

https://developer.android.com/guide/topics/connectivity/usb/index.html

Apache	HTTP	client	removal
The	Apache	HTTP	client	has	been	deprecated	for	quite	some	time—since	2011	or	so.
Using	this	client	on	Android	2.3	and	higher	was	not	recommended;	now	with	Android	6.0
Marshmallow,	this	API	has	been	removed.	So,	we’ll	use	the	HttpURLConnection	class
instead.

This	API	is	more	efficient,	reduces	network	use,	and	minimizes	power	consumption.

If	you	wish	to	continue	using	the	Apache	HTTP	APIs,	you	must	first	declare	the	following
compile-time	dependencies	in	your	build.gradle	file:

android	{

		useLibrary	'org.apache.http.legacy'

}

Note
If	you	have	compile	errors	in	the	Android	studio,	you	can	head	to	these	questions	and
solutions	on	stackoverflow:

http://stackoverflow.com/q/30856785/529518
http://stackoverflow.com/q/31653002/529518

http://stackoverflow.com/q/30856785/529518
http://stackoverflow.com/q/31653002/529518

Notifications
There	are	a	few	changes	to	the	notifications	feature,	as	follows:

The	Notification.setLatestEventInfo()	method	is	now	removed.	When
constructing	notifications,	we	must	use	the	Notification.Builder	class.
Updating	a	notification	is	also	done	via	the	Notification.Builder	instance	using
the	same	instance	of	the	builder,	and	calling	the	build()	method	will	get	us	an
updated	Notification	instance.	If	legacy	support	is	required,	you	can	use
NotificationCompat.Builder	instead,	which	is	available	in	the	Android	Support
Library.
The	adb	shell	dumpsys	notification	command	no	longer	prints	out	notification
text.	The	proper	usage	now	is	adb	shell	dumpsys	notification	--noredact.
The	newly	added	INTERRUPTION_FILTER_ALARMS	filter	level	corresponds	to	a	new
mode:	Alarms	only	do	not	disturb.
The	newly	added	CATEGORY_REMINDER	category	is	used	for	user-scheduled	reminders.
The	newly	added	Icon	class	allows	icons	to	be	attached	to	notifications	via	the
setSmallIcon()	and	setLargeIcon()	methods.
The	updated	addAction()method	now	accepts	an	Icon	object	instead	of	a	drawable
resource	ID.
The	newly	added	getActiveNotifications()	method	allows	you	to	find	out	which
notifications	are	currently	alive.
We	can	obtain	some	knowledge	about	what	the	user	is	and	is	not	expecting	to	see
under	notifications	when	using	the	following	methods:

The	newly	added	getCurrentInterruptionFilter()	method	returns	the
current	notification	interruption	filter	in	which	notifications	are	allowed	to
interrupt	the	user
The	newly	added	getNotificationPolicy()	method	returns	the	current
notification	policy

Text	selection
Part	of	the	material	design	guide	specifications	discuss	text	selection	in	your	applications.
Users	select	text	within	your	app,	and	you	now	have	an	API	to	incorporate	a	floating
toolbar	design	pattern	that’s	similar	to	a	contextual	action	bar.	For	more	information
about	the	design	specifications,	head	to
http://www.google.com/design/spec/patterns/selection.html#selection-item-selection.

The	implementation	steps	are	as	follows:

1.	 Change	your	ActionMode	calls	to
startActionMode(Callback,ActionMode.TYPE_FLOATING).

2.	 Extend	ActionMode.Callback2.
3.	 Override	the	onGetContentRect()	method	and	provide	coordinates	for	the	content

Rect	object	in	the	view.
4.	 Call	the	invalidateContentRect()	method	when	you	need	to	invalidate	the	Rect

object	and	it’s	position	is	no	longer	valid.

http://www.google.com/design/spec/patterns/selection.html#selection-item-selection

Support	library	notice
Floating	toolbars	are	not	backward-compatible.	Appcompat	takes	control	over	ActionMode
objects	by	default.	This	will	prevent	floating	toolbars	from	being	displayed.

The	implementation	steps	are	as	follows:

1.	 Call	getDelegate()	and	setHandleNativeActionModesEnabled()	on	the	returned
AppCompatDelegate	object.

2.	 Set	the	input	parameter	to	false.

This	call	will	return	control	of	ActionMode	objects	to	the	framework,	allowing	6.0	devices
to	support	ActionBar	or	floating	toolbar	modes	and	allowing	earlier	versions	to	support
the	ActionBar	modes.

Android	Keystore	changes
From	Android	6.0	onward,	the	Android	Keystore	provider	no	longer	supports	Digital
Signature	Algorithm	(DSA).

For	more	information	about	keystore	and	its	usage,	visit
https://developer.android.com/training/articles/keystore.html.

https://developer.android.com/training/articles/keystore.html

Wi-Fi	and	networking	changes
Android	Marshmallow	has	introduced	a	few	changes	to	the	Wi-Fi	and	networking	APIs.

Changing	the	state	of	WifiConfiguration	objects	is	only	possible	for	self-created	objects.
You	are	restricted	from	modifying	or	deleting	WifiConfiguration	objects	created	by	the
user	or	other	apps.

In	earlier	versions,	forcing	the	device	to	connect	to	a	specific	Wi-Fi	network	using
enableNetwork()	and	setting	up	disableAllOthers=true	caused	the	device	to	disconnect
from	other	networks.	This	does	not	happen	in	Android	6.0.	With	targetSdkVersion	<=20,
your	app	is	pinned	to	use	the	selected	Wi-Fi	network.	When	targetSdkVersion	>=21,	you
need	to	use	the	MultiNetwork	APIs	and	ensure	that	network	traffic	is	assigned	to	the
proper	network.	For	more	information	on	the	MultiNetwork	API,	refer	to
https://developer.android.com/about/versions/android-5.0.html#Wireless.

https://developer.android.com/about/versions/android-5.0.html#Wireless

Runtime
The	Android	ART	(short	for	Android	runtime)	runtime	was	also	updated	in	Android
Marshmallow,	and	the	following	are	the	updates:

The	newInstance()	method:	The	Dalvik	(another	runtime)	issue	for	the	checking	of
access	rules	incorrectly	was	fixed.	If	you	wish	to	override	access	checks,	call	the
setAccessible()	method	with	the	input	parameter	set	to	true.
Using	the	v7	Appcompat	library	or	the	v7	Recyclerview	library?	You	must	update	to
the	latest	version.
Make	sure	that	any	custom	classes	referenced	from	XML	are	updated	so	that	their
class	constructors	are	accessible.
Behavior	of	the	dynamic	linker	is	updated.
The	ART	runtime	understands	the	difference	between	a	library’s	soname	and	its	path;
search	by	soname	is	now	implemented.	There	was	an	open	bug	with	this	issue	that
was	fixed;	if	you	wish	to	extend	your	reading,	visit	here:

https://code.google.com/p/android/issues/detail?id=6670

https://code.google.com/p/android/issues/detail?id=6670

Hardware	identifier
Android	6.0	has	introduced	a	major	change	for	greater	data	protection;	the
WifiInfo.getMacAddress()	and	BluetoothAdapter.getAddress()	methods	now	return	a
constant	value	of	02:00:00:00:00:00,	which	means	you	can’t	rely	on	these	methods	to
get	information.

Now,	when	you’re	trying	to	use	some	of	the	methods	in	the	API,	you	need	to	add
permissions:

WifiManager.getScanResults()	and	BluetoothLeScanner.startScan()	need	one
of	these	two	permissions	granted:

The	ACCESS_FINE_LOCATION	permission
The	ACCESS_COARSE_LOCATION	permission

BluetoothDevice.ACTION_FOUND:	This	must	have	the	ACCESS_COARSE_LOCATION
permission

Note
When	a	device	running	Android	6.0	(Marshmallow)	initiates	a	background	Wi-Fi	or
Bluetooth	scan,	external	devices	see	the	origin	as	a	randomized	MAC	address.

APK	validation
The	platform	now	performs	strict	validation	of	Android	Package	Kits	(APKs).

If	a	file	declared	in	the	manifest	is	not	present	in	the	APK	itself,	then	the	APK	is
considered	corrupted.	Removing	contents	from	the	APK	requires	re-signing	of	the	APK.

USB	connection
By	default,	the	USB	connection	is	charge-only.	Users	must	now	grant	permissions	to
interact	via	the	USB	port.	Your	applications	should	take	this	into	account	and	be	aware
that	permissions	might	not	be	granted.

Direct	Share
One	of	the	best	things	about	technology,	in	my	humble	opinion,	is	that	it	gives	users	great
options	to	interact	and	benefit	from	them.	Direct	Share	can	be	treated	as	a	great	addition
to	the	list	of	merits,	with	great,	fluid	user	experience	all	around	the	app	world.	So,	what	is
Direct	Share?	Well,	almost	every	app	today	uses	some	sort	of	information/data	exchange
with	other	applications	on	the	user’s	device	or	with	the	outside	world	via	the	sharing
mechanism.	The	sharing	mechanism	exposes	a	piece	of	information	from	one	application
to	another.	Usually,	a	user	will	interact	with	a	few	close	companions	(family,	close	friends,
or	colleagues),	and	this	is	where	Direct	Share	comes	to	your	aid.

Direct	Share	is	about	a	set	of	APIs	required	to	make	sharing	intuitive	and	quick	for	users.
You	define	Direct	Share	targets	that	launch	a	specific	activity	in	your	app.	These	targets
are	shown	in	the	Share	menu,	allowing	faster	sharing	and	fluid	data	flow.

With	Direct	Share,	users	can	share	content	to	targets—say,	contacts	in	other	apps.

The	implementation	steps	are	as	follows:

1.	 Define	a	class	that	extends	the	ChooserTargetService	class.
2.	 Declare	your	service	in	the	manifest.
3.	 Specify	the	BIND_CHOOSER_TARGET_SERVICE	permission	and	an	intent	filter

SERVICE_INTERFACE	action.

An	example	service	declaration	is	as	follows:

<service	android:name=".MyChooserTargetService"	

android:label="@string/McTs_name"	android:permission=	

"android.permission.BIND_CHOOSER_TARGET_SERVICE">

		<intent-filter>

				<action	android:name=	"android.service.chooser.ChooserTargetService"/>

		</intent-filter>

</service>

Now,	we	have	a	service	declared	and,	for	each	target	we	want	to	expose,	we	add	a	<meta-
data>	element	with	the	android.service.chooser.chooser_target_service	name	in
your	app	manifest:

<activity	android:name=".SampleDirectShareTarget"	

android:label="@string/SampleDirectShareTarget_name">

		<intent-filter>

				<action	android:name="android.intent.action.SEND"	/>

		</intent-filter>

		<meta-data	android:name=	"android.service.chooser.chooser_target_service"	

android:value=".ChooserTargetService"	/>

</activity>

Let’s	take	a	look	at	the	code	in	our	service:

public	class	MyChooserTargetService	extends	ChooserTargetService	{

		private	String	mDirectShareTargetName;

		private	final	int	MAX_SHARE_TARGETS	=	5;

		@Override

		public	void	onCreate()	{

				super.onCreate();

				mDirectShareTargetName	=	"Sharing	Person	demo	#%d";

		}

		@Override

		public	List	<	ChooserTarget	>	onGetChooserTargets(ComponentName	

sendTarget,	IntentFilter	matchedFilter)	{

				ArrayList	<	ChooserTarget	>	result	=	new

				ArrayList	<	ChooserTarget	>	();

				for	(int	i	=	1;	i	<=	MAX_SHARE_TARGETS;	i++)	{

						result.add(buildTarget(i));

				}

				return	(result);

		}

		private	ChooserTarget	buildTarget(int	targetId)	{

				String	title	=	String.format(mDirectShareTargetName,	targetId);

				Icon	icon	=	Icon.createWithResource(this,	

R.drawable.share_target_picture);

				float	target_value	=	((float)(25	-	targetId)	/	25);

				ComponentName	componentName	=	new	

ComponentName(MyChooserTargetService.this,	TargetActivity.class);

				Bundle	bundle	=	new	Bundle();

				bundle.putInt("simple_key",	targetId);

				return	(new	ChooserTarget(title,	icon,	target_value,	componentName,	

bundle));

		}

}

You	can	head	to	the	gist	if	you	wish	to	better	view	the	code;	you	can	visit
https://gist.github.com/MaTriXy/adeacdf5496bcdae5f42.

