
ptg16518503

www.allitebooks.com

http://www.allitebooks.org

ptg16518503

ANDROID™ 6 FOR
PROGRAMMERS

AN APP-DRIVEN APPROACH
THIRD EDITION

DEITEL® DEVELOPER SERIES

www.allitebooks.com

http://www.allitebooks.org

ptg16518503

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include elec-
tronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file

© 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information re-
garding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13428936-6
ISBN-10: 0-13-428936-6

Text printed in the United States at Edwards Brothers Malloy in Ann Arbor, Michigan.
First printing, November 2015

www.allitebooks.com

http://www.pearsoned.com/permissions/
http://www.allitebooks.org

ptg16518503

Paul Deitel • Harvey Deitel • Alexander Wald
Deitel & Associates, Inc.

Boston • Columbus • Indianapolis • New York • San Francisco
Amsterdam • Capetown • Dubai • London • Madrid • Milan • Munich
Paris • Montreal • Toronto • Deli • Mexico City • Sao Paulo • Sidney

Hong Kong • Seoul • Singapore • Taipei • Tokyo

ANDROID™ 6 FOR
PROGRAMMERS

AN APP-DRIVEN APPROACH

THIRD EDITION
DEITEL® DEVELOPER SERIES

From the Library of Llyd

Laird

www.allitebooks.com

http://www.allitebooks.org

ptg16518503

Deitel® Ser ies Page
Deitel® Developer Series
Android™ 6 for Programmers: An App-Driven

Approach, 3/E
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2015 for Programmers
iOS® 8 for Programmers: An App-Driven Approach

with Swift™

Java™ for Programmers, 3/E
JavaScript for Programmers
Swift™ for Programmers

How To Program Series
Android™ How to Program, 3/E
C++ How to Program, 9/E
C How to Program, 7/E
Java™ How to Program, Early Objects Version, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2015 How to Program, 7/E
Visual C#® 2015 How to Program, 6/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
(continued in next column)

(continued from previous column)
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 9/E and 10/E
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Visual Basic® 2015 How to Program, 6/E
Visual Basic® 2012 How to Program, 5/E
Visual C#® 2015 How to Program, 5/E
Visual C#® 2012 How to Program, 4/E

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Android™ 6 App Development Fundamentals, 3/e
C++ Fundamentals
Java™ Fundamentals, 2/e
C# 2015 Fundamentals
C# 2012 Fundamentals
iOS® 8 App Development Fundamentals, 3/e
JavaScript Fundamentals
Swift™ Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—facebook.com/DeitelFan

• Twitter®—@deitel

• Google+™—google.com/+DeitelFan

• YouTube™—youtube.com/DeitelTV

• LinkedIn®—linkedin.com/company/deitel-&-associates

and register for the free Deitel® Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on Dive-Into® Series on-site seminars offered by Deitel & Associates, Inc. worldwide,
write to us at deitel@deitel.com or visit:

 www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
www.deitel.com
www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iOS app development, and Internet- and web-related topics:

 www.deitel.com/ResourceCenters.html

www.allitebooks.com

http://www.deitel.com/books/CourseSmart/
http://www.deitel.com/books/LiveLessons/
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/training/
http://www.deitel.com
http://www.pearsonhighered.com/deitel/
http://www.deitel.com/ResourceCenters.html
http://www.allitebooks.org

ptg16518503

To the Android software-engineering community:

For creating and evolving a platform that challenges
app developers to test the limits of their imagination
Paul and Harvey Deitel

www.allitebooks.com

http://www.allitebooks.org

ptg16518503

Trademarks
DEITEL, the double-thumbs-up bug and DIVE-INTO are registered trademarks of Deitel & Associates, Inc.

Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Google, Android, Google Play, Google Maps, Google Wallet, Nexus, YouTube, AdSense and AdMob
are trademarks of Google, Inc.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screenshots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screenshots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

www.allitebooks.com

http://www.allitebooks.org

ptg16518503

Preface xxi

Before You Begin xxxi

1 Introduction to Android 1
1.1 Introduction 2
1.2 Android—The World’s Leading Mobile Operating System 3
1.3 Android Features 3
1.4 Android Operating System 6

1.4.1 Android 2.2 (Froyo) 7
1.4.2 Android 2.3 (Gingerbread) 7
1.4.3 Android 3.0 through 3.2 (Honeycomb) 8
1.4.4 Android 4.0 through 4.0.4 (Ice Cream Sandwich) 8
1.4.5 Android 4.1–4.3 (Jelly Bean) 9
1.4.6 Android 4.4 (KitKat) 10
1.4.7 Android 5.0 and 5.1 (Lollipop) 11
1.4.8 Android 6 (Marshmallow) 12

1.5 Downloading Apps from Google Play 13
1.6 Packages 14
1.7 Android Software Development Kit (SDK) 16
1.8 Object-Oriented Programming: A Quick Refresher 18

1.8.1 The Automobile as an Object 19
1.8.2 Methods and Classes 19
1.8.3 Instantiation 19
1.8.4 Reuse 19
1.8.5 Messages and Method Calls 19
1.8.6 Attributes and Instance Variables 20
1.8.7 Encapsulation 20
1.8.8 Inheritance 20
1.8.9 Object-Oriented Analysis and Design (OOAD) 20

1.9 Test-Driving the Tip Calculator App in an Android Virtual Device (AVD) 21
1.9.1 Opening the Tip Calculator App’s Project in Android Studio 22
1.9.2 Creating Android Virtual Devices (AVDs) 24
1.9.3 Running the Tip Calculator App on the Nexus 6 Smartphone AVD 25
1.9.4 Running the Tip Calculator App on an Android Device 30

1.10 Building Great Android Apps 30

Contents

www.allitebooks.com

http://www.allitebooks.org

ptg16518503

viii Contents

1.11 Android Development Resources 32
1.12 Wrap-Up 34

2 Welcome App 35
Dive-Into® Android Studio: Introducing Visual GUI Design, Layouts, Accessibility
and Internationalization
2.1 Introduction 36
2.2 Technologies Overview 37

2.2.1 Android Studio 37
2.2.2 LinearLayout, TextView and ImageView 37

2.2.3 Extensible Markup Language (XML) 38
2.2.4 App Resources 38
2.2.5 Accessibility 38
2.2.6 Internationalization 38

2.3 Creating an App 38
2.3.1 Launching Android Studio 39
2.3.2 Creating a New Project 39
2.3.3 Create New Project Dialog 40
2.3.4 Target Android Devices Step 40
2.3.5 Add an Activity to Mobile Step 42
2.3.6 Customize the Activity Step 43

2.4 Android Studio Window 44
2.4.1 Project Window 45
2.4.2 Editor Windows 46
2.4.3 Component Tree Window 46
2.4.4 App Resource Files 46
2.4.5 Layout Editor 47
2.4.6 Default GUI 48
2.4.7 XML for the Default GUI 49

2.5 Building the App’s GUI with the Layout Editor 49
2.5.1 Adding an Image to the Project 50
2.5.2 Adding an App Icon 51
2.5.3 Changing RelativeLayout to a LinearLayout 52
2.5.4 Changing the LinearLayout’s id and orientation 53
2.5.5 Configuring the TextView’s id and text Properties 54
2.5.6 Configuring the TextView’s textSize Property—Scaled Pixels

and Density-Independent Pixels 56
2.5.7 Setting the TextView’s textColor Property 57
2.5.8 Setting the TextView’s gravity Property 58
2.5.9 Setting the TextView’s layout:gravity Property 59
2.5.10 Setting the TextView’s layout:weight Property 60
2.5.11 Adding an ImageView to Display the Image 60
2.5.12 Previewing the Design 64

2.6 Running the Welcome App 65
2.7 Making Your App Accessible 66

www.allitebooks.com

http://www.allitebooks.org

ptg16518503

Contents ix

2.8 Internationalizing Your App 67
2.8.1 Localization 67
2.8.2 Naming the Folders for Localized Resources 68
2.8.3 Adding String Translations to the App’s Project 68
2.8.4 Localizing Strings 68
2.8.5 Testing the App in Spanish on an AVD 69
2.8.6 Testing the App in Spanish on a Device 70
2.8.7 TalkBack and Localization 71
2.8.8 Localization Checklist 71
2.8.9 Professional Translation 71

2.9 Wrap-Up 72

3 Tip Calculator App 73
Introducing GridLayout, EditText, SeekBar, Event Handling, NumberFormat,
Customizing the App’s Theme and Defining App Functionality with Java
3.1 Introduction 74
3.2 Test-Driving the Tip Calculator App 75
3.3 Technologies Overview 76

3.3.1 Class Activity 76
3.3.2 Activity Lifecycle Methods 77
3.3.3 AppCompat Library and Class AppCompatActivity 77
3.3.4 Arranging Views with a GridLayout 78
3.3.5 Creating and Customizing the GUI with the Layout Editor

and the Component Tree and Properties Windows 78
3.3.6 Formatting Numbers as Locale-Specific Currency and

Percentage Strings 78
3.3.7 Implementing Interface TextWatcher for Handling EditText

Text Changes 79
3.3.8 Implementing Interface OnSeekBarChangeListener for

Handling SeekBar Thumb Position Changes 79
3.3.9 Material Themes 79
3.3.10 Material Design: Elevation and Shadows 80
3.3.11 Material Design: Colors 80
3.3.12 AndroidManifest.xml 81
3.3.13 Searching in the Properties Window 81

3.4 Building the GUI 81
3.4.1 GridLayout Introduction 81
3.4.2 Creating the TipCalculator Project 82
3.4.3 Changing to a GridLayout 83
3.4.4 Adding the TextViews, EditText and SeekBar 83
3.4.5 Customizing the Views 86

3.5 Default Theme and Customizing Theme Colors 88
3.5.1 parent Themes 88
3.5.2 Customizing Theme Colors 89
3.5.3 Common View Property Values as Styles 91

www.allitebooks.com

http://www.allitebooks.org

ptg16518503

x Contents

3.6 Adding the App’s Logic 92
3.6.1 package and import Statements 93
3.6.2 MainActivity Subclass of AppCompatActivity 94
3.6.3 Class Variables and Instance Variables 94
3.6.4 Overriding Activity Method onCreate 95
3.6.5 MainActivity Method calculate 97
3.6.6 Anonymous Inner Class That Implements Interface

OnSeekBarChangeListener 98
3.6.7 Anonymous Inner Class That Implements Interface TextWatcher 99

3.7 AndroidManifest.xml 100
3.7.1 manifest Element 101
3.7.2 application Element 101
3.7.3 activity Element 102
3.7.4 intent-filter Element 102

3.8 Wrap-Up 103

4 Flag Quiz App 105
Fragments, Menus, Preferences, Explicit Intents, Handler, AssetManager, Tweened
Animations, Animators, Toasts, Color State Lists, Layouts for Multiple Device
Orientations, Logging Error Messages for Debugging
4.1 Introduction 106
4.2 Test-Driving the Flag Quiz App 108

4.2.1 Configuring the Quiz’s Settings 108
4.2.2 Taking the Quiz 110

4.3 Technologies Overview 113
4.3.1 Menus 113
4.3.2 Fragments 113
4.3.3 Fragment Lifecycle Methods 114
4.3.4 Managing Fragments 114
4.3.5 Preferences 114
4.3.6 assets Folder 115
4.3.7 Resource Folders 115
4.3.8 Supporting Different Screen Sizes and Resolutions 116
4.3.9 Determining the Device Orientation 117
4.3.10 Toasts for Displaying Messages 117
4.3.11 Using a Handler to Execute a Runnable in the Future 117
4.3.12 Applying an Animation to a View 117
4.3.13 Using ViewAnimationUtils to Create a Circular Reveal Animator 118
4.3.14 Specifying Colors Based on a View’s State Via a Color State List 118
4.3.15 AlertDialog 118
4.3.16 Logging Exception Messages 119
4.3.17 Launching Another Activity Via an Explicit Intent 119
4.3.18 Java Data Structures 120
4.3.19 Java SE 7 Features 120
4.3.20 AndroidManifest.xml 120

ptg16518503

Contents xi

4.4 Creating the Project, Resource Files and Additional Classes 121
4.4.1 Creating the Project 121
4.4.2 Blank Activity Template Layouts 121
4.4.3 Configuring Java SE 7 Support 122
4.4.4 Adding the Flag Images to the Project 122
4.4.5 strings.xml and Formatted String Resources 123
4.4.6 arrays.xml 124
4.4.7 colors.xml 126
4.4.8 button_text_color.xml 126
4.4.9 Editing menu_main.xml 127
4.4.10 Creating the Flag Shake Animation 128
4.4.11 preferences.xml for Specifying the App’s Settings 129
4.4.12 Adding Classes SettingsActivity and

SettingsActivityFragment to the Project 131
4.5 Building the App’s GUI 132

4.5.1 activity_main.xml Layout for Devices in Portrait Orientation 132
4.5.2 Designing fragment_main.xml Layout 132
4.5.3 Graphical Layout Editor Toolbar 138
4.5.4 content_main.xml Layout for Tablet Landscape Orientation 138

4.6 MainActivity Class 140
4.6.1 package Statement and import Statements 140
4.6.2 Fields 141
4.6.3 Overridden Activity Method onCreate 141
4.6.4 Overridden Activity Method onStart 143
4.6.5 Overridden Activity Method onCreateOptionsMenu 144
4.6.6 Overridden Activity Method onOptionsItemSelected 145
4.6.7 Anonymous Inner Class That Implements

OnSharedPreferenceChangeListener 145
4.7 MainActivityFragment Class 147

4.7.1 package and import Statements 147
4.7.2 Fields 148
4.7.3 Overridden Fragment Method onCreateView 149
4.7.4 Method updateGuessRows 151
4.7.5 Method updateRegions 152
4.7.6 Method resetQuiz 152
4.7.7 Method loadNextFlag 154
4.7.8 Method getCountryName 156
4.7.9 Method animate 156
4.7.10 Anonymous Inner Class That Implements OnClickListener 158
4.7.11 Method disableButtons 160

4.8 SettingsActivity Class 161
4.9 SettingsActivityFragment Class 161
4.10 AndroidManifest.xml 162
4.11 Wrap-Up 164

ptg16518503

xii Contents

5 Doodlz App 165
2D Graphics, Canvas, Bitmap, Accelerometer, SensorManager, Multitouch Events,
MediaStore, Printing, Android 6.0 Permissions, Gradle
5.1 Introduction 167
5.2 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 168
5.3 Technologies Overview 173

5.3.1 Activity and Fragment Lifecycle Methods 173
5.3.2 Custom Views 174
5.3.3 Using SensorManager to Listen for Accelerometer Events 174
5.3.4 Custom DialogFragments 174
5.3.5 Drawing with Canvas, Paint and Bitmap 175
5.3.6 Processing Multiple Touch Events and Storing Lines in Paths 175
5.3.7 Saving to the Device 175
5.3.8 Printing and the Android Support Library’s PrintHelper Class 176
5.3.9 New Android 6.0 (Marshmallow) Permissions Model 176
5.3.10 Adding Dependencies Using the Gradle Build System 176

5.4 Creating the Project and Resources 176
5.4.1 Creating the Project 176
5.4.2 Gradle: Adding a Support Library to the Project 177
5.4.3 strings.xml 177
5.4.4 Importing the Material Design Icons for the App’s Menu Items 178
5.4.5 MainActivityFragment Menu 179
5.4.6 Adding a Permission to AndroidManifest.xml 181

5.5 Building the App’s GUI 181
5.5.1 content_main.xml Layout for MainActivity 181
5.5.2 fragment_main.xml Layout for MainActivityFragment 181
5.5.3 fragment_color.xml Layout for ColorDialogFragment 182
5.5.4 fragment_line_width.xml Layout for LineWidthDialogFragment 185
5.5.5 Adding Class EraseImageDialogFragment 187

5.6 MainActivity Class 187
5.7 MainActivityFragment Class 188

5.7.1 package Statement, import Statements and Fields 188
5.7.2 Overridden Fragment Method onCreateView 189
5.7.3 Methods onResume and enableAccelerometerListening 190
5.7.4 Methods onPause and disableAccelerometerListening 191
5.7.5 Anonymous Inner Class for Processing Accelerometer Events 192
5.7.6 Method confirmErase 193
5.7.7 Overridden Fragment Methods onCreateOptionsMenu and

onOptionsItemSelected 193
5.7.8 Method saveImage 195
5.7.9 Overridden Method onRequestPermissionsResult 196
5.7.10 Methods getDoodleView and setDialogOnScreen 197

5.8 DoodleView Class 198
5.8.1 package Statement and import Statements 198
5.8.2 static and Instance Variables 198
5.8.3 Constructor 199

ptg16518503

Contents xiii

5.8.4 Overridden View Method onSizeChanged 200
5.8.5 Methods clear, setDrawingColor, getDrawingColor,

setLineWidth and getLineWidth 200
5.8.6 Overridden View Method onDraw 201
5.8.7 Overridden View Method onTouchEvent 202
5.8.8 touchStarted Method 203
5.8.9 touchMoved Method 204
5.8.10 touchEnded Method 205
5.8.11 Method saveImage 205
5.8.12 Method printImage 206

5.9 ColorDialogFragment Class 207
5.9.1 Overridden DialogFragment Method onCreateDialog 208
5.9.2 Method getDoodleFragment 209
5.9.3 Overridden Fragment Lifecycle Methods onAttach and onDetach 209
5.9.4 Anonymous Inner Class That Responds to the Events of the

Alpha, Red, Green and Blue SeekBars 210
5.10 LineWidthDialogFragment Class 211

5.10.1 Method onCreateDialog 213
5.10.2 Anonymous Inner Class That Responds to the Events of the

widthSeekBar 214
5.11 EraseImageDialogFragment Class 214
5.12 Wrap-Up 216

6 Cannon Game App 217
Manual Frame-By-Frame Animation, Graphics, Sound, Threading,
SurfaceView and SurfaceHolder, Immersive Mode and Full-Screen
6.1 Introduction 218
6.2 Test-Driving the Cannon Game App 220
6.3 Technologies Overview 220

6.3.1 Using the Resource Folder res/raw 220
6.3.2 Activity and Fragment Lifecycle Methods 220
6.3.3 Overriding View Method onTouchEvent 220
6.3.4 Adding Sound with SoundPool and AudioManager 220
6.3.5 Frame-by-Frame Animation with Threads, SurfaceView and

SurfaceHolder 221
6.3.6 Simple Collision Detection 221
6.3.7 Immersive Mode 222

6.4 Building the GUI and Resource Files 222
6.4.1 Creating the Project 222
6.4.2 Adjusting the Theme to Remove the App Title and App Bar 223
6.4.3 strings.xml 223
6.4.4 Colors 223
6.4.5 Adding the Sounds to the App 223
6.4.6 Adding Class MainActivityFragment 224
6.4.7 Editing activity_main.xml 224
6.4.8 Adding the CannonView to fragment_main.xml 224

ptg16518503

xiv Contents

6.5 Overview of This App’s Classes 225
6.6 MainActivity Subclass of Activity 226
6.7 MainActivityFragment Subclass of Fragment 226
6.8 Class GameElement 228

6.8.1 Instance Variables and Constructor 229
6.8.2 Methods update, draw, and playSound 229

6.9 Blocker Subclass of GameElement 230
6.10 Target Subclass of GameElement 230
6.11 Cannon Class 231

6.11.1 Instance Variables and Constructor 231
6.11.2 Method align 232
6.11.3 Method fireCannonball 232
6.11.4 Method draw 233
6.11.5 Methods getCannonball and removeCannonball 234

6.12 Cannonball Subclass of GameElement 234
6.12.1 Instance Variables and Constructor 234
6.12.2 Methods getRadius, collidesWith, isOnScreen, and

reverseVelocityX 235
6.12.3 Method update 236
6.12.4 Method draw 236

6.13 CannonView Subclass of SurfaceView 237
6.13.1 package and import Statements 237
6.13.2 Instance Variables and Constants 238
6.13.3 Constructor 239
6.13.4 Overriding View Method onSizeChanged 241
6.13.5 Methods getScreenWidth, getScreenHeight, and playSound 241
6.13.6 Method newGame 242
6.13.7 Method updatePositions 244
6.13.8 Method alignAndFireCannonball 245
6.13.9 Method showGameOverDialog 246
6.13.10 Method drawGameElements 247
6.13.11 Method testForCollisions 248
6.13.12 Methods stopGame and releaseResources 249
6.13.13 Implementing the SurfaceHolder.Callback Methods 250
6.13.14 Overriding View Method onTouchEvent 251
6.13.15 CannonThread: Using a Thread to Create a Game Loop 252
6.13.16 Methods hideSystemBars and showSystemBars 253

6.14 Wrap-Up 254

7 WeatherViewer App 256
REST Web Services, AsyncTask, HttpUrlConnection, Processing JSON Responses,
JSONObject, JSONArray, ListView, ArrayAdapter, ViewHolder Pattern,
TextInputLayout, FloatingActionButton
7.1 Introduction 257

ptg16518503

Contents xv

7.2 Test-Driving the WeatherViewer App 258
7.3 Technologies Overview 259

7.3.1 Web Services 259
7.3.2 JavaScript Object Notation (JSON) and the org.json Package 261
7.3.3 HttpUrlConnection Invoking a REST Web Service 263
7.3.4 Using AsyncTask to Perform Network Requests Outside the

GUI Thread 263
7.3.5 ListView, ArrayAdapter and the View-Holder Pattern 263
7.3.6 FloatingActionButton 264
7.3.7 TextInputLayout 265
7.3.8 Snackbar 265

7.4 Building the App’s GUI and Resource Files 265
7.4.1 Creating the Project 265
7.4.2 AndroidManifest.xml 265
7.4.3 strings.xml 266
7.4.4 colors.xml 266
7.4.5 activity_main.xml 266
7.4.6 content_main.xml 267
7.4.7 list_item.xml 268

7.5 Class Weather 269
7.5.1 package Statement, import Statements and Instance Variables 270
7.5.2 Constructor 270
7.5.3 Method convertTimeStampToDay 271

7.6 Class WeatherArrayAdapter 272
7.6.1 package Statement and import Statements 272
7.6.2 Nested Class ViewHolder 273
7.6.3 Instance Variable and Constructor 273
7.6.4 Overridden ArrayAdapter Method getView 273
7.6.5 AsyncTask Subclass for Downloading Images in a Separate Thread 275

7.7 Class MainActivity 277
7.7.1 package Statement and import Statements 277
7.7.2 Instance Variables 278
7.7.3 Overridden Activity Method onCreate 279
7.7.4 Methods dismissKeyboard and createURL 280
7.7.5 AsyncTask Subclass for Invoking a Web Service 281
7.7.6 Method convertJSONtoArrayList 283

7.8 Wrap-Up 284

8 Twitter® Searches App 286
SharedPreferences, SharedPreferences.Editor, Implicit Intents, Intent
Choosers, RecyclerView, RecyclerView.Adapter, RecyclerView.ViewHolder,
RecyclerView.ItemDecoration

8.1 Introduction 287
8.2 Test-Driving the App 288

8.2.1 Adding a Favorite Search 288

ptg16518503

xvi Contents

8.2.2 Viewing Twitter Search Results 291
8.2.3 Editing a Search 291
8.2.4 Sharing a Search 293
8.2.5 Deleting a Search 294
8.2.6 Scrolling Through Saved Searches 295

8.3 Technologies Overview 295
8.3.1 Storing Key–Value Data in a SharedPreferences File 295
8.3.2 Implicit Intents and Intent Choosers 296
8.3.3 RecyclerView 296
8.3.4 RecyclerView.Adapter and RecyclerView.ViewHolder 297
8.3.5 RecyclerView.ItemDecoration 297
8.3.6 Displaying a List of Options in an AlertDialog 297

8.4 Building the App’s GUI and Resource Files 297
8.4.1 Creating the Project 298
8.4.2 AndroidManifest.xml 298
8.4.3 Adding the RecyclerView Library 298
8.4.4 colors.xml 298
8.4.5 strings.xml 299
8.4.6 arrays.xml 299
8.4.7 dimens.xml 299
8.4.8 Adding the Save Button Icon 300
8.4.9 activity_main.xml 300
8.4.10 content_main.xml 300
8.4.11 RecyclerView Item’s Layout: list_item.xml 302

8.5 MainActivity Class 303
8.5.1 package and import Statements 304
8.5.2 MainActivity Fields 304
8.5.3 Overriden Activity Method onCreate 305
8.5.4 TextWatcher Event Handler and Method updateSaveFAB 307
8.5.5 saveButton’s OnClickListener 308
8.5.6 addTaggedSearch Method 309
8.5.7 Anonymous Inner Class That Implements

View.OnClickListener to Display Search Results 310
8.5.8 Anonymous Inner Class That Implements

View.OnLongClickListener to Share, Edit or Delete a Search 311
8.5.9 shareSearch Method 313
8.5.10 deleteSearch Method 314

8.6 SearchesAdapter Subclass of RecyclerView.Adapter 315
8.6.1 package Statement, import statements, Instance Variables and

Constructor 315
8.6.2 Nested ViewHolder Subclass of RecyclerView.ViewHolder 316
8.6.3 Overridden RecyclerView.Adapter Methods 317

8.7 ItemDivider Subclass of RecyclerView.ItemDecoration 318
8.8 A Note on Fabric: Twitter’s New Mobile Development Platform 320
8.9 Wrap-Up 320

ptg16518503

Contents xvii

9 Address Book App 322
FragmentTransactions and the Fragment Back Stack, SQLite, SQLiteDatabase,
SQLiteOpenHelper, ContentProvider, ContentResolver, Loader, LoaderManager,
Cursor and GUI Styles
9.1 Introduction 324
9.2 Test-Driving the Address Book App 326

9.2.1 Adding a Contact 326
9.2.2 Viewing a Contact 327
9.2.3 Editing a Contact 327
9.2.4 Deleting a Contact 327

9.3 Technologies Overview 328
9.3.1 Displaying Fragments with FragmentTransactions 328
9.3.2 Communicating Data Between a Fragment and a Host Activity 329
9.3.3 Manipulating a SQLite Database 329
9.3.4 ContentProviders and ContentResolvers 329
9.3.5 Loader and LoaderManager—Asynchronous Database Access 330
9.3.6 Defining Styles and Applying Them to GUI Components 331
9.3.7 Specifying a TextView Background 331

9.4 Building the GUI and Resource Files 331
9.4.1 Creating the Project 331
9.4.2 Creating the App’s Classes 331
9.4.3 Add the App’s Icons 333
9.4.4 strings.xml 333
9.4.5 styles.xml 334
9.4.6 textview_border.xml 335
9.4.7 MainActivity’s Layout 335
9.4.8 ContactsFragment’s Layout 337
9.4.9 DetailFragment’s Layout 338
9.4.10 AddEditFragment’s Layout 339
9.4.11 DetailFragment’s Menu 341

9.5 Overview of This Chapter’s Classes 341
9.6 DatabaseDescription Class 342

9.6.1 static Fields 342
9.6.2 Nested Class Contact 343

9.7 AddressBookDatabaseHelper Class 344
9.8 AddressBookContentProvider Class 346

9.8.1 AddressBookContentProvider Fields 346
9.8.2 Overridden Methods onCreate and getType 347
9.8.3 Overridden Method query 348
9.8.4 Overridden Method insert 350
9.8.5 Overridden Method update 352
9.8.6 Overridden Method delete 353

9.9 MainActivity Class 354
9.9.1 Superclass, Implemented Interfaces and Fields 354
9.9.2 Overridden Method onCreate 355
9.9.3 ContactsFragment.ContactsFragmentListener Methods 356

ptg16518503

xviii Contents

9.9.4 Method displayContact 357
9.9.5 Method displayAddEditFragment 358
9.9.6 DetailFragment.DetailFragmentListener Methods 358
9.9.7 AddEditFragment.AddEditFragmentListener Method 359

9.10 ContactsFragment Class 360
9.10.1 Superclass and Implemented Interface 360
9.10.2 ContactsFragmentListener 360
9.10.3 Fields 361
9.10.4 Overridden Fragment Method onCreateView 361
9.10.5 Overridden Fragment Methods onAttach and onDetach 363
9.10.6 Overridden Fragment Method onActivityCreated 363
9.10.7 Method updateContactList 364
9.10.8 LoaderManager.LoaderCallbacks<Cursor> Methods 364

9.11 ContactsAdapter Class 365
9.12 AddEditFragment Class 368

9.12.1 Superclass and Implemented Interface 368
9.12.2 AddEditFragmentListener 369
9.12.3 Fields 369
9.12.4 Overridden Fragment Methods onAttach, onDetach and

onCreateView 370
9.12.5 TextWatcher nameChangedListener and Method

updateSaveButtonFAB 372
9.12.6 View.OnClickListener saveContactButtonClicked and

Method saveContact 373
9.12.7 LoaderManager.LoaderCallbacks<Cursor> Methods 374

9.13 DetailFragment Class 376
9.13.1 Superclass and Implemented Interface 376
9.13.2 DetailFragmentListener 377
9.13.3 Fields 377
9.13.4 Overridden Methods onAttach, onDetach and onCreateView 378
9.13.5 Overridden Methods onCreateOptionsMenu and

onOptionsItemSelected 379
9.13.6 Method deleteContact and DialogFragment confirmDelete 380
9.13.7 LoaderManager.LoaderCallback<Cursor> Methods 381

9.14 Wrap-Up 382

10 Google Play and App Business Issues 384
10.1 Introduction 385
10.2 Preparing Your Apps for Publication 385

10.2.1 Testing Your App 386
10.2.2 End User License Agreement 386
10.2.3 Icons and Labels 387
10.2.4 Versioning Your App 387
10.2.5 Licensing to Control Access to Paid Apps 388
10.2.6 Obfuscating Your Code 388

ptg16518503

Contents xix

10.2.7 Getting a Private Key for Digitally Signing Your App 388
10.2.8 Featured Image and Screenshots 388
10.2.9 Promotional App Video 390

10.3 Pricing Your App: Free or Fee 390
10.3.1 Paid Apps 391
10.3.2 Free Apps 391

10.4 Monetizing Apps with In-App Advertising 392
10.5 Monetizing Apps: Using In-App Billing to Sell Virtual Goods 393
10.6 Registering at Google Play 394
10.7 Setting Up a Google Payments Merchant Account 395
10.8 Uploading Your Apps to Google Play 395
10.9 Launching Play Store from Within Your App 397
10.10 Managing Your Apps in Google Play 398
10.11 Other Android App Marketplaces 398
10.12 Other Mobile App Platforms and Porting Your Apps 398
10.13 Marketing Your Apps 399
10.14 Wrap-Up 403

Index 405

www.allitebooks.com

http://www.allitebooks.org

ptg16518503

This page intentionally left blank

ptg16518503

Welcome to the dynamic world of Android smartphone and tablet app development with
the Android Software Development Kit (SDK), the Java™ programming language and
the rapidly evolving Android Studio Integrated Development Environment (IDE). Many
of the Android techniques we present also apply to Android Wear and Android TV app
development, so after reading this book, you’ll be well prepared to investigate developing
apps for these platforms.

Android 6 for Programmers: An App-Driven Approach presents leading-edge mobile
computing technologies for professional software developers. In our app-driven approach,
we present concepts in complete working Android apps, rather than using code snippets.
Chapters 2–9 each present one app. Each chapter begins with an introduction to the app,
an app test-drive showing one or more sample executions and an overview of the technol-
ogies we used to build the app. Then we present a detailed source-code walkthrough. All
of the source code is available at

We recommend that you view each app’s source code in the IDE as you read the chapter.
The opportunities for Android app developers are enormous. Sales of Android devices

and app downloads have been growing exponentially. The first-generation Android
phones were released in October 2008. According to IDC, after the first three months of
2015, Android had 78% of the global smartphone market share, compared to 18.3% for
Apple, 2.7% for Microsoft and 0.3% for Blackberry.1 Over one billion Android devices
shipped in 2014 alone.2 At the 2015 Google I/O conference, Google announced that in
the prior 12 months there had been 50 billion app installs from Google Play™—Google’s
marketplace for Android apps.3 Fierce competition among popular mobile platforms and
carriers is leading to rapid innovation and falling prices. In addition, competition among
the hundreds of Android device manufacturers is driving hardware and software innova-
tion within the Android community.

Copyright Notice and Code License
All of the Android code and Android apps in the book are copyrighted by Deitel & Associates,
Inc. The sample Android apps in the book are licensed under a Creative Commons Attribution
3.0 Unported License (http://creativecommons.org/licenses/by/3.0), with the excep-
tion that they may not be reused in any way in educational tutorials and textbooks, whether in
print or digital format. Additionally, the authors and publisher make no warranty of any kind,

http://www.deitel.com/books/AndroidFP3

1. http://www.idc.com/prodserv/smartphone-os-market-share.jsp.
2. http://www.businessinsider.com/android-1-billion-shipments-2014-strategy-

analytics-2015-2.
3. http://bit.ly/2015GoogleIOKeynote.

Preface

http://www.deitel.com/books/AndroidFP3
http://creativecommons.org/licenses/by/3.0
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.businessinsider.com/android-1-billion-shipments-2014-strategy-analytics-2015-2
http://www.businessinsider.com/android-1-billion-shipments-2014-strategy-analytics-2015-2
http://bit.ly/2015GoogleIOKeynote

ptg16518503

xxii Preface

expressed or implied, with regard to these programs or to the documentation contained in this
book. The authors and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these pro-
grams. You’re welcome to use the apps in the book as shells for your own apps, building on their
existing functionality (within the terms of the preceding license). If you have any questions, con-
tact us at deitel@deitel.com.

Intended Audience
We assume that you’re a Java programmer with object-oriented programming experience.
We also assume that you’re familiar with XML—as you’ll see, Android projects contain
many XML files, though you’ll often interact with them through editors that hide much
or all of the XML from you. We use only complete, working apps, so if you don’t know
Java but have object-oriented programming experience in a C-based language such as C++,
C#, Swift or Objective-C you should be able to master the material quickly, learning a
good amount of Java and Java-style object-oriented programming along the way.

This book is not a Java tutorial. If you’re interested in learning Java, you may want to
check out our publications:

• Java for Programmers, 3/e (http://www.deitel.com/books/javafp3)

• Java Fundamentals, 2/e LiveLessons videos. These videos are available to Safari-
BooksOnline.com subscribers and may be purchased from Informit.com and
Udemy.com. Visit http://www.deitel.com/LiveLessons for subscription and
purchase links.

• Java How to Program, 10/e (http://www.deitel.com/books/jhtp10; ISBN# 0-
13-380780-0)

If you’re not familiar with XML, many free online tutorials are available, including:

• http://www.ibm.com/developerworks/xml/newto

• http://www.w3schools.com/xml/default.asp

• http://bit.ly/DeitelXMLBasics

• http://bit.ly/StructureXMLData

Features
Here are some of this book’s key features:

App-Driven Approach. Chapters 2–9 each present one completely coded app—we discuss
what the app does, show screenshots of the app in action, test-drive it and overview the
technologies and architecture we used to build it. Then we build the app’s GUI and re-
source files, present the complete code and do a detailed code walkthrough. We discuss
the programming concepts and demonstrate the functionality of the Android APIs used
in the app.

Android 6 SDK. We cover various new Android 6 Software Development Kit (SDK) features.

Android Studio IDE. The free Android Studio (based on IntelliJ IDEA Community Edi-
tion) is now Google’s preferred IDE for Android app development (the original Android

http://www.deitel.com/books/javafp3
http://www.deitel.com/LiveLessons
http://www.deitel.com/books/jhtp10
http://www.ibm.com/developerworks/xml/newto
http://www.w3schools.com/xml/default.asp
http://bit.ly/DeitelXMLBasics
http://bit.ly/StructureXMLData

ptg16518503

 Features xxiii

development tools were based on the Eclipse IDE). Android Studio, combined with the
free Android Software Development Kit (SDK) and the free Java Development Kit (JDK),
provide all the software you’ll need to create, run and debug Android apps, export them
for distribution (e.g., upload them to Google Play™) and more. See the Before You Begin
section after this Preface for download and installation instructions for all this software.

Material Design. With Android 5, Google introduced its new Android look-and-feel,
based on their material design specification:

In the specification, Google overviews the goals and principles of material design, then
provides details on animation techniques, styling on-screen elements, positioning ele-
ments, uses of specific user-interface components, user-interaction patterns, accessibility,
internationalization and more. Google now uses material-design principles in its mobile
and browser-based apps.

Material design is a massive topic. In this book, we focus on the following aspects of
material design:

• Using Android’s built-in Material themes—these give Android’s built-in user-in-
terface components a look-and-feel that’s consistent with material design princi-
ples.

• Using built-in Android Studio app templates—these are designed by Google to
adhere to material design principles.

• Using user-interface components, as appropriate, that are recommended by the ma-
terial design guidelines for specific purposes, such as FloatingActionButtons,
TextInputLayouts and RecyclerViews.

In addition to Google’s material design specification, you may want to read the book
Android User Interface Design: Implementing Material Design for Developers, 2nd Edition:

by our professional colleague and past Android for Programmers reviewer Ian Clifton. From
Ian: “Google announced the material design guidelines in 2014, creating a design system
that suggested how an app should look as well as behave. The goal was to provide a design
framework that would improve the visual appearance of all apps and create a behavioral
consistency that did not exist previously across apps. Android User Interface Design: Imple-
menting Material Design for Developers, 2nd Edition covers material design in detail, mak-
ing user-centered design, color theory, typography, interaction patterns and other aspects
of design accessible to all developers.”

Support and App Compatibility Libraries. A big challenge developers face when using new
Android features is backward compatibility with earlier Android platforms. Many new
Android features are now introduced via support libraries. These enable you to use new
features in apps targeting current and past Android platforms. One such library is the App-
Compat library. Android Studio’s app templates have been updated to use the AppCompat
library and its themes, enabling the new apps you create to run on most Android devices.
By creating apps with the AppCompat library from the start, you avoid having to reimple-
ment your code if you decide to support older Android versions to target a wider audience.

http://www.google.com/design/spec/material-design/introduction.html

http://bit.ly/IanCliftonMaterialDesign

http://www.google.com/design/spec/material-design/introduction.html
http://bit.ly/IanCliftonMaterialDesign

ptg16518503

xxiv Preface

In addition, at the 2015 Google I/O developer conference, Google introduced the
Android Design Support Library

for using material design in Android 2.1 and higher. Material design support also is built
into most of Android Studio’s app templates.

REST Web Services and JSON. Chapter 7 presents the Weather Viewer app, which dem-
onstrates how to invoke Representational State Transfer (REST) web services—in this
case, the 16-day weather-forecast service from OpenWeatherMap.org. This web service re-
turns the weather forecast in JavaScript Object Notation (JSON)—a popular text-based
data-interchange format used to represent objects as key–value pairs of data. The app also
use classes from the org.json package to process the web service’s JSON response.

Android 6.0 Permissions. Android 6.0 has a new permissions model that’s designed for a
better user experience. Before Android 6.0, a user was required at installation time to grant
in advance all permissions that an app would ever need, which often discouraged users
from installing apps. With the new model, the app is installed without asking for any per-
missions. Instead, the user is asked to grant a permission only the first time the correspond-
ing feature is used. Chapter 5 introduces the new permissions model and uses it to request
permission from the user to store an image on the device’s external storage.

Fragments. Starting with Chapter 4, we use Fragments to create and manage portions of
each app’s GUI. You can combine several fragments to create user interfaces that take ad-
vantage of tablet screen sizes. You also can easily interchange fragments to make your GUIs
more dynamic, as you’ll do in Chapter 9.

View-Holder Pattern, ListView and RecyclerView. The apps in Chapters 7–9 each dis-
play scrollable lists of data. Chapter 7 presents the data in a ListView and introduces the
view-holder pattern, which improves scrolling performance by reusing GUI components
that scroll off-screen. With ListViews, using the view-holder pattern is recommended.
Chapters 8 and 9 each present a list of data in the more flexible and more efficient Recy-
clerView for which the view-holder pattern is required.

Printing. We demonstrate class PrintHelper (Chapter 5) from Android’s printing frame-
work for printing from an app. Class PrintHelper provides a user interface for selecting a
printer, has a method for determining whether a given device supports printing and pro-
vides a method for printing a Bitmap. PrintHelper is part of the Android Support Library.

Immersive Mode. The status bar at the top of the screen and the menu buttons at the bot-
tom can be hidden, allowing your apps to fill more of the screen. Users can access the status
bar by swiping down from the top of the screen, and the system bar (with the back button,
home button and recent apps button) by swiping up from the bottom.

Testing on Android Smartphones, Tablets and the Android Emulator. For the best app-de-
velopment experience and results, you should test your apps on actual Android smart-
phones and tablets. You can still have a meaningful experience using just the Android
emulator (see the Before You Begin section); however, it’s processor intensive and can be
slow, particularly with games that have a lot of moving parts. In Chapter 1, we mention
some Android features that are not supported on the emulator.

http://android-developers.blogspot.com/2015/05/android-design-
support-library.html

http://android-developers.blogspot.com/2015/05/android-design-support-library.html
http://android-developers.blogspot.com/2015/05/android-design-support-library.html

ptg16518503

 Pedagogic Features xxv

Cloud Test Lab. Google is working on a new Cloud Test Lab—an online site for testing
your apps across a wide range of devices, device orientations, locales, spoken languages and
network conditions. You’ll be able to run automated tests and receive detailed reports con-
taining screenshots and videos of your app in action, as well as error logs to help you find
problems and improve your apps. For more information and to sign up to be notified
when Cloud Test Lab becomes available, visit:

Android Wear and Android TV. Android Wear runs on smart watches. Android TV runs
directly on some smart TVs and media players that you can connect to your TV (typically
via HDMI cables). Many Android techniques we present also apply to Android Wear and
Android TV app development. The Android SDK provides Android Wear and Android
TV emulators, so you can test your apps for these platforms, even if you don’t have devices.
To learn more about these technologies from the developer perspective, visit:

for Android Wear and

for Android TV.

Multimedia. The apps use a range of Android multimedia capabilities, including graphics,
images, frame-by-frame animation and audio.

Uploading Apps to Google Play. Chapter 10, Google Play and App Business Issues, dis-
cusses Google Play and setting up a merchant account so you can sell your apps. You’ll
learn how to prepare apps for submission to Google Play, find tips for pricing your apps,
and find resources for monetizing them with in-app advertising and in-app sales of virtual
goods. You’ll also find resources for marketing your apps. Chapter 10 can be read after
Chapter 1.

Pedagogic Features
Syntax Coloring. For readability, we syntax color the code, similar to Android Studio’s use
of syntax coloring. Our syntax-coloring conventions are as follows:

Code Highlighting. We emphasize the key code segments in each program by enclosing
them in yellow rectangles.

Using Fonts for Emphasis. We use various font conventions:

• The defining occurrences of key terms appear bold maroon for easy reference.

• On-screen IDE components appear in bold Helvetica (e.g., the File menu).

• Program source code appears in Lucida (e.g., int x = 5;).

http://developers.google.com/cloud-test-lab/

http://developer.android.com/wear/index.html

http://developer.android.com/tv/index.html

comments appear like this
keywords appear like this
constants and literal values appear like this
all other code appears like this

http://developers.google.com/cloud-test-lab/
http://developer.android.com/wear/index.html
http://developer.android.com/tv/index.html

ptg16518503

xxvi Preface

In this book you’ll create GUIs using a combination of visual programming (point-
and-click, drag-and-drop) and writing code. We use different fonts when we refer to GUI
elements in program code versus GUI elements displayed in the IDE:

• When we refer to a GUI component that we create in a program, we place its class
name and object name in a Lucida font—e.g., Button saveContactButton.

• When we refer to a GUI component that’s part of the IDE, we place the compo-
nent’s text in a bold Helvetica font and use a plain text font for the component’s
type—e.g., “the File menu” or “the Run button.”

Using the > Character. We use the > character to indicate selecting a menu item from a
menu. For example, we use the notation File > New to indicate that you should select the
New menu item from the File menu.

Source Code. All of the book’s source code is available for download from

Documentation. All the Android documentation you’ll need to develop Android apps is
available at

An overview of Android Studio is available at

Chapter Objectives. Each chapter begins with a list of learning objectives.

Figures. Numerous tables, source-code listings and screenshots are included.

Software Engineering. We stress program clarity and performance, and we concentrate on
building well-engineered, object-oriented software.

Index. We include an extensive index for reference. The page number of the defining oc-
currence of each key term is highlighted in bold maroon.

Working with Open-Source Apps
The numerous free, open-source Android apps available online are excellent resources for
learning Android app development. We encourage you to download open-source apps and
read their source code to understand how they work.

Caution: The terms of open-source licenses vary considerably. Some allow you to
use the app’s source code freely for any purpose, while others stipulate that the code is
available for personal use only—not for creating for-sale or publicly available apps. Be sure
to read the licensing agreements carefully. If you wish to create a commercial app based
on an open-source app, you should consider having an intellectual-property attorney
read the license; be aware that these attorneys charge significant fees.

Android 6 App-Development Fundamentals LiveLessons Video
Training Products
Our Android 6 App-Development Fundamentals LiveLessons videos show you what you need
to know to start building robust, powerful Android apps with Android 6, the Java™ pro-

http://www.deitel.com/books/AndroidFP3

http://developer.android.com

http://developer.android.com/tools/studio/index.html

http://www.deitel.com/books/AndroidFP3
http://developer.android.com
http://developer.android.com/tools/studio/index.html

ptg16518503

 Join the Deitel & Associates, Inc. Social Networking Communities xxvii

gramming language and Android Studio. Included are approximately 16–20 hours of expert
training synchronized with Android 6 for Programmers: An App-Driven Approach. For addi-
tional information about Deitel LiveLessons video products, visit

or contact us at deitel@deitel.com. You also can access our LiveLessons videos if you
have a subscription to SafariBooksOnline.com. For a free 10-day trial, register at

Join the Deitel & Associates, Inc. Social Networking Communities
To receive updates on this and our other publications, new and updated apps, online
Resource Centers, instructor-led on-site training courses and more, join the Deitel social
networking communities on

• Facebook®—http://facebook.com/DeitelFan

• LinkedIn®—http://bit.ly/DeitelLinkedIn

• Twitter®—http://twitter.com/deitel

• Google+™—http://google.com/+DeitelFan

• YouTube®—http://youtube.com/DeitelTV

and subscribe to the Deitel® Buzz Online newsletter

Contacting the Authors
We’d sincerely appreciate your comments, criticisms, corrections and suggestions for im-
provement. Please address all questions and other correspondence to

We’ll respond promptly and post corrections and clarifications as Android evolves at:

and on Facebook, LinkedIn, Twitter, Google+ and the Deitel® Buzz Online.
Visit http://www.deitel.com to

• download code examples

• check out the growing list of online programming Resource Centers

• receive updates for this book, subscribe to the free Deitel® Buzz Online e-mail
newsletter at http://www.deitel.com/newsletter/subscribe.html

• receive information on our Dive Into® Series instructor-led programming-lan-
guage training courses offered at customer sites worldwide.

Acknowledgments
Thanks to Barbara Deitel for long hours devoted to this project—she created all of our
Android Resource Centers and patiently researched hundreds of technical details.

http://www.deitel.com/livelessons

http://www.safaribooksonline.com/register

http://www.deitel.com/newsletter/subscribe.html

deitel@deitel.com

http://www.deitel.com/books/AndroidFP3

http://www.deitel.com/livelessons
http://www.safaribooksonline.com/register
http://facebook.com/DeitelFan
http://bit.ly/DeitelLinkedIn
http://twitter.com/deitel
http://google.com/+DeitelFan
http://youtube.com/DeitelTV
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/books/AndroidFP3
http://www.deitel.com
http://www.deitel.com/newsletter/subscribe.html

ptg16518503

xxviii Preface

We appreciate the efforts and 20-year mentorship of our friend and professional col-
league Mark L. Taub, Editor-in-Chief of the Pearson Technology Group. Mark and his
team publish all of our professional books and LiveLessons video products. Michelle
Housley recruited distinguished members of the Android community to review the man-
uscript. We selected the cover art and Chuti Prasertsith designed the cover. John Fuller
manages the production of all of our Deitel Developer Series books.

We thank Michael Morgano, a former colleague of ours at Deitel & Associates, Inc.,
now an Android developer at PHHHOTO, who co-authored the first editions of this
book and our book, iPhone for Programmers: An App-Driven Approach. Michael is an
extraordinarily talented software developer.

Finally, we thank Abbey Deitel, former President of Deitel & Associates, Inc., and a
graduate of Carnegie Mellon University’s Tepper School of Management where she
received a B.S. in Industrial Management. Abbey managed the business operations of
Deitel & Associates, Inc. for 17 years, along the way co-authoring a number of our publi-
cations, including the previous editions’ versions of Chapters 1 and 10.

Reviewers of the Content from Android 6 for Programmers: An App-Driven Ap-
proach and Android How to Program Recent Editions
We’d like to thank the following professionals and academics who reviewed this book and/
or its previous editions. They scrutinized the text and the code and provided countless sug-
gestions for improving the presentation: Paul Beusterien (Principal, Mobile Developer So-
lutions), Eric J. Bowden, COO (Safe Driving Systems, LLC), Tony Cantrell (Georgia
Northwestern Technical College), Ian G. Clifton (Independent Contractor, Android App
Developer and author of Android User Interface Design: Implementing Material Design for
Developers, 2nd Edition), Daniel Galpin (Android Advocate and author of Intro to Android
Application Development), Jim Hathaway (Application Developer, Kellogg Company),
Douglas Jones (Senior Software Engineer, Fullpower Technologies), Charles Lasky (Na-
gautuck Community College), Enrique Lopez-Manas (Lead Android Architect, Sixt, and
Computer Science Teacher at the University of Alcalá in Madrid), Sebastian Nykopp
(Chief Architect, Reaktor), Michael Pardo (Android Developer, Mobiata), Luis Ramirez
(Lead Android Engineer at Reverb), Ronan “Zero” Schwarz (CIO, OpenIntents), Arijit
Sengupta (Wright State University), Donald Smith (Columbia College), Jesus Ubaldo
Quevedo-Torrero (University of Wisconsin, Parkside), Dawn Wick (Southwestern Com-
munity College) and Frank Xu (Gannon University).

Well, there you have it! Android 6 for Programmers: An App-Driven Approach will
quickly get you started developing Android apps with Android 6 and Android Studio. We
hope you enjoy reading the book as much as we enjoyed writing it!

Paul Deitel
Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. He holds the Java Certified Program-
mer and Java Certified Developer designations and is an Oracle Java Champion. Paul was
also named as a Microsoft® Most Valuable Professional (MVP) for C# in 2012–2014.

ptg16518503

 About Deitel & Associates, Inc. xxix

Through Deitel & Associates, Inc., he has delivered hundreds of programming courses
worldwide to clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity,
NASA at the Kennedy Space Center, the National Severe Storm Laboratory, White Sands
Missile Range, Rogue Wave Software, Boeing, SunGard, Nortel Networks, Puma, iRobot,
Invensys and many more. He and his co-author, Dr. Harvey Deitel, are the world’s best-
selling programming-language textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has over 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University—he studied computing in each of these programs before they spun off Com-
puter Science departments. He has extensive college teaching experience, including
earning tenure and serving as the Chairman of the Computer Science Department at
Boston College before founding Deitel & Associates, Inc., in 1991 with his son, Paul. The
Deitels’ publications have earned international recognition, with translations published in
Japanese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese, Tradi-
tional Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered
hundreds of programming courses to corporate, academic, government and military cli-
ents.

Alexander Wald, a Deitel summer intern, helped us convert the book and our
Android apps from Android 4.3 and 4.4 using Eclipse to Android 6 using Android Studio.
Alexander is currently pursuing a B.S. in Computer Science at Worcester Polytechnic
Institute with a minor in Electrical Engineering. He became interested in mathematics and
the sciences at an early age and has been writing code for approximately 9 years. He’s moti-
vated by his passion to be creative and innovative and his interest in sharing his knowledge
with others.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in Android and
iOS app development, computer programming languages, object technology and Internet
and web software technology. The company’s clients include many of the world’s largest
corporations, government agencies, branches of the military, and academic institutions.
The company offers instructor-led training courses delivered at client sites worldwide on
major programming languages and platforms, including Android app development, iOS
app development, Swift™, Java™, C++, C, Visual C#®, Visual Basic®, Internet and web
programming and a growing list of additional programming and software-development
courses.

Through its 40-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming professional books, college text-
books and LiveLessons video courses. Deitel & Associates, Inc. and the authors can be
reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit

deitel@deitel.com

http://www.deitel.com/training

www.allitebooks.com

http://www.deitel.com/training
http://www.allitebooks.org

ptg16518503

xxx Preface

To request a proposal for worldwide on-site, instructor-led training at your organization,
send an e-mail to deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
via links posted at http://www.deitel.com. Bulk orders by corporations, the govern-
ment, the military and academic institutions should be placed directly with Pearson. For
more information, visit

http://www.informit.com/store/sales.aspx

http://www.deitel.com
http://www.informit.com/store/sales.aspx

ptg16518503

In this section, you’ll set up your computer for use with this book. Google frequently up-
dates the Android™ development tools, so before reading this section, check the book's
website

to see if we’ve posted an updated version of this Before You Begin section.

Software and Hardware System Requirements
To develop Android apps, you need a Windows®, Linux® or Mac® OS X® system. To
view the latest operating-system requirements visit

and scroll down to the System Requirements heading. We developed the apps in this book
using the following software:

• Java SE 7 Software Development Kit

• Android Studio 1.4 Integrated Development Environment (IDE)

• Android 6 SDK (API 23)

You’ll see how to obtain each of these in the following sections.

Installing the Java Development Kit (JDK)
Android requires the Java Development Kit version 7 (JDK 7). All Java language features
in JDK 7 are supported in Android Studio, but the try-with-resources statement is sup-
ported only for Android platform versions with API levels 19 and higher. To download
JDK 7 for Windows, OS X or Linux, go to

Choose the appropriate 32-bit or 64-bit version for your computer hardware and operat-
ing system. Be sure to follow the installation instructions at

Android does not yet support Java 8 language features, such as lambda expressions, new
interface features and the stream APIs. You can use JDK 8 (as we did when developing this
book’s apps), provided that you use no Java 8 language features in your code.

http://www.deitel.com/books/AndroidFP3

http://developer.android.com/sdk/index.html#Requirements

http://www.oracle.com/technetwork/java/javase/downloads/java-
archive-downloads-javase7-521261.html

http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

Before You Begin

http://www.deitel.com/books/AndroidFP3
http://developer.android.com/sdk/index.html#Requirements
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

ptg16518503

xxxii Before You Begin

Installing Android Studio
Google’s Android Studio comes with the latest Android Software Development Kit (SDK)
and is based on the popular Java IDE from JetBrains called IntelliJ® IDEA. To download
Android Studio, go to

and click the Download Android Studio button. When the download completes, run the
installer and follow the on-screen instructions to complete the installation. If you previ-
ously installed an earlier Android Studio version, a Complete Installation window will ap-
pear at the end of the install process and give you the option to import your previous
settings. At the time of this writing, Android Studio 1.4 is the current released version and
Android Studio 1.5 is available as an early access release.

Using Early Access Releases
When building apps for release to Google Play or other app stores, it’s best to use the cur-
rently released version of Android Studio. If you’d like to work with new features in An-
droid Studio early access and beta releases, Google releases these versions in the so-called
Canary Channel and Beta Channel. You can configure Android Studio to obtain updates
from these channels. To update Android Studio to the latest early access or beta release:

1. Open Android Studio.

2. In the Welcome to Android Studio window, click Configure.

3. Click Check for Update.

4. In the Platform and Plugin Updates dialog, click the Updates link.

5. In the Updates dialog, select Canary Channel or Beta Channel from the drop-
down to the right of the Automatically check updates for checkbox.

6. Click OK, then click Close.

7. Click Check for Update again.

8. The IDE will check for updates and tell you whether there are updates to apply.

9. Click Update and Restart to install the latest Android Studio version.

If you’ve previously opened a project in Android Studio and did not close the project, the
IDE skips the Welcome to Android Studio window and opens the last project. In this case,
you can access the Updates dialog on a Mac via Android Studio > Check for Updates… or
on Windows/Linux via Help > Check for Update…. Then continue from Step 4 above. For
a Google’s list of Android Studio Tips and Tricks, visit:

Configure Android Studio to Show Line Numbers
By default, Android Studio does not show line numbers next to the code that you write.
To turn on line numbers to make it easier to follow our line-numbered code examples:

1. Open Android Studio ().

http://developer.android.com/sdk/index.html

http://developer.android.com/sdk/installing/studio-tips.html

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing/studio-tips.html

ptg16518503

 Configure Android Studio to Disallow Code Folding xxxiii

2. When the Welcome to Android Studio window appears, click Configure, then click
Settings to open the Default Settings window. If the Welcome to Android Studio
window does not appear, use the menus on Mac to select Android Studio > Pref-
erences… or on Windows/Linux to select File > Other Settings > Default Set-
tings….

3. Expand the Editor > General node and select Appearance, then ensure that Show
line numbers is selected and click OK.

Configure Android Studio to Disallow Code Folding
By default, Android Studio’s code-folding feature is enabled. This feature collapses multi-
ple lines of code into a single line so you can focus on other aspects of the code. For exam-
ple, all the import statements in a Java source-code file can be collapsed into a single line
to hide them, or an entire method can be collapsed into a single line. You can expand these
lines if you need to look at the code in detail. We disabled this feature in our IDE. If you
wish to do so, follow the steps in the preceding section, then under Editor > General > Code
Folding uncheck Show code folding outline.

Android 6 SDK
This book’s code examples were written using Android 6. At the time of this writing, the
Android 6 SDK was bundled with Android Studio. As new Android versions are released,
the latest version will be bundled, which may prevent our apps from compiling properly.
When you work with this book, we recommend using Android 6. You can install prior
Android platform versions as follows:

1. Open Android Studio ().

2. When the Welcome to Android Studio window appears, click Configure, then click
SDK Manager to display the Android SDK manager. If a project window appears
rather than the Welcome to Android Studio window, you can access the Android
SDK manager via Tools > Android > SDK Manager.

3. In the SDK Platforms tab, check the versions of Android you wish to install, then
click Apply and OK. The IDE then downloads and installs the additional platform
versions. The IDE also will help you keep your installed versions up-to-date.

Creating Android Virtual Devices (AVDs)
The Android SDK’s Android emulator allows you to test apps on your computer rather
than on an Android device—this is essential, of course, if you do not have Android devices.
To do so, you create Android Virtual Devices (AVDs) that run in the emulator. The emu-
lator can be slow, so most Android developers prefer testing on actual devices. Also, the em-
ulator does not support various features, including phone calls, USB connections,
headphones and Bluetooth. For the latest emulator capabilities and limitations, visit

That page’s Using Hardware Acceleration section discusses features that can improve emu-
lator performance, such as using the computer’s graphics processing unit (GPU) to in-

http://developer.android.com/tools/devices/emulator.html

http://developer.android.com/tools/devices/emulator.html

ptg16518503

xxxiv Before You Begin

crease graphics performance, and using the Intel HAXM (hardware accelerated execution
manager) emulator to increase overall AVD performance. There are also faster third-party
emulators, such as Genymotion.

After you’ve installed the Android Studio and before you run an app in the emulator,
you must create at least one Android Virtual Device (AVD) for Android 6. Each AVD
defines the characteristics of the device you wish to emulate, including

• its screen size in pixels

• its pixel density

• its screen’s physical size

• the size of the SD card for data storage

• and more.

To test your apps for multiple Android devices, you can create AVDs that emulate each
unique device. You also can use Google’s new Cloud Test Lab

a website that will enable you to upload your app and test it on many of today’s popular
Android devices. By default, Android Studio creates for you one AVD that’s configured
to use the version of Android bundled with the IDE. For this book, we use AVDs for two
of Google’s Android reference devices—the Nexus 6 phone and the Nexus 9 tablet—
which run standard Android without the modifications made by many device manufac-
turers. It’s easiest to create AVDs in Android Studio once you already have a project open
in the IDE. For this reason, we’ll show how to create the Android 6 AVDs in Section 1.9.

Setting Up an Android Device for Testing Apps
Testing apps on Android devices tends to be quicker than using AVDs. In addition, recall
that there are some features you can test only on actual devices. To execute your apps on
Android devices, follow the instructions at

If you’re developing on Microsoft Windows, you’ll also need the Windows USB driver for
Android devices that you installed earlier in this Before You Begin section. In some cases
on Windows, you may also need the manufacturer’s device-specific USB drivers. For a list
of USB driver sites for various device brands, visit

Downloading the Book’s Code Examples
The source code for Android 6 for Programmers: An App-Driven Approach is available for
download at

Click the Download Code Examples link to download a ZIP archive file containing the ex-
amples to your computer. Depending on your operating system, double click the ZIP file

https://developers.google.com/cloud-test-lab/

http://developer.android.com/tools/device.html

http://developer.android.com/tools/extras/oem-usb.html

http://www.deitel.com/books/AndroidFP3/

https://developers.google.com/cloud-test-lab/
http://developer.android.com/tools/device.html
http://developer.android.com/tools/extras/oem-usb.html
http://www.deitel.com/books/AndroidFP3/

ptg16518503

 A Note Regarding Android Studio and the Android SDK xxxv

to unzip the archive or right click and select the option to extract the archive’s contents. Re-
member where the extracted files are located on your system so you can access them later.

A Note Regarding Android Studio and the Android SDK
If you import one of our apps into Android Studio and it does not compile, this could be
the result of updates to Android Studio or the Android platform tools. For such issues,
please check Android questions and answers on StackOverflow at:

and the Google+ Android Development community at:

or write to us at

You’ve now installed all the software and downloaded the code examples you’ll need
to study Android app development with Android 6 for Programmers: An App-Driven
Approach and to begin developing your own apps. Enjoy!

http://stackoverflow.com/questions/tagged/android

http://bit.ly/GoogleAndroidDevelopment

deitel@deitel.com

http://stackoverflow.com/questions/tagged/android
http://bit.ly/GoogleAndroidDevelopment

ptg16518503

This page intentionally left blank

ptg16518503

1
Introduction to Android

O b j e c t i v e s
In this chapter you’ll be introduced to:

■ The history of Android and the Android SDK.

■ Google Play Store for downloading apps.

■ The Android packages used in this book to help you create
Android apps.

■ A quick refresher of object-technology concepts.

■ Key software for Android app development, including the
Android SDK, the Java SDK and the Android Studio
Integrated Development Environment (IDE).

■ Important Android documentation.

■ Test-driving an Android tip-calculator app in Android
Studio.

■ Characteristics of great Android apps.

ptg16518503

2 Chapter 1 Introduction to Android
O

u
tl

in
e

1.1 Introduction
Welcome to Android app development! We hope that working with Android 6 for Pro-
grammers: An App-Driven Approach will be an informative, challenging, entertaining and
rewarding experience for you.

This book is geared toward Java programmers. We use only complete working apps,
so if you don’t know Java but have object-oriented programming experience in another
language, such as C#, Objective-C/Cocoa or C++ (with class libraries), you should be able
to master the material quickly, learning a good amount of Java and Java-style object-ori-
ented programming as you learn Android app development.

App-Driven Approach
We use an app-driven approach—new features are discussed in the context of complete
working Android apps, with one app per chapter. For each app, we first describe it, then
have you test-drive it. Next, we briefly overview the key Android Studio IDE (Integrated
Development Environment), Java and Android SDK (Software Development Kit) tech-
nologies we use to implement the app. For apps that require it, we walk through designing
the GUI using Android Studio. Then we provide the complete source-code listing, using
line numbers, syntax coloring and code highlighting to emphasize the key portions of the
code. We also show one or more screenshots of the running app. Then we do a detailed
code walkthrough, emphasizing the new programming concepts introduced in the app.
You can download the source code for all of the book’s apps from

1.1 Introduction
1.2 Android—The World’s Leading

Mobile Operating System
1.3 Android Features
1.4 Android Operating System

1.4.1 Android 2.2 (Froyo)
1.4.2 Android 2.3 (Gingerbread)
1.4.3 Android 3.0 through 3.2

(Honeycomb)
1.4.4 Android 4.0 through 4.0.4 (Ice Cream

Sandwich)
1.4.5 Android 4.1–4.3 (Jelly Bean)
1.4.6 Android 4.4 (KitKat)
1.4.7 Android 5.0 and 5.1 (Lollipop)
1.4.8 Android 6 (Marshmallow)

1.5 Downloading Apps from Google Play
1.6 Packages
1.7 Android Software Development Kit

(SDK)
1.8 Object-Oriented Programming: A

Quick Refresher

1.8.1 The Automobile as an Object
1.8.2 Methods and Classes
1.8.3 Instantiation
1.8.4 Reuse
1.8.5 Messages and Method Calls
1.8.6 Attributes and Instance Variables
1.8.7 Encapsulation
1.8.8 Inheritance
1.8.9 Object-Oriented Analysis and Design

(OOAD)
1.9 Test-Driving the Tip Calculator App

in an Android Virtual Device (AVD)
1.9.1 Opening the Tip Calculator App’s

Project in Android Studio
1.9.2 Creating Android Virtual Devices

(AVDs)
1.9.3 Running the Tip Calculator App on

the Nexus 6 Smartphone AVD
1.9.4 Running the Tip Calculator App on

an Android Device
1.10 Building Great Android Apps
1.11 Android Development Resources
1.12 Wrap-Up

http://www.deitel.com/books/AndroidFP3/

http://www.deitel.com/books/AndroidFP3/

ptg16518503

1.2 Android—The World’s Leading Mobile Operating System 3

1.2 Android—The World’s Leading Mobile Operating
System
Android device sales are growing quickly, creating enormous opportunities for Android
app developers.

• The first-generation Android phones were released in October 2008. As of June
2015, Android had 82.8% of the global smartphone market share, compared to
13.9% for Apple and 2.6% for Microsoft.1

• Billions of apps have been downloaded from Google Play and more than one bil-
lion Android devices were shipped worldwide in 2014.2

• According to PC World, approximately 230 million tablets shipped in 2014 of
which 67.3% were Android tablets, compared to 27.6% for iOS and 5.1% for
Microsoft Windows.3

• Android devices now include smartphones, tablets, e-readers, robots, jet engines,
NASA satellites, game consoles, refrigerators, televisions, cameras, health-care de-
vices, smartwatches, automobile in-vehicle “infotainment” systems (for control-
ling the radio, GPS, phone calls, thermostat, etc.) and more.4

• A recent report says that mobile app revenue (across all mobile platforms) is ex-
pected to reach reach $99 billion by 2019.5

1.3 Android Features

Openness and Open Source
One benefit of developing Android apps is the openness of the platform. The operating
system is open source and free. This allows you to view Android’s source code and see how
its features are implemented. You can contribute to Android by reporting bugs:

or by participating in the Open Source Project discussion groups

Numerous open-source Android apps from Google and others are available on the Inter-
net (Fig. 1.1). Figure 1.2 shows you where you can get the Android source code, learn
about the philosophy behind the open-source operating system and get licensing informa-
tion.

1. http://www.idc.com/prodserv/smartphone-os-market-share.jsp.
2. http://www.cnet.com/news/android-shipments-exceed-1-billion-for-first-time-in-

2014/.
3. http://www.pcworld.com/article/2896196/windows-forecast-to-gradually-grab-tablet-

market-share-from-ios-and-android.html.
4. http://www.businessweek.com/articles/2013-05-29/behind-the-internet-of-things-is-

android-and-its-everywhere.
5. http://www.telecompetitor.com/mobile-app-forecast-calls-for-revenue-of-99-

billion-by-2019/.

http://source.android.com/source/report-bugs.html

http://source.android.com/community/index.html

http://source.android.com/source/report-bugs.html
http://source.android.com/community/index.html
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.cnet.com/news/android-shipments-exceed-1-billion-for-first-time-in-2014/
http://www.cnet.com/news/android-shipments-exceed-1-billion-for-first-time-in-2014/
http://www.pcworld.com/article/2896196/windows-forecast-to-gradually-grab-tablet-market-share-from-ios-and-android.html
http://www.pcworld.com/article/2896196/windows-forecast-to-gradually-grab-tablet-market-share-from-ios-and-android.html
http://www.businessweek.com/articles/2013-05-29/behind-the-internet-of-things-is-android-and-its-everywhere
http://www.businessweek.com/articles/2013-05-29/behind-the-internet-of-things-is-android-and-its-everywhere
http://www.telecompetitor.com/mobile-app-forecast-calls-for-revenue-of-99-billion-by-2019/
http://www.telecompetitor.com/mobile-app-forecast-calls-for-revenue-of-99-billion-by-2019/

ptg16518503

4 Chapter 1 Introduction to Android

The openness of the platform spurs rapid innovation. Unlike Apple’s proprietary iOS,
which is available only on Apple devices, Android is available on devices from dozens of orig-
inal equipment manufacturers (OEMs) and through numerous telecommunications carriers
worldwide. The intense competition among OEMs and carriers benefits customers.

Java
Android apps are developed with Java—one of the world’s most widely used programming
languages. Java was a logical choice for the Android platform, because it’s powerful, free,
open source and used by millions of developers. Experienced Java programmers can quick-
ly dive into Android development, using Google’s Android APIs (Application Program-
ming Interfaces) and others available from third parties.

Java is object oriented and has access to extensive class libraries that help you quickly
develop powerful apps. GUI programming in Java is event driven—in this book, you’ll
write apps that respond to various user-initiated events such as screen touches. In addition
to directly programming portions of your apps, you’ll also use the Android Studio IDE to
conveniently drag and drop predefined objects such as buttons and textboxes into place
on your screen, and label and resize them. Using Android Studio, you can create, run, test
and debug Android apps quickly and conveniently.

URL Description

http://en.wikipedia.org/wiki/

List_of_open_source_Android

_applications

Extensive list of open-source apps, organized by cate-
gory (e.g., games, communication, emulators, multi-
media, security).

http://developer.android.com/

tools/samples/index.html

Instructions for accessing Google’s sample apps for the
Android platform; includes approximately 100 apps
and games demonstrating various Android capabilities.

http://github.com GitHub allows you to share your apps and source code
and contribute to others’ open-source projects.

http://f-droid.org Hundreds of free and open-source Android apps.

http://www.openintents.org Open-source libraries that can be used to enhance app
capabilities.

http://www.stackoverflow.com Stack Overflow is a question-and-answer website for
programmers. Users can vote on each answer, and the
best responses rise to the top.

Fig. 1.1 | Open-source Android app and library resource sites.

 Title URL

Get Android Source Code http://source.android.com/source/downloading.html

Licenses http://source.android.com/source/licenses.html

FAQs http://source.android.com/source/faqs.html

Fig. 1.2 | Resources and source code for the open-source Android operating system.

http://en.wikipedia.org/wiki/List_of_open_source_Android_applications
http://developer.android.com/tools/samples/index.html
http://github.com
http://f-droid.org
http://www.openintents.org
http://www.stackoverflow.com
http://source.android.com/source/downloading.html
http://source.android.com/source/licenses.html
http://source.android.com/source/faqs.html
http://en.wikipedia.org/wiki/List_of_open_source_Android_applications
http://en.wikipedia.org/wiki/List_of_open_source_Android_applications
http://developer.android.com/tools/samples/index.html

ptg16518503

1.3 Android Features 5

Multitouch Screen
Android smartphones wrap the functionality of a mobile phone, Internet client, MP3
player, gaming console, digital camera and more into a handheld device with full-color
multitouch screens. With the touch of your fingers, you can navigate easily between using
your phone, running apps, playing music, web browsing and more. The screen can display
a keyboard for typing e-mails and text messages and entering data in apps (some Android
devices also have physical keyboards).

Gestures
The multitouch screens allow you to control the device with gestures involving one touch
or multiple simultaneous touches (Fig. 1.3).

Built-in Apps
Android devices come with several default apps, which may vary, depending on the device,
the manufacturer or the mobile service carrier. Some apps commonly included are Phone,
Contacts, Messenger, Browser, Calculator, Calendar, Clock and Photos.

Web Services
Web services are software components stored on one computer that can be accessed by an
app (or other software component) on another computer over the Internet. With web ser-
vices, you can create mashups, which enable you to rapidly develop apps by quickly com-
bining complementary web services, often from different organizations and possibly other
forms of information feeds. For example, 100 Destinations

combines the photos and tweets from Twitter with the mapping capabilities of Google
Maps to allow you to explore countries around the world through the photos of others.

Gesture name Physical action Used to

Touch Tap the screen once. Open an app, “press” a button or a menu
item.

Double touch Tap the screen twice. Zoom in on pictures, Google Maps and web
pages. Tap the screen twice again to zoom
back out.

Long press Touch the screen and hold
your finger in position.

Select items in a view—for example, check-
ing an item in a list.

Swipe Touch the screen, then move
your finger in the swipe
direction and release.

Flip item-by-item through a series, such as
photos. A swipe automatically stops at the
next item.

Drag Touch and drag your finger
across the screen.

Move objects or icons, or scroll through a
web page or list.

Pinch zoom Pinch two fingers together,
or spread them apart.

Zoom in and out on the screen (e.g., resizing
text and pictures).

Fig. 1.3 | Some common Android gestures.

http://www.100destinations.co.uk

http://www.100destinations.co.uk

ptg16518503

6 Chapter 1 Introduction to Android

Programmableweb

provides a directory of over 14,000 APIs and mashups, plus how-to guides and sample
code for creating your own mashups. Figure 1.4 lists some popular web services. We use
OpenWeatherMap.org’s weather web services in Chapter 7.

1.4 Android Operating System
The Android operating system was developed by Android, Inc., which was acquired by
Google in 2005. In 2007, the Open Handset Alliance™

was formed to develop, maintain and evolve Android, driving innovation in mobile tech-
nology and improving the user experience while reducing costs.

In this section, we walk through the evolution of the Android operating system,
showing its versions and their key functionality. The Android marketplace is frag-
mented—many devices still use older Android versions—so as a developer it’s helpful for
you to be aware of the features introduced in each version.

http://www.programmableweb.com/

Web services source How it’s used

Google Maps Mapping services

Twitter Microblogging

YouTube Video search

Facebook Social networking

Instagram Photo sharing

Foursquare Mobile check-in

LinkedIn Social networking for business

Netflix Movie rentals

eBay Internet auctions

Wikipedia Collaborative encyclopedia

PayPal Payments

Amazon eCommerce Shopping for books and lots of other products

Salesforce.com Customer Relationship Management (CRM)

Skype Internet telephony

Microsoft Bing Search

Flickr Photo sharing

Zillow Real-estate pricing

Yahoo Search Search

WeatherBug Weather

Fig. 1.4 | Some popular web services (http://www.programmableweb.com/
category/all/apis).

http://www.openhandsetalliance.com/oha_members.html

http://www.programmableweb.com/
http://www.programmableweb.com/category/all/apis
http://www.programmableweb.com/category/all/apis
http://www.openhandsetalliance.com/oha_members.html

ptg16518503

1.4 Android Operating System 7

Android Version Naming Convention
Each new version of Android is named after a dessert, going in alphabetical order
(Fig. 1.5).

1.4.1 Android 2.2 (Froyo)
Android 2.2 (also called Froyo, released in May 2010) introduced external storage, allow-
ing you to store apps on an external memory device rather than just in the Android device’s
internal memory. It also introduced the Android Cloud to Device Messaging (C2DM)
service. Cloud computing allows you to use software and data stored in the “cloud”—i.e.,
accessed on remote computers (or servers) via the Internet and available on demand—
rather than having it stored on your desktop, notebook computer or mobile device. Cloud
computing gives you the flexibility to increase or decrease computing resources to meet
your resource needs at any given time, making it more cost effective than purchasing ex-
pensive hardware to ensure that you have enough storage and processing power for occa-
sional peak levels. Android C2DM allows app developers to send data from their servers
to their apps installed on Android devices, even when the apps are not currently running.
The server notifies the apps to contact it directly to receive updated app or user data.6

C2DM is now deprecated in favor of Google Cloud Messaging, which was introduced in
2012.

For information about additional Android 2.2 features—OpenGL ES 2.0 graphics
capabilities, the media framework and more—visit

1.4.2 Android 2.3 (Gingerbread)
Android 2.3 (Gingerbread), released later in 2010, added more user refinements, such as
a redesigned keyboard, improved navigation capabilities, increased power efficiency and
more. It also added several developer features for communications (e.g., technologies that
make it easier to make and receive calls from within an app), multimedia (e.g., new audio
and graphics APIs) and gaming (e.g., improved performance and new sensors, such as a
gyroscope for better motion processing).

Android version Name Android version Name

Android 1.5 Cupcake Android 4.0 Ice Cream Sandwich

Android 1.6 Donut Android 4.1–4.3 Jelly Bean

Android 2.0–2.1 Eclair Android 4.4 KitKat

Android 2.2 Froyo Android 5.0–5.1 Lollipop

Android 2.3 Gingerbread Android 6.0 Marshmallow

Android 3.0–3.2 Honeycomb

Fig. 1.5 | Android version numbers and the corresponding names.

6. http://code.google.com/android/c2dm/.

http://developer.android.com/about/versions/android-2.2-
highlights.html

http://developer.android.com/about/versions/android-2.2-highlights.html
http://developer.android.com/about/versions/android-2.2-highlights.html
http://code.google.com/android/c2dm/

ptg16518503

8 Chapter 1 Introduction to Android

One of the most significant new features in Android 2.3 was support for near-field
communication (NFC)—a short-range wireless connectivity standard that enables com-
munication between two devices within a few centimeters. NFC support and features vary
by Android device. NFC can be used for payments (for example, touching your NFC-
enabled Android device to a payment device on a soda machine), exchanging data such as
contacts and pictures, pairing devices and accessories and more. For more Android 2.3
developer features, see

1.4.3 Android 3.0 through 3.2 (Honeycomb)
Android 3.0 (Honeycomb) included user-interface improvements specifically for large-
screen devices (e.g., tablets), such as a redesigned keyboard for more efficient typing, a vi-
sually appealing 3D user interface, easier navigation between screens within an app and
more. New Android 3.0 developer features included:

• fragments, which describe portions of an app’s user interface and can be com-
bined into one screen or used across multiple screens

• a persistent Action Bar at the top of the screen providing users with options for
interacting with apps

• the ability to add large-screen layouts to existing apps designed for small screens
to optimize your app for use on different screen sizes

• a visually attractive and more functional user interface, known as “Holo” for its
holographic look and feel

• a new animation framework

• improved graphics and multimedia capabilities

• ability to use multicore processor architectures for enhanced performance

• increased Bluetooth support (e.g., enabling an app to determine if there are any
connected devices such as headphones or a keyboard)

• and an animation framework for animating user-interface or graphics objects.

For a list of Android 3.0 user and developer features and platform technologies, go to

1.4.4 Android 4.0 through 4.0.4 (Ice Cream Sandwich)
Android 4.0 (Ice Cream Sandwich), released in 2011, merged Android 2.3 (Gingerbread)
and Android 3.0 (Honeycomb) into one operating system for use on all Android devices.
This allowed you to incorporate into your smartphone apps Honeycomb’s features that
previously were available only on tablets—the “Holo” user interface, a new launcher (used
to customize the device’s home screen and launch apps) and more—and easily scale your
apps to work on different devices. Ice Cream Sandwich also added several APIs for im-
proved communication between devices, accessibility for users with disabilities (e.g., vision

http://developer.android.com/about/versions/android-2.3-
highlights.html

http://developer.android.com/about/versions/android-3.0-
highlights.html

http://developer.android.com/about/versions/android-2.3-highlights.html
http://developer.android.com/about/versions/android-2.3-highlights.html
http://developer.android.com/about/versions/android-3.0-highlights.html
http://developer.android.com/about/versions/android-3.0-highlights.html

ptg16518503

1.4 Android Operating System 9

impairments), social networking and more (Fig. 1.6). For a complete list of Android 4.0
APIs, see

1.4.5 Android 4.1–4.3 (Jelly Bean)
Android Jelly Bean, released in 2012, focused on many behind-the-scenes platform im-
provements, such as better performance, accessibility, support for international users and
more. Other new features included support for enhanced Bluetooth connectivity (Blue-
tooth LE was introduced in Android 4.3), external displays, support for multiple users on
one tablet, restricted user profiles, improved security, appearance enhancements (e.g., re-
sizable app widgets, lock screen widgets, and expandable notifications), optimized location
and sensor capabilities, better media capabilities (audio/video), and more seamless switch-
ing between apps and screens (Fig. 1.7). In addition, Google introduced new APIs that are
developed separately from Android platform versions:

http://developer.android.com/about/versions/android-4.0.html

Feature Description

Face detection Using the camera, compatible devices can determine the posi-
tioning of the user’s eyes, nose and mouth. The camera also can
track the user’s eye movement, allowing you to create apps that
change perspective, based on where the user is looking.

Virtual camera operator When filming video of multiple people, the camera will auto-
matically focus on the person who is speaking.

Android Beam Using NFC, Android Beam allows you to touch two Android
devices to share content (e.g., contacts, pictures, videos).