You	have	to	implement	the	onGetChooserTargets()	method	as	it	will	be	called	when
direct-share	is	triggered.	You	return	a	list	of	ChooserTarget	objects	that	represent	sharing
entry	points	to	your	application.	The	onGetChooserTargets()	results	are	included	along
with	the	regular	ACTION_SEND	activity	itself.	So,	we	only	want	ChooserTarget	objects	that
improve	the	flow	and	not	duplicates.

When	creating	several	ChooserTarget	objects,	each	of	them	will	probably	point	to	the
same	activity.	You	must	ensure	that	the	extras	bundle	will	contain	distinguishing
information	so	that	each	request	will	be	unique.	Do	not	put	custom	Parcelable	objects	in
this	bundle	as	it	will	cause	crashes.	You	can	find	out	more	about	ChooserTarget	at
https://developer.android.com/reference/android/service/chooser/ChooserTarget.html#ChooserTarget

https://gist.github.com/MaTriXy/adeacdf5496bcdae5f42
https://developer.android.com/reference/android/service/chooser/ChooserTarget.html#ChooserTarget

What	if	we	have	nothing	to	share?
Sometimes,	you	won’t	have	any	direct-share	targets	for	a	particular	request;	then,
returning	an	empty	list	would	be	great.	You	can	also	disable	the	service	via
android:enabled="false"	if	you	know	that	no	results	will	be	available	until	future	usage
of	the	app.	Another	option	is	to	enable	the	service	just	for	Android	6.0.	This	can	easily	be
done	using	Boolean	resources:

Let’s	add	a	Boolean	resource	named	is_share_targets_on:

The	default	value	is	res/values/bools.xml;	set	it	to	false
Android	6.0	is	API	23,	so	in	res/values-v23/bools.xml,	set	it	to	true

Add	android:enabled="@bool/is_share_targets_on"	to	your	service	declaration

Direct	Share	best	practices
The	following	are	few	of	the	best	practices	followed	in	Direct	Share:

Android	6.0	limits	the	number	of	share	targets,	only	showing	eight	of	them.
Providing	more	than	eight	share	targets	will	show	the	best	eight	according	to	the
score.
The	FAILED	BINDER	TRANSACTION	exception	can	pop	in	for	a	visit	if	your	list	of
targets	exceeds	1	MB.
Try	to	limit/cap	how	many	share	targets	you	try	to	return	from	your
ChooserTargetService	class.
Make	sure	your	app’s	icon	is	shown	properly	as	it	will	be	applied	as	a	badge	over	the
icons	that	you	use	for	Direct	Share	targets.

Voice	interactions
Voice	interactions	usually	originate	from	user	voice	action.	However,	the	voice
interaction	activity	starts	without	any	user	input.	Android	Marshmallow	has	a	new	voice
interaction	API	that,	together	with	voice	actions,	allows	us	to	build	conversational	voice
experiences	into	our	apps.	Use	the	isVoiceInteraction()	method	to	determine	whether
an	activity	is	triggered	by	a	voice	action.	Then,	you	can	use	the	VoiceInteractor	class
and	interact	with	the	user.

Don’t	get	confused	with	the	isVoiceInteractionRoot()	method,	which	returns	true	only
if	the	activity	is	also	the	root	of	a	voice	interaction.	Here,	you	will	get	true	if	your	activity
was	started	directly	by	the	voice	interaction	service	and	not	by	another	activity	(another
app)	while	undergoing	voice	interaction.

A	best	practice	would	be	to	prompt	the	users	and	confirm	that	this	is	their	intended	action.
You	already	know	that	voice	input	is	invoked	from	Google	Now,	where	you	can	open
URLs	with	a	simple	voice	input,	such	as	open	android.com.	Now,	you	can	invent	new
voice	actions	and	register	them	with	Google,	driving	traffic	directly	and	specifically	to
your	app.

To	learn	more	about	implementing	voice	actions,	head	to
https://developers.google.com/voice-actions/interaction/.

https://developers.google.com/voice-actions/interaction/

The	Assist	API
Back	in	Google	I/O	2015,	we	saw	the	Now	on	Tap	feature,	where	Google	Now	could	peek
into	a	running	app	and	provide	contextual	assistance.	The	Assist	API	offers	a	new	way
for	users	to	engage	through	an	assistant.	The	assistant	must	be	enabled	prior	to	using	it,
allowing	it	to	be	aware	of	the	current	context.	Triggering	the	assistant	is	done	by	long-
pressing	the	Home	button,	no	matter	which	app	is	active.

You	can	opt	out	of	this	by	setting	the	WindowManager.LayoutParams.FLAG_SECURE	flag.

Opting	in	requires	you	to	use	the	new	AssistContent	class.

In	order	for	us	to	be	able	to	feed	additional	context	from	our	app	to	the	assistant,	we	need
to	follow	these	steps:

1.	 Implement	the	Application.OnProvideAssistDataListener	interface,	which	is
called	when	the	user	requests	assistance.

2.	 Register	it	using	Application.registerOnProvideAssistDataListener().
3.	 Override	the	onProvideAssistData()	callback,	which	is	called	when	the	user

requests	assistance.	It	is	used	to	build	an	ACTION_ASSIST	intent	with	all	of	the	context
of	the	current	app.

4.	 Override	the	onProvideAssistContent()	callback;	this	is	optional.	It	is	called	when
the	user	requests	assistance,	allowing	us	to	provide	references	to	content	related	to
the	current	activity.

5.	 When	done,	unregister	yourself	using
Application.unregisterOnProvideAssistDataListener().

Bluetooth	API	Changes
Besides	the	changes	mentioned	previously,	Android	Marshmallow	6.0	has	introduced	a
few	more	changes	to	the	Bluetooth	API.

Bluetooth	stylus	support
Stylus	has	been	here	a	for	a	while;	Bluetooth	stylus	didn’t	have	full	support	for
specifications	in	versions	before	Android	Marshmallow.	You	can	pair	and	connect	a
compatible	Bluetooth	stylus	with	either	a	phone	or	a	tablet.	Because	you	are	not	bound
just	to	touches	on	screen,	you	can	fuse	the	position,	pressure,	and	button	state	data,
allowing	more	precise	user	input	and	experience.	Your	app	can	add	a	listener	to	the	stylus
buttons	and	act	accordingly.	Just	use	the	View.OnContextClickListener	and
GestureDetector.OnContextClickListener	objects	in	your	activity.

In	order	to	detect	stylus	button	interactions	and	movement,	you	need	the	following:

The	MotionEvent	methods
The	getTooltype()	method,	which	returns	TOOL_TYPE_STYLUS	if	a	stylus	with	a
button	is	touched	on	the	screen
The	getButtonState()	method,	which	returns	(on	Android	6.0-targeted	apps)	the
following:

BUTTON_STYLUS_PRIMARY:	Press	the	primary	stylus	button
BUTTON_STYLUS_SECONDARY:	Press	the	secondary	button
BUTTON_STYLUS_PRIMARY	|	BUTTON_STYLUS_SECONDARY:	Press	both	the	buttons

Targeted	apps	with	a	lower	API	level	than	Android	6.0	will	result	in	the	following:

BUTTON_SECONDARY:	Press	the	primary	stylus	button
BUTTON_TERTIARY:	Press	the	secondary	button
BUTTON_SECONDARY	|	BUTTON_TERTIARY:	Press	both	the	buttons

Improved	Bluetooth	low	energy	scanning
Used	to	Bluetooth	low	energy	in	your	app?	Well,	now	the	scanning	process	is	easier	and
improved.	Use	the	new	setCallbackType()	method	and	specify	that	you	want	a	callback
when	the	system	finds/sees	an	advertisement	packet	matching	the	ScanFilter	class.	You
get	more	power-efficiency	than	in	previous	Android	versions.

Summary
We	went	over	a	few	of	the	changes	in	Android	Marshmallow.	All	of	these	changes	are
important	to	follow	and	will	help	you	in	your	app	development	cycles.	There	are	a	few
more	changes	to	be	discussed	in	future	chapters	in	a	more	detailed	manner.	Our	next
chapter	talks	about	audio,	video,	and	camera	features	and	the	changes	made	in	Android
6.0.6.

Chapter	5.	Audio,	Video,	and	Camera
Features
Android	Marshmallow	gives	us	good	audio,	video,	and	camera	capabilities,	and	you	can
see	that	improvements	have	been	made	to	enable	and	better	support	new	or	mint	condition
protocols	or	even	change	the	behavior	of	some	APIs,	such	as	the	camera	service.

In	this	chapter,	we	will	try	and	explain	these	changes	with	a	proper	discussion	on	their
usage	and	benefits.	Our	journey	in	the	upcoming	pages	will	cover	the	following	topics:

Audio	features
Video	features
Camera	features

Audio	features
Android	Marshmallow	6.0	adds	some	enrichments	to	the	audio	features	that	we	will	cover
in	the	upcoming	sections.

Support	for	the	MIDI	protocol
The	android.media.midi	package	was	added	in	Android	6.0	(API	23).

With	the	new	midi	APIs,	you	can	now	send	and	receive	MIDI	(short	for	Musical
Instrument	Digital	Interface)	events	in	a	much	simpler	way	than	earlier.

The	package	was	built	to	provide	us	with	capabilities	to	do	the	following:

Connect	and	use	a	MIDI	keyboard
Connect	to	other	MIDI	controllers
Use	external	MIDI	synthesizers,	external	peripherals,	lights,	show	control,	and	so	on
Allow	dynamic	music	generation	from	games	or	music-creation	apps
Allow	the	creation	and	passing	of	MIDI	messages	between	apps
Allow	Android	devices	to	act	as	multi-touch	controllers	when	connected	to	a	laptop

When	dealing	with	MIDI,	you	must	declare	it	in	the	manifest,	as	follows:

<uses-feature	android:name="android.software.midi"	

android:required="true"/>

Pay	attention	to	the	required	part;	in	a	manner	similar	to	other	features,	setting	it	to	true
will	make	your	app	visible	in	the	play	store	only	if	the	device	supports	the	MIDI	API.

You	can	also	check	in	runtime	for	MIDI	support	and	then	change	the	required	part	to
false:

PackageManager	pkgMgr	=	context.getPackageManager();

if	(pkgMgr.hasSystemFeature(PackageManager.FEATURE_MIDI))	{

		//we	can	use	MIDI	API	here	as	we	know	the	device	supports	the	MIDI	API.

}

MidiManager
A	way	to	properly	use	the	MIDI	API	is	via	the	MidiManager	class;	obtain	it	via	context
and	use	it	when	required:

MidiManager	midiMgr	=	

(MidiManager)context.getSystemService(Context.MIDI_SERVICE);

For	more	information,	you	can	refer	to:

https://developer.android.com/reference/android/media/midi/package-summary.html

https://developer.android.com/reference/android/media/midi/package-summary.html

Digital	audio	capture	and	playback
Two	new	classes	have	been	added	for	digital	audio	capture	and	playback:

android.media.AudioRecord.Builder	-	digital	audio	capture
android.media.AudioTrack.Builder	-	digital	audio	playback

These	will	help	configure	the	audio	source	and	sink	properties.

Audio	and	input	devices
The	new	hasMicrophone()	method	has	been	added	to	the	InputDevice	class.	This	will
report	whether	the	device	has	a	built-in	microphone	that	developers	can	use.	Let’s	say	you
want	to	enable	voice	search	from	a	controller	connected	to	Android	TV	and	you	get	an
onSearchRequested()	callback	for	the	user’s	search.	You	can	then	verify	that	there’s	a
microphone	with	the	inputDevice	object	you	get	in	the	callback.

Information	on	audio	devices
The	new	AudioManager.getDevices(int	flags)	method	allows	easy	retrieval	of	all	the
audio	devices	currently	connected	to	the	system.	If	you	want	to	be	notified	when	there	are
audio	device	connections/disconnections,	you	can	register	your	app	to	an
AudioDeviceCallback	callback	via	the
AudioManager.registerAudioDeviceCallback(AudioDeviceCallback	callback,

Handler	handler)	method.

Changes	in	AudioManager
Some	changes	have	been	introduced	in	the	AudioManager	class,	and	they	are	as	follows:

Using	AudioManager	to	set	the	volume	directly	is	not	supported.
Using	AudioManager	to	mute	specific	streams	is	not	supported.
The	AudioManager.setStreamSolo(int	streamType,	boolean	state)	method	is
deprecated.	If	you	need	exclusive	audio	playback,	use
AudioManager.requestAudioFocus(AudioManager.OnAudioFocusChangeListener

l,	int	streamType,	int	durationHint).
The	AudioManager.setStreamMute(int	streamType,	boolean	state)	method	is
deprecated.	If	you	need	to	use	AudioManager.adjustStreamVolume(int
streamType,	int	direction,	int	flags)	for	direction,	you	can	use	one	of	the
newly	added	constants.
ADJUST_MUTE	will	mute	the	volume.	Note	that	it	has	no	effect	if	the	stream	is	already
muted.
ADJUST_UNMUTE	will	unmute	the	volume.	Note	that	it	has	no	effect	if	the	stream	is	not
muted.

Video	features
In	Android	Marshmallow,	the	video	processing	API	has	been	upgraded	with	new
capabilities.	Some	new	methods	and	even	a	new	class	has	been	added	just	for	developers.

android.media.MediaSync
The	all	new	MediaSync	class	has	been	designed	to	help	us	with	synchronous	audio	and
video	streams’	rendering.	You	can	also	use	it	to	play	audio-	or	video-only	streams.	You
can	use	the	dynamic	playback	rate	and	feed	the	buffers	in	a	nonblocking	action	with	a
callback	return.	For	more	information	on	the	proper	usage,	read:

https://developer.android.com/reference/android/media/MediaSync.html

https://developer.android.com/reference/android/media/MediaSync.html

MediaCodecInfo.CodecCapabilities.getMaxSupportedInstances
Now,	we	have	a	MediaCodecInfo.CodecCapabilities.getMaxSupportedInstances
helper	method	to	get	the	maximum	number	of	supported	concurrent	codec	instances.
However,	we	must	consider	this	only	an	upper	bound.	The	actual	number	of	concurrent
instances	can	be	lower	depending	on	the	device	and	the	amount	of	available	resources	at
the	time	of	usage.

Why	do	we	need	to	know	this?
Let’s	think	of	a	case	where	we	have	a	media-playing	application	and	we	want	to	add
effects	between	the	movies	played.	We	will	need	to	use	more	than	one	video	codec,
decode	two	videos,	and	encode	one	video	stream	back	to	be	displayed	on	screen.
Checking	with	this	API	will	allow	you	to	add	more	features	that	rely	upon	multiple
instances	of	codecs.

MediaPlayer.setPlaybackParams
We	can	now	set	the	media	playback	rate	for	fast	or	slow	motion	playback.	This	will	give
us	the	chance	to	create	a	funny	video	app	where	we	slow	down	parts	or	play	them	fast,
creating	a	new	video	while	playing.	Audio	playing	is	synced	accordingly,	so	you	might
hear	a	person	talking	slowly	or	even	fast,	for	that	matter.

Camera	features
In	Android	Lollipop,	there	was	the	new	Camera2	API,	and	now,	in	Android	Marshmallow,
there	are	a	few	more	updates	to	the	camera,	flashlight,	and	image	reprocessing	features.

The	flashlight	API
Almost	every	device	today	has	a	camera,	and	almost	every	camera	device	has	a	flash	unit.
The	setTorchMode()	method	has	been	added	to	control	the	flash	torch	mode.

The	setTorchMode()	method	is	used	in	the	following	manner:

CameraManager.setTorchMode	(String	cameraId,	boolean	enabled)

The	cameraId	element	is	the	unique	ID	for	the	flash	unit	camera	with	which	you	want	to
change	the	torch	mode.	You	can	use	getCameraIdList()	to	get	the	list	of	cameras	and
then	use	getCameraCharacteristics(String	cameraId)	to	check	whether	flash	is
supported	in	that	camera.	The	setTorchMode()	method	allows	you	to	turn	it	on	or	off
without	opening	the	camera	device	and	without	requesting	permission	from	the	camera.
The	torch	mode	will	be	switched	off	as	soon	as	the	camera	device	becomes	unavailable	or
when	other	camera	resources	that	have	the	torch	on	become	unavailable.	Other	apps	can
use	the	flash	unit	as	well,	so	you	need	to	check	the	mode	when	required	or	register	a
callback	via	the	registerTorchCallback()	method.

Refer	to	the	sample	app,	Torchi,	to	see	the	entire	code	at:

https://github.com/MaTriXy/Torchi

Note
Turning	on	the	torch	mode	may	fail	if	the	camera	or	other	camera	resources	are	in	use.

https://github.com/MaTriXy/Torchi

The	reprocessing	API
As	mentioned	earlier,	the	Camera2	API	was	given	a	few	boosts	to	allow	added	support	for
YUV	and	private	opaque	format	image	reprocessing.	Before	using	this	API,	we	need	to
check	whether	these	capabilities	are	available.	This	is	why	we	use	the
getCameraCharacteristics(String	cameraId)	method	and	check	for	the
REPROCESS_MAX_CAPTURE_STALL	key.

android.media.ImageWriter
This	is	a	new	class	that’s	been	added	to	Android	6.0.

It	allows	us	to	create	an	image	and	feed	it	into	a	surface	and	then	back	to	CameraDevice.
Usually,	ImageWriter	is	used	along	with	ImageReader.

android.media.ImageReader
This	is	a	new	class	that’s	been	added	to	Android	6.0.

It	allows	us	direct	access	to	the	image	data	rendered	in	a	surface.	ImageReader,	along	with
ImageWriter,	allows	our	app	to	create	an	image	feed	from	the	camera	to	the	surface	and
back	to	the	camera	for	reprocessing.

Changes	in	the	camera	service
Android	Marshmallow	has	made	a	change	to	the	first	come	,	first	serve	access	model;	now,
the	service	access	model	has	favorites	processes—ones	that	are	marked	as	high-priority.
This	change	results	in	some	more	logic-related	work	for	us	developers.	We	need	to	make
sure	that	we	take	into	account	a	situation	where	we	get	bumped	up	(higher	priority)	or
debunked	(lower	priority	due	to	a	change	in	our	application).

Let’s	try	and	explain	this	in	a	few	simple	bullets:

When	you	want	to	access	camera	resources	or	open	and	configure	a	camera	device,
your	access	is	verified	according	to	the	priority	of	your	application	process.	An
application	process	with	foreground	activities	(visible	user)	is	normally	given	a
higher	priority,	which	in	turn	allows	a	better	chance	to	get	the	desired	access	when
needed.
On	the	other	side	of	the	priority	scale,	you	can	find	low-priority	apps	that	can	and
will	be	tossed	aside	(revoked	from	access)	when	a	high-priority	application	attempts
to	use	the	camera.	For	example,	when	using	the	Camera	API,	you	will	get	the
onError()	call	when	evicted,	and	when	using	the	Camera2	API,	you	will	get	the
onDisconnected()	call	when	evicted.
Some	devices	out	in	the	wild	can	allow	separate	applications	to	open	and	use	separate
camera	devices	simultaneously.	The	camera	service	now	detects	and	disallows
performance	issues	that	are	caused	due	to	multiprocess	usage.	When	the	service
detects	such	an	issue,	it	will	evict	low-priority	apps	even	if	only	one	app	is	using	that
camera	device.
In	a	multiuser	environment,	when	switching	users,	all	active	apps	using	the	camera	in
the	previous	user	profile	will	be	evicted	in	order	to	allow	proper	usage	and	access	to
apps	for	the	current	user.	This	means	that	switching	users	will	stop	the	camera-using
apps	from	using	the	camera	for	sure.

Summary
In	this	chapter,	we	covered	quite	a	few	changes	in	and	additions	to	the	Android	APIs.
Android	Marshmallow	is	more	about	helping	us,	the	developers,	achieve	better	media
support	and	showcase	our	ideas	when	using	the	audio,	video,	or	camera	APIs.

In	the	next	chapter,	we	will	go	over	some	of	the	Android	features	to	understand	the
features,	additions,	and	changes	made.

Chapter	6.	Android	for	Work
Most	of	you	know	that	Android	devices	have	a	huge	market	share	percentage	worldwide,
and	more	and	more	businesses	are	following	the	BYOD	(short	for	Bring	Your	Own
Device)	policy.	This	is	done	with	the	help	of	Android	for	Work,	a	special	program	for
companies	where	several	added	features	in	the	Android	platform	allow	better	mobile
device	management,	administration,	and	integration	within	the	company.

When	dealing	with	enterprises	or	even	small-sized	and	medium-sized	businesses,	you
need	to	follow	specific	guidelines	and	harness	the	Android	API	to	your	benefit.	You	can
read	more	about	Android	for	Work	at:

http://developer.android.com/training/enterprise/index.html

Android	Marshmallow	has	made	a	few	changes	to	the	Android	for	Work	program,	where	a
lot	of	the	changes	were	made	for	better	and	easier	usage	for	developers	as	well	as	work
users.

In	this	chapter,	we	will	cover	the	Android	Marshmallow	changes	that	reflect	or	are	related
directly	to	Android	for	Work:

Behavioral	changes
Single-use	device	improvements
Silently	installing/uninstalling	apps
Improved	certificate	access
Automatic	system	updates
Third-party	certificate	installation
Data	usage	statistics
Managing	runtime	permissions
VPN	access	and	display
Work	profile	status

http://developer.android.com/training/enterprise/index.html

Behavioral	changes
Android	Marshmallow	has	introduced	a	few	behavioral	changes	related	to	Android	for
Work.

The	work	profile	contacts	display	option
Using	the	following	setting,	you	can	now	display	your	work	profile	contacts	in	the	dialer
call	log:

DevicePolicyManager.setCrossProfileCallerIdDisabled(ComponentName	admin,	

boolean	disabled)

You	can	also	display	the	work	contacts	over	Bluetooth	with	the	new	option.	Setting	this	to
false	will	allow	the	display;	the	default	value	is	true	(disabling	the	contact-sharing
option):

DevicePolicyManager.setBluetoothContactSharingDisabled(ComponentNa	me	

admin,	boolean	disabled)

Wi-Fi	configuration	options
When	adding	a	Wi-Fi	network	via	a	work	profile,	usually,	added	configurations	stay
persistent	even	after	the	profile	is	deleted.	Now,	all	configurations	added	by	a	profile
owner	are	removed	if	the	work	profile	is	deleted.

The	Wi-Fi	configuration	lock
A	new	Settings.Global	setting	has	been	added:

WIFI_DEVICE_OWNER_CONFIGS_LOCKDOWN

This	setting	is	an	integer	value	setting,	which	means	that	a	zero	value	or	absence	will	lead
to	all	Wi-Fi	configurations	being	modified	or	deleted	by	the	user.	Setting	the	integer	value
to	a	nonzero	value	will	initiate	the	lock,	which	means	that	the	user	can’t	modify	or	delete
Wi-Fi	configurations	created	by	a	device	owner—user-created	configurations	will	still	be
modifiable.	Note	that	an	active	device	owner	has	complete	privileges	in	any	Wi-Fi
configurations,	even	those	not	created	by	them.