Wi-Fi Direct Wi-Fi P2P (peer-to-peer) APIs allow you to connect multiple
Android devices using Wi-Fi. The devices can communicate
wirelessly at a greater distance than when using Bluetooth.

Social API Access and share contact information across social networks and
apps (with the user’s permission).

Calendar API Add and share events across multiple apps, manage alerts and
attendees and more.

Accessibility APIs Use the new Accessibility Text-to-Speech APIs to enhance the
user experience of your apps for people with disabilities such as
vision impairments and more. The explore-by-touch mode
allows users with vision impairments to touch anywhere on the
screen and hear a voice description of the touched content.

Android@Home frame-
work

Use the Android@Home framework to create apps that control
appliances in users’ homes, such as, thermostats, irrigation sys-
tems, networked light bulbs and more.

Bluetooth health devices Create apps that communicate with Bluetooth health devices
such as scales, heart-rate monitors and more.

Fig. 1.6 | Some Android Ice Cream Sandwich developer features
(http://developer.android.com/about/versions/android-4.0.html).

http://developer.android.com/about/versions/android-4.0.html
http://developer.android.com/about/versions/android-4.0.html

ptg16518503

10 Chapter 1 Introduction to Android

• Google Cloud Messaging—a cross-platform solution that enables developers to
deliver messages to devices

• Google Play Services—a set of APIs for incorporating Google functionality into
your apps.

For the Jelly Bean features list, see

1.4.6 Android 4.4 (KitKat)
Android 4.4 KitKat, released in October 2013, includes several performance improvements
that make it possible to run the operating system on all Android devices, including older,
memory-constrained devices, which are particularly popular in developing countries.7

Enabling more users to update to KitKat reduced the “fragmentation” of Android ver-
sions in the market, which has been a challenge for developers who previously had to
design apps to run across multiple versions of the operating system, or limit their potential
market by targeting their apps to a specific version of the operating system.

Android KitKat also includes security and accessibility enhancements, improved
graphics and multimedia capabilities, memory-use analysis tools and more. Figure 1.8 lists
some of the key KitKat features. For a complete list, see

http://developer.android.com/about/versions/jelly-bean.html

Feature Description

Android Beam Enhanced to enable communication via Bluetooth in addition to
NFC.

Lock screen widgets Create widgets that appear on the user’s screen when the device is
locked, or modify your existing home-screen widgets so that they’re
also visible when the device is locked.

Photo Sphere APIs for working with the new panoramic photo features that enable
users to take 360-degree photos, similar to those used for Google
Maps Street View.

Daydreams Daydreams are interactive screensavers that are activated when a
device is docked or charging. Daydreams can play audio and video
and respond to user interactions.

Language support New features help your apps reach international users, such as bidirec-
tional text (left-to-right or right-to-left), international keyboards,
additional keyboard layouts and more.

Developer options Several new tracking and debugging features help you improve your
apps, such as bug reports that include a screenfshot and device state
information.

Fig. 1.7 | Some Android Jelly Bean features (http://developer.android.com/about/
versions/jelly-bean.html).

7. http://techcrunch.com/2013/10/31/android-4-4-kitkat-google/.

http://developer.android.com/about/versions/kitkat.html

http://developer.android.com/about/versions/jelly-bean.html
http://developer.android.com/about/versions/jelly-bean.html
http://developer.android.com/about/versions/jelly-bean.html
http://developer.android.com/about/versions/kitkat.html
http://techcrunch.com/2013/10/31/android-4-4-kitkat-google/

ptg16518503

1.4 Android Operating System 11

1.4.7 Android 5.0 and 5.1 (Lollipop)
Android Lollipop—released in November 2014—was a major update with thousands of
API enhancements for phones and tablets, and new capabilities that enable developers to
create apps for wearables (e.g., smart watches), TVs and cars. One of the biggest changes
was material design—a complete user-interface redesign (also used in Google’s web apps).
Other features included: a new Android runtime, notification enhancements (enabling us-
ers to interact with a notification without leaving the current app), networking enhance-
ments (Bluetooth, Wi-Fi, cellular and NFC), high-performance graphics (OpenGL ES
3.1 and the Android Extension Pack), better audio capabilities (capture, multichannel
mixing, playback and support for USB peripherals), enhanced camera capabilities, screen
sharing, new sensor support, enhanced accessibility features, multiple SIM card support and
more. Figure 1.9 lists some of the key Lollipop features. For a complete list, see

Feature Description

Immersive mode The status bar at the top of the screen and the menu buttons at the bot-
tom can be hidden, allowing your apps to fill more of the screen. Users
can access the status bar by swiping down from the top of the screen, and
the system bar (with the back button, home button and recent apps but-
ton) by swiping up from the bottom.

Printing framework Build printing functionality into your apps, including locating available
printers over Wi-Fi or the cloud, selecting the paper size and specifying
which pages to print.

Storage access
framework

Create document storage providers that allow users to browse, create and
edit files (e.g., documents and images) across multiple apps.

SMS provider Create SMS (Short Message Service) or MMS (Multimedia Messaging
Service) apps using the new SMS provider and APIs. Users can now
select their default messaging app.

Transitions framework The new framework makes it easier to create transition animations.

Screen recording Record video of your app to create tutorials and marketing materials.

Enhanced accessibility The captioning manager API allows apps to check the user's captioning
preferences (e.g., language, text styles and more).

Chromium WebView Supports the latest standards for displaying web content including
HTML5, CSS3 and a faster version of JavaScript.

Step detector and step
counter

Create apps that detect whether the user is running, walking or climbing
stairs and count the number of steps.

Host Card Emulator
(HCE)

HCE enables any app to perform secure NFC transactions (e.g., mobile
payments) without the need for a secure element on the SIM card con-
trolled by the wireless carrier.

Fig. 1.8 | Some Android KitKat features (http://developer.android.com/about/
versions/kitkat.html).

http://developer.android.com/about/versions/lollipop.html
http://developer.android.com/about/versions/android-5.0.html
http://developer.android.com/about/versions/android-5.1.html

http://developer.android.com/about/versions/kitkat.html
http://developer.android.com/about/versions/kitkat.html
http://developer.android.com/about/versions/lollipop.html
http://developer.android.com/about/versions/android-5.0.html
http://developer.android.com/about/versions/android-5.1.html

ptg16518503

12 Chapter 1 Introduction to Android

1.4.8 Android 6 (Marshmallow)
Android Marshmallow, released in September 2015, is the current version of Android at
the time of this writing. Some new features include Now on Tap (for getting Google Now
information in the context of an app), Doze and App Standby (for saving battery), a new
permissions model to make apps easier to install, fingerprint authentication, better data
protection, better text-selection support, 4K display support, new audio and video capa-
bilities, new camera capabilities (flashlight and image-reprocessing APIs) and more.
Figure 1.10 lists some of the key Lollipop features. For a complete list, see

Feature Description

Material design Google’s new look-and-feel for Android and web applications was the key
new feature in Lollipop. Material design helps you create apps with nice
transition effects, shadows that add depth to the user interface and empha-
size actionable components, customization capabilities and more. For
details, visit https://www.google.com/design/spec/material-design/
introduction.html.

ART runtime Google replaced the original Android runtime with the new 64-bit com-
patible ART runtime, which uses a combination of interpretation, ahead-
of-time (AOT) compilation and just-in-time (JIT) compilation to
improve performance.

Concurrent docu-
ments and activi-
ties in the recent
apps screen

Apps can now specify that multiple activities and documents should
appear on the recent apps screen. For example, if the user has multiple tabs
open in a web browser or multiple documents open in a text-editing app,
when the user touches the recent apps button (), each browser tab or
document can appear as a separate item that the user can select.

Screen capturing and
sharing

Apps can now capture the device’s screen and share the contents with
other users across a network.

Project Volta Features that help preserve battery life, including the new JobScheduler
that can execute asynchronous tasks when the device is charging, con-
nected to an unmetered network (i.e., use Wi-Fi vs. cellular data) or idle.

Fig. 1.9 | Some Android Lollipop features (http://developer.android.com/about/
versions/lollipop.html).

http://developer.android.com/about/versions/marshmallow/android-
6.0-changes.html

Feature Description

Doze Using software and sensors, Android determines when a device is station-
ary for a period of time—such as when you place it on a table overnight—
and defers background processes that drain the battery.

Fig. 1.10 | Some Android Marshmallow features (http://developer.android.com/about/
versions/marshmallow/android-6.0-changes.html). (Part 1 of 2.)

https://www.google.com/design/spec/material-design/introduction.html
http://developer.android.com/about/versions/lollipop.html
http://developer.android.com/about/versions/lollipop.html
http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
https://www.google.com/design/spec/material-design/introduction.html

ptg16518503

1.5 Downloading Apps from Google Play 13

1.5 Downloading Apps from Google Play
At the time of this writing, there were over 1.6 million apps in Google Play, and the num-
ber is growing quickly.8 Figure 1.11 lists some popular free and fee-based apps in various
categories. You can download apps through the Play Store app installed on your Android
device. You also can log into your Google Play account at

then specify the Android device on which to install the app. It will then download via the
device’s Wi-Fi or 3G/4G connection. In Chapter 10, Google Play and App Business Is-
sues, we discuss additional app stores, offering your apps for free or charging a fee, app
pricing and more.

App Standby For apps that a user has open but has not interacted with recently,
Android defers background network activity.

Now on Tap Tap and hold the home button while inside any app and Google Now
inspects what’s on the screen and presents relevant information in the
form of cards. For example, in a text message discussing a movie, a card
containing information about that movie is displayed. Similarly, in a text
message mentioning a restaurant name, a card with the ratings, location
and phone number appears.

New permissions
model

Before Android 6.0, a user was required at installation time to grant in
advance all permissions that an app would ever need—this caused many
people not to install certain apps. With the new model, the app is installed
without asking for any permissions. Instead, the user is asked to grant a
permission only the first time the corresponding feature is used.

Fingerprint authenti-
cation

For devices with fingerprint readers, apps can now authenticate users via
their fingerprints.

App linking Enables developers to associate apps with their own web domains and
craft web links that launch specific apps from the same developer.

Automatic backup Android can automatically backup and restore an app’s data.

Direct Share You can define direct share targets in your app that enable users to share
data via other apps, directly from your app.

Voice Interaction API Enables apps to respond to voice interactions.

Bluetooth stylus sup-
port

Apps can respond to pressure-sensitive interactions from a Bluetooth sty-
lus—for example, in a drawing app, pressing the stylus against the screen
harder could result in a thicker line.

8. http://www.statista.com/statistics/266210/number-of-available-applications-in-

the-google-play-store/.

http://play.google.com

Feature Description

Fig. 1.10 | Some Android Marshmallow features (http://developer.android.com/about/
versions/marshmallow/android-6.0-changes.html). (Part 2 of 2.)

www.allitebooks.com

http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
http://play.google.com
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.allitebooks.org

ptg16518503

14 Chapter 1 Introduction to Android

1.6 Packages
Android uses a collection of packages, which are named groups of related, predefined class-
es. Some of the packages are Android specific, some are Java specific and some are Google
specific. These packages allow you to conveniently access Android OS features and incor-
porate them into your apps. The Android packages help you create apps that adhere to An-
droid’s unique look-and-feel conventions and style guidelines,

Figure 1.12 lists many of the packages we discuss in this book. For a complete list of An-
droid packages, see

Google Play category Some popular apps in the category

Books and Reference WolframAlpha, Dictionary.com, Audible for Android, Kindle

Business Polaris Office, OfficeSuite 8, QuickBooks Online, PayPal Here

Communication Snapchat, LinkedIn, Pinterest, Instagram, WeChat, Line

Education Google Classroom, Star Tracker, Sight Words, Math Tricks

Entertainment Showtime Anytime, History Channel, Discovery Channel

Finance PayPal, Credit Karma, Google Wallet, Chase Mobile

Games Pac-Man 256, Angry Birds 2, Fruit Ninja, Tetris, Solitaire

Health & Fitness RunKeeper, ViewRanger GPS, Calorie Counter

Lifestyle Assistant, Horoscope, Food Network, Starbucks

Live Wallpaper Facebook, Next Launcher 3D Shell, Weather Live

Media & Video VHS Camera Recorder, VivaVideo Pro, musical.ly, GIF Keyboard

Medical Feed Baby Pro, CareZone, FollowMyHealth, Essential Anatomy

Music & Audio SoundCloud, Spotify, Beats Music, Pandora, iHeartRadio

News & Magazines BBC News, CBS News, NPR News, Reuters, NBC News

Photography Google Camera, Instagram, Retrica, GoPro App, Pencil Sketch

Productivity Pocket, Wunderlist, Microsoft Word, Google Docs, SwiftKey

Shopping Zappos, Groupon, JackThreads, Fancy, Etsy, Home Depot

Social Snapchat, Instagram, Meetup, textPlus, Pinterest, Tumblr

Sports Fox Sports, theScore, NBA 2015–16, ESPN, CBS Sports

Tools CM Security Antivirus, Clean Master, Google Translate

Transportation Uber, Lyft, MarrineTraffic, BringGo, DigiHUD Speedometer

Travel & Local Priceline, Google Earth, Eat24, GasBuddy, Hotels.com

Weather AccuWeather, Weather Underground, Yahoo Weather

Widgets Facebook, Pandora, Pocket Casts, Tasker, Weather Timeline

Fig. 1.11 | Some popular Android apps in Google Play.

http://developer.android.com/design/index.html

http://developer.android.com/reference/packages.html

http://developer.android.com/design/index.html
http://developer.android.com/reference/packages.html

ptg16518503

1.6 Packages 15

Several of the packages we use are from the Android Support libraries, which enable you
to use newer Android features in apps that run on current and older platforms. For an
overview of the key features in the Android Support libraries, visit:

https://developer.android.com/tools/support-library/features.html

Package Description

android.animation Classes for property animation. (Chapter 4’s Flag Quiz app and
Chapter 5’s Doodlz app.)

android.app Includes high-level classes in the Android app model. (Chapter 4’s
Flag Quiz app and Chapter 5’s Doodlz app.)

android.content Access and publish data on a device. (Chapter 6’s Cannon Game app.)

android.content.res Classes for accessing app resources (e.g., media, colors, drawables,
etc.), and device-configuration information affecting app behavior.
(Chapter 4’s Flag Quiz app.)

android.database Handling data returned by the content provider. (Chapter 9’s Address
Book app.)

android.database.sqlite SQLite database management for private databases. (Chapter 9’s
Address Book app.)

android.graphics Graphics tools used for drawing to the screen. (Chapter 4’s Flag Quiz
app and Chapter 5’s Doodlz app.)

android.graphics.

drawable

Classes for display-only elements (e.g., gradients, etc.). (Chapter 4’s
Flag Quiz app.)

android.hardware Device hardware support. (Chapter 5’s Doodlz app.)

android.media Classes for handling audio and video media interfaces. (Chapter 6’s
Cannon Game app.)

android.net Network access classes. (Chapter 8’s Twitter® Searches app.)

android.os Operating-systems services. (Chapter 3’s Tip Calculator app.)

android.preference Working with an app’s user preferences. (Chapter 4’s Flag Quiz app.)

android.provider Access to Android content providers. (Chapter 5’s Doodlz app.)

android.support.

design.widget

Android Design Support Library classes that enable recent GUI
enhancements to run on current and older Android platforms.
(Chapter 7’s Weather Viewer app.)

android.support.v4.

print

Part of the v4 Android Support Library for use in platform API levels
4 and higher. Includes features for using the Android 4.4 printing
framework. (Chapter 5’s Doodlz app.)

android.support.v7.app Part of the v7 Android Support Library for use in platform API levels
7 and higher. Includes application-compatibility library components,
such as app bars (formerly action bars). (Chapter 7’s Weather Viewer
app.)

Fig. 1.12 | Android and Java packages used in this book, listed with the chapter in which they
first appear. We discuss additional packages in Volume 2. (Part 1 of 2.)

https://developer.android.com/tools/support-library/features.html

ptg16518503

16 Chapter 1 Introduction to Android

1.7 Android Software Development Kit (SDK)
The Android SDK provides the tools you’ll need to build Android apps. It gets installed
with Android Studio. See the Before You Begin section (after the Preface) for details on
downloading the software you’ll need to develop Android apps, including Java SE 7 and
Android Studio.

Android Studio
Android Studio9 was announced at the Google I/O developer conference in 2013 and is
now Google’s preferred Android IDE. The IDE includes:

• GUI designer

• code editor with support for syntax coloring and line numbering

• auto-indenting and auto-complete (i.e., type hinting)

• debugger

• version control system

• refactoring support

and more.

The Android Emulator
The Android emulator, included in the Android SDK, allows you to run Android apps in
a simulated environment within Windows, Mac OS X or Linux, without using an actual
Android device. The emulator displays a realistic Android user-interface window. It’s par-
ticularly useful if you do not have access to Android devices for testing. You should certain-
ly test your apps on a variety of Android devices before uploading them to Google Play.

Before running an app in the emulator, you’ll need to create an Android Virtual
Device (AVD), which defines the characteristics of the device on which you want to test,
including the hardware, system image, screen size, data storage and more. If you want to

android.support.v7.

widget

Part of the v7 Android Support Library for use in platform API levels
7 and higher. Includes GUI components and layouts. (Chapter 7’s
Weather Viewer app.)

android.text Rendering and tracking text changes. (Chapter 3’s Tip Calculator app.)

android.util Utility methods and XML utilities. (Chapter 4’s Flag Quiz app.)

android.widget User-interface classes for widgets. (Chapter 3’s Tip Calculator app.)

android.view User interface classes for layout and user interactions. (Chapter 4’s
Flag Quiz app.)

9. Android Studio is based on the JetBrains IntelliJ IDEA Java IDE (http://www.jetbrains.com/
idea/)

Package Description

Fig. 1.12 | Android and Java packages used in this book, listed with the chapter in which they
first appear. We discuss additional packages in Volume 2. (Part 2 of 2.)

http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/

ptg16518503

1.7 Android Software Development Kit (SDK) 17

test your apps for multiple Android devices, you’ll need to create separate AVDs to emu-
late each unique device, or use Google’s Cloud Test Lab

which enables you to test on many different devices.
You can reproduce on the emulator most of the Android gestures (Fig. 1.13) and con-

trols (Fig. 1.14) using your computer’s keyboard and mouse. The gestures on the emulator
are a bit limited, since your computer probably cannot simulate all the Android hardware
features. For example, to test GPS apps in the emulator, you’ll need to create files that sim-
ulate GPS readings. Also, although you can simulate orientation changes (to portrait or
landscape mode), simulating particular accelerometer readings (the accelerometer allows
the device to respond to up/down, left/right and forward/backward acceleration) requires
features that are not built into the emulator. The emulator can, however, use sensor data
from an actual Android device connected to the computer, as described at

Figure 1.15 lists Android functionality that’s not available on the emulator. You can install
your app on an Android device to test these features. You’ll start creating AVDs and using
the emulator to develop Android apps in Chapter 2’s Welcome app.

https://developers.google.com/cloud-test-lab

http://tools.android.com/tips/hardware-emulation

Gesture Emulator action

Touch Click the mouse once. Introduced in Chapter 3’s Tip Calculator app.

Double touch Double click the mouse.

Long press Click and hold the mouse. Introduced in Chapter 8’s Twitter® Searches app.

Drag Click, hold and drag the mouse. Introduced in Chapter 6’s Cannon Game app.

Swipe Click and hold the mouse, move the pointer in the swipe direction and release
the mouse. Introduced in Chapter 7’s Weather Viewer app.

Pinch zoom Press and hold the Ctrl (Control) key. Two circles that simulate the two touches
will appear. Move the circles to the start position, click and hold the mouse
and drag the circles to the end position.

Fig. 1.13 | Android gestures on the emulator.

Control Emulator action

Back Esc

Call/dial button F3

Camera Ctrl-KEYPAD_5, Ctrl-F3

End call button F4

Home Home button

Menu (left softkey) F2 or Page Up button

Fig. 1.14 | Android hardware controls in the emulator (for additional controls,
go to http://developer.android.com/tools/help/emulator.html). (Part 1 of 2.)

https://developers.google.com/cloud-test-lab
http://tools.android.com/tips/hardware-emulation
http://developer.android.com/tools/help/emulator.html

ptg16518503

18 Chapter 1 Introduction to Android

1.8 Object-Oriented Programming: A Quick Refresher
Android uses object-oriented programming techniques, so in this section we review the ba-
sics of object technology. We use all of these concepts in this book.

Building software quickly, correctly and economically remains an elusive goal at a
time when demands for new and more powerful software are soaring. Objects, or more pre-
cisely—as we’ll see in Chapter 3—the classes objects come from, are essentially reusable
software components. There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc. Almost any noun can be reasonably represented as
a software object in terms of attributes (e.g., name, color and size) and behaviors (e.g., cal-
culating, moving and communicating). Software developers are discovering that using a
modular, object-oriented design-and-implementation approach can make software devel-
opment groups much more productive than they could be with earlier popular techniques
like “structured programming”—object-oriented programs are often easier to understand,
correct and modify.

Power button F7

Search F5

* (right softkey) Shift-F2 or Page Down button

Rotate to previous orientation KEYPAD_7, Ctrl-F11

Rotate to next orientation KEYPAD_9, Ctrl-F12

Toggle cell networking on/off F8

Volume up button KEYPAD_PLUS, Ctrl-F5

Volume down button KEYPAD_MINUS, Ctrl-F6

Android functionality not available on the emulator

• Making or receiving real phone calls (the emulator allows simulated calls only)
• Bluetooth
• USB connections
• Device-attached headphones
• Determining network connected state
• Determining battery charge or power charging state
• Determining SD card insert/eject
• Direct support for sensors (accelerometer, barometer, compass, light sensor, proximity sen-

sor)—it is possible, however, to use sensor data from a USB-connected device

Fig. 1.15 | Android functionality not available in the emulator
(http://developer.android.com/tools/devices/emulator.html#limitations).

Control Emulator action

Fig. 1.14 | Android hardware controls in the emulator (for additional controls,
go to http://developer.android.com/tools/help/emulator.html). (Part 2 of 2.)

http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/devices/emulator.html#limitations

ptg16518503

1.8 Object-Oriented Programming: A Quick Refresher 19

1.8.1 The Automobile as an Object
To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the blueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the car go faster, just as
the brake pedal hides the mechanisms that slow the car, and the steering wheel hides the
mechanisms that turn the car. This enables people with little or no knowledge of how en-
gines, braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the kitchen of a blueprint, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make it go
faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so the
driver must press the pedal to accelerate the car.

1.8.2 Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that actually perform its tasks. The method hides these statements from its user, just
as the accelerator pedal of a car hides from the driver the mechanisms of making the car
go faster. A class houses the methods that perform the class’s tasks. For example, a class
that represents a bank account might contain one method to deposit money to an account,
another to withdraw money from an account and a third to inquire what the account’s cur-
rent balance is. A class is similar in concept to a car’s engineering drawings, which house
the design of an accelerator pedal, steering wheel, and so on.

1.8.3 Instantiation
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object of a class before a program can perform the tasks that
the class’s methods define. The process of doing this is called instantiation. An object is
then referred to as an instance of its class.

1.8.4 Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-
sive testing, debugging and performance tuning. Just as the notion of interchangeable parts
was crucial to the Industrial Revolution, reusable classes are crucial to the software revolu-
tion that has been spurred by object technology.

1.8.5 Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is a method call

ptg16518503

20 Chapter 1 Introduction to Android

that tells a method of the object to perform its task. For example, a program might call a
particular bank-account object’s deposit method to increase the account’s balance.

1.8.6 Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

1.8.7 Encapsulation
Classes encapsulate (i.e., wrap) attributes and methods into objects—an object’s attributes
and methods are intimately related. Objects may communicate with one another, but
they’re normally not allowed to know how other objects are implemented—implementa-
tion details are hidden within the objects themselves. This information hiding is crucial to
good software engineering.

1.8.8 Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new class
absorbs the characteristics of an existing one, possibly customizing them and adding unique
characteristics of its own. In our car analogy, a “convertible” certainly is an object of the more
general class “automobile,” but more specifically, the roof can be raised or lowered.

1.8.9 Object-Oriented Analysis and Design (OOAD)
How will you create the code for your programs? Perhaps, like many programmers, you’ll
simply turn on your computer and start typing. This approach may work for small pro-
grams, but what if you were asked to create a software system to control thousands of au-
tomated teller machines for a major bank? Or suppose you were asked to work on a team
of 1,000 software developers building the next U.S. air traffic control system? For projects
so large and complex, you should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like Java are object ori-

ptg16518503

1.9 Test-Driving the Tip Calculator App in an Android Virtual Device (AVD) 21

ented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

1.9 Test-Driving the Tip Calculator App in an Android
Virtual Device (AVD)
In this section, you’ll run and interact with your first Android app using an Android Vir-
tual Device and, if you have one, an actual Android device. The Tip Calculator
(Fig. 1.16(a))—which you’ll build in Chapter 3—calculates and displays for a restaurant
bill the tip amount and the total bill amount. As you enter each digit of the bill amount
by touching the numeric keypad, the app calculates and displays the tip and total bill for
a tip percentage that you specify with the app’s SeekBar—we use 15% by default
(Fig. 1.16(a)). You can select a tip percentage in the range 0–30% by moving the Seek-
Bar’s thumb—this updates the tip percentage TextView and displays the updated tip and
bill total in the TextViews below the SeekBar (Fig. 1.16(b)).

Fig. 1.16 | Tip Calculator when the app first loads, then after the user enters the bill amount
and changes the tip percentage.

a) Tip Calculator when the app first loads
b) Tip Calculator after the user enters the bill
amount and changes the tip percentage to 25%

Move SeekBar’s
thumb to set the

tip percentage

Touch digits on
the soft keypad to

enter the bill
amount

Tip percentage
TextView

ptg16518503

22 Chapter 1 Introduction to Android

1.9.1 Opening the Tip Calculator App’s Project in Android Studio
To open the Tip Calculator app’s project, perform the following steps:

1. Checking your setup. If you have not done so already, perform the steps specified
in the Before You Begin section.

2. Opening Android Studio. Use the Android Studio shortcut

to open the IDE. On Windows, the shortcut will appear in your Start menu or
Start screen. On OS X, the shortcut is located in your Applications folder. On
Linux, the shortcut’s location depends on where you extract the ZIP file contain-
ing the Android Studio files. Once you open Android Studio for the first time,
the Welcome to Android Studio window appears (Fig. 1.17).

3. Opening the Tip Calculator app’s project. In Android Studio, when another project
is already open, you can select File > Open… to navigate to that project's location
and open it, or in the Welcome to Android Studio Window (Fig. 1.17), you can click
Open an existing Android Studio Project to open the Open File or Project dialog
(Fig. 1.18). Navigate to the book’s examples folder, select the TipCalculator fold-
er and click Choose (Mac) or OK (Windows/Linux). Android Studio stores the An-
droid SDK’s path in the project settings for each project you create. When you
open our projects on your system, you’ll receive an error message if the SDK on
your system is in a different location from ours. Simply click the OK button in the

Fig. 1.17 | Welcome to Android Studio window.

ptg16518503

1.9 Test-Driving the Tip Calculator App in an Android Virtual Device (AVD) 23

error dialog that appears, and Android Studio will update the project settings to use
the SDK on your system. At this point, the IDE opens the project and displays its
contents in the Project window (Fig. 1.19) at the IDE’s left side. If the Project win-
dow is not visible, you can view it by selecting View > Tool Windows > Project.

Fig. 1.18 | Open File or Project dialog.

Fig. 1.19 | Project window for the Tip Calculator project.

ptg16518503

24 Chapter 1 Introduction to Android

1.9.2 Creating Android Virtual Devices (AVDs)
As we discussed in the Before You Begin section, you can test apps for multiple Android
devices by creating Android Virtual Devices (AVDs) that emulate each unique device.10

In this section you’ll create Android 6 AVDs for the devices we used to test this book’s
apps—the Google’s Nexus 6 phone and the Nexus 9 tablet. To create these AVDs, per-
form the following steps:

1. In Android Studio, select Tools > Android > AVD Manager to display the Android
Virtual Device Manager window (Fig. 1.20).

2. Click Create Virtual Device… to open the Virtual Device Configuration window
(Fig. 1.21). By default the Category “Phone” is selected, but you may also create
AVDs for Tablet, Wear and TV. For your convenience, Google provides many pre-
configured devices that you can use to quickly create AVDs. Select Nexus 6, then
click Next.

3. Select the system image for the virtual device you wish to create—in this case, the
one with the Android platform Release Name value Marshmallow, the API Level
value 23, the ABI (application binary interface) value x86 and the Target value An-
droid 6.0 (with Google APIs), then click Next. This Target creates an Android AVD
for Android 6 that also includes support for Google Play Services APIs.

4. For the AVD Name, specify Nexus 6 API 23.

5. Click the Show Advanced Settings button in the lower-left of the Virtual Device
Configuration window, then scroll to the bottom of the advanced settings and un-
check the Enable Keyboard Input option and click Finish to create the AVD.

6. Repeat Steps 1–6 to create a Nexus 9 tablet AVD named Nexus 9 API 23—you’ll
use this tablet AVD in Chapter 2.

10. At the time of this writing, when you set up Android Studio, it configures an AVD that emulates a
Google Nexus 5 phone running Android 6.0 (Marshmallow). You’ll still need to perform
Section 1.9.2’s steps to create the additional AVDs you need for testing.

Fig. 1.20 | Android Virtual Device Manager window.

ptg16518503

1.9 Test-Driving the Tip Calculator App in an Android Virtual Device (AVD) 25

If you leave the Enable Keyboard Input option checked in Step 5 above, you can use your
computer’s keyboard to enter data into apps running in the AVD. However, this prevents
the soft keyboard shown in the screen captures from displaying.

Each AVD you create has many other options specified in its config.ini file. To
more precisely match a particular device’s hardware configuration, you can modify
config.ini as described at:

1.9.3 Running the Tip Calculator App on the Nexus 6 Smartphone AVD
To test-drive the Tip Calculator app, perform the following steps:

1. Checking your setup. If you have not done so already, perform the steps specified
in the Before You Begin section.

2. Launching the Nexus 6 AVD. For this test-drive, we’ll use the Nexus 6 smart-
phone AVD that you configured in Section 1.9.2. To launch the Nexus 6 AVD,
select Tools > Android > AVD Manager to display the Android Virtual Device Man-
ager dialog (Fig. 1.22). Click the Launch this AVD in the emulator button () in
the row for the Nexus 6 API 23 AVD. An AVD can take some time to load—do
not attempt to execute the app until the AVD finishes loading. When it’s done
loading, the AVD will display the lock screen. On an actual device, you unlock
it by swiping up with your finger. You perform the swipe gesture on an AVD by
placing the mouse over the AVD’s “screen” and dragging up with the mouse.
Figure 1.23 shows the AVD after you unlock it.

Fig. 1.21 | Virtual Device Configuration window.

http://developer.android.com/tools/devices/managing-avds.html

http://developer.android.com/tools/devices/managing-avds.html

ptg16518503

26 Chapter 1 Introduction to Android

3. Launching the Tip Calculator app. In Android Studio, select Run > Run 'app' or
click the Run 'app' button () on the Android Studio toolbar. This will display
a Device Chooser dialog (Fig. 1.24) with the currently running AVD already se-
lected. Click OK to run the Tip Calculator in the AVD (Fig. 1.25) that you

Fig. 1.22 | Android Virtual Device Manager dialog.

Fig. 1.23 | Nexus 6 AVD home screen after you unlock the AVD.

ptg16518503

1.9 Test-Driving the Tip Calculator App in an Android Virtual Device (AVD) 27

launched in Step 2.11 As an alternative to opening the Android Virtual Device Man-
ager dialog in Step 2, you can click the Run 'app' button () on the Android Stu-
dio toolbar and the Device Chooser dialog will appear. You can then use the
Launch emulator option at the bottom of the dialog to select an AVD to launch,
and in which to run the app.

4. Exploring the AVD. At the AVD screen’s bottom are various soft buttons that ap-
pear on the device’s touch screen. You touch these to interact with apps and the
Android OS. In an AVD touches are performed by clicking with the mouse. The
down button () dismisses the keypad. When there is no keypad on the screen
the back button () appears instead. Touching this button takes you back to an
app’s prior screen, or back to a prior app if you’re in the current app’s initial
screen. The home button () returns you to the device’s home screen. The re-
cent apps button () allows you to view the recently used apps list, so that you
can switch back to recent apps quickly. At the screen’s top is the app’s app bar,
which displays the app’s name and may contain other app-specific soft buttons—
some may appear on the app bar and the rest in the app’s options menu, which

11. The keypad in Fig. 1.25 may differ, based on your AVD’s or device’s Android version or whether
you’ve installed and selected a custom keyboard. We configured our AVD to display the dark key-
board for better contrast in our screen captures. To do so: Touch the home () icon on your AVD
or device. On the home screen, touch the launcher () icon, then open the Settings app. In the
Personal section, touch Language and Input. On an AVD, touch Android Keyboard (AOSP). On a
device touch Google Keyboard (the standard Android keyboard). Touch Appearance & layouts, then
touch Theme. Touch Material Dark to change to the keyboard with the dark background.

Fig. 1.24 | Device Chooser for selecting AVD or device on which to test an app.

ptg16518503

28 Chapter 1 Introduction to Android

appears in the app bar at the top of the screen as . The number of options on the
app bar depends on the size of the device—we discuss this in Chapter 5.

5. Entering a Bill Total. Enter the bill total 56.32 by touching numbers on the nu-
meric keypad. If you make a mistake, press the delete button () in the bottom-
right corner of the keypad to erase the last digit you entered. Even though the
keypad contains a decimal point, the app is configured so that you may enter only
the digits 0–9. Each time you touch a digit or delete one, the app reads what
you’ve entered so far and converts it to a number—if you delete all the digits the
app redisplays Enter Amount in the TextView at the top of the app. The app divides
the value by 100 and displays the result in the blue TextView. The app then cal-
culates and updates the tip and total amounts that are displayed. We use An-
droid’s locale-specific currency-formatting capabilities to display monetary values
formatted for the device’s current locale. For the U.S. locale, as you enter the four
digits 5, 6, 3 and 2, the bill total is displayed successively as $0.05, $0.56, $5.63
and $56.32, respectively.

6. Selecting a Custom Tip Percentage. The SeekBar allows you to select a custom
percentage, and the TextViews in the right column below the SeekBar display the
corresponding tip and the total bill. Drag the SeekBar thumb to the right until
the custom percentage reads 25%. As you drag the thumb, the SeekBar value con-
tinuously changes. The app updates the tip percentage, the tip amount and the

Fig. 1.25 | Tip Calculator app running in the AVD.

ptg16518503

1.9 Test-Driving the Tip Calculator App in an Android Virtual Device (AVD) 29

bill total accordingly for each SeekBar value until you release the thumb.
Figure 1.26 shows the app after you’ve entered the bill amount and selected the
tip percentage.

7. Returning to the home screen. You can return to the AVD’s home screen by tap-
ping the home () button on the AVD.

Troubleshooting AVD Startup
If you have trouble executing an Android Virtual Device, it might be that too much of
your computer’s memory is allocated to the AVD. To reduce AVD’s memory size:

1. In Android Studio, select Tools > Android > AVD Manager to open the Android Vir-
tual Device Manager window.

2. You’ll see a list of existing AVDs. For the AVD you’d like to reconfigure, click
the pencil icon () in the Actions column.

3. In the Virtual Device Configuration window, click Show Advanced Settings, and
scroll to the Memory and Storage section.

4. Decrease value for RAM from the default 1536 MB (1.5 GB) down to 1 GB.

5. Click Finish and close the Android Virtual Device Manager window.

If you still cannot run the AVD, repeat these steps and reduce the memory to 768 MB.

Fig. 1.26 | Tip Calculator after entering the bill amount and selecting a 25% tip.

ptg16518503

30 Chapter 1 Introduction to Android

1.9.4 Running the Tip Calculator App on an Android Device
If you have an Android device, you can easily execute an app on it for testing purposes.

1. Enabling the developer options on the device. First, you must enable debugging
on the device. To do so, go to the device’s Settings app, then select About phone
(or About tablet), locate the Build number (at the bottom of the list) and tap it sev-
en times until you see You are now a developer on the screen. This will enable an
entry named Developer options in the Settings app.

2. Enabling debugging on the device. Return to the Settings app’s main screen, se-
lect Developer options and ensure that USB debugging is checked—this is the de-
fault when you first enable the developer options on the device.

3. Connecting your device. Next, use the USB cable that came with your device to
connect the device to your computer. If you’re a Windows user, recall from the
Before You Begin section that you might need to install a USB driver for your
device. See the following web pages for details:

4. Running Tip Calculator on the Android device. In Android Studio, select Run >
Run 'app' or click the Run 'app' button () on the Android Studio toolbar. This
will display the Device Chooser dialog that you saw in Fig. 1.24. Select your de-
vice from the list of running AVDs and devices. Click OK to run the Tip Calculator
on the AVD or device you selected.

Test-Drives for the Book’s Apps
To get a broad sense of the capabilities that you’ll learn in this book, check out the test-
drives of the book’s apps in Chapters 2–9.

Preparing to Distribute Apps
When you build apps for distribution via app stores like Google Play, you should test the
apps on as many actual devices as you can. Remember that some features can be tested only
on actual devices. If you don’t have Android devices available to you, create AVDs that
simulate the various devices on which you’d like your app to execute—the AVD Manager
provides many preconfigured AVD templates. When you configure each AVD to simulate
a particular device, look up the device’s specifications online and configure the AVD ac-
cordingly. In addition, you can modify the AVD’s config.ini file as described in the sec-
tion Setting hardware emulation options at

This file contains options that are not configurable via the Android Virtual Device Manager.
Modifying these options allows you to more precisely match the hardware configuration
of an actual device.

1.10 Building Great Android Apps
With over 1.6 million apps in Google Play,12 how do you create an Android app that peo-
ple will find, download, use and recommend to others? Consider what makes an app fun,

 http://developer.android.com/tools/device.html
 http://developer.android.com/tools/extras/oem-usb.html

http://developer.android.com/tools/devices/managing-avds-
cmdline.html#hardwareopts

http://developer.android.com/tools/device.html
http://developer.android.com/tools/extras/oem-usb.html
http://developer.android.com/tools/devices/managing-avds-cmdline.html#hardwareopts
http://developer.android.com/tools/devices/managing-avds-cmdline.html#hardwareopts

ptg16518503

1.10 Building Great Android Apps 31

useful, interesting, appealing and enduring. A clever app name, an attractive icon and an
engaging description might lure people to your app on Google Play or one of the many
other Android app marketplaces. But once users download the app, what will make them
use it regularly and recommend it to others? Figure 1.27 shows some characteristics of
great apps.

12. http://www.statista.com/statistics/266210/number-of-available-applications-in-

the-google-play-store/.

Characteristics of great apps

Great Games

• Entertaining and fun.

• Challenging.

• Progressive levels of difficulty.

• Show your scores and use leaderboards to record high scores.

• Provide audio and visual feedback.

• Offer single-player, multiplayer and networked versions.

• Have high-quality animations.

• Offloading input/output and compute-intensive code to separate threads of execution
to improve interface responsiveness and app performance.

• Innovate with augmented reality technology—enhancing a real-world environment
with virtual components; this is particularly popular with video-based apps.

Useful Utilities

• Provide useful functionality and accurate information.

• Increase personal and business productivity.

• Make tasks more convenient (e.g., maintaining a to-do list, managing expenses).

• Make the user better informed.

• Provide topical information (e.g., the latest stock prices, news, severe-storm warnings,
traffic updates).

• Use location-based services to provide local services (e.g., coupons for local businesses,
best gas prices, food delivery).

General Characteristics

• Up-to-date with the latest Android features, but compatible with multiple Android ver-
sions to support the widest possible audience.

• Work properly.

• Bugs are fixed promptly.

• Follow standard Android app GUI conventions.

• Launch quickly.

• Are responsive.

Fig. 1.27 | Characteristics of great apps. (Part 1 of 2.)

http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/

ptg16518503

32 Chapter 1 Introduction to Android

1.11 Android Development Resources
Figure 1.28 lists some of the key documentation from the Android Developer site. As you
dive into Android app development, you may have questions about the tools, design is-
sues, security and more. There are several Android developer newsgroups and forums
where you can get the latest announcements or ask questions (Fig. 1.29). Figure 1.30 lists
several websites where you’ll find Android development tips, videos and resources.

General Characteristics (cont.)

• Don’t require excessive memory, bandwidth or battery power.

• Are novel and creative.

• Enduring—something that your users will use regularly.

• Use professional-quality icons that will appear in Google Play and on the user’s device.

• Use quality graphics, images, animations, audio and video.

• Are intuitive and easy to use (don’t require extensive help documentation).

• Accessible to people with disabilities (http://developer.android.com/guide/topics/
ui/accessibility/index.html).

• Give users reasons and a means to tell others about your app (e.g., you can give users the
option to post their game scores to Facebook or Twitter).

• Provide additional content for content-driven apps (e.g., game levels, articles, puzzles).

• Localized (Chapter 2) for each country in which the app is offered (e.g., translate the
app’s text and audio files, use different graphics based on the locale, etc.).

• Offer better performance, capabilities and ease-of-use than competitive apps.

• Take advantage of the device’s built-in capabilities.

• Do not request excessive permissions.

• Are designed to run optimally across a broad variety of Android devices.

• Future-proofed for new hardware devices—specify the exact hardware features your app
uses so Google Play can filter and display it in the store for only compatible devices
(http://android-developers.blogspot.com/2010/06/future-proofing-your-
app.html).

 Title URL

App Components http://developer.android.com/guide/components/index.html

Using the Android Emulator http://developer.android.com/tools/devices/emulator.html

Package Index http://developer.android.com/reference/packages.html

Class Index http://developer.android.com/reference/classes.html

Fig. 1.28 | Key online documentation for Android developers. (Part 1 of 2.)

Characteristics of great apps

Fig. 1.27 | Characteristics of great apps. (Part 2 of 2.)

http://developer.android.com/guide/topics/ui/accessibility/index.html
http://developer.android.com/guide/topics/ui/accessibility/index.html
http://android-developers.blogspot.com/2010/06/future-proofing-your-app.html
http://android-developers.blogspot.com/2010/06/future-proofing-your-app.html
http://developer.android.com/guide/components/index.html
http://developer.android.com/tools/devices/emulator.html
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/classes.html

ptg16518503

1.11 Android Development Resources 33

Android Design http://developer.android.com/design/index.html

Data Backup http://developer.android.com/guide/topics/data/backup.html

Security Tips http://developer.android.com/training/articles/security-

tips.html

Android Studio http://developer.android.com/sdk/index.html

Debugging http://developer.android.com/tools/debugging/index.html

Tools Help http://developer.android.com/tools/help/index.html

Performance Tips http://developer.android.com/training/articles/perf-

tips.html

Keeping Your App Responsive http://developer.android.com/training/articles/perf-

anr.html

Launch Checklist (for Google
Play)

http://developer.android.com/distribute/tools/launch-

checklist.html

Getting Started with Pub-
lishing

http://developer.android.com/distribute/googleplay/

start.html

Managing Your App’s Memory http://developer.android.com/training/articles/memory.html

Google Play Developer
Distribution Agreement

http://play.google.com/about/developer-distribution-

agreement.html

Title Subscribe Description

Android Discuss Subscribe using Google Groups:
android-discuss

Subscribe via e-mail:
android-discuss-

subscribe@googlegroups.com

A general Android discussion
group where you can get answers
to your app-development ques-
tions.

Stack Overflow http://stackoverflow.com/

questions/tagged/android

Use this for Android app-develop-
ment questions and questions
about best practices.

Android Developers http://groups.google.com/forum/

?fromgroups#!forum/android-

developers

Experienced Android developers
use this list for troubleshooting
apps, GUI design issues, perfor-
mance issues and more.

Android Forums http://www.androidforums.com Ask questions, share tips with
other developers and find forums
targeting specific Android devices.

Fig. 1.29 | Android newsgroups and forums.

 Title URL

Fig. 1.28 | Key online documentation for Android developers. (Part 2 of 2.)

http://developer.android.com/design/index.html
http://developer.android.com/guide/topics/data/backup.html
http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/sdk/index.html
http://developer.android.com/tools/debugging/index.html
http://developer.android.com/tools/help/index.html
http://developer.android.com/training/articles/perf-tips.html
http://developer.android.com/training/articles/perf-tips.html
http://developer.android.com/training/articles/perf-anr.html
http://developer.android.com/training/articles/perf-anr.html
http://developer.android.com/distribute/tools/launch-checklist.html
http://developer.android.com/distribute/tools/launch-checklist.html
http://developer.android.com/distribute/googleplay/start.html
http://developer.android.com/training/articles/memory.html
http://stackoverflow.com/questions/tagged/android
http://groups.google.com/forum/?fromgroups#!forum/android-developers
http://www.androidforums.com
http://developer.android.com/distribute/googleplay/start.html
http://play.google.com/about/developer-distributionagreement.html
http://play.google.com/about/developer-distributionagreement.html
http://stackoverflow.com/questions/tagged/android
http://groups.google.com/forum/?fromgroups#!forum/android-developers
http://groups.google.com/forum/?fromgroups#!forum/android-developers

ptg16518503

34 Chapter 1 Introduction to Android

1.12 Wrap-Up
This chapter presented a brief history of Android and discussed its functionality. We pro-
vided links to some of the key online documentation and to the newsgroups and forums
you can use to connect with the developer community and get your questions answered.
We discussed features of the Android operating system. We introduced the Java, Android
and Google packages that enable you to use the hardware and software functionality you’ll
need to build a variety of Android apps. You’ll use many of these packages in this book.
We also discussed Java programming and the Android SDK. You learned the Android ges-
tures and how to perform each on an Android device and on the emulator. We provided
a quick refresher on basic object-technology concepts, including classes, objects, attributes,
behaviors, encapsulation, information hiding, inheritance and more. You test-drove the
Tip Calculator app on the Android emulator for both smartphone and tablet AVDs.

In Chapter 2, you’ll build your first Android app in Android Studio. The app will dis-
play text and an image. You’ll also learn about Android accessibility and internationaliza-
tion.

Android development tips, videos and
resources URL

Android Sample Code and Utilities from
Google

https://github.com/google (use the filter
"android")

Bright Hub™ website for Android pro-
gramming tips and how-to guides

http://www.brighthub.com/mobile/google-

android.aspx

The Android Developers Blog http://android-developers.blogspot.com/

HTC’s Developer Center for Android http://www.htcdev.com/

The Motorola Android development site http://developer.motorola.com/

Top Android Users on Stack Overflow http://stackoverflow.com/tags/android/

topusers

Android Weekly Newsletter http://androidweekly.net/

Chet Haase’s Codependent blog http://graphics-geek.blogspot.com/

Romain Guy’s Android blog http://www.curious-creature.org/category/

android/

Android Developers Channel on
YouTube®

http://www.youtube.com/user/androiddevelopers

Google I/O 2015 Developer
Conference session videos

https://events.google.com/io2015/videos

Fig. 1.30 | Android development tips, videos and resources.

https://github.com/google
http://www.brighthub.com/mobile/google-android.aspx
http://www.brighthub.com/mobile/google-android.aspx
http://android-developers.blogspot.com/
http://www.htcdev.com/
http://developer.motorola.com/
http://stackoverflow.com/tags/android/topusers
http://androidweekly.net/
http://graphics-geek.blogspot.com/
http://www.curious-creature.org/category/android/
http://www.youtube.com/user/androiddevelopers
https://events.google.com/io2015/videos
http://www.curious-creature.org/category/android/
http://stackoverflow.com/tags/android/topusers

ptg16518503

2
Welcome App

Dive-Into® Android Studio: Introducing Visual GUI Design,
Layouts, Accessibility and Internationalization

O b j e c t i v e s
In this chapter you’ll:

■ Understand the basics of the Android Studio IDE, which
you’ll use to write, test and debug your Android apps.

■ Use the IDE to create a new app project.

■ Design a graphical user interface (GUI) visually (without
programming) using the IDE’s layout editor.

■ Display text and an image in a GUI.

■ Edit the properties of views (GUI components).

■ Build and launch an app in the Android emulator.

■ Make the app more accessible to visually impaired people by
specifying strings for use with Android’s TalkBack and
Explore-by-Touch features.

■ Support internationalization so your app can display strings
localized in different languages.

ptg16518503

36 Chapter 2 Welcome App
O

u
tl

in
e

2.1 Introduction
In this chapter, you’ll build the Welcome app that displays a welcome message and an im-
age. You’ll use Android Studio to create a simple app (Fig. 2.1) that runs on Android
phones and tablets in both portrait and landscape orientations:

• In portrait the device’s height is greater than its width.

• In landscape the width is greater than the height.

You’ll use Android Studio’s layout editor to build the GUI using drag-and-drop tech-
niques. You’ll also edit the GUI’s XML directly. You’ll execute your app in the Android
emulator and on an Android device, if you have one.

You’ll provide descriptive text for the app’s image to make the app more accessible for
people with visual impairments. As you’ll see, Android’s Explore by Touch enables users to
touch items on the screen and hear TalkBack speak the corresponding descriptive text.
We’ll discuss how to test these features, which are available only on Android devices.

2.1 Introduction
2.2 Technologies Overview

2.2.1 Android Studio
2.2.2 LinearLayout, TextView and

ImageView
2.2.3 Extensible Markup Language (XML)
2.2.4 App Resources
2.2.5 Accessibility
2.2.6 Internationalization

2.3 Creating an App
2.3.1 Launching Android Studio
2.3.2 Creating a New Project
2.3.3 Create New Project Dialog
2.3.4 Target Android Devices Step
2.3.5 Add an Activity to Mobile Step
2.3.6 Customize the Activity Step

2.4 Android Studio Window
2.4.1 Project Window
2.4.2 Editor Windows
2.4.3 Component Tree Window
2.4.4 App Resource Files
2.4.5 Layout Editor
2.4.6 Default GUI
2.4.7 XML for the Default GUI

2.5 Building the App’s GUI with the
Layout Editor

2.5.1 Adding an Image to the Project
2.5.2 Adding an App Icon
2.5.3 Changing RelativeLayout to a

LinearLayout
2.5.4 Changing the LinearLayout’s id

and orientation
2.5.5 Configuring the TextView’s id and

text Properties

2.5.6 Configuring the TextView’s
textSize Property—Scaled Pixels
and Density-Independent Pixels

2.5.7 Setting the TextView’s textColor
Property

2.5.8 Setting the TextView’s gravity
Property

2.5.9 Setting the TextView’s
layout:gravity Property

2.5.10 Setting the TextView’s
layout:weight Property

2.5.11 Adding an ImageView to Display the
Image

2.5.12 Previewing the Design
2.6 Running the Welcome App
2.7 Making Your App Accessible
2.8 Internationalizing Your App

2.8.1 Localization
2.8.2 Naming the Folders for Localized

Resources
2.8.3 Adding String Translations to the

App’s Project
2.8.4 Localizing Strings
2.8.5 Testing the App in Spanish on an

AVD
2.8.6 Testing the App in Spanish on a

Device
2.8.7 TalkBack and Localization
2.8.8 Localization Checklist
2.8.9 Professional Translation

2.9 Wrap-Up

ptg16518503

2.2 Technologies Overview 37

Finally, you’ll internationalize the app so that you can provide localized strings in dif-
ferent languages. You’ll then change the locale setting on the Android emulator so that you
can test the app in Spanish. When your app executes, Android chooses the correct strings
based on the device’s locale. We show how to change the locale on a device. We assume
that you’ve read the Preface, Before You Begin and Section 1.9.

2.2 Technologies Overview
This section introduces the technologies you’ll use to build the Welcome app.

2.2.1 Android Studio
In Section 2.3, you’ll use the Android Studio integrated development environment (IDE)
to create a new app. As you’ll see, the IDE creates a default GUI that contains the text
"Hello world!" You’ll then use the layout editor’s Design and Text views and the Proper-
ties window to visually build a simple graphical user interface (GUI) consisting of text and
an image (Section 2.5).

2.2.2 LinearLayout, TextView and ImageView
GUI components in Android are called views. Layouts are views that contain and arrange
other views. You’ll use a vertical LinearLayout to arrange the app’s text and image with
each occupying half the LinearLayout’s vertical space. A LinearLayout also can arrange
views horizontally.

Fig. 2.1 | Welcome app running in the Android emulator.

TextView component

ImageView
component showing
the Deitel bug logo

Android’s top system bar
shows items including the

time, battery indicator,
cellular connection status

and icons for apps that have
sent you notifications

Android’s bottom system
bar shows (left-to-right)

the back, home and
recent apps buttons

Client area in which your
app’s content is displayed

ptg16518503

38 Chapter 2 Welcome App

This app’s text is displayed in a TextView and its image is displayed in an ImageView.
The default GUI created by Android Studio already contains a TextView. You’ll modify
its properties, including its text, font size and font color and its size relative to the Image-
View within the LinearLayout (Section 2.5.5). You’ll use the layout editor’s Palette of
views (Fig. 2.11) to drag and drop an ImageView onto the GUI (Section 2.5.11), then con-
figure its properties, including its image source and positioning within the LinearLayout.

2.2.3 Extensible Markup Language (XML)
Extensible Markup Language (XML) is a natural way to express GUIs. XML is human-
and computer-readable text and, in the context of Android, helps you specify the layouts
and components to use, as well as their attributes, such as size, position, color, text size,
margins and padding. Android Studio parses the XML to display your design in the layout
editor and to generate the Java code that produces the runtime GUI. You’ll also use XML
files to store app resources, such as strings, numbers and colors (Section 2.2.4).

2.2.4 App Resources
It’s considered good practice to define all strings, numeric values and other values in XML
resource files that are placed in the subfolders of a project’s res folder. In Section 2.5.5,
you’ll create resources for strings (such as the text on a TextView) and measurements (such
as a font’s size). For the TextView’s font color, you’ll create a color resource using a color
selected from Google’s Material Design color palette:

2.2.5 Accessibility
Android provides accessibility features to help people with certain disabilities use their de-
vices. People with visual impairments can use Android’s TalkBack to allow a device to
speak screen text or text that you provide to help them understand the purpose and con-
tents of a view. Android’s Explore by Touch enables the user to touch the screen to hear
TalkBack speak what’s on the screen near the touch. Section 2.7 shows how to enable
these features and configure your app’s views for accessibility.

2.2.6 Internationalization
Android devices are used worldwide. To reach the most users with your apps, you should
consider customizing them for various locales and spoken languages. Configuring your app
so that it can be customized for various locales is known as internationalization. Custom-
izing your app for a specific locale is known as localization. Section 2.8 shows how to pro-
vide Spanish text for the Welcome app’s TextView and the ImageView’s accessibility string,
and how to test the app on an AVD or device configured for Spanish.

2.3 Creating an App
This book’s examples were developed using the Android 6 SDK that was current at the
time of this writing. This section shows you how to use Android Studio to create a new
project. We introduce additional features of the IDE throughout the book.

http://www.google.com/design/spec/style/color.html

http://www.google.com/design/spec/style/color.html

ptg16518503

2.3 Creating an App 39

2.3.1 Launching Android Studio
As you did in Section 1.9, open Android Studio via its shortcut:

The IDE displays either the Welcome window (Fig. 1.17) or the last project you had open.

2.3.2 Creating a New Project
A project is a group of related files, such as code files, resource files and images that make
up an app. To create an app, you must first create its project. To do so, click Start a new
Android Studio project in the Welcome window or, if a project is open, select File > New >
New Project…. This displays the Create New Project dialog (Fig. 2.2).

Fig. 2.2 | Create New Project dialog—New Project step.

Current step being
performed in the

Create New
Project dialog

ptg16518503

40 Chapter 2 Welcome App

2.3.3 Create New Project Dialog
In the Create New Project dialog’s Configure your new project step (Fig. 2.2), specify the
following information, then click Next:

1. Application name: field—Your app’s name. Enter Welcome in this field.

2. Company Domain: field—Your company website’s domain name. We used our
deitel.com website domain. For learning purposes you can use example.com,
but this must be changed if you intend to distribute your app.

3. Package name: field—The Java package name for your app’s source code.
Android and the Google Play store use this as the app’s unique identifier, which
must remain the same in all versions of your app that you upload to the Google
Play store. The package name normally begins with your company’s or institu-
tion’s Company Domain in reverse—our Company Domain is deitel.com, so our
Java package names begin with com.deitel. This is followed by a dot (.) and the
app’s name in all lowercase letters with any spaces removed. By convention, pack-
age names use only lowercase letters. The IDE sets the package name using the
text you enter for Application Name and Company Domain. You can click the Edit
link to the right of the generated package name to customize the Package name.

4. Project location: field—The path of the location on your computer in which to
store the project. By default, Android Studio places new project folders in the
subfolder AndroidStudioProjects in your user account directory. A project’s
folder name consists of the project name with the spaces removed. You also can
customize the location by entering a path or clicking the ellipsis (…) button to
the right of the field and browsing for a location to store the project. After select-
ing a location, click OK. Click Next to move to the next step.

2.3.4 Target Android Devices Step
In the Create New Project dialog’s Target Android Devices step (Fig. 2.3):

1. Check the checkbox for each Android device type (Phone and Tablet, TV, Wear,
Android Auto and Glass) that your app should support. For the Welcome app, en-
sure that only the Phone and Tablet type is checked.

2. Next, select a Minimum SDK in the drop-down for each type of device that you
selected, then click Next. The Minimum SDK is the minimum Android API level
that’s required to run your app. This allows your app to execute on devices sup-
porting that API level and higher. Select API23: Android 6.0 (Marshmallow) for this

Error-Prevention Tip 2.1
If the path to the folder in which you wish to save a project contains spaces, the Create

New Project dialog displays the message “Your project location contains whitespace. This

can cause problems on some platforms and is not recommended.” To resolve this, click
the ellipsis (…) button to the right of the Create New Project dialog’s Project location field
and select a location that does not contain spaces; otherwise, your project might not com-
pile or execute correctly.

ptg16518503

2.3 Creating an App 41

book’s apps and click Next. Figure 2.4 shows the Android SDK versions and their
API levels—versions not shown here are deprecated and should not be used. The
percentage of Android devices running each platform version is shown at

 http://developer.android.com/about/dashboards/index.html

Software Engineering Observation 2.1
Lower Minimum SDK values enable your app to run on more devices—e.g., at the time of
this writing, you could reach 94% of devices with API 15. Generally you should target
the lowest API level on which your app can run. You must disable newer features that are
not available on older platforms when your app is installed on those platforms.

Fig. 2.3 | Create New Project dialog—Target Android Devices step.

http://developer.android.com/about/dashboards/index.html

ptg16518503

42 Chapter 2 Welcome App

2.3.5 Add an Activity to Mobile Step
In the Add an Activity to Mobile step (Fig. 2.5), you’ll select an app template. Templates
provide preconfigured starting points for common app designs and app logic.

SDK version API level SDK version API level SDK version API level

6.0 23 4.3 18 2.3.3–2.3.7 10
5.1 22 4.2.x 17 2.2 8
5.0 21 4.1.x 16
4.4 19 4.0.3–4.0.4 15

Fig. 2.4 | Android SDK versions and API levels. (http://developer.android.com/
about/dashboards/index.html)

Fig. 2.5 | Create New Project dialog—Add an activity to Mobile step.

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

ptg16518503

2.3 Creating an App 43

Figure 2.6 briefly describes four commonly used templates from Fig. 2.5. For this
app, select Empty Activity, then click Next. This template defines a one-screen app that dis-
plays Hello World!. We’ll use other templates in later chapters. For multiscreen apps, you
also can define a new screen by adding one of the Fig. 2.5 activities to an existing app. For
example, in Chapter 4’s Flag Quiz app, we’ll add a Settings Activity that provides a screen
in which the user can specify the quizzes settings.

2.3.6 Customize the Activity Step
This step (Fig. 2.7) depends on the template selected in the previous step. For the Empty
Activity template, this step allows you to specify:

• Activity Name—MainActivity is the default name provided by the IDE. This is
the name of an Activity subclass that controls the app’s execution. Starting in
Chapter 3, we’ll modify this class to implement the app’s functionality.

• Layout Name—activity_main is the default name provided by the IDE. This file
(which has the .xml extension) stores an XML representation of the app’s GUI
that you’ll build in Section 2.5 using visual techniques.

For this app, keep the default settings, then click Finish to create the project.

Template Description

Blank Activity Used for a single-screen app in which you build
most of the GUI yourself. Provides an app bar at
the top of the app that displays the app’s name
and can display controls that enable a user to
interact with the app. Also includes a material
design FloatingActionButton.

Fullscreen Activity Used for a single-screen app (similar to Blank Activ-
ity) that occupies the entire screen, but can toggle
visibility of the device’s status bar and the app’s
app bar.

Master/Detail Flow Used for an app that displays a master list of items
from which a user can choose one item to see its
details—similar to the built-in Email and Contacts
apps. Includes basic logic for enabling a user to
select an item from the master list and display
that item in the detail view. For tablets, the mas-
ter list and details are shown side-by-side on the
same screen. For phones, the master list is shown
on one screen, and selecting an item displays the
item’s details in a separate screen.

Fig. 2.6 | Activity templates.

ptg16518503

44 Chapter 2 Welcome App

2.4 Android Studio Window
When you finish creating the project, the IDE opens both MainActivity.java and
activity_main.xml. Close MainActivity.java so that the IDE appears as shown in
Fig. 2.8. The IDE shows the layout editor, so you can begin designing your app’s GUI. In
this chapter, we discuss only the IDE features we need to build the Welcome app. We’ll
introduce more IDE features throughout the book.

Fig. 2.7 | Create New Project dialog—Customize the Activity step.

ptg16518503

2.4 Android Studio Window 45

2.4.1 Project Window
The Project window provides access to all of the project’s files. You can have many projects
open in the IDE at once—each in its own window. Figure 2.9 shows the Welcome app
project’s contents in the Project window—we expanded the res folder and it’s nested lay-
out folder. The app folder contains the files you’ll edit to create your apps’ GUIs and logic.
The app folder’s contents are organized into nested folders containing files. In this chapter,
you’ll use only files located in the res folder, which we discuss in Section 2.4.4—we’ll dis-
cuss the other folders and files as we use them in later chapters.

Fig. 2.8 | Welcome project open in the Android Studio.

Collapsed window tabs—you can click a tab
to expand the corresponding window

Project window displays the
project’s files in the app node

Editor windows—like the layout
and code editors—appear here

Component Tree with the currently selected item
properties displayed in the Properties window

ptg16518503

46 Chapter 2 Welcome App

2.4.2 Editor Windows
To the right of the Project window in Fig. 2.8 is the layout editor window. When you dou-
ble click a file in the Project window, its contents are displayed in an appropriate editor
window, depending on the file’s type. For a Java file, the Java source-code editor is dis-
played. For an XML file that represents a GUI (such as activity_main.xml), the layout
editor’s Design tab is displayed by default and you can click the Text tab to view the cor-
responding XML side-by-side with a design preview—if the preview does not appear, you
can view it by selecting View > Tool Windows > Preview. For other XML files, a custom
XML editor or text-based XML editor is displayed, depending on the XML files’ purposes.
The code editors for Java and XML help you write code quickly and correctly via code-
completion—as you type, you can press Enter (or Return) to auto-complete a Java code el-
ement or an XML element name, attribute name or value that is currently highlighted in
the code-completion window.

2.4.3 Component Tree Window
When the layout editor is open in Design view, the Component Tree appears at the right
side of the IDE (Fig. 2.8). This window shows the layouts and views (GUI components)
that comprise the GUI and their parent-child relationships—for example, a layout (the
parent) might contain many nested views (the children), including other layouts.

2.4.4 App Resource Files
Layout files like activity_main.xml are app resources and are stored in subfolders of the
project’s res folder. The subfolders contain different resource types. The ones we use in
this app are shown in Fig. 2.10, and the others (menu, animator, anim, color, mipmap, raw
and xml) are discussed as we need them later in the book.

Fig. 2.9 | Project window.

Expanded folder

Collapsed folder

ptg16518503

2.4 Android Studio Window 47

2.4.5 Layout Editor
When you first create a project, the IDE opens the app’s activity_main.xml file in the
layout editor (Fig. 2.11). You also can double click activity_main.xml in the res/layout
folder to open the file in the layout editor.

Selecting the Screen Type for GUI Design
Android devices can run on many types of devices. In this chapter, you’ll design an An-
droid phone GUI. As we mentioned in the Before You Begin section, we use an AVD that
emulates the Google Nexus 6 phone for this purpose. The layout editor comes with many
device configurations that represent various screen sizes and resolutions that you can use
to design your GUI. For this chapter, we use the predefined Nexus 6, which you can select
in the virtual-device drop-down at the top of the layout editor in Fig. 2.11—Nexus 4 is
selected by default. This does not mean that the app can execute only on a Nexus 6 de-
vice—it simply means that the design is for devices similar in screen size and resolution to
the Nexus 6. In later chapters, you’ll see how to design your GUIs to scale appropriately
for a wide range of devices.

Resource subfolder Description

drawable Folder names that begin with drawable typically
contain images. These folders may also contain XML
files representing shapes and other types of drawables
(such as the images that represent a button’s unpressed
and pressed states).

layout Folder names that begin with layout contain XML
files that describe GUIs, such as the
activity_main.xml file.

values Folder names that begin with values contain XML
files that specify values for arrays (arrays.xml), colors
(colors.xml), dimensions (dimens.xml—values such
as widths, heights and font sizes), strings
(strings.xml) and styles (styles.xml). These file
names are used by convention but are not required—
actually, you can place all resources of these types in
one file. It’s considered good practice to define the
data from hard-coded arrays, colors, sizes, strings and
styles as resources so they can be modified easily with-
out changing the app’s Java code. For example, if a
dimension resource is referenced from many locations
in your code, you can change the dimension’s value
in the resource file, rather than search for every
occurrence of a hard-coded dimension value in your
app’s Java source files.

Fig. 2.10 | Subfolders of the project’s res folder that are used in this chapter.

ptg16518503

48 Chapter 2 Welcome App

2.4.6 Default GUI
The default GUI for a Blank Page app (Fig. 2.11) consists of a RelativeLayout with a
white background and a TextView containing "Hello World!". A RelativeLayout arrang-
es views relative to one another or relative to the layout itself—for example, you can specify
that one view should appear below another and be centered horizontally within the Rela-
tiveLayout. For the Welcome app, you’ll change the RelativeLayout to a vertical
LinearLayout in which text and an image will be arranged top-to-bottom on the screen

ii

Fig. 2.11 | Layout editor view of the app’s default GUI.

Canvas (the GUI design area)

The Palette contains Widgets (views),
Layouts and other items that can be dragged
and dropped onto the canvas

Layout editor’s Design tab

The virtual device drop-down lists devices you
can use to design your GUI—select Nexus 6 for
this chapter

ptg16518503

2.5 Building the App’s GUI with the Layout Editor 49

and each will occupy half the layout’s height. A TextView displays text. You’ll add an
ImageView to display the image. We’ll say more about each of these in Section 2.5.

2.4.7 XML for the Default GUI
As we mentioned previously, the file activity_main.xml contains the GUI’s XML repre-
sentation. Figure 2.12 shows the initial XML. We reduced the amount of indentation in
the default XML for book-publication purposes. You’ll edit this XML directly to change
the RelativeLayout to a LinearLayout.

The attribute values that begin with @, such as

in line 6, are resources with values defined in other files. By default, the XML editor displays
a resource’s literal value (16dp for the resource in line 6) and highlights the value with a
light green background (or light gray, if you’re using the dark Android Studio theme).
This enables you to see the resource’s actual value that’s used in a particular context. If you
click the literal value (16dp for @dimen/activity_vertical_margin), the editor instead
displays the corresponding resource name.

2.5 Building the App’s GUI with the Layout Editor
You’ll now create the Welcome app’s GUI. The IDE’s layout editor allows you to build
your GUI by dragging and dropping views—such as TextViews, ImageViews and But-
tons—onto the layout editor. By default, the GUI layout for an app based on the Empty
Activity template is stored in an XML file called activity_main.xml, located in the proj-
ect’s res folder in the layout subfolder. In this chapter, we’ll use the layout editor and the
Component Tree window to build the GUI. You’ll edit the XML in activity_main.xml
only to change the layout used to arrange this app’s TextView and ImageView.

1 <?xml version="1.0" encoding="utf-8"?>
2 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
3 xmlns:tools="http://schemas.android.com/tools"
4 android:layout_width="match_parent"
5 android:layout_height="match_parent"
6 android:paddingBottom="@dimen/activity_vertical_margin"
7 android:paddingLeft="@dimen/activity_horizontal_margin"
8 android:paddingRight="@dimen/activity_horizontal_margin"
9 android:paddingTop="@dimen/activity_vertical_margin"

10 tools:context=".MainActivity">
11
12 <TextView
13 android:layout_width="wrap_content"
14 android:layout_height="wrap_content"
15 android:text="@string/hello_world" />
16
17 </RelativeLayout>

Fig. 2.12 | Initial contents of the project’s activity_main.xml file.

@dimen/activity_vertical_margin

ptg16518503

50 Chapter 2 Welcome App

2.5.1 Adding an Image to the Project
For this app, you’ll need to add an image to the project. We’ll use the Deitel bug logo1

image (bug.png), which is located with the book’s examples in the images folder’s Welcome
subfolder. File names for image resources—and all the other resources you’ll use in later
chapters—must be in all lowercase letters.

drawable Folders
Android devices have various screen sizes, resolutions and pixel densities (that is, dots per inch
or DPI), so you typically provide images in various resolutions that the operating system
chooses based on a device’s pixel density. These are placed in drawable folders (in a proj-
ect’s res folder) that store images with different pixel densities (Fig. 2.13). For example,
images for devices that are similar in pixel density to the Google Nexus 6 phone (560 dpi)
we use in our phone AVD would be placed in the folder drawable-xxxhdpi. Images for
devices with lower pixel densities are placed in the other drawable folders—normally the
folder that represents the closest pixel density to the actual device.

Android Studio displays only one drawable folder containing the app’s drawable
resources, even if your project contains resources for multiple densities. For a resource
stored in the project’s folder drawable-xxxhdpi on disk, Android Studio displays

in the project’s drawable folder.
For this app, we provide only one version of the image. If Android cannot find an

image in the drawable folder that most closely matches the device’s pixel density, Android
will scale the version from another drawable folder up or down as necessary. By default,
Android Studio creates only a drawable folder without a DPI qualifier, which we’ll use for
this initial app. For detailed information on supporting multiple screens and screen sizes
in Android, visit:

1. Before you use any image in an app, you should ensure that you’ve properly licensed the image. Some
image licenses require you to pay for the right to use an image and others provide free open-source
or Creative Commons (creativecommons.org) licenses.

Density Description

drawable-ldpi Low density—approximately 120 dots-per-inch.

drawable-mdpi Medium density—approximately 160 dots-per-inch.

drawable-hdpi High density—approximately 240 dots-per-inch.

drawable-xhdpi Extra-high density—approximately 320 dots-per-inch.

drawable-xxhdpi Extra-Extra-high density—approximately 480 dots-per-inch.

drawable-xxxhdpi Extra-Extra-Extra-high density—approximately 640 dots-per-inch.

Fig. 2.13 | Android pixel densities.

filename.xml (xxxhdpi)

http://developer.android.com/guide/practices/screens_support.html

http://developer.android.com/guide/practices/screens_support.html

ptg16518503

2.5 Building the App’s GUI with the Layout Editor 51

Adding bug.png to the Project
Perform the following steps to add the images to this project:

1. In the Project window, expand the project’s res folder.

2. In the book’s examples folder on your file system, open the images folder, then
the Welcome subfolder.

3. Copy the bug.png file, then in Android Studio’s Project window select res fold-
er’s drawable subfolder and paste the file into that subfolder.

4. In the Copy dialog that appears, click OK.

The image can now be used in the app.

2.5.2 Adding an App Icon
When your app is installed on a device, its icon and name appear with all other installed
apps in the launcher, which you can access via the icon on your device’s home screen.
To add the app’s launcher icon, right click the res folder, then select New > Image Asset.
This will open the Asset Studio window (Fig. 2.14), which enables you to configure the
app’s icon from an existing image, a piece of clip art or text.

For this app, we chose the DeitelOrange.png image located in the images folder with
the book’s examples. To use this image:

1. Click the ellipsis button to the right of the Image file: field.

2. Navigate to the images folder in the book’s examples folder.

3. Select DeitelOrange.png and click OK. Previews of the scaled images are shown
in the dialog’s Preview area.

4. Click Next, then click Finish.

The IDE creates several scaled versions of the image, each named ic_launcher.png, and
places them in the project’s mipmap2 subfolders of the res folder. The mipmap subfolders are
similar to the drawable subfolders, but are specifically for the app’s icon. When you upload
an app to Google Play, you can upload multiple versions of the app for various device sizes
and screen resolutions. All images in the mipmap folders are uploaded with every versions of
your app, whereas you can remove extra drawable folders for specific pixel densities from a
given app version to minimize the total installation size for a particular device.

Look-and-Feel Observation 2.1
Low-resolution images do not scale well. For images to render nicely, a high-pixel-density
device needs highe-resolution images than a low-pixel-density device.

2. For the origin of the term mipmap, see https://en.wikipedia.org/wiki/Mipmap.

Look-and-Feel Observation 2.2
Images do not always scale well. For apps that you intend to place in the Google Play store,
you might want to have an artist design icons for the appropriate resolutions. In
Chapter 10, we discuss submitting apps to the Google Play store and list several companies
that offer free and fee-based icon-design services.

https://en.wikipedia.org/wiki/Mipmap

ptg16518503

52 Chapter 2 Welcome App

2.5.3 Changing RelativeLayout to a LinearLayout
When you open a layout XML file, the layout’s design appears in the layout editor and the
layout’s views and their hierarchical relationships appear in the Component Tree window
(Fig. 2.15). To configure a layout or view, you can select it in the layout editor or in the
Component Tree, then use the Properties window below the Component Tree to specify the
view’s property values without editing the XML directly. When designing and modifying
more complex layouts, it’s often easier to work directly in the Component Tree.

Fig. 2.14 | Configuring the launcher icon in the Asset Studio window.

Fig. 2.15 | Hierarchical GUI view in the Component Tree window.

ptg16518503

2.5 Building the App’s GUI with the Layout Editor 53

For some GUI modifications—such as changing the default RelativeLayout to a
LinearLayout—you must edit the layout’s XML directly. (This might change as Google
improves the layout editor’s capabilities.) To do so:

1. Click the Text tab at the bottom of the layout editor to switch from the Design
view to the layout’s XML text.

2. At the top of the XML (line 2 in Fig. 2.12), double click the XML element name
RelativeLayout to select it, then start typing LinearLayout.

3. As you type in line 2, the IDE edits the corresponding ending XML tag (line 17
in Fig. 2.12) simultaneously to keep them in sync, and a code-completion win-
dow appears containing element names that begin with the letters you’ve typed
so far. Once LinearLayout appears in the code-completion window and is high-
lighted, press Enter (or Return) to select LinearLayout and enable Android Stu-
dio to auto-complete the edit.

4. Save the changes and switch back to the layout editor’s Design tab.

The Component Tree should now appear as in Fig. 2.16.

2.5.4 Changing the LinearLayout’s id and orientation
In this section, you’ll customize the LinearLayout’s properties. In general, give each lay-
out and component a relevant name. This helps you easily identify each view in the Com-
ponent Tree and enables you to manipulate the views programmatically, as we’ll do in
subsequent apps.

When a GUI is displayed in the layout editor, you can use the Properties window
below the Component Tree (Fig. 2.8) to configure the selected view’s properties. You also
can edit a view’s most commonly used properties (as you’ll do in this section) by double
clicking the view in the canvas. The layout editor then displays a small dialog in which you
can set the view’s id property and other properties that depend on the specific view:

• For a LinearLayout, you can set the orientation to specify whether the layout’s
children are arranged in horizontal or vertical orientation.

• For a TextView, you can set the text that’s displayed.

• For an ImageView, you can set the src (source) of the image to display.

Setting the LinearLayout’s orientation and id Properties
To change the LinearLayout’s orientation, double click the virtual phone screen’s white
background in the layout editor to display the dialog of common LinearLayout proper-
ties, then select vertical from the orientation: drop-down as shown in Fig. 2.17. This sets
the property’s value and dismisses the dialog. A view’s name is defined by setting its id

Fig. 2.16 | Component Tree after changing from a RelativeLayout to a LinearLayout.

www.allitebooks.com

http://www.allitebooks.org

ptg16518503

54 Chapter 2 Welcome App

property, which is specified in the layout’s XML with the attribute android:id. Double
click the virtual phone screen’s white background, enter the name welcomeLinearLayout
in the id: field, then press Enter (or Return) to set the value and dismiss the dialog.

The id Property’s XML Representation
In the layout’s XML representation—viewable via the Text tab at the bottom of the layout
editor—the LinearLayout’s android:id has the value:

The + in the syntax @+id indicates that a new id should be created with the identifier to
the right of the forward slash (/). In some cases, the XML contains the same syntax with-
out the + to refer to an existing view—for example, to specify the relationships between
views in a RelativeLayout.

2.5.5 Configuring the TextView’s id and text Properties
The Welcome app’s default GUI already contains a TextView, so you’ll simply modify its
properties.

Setting the TextView’s id Property
Double click the TextView in the layout editor, then in the dialog that appears set the id:
to welcomeTextView and press Enter (or Return).

Configuring the TextView’s text Property Using a String Resource
According to the Android documentation for application resources

it’s considered good practice to place strings, string arrays, images, colors, font sizes, di-
mensions and other app resources in XML files within the subfolders of the project’s res
folder, so these resources can be managed separately from your app’s Java code. This is
known as externalizing the resources. For example, if you externalize color values, all com-
ponents that use the same color can be updated to a new color simply by changing the col-
or value in a central resource file.

If you wish to localize your app in several languages, storing the strings separately from
the app’s code allows you to change them easily. In your project’s res folder, the subfolder

Fig. 2.17 | Setting the LinearLayout’s orientation.

@+id/welcomeLinearLayout

http://developer.android.com/guide/topics/resources/index.html

http://developer.android.com/guide/topics/resources/index.html

ptg16518503

2.5 Building the App’s GUI with the Layout Editor 55

values contains a strings.xml file that’s used to store the app’s default language strings—
English for our apps. To provide localized strings for other languages, you can create sep-
arate values folders for each language, as we’ll demonstrate in Section 2.8.

To set the TextView’s text property, create a new string resource in the strings.xml
file as follows:

1. Either double click the welcomeTextView in the layout editor or select welcome-
TextView and locate its text property in the Properties window

2. Click the ellipsis (…) button to the right of the property’s value to display the Re-
sources dialog.

3. In the Resources dialog, click New Resource, then select New String Value… to
display the New String Value Resource dialog and fill the Resource name: and Re-
source value: fields as shown in Fig. 2.18. Leave the other settings (we’ll discuss
these in later sections and apps) and click OK to create the new string resource
named welcome and set it as the value of the TextView’s text property.

In the Properties window, the text property should now appear as in Fig. 2.19. The
@string/ prefix indicates that a string resource will be used to obtain the value for the text
property and welcome indicates the specific string resource to use. By default, the resource
is placed in the strings.xml file (located in the project’s res/values folder).

Fig. 2.18 | New String Value Resource dialog.

Fig. 2.19 | Properties window after changing the TextView’s text property.

ptg16518503

56 Chapter 2 Welcome App

2.5.6 Configuring the TextView’s textSize Property—Scaled Pixels
and Density-Independent Pixels
Sizes can be specified in various measurement units (Fig. 2.20). The documentation for
supporting multiple screen sizes recommends that you use density-independent pixels for di-
mensions of views and other screen elements, and scale-independent pixels for font sizes:

Defining your GUIs with density-independent pixels enables the Android platform
to scale the GUI, based on the pixel density of a given device’s screen. One density-inde-
pendent pixel is equivalent to one pixel on a 160-dpi screen. On a 240-dpi screen, each den-
sity-independent pixel will be scaled by a factor of 240/160 (i.e., 1.5). So, a component
that’s 100 density-independent pixels wide will be scaled to 150 actual pixels wide. On a
screen with 120 dpi, each density-independent pixel is scaled by a factor of 120/160 (i.e.,
0.75). So, the same component that’s 100 density-independent pixels wide will be 75
actual pixels wide. Scale-independent pixels are scaled like density-independent pixels,
but they’re also scaled by the user’s preferred font size (as specified in the device’s settings).

Creating a Dimension Resource for the Font Size on a Phone Device
You’ll now increase the TextView’s font size. To change the font size:

1. Select the welcomeTextView in the layout editor.

2. Locate the textSize property, then click in the right column to reveal the ellipsis
(…) button and click the button to display the Resources dialog.

3. In the Resources dialog, click New Resource, then select New Dimension Value…
to display the New Dimension Value Resource dialog.