Work	Policy	Controller	addition
You	can	continue	to	add	Google	accounts	to	the	device,	but	now,	when	adding	an	account
that	is	managed	by	Work	Policy	Controller,	the	flow	is	changed	to	include	the	Work
Policy	Controller	addition.	An	added	account	prompts	the	user	to	install	the	appropriate
Work	Policy	Controller.	This	is	also	true	when	adding	an	account	through	settings	or	via
the	start	up	device’s	setup	wizard.	For	more	information	on	how	to	build	a	Work	Policy
Controller,	read:

http://developer.android.com/training/enterprise/work-policy-ctrl.html

http://developer.android.com/training/enterprise/work-policy-ctrl.html

DevicePolicyManager	changes
In	DevicePolicyManager,	you	may	encounter	quite	a	few	changes	in	behavior;	these	are
listed	in	the	following	bullets	with	a	short	explanation:

setCameraDisabled()	affects	the	camera	just	for	the	calling	user;	if	the	profile	is	a
managed	profile,	then	the	call	doesn’t	affect	the	camera	apps	running	on	the	primary
user.
setKeyguardDisabledFeatures()	was	made	available	for	profile	owners	and	device
owners.
Profile	owners	can	set	keyguard	restrictions	via	the	following:

KEYGUARD_DISABLE_TRUST_AGENTS:	This	will	ignore	the	trust	agent	state	on	the
keyguard	on	secure	screens	(the	PIN	code,	pattern,	or	the	password	screen)
KEYGUARD_DISABLE_FINGERPRINT:	This	will	disable	the	fingerprint	sensor	on	the
keyguard	on	secure	screens	(PIN	code,	pattern,	or	the	password	screen)
KEYGUARD_DISABLE_UNREDACTED_NOTIFICATIONS:	This	will	allow	only	redacted
notifications	on	secure	keyguard	screens	and	only	notifications	generated	by
applications	in	the	managed	profile

createAndInitializeUser()	is	deprecated	now.
createUser()	is	deprecated	now.
Using	the	setScreenCaptureDisabled()	method,	the	Assist	feature	is	blocked,	but
this	happens	only	when	an	app	of	the	given	user	is	in	the	foreground.
EXTRA_PROVISIONING_DEVICE_ADMIN_PACKAGE_CHECKSUM	is	SHA-256	now.	Legacy
support	for	SHA-1	still	exists,	but	it	will	be	removed	in	future	versions	according	to
the	documentation.
EXTRA_PROVISIONING_DEVICE_ADMIN_SIGNATURE_CHECKSUM	is	SHA-256	only	now.
EXTRA_PROVISIONING_RESET_PROTECTION_PARAMETERS	was	removed	so	that	NFC
bump	provisioning	would	not	unlock	a	factory-reset-protected	device.
Passing	data	to	the	device	owner	during	NFC	provisioning	can	be	done	with
EXTRA_PROVISIONING_ADMIN_EXTRAS_BUNDLE.
New	DevicePolicyManager	API	for	permissions	under	Android	Marshmallow’s	new
permission	model.	You	can	read	more	about	DevicePolicyManager	at
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
RESULT_CANCELED	is	now	returned	if	users	cancel	the	setup	flow	initiated	through	an
ACTION_PROVISION_MANAGED_PROFILE	or	ACTION_PROVISION_MANAGED_DEVICE	intent.
Changes	to	Settings.Global.
Disabled	the	following	set	of	settings	via	setGlobalSettings():

BLUETOOTH_ON

DEVELOPMENT_SETTINGS_ENABLED

MODE_RINGER

NETWORK_PREFERENCE

WIFI_ON

Enabled	the	WIFI_DEVICE_OWNER_CONFIGS_LOCKDOWN	setting	via

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html

setGlobalSettings().

Single-use	device	improvements
You	as	the	device	owner	can	now	control	added	settings,	thus	improving	device
management	using	the	following:

setKeyguardDisabled()	can	be	used	to	disable	or	re-enable	the	keyguard
setStatusBarDisabled()	can	be	used	to	disable	or	re-enable	the	status	bar
UserManager.DISALLOW_SAFE_BOOT	is	a	new	constant	that	states	whether	the	user	can
boot	a	device	to	safe	boot
Settings.Global.STAY_ON_WHILE_PLUGGED_IN	will	prevent	the	screen	from	turning
off	while	plugged	in	to	power

Silently	installing/uninstalling	apps
Now,	you	can	silently	install	and	uninstall	applications	using	PackageInstaller	APIs.
This	means	installing	apps	without	user	interaction	or	even	removing	apps	as	part	of	the
company	policy.	This	feature	enables	you	to	use	devices	without	actually	activating	a
Google	account.	Google	Play	for	Work	is	not	required,	allowing	you	to	use	devices	as
kiosks,	showcasing	specific	apps	not	released	yet,	and	so	on.

Improved	certificate	access
Allowing	users	to	grant	managed	apps’	access	to	certificates	without	user	interaction	was
not	possible	prior	to	Android	Marshmallow,	so	now,	a	new	callback	has	been	added:

DeviceAdminReceiver.onChoosePrivateKeyAlias	(Context	context,	Intent	

intent,	int	uid,	Uri	uri,	String	alias)

This	callback	will	allow	the	device	owner	to	provide	the	alias	silently	to	the	requesting
application.

Automatic	system	updates
The	following	option	has	been	added	in	Android	6.0	and	its	main	purpose	is	to	allow
device	owners	to	auto-accept	a	system	update:

DevicePolicyManager.setSystemUpdatePolicy	(ComponentName	admin,	

SystemUpdatePolicy	policy)

SystemUpdatePolicy	has	been	added	as	well,	and	you	can	choose	from	three	options:

TYPE_INSTALL_AUTOMATIC:	update	as	soon	as	you	get	an	update
TYPE_INSTALL_WINDOWED:	update	should	be	done	within	a	timed	system	maintenance
and	only	then,	just	for	30	days	and	then	return	to	normal	behavior
TYPE_POSTPONE:	postpone	updates	for	up	to	30	days	and	then	return	to	normal
behavior	afterwards

This	can	come	in	handy	if	you	have	devices	such	as	showcase	tablets	or	kiosk	mode
devices,	where	the	update	should	not	mess	with	the	devices’	work.

Third-party	certificate	installation
Third-party	apps	now	have	the	ability	to	call	DevicePolicyManager	APIs:

getInstalledCaCerts()

hasCaCertInstalled()

installCaCert()

uninstallCaCert()

uninstallAllUserCaCerts()

installKeyPair()

These	API	calls	can	only	be	done	if	the	permission	has	been	granted	by	the	device	owner
or	profile	owner.

Data	usage	statistics
A	new	class	has	been	added	in	Android	6.0:	NetworkStatsManager.	This	helps	you	query
for	data	usage	statistics	that	can	be	seen	in	Settings	|	Data	usage.

Access	for	profile	owners	is	automatically	granted	in	order	for	them	to	query	data	on	their
profile.	Device	owners	get	access	to	the	data	usage	of	the	managed	primary	user.

Note
The	android.app.usage.NetworkUsageStats	class	has	been	renamed	to	NetworkStats.

Managing	runtime	permissions
Android	Marshmallow	introduced	the	runtime	permissions	model,	and	Android	for	Work
had	to	deal	with	managing	policies	for	devices.	You	as	device	owner	can	now	set	a	policy
for	all	runtime	requests	of	all	applications	using	setPermissionPolicy().

You	can	choose	to	prompt	users	to	grant	permissions	or	automatically	grant	or	deny	the
permissions	silently.	The	automatic	policy	means	that	the	user	cannot	modify	the	app’s
permissions	screen	in	Settings.

VPN	access	and	display
When	heading	to	Settings	|	More	|	VPN,	you	can	now	view	the	VPN	apps.	When	using
VPN,	the	notifications	shown	are	now	specific	to	how	that	VPN	is	configured:

The	profile	owner:	Notifications	are	shown	according	to	the	VPN	configuration	and
based	on	the	profile	(personal,	work,	or	both)
The	device	owner:	Notifications	are	shown	when	the	VPN	is	configured	for	the
entire	device

Work	profile	status
Two	new	additions	were	introduced	for	the	users	to	know	that	they	are	under	a	different
profile:

When	using	an	app	from	a	work	profile,	the	status	bar	will	display	a	briefcase	icon
When	unlocking	a	device	straight	from	a	work	profile	app,	a	popup	is	displayed,
alerting	the	user	that	this	app	runs	on	the	work	profile

Summary
As	we	saw	in	this	chapter,	Android	Marshmallow	has	brought	in	quite	a	few	changes	to
the	Android	for	Work	world.	As	developers,	we	need	to	always	maintain	a	viable
connection	to	the	needs	of	an	organization.	We	need	to	make	sure	we	go	over	and
understand	the	Android	for	Work	world;	the	changes	in	Marshmallow	help	us	build	and
target	enterprise	workflows	with	the	benefit	of	a	simpler	API.

In	the	next	chapter,	we	will	learn	about	the	Chrome	custom	tabs	API’s	usage	and	flow.

Chapter	7.	Chrome	Custom	Tabs
Have	you	ever	wanted	to	add	a	WebView	to	your	application?	Maybe	you’ve	wanted	to
add	browsing	for	a	few	web	pages	and	show	some	relevant	content	from	within	your
application?	I	know	I	had	to.	On	almost	every	occasion,	I	was	reluctant	to	use	the
WebView	feature	as	this	was	one	of	the	ugliest	parts	of	the	app.

You	can	clearly	see	that	the	WebView	feature	is	a	web	portion	and	the	UI	was	added	quite
a	few	Android	versions	back,	which	caused	my	OCD	UI/UX	sense	go	kaboom.	One	of	the
newest	additions	released	by	Google	was	Chrome	custom	tabs.

In	this	chapter,	we	will	explore	Chrome	custom	tabs	and	try	to	explain	and	demonstrate
the	benefits	of	using	it	instead	of	the	plain	old	WebView:

What	is	a	Chrome	custom	tab?
When	to	use	Chrome	custom	tabs
The	implementation	guide

What	is	a	Chrome	custom	tab?
Well,	most	of	us	know	tabs	from	every	day	Internet	browsing.	It	doesn’t	really	matter
which	browser	you	use;	all	browsers	support	tabs	and	multiple	tabs’	browsing.	This	allows
us	to	have	more	than	one	website	open	at	the	same	time	and	navigate	between	the	opened
instances.	In	Android,	things	are	much	the	same,	but	when	using	WebView,	you	don’t
have	tabs.

What	is	WebView?
WebView	is	the	part	in	the	Android	OS	that’s	responsible	for	rendering	web	pages	in	most
Android	apps.	If	you	see	web	content	in	an	Android	app,	chances	are	you’re	looking	at
WebView.	The	major	exceptions	to	this	rule	are	some	of	the	Android	browsers,	such	as
Chrome,	Firefox,	and	so	on.

In	Android	4.3	and	lower,	WebView	uses	code	based	on	Apple’s	Webkit.	In	Android	4.4
and	higher,	WebView	is	based	on	the	Chromium	project,	which	is	the	open	source	base	of
Google	Chrome.	In	Android	5.0,	WebView	was	decoupled	into	a	separate	app	that	allowed
timely	updates	through	Google	Play	without	requiring	firmware	updates	to	be	issued,	and
the	same	technique	was	used	with	Google	Play	services.

Now,	let’s	talk	again	about	a	simple	scenario:	we	want	to	display	web	content	(URL-
related)	in	our	application.	We	have	two	options:	either	launch	a	browser	or	build	our	own
in-app	browser	using	WebView.	Both	options	have	trade-offs	or	disadvantages	if	we	write
them	down.	A	browser	is	an	external	application	and	you	can’t	really	change	its	UI;	while
using	it,	you	push	the	users	to	other	apps	and	you	may	lose	them	in	the	wild.	On	the	other
hand,	using	WebView	will	keep	the	users	tightly	inside.	However,	actually	dealing	with	all
possible	actions	in	WebView	is	quite	an	overhead.

Google	heard	our	rant	and	came	to	the	rescue	with	Chrome	custom	tabs.	Now	we	have
better	control	over	the	web	content	in	our	application,	and	we	can	stitch	web	content	into
our	app	in	a	cleaner,	prettier	manner.

Customization	options
Chrome	custom	tabs	allow	several	modifications	and	tweaks:

The	toolbar	color
Enter	and	exit	animations
Custom	actions	for	the	toolbar	and	overflow	menu
Prestarted	and	prefetched	content	for	faster	loading

When	to	use	Chrome	custom	tabs
Ever	since	WebView	came	out,	applications	have	been	using	it	in	multiple	ways,
embedding	content—local	static	content	inside	the	APK	and	dynamic	content	as	loading
web	pages	that	were	not	designed	for	mobile	devices	at	the	beginning.	Later	on	we	saw
the	rise	of	the	mobile	web	era	complete	with	hybrid	applications).

Chrome	custom	tabs	are	a	bit	more	than	just	loading	local	content	or	mobile-compatible
web	content.	They	should	be	used	when	you	load	web	data	and	want	to	allow	simple
implementation	and	easier	code	maintenance	and,	furthermore,	make	the	web	content	part
of	your	application—as	if	it’s	always	there	within	your	app.

Among	the	reasons	why	you	should	use	custom	tabs	are	the	following:

Easy	implementation:	you	use	the	support	library	when	required	or	just	add	extras	to
your	View	intent.	It’s	that	simple.
In	app	UI	modifications,	you	can	do	the	following:

Set	the	toolbar	color
Add/change	the	action	button
Add	custom	menu	items	to	the	overflow	menu
Set	and	create	custom	in/out	animations	when	entering	the	tab	or	exiting	to	the
previous	location

Easier	navigation	and	navigation	logic:	you	can	get	a	callback	notifying	you	about	an
external	navigation,	if	required.	You	know	when	the	user	navigates	to	web	content
and	where	they	should	return	when	done.
Chrome	custom	tabs	allow	added	performance	optimizations	that	you	can	use:

You	can	keep	the	engine	running,	so	to	speak,	and	actually	give	the	custom	tab	a
head	start	to	start	itself	and	do	some	warm	up	prior	to	using	it.	This	is	done
without	interfering	or	taking	away	precious	application	resources.
You	can	provide	a	URL	to	load	in	advance	in	the	background	while	waiting	for
other	user	interactions.	This	speeds	up	the	user-visible	page	loading	time	and
gives	the	user	a	sense	of	blazing	fast	application	where	all	the	content	is	just	a
click	away.

While	using	the	custom	tab,	the	application	won’t	be	evicted	as	the	application	level
will	still	be	in	the	foreground	even	though	the	tab	is	on	top	of	it.	So,	we	remain	at	the
top	level	for	the	entire	usage	time	(unless	a	phone	call	or	some	other	user	interaction
leads	to	a	change).
Using	the	same	Chrome	container	means	that	users	are	already	signed	in	to	sites	they
connected	to	in	the	past;	specific	permissions	that	were	granted	previously	apply	here
as	well;	even	fill	data,	autocomplete,	and	sync	work	here.
Chrome	custom	tabs	allow	us	give	the	users	the	latest	browser	implementation	on
pre-Lollipop	devices	where	WebView	is	not	the	latest	version.

The	implementation	guide
As	discussed	earlier,	we	have	a	couple	of	features	integrated	into	Chrome	custom	tabs.
The	first	customizes	the	UI	and	interaction	with	the	custom	tabs.	The	second	allows	pages
to	be	loaded	faster	and	keeps	the	application	alive.

Can	we	use	Chrome	custom	tabs?
Before	we	start	using	custom	tabs,	we	want	to	make	sure	they’re	supported.	Chrome
custom	tabs	expose	a	service,	so	the	best	check	for	support	is	to	try	and	bind	to	the
service.	Success	means	that	custom	tabs	are	supported	and	can	be	used.	You	can	check	out
this	gist,	which	shows	a	helper	how	to	to	check	it,	or	check	the	project	source	code	later
on	at:

https://gist.github.com/MaTriXy/5775cb0ff98216b2a99d

After	checking	and	learning	that	support	exists,	we	will	start	with	the	UI	and	interaction
part.

https://gist.github.com/MaTriXy/5775cb0ff98216b2a99d

Custom	UI	and	tab	interaction
Here,	we	will	use	the	well-known	ACTION_VIEW	intent	action,	and	by	appending	extras	to
the	intent	sent	to	Chrome,	we	will	trigger	changes	in	the	UI.	Remember	that	the
ACTION_VIEW	intent	is	compatible	with	all	browsers,	including	Chrome.	There	are	some
phones	without	Chrome	out	there,	or	there	are	instances	where	the	device’s	default
browser	isn’t	Chrome.	In	these	cases,	the	user	will	navigate	to	the	specific	browser
application.

Intent	is	a	convenient	way	to	pass	that	extra	data	we	want	Chrome	to	get.

Don’t	use	any	of	these	flags	when	calling	to	the	Chrome	custom	tabs:

FLAG_ACTIVITY_NEW_TASK

FLAG_ACTIVITY_NEW_DOCUMENT

Before	using	the	API,	we	need	to	add	it	to	our	gradle	file:

compile	'com.android.support:customtabs:23.1.0'

This	will	allow	us	to	use	the	custom	tab	support	library	in	our	application:

CustomTabsIntent.EXTRA_SESSION

The	preceding	code	is	an	extra	from	the	custom	tabs	support	library;	it’s	used	to	match	the
session.	It	must	be	included	in	the	intent	when	opening	a	custom	tab.	It	can	be	null	if	there
is	no	need	to	match	any	service-side	sessions	with	the	intent.

Note
We	have	a	sample	project	to	show	the	options	for	the	UI	called	ChubbyTabby	at
https://github.com/MaTriXy/ChubbyTabby.

We	will	go	over	the	important	parts	here	as	well.	Our	main	interaction	comes	from	a
special	builder	from	the	support	library	called	CustomTabsIntent.Builder;	this	class	will
help	us	build	the	intent	we	need	for	the	custom	tab:

CustomTabsIntent.Builder	intentBuilder	=	new	CustomTabsIntent.Builder();	

//init	our	Builder

//Setting	Toolbar	Color

int	color	=	getResources().getColor(R.color.primary);

//we	use	primary	color	for	our	toolbar	as	well	-	you	can	define	any	color	

you	want	and	use	it.

intentBuilder.setToolbarColor(color);

//Enabling	Title	showing

intentBuilder.setShowTitle(true);

//this	will	show	the	title	in	the	custom	tab	along	the	url	showing	at	the	

bottom	part	of	the	tab	toolbar.

//This	part	is	adding	custom	actions	to	the	over	flow	menu

https://github.com/MaTriXy/ChubbyTabby

String	menuItemTitle	=	getString(R.string.menu_title_share);

PendingIntent	menuItemPendingIntent	=	createPendingShareIntent();

intentBuilder.addMenuItem(menuItemTitle,	menuItemPendingIntent);

String	menuItemEmailTitle	=	getString(R.string.menu_title_email);

PendingIntent	menuItemPendingIntentTwo	=	createPendingEmailIntent();

intentBuilder.addMenuItem(menuItemEmailTitle,	menuItemPendingIntentTwo);

//Setting	custom	Close	Icon.

intentBuilder.setCloseButtonIcon(mCloseButtonBitmap);

//Adding	custom	icon	with	custom	action	for	the	share	action.

intentBuilder.setActionButton(mActionButtonBitmap,	

getString(R.string.menu_title_share),	createPendingShareIntent());

//Setting	start	and	exit	animation	for	the	custom	tab.

intentBuilder.setStartAnimations(this,	R.anim.slide_in_right,	

R.anim.slide_out_left);

intentBuilder.setExitAnimations(this,	android.R.anim.slide_in_left,	

android.R.anim.slide_out_right);

CustomTabActivityHelper.openCustomTab(this,	intentBuilder.build(),	

Uri.parse(URL),	new	WebviewFallback(),	useCustom);

A	few	things	to	notice	here	are	as	follows:

Every	menu	item	uses	a	pending	intent;	if	you	don’t	know	what	a	pending	intent	is,
head	to:

http://developer.android.com/reference/android/app/PendingIntent.html

When	we	set	custom	icons,	such	as	close	buttons	or	an	action	button,	for	that	matter,
we	use	bitmaps	and	we	must	decode	the	bitmap	prior	to	passing	it	to	the	builder
Setting	animations	is	easy	and	you	can	use	animations’	XML	files	that	you	created
previously;	just	make	sure	that	you	test	the	result	before	releasing	the	app

The	following	screenshot	is	an	example	of	a	Chrome	custom	tab:

http://developer.android.com/reference/android/app/PendingIntent.html

The	custom	action	button
As	developers,	we	have	full	control	over	the	action	buttons	presented	in	our	custom	tab.
For	most	use	cases,	we	can	think	of	a	share	action	or	maybe	a	more	common	option	that
your	users	will	perform.	The	action	button	is	basically	a	bundle	with	an	icon	of	the	action
button	and	a	pending	intent	that	will	be	called	by	Chrome	when	your	user	hits	the	action
button.	The	icon	should	be	24	dp	in	height	and	24-48	dp	in	width	according	to
specifications.

//Adding	custom	icon	with	custom	action	for	the	share	action

intentBuilder.setActionButton(mActionButtonBitmap,	

getString(R.string.menu_title_share),	createPendingShareIntent());

Configuring	a	custom	menu
By	default,	Chrome	custom	tabs	usually	have	a	three-icon	row	with	Forward,	Page	Info,
and	Refresh	on	top	at	all	times	and	Find	in	page	and	Open	in	Browser	(Open	in
Chrome	can	appear	as	well)	at	the	footer	of	the	menu.

We,	developers,	have	the	ability	to	add	and	customize	up	to	three	menu	items	that	will

appear	between	the	icon	row	and	foot	items	as	shown	in	the	following	screenshot:

The	menu	we	see	is	actually	represented	by	an	array	of	bundles,	each	with	menu	text	and	a
pending	intent	that	Chrome	will	call	on	our	behalf	when	the	user	taps	the	item:

//This	part	is	adding	custom	buttons	to	the	over	flow	menu

String	menuItemTitle	=	getString(R.string.menu_title_share);

PendingIntent	menuItemPendingIntent	=	createPendingShareIntent();

intentBuilder.addMenuItem(menuItemTitle,	menuItemPendingIntent);

String	menuItemEmailTitle	=	getString(R.string.menu_title_email);

PendingIntent	menuItemPendingIntentTwo	=	createPendingEmailIntent();

intentBuilder.addMenuItem(menuItemEmailTitle,	menuItemPendingIntentTwo);

Configuring	custom	enter	and	exit	animations
Nothing	is	complete	without	a	few	animations	to	tag	along.	This	is	no	different,	as	we
have	two	transitions	to	make:	one	for	the	custom	tab	to	enter	and	another	for	its	exit;	we
have	the	option	to	set	a	specific	animation	for	each	start	and	exit	animation:

//Setting	start	and	exit	animation	for	the	custom	tab.

intentBuilder.setStartAnimations(this,R.anim.slide_in_right,	

R.anim.slide_out_left);

intentBuilder.setExitAnimations(this,	android.R.anim.slide_in_left,	

android.R.anim.slide_out_right);

Chrome	warm-up
Normally,	after	we	finish	setting	up	the	intent	with	the	intent	builder,	we	should	call
CustomTabsIntent.launchUrl	(Activity	context,	Uri	url),	which	is	a	nonstatic
method	that	will	trigger	a	new	custom	tab	activity	to	load	the	URL	and	show	it	in	the
custom	tab.	This	can	take	up	quite	some	time	and	impact	the	impression	of	smoothness	the
app	provides.