4. In the dialog that appears, specify welcome_textsize for the Resource name and
40sp for the Resource value, then click OK to dismiss the dialog and return to the
Resources dialog. The letters sp in the value 40sp indicate that this is a scale-in-
dependent pixel measurement. The letters dp in a dimension value (e.g., 10dp)
indicate a density-independent pixel measurement. We used the value 40sp for
displaying text on a phone.

In the Properties window, the textSize property now contains the value:

The @dimen/ prefix indicates that the textSize property’s value is a dimension resource
and welcome_textsize indicates the specific dimension resource to use. By default, the
resource is placed in the dimens.xml file—located in the project’s res/values folder.

http://developer.android.com/guide/practices/screens_support.html

Unit Description Unit Description

px pixel in inches

dp or dip density-independent pixel mm millimeters

sp scale-independent pixel

Fig. 2.20 | Measurement units.

@dimen/welcome_textsize

http://developer.android.com/guide/practices/screens_support.html

ptg16518503

2.5 Building the App’s GUI with the Layout Editor 57

Creating a Dimension Resource for the Font Size on a Large Tablet Device
The 40sp font size works well for phone-sized devices, but is small for tablets. Android can
automatically choose different resource values based on device sizes, orientations, pixel
densities, spoken languages, locales and more. To specify a separate font size for larger de-
vices such as tablets:

1. Reopen the New Dimension Value Resource dialog as described above.

2. Enter welcome_textsize for the Resource name (the resource names must match
for Android to select different resource values automatically) and enter 80sp for
the Resource value.

3. Next, you’ll create a new values resource folder that’s specific to larger devices
such as tablets that have widths and heights that are each at least 600dp. In the
New Dimension Value Resource dialog, uncheck the values checkbox, and click
the Add button () to open the New Resource Directory dialog. In this dialog’s
Available qualifiers list, select Screen Width, then click the >> button to add the
screen Screen Width qualifier to the Chosen qualifiers list. Next, enter 600 in the
Screen width field.

4. Next, add the Screen Height qualifier to the Chosen qualifiers list and enter 600
for the Screen height.

5. Click OK to create a new resource folder named values-xlarge.

6. In the New Dimension Value Resource dialog, check the values-w600dp-h600dp
checkbox, then click OK. This creates another welcome_textsize dimension re-
source in a dimens.xml file that’s stored on disk in the project’s res/values-
w600dp-h600dp folder. Android will use that resource for devices with extra-large
screen widths and heights that are at least 600dp, typical of most Android tablets.
The new dimens.xml resource file appears in Android Studio in the project’s
res/values/dimens.xml node as

2.5.7 Setting the TextView’s textColor Property
When you need custom colors in your apps, Google’s Material Design guidelines recom-
mend using colors from the Material Design color palette at:

Colors are specified as RGB (red-green-blue) or ARGB (alpha-red-green-blue) values. An
RGB value consists of integer values in the range 0–255 that define the amounts of red,
green and blue in the color, respectively. Custom colors are defined in hexadecimal format,
so the RGB components are values in the range 00 (the hexadecimal value for 0) to FF (the
hexadecimal value for 255).

Android also supports alpha (transparency) values in the range 00 (completely trans-
parent) to FF (completely opaque). To use alpha, you specify the color as #AARRGGBB,
where the first two hexadecimal digits represent the alpha value.

If both digits of each color component are the same, you can use the abbreviated value
formats #RGB or #ARGB. For example, the RGB value #9AC is equivalent to #99AACC and the
ARGB value #F9AC is equivalent to #FF99AACC.

 dimens.xml (w600dp-h600dp)

http://www.google.com/design/spec/style/color.html

http://www.google.com/design/spec/style/color.html

ptg16518503

58 Chapter 2 Welcome App

To set the TextView’s textColor property to a new color resource:

1. In the Properties window click the ellipsis (…) button to display the Resources
dialog, then click New Resource and select New Color Value….

2. In the New Color Value Resource dialog, enter welcome_text_color for the Re-
source name and #2196F3 for the Resource value (Fig. 2.21), then click OK.

2.5.8 Setting the TextView’s gravity Property
To center the text in the TextView if it wraps to multiple lines, you can set its gravity
property to center. To do so, expand the node for this property, then check the center
checkbox (Fig. 2.22).

Fig. 2.21 | Creating a New Color Value Resource for the TextView's textColor property.

Fig. 2.22 | Options for the Gravity property of a TextView.

ptg16518503

2.5 Building the App’s GUI with the Layout Editor 59

2.5.9 Setting the TextView’s layout:gravity Property
Each view you place in a layout has various layout properties that enable you to customize
the view’s size and positioning within the layout. When you select a view in the layout ed-
itor or Component Tree, the Properties window lists the layout and style properties at
the top, followed by the view-specific properties in alphabetical order (Fig. 2.23).

In this app, we’d like to center the TextView horizontally within the LinearLayout.
To do this, you’ll set its layout:gravity property to center horizontally as follows:

1. With the TextView selected, expand the layout:gravity property’s node in the
Properties window.

2. Click the value field to the right of the center option that appears, then select
the horizontal option (Fig. 2.24).

Fig. 2.23 | Properties window showing layout and style properties at the top.

Fig. 2.24 | Setting the layout:gravity for the TextView.

layout and style
properties are listed first

Other view properties are
listed after the layout

and style properties

Toggles the display of “expert”
properties most programmers do not
modify—these are hidden by default

Resets the selected property
to its default value

Displays a brief description of
the currently selected property

ptg16518503

60 Chapter 2 Welcome App

In the layout XML file, layout properties have attribute names that begin with
layout_. The preceding layout:gravity property setting is represented in XML as:

2.5.10 Setting the TextView’s layout:weight Property
A LinearLayout can proportionally size its children based on their layout:weights,
which specify the view’s relative size with respect to the layout’s other views. By default,
the layout:weight is 0 for each view you add to a LinearLayout, indicating that the view
should not be proportionally sized.

In this app, we’d like the TextView and ImageView to each occupy half of the Linear-
Layout’s vertical space. You accomplish this by setting each view’s layout:weight to the
same value. The LinearLayout uses the ratio of each view’s layout:weight to the total
layout:weight to allocate space to the views. In this app, you’ll set the layout:weight to
1 for both the TextView and ImageView (Section 2.5.11)—the total layout:weight will
be 2 and each view will occupy 1/2 the layout’s height.

If you wanted the TextView to occupy one-third of the LinearLayout’s height, you
could set its layout:weight to 1 and the ImageView’s layout:weight to 2. In this case,
the total layout:weight is 3, so the TextView would occupy 1/3 the height and the
ImageView 2/3 the height.

Set the TextView’s layout:weight to 1. The layout editor displays a light bulb ()
icon to the left of the layout:height property—if it does not do so immediately, click the
layout:height property in the Properties window. These icons—generated by a tool in
the IDE known as Android Lint—warn you of potential problems and help you fix them.
When you click the light bulb, the IDE displays the message, “Use a layout_height of
0dp instead of wrap_content for better performance.” Click the message to apply the rec-
ommendation. This change enables the LinearLayout to calculate its children’s sizes more
efficiently. The layout editor window should now appear as shown in Fig. 2.25.

2.5.11 Adding an ImageView to Display the Image
Next, you’ll add an ImageView to the GUI to display the image you added to the project
in Section 2.5.1. You’ll do this by dragging an ImageView from the Palette’s Widgets sec-
tion onto the canvas below the TextView. When you drag a view onto the canvas, the lay-
out editor displays orange guide lines, green guide lines and a tooltip:

• The orange guide lines show the bounds of each existing view in the layout.

• The green guide lines indicate where the new view will be placed with respect to
the existing views—by default, new views are added at the bottom of a vertical

android:layout_gravity="center_horizontal"

Error-Prevention Tip 2.2
Android Lint checks your project for common errors, and makes suggestions for better
security, enhanced performance, improved accessibility, internationalization and more.
Some checks occur as you build your apps and write code. You also can select Analyze >

Inspect Code… to perform additional checks on specific files or your entire project. For
more information, visit http://developer.android.com/tools/help/lint.html. For
Android Lint’s configuration options and output, see http://developer.android.com/
tools/debugging/improving-w-lint.html.

http://developer.android.com/tools/help/lint.html
http://developer.android.com/tools/debugging/improving-w-lint.html
http://developer.android.com/tools/debugging/improving-w-lint.html

ptg16518503

2.5 Building the App’s GUI with the Layout Editor 61

LinearLayout, unless you position the mouse above the orange box that bounds
the layout’s topmost view.

• The tooltip displays how the view will be configured if you drop it at the current
position.

To add and configure the ImageView:

1. From the Palette’s Widgets section, drag an ImageView onto the canvas as shown
in Fig. 2.26. Before releasing the mouse, ensure that center appears in the tooltip at
the top of the design—this indicates that the layout editor will set the Image-
View’s layout:gravity property to center the ImageView horizontally in the
LinearLayout. When you drop the ImageView by releasing the mouse, the layout
editor assumes that the ImageView’s layout:weight should be the same as the
TextView’s and sets the layout:weight to 1. It also sets the layout_height to
0dp as we did for the TextView. The new ImageView appears below the TextView
in the design and below welcomeTextView in the Component Tree. The Image-
View’s properties are displayed in the Properties window.

Fig. 2.25 | Layout editor window after configuring the TextView.

ptg16518503

62 Chapter 2 Welcome App

2. In the Properties window, locate the ImageView’s src property (which specifies
the image to display), then click its value field’s ellipsis button to display the
Resources dialog (Fig. 2.27). When the dialog opens, type bug to search the list
of resources for the image you added in Section 2.5.1, then click OK. For every
image you place in a drawable folder, the IDE generates a unique resource ID
(i.e., a resource name) that you can use to reference that image. An image’s re-
source ID is the image’s file name without the file-name extension—bug for the
bug.png file.

3. Double-click the ImageView in the layout editor and set its id: to bugImageView.

The GUI should now appear as in Fig. 2.28. If you select the ImageView in the layout
editor, Android Lint displays a light bulb () next to the ImageView—clicking this dis-
plays a message indicating that a property is missing for visually impaired users. You’ll cor-
rect this in Section 2.7.

Fig. 2.26 | Dragging and dropping an ImageView onto the GUI.

Tooltip indicating that the layout
editor will set the new ImageView’s
layout:gravity property to center
the ImageView horizontally in the
LinearLayout

When you drag the ImageView onto the
design, the layout editor displays a green
line indicating where the ImageView (or
any other view you drag) will be placed

Orange guide lines showing
the TextView’s bounds

ptg16518503

2.5 Building the App’s GUI with the Layout Editor 63

Fig. 2.27 | Selecting the bug image resource from the Resources dialog.

Fig. 2.28 | Preview of the completed design.

Preview of the selected drawable—the
IDE does not necessarily display the
image in its original aspect ratio

Android Lint indicating
that the ImageView is

missing a property for
visually impaired users

ptg16518503

64 Chapter 2 Welcome App

2.5.12 Previewing the Design
Android Studio also enables you to preview your design in landscape orientation and to
preview your design for multiple devices. To toggle the design between portrait and land-
scape orientations, simply click the Go to next state button () in the toolbar at the top
of the layout editor. This helps you determine whether your design adjusts appropriately
for each orientation. To preview the design for multiple devices, click the virtual device
drop-down (Fig. 2.11) at the top of the layout editor, then select Preview All Screen Siz-
es.This displays miniature screens (Fig. 2.29) for many devices listed in the virtual device
drop-down—some in portrait and some in landscape. These help you quickly determine
whether your design works appropriately on various devices.

Fig. 2.29 | Previewing various devices for the Welcome app’s design.

ptg16518503

2.6 Running the Welcome App 65

You can return to displaying one device by clicking the virtual device drop-down and
selecting Remove Previews. You also can preview your design for a particular device be
selecting that device in the virtual device drop-down.

2.6 Running the Welcome App
You’re now ready to run the Welcome app. Perform the steps shown in Section 1.9.3 to
run the app on the AVDs you configured previously for both the Nexus 6 phone and Nex-
us 9 tablet. Figures 2.30–2.31 show the app running in the Nexus 6 AVD (in portrait and
landscape) and the Nexus 9 AVD (in landscape), respectively. You can toggle an AVD be-
tween portrait and landscape orientations by typing Ctrl + F11 or control + F11. Typically,
for apps that run on both phones and tablets, you’ll also provide a tablet layout that makes
better use of the screen’s available space, as we’ll demonstrate in later chapters. If you have
an Android device, you can follow the steps in Section 1.9.4 to run the app on your device.

Fig. 2.30 | Welcome app running in the Nexus 6 AVD.

ptg16518503

66 Chapter 2 Welcome App

2.7 Making Your App Accessible
Android contains accessibility features to help people with certain disabilities use their de-
vices. For people with visual disabilities, Android’s TalkBack can speak screen text or text
that you provide (when designing your GUI or programmatically) to help the user under-
stand the purpose of a view. Android also provides Explore by Touch, which enables the user
to hear TalkBack speak what’s on the screen where the user touches.

When TalkBack is enabled and the user touches a view for which accessibility text is
specified, the device vibrates to indicate that the user touched a significant view and Talk-
Back speaks the views’s accessibility text. All standard Android views support accessibility.
For those that display text, TalkBack speaks that text by default—e.g., when the user
touches a TextView, TalkBack speaks the TextView’s text. You enable TalkBack in the Set-
tings app under Accessibility. From that page, you also can enable other Android accessi-
bility features such as a larger default text size and the ability to use gestures that magnify
areas of the screen. TalkBack is not currently supported on AVDs, so you must run this app
on a device to hear TalkBack speak the text. When you enable TalkBack, Android walks
you through a tutorial on using TalkBack with Explore by Touch.

Enabling TalkBack for the ImageViews
In the Welcome app, we don’t need more descriptive text for the TextView, because Talk-
Back will read the TextView’s content. For an ImageView, however, there is no text for

Fig. 2.31 | Welcome app running in the Nexus 9 AVD.

ptg16518503

2.8 Internationalizing Your App 67

TalkBack to speak unless you provide it. It’s considered good practice in Android to ensure
that every view can be used with TalkBack by providing text for the contentDescription
property of any view that does not display text. For that reason, the IDE warned us that
something was wrong by displaying a light-bulb icon (—as you saw in Fig. 2.28) in the
layout editor next to the ImageView. If you click the light bulb, you’ll see the message,
“[Accessibility] Missing contentDescription attribute on image.” The text you provide
should help the user understand the purpose of the component. For an ImageView, the text
should describe the image.

To add the ImageView’s contentDescription (and eliminate the warning):

1. Select the bugImageView in the layout editor.

2. In the Properties window, click the ellipsis button to the right of the contentDe-
scription property to open the Resources dialog.

3. Click New Resource, then select New String Value… to display the New String Value
Resource dialog.

4. In the Resource name field specify deitel_logo and in the Resource value field
specify "Deitel double-thumbs-up bug logo", then press OK. The new string re-
source is chosen automatically as the contentDescription value.

After you set the ImageView’s contentDescription, the layout editor removes the warn-
ing light bulb.

Testing the App with TalkBack Enabled
Run this app on a device with TalkBack enabled, then touch the TextView and ImageView
to hear TalkBack speak the corresponding text.

Dynamically Created Views
Some apps dynamically create views in response to user interactions. For such views, you can
programmatically set the accessibility text. For more information on this and Android’s other
accessibility features, and for a checklist to follow when developing accessible apps, visit:

2.8 Internationalizing Your App
To reach the largest possible audience, you should consider designing your apps so that
they can be customized for various locales and spoken languages. Then, if you intend to
offer your app, for example, in France, you would translate its resources (text, audio files,
etc.) into French. You might also choose to use different colors, graphics and sounds based
on the locale. For each locale, you’ll have a separate, customized set of resources. When the
user launches the app, Android automatically finds and loads the resources that match the
device’s locale settings. Designing an app so it can be customized is known as internation-
alization. Customizing an app’s resources for each locale is known as localization.

2.8.1 Localization
A key benefit of defining your string values as string resources (as we did in this app) is
that you can easily localize your app by creating additional XML resource files for those

http://developer.android.com/design/patterns/accessibility.html
http://developer.android.com/guide/topics/ui/accessibility

http://developer.android.com/design/patterns/accessibility.html
http://developer.android.com/guide/topics/ui/accessibility

ptg16518503

68 Chapter 2 Welcome App

string resources in other languages. In each file, you use the same string-resource names,
but provide the translated string. Android can then choose the appropriate resource file based
on the device user’s preferred language.

2.8.2 Naming the Folders for Localized Resources
The XML resource files containing localized strings are placed on disk in subfolders of the
project’s res folder. Android uses a special folder-naming scheme to automatically choose
the correct localized resources—for example, the folder values-fr would contain a
strings.xml file for French and the folder values-es would contain a strings.xml file
for Spanish. You also can name these folders with region information—values-en-rUS

would contain a strings.xml file for United States English and values-en-rGB would
contain a strings.xml file for United Kingdom English. If localized resources are not pro-
vided for a given locale, Android uses the app’s default resources—that is, those in the res
folder’s values subfolder. We discuss these alternative-resource naming conventions in
more detail in later chapters.

2.8.3 Adding String Translations to the App’s Project
Android Studio provides a Translations Editor for quickly and easily adding translations for
existing strings in your app. Follow these steps to add translated strings to the project:

1. In the Project window, expand the values node, then open the strings.xml file.

2. In the editor’s upper-right corner, click the Open editor link to open the Transla-
tions Editor.

3. In the upper-left corner of the Translations Editor, click the Add Locale button
(), then select Spanish (es)—you can search for this entry by typing part of the
language name or its abbreviation (es). After you select the locale in the list, a new
strings.xml (es) file will be created and be placed in the strings.xml node in
the Project window (the file is stored in a values-es folder on disk). The Trans-
lations Editor also displays a new column for the Spanish translations.

4. To add a Spanish translation for a given String resource, click the cell for the re-
source’s Spanish (es) translation, then in the Translation: field at the bottom of the
window enter the Spanish text. If a string should not be translated (for example,
a string that’s never displayed to the user), check the Untranslatable checkbox for
that String resource. For the Welcome app, use the translations in Section 2.8.4.

Repeat the preceding steps for each language you wish to support.

2.8.4 Localizing Strings
In this app, the GUI contains one TextView that displays a string and one content-descrip-
tion string for the ImageView. These strings were defined as string resources in the
strings.xml file. You can now provide the translated strings that will be stored in the new
version of the strings.xml file. For this app, you’ll replace the strings

"Welcome to Android App Development!"
"Deitel double-thumbs-up bug logo"

ptg16518503

2.8 Internationalizing Your App 69

with the Spanish strings

In the Translation Editor window:

1. Click the cell for the welcome resource Spanish (es) translation, then in the Trans-
lation: field at the bottom of the window enter the Spanish string "¡Bienvenido
al Desarrollo de App Android!". If you cannot type special Spanish characters
and symbols on your keyboard, you can copy the Spanish strings from our res/
values-es/strings.xml file in the final version of the Welcome app (located in
the WelcomeInternationalized folder with the chapter’s examples), then paste
the Spanish string into the Translation: field.

2. Next, click the cell for the deitel_logo resource’s value and enter in the Trans-
lation: field "El logo de Deitel que tiene el insecto con dedos pulgares hacia
arriba".

3. We chose not to translate the resource app_name, though we could have. The
window should appear as in Fig. 2.32.

4. Save the Spanish strings.xml file by selecting File > Save All or clicking the Save
All toolbar button ().

2.8.5 Testing the App in Spanish on an AVD
To test the app in Spanish on an AVD, you can use the Custom Locale app that’s installed
on the AVD.

1. Click the home () icon on your AVD.

2. Click the launcher () icon, then locate and click the Custom Locale app’s icon
to open it.

3. Drag the mouse to scroll to the es - español option, then click it and click the
SELECT 'ES' button to change the AVD’s locale.

The emulator or device changes its language setting to Spanish.

"¡Bienvenido al Desarrollo de App Android!"
"El logo de Deitel que tiene el insecto con dedos pulgares

 hacia arriba"

Fig. 2.32 | Translations Editor window with the Spanish strings.

ptg16518503

70 Chapter 2 Welcome App

Next, run the Welcome app, which installs and launches the localized app (Fig. 2.33).
When the app begins executing, Android checks the AVD’s (or device’s) language settings,
determines that the AVD (or device) is set to Spanish and uses the Spanish welcome and
deitel_logo string resources defined in res/values-es/strings.xml. Notice, however,
that the app’s name still appears in English in the app bar at the top of the app. This is
because we did not provide a localized version of the app_name string resource in the res/
values-es/strings.xml file. If Android cannot find a localized version of a string
resource, it uses the default version in the res/values/strings.xml file.

Returning the AVD to English
To return your AVD to English:

1. Click the home () icon on your AVD.

2. Click the launcher () icon, then locate and click the Custom Locale app’s icon
to open it.

3. Drag the mouse to scroll to the en-US - en-us option, then click it and click the
SELECT 'EN-US' button to change the AVD’s locale.

2.8.6 Testing the App in Spanish on a Device
To test on a device you must change the language settings for your device. To do so:

1. Touch the home () icon on your device.

2. Touch the launcher () icon, then locate and touch the Settings app () icon.

Fig. 2.33 | Welcome app running in Spanish in the Nexus 6 AVD.

ptg16518503

2.8 Internationalizing Your App 71

3. In the Settings app, scroll to the Personal section, then touch Language & input.

4. Touch Language (the first item in the list), then select Español (España) from the
list of languages.

The device changes its language setting to Spanish and returns to the Language & input set-
tings, which are now displayed in Spanish. Run the app from the IDE to install and run
the localized version on your device.

Returning Your Device to English
To return your AVD (or Device) to English:

1. Touch the home () icon on the emulator or on your device.

2. Touch the launcher () icon, then locate and touch the Settings app ()
icon—the app is now called Ajustes in Spanish.

3. Touch the item Idioma e introduccion de texto to access the language settings.

4. Touch the item Idioma, then in the list of languages select English (United States).

2.8.7 TalkBack and Localization
TalkBack currently supports English, Spanish, Italian, French and German. If you run the
Welcome app on a device with Spanish specified as the device’s language and TalkBack en-
abled, TalkBack will speak the app’s Spanish strings as you touch each view.

When you first switch your device to Spanish and enable TalkBack, Android will
automatically download the Spanish text-to-speech engine. If TalkBack does not speak the
Spanish strings, then the Spanish text-to-speech engine has not finished downloading and
installing yet. In this case, you should try executing the app again later.

2.8.8 Localization Checklist
For more information on localizing your app’s resources, be sure to check out the Android
Localization Checklist at:

2.8.9 Professional Translation
App-development companies often have translators on staff or hire other companies to
perform translations. In fact, in the Google Play Developer Console—which you use to
publish your apps in the Google Play store—you can find translation-services companies,
and in the Translations Editor window there is an Order translations… link. For more in-
formation on the Google Play Developer Console, see Chapter 10 and

For more information regarding translation, see

http://developer.android.com/distribute/tools/localization-
checklist.html

http://developer.android.com/distribute/googleplay/developer-
console.html

https://support.google.com/l10n/answer/6227218

http://developer.android.com/distribute/tools/localization-checklist.html
http://developer.android.com/distribute/tools/localization-checklist.html
http://developer.android.com/distribute/googleplay/developer-console.html
http://developer.android.com/distribute/googleplay/developer-console.html
https://support.google.com/l10n/answer/6227218

ptg16518503

72 Chapter 2 Welcome App

2.9 Wrap-Up
In this chapter, you used Android Studio to build the Welcome app that displays a wel-
come message and an image without writing any code. You created a simple GUI using
the IDE’s layout editor and configured view properties using the Properties window.

In the layout XML file, you changed the default RelativeLayout to a LinearLayout,
which you then configured to arrange views vertically. The app displayed text in a Text-
View and a picture in an ImageView. You modified the TextView from the default GUI to
display the app’s text centered in the GUI, with a larger font size and in one of the standard
theme colors. You also used the layout editor’s Palette of GUI controls to drag and drop
the ImageView onto the GUI. Following good practice, you defined all strings and
numeric values in resource files in the project’s res folder.

You learned that Android has accessibility features to help people with certain disabil-
ities use their devices. We showed how to enable Android’s TalkBack to allow a device to
speak screen text or speak text that you provide to help the visually impaired user under-
stand the purpose and contents of a view. We discussed Android’s Explore by Touch fea-
ture, which enables the user to touch the screen to hear TalkBack speak what’s on the
screen near the touch. For the app’s ImageViews, you provided content descriptions that
could be used with TalkBack and Explore by Touch.

Finally, you learned how to use Android’s internationalization features to reach the
largest possible audience for your apps. You localized the Welcome app with Spanish
strings for the TextView’s text and the ImageViews’ accessibility strings, then tested the app
on an AVD configured for Spanish.

Android development is a combination of GUI design and Java coding. In the next
chapter, you’ll develop a simple Tip Calculator app by using the layout editor to develop
the GUI visually and Java programming to specify the app’s behavior.

ptg16518503

3
Tip Calculator App

Introducing GridLayout, EditText, SeekBar, Event
Handling, NumberFormat, Customizing the App’s Theme

and Defining App Functionality with Java

O b j e c t i v e s
In this chapter you’ll:

■ Change the default GUI theme.

■ Customize the GUI theme’s colors.

■ Design a GUI using a GridLayout.

■ Use the IDE’s Component Tree window to add views to a
GridLayout.

■ Use TextViews, an EditText and a SeekBar.

■ Use Java object-oriented programming capabilities,
including classes, objects, interfaces, anonymous inner
classes and inheritance to add functionality to an app.

■ Programmatically change the text in a TextView.

■ Use event handling to respond to user interactions with an
EditText and a SeekBar.

■ Specify that the keypad should display by default when the
app executes.

■ Specify that the app supports only portrait orientation.

ptg16518503

74 Chapter 3 Tip Calculator App
O

u
tl

in
e

3.1 Introduction
The Tip Calculator app (Fig. 3.1(a)) calculates and displays the tip and total for a restaurant
bill amount. As you touch the numeric keypad to enter the bill amount’s digits, the app
calculates and displays the tip and total bill amounts for the current tip percentage (15%
by default). You specify a tip percentage from 0% to 30% by moving the SeekBar
thumb—this updates the displayed tip percentage and recalculates the tip and total. All nu-
meric values are displayed using locale-specific formatting. Figure 3.1(b) shows the app af-
ter the user enters the amount 56.32 and changes the tip percentage to 25%.

You’ll begin by test-driving the app. Then we’ll overview the technologies you’ll use
to create the app. You’ll build the app’s GUI using Android Studio’s layout editor and the
Component Tree window. Finally, we’ll present the complete Java code for the app and do
a detailed code walkthrough.

Note Regarding the Keyboard in Our Screen Captures
The keypad in Fig. 3.1 may differ, based on your AVD’s or device’s Android version or
whether you’ve installed and selected a custom keyboard on your device. We configured
our AVD to display the dark keyboard for better contrast in our screen captures. To do so:

1. Touch the home () icon on your AVD or device.

3.1 Introduction
3.2 Test-Driving the Tip Calculator App
3.3 Technologies Overview

3.3.1 Class Activity
3.3.2 Activity Lifecycle Methods
3.3.3 AppCompat Library and Class

AppCompatActivity
3.3.4 Arranging Views with a GridLayout
3.3.5 Creating and Customizing the GUI

with the Layout Editor and the
Component Tree and Properties
Windows

3.3.6 Formatting Numbers as Locale-
Specific Currency and Percentage
Strings

3.3.7 Implementing Interface
TextWatcher for Handling
EditText Text Changes

3.3.8 Implementing Interface
OnSeekBarChangeListener for
Handling SeekBar Thumb Position
Changes

3.3.9 Material Themes
3.3.10 Material Design: Elevation and

Shadows
3.3.11 Material Design: Colors
3.3.12 AndroidManifest.xml
3.3.13 Searching in the Properties Window

3.4 Building the GUI
3.4.1 GridLayout Introduction
3.4.2 Creating the TipCalculator Project

3.4.3 Changing to a GridLayout
3.4.4 Adding the TextViews, EditText

and SeekBar
3.4.5 Customizing the Views

3.5 Default Theme and Customizing
Theme Colors

3.5.1 parent Themes
3.5.2 Customizing Theme Colors
3.5.3 Common View Property Values as

Styles
3.6 Adding the App’s Logic

3.6.1 package and import Statements
3.6.2 MainActivity Subclass of

AppCompatActivity
3.6.3 Class Variables and Instance

Variables
3.6.4 Overriding Activity Method

onCreate
3.6.5 MainActivity Method calculate
3.6.6 Anonymous Inner Class That

Implements Interface
OnSeekBarChangeListener

3.6.7 Anonymous Inner Class That
Implements Interface TextWatcher

3.7 AndroidManifest.xml
3.7.1 manifest Element
3.7.2 application Element
3.7.3 activity Element
3.7.4 intent-filter Element

3.8 Wrap-Up

ptg16518503

3.2 Test-Driving the Tip Calculator App 75

2. On the home screen, touch the launcher () icon, then open the Settings app.

3. In the Personal section, touch Language and Input.

4. On an AVD, touch Android Keyboard (AOSP). On a device touch Google Key-
board—we assume you’re using the standard Android keyboard.

5. Touch Appearance & layouts, then touch Theme.

6. Touch Material Dark to change to the keyboard with the dark background.

3.2 Test-Driving the Tip Calculator App
Opening and Running the App
Perform the steps in Sections 1.9.1 and 1.9.3 to open the Tip Calculator app project in An-
droid Studio and run the app on the Nexus 6 AVD. If you prefer, perform the steps in
Section 1.9.4 to run the app on an Android phone.

Entering a Bill Total
Enter the bill total 56.32 by touching numbers on the numeric keypad. If you make a mis-
take, press the keypad’s delete button () to erase the last digit you entered. Even though
the keypad contains a decimal point, the app is configured so that you may enter only the

Fig. 3.1 | Entering the bill total and calculating the tip.

Move the SeekBar
thumb to change

the tip percentage

a) Initial GUI
b) GUI after user enters the amount 56.32 and
changes the tip percentage to 25%

Touch the keypad’s
numbers to enter the

bill amount as a
whole number of

pennies—the app
divides your input by
100.0 to calculate the

bill amount

Selected tip
percentage is

displayed here

Touch to
delete digits from

right to left

ptg16518503

76 Chapter 3 Tip Calculator App

digits 0 through 9—other input buttons on the keypad are ignored and an Android device
will vibrate to indicate when you touch an invalid input button. Each time you touch a
digit or delete a digit, the app reads what you’ve entered so far, and

• converts it to a number

• divides the number by 100.0 and displays the new bill amount

• recalculates the tip and total amounts, based on the current tip percentage (15%
by default) and

• displays in the Tip and Total TextViews the new tip and total amounts.

If you delete all the digits, the app redisplays Enter Amount in the blue TextView and dis-
plays 0.00 in the orange TextViews. The app divides the value by 100.0 and displays the
result in the blue TextView. The app then calculates and updates the tip and total amounts
in the orange TextViews.

All monetary amounts are displayed in locale-specific currency formats and the tip
percentage is displayed in a locale-specific percentage format. For the U.S. locale, as you
enter the four digits 5, 6, 3 and 2, the bill total is displayed successively as $0.05, $0.56,
$5.63 and $56.32, respectively.

Selecting a Tip Percentage
Use the Seekbar—often called a slider in other GUI technologies—to specify the tip per-
centage. Drag the Seekbar’s thumb until the percentage reads 25% (Fig. 3.1(b)). As you
drag the thumb, the tip and total update continuously. By default, the Seekbar allows you
to select values from 0 to 100, but we specified a maximum value of 30 for this app.

3.3 Technologies Overview
This section introduces the IDE and Android features you’ll use to build the Tip Calculator
app. We assume that you’re already familiar with Java object-oriented programming—we
present Java in our book Java SE 8 for Programmers (http://bit.ly/JavaSE8FP). You’ll

• use various Android classes to create objects

• call methods on classes and objects

• define and call your own methods

• use inheritance to create a class that defines the Tip Calculator’s functionality and

• use event handling, anonymous inner classes and interfaces to process the user’s
GUI interactions.

3.3.1 Class Activity
Android apps have four types of executable components—activities, services, content provid-
ers and broadcast receivers. In this chapter, we’ll discuss activities, which are defined as sub-
classes of Activity (package android.app). An app can have many activities, one of which
is the first you see after launching the app. You interact with an Activity through views—
GUI components that inherit from class View (package android.view).

Before Android 3.0, a separate Activity was typically associated with each screen of
an app. As you’ll see, starting in Chapter 4, an Activity can manage multiple Fragments.

http://bit.ly/JavaSE8FP

ptg16518503

3.3 Technologies Overview 77

On a phone, each Fragment typically occupies the entire screen and the Activity switches
between the Fragments, based on user interactions. On a tablet, activities typically display
multiple Fragments per screen to take advantage of the larger screen size.

3.3.2 Activity Lifecycle Methods
Throughout its life, an Activity can be in one of several states—active (i.e., running),
paused or stopped. The Activity transitions between these states in response to various
events:

• An active Activity is visible on the screen and “has the focus”—that is, it’s in the
foreground. You can interact with the Activity currently in the foreground.

• A paused Activity is visible on the screen but does not have the focus—such as
when an alert dialog is displayed. You cannot interact with the paused activity un-
til it becomes active—for example, after the user dismisses an alert dialog.

• A stopped activity is not visible on the screen—it’s in the background and is likely
to be killed by the system when its memory is needed. An Activity is stopped
when another Activity enters the foreground and becomes active. For example,
when you answer a phone call, the phone app becomes active and the app you
previously were using is stopped.

As an Activity transitions among these states, the Android runtime calls various
Activity lifecycle methods—all of which are defined by the Activity class in package
android.app. You’ll override the onCreate method in every activity. This method is called
by the Android runtime when an Activity is starting—that is, when its GUI is about to
be displayed so you can interact with the Activity. Other lifecycle methods include
onStart, onPause, onRestart, onResume, onStop and onDestroy. We’ll discuss most of
these in later chapters. Each activity lifecycle method you override must call the superclass’s
version; otherwise, an exception will occur. This is required because each lifecycle method
in superclass Activity contains code that must execute in addition to the code you define
in your overridden lifecycle methods. For more on the Activity lifecycle see

3.3.3 AppCompat Library and Class AppCompatActivity
A big challenge developers face when using new Android features is backward compatibil-
ity with earlier Android platforms. Google now introduces many new Android features via
the Android Support Library—a set of libraries that enable you to use newer Android fea-
tures in apps targeting current and past Android platforms.

One such library is the AppCompat library, which enables apps to provide an app bar
(formerly called an action bar) and more on devices running Android 2.1 (API 7) and
higher—app bars were originally introduced in Android 3.0 (API 11). Android Studio’s
app templates have been updated to use the AppCompat library, enabling the new apps you
create to run on almost all Android devices.

Android Studio’s Empty Activity app template defines the app’s MainActivity class as
a subclass of AppCompatActivity (package android.support.v7.app)—an indirect sub-
class of Activity that supports using newer Android features in apps running on current
and older Android platforms.

http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/reference/android/app/Activity.html

ptg16518503

78 Chapter 3 Tip Calculator App

For more details on Android Support Libraries, including when to use them and how
to set them up, visit:

3.3.4 Arranging Views with a GridLayout
Recall that you arrange a GUI’s views in layouts. We’ll use a GridLayout (package
android.widget) to arrange views into cells in a rectangular grid. Cells can occupy multi-
ple rows and columns, allowing for complex layouts. Normally, GridLayout requires API
level 14 or higher. However, the Android Support Library provides alternate versions of
GridLayout and many other views and layouts so that you can use them in older Android
versions. For more information on this library and how to use it in your apps, visit

We’ll cover more layouts and views in later chapters—for a complete list, visit

3.3.5 Creating and Customizing the GUI with the Layout Editor and the
Component Tree and Properties Windows
You’ll create TextViews, an EditText and a SeekBar using the layout editor (that you used
in Chapter 2) and Component Tree window, then customize them with the IDE’s Proper-
ties window.

An EditText—often called a text box or text field in other GUI technologies—is a sub-
class of TextView (presented in Chapter 2) that can display text and accept text input from
the user. You’ll specify an EditText for numeric input, allow users to enter only digits and
restrict the maximum number of digits that can be entered.

A SeekBar represents an integer in the range 0–100 by default and allows the user to
select a number in that range by moving the SeekBar’s thumb. You’ll customize the
SeekBar so the user can choose a tip percentage from the more limited range 0 to 30.

3.3.6 Formatting Numbers as Locale-Specific Currency and Percentage
Strings
You’ll use class NumberFormat (package java.text) to create locale-specific currency and
percentage strings—an important part of internationalizing your apps. You also can add

Software Engineering Observation 3.1
By creating apps with the AppCompat library from the start, you avoid having to
reimplement your code if you decide to support older Android versions to target a wider
potential audience for your app.

Software Engineering Observation 3.2
Some Android features are not available in earlier Android versions, even if you use the
AppCompat libraries. For example, Android’s printing capabilities are available only in
Android 4.4 and higher. If you use such features in your app, you must either restrict the
app to the supported platforms or disable those features on Android versions that do not
support them.

http://developer.android.com/tools/support-library

http://developer.android.com/tools/support-library/index.html

http://developer.android.com/reference/android/widget/package-
summary.html

http://developer.android.com/tools/support-library
http://developer.android.com/tools/support-library/index.html
http://developer.android.com/reference/android/widget/package-summary.html
http://developer.android.com/reference/android/widget/package-summary.html

ptg16518503

3.3 Technologies Overview 79

accessibility strings and internationalize the app’s other text using the techniques you
learned in Sections 2.7–2.8.

3.3.7 Implementing Interface TextWatcher for Handling EditText
Text Changes
To respond to events when the user changes the text in this app’s EditText, you’ll use an
anonymous inner class to implement the TextWatcher interface (from package
android.text). In particular, you’ll use method onTextChanged to display the currency-
formatted bill amount and to calculate the tip and total as the user enters each digit. If
you’re not familiar with anonymous inner classes, visit

3.3.8 Implementing Interface OnSeekBarChangeListener for
Handling SeekBar Thumb Position Changes
You’ll use another anonymous inner class to implement the SeekBar.OnSeekBarChange-
Listener interface (from package android.widget) to respond to the user moving the
SeekBar’s thumb. In particular, you’ll use method onProgressChanged to display the select-
ed tip percentage and to calculate the tip and total as the user moves the SeekBar’s thumb.

3.3.9 Material Themes
A theme gives an app a look-and-feel that’s consistent with Android. Projects that you create
for Android 5 and higher use themes that adhere to Google’s material design guidelines.
There are several predefined material design themes:

• The “light” theme has a white app bar, a white app background and text that is
black or shades of dark gray.

• The “light” theme with a dark app bar is the same as above, but the app bar is
black with white text by default.

• The “dark” has a black app bar, a dark gray app background and text that is white
or shades of light gray.

For each of these themes, there is

• a Theme.Material version (e.g., Theme.Material.Light) for apps that do not use
any AppCompat libraries and run on Android 5 and higher, and

• a Theme.AppCompat version (e.g., Theme.AppCompat.Light) for apps that use
AppCompat libraries and run on Android 2.1 and higher.

When designing a GUI, you can choose from the predefined themes, or even create
your own new ones. For this chapter, we’ll use Theme.AppCompat.Light.DarkActionBar,
which is the default theme in Android Studio’s app templates. Apps that use the App-
Compat libraries must use one of the AppCompat themes; otherwise, some views will not
render correctly. For more information about each theme and to see sample screen cap-
tures, visit

http://bit.ly/AnonymousInnerClasses

http://www.google.com/design/spec/style/color.html#color-themes
http://developer.android.com/training/material/theme.html

http://bit.ly/AnonymousInnerClasses
http://www.google.com/design/spec/style/color.html#color-themes
http://developer.android.com/training/material/theme.html

ptg16518503

80 Chapter 3 Tip Calculator App

3.3.10 Material Design: Elevation and Shadows
Google’s material design guidelines recommend that objects in your user interfaces cast
shadows just as real-world objects do. When you set a view’s elevation property, Android
automatically casts a shadow for that view. Larger elevation values result in more pro-
nounced shadows. For this app, we’ll set the elevation of the blue and orange TextViews
that display monetary amounts.

The material design guidelines contain elevation recommendations for various on-
screen components—for example, a dialog’s recommended elevation is 24dp and a menu’s
is 8dp. For other recommended elevations, see:

3.3.11 Material Design: Colors
App developers often customize a theme’s colors to match a company’s branding. If you
need to customize theme colors, Google’s material design guidelines for color1 recom-
mend that you choose a color palette consisting of a primary color—with no more than
three hues (shades)—and an accent color. The primary colors typically are used to color
the status bar and the app bar at the top of the screen and also can be used in your GUI.
The accent color is used to tint various views in your GUI, such as SeekBars, CheckBoxes
and RadioButtons. Once you choose a palette, you can use Android Studio’s Theme Editor
(Section 3.5.2) to modify a theme’s colors.

You can find recommended sample color swatches from the material design color pal-
ette at

For palette color recommendations, visit

This site enables you to click two colors from Google’s material design color palette, then
it recommends three shades of the primary color, one secondary color and colors for your
app’s text and icons.

In this app, we’ll use color swatches displayed in the Android Studio Theme Editor to
select

• a blue primary color for app bar’s background color

• a darker blue dark primary color for the status bar that appears above the app bar,
and

• an orange accent color used to tint the SeekBar.

Performance Tip 3.1
Many of today’s Android phones use AMOLED displays. On such displays, a black pixel
is turned off and does not consume power. Apps that use mostly black themes can reduce
power consumption by approximately 40% (http://bit.ly/AndroidAMOLEDDisplay).

http://www.google.com/design/spec/what-is-material/elevation-
shadows.html

1. http://www.google.com/design/spec/style/color.html.

http://www.google.com/design/spec/style/color.html#color-color-
palette

http://www.materialpalette.com/

http://bit.ly/AndroidAMOLEDDisplay
http://www.google.com/design/spec/what-is-material/elevation-shadows.html
http://www.google.com/design/spec/what-is-material/elevation-shadows.html
http://www.google.com/design/spec/style/color.html#color-color-palette
http://www.materialpalette.com/
http://www.google.com/design/spec/style/color.html
http://www.curious-creature.org/category/android/

ptg16518503

3.4 Building the GUI 81

For the amount TextView’s light blue color and the tip and total TextViews’ light orange
color, we used Google’s material design color palette to choose lighter shades of the pri-
mary and accent colors.

3.3.12 AndroidManifest.xml
The AndroidManifest.xml file is created by the IDE when you create a new app project.
This file contains many of the settings that you specify in the Create New Project dialog—
the app’s name, package name and Activity name(s) and more. You’ll edit this file’s XML
to add a new setting that forces the soft keyboard to be displayed when the app begins exe-
cuting. You’ll also specify that the app supports only portrait orientation—that is, the de-
vice’s longer dimension is vertical.

3.3.13 Searching in the Properties Window
The Properties window allows you to search for properties by their names or portions of
their names, which can help you find and set properties faster. To do so, click the Proper-
ties window’s title bar and begin typing. At the top of the property list, a Search for tooltip
appears showing what you’ve typed so far, and Android Studio highlights parts of every
property name in the list that matches all or part of what you’ve typed. Then you can scroll
through the list looking at the property names containing highlights.

The window will also scroll to the specific property that best matches what you type.
For example, when searching a TextView’s properties, if you type "text co" or "textco",
the Properties window will highlight portions of many properties, but it specifically scrolls
to and highlights the textColor property.

3.4 Building the GUI
In this section, we’ll show the precise steps for building the Tip Calculator’s GUI, including
how to customize the Material theme’s primary and accent colors.

3.4.1 GridLayout Introduction
This app uses a GridLayout (package android.widget) to arrange views into four rows and
two columns, each indexed from 0 like the elements in an array. You can specify a Grid-
Layout’s number of rows and columns in the Properties window. Each cell can be empty
or can hold one or more views, including layouts containing other views. A row’s height is
determined by the row’s tallest view. Similarly, a column’s width is defined by the column’s
widest view. Figure 3.2 shows the Tip Calculator’s GridLayout labeled by its rows and col-
umns—we drew horizontal lines to delineate the rows and a vertical line to delineate the
columns. Views can span multiple rows and/or columns—for example, the Enter Amount
TextView in Fig. 3.2 spans both columns in row 0.

When you drag a view onto a GridLayout in the Component Tree, the view occupies
the next available grid cell—cells populate the GridLayout left-to-right until a given row
is full, then the next view appears in the first column of the next row. As you’ll see, you
also can specify the exact row and column in which to place a view. We’ll discuss other
GridLayout features as we present the GUI-building steps.

ptg16518503

82 Chapter 3 Tip Calculator App

id Property Values for This App’s Views
Figure 3.3 shows the views’ id property values. For clarity, our naming convention is to
use the view’s class name in the id property and the corresponding Java variable name. In
the first row, there are actually two components in the same grid cell—the amountTextView
(which initially displays Enter Amount) hides the amountEditText that receives the user in-
put. As you’ll soon see, we restrict the user’s input to whole-number values entered as in-
teger digits, so the user enters the bill amount $34.56 as 3456. This ensures the user cannot
enter invalid input. However, this amount should be displayed as currency. As the user en-
ters each digit, we divide the amount by 100.0 and display in the amountTextView the lo-
cale-specific, currency-formatted amount.

3.4.2 Creating the TipCalculator Project
Follow the steps in Section 2.3 to create a new project using the Empty Activity template.
Specify the following values in the Create New Project dialog’s New Project step:

• Application name: Tip Calculator

• Company Domain: deitel.com (or specify your own domain name)

Fig. 3.2 | Tip Calculator GUI’s GridLayout labeled by its rows and columns.

Fig. 3.3 | Tip Calculator views labeled with their id property values.

column 0 column 1

row 0

row 1

row 2

row 3

percentTextView

tipLabelTextView

totalLabelTextView

percentSeekBar

amountTextView (as you’ll soon see, the
amountEditText is hidden behind this TextView)

tipTextView

totalTextView

ptg16518503

3.4 Building the GUI 83

For the remaining steps in the Create New Project dialog, use the same settings as in
Section 2.3. Also, follow the steps in Section 2.5.2 to add an app icon to your project.

Once the project is open in Android Studio, in the layout editor, select Nexus 6 from
the virtual-device drop-down list (Fig. 2.11). Once again, we’ll use this device as the basis for
our design. Also, delete the Hello world! TextView.

3.4.3 Changing to a GridLayout
Recall that the default layout for an Empty Activity is a RelativeLayout. Here, you’ll
change that to a GridLayout:

1. Click the Text tab at the bottom of the layout editor to switch from the Design
view to the layout’s XML text.

2. At the top of the XML, change RelativeLayout to GridLayout.

3. Switch back to the layout editor’s Design tab.

Specifying Two Columns and Default Margins for the GridLayout
Recall that the GUI in Fig. 3.2 consists of two columns. To specify this, select GridLayout
in the Component Tree window, then change its columnCount property to 2—this property
appears near the top of the Properties window with the other layout properties. You do
not need to set the rowCount—it will be increased as we build the GUI.

By default, there are no margins—spacing that separates views—around a GridLayout’s
cells. The material design guidelines recommend 8dp minimum spacing between views:

GridLayout can enforce this recommended spacing. With the GridLayout selected in the
Component Tree, in the Properties window, check the GridLayout’s useDefaultMargins
property (which sets it to true) to use the recommended margins around the layout’s cells.

3.4.4 Adding the TextViews, EditText and SeekBar
You’ll now build the GUI in Fig. 3.2. You’ll start with the basic layout and views in this
section. In Section 3.4.5, you’ll customize the views’ properties to complete the design.
Then, in Section 3.5, you’ll change the default theme and customize two of its colors. As
you add each view to the GUI, immediately set its id property using the names in Fig. 3.3.
You’ll add views to the GridLayout using the Component Tree window. If you drop a view
in the wrong location in the Component Tree, you can drag it to the correct location.

You may also drag views directly onto the layout editor. For a GridLayout, the layout
editor displays a grid of green guidelines to help you position the view. As you drag a view
over the grid, the layout editor displays a tooltip indicating the row and column in which
the view will be placed if you drop the view at that location.

http://developer.android.com/design/style/metrics-grids.html.

Error-Prevention Tip 3.1
The cells in the layout editor’s grid of green guidelines are small. If you drop a view in the
wrong location, the layout editor might change the GridLayout’s rowCount and column-
Count property values and incorrectly set the view’s layout:row and layout:column
property values, causing your GUI to lay out incorrectly. If so, reset the GridLayout’s row-
Count and columnCount, based on your design, and change the view’s layout:row and
layout:column property values to the correct row and column for your design.

http://developer.android.com/design/style/metrics-grids.html

ptg16518503

84 Chapter 3 Tip Calculator App

Step 1: Adding Views to the First Row
The first row consists of the amountTextView and the amountEditText—both occupy the
same cell and span two columns. Each time you drop a view onto the GridLayout in the
Component Tree window, the view is placed in the layout’s next open cell, unless you specify
otherwise by setting the view’s layout:row and layout:column properties. You’ll do that
in this step so that the amountEditText and amountTextView appear in the same cell with
the amountTextView in the foreground.

This app’s TextViews use the medium-sized font from the app’s theme. The layout
editor’s Palette provides preconfigured TextViews named Plain Text, Large Text, Medium
Text and Small Text (in the Widgets section) for various text sizes. The Plain Text TextView
uses the theme’s default font size. For the others, the IDE configures the TextView’s text-
Appearance property using the Material theme’s styles for the corresponding font sizes.

Perform the following steps to add to the GridLayout an EditText and a TextView
for receiving and displaying the bill amount:

1. This app allows you to enter only nonnegative integers, which the app divides by
100.0 to display the bill amount. The Palette’s Text Fields section provides precon-
figured EditTexts for various forms of input, including person names, passwords,
e-mail addresses, phone numbers, times, dates and numbers. When the user inter-
acts with an EditText, an appropriate keyboard is displayed, based on the Edit-
Text’s input type. From the Palette’s Text Fields section, drag and drop a Number
EditText onto the GridLayout node in the Component Tree window—this creates
an EditText with the id editText in the GridLayout. Change the id to amount-
EditText. The EditText is placed in the first column of the GridLayout’s first
row. Set the EditText’s layout:column to 0 and the layout:columnSpan to 2—
these settings ensure that the TextView spans both columns of row 0.

2. Drag a Medium Text TextView from the Palette’s Widgets section over the amount-
EditText in the Component Tree window—a horizontal black line appears below
amountEditText, indicating that the TextView will be placed after amountEdit-
Text. The IDE creates a new TextView named textView and nests it in the Grid-
Layout node. The default text "Medium Text" appears in the layout editor. You’ll
change this in Step 5 (Section 3.4.5). Change the TextView’s id to amountText-
View, then set the layout:row to 0, the layout:column to 0 and the layout:col-
umnSpan to 2—these settings ensure that the TextView spans both columns of row
0, as you’ll see once we change the TextView’s background color.

Step 2: Adding Views to the Second Row
Next, add the percentTextView and percentSeekBar to the GridLayout for displaying
and selecting the tip percentage (be sure to set each view’s id to the name we specify):

1. Drag a Medium TextView (percentTextView) from the Palette’s Widgets section
over the amountTextView in the GridLayout node in the Component Tree win-
dow. The new view becomes the first view in row 1 (the second row).

2. Drag a SeekBar (percentSeekBar) from the Palette’s Widgets section over the
percentTextView in the GridLayout node in the Component Tree window. The
new view becomes the second view in row 1.

ptg16518503

3.4 Building the GUI 85

Step 3: Adding Views to the Third Row
Next, add the tipLabelTextView and the tipTextView to the GridLayout for displaying
the tip amount:

1. Drag a Medium TextView (tipLabelTextView) over the percentSeekBar in the
GridLayout node. The new view becomes the first view in row 2 (the third row).

2. Drag a Medium TextView (tipTextView) over the tipLabelTextView in the
GridLayout node. The new view becomes the second view in row 2.

Step 4: Adding Views to the Fourth Row
Next, add the totalLabelTextView and the totalTextView to the GridLayout for dis-
playing the tip amount:

1. Drag a Medium TextView (totalLabelTextView) over the tipTextView in the
GridLayout node. This becomes the first view in row 3 (the fourth row).

2. Drag a Medium TextView (totalTextView) over the totalLabelTextView in the
GridLayout node. This becomes the second view in row 3.

Reviewing the Layout So Far
The GUI and Component Tree window should now appear as shown in Fig. 3.4. The
warning symbols shown in the layout editor and the Component Tree window will go away
as you complete the GUI design in Section 3.4.5.

A Note Regarding the EditText’s Virtual Keyboard
When the virtual keyboard is displayed, the device’s back button () changes to a down
button () that enables you to dismiss the keyboard. If you do so, the down button ()
changes to a back button () that you can touch to return to the previous Activity—
possibly a prior app or the device’s home screen.

Normally, you’d touch the EditText to redisplay the virtual keyboard. In this app,
however, the EditText is hidden behind a TextView. If you were to dismiss this app’s key-
board, you’d have to leave the app and return to it to redisplay the keyboard. We could
programmatically force the keyboard to stay on the screen, but this would prevent the back

Fig. 3.4 | GUI and the Component Tree window after adding the views to the GridLayout.

a) GUI design so far
b) Component Tree window showing the Tip
Calculator’s layout and views

ptg16518503

86 Chapter 3 Tip Calculator App

button from ever being displayed in this app. This, in turn, would prevent you from
returning to the previous Activity—a basic Android feature that every user expects.

We used an Android virtual keyboard to demonstrate how to choose the keyboard dis-
played for a given EditText. Another approach would be to provide Buttons representing
the digits 0–9 that always remain on the screen. We could handle their click events and
use String manipulation rather than an EditText to keep track of the user input.

3.4.5 Customizing the Views
You’ll now customize additional view properties. As you did in Section 2.5, you’ll also cre-
ate several String, dimension and color resources.

Step 5: Specifying Literal Text
Next, you’ll specify the literal text for the amountTextView, percentTextView, tipLabel-
TextView and totalLabelTextView. When a TextView’s text property is empty, its hint
property’s value (if you specify one) is displayed—this property is commonly used with an
EditText (a subclass of TextView) to help the user understand the EditText’s purpose.
We’re using it similarly in the amountTextView to tell the user to enter a bill amount:

1. In the Component Tree, select amountTextView and locate its hint property in the
Properties window.

2. Click the ellipsis (…) button to the right of the property’s value to display the
Resources dialog.

3. In the dialog, click New Resource, then select New String Value… to display the
New String Value Resource dialog and set the Resource name to enter_amount
and Resource value to "Enter Amount". Leave the other settings and click OK to
create the new String resource and set it as amountTextView’s hint.

Repeat these steps to set the text property for the percentTextView, tipLabelTextView
and totalLabelTextView using the values shown in Fig. 3.5.

Step 6: Right Aligning the TextViews in the Left Column
In Fig. 3.2, the percentTextView, tipLabelTextView and totalLabelTextView are right
aligned. You can accomplish this for all three TextViews at once as follows:

1. Select the percentTextView.

2. Hold Ctrl on Windows/Linux or Command on Mac and click the tipLabelText-
View and totalLabelTextView. Now all three TextViews are selected.

3. Expand the layout:gravity property’s node and check the right checkbox.

View Resource name Resource Value

percentTextView tip_percentage 15%

tipLabelTextView tip Tip

totalLabelTextView total Total

Fig. 3.5 | String resource values and names.

ptg16518503

3.4 Building the GUI 87

Step 7: Configuring the amountEditText
In the final app, the amountEditText is hidden behind the amountTextView and is config-
ured to allow only digits to be entered by the user. Select the amountEditText and set the
following properties:

1. Set the digits property to 0123456789—this allows only digits to be entered,
even though the numeric keypad contains other characters, such as minus (-),
comma (,) and period (.).

2. Set the maxLength property to 6. This restricts the bill amount to a maximum of
six digits—so the largest supported bill amount is 9999.99.

Step 8: Configuring the amountTextView
To complete the amountTextView’s formatting, select it and set the following properties:

1. Delete the default value of the text property ("Medium Text")—we’ll program-
matically display text here, based on the user’s input.

2. Expand the layout:gravity property’s node and set the fill to horizontal.
This indicates that the TextView should occupy all remaining horizontal space in
this GridLayout row.

3. Set the background property (which specifies the view’s background color) to a
new color resource named amount_background with the value #BBDEFB—a light
blue color chosen from Google’s material design color palette.

4. Add padding around the TextView. A view’s padding specifies extra space around
a view’s content. The all property specifies that the padding amount should be
applied to the top, right, bottom and left of the view’s contents. You may also set
the padding for each of these individually. Expand the padding property’s node,
click the all property, then click the ellipsis button. Create a new dimension re-
source named textview_padding with the value 12dp. You’ll use this resource
again shortly.

5. Finally, add a shadow to the view by setting the elevation property to a new di-
mension resource named elevation with the value 4dp. We chose this value for
demonstration purposes to emphasize the shadow effect.

Step 9: Configuring the percentTextView
Notice that the percentTextView is aligned higher than the percentSeekBar. This looks
better if it’s vertically centered. To do this, expand the layout:gravity property’s node,
then set the center value to vertical. Recall that you previously set the layout:gravity
to right. The combination of these settings appears in the layout XML as

A vertical bar (|) is used to separate multiple layout:gravity values—in this case indicat-
ing that the TextView should be centered vertically and right aligned within the grid cell.

Step 10: Configuring the percentSeekBar
Select percentSeekBar and configure the following properties:

1. By default, a SeekBar’s range is 0 to 100 and its current value is indicated by its
progress property. This app allows tip percentages from 0 to 30 and specifies a

android:layout_gravity="center_vertical|right"

ptg16518503

88 Chapter 3 Tip Calculator App

default of 15 percent. Set the SeekBar’s max property to 30 and the progress
property to 15.

2. Expand the layout:gravity property’s node and set the fill to horizontal so
the SeekBar occupies all horizontal space in the SeekBar’s GridLayout column.

3. Set the layout:height property to a new dimension resource (seekbar_height)
with the value 40dp to increase vertical space in which the SeekBar is displayed.

Step 11: Configuring the tipTextView and totalTextView
To complete the formatting of the tipTextView and totalTextView, select both and set
the following properties:

1. Delete the default value of the text property ("Medium Text")—we’ll program-
matically display the calculated tip and total.

2. Expand the layout:gravity property’s node and set the fill to horizontal so
each TextView occupies all horizontal space in the TextViews’ GridLayout column.

3. Set the background property to a new color resource named result_background
with the value #FFE0B2—a light orange color chosen from Google’s material de-
sign color palette.

4. Set the gravity property to center so the calculated tip and total amounts will
be centered within these TextViews.

5. Expand the padding property’s node, click the ellipsis button for the all value,
then select the dimension resource named textview_padding that you created
previously for the amountTextView.

6. Finally, add a shadow to each view by setting the elevation property to the
elevation dimension resource you created earlier.

3.5 Default Theme and Customizing Theme Colors
Each app has a theme that defines the default look-and-feel of the standard views you use.
The theme is specified in the app’s AndroidManifest.xml file (Section 3.7). You can cus-
tomize aspects of the theme, such those that define an app’s color scheme, by defining
style resources in the styles.xml file located in the in the app’s res/values folder.

3.5.1 parent Themes
The style.xml resource file contains a style with the name "AppTheme" that’s referenced
from the app’s AndroidManifest.xml file to specify the app’s theme. This style also spec-
ifies a parent theme, which is similar to a superclass in Java—the new style inherits its
parent theme’s attributes and their default values. Just as in a Java subclass, a style can
override parent theme attributes with values customized for specific apps. A company
might do this, for example, to use the company’s branding colors. We’ll use this concept
in Section 3.5.2 to customize three colors used in the app’s theme.

As we mentioned previously, Android Studio’s app templates now include support for
the AppCompat libraries that enable you to use newer Android features in older Android
versions. By default, Android Studio sets the parent theme to

Theme.AppCompat.Light.DarkActionBar

ptg16518503

3.5 Default Theme and Customizing Theme Colors 89

one of several predefined themes from the AppCompat library—apps that use this theme
have a light background, except for the dark app bar at the top of the app. Each AppCompat
theme uses Google’s material design recommendations to style your apps’ GUIs.

3.5.2 Customizing Theme Colors
Section 3.3.11 discussed where a theme’s primary, dark primary and accent colors are ap-
plied in an app’s on-screen elements. In this section, you’ll use the new Android Studio
Theme Editor to change the app’s primary, dark primary and accent colors, thus overriding
the values of the android:colorPrimary, android:colorPrimaryDark and android:col-
orAccent theme attributes shown in Fig. 3.6. These are three of many theme attributes
you can override. For the complete list, visit:

Modifying the Theme’s Primary, Dark Primary and Accent Colors
To customize the colors:

1. Open styles.xml. In the editor’s upper-right corner, click the Open editor link
to display the Theme Editor (Fig. 3.7) showing the current colors for colorPri-
mary (dark blue), colorPrimaryDark (a darker shade of colorPrimary) and col-
orAccent (bright pink)—these are the default colors specified in Android
Studio’s Empty Activity app template. For this app, we’ll change colorPrimary
and colorPrimaryDark to lighter blues and change colorAccent to orange.

2. Customize the app’s colorPrimary value by clicking its color swatch (Fig. 3.7)
to display the Resources dialog (Fig. 3.8). In the dialog, click the Material Blue
500 color swatch, then click OK to change colorPrimary’s value—hovering the
mouse cursor over a color swatch displays its color name in a tooltip. The number
500 represents a particular shade of the Material Blue color. Shades of each color
range from 50 (a light shade) to 900 (a dark shade)—you can view samples of
each color’s shades at

http://developer.android.com/reference/android/R.attr.html

Fig. 3.6 | Theme attributes for the primary, primary dark and accent colors.

 https://www.google.com/design/spec/style/color.html#color-
color-palette

android:colorPrimary
 is used in the app bar

android:colorAccent
 is used to tint various controls,

including SeekBars

android:colorPrimaryDark
 is used in the status bar

http://developer.android.com/reference/android/R.attr.html
https://www.google.com/design/spec/style/color.html#color-color-palette
https://www.google.com/design/spec/style/color.html#color-color-palette

ptg16518503

90 Chapter 3 Tip Calculator App

Fig. 3.7 | Theme Editor shows styled view previews on the left and theme attributes on the right.

Fig. 3.8 | Selecting the Material Blue 500 color swatch for colorPrimary.

Color swatches for the theme’s colorPrimary, colorPrimaryDark and colorAccent attributes

Selecting Material
Blue 500 as the new
colorPrimary
value

Hexadecimal value of
the currently selected
color—the material
design specification
shows hexadecimal
values for the
recommended colors
and their shades

ptg16518503

3.5 Default Theme and Customizing Theme Colors 91

3. Next, click the colorPrimaryDark color swatch in the Theme Editor to display the
Resources dialog. The Theme Editor recognizes the new colorPrimary value and
automatically displays a color swatch containing the recommended darker
colorPrimary shade you should use for colorPrimaryDark—in this case, Mate-
rial Blue 700. Click that color swatch (Fig. 3.9), then click OK.

4. Next, click the colorAccent color swatch in the Theme Editor to display the Re-
sources dialog. Again, the Theme Editor recognizes that you changed the color-
Primary value and displays swatches for various complementary accent colors. In
the dialog, click the Orange accent 400 color swatch, then click OK to change
colorAccent’s value (Fig. 3.10), then click OK.

You’ve now completed the app’s design, which should appear as shown in Fig. 3.11.

3.5.3 Common View Property Values as Styles
As you’ll see in later apps, style resources can define common property values that should
be applied to multiple views. You apply a style resource to a given view by setting its
style property. Any subsequent changes you make to a style are automatically applied
to all views using the style. For example, consider the tipTextView and totalTextView
that we configured identically in Step 11 of Section 3.4.5. We could have defined a style
resource specifying the layout:gravity, background, gravity, padding and elevation
properties’ values, then set both TextViews’ style properties to the same style resource.

Fig. 3.9 | Selecting the Material Blue 700 color swatch for colorPrimaryDark.

Selecting Material
Blue 700 as the new
colorPrimaryDark
value

Value before the new
color is selected

ptg16518503

92 Chapter 3 Tip Calculator App

3.6 Adding the App’s Logic
Class MainActivity (Figs. 3.12–3.18) implements the Tip Calculator app’s logic. It calcu-
lates the tip and total bill amounts, then displays them in locale-specific currency format.
To view the file, in the Project window, expand the app/Java/com.deitel.tipcalcula-

Fig. 3.10 | Selecting the Orange accent 400 color swatch for colorAccent.

Fig. 3.11 | Completed design.

Selecting Orange
accent 400 as the
new colorAccent
value

ptg16518503

3.6 Adding the App’s Logic 93

tor node and double click MainActivity.java. You’ll need to enter most of the code in
Figs. 3.12–3.18.

3.6.1 package and import Statements
Figure 3.12 shows the package statement and import statements in MainActivity.java.
The package statement in line 3 was inserted when you created the project. When you
open a Java file in the IDE, the import statements are collapsed—one is displayed with a

 to its left. You can click the to see the complete list of import statements.

Lines 5–14 import the classes and interfaces the app uses:

• Class Bundle of package android.os (line 5) stores key–value pairs of informa-
tion—typically representing an app’s state or data that needs to be passed be-
tween activities. When another app is about to appear on the screen—e.g., when
the user receives a phone call or launches another app—Android gives the currently
executing app the opportunity to save its state in a Bundle. The Android runtime
might subsequently kill the app—e.g., to reclaim its memory. When the app re-
turns to the screen, the Android runtime passes the Bundle of the previously
saved state to Activity method onCreate (Section 3.6.4). Then, the app can use
the saved state to return the app to the state it was in when another app became
active. We’ll use Bundles in Chapter 8 to pass data between activities.

• Class AppCompatActivity of package android.support.v7.app (line 6) provides
the basic lifecycle methods of an app—we’ll discuss these shortly. AppCompat-
Activity is an indirect subclass of Activity (package android.app) that sup-
ports using newer Android features apps running on current and older Android
platforms.

• Interface Editable of package android.text (line 7) allows you to modify the
content and markup of text in a GUI.

• You implement interface TextWatcher of package android.text (line 8) to re-
spond to events when the user changes the text in an EditText.

1 // MainActivity.java
2 // Calculates a bill total based on a tip percentage
3 package com.deitel.tipcalculator;
4
5 import android.os.Bundle; // for saving state information
6 import android.support.v7.app.AppCompatActivity; // base class
7 import android.text.Editable; // for EditText event handling
8 import android.text.TextWatcher; // EditText listener
9 import android.widget.EditText; // for bill amount input

10 import android.widget.SeekBar; // for changing the tip percentage
11 import android.widget.SeekBar.OnSeekBarChangeListener; // SeekBar listener
12 import android.widget.TextView; // for displaying text
13
14 import java.text.NumberFormat; // for currency formatting
15

Fig. 3.12 | MainActivity’s package and import statements.

ptg16518503

94 Chapter 3 Tip Calculator App

• Package android.widget (lines 9, 10 and 12) contains the widgets (i.e., views)
and layouts that are used in Android GUIs. This app uses EditText (line 9),
SeekBar (line 10) and TextView (line 12) widgets.

• You implement interface SeekBar.OnSeekBarChangeListener of package an-
droid.widget (line 11) to respond to the user moving the SeekBar’s thumb.

• Class NumberFormat of package java.text (line 14) provides numeric formatting
capabilities, such as locale-specific currency and percentage formats.

3.6.2 MainActivity Subclass of AppCompatActivity
Class MainActivity (Figs. 3.13–3.18) is the Tip Calculator app’s Activity subclass. When
you created the TipCalculator project, the IDE generated this class as a subclass of App-
CompatActivity (an indirect subclass of Activity) and provided an override of class
Activity’s inherited onCreate method (Fig. 3.15). Every Activity subclass must override
this method. We’ll discuss onCreate shortly.

3.6.3 Class Variables and Instance Variables
Figure 3.14 declares class MainActivity’s variables. The NumberFormat objects (lines 20–
23) are used to format currency values and percentages, respectively. NumberFormat’s
static method getCurrencyInstance returns a NumberFormat object that formats values
as currency using the device’s locale. Similarly, static method getPercentInstance for-
mats values as percentages using the device’s locale.

The bill amount entered by the user into amountEditText will be read and stored as
a double in billAmount (line 25). The tip percentage (an integer in the range 0–30) that
the user sets by moving the Seekbar thumb will be divided by 100.0 to create a double for

16 // MainActivity class for the Tip Calculator app
17 public class MainActivity {
18

Fig. 3.13 | Class MainActivity is a subclass of Activity.

19 // currency and percent formatter objects
20 private static final NumberFormat currencyFormat =
21 NumberFormat.getCurrencyInstance();
22 private static final NumberFormat percentFormat =
23 NumberFormat.getPercentInstance();
24
25 private double billAmount = 0.0; // bill amount entered by the user
26 private double percent = 0.15; // initial tip percentage
27 private TextView amountTextView; // shows formatted bill amount
28 private TextView percentTextView; // shows tip percentage
29 private TextView tipTextView; // shows calculated tip amount
30 private TextView totalTextView; // shows calculated total bill amount
31

Fig. 3.14 | MainActivity class’s instance variables.

extends Activity

ptg16518503

3.6 Adding the App’s Logic 95

use in calculations, then stored in percent (line 26). For example, if you select 25 with the
SeekBar, percent will store 0.25, so the app will multiply the bill amount by 0.25 to cal-
culate the 25% tip.

Line 27 declares the TextView that displays the currency-formatted bill amount. Line
28 declares the TextView that displays the tip percentage, based on the SeekBar thumb’s
position (see the 15% in Fig. 3.1(a)). The variables in line 29–30 will refer to the Text-
Views in which the app displays the calculated tip and total.

3.6.4 Overriding Activity Method onCreate
The onCreate method (Fig. 3.15)—which is autogenerated with lines 33–36 when you
create the app’s project—is called by the system when an Activity is started. Method on-
Create typically initializes the Activity’s instance variables and views. This method
should be as simple as possible so that the app loads quickly. In fact, if the app takes longer
than five seconds to load, the operating system will display an ANR (Application Not Re-
sponding) dialog—giving the user the option to forcibly terminate the app. You’ll learn
how to prevent this problem in Chapter 9.

Software Engineering Observation 3.3
For precise monetary calculations, use class BigDecimal (package java.math)—rather
than type double—to represent the monetary amounts and perform calculations.

32 // called when the activity is first created
33
34
35 super.onCreate(savedInstanceState); // call superclass's version
36
37
38 // get references to programmatically manipulated TextViews
39
40 percentTextView = (TextView) findViewById(R.id.percentTextView);
41 tipTextView = (TextView) findViewById(R.id.tipTextView);
42 totalTextView = (TextView) findViewById(R.id.totalTextView);
43 tipTextView.setText(currencyFormat.format(0)); // set text to 0
44 totalTextView.setText(currencyFormat.format(0)); // set text to 0
45
46 // set amountEditText's TextWatcher
47 EditText amountEditText =
48 (EditText) findViewById(R.id.amountEditText);
49
50
51 // set percentSeekBar's OnSeekBarChangeListener
52 SeekBar percentSeekBar =
53 (SeekBar) findViewById(R.id.percentSeekBar);
54
55 }
56

Fig. 3.15 | Overriding Activity method onCreate.

@Override
protected void onCreate(Bundle savedInstanceState) {

setContentView(R.layout.activity_main); // inflate the GUI

amountTextView = (TextView) findViewById(R.id.amountTextView);

amountEditText.addTextChangedListener(amountEditTextWatcher);

percentSeekBar.setOnSeekBarChangeListener(seekBarListener);

ptg16518503

96 Chapter 3 Tip Calculator App

onCreate’s Bundle Parameter
During the app’s execution, the user could change the device’s configuration—for exam-
ple, by rotating the device, connecting to a Bluetooth keyboard or sliding out a hard keyboard.
For a good user experience, the app should continue operating smoothly through such
configuration changes. When the system calls onCreate, it passes a Bundle argument con-
taining the Activity’s saved state, if any. Typically, you save state in Activity methods
onPause or onSaveInstanceState (demonstrated in later apps). Line 35 calls the super-
class’s onCreate method, which is required when overriding onCreate.

Generated R Class Contains Resource IDs
As you build your app’s GUI and add resources (such as strings in the strings.xml file
or views in the activity_main.xml file) to your app, the IDE generates a class named R
that contains nested classes representing each type of resource in your project’s res folder.
The nested classes are declared static, so that you can access them in your code with
R.ClassName. Within class R’s nested classes, the IDE creates static final int constants
that enable you to refer to your app’s resources programmatically (as we’ll discuss momen-
tarily). Some of the nested classes in class R include

• class R.drawable—contains constants for any drawable items, such as images,
that you put in the various drawable folders in your app’s res folder

• class R.id—contains constants for the views in your XML layout files

• class R.layout—contains constants that represent each layout file in your project
(such as, activity_main.xml), and

• class R.string—contains constants for each String in the strings.xml file.

Inflating the GUI
The call to setContentView (line 36) receives the constant R.layout.activity_main
which indicates the XML file that represents MainActivity’s GUI—in this case, the con-
stant represents the activity_main.xml file. Method setContentView uses this constant
to load the corresponding XML document, which Android parses and converts into the
app’s GUI. This process is known as inflating the GUI.

Getting References to the Widgets
Once the layout is inflated, you can get references to the individual widgets so that you can
interact with them programmatically. To do so, you use class Activity’s findViewById
method. This method takes an int constant representing a specific view’s Id and returns a
reference to the view. The name of each view’s R.id constant is determined by the com-
ponent’s Id property that you specified when designing the GUI. For example, amount-
EditText’s constant is R.id.amountEditText.

Lines 39–42 obtain references to the TextViews that we change programmatically in
the app. Line 39 obtains a reference to the amountTextView that’s updated when the user
enters the bill amount. Line 40 obtains a reference to the percentTextView that’s updated
when the user changes the tip percentage. Lines 41–42 obtain references to the TextViews
where the calculated tip and total are displayed.

ptg16518503

3.6 Adding the App’s Logic 97

Displaying Initial Values in the TextViews
Lines 43–44 set tipTextView’s and totalTextView’s text to 0 in a locale-specific currency
format by calling the currencyFormat object’s format method. The text in each of these
TextViews will change as the user enters the bill amount.

Registering the Event Listeners
Lines 47–49 get the amountEditText and call its addTextChangedListener method to
register the TextWatcher object that responds to events generated when the user changes
the EditText’s contents. We define this listener (Fig. 3.18) as an anonymous-inner-class
object and assign it to the amountEditTextWatcher instance variable. Though we could
have defined the anonymous inner class in place of amountEditTextWatcher in line 49,
we chose to define it later in the class so that the code is easier to read.

Lines 52–53 get a reference to the percentSeekBar. Line 54 calls the SeekBar’s
setOnSeekBarChangeListener method to register the OnSeekBarChangeListener object
that responds to events generated when the user moves the SeekBar’s thumb. Figure 3.17
defines this listener as an anonymous-inner-class object that’s assigned to the instance vari-
able seekBarListener.

Note Regarding Android 6 Data Binding
Android now has a Data Binding support library that you can use with Android apps tar-
geting Android 2.1 (API level 7) and higher. You now can include in your layout XML
files data-binding expressions that manipulate Java objects and dynamically update data in
your apps’ user interfaces.

In addition, each layout XML file that contains views with ids has a corresponding
autogenerated class. For each view with an id, the class has a public final instance vari-
able referencing that view. You can create an instance of this “Binding” class to replace all
calls to findViewById, which can greatly simplify your onCreate methods in Activity
and Fragment classes with complex user interfaces. Each instance variable’s name is the id
specified in the layout for the corresponding view. The “Binding” class’s name is based on
the layout’s name—for activity_main.xml, the class name is ActivityMainBinding.

At the time of this writing, the Data Binding library is an early beta release that’s sub-
ject to substantial changes, both in the syntax of data-binding expressions and in the
Android Studio tool support. You can learn more about Android data binding at

3.6.5 MainActivity Method calculate
Method calculate (Fig. 3.16) is called by the EditText’s and SeekBar’s listeners to up-
date the tip and total TextViews each time the user changes the bill amount. Line 60 dis-
plays the tip percentage in the percentTextView. Lines 63–64 calculate the tip and total,
based on the billAmount. Lines 67–68 display the amounts in currency format.

Software Engineering Observation 3.4
Rather than defining anonymous inner classes in large methods, define them as private
final instance variables to make your code easier to debug, modify and maintain.

https://developer.android.com/tools/data-binding/guide.html

https://developer.android.com/tools/data-binding/guide.html

ptg16518503

98 Chapter 3 Tip Calculator App

3.6.6 Anonymous Inner Class That Implements Interface
OnSeekBarChangeListener
Lines 72–87 (Fig. 3.17) create the anonymous-inner-class object that responds to percent-
SeekBar’s events. The object is assigned to the instance variable seekBarListener. Line 54
(Fig. 3.15) registered seekBarListener as percentSeekBar’s OnSeekBarChangeListener
event-handling object. For clarity, we define all but the simplest event-handling objects in
this manner so that we do not clutter the onCreate method with this code.

Overriding Method onProgressChanged of Interface OnSeekBarChangeListener
Lines 75–86 (Fig. 3.17) implement interface OnSeekBarChangeListener’s methods.
Method onProgressChanged is called whenever the SeekBar’s thumb position changes.
Line 78 calculates the percent value using the method’s progress parameter—an int rep-

57 // calculate and display tip and total amounts
58 private void calculate() {
59 // format percent and display in percentTextView
60 percentTextView.setText(percentFormat.format(percent));
61
62 // calculate the tip and total
63 double tip = billAmount * percent;
64 double total = billAmount + tip;
65
66 // display tip and total formatted as currency
67 tipTextView.setText(currencyFormat.format(tip));
68 totalTextView.setText(currencyFormat.format(total));
69 }
70

Fig. 3.16 | MainActivity Method calculate.

71 // listener object for the SeekBar's progress changed events
72 private final OnSeekBarChangeListener seekBarListener =
73 new OnSeekBarChangeListener() {
74 // update percent, then call calculate
75
76
77
78 percent = / 100.0; // set percent based on progress
79 calculate(); // calculate and display tip and total
80 }
81
82 @Override
83 public void onStartTrackingTouch(SeekBar seekBar) { }
84
85 @Override
86 public void onStopTrackingTouch(SeekBar seekBar) { }
87 };
88

Fig. 3.17 | Anonymous inner class that implements interface OnSeekBarChangeListener.

@Override
public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser) {

progress

ptg16518503

3.6 Adding the App’s Logic 99

resenting the SeekBar’s thumb position. We divide this by 100.0 to get the percentage.
Line 79 calls method calculate to recalculate and display the tip and total.

Overriding Methods onStartTrackingTouch and onStopTrackingTouch of Inter-
face OnSeekBarChangeListener
Java requires that you override every method in an interface that you implement. This app
does not need to know when the user starts moving the SeekBar’s thumb (onStartTrack-
ingTouch) or stops moving it (onStopTrackingTouch), so we simply provide an empty
body for each (lines 82–86) to fulfill the interface contract.

Android Studio Tools for Overriding Methods
Android Studio can create for you empty methods that override inherited methods from
the class’s superclasses or that implement interface methods. When you place the cursor
in a class’s body, then select the Code > Override Methods… menu option, the IDE displays
a Select Methods to Override/Implement dialog that lists every method you can override in
the current class. This list includes all the inherited methods in the class’s hierarchy and
the methods of any interfaces implemented throughout the class’s hierarchy.

3.6.7 Anonymous Inner Class That Implements Interface TextWatcher
Lines 90–114 of Fig. 3.18 create an anonymous-inner-class object that responds to amount-
EditText’s events and assign it to the instance variable amountEditTextWatcher. Line 49
(Fig. 3.15) registered this object to listen for amountEditText’s events that occur when the
text changes.

Error-Prevention Tip 3.2
Using Android Studio’s Code > Override Methods… menu option helps you write code
faster and with fewer errors.

89 // listener object for the EditText's text-changed events
90 private final TextWatcher amountEditTextWatcher = new TextWatcher() {
91 // called when the user modifies the bill amount
92
93
94
95
96 try { // get bill amount and display currency formatted value
97 billAmount = Double.parseDouble(s.toString()) / 100.0;
98 amountTextView.setText(currencyFormat.format(billAmount));
99 }
100 catch (NumberFormatException e) { // if s is empty or non-numeric
101 amountTextView.setText("");
102 billAmount = 0.0;
103 }
104
105 calculate(); // update the tip and total TextViews
106 }
107

Fig. 3.18 | Anonymous inner class that implements interface TextWatcher. (Part 1 of 2.)

@Override
public void onTextChanged(CharSequence s, int start,
 int before, int count) {

ptg16518503

100 Chapter 3 Tip Calculator App

Overriding Method onTextChanged of Interface TextWatcher
The onTextChanged method (lines 92–106) is called whenever the text in the amount-
EditText is modified. The method receives four parameters. In this example, we use only
CharSequence s, which contains a copy of amountEditText’s text. The other parameters
indicate that the count characters starting at start replaced previous text of length before.

Line 97 converts the user input from amountEditText to a double. We allow users to
enter only whole numbers in pennies, so we divide the converted value by 100.0 to get the
actual bill amount—e.g., if the user enters 2495, the bill amount is 24.95. Line 98 displays
the updated bill amount. If an exception occurs, lines 101–102 clear the amountTextView
and set the billAmount to 0.0. Lines 105 calls calculate to recalculate and display the
tip and total, based on the current bill amount.

Other Methods of the amountEditTextWatcher TextWatcher
This app does not need to know what changes are about to be made to the text (before-
TextChanged) or that the text has already been changed (afterTextChanged), so we simply
override each of these TextWatcher interface methods with an empty body (lines 108–113)
to fulfill the interface contract.

3.7 AndroidManifest.xml
In this section, you’ll modify the AndroidManifest.xml file to specify that this app’s
Activity supports only a device’s portrait orientation and that the virtual keyboard
should always be displayed when the Activity first appears on the screen or navigates back
to the Activity. To open the manifest, double click AndroidManifest.xml in the Project
window’s manifests folder. Figure 3.19 shows the completed manifest with our changes
highlighted—the rest of the file was autogenerated by Android Studio when we created
the app’s project. We’ll discuss some aspects of the manifest here. For a list of all the ele-
ments a manifest may contain, their attributes and their values, visit

108 @Override
109 public void afterTextChanged(Editable s) { }
110
111 @Override
112 public void beforeTextChanged(
113 CharSequence s, int start, int count, int after) { }
114 };
115 }

http://developer.android.com/guide/topics/manifest/manifest-
intro.html

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
3 package="com.deitel.tipcalculator" >
4

Fig. 3.19 | AndroidManifest.xml contents. (Part 1 of 2.)

Fig. 3.18 | Anonymous inner class that implements interface TextWatcher. (Part 2 of 2.)

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html

ptg16518503

3.7 AndroidManifest.xml 101

3.7.1 manifest Element
The manifest element (lines 2–24) indicates that this XML file’s contents represent the
app’s manifest. This element’s package attribute specifies the app’s Java package name that
was configured when you created the app’s project (Section 3.4.2). Recall that for apps you
submit to the Google Play store, the package name is used as the app’s unique identifier.

3.7.2 application Element
The manifest element’s nested application element (lines 5–21) specifies attributes of
the application, including

• android:allowBackup—Whether or not the app’s data should be backed up au-
tomatically by Android so that the data can be restored to the device or a new de-
vice at a later time.

• android:icon—The app icon that you touch in the launcher to execute the app.

• android:label—The app’s name that’s typically displayed below the icon in the
launcher and often displayed in the app bar when the app is executing.

• android:supportsRtl—Whether or not the app’s interface can be flipped hori-
zontally to support right-to-left languages like Arabic and Hebrew.

• android:theme—The theme that determines the default look-and-feel of the
app’s views.

Elements nested in the application element define the app’s components, such as its ac-
tivities.

5 <application
6 android:allowBackup="true"
7 android:icon="@mipmap/ic_launcher"
8 android:label="@string/app_name"
9 android:supportsRtl="true"

10 android:theme="@style/AppTheme" >
11 <activity
12 android:name=".MainActivity"
13 android:label="@string/app_name"
14
15 >
16 <intent-filter>
17 <action android:name="android.intent.action.MAIN" />
18
19 <category android:name="android.intent.category.LAUNCHER" />
20 </intent-filter>
21 </activity>
22 </application>
23
24 </manifest>

Fig. 3.19 | AndroidManifest.xml contents. (Part 2 of 2.)

android:screenOrientation="portrait"
android:windowSoftInputMode="stateAlwaysVisible"

ptg16518503

102 Chapter 3 Tip Calculator App

3.7.3 activity Element
The application element’s nested activity element (lines 10–20) describes an Activi-
ty. An app can have many activities, one of which is designated as the Activity that’s dis-
played when the user touches the app’s icon in the launcher to execute the app. Each
activity element specifies at least the following attributes:

• android:name—The Activity’s class name. The notation ".MainActivity" is
shorthand for "com.deitel.MainActivity" (where com.deitel is the reverse of
the domain name you specified when creating the app’s project).

• android:label—The Activity’s name. This is often displayed in the app bar
when the Activity is on the screen. For single Activity apps, this name is typ-
ically the same as the app’s name.

For MainActivity, we added the following attributes:

• android:screenOrientation—In general, most apps should support both por-
trait and landscape orientations. In portrait orientation, the device’s longer di-
mension is vertical. In landscape orientation, the device’s longer dimension is
horizontal. In the Tip Calculator app, rotating the device to landscape orientation
on a typical phone would cause the numeric keypad to obscure most of the Tip
Calculator’s GUI. For this reason, we set this property to "portrait" to support
only portrait orientation.

• android:windowSoftInputMode—In the Tip Calculator app, the soft keypad
should be displayed immediately when the app executes and should reappear each
time the user returns to the Tip Calculator app. For this reason we set this property
to "stateAlwaysVisible". This will not display the soft keyboard if a hard key-
board is present.

3.7.4 intent-filter Element
Intents are Android’s mechanism for communicating between executable components—
such as activities, background services and the operating system. You state your intent, then
Android uses intent messaging to coordinate the executable components to accomplish
what you intend to do. This loose coupling makes it easy to mix and match parts of different
applications. You tell Android what you want to accomplish, then let Android find the in-
stalled applications with activities that can handle the task.

Inter-App Communication
One example of how Intents are used is coordinating efforts between separate apps. Consider
how photo sharing can be handled in Android:

• Most social-networking Android apps provide their own photo-sharing capabili-
ties. Each app can advertise in its manifest its specific Activity that uploads a
photo to the user’s account.

• Other apps can use these photo-sharing capabilities, rather than implementing
their own. For example, a photo-editing app can provide a Share Photo option.
The app can respond to a user’s photo-sharing request by stating its intent to share
a photo—that is, creating a photo-sharing Intent and passing it to Android.

ptg16518503

3.8 Wrap-Up 103

• Android looks at the Intent to determine which installed applications provide
activities that can share photos.

• If there’s only one such app, Android executes that app’s photo-sharing Activity.

• If there are many such apps, Android displays a list of apps and asks the user to
decide which app’s photo-sharing Activity should execute.

A key benefit of this loosely coupled approach is that the photo-editing app’s developer
does not need to incorporate support for every possible social-networking site. By issuing
a photo-sharing Intent, the app automatically supports any app that declares a photo-
sharing Activity in its manifest, including those apps the user has already installed and
any the user chooses to install in the future. For a list of the items that can be used with
Intents, visit

Executing Apps
Another example of how Intents are used is in launching activities. When you touch an
app’s icon in the device’s launcher app, your intent is to execute the app. In this case, the
launcher issues an Intent to execute that app’s main Activity (discussed momentarily).
Android responds to this Intent by launching the app and executing the specific Activity
designated in the app’s manifest as the main Activity.

Determining Which Activity to Execute
Android uses information in the manifest to determine the activities that can respond to In-
tents and which Intents each Activity can handle. In the manifest, the activity ele-
ment’s nested intent-filter element (Fig. 3.19, lines 16–20) determines which Intent
types can launch an Activity. If an Intent matches only one Activity’s intent-filter,
Android executes that Activity. If there are multiple matches, Android presents a list from
which the user can choose an app, then executes the appropriate Activity in that app.

Android also passes the Intent to the Activity, because an Intent often contains
data the Activity can use to perform its task. For example, a photo-editing app can
include in a share-photo Intent the specific photo to share.

The intent-filter element must contain one or more action elements. The action
"android.intent.action.MAIN" in line 17 of Fig. 3.19 indicates that MainActivity is
the Activity to execute when the app launches. The optional category element in line
19 specifies what initiates the Intent—for "android.intent.category.LAUNCHER", it’s
the device’s launcher. This category also indicates that the Activity should appear as an
icon in the device’s launcher with the icons for the user’s other installed apps.

We’ll discuss and program with Intents in the next chapter. For more information
on Intents and Intent filters, visit

3.8 Wrap-Up
In this chapter, you created the interactive Tip Calculator app. We discussed the app’s ca-
pabilities, then you test-drove it to calculate the tip and total, based on the bill amount.

http://developer.android.com/reference/android/content/
Intent.html#constants

http://developer.android.com/guide/components/intents-filters.html

http://developer.android.com/reference/android/content/Intent.html#constants
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/reference/android/content/Intent.html#constants

ptg16518503

104 Chapter 3 Tip Calculator App

You built the app’s GUI using Android Studio’s layout editor, Component Tree window
and Properties window. You also edited the layout’s XML and used the Theme Editor to
customize the Theme.AppCompat.Light.DarkActionBar theme’s primary, dark primary
and accent colors that were set by the IDE when you created the project. We presented
the code for class MainActivity, a subclass of AppCompatActivity (and an indirect sub-
class of Activity) that defined the app’s logic.

In the app’s GUI, you used a GridLayout to arrange the views into rows and columns.
You displayed text in TextViews and received input from an EditText and a SeekBar.

The MainActivity class required many Java object-oriented programming capabili-
ties, including classes, objects, methods, interfaces, anonymous inner classes and inheri-
tance. We explained the notion of inflating the GUI from its XML file into its screen
representation. You learned about Android’s Activity class and part of the Activity life-
cycle. In particular, you overrode the onCreate method to initialize the app when it’s
launched. In the onCreate method, you used Activity method findViewById to get ref-
erences to each of the views the app interacts with programmatically. You defined an anon-
ymous inner class that implements the TextWatcher interface so the app can calculate new
tips and totals as the user enters the bill amount in the EditText. You also defined an
anonymous inner class that implements the OnSeekBarChangeListener interface so the
app can calculate a new tip and total as the user changes the tip percentage by moving the
SeekBar’s thumb.

Finally, you edited the AndroidManifest.xml file to specify that the MainActivity
supports only portrait orientation and that the MainActivity should always display the
keypad. We also discussed the other elements that Android Studio placed in the manifest
when you created the project.

In Chapter 4, you’ll build the Flag Quiz app in which the user is shown a graphic of a
country’s flag and must guess the country from 2, 4, 6 or 8 choices. You’ll use a menu and
checkboxes to customize the quiz, specifying the number of guess options and limiting the
flags to specific regions of the world.

ptg16518503

4
Flag Quiz App

Fragments, Menus, Preferences, Explicit Intents,
Handler, AssetManager, Tweened Animations,

Animators, Toasts, Color State Lists, Layouts for Multiple
Device Orientations, Logging Error Messages for Debugging

O b j e c t i v e s
In this chapter you’ll:

■ Use Fragments to make better use of available screen real
estate in an Activity’s GUI on phones and tablets.

■ Display a settings icon on the app bar to enable users to
access the app’s user preferences.

■ Use a PreferenceFragment to automatically manage
and persist an app’s user preferences.

■ Use a SharedPreferences.Editor to modify key–
value pairs of data associated with an app.

■ Use an app’s assets subfolders to organize image
resources and manipulate them with an AssetManager.

■ Define an animation and apply it to a View.
■ Use a Handler to schedule a future task to perform on the

GUI thread.
■ Use Toasts to display messages briefly to the user.
■ Launch a specific Activity with an explicit Intent.
■ Use collections from the java.util package.
■ Define layouts for multiple device orientations.
■ Use Android’s logging mechanism to log error messages.

ptg16518503

106 Chapter 4 Flag Quiz App
O

u
tl

in
e

4.1 Introduction
The Flag Quiz app tests your ability to correctly identify 10 flags from various countries and
territories (Fig. 4.1). By default, the app presents a flag image and four country-name But-
tons that you click to guess the answer—one is correct and the others are randomly selected,

4.1 Introduction
4.2 Test-Driving the Flag Quiz App

4.2.1 Configuring the Quiz’s Settings
4.2.2 Taking the Quiz

4.3 Technologies Overview
4.3.1 Menus
4.3.2 Fragments
4.3.3 Fragment Lifecycle Methods
4.3.4 Managing Fragments
4.3.5 Preferences
4.3.6 assets Folder
4.3.7 Resource Folders
4.3.8 Supporting Different Screen Sizes and

Resolutions
4.3.9 Determining the Device Orientation

4.3.10 Toasts for Displaying Messages
4.3.11 Using a Handler to Execute a Run-

nable in the Future
4.3.12 Applying an Animation to a View
4.3.13 Using ViewAnimationUtils to

Create a Circular Reveal Animator
4.3.14 Specifying Colors Based on a View’s

State Via a Color State List
4.3.15 AlertDialog
4.3.16 Logging Exception Messages
4.3.17 Launching Another Activity Via an

Explicit Intent
4.3.18 Java Data Structures
4.3.19 Java SE 7 Features
4.3.20 AndroidManifest.xml

4.4 Creating the Project, Resource Files
and Additional Classes

4.4.1 Creating the Project
4.4.2 Blank Activity Template Layouts
4.4.3 Configuring Java SE 7 Support
4.4.4 Adding the Flag Images to the Project
4.4.5 strings.xml and Formatted

String Resources
4.4.6 arrays.xml
4.4.7 colors.xml
4.4.8 button_text_color.xml
4.4.9 Editing menu_main.xml

4.4.10 Creating the Flag Shake Animation
4.4.11 preferences.xml for Specifying

the App’s Settings

4.4.12 Adding Classes SettingsActivity
and SettingsActivityFragment
to the Project

4.5 Building the App’s GUI
4.5.1 activity_main.xml Layout for De-

vices in Portrait Orientation
4.5.2 Designing fragment_main.xml

Layout
4.5.3 Graphical Layout Editor Toolbar
4.5.4 activity_main.xml Layout for

Tablet Landscape Orientation
4.6 MainActivity Class

4.6.1 package Statement and import
Statements

4.6.2 Fields
4.6.3 Overridden Activity Method

onCreate
4.6.4 Overridden Activity Method

onStart
4.6.5 Overridden Activity Method

onCreateOptionsMenu
4.6.6 Overridden Activity Method

onOptionsItemSelected
4.6.7 Anonymous Inner Class That Imple-

ments OnSharedPreference-
ChangeListener

4.7 MainActivityFragment Class
4.7.1 package and import Statements
4.7.2 Fields
4.7.3 Overridden Fragment Method

onCreateView
4.7.4 Method updateGuessRows
4.7.5 Method updateRegions
4.7.6 Method resetQuiz
4.7.7 Method loadNextFlag
4.7.8 Method getCountryName
4.7.9 Method animate

4.7.10 Anonymous Inner Class That Imple-
ments OnClickListener

4.7.11 Method disableButtons
4.8 SettingsActivity Class
4.9 SettingsActivityFragment

Class
4.10 AndroidManifest.xml
4.11 Wrap-Up

ptg16518503

4.1 Introduction 107

nonduplicated incorrect answers. The app displays the user’s progress throughout the quiz,
showing the question number (out of 10) in a TextView above the current flag image.

As you’ll see, the app also allows you to control the quiz difficulty by specifying
whether to display two, four, six or eight guess Buttons, and by choosing the world regions
that should be included in the quiz. These options are displayed differently, based on the
device that’s running the app and the orientation of the device—the app supports portrait
orientation on any device, but landscape orientation only on tablets.

In portrait orientation, the app displays on the app bar a settings icon (). When the
user touches this icon, the app displays a separate screen (another Activity) for setting the
number of guess Buttons, and the world regions to use in the quiz. On a tablet in land-
scape orientation (Fig. 4.2), the app uses a different layout that always displays the app’s
settings and the quiz at the same time.

First you’ll test-drive the app. Then we’ll overview the technologies we used to build
it. Next, you’ll design the app’s GUI. Finally, we’ll present and walk through the app’s
complete source code, discussing the app’s new features in more detail.

Fig. 4.1 | Flag Quiz app running on a smartphone in portrait orientation.

Quiz progress

Guess Buttons

Current flag

Settings icon displayed
on the app bar

ptg16518503

108 Chapter 4 Flag Quiz App

4.2 Test-Driving the Flag Quiz App
You’ll now test-drive the Flag Quiz app. To do so, open Android Studio, open the Flag Quiz
app from the FlagQuiz folder in the book’s examples folder, then execute the app in the
AVD or on a device. This builds the project and runs the app (Fig. 4.1 or Fig. 4.2).

4.2.1 Configuring the Quiz’s Settings
When you first install and run the app, the quiz is configured to display four guess Buttons
and to select flags from all of the world’s regions. For this test-drive, you’ll change the app’s
options to select flags only from North America and you’ll keep the app’s default setting
of four guess Buttons per flag.

On a phone, a tablet or an AVD in portrait orientation, touch the settings icon ()
on the app bar (Fig. 4.1) to view the Settings screen (Fig. 4.3(a)). On a tablet device or
tablet AVD in landscape orientation, the app’s settings appear at the left side of the screen
(Fig. 4.2). Touch Number of Choices to display the dialog for selecting the number of But-
tons that should be displayed with each flag (Fig. 4.3(b)). (On a tablet device or tablet
AVD in landscape orientation, the entire app is grayed out and the dialog is centered on

Fig. 4.2 | Flag Quiz app running on a tablet in landscape orientation.

ptg16518503

4.2 Test-Driving the Flag Quiz App 109

the screen.) By default, 4 is selected—we used this default setting. To make the quiz easier,
you could select 2, or to make the quiz more challenging, you could select 6 or 8. Touch
CANCEL (or touch the screen outside the dialog) to return to the Settings screen.

Next, touch Regions (Fig. 4.4(a)) to display the checkboxes representing the world
regions (Fig. 4.4(b)). By default, all regions are enabled when the app first executes, so
every flag we provide with the app can be selected randomly for a quiz. Touch the check-
boxes next to Africa, Asia, Europe, Oceania (Australia, New Zealand and the islands in that
vicinity) and South America to uncheck them—this excludes those regions’ countries from
the quiz. Touch OK to save your settings. On a phone, a tablet or an AVD in portrait ori-
entation, touch the back button () to return to the quiz screen and start a new quiz with
your updated settings. On a tablet device or tablet AVD in landscape orientation, a new
quiz with the updated settings is immediately displayed at the right side of the screen.

Fig. 4.3 | Flag Quiz settings screen and the Number of Choices dialog.

Touch
Number of
Choices to
display a
dialog of
options

4 is selected
so four guess
Buttons will
be displayed

with each flag

a) Menu with the user touching Number of Choices b) Dialog showing options for number of choices

ptg16518503

110 Chapter 4 Flag Quiz App

4.2.2 Taking the Quiz
A new quiz starts with the number of answer choices you selected and flags only from the
region(s) you selected. Work through the quiz by touching the guess Button for the coun-
try that you think matches each flag.

Making a Correct Selection
If the choice is correct (Fig. 4.5(a)), the app disables all the answer Buttons and displays
the country name in green, followed by an exclamation point at the bottom of the screen
(Fig. 4.5(b)). After a short delay, the app loads the next flag and animates the flag and a
new set of answer Buttons onto the screen. The app transitions from the current quiz ques-
tion to the next with a circular reveal animation:

• First, a large-diameter circle shrinks onto the screen until its diameter is zero, thus
hiding the current quiz question’s flag and guess Buttons.

• Then, the circle’s diameter grows from zero until the new question’s flag and
guess Buttons are fully visible on the screen.

Fig. 4.4 | Flag Quiz settings screen and the Regions dialog (after unchecking Africa, Asia,
Europe, Oceania and South America).

Touch
Regions to
display a
dialog of
options

North
America is
checked, so
the quiz will

use flags only
from North

America

a) Menu with the user touching Regions b) Dialog showing regions

ptg16518503

4.2 Test-Driving the Flag Quiz App 111

Making an Incorrect Selection
For each incorrect country-name Button you touch (Fig. 4.6(a)), the app

• disables the corresponding country name Button

• uses an animation to shake the flag horizontally and

• displays Incorrect! in red at the bottom of the screen (Fig. 4.6(b)).

Continue guessing until you get the correct answer for that flag.

Completing the Quiz
After you select the 10 correct country names, a popup AlertDialog displays over the app,
showing your total number of guesses and the percentage of correct answers (Fig. 4.7).
This is a modal dialog, so you must interact with it to dismiss it—for a non-modal dialog,
touching the AVD’s or device’s back button () will dismiss the dialog. When you touch
the dialog’s RESET QUIZ Button, Android dismisses the dialog and a new quiz begins, using
the same number of guess options and region(s) as the quiz you just completed.

Fig. 4.5 | User choosing the correct answer and the correct answer displayed.

Button being
touched (US
VIRGIN
ISLANDS)
has a higher
elevation and
therefore a
more
pronounced
shadow

Correct
answer shown

in green

All Buttons
are disabled

after a correct
guess

a) Choosing the correct answer b) Correct answer displayed

ptg16518503

112 Chapter 4 Flag Quiz App

Fig. 4.6 | Disabled incorrect answer in the Flag Quiz app.

Fig. 4.7 | Results displayed after quiz completion.

Button being
touched
(COSTA
RICA) has a
higher
elevation

“Incorrect!”
displayed

in red

Incorrect
answer’s

 Button is
disabled

a) Choosing an incorrect answer b) Incorrect! displayed

Touching RESET QUIZ
begins a new quiz

AlertDialog

App is grayed out when
the AlertDialog is
displayed

ptg16518503

4.3 Technologies Overview 113

4.3 Technologies Overview
This section introduces the features you’ll use to build the Flag Quiz app.

4.3.1 Menus
When you create an app’s project in the IDE, the MainActivity is configured to display
an options menu () at the right side of the action bar. In this app, you’ll display the op-
tions menu only when the app is in portrait orientation. Touching the icon expands a
menu that, by default, contains only a Settings menu item—this typically is used to display
an app’s settings to the user. For this app, we’ll modify the menu’s XML file by providing
an icon () for the Settings menu item and specifying that the icon should be displayed
directly on the app bar. This will enable the user to touch once to view the app’s settings,
rather than having to first open the options menu, then touch Settings. You’ll use Android
Studio’s Vector Asset Studio to add the material design settings icon to the project. In later
apps, you’ll see how to create additional menu items.

The options menu is an object of class Menu (package android.view). You override
Activity method onCreateOptionsMenu (Section 4.6.5) and use the method’s Menu argu-
ment to add the menu items—either programmatically or by inflating an XML document
that describes the menu items. When the user selects a menu item, Activity method
onOptionsItemSelected (Section 4.6.6) responds to the selection.

4.3.2 Fragments
A fragment typically represents a reusable portion of an Activity’s user interface, but may
also represent reusable program logic. This app uses fragments to create and manage por-
tions of the app’s GUI. You can combine several fragments to create user interfaces that
make better use of tablet screen sizes. You also can easily interchange fragments to make
your GUIs more dynamic—you’ll do this in Chapter 9.

Class Fragment (package android.app) is the base class of all fragments. When using
subclasses of AppCompatActivity with Fragments you must use the Android Support
Library’s version of this class from package android.support.v4.app. The Flag Quiz app
defines the following direct and indirect Fragment subclasses:

• Class MainActivityFragment (Section 4.7)—a direct subclass of Fragment—dis-
plays the quiz’s GUI and defines the quiz’s logic. Like an Activity, each Frag-
ment has its own layout that’s typically defined as an XML layout resource file
(GUIs also can be created dynamically). In Section 4.5.2, you’ll build Main-
ActivityFragment’s GUI. You’ll create two layouts for MainActivity—one for
devices in portrait orientation and one only for tablets in landscape orientation.
You’ll then reuse the MainActivityFragment in both layouts.

• Class SettingsActivityFragment (Section 4.9) is a subclass of Preference-
Fragment (package android.preference), which automatically maintains an
app’s user preferences in a file associated with the app. As you’ll see, you create
an XML file describing the user preferences, then class PreferenceFragment uses
that file to build an appropriate preferences GUI (Figs. 4.3–4.4). We discuss
preferences more in Section 4.3.5.

www.allitebooks.com

http://www.allitebooks.org

ptg16518503

114 Chapter 4 Flag Quiz App

• When you finish a quiz, the app creates an anonymous subclass of DialogFragment
(package android.support.v4.app) and displays an AlertDialog (introduced in
Section 4.3.15) containing the quiz results (Section 4.7.10).

Fragments must be hosted by an Activity—they cannot execute independently.
When this app runs in landscape orientation on a tablet, the MainActivity hosts all of the
Fragments. In portrait orientation (on any device), the SettingsActivity (Section 4.8)
hosts the SettingsActivityFragment and the MainActivity hosts the others.

4.3.3 Fragment Lifecycle Methods
Like an Activity, each Fragment has a lifecycle and provides methods that you can over-
ride to respond to lifecycle events. In this app, you’ll override

• onCreate—This method (which you’ll override in class SettingsActivityFrag-
ment) is called when a Fragment is created. The MainActivityFragment and Set-
tingsActivityFragment are created when the app inflates their parent activities’
layouts. The DialogFragment that displays the quiz results is created and dis-
played dynamically when the user completes a quiz.

• onCreateView—This method (which you’ll override in class MainActivityFrag-
ment) is called after onCreate to build and return a View containing the Frag-
ment’s GUI. As you’ll see, this method receives a LayoutInflater, which you’ll
use to programmatically inflate a Fragment’s GUI from the components specified
in a predefined XML layout.

Fragments can add their own menu items to a host Activity’s menu. Like class Activity,
Fragments also have lifecycle method onCreateOptionsMenu and event-handling method
onOptionsItemSelected.

We’ll discuss other Fragment lifecycle methods as we encounter them throughout the
book. For the complete lifecycle details, visit

4.3.4 Managing Fragments
An Activity manages its Fragments via a FragmentManager (package android.app)—
accessible via Activity’s getFragmentManager method. If the Activity needs to interact
with a Fragment that’s declared in the Activity’s layout and has an id, the Activity can
call FragmentManager method findFragmentById to obtain a reference to the specified
Fragment. As you’ll see in Chapter 9, a FragmentManager can use FragmentTransactions
to dynamically add, remove and transition between Fragments.

For backward compatibility, subclasses of AppCompatActivity must use the Android
Support Library’s version of FragmentManager from package android.support.v4.app,
rather than the one in package android.app. Class AppCompatActivity inherits method
getSupportFragmentManager from the Android Support Library’s FragmentActivity
class to obtain the correct FragmentManager.

4.3.5 Preferences
In Section 4.2.1, you customized the quiz by changing the app’s settings. These settings
are stored persistently in a file as key–value pairs—each key enables you to quickly look up

http://developer.android.com/guide/components/fragments.html

http://developer.android.com/guide/components/fragments.html

ptg16518503

4.3 Technologies Overview 115

a corresponding value. The keys in the file must be Strings, and the values can be Strings
or primitive-type values. Such a file is manipulated via an object of class SharedPrefer-
ences (package android.content) and the file is accessible only to the app that creates the
file.

A PreferenceFragment uses Preference objects (package android.preference) to
manage app settings and stores those settings in a file via a SharedPreferences object.
This app uses Preference subclass ListPreference to manage the number of guess But-
tons displayed for each flag and Preference subclass MultiSelectListPreference to
manage the world regions to include in the quiz. A ListPreference creates mutually exclu-
sive radio buttons in which only one can be selected (Fig. 4.3(b)). A MultiSelectList-
Preference creates a GUI containing checkboxes, any number of which can be selected
(Fig. 4.4(b)). You’ll use a PreferenceManager object (package android.preference) to
access and interact with the app’s default SharedPreferences file.

You’ll also interact directly with the app’s default SharedPreferences file:

• When starting a quiz, you’ll query the app’s preferences to determine the number
of guess Buttons to display and the region(s) from which to select flags.

• When the user changes the regions preference, the app will ensure that at least
one region is selected; otherwise, there would be no flags to include in the quiz.
If none is selected, the app edits the regions preference to select North America.

To modify a SharedPreferences file’s contents, you’ll use a SharedPreferences.Editor
object (Section 4.6.7).

4.3.6 assets Folder
This app’s flag images are loaded into the app only when needed and are located in the
app’s assets folder.1 To add the images to the project, we copied each region’s folder
from our file system into the assets folder in the Project window (Section 4.4.4). The im-
ages are located in the images/FlagQuizImages folder with the book’s examples.

Unlike an app’s drawable folders, which require their image contents to be at the root
level in each folder, the assets folder may contain files of any type and they can be orga-
nized in subfolders—we maintain the flag images for each region in a separate subfolder.
Files in the assets subfolders are accessed via an AssetManager (package android.con-
tent.res), which can provide a list of all of the file names in a specified subfolder and can
be used to access each asset.

4.3.7 Resource Folders
In Section 2.4.4, you learned about the drawable, layout and values subfolders of an
app’s res folder. In this app, you’ll also use the menu, anim, color and xml resource folders.
Figure 4.8 overviews these folders as well as the animator and raw folders.

1. We obtained the images from http://www.free-country-flags.com.

http://www.free-country-flags.com

ptg16518503

116 Chapter 4 Flag Quiz App

4.3.8 Supporting Different Screen Sizes and Resolutions
In Section 2.5.1 you learned that Android devices have various screen sizes, resolutions and
pixel densities (dots per inch or DPI). You also learned that you typically provide images
and other visual resources in multiple resolutions so Android can choose the best resource
for a device’s pixel density. Similarly, in Section 2.8, you learned how to provide String
resources for different languages and regions. Android uses resource folders with qualified
names to choose the appropriate images, based on a device’s pixel density, and the correct
language strings, based on a device’s locale and region settings. This mechanism also can
be used to select resources from any of the resource folders discussed in Section 4.3.7.

For this app’s MainActivity, you’ll use minimum screen width and orientation qual-
ifiers to determine which layout to use—one for portrait orientation on phones and tablets
and another only for tablets in landscape orientation. To do this, you’ll define two layouts
that present MainActivity’s contents:

• content_main.xml is the default layout that displays only the MainActivity-
Fragment.

• content_main.xml (sw700dp-land) is used only on devices (i.e., tablets) when
the app is in landscape (land) orientation.

Resource subfolder Description

anim Folder names that begin with anim contain XML files that define
tweened animations, which can change an object’s transparency, size,
position and rotation over time. You’ll define such an animation in
Section 4.4.10, then in Section 4.7.10 you’ll play it to create a shake
effect to provide the user with visual feedback for an incorrect guess.

animator Folder names that begin with animator contain XML files that define
property animations, which change the value of an object’s property
over time. In Java, a property is typically implemented in a class as an
instance variable with both set and get accessors.

color Folder names that begin with color contain XML files that define
color state lists—lists of colors for various states, such as the states of a
Button (unpressed, pressed, enabled, disabled, and so on). We’ll use a
color state list to define separate colors for when the guess Buttons are
enabled or disabled in Section 4.4.8.

raw Folder names that begin with raw contain resource files (such as audio
clips) that are read into an app as streams of bytes. We’ll use such
resources in Chapter 6 to play sounds.

menu Folder names that begin with menu contain XML files that describe
the contents of menus. When you create a project, the IDE automat-
ically defines a menu with a Settings option.

xml Folder names that begin with xml contain XML files that do not fit
into the other resource categories—often XML data files used by the
app. In Section 4.4.11, you’ll create an XML file that represents the
preferences displayed by this app’s SettingsActivityFragment.

Fig. 4.8 | Other subfolders within a project’s res folder.

ptg16518503

4.3 Technologies Overview 117

Qualified resource folder names (on disk) have the format:

where qualifiers consists of one or more qualifiers separated by dashes (-). There are cur-
rently 19 qualifier types that you can use to designate when Android should choose specific
resource files. We’ll explain other qualifiers as we use them throughout the book. For a
complete description of all the res subfolder qualifiers and the rules for the order in which
they must be defined in a fully qualified folder’s name, visit

4.3.9 Determining the Device Orientation
In this app, we display the Menu only when the app is running on a phone-sized device or
when it’s running on a tablet in portrait orientation (Section 4.6.5). To determine this,
we’ll obtain an object of class Configuration (package android.content.res), which
contains public instance variable orientation containing either ORIENTATION_PORTRAIT
or ORIENTATION_LANDSCAPE for the device’s current orientation.

4.3.10 Toasts for Displaying Messages
A Toast (package android.widget) briefly displays a message, then disappears from the
screen. Toasts are often used to display minor error messages or informational messages.
We use Toasts as follows:

• To indicate that the quiz will be reset after the user changes the app’s settings.

• To indicate that at least one region must be selected if the user deselects all re-
gions—in this case, the app sets North America as the quiz’s default region.

4.3.11 Using a Handler to Execute a Runnable in the Future
When the user makes a correct guess, the app displays the correct answer for two seconds
before displaying the next flag. To do this, we use a Handler (package android.os).
Handler method postDelayed receives as arguments a Runnable to execute and a delay in
milliseconds. After the delay has passed, the Handler’s Runnable executes in the same
thread that created the Handler.

4.3.12 Applying an Animation to a View
When the user makes an incorrect choice, the app shakes the flag by applying an Anima-
tion (package android.view.animation) to the ImageView. We use AnimationUtils
static method loadAnimation to load the animation from an XML file that describes the
animation’s options. We also specify the number of times the animation should repeat
with Animation method setRepeatCount and perform the animation by calling View
method startAnimation (with the Animation as an argument) on the ImageView.

name-qualifiers

http://developer.android.com/guide/topics/resources/providing-
resources.html#AlternativeResources

Error-Prevention Tip 4.1
Operations that interact with or modify the GUI must be performed in the GUI thread
(also called the UI thread or main thread), because GUI components are not thread safe.

http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

ptg16518503

118 Chapter 4 Flag Quiz App

4.3.13 Using ViewAnimationUtils to Create a Circular Reveal
Animator
Animations can make an app more visually appealing. In this app, shortly after the user
makes a correct choice, the app animates the flag and answer Buttons off the screen and
the next flag and answer Buttons onto the screen. To do this, in Section 4.7.9, you’ll use
the ViewAnimationUtils class to create a circular reveal Animator object by calling the
createCircularReveal method. You’ll then set the animation’s duration and start the an-
imation by calling Animator methods setDuration and start, respectively. The anima-
tion appears as a shrinking or expanding circular window that displays part of a UI
element.

4.3.14 Specifying Colors Based on a View’s State Via a Color State List
A color state list resource file defines a color resource that changes colors based on a View’s
state. For example, you could define a color state list for a Button’s background color that
specifies different colors for the Button’s pressed, unpressed, enabled and disabled states.
Similarly, for a CheckBox, you could specify different colors for its checked or unchecked
states.

In this app, when the user makes an incorrect guess, the app disables that guess
Button, and when the user makes a correct guess, the app disables all the guess Buttons.
In a disabled Button, the white text is difficult to read. To solve this issue you’ll define a
color state list that specifies a Button’s text color, based on the Button’s enabled or dis-
abled state (Section 4.4.8). For more information on color state lists, visit

4.3.15 AlertDialog
You can display messages, options and confirmations to app users via AlertDialogs (pack-
age android.app). An AlertDialog is a modal dialog—when it’s displayed, the user can-
not interact with the app until the dialog is dismissed (closed). As you’ll see, you create and
configure the AlertDialog with an AlertDialog.Builder object, then use it to create the
AlertDialog.

AlertDialogs can display buttons, checkboxes, radio buttons and lists of items that
the user can touch to respond to the dialog’s message. They can also display custom GUIs.
A standard AlertDialog may have up to three buttons that represent:

• A negative action—Cancels the dialog’s specified action, often labeled with CANCEL

or NO. This is the leftmost button when there are multiple buttons in the dialog.

• A positive action—Accepts the dialog’s specified action, often labeled with OK or
YES. This is the rightmost button when there are multiple buttons in the dialog.

• A neutral action—This button indicates that the user does not want to cancel or
accept the action specified by the dialog. For example, an app that asks the user
to register to gain access to additional features might provide a REMIND ME LATER

neutral button.

http://developer.android.com/guide/topics/resources/color-list-
resource.html

http://developer.android.com/guide/topics/resources/color-list-resource.html
http://developer.android.com/guide/topics/resources/color-list-resource.html

ptg16518503

4.3 Technologies Overview 119

We use an AlertDialog at the end of a quiz to display the quiz results to the user
(Section 4.7.10) and enable the user to touch a button to reset the quiz. You’ll implement
the interface DialogInterface.OnClickListener (package android.content) to handle
the button’s event. You can learn more about Android dialogs at

4.3.16 Logging Exception Messages
When exceptions occur or when you want to track important aspects of your code’s exe-
cution, you can log messages for debugging purposes with Android’s built-in logging
mechanism. Android provides class Log (package android.util) with several static
methods that represent messages of varying detail. Logged messages can be viewed in the
bottom of the Android Device Monitor’s LogCat tab or with the Android logcat tool. You
can open the Android Device Monitor window from Android Studio by selecting View >

Tool Windows > Android Monitor. For more details on logging messages, visit

4.3.17 Launching Another Activity Via an Explicit Intent
As you learned in Section 3.7.4, Android uses a technique known as intent messaging to
communicate information between activities within one app or activities in separate apps.
Each Activity declared in the AndroidManifest.xml file can specify intent filters indicat-
ing actions the Activity is capable of handling. In each app so far, the IDE created an in-
tent filter for the app’s only Activity indicating that it could respond to the predefined
action named android.intent.action.MAIN, which specifies that the Activity can be
used to launch the app to begin its execution. An Activity is launched by using an Intent
that indicates an action to be performed and the data on which to perform that action.

Implicit and Explicit Intents
This app uses an explicit Intent. When this app runs in portrait orientation, its prefer-
ences are displayed explicitly in the SettingsActivity (Section 4.8)—the specific Activ-
ity that understands how to manage this app’s preferences. Section 4.6.6 shows how to
use an explicit Intent to launch a specific Activity in the same app.

 Android also supports implicit Intents for which you do not specify explicitly which
component should handle the Intent. For example, you can create an Intent to display
the contents of a URL and allow Android to launch the most appropriate activity (a web
browser), based on the type of data. If multiple activities can handle the action and data
passed to startActivity, the system will display a dialog in which the user can select the
activity to use (possibly one of several browsers the user has installed). If the system cannot
find an activity to handle the action, then method startActivity throws an Activity-
NotFoundException. In general, it’s a good practice to handle this exception to prevent
your app from crashing. You can also prevent this exception from happening by first using
Intent method resolveActivity to determine whether there is an Activity to handle
the Intent. For a more information on Intents, visit

http://developer.android.com/guide/topics/ui/dialogs.html

http://developer.android.com/tools/debugging/debugging-log.html

http://developer.android.com/guide/components/intents-filters.html

http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/tools/debugging/debugging-log.html
http://developer.android.com/guide/components/intents-filters.html

ptg16518503

120 Chapter 4 Flag Quiz App

4.3.18 Java Data Structures
This app uses various data structures from the java.util package. The app dynamically
loads the image file names for the enabled regions and stores them in an Array-
List<String>. We use Collections method shuffle to randomize the order of the image
file names for each new game (Section 4.7.7). We use a second ArrayList<String> to
hold the image file names for the countries eligible to be used in the current quiz. We also
use a Set<String> to store the world regions included in a quiz. We refer to the Array-
List<String> object with a variable of interface type List<String>.

4.3.19 Java SE 7 Features
Android fully supports Java SE 7. For a complete list of the features introduced in Java SE
7, visit

This app uses the following Java SE 7 features:

• Type inference for generic instance creation—If the compiler can infer a generic
object’s type from the context, you can replace <type> with <> when creating the
object. For example, in the Flag Quiz’s MainActivityFragment code, the instance
variable quizCountriesList is declared to be of type List<String>, so the com-
piler knows the collection must contain Strings. Thus, when we create the cor-
responding ArrayList object, we can use Java SE 7’s diamond operator <> as in
the following statement, and the compiler infers that <> should be <String>,
based on quizCountriesList’s declaration:

• The try-with-resources statement—Rather than declaring a resource, using it in a
try block and closing it in a finally block, you can use the try-with-resources
statement to declare the resource in the try block’s parentheses and use the re-
source in the try block. The resource is implicitly closed when program control
leaves the try block. For example, in the Flag Quiz’s MainActivityFragment code,
we use an InputStream to read the bytes of the app’s flag images and use them to
create Drawables (Section 4.7.7):

4.3.20 AndroidManifest.xml
As you learned in Chapter 3, the AndroidManifest.xml file is created for you when you
create an app. All activities in an Android app must be listed in the app’s manifest file.
We’ll show you how to add additional activities to the project. When you add the Set-

Software Engineering Observation 4.1
Refer to collection objects using variables of the corresponding generic interface type, so you
can change data structures easily without affecting the rest of your app’s code.

http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-
418459.html

 quizCountriesList = new ArrayList<>();

 try (InputStream stream =
 assets.open(region + "/" + nextImage + ".png")) {
 // code that might throw an exception

 }

http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html

ptg16518503

4.4 Creating the Project, Resource Files and Additional Classes 121

tingsActivity to the project (Section 4.4.12), the IDE will also add it to the manifest
file. For the complete details of AndroidManifest.xml, visit

We’ll cover various other aspects of the AndroidManifest.xml file in subsequent apps.

4.4 Creating the Project, Resource Files and Additional
Classes
In this section, you’ll create the project and configure the String, array, color and anima-
tion resources used by the Flag Quiz app. You’ll also create additional classes for a second
Activity that enables the user to change the app’s settings.

4.4.1 Creating the Project
Follow the steps in Section 2.3 to create a new project. Specify the following values in the
Create New Project dialog’s New Project step:

• Application name: Flag Quiz

• Company Domain: deitel.com (or specify your own domain name)

For the remaining steps in the Create New Project dialog, use the same settings as in
Section 2.3, but this time in the Add an activity to Mobile step, select Blank Activity rather
than Empty Activity and check the Use a Fragment checkbox. Keep the default names pro-
vided for the Activity Name, Layout Name, Title and Menu Resource Name, then click Finish to
create the project. The IDE will create various Java and resource files, including

• a MainActivity class

• a Fragment subclass called MainActivityFragment that’s displayed by the Main-
Activity

• layout files for the MainActivity and MainActivityFragment, and

• a menu_main.xml file that defines MainActivity’s options menu.

Also, follow the steps in Section 2.5.2 to add an app icon to your project.
When the project opens in Android Studio, the IDE displays content_main.xml in

the layout editor. Select Nexus 6 from the virtual-device drop-down list (Fig. 2.11)—once
again, we’ll use this device as the basis for our design.

4.4.2 Blank Activity Template Layouts
The Blank Activity template is a backward-compatible app template (for Android 2.1 and
higher) that uses features of the Android Design Support Library. This template can be
used with or without a Fragment. When you choose to use the Fragment option, the IDE
creates layouts named activity_main.xml, content_main.xml and fragment_main.xml.

activity_main.xml
The layout in activity_main.xml contains a CoordinatorLayout (from the package
android.support.design.widget in the Android Design Support Library). The Coordi-
natorLayout layouts defined Android Studio’s app templates typically contain an app bar,

http://developer.android.com/guide/topics/manifest/manifest-
intro.html

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html

ptg16518503

122 Chapter 4 Flag Quiz App

defined as a Toolbar (package android.support.v7.widget). The templates define the
app bar explicitly for backward compatibility with early Android versions that did not sup-
port app bars. CoordinatorLayouts also help manage material-design-based interactions
with nested views—such as moving a portion of a GUI out of the way when a view ani-
mates onto the screen and restoring the GUI to its original location when a view animates
off the screen.

The default activity_main.xml layout embeds (via an <include> element in the
XML) the GUI defined in content_main.xml. The default layout also contains a Float-
ingActionButton—a round image button from the Android Design Support Library that
has a higher elevation than the GUI’s other components, so it “floats” over the GUI. A
FloatingActionButton typically emphasizes an important action that the user can per-
form by touching the button. Each app based on the Blank Activity template includes a
FloatingActionButton and other material design features. You’ll use FloatingAction-
Buttons starting in Chapter 7.

content_main.xml
The content_main.xml layout defines the portion of MainActivity’s GUI that appears
below the app bar and above the system bar. When you choose the Blank Activity template’s
Fragment option, this file contains only a <fragment> element that displays the MainAc-
tivityFragment’s GUI defined in fragment_main.xml. If you do not choose the tem-
plate’s Fragment option, this file defines a RelativeLayout containing a TextView, and
you’d define MainActivity’s GUI here.

fragment_main.xml
The fragment_main.xml layout is defined only when you choose the Blank Activity tem-
plate’s Fragment option. When using a Fragment, this is where you define the main GUI.

Preparing to Design the GUI
We don’t need the FloatingActionButton for this app, so open the activity_main.xml
layout and delete the bright pink button in the layout’s bottom-right corner. Also, select
the CoodinatorLayout in the Component Tree and set the layout’s id to coordinatorLay-
out. Open the fragment_main.xml layout and remove the Hello World! TextView defined
by the app template.

4.4.3 Configuring Java SE 7 Support
We use Java SE 7 programming features in this app. By default, a new Android Studio
project uses Java SE 6. To use Java SE 7:

1. Right click the project’s app folder and select Open Module Settings to open the
Project Structure window.

2. Ensure that the Properties tab is selected at the top of the window.

3. In both the Source Compatibility and Target Compatibility drop-down lists, select
1.7, then click OK.

4.4.4 Adding the Flag Images to the Project
Follow these steps to create an assets folder and add the flags to the project:

ptg16518503

4.4 Creating the Project, Resource Files and Additional Classes 123

1. Right click the app folder in the Project window and select New > Folder > Assets

Folder. In the Customize the Activity dialog that appears, click Finish.

2. Navigate to the folder on disk containing the book’s examples and copy all of the
folders located in the images/FlagQuizImages folder.

3. Click the assets folder in the Project window, then paste the folders you copied
in the preceding step. In the Copy dialog that appears, click OK to copy the folders
and their images into your project.

4.4.5 strings.xml and Formatted String Resources
In Section 3.4.5, you learned how to create a String resource using the Resources dialog.
For this app, we’ll create the String (and many other) resources in advance, then use them
as we design the GUI and from the program’s code. You’ll now create new String resources
using the Translations Editor that you first saw in Section 2.8:

1. In the Project window, expand the res/values node, then open strings.xml.

2. In the editor’s upper-right corner, click the Open Editor link to open the Transla-

tions Editor.

3. In the upper-left corner of the Translations Editor, click the Add Key button ().

4. In the dialog that appears, enter number_of_choices for the Key and Number of
Choices for the Default Value, then click OK to create the new resource.

5. Repeat Step 4 for each of the remaining string resources listed in the table (Fig. 4.9).

Look-and-Feel Observation 4.1
The Android design guidelines indicate that text displayed in your GUI should be brief,
simple and friendly with the important words first. For details on the recommended writ-
ing style, see http://developer.android.com/design/style/writing.html.

Key Default value

number_of_choices_description Display 2, 4, 6 or 8 guess buttons

world_regions Regions

world_regions_description Regions to include in the quiz

guess_country Guess the Country

results %1$d guesses, %2$.02f%% correct

incorrect_answer Incorrect!

default_region_message One region must be selected. Setting
North America as the default region.

restarting_quiz Quiz will restart with your new settings

question Question %1$d of %2$d

reset_quiz Reset Quiz

image_description Image of the current flag in the quiz

default_region North_America

Fig. 4.9 | String resources used in the Flag Quiz app.

http://developer.android.com/design/style/writing.html

ptg16518503

124 Chapter 4 Flag Quiz App

Format Strings as String Resources
The results and question resources are format Strings. When a String resource con-
tains multiple format specifiers, you must number them for localization purposes. In the
results resource

the notation 1$ in %1$d indicates that the first value to insert in the String should replace
the format specifier %1$d. Similarly, 2$ in %2$.02f indicates that the second value to insert
in the String should replace the format specifier %2$.02f. The d in the first format spec-
ifier formats an integer and the f in the second one formats a floating-point number. In
localized versions of strings.xml, the format specifiers %1$d and %2$.02f can be reor-
dered as necessary to properly translate the String resource. The first value to insert will
replace %1$d—regardless of where it appears in the format String—and the second value
will replace %2$.02f regardless of where it appears in the format String.

4.4.6 arrays.xml
Technically, all of your app’s resources in the res/values folder can be defined in the same
file. However, to make it easier to manage different types of resources, separate files are
typically used for each. For example, by convention array resources are normally defined
in arrays.xml, colors in colors.xml, Strings in strings.xml and numeric values in val-
ues.xml. This app uses three String array resources that are defined in arrays.xml:

• regions_list specifies the names of the world regions with their words separated
by underscores—these values are used to load image file names from the appropri-
ate folders and as the selected values for the world regions the user selects in the
SettingsActivityFragment.

• regions_list_for_settings specifies the names of the world regions with their
words separated by spaces—these values are used in the SettingsActivityFrag-
ment to display the region-name checkboxes to the user.

• guesses_list specifies the Strings 2, 4, 6 and 8—these values are used in the
SettingsActivityFragment to display the radio buttons that enable the user to
select the number of guess Buttons to display.

Figure 4.10 shows the names and element values for these three array resources.

%1$d guesses, %2$.02f%% correct

Array resource name Values

regions_list Africa, Asia, Europe, North_America,
Oceania, South_America

regions_list_for_settings Africa, Asia, Europe, North America,
Oceania, South America

guesses_list 2, 4, 6, 8

Fig. 4.10 | String array resources defined in arrays.xml.

ptg16518503

4.4 Creating the Project, Resource Files and Additional Classes 125

To create arrays.xml and configure the array resources, perform the following steps:

1. In the project’s res folder, right click the values folder, then select New > Values

resource file to display the New Resource File dialog. Because you right-clicked the
values folder, the dialog is preconfigured to add a Values resource file in the val-
ues folder.

2. Specify arrays.xml in the File name field and click OK to create the file.

3. Android Studio does not provide a String resource editor for String arrays, so
you’ll need to edit the XML to create the String array resources.

Each String-array resource has the following format:

Figure 4.11 shows the completed XML file.

<string-array name="resource_name">
 <item>first element value</item>
 <item>second element value</item>
 ...

</string-array>

1 <?xml version="1.0" encoding="utf-8"?>
2 <resources>
3
4
5
6
7
8
9

10
11
12
13 <string-array name="regions_list_for_settings">
14 <item>Africa</item>
15 <item>Asia</item>
16 <item>Europe</item>
17 <item>North America</item>
18 <item>Oceania</item>
19 <item>South America</item>
20 </string-array>
21
22 <string-array name="guesses_list">
23 <item>2</item>
24 <item>4</item>
25 <item>6</item>
26 <item>8</item>
27 </string-array>
28
29 </resources>

Fig. 4.11 | arrays.xml defines String array resources used in the Flag Quiz app.

<string-array name="regions_list">
 <item>Africa</item>
 <item>Asia</item>
 <item>Europe</item>
 <item>North_America</item>
 <item>Oceania</item>
 <item>South_America</item>
</string-array>

ptg16518503

126 Chapter 4 Flag Quiz App

4.4.7 colors.xml
This app displays correct answers in green and incorrect answers in red. As with any other
resource, color resources should be defined in XML so you can easily change colors with-
out modifying your app’s Java source code and so you can use Android’s resource-choosing
capabilities to provide colors resources for various scenarios (different locales, night and
day colors, and so on). Typically, colors are defined in the file colors.xml, which is cre-
ated for you by most of Android Studio’s app templates or created when you define colors
using the technique shown in Section 2.5.7; otherwise, you must create the file.

The Blank Activity app template already contains a colors.xml file that defines the
theme’s primary, primary dark and accent color resources. Here you’ll add color resources
for the correct and incorrect answers and modify the app’s accent color. To do so, you’ll
edit the XML directly, rather than using the Theme Editor to modify theme colors, as you
did in Section 3.5.

Open colors.xml (Fig. 4.12) from the project’s res/values folder and add lines 6
and 7. Also, change the hexadecimal value for the color named colorAccent (line 5) from
#FF4081 (the default bright pink defined by the app template) to #448AFF (a lighter shade
of blue than those used for colorPrimary and colorPrimaryDark). Notice in the IDE that
the XML editor shows a color swatch to the left of each color.

4.4.8 button_text_color.xml
As we discussed in Section 4.3.14, when a color state list resource is provided for a Button
color (either foreground or background), the appropriate color from the list of colors is
selected, based on the Button’s state. For this app you’ll define colors for the answer But-
tons’ text color in the enabled and disabled states. To create the color state list resource file:

1. Right click the project’s res folder, then select New > Andorid resource file to dis-
play the New Resource File dialog.

2. Specify button_text_color.xml as the File name.

3. In the Resource type drop-down, select Color. The Root element will automatically
change to selector and the Directory name will automatically change to color.

4. Click OK to create the file. The button_text_color.xml file will be placed in a
res/color folder, which the IDE automatically creates with the file.

5. Add the text shown in Fig. 4.13 to the file.

1 <?xml version="1.0" encoding="utf-8"?>
2 <resources>
3 <color name="colorPrimary">#3F51B5</color>
4 <color name="colorPrimaryDark">#303F9F</color>
5 <color name="colorAccent">#448AFF</color>
6 <color name="correct_answer">#00CC00</color>
7 <color name="incorrect_answer">#FF0000</color>
8 </resources>

Fig. 4.12 | colors.xml defines the app’s color resources.

ptg16518503

4.4 Creating the Project, Resource Files and Additional Classes 127

The <selector> element (lines 2–10) contains <item> elements that each specify a color
for a particular Button state. In this color state list, we specify the android:state_enabled
property in each <item>—once for the enabled state (true; lines 3–5) and once for the dis-
abled state (false; lines 7–9). The android:color property (lines 4 and 8) specifies the
color for that state.

4.4.9 Editing menu_main.xml
In the test-drive, you touched the () icon to access the app’s settings. Here, you’ll add
this icon to the project, then edit menu_main.xml to display this icon on the app bar. To
add the icon to the project:

1. Select File > New > Vector Asset to display the Vector Asset Studio—this tool enables
you to add to your project any of Google’s recommended material design icons
(https://www.google.com/design/icons/). Each icon is defined as a scalable
vector graphic that smoothly scales to any size.

2. Click the Choose button, then in the dialog that appears, scroll to locate the ()
icon, select it and click OK. The IDE updates the Resource name automatically to
match the selected icon—you can edit this name if you wish. Keep the other set-
tings in the dialog as is.

3. Click Next, then Finish to add to the res/drawable folder the icon’s scalable rep-
resentation—ic_settings_24dp.xml.

4. By default, each icon you add to the project in this manner is black, which would
be difficult to see against the dark blue app bar background. To change this, open
ic_settings_24dp.xml and change the <path> element’s android:fillColor
attribute to white, as in

Next, you’ll add the icon to menu_main.xml:

1. Open menu_main.xml in the editor—this file is located in the res/menu folder.

2. In the <item> element, add the following android:icon attribute (a preview of
the icon appears in the gray margin to the left of the line):

1 <?xml version="1.0" encoding="utf-8"?>
2
3
4
5
6
7 <item
8 android:color="@android:color/darker_gray"
9 android:state_enabled="false"/>

10

Fig. 4.13 | button_text_color.xml defines a button’s text color for the enabled and disabled
states.

 android:fillColor="@android:color/white"

 android:icon="@drawable/ic_settings_24dp"

<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item
 android:color="@android:color/primary_text_dark"
 android:state_enabled="true"/>

</selector>

https://www.google.com/design/icons/

ptg16518503

128 Chapter 4 Flag Quiz App

3. You can force a menu item to display on the app bar, in which case it’s known as
an action. By default, the action is displayed as the menu item’s icon (if there is
one); otherwise, the menu item’s text is displayed. To force the menu item to ap-
pear as an action on the app bar, change the <item> element’s app:showAsAction
attribute to

In the next chapter, you’ll see how to specify that menu items should be shown on the app
bar only if there is room.

4.4.10 Creating the Flag Shake Animation
In this section, you’ll create the animation that shakes the flag when the user guesses in-
correctly. We’ll show how the app uses this animation in Section 4.7.10. To create the an-
imation:

1. Right click the project’s res folder, then select New > Android resource file to open
the New Resource file dialog.

2. In the File name field, enter incorrect_shake.xml.

3. In the Resource type drop-down, select Animation. The IDE changes the Root ele-

ment to set and the Directory name to anim.

4. Click OK to create the file. The XML file opens immediately.

The IDE does not provide an editor for animations, so you must modify the XML con-
tents of the file as shown in Fig. 4.14.

In this example, we use View animations to create a shake effect that consists of three
animations in an animation set (lines 3–14)—a collection of animations that make up a
larger animation. Animation sets may contain any combination of tweened anima-
tions—alpha (transparency), scale (resize), translate (move) and rotate. Our shake

 app:showAsAction="always"

1 <?xml version="1.0" encoding="utf-8"?>
2
3
4
5
6
7
8
9 <translate android:duration="100" android:fromXDelta="-5%p"

10 android:toXDelta="5%p" android:startOffset="100" />
11
12 <translate android:duration="100" android:fromXDelta="5%p"
13 android:toXDelta="-5%p" android:startOffset="200" />
14

Fig. 4.14 | incorrect_shake.xml defines a flag animation that’s played when the user makes
an incorrect guess.

<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/decelerate_interpolator" >

<translate android:duration="100" android:fromXDelta="0"
 android:toXDelta="-5%p" />

</set>

ptg16518503

4.4 Creating the Project, Resource Files and Additional Classes 129

animation consists of a series of three translate animations. A translate animation
moves a View within its parent. Android also supports property animations in which you
can animate any property of any object.

The first translate animation (lines 6–7) moves a View from a starting location to
an ending position over a specified period of time. The android:fromXDelta attribute is
the View’s offset when the animation starts and the android:toXDelta attribute is the
View’s offset when the animation ends. These attributes can have

• absolute values (in pixels)

• a percentage of the animated View’s size

• a percentage of the animated View’s parent’s size.

For the android:fromXDelta attribute, we specified an absolute value of 0. For the
android:toXDelta attribute, we specified the value -5%p, which indicates that the View
should move to the left (due to the minus sign) by 5% of the parent’s width (indicated by
the p). To move by 5% of the View’s width, simply remove the p. The android:duration
attribute specifies how long the animation lasts in milliseconds. So the animation in lines
6–7 will move the View to the left by 5% of its parent’s width in 100 milliseconds.

The second animation (lines 9–10) continues from where the first finished, moving
the View from the -5%p offset to a %5p offset in 100 milliseconds. By default, animations
in an animation set are applied simultaneously (i.e., in parallel), but you can use the
android:startOffset attribute to specify the number of milliseconds into the future at
which an animation should begin. This can be used to sequence the animations in a set.
In this case, the second animation starts 100 milliseconds after the first. The third anima-
tion (lines 12–13) is the same as the second, but in the reverse direction, and it starts 200
milliseconds after the first animation.

4.4.11 preferences.xml for Specifying the App’s Settings
In this section, you’ll create the preferences.xml file that the SettingsActivityFrag-
ment uses to display the app’s preferences. To create the file:

1. Right click the project’s res folder, then select New > Android resource file to open
the New Resource File dialog.

2. In the File name field enter the name preferences.xml.

3. In the Resource type drop-down list, select XML. The Root element will automati-
cally change to PreferenceScreen, which represents a screen in which preferenc-
es are displayed. The Directory name will automatically change to xml.

4. Click OK to create the file. The preferences.xml file will be placed in the xml
folder, which is created automatically.

5. If the IDE did not open res/xml/preferences.xml automatically, double click
the file to open it.

You’ll now add two types of preferences to the file, a ListPreference and a MultiSelectList-

Preference. Each preference has properties that we explain in Fig. 4.15 for ListPreference

and Fig. 4.16 for MultiSelectListPreference. To add the preferences and their properties to
the file, you’ll need to edit the XML. Figure 4.17 shows the completed XML file.

ptg16518503

130 Chapter 4 Flag Quiz App

Property Value Description

entries @array/guesses_list An array of Strings that will be dis-
played in the list of options.

entryValues @array/guesses_list An array of values associated with the
options in the Entries property. The
selected entry’s value will be stored in
the app’s SharedPreferences.

key pref_numberOfChoices The name of the preference stored
in the app’s SharedPreferences.

title @string/number_of_choices The title of the preference displayed
in the GUI.

summary @string/number_of_choices_description A summary description of the prefer-
ence that’s displayed below its title.

persistent true Whether the preference should per-
sist after the app terminates—if
true, class PreferenceFragment
immediately persists the preference
value each time it changes.

defaultValue 4 The item in the Entries property
that’s selected by default.

Fig. 4.15 | ListPreference property values.

Property Value Description

entries @array/regions_list_for_settings An array of Strings that will be dis-
played in the list of options.

entryValues @array/regions_list An array of the values associated with
the options in the Entries property. The
selected entries’ values will all be stored
in the app’s SharedPreferences.

key pref_regionsToInclude The name of the preference stored in
the app’s SharedPreferences.

title @string/world_regions The title of the preference displayed in
the GUI.

summary @string/world_regions_description A summary description of the prefer-
ence that’s displayed below its title.

persistent true Whether the preference should persist
after the app terminates.

defaultValue @array/regions_list An array of the default values for this
preference—in this case, all of the
regions will be selected by default.

Fig. 4.16 | MultiSelectListPreference property values.

ptg16518503

4.4 Creating the Project, Resource Files and Additional Classes 131

4.4.12 Adding Classes SettingsActivity and
SettingsActivityFragment to the Project
In this section, you’ll create the SettingsActivity class (discussed in Section 4.8) and the
SettingsActivityFragment class (Section 4.9) by adding to the project a new Blank Aci-

tivity that uses a Fragment. To add the SettingsActivity and SettingsActivityFrag-
ment (and their layouts) to the project, perform the following steps:

1. Right click the app folder and select New > Activity > Blank Activity to open the New

Android Activity dialog.

2. In the Activity Name field, enter SettingsActivity. The Layout Name and Title will
automatically update based on what you enter in the Activity Name field.

3. Specify Settings in the Title field to add a new String resource to strings.xml
that will be displayed in the SettingsActivity’s app bar.

4. Check Use a Fragment which will create the SettingsActivityFragment class and
its corresponding layout.

5. Select MainActivity as the Hierarchical Parent of the new SettingsActivity (use
the … button to the right of the drop-down list). This tells Android Studio to
generate code that places in the activity’s app bar a button that the user can touch
to return to the parent activity (i.e., MainActivity). This button is known as the
up button.

6. Click Finish to create the new classes and layouts.

1 <?xml version="1.0" encoding="utf-8"?>
2
3
4
5 <
6 android:entries="@array/guesses_list"
7 android:entryValues="@array/guesses_list"
8 android:key="pref_numberOfChoices"
9 android:title="@string/number_of_choices"

10 android:summary="@string/number_of_choices_description"
11 android:persistent="true"
12 android:defaultValue="4" />
13
14 <
15 android:entries="@array/regions_list_for_settings"
16 android:entryValues="@array/regions_list"
17 android:key="pref_regionsToInclude"
18 android:title="@string/world_regions"
19 android:summary="@string/world_regions_description"
20 android:persistent="true"
21 android:defaultValue="@array/regions_list" />
22
23

Fig. 4.17 | preferences.xml defines the preferences displayed by the
SettingsActivityFragment.

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">

ListPreference

MultiSelectListPreference

</PreferenceScreen>

ptg16518503

132 Chapter 4 Flag Quiz App

The IDE creates the layout files activity_settings.xml, content_settings.xml and
fragment_settings.xml in the app’s res/layout folder, and the code files Settings-
Activity.java and SettingsActivityFragment.java in the app’s Java package folder.
Open the activity_settings.xml layout and delete the FloatingActionButton as you
did in Section 4.4.2 for activity_main.xml.

4.5 Building the App’s GUI
In this section, you’ll build the Flag Quiz app’s user interface. In the two previous chapters,
you saw how to create a GUI and configure component properties, so Sections 4.5.1–
4.5.4 focus primarily on new features. Many of the component properties you need to set
are specified in tables.

4.5.1 activity_main.xml Layout for Devices in Portrait Orientation
In the two prior apps, you defined the app’s GUI in activity_main.xml. When working
with Fragments, an Actvity’s GUI typically displays one or more Fragments’ GUIs. In
this app, the layout for MainActivity—activity_main.xml—uses an <include> element
in the XML to include in MainActivity’s layout the GUI defined in content_main.xml.
The content_main.xml layout, in turn, displays MainActivityFragment for which the
GUI is defined in fragment_main.xml. All three layout files were created by the IDE when
you created the project in Section 4.4.1.

The content_main.xml file defined by the IDE contains a <fragment> element as its
root layout. At runtime, the MainActivityFragment’s GUI will fill the part of the screen
occupied by this <fragment> element.

We work with multiple Fragments in this app’s code. To make the code more readable
when obtaining references to these Fragments, we changed this <fragment> element’s id
property. To do so:

1. Open content_main.xml in the Design tab.

2. In the Component Tree window select fragment—the default id created by the IDE.

3. In the Properties window, set the id to quizFragment.

4. Save content_main.xml.

4.5.2 Designing fragment_main.xml Layout
You’ll typically define a layout for each of your Fragments, though you will not need to
define one for this app’s SettingsActivityFragment—its GUI will be auto-generated by
the capabilities inherited from its superclass PreferenceFragment. This section presents
the MainActivityFragment’s layout (fragment_main.xml). Figure 4.18 shows the Main-
ActivityFragment GUI’s id property values—you should set these id values as you add the
components to the layout.

Look-and-Feel Observation 4.2
According to the Android design guidelines, 16dp is the recommended space between the
edges of a device’s touchable screen area and the app’s content; however, many apps (such
as games) use the full screen.

ptg16518503

4.5 Building the App’s GUI 133

Using the techniques you learned in Chapter 3, you’ll build the GUI in Fig. 4.18.
Recall that it’s often easiest to select a particular GUI component in the Component Tree

window. You’ll start with the basic layout and controls, then customize the controls’ prop-
erties to complete the design.

Step 1: Changing from a RelativeLayout to a LinearLayout
As in the activity_main.xml layouts for the two prior apps, the default layout in
fragment_main.xml is a RelativeLayout. Here, you’ll change this to a vertical Linear-
Layout for this app’s design:

1. Open the fragment_main.xml file, and switch to the Text tab.

2. In the XML, change RelativeLayout to LinearLayout.

3. Switch back to the Design tab.

4. In the Component Tree select LinearLayout.

5. In the Properties window, set the LinearLayout’s orientation to vertical.

6. Ensure that layout:width and layout:height are set to match_parent.

7. Set the LinearLayout’s id to quizLinearLayout for programmatic access.

Fig. 4.18 | Flag Quiz GUI’s components labeled with their id property values—the compo-
nents are arranged in a vertical LinearLayout.

questionNumberTextView

flagImageView

guessCountryTextView

answerTextView

row1LinearLayout

row2LinearLayout

row3LinearLayout

The ids for the
Buttons in these
LinearLayouts
are not used in this
app, so they’re not
specified in this
figurerow4LinearLayout

ptg16518503

134 Chapter 4 Flag Quiz App

By default, the IDE set the layout’s Padding Left and Padding Right properties to a pre-
defined dimension resource named @dimen/activity_horizontal_margin—located in
the dimens.xml file of the project’s res/values folder. This resource’s value is 16dp, so
there will be 16dp of padding on the layout’s left and right sides. The IDE created this re-
source when you created the app’s project. Similarly, the IDE sets the Padding Top and
Padding Bottom properties to @dimen/activity_vertical_margin—another predefined
dimension resource with the value 16dp. So there will be 16dp of padding above and below
the layout. Thus, all of MainActivityFragment’s GUI will be inset 16dp from the rest of
MainActivity’s GUI.

Step 2: Adding the questionNumberTextView to the LinearLayout
Drag a Medium Text component from the Palette’s Widgets section onto the quizLinear-
Layout in the Component Tree window, then set its id property to questionNumberText-
View. Use the Properties window to set the following properties:

• layout:gravity center: horizontal—Centers the component horizontally within
the layout.

• layout:margin: @dimen/spacing—Set this only for the bottom margin to add 8dp of
space below this component. Create this dimension resource using the techniques
you learned in Section 2.5.6.

• text: @string/question—To set this property, click the text property’s field, then
click the ellipsis (…) button. In the Resources dialog’s Project tab (Fig. 4.19), select
the question resource, then click OK.

Step 3: Adding the flagImageView to the LinearLayout
Drag an ImageView component from the Palette’s Widgets section onto the quizLinear-
Layout in the Component Tree window, then set its id property to flagImageView. Use the
Properties window to set the following properties:

• layout:width: match_parent

• layout:height: 0dp—This will let the View’s height be determined by the lay-

out:weight property.

• layout:gravity center: both

• layout:margin bottom: @dimen/spacing—Adds 8dp of space below this compo-
nent.

• layout:margin left and right: @dimen/activity_horizontal_margin—Adds 16dp
of space to the left and right of this component, so the complete flag displays dur-
ing the flag-shake animation that moves the flag left and right.

• layout:weight: 1—Setting the layout:weight of this component to 1 (the default is 0
for all components) makes the flagImageView more important than the other
components in the quizLinearLayout. When Android lays out the components,
they’ll use only the vertical space they need and the flagImageView will occupy all
remaining vertical space. Setting flagImageView’s layout:height to 0dp is recom-
mended by the IDE to help Android lay out the GUI faster at runtime.

ptg16518503

4.5 Building the App’s GUI 135

• adjustViewBounds: true—Setting the ImageView’s Adjust View Bounds property to
true (by checking its checkbox) indicates that the ImageView maintains its im-
age’s aspect ratio.

• contentDescription: @string/image_description

• scaleType: fitCenter—This indicates that the ImageView should scale the image
to fill either the ImageView’s width or height while maintaining the original im-
age’s aspect ratio. If the image’s width is less than the ImageView’s, the image is
centered horizontally. Similarly, if the image’s height is less than the ImageView’s,
the image is centered vertically.

Step 4: Adding the guessCountryTextView to the LinearLayout
Drag a Medium Text component from the Palette’s Widgets section onto the quizLinear-
Layout in the Component Tree window, then set its id property to guessCountryTextView.
Use the Properties window to set the following properties:

Fig. 4.19 | Resource Chooser dialog—selecting the existing String resource question.

Look-and-Feel Observation 4.3
Recall that it’s considered a best practice in Android to ensure that every GUI component
can be used with TalkBack. For components that don’t have descriptive text, such as
ImageViews, set the component’s contentDescription property.

ptg16518503

136 Chapter 4 Flag Quiz App

• layout:gravity center: horizontal

• text: @string/guess_country

Step 5: Adding the Buttons to the LinearLayout
For this app, we add the Buttons to the layout in rows—each row is a horizontal Linear-
Layout containing two Buttons. You’ll set the properties of the eight Buttons in Step 7.
Follow these steps to add the eight Buttons to the layout:

1. Drag a LinearLayout (Horizontal) from the Palette’s Layouts section to the quizLin-
earLayout in the Component Tree and set its id to row1LinearLayout and its lay-

out:height to wrap_content.

2. Drag a Button from the Palette’s Widgets section onto the row1LinearLayout in
the Component Tree. You do not need to set its id because the Buttons are not ref-
erenced by their ids in this app’s Java code.

3. Repeat Step 2 for the other Button in the first row.

4. Repeat Steps 1–3 for the three remaining LinearLayouts and set their ids to the
values shown in Fig. 4.18 to create the last three rows of buttons.

Step 6: Adding the answerTextView to the LinearLayout
Drag a Medium Text component from the Palette’s Widgets section onto the quizLinear-
Layout in the Component Tree window, then set its id property to answerTextView. Use
the Properties window to set the following properties:

• layout:gravity: Check bottom and set center to horizontal.

• gravity: center_horizontal—This centers the TextView’s text when it displays
as two or more lines.

• textSize: @dimen/answer_size—This changes the text’s size to 36sp. Create this
dimension resource using the techniques you learned in Section 2.5.6.

• textStyle: bold

This TextView’s text property will be set programmatically. At this point, the Component

Tree window should appear as shown in Fig. 4.20.

Step 7: Setting the Properties of the Buttons
Once you’ve completed Step 6, configure the properties of the Buttons with the values
shown in Fig. 4.21—you can select all eight Buttons in the Component Tree, then set these
properties to configure all the Buttons at the same time:

• Setting each Button’s layout:width to 0dp and layout:weight to 1 enables the But-
tons in a given LinearLayout to divide the horizontal space equally.

• Setting each Button’s layout:height to match_parent sets the Button’s height to
the LinearLayout’s height.

• Setting each Button’s lines property to 2 ensures that all of the Buttons are the
same height for country names that take up different numbers of lines—if a But-
ton’s text is too long, any text that does not fit in two lines is simply truncated.

ptg16518503

4.5 Building the App’s GUI 137

• Setting the style property to @android:style/Widget.Material.Button.Col-
ored causes the Button to take on a colored appearance, based on the colors of
the app’s theme. The Buttons’ color will be the app’s accent color, which you
specified in Section 4.4.7. To set this property, click the ellipsis (…) to open the
Resources dialog, then select Widget.Material.Button.Colored from the Sys-

tem tab and click OK.

• Setting the textColor property to the @color/button_text_color color state
list you defined in Section 4.4.8 ensures that the text changes color based on each
Button’s enabled/disabled states.

Fig. 4.20 | Component Tree window for fragment_main.xml.

GUI component Property Value

Buttons Layout Parameters
 layout:width
 layout:height
 layout:weight

Other Properties
 lines

 textColor
 style

0dp

match_parent

1

2
@color/button_text_color
@android:style/Widget.Material.

Button.Colored

Fig. 4.21 | Property values for the Buttons components in fragment_main.xml.

ptg16518503

138 Chapter 4 Flag Quiz App

4.5.3 Graphical Layout Editor Toolbar
You’ve now completed the MainActivityFragment’s GUI. The layout editor’s toolbar
(Fig. 4.22) contains various buttons that enable you to preview the design for other screen
sizes and orientations. In particular, you can view thumbnail images of many screen sizes
and orientations. To do so, first open content_main.xml, then click the virtual device
drop-down at the top of the layout editor and select Preview All Screen Sizes. Figure 4.23
overviews some of the buttons in the layout editor’s toolbar.

4.5.4 content_main.xml Layout for Tablet Landscape Orientation
As we mentioned previously, MainActivity’s default content_main.xml layout displays
the MainActivityFragment’s GUI. You’ll now define MainActivity’s layout for tablets in

Fig. 4.22 | Canvas configuration options.

Option Description

Render options View one design screen at a time or see your design on a variety of
screen sizes all at once.

Virtual device Android runs on a wide variety of devices, so the layout editor comes
with many device configurations that represent various screen sizes and
resolutions that you can use to design your GUI. In this book, we use
the predefined Nexus 6 and Nexus 9 screens, depending on the app. In
Fig. 4.22, we selected Nexus 6.

Portrait/landscape Toggles the design area between portrait and landscape orientations.

Theme Can be used to set the theme for the GUI.

Activity/fragment
being designed

Shows the Activity or Fragment class that corresponds to the GUI
being designed.

Locale For internationalized apps (Section 2.8), allows you to select a specific
localization, so that you can see, for example, what your design looks
like with different language strings.

API level Specifies the target API level for the design. With each new API level,
there have typically been new GUI features. The layout editor window
shows only features that are available in the selected API level.

Fig. 4.23 | Explanation of the canvas configuration options.

Zoom options

Render options Virtual device
Portrait/

Landscape Theme
Activity/Fragment
being designed Locale API level

Options for configuring currently selected
item in the Grapical Layout editor

Jump
to Source

Refresh
design area

ptg16518503

4.5 Building the App’s GUI 139

landscape orientation, which will show both the SettingsActivityFragment and the
MainActivityFragment side-by-side. To do so, you’ll create a second content_main.xml
layout that Android will use only on appropriate devices.

Creating content_main.xml for Tablets in Landscape Orientation
To create the layout, perform the following steps:

1. Right click the project’s res/layout folder, and select New > Layout resource file.

2. Enter content_main.xml in the File name field of the New Resource File dialog.

3. Ensure that LinearLayout is specified in the Root element field.

4. In the Available qualifiers list, select the Smallest Screen Width qualifier, then click
the >> button to add the qualifier to the Chosen Qualifiers list and set its value to
700—the layout is meant for screens that are at least 700 pixels wide.

5. In the Available qualifiers list, select the Orientation qualifier, then click the >> but-
ton to add the qualifier to the Chosen Qualifiers list and set its value to Landscape.

6. Click OK.

This creates the new content_main.xml file, which is stored in a res subfolder named

indicating that the layout should be used only on a device with a minumum screen width
(sw) of 700dp and only when the device is in landscape (land) orientation. Android uses
the qualifiers sw and land to select appropriate resources at runtime.

In Android Studio, the Project window does not show the separate layout and
layout-sw700dp-land folders that you’ll see if you explore the project’s folders on disk.
Instead, it combines both layouts into a single node content_main.xml (2) node in the
Project window’s res/layout folder—(2) indicates that there are two layouts in the node.
Expanding this node shows

• content_main.xml and

• content_main.xml (sw700dp-land).

The layout without qualifiers in parentheses is the default layout. The one with qualifiers
is used only if appropriate. After creating the file, Android Studio opens the layout in the
layout editor. The Design view presents the layout in layout orientation.

Creating the Tablet Layout’s GUI
Next, you’ll build the tablet layout’s GUI:

1. Select LinearLayout (vertical) in the Component Tree window and set the ori-

entation property to horizontal.

2. Click <fragment> in the Palette’s Custom section. In the Fragments dialog, select
SettingsActivityFragment, and click OK. Then click the LinearLayout node
in the Component Tree window. This adds the <fragment> to the layout. Set the id
of the <fragment> to settingsActivityFragment.

3. Repeat the preceding step, but this time select MainActivityFragment. Also, set
the id of this <fragment> to quizFragment.

layout-sw700dp-land

ptg16518503

140 Chapter 4 Flag Quiz App

4. Select the settingsActivityFragment node in the Component Tree window. Set
layout:width to 0dp, layout:height to match_parent and layout:weight to 1.

5. Select the quizFragment node in the Component Tree window. Set layout:width to
0dp, layout:height to match_parent and layout:weight to 2. MainActivityFrag-
ment’s layout:weight is 2 and SettingsActivityFragment’s is 1, so the total of the
weights is 3 and MainActivityFragment will occupy two-thirds of the layout’s
horizontal space.

6. Switch to the Text tab and add the following two lines to the opening Linear-
Layout tag to ensure that the top of the layout appears below the app bar, rather
than behind it:

Selecting a Fragment to Preview in the Layout Editor’s Design View
The layout editor’s Design view can show a preview of any fragment(s) displayed in a lay-
out. If you do not specify which fragment to preview, the layout editor displays a "Render-

ing Problems" message. To specify the fragment to preview, right click the fragment—
either in Design view or in the Component Tree—and click Choose Preview Layout…. Then
in the Resources dialog, select the name of the fragment layout.

4.6 MainActivity Class
Class MainActivity (Sections 4.6.1–4.6.7) hosts the app’s MainActivityFragment when
the app is running in portrait orientation, and hosts both the SettingsActivityFragment
and MainActivityFragment when the app is running on a tablet in landscape orientation.

4.6.1 package Statement and import Statements
Figure 4.24 shows the MainActivity package statement and import statements. Lines 6–
19 import the various Android and Java classes and interfaces that the app uses. We’ve
highlighted the new import statements, and we discuss the corresponding classes and in-
terfaces in Section 4.3 and as they’re encountered in Sections 4.6.2–4.6.7.

 xmlns:app="http://schemas.android.com/apk/res-auto"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"

1 // MainActivity.java
2 // Hosts the MainActivityFragment on a phone and both the
3 // MainActivityFragment and SettingsActivityFragment on a tablet
4 package com.deitel.flagquiz;
5
6
7
8
9

10
11 import android.os.Bundle;
12
13 import android.support.v7.app.AppCompatActivity;
14 import android.support.v7.widget.Toolbar;

Fig. 4.24 | MainActivity package statement and import statements. (Part 1 of 2.)

import android.content.Intent;
import android.content.SharedPreferences;
import android.content.SharedPreferences.OnSharedPreferenceChangeListener;
import android.content.pm.ActivityInfo;
import android.content.res.Configuration;

import android.preference.PreferenceManager;

ptg16518503

4.6 MainActivity Class 141

4.6.2 Fields
Figure 4.25 shows class MainActivity’s fields. Lines 23–24 define constants for the prefer-
ence keys you created in Section 4.4.11. You’ll use these to access the preference values. The
boolean variable phoneDevice (line 26) specifies whether the app is running on a phone—
if so, the app will allow only portrait orientation. The boolean variable preferences-
Changed (line 27) specifies whether the app’s preferences have changed—if so, the MainAc-
tivity’s onStart lifecycle method (Section 4.6.4) will call the MainActivityFragment’s
methods updateGuessRows (Section 4.7.4) and updateRegions (Section 4.7.5) to reconfig-
ure the quiz, based on the new settings. We set this boolean to true initially so that when
the app first executes, the quiz is configured using the default preferences.