We	all	know	that	users	demand	a	near-instantaneous	experience,	so	Chrome	has	a	service
that	we	can	connect	to	and	ask	it	to	warm	up	the	browser	and	its	native	components.
Calling	this	will	ask	Chrome	to	perform	the	following:

The	DNS	preresolution	of	the	URL’s	main	domain
The	DNS	preresolution	of	the	most	likely	subresources
Preconnection	to	the	destination,	including	HTTPS/TLS	negotiation

The	process	to	warm	up	Chrome	is	as	follows:

1.	 Connect	to	the	service.
2.	 Attach	a	navigation	callback	to	get	notified	upon	finishing	the	page	load.
3.	 On	the	service,	call	warmup	to	start	Chrome	behind	the	scenes.
4.	 Create	newSession;	this	session	is	used	for	all	requests	to	the	API.
5.	 Tell	Chrome	which	pages	the	user	is	likely	to	load	with	mayLaunchUrl.
6.	 Launch	the	intent	with	the	session	ID	generated	in	step	4.

Connecting	to	the	Chrome	service
Connecting	to	the	Chrome	service	involves	dealing	with	Android	Interface	Definition
Language	(AIDL).

If	you	don’t	know	about	AIDL,	read:

http://developer.android.com/guide/components/aidl.html

The	interface	is	created	with	AIDL,	and	it	automatically	creates	a	proxy	service	class	for
us:

CustomTabsClient.bindCustomTabsService()

So,	we	check	for	the	Chrome	package	name;	in	our	sample	project,	we	have	a	special
method	to	check	whether	Chrome	is	present	in	all	variations.	After	we	set	the	package,	we
bind	to	the	service	and	get	a	CustomTabsClient	object	that	we	can	use	until	we’re
disconnected	from	the	service:

pkgName	-	This	is	one	of	several	options	checking	to	see	if	we	have	a	

version	of	Chrome	installed	can	be	one	of	the	following

static	final	String	STABLE_PACKAGE	=	"com.android.chrome";

static	final	String	BETA_PACKAGE	=	"com.chrome.beta";

static	final	String	DEV_PACKAGE	=	"com.chrome.dev";

http://developer.android.com/guide/components/aidl.html

static	final	String	LOCAL_PACKAGE	=	"com.google.android.apps.chrome";

private	CustomTabsClient	mClient;

//	Binds	to	the	service.

CustomTabsClient.bindCustomTabsService(myContext,	pkgName,	new	

CustomTabsServiceConnection()	{

		@Override

		public	void	onCustomTabsServiceConnected(ComponentName	name,	

CustomTabsClient	client)	{

				//	CustomTabsClient	should	now	be	valid	to	use

				mClient	=	client;

		}

		@Override

		public	void	onServiceDisconnected(ComponentName	name)	{

		//	CustomTabsClient	is	no	longer	valid	which	also	invalidates	sessions.

				mClient	=	null;

		}

});

After	we	bind	to	the	service,	we	can	call	the	proper	methods	we	need.

Warming	up	the	browser	process
The	method	for	this	is	as	follows:

boolean	CustomTabsClient.warmup(long	flags)

//With	our	valid	client	earlier	we	call	the	warmup	method.

mClient.warmup(0);

Note
Flags	are	currently	not	being	used,	so	we	pass	0	for	now.

The	warm-up	procedure	loads	native	libraries	and	the	browser	process	required	to	support
custom	tab	browsing	later	on.	This	is	asynchronous,	and	the	return	value	indicates	whether
the	request	has	been	accepted	or	not.	It	returns	true	to	indicate	success.

Creating	a	new	tab	session
The	method	for	this	is	as	follows:

boolean	CustomTabsClient.newSession(ICustomTabsCallback	callback)

The	new	tab	session	is	used	as	the	grouping	object	tying	the	mayLaunchUrl	call,	the	VIEW
intent	that	we	build,	and	the	tab	generated	altogether.	We	can	get	a	callback	associated
with	the	created	session	that	would	be	passed	for	any	consecutive	mayLaunchUrl	calls.
This	method	returns	CustomTabsSession	when	a	session	is	created	successfully;
otherwise,	it	returns	Null.

Setting	the	prefetching	URL
The	method	for	this	is	as	follows:

boolean	CustomTabsSession.mayLaunchUrl	(Uri	url,	Bundle	extras,	

List<Bundle>	otherLikelyBundles)

This	method	will	notify	the	browser	that	a	navigation	to	this	URL	will	happen	soon.	Make
sure	to	warmup()	prior	to	calling	this	method	–	this	is	a	must.	The	most	likely	URL	has	to
be	specified	first,	and	we	can	send	an	optional	list	of	other	likely	URLs
(otherLikelyBundles).	The	list	have	to	be	sorted	in	a	descending	order	and	the	optional
list	may	be	ignored.	A	new	call	to	this	method	will	lower	the	priority	of	previous	calls	and
can	result	in	URLs	not	being	prefetched.	Boolean	values	inform	us	whether	the	operation
has	been	completed	successfully.

Custom	tabs	connection	callback
The	method	for	this	is	as	follows:

void	CustomTabsCallback.onNavigationEvent	(int	navigationEvent,	Bundle	

extras)

We	have	a	callback	triggered	upon	each	navigation	event	in	the	custom	tab.	The	int
navigationEvent	element	is	one	of	the	six	that	defines	the	state	the	page	is	in.	Refer	to
the	following	code	for	more	information:

//Sent	when	the	tab	has	started	loading	a	page.

public	static	final	int	NAVIGATION_STARTED	=	1;

//Sent	when	the	tab	has	finished	loading	a	page.

public	static	final	int	NAVIGATION_FINISHED	=	2;

//Sent	when	the	tab	couldn't	finish	loading	due	to	a	failure.

public	static	final	int	NAVIGATION_FAILED	=	3;

//Sent	when	loading	was	aborted	by	a	user	action.

public	static	final	int	NAVIGATION_ABORTED	=	4;

//Sent	when	the	tab	becomes	visible.

public	static	final	int	TAB_SHOWN	=	5;

//Sent	when	the	tab	becomes	hidden.

public	static	final	int	TAB_HIDDEN	=	6;

private	static	class	NavigationCallback	extends	CustomTabsCallback	{

		@Override

		public	void	onNavigationEvent(int	navigationEvent,	Bundle	extras)	{

				Log.i(TAG,	"onNavigationEvent:	Code	=	"	+	navigationEvent);

		}

}

Summary
We	learned	about	a	newly	added	feature,	Chrome	custom	tabs,	which	allows	us	to	embed
web	content	into	our	application	and	modify	the	UI.	Chrome	custom	tabs	allow	us	to
provide	a	fuller,	faster	in-app	web	experience	for	our	users.	We	use	the	Chrome	engine
under	the	hood,	which	allows	faster	loading	than	regular	WebViews	or	loading	the	entire
Chrome	(or	another	browser)	application.

We	saw	that	we	can	preload	pages	in	the	background,	making	it	appear	as	if	our	data	is
blazing	fast.	We	can	customize	the	look	and	feel	of	our	Chrome	tab	so	that	it	matches	our
app.	Among	the	changes	we	saw	were	the	toolbar	color,	transition	animations,	and	even
the	addition	of	custom	actions	to	the	toolbar.

Custom	tabs	also	benefit	from	Chrome	features	such	as	saved	passwords,	autofill,	tap	to
search,	and	sync;	these	are	all	available	within	a	custom	tab.	For	developers,	integration	is
quite	easy	and	requires	only	a	few	extra	lines	of	code	in	the	basic	level.	The	support
library	helps	with	more	complex	integration,	if	required.

This	is	a	Chrome	feature,	which	means	you	get	it	on	any	Android	device	where	the	latest
versions	of	Chrome	are	installed.	Remember	that	the	Chrome	custom	tab	support	library
changes	with	new	features	and	fixes,	which	is	the	same	as	other	support	libraries,	so
please	update	your	version	and	make	sure	that	you	use	the	latest	API	to	avoid	any	issues.

In	our	next	chapter,	we	will	take	a	deep	breath	and	look	at	some	of	the	new
authentication/security	features	Android	Marshmallow	has	to	offer.

Chapter	8.	Authentication
Android	Marshmallow	has	introduced	a	newly	integrated	API	to	better	support	user
authentication	and	user	verification.	We	can	now	use	the	new	Fingerprint	API	for
devices	with	a	fingerprint	scanner	in	order	to	authenticate	the	user.	We	can	also	set	a
specific	time	for	user	lock	screen	verification	to	be	considered	valid	in	the	app	login.	In
this	chapter,	we	will	try	and	go	over	these	additions	and	explain	how	to	use	them:

The	Fingerprint	authentication	API
Credentials’	Grace	Period
Cleartext	network	traffic

The	Fingerprint	authentication	API
Android	Marshmallow	now	allows	us,	the	developers,	to	authenticate	users	with	their
fingerprint	scans	when	using	such	authentication	scanners	on	supported	devices.

The	Fingerprint	API	was	added	to	Android	Marshmallow	via	a	whole	new	package:
android.hardware.fingerprint

The	package	contains	four	classes:

FingerprintManager

FingerprintManager.AuthenticationCallback

FingerprintManager.AuthenticationResult

FingerprintManager.CryptoObject

Each	class	has	a	specific	role	in	our	fingerprint	authentication	process.

How	do	we	use	fingerprint	authentication?
The	preceding	four	classes	of	the	android.hardware.fingerprint	package	can	be
explained	in	the	following	manner:

FingerprintManager:	Manage	access	to	fingerprint	hardware
FingerprintManager.AuthenticationCallback:	Callback	used	in	the	auth	process
FingerprintManager.AuthenticationResult:	Result	container	for	auth	process
FingerprintManager.CryptoObject:	Specific	Crypto	object	to	use	with
FingerprintManager

Say,	we	want	to	authenticate	users	via	their	fingerprints.	A	device	with	a	fingerprint	sensor
must	be	in	use;	otherwise,	we	can’t	use	this	API.	We	need	to	get	an	instance	of
FingerprintManager,	and	then	we	call	the	authenticate()	method.	We	must	implement
a	specific	user	interface	for	the	fingerprint	authentication	flow,	and	the	standard	Android
fingerprint	icon	(c_fp_40px.png)	is	included	in	the	source.	We	need	to	add	the	appropriate
permission	to	our	app’s	manifest:

<uses-permission	android:name="android.permission.USE_FINGERPRINT"	/>

Right	now,	we	don’t	have	a	device	with	a	fingerprint	sensor,	so	we	will	need	to	test	our
code	from	an	emulator.	(Nexus	5X	and	Nexus	6P	are	still	with	limited	supply)

Setting	up	for	testing
Android	SDK	Tools	Revision	24.3	(at	least)	must	be	installed.	Now,	we	navigate	to
Settings	|	Security	|	Fingerprint	and	add	one	fingerprint.

Follow	the	instructions	manually;	we	are	asked	to	select	the	PIN	and	leading	us	to	find	the
following	screenshot:

Finally,	we	must	use	a	special	adb	command,	tricking	the	sensor	into	capturing	a	mock
fingerprint:

adb	-e	emu	finger	touch	<finger_id>

The	resultant	screen	should	look	like	the	following	screenshot:

We	used	finger_id	=1	for	a	single	finger.	The	same	command	also	emulates	fingerprint
touch	events	on	the	lock	screen	or	in	our	app.