4.6.3 Overridden Activity Method onCreate
Fig. 4.26 shows the overridden Activity method onCreate—we removed the predefined
event handler for the FloatingActionButton, which is not used in this app. Line 33 calls
setContentView to set MainActivity’s GUI. Recall that activity_main.xml embeds in its
layout the contents of the file content_main.xml, and that this app has two versions of that
file. When inflating activity_main.xml, Android embeds the default content_main.xml
file from the app’s res/layout folder unless the app is running on a devices that’s at least
700 pixels wide in landscape orientation—in that case, Android uses the version in the res/
layout-sw700dp-land folder. Lines 34–35 were generated by the IDE to set the Toolbar
defined in MainActivity’s layout as the app bar (formerly called the action bar)—again, this
is the backward-compatible manner in which an app displays an app bar.

Setting the Default Preference Values and Registering a Change Listener
When you install and launch the app for the first time, line 38 sets the app’s default pref-
erences by calling PreferenceManager method setDefaultValues—this creates and ini-
tializes the app’s SharedPreferences file using the default values that you specified in
preferences.xml. The method requires three arguments:

15
16
17
18
19 import java.util.Set;
20

21 public class MainActivity extends Activity {
22 // keys for reading data from SharedPreferences
23 public static final String CHOICES = "pref_numberOfChoices";
24 public static final String REGIONS = "pref_regionsToInclude";
25
26 private boolean phoneDevice = true; // used to force portrait mode
27 private boolean preferencesChanged = true; // did preferences change?
28

Fig. 4.25 | MainActivity declaration and fields.

Fig. 4.24 | MainActivity package statement and import statements. (Part 2 of 2.)

import android.view.Menu;
import android.view.MenuItem;
import android.widget.Toast;

ptg16518503

142 Chapter 4 Flag Quiz App

• The preferences’ Context (package android.content), which provides access to
information about the environment in which the app is running and allows you
to use various Android services—in this case, the Context is the Activity (this)
for which you are setting the default preferences.

• The resource ID for the preferences XML file (R.xml.preferences) that you cre-
ated in Section 4.4.11.

• A boolean indicating whether the default values should be reset each time meth-
od setDefaultValues is called—false indicates that the default preference val-
ues should be set only the first time this method is called.

Each time the user changes the app’s preferences, MainActivity should call MainAc-
tivityFragment’s methods updateGuessRows or updateRegions to reconfigure the quiz.
MainActivity registers an OnSharedPreferenceChangedListener (lines 41–43) so that it
will be notified each time a preference changes. PreferenceManager method getDefault-
SharedPreferences returns a reference to the SharedPreferences object representing the
app’s preferences, and SharedPreferences method registerOnSharedPreference-
ChangeListener registers the listener (defined in Section 4.6.7).

29 // configure the MainActivity
30 @Override
31 protected void onCreate(Bundle savedInstanceState) {
32 super.onCreate(savedInstanceState);
33 setContentView(R.layout.activity_main);
34 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
35 setSupportActionBar(toolbar);
36
37
38
39
40
41
42
43
44
45
46
47
48
49 // if device is a tablet, set phoneDevice to false
50 if (screenSize == Configuration.SCREENLAYOUT_SIZE_LARGE ||
51 screenSize == Configuration.SCREENLAYOUT_SIZE_XLARGE)
52 phoneDevice = false; // not a phone-sized device
53
54 // if running on phone-sized device, allow only portrait orientation
55 if (phoneDevice)
56
57
58 }
59

Fig. 4.26 | MainActivity overridden Activity method onCreate.

// set default values in the app's SharedPreferences
PreferenceManager.setDefaultValues(this, R.xml.preferences, false);

// register listener for SharedPreferences changes
PreferenceManager.getDefaultSharedPreferences(this).
 registerOnSharedPreferenceChangeListener(

 preferencesChangeListener);

// determine screen size
int screenSize = getResources().getConfiguration().screenLayout &
 Configuration.SCREENLAYOUT_SIZE_MASK;

setRequestedOrientation(
 ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

ptg16518503

4.6 MainActivity Class 143

Configuring a Phone Device for Portrait Orientation
Lines 46–52 determine whether the app is running on a tablet or a phone. Inherited meth-
od getResources returns the app’s Resources object (package android.content.res) for
accessing an app’s resources and determining information about its environment. Method
getConfiguration returns a Configuration object (package android.content.res) con-
taining public instance variable screenLayout, which specifies the device’s screen-size
category. To do so, first you combine the value of screenLayout with Configura-
tion.SCREENLAYOUT_SIZE_MASK using the bitwise AND (&) operator. Then, you compare
the result to the constants SCREENLAYOUT_SIZE_LARGE and SCREENLAYOUT_SIZE_XLARGE
(lines 50–51). If either is a match, the app is running on a tablet-sized device. Finally, if
the device is a phone, lines 56–57 call inherited Activity method setRequestedOrien-
tation to force the app to display MainActivity in only portrait orientation.

4.6.4 Overridden Activity Method onStart
Overridden Activity lifecycle method onStart (Fig. 4.27) is called in two scenarios:

• When the app first executes, onStart is called after onCreate. We use onStart
in this case to ensure that the quiz is configured correctly based on the app’s de-
fault preferences when the app is installed and executes for the first time or based
on the user’s updated preferences when the app is launched subsequently.

• When the app is running in portrait orientation and the user opens the
SettingsActivity, the MainActivity is stopped while the SettingsActivity is
displayed. When the user returns to the MainActivity, onStart is called again.
We use onStart in this case to ensure that the quiz is reconfigured properly if the
user made any preference changes.

In both cases, if preferencesChanged is true, onStart calls MainActivityFragment’s
updateGuessRows (Section 4.7.4) and updateRegions (Section 4.7.5) methods to recon-
figure the quiz. To get a reference to the MainActivityFragment so we can call its meth-
ods, lines 68–70 use inherited AppCompatActivity method getSupportFragmentManager
to get the FragmentManager, then call its findFragmentById method. Next, lines 71–74
call MainActivityFragment’s updateGuessRows and updateRegions methods, passing the
app’s SharedPreferences object as an argument so those methods can load the current
preferences. Line 75 resets the quiz and line 76 sets preferencesChanged back to false.

60 // called after onCreate completes execution
61 @Override
62 protected void onStart() {
63 super.onStart();
64
65 if (preferencesChanged) {
66 // now that the default preferences have been set,
67 // initialize MainActivityFragment and start the quiz
68
69
70

Fig. 4.27 | MainActivity overridden Activity method onStart. (Part 1 of 2.)

MainActivityFragment quizFragment = (MainActivityFragment)
 getSupportFragmentManager().findFragmentById(

R.id.quizFragment);

ptg16518503

144 Chapter 4 Flag Quiz App

4.6.5 Overridden Activity Method onCreateOptionsMenu
Overridden Activity method onCreateOptionsMenu (Fig. 4.28) initializes the Activi-
ty’s options menu—this method and method onOptionsItemSelected (Section 4.6.6)
were autogenerated by Android Studio’s Blank Activity template. The system passes in the
Menu object where the options will appear. In this app, we want to show the menu only
when the app is running in portrait orientation, so we modified this method to check the
device’s orientation. Line 84 uses the Activity’s Resources object (returned by inherited
method getResources) to obtain a Configuration object (returned by method getCon-
figuration) that represents the device’s current configuration. This object’s public in-
stance variable orientation contains either Configuration.ORIENTATION_PORTRAIT or
Configuration.ORIENTATION_LANDSCAPE. If the device is in portrait orientation (line 87),
line 89 creates the menu from menu_main.xml—the default menu resource that the IDE
defined when you created the project. Inherited Activity method getMenuInflater re-
turns a MenuInflater on which we call inflate with two arguments—the resource ID of
the menu resource that populates the menu and the Menu object in which the menu items
will be placed. Returning true from onCreateOptionsMenu indicates that the menu
should be displayed.

71 quizFragment.updateGuessRows(
72);
73 quizFragment.updateRegions(
74 PreferenceManager.getDefaultSharedPreferences(this));
75 quizFragment.resetQuiz();
76 preferencesChanged = false;
77 }
78 }
79

80 // show menu if app is running on a phone or a portrait-oriented tablet
81 @Override
82
83 // get the device's current orientation
84
85
86 // display the app's menu only in portrait orientation
87 {
88 // inflate the menu
89 getMenuInflater().inflate(R.menu.menu_main, menu);
90 return true;
91 }
92 else
93 return false;
94 }
95

Fig. 4.28 | MainActivity overridden Activity method onCreateOptionsMenu.

Fig. 4.27 | MainActivity overridden Activity method onStart. (Part 2 of 2.)

PreferenceManager.getDefaultSharedPreferences(this)

public boolean onCreateOptionsMenu(Menu menu) {

int orientation = getResources().getConfiguration().orientation;

if (orientation == Configuration.ORIENTATION_PORTRAIT)

ptg16518503

4.6 MainActivity Class 145

4.6.6 Overridden Activity Method onOptionsItemSelected
Method onOptionsItemSelected (Fig. 4.29) is called when a menu item is selected. In this
app, the default menu provided by the IDE when you created the project contains only the
Settings menu item, so if this method is called, the user selected Settings. Line 99 creates an
explicit Intent for launching the SettingsActivity. The Intent constructor used here re-
ceives the Context from which the Activity will be launched and the class representing the
Activity to launch (SettingsActivity.class). We then pass this Intent to the inherited
Activity method startActivity to launch the Activity (line 100).

4.6.7 Anonymous Inner Class That Implements
OnSharedPreferenceChangeListener
The preferencesChangeListener objec (Fig. 4.30) is an anonymous-inner-class object
that implements the OnSharedPreferenceChangeListener interface. This object was reg-
istered in method onCreate to listen for changes to the app’s SharedPreferences. When
a change occurs, method onSharedPreferenceChanged sets preferencesChanged to true
(line 111), then gets a reference to the MainActivityFragment (lines 113–115) so that the
quiz can be reset with the new preferences. If the CHOICES preference changed, lines 118–
119 call the MainActivityFragment’s updateGuessRows and resetQuiz methods.

96 // displays the SettingsActivity when running on a phone
97 @Override
98
99
100
101 return super.onOptionsItemSelected(item);
102 }
103

Fig. 4.29 | MainActivity overridden Activity method onOptionsItemSelected.

104 // listener for changes to the app's SharedPreferences
105
106
107
108
109
110
111 preferencesChanged = true; // user changed app settings
112
113
114
115
116
117 if (key.equals(CHOICES)) { // # of choices to display changed
118 quizFragment.updateGuessRows(sharedPreferences);

Fig. 4.30 | Anonymous Inner class that implements OnSharedPreferenceChangeListener.
(Part 1 of 2.)

public boolean onOptionsItemSelected(MenuItem item) {
Intent preferencesIntent = new Intent(this, SettingsActivity.class);
startActivity(preferencesIntent);

private OnSharedPreferenceChangeListener preferencesChangeListener =
 new OnSharedPreferenceChangeListener() {

// called when the user changes the app's preferences
@Override
public void onSharedPreferenceChanged(
 SharedPreferences sharedPreferences, String key) {

MainActivityFragment quizFragment = (MainActivityFragment)
 getSupportFragmentManager().findFragmentById(

R.id.quizFragment);

ptg16518503

146 Chapter 4 Flag Quiz App

If the REGIONS preference changed, lines 122–123 get the Set<String> containing the
enabled regions. SharedPreferences method getStringSet returns a Set<String> for
the specified key. The quiz must have at least one region enabled, so if the Set<String> is
not empty, lines 126–127 call the MainActivityFragment’s updateRegions and
resetQuiz methods.

If the Set<String> is empty, lines 131–135 update the REGIONS preference with
North America set as the default region. To obtain the default region’s name, line 133 calls
Activity’s inherited method getString, which returns the String resource for the spec-
ified resource ID (R.string.default_region).

To change a SharedPreferences object’s contents, first call its edit method to obtain
a SharedPreferences.Editor object (lines 131–132), which can add key–value pairs to,
remove key–value pairs from, and modify the value associated with a particular key in a
SharedPreferences file. Line 134 calls SharedPreferences.Editor method put-
StringSet to store the contents of regions (the Set<String>). Line 135 commits (saves)
the changes by calling SharedPreferences.Editor method apply, which immediately
makes the changes to the in-memory representation of the SharedPreferences, and asyn-

119 quizFragment.resetQuiz();
120 }
121 else if (key.equals(REGIONS)) { // regions to include changed
122
123
124
125 if (regions != null && regions.size() > 0) {
126 quizFragment.updateRegions(sharedPreferences);
127 quizFragment.resetQuiz();
128 }
129 else {
130
131
132
133
134
135
136
137
138
139
140 }
141 }
142
143 Toast.makeText(MainActivity.this,
144 R.string.restarting_quiz,
145 Toast.LENGTH_SHORT).show();
146 }
147 };
148 }

Fig. 4.30 | Anonymous Inner class that implements OnSharedPreferenceChangeListener.
(Part 2 of 2.)

Set<String> regions =
 sharedPreferences.getStringSet(REGIONS, null);

// must select one region--set North America as default
SharedPreferences.Editor editor =
 sharedPreferences.edit();
regions.add(getString(R.string.default_region));
editor.putStringSet(REGIONS, regions);
editor.apply();

Toast.makeText(MainActivity.this,
R.string.default_region_message,

 Toast.LENGTH_SHORT).show();

ptg16518503

4.7 MainActivityFragment Class 147

chronously writes the changes to the file in the background. There is also a commit method
that writes the writes the changes to the file synchronously (immediately).

Lines 137–139 use a Toast to indicate that the default region was set. Toast method
makeText receives as arguments the Context on which the Toast is displayed, the message
to display and the duration for which the Toast will be displayed. Toast method show dis-
plays the Toast. Regardless of which preference changed, lines 143–145 display a Toast
indicating that the quiz will be reset with the new preferences. Figure 4.31 shows the
Toast that appears after the user changes the app’s preferences.

4.7 MainActivityFragment Class
Class MainActivityFragment (Figs. 4.32–4.42)—a subclass of the Android Support Li-
brary’s Fragment class (package android.support.v4.app)—builds the Flag Quiz’s GUI
and implements the quiz’s logic.

4.7.1 package and import Statements
Figure 4.32 shows the MainActivityFragment package statement and import statements.
Lines 5–36 import the various Java and Android classes and interfaces that the app uses.
We’ve highlighted the key import statements, and we discuss the corresponding classes
and interfaces in Section 4.3 and as they’re encountered in Sections 4.7.2–4.7.11.

Fig. 4.31 | Toast displayed after a preference is changed.

1 // MainActivityFragment.java
2 // Contains the Flag Quiz logic
3 package com.deitel.flagquiz;
4
5 import java.io.IOException;
6 import java.io.InputStream;
7 import java.security.SecureRandom;
8
9

10
11
12
13
14
15
16
17
18
19
20

Fig. 4.32 | MainActivityFragment package statement, import statements. (Part 1 of 2.)

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Set;

import android.animation.Animator;
import android.animation.AnimatorListenerAdapter;
import android.app.AlertDialog;
import android.app.Dialog;
import android.content.DialogInterface;
import android.content.SharedPreferences;
import android.content.res.AssetManager;
import android.graphics.drawable.Drawable;

ptg16518503

148 Chapter 4 Flag Quiz App

4.7.2 Fields
Figure 4.33 lists class MainActivityFragment’s static and instance variables. The con-
stant TAG (line 40) is used when we log error messages using class Log (Fig. 4.38) to distin-
guish this Activity’s error messages from others that are being written to the device’s log.
The constant FLAGS_IN_QUIZ (line 42) represents the number of flags in the quiz.

21 import android.os.Bundle;
22
23
24
25
26 import android.view.LayoutInflater;
27 import android.view.View;
28
29
30 import android.view.ViewGroup;
31
32
33 import android.widget.Button;
34 import android.widget.ImageView;
35 import android.widget.LinearLayout;
36 import android.widget.TextView;
37

38 public class MainActivityFragment extends Fragment {
39 // String used when logging error messages
40 private static final String TAG = "FlagQuiz Activity";
41
42 private static final int FLAGS_IN_QUIZ = 10;
43
44
45
46
47 private String correctAnswer; // correct country for the current flag
48 private int totalGuesses; // number of guesses made
49 private int correctAnswers; // number of correct guesses
50 private int guessRows; // number of rows displaying guess Buttons
51 private SecureRandom random; // used to randomize the quiz
52
53
54
55 private LinearLayout quizLinearLayout; // layout that contains the quiz
56 private TextView questionNumberTextView; // shows current question #
57 private ImageView flagImageView; // displays a flag
58 private LinearLayout[] guessLinearLayouts; // rows of answer Buttons
59 private TextView answerTextView; // displays correct answer
60

Fig. 4.33 | MainActivityFragment fields.

Fig. 4.32 | MainActivityFragment package statement, import statements. (Part 2 of 2.)

import android.support.v4.app.DialogFragment;
import android.support.v4.app.Fragment;
import android.os.Handler;
import android.util.Log;

import android.view.View.OnClickListener;
import android.view.ViewAnimationUtils;

import android.view.animation.Animation;
import android.view.animation.AnimationUtils;

private List<String> fileNameList; // flag file names
private List<String> quizCountriesList; // countries in current quiz
private Set<String> regionsSet; // world regions in current quiz

private Handler handler; // used to delay loading next flag
private Animation shakeAnimation; // animation for incorrect guess

ptg16518503

4.7 MainActivityFragment Class 149

Variable fileNameList (line 44) holds the flag-image file names for the currently
enabled geographic regions. Variable quizCountriesList (line 45) holds the flag file
names for the countries used in the current quiz. Variable regionsSet (line 46) stores the
geographic regions that are enabled.

Variable correctAnswer (line 47) holds the flag file name for the current flag’s correct
answer. Variable totalGuesses (line 48) stores the total number of correct and incorrect
guesses the player has made so far. Variable correctAnswers (line 49) is the number of
correct guesses so far; this will eventually be equal to FLAGS_IN_QUIZ if the user completes
the quiz. Variable guessRows (line 50) is the number of two-Button LinearLayouts dis-
playing the flag answer choices—this is controlled by the app’s settings (Section 4.7.4).

Variable random (line 51) is the random-number generator used to randomly pick the
flags to include in the quiz and which Button in the two-Button LinearLayouts represents
the correct answer. When the user selects a correct answer and the quiz is not over, we use
the Handler object handler (line 52) to load the next flag after a short delay.

The Animation shakeAnimation (line 53) holds the dynamically inflated shake ani-
mation that’s applied to the flag image when an incorrect guess is made. Lines 55–59 con-
tain variables that we use to manipulate various GUI components programmatically.

4.7.3 Overridden Fragment Method onCreateView
MainActivityFragment’s onCreateView method (Fig. 4.34) inflates the GUI and initial-
izes most of the MainActivityFragment’s instance variables—guessRows and regionsSet
are initialized when the MainActivity calls MainActivityFragment’s updateGuessRows
and updateRegions methods. After calling the superclass’s onCreateView method (line
65), we inflate the MainActivityFragment’s GUI (line 66–67) using the LayoutInflater
that method onCreateView receives as an argument. The LayoutInflater’s inflate
method receives three arguments:

• The layout resource ID indicating the layout to inflate.

• The ViewGroup (layout object) in which the Fragment will be displayed, which is
received as onCreateView’s second argument.

• A boolean indicating whether or not the inflated GUI needs to be attached to the
ViewGroup in the second argument. In a fragment’s onCreateView method, this
should always be false—the system automatically attaches a fragment to the ap-
propriate host Activity’s ViewGroup. Passing true here would cause an excep-
tion, because the fragment’s GUI is already attached.

Method inflate returns a reference to a View that contains the inflated GUI. We store
that in local variable view so that it can be returned by onCreateView after the MainAc-
tivityFragment’s other instance variables are initialized. [Note: We removed the autogen-
erated, empty, no-argument constructor from this class (which appeared before method
onCreateView in the class definition created by the IDE), as the compiler provides a de-
fault constructor for any class without constructors.]

Good Programming Practice 4.1
For readability and modifiability, use String constants to represent filenames String lit-
erals (such as those used as the names of files or to log error messages) that do not need to
be localized, and thus are not defined in strings.xml.

ptg16518503

150 Chapter 4 Flag Quiz App

Lines 69–70 create ArrayList<String> objects that will store the flag-image file
names for the currently enabled geographical regions and the names of the countries in the

61 // configures the MainActivityFragment when its View is created
62 @Override
63
64
65 super.onCreateView(inflater, container, savedInstanceState);
66 View view =
67 inflater.inflate(R.layout.fragment_main, container, false);
68
69 // diamond operator
70
71 random = new SecureRandom();
72
73
74
75
76
77
78
79 // get references to GUI components
80 quizLinearLayout =
81 (LinearLayout) view.findViewById(R.id.quizLinearLayout);
82 questionNumberTextView =
83 (TextView) view.findViewById(R.id.questionNumberTextView);
84 flagImageView = (ImageView) view.findViewById(R.id.flagImageView);
85 guessLinearLayouts = new LinearLayout[4];
86 guessLinearLayouts[0] =
87 (LinearLayout) view.findViewById(R.id.row1LinearLayout);
88 guessLinearLayouts[1] =
89 (LinearLayout) view.findViewById(R.id.row2LinearLayout);
90 guessLinearLayouts[2] =
91 (LinearLayout) view.findViewById(R.id.row3LinearLayout);
92 guessLinearLayouts[3] =
93 (LinearLayout) view.findViewById(R.id.row4LinearLayout);
94 answerTextView = (TextView) view.findViewById(R.id.answerTextView);
95
96 // configure listeners for the guess Buttons
97 for (LinearLayout row : guessLinearLayouts) {
98 for (int column = 0; column < row.getChildCount(); column++) {
99 Button button = (Button) row.getChildAt(column);
100
101 }
102 }
103
104 // set questionNumberTextView's text
105 questionNumberTextView.setText(
106);
107 return view; // return the fragment's view for display
108 }
109

Fig. 4.34 | MainActivityFragment overridden Fragment method onCreateView.

public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

fileNameList = new ArrayList<>();
quizCountriesList = new ArrayList<>();

handler = new Handler();

// load the shake animation that's used for incorrect answers
shakeAnimation = AnimationUtils.loadAnimation(getActivity(),

R.anim.incorrect_shake);
shakeAnimation.setRepeatCount(3); // animation repeats 3 times

button.setOnClickListener(guessButtonListener);

getString(R.string.question, 1, FLAGS_IN_QUIZ)

ptg16518503

4.7 MainActivityFragment Class 151

current quiz, respectively. Line 71 creates the SecureRandom object for randomizing the
quiz’s flags and guess Buttons. Line 72 creates the Handler object handler, which we’ll
use to delay by two seconds the appearance of the next flag after the user correctly guesses
the current flag.

Lines 75–76 dynamically load the shake animation that will be applied to the flag
when an incorrect guess is made. AnimationUtils static method loadAnimation loads
the animation from the XML file represented by the constant R.anim.incorrect_shake.
The first argument indicates the Context containing the resources that will be animated—
inherited Fragment method getActivity returns the Activity that hosts this Fragment.
Activity is an indirect subclass of Context. Line 77 specifies the number of times the ani-
mation should repeat with Animation method setRepeatCount.

Lines 80–94 get references to various GUI components that we’ll programmatically
manipulate. Lines 97–102 get each guess Button from the four guessLinearLayouts and
register guessButtonListener (Section 4.7.10) as the OnClickListener—we implement
this interface to handle the event raised when the user touches any of the guess Buttons.

Lines 105–106 set the text in questionNumberTextView to the String returned by
calling an overloaded version of Fragment’s inherited method getString. The first argu-
ment to format is the String resource R.string.question, which represents the format
String

This String contains placeholders for two integer values (as described in Section 4.4.5).
The remaining arguments are the values to insert in the format String. Line 107 returns
the MainActivityFragment’s GUI.

4.7.4 Method updateGuessRows
Method updateGuessRows (Fig. 4.35) is called from the app’s MainActivity when the app
is launched and each time the user changes the number of guess Buttons to display with
each flag. Lines 113–114 use the method’s SharedPreferences argument to get the String
for the key MainActivity.CHOICES—a constant containing the name of the preference in
which the SettingsActivityFragment stores the number of guess Buttons to display. Line
115 converts the preference’s value to an int and divides it by 2 to determine the value for
guessRows, which indicates how many of the guessLinearLayouts should be displayed—
each with two guess Buttons. Next, lines 118–119 hide all of the guessLinearLayouts, so
that lines 122–123 can show the appropriate guessLinearLayouts based on the value of
guessRows. The constant View.GONE (line 119) indicates that Android should not consider
the sizes of the specified components when laying out the rest of the components in the lay-
out. There is also the constant View.INVISIBLE, which simply hides the component, and
any space allocated to the component remains empty on the screen.

Question %1$d of %2$d

110 // update guessRows based on value in SharedPreferences
111 public void updateGuessRows(SharedPreferences sharedPreferences) {
112
113
114

Fig. 4.35 | MainActivityFragment method updateGuessRows. (Part 1 of 2.)

// get the number of guess buttons that should be displayed
String choices =
 sharedPreferences.getString(MainActivity.CHOICES, null);

ptg16518503

152 Chapter 4 Flag Quiz App

4.7.5 Method updateRegions
Method updateRegions (Fig. 4.36) is called from the app’s MainActivity when the app
is launched and each time the user changes the world regions that should be included in
the quiz. Lines 128–129 use the method’s SharedPreferences argument to get the names
of all of the enabled regions as a Set<String>. MainActivity.REGIONS is a constant con-
taining the name of the preference in which the SettingsActivityFragment stores the en-
abled world regions.

4.7.6 Method resetQuiz
Method resetQuiz (Fig. 4.37) sets up and starts a quiz. Recall that the images for the
game are stored in the app’s assets folder. To access this folder’s contents, the method
gets the app’s AssetManager (line 135) by calling the parent Activity’s getAssets meth-
od. Next, line 136 clears the fileNameList to prepare to load image file names for only
the enabled geographical regions. Lines 140–146 iterate through all the enabled world re-
gions. For each, we use the AssetManager’s list method (line 142) to get an array of the
flag-image file names, which we store in the String array paths. Lines 144–145 remove
the .png extension from each file name and place the names in the fileNameList. Asset-
Manager’s list method throws IOExceptions, which are checked exceptions (so you must
catch or declare the exception). If an exception occurs because the app is unable to access
the assets folder, lines 148–150 catch the exception and log it for debugging purposes
with Android’s built-in logging mechanism. Log static method e is used to log error mes-
sages. You can see the complete list of Log methods at

115 guessRows = Integer.parseInt(choices) / 2;
116
117 // hide all quess button LinearLayouts
118 for (LinearLayout layout : guessLinearLayouts)
119
120
121 // display appropriate guess button LinearLayouts
122 for (int row = 0; row < guessRows; row++)
123
124 }
125

126 // update world regions for quiz based on values in SharedPreferences
127 public void updateRegions(SharedPreferences sharedPreferences) {
128
129
130 }
131

Fig. 4.36 | MainActivityFragment method updateRegions.

http://developer.android.com/reference/android/util/Log.html

Fig. 4.35 | MainActivityFragment method updateGuessRows. (Part 2 of 2.)

layout.setVisibility(View.GONE);

guessLinearLayouts[row].setVisibility(View.VISIBLE);

regionsSet =
 sharedPreferences.getStringSet(MainActivity.REGIONS, null);

http://developer.android.com/reference/android/util/Log.html

ptg16518503

4.7 MainActivityFragment Class 153

Next, lines 152–154 reset the counters for the number of correct guesses the user has
made (correctAnswers) and the total number of guesses the user has made (total-
Guesses) to 0 and clear the quizCountriesList.

Lines 160–171 add 10 (FLAGS_IN_QUIZ) randomly selected file names to the quiz-
CountriesList. We get the total number of flags, then randomly generate the index in the
range 0 to one less than the number of flags. We use this index to select one image file

132 // set up and start the next quiz
133 public void resetQuiz() {
134
135
136 fileNameList.clear(); // empty list of image file names
137
138 try {
139 // loop through each region
140 for (String region : regionsSet) {
141
142
143
144 for (String path : paths)
145 fileNameList.add(path.replace(".png", ""));
146 }
147 }
148 catch (IOException exception) {
149
150 }
151
152 correctAnswers = 0; // reset the number of correct answers made
153 totalGuesses = 0; // reset the total number of guesses the user made
154 quizCountriesList.clear(); // clear prior list of quiz countries
155
156 int flagCounter = 1;
157 int numberOfFlags = fileNameList.size();
158
159 // add FLAGS_IN_QUIZ random file names to the quizCountriesList
160 while (flagCounter <= FLAGS_IN_QUIZ) {
161 int randomIndex = random.nextInt(numberOfFlags);
162
163 // get the random file name
164 String filename = fileNameList.get(randomIndex);
165
166 // if the region is enabled and it hasn't already been chosen
167 if (!quizCountriesList.contains(filename)) {
168 quizCountriesList.add(filename); // add the file to the list
169 ++flagCounter;
170 }
171 }
172
173 loadNextFlag(); // start the quiz by loading the first flag
174 }
175

Fig. 4.37 | MainActivityFragment method resetQuiz.

// use AssetManager to get image file names for enabled regions
AssetManager assets = getActivity().getAssets();

// get a list of all flag image files in this region
String[] paths = assets.list(region);

Log.e(TAG, "Error loading image file names", exception);

ptg16518503

154 Chapter 4 Flag Quiz App

name from fileNameList. If the quizCountriesList does not already contain that file
name, we add it to quizCountriesList and increment the flagCounter. We repeat this
process until 10 (FLAGS_IN_QUIZ) unique file names have been selected. Then line 173
calls loadNextFlag (Fig. 4.38) to load the quiz’s first flag.

4.7.7 Method loadNextFlag
Method loadNextFlag (Fig. 4.38) loads and displays the next flag and the corresponding
set of answer Buttons. The image file names in quizCountriesList have the format

without the .png extension. If a regionName or countryName contains multiple words,
they’re separated by underscores (_).

regionName-countryName

176 // after the user guesses a correct flag, load the next flag
177 private void loadNextFlag() {
178 // get file name of the next flag and remove it from the list
179 String nextImage = quizCountriesList.remove(0);
180 correctAnswer = nextImage; // update the correct answer
181 answerTextView.setText(""); // clear answerTextView
182
183 // display current question number
184
185
186
187 // extract the region from the next image's name
188 String region = nextImage.substring(0, nextImage.indexOf('-'));
189
190
191
192
193 // get an InputStream to the asset representing the next flag
194 // and try to use the InputStream
195
196
197
198
199
200
201 animate(false); // animate the flag onto the screen
202 }
203 catch (IOException exception) {
204 Log.e(TAG, "Error loading " + nextImage, exception);
205 }
206
207 Collections.shuffle(fileNameList); // shuffle file names
208
209 // put the correct answer at the end of fileNameList
210 int correct = fileNameList.indexOf(correctAnswer);
211 fileNameList.add(fileNameList.remove(correct));
212

Fig. 4.38 | MainActivityFragment method loadNextFlag. (Part 1 of 2.)

questionNumberTextView.setText(getString(
R.string.question, (correctAnswers + 1), FLAGS_IN_QUIZ));

// use AssetManager to load next image from assets folder
AssetManager assets = getActivity().getAssets();

try (InputStream stream =
 assets.open(region + "/" + nextImage + ".png")) {

// load the asset as a Drawable and display on the flagImageView
Drawable flag = Drawable.createFromStream(stream, nextImage);
flagImageView.setImageDrawable(flag);

ptg16518503

4.7 MainActivityFragment Class 155

Line 179 removes the first name from quizCountriesList and stores it in nextImage.
We also save this in correctAnswer so it can be used later to determine whether the user
made a correct guess. Next, we clear the answerTextView and display the current question
number in the questionNumberTextView (lines 184–185) using the formatted String
resource R.string.question.

Line 188 extracts from nextImage the region to be used as the assets subfolder name
from which we’ll load the image. Next we get the AssetManager, then use it in the try-
with-resources statement to open an InputStream (package java.io) to read bytes from the
flag image’s file. We use that stream as an argument to class Drawable’s static method
createFromStream, which creates a Drawable object (package android.graphics.draw-
able). The Drawable is set as flagImageView’s item to display by calling its setImage-
Drawable method. If an exception occurs, we log it for debugging purposes (line 204).
Next, we call the animate method with false to animate the next flag and answer Buttons
onto the screen (line 201).

Next, line 207 shuffles the fileNameList, and lines 210–211 locate the correct-
Answer and move it to the end of the fileNameList—later we’ll insert this answer ran-
domly into the one of the guess Buttons.

Lines 214–228 iterate through the Buttons in the guessLinearLayouts for the cur-
rent number of guessRows. For each Button:

• lines 220–221 get a reference to the next Button

• line 222 enables the Button

213 // add 2, 4, 6 or 8 guess Buttons based on the value of guessRows
214 for (int row = 0; row < guessRows; row++) {
215 // place Buttons in currentTableRow
216 for (int column = 0;
217 column < guessLinearLayouts[row].getChildCount();
218 column++) {
219 // get reference to Button to configure
220 Button newGuessButton =
221 (Button) guessLinearLayouts[row].getChildAt(column);
222 newGuessButton.setEnabled(true);
223
224 // get country name and set it as newGuessButton's text
225 String filename = fileNameList.get((row * 2) + column);
226 newGuessButton.setText(getCountryName(filename));
227 }
228 }
229
230 // randomly replace one Button with the correct answer
231 int row = random.nextInt(guessRows); // pick random row
232 int column = random.nextInt(2); // pick random column
233 LinearLayout randomRow = guessLinearLayouts[row]; // get the row
234 String countryName = getCountryName(correctAnswer);
235 ((Button) randomRow.getChildAt(column)).setText(countryName);
236 }
237

Fig. 4.38 | MainActivityFragment method loadNextFlag. (Part 2 of 2.)

ptg16518503

156 Chapter 4 Flag Quiz App

• line 225 gets the flag file name from the fileNameList

• line 226 sets Button’s text with the country name that method getCountryName
(Section 4.7.8) returns.

Lines 231–235 pick a random row (based on the current number of guessRows) and
column, then set the text of the corresponding Button.

4.7.8 Method getCountryName
Method getCountryName (Fig. 4.39) parses the country name from the image file name.
First, we get a substring starting from the dash (-) that separates the region from the country
name. Then we call String method replace to replace the underscores (_) with spaces.

4.7.9 Method animate
Method animate (Fig. 4.40) executes the circular reveal animation on the entire layout
(quizLinearLayout) of the quiz to transition between questions. Lines 246–247 return
immediately for the first question to allow the first question to just appear rather than an-
imate onto the screen. Lines 250–253 calculate the screen coordinates of the center of the
quiz UI. Line 256–257 calculate the maximum radius of the circle in the animation (the
minimum radius is always 0). The animate method accepts one parameter, animateOut,
and can be used in two ways. Line 262 uses animateOut to determine whether the anima-
tion will show or hide the quiz.

238 // parses the country flag file name and returns the country name
239 private String getCountryName(String name) {
240 return name.substring(name.indexOf('-') + 1).replace('_', ' ');
241 }
242

Fig. 4.39 | MainActivityFragment method getCountryName.

243 // animates the entire quizLinearLayout on or off screen
244 private void animate(boolean animateOut) {
245 // prevent animation into the the UI for the first flag
246 if (correctAnswers == 0)
247 return;
248
249 // calculate center x and center y
250 int centerX = (quizLinearLayout.getLeft() +
251 quizLinearLayout.getRight()) / 2;
252 int centerY = (quizLinearLayout.getTop() +
253 quizLinearLayout.getBottom()) / 2;
254
255 // calculate animation radius
256 int radius = Math.max(quizLinearLayout.getWidth(),
257 quizLinearLayout.getHeight());
258

Fig. 4.40 | MainActivityFragment method animate. (Part 1 of 2.)

ptg16518503

4.7 MainActivityFragment Class 157

If animate is called with the value true, the method will animate the quizLinear-
Layout off the screen (lines 264–274). Lines 264–265 create a circular-reveal Animator
object by calling ViewAnimationUtils method createCircularReveal. This method
takes five parameters:

• The first specifies the View on which to apply the animation (quizLinearLayout).

• The second and third provide the x- and y-coordinates of the animation circle’s
center.

• The last two determine the starting and ending radius of the animation’s circle.

Because this animates the quizLinearLayout off screen, its starting radius is the calculated
radius and its ending radius is 0. Lines 266–274 create and associate an AnimatorListen-
erAdapter with the Animator. The AnimatorListenerAdapter’s onAnimationEnd (lines
269–272) method is called when the animation finishes and loads the next flag (line 271).

If animate is called with the value false, the method will animate the quizLinear-
Layout onto the screen at the start of the next question. Lines 277–278 create the Ani-
mator by calling the createCircularReveal method, but this time, we specify 0 for the
starting radius and the calculated radius for the ending radius. This causes the quizLin-
earLayout to animate onto the screen rather than off the screen.

Line 281 calls Animator’s setDuration method to specify a duration of 500 millisec-
onds for the animation. Finally, line 282 starts the animation.

259
260
261 // if the quizLinearLayout should animate out rather than in
262 if (animateOut) {
263
264
265
266
267
268
269
270
271
272
273
274
275 }
276 else { // if the quizLinearLayout should animate in
277
278
279 }
280
281
282
283 }
284

Fig. 4.40 | MainActivityFragment method animate. (Part 2 of 2.)

Animator animator;

// create circular reveal animation
animator = ViewAnimationUtils.createCircularReveal(
 quizLinearLayout, centerX, centerY, radius, 0);
animator.addListener(
 new AnimatorListenerAdapter() {

 // called when the animation finishes
 @Override
 public void onAnimationEnd(Animator animation) {

 loadNextFlag();
 }

 }
);

animator = ViewAnimationUtils.createCircularReveal(
 quizLinearLayout, centerX, centerY, 0, radius);

animator.setDuration(500); // set animation duration to 500 ms
animator.start(); // start the animation

ptg16518503

158 Chapter 4 Flag Quiz App

4.7.10 Anonymous Inner Class That Implements OnClickListener
In Fig. 4.34, lines 97–102 registered guessButtonListener (Fig. 4.41) as the event-han-
dling object for each guess Button. Instance variable guessButtonListener refers to an
anonymous-inner-class object that implements interface OnClickListener to respond to
Button events. The method receives the clicked Button as parameter v. We get the
Button’s text (line 290) and the parsed country name (line 291), then increment total-
Guesses. If the guess is correct (line 294), we increment correctAnswers. Next, we set the
answerTextView’s text to the country name and change its color to the color represented
by the constant R.color.correct_answer (green), and we call our utility method dis-
ableButtons (Section 4.7.11) to disable all the answer Buttons.

285 // called when a guess Button is touched
286
287 @Override
288 public void onClick(View v) {
289 Button guessButton = ((Button) v);
290 String guess = guessButton.getText().toString();
291 String answer = getCountryName(correctAnswer);
292 ++totalGuesses; // increment number of guesses the user has made
293
294 if (guess.equals(answer)) { // if the guess is correct
295 ++correctAnswers; // increment the number of correct answers
296
297 // display correct answer in green text
298 answerTextView.setText(answer + "!");
299 answerTextView.setTextColor(
300 getResources().getColor(R.color.correct_answer,
301 getContext().getTheme()));
302
303 disableButtons(); // disable all guess Buttons
304
305 // if the user has correctly identified FLAGS_IN_QUIZ flags
306 if (correctAnswers == FLAGS_IN_QUIZ) {
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

Fig. 4.41 | Anonymous inner class that implements OnClickListener. (Part 1 of 2.)

private OnClickListener guessButtonListener = new OnClickListener() {

// DialogFragment to display quiz stats and start new quiz
DialogFragment quizResults =
 new DialogFragment() {

 // create an AlertDialog and return it
 @Override
 public Dialog onCreateDialog(Bundle bundle) {

 AlertDialog.Builder builder =
 new AlertDialog.Builder(getActivity());

 builder.setMessage(
 getString(R.string.results,

 totalGuesses,
 (1000 / (double) totalGuesses)));

 // "Reset Quiz" Button
 builder.setPositiveButton(R.string.reset_quiz,

 new DialogInterface.OnClickListener() {

ptg16518503

4.7 MainActivityFragment Class 159

If correctAnswers is FLAGS_IN_QUIZ (line 306), the quiz is over. Lines 308–332
create a new anonymous inner class that extends DialogFragment (package android.sup-
port.v4.app) and will be used to display the quiz results. The DialogFragment’s onCre-
ateDialog method uses an AlertDialog.Builder (discussed momentarily) to configure
and create an AlertDialog for showing the quiz results, then returns it. When the user
touches this dialog’s Reset Quiz Button, method resetQuiz is called to start a new game
(line 325). Line 335 indicates that the dialog is not cancelable—the user must interact
with the dialog, because touching outside the dialog or touching the back button will not
return the user to the quiz. To display the DialogFragment, line 336 calls its show method,
passing as arguments the FragmentManager returned by getFragmentManager and a
String. The second argument can be used with FragmentManager method getFragment-

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337 }
338 else { // answer is correct but quiz is not over
339
340
341
342
343
344
345
346
347 }
348 }
349 else { // answer was incorrect
350 flagImageView.startAnimation(shakeAnimation); // play shake
351
352 // display "Incorrect!" in red
353 answerTextView.setText(R.string.incorrect_answer);
354 answerTextView.setTextColor(
355);
356 guessButton.setEnabled(false); // disable incorrect answer
357 }
358 }
359 };
360

Fig. 4.41 | Anonymous inner class that implements OnClickListener. (Part 2 of 2.)

 public void onClick(DialogInterface dialog,
 int id) {
 resetQuiz();

 }
 }

);

 return builder.create(); // return the AlertDialog
 }

 };

// use FragmentManager to display the DialogFragment
quizResults.setCancelable(false);
quizResults.show(getFragmentManager(), "quiz results");

// load the next flag after a 2-second delay
handler.postDelayed(
 new Runnable() {

 @Override
 public void run() {

 animate(true); // animate the flag off the screen
 }

 }, 2000); // 2000 milliseconds for 2-second delay

getResources().getColor(
R.color.incorrect_answer, getContext().getTheme())

ptg16518503

160 Chapter 4 Flag Quiz App

ByTag to get a reference to the DialogFragment at a later time—we don’t use this capa-
bility in this app.

If correctAnswers is less than FLAGS_IN_QUIZ, then lines 340–346 call the postDe-
layed method of Handler object handler. The first argument defines an anonymous inner
class that implements the Runnable interface—this represents the task to perform, ani-
mate(true), which animates the flags and answer Buttons off the screen and starts the tran-
sition to the next question, some number of milliseconds into the future. The second
argument is the delay in milliseconds (2000). If the guess is incorrect, line 350 invokes
flagImageView’s startAnimation method to play the shakeAnimation that was loaded in
method onCreateView. We also set the text on answerTextView to display "Incorrect!" in
red (lines 353–355), then disable the guessButton that corresponds to the incorrect answer.

Creating and Configuring the AlertDialog
Lines 313–329 use an AlertDialog.Builder to create and configure an AlertDialog.
Lines 313–314 create the AlertDialog.Builder, passing the fragment’s Activity as the
Context argument—the dialog will be displayed in the context of the Activity that hosts
the MainActivityFragment. Next, lines 315–318 set the dialog’s message to a formatted
String showing the quiz results—the resource R.string.results contains placeholders
for the total number of guesses and the percentage of the total guesses that were correct.

In this AlertDialog, we need only one button that allows the user to acknowledge
the message and reset the quiz. We specify this as the dialog’s positive Button (lines 321—
328)—touching this Button indicates that the user acknowledges the message displayed in
the dialog and dismisses the dialog. Method setPositiveButton receives the Button’s
label (specified with the String resource R.string.reset_quiz) and a reference to the
Button’s event handler. If the app does not need to respond to the event, you can specify
null for the event handler. In this case, we provide an object of an anonymous inner class
that implements interface DialogInterface.OnClickListener. You override this inter-
face’s onClick method to respond to the event when the user touches the corresponding
Button in the dialog.

4.7.11 Method disableButtons
Method disableButtons (Fig. 4.42) iterates through the guess Buttons and disables them.
This method is called when the user makes a correct guess.

Look-and-Feel Observation 4.4
You can set an AlertDialog’s title (which appears above the dialog’s message) with
AlertDialog.Builder method setTitle. According to the Android design guidelines for
dialogs (http://developer.android.com/design/building-blocks/dialogs.html),
most dialogs do not need titles. A dialog should display a title for “a high-risk operation
involving potential loss of data, connectivity, extra charges, and so on.” Also, dialogs that
display lists of options use the title to specify the dialog’s purpose.

361 // utility method that disables all answer Buttons
362 private void disableButtons() {
363 for (int row = 0; row < guessRows; row++) {

Fig. 4.42 | MainActivityFragment method disableButtons. (Part 1 of 2.)

http://developer.android.com/design/building-blocks/dialogs.html

ptg16518503

4.8 SettingsActivity Class 161

4.8 SettingsActivity Class
Class SettingsActivity (Fig. 4.43) hosts the SettingsActivityFragment when the app
is running in portrait orientation. Overridden method onCreate (lines 11–18) calls meth-
od setContentView to inflate the GUI defined by activity_settings.xml (represented
by the resource R.layout.activity_settings), then displays the Toolbar defined in
SettingsActivity’s layout. Line 17 displays on the app bar an up button that the user can
touch to return to the parent MainActivity. The IDE added this line when you added the
SettingsActivity to the project and specified its hierarchical parent (Section 4.4.12).
We removed from the class the remaining autogenerated code that’s not used in this app.
You can also remove the unused menu resource menu_settings.xml.

4.9 SettingsActivityFragment Class
Class SettingsActivityFragment (Fig. 4.44) inherits from PreferenceFragment (pack-
age android.preference). When the SettingsActivityFragment is created, method
onCreate (lines 10–14) builds the preferences GUI by calling inherited PreferenceFrag-
ment method addPreferencesFromResource to build the preferences GUI from the pref-
erences.xml (Section 4.4.11). As the user interacts with the preferences GUI, the

364 LinearLayout guessRow = guessLinearLayouts[row];
365 for (int i = 0; i < guessRow.getChildCount(); i++)
366 guessRow.getChildAt(i).setEnabled(false);
367 }
368 }
369 }

1 // SettingsActivity.java
2 // Activity to display SettingsActivityFragment on a phone
3 package com.deitel.flagquiz;
4
5 import android.os.Bundle;
6 import android.support.v7.app.AppCompatActivity;
7 import android.support.v7.widget.Toolbar;
8
9 public class SettingsActivity extends AppCompatActivity {

10 // inflates the GUI, displays Toolbar and adds "up" button
11 @Override
12 protected void onCreate(Bundle savedInstanceState) {
13 super.onCreate(savedInstanceState);
14 setContentView(R.layout.activity_settings);
15 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
16 setSupportActionBar(toolbar);
17
18 }
19 }

Fig. 4.43 | SettingsActivity displays the SettingsActivityFragment on a phone device
and on a tablet device in portrait orientation.

Fig. 4.42 | MainActivityFragment method disableButtons. (Part 2 of 2.)

getSupportActionBar().setDisplayHomeAsUpEnabled(true);

ptg16518503

162 Chapter 4 Flag Quiz App

preferences are automatically stored into a SharedPreferences file on the device. If the
file does not exist, it will be created; otherwise, it will be updated. We removed the other
unused autogenerated code from this class.

4.10 AndroidManifest.xml
Figure 4.45 shows the Flag Quiz app’s autogenerated manifest. Each Activity in an app
must be declared in AndroidManifest.xml; otherwise, Android will not know that the
Activity exists and will not be able to launch it. When you created the app, the IDE de-
clared MainActivity in AndroidManifest.xml (lines 11–21). The notation

in line 12 indicates that the class is in the package specified in line 2 and is shorthand for

We added line 14, which we’ll discuss momentarily.

1 // SettingsActivityFragment.java
2 // Subclass of PreferenceFragment for managing app settings
3 package com.deitel.flagquiz;
4
5 import android.os.Bundle;
6
7
8 public class SettingsActivityFragment extends PreferenceFragment {
9 // creates preferences GUI from preferences.xml file in res/xml

10 @Override
11 public void onCreate(Bundle bundle) {
12 super.onCreate(bundle);
13
14 }
15 }

Fig. 4.44 | SettingsActivityFragment subclass of PreferenceFragment displays the
app’s preferences.

.MainActivity

com.deitel.flagquiz.MainActivity

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest package="com.deitel.flagquiz"
3 xmlns:android="http://schemas.android.com/apk/res/android">
4
5 <application
6 android:allowBackup="true"
7 android:icon="@mipmap/ic_launcher"
8 android:label="@string/app_name"
9 android:supportsRtl="true"

10 android:theme="@style/AppTheme">
11 <activity
12 android:name=".MainActivity"
13 android:label="@string/app_name"

Fig. 4.45 | AndroidManifest.xml with SettingsActivity declared. (Part 1 of 2.)

import android.preference.PreferenceFragment;

addPreferencesFromResource(R.xml.preferences); // load from XML

ptg16518503

4.10 AndroidManifest.xml 163

When you added the SettingsActivity to the project (Section 4.4.1), the IDE
added SettingsActivity to the manifest file automatically (lines 22–30). If you were to
create a new Activity without using the IDE’s tools, you’d have to declare the new
Activity by inserting an <activity> element like the one in lines 22–30. For complete
manifest file details, visit

Launch Mode
Line 14 specifies MainActivity’s launchMode. By default each Activity you create uses
the "standard" launch mode. In this mode, when Android receives an Intent to launch
the Activity, Android creates a new instance of that Activity.

Recall from Section 4.4.12 that you specified SettingsActivity’s hierarchical
parent. Again, this enables Android to define on the app bar an up button that a user can
touch to navigate back to the specified parent Activity. When the user touches this
button and the parent Activity uses "standard" launch mode, Android uses an Intent
to launch the parent Activity. This results in a new instance of MainActivity. This also
causes the Flag Quiz app to crash in MainActivity’s OnSharedPreferenceChangeListener
(Section 4.6.7) when it tries to update a quizFragment that no longer exists—it was
defined in a different MainActivity instance.

Line 14 fixes this problem by changing MainActivity’s launchMode to "singleTop".
With this launch mode, when the user touches the up button, Android brings the existing
MainActivity to the foreground, rather than creating a new MainActivity object. For
more information on the <activity> element’s lauchMode values, visit

14
15 android:theme="@style/AppTheme.NoActionBar">
16 <intent-filter>
17 <action android:name="android.intent.action.MAIN"/>
18
19 <category android:name="android.intent.category.LAUNCHER"/>
20 </intent-filter>
21 </activity>
22
23
24
25
26
27
28
29
30
31 </application>
32
33 </manifest>

http://developer.android.com/guide/topics/manifest/manifest-
intro.html

https://developer.android.com/guide/topics/manifest/activity-
element.html#lmode

Fig. 4.45 | AndroidManifest.xml with SettingsActivity declared. (Part 2 of 2.)

android:launchMode="singleTop"

<activity
 android:name=".SettingsActivity"
 android:label="@string/title_activity_settings"
 android:parentActivityName=".MainActivity"
 android:theme="@style/AppTheme.NoActionBar">
 <meta-data

 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.deitel.flagquiz.MainActivity">

</activity>

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/activity-element.html#lmode
https://developer.android.com/guide/topics/manifest/activity-element.html#lmode

ptg16518503

164 Chapter 4 Flag Quiz App

4.11 Wrap-Up
In this chapter, you built a Flag Quiz app that tests a user’s ability to correctly identify coun-
try flags. A key feature of this chapter was using Fragments to create portions of an Activ-
ity’s GUI. You used two activities to display the MainActivityFragment and the
SettingsActivityFragment when the app was running in portrait orientation. You used
one Activity to display both Fragments when the app was running on a tablet in land-
scape orientation—thus, making better use of the available screen real estate. You used a
subclass of PreferenceFragment to automatically maintain and persist the app’s settings
and a subclass of DialogFragment to display an AlertDialog to the user. We discussed
portions of a Fragment’s lifecycle and showed how to use the FragmentManager to obtain
a reference to a Fragment so that you could interact with it programmatically.

In portrait orientation, you provided an icon for the MainActivity’s Settings menu
item. This appeared on the app bar, so the user could touch it to display the SettingsAc-
tivity containing the SettingsActivityFragment. To launch the SettingsActivity,
you used an explicit Intent. You saw how to obtain preferences from the app’s Shared-
Preferences file and how to edit that file using a SharedPreferences.Editor.

We showed how to use a Configuration object to determine whether the app was
running on a tablet in landscape orientation. We demonstrated how to manage a large
number of image resources using subfolders in the app’s assets folder and how to access
those resources via an AssetManager. You created a Drawable from an image’s bytes by
reading them from an InputStream, then displayed the Drawable in an ImageView.

You learned about additional subfolders of the app’s res folder—menu for storing
menu resource files, anim for storing animation resource files and xml for storing XML
data files. We discussed how to use qualifiers to create a folder for storing a layout that
should be used only on large devices in landscape orientation. We also demonstrated how
to use a color state list resource to ensure that the text in the Buttons is readable for both
the enabled and disabled states.

You used Toasts to display minor error messages or informational messages that
appear on the screen briefly. To display the next flag in the quiz after a short delay, you
used a Handler, which executes a Runnable after a specified number of milliseconds. You
learned that a Handler’s Runnable executes in the thread that created the Handler (the
GUI thread in this app).

We defined an Animation in XML and applied it to the app’s ImageView when the
user guessed incorrectly to provide visual feedback to the user. We also used ViewAnima-
tionUtils to create a circular reveal Animator for transitioning between questions. You
learned how to log exceptions for debugging purposes with Android’s built-in logging
mechanism and class Log. You also used various classes and interfaces from the java.util
package, including List, ArrayList, Collections and Set.

Finally, we presented the app’s AndroidManifest.xml file. We discussed the autogen-
erated <activity> elements. We also changed the MainActivity’s launchMode to
"singleTop" so that the app used one instance of MainActivity, rather than creating a
new one each time the user touches the up button on the app bar.

In Chapter 5, we present the Doodlz app, which uses Android’s graphics capabilities
to turn a device’s screen into a virtual canvas. You’ll also learn about Android’s immersive
mode and printing capabilities.

ptg16518503

5
Doodlz App

2D Graphics, Canvas, Bitmap, Accelerometer,
SensorManager, Multitouch Events, MediaStore,

Printing, Android 6.0 Permissions, Gradle

O b j e c t i v e s
In this chapter you’ll:

■ Detect when the user touches the screen, moves a finger
across the screen and removes a finger from the screen.

■ Process multiple touches so the user can draw with multiple
fingers at once.

■ Use a SensorManager and the accelerometer to detect
motion events.

■ Use a Paint object to specify the color and width of a line.

■ Use Path objects to store each line’s data and use a
Canvas to draw each line into a Bitmap.

■ Create a menu and display menu items on the app bar.

■ Use the printing framework and the Android Support
Library’s PrintHelper class to enable the user to print a
drawing.

■ Use Android 6.0’s new permissions model to request
permission for saving an image to external storage.

■ Add libraries to an app with the Gradle build system.

ptg16518503

166 Chapter 5 Doodlz App
O

u
tl

in
e 5.1 Introduction

5.2 Test-Driving the Doodlz App in an
Android Virtual Device (AVD)

5.3 Technologies Overview
5.3.1 Activity and Fragment Lifecycle

Methods
5.3.2 Custom Views
5.3.3 Using SensorManager to Listen for

Accelerometer Events
5.3.4 Custom DialogFragments
5.3.5 Drawing with Canvas, Paint and

Bitmap
5.3.6 Processing Multiple Touch Events and

Storing Lines in Paths
5.3.7 Saving to the Device
5.3.8 Printing and the Android Support Li-

brary’s PrintHelper Class
5.3.9 New Android 6.0 (Marshmallow) Per-

missions Model
5.3.10 Adding Dependencies Using the Gra-

dle Build System
5.4 Creating the Project and Resources

5.4.1 Creating the Project
5.4.2 Gradle: Adding a Support Library to

the Project
5.4.3 strings.xml
5.4.4 Importing the Material Design Icons

for the App’s Menu Items
5.4.5 MainActivityFragment Menu
5.4.6 Adding a Permission to An-

droidManifest.xml

5.5 Building the App’s GUI
5.5.1 content_main.xml Layout for

MainActivity
5.5.2 fragment_main.xml Layout for

MainActivityFragment
5.5.3 fragment_color.xml Layout for

ColorDialogFragment
5.5.4 fragment_line_width.xml Lay-

out for LineWidthDialogFrag-
ment

5.5.5 Adding Class EraseImageDialog-
Fragment

5.6 MainActivity Class
5.7 MainActivityFragment Class

5.7.1 package Statement, import State-
ments and Fields

5.7.2 Overridden Fragment Method on-
CreateView

5.7.3 Methods onResume and enableAc-
celerometerListening

5.7.4 Methods onPause and disableAc-
celerometerListening

5.7.5 Anonymous Inner Class for Process-
ing Accelerometer Events

5.7.6 Method confirmErase
5.7.7 Overridden Fragment Methods on-

CreateOptionsMenu and
onOptionsItemSelected

5.7.8 Method saveImage
5.7.9 Overridden Method onRequest-

PermissionResult
5.7.10 Methods getDoodleView and

setDialogOnScreen

5.8 DoodleView Class
5.8.1 package Statement and import

Statements
5.8.2 static and Instance Variables
5.8.3 Constructor
5.8.4 Overridden View Method on-

SizeChanged
5.8.5 Methods clear, setDrawingCol-

or, getDrawingColor, setLine-
Width and getLineWidth

5.8.6 Overridden View Method onDraw
5.8.7 Overridden View Method onTouch-

Event
5.8.8 touchStarted Method
5.8.9 touchMoved Method

5.8.10 touchEnded Method
5.8.11 Method saveImage
5.8.12 Method printImage

5.9 ColorDialogFragment Class
5.9.1 Overridden DialogFragment Meth-

od onCreateDialog
5.9.2 Method getDoodleFragment
5.9.3 Overridden Fragment Lifecycle

Methods onAttach and onDetach
5.9.4 Anonymous Inner Class That Re-

sponds to the Events of the Alpha,
Red, Green and Blue SeekBars

5.10 LineWidthDialogFragment
Class

5.10.1 Method onCreateDialog
5.10.2 Anonymous Inner Class That Re-

sponds to the Events of the width-
SeekBar

5.11 EraseImageDialogFragment
Class

5.12 Wrap-Up

ptg16518503

5.1 Introduction 167

5.1 Introduction
The Doodlz app enables you to paint by dragging one or more fingers across the screen
(Fig. 5.1). The app provides options for setting the drawing color and line width. Addi-
tional options allow you to

• clear the screen

• save the current drawing on your device, and

• print the current drawing.

Depending on your device’s screen size, some or all of the app’s options are displayed as
icons directly on the app bar—any that do not fit are displayed as text in the overflow op-
tions menu () that appears on the app bar.

This app introduces Android 6.0’s new permissions mechanism. For example,
Android requires the user’s permission to allow an app to save files (like this app’s draw-
ings) on a device. In Android 6.0, rather than prompting the user at installation time with
a complete list of permissions the app requires, the app requests each permission individu-
ally, only when the permission is required to perform a given task for the first time. In this
app, Android prompts for permission the first time the user attempts to save a drawing.

Fig. 5.1 | Doodlz app with a finished drawing.

ptg16518503

168 Chapter 5 Doodlz App

First, you’ll test-drive the app. Then we’ll overview the technologies used to build it.
Next, you’ll design the app’s GUI. Finally, we’ll walk through the app’s complete source
code, emphasizing the app’s new features.

5.2 Test-Driving the Doodlz App in an Android Virtual
Device (AVD)
Opening and Running the App
Open Android Studio and open the Doodlz app from the Doodlz folder in the book’s ex-
amples folder, then execute the app in the AVD or on a device. This builds the project and
runs the app.

Understanding the App’s Options
Figure 5.2(a) and (b) show the app bar and overflow options menu on the Nexus 6 AVD,
and Fig. 5.2(c) shows the app bar on the Nexus 9 AVD.

This app has the following menu items:

• Color ()—Displays a dialog for changing the line color.

• Line Width ()—Displays a dialog for changing the thickness of the line that
will be drawn as you drag your finger(s) on the screen.

• Erase Image ()—First confirms whether you wish to erase the entire image,
then clears the drawing area if you do not cancel the action.

• Save ()—Saves the image on the device. You can view the image via the
Google Photos app by opening that app’s menu and touching Device Folders to
see thumbnails of your stored images.1

Fig. 5.2 | Doodlz app bar and overflow menu.

1. On some devices you might need to take a picture with the device’s camera app before you’ll be able
to save properly from the Doodlz app.

a) Nexus 6 AVD app bar b) Nexus 6 AVD overflow options menu

c) Nexus 9 AVD app bar—there was enough room on the app bar to display all menu items as their icons

ptg16518503

5.2 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 169

• Print ()—Displays a GUI for selecting an available printer so you can print
your image or save it as a PDF document (the default).

You’ll explore each of these options momentarily.

Changing the Brush Color to Red
To change the brush color, touch on the app bar—or select Color from the options
menu if the icon is not displayed on the app bar. This displays the Choose Color dialog
(Fig. 5.3).

Colors are defined using the ARGB color scheme in which the alpha (i.e., transparency),
red, green and blue components, respectively, are specified by integers in the range 0–255.
For alpha, 0 means completely transparent and 255 means completely opaque. For red, green
and blue, 0 means none of that color and 255 means the maximum amount of that color.
The GUI consists of Alpha, Red, Green and Blue SeekBars that allow you to select the
amount of alpha, red, green and blue, respectively, in the drawing color. You drag the
SeekBars to change the color. As you do, the app displays the new color below the Seek-
Bars. Select a red color now by dragging the Red SeekBar to the right as in Fig. 5.3. Touch
the SET COLOR button to set this color as the drawing color and dismiss the dialog. If you
do not wish to change the color, you can simply touch outside the dialog to dismiss it. You
can erase by changing the drawing color to white (i.e., moving all four SeekBars’ thumbs
to the far right).

Look-and-Feel Observation 5.1
When a menu item is displayed on the app bar, if the menu item has an icon, that icon is
displayed; otherwise, the menu item’s text is displayed in small capital letters. Any menu
items in this app that cannot fit on the app bar are accessible in the drop-down options
menu (), which displays the menu items using their text labels.

Fig. 5.3 | Changing the drawing color to red.

SET COLOR button

SeekBars for changing
the alpha (transparency),
red, green and blue
components of the color

Currently selected
color (red)

ptg16518503

170 Chapter 5 Doodlz App

Changing the Line Width
To change the line width, touch on the app bar—or select Line Width from the options
menu if the icon is not displayed on the app bar. This displays the Choose Line Width di-
alog. Drag the SeekBar for the line width to the right to thicken the line (Fig. 5.4). Touch
the SET LINE WIDTH button to return to the drawing area.

Drawing the Flower Petals
Drag your “finger”—the mouse when using the emulator—on the drawing area to draw
flower petals (Fig. 5.5).

Changing the Brush Color to Dark Green
Touch or select the Color menu item to display the Choose Color dialog. Select a dark
green color by dragging the Green SeekBar to the right and ensuring that the Red and Blue
SeekBars are at the far left (Fig. 5.6(a)).

Changing the Line Width and Drawing the Stem and Leaves
Touch or select the Line Width menu item to display the Choose Line Width dialog.
Drag the SeekBar for the line width to the right to thicken the line (Fig. 5.6(b)). Draw the
flower stem and leaves. Repeat Steps 9 and 10 for a lighter green color and thinner line,
then draw the grass (Fig. 5.7).

Fig. 5.4 | Changing the line width.

Fig. 5.5 | Drawing the flower petals.

SeekBar for line width

Current line width (shown in
the current drawing color)

Set Line Width button

ptg16518503

5.2 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 171

Finishing the Drawing
Next, change the drawing color to a semitransparent blue (Fig. 5.8(a)) and select a narrow-
er line (Fig. 5.8(b)). Then draw the raindrops (Fig. 5.9).

Fig. 5.6 | Changing the color to dark green and making the line thicker.

Fig. 5.7 | Drawing the stem and grass.

a) Selecting dark green as the drawing color b) Selecting a thicker line

ptg16518503

172 Chapter 5 Doodlz App

Saving the Image
You can save your image to the device and view it using the Photos app. To do so, touch

 on the app bar—or select Save from the options menu if the icon is not displayed on

Fig. 5.8 | Changing the line color to blue and narrowing the line.

Fig. 5.9 | Drawing the rain in the new line color and line width.

a) Selecting blue as the drawing color b) Selecting a thinner line

ptg16518503

5.3 Technologies Overview 173

the app bar. You can then view this image and others stored on the device by opening the
Photos app.

Printing the Image
To print the image, touch on the app bar—or select Print from the options menu if the
icon is not displayed on the app bar. This displays a dialog of printing options. By default,
you can save the image as a PDF document. To choose a printer, tap Save as PDF and se-
lect from the list of available printers. If no printers appear in the list, you need to config-
ure Google Cloud Print for your printer. For information on this, visit

5.3 Technologies Overview
This section presents the new technologies that we use in the Doodlz app.

5.3.1 Activity and Fragment Lifecycle Methods
A Fragment’s lifecycle is tied to that of its parent Activity. There are six Activity lifecy-
cle methods that have corresponding Fragment lifecycle methods—onCreate, onStart,
onResume, onPause, onStop and onDestroy. When the system calls these methods on an
Activity, it will also call the corresponding methods (and potentially other Fragment life-
cycle methods) on all of the Activity’s attached Fragments.

This app uses Fragment lifecycle methods onResume and onPause. An Activity’s
onResume method is called when a Fragment is on the screen and ready for the user to
interact with it. When an Activity hosts Fragments and the Activity is resumed, all of
its Fragments’ onResume methods are called. In this app, MainActivityFragment overrides
onResume to enable listening for the accelerometer events so the user can shake the device
to erase a drawing (Section 5.7.3).

An Activity’s onPause method is called when another Activity receives the focus,
which pauses the one that loses the focus and sends it to the background. When an
Activity hosts Fragments and the Activity is paused, all of its Fragments’ onPause
methods are called. In this app, MainActivityFragment overrides onPause to suspend lis-
tening for the shake-to-erase accelerometer events (Section 5.7.4).

We discuss other Activity and Fragment lifecycle methods as we need them. For
more information on the complete Activity lifecycle, visit

and for more information on the complete Fragment lifecycle, visit

http://www.google.com/cloudprint/learn/

Performance Tip 5.1
When an app is paused, it should remove listeners for sensor events so these events are not
delivered to the app when it’s not on the screen. This saves battery.

http://developer.android.com/reference/android/app/Activity.html
#ActivityLifecycle

http://developer.android.com/guide/components/fragments.html
#Lifecycle

http://www.google.com/cloudprint/learn/
http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle
http://developer.android.com/guide/components/fragments.html#Lifecycle
http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle
http://developer.android.com/guide/components/fragments.html#Lifecycle

ptg16518503

174 Chapter 5 Doodlz App

5.3.2 Custom Views
You can create a custom view by extending class View or one of its subclasses, as we do with
class DoodleView (Section 5.8), which extends View. To add a custom component to a lay-
out’s XML file, you must provide its fully qualified name (i.e., its package and class name),
so the custom View’s class must exist before you add it to the layout. We demonstrate how
to create the DoodleView class and add it to a layout in Section 5.5.2.

5.3.3 Using SensorManager to Listen for Accelerometer Events
In this app, you can shake the device to erase a drawing. Most devices have an accelerometer
for detecting device movement. Other currently supported sensors include gravity, gyro-
scope, light, linear acceleration, magnetic field, orientation, pressure, proximity, rotation
vector and temperature. You’ll use class Sensor’s sensor-type constants to specify the sen-
sors for which your app should receive data. The list of Sensor constants can be found at

We’ll discuss the accelerometer and sensor event handling in Section 5.7. For a complete
discussion of Android’s other sensors, see the Sensors Overview at

5.3.4 Custom DialogFragments
Several previous apps have used AlertDialogs in DialogFragments to display information
to the user or to ask questions and receive responses from the user in the form of Button
clicks. The AlertDialogs you’ve used so far were created using anonymous inner classes
that extended DialogFragment and displayed only text and buttons. AlertDialogs may
also contain custom Views. In this app, you’ll define three subclasses of DialogFragment:

• ColorDialogFragment (Section 5.9) displays an AlertDialog with a custom
View containing GUI components for previewing and selecting a new ARGB
drawing color.

• LineWidthDialogFragment (Section 5.10) displays an AlertDialog with a cus-
tom View containing a GUI for previewing and selecting the line thickness.

• EraseImageDialogFragment (Section 5.11) displays a standard AlertDialog
asking the user to confirm whether the entire image should be erased.

For the ColorDialogFragment and EraseImageDialogFragment, you’ll inflate the custom
View from a layout resource file. In each of the three DialogFragment subclasses, you’ll
also override the following Fragment lifecycle methods:

• onAttach—The first Fragment lifecycle method called when a Fragment is at-
tached to a parent Activity.

• onDetach—The last Fragment lifecycle method called when a Fragment is about
to be detached from a parent Activity.

Preventing Multiple Dialogs from Appearing at the Same Time
It’s possible that the event handler for the shake event could try to display the confirmation
dialog for erasing an image when another dialog is already on the screen. To prevent this,

http://developer.android.com/reference/android/hardware/Sensor.html

http://developer.android.com/guide/topics/sensors/
sensors_overview.html

http://developer.android.com/reference/android/hardware/Sensor.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html

ptg16518503

5.3 Technologies Overview 175

you’ll use onAttach and onDetach to set the value of a boolean that indicates whether a
dialog is on the screen. When this boolean’s value is true, we will not allow the event han-
dler for the shake event to display a dialog.

5.3.5 Drawing with Canvas, Paint and Bitmap
You can use methods of class Canvas to draw text, lines and circles. Canvas methods draw
on a View’s Bitmap (both from package android.graphics). You can associate a Canvas
with a Bitmap, then use the Canvas to draw on the Bitmap, which can then be displayed
on the screen (Section 5.8). A Bitmap also can be saved into a file—we’ll use this capability
to store drawings in the device’s gallery when you touch the Save option. Each drawing
method in class Canvas uses an object of class Paint (package android.graphics) to spec-
ify drawing characteristics, including color, line thickness, font size and more. These ca-
pabilities are presented with the onDraw method in the DoodleView class (Section 5.8.6).
For more details on the drawing characteristics you can specify with a Paint object, visit

5.3.6 Processing Multiple Touch Events and Storing Lines in Paths
You can drag one or more fingers across the screen to draw. The app stores the information
for each individual finger as a Path object (package android.graphics) that represents
line segments and curves. You process touch events by overriding the View method on-
TouchEvent (Section 5.8.7). This method receives a MotionEvent (package an-

droid.view) that contains the type of touch event that occurred and the ID of the finger
(known as a pointer) that generated the event. We use the IDs to distinguish the different
fingers and add information to the corresponding Path objects. We use the type of the
touch event to determine whether the user has touched the screen, dragged across the screen
or lifted a finger from the screen.

In addition to standard touch-event handling, Android 6.0 provides enhanced sup-
port for using a Bluetooth stylus with apps, including access to pressure data and which
stylus button the user presses. In this app, for example, you could use a stylus button to
specify an erase mode, or you could use the stylus’ pressure data to change the stroke thick-
ness dynamically as the user draws. For more information, visit

5.3.7 Saving to the Device
The app’s Save option allows you to save a drawing to the device. You can view the image
in the Photos app by selecting Device Folders from the app’s menu to see thumbnails of
the stored images—touch a thumbnail to view the full-size image. A ContentResolver
(package android.content) enables the app to read data from and store data on a device.
You’ll use a ContentResolver (Section 5.8.11) and the method insertImage of class
MediaStore.Images.Media to save an image into the device’s Photos app. The Media-
Store manages media files (images, audio and video) stored on a device.

http://developer.android.com/reference/android/graphics/Paint.html

https://developer.android.com/about/versions/marshmallow/android-
6.0.html#bluetooth-stylus

http://developer.android.com/reference/android/graphics/Paint.html
https://developer.android.com/about/versions/marshmallow/android-6.0.html#bluetooth-stylus
https://developer.android.com/about/versions/marshmallow/android-6.0.html#bluetooth-stylus

ptg16518503

176 Chapter 5 Doodlz App

5.3.8 Printing and the Android Support Library’s PrintHelper Class
In this app, we use class PrintHelper (Section 5.8.12) from Android’s printing frame-
work to print the current drawing. Class PrintHelper provides a user interface for select-
ing a printer, has a method for determining whether a given device supports printing and
provides a method for printing a Bitmap. PrintHelper is part of the Android Support Li-
brary, which provides new Android features for use in current and older Android versions.
The support library also includes additional convenience features, like class PrintHelper,
that support specific Android versions.

5.3.9 New Android 6.0 (Marshmallow) Permissions Model
Android requires the permission android.permission.WRITE_EXTERNAL_PERMISSION be-
fore an app can write to external storage. For Doodlz, we need this permission to save the
image that the user draws.

Android 6.0 (Marshmallow) has a new permissions model that’s designed for a better
user experience. Before Android 6.0, a user was required at installation time to grant in
advance all permissions that an app would ever need—this caused many people not to
install certain apps. With the new model, the app is installed without asking for any per-
missions. Instead, the user is asked to grant a permission only the first time the corre-
sponding feature is used.

Once the user grants a permission, the app has that permission until:

• the app is reinstalled or

• the user changes the app’s permissions via the Android Settings app.

You’ll learn how to implement the new permissions model in Sections 5.7.8–5.7.9.

5.3.10 Adding Dependencies Using the Gradle Build System
Android Studio uses the Gradle build system to compile your code into an APK file—the
installable app. Gradle also handles project dependencies, such as including in the build
process any libraries used by the app. For Doodlz, you’ll add a support library dependency
to your project so you can use the PrintHelper class for printing an image (Section 5.4.2).

5.4 Creating the Project and Resources
In this section, you’ll create the project, import material design icons for the app’s menu
items and edit the various resources used by the GUI and the app’s Java code.

5.4.1 Creating the Project
Create a new Blank Activity project. Specify the following values in the Create New Project
dialog’s New Project step:

• Application name: Doodlz

• Company Domain: deitel.com (or specify your own domain name)

For the remaining steps in the Create New Project dialog, use the same settings as in
Section 4.4.1. This creates a MainActivity that hosts a Fragment. The Fragment will define

ptg16518503

5.4 Creating the Project and Resources 177

the app’s drawing area and respond to the user’s touches. Follow the steps in Section 2.5.2
to add an app icon to your project.

Once the project is open in Android Studio, in the layout editor, select Nexus 6 from
the virtual-device drop-down list (Fig. 2.11). Also, delete the Hello world! TextView in
fragment_main.xml and the FloatingActionButton in activity_main.xml.

Use the Theme Editor (Section 3.5.2) to specify Material Blue 500 as the app’s primary
color, Material Blue 700 as the dark primary color and Light blue accent 400 as the accent
color. Also, follow the steps in Section 4.4.3 to configure the project for Java SE 7 support.

5.4.2 Gradle: Adding a Support Library to the Project
This app requires the Android Support Library to use the PrintHelper class. To add the
support library as a project dependency, follow these steps:

1. Right click the app folder, then select Open Module Settings.

2. In the Project Structure window that appears, open the Dependencies tab.

3. Click the Add button (), then select Library dependency to open the Choose
Library Dependency dialog.

4. Select support-v4 (com.android.support:support-v4:23.1.0) from the list, then click
OK. The dependency will appear in the list in the Dependencies tab.

5. Click OK. The IDE will display Gradle project sync in progress... while the project
is being configured to use the Android Support Library.

For more on when to use and how to set up the Android Support Library, visit

5.4.3 strings.xml
You created String resources in earlier chapters, so we show only a table of the String
resource names and corresponding values here (Fig. 5.10). Double click strings.xml in
the res/values folder, then click the Open editor link to display the Translations Editor for
creating these String resources.

http://developer.android.com/tools/support-library
http://developer.android.com/tools/support-library/setup.html

Look-and-Feel Observation 5.2
For languages that support uppercase letters, Google’s material design specification indi-
cates that a Button’s text should use all capital letters (e.g., CANCEL or SET COLOR).

Key Default Value

button_erase Erase Image

button_set_color Set Color

button_set_line_width Set Line Width

line_imageview_description This displays the line thickness

Fig. 5.10 | String resources used in the Doodlz app. (Part 1 of 2.)

http://developer.android.com/tools/support-library
http://developer.android.com/tools/support-library/setup.html

ptg16518503

178 Chapter 5 Doodlz App

5.4.4 Importing the Material Design Icons for the App’s Menu Items
This app’s menu specifies icons for each menu item. Menus items that fit on the app bar
(which depends on the device) display the corresponding icon. Use the techniques you
learned in Section 4.4.9 to import the following material design vector icons:

• (ic_palette_24dp)

• (ic_brush_24dp)

• (ic_delete_24dp)

• (ic_save_24dp)

• (ic_print_24dp)

The names in parentheses are the names that are displayed as tooltips in the Vector Asset
Studio dialog when you hover over an image. For each image, open its XML file and
change the fillColor to

so that the icons are displayed in white against the app’s blue app bar.

label_alpha Alpha

label_red Red

label_green Green

label_blue Blue

menuitem_color Color

menuitem_delete Erase Drawing

menuitem_line_width Line Width

menuitem_save Save

menuitem_print Print

message_erase Erase the drawing?

message_error_saving There was an error saving the image

message_saved Your saved painting can be viewed in the Photos app by

selecting Device Folders from that app\'s menu

[Note: \' is the single-quote (') escape sequence—without the \,
the IDE issues the warning “Apostrophe not preceded by \”.]

message_error_printing Your device does not support printing

permission_explanation To save an image, the app requires permission to write to

external storage

title_color_dialog Choose Color

title_line_width_dialog Choose Line Width

@android:color/white

Key Default Value

Fig. 5.10 | String resources used in the Doodlz app. (Part 2 of 2.)

ptg16518503

5.4 Creating the Project and Resources 179

5.4.5 MainActivityFragment Menu
In Chapter 4, you edited the default menu provided by the IDE to display the Flag Quiz
app’s Settings menu item. In this app, you’ll define your own menu for the MainActivi-
tyFragment. You will not use MainActivity’s default menu in this app, so you can delete
the menu_main.xml file in your project’s res/menu folder. You should also remove the
methods onCreateOptionsMenu and onOptionsItemSelected from class MainActivity,
as these will not be used.

Menus for Different Android Versions
Keep in mind that the printing capability is not available in versions prior to Android 4.4.
If you are developing an app with menus for multiple versions of Android, you may want
to create multiple menu resources by using the resource qualifiers discussed in earlier apps.
For example, you could create a menu resource for Android versions prior to 4.4 and a
separate one for Android versions 4.4 and higher. In the menu resource for pre-Android-
4.4, you can omit menu options that are unavailable in earlier Android versions. For more
information on creating menu resources, visit

Creating the Menu
To create the menu resource, follow these steps:

1. Right click the res/menu folder and select New > Menu resource file to open the
New Resource File dialog.

2. Enter doodle_fragment_menu.xml in the File name field, and click OK. The IDE
opens the file in the editor where it displays the file’s XML. You must edit the
XML directly to add menu items to the menu resource.

3. In this menu, we’ll use each menu item’s showAsAction property to specify that
the menu item should be displayed on the app bar if there is room. When working
with the Android Support Libraries to provide a backward-compatible app bar,
you must use the showAsAction attribute from the XML namespace app, rather
than the XML namespace android. Edit the <menu> element’s opening tag to in-
clude the app XML namespace

4. Add the code for the first menu item in Fig. 5.11 to the XML file. The id of the
menu item is @+id/color, its title property is @string/menuitem_color, its
icon property is @drawable/ic_palette_24dp and its showAsAction property is
ifRoom. The value ifRoom indicates that Android should display the menu item
on the app bar if there’s room available; otherwise, the menu item will appear as a
text menu item in the overflow options menu at the right side of the app bar. Oth-
er showAsAction values can be found at

http://developer.android.com/guide/topics/ui/menus.html

 xmlns:app="http://schemas.android.com/apk/res-auto"

 http://developer.android.com/guide/topics/resources/menu-
resource.html

http://developer.android.com/guide/topics/ui/menus.html
http://schemas.android.com/apk/res-auto
http://developer.android.com/guide/topics/resources/menu-resource.html
http://developer.android.com/guide/topics/resources/menu-resource.html

ptg16518503

180 Chapter 5 Doodlz App

5. Repeat Step 3 for each of the IDs and titles in Fig. 5.12 to create the menu items
for Line Width, Delete, Save and Print, then save and close the menu’s file. The
completed XML for the menu is shown in Fig. 5.13.

1 <item
2 android:id="@+id/color"
3 android:title="@string/menuitem_color"
4 android:icon="@drawable/ic_palette_24dp"
5 >
6 </item>

Fig. 5.11 | An <item> element representing a menu item.

Id Title

@+id/line_width @string/menuitem_line_width

@+id/delete_drawing @string/menuitem_delete

@+id/save @string/menuitem_save

@+id/print @string/menuitem_print

Fig. 5.12 | Additional menu items for the MainActivityFragment.

1 <?xml version="1.0" encoding="utf-8"?>
2 <menu xmlns:android="http://schemas.android.com/apk/res/android"
3 xmlns:app="http://schemas.android.com/apk/res-auto">
4 <item
5 android:id="@+id/color"
6 android:title="@string/menuitem_color"
7 android:icon="@drawable/ic_palette_24dp"
8 app:showAsAction="ifRoom">
9 </item>

10
11 <item
12 android:id="@+id/line_width"
13 android:title="@string/menuitem_line_width"
14 android:icon="@drawable/ic_brush_24dp"
15 app:showAsAction="ifRoom">
16 </item>
17
18 <item
19 android:id="@+id/delete_drawing"
20 android:title="@string/menuitem_delete"
21 android:icon="@drawable/ic_delete_24dp"
22 app:showAsAction="ifRoom">
23 </item>
24

Fig. 5.13 | doodle_fragment_menu.xml. (Part 1 of 2.)

app:showAsAction="ifRoom"

ptg16518503

5.5 Building the App’s GUI 181

5.4.6 Adding a Permission to AndroidManifest.xml
In addition to using Android 6.0’s new permissions model in which the app asks the user
to grant permissions dynamically, each app also must specify any permissions it uses in the
AndroidManifest.xml file. To do so:

1. Expand the project’s manifests folder and open AndroidManifest.xml.

2. Inside the <manifest> element and before the <application> element, add

5.5 Building the App’s GUI
In this section, you’ll create the app’s GUI and create the classes for the app’s dialogs.

5.5.1 content_main.xml Layout for MainActivity
The content_main.xml layout for this app’s MainActivity contains only the MainActiv-
ityFragment, which was created automatically when you created the project. For more
readable code, we changed the fragment’s id property:

1. Open content_main.xml in the layout editor’s Design view.

2. Select the fragment in the Component Tree, then change the Fragment’s id to
doodleFragment in the Properties window and save the layout.

5.5.2 fragment_main.xml Layout for MainActivityFragment
The fragment_main.xml layout for the MainActivityFragment needs to display only a
DoodleView. The layout file was created with a RelativeLayout automatically when you
created the project. To change the root element of the layout from a RelativeLayout to
a DoodleView, you must first create class DoodleView (a subclass of View), so you can select
it when placing the custom view in the layout:

1. Expand the java folder in the Project window.

25 <item
26 android:id="@+id/save"
27 android:title="@string/menuitem_save"
28 android:icon="@drawable/ic_save_24dp"
29 app:showAsAction="ifRoom">
30 </item>
31
32 <item
33 android:id="@+id/print"
34 android:title="@string/menuitem_print"
35 android:icon="@drawable/ic_print_24dp"
36 app:showAsAction="ifRoom">
37 </item>
38 </menu>

<uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

Fig. 5.13 | doodle_fragment_menu.xml. (Part 2 of 2.)

ptg16518503

182 Chapter 5 Doodlz App

2. Right click the com.deitel.doodlz node, then select New > Java Class.

3. In the Create New Class dialog that appears, enter DoodleView in the Name field,
then click OK. The file will open in the editor automatically.

4. In DoodleView.java, indicate that class DoodleView is a subclass of View by add-
ing extends View to the class’s definition. If the IDE does not add an import for
android.view.View, place the cursor immediately following extends View.
Next, click the red bulb () that appears above the beginning of class Doodle-
View’s definition and select Import Class.

5. The IDE will display an error indicating that you have not defined a constructor
for the new class. To fix this, place the cursor immediately following extends
View. Click the red bulb () that appears above the beginning of class Doodle-
View’s definition and select Create constructor matching super. In the Choose Su-
per Class Constructors dialog, choose the two-argument constructor, then click
OK. The IDE will add the constructor to the class. You’ll add code to this con-
structor in Section 5.8.3. The two-argument constructor is called by Android
when inflating the DoodleView from a layout—the second argument specifies the
View properties set in the layout XML file. You can learn more about class View’s
constructors at

6. Switch back to fragment_main.xml in the layout editor and click the Text tab.

7. Change RelativeLayout to com.deitel.doodlz.DoodleView.

8. Remove the properties for top, right, bottom and left padding—the DoodleView
should occupy the entire screen.

9. In Design view, select CustomView - com.deitel.doodlz.DoodleView in the Compo-
nent Tree window, then set the id to doodleView.

10. Save and close fragment_main.xml.

5.5.3 fragment_color.xml Layout for ColorDialogFragment
The fragment_color.xml layout for the ColorDialogFragment contains a two-column
GridLayout that displays a GUI for selecting and previewing a new drawing color. In this
section, you’ll create ColorDialogFragment’s layout and the ColorDialogFragment class.
To add the fragment_color.xml layout:

1. Expand the project’s res/layout node in the Project window.

2. Right click the layout folder and select New > Layout resource file to display the
New Resource File dialog.

3. In the dialog’s File name field, enter fragment_color.xml

4. In the Root element field, enter GridLayout, then click OK.

5. In the Component Tree window, select the GridLayout.

6. In the Properties window, change the id value to colorDialogGridLayout and
the columnCount to 2.

 http://developer.android.com/reference/android/view/
View.html#View(android.content.Context)

http://developer.android.com/reference/android/view/View.html#View(android.content.Context)
http://developer.android.com/reference/android/view/View.html#View(android.content.Context)

ptg16518503

5.5 Building the App’s GUI 183

7. Using the layout editor’s Palette, drag Plain TextViews and SeekBars onto the
colorDialogGridLayout node in the Component Tree window. Drag the items
in the order they’re listed in Fig. 5.14 and set each item’s id as shown in the fig-
ure. We’ll show you how to add the colorView next.

Adding the colorView to the Layout
The colorView does not need its own class—we’ll programmatically use methods of class
View to change the color displayed in colorView. Android Studio does not provide a drag-
and-drop way to add an object of class View to a layout, so you’ll need to edit the layout’s
XML directly to add the colorView. To do so:

1. Click the Text tab at the bottom of the layout editor to switch from the Design
view to the layout’s XML text.

2. Add the code in Fig. 5.15 immediately before closing </GridLayout> tag.

3. Switch back to the layout editor’s Design tab.

4. Configure the GUI component properties with the values shown in Fig. 5.16.
For the dimension value color_view_height, recall that in the Resources dialog,
you can click New Resource and select New Dimension Value... to open the New
Dimension Value Resource dialog. Specify 80dp for the color_view_height.

5. Save and close fragment_color.xml.

Fig. 5.14 | Component Tree view for fragment_color.xml.

1 <View
2 android:layout_width="wrap_content"
3 android:layout_height="@dimen/color_view_height"
4 android:id="@+id/colorView"
5 android:layout_column="0"
6 android:layout_columnSpan="2"
7 android:layout_gravity="fill_horizontal"/>

Fig. 5.15 | fragment_color.xml.

ptg16518503

184 Chapter 5 Doodlz App

GUI component Property Value

colorDialogGridLayout columnCount
orientation
useDefaultMargins
padding top
padding bottom
padding left
padding right

2

vertical

true

@dimen/activity_vertical_margin

@dimen/activity_vertical_margin

@dimen/activity_horizontal_margin

@dimen/activity_horizontal_margin

alphaTextView Layout Parameters
layout:column
layout:gravity
layout:row

Other Properties
text

0

right, center_vertical
0

@string/label_alpha

alphaSeekBar Layout Parameters
layout:column
layout:gravity
layout:row

Other Properties
max

1

fill_horizontal

0

255

redTextView Layout Parameters
layout:column
layout:gravity
layout:row

Other Properties
text

0

right, center_vertical
1

@string/label_red

redSeekBar Layout Parameters
layout:column
layout:gravity
layout:row

Other Properties
max

1

fill_horizontal

1

255

greenTextView Layout Parameters
layout:column
layout:gravity
layout:row

Other Properties
text

0

right, center_vertical
2

@string/label_green

greenSeekBar Layout Parameters
layout:column
layout:gravity
layout:row

Other Properties
max

1

fill_horizontal

2

255

Fig. 5.16 | Property values for the GUI components in fragment_color.xml. (Part 1 of 2.)

ptg16518503

5.5 Building the App’s GUI 185

Adding Class ColorDialogFragment to the Project
To add class ColorDialogFragment to the project:

1. In the project’s java folder, right click the upper package com.deitel.doodlz
and select New > Java Class to display the Create New Class dialog.

2. In the Name field, enter ColorDialogFragment.

3. Click OK to create the class. You’ll create the code for this class in Section 5.9.

5.5.4 fragment_line_width.xml Layout for
LineWidthDialogFragment
The fragment_line_width.xml layout for the LineWidthDialogFragment contains a
GridLayout that displays a GUI for selecting and previewing a new line thickness. In this
section, you’ll create LineWidthDialogFragment’s layout and the LineWidthDialogFrag-
ment class. To add the fragment_line_width.xml layout:

1. Expand the project’s res/layout node in the Project window.

2. Right click the layout folder and select New > Layout resource file to display the
New Resource File dialog.

3. In the dialog’s File name field, enter fragment_line_width.xml

4. In the Root element field, enter GridLayout, then click OK.

5. In the Component Tree window, select the GridLayout, and change its id value to
lineWidthDialogGridLayout.

blueTextView Layout Parameters
layout:column
layout:gravity
layout:row

Other Properties
text

0

right, center_vertical
3

@string/label_blue

blueSeekBar Layout Parameters
layout:column
layout:gravity
layout:row

Other Properties
max

1

fill_horizontal

3

255

colorView Layout Parameters
layout:height
layout:column
layout:columnSpan
layout:gravity

@dimen/color_view_height

0

2

fill_horizontal

GUI component Property Value

Fig. 5.16 | Property values for the GUI components in fragment_color.xml. (Part 2 of 2.)

ptg16518503

186 Chapter 5 Doodlz App

6. Using the layout editor’s Palette, drag an ImageView and a SeekBar onto the
lineWidthDialogGridLayout node in the Component Tree window so that the
window appears as shown in Fig. 5.17. Set each item’s id as shown in the figure.

7. Configure the GUI component properties with the values shown in Fig. 5.18.
Give the dimension value line_imageview_height a value of 50dp.

8. Save and close fragment_line_width.xml.

Adding Class LineWidthDialogFragment to the Project
To add class LineWidthDialogFragment to the project:

1. In the project’s java folder, right click the upper package com.deitel.doodlz
and select New > Java Class to display the Create New Class dialog.

2. In the Name field, enter LineWidthDialogFragment.

3. Click OK to create the class.

Fig. 5.17 | Component Tree view for fragment_line_width.xml.

GUI component Property Value

lineWidthDialog-

GridLayout

column Count
orientation
useDefaultMargins
padding top
padding bottom
padding left
padding right

1

vertical

true

@dimen/activity_vertical_margin

@dimen/activity_vertical_margin

@dimen/activity_horizontal_margin

@dimen/activity_horizontal_margin

widthImageView Layout Parameters
layout:height
layout:gravity

Other Properties
contentDescription

@dimen/line_imageview_height

fill_horizontal

@string/line_imageview_description

widthSeekBar Layout Parameters
layout:gravity

Other Properties
max

fill_horizontal

50

Fig. 5.18 | Property values for the GUI components in fragment_line_width.xml.

ptg16518503

5.6 MainActivity Class 187

5.5.5 Adding Class EraseImageDialogFragment
The EraseImageDialogFragment does not require a layout resource, as it will display a sim-
ple AlertDialog containing text. To add class EraseImageDialogFragment to the project:

1. In the project’s java folder, right click the upper package com.deitel.doodlz
and select New > Java Class to display the Create New Class dialog.

2. In the Name field, enter EraseImageDialogFragment.

3. Click OK to create the class.

5.6 MainActivity Class
This app consists of six classes:

• MainActivity (discussed below)—This is the parent Activity for the app’s
Fragments.

• MainActivityFragment (Section 5.7)—Manages the DoodleView and acceler-
ometer event handling.

• DoodleView (Section 5.8)—Provides the drawing, saving and printing capabili-
ties.

• ColorDialogFragment (Section 5.9)—A DialogFragment that’s displayed when
the user chooses the option to set the drawing color.

• LineWidthDialogFragment (Section 5.10)—A DialogFragment that’s displayed
when the user chooses the option to set the line width.

• EraseImageDialogFragment (Section 5.11)—A DialogFragment that’s dis-
played when the user chooses the option to erase, or shakes the device to erase,
the current drawing.

Class MainActivity’s onCreate method (Fig. 5.19) inflates the GUI (line 16) and config-
ures its app bar (lines 17–18), then uses the techniques you learned in Section 4.6.3 to de-
termine the device’s size and set MainActivity’s orientation. If this app is running on an
extra-large device (line 26), we set the orientation to landscape (lines 27–28); otherwise,
we set it to portrait (lines 30–31). We removed the other autogenerated methods in class
MainActivity, as they’re not used in this app.

1 // MainActivity.java
2 // Sets MainActivity's layout
3 package com.deitel.doodlz;
4
5 import android.content.pm.ActivityInfo;
6 import android.content.res.Configuration;
7 import android.os.Bundle;
8 import android.support.v7.app.AppCompatActivity;
9 import android.support.v7.widget.Toolbar;

Fig. 5.19 | MainActivity class. (Part 1 of 2.)

ptg16518503

188 Chapter 5 Doodlz App

5.7 MainActivityFragment Class
The MainActivityFragment (Sections 5.7.1–5.7.10) displays the DoodleView (Section 5.8),
manages the menu options displayed on the app bar and in the options menu, and manages
the sensor event handling for the app’s shake-to-erase feature.

5.7.1 package Statement, import Statements and Fields
Section 5.3 discussed the key new classes and interfaces used by MainActivityFragment.
We’ve highlighted these classes and interfaces in Fig. 5.20. DoodleView variable doodle-
View (line 24) represents the drawing area. Accelerometer information is delivered to the
app as float values. The float variables in lines 25–27 are used to calculate changes in
the device’s acceleration to determine when a shake event occurs (so we can ask whether
the user would like to erase the drawing). Line 28 defines a boolean variable with the de-
fault value false that will be used throughout this class to specify when there’s a dialog
displayed on the screen. We use this to prevent multiple dialogs from being displayed si-
multaneously—for example, if the Choose Color dialog is displayed and the user acciden-
tally shakes the device, the dialog for erasing the image should not be displayed. The
constant in line 31 is used to ensure that small device movements (which happen frequent-
ly) are not interpreted as shakes—we picked this constant via trial and error by shaking the
app on several different types of devices. The constant in line 35 is used to identify the
request for the permission needed to save the user’s drawing.

10
11 public class MainActivity extends AppCompatActivity {
12 // configures the screen orientation for this app
13 @Override
14 protected void onCreate(Bundle savedInstanceState) {
15 super.onCreate(savedInstanceState);
16 setContentView(R.layout.activity_main);
17 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
18 setSupportActionBar(toolbar);
19
20
21
22
23
24
25 // use landscape for extra large tablets; otherwise, use portrait
26 if (screenSize ==)
27
28
29 else
30
31
32 }
33 }

Fig. 5.19 | MainActivity class. (Part 2 of 2.)

// determine screen size
int screenSize =
 getResources().getConfiguration().screenLayout &

 Configuration.SCREENLAYOUT_SIZE_MASK;

Configuration.SCREENLAYOUT_SIZE_XLARGE
setRequestedOrientation(
 ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

setRequestedOrientation(
 ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

ptg16518503

5.7 MainActivityFragment Class 189

5.7.2 Overridden Fragment Method onCreateView
Method onCreateView (Fig. 5.21) inflates MainActivityFragment’s GUI and initializes
the instance variables. A Fragment can place items in the app’s app bar and options menu.
To do so, the Fragment must call its setHasOptionsMenu method with the argument true.
If the parent Activity also has options menu items, then the Activity’s and the Frag-
ment’s items will be placed on the app bar or in the options menu (based on their settings).

1 // MainActivityFragment.java
2 // Fragment in which the DoodleView is displayed
3 package com.deitel.doodlz;
4
5 import android.Manifest;
6 import android.app.AlertDialog;
7 import android.content.Context;
8 import android.content.DialogInterface;
9

10
11
12
13
14 import android.os.Bundle;
15 import android.support.v4.app.Fragment;
16 import android.view.LayoutInflater;
17 import android.view.Menu;
18 import android.view.MenuInflater;
19 import android.view.MenuItem;
20 import android.view.View;
21 import android.view.ViewGroup;
22
23 public class MainActivityFragment extends Fragment {
24 private DoodleView doodleView; // handles touch events and draws
25 private float acceleration;
26 private float currentAcceleration;
27 private float lastAcceleration;
28 private boolean dialogOnScreen = false;
29
30 // value used to determine whether user shook the device to erase
31 private static final int ACCELERATION_THRESHOLD = 100000;
32
33 // used to identify the request for using external storage, which
34 // the save image feature needs
35 private static final int SAVE_IMAGE_PERMISSION_REQUEST_CODE = 1;
36

Fig. 5.20 | MainActivityFragment class package statement, import statements and fields.

37 // called when Fragment's view needs to be created
38 @Override
39 public View onCreateView(LayoutInflater inflater, ViewGroup container,
40 Bundle savedInstanceState) {

Fig. 5.21 | Overriding Fragment method onCreateView. (Part 1 of 2.)

import android.content.pm.PackageManager;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;

ptg16518503

190 Chapter 5 Doodlz App

Line 48 gets a reference to the DoodleView, then lines 51–53 initialize the instance
variables that help calculate acceleration changes to determine whether the user shook the
device. We initially set variables currentAcceleration and lastAcceleration to Sen-
sorManager’s GRAVITY_EARTH constant, which represents the acceleration due to Earth’s
gravity. SensorManager also provides constants for other planets in the solar system, for
the moon and for other entertaining values, which you can see at

5.7.3 Methods onResume and enableAccelerometerListening
Accelerometer listening should be enabled only when the MainActivityFragment is visible.
For this reason, we override Fragment lifecycle method onResume (Fig. 5.22, lines 58–62),
which is called when the Fragment is on the screen and ready for the user to interact with
it. Method onResume calls method enableAccelerometerListening (lines 65–75) to begin
listening for accelerometer events. A SensorManager is used to register listeners for acceler-
ometer events.

Method enableAccelerometerListening first uses Activity’s getSystemService
method to retrieve the system’s SensorManager service, which enables the app to interact
with the device’s sensors. Lines 72–74 then register to receive accelerometer events using
SensorManager’s registerListener method, which receives three arguments:

• The SensorEventListener that responds to the events (defined in Section 5.7.5).

• A Sensor object representing the type of sensor data the app wishes to receive—
this is retrieved by calling SensorManager’s getDefaultSensor method and pass-
ing a Sensor-type constant (Sensor.TYPE_ACCELEROMETER in this app).

• The rate at which Android delivers sensor events— SENSOR_DELAY_NORMAL indi-
cates the default rate. A faster rate can be used to get more accurate data, but this
is also more CPU and battery intensive.

41 super.onCreateView(inflater, container, savedInstanceState);
42 View view =
43 inflater.inflate(R.layout.fragment_main, container, false);
44
45
46
47 // get reference to the DoodleView
48 doodleView = (DoodleView) view.findViewById(R.id.doodleView);
49
50 // initialize acceleration values
51 acceleration = 0.00f;
52
53
54 return view;
55 }
56

http://developer.android.com/reference/android/hardware/
SensorManager.html

Fig. 5.21 | Overriding Fragment method onCreateView. (Part 2 of 2.)

setHasOptionsMenu(true); // this fragment has menu items to display

currentAcceleration = SensorManager.GRAVITY_EARTH;
lastAcceleration = SensorManager.GRAVITY_EARTH;

http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/reference/android/hardware/SensorManager.html

ptg16518503

5.7 MainActivityFragment Class 191

5.7.4 Methods onPause and disableAccelerometerListening
To ensure that accelerometer listening is disabled when the MainActivityFragment is not
on the screen, we override Fragment lifecycle method onPause (Fig. 5.23, lines 78–82),
which calls method disableAccelerometerListening (lines 85–94). Method disable-
AccelerometerListening uses class SensorManager’s unregisterListener method to
stop listening for accelerometer events.

57 // start listening for sensor events
58 @Override
59 public void onResume() {
60 super.onResume();
61 enableAccelerometerListening(); // listen for shake event
62 }
63
64 // enable listening for accelerometer events
65 private void enableAccelerometerListening() {
66
67
68
69
70
71
72
73
74
75 }
76

Fig. 5.22 | Methods onResume and enableAccelerometerListening.

77 // stop listening for accelerometer events
78 @Override
79 public void onPause() {
80 super.onPause();
81 disableAccelerometerListening(); // stop listening for shake
82 }
83
84 // disable listening for accelerometer events
85 private void disableAccelerometerListening() {
86 // get the SensorManager
87 SensorManager sensorManager =
88 (SensorManager) getActivity().getSystemService(
89 Context.SENSOR_SERVICE);
90
91
92
93
94 }
95

Fig. 5.23 | Methods onPause and disableAccelerometerListening.

// get the SensorManager
SensorManager sensorManager =
 (SensorManager) getActivity().getSystemService(

 Context.SENSOR_SERVICE);

// register to listen for accelerometer events
sensorManager.registerListener(sensorEventListener,
 sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
 SensorManager.SENSOR_DELAY_NORMAL);

// stop listening for accelerometer events
sensorManager.unregisterListener(sensorEventListener,
 sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER));

ptg16518503

192 Chapter 5 Doodlz App

5.7.5 Anonymous Inner Class for Processing Accelerometer Events
Figure 5.24 overrides SensorEventListener method onSensorChanged (lines 100–123)
to process accelerometer events. If the user moves the device, this method determines
whether the movement was enough to be considered a shake. If so, line 121 calls method
confirmErase (Section 5.7.6) to display an EraseImageDialogFragment (Section 5.11)
and confirm whether the user really wants to erase the image. Interface SensorEventLis-
tener also contains method onAccuracyChanged (line 127)—we don’t use this method in
this app, so we provide an empty body because the method is required by the interface.

The user can shake the device even when dialogs are already displayed on the screen.
For this reason, onSensorChanged first checks whether a dialog is displayed (line 103).
This test ensures that no other dialogs are displayed; otherwise, onSensorChanged simply
returns. This is important because the sensor events occur in a different thread of execu-

96 // event handler for accelerometer events
97 private final SensorEventListener sensorEventListener =
98 new () {
99 // use accelerometer to determine whether user shook device
100 @Override
101 {
102 // ensure that other dialogs are not displayed
103 if (!dialogOnScreen) {
104 // get x, y, and z values for the SensorEvent
105 float x = ;
106 float y = event.values[1];
107 float z = event.values[2];
108
109 // save previous acceleration value
110 lastAcceleration = currentAcceleration;
111
112 // calculate the current acceleration
113 currentAcceleration = x * x + y * y + z * z;
114
115 // calculate the change in acceleration
116 acceleration = currentAcceleration *
117 (currentAcceleration - lastAcceleration);
118
119 // if the acceleration is above a certain threshold
120 if (acceleration > ACCELERATION_THRESHOLD)
121 confirmErase();
122 }
123 }
124
125 // required method of interface SensorEventListener
126 @Override
127 {}
128 };
129

Fig. 5.24 | Anonymous inner class that implements interface SensorEventListener to pro-
cess accelerometer events.

SensorEventListener

public void onSensorChanged(SensorEvent event)

event.values[0]

public void onAccuracyChanged(Sensor sensor, int accuracy)

ptg16518503

5.7 MainActivityFragment Class 193

tion. Without this test, we’d be able to display the confirmation dialog for erasing the
image when another dialog is on the screen.

The SensorEvent parameter contains information about the sensor change that
occurred. For accelerometer events, this parameter’s values array contains three elements
representing the acceleration (in meters/second2) in the x (left/right), y (up/down) and z
(forward/backward) directions. A description and diagram of the coordinate system used
by the SensorEvent API is available at

This link also describes the real-world meanings for a SensorEvent’s x, y and z values for
each different Sensor.

Lines 105–107 store the acceleration values. It’s important to handle sensor events
quickly or to copy the event data (as we did here) because the array of sensor values is reused
for each sensor event. Line 110 stores the last value of currentAcceleration. Line 113
sums the squares of the x, y and z acceleration values and stores them in currentAccel-
eration. Then, using the currentAcceleration and lastAcceleration values, we cal-
culate a value (acceleration) that can be compared to our ACCELERATION_THRESHOLD
constant. If the value is greater than the constant, the user moved the device enough for
this app to consider the movement a shake. In this case, we call method confirmErase.

5.7.6 Method confirmErase
Method confirmErase (Fig. 5.25) simply creates an EraseImageDialogFragment

(Section 5.11) and uses the DialogFragment method show to display it.

5.7.7 Overridden Fragment Methods onCreateOptionsMenu and
onOptionsItemSelected
Figure 5.26 overrides Fragment’s onCreateOptionsMenu method (lines 137–141) to add
the options to the method’s Menu argument using the method’s MenuInflater argument.
When the user selects a menu item, Fragment method onOptionsItemSelected (lines
144–169) responds to the selection.

We use the MenuItem argument’s getItemID method (line 147) to get the resource ID
of the selected menu item, then take different actions based on the selection. The actions
are as follows:

• For R.id.color, lines 149–150 create and show a ColorDialogFragment
(Section 5.9) to allow the user to select a new drawing color.

http://developer.android.com/reference/android/hardware/
SensorEvent.html

130 // confirm whether image should be erased
131 private void confirmErase() {
132 EraseImageDialogFragment fragment = new EraseImageDialogFragment();
133
134 }
135

Fig. 5.25 | Method confirmErase displays an EraseImageDialogFragment.

fragment.show(getFragmentManager(), "erase dialog");

http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html

ptg16518503

194 Chapter 5 Doodlz App

• For R.id.line_width, lines 153–155 create and show a LineWidthDialogFrag-
ment (Section 5.10) to allow the user to select a new line width.

• For R.id.delete_drawing, line 158 calls method confirmErase (Section 5.7.6)
to display an EraseImageDialogFragment (Section 5.11) and confirm whether
the user really wants to erase the image.

• For R.id.save, line 161 calls the saveImage method to save the painting as an
image stored in the device’s Photos after checking for and, if necessary, requesting
permission to write to external storage.

• For R.id.print, line 164 calls doodleView’s printImage method to allow the
user to save the image as a PDF or to print the image.

136 // displays the fragment's menu items
137 @Override
138 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
139 super.onCreateOptionsMenu(menu, inflater);
140
141 }
142
143 // handle choice from options menu
144 @Override
145 public boolean onOptionsItemSelected(MenuItem item) {
146 // switch based on the MenuItem id
147 switch () {
148 case R.id.color:
149 ColorDialogFragment colorDialog = new ColorDialogFragment();
150
151 return true; // consume the menu event
152 case R.id.line_width:
153 LineWidthDialogFragment widthDialog =
154 new LineWidthDialogFragment();
155 widthDialog.show(getFragmentManager(), "line width dialog");
156 return true; // consume the menu event
157 case R.id.delete_drawing:
158 confirmErase(); // confirm before erasing image
159 return true; // consume the menu event
160 case R.id.save:
161 saveImage(); // check permission and save current image
162 return true; // consume the menu event
163 case R.id.print:
164 doodleView.printImage(); // print the current images
165 return true; // consume the menu event
166 }
167
168 return super.onOptionsItemSelected(item);
169 }
170

Fig. 5.26 | Overridden Fragment methods onCreateOptionsMenu and
onOptionsItemSelected.

inflater.inflate(R.menu.doodle_fragment_menu, menu);

item.getItemId()

colorDialog.show(getFragmentManager(), "color dialog");

ptg16518503

5.7 MainActivityFragment Class 195

5.7.8 Method saveImage
Method saveImage (Fig. 5.27) is called by the onOptionsItemSelected method when the
user selects the Save option in the options menu. The saveImage method implements part
of the new Android 6.0 permissions model that first checks whether the app has the re-
quired permission before performing a task. If not, the app requests permission from the
user before attempting to perform the task.

Lines 176–178 check whether the app does not yet have permission to write to external
storage so that it can save the image. If the app does not have the permission android.per-
mission.WRITE_EXTERNAL_STORAGE, lines 181–182 use the built-in shouldShowRequest-
PermissionRationale method to determine whether an explanation of why the app needs
this permission should be displayed. The method returns true when it would be helpful to
explain to the user why the app requires permission—for example, if the user denied the per-
mission previously. If so, lines 183–203 create and display a dialog with the explanation.
When the user clicks the dialog’s OK button, lines 195–197 request the android.permis-
sion.WRITE_EXTERNAL_STORAGE permission using the inherited Fragment method
requestPermissions. If an explanation is not necessary—for example, if this is the first time
the app needs the permission—lines 207–209 immediately request the permission.

171 // requests the permission needed for saving the image if
172 // necessary or saves the image if the app already has permission
173 private void saveImage() {
174 // checks if the app does not have permission needed
175 // to save the image
176 if (getContext().checkSelfPermission(
177 Manifest.permission.WRITE_EXTERNAL_STORAGE) !=
178 PackageManager.PERMISSION_GRANTED) {
179
180 // shows an explanation of why permission is needed
181
182 {
183 AlertDialog.Builder builder =
184 new AlertDialog.Builder(getActivity());
185
186 // set Alert Dialog's message
187 builder.setMessage(R.string.permission_explanation);
188
189 // add an OK button to the dialog
190 builder.setPositiveButton(,
191 new DialogInterface.OnClickListener() {
192 @Override
193 public void onClick(DialogInterface dialog, int which) {
194 // request permission
195
196
197
198 }
199 }
200);
201

Fig. 5.27 | Method saveImage. (Part 1 of 2.)

if (shouldShowRequestPermissionRationale(
 Manifest.permission.WRITE_EXTERNAL_STORAGE))

android.R.string.ok

requestPermissions(new String[]{
 Manifest.permission.WRITE_EXTERNAL_STORAGE},
 SAVE_IMAGE_PERMISSION_REQUEST_CODE);

ptg16518503

196 Chapter 5 Doodlz App

The requestPermissions method receives a String array of permissions the app is
requesting and an integer (SAVE_IMAGE_PERMISSION_REQUEST_CODE) that’s used to iden-
tify this request for permission. When requestPermissions is called, Android displays a
dialog (Fig. 5.28) that allows the user to DENY or ALLOW the requested permissions. The
system invokes the callback method onRequestPermissionsResult (Section 5.7.9) to
process the user’s response. If the app already has the requested permission, line 213 calls
the DoodleView’s saveImage method to save the image.

5.7.9 Overridden Method onRequestPermissionsResult
Method onRequestPermissionsResult (Fig. 5.29) receives a permission requestCode for
the request that was made and passes it to the switch in lines 224–229, which executes ap-
propriate code for the request. This app has only one permission request, so the switch
statement has only one case identified by the SAVE_IMAGE_PERMISSION_REQUEST_CODE
constant. For apps that require multiple permissions you should specify unique values for
each permission when you call method requestPermissions. Line 226 checks whether the
user granted the app permission to write to external storage. If so, line 227 calls the Doo-
dleView’s saveImage method to save the image.

202 // display the dialog
203 builder.create().show();
204 }
205 else {
206 // request permission
207 requestPermissions(
208 new String[]{Manifest.permission.WRITE_EXTERNAL_STORAGE},
209 SAVE_IMAGE_PERMISSION_REQUEST_CODE);
210 }
211 }
212 else { // if app already has permission to write to external storage
213 doodleView.saveImage(); // save the image
214 }
215 }
216

Fig. 5.28 | Dialog enabling the user to deny or allow writing to external storage.

Fig. 5.27 | Method saveImage. (Part 2 of 2.)

ptg16518503

5.7 MainActivityFragment Class 197

5.7.10 Methods getDoodleView and setDialogOnScreen
Methods getDoodleView and setDialogOnScreen (Fig. 5.30) are called by methods of the
app’s DialogFragment subclasses. Method getDoodleView returns a reference to this
Fragment’s DoodleView so that a DialogFragment can set the drawing color, set the line
width or clear the image. Method setDialogOnScreen is called by Fragment lifecycle
methods of the app’s DialogFragment subclasses to indicate when a dialog is on the screen.

Software Engineering Observation 5.1
If the user attempts to save the image and denies permission, the next time the user
attempts to save, the permission dialog will contain a Never ask again checkbox. If the user
checks this and denies permission, then attempts to save in the future, method onRequest-
PermissionResult will be called with PackageManager.PERMISSION_DENIED as an ar-
gument. A production app should handle this case and tell the user how to change the app’s
permissions via the Settings app.

217 // called by the system when the user either grants or denies the
218 // permission for saving an image
219 @Override
220
221
222 // switch chooses appropriate action based on which feature
223 // requested permission
224 switch (requestCode) {
225 case SAVE_IMAGE_PERMISSION_REQUEST_CODE:
226
227 doodleView.saveImage(); // save the image
228 return;
229 }
230 }
231

Fig. 5.29 | Overridden Fragment method onRequestPermissionsResult.

Software Engineering Observation 5.2
This app’s Fragments interact with one another directly. We chose this tightly coupled ap-
proach for simplicity in this app. Generally, a parent Activity manages an app’s Frag-
ment interactions. To pass data to a Fragment, the Activity provides a Bundle of
arguments. Each Fragment class typically provides an interface of callback methods that
the Activity implements. When the Fragment needs to notify its parent Activity of a
state change, the Fragment calls the appropriate callback method. These techniques make
Fragments more reusable across activities. We’ll demonstrate these techniques in
Chapter 9’s Address Book app.

232 // returns the DoodleView
233 public DoodleView getDoodleView() {
234 return doodleView;
235 }

Fig. 5.30 | Methods getDoodleView and setDialogOnScreen. (Part 1 of 2.)

public void onRequestPermissionsResult(int requestCode,
 String[] permissions, int[] grantResults) {

if (grantResults[0] == PackageManager.PERMISSION_GRANTED)

ptg16518503

198 Chapter 5 Doodlz App

5.8 DoodleView Class
The DoodleView class (Sections 5.8.1–5.8.12) processes the user’s touches and draws the
corresponding lines.

5.8.1 package Statement and import Statements
Figure 5.31 lists class DoodleView’s package statement and import statements. The new
classes and interfaces are highlighted here. Many of these were discussed in Section 5.3,
and the rest are discussed as we use them throughout class DoodleView.

5.8.2 static and Instance Variables
Class DoodleView’s static and instance variables (Fig. 5.32) are used to manage the data
for the set of lines that the user is currently drawing and to draw those lines. Line 34 creates
the pathMap, which maps each finger ID (known as a pointer) to a corresponding Path
object for the lines currently being drawn. Line 35 creates the previousPointMap, which
maintains the last point for each finger—as each finger moves, we draw a line from its cur-

236
237 // indicates whether a dialog is displayed
238 public void setDialogOnScreen(boolean visible) {
239 dialogOnScreen = visible;
240 }
241 }

1 // DoodleView.java
2 // Main View for the Doodlz app.
3 package com.deitel.doodlz;
4
5
6
7
8
9

10
11
12
13
14
15
16
17 import android.view.View;
18 import android.widget.Toast;
19
20 import java.util.HashMap;
21 import java.util.Map;
22

Fig. 5.31 | DooldleView package statement and import statements.

Fig. 5.30 | Methods getDoodleView and setDialogOnScreen. (Part 2 of 2.)

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.Point;
import android.provider.MediaStore;
import android.support.v4.print.PrintHelper;
import android.util.AttributeSet;
import android.view.Gravity;
import android.view.MotionEvent;

ptg16518503

5.8 DoodleView Class 199

rent point to its previous point. We discuss the other fields as we use them in class Doo-
dleView.

5.8.3 Constructor
The constructor (Fig. 5.33) initializes several of the class’s instance variables—the two
Maps are initialized in their declarations in Fig. 5.32. Line 40 of Fig. 5.33 creates the Paint
object paintScreen that will be used to display the user’s drawing on the screen, and line
43 creates the Paint object paintLine that specifies the settings for the line(s) the user is
currently drawing. Lines 44–48 specify the settings for the paintLine object. We pass
true to Paint’s setAntiAlias method to enable anti-aliasing which smooths the edges of
the lines. Next, we set the Paint’s style to Paint.Style.STROKE with Paint’s setStyle
method. The style can be STROKE, FILL or FILL_AND_STROKE for a line, a filled shape with-
out a border and a filled shape with a border, respectively. The default option is
Paint.Style.FILL. We set the line’s width using Paint’s setStrokeWidth method. This
sets the app’s default line width to five pixels. We also use Paint’s setStrokeCap method
to round the ends of the lines with Paint.Cap.ROUND.

23 // custom View for drawing
24 public class DoodleView extends View {
25 // used to determine whether user moved a finger enough to draw again
26 private static final float TOUCH_TOLERANCE = 10;
27
28
29
30
31
32
33 // Maps of current Paths being drawn and Points in those Paths
34 private final Map<Integer, Path> pathMap = new HashMap<>();
35 private final Map<Integer, Point> previousPointMap = new HashMap<>();
36

Fig. 5.32 | DoodleView static and instance variables.

37 // DoodleView constructor initializes the DoodleView
38 public DoodleView(Context context, AttributeSet attrs) {
39 super(context, attrs); // pass context to View's constructor
40 paintScreen = new Paint(); // used to display bitmap onto screen
41
42 // set the initial display settings for the painted line
43 paintLine = new Paint();
44
45
46
47
48
49 }
50

Fig. 5.33 | DoodleView constructor.

private Bitmap bitmap; // drawing area for displaying or saving
private Canvas bitmapCanvas; // used to to draw on the bitmap
private final Paint paintScreen; // used to draw bitmap onto screen
private final Paint paintLine; // used to draw lines onto bitmap

paintLine.setAntiAlias(true); // smooth edges of drawn line
paintLine.setColor(Color.BLACK); // default color is black
paintLine.setStyle(Paint.Style.STROKE); // solid line
paintLine.setStrokeWidth(5); // set the default line width
paintLine.setStrokeCap(Paint.Cap.ROUND); // rounded line ends

ptg16518503

200 Chapter 5 Doodlz App

5.8.4 Overridden View Method onSizeChanged
The DoodleView’s size is not determined until it’s inflated and added to the MainActivi-
ty’s View hierarchy; therefore, we can’t determine the size of the drawing Bitmap in on-
Create. So, we override View method onSizeChanged (Fig. 5.34), which is called when
the DoodleView’s size changes—e.g., when it’s added to an Activity’s View hierarchy or
when the user rotates the device. In this app, onSizeChanged is called only when the
DoodleView is added to the Doodlz Activity’s View hierarchy, because the app always dis-
plays in portrait on phones and small tablets, and in landscape on large tablets.

Bitmap’s static createBitmap method creates a Bitmap of the specified width and
height—here we use the DoodleView’s width and height as the Bitmap’s dimensions. The
last argument to createBitmap is the Bitmap’s encoding, which specifies how each pixel
in the Bitmap is stored. The constant Bitmap.Config.ARGB_8888 indicates that each
pixel’s color is stored in four bytes (one byte each for the alpha, red, green and blue values)
of the pixel’s color. Next, we create a new Canvas that’s used to draw shapes directly to the
Bitmap. Finally, we use Bitmap’s eraseColor method to fill the Bitmap with white
pixels—the default Bitmap background is black.

5.8.5 Methods clear, setDrawingColor, getDrawingColor,
setLineWidth and getLineWidth
Figure 5.35 defines methods clear (lines 61–66), setDrawingColor (lines 69–71), get-
DrawingColor (lines 74–76), setLineWidth (lines 79–81) and getLineWidth (lines 84–
86), which are called from the MainActivityFragment. Method clear, which we use in
the EraseImageDialogFragment, empties the pathMap and previousPointMap, erases the
Bitmap by setting all of its pixels to white, then calls the inherited View method invali-
date to indicate that the View needs to be redrawn. Then, the system automatically deter-
mines when the View’s onDraw method should be called. Method setDrawingColor
changes the current drawing color by setting the color of the Paint object paintLine.

Software Engineering Observation 5.3
In apps that support both portrait and landscape orientations, onSizeChanged is called
each time the user rotates the device. In this app, that would result in a new Bitmap each
tim the method is called. When replacing a Bitmap, you should call the prior Bitmap’s
recycle method to release its resources.

51 // creates Bitmap and Canvas based on View's size
52 @Override
53
54
55
56
57
58 }
59

Fig. 5.34 | Overridden View method onSizeChanged.

public void onSizeChanged(int w, int h, int oldW, int oldH) {
bitmap = Bitmap.createBitmap(getWidth(), getHeight(),
 Bitmap.Config.ARGB_8888);
bitmapCanvas = new Canvas(bitmap);
bitmap.eraseColor(Color.WHITE); // erase the Bitmap with white

ptg16518503

5.8 DoodleView Class 201

Paint’s setColor method receives an int that represents the new color in ARGB format.
Method getDrawingColor returns the current color, which we use in the ColorDialog-
Fragment. Method setLineWidth sets paintLine’s stroke width to the specified number
of pixels. Method getLineWidth returns the current stroke width, which we use in the
LineWidthDialogFragment.

5.8.6 Overridden View Method onDraw
When a View needs to be redrawn, its onDraw method is called. Figure 5.36 overrides
onDraw to display bitmap (the Bitmap that contains the drawing) on the DoodleView by
calling the Canvas argument’s drawBitmap method. The first argument is the Bitmap to
draw, the next two arguments are the x-y coordinates where the upper-left corner of the
Bitmap should be placed on the View and the last argument is the Paint object that spec-
ifies the drawing characteristics. Lines 95–96 then loop through and display the Paths that
are currently being drawn. For each Integer key in the pathMap, we pass the correspond-
ing Path to Canvas’s drawPath method to draw the Path using the paintLine object,
which defines the line width and color.

60 // clear the painting
61 public void clear() {
62 pathMap.clear(); // remove all paths
63 previousPointMap.clear(); // remove all previous points
64 bitmap.eraseColor(Color.WHITE); // clear the bitmap
65 invalidate(); // refresh the screen
66 }
67
68 // set the painted line's color
69 public void setDrawingColor(int color) {
70 paintLine.setColor(color);
71 }
72
73 // return the painted line's color
74 public int getDrawingColor() {
75 return paintLine.getColor();
76 }
77
78 // set the painted line's width
79 public void setLineWidth(int width) {
80 paintLine.setStrokeWidth(width);
81 }
82
83 // return the painted line's width
84 public int getLineWidth() {
85 return (int) paintLine.getStrokeWidth();
86 }
87

Fig. 5.35 | DoodleView methods clear, setDrawingColor, getDrawingColor, setLine-
Width and getLineWidth.

ptg16518503

202 Chapter 5 Doodlz App

5.8.7 Overridden View Method onTouchEvent
Method onTouchEvent (Fig. 5.37) is called when the View receives a touch event. Android
supports multitouch—that is, having multiple fingers touching the screen. At any time, the
user can touch the screen with more fingers or remove fingers from the screen. For this
reason, each finger—known as a pointer—has a unique ID that identifies it across touch
events. We’ll use that ID to locate the corresponding Path objects that represent each line
currently being drawn. These Paths are stored in pathMap.

MotionEvent’s getActionMasked method (line 102) returns an int representing the
MotionEvent type, which you can use with constants from class MotionEvent to determine

88 // perform custom drawing when the DoodleView is refreshed on screen
89 @Override
90 {
91 // draw the background screen
92
93
94 // for each path currently being drawn
95 for (Integer key : pathMap.keySet())
96
97 }
98

Fig. 5.36 | Overridden View method onDraw.

99 // handle touch event
100 @Override
101 {
102
103
104
105 // determine whether touch started, ended or is moving
106
107 {
108 touchStarted(, ,
109);
110 }
111
112 {
113 touchEnded(event.getPointerId(actionIndex));
114 }
115 else {
116 touchMoved(event);
117 }
118
119
120 return true;
121 }
122

Fig. 5.37 | Overridden View method onTouchEvent.

protected void onDraw(Canvas canvas)

canvas.drawBitmap(bitmap, 0, 0, paintScreen);

canvas.drawPath(pathMap.get(key), paintLine); // draw line

public boolean onTouchEvent(MotionEvent event)
int action = event.getActionMasked(); // event type
int actionIndex = event.getActionIndex(); // pointer (i.e., finger)

if (action == MotionEvent.ACTION_DOWN ||
 action == MotionEvent.ACTION_POINTER_DOWN)

event.getX(actionIndex) event.getY(actionIndex)
event.getPointerId(actionIndex)

else if (action == MotionEvent.ACTION_UP ||
 action == MotionEvent.ACTION_POINTER_UP)

invalidate(); // redraw

ptg16518503

5.8 DoodleView Class 203

how to handle each event. MotionEvent’s getActionIndex method (line 103) returns an
integer index representing which finger caused the event. This index is not the finger’s
unique ID—it’s simply the index at which that finger’s information is located in this
MotionEvent object. To get the finger’s unique ID that persists across MotionEvents until
the user removes that finger from the screen, we’ll use MotionEvent’s getPointerID
method (lines 109 and 113), passing the finger index as an argument.

If the action is MotionEvent.ACTION_DOWN or MotionEvent.ACTION_POINTER_DOWN
(lines 106–107), the user touched the screen with a new finger. The first finger to touch the
screen generates a MotionEvent.ACTION_DOWN event, and all other fingers generate
MotionEvent.ACTION_POINTER_DOWN events. For these cases, we call the touchStarted
method (Fig. 5.38) to store the initial coordinates of the touch. If the action is Motion-
Event.ACTION_UP or MotionEvent.ACTION_POINTER_UP, the user removed a finger from the
screen, so we call method touchEnded (Fig. 5.40) to draw the completed Path to the
bitmap so that we have a permanent record of that Path. For all other touch events, we
call method touchMoved (Fig. 5.39) to draw the lines. After the event is processed, line 119
(of Fig. 5.37) calls the inherited View method invalidate to redraw the screen, and line
120 returns true to indicate that the event has been processed.

5.8.8 touchStarted Method
The touchStarted method (Fig. 5.38) is called when a finger first touches the screen. The
coordinates of the touch and its ID are supplied as arguments. If a Path already exists for
the given ID (line 129), we call Path’s reset method to clear any existing points so we can
reuse the Path for a new stroke. Otherwise, we create a new Path, add it to pathMap, then
add a new Point to the previousPointMap. Lines 142–144 call Path’s moveTo method to
set the Path’s starting coordinates and specify the new Point’s x and y values.

123 // called when the user touches the screen
124 private void touchStarted(float x, float y, int lineID) {
125 Path path; // used to store the path for the given touch id
126 Point point; // used to store the last point in path
127
128 // if there is already a path for lineID
129 if (pathMap.containsKey(lineID)) {
130 path = pathMap.get(lineID); // get the Path
131 path.reset(); // resets the Path because a new touch has started
132 point = previousPointMap.get(lineID); // get Path's last point
133 }
134 else {
135 path = new Path();
136 pathMap.put(lineID, path); // add the Path to Map
137 point = new Point(); // create a new Point
138 previousPointMap.put(lineID, point); // add the Point to the Map
139 }
140
141 // move to the coordinates of the touch
142

Fig. 5.38 | touchStarted method of class DoodleView. (Part 1 of 2.)

path.moveTo(x, y);

ptg16518503

204 Chapter 5 Doodlz App

5.8.9 touchMoved Method
The touchMoved method (Fig. 5.39) is called when the user moves one or more fingers
across the screen. The system MotionEvent passed from onTouchEvent contains touch in-
formation for multiple moves on the screen if they occur at the same time. MotionEvent
method getPointerCount (line 150) returns the number of touches this MotionEvent de-
scribes. For each, we store the finger’s ID (line 152) in pointerID, and store the finger’s
corresponding index in this MotionEvent (line 153) in pointerIndex. Then we check
whether there’s a corresponding Path in pathMap (line 156). If so, we use MotionEvent’s
getX and getY methods to get the last coordinates for this drag event for the specified
pointerIndex. We get the corresponding Path and last Point for the pointerID from
each respective HashMap, then calculate the difference between the last point and the cur-
rent point—we want to update the Path only if the user has moved a distance that’s greater
than our TOUCH_TOLERANCE constant. We do this because many devices are sensitive
enough to generate MotionEvents indicating small movements when the user is attempt-
ing to hold a finger motionless on the screen. If the user moved a finger further than the
TOUCH_TOLERANCE, we use Path’s quadTo method (lines 173–174) to add a geometric curve
(specifically a quadratic Bezier curve) from the previous Point to the new Point. We then
update the most recent Point for that finger.

143 point.x = (int) x;
144 point.y = (int) y;
145 }
146

147 // called when the user drags along the screen
148 private void touchMoved(MotionEvent event) {
149 // for each of the pointers in the given MotionEvent
150 for (int i = 0; i < ; i++) {
151 // get the pointer ID and pointer index
152
153
154
155 // if there is a path associated with the pointer
156 if (pathMap.containsKey(pointerID)) {
157 // get the new coordinates for the pointer
158 float newX = event.getX(pointerIndex);
159 float newY = event.getY(pointerIndex);
160
161 // get the path and previous point associated with
162 // this pointer
163 Path path = pathMap.get(pointerID);
164 Point point = previousPointMap.get(pointerID);
165

Fig. 5.39 | touchMoved method of class DoodleView. (Part 1 of 2.)

Fig. 5.38 | touchStarted method of class DoodleView. (Part 2 of 2.)

event.getPointerCount()

int pointerID = event.getPointerId(i);
int pointerIndex = event.findPointerIndex(pointerID);

ptg16518503

5.8 DoodleView Class 205

5.8.10 touchEnded Method
The touchEnded method (Fig. 5.40) is called when the user lifts a finger from the screen.
The method receives the ID of the finger (lineID) for which the touch just ended as an
argument. Line 186 gets the corresponding Path. Line 187 calls the bitmapCanvas’s draw-
Path method to draw the Path on the Bitmap object named bitmap before we call Path’s
reset method to clear the Path. Resetting the Path does not erase its corresponding paint-
ed line from the screen, because those lines have already been drawn to the bitmap that’s
displayed to the screen. The lines that are currently being drawn by the user are displayed
on top of that bitmap.

5.8.11 Method saveImage
Method saveImage (Fig. 5.41) saves the current drawing. Line 194 creates a filename for
the image, then lines 197–199 store the image in the device’s Photos app by calling class
MediaStore.Images.Media’s insertImage method. The method receives four arguments:

• a ContentResolver that the method uses to locate where the image should be
stored on the device

• the Bitmap to store

166 // calculate how far the user moved from the last update
167 float deltaX = Math.abs(newX - point.x);
168 float deltaY = Math.abs(newY - point.y);
169
170 // if the distance is significant enough to matter
171 if (deltaX >= TOUCH_TOLERANCE || deltaY >= TOUCH_TOLERANCE) {
172 // move the path to the new location
173
174
175
176 // store the new coordinates
177 point.x = (int) newX;
178 point.y = (int) newY;
179 }
180 }
181 }
182 }
183

184 // called when the user finishes a touch
185 private void touchEnded(int lineID) {
186 Path path = pathMap.get(lineID); // get the corresponding Path
187
188
189 }
190

Fig. 5.40 | touchEnded method of class DoodleView.

Fig. 5.39 | touchMoved method of class DoodleView. (Part 2 of 2.)

path.quadTo(point.x, point.y, (newX + point.x) / 2,
 (newY + point.y) / 2);

bitmapCanvas.drawPath(path, paintLine); // draw to bitmapCanvas
path.reset(); // reset the Path

ptg16518503

206 Chapter 5 Doodlz App

• the name of the image

• a description of the image

Method insertImage returns a String representing the image’s location on the device, or
null if the image could not be saved. Lines 201–217 check whether the image was saved
and display an appropriate Toast.

5.8.12 Method printImage
Method printImage (Fig. 5.42) uses the Android Support Library’s PrintHelper class to
print the current drawing—this is available only on devices running Android 4.4 or high-
er. Line 222 first confirms that printing support is available on the device. If so, line 224
creates a PrintHelper object. Next, line 227 specifies the image’s scale mode—PrintHelp-

er.SCALE_MODE_FIT indicates that the image should fit within the printable area of the pa-
per. There’s also the scale mode PrintHelper.SCALE_MODE_FILL, which causes the image
to fill the paper, possibly cutting off a portion of the image. Finally, line 228 calls Print-
Helper method printBitmap, passing as arguments the print job name (used by the print-
er to identify the print) and the Bitmap containing the image to print. This displays
Android’s print dialog, which allows the user to choose whether to save the image as a PDF
document on the device or to print it to an available printer.

191 // save the current image to the Gallery
192 public void saveImage() {
193 // use "Doodlz" followed by current time as the image name
194 final String name = "Doodlz" + System.currentTimeMillis() + ".jpg";
195
196
197
198
199
200
201 if (location != null) {
202 // display a message indicating that the image was saved
203 Toast message = Toast.makeText(getContext(),
204 R.string.message_saved,
205 Toast.LENGTH_SHORT);
206
207
208 message.show();
209 }
210 else {
211 // display a message indicating that there was an error saving
212 Toast message = Toast.makeText(getContext(),
213 R.string.message_error_saving, Toast.LENGTH_SHORT);
214 message.setGravity(Gravity.CENTER, message.getXOffset() / 2,
215 message.getYOffset() / 2);
216 message.show();
217 }
218 }
219

Fig. 5.41 | DoodleView method saveImage.

// insert the image on the device
String location = MediaStore.Images.Media.insertImage(
 getContext().getContentResolver(), bitmap, name,
 "Doodlz Drawing");

message.setGravity(Gravity.CENTER, message.getXOffset() / 2,
 message.getYOffset() / 2);

ptg16518503

5.9 ColorDialogFragment Class 207

5.9 ColorDialogFragment Class
Class ColorDialogFragment (Figs. 5.43–5.47) extends DialogFragment to create an
AlertDialog for setting the drawing color. The class’s instance variables (lines 18–23) are
used to reference the GUI controls for selecting the new color, displaying a preview of it
and storing the color as a 32-bit int value that represents the color’s ARGB values.

220 // print the current image
221 public void printImage() {
222 if () {
223
224
225
226
227
228
229 }
230 else {
231 // display message indicating that system does not allow printing
232 Toast message = Toast.makeText(getContext(),
233 R.string.message_error_printing, Toast.LENGTH_SHORT);
234 message.setGravity(Gravity.CENTER, message.getXOffset() / 2,
235 message.getYOffset() / 2);
236 message.show();
237 }
238 }
239 }

Fig. 5.42 | DoodleView method printImage.

1 // ColorDialogFragment.java
2 // Allows user to set the drawing color on the DoodleView
3 package com.deitel.doodlz;
4
5 import android.app.Activity;
6 import android.app.AlertDialog;
7 import android.app.Dialog;
8 import android.content.DialogInterface;
9 import android.graphics.Color;

10 import android.os.Bundle;
11 import android.support.v4.app.DialogFragment;
12 import android.view.View;
13 import android.widget.SeekBar;
14 import android.widget.SeekBar.OnSeekBarChangeListener;
15
16 // class for the Select Color dialog
17 public class ColorDialogFragment extends DialogFragment {
18 private SeekBar alphaSeekBar;
19 private SeekBar redSeekBar;

Fig. 5.43 | ColorDialogFragment’s package statement, import statements and instance
variables. (Part 1 of 2.)

PrintHelper.systemSupportsPrint()
// use Android Support Library's PrintHelper to print image
PrintHelper printHelper = new PrintHelper(getContext());

// fit image in page bounds and print the image
printHelper.setScaleMode(PrintHelper.SCALE_MODE_FIT);
printHelper.printBitmap("Doodlz Image", bitmap);

ptg16518503

208 Chapter 5 Doodlz App

5.9.1 Overridden DialogFragment Method onCreateDialog
Method onCreateDialog (Fig. 5.44) inflates the custom View (lines 31–32) defined by
fragment_color.xml containing the GUI for selecting a color, then attaches that View to
the AlertDialog by calling AlertDialog.Builder’s setView method (line 33). Lines 39–
47 get references to the dialog’s SeekBars and colorView. Next, lines 50–53 register
colorChangedListener (Fig. 5.47) as the listener for the SeekBars’ events.

20 private SeekBar greenSeekBar;
21 private SeekBar blueSeekBar;
22 private View colorView;
23 private int color;
24

25 // create an AlertDialog and return it
26 @Override
27 public Dialog onCreateDialog(Bundle bundle) {
28 // create dialog
29 AlertDialog.Builder builder =
30 new AlertDialog.Builder(getActivity());
31 View colorDialogView = getActivity().getLayoutInflater().inflate(
32 R.layout.fragment_color, null);
33
34
35 // set the AlertDialog's message
36 builder.setTitle(R.string.title_color_dialog);
37
38 // get the color SeekBars and set their onChange listeners
39 alphaSeekBar = (SeekBar) colorDialogView.findViewById(
40 R.id.alphaSeekBar);
41 redSeekBar = (SeekBar) colorDialogView.findViewById(
42 R.id.redSeekBar);
43 greenSeekBar = (SeekBar) colorDialogView.findViewById(
44 R.id.greenSeekBar);
45 blueSeekBar = (SeekBar) colorDialogView.findViewById(
46 R.id.blueSeekBar);
47 colorView = colorDialogView.findViewById(R.id.colorView);
48
49 // register SeekBar event listeners
50 alphaSeekBar.setOnSeekBarChangeListener(colorChangedListener);
51 redSeekBar.setOnSeekBarChangeListener(colorChangedListener);
52 greenSeekBar.setOnSeekBarChangeListener(colorChangedListener);
53 blueSeekBar.setOnSeekBarChangeListener(colorChangedListener);
54
55 // use current drawing color to set SeekBar values
56 final DoodleView doodleView = getDoodleFragment().getDoodleView();
57

Fig. 5.44 | Overridden DialogFragment method onCreateDialog. (Part 1 of 2.)

Fig. 5.43 | ColorDialogFragment’s package statement, import statements and instance
variables. (Part 2 of 2.)

builder.setView(colorDialogView); // add GUI to dialog

color = doodleView.getDrawingColor();

ptg16518503

5.9 ColorDialogFragment Class 209

Line 56 (Fig. 5.44) calls method getDoodleFragment (Fig. 5.45) to get a reference to
the DoodleFragment, then calls the MainActivityFragment’s getDoodleView method to
get the DoodleView. Lines 57–61 get the DoodleView’s current drawing color, then use it
to set each SeekBar’s value. Color’s static methods alpha, red, green and blue extract
the ARGB values from the color, and SeekBar’s setProgress method positions the
thumbs. Lines 64–70 configure the AlertDialog’s positive button to set the DoodleView’s
new drawing color. Line 72 returns the AlertDialog.

5.9.2 Method getDoodleFragment
Method getDoodleFragment (Fig. 5.45) simply uses the FragmentManager to get a refer-
ence to the DoodleFragment.

5.9.3 Overridden Fragment Lifecycle Methods onAttach and
onDetach
When the ColorDialogFragment is added to a parent Activity, method onAttach
(Fig. 5.46, lines 82–89) is called. Line 85 gets a reference to the MainActivityFragment.
If that reference is not null, line 88 calls MainActivityFragment’s setDialogOnScreen
method to indicate that the Choose Color dialog is now displayed. When the ColorDia-
logFragment is removed from a parent Activity, method onDetach (lines 92–99) is

58 alphaSeekBar.setProgress();
59 redSeekBar.setProgress();
60 greenSeekBar.setProgress();
61 blueSeekBar.setProgress();
62
63 // add Set Color Button
64 builder.setPositiveButton(R.string.button_set_color,
65 new DialogInterface.OnClickListener() {
66 public void onClick(DialogInterface dialog, int id) {
67 doodleView.setDrawingColor(color);
68 }
69 }
70);
71
72 return builder.create(); // return dialog
73 }
74

75 // gets a reference to the MainActivityFragment
76 private MainActivityFragment getDoodleFragment() {
77 return (MainActivityFragment) getFragmentManager().findFragmentById(
78 R.id.doodleFragment);
79 }
80

Fig. 5.45 | Method getDoodleFragment.

Fig. 5.44 | Overridden DialogFragment method onCreateDialog. (Part 2 of 2.)

Color.alpha(color)
Color.red(color)

Color.green(color)
Color.blue(color)

ptg16518503

210 Chapter 5 Doodlz App

called. Line 98 calls MainActivityFragment’s setDialogOnScreen method to indicate
that the Choose Color dialog is no longer on the screen.

5.9.4 Anonymous Inner Class That Responds to the Events of the
Alpha, Red, Green and Blue SeekBars
Figure 5.47 defines an anonymous inner class that implements interface OnSeekBar-
ChangeListener to respond to events when the user adjusts the SeekBars in the Choose
Color Dialog. This was registered as the SeekBars’ event handler in Fig. 5.44 (lines 50–
53). Method onProgressChanged (Fig. 5.47, lines 105–114) is called when the position
of a SeekBar’s thumb changes. If the user moved a SeekBar’s thumb (line 109), lines 110–
112 store the new color. Class Color’s static method argb combines the SeekBars’ values
into a Color and returns the appropriate color as an int. We then use class View’s set-
BackgroundColor method to update the colorView with a color that matches the current
state of the SeekBars.

81 // tell MainActivityFragment that dialog is now displayed
82 @Override
83 public void onAttach(Activity activity) {
84 super.onAttach(activity);
85 MainActivityFragment fragment = getDoodleFragment();
86
87 if (fragment != null)
88 fragment.setDialogOnScreen(true);
89 }
90
91 // tell MainActivityFragment that dialog is no longer displayed
92 @Override
93 public void onDetach() {
94 super.onDetach();
95 MainActivityFragment fragment = getDoodleFragment();
96
97 if (fragment != null)
98 fragment.setDialogOnScreen(false);
99 }
100

Fig. 5.46 | Overridden Fragment lifecycle methods onAttach and onDetach.

101 // OnSeekBarChangeListener for the SeekBars in the color dialog
102 private final OnSeekBarChangeListener colorChangedListener =
103 new OnSeekBarChangeListener() {
104 // display the updated color
105 @Override
106 public void onProgressChanged(SeekBar seekBar, int progress,
107 boolean fromUser) {
108

Fig. 5.47 | Anonymous inner class that implements interface OnSeekBarChangeListener to
respond to the events of the alpha, red, green and blue SeekBars. (Part 1 of 2.)

ptg16518503

5.10 LineWidthDialogFragment Class 211

5.10 LineWidthDialogFragment Class
Class LineWidthDialogFragment (Fig. 5.48) extends DialogFragment to create an Alert-
Dialog for setting the line width. The class is similar to class ColorDialogFragment, so we
discuss only the key differences here. The class’s only instance variable is an ImageView
(line 21) in which we draw a line showing the current line-width setting.

109 // user, not program, changed SeekBar progress
110
111
112
113
114 }
115
116 @Override
117 public void onStartTrackingTouch(SeekBar seekBar) {} // required
118
119 @Override
120 public void onStopTrackingTouch(SeekBar seekBar) {} // required
121 };
122 }

1 // LineWidthDialogFragment.java
2 // Allows user to set the drawing color on the DoodleView
3 package com.deitel.doodlz;
4
5 import android.app.Activity;
6 import android.app.AlertDialog;
7 import android.app.Dialog;
8 import android.content.DialogInterface;
9 import android.graphics.Bitmap;

10 import android.graphics.Canvas;
11 import android.graphics.Paint;
12 import android.os.Bundle;
13 import android.support.v4.app.DialogFragment;
14 import android.view.View;
15 import android.widget.ImageView;
16 import android.widget.SeekBar;
17 import android.widget.SeekBar.OnSeekBarChangeListener;
18
19 // class for the Select Line Width dialog
20 public class LineWidthDialogFragment extends DialogFragment {
21 private ImageView widthImageView;
22

Fig. 5.48 | Class LineWidthDialogFragment. (Part 1 of 3.)

Fig. 5.47 | Anonymous inner class that implements interface OnSeekBarChangeListener to
respond to the events of the alpha, red, green and blue SeekBars. (Part 2 of 2.)

if (fromUser)
 color = Color.argb(alphaSeekBar.getProgress(),

 redSeekBar.getProgress(), greenSeekBar.getProgress(),
 blueSeekBar.getProgress());

colorView.setBackgroundColor(color);

ptg16518503

212 Chapter 5 Doodlz App

23 // create an AlertDialog and return it
24 @Override
25 public Dialog onCreateDialog(Bundle bundle) {
26 // create the dialog
27 AlertDialog.Builder builder =
28 new AlertDialog.Builder(getActivity());
29 View lineWidthDialogView =
30 getActivity().getLayoutInflater().inflate(
31 R.layout.fragment_line_width, null);
32 builder.setView(lineWidthDialogView); // add GUI to dialog
33
34 // set the AlertDialog's message
35 builder.setTitle(R.string.title_line_width_dialog);
36
37 // get the ImageView
38 widthImageView = (ImageView) lineWidthDialogView.findViewById(
39 R.id.widthImageView);
40
41 // configure widthSeekBar
42 final DoodleView doodleView = getDoodleFragment().getDoodleView();
43 final SeekBar widthSeekBar = (SeekBar)
44 lineWidthDialogView.findViewById(R.id.widthSeekBar);
45 widthSeekBar.setOnSeekBarChangeListener(lineWidthChanged);
46 widthSeekBar.setProgress(doodleView.getLineWidth());
47
48 // add Set Line Width Button
49 builder.setPositiveButton(R.string.button_set_line_width,
50 new DialogInterface.OnClickListener() {
51 public void onClick(DialogInterface dialog, int id) {
52 doodleView.setLineWidth(widthSeekBar.getProgress());
53 }
54 }
55);
56
57 return builder.create(); // return dialog
58 }
59
60 // return a reference to the MainActivityFragment
61 private MainActivityFragment getDoodleFragment() {
62 return (MainActivityFragment) getFragmentManager().findFragmentById(
63 R.id.doodleFragment);
64 }
65
66 // tell MainActivityFragment that dialog is now displayed
67 @Override
68 public void onAttach(Activity activity) {
69 super.onAttach(activity);
70 MainActivityFragment fragment = getDoodleFragment();
71
72 if (fragment != null)
73 fragment.setDialogOnScreen(true);
74 }

Fig. 5.48 | Class LineWidthDialogFragment. (Part 2 of 3.)

ptg16518503

5.10 LineWidthDialogFragment Class 213

5.10.1 Method onCreateDialog
Method onCreateDialog (lines 24–58) inflates the custom View (lines 29–31) defined by
fragment_line_width.xml that displays the GUI for selecting the line width, then attach-
es that View to the AlertDialog by calling AlertDialog.Builder’s setView method (line
32). Lines 38–39 get a reference to the ImageView in which the sample line will be drawn.
Next, lines 42–46 get a reference to the widthSeekBar, register lineWidthChanged (lines
87–116) as the SeekBar’s listener and set the SeekBar’s current value to the current line

75
76 // tell MainActivityFragment that dialog is no longer displayed
77 @Override
78 public void onDetach() {
79 super.onDetach();
80 MainActivityFragment fragment = getDoodleFragment();
81
82 if (fragment != null)
83 fragment.setDialogOnScreen(false);
84 }
85
86 // OnSeekBarChangeListener for the SeekBar in the width dialog
87 private final OnSeekBarChangeListener lineWidthChanged =
88 new OnSeekBarChangeListener() {
89 final Bitmap bitmap = Bitmap.createBitmap(
90 400, 100, Bitmap.Config.ARGB_8888);
91 final Canvas canvas = new Canvas(bitmap); // draws into bitmap
92
93 @Override
94 public void onProgressChanged(SeekBar seekBar, int progress,
95 boolean fromUser) {
96 // configure a Paint object for the current SeekBar value
97 Paint p = new Paint();
98 p.setColor(
99 getDoodleFragment().getDoodleView().getDrawingColor());
100
101 p.setStrokeWidth(progress);
102
103 // erase the bitmap and redraw the line
104 bitmap.eraseColor(
105 getResources().getColor(android.R.color.transparent,
106 getContext().getTheme()));
107 canvas.drawLine(30, 50, 370, 50, p);
108 widthImageView.setImageBitmap(bitmap);
109 }
110
111 @Override
112 public void onStartTrackingTouch(SeekBar seekBar) {} // required
113
114 @Override
115 public void onStopTrackingTouch(SeekBar seekBar) {} // required
116 };
117 }

Fig. 5.48 | Class LineWidthDialogFragment. (Part 3 of 3.)

p.setStrokeCap(Paint.Cap.ROUND);

ptg16518503

214 Chapter 5 Doodlz App

width. Lines 49–55 define the dialog’s positive button to call the DoodleView’s setLine-
Width method when the user touches the Set Line Width button. Line 57 returns the
AlertDialog for display.

5.10.2 Anonymous Inner Class That Responds to the Events of the
widthSeekBar
Lines 87–116 define the lineWidthChanged OnSeekBarChangeListener that responds to
events when the user adjusts the SeekBar in the Choose Line Width dialog. Lines 89–90
create a Bitmap on which to display a sample line representing the selected line thickness.
Line 91 creates a Canvas for drawing on the Bitmap. Method onProgressChanged (lines
93–109) draws the sample line based on the current drawing color and the SeekBar’s val-
ue. First, lines 97–101 configure a Paint object for drawing the sample line. Class Paint’s
setStrokeCap method (line 100) specifies the appearance of the line ends—in this case,
they’re rounded (Paint.Cap.ROUND). Lines 104–106 clear bitmap’s background to the
predefined Android color android.R.color.transparent with Bitmap method
eraseColor. We use canvas to draw the sample line. Finally, line 108 displays bitmap in
the widthImageView by passing it to ImageView’s setImageBitmap method.

5.11 EraseImageDialogFragment Class
Class EraseImageDialogFragment (Fig. 5.49) extends DialogFragment to create an
AlertDialog that confirms whether the user really wants to erase the entire image. The
class is similar to class ColorDialogFragment and LineWidthDialogFragment, so we dis-
cuss only method onCreateDialog (lines 15–35) here. The method creates an AlertDia-
log with Erase Image and Cancel button. Lines 24–30 configure the Erase Image button
as the positive button—when the user touches this, line 27 in the button’s listener calls the
DoodleView’s clear method to erase the image. Line 33 configures Cancel as the negative
button—when the user touches this, the dialog is dismissed. In this case, we use the pre-
defined Android String resource android.R.string.cancel. For other predefined
String resources, visit

Line 34 returns the AlertDialog.

http://developer.android.com/reference/android/R.string.html

1 // EraseImageDialogFragment.java
2 // Allows user to erase image
3 package com.deitel.doodlz;
4
5 import android.app.Activity;
6 import android.app.AlertDialog;
7 import android.app.Dialog;
8 import android.support.v4.app.DialogFragment;
9 import android.content.DialogInterface;

10 import android.os.Bundle;
11

Fig. 5.49 | Class EraseImageDialogFragment. (Part 1 of 2.)

http://developer.android.com/reference/android/R.string.html

ptg16518503

5.11 EraseImageDialogFragment Class 215

12 // class for the Erase Image dialog
13 public class EraseImageDialogFragment extends DialogFragment {
14 // create an AlertDialog and return it
15 @Override
16 public Dialog onCreateDialog(Bundle bundle) {
17 AlertDialog.Builder builder =
18 new AlertDialog.Builder(getActivity());
19
20 // set the AlertDialog's message
21 builder.setMessage(R.string.message_erase);
22
23 // add Erase Button
24 builder.setPositiveButton(R.string.button_erase,
25 new DialogInterface.OnClickListener() {
26 public void onClick(DialogInterface dialog, int id) {
27 getDoodleFragment().getDoodleView().clear(); // clear image
28 }
29 }
30);
31
32 // add cancel Button
33 builder.setNegativeButton(, null);
34 return builder.create(); // return dialog
35 }
36
37 // gets a reference to the MainActivityFragment
38 private MainActivityFragment getDoodleFragment() {
39 return (MainActivityFragment) getFragmentManager().findFragmentById(
40 R.id.doodleFragment);
41 }
42
43 // tell MainActivityFragment that dialog is now displayed
44 @Override
45 public void onAttach(Activity activity) {
46 super.onAttach(activity);
47 MainActivityFragment fragment = getDoodleFragment();
48
49 if (fragment != null)
50 fragment.setDialogOnScreen(true);
51 }
52
53 // tell MainActivityFragment that dialog is no longer displayed
54 @Override
55 public void onDetach() {
56 super.onDetach();
57 MainActivityFragment fragment = getDoodleFragment();
58
59 if (fragment != null)
60 fragment.setDialogOnScreen(false);
61 }
62 }

Fig. 5.49 | Class EraseImageDialogFragment. (Part 2 of 2.)

android.R.string.cancel

ptg16518503

216 Chapter 5 Doodlz App

5.12 Wrap-Up
In this chapter, you built the Doodlz app, which enables users to paint by dragging one or
more fingers across the screen. You implemented a shake-to-erase feature by using An-
droid’s SensorManager to register a SensorEventListener that responds to accelerometer
events, and you learned that Android supports many other sensors.

You created subclasses of DialogFragment for displaying custom Views in AlertDia-
logs. You also overrode the Fragment lifecycle methods onAttach and onDetach, which
are called when a Fragment is attached to or detached from a parent Activity, respec-
tively.

We showed how to associate a Canvas with a Bitmap, then use the Canvas to draw
into the Bitmap. We demonstrated how to handle multitouch events, so the app could
respond to multiple fingers being dragged across the screen at the same time. You stored
the information for each individual finger as a Path. You processed the touch events by
overriding the View method onTouchEvent, which receives a MotionEvent containing the
event type and the ID of the pointer (finger) that generated the event. We used the IDs to
distinguish among the fingers and add information to the corresponding Path objects.

You used a ContentResolver and the MediaStore.Images.Media.insertImage
method to save an image onto the device. To enable this feature, you used Android 6.0’s
new permissions model to request permission from the user to save to external storage.

We showed how to use the printing framework to allow users to print their drawings.
You used the Android Support Library’s PrintHelper class to print a Bitmap. The Print-
Helper displayed a user interface for selecting a printer or saving the image into a PDF
document. To incorporate Android Support Library features into the app, you used
Gradle to specify the app’s dependency on features from that library.

In Chapter 6, you’ll create a Cannon Game using multithreading and frame-by-frame
animation. You’ll handle touch gestures to fire a cannon. You’ll also learn how to create a
game loop that updates the display as fast as possible to create smooth animations and to
make the game feel like it executes at the same speed regardless of a given device’s processor
speed.

ptg16518503

6
Cannon Game App

Manual Frame-By-Frame Animation, Graphics, Sound,
Threading, SurfaceView and SurfaceHolder,

Immersive Mode and Full-Screen

O b j e c t i v e s
In this chapter you’ll:

■ Create a simple game app that’s easy to code and fun to
play.

■ Create a custom SurfaceView subclass for displaying the
game’s graphics from a separate thread of execution.

■ Draw graphics using Paints and a Canvas.

■ Override View’s onTouchEvent method to fire a
cannonball when the user touches the screen.

■ Perform simple collision detection.

■ Add sound to your app using a SoundPool and the
AudioManager.

■ Override Fragment lifecycle method onDestroy.

■ Use immersive mode to enable the game to occupy the
entire screen, but still allow the user to access the system
bars.

i

ptg16518503

218 Chapter 6 Cannon Game App
O

u
tl

in
e

6.1 Introduction
The Cannon Game1 app challenges you to destroy nine targets before a ten-second time
limit expires (Fig. 6.1). The game consists of four types of visual components—a cannon
that you control, a cannonball, nine targets and a blocker that defends the targets. You aim

6.1 Introduction
6.2 Test-Driving the Cannon Game App
6.3 Technologies Overview

6.3.1 Using the Resource Folder res/raw
6.3.2 Activity and Fragment Lifecycle

Methods
6.3.3 Overriding View Method

onTouchEvent
6.3.4 Adding Sound with SoundPool and

AudioManager
6.3.5 Frame-by-Frame Animation with

Threads, SurfaceView and
SurfaceHolder

6.3.6 Simple Collision Detection
6.3.7 Immersive Mode

6.4 Building the GUI and Resource Files
6.4.1 Creating the Project
6.4.2 Adjusting the Theme to Remove the

App Title and App Bar
6.4.3 strings.xml
6.4.4 Colors
6.4.5 Adding the Sounds to the App
6.4.6 Adding Class

MainActivityFragment
6.4.7 Editing activity_main.xml
6.4.8 Adding the CannonView to

fragment_main.xml

6.5 Overview of This App’s Classes
6.6 MainActivity Subclass of

Activity
6.7 MainActivityFragment Subclass

of Fragment
6.8 Class GameElement

6.8.1 Instance Variables and Constructor
6.8.2 Methods update, draw, and

playSound

6.9 Blocker Subclass of GameElement
6.10 Target Subclass of GameElement
6.11 Cannon Class

6.11.1 Instance Variables and Constructor
6.11.2 Method align
6.11.3 Method fireCannonball
6.11.4 Method draw
6.11.5 Methods getCannonball and

removeCannonball

6.12 Cannonball Subclass of
GameElement

6.12.1 Instance Variables and Constructor
6.12.2 Methods getRadius,

collidesWith, isOnScreen, and
reverseVelocityX

6.12.3 Method update
6.12.4 Method draw

6.13 CannonView Subclass of
SurfaceView

6.13.1 package and import Statements
6.13.2 Instance Variables and Constants
6.13.3 Constructor
6.13.4 Overriding View Method

onSizeChanged
6.13.5 Methods getScreenWidth,

getScreenHeight, and
playSound

6.13.6 Method newGame
6.13.7 Method updatePositions
6.13.8 Method

alignAndFireCannonball
6.13.9 Method showGameOverDialog

6.13.10 Method drawGameElements
6.13.11 Method testForCollisions
6.13.12 Methods stopGame and

releaseResources
6.13.13 Implementing the

SurfaceHolder.Callback
Methods

6.13.14 Overriding View Method
onTouchEvent

6.13.15 CannonThread: Using a Thread to
Create a Game Loop

6.13.16 Methods hideSystemBars and
showSystemBars

6.14 Wrap-Up

1. We’d like to thank Prof. Hugues Bersini—author of a French-language object-oriented programming
book for Éditions Eyrolles, Secteur Informatique—for sharing with us his suggested refactoring of
our original Cannon Game app. We used this as inspiration for our own refactoring in the latest ver-
sions of this app in this book and iOS® 8 for Programmers: An App-Driven Approach.

ptg16518503

6.1 Introduction 219

and fire the cannon by touching the screen—the cannon then aims at the touched point
and fires the cannonball in a straight line in that direction.

Each time you destroy a target, a three-second time bonus is added to your remaining
time, and each time you hit the blocker, a two-second time penalty is subtracted from your
remaining time. You win by destroying all nine target sections before you run out of
time—if the timer reaches zero, you lose. At the end of the game, the app displays an
AlertDialog indicating whether you won or lost, and shows the number of shots fired and
the elapsed time (Fig. 6.2).

When you fire the cannon, the game plays a firing sound. When a cannonball hits a
target, a glass-breaking sound plays and that target disappears. When the cannonball hits
the blocker, a hit sound plays and the cannonball bounces back. The blocker cannot be
destroyed. Each of the targets and the blocker move vertically at different speeds, changing
direction when they hit the top or bottom of the screen.

[Note: The Android Emulator performs slowly on some computers. For the best expe-
rience, you should test this app on an Android device. On a slow emulator, the cannonball
will sometimes appear to pass through the blocker or targets.]

Fig. 6.1 | Completed Cannon Game app.

Fig. 6.2 | Cannon Game app AlertDialogs showing a win and a loss.

Time remaining in game

Cannon

blocker

Cannonball in flight
toward the blocker

Remaining targets

a) AlertDialog displayed after user
destroys all nine targets

b) AlertDialog displayed when game ends
before user destroys all the targets

ptg16518503

220 Chapter 6 Cannon Game App

6.2 Test-Driving the Cannon Game App
Opening and Running the App
Open Android Studio and open the Cannon Game app from the CannonGame folder in the
book’s examples folder, then execute the app in the AVD or on a device. This builds the
project and runs the app.

Playing the Game
Tap the screen to aim and fire the cannon. You can fire a cannonball only if there is not
another cannonball on the screen. If you’re running on an AVD, the mouse is your “fin-
ger.” Destroy all of the targets as fast as you can—the game ends if the timer runs out or
you destroy all nine targets.

6.3 Technologies Overview
This section presents the new technologies that we use in the Cannon Game app in the or-
der they’re encountered in the chapter.

6.3.1 Using the Resource Folder res/raw
Media files, such as the sounds used in the Cannon Game app, are placed in the app’s re-
source folder res/raw. Section 6.4.5 discusses how to create this folder. You’ll copy the
app’s sound files into it.

6.3.2 Activity and Fragment Lifecycle Methods
We introduced Activity and Fragment lifecycle methods in Section 5.3.1. This app uses
Fragment lifecycle method onDestroy. When an Activity is shut down, its onDestroy
method is called, which in turn calls the onDestroy methods of all the Fragments hosted
by the Activity. We use this method in the MainActivityFragment to release the Can-
nonView’s sound resources.

6.3.3 Overriding View Method onTouchEvent
Users interact with this app by touching the device’s screen. A touch aligns the cannon to
face the touch point on the screen, then fires the cannon. To process simple touch events
for the CannonView, you’ll override View method onTouchEvent (Section 6.13.14), then
use constants from class MotionEvent (package android.view) to test which type of event
occurred and process it accordingly.