If	you	need	help	to	set	up	an	emulator,	read:

https://developer.android.com/tools/devices/index.html

Now,	we	can	launch	our	application	and	see	that	we	can	use	the	fingerprint	as	our
authentication	method	when	the	user	purchases	an	item.

https://developer.android.com/tools/devices/index.html

Credentials’	Grace	Period
Ever	got	the	itch	when	you	wanted	to	use	an	app	after	device	unlock	only	to	find	that	you
need	to	log	in	again	or	enter	the	app	password	again?	Well,	now	we	can	query	the	device
and	check	whether	it	was	unlocked	recently	and	how	recent	was	it.	This	will	give	our
users	a	chance	to	avoid	all	the	fuss	that	comes	with	using	our	app.	Note	that	this	must	be
used	in	conjunction	with	a	public	or	secret	key	implementation	for	user	authentication.	If
you	want	to	read	more	about	the	Android	Keystore	System,	head	to
https://developer.android.com/training/articles/keystore.html.

We	use	KeyguardManager	and	check	whether	our	lock	screen	is	secured	via	the
isKeyguardSecure()	method.	Once	we	know	that	it’s	secured,	we	can	try	and	use	the
feature;	otherwise,	it’d	imply	that	the	user	didn’t	set	a	secure	lock	screen	and	this	feature
is	a	no-op.

We	generate	a	symmetric	key	with	KeyGenerator	in	Android	KeyStore,	which	can	only	be
used	after	the	user	has	authenticated	with	device	credentials	within	the	last	x	seconds.
Setting	this	value	(x)	is	done	via	the
setUserAuthenticationValidityDurationSeconds()	method,	when	we	set	up
KeyGenerator	or	KeyPairGenerator.

You	can	check	out	the	sample	code	for	more	information.	The	activity	is	called
CredGraceActivity.

Note
Try	and	display	the	reauthentication	dialog	as	less	as	possible.	When	using	a
cryptographic	object,	you	should	try	and	verify	its	expiry,	and	only	if	it	passes,	use
createConfirmDeviceCredentialIntent()	to	reauthenticate	the	user.

https://developer.android.com/training/articles/keystore.html

Cleartext	network	traffic
Android	Marshmallow	also	added	a	new	flag	to	the	manifest.	This	flag	indicates	whether
the	application	is	using	a	cleartext	network	traffic	such	as	HTTP.	The	flag	is
android:usesCleartextTraffic,	and	the	default	value	is	true.	Setting	this	to	false
means	that	some	system	API	components—such	as	HTTP	and	FTP	stacks,
DownloadManager	and	MediaPlayer—will	refuse	to	issue	HTTP	traffic	and	will	only	allow
HTTPS.	It	would	be	a	good	practice	to	build	a	third-party	library	that	honor	this	setting	as
well.	Why	is	this	good?	Well,	cleartext	traffic	lacks	confidentiality,	authenticity,	and
protections	against	tampering,	and	data	can	be	tempered	without	it	being	detected.	This	is
a	major	risk	for	applications,	and	we	can	now	use	it	to	try	and	enforce	a	stronger	and	more
secure	data	transport	to/from	our	applications.

We	need	to	remember	that	this	flag	is	honored	on	the	basis	of	the	best	effort,	and	it’s	not
possible	to	prevent	all	cleartext	traffic	from	Android	applications	given	that	they	have
permissions	to	use	the	Socket	API,	for	instance,	where	the	Socket	API	cannot	determine
cleartext	usage.	We	can	check	out	this	flag	by	reading	it	from	either
ApplicationInfo.flags	or	NetworkSecurityPolicy.isCleartextTrafficPermitted().

Note
WebView	does	not	honor	this	flag,	which	means	that	it	will	load	HTTP	even	if	the	flag	is
false.

So,	what	do	we	do	with	the	cleartext	network
traffic	flag?
During	app	development,	we	can	use	StrictMode	and	identify	any	cleartext	traffic	from
our	app	using	StrictMode.VmPolicy.Builder.detectCleartextNetwork().

The	downside	of	usesCleartextTraffic	is	that	it	causes	app	crashes	or	process
termination	when	it’s	not	using	SSL	(short	for	Secure	Socket	Layer).	This	is	great	in
theory	but	not	in	production,	where	your	SSL	certificate,	for	some	reason,	has	issues	and
you	reroute	the	traffic	to	HTTP.	So,	pay	extra	attention	to	where	HTTPS	is	used	in	your
app	and	where	it’s	okay	to	use	HTTP.

Luckily,	we	have	StrictMode,	which	now	has	a	way	to	warn	you	if	your	application
executes	any	unencrypted	network	operations	via	a	detectCleartextNetwork()	method
on	StrictMode.VmPolicy.Builder.	In	our	sample	project,	we	have	a
ClearTextNetworkUsageActivity	activity;	when	running	the	TestStrictHttp
productFlavor	variant,	you	will	see	this	in	LogCat.

Summary
Android	Marshmallow	gave	us	a	new	API	to	authenticate	users	with	the	Fingerprint
API.	We	can	use	the	sensor,	authenticate	the	user	even	within	our	application,	and	save	it
for	later	use	if	we	want	to	save	the	need	for	user	login	using	the	Credentials’	Grace	Period
capabilities	Android	Marshmallow	introduced.

We	also	covered	a	way	to	make	our	application	more	secure	using	HTTPS	only,	and	the
StrictMode	policy,	enforced	with	the	help	of	the	usesCleartextTraffic	flag,	which
allows	us	to	make	sure	that	all	the	nodes	we	connect	to	the	outer	world	and	examine	the
need	for	are	a	secure	connection	or	not.

I	would	like	to	thank	you	for	reading.

I	would	like	to	thank	the	Android	team.	This	product	has	changed	my	life.

The	Android	ecosystem	has	great	developers	contributing	by	publishing	libraries,	writing
blog	posts	and	answering	support	questions;	I’m	proud	to	be	part	of	it.

Looking	forward	for	future	editions.

Index
A

android.hardware.fingerprint	package
classes	/	The	Fingerprint	authentication	API
FingerprintManager	/	How	do	we	use	fingerprint	authentication?
FingerprintManager.AuthenticationCallback	/	How	do	we	use	fingerprint
authentication?
FingerprintManager.AuthenticationResult	/	How	do	we	use	fingerprint
authentication?
FingerprintManager.CryptoObject	/	How	do	we	use	fingerprint	authentication?

Android	ART
about	/	Runtime

Android	Backup	Service
about	/	An	overview

Android	Debug	Bridge	(adb)	/	Checking	policies	using	adb
Android	Intent	system

about	/	The	Android	Intent	system
website	association,	creating	/	Creating	a	website	association
app	link	verification,	triggering	/	Triggering	app	link	verification
app	link	settings	and	management	/	App	link	settings	and	management

Android	Interface	Definition	Language	(AIDL)
URL	/	Connecting	to	the	Chrome	service

Android	Keystore	changes
about	/	Android	Keystore	changes

Android	Keystore	System
URL	/	Credentials’	Grace	Period

Android	Marshmallow
audio	features	/	Audio	features
video	features	/	Video	features
camera	features	/	Camera	features
behavioral	changes	/	Behavioral	changes

Android	Marshmallow	changes
behavioral	changes	/	Behavioral	changes
single-use	device	improvements	/	Single-use	device	improvements
apps,	silently	installing	/	Silently	installing/uninstalling	apps
apps,	silently	uninstalling	/	Silently	installing/uninstalling	apps
improved	certificate	access,	granting	/	Improved	certificate	access
automatic	system	updates	/	Automatic	system	updates
third-party	certificate	installation	/	Third-party	certificate	installation
data	usage	statistics,	querying	/	Data	usage	statistics
runtime	permissions,	managing	/	Managing	runtime	permissions
VPN,	accessing	/	VPN	access	and	display

VPN,	configuring	/	VPN	access	and	display
work	profile	status	/	Work	profile	status

Android	Marshmallow	permissions
about	/	Understanding	Android	Marshmallow	permissions
declaring	permissions	/	An	overview
permission	groups	/	An	overview,	Permission	groups
PROTECTION_NORMAL	permissions	/	An	overview
INTERNET	permission	/	An	overview
app	signature	permissions	granted	/	An	overview
permissions	granted	by	users	at	runtime	/	An	overview
permissions,	revoking	/	An	overview
runtime	permissions	/	Runtime	permissions
best	practices	/	Best	practices	and	usage	notes,	Honesty	can	be	a	great	policy
managing	/	Need	support	handling	runtime	permissions?

Android	permissions
about	/	An	overview	of	Android	permissions,	Permissions
permission	group	definitions	/	Permission	group	definitions
permissions,	implied	by	feature	requirements	/	Permissions	that	imply	feature
requirements
viewing,	for	each	app	/	Viewing	the	permissions	for	each	app

Android	SDK	Tools	Revision	24.3	/	Setting	up	for	testing
Android	Support	Library

about	/	Notifications
Android	system	flags	permissions

about	/	Some	permissions	are	normal	and	safer	to	use
Apache	HTTP	client	removal

about	/	Apache	HTTP	client	removal
APK	validation

about	/	APK	validation
Apple’s	Webkit	/	What	is	WebView?
ApplicationInfo	fields

about	/	Removable	storage	adoption
app	links

testing	/	Testing	app	links
manifest,	checking	/	Checking	manifest	and	listing	domains
domains,	listing	/	Checking	manifest	and	listing	domains
Digital	Asset	Links	API	/	The	Digital	Asset	Links	API
intent,	testing	/	Testing	our	intent
policies,	checking	with	adb	/	Checking	policies	using	adb

apps
installing,	silently	/	Silently	installing/uninstalling	apps
uninstalling,	silently	/	Silently	installing/uninstalling	apps

App	Standby	mode
about	/	The	App	Standby	mode

device,	in	App	Standby	mode	/	What	happens	to	apps	when	in	the	App	Standby
mode?
apps,	testing	with	/	Testing	apps	with	the	App	Standby	mode
excluded	apps	and	settings	/	Excluded	apps	and	settings
points	and	tips	/	Tips

assistant	/	The	Assist	API
Assist	API	/	The	Assist	API
audio	features,	Android	Marshmallow

about	/	Audio	features
support	for	MIDI	protocol	/	Support	for	the	MIDI	protocol
MidiManager	/	MidiManager
digital	audio	capture	and	playback	/	Digital	audio	capture	and	playback
audio	and	input	devices	/	Audio	and	input	devices
information	on	audio	devices	/	Information	on	audio	devices
changes,	in	AudioManager	/	Changes	in	AudioManager

authenticate()	method	/	How	do	we	use	fingerprint	authentication?
automatic	backup

about	/	An	overview
subtopics	/	Important	bytes
excluded	data	/	What	to	exclude	from	the	backup
BackupAgent	/	BackupAgent	and	backup	events
backup	events	/	BackupAgent	and	backup	events

automatic	system	updates	/	Automatic	system	updates

B
backup	configuration	syntax

<include>	tag	/	The	backup	configuration	syntax
<exclude>	tag	/	The	backup	configuration	syntax
domain	/	The	backup	configuration	syntax

backup	configuration	testing
about	/	Backup	configuration	testing
backup	logs,	setting	/	Setting	backup	logs
backup	phase,	testing	/	Testing	the	backup	phase
restore	phase,	testing	/	Testing	the	restore	phase
troubleshooting	/	Troubleshooting

Backup	Manager	service
about	/	An	overview

behavioral	changes,	Android	Marshmallow
work	contacts,	display	option	/	The	work	profile	contacts	display	option
Wi-Fi	configuration	options	/	Wi-Fi	configuration	options
Wi-Fi	configuration	lock	/	The	Wi-Fi	configuration	lock
Work	Policy	Controller,	adding	/	Work	Policy	Controller	addition
DevicePolicyManager	changes	/	DevicePolicyManager	changes

Bluetooth	API
about	/	Bluetooth	API	Changes
stylus	support	/	Bluetooth	stylus	support

C
camera	features

about	/	Camera	features
flashlight	API	/	The	flashlight	API
reprocessing	API	/	The	reprocessing	API
changes,	in	camera	service	/	Changes	in	the	camera	service