6.3.4 Adding Sound with SoundPool and AudioManager
An app’s sound effects are managed with a SoundPool (package android.media), which
can be used to load, play and unload sounds. Sounds are played using one of Android’s
audio streams for alarms, music, notifications, phone rings, system sounds, phone calls and

Error-Prevention Tip 6.1
Method onDestroy is not guaranteed to be called, so it should be used only to release re-
sources, not to save data. The Android documentation recommends that you save data in
methods onPause or onSaveInstanceState.

ptg16518503

6.3 Technologies Overview 221

more. You’ll configure and create a SoundPool object using a SoundPool.Builder object.
You’ll also use an AudioAttributes.Builder object to create an AudioAttributes object
that will be associated with the SoundPool. We call the AudioAttributes’s setUsage
method to designate the audio as game audio. The Android documentation recommends
that games use the music audio stream to play sounds, because that stream’s volume can be
controlled via the device’s volume buttons. In addition, we use the Activity’s setVolume-
ControlStream method to allow the game’s volume to be controlled with the device’s vol-
ume buttons. The method receives a constant from class AudioManager (package
android.media), which provides access to the device’s volume and phone-ringer controls.

6.3.5 Frame-by-Frame Animation with Threads, SurfaceView and
SurfaceHolder
This app performs its animations manually by updating the game elements from a separate
thread of execution. To do this, we use a subclass of Thread with a run method that directs
our custom CannonView to update the positions of the game’s elements, then draws them.
The run method drives the frame-by-frame animations—this is known as the game loop.

All updates to an app’s user interface must be performed in the GUI thread of execu-
tion, because GUI components are not thread safe—updates performed outside the GUI
thread can corrupt the GUI. Games, however, often require complex logic that should be
performed in separate threads of execution, and those threads often need to draw to the
screen. For such cases, Android provides class SurfaceView—a subclass of View that pro-
vides a dedicated drawing area in which other threads can display graphics on the screen
in a thread-safe manner.

You manipulate a SurfaceView via an object of class SurfaceHolder, which enables
you to obtain a Canvas on which you can draw graphics. Class SurfaceHolder also pro-
vides methods that give a thread exclusive access to the Canvas for drawing—only one
thread at a time can draw to a SurfaceView. Each SurfaceView subclass should implement
the interface SurfaceHolder.Callback, which contains methods that are called when the
SurfaceView is created, changed (e.g., its size or orientation changes) or destroyed.

6.3.6 Simple Collision Detection
The CannonView performs simple collision detection to determine whether the cannonball
has collided with any of the CannonView’s edges, with the blocker or with a section of the
target. These techniques are presented in Section 6.13.11.

Game-development frameworks typically provide more sophisticated “pixel-perfect”
collision-detection capabilities. Many such frameworks are available (free and fee-based)
for developing the simplest 2D games to the most complex 3D console-style games (such
as games for Sony’s PlayStation® and Microsoft’s Xbox®). Figure 6.3 lists a few game-
development frameworks—there are dozens more. Many support multiple platforms,
including Android and iOS. Some require C++ or other programming languages.

Performance Tip 6.1
It’s important to minimize the amount of work you do in the GUI thread to ensure that
the GUI remains responsive and does not display ANR (Application Not Responding) di-
alogs.

ptg16518503

222 Chapter 6 Cannon Game App

6.3.7 Immersive Mode
To immerse users in games, game developers often use full-screen themes, such as

that display only the bottom system bar. In landscape orientation on phones, that system
bar appears at the screen’s right edge.

In Android 4.4 (KitKat), Google added support for full-screen immersive mode
(Section 6.13.16), which enables an app to take advantage of the entire screen. When an
app is in immersive mode, the user can swipe down from the top of the screen to display
the system bars temporarily. If the user does not interact with the system bars, they disap-
pear after a few seconds.

6.4 Building the GUI and Resource Files
In this section, you’ll create the app’s resource files, GUI layout files and classes.

6.4.1 Creating the Project
For this app, you’ll add a Fragment and its layout manually—much of the autogenerated
code in the Blank Activity template with a Fragment is not needed in the Cannon Game.
Create a new project using the Empty Activity template. In the Create New Project dialog’s
New Project step, specify

• Application name: Cannon Game

• Company Domain: deitel.com (or specify your own domain name)

In the layout editor, select Nexus 6 from the virtual-device drop-down list (Fig. 2.11). Once
again, we’ll use this device as the basis for our design. Also, delete the Hello world! TextView
from activity_main.xml. As you’ve done previously, add an app icon to your project.

Configure the App for Landscape Orientation
The Cannon game is designed for only landscape orientation. Follow the steps you per-
formed in Section 3.7 to set the screen orientation, but this time set android:screen-
Orientation to landscape rather than portrait.

Game-development frameworks

AndEngine—http://www.andengine.org

Cocos2D—http://code.google.com/p/cocos2d-android

GameMaker—http://www.yoyogames.com/studio

libgdx—https://libgdx.badlogicgames.com

Unity—http://www.unity3d.com

Unreal Engine—http://www.unrealengine.com

Fig. 6.3 | Game-development frameworks.

Theme.Material.Light.NoActionBar.Fullscreen

http://www.andengine.org
http://code.google.com/p/cocos2d-android
http://www.yoyogames.com/studio
https://libgdx.badlogicgames.com
http://www.unity3d.com
http://www.unrealengine.com

ptg16518503

6.4 Building the GUI and Resource Files 223

6.4.2 Adjusting the Theme to Remove the App Title and App Bar
As we noted in Section 6.3.7, game developers often use full-screen themes, such as

that display only the bottom system bar, which in landscape orientation appears at the
screen’s right edge. The AppCompat themes do not include a full-screen theme by default,
but you can modify the app’s theme to achieve this. To do so:

1. Open styles.xml.

2. Add the following lines to the <style> element:

The first line indicates that the title (usually the app’s name) should not be displayed. The
second indicates that the app bar should not be displayed. The last line indicates that the
app should use the full screen.

6.4.3 strings.xml
You created String resources in earlier chapters, so we show here only a table of the
String resource names and corresponding values (Fig. 6.4). Double click strings.xml in
the res/values folder, then click the Open editor link to display the Translations Editor for
creating these String resources.

6.4.4 Colors
This app draws targets of alternating colors on the Canvas. For this app, we added the fol-
lowing dark blue and yellow color resources to colors.xml:

6.4.5 Adding the Sounds to the App
As we mentioned previously, sound files are stored in the app’s res/raw folder. This app
uses three sound files—blocker_hit.wav, target_hit.wav and cannon_fire.wav—
which are located with the book’s examples in the sounds folder. To add these files to your
project:

Theme.Material.Light.NoActionBar.Fullscreen

 <item name="windowNoTitle">true</item>
 <item name="windowActionBar">false</item>
 <item name="android:windowFullscreen">true</item>

Key Value

results_format Shots fired: %1$d\nTotal time: %2$.1f

reset_game Reset Game

win You win!

lose You lose!

time_remaining_format Time remaining: %.1f seconds

Fig. 6.4 | String resources used in the Cannon Game app.

<color name="dark">#1976D2</color>
<color name="light">#FFE100</color>

ptg16518503

224 Chapter 6 Cannon Game App

1. Right click the app’s res folder, then select New > Android resource directory, to
open the New Resource Directory dialog

2. In the Resource type drop-down, select raw. The Directory name will automati-
cally change to raw.

3. Click OK to create the folder.

4. Copy and paste the sound files into the res/raw folder. In the Copy dialog that
appears, click OK.

6.4.6 Adding Class MainActivityFragment
Next, you’ll add class MainActivityFragment to the project:

1. In the Project window, right click the com.deitel.cannongame node and select
New > Fragment > Fragment (Blank).

2. For Fragment Name specify MainActivityFragment and for Fragment Layout
Name specify fragment_main.

3. Uncheck the checkboxes for Include fragment factory methods? and Include inter-
face callbacks?

By default, fragment_main.xml contains a FrameLayout that displays a TextView. A
FrameLayout is designed to display one View, but can also be used to layer views. Remove
the TextView—in this app, the FrameLayout will display the CannonView.

6.4.7 Editing activity_main.xml
In this app, MainActivity’s layout displays only MainActivityFragment. Edit the layout
as follows:

1. Open activity_main.xml in the layout editor and switch to the Text tab.

2. Change RelativeLayout to fragment and remove the padding properties so that
the fragment element will fill the entire screen.

3. Switch to Design view, select fragment in the Component Tree, then set the id to
fragment.

4. Set the name to com.deitel.cannongame.MainActivityFragment—rather than
typing this, you can click the ellipsis button to the right of the name property’s
value field, then select the class from the Fragments dialog that appears.

Recall that the layout editor’s Design view can show a preview of a fragment displayed in
a particular layout. If you do not specify which fragment to preview in MainActivity’s lay-
out, the layout editor displays a "Rendering Problems" message. To specify the fragment to
preview, right click the fragment—either in Design view or in the Component Tree and
click Choose Preview Layout…. Then, in the Resources dialog, select the name of the frag-
ment layout.

6.4.8 Adding the CannonView to fragment_main.xml
You’ll now add the CannonView to fragment_main.xml. You first must create Cannon-
View.java, so that you can select class CannonView when placing a CustomView in the lay-
out. Follow these steps to create CannonView.java and add the CannonView to the layout:

ptg16518503

6.5 Overview of This App’s Classes 225

1. Expand the java folder in the Project window.

2. Right click package com.deitel.cannongame’s folder, then select New > Java Class.

3. In the Create New Class dialog that appears, enter CannonView in the Name field,
then click OK. The file will open in the editor automatically.

4. In CannonView.java, indicate that CannonView extends SurfaceView. If the im-
port statement for the android.view.SurfaceView class does not appear, place
the cursor at the end of the class name SurfaceView. Click the red bulb menu
() that appears above the beginning of the line and select Import Class.

5. Place the cursor at the end of SurfaceView if you have not already done so. Click
the red bulb menu that appears and select Create constructor matching super.
Choose the two-argument constructor in the list in the Choose Super Class Con-
structors dialog that appears, then click OK. The IDE will add the constructor to
the file automatically.

6. Switch back to fragment_main.xml’s Design view in the layout editor.

7. Click CustomView in the Custom section of the Palette.

8. In the Views dialog that appears, select CannonView (com.deitel.cannongame),
then click OK.

9. Hover over and click the FrameLayout in the Component Tree. The view (Custom-
View)—which is a CannonView—should appear in the Component Tree within the
FrameLayout.

10. Ensure that view (CustomView) is selected in the Component Tree window. In the
Properties window, set layout:width and layout:height to match_parent.

11. In the Properties window, change the id from view to cannonView.

12. Save and close fragment_main.xml.

6.5 Overview of This App’s Classes
This app consists of eight classes:

• MainActivity (the Activity subclass; Section 6.6)—Hosts the MainActivity-
Fragment.

• MainActivityFragment (Section 6.7)—Displays the CannonView.

• GameElement (Section 6.8)—The superclass for items that move up and down
(Blocker and Target) or across (Cannonball) the screen.

• Blocker (Section 6.9)—Represents a blocker, which makes destroying targets
more challenging.

• Target (Section 6.10)—Represents a target that can be destroyed by a cannonball.

• Cannon (Section 6.11)—Represents the cannon, which fires a cannonball each
time the user touches the screen.

• Cannonball (Section 6.12)—Represents a cannonball that the cannon fires when
the user touches the screen.

ptg16518503

226 Chapter 6 Cannon Game App

• CannonView (Section 6.13)—Contains the game’s logic and coordinates the be-
haviors of the Blocker, Targets, Cannonball and Cannon.

You must create the classes GameElement, Blocker, Target, Cannonball and Cannon.
For each class, right click the package folder com.deitel.cannongame in the project’s app/
java folder and select New > Java Class. In the Create New Class dialog, enter the name
of the class in the Name field and click OK.

6.6 MainActivity Subclass of Activity
Class MainActivity (Fig. 6.5) is the host for the Cannon Game app’s MainActivityFrag-
ment. In this app, we override only the Activity method onCreate, which inflates the
GUI. We deleted the autogenerated MainActivity methods that managed its menu, be-
cause the menu is not used in this app.

6.7 MainActivityFragment Subclass of Fragment
Class MainActivityFragment (Fig. 6.6) overrides four Fragment methods:

• onCreateView (lines 17–28)—As you learned in Section 4.3.3, this method is
called after a Fragment’s onCreate method to build and return a View containing
the Fragment’s GUI. Lines 22–23 inflate the GUI. Line 26 gets a reference to the
MainActivityFragment’s CannonView so that we can call its methods.

• onActivityCreated (lines 31–37)—This method is called after the Fragment’s
host Activity is created. Line 36 calls the Activity’s setVolumeControlStream
method to allow the game’s volume to be controlled by the device’s volume but-
tons. There are seven sound streams identified by AudioManager constants, but
the music stream (AudioManager.STREAM_MUSIC) is recommended for sound in
games, because this stream’s volume can be controlled via the device’s buttons.

• onPause (lines 40–44)—When the MainActivity is sent to the background (and
thus, paused), MainActivityFragment’s onPause method executes. Line 43 calls
the CannonView’s stopGame method (Section 6.13.12) to stop the game loop.

1 // MainActivity.java
2 // MainActivity displays the MainActivityFragment
3 package com.deitel.cannongame;
4
5 import android.support.v7.app.AppCompatActivity;
6 import android.os.Bundle;
7
8 public class MainActivity extends AppCompatActivity {
9 // called when the app first launches

10 @Override
11 protected void onCreate(Bundle savedInstanceState) {
12 super.onCreate(savedInstanceState);
13 setContentView(R.layout.activity_main);
14 }
15 }

Fig. 6.5 | MainActivity class displays the MainActivityFragment.

ptg16518503

6.7 MainActivityFragment Subclass of Fragment 227

• onDestroy (lines 47–51)—When the MainActivity is destroyed, its onDestroy
method calls MainActivityFragment’s onDestroy. Line 50 calls the CannonView’s
releaseResources method to release the sound resources (Section 6.13.12).

1 // MainActivityFragment.java
2 // MainActivityFragment creates and manages a CannonView
3 package com.deitel.cannongame;
4
5
6 import android.os.Bundle;
7 import android.support.v4.app.Fragment;
8 import android.view.LayoutInflater;
9 import android.view.View;

10 import android.view.ViewGroup;
11
12 public class MainActivityFragment extends Fragment {
13 private CannonView cannonView; // custom view to display the game
14
15 // called when Fragment's view needs to be created
16 @Override
17 public View onCreateView(LayoutInflater inflater, ViewGroup container,
18 Bundle savedInstanceState) {
19 super.onCreateView(inflater, container, savedInstanceState);
20
21 // inflate the fragment_main.xml layout
22 View view =
23 inflater.inflate(R.layout.fragment_main, container, false);
24
25 // get a reference to the CannonView
26 cannonView = (CannonView) view.findViewById(R.id.cannonView);
27 return view;
28 }
29
30 // set up volume control once Activity is created
31 @Override
32 public void onActivityCreated(Bundle savedInstanceState) {
33 super.onActivityCreated(savedInstanceState);
34
35
36
37 }
38
39 // when MainActivity is paused, terminate the game
40 @Override
41 public void onPause() {
42 super.onPause();
43 cannonView.stopGame(); // terminates the game
44 }
45
46 // when MainActivity is paused, MainActivityFragment releases resources
47 @Override
48 public void onDestroy() {

Fig. 6.6 | MainActivityFragment creates and manages the CannonView. (Part 1 of 2.)

import android.media.AudioManager;

// allow volume buttons to set game volume
getActivity().setVolumeControlStream(AudioManager.STREAM_MUSIC);

ptg16518503

228 Chapter 6 Cannon Game App

6.8 Class GameElement
Class GameElement (Fig. 6.7)—the superclass of the Blocker, Target and Cannonball—
contains the common data and functionality of an object that moves in the Cannon Game
app.

49 super.onDestroy();
50 cannonView.releaseResources();
51 }
52 }

1 // GameElement.java
2 // Represents a rectangle-bounded game element
3 package com.deitel.cannongame;
4
5 import android.graphics.Canvas;
6 import android.graphics.Paint;
7 import android.graphics.Rect;
8
9 public class GameElement {

10
11 protected Paint paint = new Paint(); // Paint to draw this GameElement
12
13 private float velocityY; // the vertical velocity of this GameElement
14 private int soundId; // the sound associated with this GameElement
15
16 // public constructor
17 public GameElement(CannonView view, int color, int soundId, int x,
18 int y, int width, int length, float velocityY) {
19 this.view = view;
20 paint.setColor(color);
21
22 this.soundId = soundId;
23 this.velocityY = velocityY;
24 }
25
26 // update GameElement position and check for wall collisions
27 public void update(double interval) {
28
29
30
31 // if this GameElement collides with the wall, reverse direction
32 if (< 0 && velocityY < 0 ||
33 > && velocityY > 0)
34 velocityY *= -1; // reverse this GameElement's velocity
35 }
36

Fig. 6.7 | GameElement class represents a rectangle-bounded game element. (Part 1 of 2.)

Fig. 6.6 | MainActivityFragment creates and manages the CannonView. (Part 2 of 2.)

protected CannonView view; // the view that contains this GameElement

protected Rect shape; // the GameElement's rectangular bounds

shape = new Rect(x, y, x + width, y + length); // set bounds

// update vertical position
shape.offset(0, (int) (velocityY * interval));

shape.top
shape.bottom view.getScreenHeight()

ptg16518503

6.8 Class GameElement 229

6.8.1 Instance Variables and Constructor
The GameElement constructor receives a reference to the CannonView (Section 6.13),
which implements the game’s logic and draws the game elements. The constructor receives
an int representing the GameElement’s 32-bit color, and an int representing the ID of a
sound that’s associated with this GameElement. The CannonView stores all of the sounds in
the game and provides an ID for each. The constructor also receives

• ints for the x and y position of the GameElement’s upper-left corner

• ints for its width and height, and

• an initial vertical velocity, velocityY, of this GameElement.

Line 20 sets the paint object’s color, using the int representation of the color passed to
the constructor. Line 21 calculates the GameElement’s bounds and stores them in a Rect
object that represents a rectangle.

6.8.2 Methods update, draw, and playSound
A GameElement has the following methods:

• update (lines 27–35)—In each iteration of the game loop, this method is called
to update the GameElement’s position. Line 29 updates the vertical position of
shape, based on the vertical velocity (velocityY) and the elapsed time between
calls to update, which the method receives as the parameter interval. Lines 32–
34 check whether this GameElement is colliding with the top or bottom edge of
the screen and, if so, reverse its vertical velocity.

• draw (lines 38–40)—This method is called when a GameElement needs to be re-
drawn on the screen. The method receives a Canvas and draws this GameElement
as a rectangle on the screen—we’ll override this method in class Cannonball to
draw a circle instead. The GameElement’s paint instance variable specifies the
rectangle’s color, and the GameElement’s shape specifies the rectangle’s bounds
on the screen.

• playSound (lines 43–45)—Every game element has an associated sound that can
be played by calling method playSound. This method passes the value of the
soundId instance variable to the CannonView’s playSound method. Class Cannon-
View loads and maintains references to the game’s sounds.

37
38
39
40
41
42 // plays the sound that corresponds to this type of GameElement
43 public void playSound() {
44 view.playSound(soundId);
45 }
46 }

Fig. 6.7 | GameElement class represents a rectangle-bounded game element. (Part 2 of 2.)

// draws this GameElement on the given Canvas
public void draw(Canvas canvas) {
 canvas.drawRect(shape, paint);
}

ptg16518503

230 Chapter 6 Cannon Game App

6.9 Blocker Subclass of GameElement
Class Blocker (Fig. 6.8)—a subclass of GameElement—represents the blocker, which
makes it more difficult for the player to destroy targets. Class Blocker’s missPenalty is
subtracted from the remaining game time if the Cannonball collides with the Blocker.
The getMissPenalty method (lines 17–19) returns the missPenalty—this method is
called from CannonView’s testForCollisions method when subtracting the missPenalty
from the remaining time (Section 6.13.11). The Blocker constructor (lines 9–14) passes
its arguments and the ID for the blocker-hit sound (CannonView.BLOCKER_SOUND_ID) to
the superclass constructor (line 11), then initializes missPenalty.

6.10 Target Subclass of GameElement
Class Target (Fig. 6.9)—a subclass of GameElement—represents a target that the player
can destroy. Class Target’s hitPenalty is added to the remaining game time if the Can-
nonball collides with a Target. The getHitReward method (lines 17–19) returns the
hitReward—this method is called from CannonView’s testForCollisions method when
adding the hitReward to the remaining time (Section 6.13.11). The Target constructor
(lines 9–14) passes its arguments and the ID for the target-hit sound (Cannon-
View.TARGET_SOUND_ID) to the super constructor (line 11), then initializes hitReward.

1 // Blocker.java
2 // Subclass of GameElement customized for the Blocker
3 package com.deitel.cannongame;
4
5 public class Blocker extends GameElement {
6 private int missPenalty; // the miss penalty for this Blocker
7
8 // constructor
9 public Blocker(CannonView view, int color, int missPenalty, int x,

10 int y, int width, int length, float velocityY) {
11 super(view, color, CannonView.BLOCKER_SOUND_ID, x, y, width, length,
12 velocityY);
13 this.missPenalty = missPenalty;
14 }
15
16 // returns the miss penalty for this Blocker
17 public int getMissPenalty() {
18 return missPenalty;
19 }
20 }

Fig. 6.8 | Blocker subclass of GameElement.

1 // Target.java
2 // Subclass of GameElement customized for the Target
3 package com.deitel.cannongame;
4

Fig. 6.9 | Target subclass of GameElement. (Part 1 of 2.)

ptg16518503

6.11 Cannon Class 231

6.11 Cannon Class
The Cannon class (Figs. 6.10–6.14) represents the cannon in the Cannon Game app. The
cannon has a base and a barrel, and it can fire a cannonball.

6.11.1 Instance Variables and Constructor
The Cannon constructor (Fig. 6.10) has four parameters. It receives

• the CannonView that this Cannon is in (view),

• the radius of the Cannon’s base (baseRadius),

• the length of the Cannon’s barrel (barrelLength) and

• the width of the Cannon’s barrel (barrelWidth).

Line 25 sets the width of the Paint object’s stroke so that the barrel will be drawn with
the given barrelWidth. Line 27 aligns the Cannon’s barrel to be initially parallel with the
top and bottom edges of the screen. The Cannon class has a Point barrelEnd that’s used
to draw the barrel, barrelAngle to store the current angle of the barrel, and cannonball
to store the Cannonball that was most recently fired if it’s still on the screen.

5 public class Target extends GameElement {
6 private int hitReward; // the hit reward for this target
7
8 // constructor
9 public Target(CannonView view, int color, int hitReward, int x, int y,

10 int width, int length, float velocityY) {
11 super(view, color, CannonView.TARGET_SOUND_ID, x, y, width, length,
12 velocityY);
13 this.hitReward = hitReward;
14 }
15
16 // returns the hit reward for this Target
17 public int getHitReward() {
18 return hitReward;
19 }
20 }

1 // Cannon.java
2 // Represents Cannon and fires the Cannonball
3 package com.deitel.cannongame;
4
5 import android.graphics.Canvas;
6 import android.graphics.Color;
7 import android.graphics.Paint;
8 import android.graphics.Point;
9

Fig. 6.10 | Cannon instance variables and constructor. (Part 1 of 2.)

Fig. 6.9 | Target subclass of GameElement. (Part 2 of 2.)

ptg16518503

232 Chapter 6 Cannon Game App

6.11.2 Method align
Method align (Fig. 6.11) aims the cannon. The method receives as an argument the bar-
rel angle in radians. We use the cannonLength and the barrelAngle to determine the x-
and y-coordinate values for the endpoint of the cannon’s barrel, barrelEnd—this is used
to draw a line from the cannon base’s center at the left edge of the screen to the cannon’s
barrel endpoint. Line 32 stores the barrelAngle so that the ball can be fired at angle later.

6.11.3 Method fireCannonball
The fireCannonball method (Fig. 6.12) fires a Cannonball across the screen at the Can-
non’s current trajectory (barrelAngle). Lines 41–46 calculate the horizontal and vertical
components of the Cannonball’s velocity. Lines 49–50 calculate the radius of the Cannon-
ball, which is CannonView.CANNONBALL_RADIUS_PERCENT of the screen height. Lines 53–
56 “load the cannon” (that is, construct a new Cannonball and position it inside the Can-
non). Finally, we play the Cannonball’s firing sound (line 58).

10 public class Cannon {
11 private int baseRadius; // Cannon base's radius
12 private int barrelLength; // Cannon barrel's length
13 private Point barrelEnd = new Point(); // endpoint of Cannon's barrel
14 private double barrelAngle; // angle of the Cannon's barrel
15 private Cannonball cannonball; // the Cannon's Cannonball
16 private Paint paint = new Paint(); // Paint used to draw the cannon
17 private CannonView view; // view containing the Cannon
18
19 // constructor
20 public Cannon(CannonView view, int baseRadius, int barrelLength,
21 int barrelWidth) {
22 this.view = view;
23 this.baseRadius = baseRadius;
24 this.barrelLength = barrelLength;
25 paint.setStrokeWidth(barrelWidth); // set width of barrel
26 paint.setColor(Color.BLACK); // Cannon's color is Black
27 align(Math.PI / 2); // Cannon barrel facing straight right
28 }
29

30 // aligns the Cannon's barrel to the given angle
31 public void align(double barrelAngle) {
32 this.barrelAngle = barrelAngle;
33 barrelEnd.x = (int) (barrelLength * Math.sin(barrelAngle));
34 barrelEnd.y = (int) (-barrelLength * Math.cos(barrelAngle)) +
35 view.getScreenHeight() / 2;
36 }
37

Fig. 6.11 | Cannon method align.

Fig. 6.10 | Cannon instance variables and constructor. (Part 2 of 2.)

ptg16518503

6.11 Cannon Class 233

6.11.4 Method draw
The draw method (Fig. 6.13) draws the Cannon on the screen. We draw the Cannon in two
parts. First we draw the Cannon’s barrel, then the Cannon’s base.

Drawing the Cannon Barrel with Canvas Method drawLine
We use Canvas’s drawLine method to display the Cannon barrel (lines 64–65). This meth-
od receives five parameters—the first four represent the x-y coordinates of the line’s start
and end, and the last is the Paint object specifying the line’s characteristics, such as its
thickness. Recall that paint was configured to draw the barrel with the thickness given in
the constructor (Fig. 6.10, line 25).

38 // creates and fires Cannonball in the direction Cannon points
39 public void fireCannonball() {
40 // calculate the Cannonball velocity's x component
41 int velocityX = (int) (CannonView.CANNONBALL_SPEED_PERCENT *
42 view.getScreenWidth() * Math.sin(barrelAngle));
43
44 // calculate the Cannonball velocity's y component
45 int velocityY = (int) (CannonView.CANNONBALL_SPEED_PERCENT *
46 view.getScreenWidth() * -Math.cos(barrelAngle));
47
48 // calculate the Cannonball's radius
49 int radius = (int) (view.getScreenHeight() *
50 CannonView.CANNONBALL_RADIUS_PERCENT);
51
52 // construct Cannonball and position it in the Cannon
53 cannonball = new Cannonball(view, Color.BLACK,
54 CannonView.CANNON_SOUND_ID, -radius,
55 view.getScreenHeight() / 2 - radius, radius, velocityX,
56 velocityY);
57
58 cannonball.playSound(); // play fire Cannonball sound
59 }
60

Fig. 6.12 | Cannon method fireCannonball.

61 // draws the Cannon on the Canvas
62 public void draw(Canvas canvas) {
63 // draw cannon barrel
64 canvas.drawLine(0, view.getScreenHeight() / 2, barrelEnd.x,
65 barrelEnd.y, paint);
66
67 // draw cannon base
68 canvas.drawCircle(0, (int) view.getScreenHeight() / 2,
69 (int) baseRadius, paint);
70 }
71

Fig. 6.13 | Cannon method draw.

ptg16518503

234 Chapter 6 Cannon Game App

Drawing the Cannon Base with Canvas Method drawCircle
Lines 68–69 use Canvas’s drawCircle method to draw the Cannon’s half-circle base by
drawing a circle that’s centered at the left edge of the screen. Because a circle is displayed
based on its center point, half of this circle is drawn off the left side of the SurfaceView.

6.11.5 Methods getCannonball and removeCannonball
Figure 6.14 shows the getCannonball and removeCannonball methods. The getCannon-
ball method (lines 73–75) returns the current Cannonball instance, which Cannon stores.
A cannonball value of null means that currently no Cannonball exists in the game. The
CannonView uses this method to avoid firing a Cannonball if another Cannonball is al-
ready on the screen (Section 6.13.8, Fig. 6.26). The removeCannonball method (lines 78–
80 of Fig. 6.14) removes the CannnonBall from the game by setting cannonball to null.
The CannonView uses this method to remove the Cannonball from the game when it de-
stroys a Target or after it leaves the screen (Section 6.13.11, Fig. 6.29).

6.12 Cannonball Subclass of GameElement
The Cannonball subclass of GameElement (Sections 6.12.1–6.12.4) represents a cannon-
ball fired from the cannon.

6.12.1 Instance Variables and Constructor
The Cannonball constructor (Fig. 6.15) receives the cannonball’s radius rather than
width and height in the GameElement constructor. Lines 15–16 call super with width and
height values calculated from the radius. The constructor also receives the horizontal ve-
locity of the Cannonball, velocityX, in addition to its vertical velocity, velocityY. Line
18 initializes onScreen to true because the Cannonball is initially on the screen.

72 // returns the Cannonball that this Cannon fired
73 public Cannonball getCannonball() {
74 return cannonball;
75 }
76
77 // removes the Cannonball from the game
78 public void removeCannonball() {
79 cannonball = null;
80 }
81 }

Fig. 6.14 | CannonView methods getCannonball and removeCannonball.

1 // Cannonball.java
2 // Represents the Cannonball that the Cannon fires
3 package com.deitel.cannongame;
4
5 import android.graphics.Canvas;
6 import android.graphics.Rect;

Fig. 6.15 | Cannonball instance variables and constructor. (Part 1 of 2.)

ptg16518503

6.12 Cannonball Subclass of GameElement 235

6.12.2 Methods getRadius, collidesWith, isOnScreen, and
reverseVelocityX
Method getRadius (Fig. 6.16, lines 22–24) returns the Cannonball’s radius by finding
half the distance between the shape.right and shape.left bounds of the Cannonball’s
shape. Method isOnScreen (lines 32–34) returns true if the Cannonball is on the screen.

Checking for Collisions with Another GameElement with the collidesWith Method
The collidesWith method (line 27–29) checks whether the cannonball has collided with
the given GameElement. We perform simple collision detection, based on the rectangular

7
8 public class Cannonball extends GameElement {
9 private float velocityX;

10 private boolean onScreen;
11
12 // constructor
13 public Cannonball(CannonView view, int color, int soundId, int x,
14 int y, int radius, float velocityX, float velocityY) {
15 super(view, color, soundId, x, y,
16 2 * radius, 2 * radius, velocityY);
17 this.velocityX = velocityX;
18 onScreen = true;
19 }
20

21 // get Cannonball's radius
22 private int getRadius() {
23 return (shape.right - shape.left) / 2;
24 }
25
26 // test whether Cannonball collides with the given GameElement
27 public boolean collidesWith(GameElement element) {
28
29 }
30
31 // returns true if this Cannonball is on the screen
32 public boolean isOnScreen() {
33 return onScreen;
34 }
35
36 // reverses the Cannonball's horizontal velocity
37 public void reverseVelocityX() {
38 velocityX *= -1;
39 }
40

Fig. 6.16 | Cannonball methods getRadius, collidesWith, isOnScreen and reverseVe-
locityX.

Fig. 6.15 | Cannonball instance variables and constructor. (Part 2 of 2.)

return (Rect.intersects(shape, element.shape) && velocityX > 0);

ptg16518503

236 Chapter 6 Cannon Game App

boundary of the Cannonball. Two conditions must be met if the Cannonball is colliding
with the GameElement:

• The Cannonball’s bounds, which are stored in the shape Rect, must intersect the
bounds of the given GameElement’s shape. Rect’s intersects method is used to
check if the bounds of the Cannonball and the given GameElement intersect.

• The Cannonball must be moving horizontally towards the given GameElement.
The Cannonball travels from left to right (unless it hits the blocker). If velocityX
(the horizontal velocity) is positive, the Cannonball is moving left-to-right to-
ward the given GameElement.

Reversing the Cannonball’s Horizontal Velocity with reverseVelocityX
The reverseVelocityX method reverses the horizontal velocity of the Cannonball by
multiplying velocityX by -1. If the collidesWith method returns true, CannonView
method testForCollisions calls reverseVelocityX to reverse the ball’s horizontal veloc-
ity, so the cannonball bounces back toward the cannon (Section 6.13.11).

6.12.3 Method update
The update method (Fig. 6.17) first calls the superclass’s update method (line 44) to up-
date the Cannonball’s vertical velocity and to check for vertical collisions. Line 47 uses
Rect’s offset method to horizontally translate the bounds of this Cannonball. We mul-
tiply its horizontal velocity (velocityX) by the amount of time that passed (interval) to
determine the translation amount. Lines 50–53 set onScreen to false if the Cannonball
hits one of the screen’s edges.

6.12.4 Method draw
The draw method (Fig. 6.18) overrides GameElement’s draw method and uses Canvas’s
drawCircle method to draw the Cannonball in its current position. The first two argu-
ments represent the coordinates of the circle’s center. The third argument is the circle’s
radius. The last argument is the Paint object specifying the circle’s drawing characteristics.

41 // updates the Cannonball's position
42 @Override
43 public void update(double interval) {
44 super.update(interval); // updates Cannonball's vertical position
45
46 // update horizontal position
47
48
49 // if Cannonball goes off the screen
50 if (shape.top < 0 || shape.left < 0 ||
51 shape.bottom > view.getScreenHeight() ||
52 shape.right > view.getScreenWidth())
53 onScreen = false; // set it to be removed
54 }
55

Fig. 6.17 | Overridden GameElement method update.

shape.offset((int) (velocityX * interval), 0);

ptg16518503

6.13 CannonView Subclass of SurfaceView 237

6.13 CannonView Subclass of SurfaceView
Class CannonView (Figs. 6.19–6.33) is a custom subclass of View that implements the Can-
non Game’s logic and draws game objects on the screen.

6.13.1 package and import Statements
Figure 6.19 lists the package statement and the import statements for class CannonView.
Section 6.3 discussed the key new classes and interfaces that class CannonView uses. We’ve
highlighted them in Fig. 6.19.

56 // draws the Cannonball on the given canvas
57 @Override
58 public void draw(Canvas canvas) {
59
60
61 }
62 }

Fig. 6.18 | Overridden GameElement method draw.

1 // CannonView.java
2 // Displays and controls the Cannon Game
3 package com.deitel.cannongame;
4
5 import android.app.Activity;
6 import android.app.AlertDialog;
7 import android.app.Dialog;
8 import android.app.DialogFragment;
9 import android.content.Context;

10 import android.content.DialogInterface;
11 import android.graphics.Canvas;
12 import android.graphics.Color;
13 import android.graphics.Paint;
14 import android.graphics.Point;
15
16
17
18 import android.os.Bundle;
19 import android.util.AttributeSet;
20 import android.util.Log;
21
22 import android.view.MotionEvent;
23
24
25 import android.view.View;
26
27 import java.util.ArrayList;
28 import java.util.Random;
29

Fig. 6.19 | CannonView class’s package and import statements. (Part 1 of 2.)

canvas.drawCircle(shape.left + getRadius(),
 shape.top + getRadius(), getRadius(), paint);

import android.media.AudioAttributes;
import android.media.SoundPool;
import android.os.Build;

import android.util.SparseIntArray;

import android.view.SurfaceHolder;
import android.view.SurfaceView;

ptg16518503

238 Chapter 6 Cannon Game App

6.13.2 Instance Variables and Constants
Figure 6.20 lists the large number of class CannonView’s constants and instance variables.
We’ll explain each as we encounter it in the discussion. Many of the constants are used in
calculations that scale the game elements’ sizes based on the screen’s dimensions.

30
31
32

33 private static final String TAG = "CannonView"; // for logging errors
34
35 // constants for game play
36 public static final int MISS_PENALTY = 2; // seconds deducted on a miss
37 public static final int HIT_REWARD = 3; // seconds added on a hit
38
39 // constants for the Cannon
40 public static final double CANNON_BASE_RADIUS_PERCENT = 3.0 / 40;
41 public static final double CANNON_BARREL_WIDTH_PERCENT = 3.0 / 40;
42 public static final double CANNON_BARREL_LENGTH_PERCENT = 1.0 / 10;
43
44 // constants for the Cannonball
45 public static final double CANNONBALL_RADIUS_PERCENT = 3.0 / 80;
46 public static final double CANNONBALL_SPEED_PERCENT = 3.0 / 2;
47
48 // constants for the Targets
49 public static final double TARGET_WIDTH_PERCENT = 1.0 / 40;
50 public static final double TARGET_LENGTH_PERCENT = 3.0 / 20;
51 public static final double TARGET_FIRST_X_PERCENT = 3.0 / 5;
52 public static final double TARGET_SPACING_PERCENT = 1.0 / 60;
53 public static final double TARGET_PIECES = 9;
54 public static final double TARGET_MIN_SPEED_PERCENT = 3.0 / 4;
55 public static final double TARGET_MAX_SPEED_PERCENT = 6.0 / 4;
56
57 // constants for the Blocker
58 public static final double BLOCKER_WIDTH_PERCENT = 1.0 / 40;
59 public static final double BLOCKER_LENGTH_PERCENT = 1.0 / 4;
60 public static final double BLOCKER_X_PERCENT = 1.0 / 2;
61 public static final double BLOCKER_SPEED_PERCENT = 1.0;
62
63 // text size 1/18 of screen width
64 public static final double TEXT_SIZE_PERCENT = 1.0 / 18;
65
66 private CannonThread cannonThread; // controls the game loop
67 private Activity activity; // to display Game Over dialog in GUI thread
68 private boolean dialogIsDisplayed = false;
69
70 // game objects
71 private Cannon cannon;

Fig. 6.20 | CannonView class’s static and instance variables. (Part 1 of 2.)

Fig. 6.19 | CannonView class’s package and import statements. (Part 2 of 2.)

public class CannonView extends SurfaceView
 implements SurfaceHolder.Callback {

ptg16518503

6.13 CannonView Subclass of SurfaceView 239

6.13.3 Constructor
Figure 6.21 shows class CannonView’s constructor. When a View is inflated, its constructor
is called with a Context and an AttributeSet as arguments. The Context is the Activity
that displays the MainActivityFragment containing the CannonView, and the Attribute-
Set (package android.util) contains the CannonView attribute values that are set in the
layout’s XML document. These arguments are passed to the superclass constructor (line
96) to ensure that the custom View is properly configured with the values of any standard
View attributes specified in the XML. Line 99 stores a reference to the MainActivity so
we can use it at the end of a game to display an AlertDialog from the GUI thread.
Though we chose to store the Activity reference, we can access this at any time by calling
the inherited View method getContext.

72 private Blocker blocker;
73 private ArrayList<Target> targets;
74
75 // dimension variables
76 private int screenWidth;
77 private int screenHeight;
78
79 // variables for the game loop and tracking statistics
80 private boolean gameOver; // is the game over?
81 private double timeLeft; // time remaining in seconds
82 private int shotsFired; // shots the user has fired
83 private double totalElapsedTime; // elapsed seconds
84
85 // constants and variables for managing sounds
86 public static final int TARGET_SOUND_ID = 0;
87 public static final int CANNON_SOUND_ID = 1;
88 public static final int BLOCKER_SOUND_ID = 2;
89
90
91
92 // Paint variables used when drawing each item on the screen
93 private Paint textPaint; // Paint used to draw text
94 private Paint backgroundPaint; // Paint used to clear the drawing area
95

96 // constructor
97 public CannonView(Context context, AttributeSet attrs) {
98 super(context, attrs); // call superclass constructor
99 activity = (Activity) context; // store reference to MainActivity
100
101 // register SurfaceHolder.Callback listener
102
103

Fig. 6.21 | CannonView constructor. (Part 1 of 2.)

Fig. 6.20 | CannonView class’s static and instance variables. (Part 2 of 2.)

private SoundPool soundPool; // plays sound effects
private SparseIntArray soundMap; // maps IDs to SoundPool

getHolder().addCallback(this);

ptg16518503

240 Chapter 6 Cannon Game App

Registering the SurfaceHolder.Callback Listener
Line 102 registers this (i.e., the CannonView) as the SurfaceHolder.Callback that re-
ceives method calls when the SurfaceView is created, updated and destroyed. Inherited
SurfaceView method getHolder returns the SurfaceHolder object for managing the Sur-
faceView, and SurfaceHolder method addCallback stores the object that implements in-
terface SurfaceHolder.Callback.

Configuring the SoundPool and Loading the Sounds
Lines 105–121 configure the sounds that we use in the app. First we create an AudioAt-
tributes.Builder object (line 105) and call the setUsage method (line 106), which re-
ceives a constant that represents what the audio will be used for. For this app, we use the
AudioAttribute.USAGE_GAME constant, which indicates that the audio is being used as
game audio. Next, we create a SoundPool.Builder object (line 109), which will enable us
to create the SoundPool that’s used to load and play the app’s sound effects. Next, we call
SoundPool.Builder’s setMaxStreams method (line 110), which takes an argument that
represents the maximum number of simultaneous sound streams that can play at once. We
play only one sound at a time, so we pass 1. Some more complex games might play many
sounds at the same time. We then call AudioAttributes.Builder’s setAudioAttributes
method (line 111) to use the audio attributes with the SoundPool object after creating it.

Line 115 creates a SparseIntArray (soundMap), which maps integer keys to integer
values. SparseIntArray is similar to—but more efficient than—a HashMap<Integer,
Integer> for small numbers of key–value pairs. In this case, we map the sound keys
(defined in Fig. 6.20, lines 86–88) to the loaded sounds’ IDs, which are represented by the

104 // configure audio attributes for game audio
105
106
107
108 // initialize SoundPool to play the app's three sound effects
109
110
111
112
113
114 // create Map of sounds and pre-load sounds
115
116
117
118 soundMap.put(CANNON_SOUND_ID,
119 soundPool.load(context, R.raw.cannon_fire, 1));
120 soundMap.put(BLOCKER_SOUND_ID,
121 soundPool.load(context, R.raw.blocker_hit, 1));
122
123 textPaint = new Paint();
124 backgroundPaint = new Paint();
125 backgroundPaint.setColor(Color.WHITE);
126 }
127

Fig. 6.21 | CannonView constructor. (Part 2 of 2.)

AudioAttributes.Builder attrBuilder = new AudioAttributes.Builder();
attrBuilder.setUsage(AudioAttributes.USAGE_GAME);

SoundPool.Builder builder = new SoundPool.Builder();
builder.setMaxStreams(1);
builder.setAudioAttributes(attrBuilder.build());
soundPool = builder.build();

soundMap = new SparseIntArray(3); // create new SparseIntArray
soundMap.put(TARGET_SOUND_ID,
 soundPool.load(context, R.raw.target_hit, 1));

ptg16518503

6.13 CannonView Subclass of SurfaceView 241

return values of the SoundPool’s load method (called in Fig. 6.21, lines 117, 119 and
121). Each sound ID can be used to play a sound (and later to return its resources to the
system). SoundPool method load receives three arguments—the application’s Context, a
resource ID representing the sound file to load and the sound’s priority. According to the
documentation for this method, the last argument is not currently used and should be
specified as 1.

Creating the Paint Objects Used to Draw the Background and Timer Text
Lines 123–124 create the Paint objects that are used when drawing the game’s back-
ground and Time remaining text. The text color defaults to black and line 125 sets the back-
ground color to white.

6.13.4 Overriding View Method onSizeChanged
Figure 6.22 overrides class View’s onSizeChanged method, which is called whenever the
View’s size changes, including when the View is first added to the View hierarchy as the
layout is inflated. This app always displays in landscape mode, so onSizeChanged is called
only once when the activity’s onCreate method inflates the GUI. The method receives the
View’s new width and height and its old width and height. The first time this method is
called, the old width and height are 0. Lines 138–139 configure the textPaint object,
which is used to draw the Time remaining text. Line 138 sets the size of the text to be
TEXT_SIZE_PERCENT of the height of the screen (screenHeight). We arrived at the value
for TEXT_SIZE_PERCENT and the other scaling factors in Fig. 6.20 via trial and error, choos-
ing values that made the game elements look nice on the screen.

6.13.5 Methods getScreenWidth, getScreenHeight, and
playSound
In Fig. 6.23, the methods getScreenWidth and getScreenHeight return the width and
height of the screen, which are updated in the onSizeChanged method (Fig. 6.22). Using
soundPool’s play method, the playSound method (lines 153–155) plays the sound in
soundMap with the given soundId, which was associated with the sound when soundMap

128 // called when the size of the SurfaceView changes,
129 // such as when it's first added to the View hierarchy
130 @Override
131 protected void onSizeChanged(int w, int h, int oldw, int oldh) {
132 super.onSizeChanged(w, h, oldw, oldh);
133
134 screenWidth = w; // store CannonView's width
135 screenHeight = h; // store CannonView's height
136
137 // configure text properties
138
139
140 }
141

Fig. 6.22 | Overriding View method onSizeChanged.

textPaint.setTextSize((int) (TEXT_SIZE_PERCENT * screenHeight));
textPaint.setAntiAlias(true); // smoothes the text

ptg16518503

242 Chapter 6 Cannon Game App

was constructed (Fig. 6.21, lines 113–119). The soundId is used as the soundMap key to
locate the sound’s ID in the SoundPool. An object of class GameElement can call the play-
Sound method to play its sound.

6.13.6 Method newGame
Method newGame (Fig. 6.24) resets the instance variables that are used to control the game.
Lines 160–163 create a new Cannon object with

• a base radius of CANNON_BASE_RADIUS_PERCENT of the screen height,

• a barrel length of CANNON_BARREL_LENGTH_PERCENT of the screen width and

• a barrel width of CANNON_BARREL_WIDTH_PERCENT of the screen height.

142 // get width of the game screen
143 public int getScreenWidth() {
144 return screenWidth;
145 }
146
147 // get height of the game screen
148 public int getScreenHeight() {
149 return screenHeight;
150 }
151
152 // plays a sound with the given soundId in soundMap
153 public void playSound(int soundId) {
154
155 }
156

Fig. 6.23 | CannonView methods getScreenWidth, getScreenHeight and playSound.

157 // reset all the screen elements and start a new game
158 public void newGame() {
159 // construct a new Cannon
160 cannon = new Cannon(this,
161 (int) (CANNON_BASE_RADIUS_PERCENT * screenHeight),
162 (int) (CANNON_BARREL_LENGTH_PERCENT * screenWidth),
163 (int) (CANNON_BARREL_WIDTH_PERCENT * screenHeight));
164
165 Random random = new Random(); // for determining random velocities
166 targets = new ArrayList<>(); // construct a new Target list
167
168 // initialize targetX for the first Target from the left
169 int targetX = (int) (TARGET_FIRST_X_PERCENT * screenWidth);
170
171 // calculate Y coordinate of Targets
172 int targetY = (int) ((0.5 - TARGET_LENGTH_PERCENT / 2) *
173 screenHeight);
174

Fig. 6.24 | CannonView method newGame. (Part 1 of 2.)

soundPool.play(soundMap.get(soundId), 1, 1, 1, 0, 1f);

ptg16518503

6.13 CannonView Subclass of SurfaceView 243

175 // add TARGET_PIECES Targets to the Target list
176 for (int n = 0; n < TARGET_PIECES; n++) {
177
178 // determine a random velocity between min and max values
179 // for Target n
180 double velocity = screenHeight * (random.nextDouble() *
181 (TARGET_MAX_SPEED_PERCENT - TARGET_MIN_SPEED_PERCENT) +
182 TARGET_MIN_SPEED_PERCENT);
183
184 // alternate Target colors between dark and light
185 int color = (n % 2 == 0) ?
186 getResources().getColor(R.color.dark,
187 getContext().getTheme()) :
188 getResources().getColor(R.color.light,
189 getContext().getTheme());
190
191 velocity *= -1; // reverse the initial velocity for next Target
192
193 // create and add a new Target to the Target list
194 targets.add(new Target(this, color, HIT_REWARD, targetX, targetY,
195 (int) (TARGET_WIDTH_PERCENT * screenWidth),
196 (int) (TARGET_LENGTH_PERCENT * screenHeight),
197 (int) velocity));
198
199 // increase the x coordinate to position the next Target more
200 // to the right
201 targetX += (TARGET_WIDTH_PERCENT + TARGET_SPACING_PERCENT) *
202 screenWidth;
203 }
204
205 // create a new Blocker
206 blocker = new Blocker(this, Color.BLACK, MISS_PENALTY,
207 (int) (BLOCKER_X_PERCENT * screenWidth),
208 (int) ((0.5 - BLOCKER_LENGTH_PERCENT / 2) * screenHeight),
209 (int) (BLOCKER_WIDTH_PERCENT * screenWidth),
210 (int) (BLOCKER_LENGTH_PERCENT * screenHeight),
211 (float) (BLOCKER_SPEED_PERCENT * screenHeight));
212
213 timeLeft = 10; // start the countdown at 10 seconds
214
215 shotsFired = 0; // set the initial number of shots fired
216 totalElapsedTime = 0.0; // set the time elapsed to zero
217
218 if (gameOver) {// start a new game after the last game ended
219 gameOver = false; // the game is not over
220
221
222 }
223
224 hideSystemBars();
225 }
226

Fig. 6.24 | CannonView method newGame. (Part 2 of 2.)

cannonThread = new CannonThread(getHolder()); // create thread
cannonThread.start(); // start the game loop thread

ptg16518503

244 Chapter 6 Cannon Game App

Line 165 creates a new Random object that’s used to randomize the Target velocities.
Line 166 creates a new ArrayList of Targets. Line 169 initializes targetX to the number
of pixels from the left that the first Target will be positioned on the screen. The first
Target is positioned TARGET_FIRST_X_PERCENT of the way across the screen. Lines 172–
173 initialize targetY with a value to vertically center all Targets on the screen. Lines
176–203 construct TARGET_PIECES (9) new Targets and add them to targets. Lines 180–
182 set the velocity of the new Target to a random value between the screen height per-
centages TARGET_MIN_SPEED_PERCENT and TARGET_MAX_SPEED_PERCENT. Lines 185–189
set the color of the new Target to alternate between the R.color.dark and
R.color.light colors and alternate between positive and negative vertical velocities. Line
191 reverses the target velocity for each new target so that some targets move up to start
and some move down. The new Target is constructed and added to targets (lines 194–
197). The Target is given a width of TARGET_WIDTH_PERCENT of the screen width and a
height of TARGET_HEIGHT_PERCENT of the screen height. Finally, targetX is incremented
to position the next Target.

A new Blocker is constructed and stored in blocker in lines 206–211. The Blocker
is positioned BLOCKER_X_PERCENT of the screen width from the left and is vertically cen-
tered on the screen to start the game. The Blocker’s width is BLOCKER_WIDTH_PERCENT of
the screen width and the Blocker’s height is BLOCKER_HEIGHT_PERCENT of the screen
height. The Blocker’s speed is BLOCKER_SPEED_PERCENT of the screen height.

If variable gameOver is true, which occurs only after the first game completes, line 219
resets gameOver and lines 220–221 create a new CannonThread and call its start method
to begin the game loop that controls the game. Line 224 calls method hideSystemBars
(Section 6.13.16) to put the app in immersive mode—this hides the system bars and
enables the user to display them at any time by swiping down from the top of the screen.

6.13.7 Method updatePositions
Method updatePositions (Fig. 6.25) is called by the CannonThread’s run method
(Section 6.13.15) to update the on-screen elements’ positions and to perform simple col-
lision detection. The new locations of the game elements are calculated based on the elapsed
time in milliseconds between the previous and current animation frames. This enables the
game to update the amount by which each game element moves, based on the device’s re-
fresh rate. We discuss this in more detail when we cover game loops in Section 6.13.15.

227 // called repeatedly by the CannonThread to update game elements
228 private void updatePositions(double elapsedTimeMS) {
229 double interval = elapsedTimeMS / 1000.0; // convert to seconds
230
231 // update cannonball's position if it is on the screen
232 if (cannon.getCannonball() != null)
233 cannon.getCannonball().update(interval);
234
235 blocker.update(interval); // update the blocker's position
236
237 for (GameElement target : targets)
238 target.update(interval); // update the target's position

Fig. 6.25 | CannonView method updatePositions. (Part 1 of 2.)

ptg16518503

6.13 CannonView Subclass of SurfaceView 245

Elapsed Time Since the Last Animation Frame
Line 229 converts the elapsed time since the last animation frame from milliseconds to sec-
onds. This value is used to modify the positions of various game elements.

Updating the Cannonball, Blocker and Target Positions
To update the positions of the GameElements, lines 232–238 call the update methods of
the Cannonball (if there is one on the screen), the Blocker and all of the remaining Tar-
gets. The update method receives the time elapsed since the previous frame so that the
positions can be updated by the correct amount for the interval.

Updating the Time Left and Determining Whether Time Ran Out
We decrease timeLeft by the time that has passed since the prior animation frame (line
240). If timeLeft has reached zero, the game is over, so we set timeLeft to 0.0 just in case
it was negative; otherwise, sometimes a negative final time would display on the screen.
Then we set gameOver to true, terminate the CannonThread by calling its setRunning
method with the argument false and call method showGameOverDialog with the String
resource ID representing the losing message.

6.13.8 Method alignAndFireCannonball
When the user touches the screen, method onTouchEvent (Section 6.13.14) calls align-
AndFireCannonball (Fig. 6.26). Lines 267–272 calculate the angle necessary to aim the
cannon at the touch point. Line 275 calls Cannon’s align method to aim the cannon with
trajectory angle. Finally, if the Cannonball exists and is on the screen, lines 280–281 fire
the Cannonball and increment shotsFired.

239
240 timeLeft -= interval; // subtract from time left
241
242 // if the timer reached zero
243 if (timeLeft <= 0) {
244 timeLeft = 0.0;
245 gameOver = true; // the game is over
246 cannonThread.setRunning(false); // terminate thread
247 showGameOverDialog(R.string.lose); // show the losing dialog
248 }
249
250 // if all pieces have been hit
251 if (targets.isEmpty()) {
252 cannonThread.setRunning(false); // terminate thread
253 showGameOverDialog(R.string.win); // show winning dialog
254 gameOver = true;
255 }
256 }
257

Fig. 6.25 | CannonView method updatePositions. (Part 2 of 2.)

ptg16518503

246 Chapter 6 Cannon Game App

6.13.9 Method showGameOverDialog
When the game ends, the showGameOverDialog method (Fig. 6.27) displays a Dialog-
Fragment (using the techniques you learned in Section 4.7.10) containing an Alert-
Dialog that indicates whether the player won or lost, the number of shots fired and the
total time elapsed. The call to method setPositiveButton (lines 301–311) creates a reset
button for starting a new game.

258 // aligns the barrel and fires a Cannonball if a Cannonball is not
259 // already on the screen
260 public void alignAndFireCannonball(MotionEvent event) {
261 // get the location of the touch in this view
262 Point touchPoint = new Point((int) event.getX(),
263 (int) event.getY());
264
265 // compute the touch's distance from center of the screen
266 // on the y-axis
267 double centerMinusY = (screenHeight / 2 - touchPoint.y);
268
269 double angle = 0; // initialize angle to 0
270
271 // calculate the angle the barrel makes with the horizontal
272 angle = Math.atan2(touchPoint.x, centerMinusY);
273
274 // point the barrel at the point where the screen was touched
275 cannon.align(angle);
276
277 // fire Cannonball if there is not already a Cannonball on screen
278 if (cannon.getCannonball() == null ||
279 !cannon.getCannonball().isOnScreen()) {
280 cannon.fireCannonball();
281 ++shotsFired;
282 }
283 }
284

Fig. 6.26 | CannonView method alignAndFireCannonball.

285 // display an AlertDialog when the game ends
286 private void showGameOverDialog(final int messageId) {
287 // DialogFragment to display game stats and start new game
288 final DialogFragment gameResult =
289 new DialogFragment() {
290 // create an AlertDialog and return it
291 @Override
292 public Dialog onCreateDialog(Bundle bundle) {
293 // create dialog displaying String resource for messageId
294 AlertDialog.Builder builder =
295 new AlertDialog.Builder(getActivity());
296 builder.setTitle(getResources().getString(messageId));
297

Fig. 6.27 | CannonView method showGameOverDialog. (Part 1 of 2.)

ptg16518503

6.13 CannonView Subclass of SurfaceView 247

The onClick method of the Button’s listener indicates that the dialog is no longer dis-
played and calls newGame to set up and start a new game. A dialog must be displayed from
the GUI thread, so lines 318–327 call Activity method runOnUiThread to specify a Run-
nable that should execute in the GUI thread as soon as possible. The argument is an object
of an anonymous inner class that implements Runnable. The Runnable’s run method calls
method showSystemBars (Section 6.13.16) to remove the app from immersive mode,
then indicates that the dialog is displayed and displays it.

6.13.10 Method drawGameElements
The method drawGameElements (Fig. 6.28) draws the Cannon, Cannonball, Blocker and
Targets on the SurfaceView using the Canvas that the CannonThread (Section 6.13.15)
obtains from the SurfaceView’s SurfaceHolder.

Clearing the Canvas with Method drawRect
First, we call Canvas’s drawRect method (lines 333–334) to clear the Canvas so that the
game elements can be displayed in their new positions. The method receives the rectangle’s

298 // display number of shots fired and total time elapsed
299 builder.setMessage(getResources().getString(
300 R.string.results_format, shotsFired, totalElapsedTime));
301 builder.setPositiveButton(R.string.reset_game,
302 new DialogInterface.OnClickListener() {
303 // called when "Reset Game" Button is pressed
304 @Override
305 public void onClick(DialogInterface dialog,
306 int which) {
307 dialogIsDisplayed = false;
308 newGame(); // set up and start a new game
309 }
310 }
311);
312
313 return builder.create(); // return the AlertDialog
314 }
315 };
316
317
318
319
320
321
322
323
324
325
326
327
328 }
329

Fig. 6.27 | CannonView method showGameOverDialog. (Part 2 of 2.)

// in GUI thread, use FragmentManager to display the DialogFragment
activity.runOnUiThread(
 new Runnable() {

 public void run() {
 showSystemBars(); // exit immersive mode
 dialogIsDisplayed = true;
 gameResult.setCancelable(false); // modal dialog
 gameResult.show(activity.getFragmentManager(), "results");

 }
 }
);

ptg16518503

248 Chapter 6 Cannon Game App

upper-left x-y coordinates, width and height, and the Paint object that specifies the draw-
ing characteristics—recall that backgroundPaint sets the drawing color to white.

Displaying the Time Remaining with Canvas Method drawText
Next, we call Canvas’s drawText method (lines 337–338) to display the time remaining
in the game. We pass as arguments the String to be displayed, the x- and y-coordinates at
which to display it and the textPaint (configured in Fig. 6.22, lines 138–139) to describe
how the text should be rendered (that is, the text’s font size, color and other attributes).

Drawing the Cannon, Cannonball, Blocker and Targets with the draw Method
Lines 339–350 draw the Cannon, the Cannonball (if it is on the screen), the Blocker, and
each of the Targets. Each of these elements is drawn by calling its draw method and pass-
ing in canvas.

6.13.11 Method testForCollisions
The testForCollisions method (Fig. 6.29) checks whether the Cannonball is colliding
with any of the Targets or with the Blocker, and applies certain effects in the game if a
collision occurs. Lines 359–360 check whether a Cannonball is on the screen. If so, line
362 calls the Cannonball’s collidesWith method to determine whether the Cannonball
is colliding with a Target. If ther is a collision, line 363 calls the Target’s playSound meth-
od to play the target-hit sound, line 366 increments timeLeft by the hit reward associated
with the Target, and lines 368–369 remove the Cannonball and Target from the screen.
Line 370 decrements n to ensure the target that’s now in position n gets tested for a colli-

330 // draws the game to the given Canvas
331 public void drawGameElements(Canvas canvas) {
332 // clear the background
333
334
335
336 // display time remaining
337
338
339
340 cannon.draw(canvas); // draw the cannon
341
342 // draw the GameElements
343 if (cannon.getCannonball() != null &&
344 cannon.getCannonball().isOnScreen())
345 cannon.getCannonball().draw(canvas);
346
347 blocker.draw(canvas); // draw the blocker
348
349 // draw all of the Targets
350 for (GameElement target : targets)
351 target.draw(canvas);
352 }
353

Fig. 6.28 | CannonView method drawGameElements.

canvas.drawRect(0, 0, canvas.getWidth(), canvas.getHeight(),
 backgroundPaint);

canvas.drawText(getResources().getString(
R.string.time_remaining_format, timeLeft), 50, 100, textPaint);

ptg16518503

6.13 CannonView Subclass of SurfaceView 249

sion. Line 376 destroys the Cannonball associated with Cannon if it’s not on the screen. If
the Cannonball is still on the screen, lines 380–381 call collidesWith again to determine
whether the Cannonball is colliding with the Blocker. If so, line 382 calls the Blocker’s
playSound method to play the blocker-hit sound, line 385 reverses the cannonball’s hor-
izontal velocity by calling class Cannonball’s reverseVelocityX method, and line 388
decrements timeLeft by the miss penalty associated with the Blocker.

6.13.12 Methods stopGame and releaseResources
Class MainActivityFragment’s onPause and onDestroy methods (Section 6.13) call class
CannonView’s stopGame and releaseResources methods (Fig. 6.30), respectively. Meth-
od stopGame (lines 393–396) is called from the main Activity to stop the game when the

354 // checks if the ball collides with the Blocker or any of the Targets
355 // and handles the collisions
356 public void testForCollisions() {
357 // remove any of the targets that the Cannonball
358 // collides with
359 if (cannon.getCannonball() != null &&
360 cannon.getCannonball().isOnScreen()) {
361 for (int n = 0; n < targets.size(); n++) {
362 if (cannon.getCannonball().collidesWith(targets.get(n))) {
363 targets.get(n).playSound(); // play Target hit sound
364
365 // add hit rewards time to remaining time
366 timeLeft += targets.get(n).getHitReward();
367
368 cannon.removeCannonball(); // remove Cannonball from game
369 targets.remove(n); // remove the Target that was hit
370 --n; // ensures that we don't skip testing new target n
371 break;
372 }
373 }
374 }
375 else { // remove the Cannonball if it should not be on the screen
376 cannon.removeCannonball();
377 }
378
379 // check if ball collides with blocker
380 if (cannon.getCannonball() != null &&
381 cannon.getCannonball().collidesWith(blocker)) {
382 blocker.playSound(); // play Blocker hit sound
383
384 // reverse ball direction
385 cannon.getCannonball().reverseVelocityX();
386
387 // deduct blocker's miss penalty from remaining time
388 timeLeft -= blocker.getMissPenalty();
389 }
390 }
391

Fig. 6.29 | CannonView method testForCollisions.

ptg16518503

250 Chapter 6 Cannon Game App

Activity’s onPause method is called—for simplicity, we don’t store the game’s state in
this example. Method releaseResources (lines 399–402) calls the SoundPool’s release
method to release the resources associated with the SoundPool.

6.13.13 Implementing the SurfaceHolder.Callback Methods
Figure 6.31 implements the surfaceChanged, surfaceCreated and surfaceDestroyed
methods of interface SurfaceHolder.Callback. Method surfaceChanged has an empty
body in this app because the app is always displayed in landscape orientation. This method
is called when the SurfaceView’s size or orientation changes, and would typically be used
to redisplay graphics based on those changes.

392 // stops the game: called by CannonGameFragment's onPause method
393 public void stopGame() {
394 if (cannonThread != null)
395 cannonThread.setRunning(false); // tell thread to terminate
396 }
397
398 // release resources: called by CannonGame's onDestroy method
399 public void releaseResources() {
400 soundPool.release(); // release all resources used by the SoundPool
401 soundPool = null;
402 }
403

Fig. 6.30 | CannonView methods stopGame and releaseResources.

404 // called when surface changes size
405 @Override
406 public void surfaceChanged(SurfaceHolder holder, int format,
407 int width, int height) { }
408
409 // called when surface is first created
410 @Override
411
412 if (!dialogIsDisplayed) {
413 newGame(); // set up and start a new game
414
415
416
417 }
418 }
419
420 // called when the surface is destroyed
421 @Override
422
423 // ensure that thread terminates properly
424 boolean retry = true;
425
426

Fig. 6.31 | Implementing the SurfaceHolder.Callback methods. (Part 1 of 2.)

public void surfaceCreated(SurfaceHolder holder) {

cannonThread = new CannonThread(holder); // create thread
cannonThread.setRunning(true); // start game running
cannonThread.start(); // start the game loop thread

public void surfaceDestroyed(SurfaceHolder holder) {

cannonThread.setRunning(false); // terminate cannonThread

ptg16518503

6.13 CannonView Subclass of SurfaceView 251

Method surfaceCreated (lines 410–418) is called when the SurfaceView is cre-
ated—e.g., when the app first loads or when it resumes from the background. We use sur-
faceCreated to create and start the CannonThread to begin the game loop. Method
surfaceDestroyed (lines 421–436) is called when the SurfaceView is destroyed—e.g.,
when the app terminates. We use surfaceDestroyed to ensure that the CannonThread ter-
minates properly. First, line 425 calls CannonThread’s setRunning method with false as
an argument to indicate that the thread should stop, then lines 427–435 wait for the thread
to terminate. This ensures that no attempt is made to draw to the SurfaceView once sur-
faceDestroyed completes execution.

6.13.14 Overriding View Method onTouchEvent
In this example, we override View method onTouchEvent (Fig. 6.32) to determine when
the user touches the screen. The MotionEvent parameter contains information about the
event that occurred. Line 442 uses the MotionEvent’s getAction method to determine
which type of touch event occurred. Then, lines 445–446 determine whether the user
touched the screen (MotionEvent.ACTION_DOWN) or dragged a finger across the screen
(MotionEvent.ACTION_MOVE). In either case, line 448 calls the cannonView’s alignAnd-
FireCannonball method to aim and fire the cannon toward that touch point. Line 451
then returns true to indicate that the touch event was handled.

427 while (retry) {
428 try {
429
430 retry = false;
431 }
432 catch (InterruptedException e) {
433 Log.e(TAG, "Thread interrupted", e);
434 }
435 }
436 }
437

438 // called when the user touches the screen in this activity
439 @Override
440 public boolean onTouchEvent(MotionEvent e) {
441 // get int representing the type of action which caused this event
442 int action = e.getAction();
443
444 // the user touched the screen or dragged along the screen
445
446
447 // fire the cannonball toward the touch point
448 alignAndFireCannonball(e);
449 }
450

Fig. 6.32 | Overriding View method onTouchEvent. (Part 1 of 2.).

Fig. 6.31 | Implementing the SurfaceHolder.Callback methods. (Part 2 of 2.)

cannonThread.join(); // wait for cannonThread to finish

if (action == MotionEvent.ACTION_DOWN ||
 action == MotionEvent.ACTION_MOVE) {

ptg16518503

252 Chapter 6 Cannon Game App

6.13.15 CannonThread: Using a Thread to Create a Game Loop
Figure 6.33 defines a subclass of Thread which updates the game. The thread maintains a
reference to the SurfaceView’s SurfaceHolder (line 456) and a boolean indicating
whether the thread is running.

451 return true;
452 }
453

454 // Thread subclass to control the game loop
455
456
457 private boolean threadIsRunning = true; // running by default
458
459 // initializes the surface holder
460 public CannonThread(SurfaceHolder holder) {
461 surfaceHolder = holder;
462 setName("CannonThread");
463 }
464
465 // changes running state
466 public void setRunning(boolean running) {
467 threadIsRunning = running;
468 }
469
470 // controls the game loop
471 @Override
472
473 Canvas canvas = null; // used for drawing
474
475
476 while (threadIsRunning) {
477 try {
478 // get Canvas for exclusive drawing from this thread
479
480
481 // lock the surfaceHolder for drawing
482
483 long currentTime = System.currentTimeMillis();
484 double elapsedTimeMS = currentTime - previousFrameTime;
485 totalElapsedTime += elapsedTimeMS / 1000.0;
486 updatePositions(elapsedTimeMS); // update game state
487 testForCollisions(); // test for GameElement collisions
488 drawGameElements(canvas); // draw using the canvas
489 previousFrameTime = currentTime; // update previous time
490 }
491 }

Fig. 6.33 | Nested class CannonThread manages the game loop, updating the game elements
every TIME_INTERVAL milliseconds. (Part 1 of 2.)

Fig. 6.32 | Overriding View method onTouchEvent. (Part 2 of 2.).

private class CannonThread extends Thread {
private SurfaceHolder surfaceHolder; // for manipulating canvas

public void run() {

long previousFrameTime = System.currentTimeMillis();

canvas = surfaceHolder.lockCanvas(null);

synchronized(surfaceHolder) {

ptg16518503

6.13 CannonView Subclass of SurfaceView 253

The class’s run method (lines 471–499) drives the frame-by-frame animations—this is
known as the game loop. Each update of the game elements on the screen is performed,
based on the number of milliseconds that have passed since the last update. Line 474 gets
the system’s current time in milliseconds when the thread begins running. Lines 476–498
loop until threadIsRunning is false.

First we obtain the Canvas for drawing on the SurfaceView by calling SurfaceHolder
method lockCanvas (line 479). Only one thread at a time can draw to a SurfaceView. To
ensure this, you must first lock the SurfaceHolder by specifying it as the expression in the
parentheses of a synchronized block (line 482). Next, we get the current time in millisec-
onds, then calculate the elapsed time and add that to the total time so far—this will be
used to help display the amount of time left in the game. Line 486 calls method update-
Positions to move all the game elements, passing the elapsed time in milliseconds as an
argument. This ensures that the game operates at the same speed regardless of how fast the
device is. If the time between frames is larger (i.e, the device is slower), the game elements
will move further when each frame of the animation is displayed. If the time between
frames is smaller (i.e, the device is faster), the game elements will move less when each
frame of the animation is displayed. Line 487 calls testForCollisions to determine
whether the Cannonball collided with the Blocker or a Target:

• If a collision occurs with the Blocker, testForCollisions reverses the Cannon-
ball’s velocity.

• If a collision occurs with a Target, testForCollisions removes the Cannonball.

Finally, line 488 calls the drawGameElements method to draw the game elements using the
SurfaceView’s Canvas, and line 489 stores the currentTime as the previousFrameTime
to prepare to calculate the elapsed time between this animation frame and the next.

6.13.16 Methods hideSystemBars and showSystemBars
This app uses immersive mode—at any time during game play, the user can view the system
bars by swiping down from the top of the screen. Immersive mode is available only on de-
vices running Android 4.4 or higher. So, methods hideSystemBars and showSystemBars
(Fig. 6.34) first check whether the device’s Android version—Build.VERSION_SDK_INT—
is greater than or equal to Build.VERSION_CODES_KITKAT—the constant for Android 4.4
(API level 19). If so, both methods use View method setSystemUiVisibility to config-
ure the system bars and app bar (though we already hid the app bar by modifying this app’s

492 finally {
493 // display canvas's contents on the CannonView
494 // and enable other threads to use the Canvas
495 if (canvas != null)
496
497 }
498 }
499 }
500 }

Fig. 6.33 | Nested class CannonThread manages the game loop, updating the game elements
every TIME_INTERVAL milliseconds. (Part 2 of 2.)

surfaceHolder.unlockCanvasAndPost(canvas);

ptg16518503

254 Chapter 6 Cannon Game App

theme). To hide the system bars and app bar and place the UI into immersive mode, you
pass to setSystemUiVisibility the constants that are combined via the bitwise OR (|)
operator in lines 505–510. To show the system bars and app bar, you pass to setSystem-
UiVisibility the constants that are combined in lines 517–519. These combinations of
View constants ensure that the CannonView is not resized each time the system bars and app
bar are hidden and redisplayed. Instead, the system bars and app bar overlay the Cannon-
View—that is, part of the CannonView is temporarily hidden when the system bars are on
the screen. For more information on immersive mode, visit

6.14 Wrap-Up
In this chapter, you created the Cannon Game app, which challenges the player to destroy
nine targets before a 10-second time limit expires. The user aims and fires the cannon by
touching the screen. To draw on the screen from a separate thread, you created a custom
view by extending class SurfaceView. You learned that custom component class names
must be fully qualified in the XML layout element that represents the component. We pre-
sented additional Fragment lifecycle methods. You learned that method onPause is called
when a Fragment is paused and method onDestroy is called when the Fragment is de-
stroyed. You handled touches by overriding View’s onTouchEvent method. You added
sound effects to the app’s res/raw folder and managed them with a SoundPool. You also
used the system’s AudioManager service to obtain the device’s current music volume and
use it as the playback volume.

This app manually performs its animations by updating the game elements on a Sur-
faceView from a separate thread of execution. To do this, you extended class Thread and

http://developer.android.com/training/system-ui/immersive.html

501 // hide system bars and app bar
502 private void hideSystemBars() {
503
504
505
506
507
508
509
510
511 }
512
513 // show system bars and app bar
514 private void showSystemBars() {
515 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT)
516
517
518
519
520 }
521 }

Fig. 6.34 | DoodleView methods hideSystemBars and showSystemBars.

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT)
setSystemUiVisibility(

 View.SYSTEM_UI_FLAG_LAYOUT_STABLE |
 View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION |
 View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN |
 View.SYSTEM_UI_FLAG_HIDE_NAVIGATION |
 View.SYSTEM_UI_FLAG_FULLSCREEN |
 View.SYSTEM_UI_FLAG_IMMERSIVE);

setSystemUiVisibility(
 View.SYSTEM_UI_FLAG_LAYOUT_STABLE |
 View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION |
 View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN);

http://developer.android.com/training/system-ui/immersive.html

ptg16518503

6.14 Wrap-Up 255

created a run method that displays graphics by calling methods of class Canvas. You used
the SurfaceView’s SurfaceHolder to obtain the appropriate Canvas. You also learned
how to build a game loop that controls a game, based on the amount of time that has
elapsed between animation frames, so that the game will operate at the same overall speed
on all devices, regardless of their processor speeds. Finally, you used immersive mode to
enable the app to use the entire screen.

In Chapter 7, you’ll build the WeatherViewer app. You’ll use web services to interact
with the 16-day weather forecast web service from OpenWeatherMap.org. Like many of
today’s web services, the OpenWeatherMap.org web service will return the forecast data in
JavaScript Object Notation (JSON) format. You’ll process the response using the JSONOb-
ject and JSONArray classes from the org.json package. You’ll then display the daily fore-
cast in a ListView.

ptg16518503

7
WeatherViewer App

REST Web Services, AsyncTask, HttpUrlConnection,
Processing JSON Responses, JSONObject, JSONArray,
ListView, ArrayAdapter, ViewHolder Pattern,
TextInputLayout, FloatingActionButton

O b j e c t i v e s
In this chapter you’ll:

■ Use the free OpenWeatherMap.org REST web services to
get a 16-day weather forecast for a city specified by the user.

■ Use an AsyncTask and an HttpUrlConnection to
invoke a REST web service or to download an image in a
separate thread and deliver results to the GUI thread.

■ Process a JSON response using package org.json classes
JSONObjects and JSONArrays.

■ Define an ArrayAdapter that specifies the data to display
in a ListView.

■ Use the ViewHolder pattern to reuse views that scroll off
the screen in a ListView, rather than creating new views.

■ Use the material design components TextInputLayout,
Snackbar and FloatingActionButton from the
Android Design Support Library.

ptg16518503

7.1 Introduction 257
O

u
tl

in
e

7.1 Introduction
The WeatherViewer app (Fig. 7.1) uses the free OpenWeatherMap.org REST web services
to obtain a specified city’s 16-day weather forecast. The app receives the weather data in
JSON (JavaScript Object Notation) data format. The list of weather data is displayed in a
ListView—a view that displays a scrollable list of items. In this app, you’ll use a custom
list-item format to display:

• a weather-condition icon

• the day of the week with a text description of that day’s weather

• the day’s low and high temperatures (in °F), and

• the humidity percentage.

The preceding items represent a subset of the returned forecast data. For details of the data
returned by the 16-day weather forecast API, visit:

For a list of all weather data APIs provided by OpenWeatherMap.org, visit:

7.1 Introduction

7.2 Test-Driving the WeatherViewer App

7.3 Technologies Overview
7.3.1 Web Services
7.3.2 JavaScript Object Notation (JSON)

and the org.json Package
7.3.3 HttpUrlConnection Invoking a

REST Web Service
7.3.4 Using AsyncTask to Perform

Network Requests Outside the GUI
Thread

7.3.5 ListView, ArrayAdapter and the
View-Holder Pattern

7.3.6 FloatingActionButton
7.3.7 TextInputLayout
7.3.8 Snackbar

7.4 Building the App’s GUI and Resource
Files

7.4.1 Creating the Project
7.4.2 AndroidManifest.xml
7.4.3 strings.xml
7.4.4 colors.xml
7.4.5 activity_main.xml
7.4.6 content_main.xml
7.4.7 list_item.xml

7.5 Class Weather
7.5.1 package Statement, import

Statements and Instance Variables
7.5.2 Constructor
7.5.3 Method convertTimeStampToDay

7.6 Class WeatherArrayAdapter
7.6.1 package Statement and import

Statements
7.6.2 Nested Class ViewHolder
7.6.3 Instance Variable and Constructor
7.6.4 Overridden ArrayAdapter Method

getView
7.6.5 AsyncTask Subclass for

Downloading Images in a Separate
Thread

7.7 Class MainActivity
7.7.1 package Statement and import

Statements
7.7.2 Instance Variables
7.7.3 Overridden Activity Method

onCreate
7.7.4 Methods dismissKeyboard and

createURL
7.7.5 AsyncTask Subclass for Invoking a

Web Service
7.7.6 Method convertJSONtoArrayList

7.8 Wrap-Up

http://openweathermap.org/forecast16

http://openweathermap.org/api

http://openweathermap.org/forecast16
http://openweathermap.org/api

ptg16518503

258 Chapter 7 WeatherViewer App

7.2 Test-Driving the WeatherViewer App
Opening and Running the App
Open Android Studio and open the WeatherViewer app from the WeatherViewer folder in
the book’s examples folder. Before running this app, you must add your own OpenWeath-
erMap.org API key. See Section 7.3.1 for information on how to obtain your key and
where you should place it in the project. This is required before you can run the app. After
adding your API key to the project, execute the app in the AVD or on a device.

Viewing a City’s 16-Day Weather Forecast
When the app first executes, the EditText at the top of the user interface receives the focus
and the virtual keyboard displays so you can enter a city name (Fig. 7.2). You should con-
sider following the city with a comma and the country code. In this case, we entered New
York, NY, US to locate the weather for New York, NY in the United States. Once you’ve
entered the city, touch the circular FloatingActionButton containing the done icon
() to submit the city to the app, which then requests that city’s 16-day weather forecast
(shown in Fig. 7.1).

Fig. 7.1 | Weather Viewer app displaying the New York, NY, US weather forecast.

ptg16518503

7.3 Technologies Overview 259

7.3 Technologies Overview
This section introduces the features you’ll use to build the WeatherViewer app.

7.3.1 Web Services
This chapter introduces web services, which promote software portability and reusability
in applications that operate over the Internet. A web service is a software component that
can be accessed over a network.

The machine on which a web service resides is the web service host. The client—in
this case the WeatherViewer app—sends a request over a network to the web service host,
which processes the request and returns a response over the network to the client. This dis-
tributed computing benefits systems in various ways. For example, an app can access data
on demand via a web service, rather than storing the data directly on the device. Similarly,
an app lacking the processing power to perform specific computations could use a web ser-
vice to take advantage of another system’s superior resources.

Fig. 7.2 | Entering a city.

Touch the done button—a
FloatingActionButton—
to submit the city to the app

EditText for entering
the city name

Hint displayed above the
EditText by a

TextInputLayout

ptg16518503

260 Chapter 7 WeatherViewer App

REST Web Services
Representational State Transfer (REST) refers to an architectural style for implementing
web services—often called RESTful web services. Many of today’s most popular free and
fee-based web services are RESTful. Though REST itself is not a standard, RESTful web
services use web standards, such as HyperText Transfer Protocol (HTTP), which is used
by web browsers to communicate with web servers. Each method in a RESTful web service
is identified by a unique URL. So, when the server receives a request, it immediately knows
what operation to perform. Such web services can be used in an app or even entered di-
rectly into a web browser’s address bar.

Web Services Often Require an API Key
Using a web service often requires a unique API key from the web service’s provider.
When your app makes a request to the web service, the API key enables the provider to:

• confirm that you have permission to use the web service and

• track your usage—many web services limit the total number of requests you can
make in a specific timeframe (e.g., per second, per minute, per hour, etc.).