Chrome	custom	tab
about	/	What	is	a	Chrome	custom	tab?
WebView	/	What	is	WebView?
customization	options	/	Customization	options
using	/	When	to	use	Chrome	custom	tabs,	Can	we	use	Chrome	custom	tabs?
implementation	guide	/	The	implementation	guide
custom	UI	/	Custom	UI	and	tab	interaction
tab	interaction	/	Custom	UI	and	tab	interaction
custom	action	button	/	The	custom	action	button
custom	menu,	configuring	/	Configuring	a	custom	menu
custom	enter	animations,	configuring	/	Configuring	custom	enter	and	exit
animations
custom	exit	animations,	configuring	/	Configuring	custom	enter	and	exit
animations
warming	up	/	Chrome	warm-up
Chrome	service,	connecting	/	Connecting	to	the	Chrome	service
browser	process,	warming	up	/	Warming	up	the	browser	process
new	tab	session,	creating	/	Creating	a	new	tab	session
prefetching	URL,	setting	/	Setting	the	prefetching	URL
connection	callback	/	Custom	tabs	connection	callback

Chromium	project	/	What	is	WebView?
ChubbyTabb

URL	/	Custom	UI	and	tab	interaction
cleartext	network	traffic

about	/	Cleartext	network	traffic
downside	/	So,	what	do	we	do	with	the	cleartext	network	traffic	flag?
using	/	So,	what	do	we	do	with	the	cleartext	network	traffic	flag?

coding	permissions
about	/	Taking	coding	permissions	into	account
testing	/	Testing	permissions
coding,	for	runtime	permissions	/	Coding	for	runtime	permissions

Context	methods
about	/	Removable	storage	adoption

Credentials’	Grace	Period
using	/	Credentials’	Grace	Period

CredGraceActivity	/	Credentials’	Grace	Period
customization	options,	Chrome	custom	tab	/	Customization	options

CustomTabsHelper
URL	/	Can	we	use	Chrome	custom	tabs?

custom	URI	scheme	/	The	Android	Intent	system

D
Dalvik

about	/	Runtime
data	backup	configuration

about	/	Data	backup	configuration
data,	including	or	excluding	/	Including	or	excluding	data
backup	configuration	syntax	/	The	backup	configuration	syntax
ppting	out,	from	app	data	backup	/	Opting	out	from	app	data	backup

data	usage	statistics
querying	/	Data	usage	statistics

DevicePolicyManager
URL	/	DevicePolicyManager	changes

DevicePolicyManager,	changes
setCameraDisabled()	/	DevicePolicyManager	changes
setKeyguardDisabledFeatures()	/	DevicePolicyManager	changes
keyguard	restrictions,	setting	/	DevicePolicyManager	changes
createAndInitializeUser()	/	DevicePolicyManager	changes
createUser()	/	DevicePolicyManager	changes
setScreenCaptureDisabled()	method	/	DevicePolicyManager	changes
EXTRA_PROVISIONING_DEVICE_ADMIN_PACKAGE_CHECKSUM	/
DevicePolicyManager	changes
EXTRA_PROVISIONING_DEVICE_ADMIN_SIGNATURE_CHECKSUM	/
DevicePolicyManager	changes
EXTRA_PROVISIONING_RESET_PROTECTION_PARAMETERS	/
DevicePolicyManager	changes
EXTRA_PROVISIONING_ADMIN_EXTRAS_BUNDLE,	using	/
DevicePolicyManager	changes
RESULT_CANCELED	/	DevicePolicyManager	changes
set	of	settings,	disabling	/	DevicePolicyManager	changes
WIFI_DEVICE_OWNER_CONFIGS_LOCKDOWN	setting	,	enabling	/
DevicePolicyManager	changes

Digital	Asset	Links	API	/	The	Digital	Asset	Links	API
digital	audio	capture	and	playback	/	Digital	audio	capture	and	playback
Digital	Signature	Algorithm	(DSA)

about	/	Android	Keystore	changes
Direct	Share

about	/	Direct	Share
best	practices	/	Direct	Share	best	practices

Doze	mode
about	/	The	Doze	mode
device,	in	dozing	state	/	What	happens	to	apps	when	a	device	is	dozing?
apps,	testing	with	/	Testing	apps	with	Doze	mode

E
emulator

setting	up,	URL	/	Setting	up	for	testing

F
Fingerprint	authentication	API

about	/	The	Fingerprint	authentication	API
adding	/	The	Fingerprint	authentication	API
using	/	How	do	we	use	fingerprint	authentication?
setting	up,	for	testing	/	Setting	up	for	testing

G
Google	Cloud	Messaging	(GCM)

about	/	Data	backup	configuration
Google	I/O	2015	/	The	Assist	API
Google	Now	/	Voice	interactions
Google	Play	for	Work	/	Silently	installing/uninstalling	apps
Group	ID

about	/	An	overview	of	Android	permissions

H
hardware	identifier

about	/	Hardware	identifier

I
improved	Bluetooth	low	energy	scanning

about	/	Improved	Bluetooth	low	energy	scanning
improved	certificate	access

granting	/	Improved	certificate	access
intent	filters	/	The	Android	Intent	system
isKeyguardSecure()	method	/	Credentials’	Grace	Period

J
JSON	file

about	/	Why	this	file?

K
kiosks	/	Silently	installing/uninstalling	apps

L
launch	handler	/	The	Android	Intent	system
Linux	user	ID

about	/	An	overview	of	Android	permissions

M
MidiManager	/	MidiManager
MIDI	protocol	/	Support	for	the	MIDI	protocol

N
notifications	feature

about	/	Notifications

P
pending	intent

URL	/	Custom	UI	and	tab	interaction
permission	failure

about	/	An	overview	of	Android	permissions
power-saving	modes

about	/	Power-saving	modes
Doze	mode	/	The	Doze	mode
App	Standby	mode	/	The	App	Standby	mode

R
removable	storage	adoption

about	/	Removable	storage	adoption
reprocessing	API	/	The	reprocessing	API

android.media.ImageWriter	/	android.media.ImageWriter
android.media.ImageReader	/	android.media.ImageReader

runtime
about	/	Runtime

runtime	permissions
managing	/	Managing	runtime	permissions

S
Secure	Socket	Layer	(SSL)	/	So,	what	do	we	do	with	the	cleartext	network	traffic
flag?
sendBroadcast(Intent)	method

about	/	An	overview	of	Android	permissions
setUserAuthenticationValidityDurationSeconds()	method	/	Credentials’	Grace	Period
SharedPreferences	/	BackupAgent	and	backup	events
single-use	device	improvements

setKeyguardDisabled(),	using	/	Single-use	device	improvements
setStatusBarDisabled(),	using	/	Single-use	device	improvements
UserManager.DISALLOW_SAFE_BOOT,	using	/	Single-use	device
improvements
STAY_ON_WHILE_PLUGGED_IN,	using	/	Single-use	device	improvements

stylus
about	/	Bluetooth	stylus	support

SystemUpdatePolicy
TYPE_INSTALL_AUTOMATIC	option	/	Automatic	system	updates
TYPE_INSTALL_WINDOWED	option	/	Automatic	system	updates
TYPE_POSTPONE	option	/	Automatic	system	updates

T
text	selection

about	/	Text	selection
support	library	notice	/	Support	library	notice

Third-party	certificate	installation
DevicePolicyManager	APIs,	calling	/	Third-party	certificate	installation

Torchi	/	The	flashlight	API

U
URI	(Uniform	Resource	Identifier)	/	The	Android	Intent	system
USB	connection

about	/	USB	connection

V
video	features

about	/	Video	features
android.media.MediaSync	/	android.media.MediaSync
MediaCodecInfo.CodecCapabilities.getMaxSupportedInstances	/
MediaCodecInfo.CodecCapabilities.getMaxSupportedInstances
MediaPlayer.setPlaybackParams	/	MediaPlayer.setPlaybackParams

voice	actions	/	Voice	interactions
voice	interactions	/	Voice	interactions
VPN

profile	owner	/	VPN	access	and	display
device	owner	/	VPN	access	and	display

W
WebView

about	/	What	is	WebView?
Wi-Fi	and	networking	APIs

about	/	Wi-Fi	and	networking	changes
Work	Policy	Controller

about	/	Work	Policy	Controller	addition
URL	/	Work	Policy	Controller	addition

work	profile	status
checking	/	Work	profile	status

Y
YUV	/	The	reprocessing	API

	Android 6 Essentials
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Android Marshmallow Permissions
	An overview of Android permissions
	Permissions
	Permission group definitions
	Permissions that imply feature requirements
	Viewing the permissions for each app
	Understanding Android Marshmallow permissions
	An overview
	Permission groups
	Runtime permissions
	Taking coding permissions into account
	Testing permissions
	Coding for runtime permissions
	Best practices and usage notes
	Minimalism is a great option
	Asking for too many permissions at once
	Honesty can be a great policy
	Need support handling runtime permissions?
	Some permissions are normal and safer to use
	Summary
	2. App Links
	The Android Intent system
	Creating a website association
	Why this file?
	Triggering app link verification
	App link settings and management
	Testing app links
	Checking manifest and listing domains
	The Digital Asset Links API
	Testing our intent
	Checking policies using adb
	Summary
	3. Apps' Auto Backup
	An overview
	Data backup configuration
	Including or excluding data
	The backup configuration syntax
	Opting out from app data backup
	Backup configuration testing
	Setting backup logs
	Testing the backup phase
	Testing the restore phase
	Troubleshooting
	Important bytes
	What to exclude from the backup
	BackupAgent and backup events
	Summary
	4. Changes Unfold
	Power-saving modes
	The Doze mode
	What happens to apps when a device is dozing?
	Testing apps with Doze mode
	The App Standby mode
	What happens to apps when in the App Standby mode?
	Testing apps with the App Standby mode
	Excluded apps and settings
	Tips
	Removable storage adoption
	Apache HTTP client removal
	Notifications
	Text selection
	Support library notice
	Android Keystore changes
	Wi-Fi and networking changes
	Runtime
	Hardware identifier
	APK validation
	USB connection
	Direct Share
	What if we have nothing to share?
	Direct Share best practices
	Voice interactions
	The Assist API
	Bluetooth API Changes
	Bluetooth stylus support
	Improved Bluetooth low energy scanning
	Summary
	5. Audio, Video, and Camera Features
	Audio features
	Support for the MIDI protocol
	MidiManager
	Digital audio capture and playback
	Audio and input devices
	Information on audio devices
	Changes in AudioManager
	Video features
	android.media.MediaSync
	MediaCodecInfo.CodecCapabilities.getMaxSupportedInstances
	Why do we need to know this?
	MediaPlayer.setPlaybackParams
	Camera features
	The flashlight API
	The reprocessing API
	android.media.ImageWriter
	android.media.ImageReader
	Changes in the camera service
	Summary
	6. Android for Work
	Behavioral changes
	The work profile contacts display option
	Wi-Fi configuration options
	The Wi-Fi configuration lock
	Work Policy Controller addition
	DevicePolicyManager changes
	Single-use device improvements
	Silently installing/uninstalling apps
	Improved certificate access
	Automatic system updates
	Third-party certificate installation
	Data usage statistics
	Managing runtime permissions
	VPN access and display
	Work profile status
	Summary
	7. Chrome Custom Tabs
	What is a Chrome custom tab?
	What is WebView?
	Customization options
	When to use Chrome custom tabs
	The implementation guide
	Can we use Chrome custom tabs?
	Custom UI and tab interaction
	The custom action button
	Configuring a custom menu
	Configuring custom enter and exit animations
	Chrome warm-up
	Connecting to the Chrome service
	Warming up the browser process
	Creating a new tab session
	Setting the prefetching URL
	Custom tabs connection callback
	Summary
	8. Authentication
	The Fingerprint authentication API
	How do we use fingerprint authentication?
	Setting up for testing
	Credentials' Grace Period
	Cleartext network traffic
	So, what do we do with the cleartext network traffic flag?
	Summary
	Index