Some web services require authentication before the web service gives the app an API
key—in effect, you log into the web service programmatically, before being allowed to use
the web service.

OpenWeatherMap.org Web Services
The OpenWeatherMap.org web services we use in the WeatherViewer app are free, but
OpenWeatherMap.org limits the number of web service requests—these limits are currently
1200 requests-per-minute and 1.7 million requests-per-day. OpenWeatherMap.org is a
freemium service—in addition to the free tier that you’ll use in this app, they offer paid
tiers with higher request limits, more frequent data updates and other features. For addi-
tional information about the OpenWeatherMap.org web services, visit:

OpenWeatherMap.org Web Service License
OpenWeatherMap.org uses a creative commons public license for its web services. For the
license terms, visit:

For more information about the license terms, see the Licenses section at

Obtaining an OpenWeatherMap.org API Key
Before running this app, you must obtain your own OpenWeatherMap.org API key from

After registering, copy the hexadecimal API key from the confirmation web page, then re-
place YOUR_API_KEY in strings.xml with the key.

http://openweathermap.org/api

http://creativecommons.org/licenses/by-sa/2.0/

http://openweathermap.org/terms

http://openweathermap.org/register

http://openweathermap.org/api
http://creativecommons.org/licenses/by-sa/2.0/
http://openweathermap.org/terms
http://openweathermap.org/register

ptg16518503

7.3 Technologies Overview 261

7.3.2 JavaScript Object Notation (JSON) and the org.json Package
JavaScript Object Notation (JSON) is an alternative to XML for representing data. JSON
is a text-based data-interchange format used to represent objects in JavaScript as collec-
tions of name/value pairs represented as Strings. JSON is a simple format that makes ob-
jects easy to create, read and parse and, because it’s much less verbose than XML, allows
programs to transmit data efficiently across the Internet. Each JSON object is represented
as a list of property names and values contained in curly braces, in the following format:

Each property name is a String. Arrays are represented in JSON with square brackets in
the following format:

Each array element can be a String, number, JSON object, true, false or null.
Figure 7.3 sample JSON returned by OpenWeatherMap.org’s daily forecast web service
used in this app—this particular sample contains two days of weather data (lines 15–57).

{propertyName1: value1, propertyName2: value2}

[value1, value2, value3]

1 {
2 "city": {
3 "id": 5128581,
4 "name": "New York",
5 "coord": {
6 "lon": -74.005966,
7 "lat": 40.714272
8 },
9 "country": "US",

10 "population": 0
11 },
12 "cod": "200",
13 "message": 0.0102,
14 "cnt": 2,
15
16 : 1442419200,
17 : {
18 "day": 79.9,
19 : 71.74,
20 : 82.53,
21 "night": 71.85,
22 "eve": 82.53,
23 "morn": 71.74
24 },
25 "pressure": 1037.39,
26 : 64,
27 : [{
28 "id": 800,
29 "main": "Clear",
30 : "sky is clear",
31 : "01d"
32 }],

Fig. 7.3 | Sample JSON from the OpenWeatherMap.org daily forecast web service. (Part 1 of 2.)

"list": [{ // you'll use this array of objects to get the daily weather
"dt"
"temp"

"min"
"max"

"humidity"
"weather"

"description"
"icon"

ptg16518503

262 Chapter 7 WeatherViewer App

There are many properties in the JSON object returned by the daily forecast. We use
only the "list" property—an array of JSON objects representing the forecasts for up to
16 days (7 by default, unless you specify otherwise). Each "list" array element contains
many properties of which we use:

• "dt"—a long integer containing the date/time stamp represented as the number
of seconds since January 1, 1970 GMT. We convert this into a day name.

• "temp"—a JSON object containing double properties representing the day’s
temperatures. We use only the minimum ("min") and maximum ("max") tem-
peratures, but the web service also returns the average daytime ("day"), nighttime
("night"), evening ("eve") and morning ("morn") temperatures.

• "humidity"—an int representing the humidity percentage.

• "weather"—a JSON object containing several properties, including a descrip-
tion of the conditions ("description") and the name of an icon that represents
the conditions ("icon").

org.json Package
You’ll use the following classes from the org.json package to process the JSON data that
the app receives (Section 7.7.6):

• JSONObject—One of this class’s constructors converts a String of JSON data
into a JSONObject containing a Map<String, Object> that maps the JSON keys

33 "speed": 0.92,
34 "deg": 250,
35 "clouds": 0
36
37 "dt": 1442505600,
38 "temp": {
39 "day": 79.92,
40 "min": 66.72,
41 "max": 83.1,
42 "night": 70.79,
43 "eve": 81.99,
44 "morn": 66.72
45 },
46 "pressure": 1032.46,
47 "humidity": 62,
48 "weather": [{
49 "id": 800,
50 "main": "Clear",
51 "description": "sky is clear",
52 "icon": "01d"
53 }],
54 "speed": 1.99,
55 "deg": 224,
56 "clouds": 0
57
58 }

Fig. 7.3 | Sample JSON from the OpenWeatherMap.org daily forecast web service. (Part 2 of 2.)

}, { // end of first array element and beginning of second one

}] // end of second array element and end of array

ptg16518503

7.3 Technologies Overview 263

to their corresponding values. You access the JSON properties in your code via
JSONObject’s get methods, which enable you to obtain a JSON key’s value as one
of the types JSONObject, JSONArray, Object, boolean, double, int, long or
String.

• JSONArray—This class represents a JSON array and provides methods for access-
ing its elements. The "list" property in the OpenWeatherMap.org response will
be manipulated as a JSONArray.

7.3.3 HttpUrlConnection Invoking a REST Web Service
To invoke the OpenWeatherMap.org daily forecast web service, you’ll convert the web ser-
vice’s URL String into a URL object, then use the URL to open an HttpUrlConnection
(Section 7.7.5). This will make the HTTP request to the web service. To receive the JSON
response, you’ll read all the data from the HttpUrlConnection’s InputStream and place it
in a String. We’ll show you how to convert that to a JSONObject for processing.

7.3.4 Using AsyncTask to Perform Network Requests Outside the GUI
Thread
You should perform long-running operations or operations that block execution until they
complete (e.g., network, file and database access) outside the GUI thread. This helps main-
tain application responsiveness and avoid Activity Not Responding (ANR) dialogs that ap-
pear when Android thinks the GUI is not responsive. Recall from Chapter 6, however,
that updates to an app’s user interface must be performed in the GUI thread, because GUI
components are not thread safe.

To perform long-running tasks that result in updates to the GUI, Android provides
class AsyncTask (package android.os), which performs the long-running operation in one
thread and delivers the results to the GUI thread. The details of creating and manipulating
threads are handled for you by class AsyncTask, as are communicating the results from the
AsyncTask to the GUI thread. We’ll use two AsyncTask subclasses in this app—one will
invoke the OpenWeatherMap.org web service (Section 7.7.5) and the other will download
a weather-condition image (Section 7.6.5).

7.3.5 ListView, ArrayAdapter and the View-Holder Pattern
This app displays the weather data in a ListView (package android.widget)—a scrollable
list of items. ListView is a subclass of AdapterView (package android.widget), which rep-
resents a view that get’s its data from a data source via an Adapter object (package an-
droid.widget). In this app, we use a subclass of ArrayAdapter (package android.widget)
to create an object that populates the ListView using data from an ArrayList collection
object (Section 7.6). When the app updates the ArrayList with weather data, we’ll call
the ArrayAdapter’s notifyDataSetChanged method to indicate that the underlying data
in the ArrayList has changed. The adapter then notifies the ListView to update its list of
displayed items. This is known as data binding. Several types of AdapterViews can be
bound to data using an Adapter. In Chapter 9, you’ll learn how to bind database data to
a ListView. For more details on data binding in Android and several tutorials, visit

http://developer.android.com/guide/topics/ui/binding.html

http://developer.android.com/guide/topics/ui/binding.html

ptg16518503

264 Chapter 7 WeatherViewer App

View-Holder Pattern
By default, a ListView can display one or two TextViews. In this app, you’ll customize the
ListView items to display an ImageView and several TextViews in a custom layout. Creat-
ing custom ListView items involves the expensive runtime overhead of creating new ob-
jects dynamically. For large lists with complex list-item layouts and for which the user is
scrolling rapidly, this overhead can prevent smooth scrolling. To reduce this overhead, as
ListView items scroll off the screen, Android reuses those list items for the new ones that
are scrolling onto the screen. For complex item layouts, you can take advantage of the ex-
isting GUI components in the reused list items to increase a ListView’s performance.

To do this, we introduce the view-holder pattern in which you create a class (typically
named ViewHolder) containing instance variables for the views that display a ListView
item’s data. When a ListView item is created, you also create a ViewHolder object and ini-
tialize its instance variables with references to the item’s nested views. You then store that
ViewHolder object with the ListView item, which is a View. Class View’s setTag method
allows you to add any Object to a View. This Object is then available to you via the View’s
getTag method. We’ll specify as the tag the ViewHolder object that contains references to
the ListView item’s nested views.

As a new item is about to scroll onto the screen, the ListView checks whether a reus-
able view is available. If not, we inflate the new item’s view from a layout XML file, then
store references to the GUI components in a ViewHolder object. Then we’ll use setTag to
set that ViewHolder object as the tag for the ListView item. If there is a reusable item avail-
able, we’ll get that item’s tag with getTag, which will return the existing ViewHolder
object that was created previously for that ListView item. Regardless of how we obtain the
ViewHolder object, we’ll then display data in the ViewHolder’s referenced views.

7.3.6 FloatingActionButton
Users touch buttons to initiate actions. With material design in Android 5.0, Google in-
troduced the floating action button (Google refers to this as the “FAB”) as a button that
floats over the app’s user interface—that is, it has a higher material-design elevation than
the rest of the user interface—and that specifies an important action. For example, a con-
tacts app might use a floating action button containing a + icon to promote the action for
adding a new contact. In this app, we use a floating action button containing a done icon
() to enable the user to submit a city to the app and obtain that city’s forecast. With
Android 6.0 and the new Android Design Support Library, Google formalized the floating
action button as class FloatingActionButton (package android.support.design.wid-
get). In Android Studio 1.4, Google reimplemented the app templates to use material de-
sign, and most new template include a FloatingActionButton by default.

FloatingActionButton is a subclass of ImageView, which enables a FloatingAction-
Button to display an image. The material design guidelines suggest that you position a
FloatingActionButton at least 16dp from the edges of a phone device and at least 24dp
from the edges of a tablet device—the default app templates configure this for you. For
more details about how and when you should use a FloatingActionButton, visit:

https://www.google.com/design/spec/components/buttons-floating-
action-button.html

https://www.google.com/design/spec/components/buttons-floating-action-button.html
https://www.google.com/design/spec/components/buttons-floating-action-button.html

ptg16518503

7.4 Building the App’s GUI and Resource Files 265

7.3.7 TextInputLayout
In this app, you’ll use an EditText to enable the user to enter the city for which you’d like
to obtain a weather forecast. To help the user understand an EditText’s purpose, you can
provide hint text that’s displayed when the EditText is empty. Once the user starts enter-
ing text, the hint disappears—possibly causing the user to forget the EditText’s purpose.

The Android Design Support Library’s TextInputLayout (package android.sup-
port.design.widget) solves this problem. In a TextInputLayout, when the EditText
receives the focus, the TextInputLayout animates the hint text from it’s original size to a
smaller size that’s displayed above the EditText so that the user can enter data and see the
hint (Fig. 7.2). In this app, the EditText receives the focus as the app begins executing, so
the TextInputLayout immediately moves the hint above the EditText.

7.3.8 Snackbar
A Snackbar (package android.support.design.widget) is a material design component
similar in concept to a Toast. In addition to appearing on the screen for a specified time
limit, Snackbars are also interactive. Users can swipe them away to dismiss them. A Snack-
bar also can have an associated action to perform when the user touches the Snackbar. In
this app, we’ll use a Snackbar to display informational messages.

7.4 Building the App’s GUI and Resource Files
In this section, we review the new features in the GUI and resource files for the Weather
Viewer app.

7.4.1 Creating the Project
Create a new project using the template Blank Activity. In the Create New Project dialog’s
New Project step, specify:

• Application name: WeatherViewer

• Company Domain: deitel.com (or specify your own domain name)

For the remaining steps in the Create New Project dialog, use the same settings as in
Section 2.3. Follow the steps in Section 2.5.2 to add an app icon to your project. Also,
follow the steps in Section 4.4.3 to configure Java SE 7 support for the project.

7.4.2 AndroidManifest.xml
The WeatherViewer is designed for only portrait orientation. Follow the steps you per-
formed in Section 3.7 to set the android:screenOrientation property to portrait. In
addition, add the following Internet-access permission to the <manifest> element before
its nested <application> element:

This allows the app to access the Internet, which is required to invoke a web service.

Permissions That Are Automatically Granted in Android 6.0
The new Android 6.0 permissions model (introduced in Chapter 5) automatically grants
the Internet permission at installation time, because Internet access is considered a funda-

<uses-permission android:name="android.permission.INTERNET" />

ptg16518503

266 Chapter 7 WeatherViewer App

mental capability in today’s apps. In Android 6.0, the Internet permission and many oth-
ers that, according to Google, are not “great risk to the user’s privacy or security” are
granted automatically at installation time—these permissions are grouped into the catego-
ry PROTECTION_NORMAL. For a complete list of such permissions, visit:

Android does not ask users to grant such permissions, nor can users revoke such permis-
sions from the app. For this reason, your code does not need to check whether the app has
a given PROTECTION_NORMAL permission. You must still request these permissions in An-
droidManifest.xml, however, for backward compatibility with earlier Android versions.

7.4.3 strings.xml
Double click strings.xml in the res/values folder, then click the Open editor link to dis-
play the Translations Editor and create the String resources in Fig. 7.4.

7.4.4 colors.xml
The Android Studio Blank Activity template customizes the app’s primary, dark primary
and accent colors. In this app, we changed the template’s accent color (colorAccent) to a
blue shade (hexadecimal value #448AFF) in colors.xml.

7.4.5 activity_main.xml
The Android Studio Blank Activity template breaks MainActivity’s GUI into two files:

• activity_main.xml defines the activity’s Toolbar (the app bar replacement in an
AppCompatActivity) and a FloatingActionButton, which is positioned in the
bottom-right corner by default.

• content_main.xml defines the rest of MainActivity’s GUI and is included in the
activity_main.xml file via an <include> element.

https://developer.android.com/preview/features/runtime-
permissions.html#best-practices

Key Value

api_key Use your own OpenWeatherMap.org API key for this resource’s value.
web_service_url http://api.openweathermap.org/data/2.5/forecast/daily?q=

invalid_url Invalid URL

weather_condition_image A graphical representation of the weather conditions

high_temp High: %s

low_temp Low: %s

day_description %1$s: %2$s

humidity Humidity: %s

hint_text Enter city (e.g, Boston, MA, US)

read_error Unable to read weather data

connect_error Unable to connect to OpenWeatherMap.org

Fig. 7.4 | String resources used in the WeatherViewer app.

https://developer.android.com/preview/features/runtime-permissions.html#best-practices
https://developer.android.com/preview/features/runtime-permissions.html#best-practices
http://api.openweathermap.org/data/2.5/forecast/daily?q=

ptg16518503

7.4 Building the App’s GUI and Resource Files 267

Make the following changes to activity_main.xml for this app:

1. Add the id coordinatorLayout to the CoordinatorLayout—you’ll use this to
specify the layout in which a Snackbar will be displayed.

2. Add the material design done () button to the project via the Vector Asset Stu-
dio (as you did in Section 4.4.9), then specify this new icon for the predefined
FloatingActionButton’s src property.

3. Edit the layout’s XML to configure several FloatingActionButton properties
that are not available via the Properties window. Change the layout_gravity
from bottom|end to top|end so that the FloatingActionButton appears at the
top right of the user interface.

4. To move the button to overlap the EditText’s right edge, define a new dimen-
sion resource named fab_margin_top with the value 90dp. Using this dimension
resource and the fab_margin dimension resource defined by the Blank Activity
template to define the following FloatingActionButton margins:

5. Finally, remove the FloatingActionButton’s layout_margin that was pre-
defined by the Blank Activity template.

7.4.6 content_main.xml
This layout is included into activity_main.xml and defines MainActivity’s primary
GUI. Perform the following steps:

1. Remove the default TextView defined by the Blank Activity template and change
the RelativeLayout to a vertical LinearLayout.

2. Next, insert a TextInputLayout. In the layout editor’s Design view, click Custom-
View in the Custom section. In the dialog that appears, begin typing TextInput-
Layout to search the list of custom GUI components. Once the IDE highlights
TextInputLayout, click OK, then in the Component Tree, click the LinearLayout
to insert the TextInputLayout as a nested layout.

3. To add an EditText to the TextInputLayout, switch to the layout editor’s Text
view, then change the TextInputLayout element’s closing /> to >, position the
cursor to the right of the >, press Enter and type </. The IDE will auto-complete
the closing tag. Between the TextInputLayout’s starting and ending tags, type
<EditText. The IDE will show an auto-complete window with EditText select-
ed. Press Enter to insert an EditText, then set its layout_width to match_parent
and layout_height to wrap_content. In Design view, set the EditText’s id to
locationEditText, check its singleLine property’s checkbox and set its hint prop-
erty to the String resource hint_text.

4. To complete the layout, drag a ListView onto the LinearLayout in the Compo-
nent Tree. Set its layout:width to match_parent, its layout:height to 0dp, its lay-
out:weight to 1 and its id to weatherListView. Recall that the layout:height value

 android:layout_marginTop="@dimen/fab_margin_top"
 android:layout_marginEnd="@dimen/fab_margin"
 android:layout_marginBottom="@dimen/fab_margin"
 android:layout_marginStart="@dimen/fab_margin"

ptg16518503

268 Chapter 7 WeatherViewer App

0dp is recommended by the IDE for more efficient rendering when using the lay-
out:weight to determine a View’s height.

7.4.7 list_item.xml
You’ll now add the list_item.xml layout to the project and define the custom layout for
displaying weather data in a ListView item (Fig. 7.5). This layout will be inflated by the
WeatherArrayAdapter to create the user interface for new ListView items (Section 7.6.4).

Step 1: Creating the Layout File and Customizing the LinearLayout’s Orientation
Create the list_item.xml layout file by performing the following steps:

1. Right click the project’s layout folder, and select New > Layout resource file.

2. Enter list_item.xml in the File name field of the New Resource File dialog.

3. Ensure that LinearLayout is specified in the Root element field, then click OK.
The list_item.xml file will appear in the layout directory in the Project window
and will open in the layout editor.

4. Select the LinearLayout and change its orientation to horizontal—this layout
will consist of an ImageView and a GridLayout containing the other views.

Step 2: Adding the ImageView for Displaying a Weather-Condition Icon
Perform the following steps to add and configure the ImageView:

1. Drag an ImageView from the Palette onto the LinearLayout in the Component
Tree.

2. Set the id to conditionImageView.

3. Set the layout:width to 50dp—define the dimension resource image_side_length
for this value.

4. Set the layout:height to match_parent—the ImageView’s height will match the
ListView item’s height.

5. Set the contentDescription to the String resource weather_condition_image
that you created in Section 7.4.3.

6. Set the scaleType to fitCenter—the icon will fit within the ImageView’s bounds
and be centered horizontally and vertically.

Fig. 7.5 | Layout for one day’s weather displayed in a ListView item.

Horizontal LinearLayout containing an ImageView and GridLayout

Two row and three column GridLayout containing four TextViews

ptg16518503

7.5 Class Weather 269

Step 3: Adding the GridLayout for Displaying the TextViews
Perform the following steps to add and configure the GridLayout:

1. Drag a GridLayout from the Palette onto the LinearLayout in the Component
Tree.

2. Set the columnCount to 3 and the rowCount to 2.

3. Set the layout:width to 0dp—this GridLayout’s width will be determined by the
layout:weight.

4. Set the layout:height to match_parent—the GridLayout’s height will match the
ListView item’s height.

5. Set the layout:weight to 1—the GridLayout’s width will occupy all remaining
horizontal space in its parent LinearLayout.

6. Check the useDefaultMargins property to add the default spacing between the
GridLayout’s cells.

Step 4: Adding the TextViews
Perform the following steps to add and configure the four TextViews:

1. Drag a Large Text onto the GridLayout in the Component Tree and set its id to
dayTextView, its layout:column to 0 and its layout:columnSpan to 3.

2. Drag three Plain TextViews onto the GridLayout in the Component Tree and set
their ids to lowTextView, hiTextView and humidityTextView, respectively. Set
each of these TextViews’ layout:row to 1 and layout:columnWeight to 1. These
TextViews will all appear in the GridLayout’s second row and, because they all
have the same layout:columnWeight, the columns will be sized equally.

3. Set lowTextView’s layout:column to 0, hiTextView’s layout:column to 1 and
humidityTextView’s layout:column to 2.

This completes the list_item.xml layout. You do not need to change the text property
of any of the TextViews—their text will be set programmatically.

7.5 Class Weather
This app consists of three classes that are discussed in Sections 7.5–7.7:

• Class Weather (this section) represents one day’s weather data. Class MainActiv-
ity will convert the JSON weather data into an ArrayList<Weather>.

• Class WeatherArrayAdapter (Section 7.6) defines a custom ArrayAdapter sub-
class for binding the ArrayList<Weather> to the MainActivity’s ListView.
ListView items are indexed from 0 and each ListView item’s nested views are
populated with data from the Weather object at the same index in the Array-
List<Weather>.

• Class MainActivity (Section 7.7) defines the app’s user interface and the logic
for interacting with the OpenWeatherMap.org daily forecast web service and pro-
cessing the JSON response.

In this section, we focus on class Weather.

ptg16518503

270 Chapter 7 WeatherViewer App

7.5.1 package Statement, import Statements and Instance Variables
Figure 7.6 contains the package statement, import statements and class Weather’s in-
stance variables. You’ll use classes from the java.text and java.util packages (lines 5–
8) to convert the timestamp for each day’s weather into that day’s name (Monday, Tues-
day, etc.). The instance variables are declared final, because they do not need to be mod-
ified after they’re initialized. We also made them public—recall that Java Strings are
immutable, so even though the instance variables are public, their values cannot change.

7.5.2 Constructor
The Weather constructor (Fig. 7.7) initializes the class’s instance variables:

• The NumberFormat object creates Strings from numeric values. Lines 22–23
configure the object to round floating-point values to whole numbers.

• Line 25 calls our utility method convertTimeStampToDay (Section 7.5.3) to get
the String day name and initialize dayOfWeek.

• Lines 26–27 format the day’s minimum and maximum temperature values as
whole numbers using the numberFormat object. We append °F to the end of each
formatted String, as we’ll request Fahrenheit temperatures—the Unicode es-
cape sequence \u00B0 represents the degree symbol (°). The OpenWeather-
Map.org APIs also support Kelvin (the default) and Celsius temperature formats.

• Lines 28–29 get a NumberFormat for locale-specific percentage formatting, then
use it to format the humidity percentage. The web service returns this percentage
as a whole number, so we divide that by 100.0 for formatting—in the U.S. locale,
1.00 is formatted as 100%, 0.5 is formatted as 50%, etc.

• Line 30 initializes the weather condition description.

• Lines 31–32 create a URL String representing the weather condition image for
the day’s weather—this will be used to download the image.

1 // Weather.java
2 // Maintains one day’s weather information
3 package com.deitel.weatherviewer;
4
5 import java.text.NumberFormat;
6 import java.text.SimpleDateFormat;
7 import java.util.Calendar;
8 import java.util.TimeZone;
9

10 class Weather {
11 public final String dayOfWeek;
12 public final String minTemp;
13 public final String maxTemp;
14 public final String humidity;
15 public final String description;
16 public final String iconURL;
17

Fig. 7.6 | Weather class package statement, import statements and instance variables.

ptg16518503

7.5 Class Weather 271

7.5.3 Method convertTimeStampToDay
Utility method convertTimeStampToDay (Fig. 7.8) receives as its argument a long value
representing the number of seconds since January 1, 1970 GMT—the standard way time
is represented on Linux systems (Android is based on Linux). To perform the conversion:

• Line 37 gets a Calendar object for manipulating dates and times, then line 38
calls method setTimeInMillis to set the time using the timestamp argument.
The timestamp is in seconds so we multiply by 1000 to convert it to milliseconds.

• Line 39 gets the default TimeZone object, which we use to adjust the time, based
on the device’s time zone (lines 42–43).

• Line 46 creates a SimpleDateFormat that formats a Date object. The constructor
argument "EEEE" formats the Date as just the day name (Monday, Tuesday, etc.).
For a complete list of formats, visit:

• Line 47 formats and returns the day name. Calendar’s getTime method returns
a Date object containing the time. This Date is passed to the SimpleDateFormat’s
format method to get the day name.

18 // constructor
19 public Weather(long timeStamp, double minTemp, double maxTemp,
20 double humidity, String description, String iconName) {
21 // NumberFormat to format double temperatures rounded to integers
22 NumberFormat numberFormat = NumberFormat.getInstance();
23 numberFormat.setMaximumFractionDigits(0);
24
25 this.dayOfWeek = convertTimeStampToDay(timeStamp);
26 this.minTemp = numberFormat.format(minTemp) + ;
27 this.maxTemp = numberFormat.format(maxTemp) + "\u00B0F";
28 this.humidity =
29 NumberFormat.getPercentInstance().format(humidity / 100.0);
30 this.description = description;
31 this.iconURL =
32 "http://openweathermap.org/img/w/" + iconName + ".png";
33 }
34

Fig. 7.7 | Weather class constructor.

 http://developer.android.com/reference/java/text/
SimpleDateFormat.html

35 // convert timestamp to a day's name (e.g., Monday, Tuesday, ...)
36 private static String convertTimeStampToDay(long timeStamp) {
37 Calendar calendar = Calendar.getInstance(); // create Calendar
38 calendar.setTimeInMillis(timeStamp * 1000); // set time
39 TimeZone tz = TimeZone.getDefault(); // get device's time zone
40

Fig. 7.8 | Weather method convertTimeStampToDay. (Part 1 of 2.)

"\u00B0F"

http://developer.android.com/reference/java/text/SimpleDateFormat.html
http://developer.android.com/reference/java/text/SimpleDateFormat.html

ptg16518503

272 Chapter 7 WeatherViewer App

7.6 Class WeatherArrayAdapter
Class WeatherArrayAdapter defines a subclass of ArrayAdapter for binding an Array-
List<Weather> to the MainActivity’s ListView.

7.6.1 package Statement and import Statements
Figure 7.9 contains WeatherArrayAdapter’s package statement and import statements.
We’ll discuss the imported types as we encounter them.

This app’s ListView items require a custom layout. Each item contains an image (the
weather-condition icon) and text representing the day, weather description, low tempera-
ture, high temperature and humidity. To map weather data to ListView items, we extend
class ArrayAdapter (line 23) so that we can override ArrayAdapter method getView to
configure a custom layout for each ListView item.

41 // adjust time for device's time zone
42 calendar.add(Calendar.MILLISECOND,
43 tz.getOffset(calendar.getTimeInMillis()));
44
45 // SimpleDateFormat that returns the day's name
46 SimpleDateFormat dateFormatter = new SimpleDateFormat("EEEE");
47 return dateFormatter.format(calendar.getTime());
48 }
49 }

1 // WeatherArrayAdapter.java
2 // An ArrayAdapter for displaying a List<Weather>'s elements in a ListView
3 package com.deitel.weatherviewer;
4
5 import android.content.Context;
6 import android.graphics.Bitmap;
7 import android.graphics.BitmapFactory;
8 import android.os.AsyncTask;
9 import android.view.LayoutInflater;

10 import android.view.View;
11 import android.view.ViewGroup;
12 import android.widget.ArrayAdapter;
13 import android.widget.ImageView;
14 import android.widget.TextView;
15
16 import java.io.InputStream;
17 import java.net.HttpURLConnection;
18 import java.net.URL;
19 import java.util.HashMap;
20 import java.util.List;
21 import java.util.Map;
22
23 {

Fig. 7.9 | WeatherArrayAdapter class package statement and import statements.

Fig. 7.8 | Weather method convertTimeStampToDay. (Part 2 of 2.)

class WeatherArrayAdapter extends ArrayAdapter<Weather>

ptg16518503

7.6 Class WeatherArrayAdapter 273

7.6.2 Nested Class ViewHolder
Nested class ViewHolder (Fig. 7.10) defines instance variables that class WeatherArray-
Adapter accesses directly when manipulating ViewHolder objects. When a ListView item
is created, we’ll associate a new ViewHolder object with that item. If there’s an existing
ListView item that’s being reused, we’ll simply obtain that item’s ViewHolder object.

7.6.3 Instance Variable and Constructor
Figure 7.11 defines class WeatherArrayAdapter’s instance variable and constructor. We use
the instance variable bitmaps (line 34)—a Map<String, Bitmap>—to cache previously load-
ed weather-condition images, so they do not need to be re-downloaded as the user scrolls
through the weather forecast. The cached images will remain in memory until Android ter-
minates the app. The constructor (lines 37–39) simply calls the superclass’s three-argument
constructor, passing the Context (i.e., the activity in which the ListView is displayed) and
the List<Weather> (the List of data to display) as the first and third arguments. The second
superclass constructor argument represents a layout resource ID for a layout that contains a
TextView in which a ListView item’s data is displayed. The argument -1 indicates that we
use a custom layout in this app, so we can display more than just one TextView.

7.6.4 Overridden ArrayAdapter Method getView
Method getView (Fig. 7.12) is called to get the View that displays a ListView item’s data.
Overriding this method enables you to map data to a custom ListView item. The method
receives the ListView item’s position, the View (convertView) representing that List-
View item and that ListView item’s parent as arguments. By manipulating convertView,
you can customize the ListView item’s contents. Line 45 calls the inherited ArrayAdapter
method getItem to get from the List<Weather> the Weather object that will be displayed.

24 // class for reusing views as list items scroll off and onto the screen
25 {
26 ImageView conditionImageView;
27 TextView dayTextView;
28 TextView lowTextView;
29 TextView hiTextView;
30 TextView humidityTextView;
31 }
32

Fig. 7.10 | Nested class ViewHolder.

33 // stores already downloaded Bitmaps for reuse
34
35
36 // constructor to initialize superclass inherited members
37 public WeatherArrayAdapter(Context context, List<Weather> forecast) {
38
39 }
40

Fig. 7.11 | WeatherArrayAdapter class instance variable and constructor.

private static class ViewHolder

private Map<String, Bitmap> bitmaps = new HashMap<>();

super(context, -1, forecast);

ptg16518503

274 Chapter 7 WeatherViewer App

Line 47 defines the ViewHolder variable that will be set to a new ViewHolder object or an
existing one, depending on whether method getView’s convertView argument is null.

41 // creates the custom views for the ListView's items
42 @Override
43 {
44 // get Weather object for this specified ListView position
45
46
47
48
49 // check for reusable ViewHolder from a ListView item that scrolled
50 // offscreen; otherwise, create a new ViewHolder
51 if (convertView == null) { // no reusable ViewHolder, so create one
52
53 LayoutInflater inflater = LayoutInflater.from(getContext());
54 convertView =
55 inflater.inflate(R.layout.list_item, parent, false);
56 viewHolder.conditionImageView =
57 (ImageView) convertView.findViewById(R.id.conditionImageView);
58 viewHolder.dayTextView =
59 (TextView) convertView.findViewById(R.id.dayTextView);
60 viewHolder.lowTextView =
61 (TextView) convertView.findViewById(R.id.lowTextView);
62 viewHolder.hiTextView =
63 (TextView) convertView.findViewById(R.id.hiTextView);
64 viewHolder.humidityTextView =
65 (TextView) convertView.findViewById(R.id.humidityTextView);
66
67 }
68 else { // reuse existing ViewHolder stored as the list item's tag
69
70 }
71
72 // if weather condition icon already downloaded, use it;
73 // otherwise, download icon in a separate thread
74 if (bitmaps.containsKey(day.iconURL)) {
75 viewHolder.conditionImageView.setImageBitmap(
76 bitmaps.get(day.iconURL));
77 }
78 else {
79
80
81
82 }
83
84 // get other data from Weather object and place into views
85 Context context = getContext(); // for loading String resources
86 viewHolder.dayTextView.setText(context.getString(
87 R.string.day_description, day.dayOfWeek, day.description));
88 viewHolder.lowTextView.setText(
89 context.getString(R.string.low_temp, day.minTemp));

Fig. 7.12 | Overridden ArrayAdapter method getView. (Part 1 of 2.)

public View getView(int position, View convertView, ViewGroup parent)

Weather day = getItem(position);

ViewHolder viewHolder; // object that reference's list item's views

viewHolder = new ViewHolder();

convertView.setTag(viewHolder);

viewHolder = (ViewHolder) convertView.getTag();

// download and display weather condition image
new LoadImageTask(viewHolder.conditionImageView).execute(
 day.iconURL);

ptg16518503

7.6 Class WeatherArrayAdapter 275

If convertView is null, line 52 creates a new ViewHolder object to store references to
a new ListView item’s views. Next, line 53 gets the Context’s LayoutInflator, which we
use in lines 54–55 to inflate the ListView item’s layout. The first argument is the layout
to inflate (R.layout.list_item), the second is the layout’s parent ViewGroup to which
the layout’s views will be attached and the last argument is a boolean indicating whether
the views should be attached automatically. In this case, the third argument is false,
because the ListView calls method getView to obtain the item’s View, then attaches it to
the ListView. Lines 56–65 get references to the views in the newly inflated layout and set
the ViewHolder’s instance variables. Line 66 sets the new ViewHolder object as the List-
View item’s tag to store the ViewHolder with the ListView item for future use.

If convertView is not null, the ListView is reusing a ListView item that scrolled off
the screen. In this case, line 69 gets the current ListView item’s tag, which is the View-
Holder that was previously attached to that ListView item.

After creating or getting the ViewHolder, lines 74–93 set the data for the ListItem’s
views. Lines 74–82 determine if the weather-condition image was previously downloaded,
in which case the bitmaps object will contain a key for the Weather object’s iconURL. If
so, lines 75–76 get the existing Bitmap from bitmaps and set the conditionImageView’s
image. Otherwise, lines 80–81 create a new LoadImageTask (Section 7.6.5) to download
the image in a separate thread. The task’s execute method receives the iconURL and initi-
ates the task. Lines 86–93 set the Strings for the ListView item’s TextViews. Finally, line
95 returns the ListView item’s configured View.

7.6.5 AsyncTask Subclass for Downloading Images in a Separate Thread
Nested class LoadImageTask (Fig. 7.13) extends class AsyncTask and defines how to
download a weather-condition image in a separate thread, then return the image to the
GUI thread for display in the ListView item’s ImageView.

90 viewHolder.hiTextView.setText(
91 context.getString(R.string.high_temp, day.maxTemp));
92 viewHolder.humidityTextView.setText(
93 context.getString(R.string.humidity, day.humidity));
94
95 return convertView; // return completed list item to display
96 }
97

Software Engineering Observation 7.1
Every time an AsyncTask is required, you must create a new object of your AsyncTask
type—each AsyncTask can be executed only once.

98 // AsyncTask to load weather condition icons in a separate thread
99 {
100 private ImageView imageView; // displays the thumbnail

Fig. 7.13 | AsyncTask subclass for downloading images in a separate thread. (Part 1 of 2.)

Fig. 7.12 | Overridden ArrayAdapter method getView. (Part 2 of 2.)

private class LoadImageTask extends AsyncTask<String, Void, Bitmap>

ptg16518503

276 Chapter 7 WeatherViewer App

AsyncTask is a generic type that requires three type parameters:

• The first is the variable-length parameter-list type (String) for AsyncTask’s
doInBackground method, which you must overload (lines 108–136). When you
call the task’s execute method, it creates a thread in which doInBackground per-
forms the task. This app passes the weather-condition icon’s URL String as the
argument to the AsyncTask’s execute method (Fig. 7.12, lines 80–81).

101
102 // store ImageView on which to set the downloaded Bitmap
103 public LoadImageTask(ImageView imageView) {
104 this.imageView = imageView;
105 }
106
107 // load image; params[0] is the String URL representing the image
108 @Override
109 {
110 Bitmap bitmap = null;
111 HttpURLConnection connection = null;
112
113 try {
114 URL url = new URL(params[0]); // create URL for image
115
116 // open an HttpURLConnection, get its InputStream
117 // and download the image
118
119
120 try () {
121
122
123 }
124 catch (Exception e) {
125 e.printStackTrace();
126 }
127 }
128 catch (Exception e) {
129 e.printStackTrace();
130 }
131 finally {
132
133 }
134
135 return bitmap;
136 }
137
138 // set weather condition image in list item
139 @Override
140 {
141 imageView.setImageBitmap(bitmap);
142 }
143 }
144 }

Fig. 7.13 | AsyncTask subclass for downloading images in a separate thread. (Part 2 of 2.)

protected Bitmap doInBackground(String... params)

connection = (HttpURLConnection) url.openConnection();

InputStream inputStream = connection.getInputStream()
bitmap = BitmapFactory.decodeStream(inputStream);
bitmaps.put(params[0], bitmap); // cache for later use

connection.disconnect(); // close the HttpURLConnection

protected void onPostExecute(Bitmap bitmap)

ptg16518503

7.7 Class MainActivity 277

• The second is the variable-length parameter-list type for the AsyncTask’s onPro-
gressUpdate method. This method executes in the GUI thread and is used to re-
ceive intermediate updates of the specified type from a long-running task.
Overriding this method is optional. We don’t use it in this example, so we specify
type Void here and ignore this type parameter.

• The third is the type of the task’s result (Bitmap), which is passed to AsyncTask’s
onPostExecute method (139–143). This method executes in the GUI thread
and enables the ListView item’s ImageView to display the AsyncTask’s results.
The ImageView to update is specified as an argument to class LoadImageTask’s
constructor (lines 103–105) and stored in the instance variable at line 100.

A key benefit of using an AsyncTask is that it handles the details of creating threads
and executing its methods on the appropriate threads for you, so that you do not have to
interact with the threading mechanism directly.

Downloading the Weather-Condition Image
Method doInBackground uses an HttpURLConnection to download the weather-condition
image. Line 114 converts the URL String that was passed to the AsyncTask’s execute
method (params[0]) into a URL object. Next, line 118 calls class URL’s method openCon-
nection to get an HttpURLConnection—the cast is required, because the method returns
a URLConnection. Method openConnection requests the content specified by URL. Line
120 gets the HttpURLConnection’s InputStream, which we pass to BitmapFactory meth-
od decodeStream to read the image’s bytes and return a Bitmap object containing the im-
age (line 121). Line 122 caches the downloaded image in the bitmaps Map for potential
reuse and line 132 calls HttpURLConnection’s inherited method disconnect to close the
connection and release its resources. Line 135 returns the downloaded Bitmap, which is
then passed to onPostExecute—in the GUI thread—to display the image.

7.7 Class MainActivity
Class MainActivity defines the app’s user interface, the logic for interacting with the
OpenWeatherMap.org daily forecast web service and the logic for processing the JSON re-
sponse from the web service. The nested AsyncTask subclass GetWeatherTask performs
the web service request in a separate thread (Section 7.7.5). MainActivity does not re-
quire a menu in this app, so we removed the methods onCreateOptionsMenu and onOp-
tionsItemSelected from the autogenerated code.

7.7.1 package Statement and import Statements
Figure 7.14 contains MainActivity’s package statement and import statements. We’ll
discuss the imported types as we encounter them.

1 // MainActivity.java
2 // Displays a 16-dayOfWeek weather forecast for the specified city
3 package com.deitel.weatherviewer;

Fig. 7.14 | Class MainActivity’s package statement and import statements. (Part 1 of 2.)

ptg16518503

278 Chapter 7 WeatherViewer App

7.7.2 Instance Variables
Class MainActivity (Fig. 7.15) extends class AppCompatActivity and defines three in-
stance variables:

• weatherList (line 32) is an ArrayList<Weather> that stores the Weather ob-
jects—each represents one day in the daily forecast.

• weatherArrayAdapter will refer to a WeatherArrayAdapter object (Section 7.6)
that binds the weatherList to the ListView’s items.

• weatherListView will refer to MainActivity’s ListView.

4
5 import android.content.Context;
6 import android.os.AsyncTask;
7 import android.os.Bundle;
8 import android.support.design.widget.FloatingActionButton;
9 import android.support.design.widget.Snackbar;

10 import android.support.v7.app.AppCompatActivity;
11 import android.support.v7.widget.Toolbar;
12 import android.view.View;
13 import android.view.inputmethod.InputMethodManager;
14 import android.widget.EditText;
15 import android.widget.ListView;
16
17 import org.json.JSONArray;
18 import org.json.JSONException;
19 import org.json.JSONObject;
20
21 import java.io.BufferedReader;
22 import java.io.IOException;
23 import java.io.InputStreamReader;
24 import java.net.HttpURLConnection;
25 import java.net.URL;
26 import java.net.URLEncoder;
27 import java.util.ArrayList;
28 import java.util.List;
29

30 public class MainActivity extends AppCompatActivity {
31 // List of Weather objects representing the forecast
32 private List<Weather> weatherList = new ArrayList<>();
33
34 // ArrayAdapter for binding Weather objects to a ListView
35
36 private ListView weatherListView; // displays weather info
37

Fig. 7.15 | Class MainActivity’s instance variables.

Fig. 7.14 | Class MainActivity’s package statement and import statements. (Part 2 of 2.)

private WeatherArrayAdapter weatherArrayAdapter;

ptg16518503

7.7 Class MainActivity 279

7.7.3 Overridden Activity Method onCreate
Overridden method onCreate (Fig. 7.15) configures MainActivity’s GUI. Lines 41–45
were generated by Android Studio when you chose the Blank Activity template while creating
this project. These lines inflate the GUI, create the app’s Toolbar and attach the Toolbar to
the activity. Recall that an AppCompatActivity must provide its own Toolbar, because app
bars (formerly called action bars) are not supported in early versions of Android.

Lines 48–50 configure the weatherListView’s ListAdapter—in this case, an object
of the WeatherArrayAdapter subclass of ArrayAdapter. ListView method setAdapter
connects the WeatherArrayAdapter to the ListView for populating the ListView’s items.

38 // configure Toolbar, ListView and FAB
39 @Override
40 protected void onCreate(Bundle savedInstanceState) {
41 super.onCreate(savedInstanceState);
42 // autogenerated code to inflate layout and configure Toolbar
43 setContentView(R.layout.activity_main);
44 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
45 setSupportActionBar(toolbar);
46
47
48
49
50
51
52 // configure FAB to hide keyboard and initiate web service request
53 FloatingActionButton fab =
54 (FloatingActionButton) findViewById(R.id.fab);
55 {
56 @Override
57 public void onClick(View view) {
58 // get text from locationEditText and create web service URL
59 EditText locationEditText =
60 (EditText) findViewById(R.id.locationEditText);
61 URL url = createURL(locationEditText.getText().toString());
62
63 // hide keyboard and initiate a GetWeatherTask to download
64 // weather data from OpenWeatherMap.org in a separate thread
65 if (url != null) {
66 dismissKeyboard(locationEditText);
67
68
69 }
70 else {
71
72
73 }
74 }
75 });
76 }
77

Fig. 7.16 | Overridden Activity method onCreate.

// create ArrayAdapter to bind weatherList to the weatherListView
weatherListView = (ListView) findViewById(R.id.weatherListView);
weatherArrayAdapter = new WeatherArrayAdapter(this, weatherList);
weatherListView.setAdapter(weatherArrayAdapter);

fab.setOnClickListener(new View.OnClickListener()

GetWeatherTask getLocalWeatherTask = new GetWeatherTask();
getLocalWeatherTask.execute(url);

Snackbar.make(findViewById(R.id.coordinatorLayout),
R.string.invalid_url, Snackbar.LENGTH_LONG).show();

ptg16518503

280 Chapter 7 WeatherViewer App

Lines 53–75 configure the FloatingActionButton from the Blank Activity template.
The onClick listener method was autogenerated by Android Studio, but we reimple-
mented its body for this app. We get a reference to the app’s EditText then use it in line
61 to get the user’s input. We pass that to method createURL (Section 7.7.4) to create the
URL representing the web service request that will return the city’s weather forecast.

If the URL is created successfully, line 66 programmatically hides the keyboard by
calling method dismissKeyboard (Section 7.7.4). Line 67 then creates a new GetWeath-
erTask to obtain the weather forecast in a separate thread and line 68 executes the task,
passing the URL of the web service request as an argument to AsyncTask method execute.
If the URL is not created successfully, lines 71–72 create a Snackbar indicating that the
URL was invalid.

7.7.4 Methods dismissKeyboard and createURL
Figure 7.17 contains MainActivity methods dismissKeyboard and createURL. Method
dismissKeyboard (lines 79–83) is called to hide the soft keyboard when the user touches
the FloatingActionButtion to submit a city to the app. Android provides a service for
managing the keyboard programmatically. You can obtain a reference to this service (and
many other Android services) by calling the inherited Context method getSystemService
with the appropriate constant—Context.INPUT_METHOD_SERVICE in this case. This meth-
od can return objects of many different types, so you must cast its return value to the ap-
propriate type—InputMethodManager (package android.view.inputmethod). To dismiss
the keyboard, call InputMethodManager method hideSoftInputFromWindow (line 82).

78 // programmatically dismiss keyboard when user touches FAB
79 private void dismissKeyboard(View view) {
80
81
82
83 }
84
85 // create openweathermap.org web service URL using city
86 private URL createURL(String city) {
87 String apiKey = getString(R.string.api_key);
88 String baseUrl = getString(R.string.web_service_url);
89
90 try {
91 // create URL for specified city and imperial units (Fahrenheit)
92
93
94
95 }
96 catch (Exception e) {
97 e.printStackTrace();
98 }
99
100 return null; // URL was malformed
101 }
102

Fig. 7.17 | MainActivity methods dismissKeyboard and createURL.

InputMethodManager imm = (InputMethodManager) getSystemService(
 Context.INPUT_METHOD_SERVICE);
imm.hideSoftInputFromWindow(view.getWindowToken(), 0);

String urlString = baseUrl + URLEncoder.encode(city, "UTF-8") +
 "&units=imperial&cnt=16&APPID=" + apiKey;
return new URL(urlString);

ptg16518503

7.7 Class MainActivity 281

Method createURL (lines 86–101) assembles the String representation of the URL for
the web service request (lines 92–93). Then line 94 attempts to create and return a URL object
initialized with the URL String. In line 93, we add parameters to the web service query

The units parameter can be imperial (for Fahrenheit temperatures), metric (for Celsius)
or standard (for Kelvin)—standard is the default if you do not include the units param-
eter. The cnt parameter specifies how many days should be included in the forecast. The
maximum is 16 and the default is 7—providing an invalid number of days results in a sev-
en-day forecast. Finally the APPID parameter is for your OpenWeatherMap.org API key,
which we load into the app from the String resource api_key. By default, the forecast is
returned in JSON format, but you can add the mode parameter with the value XML or HTML,
to receive XML formatted data or a web page, respectively.

7.7.5 AsyncTask Subclass for Invoking a Web Service
Nested AsyncTask subclass GetWeatherTask (Fig. 7.18) performs the web service request
and processes the response in a separate thread, then passes the forecast information as a
JSONObject to the GUI thread for display.

&units=imperial&cnt=16&APPID=

103 // makes the REST web service call to get weather data and
104 // saves the data to a local HTML file
105
106 {
107
108 @Override
109 {
110 HttpURLConnection connection = null;
111
112 try {
113
114
115
116 {
117 StringBuilder builder = new StringBuilder();
118
119
120
121
122 String line;
123
124 while ((line = reader.readLine()) != null) {
125 builder.append(line);
126 }
127 }
128 catch (IOException e) {
129 Snackbar.make(findViewById(R.id.coordinatorLayout),
130 R.string.read_error, Snackbar.LENGTH_LONG).show();
131 e.printStackTrace();
132 }

Fig. 7.18 | AsyncTask subclass for invoking a web service. (Part 1 of 2.)

private class GetWeatherTask
 extends AsyncTask<URL, Void, JSONObject>

protected JSONObject doInBackground(URL... params)

connection = (HttpURLConnection) params[0].openConnection();
int response = connection.getResponseCode();

if (response == HttpURLConnection.HTTP_OK)

try (BufferedReader reader = new BufferedReader(
 new InputStreamReader(connection.getInputStream()))) {

ptg16518503

282 Chapter 7 WeatherViewer App

For class GetWeatherTask the three generic type parameters are:

• URL for the variable-length parameter-list type of AsyncTask’s doInBackground
method (lines 108–51)—the URL of the web service request is passed as the only
argument to the GetWeatherTask’s execute method.

• Void for the variable-length parameter-list type for the onProgressUpdate meth-
od—once again, we do not use this method.

• JSONObject for the type of the task’s result, which is passed to onPostExecute
(154–159) in the GUI thread to display the results.

Line 113 in doInBackground creates the HttpURLConnection that’s used to invoke the
REST web service. As in Section 7.6.5, simply opening the connection makes the request.
Line 114 gets the response code from the web server. If the response code is HttpURLCon-
nection.HTTP_OK, the REST web service was invoked properly and there is a response to
process. In this case, lines 119–126 get the HttpURLConnection’s InputStream, wrap it in
a BufferedReader, read each line of text from the response and append it to a String-
Builder. Then, line 134 converts the JSON String in the StringBuilder to a JSONOb-
ject and return it to the GUI thread. Line 147 disconnects the HttpURLConnection.

If there’s an error reading the weather data or connecting to the web service, lines
129–130, 137–138 or 142–143 display a Snackbar indicating the problem that occurred.

133
134
135 }
136 else {
137 Snackbar.make(findViewById(R.id.coordinatorLayout),
138 R.string.connect_error, Snackbar.LENGTH_LONG).show();
139 }
140 }
141 catch (Exception e) {
142 Snackbar.make(findViewById(R.id.coordinatorLayout),
143 R.string.connect_error, Snackbar.LENGTH_LONG).show();
144 e.printStackTrace();
145 }
146 finally {
147
148 }
149
150 return null;
151 }
152
153 // process JSON response and update ListView
154 @Override
155 {
156 convertJSONtoArrayList(weather); // repopulate weatherList
157
158
159 }
160 }
161

Fig. 7.18 | AsyncTask subclass for invoking a web service. (Part 2 of 2.)

return new JSONObject(builder.toString());

connection.disconnect(); // close the HttpURLConnection

protected void onPostExecute(JSONObject weather)

weatherArrayAdapter.notifyDataSetChanged(); // rebind to ListView
weatherListView.smoothScrollToPosition(0); // scroll to top

ptg16518503

7.7 Class MainActivity 283

These problems might occur if the device loses its network access in the middle of a request
or if the device does not have network access in the first place—for example, if the device
is in airplane mode.

When onPostExecute is called in the GUI thread, line 156 calls method convert-
JSONtoArrayList (Section 7.7.6) to extract the weather data from the JSONObject and
place it in the weatherList. Then line 157 calls the ArrayAdapter’s notifyDataSet-
Changed method, which causes the weatherListView to update itself with the new data.
Line 158 calls ListView method smoothScrollToPosition to reposition the ListView’s
first item to the top of the ListView—this ensures that the new weather forecast’s first day
is shown at the top.

7.7.6 Method convertJSONtoArrayList
In Section 7.3.2, we discussed the JSON returned by the OpenWeatherMap.org daily
weather forecast web service. Method convertJSONtoArrayList (Fig. 7.19) extracts this
weather data from its JSONObject argument. First, line 164 clears the weatherList of any
existing Weather objects. Processing JSON data in a JSONObject or JSONArray can result
in JSONExceptions, so lines 168–188 are placed in a try block.

162 // create Weather objects from JSONObject containing the forecast
163 private void convertJSONtoArrayList(JSONObject forecast) {
164 weatherList.clear(); // clear old weather data
165
166 try {
167 // get forecast's "list" JSONArray
168
169
170 // convert each element of list to a Weather object
171 for (int i = 0; i < ; ++i) {
172
173
174 // get the day's temperatures ("temp") JSONObject
175
176
177 // get day's "weather" JSONObject for the description and icon
178
179
180
181 // add new Weather object to weatherList
182
183
184
185
186
187
188
189 }
190 }

Fig. 7.19 | MainActivity method convertJSONtoArrayList. (Part 1 of 2.)

JSONArray list = forecast.getJSONArray("list");

list.length()
JSONObject day = list.getJSONObject(i); // get one day's data

JSONObject temperatures = day.getJSONObject("temp");

JSONObject weather =
 day.getJSONArray("weather").getJSONObject(0);

weatherList.add(new Weather(
 day.getLong("dt"), // date/time timestamp
 temperatures.getDouble("min"), // minimum temperature
 temperatures.getDouble("max"), // maximum temperature
 day.getDouble("humidity"), // percent humidity
 weather.getString("description"), // weather conditions
 weather.getString("icon"))); // icon name

ptg16518503

284 Chapter 7 WeatherViewer App

Line 168 obtains the "list" JSONArray by calling JSONObject method getJSONArray
with the name of the array property as an argument. Next, lines 171–189 create a Weather
object for every element in the JSONArray. JSONArray method length returns the array’s
number of elements (line 171).

Next, line 172 gets a JSONObject representing one day’s forecast from the JSONArray
by calling method getJSONObject, which receives an index as its argument. Line 175 gets
the "temp" JSON object, which contains the day’s temperature data. Lines 178–179 get
the "weather" JSON array, then get the array’s first element which contains the day’s
weather description and icon.

Lines 182–188 create a Weather object and add it to the weatherList. Line 183 uses
JSONObject method getLong to get the day’s timestamp ("dt"), which the Weather con-
structor converts to the day name. Lines 184–186 call JSONObject method getDouble to
get the minimum ("min") and maximum ("max") temperatures from the temperatures
object and the "humidity" percentage from the day object. Finally, lines 187–188 use
getString to get the weather description and the weather-condition icon Strings from
the weather object.

7.8 Wrap-Up
In this chapter, you built the WeatherViewer app. The app obtained a city’s 16-day weather
forecast from web services provided by OpenWeatherMap.org and displayed the forecast in
a ListView. We discussed the architectural style for implementing web services known as
Representational State Transfer (REST). You learned that apps use web standards, such as
HyperText Transfer Protocol (HTTP), to invoke RESTful web services and receive their
responses.

The OpenWeatherMap.org web service used in this app returned the forecast as a
String in JavaScript Object Notation (JSON) format. You learned that JSON is a text-
based format in which objects are represented as collections of name/value pairs. You used
the classes JSONObject and JSONArray from the org.json package to process the JSON
data.

To invoke the web service, you converted the web service’s URL String into a URL
object. You then used the URL to open an HttpUrlConnection that invoked the web service
via an HTTP request. The app read all the data from the HttpUrlConnection’s Input-
Stream and placed it in a String, then converted that String to a JSONObject for pro-
cessing. We demonstrated how to perform long-running operations outside the GUI
thread and receive their results in the GUI thread by using AsyncTask objects. This is par-
ticularly important for web-service requests, which have indeterminate response times.

You displayed the weather data in a ListView, using a subclass of ArrayAdapter to
supply the data for each ListView item. We showed how to improve a ListView’s perfor-

191 catch (JSONException e) {
192 e.printStackTrace();
193 }
194 }
195 }

Fig. 7.19 | MainActivity method convertJSONtoArrayList. (Part 2 of 2.)

ptg16518503

7.8 Wrap-Up 285

mance via the view-holder pattern by reusing existing ListView items’ views as the items
scroll off the screen.

Finally, you used several material-design features from the Android Design Support
Library’s—a TextInputLayout to keep an EditText’s hint on the screen even after the
user began entering text, a FloatingActionButton to enable the user to submit input and
a Snackbar to display an informational message to the user.

In Chapter 8, we build the Twitter® Searches app. Many mobile apps display lists of
items, just as we did in this app. In Chapter 8, you’ll do this by using a RecyclerView that
obtains data from an ArrayList<String>. For large data sets, RecyclerView is more effi-
cient than ListView. You’ll also store app data as user preferences and learn how to launch
the device’s web browser to display a web page.

ptg16518503

8
Twitter® Searches App

SharedPreferences, SharedPreferences.Editor,
Implicit Intents, Intent Choosers, RecyclerView,

RecyclerView.Adapter, RecyclerView.ViewHolder,
RecyclerView.ItemDecoration

O b j e c t i v e s
In this chapter you’ll:

■ Use SharedPreferences to store key–value pairs of data
associated with an app.

■ Use an implicit Intent to open a website in a browser.

■ Use an implicit Intent to display an intent chooser
containing a list of apps that can share text.

■ Display a scrolling list of items in a RecyclerView.

■ Use a subclass of RecyclerView.Adapter to specify a
RecyclerView’s data.

■ Use a subclass of RecyclerView.ViewHolder to
implement the view-holder pattern for a RecyclerView.

■ Use a subclass of RecyclerView.ItemDecoration to
display lines between a RecyclerView’s items.

■ Use an AlertDialog.Builder object to create an
AlertDialog that displays a list of options.

ptg16518503

8.1 Introduction 287
O

u
tl

in
e

8.1 Introduction
Twitter’s search mechanism makes it easy to follow trending topics being discussed by
Twitter’s 300+ million active monthly users1 (there are over one billion total Twitter ac-
counts2). Searches can be fine-tuned using Twitter’s search operators (Section 8.2), often
resulting in lengthy search strings that are time consuming and cumbersome to enter on a
mobile device. The Twitter® Searches app (Fig. 8.1) allows you to save your favorite search
queries with easy-to-remember short tag names (Fig. 8.1(a)) that are displayed as a scrol-
lable list. You can then scroll through your saved searches and simply touch a tag name to
quickly view tweets on a given topic (Fig. 8.1(b)). As you’ll see, the app also allows you to
share, edit and delete saved searches.

8.1 Introduction

8.2 Test-Driving the App
8.2.1 Adding a Favorite Search
8.2.2 Viewing Twitter Search Results
8.2.3 Editing a Search
8.2.4 Sharing a Search
8.2.5 Deleting a Search
8.2.6 Scrolling Through Saved Searches

8.3 Technologies Overview
8.3.1 Storing Key–Value Data in a

SharedPreferences File
8.3.2 Implicit Intents and Intent

Choosers
8.3.3 RecyclerView

8.3.4 RecyclerView.Adapter and
RecyclerView.ViewHolder

8.3.5 RecyclerView.ItemDecoration

8.3.6 Displaying a List of Options in an
AlertDialog

8.4 Building the App’s GUI and Resource
Files

8.4.1 Creating the Project
8.4.2 AndroidManifest.xml

8.4.3 Adding the RecyclerView Library
8.4.4 colors.xml

8.4.5 strings.xml

8.4.6 arrays.xml

8.4.7 dimens.xml

8.4.8 Adding the Save Button Icon
8.4.9 activity_main.xml

8.4.10 content_main.xml

8.4.11 RecyclerView Item’s Layout:
list_item.xml

8.5 MainActivity Class
8.5.1 package and import Statements
8.5.2 MainActivity Fields
8.5.3 Overriden Activity Method

onCreate

8.5.4 TextWatcher Event Handler and
Method updateSaveFAB

8.5.5 saveButton’s OnClickListener
8.5.6 addTaggedSearch Method
8.5.7 Anonymous Inner Class That

Implements
View.OnClickListener to Display
Search Results

8.5.8 Anonymous Inner Class That
Implements
View.OnLongClickListener to
Share, Edit or Delete a Search

8.5.9 shareSearch Method
8.5.10 deleteSearch Method

8.6 SearchesAdapter Subclass of
RecyclerView.Adapter

8.6.1 package Statement, import
statements, Instance Variables and
Constructor

8.6.2 Nested ViewHolder Subclass of
RecyclerView.ViewHolder

8.6.3 Overridden
RecyclerView.Adapter Methods

8.7 ItemDivider Subclass of
RecyclerView.ItemDecoration

8.8 A Note on Fabric: Twitter’s New
Mobile Development Platform

8.9 Wrap-Up

1. https://about.twitter.com/company.
2. http://www.businessinsider.com/twitter-monthly-active-users-2015-7?r=UK&IR=T.

https://about.twitter.com/company
http://www.businessinsider.com/twitter-monthly-active-users-2015-7?r=UK&IR=T

ptg16518503

288 Chapter 8 Twitter® Searches App

The app supports both portrait and landscape orientations. In the Flag Quiz app, you
did this by providing separate layouts for each orientation. In the Doodlz app, you did this
by programmatically setting the orientation. In this app, we support both orientations by
designing a GUI that dynamically adjusts, based on the current orientation.

First, you’ll test-drive the app. Then we’ll overview the technologies we used to build
it. Next, we’ll design the app’s GUI. Finally, we’ll walk through the app’s complete source
code, discussing the new features in more detail.

8.2 Test-Driving the App

Opening and Running the App
Open Android Studio and open the Twitter Searches app from the TwitterSearches fold-
er in the book’s examples folder, then execute the app in the AVD or on a device. This
builds the project and runs the app (Fig. 8.2).

8.2.1 Adding a Favorite Search
Touch the top EditText, then enter from:deitel as the search query—the from: operator
locates tweets from a specified Twitter account. Figure 8.3 shows several Twitter search

Fig. 8.1 | Twitter Searches app.

a) App with several saved searches b) App after the user touches “Deitel”

Search query that
was submitted to
Twitter—partially
cut off here due to
the length of the
query and the size of
the font Twitter uses
to display the query

Touch a tag to
perform the
corresponding
search, or touch a
tag and hold your
finger in position
(known as a long
press) to see an
AlertDialog
with options to
share, edit or delete
the search

ptg16518503

8.2 Test-Driving the App 289

operators—multiple operators can be used to construct more complex queries. A complete
list can be found at

Fig. 8.2 | Twitter Searches app when it first executes.

http://bit.ly/TwitterSearchOperators

Example Finds tweets containing

google android Implicit logical and operator—Finds tweets containing google and android.

google OR android Logical OR operator—Finds tweets containing google or android or both.

"how to program" String in quotes("")—Finds tweets containing "how to program".

android ? ? (question mark)—Finds tweets asking questions about android.

google -android - (minus sign)—Finds tweets containing google but not android.

android :) :) (happy face)—Finds positive attitude tweets containing android.

android :(:((sad face)—Finds negative attitude tweets containing android.

Fig. 8.3 | Some Twitter search operators. (Part 1 of 2.)

EditText for
tagging your search—

the hint text "Tag your
query" specifies the
EditText’s purpose

EditText for entering
 the query expression—

the hint text "Enter
Twitter search query

here" specifies the
EditText’s purpose

Saved searches are
displayed here

When the EditText
receives the focus, it’s
enclosing
TextInputLayout
animates the hint text
to a position above
the EditText

http://bit.ly/TwitterSearchOperators

ptg16518503

290 Chapter 8 Twitter® Searches App

In the bottom EditText enter Deitel as the tag for the search query (Fig. 8.4(a)).
This will be the short name displayed in a list in the app’s Tagged Searches section. Touch
the save button () to save the search—the tag “Deitel” appears in the list under the
Tagged Searches heading (Fig. 8.4(b)). When you save a search, the soft keyboard is dis-
missed so that you can see your list of saved searches (Section 8.5.5).

since:2013-10-01 Finds tweets that occurred on or after the specified date, which must be in
the form YYYY-MM-DD.

near:"New York City" Finds tweets that were sent near "New York City".

from:GoogleCode Finds tweets from the Twitter account @GoogleCode.

to:GoogleCode Finds tweets to the Twitter account @GoogleCode.

Fig. 8.4 | Entering a Twitter search.

Example Finds tweets containing

Fig. 8.3 | Some Twitter search operators. (Part 2 of 2.)

a) Entering a Twitter search and search tag b) App after saving the search and search tag

ptg16518503

8.2 Test-Driving the App 291

8.2.2 Viewing Twitter Search Results
To view the search results, touch the tag “Deitel.” This launches the device’s web browser
and passes a URL that represents the saved search to the Twitter website. Twitter obtains
the search query from the URL, then returns the tweets that match the query (if any) as a
web page. The web browser then displays the results page (Fig. 8.5). When you’re done
viewing the results, touch the back button () to return to the Twitter Searches app where
you can save more searches, and edit, delete and share previously saved searches. For the
"from:deitel" query, Twitter shows relevant user accounts containing deitel in the ac-
count name and recent tweets from those accounts.

8.2.3 Editing a Search
You may also share, edit or delete a search. To see these options, long press the search’s tag—
that is, touch the tag and keep your finger on the screen until the dialog containing Share,
Edit and Delete options appears. If you’re using an AVD, click and hold the left mouse
button on the search tag to perform a long press. When you long press “Deitel,” the Alert-

Fig. 8.5 | Viewing search results for from:deitel—we blurred one Twitter account for privacy.

Blurred for privacy

ptg16518503

292 Chapter 8 Twitter® Searches App

Dialog in Fig. 8.6(a) displays the Share, Edit and Delete options for the search tagged as
“Deitel.” If you don’t wish to perform any of these tasks, touch CANCEL.

To edit the search tagged as “Deitel,” touch the dialog’s Edit option. The app then
loads the search’s query and tag into the EditTexts for editing. Let’s restrict our search to
tweets only from the account @deitel since September 1, 2015. Add a space then

to the end of the query (Fig. 8.6(b)) in the top EditText. The -deitel* deletes from the
results tweets from accounts that begin with "deitel" but followed by other characters.
The since: operator restricts the search results to tweets that occurred on or after the spec-
ified date (in the form yyyy-mm-dd). Touch the save button () to update the saved
search, then view the updated results (Fig. 8.7) by touching Deitel in the Tagged Searches
section of the app. [Note: Changing the tag name will create a new search, which is useful
if you want to create a new query that’s based on a previously saved query.]

Fig. 8.6 | Editing a saved search.

-deitel* since:2015-06-01

a) Selecting Edit to edit an existing search b) Editing the “Deitel” saved search

ptg16518503

8.2 Test-Driving the App 293

8.2.4 Sharing a Search
Android makes it easy for you to share various types of information from an app via e-mail,
instant messaging (SMS), Facebook, Google+, Twitter and more. In this app, you can
share a favorite search by long pressing the search’s tag and selecting Share from the Alert-
Dialog that appears. This displays a so-called intent chooser (Fig. 8.8(a)), which can vary,
based on the type of content you’re sharing and the apps that can handle that content. In
this app we’re sharing text, and the intent chooser on our phone shows many apps capable
of handling text. If no apps can handle the content, the intent chooser will display a mes-
sage saying so. If only one app can handle the content, that app will launch without you
having to select which app to use from the intent chooser. For this test-drive, we touched
Gmail. Figure 8.8(b) shows the Gmail app’s Compose screen with the from address, e-mail
subject and body pre-populated. We blurred the From email address for privacy in the
screen capture.

Fig. 8.7 | Viewing the updated “Deitel” search results.

ptg16518503

294 Chapter 8 Twitter® Searches App

8.2.5 Deleting a Search
To delete a search, long press the search’s tag and select Delete from the AlertDialog that
appears. The app prompts you to confirm that you’d like to delete the search (Fig. 8.9)—
touching CANCEL returns you to the main screen without deleting the search. Touching
DELETE deletes the search.

Fig. 8.8 | Sharing a search via e-mail—the Gmail Compose window shows your email address
by default (blurred for privacy here), positions the cursor in the To field so you can enter the recipi-
ent’s email address and prepopulates the email’s subject and content.

Fig. 8.9 | AlertDialog confirming a delete.

a) Intent chooser showing share options
b) Gmail app Compose screen for an e-mail containing
the “Deitel” search

ptg16518503

8.3 Technologies Overview 295

8.2.6 Scrolling Through Saved Searches
Figure 8.10 shows the app after we’ve saved several favorite searches—six of which are cur-
rently visible. The app allows you to scroll through your favorite searches if there are more
than can be displayed on the screen at once. Unlike desktop apps, touch-screen apps do
not typically display scrollbars to indicate scrollable areas of the screen. To scroll, simply
drag or flick your finger (or the mouse in an AVD) up or down in the list of Tagged Search-
es. Also, rotate the device to landscape orientation to see that the GUI dynamically adjusts.

8.3 Technologies Overview
This section introduces the features you’ll use to build the Twitter Searches app.

8.3.1 Storing Key–Value Data in a SharedPreferences File
Each app can have SharedPreferences files containing key–value pairs associated with
the app—each key enables you to quickly look up a corresponding value. Chapter 4’s Flag
Quiz app stored the app’s preferences in a SharedPreferences file on the device. That
app’s PreferenceFragment created the SharedPreferences file for you. In this app, you’ll

Fig. 8.10 | App with more searches than can be displayed on the screen.

Drag or flick your
finger up or down

in the list of tags to
scroll through the

saved searches

ptg16518503

296 Chapter 8 Twitter® Searches App

create and manage a SharedPreferences file called searches in which you’ll store the
pairs of tags (the keys) and Twitter search queries (the values) that the user creates. Once
again, you’ll use a SharedPreferences.Editor to make changes to the tag–query pairs.

8.3.2 Implicit Intents and Intent Choosers
In Chapter 4, you used an explicit Intent to launch a specific Activity in the same app.
Android also supports implicit Intents for which you do not specify explicitly which com-
ponent should handle the Intent. In this app you’ll use two implicit Intents:

• one that launches the device’s default web browser to display Twitter search re-
sults, based on a search query embedded in a URL, and

• one that enables the user to choose from a variety of apps that can share text, so
the user can share a favorite Twitter search.

In either case, if the system cannot find an activity to handle the action, then method
startActivity throws an ActivityNotFoundException. It’s a good practice to handle
this exception to prevent your app from crashing. For more information on Intents, visit

When Android receives an implicit Intent, it finds every installed app containing an
Activity that can handle the given action and data type. If there is only one, Android
launches the appropriate Activity in that app. If there multiple apps that can handle the
Intent, Android displays a dialog from which the user can choose which app should
handle the Intent. For example, when this app’s user chooses a saved search and the device
contains only one web browser, Android immediately launches that web browser to per-
form the search and display the results. If two or more web browsers are installed, however,
the user must select which browser should perform this task.

8.3.3 RecyclerView
In Chapter 7, you used a ListView to display a weather forecast—a limited set of data.
Many mobile apps display extensive lists of information. For example, an e-mail app dis-
plays a list of e-mails, an address-book app displays a list of contacts, a news app displays
a list of headlines, etc. In each case, the user touches an item in the list to see more infor-
mation—e.g., the content of the selected e-mail, the details of the selected contact or the
text of the selected news story.

RecyclerView vs. ListView
In this app, you’ll display the scrollable list of tagged searches using a RecyclerView (pack-
age android.support.v7.widget)—a flexible, customizable view that enables you to con-
trol how an app displays a scrolling list of data. RecyclerView was designed as a better

Performance Tip 8.1
This app does not store a lot of data, so we read the saved searches from the device in Main-
Activity’s onCreate method. Lengthy data access should not be done in the UI thread;
otherwise, the app will display an Application Not Responding (ANR) dialog—typically
after five seconds of preventing the user from interacting with the app. For information on
designing responsive apps, see http://developer.android.com/training/articles/
perf-anr.html and consider using AsyncTasks as shown in Chapter 7.

http://developer.android.com/guide/components/intents-filters.html

http://developer.android.com/training/articles/perf-anr.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/training/articles/perf-anr.html

ptg16518503

8.4 Building the App’s GUI and Resource Files 297

ListView. It provides better separation of the data’s presentation from the RecyclerView’s
capabilities for reusing views (Section 8.3.4), as well as more flexible customization op-
tions (Section 8.3.5) for presenting the RecyclerView’s items. For example, a ListView’s
items are always displayed in a vertical list, whereas a RecyclerView has layout managers
that can display the items in a vertical list or in a grid. You can even define your own cus-
tom layout manager.

RecyclerView Layout Managers
For this app, the RecyclerView will use a LinearLayoutManager—a subclass of Recy-
clerView.LayoutManager—to specify that the items will appear in a vertical list, and the
list items will each display a search’s tag as a String in a TextView. You also can design
custom layouts for a RecyclerView’s items.

8.3.4 RecyclerView.Adapter and RecyclerView.ViewHolder
In Chapter 7, we used a subclass of Adapter to bind data to the ListView. We also intro-
duced the view-holder pattern for reusing views that scroll off-screen. Recall that we cre-
ated a class called ViewHolder (Section 8.6.2) that maintained references to the views in a
ListView item. The Adapter subclass stored a ViewHolder object with each ListView
item so that we could reuse the ListView item’s views. You’re not required to use this pat-
tern, but doing so is recommended to increase the ListView’s scrolling performance.

RecyclerView formalizes the view-holder pattern by making it required. You’ll create
a RecyclerView.Adapter subclass to bind the RecyclerView’s list items to data in a List
(Section 8.6). Each RecyclerView item has a corresponding object of a subclass of class
RecyclerView.ViewHolder (Section 8.6.2) that maintains references to the item’s view(s)
for reuse. The RecyclerView and its RecyclerView.Adapter work together to recycle the
view(s) for items that scroll off the screen.

8.3.5 RecyclerView.ItemDecoration
Class ListView automatically displays a horizontal line between items, but RecyclerView
does not provide any default decorations. To display horizontal lines between the items,
you’ll define a subclass of RecyclerView.ItemDecoration that draws divider lines onto
the RecyclerView (Section 8.7).

8.3.6 Displaying a List of Options in an AlertDialog
This app enables the user to long touch a RecyclerView item to display an AlertDialog
containing a list of options from which the user can select only one. You’ll use an Alert-
Dialog.Builder’s setItems method to specify a String array resource containing names
of the option to display and to set the event handler that’s called when the user touches
one of the options.

8.4 Building the App’s GUI and Resource Files
In this section, you’ll build the Twitter Searches app’s GUI and resource files. Recall from
Section 8.3.3 that RecyclerView does not define how to render its list items. So you’ll also
create a layout that defines a list item’s GUI. The RecyclerView will inflate this layout as
necessary when creating list items.

ptg16518503

298 Chapter 8 Twitter® Searches App

8.4.1 Creating the Project
Create a new project using the Blank Activity template. Fragments are not required for this
app, so when you configure the Blank Activity, do not check the Use a Fragment checkbox.
Specify the following values in the Create New Project dialog’s New Project step:

• Application name: Twitter Searches

• Company Domain: deitel.com (or specify your own domain name)

Follow the steps you used in earlier apps to add an app icon to your project. Delete the
Hello world! TextView from the content_main.xml, as it’s not used. Also, follow the steps
in Section 4.4.3 to configure Java SE 7 support for the project.

8.4.2 AndroidManifest.xml
Most users will launch this app so that they can perform an existing saved search. When
the first focusable GUI component in an activity is an EditText, Android gives that com-
ponent the focus when the activity is displayed. When an EditText receives the focus, its
corresponding virtual keyboard is displayed unless a hardware keyboard is present. In this
app, we want to prevent the soft keyboard from being displayed until the user touches one
of the app’s EditTexts. To do so, follow the steps in Section 3.7 for setting the window-
SoftInputMode option, but set its value to stateAlwaysHidden.

8.4.3 Adding the RecyclerView Library
This app uses new material-design user-interface components from the Android Design
Support Library, including the TextInputLayout, FloatingActionButton, and the Recy-
clerView. Android Studio’s new app templates are already configured with Android De-
sign Support Library support for TextInputLayout and FloatingActionButton. To use
RecyclerView, however, you must update the app’s dependencies to include the Recy-
clerView library:

1. Right click the project’s app folder and select Open Module Settings to open the
Project Structure window.

2. Open the Dependencies tab, then click the add icon () and select Library De-
pendency to open the Choose Library Dependency dialog.

3. Select the recyclerview-v7 library in the list, then click OK. The library will appear
in the Dependencies tab’s list.

4. In the Project Structure window, click OK.

The IDE updates the project’s build.gradle file—the one that appears in the
project’s Gradle Scripts node as build.gradle (Module: app)—to specify the new depen-
dency. The Gradle build tool then makes the libraries available for use in your project.

8.4.4 colors.xml
For this app, we changed the app’s default accent color (used for the EditTexts, TextIn-
putLayouts and FloatingActionButton) and added a color resource for the background
color in the Tagged Searches area of the screen. Open colors.xml and replace the hexa-

ptg16518503

8.4 Building the App’s GUI and Resource Files 299

decimal value for the colorAccent resource with #FF5722, then add a new color resource
named colorTaggedSearches with the value #BBDEFB.

8.4.5 strings.xml
Add the String resources in Fig. 8.11 to strings.xml.

8.4.6 arrays.xml
Recall from Chapter 4 that array resources are normally defined in arrays.xml. Follow
the steps in Section 4.4.6 to create an arrays.xml file, then add the resource in (Fig. 8.12)
to the file.

8.4.7 dimens.xml
Add the dimension resource shown in Fig. 8.13 to the dimens.xml file.

Key Default Value

query_prompt Enter Twitter search query here

tag_prompt Tag your query

save_description Touch this button to save your tagged search

tagged_searches Tagged Searches

search_URL http://mobile.twitter.com/search?q=

share_edit_delete_title Share, Edit or Delete the search tagged as \"%s\"

cancel Cancel

share_subject Twitter search that might interest you

share_message Check out the results of this Twitter search: %s

share_search Share Search to:

confirm_message Are you sure you want to delete the search \"%s\"?

delete Delete

Fig. 8.11 | String resources used in the Twitter Searches app.

Array resource name Values

dialog_items Share, Edit, Delete

Fig. 8.12 | String array resources defined in arrays.xml.

Resource name Value

fab_margin_top 90dp

Fig. 8.13 | Dimension resources in dimens.xml.

http://mobile.twitter.com/search?q=

ptg16518503

300 Chapter 8 Twitter® Searches App

8.4.8 Adding the Save Button Icon
Use Android Studio’s Vector Asset Studio (Section 4.4.9) to add the material design save
icon (; located in the Content group) to the project—this will be used as the Floating-
ActionButton’s icon. After adding the vector icon, go to the project’s res/drawable
folder, open the icon’s XML file and change the <path> element’s android:fillColor
value to

This will make the icon more visible against the app’s accent color, which is applied to the
FloatingActionButton by the app’s theme.

8.4.9 activity_main.xml
In this section, you’ll customize the FloatingActionButton that’s built into Android Stu-
dio’s Blank Activity app template. By default, the button contains an email icon and is po-
sitioned the bottom-right of MainActivity’s layout. You’ll replace the email icon with the
save icon that you added in Section 8.4.8 and reposition the button at the layout’s top
right. Perform the following steps:

1. Open activity_main.xml and, in Design view, select the FloatingActionBut-
ton in the Component Tree.

2. Set the contentDescription property to the save_description String resource
and set the src property to the ic_save_24dp Drawable resource.

At the time of this writing, Android Studio does not display layout properties for
components from the Android Design Support Library, so any changes to these properties
must be implemented directly in the layout’s XML. Switch to Text view, then:

3. Change the layout_gravity property’s value from "bottom|end" to "top|end"
so that the FloatingActionButton’s moves to the top of the layout.

4. Change the name of the layout_margin property to layout_marginEnd so it ap-
plies only to the FloatingActionButton’s right side (or left side for right-to-left
languages).

5. Add the following line to the FloatingActionButton’s XML element to specify
a new value for its top margin—this moves the button down from the top of the
layout over the part of the GUI defined by content_main.xml:

8.4.10 content_main.xml
The RelativeLayout in this app’s content_main.xml contains two TextInputLayouts
and a LinearLayout that, in turn, contains a TextView and a RecyclerView. Use the lay-
out editor and the Component Tree window to form the layout structure shown in
Fig. 8.14. As you create the GUI components, set their ids as specified in the figure. There
are several components in this layout that do not require ids, as the app’s Java code does
not reference them directly.

"@android:color/white"

 android:layout_marginTop="@dimen/fab_margin_top"

ptg16518503

8.4 Building the App’s GUI and Resource Files 301

Step 1: Adding the queryTextInputLayout and Its Nested EditText
Add the queryTextInputLayout and its nested EditText as follows:

1. Insert a TextInputLayout. In the layout editor’s Design view, click CustomView
in the Palette’s Custom section. In the dialog that appears, begin typing TextIn-
putLayout to search the list of custom GUI components. Once the IDE high-
lights TextInputLayout, click OK, then in the Component Tree, click the
RelativeLayout to insert the TextInputLayout as a nested layout. Select the
TextInputLayout and set its id to queryTextInputLayout.

2. To add an EditText to the TextInputLayout, switch to the layout editor’s Text
view, then change the TextInputLayout element’s closing /> to >, position the
cursor to the right of the >, press Enter and type </. The IDE will auto-complete
the closing tag. Between the TextInputLayout’s starting and ending tags, type
<EditText. The IDE will show an auto-complete window with EditText select-
ed. Press Enter to insert an EditText, then set its layout_width to match_parent
and layout_height to wrap_content.

3. Switch back to Design view, then in the Component Tree, select the EditText and
set its imeOptions to actionNext (the keyboard displays a button to jump to
the next EditText), its hint to the String resource query_prompt and check its
singleLine property’s checkbox. To view the imeOptions property, you must first
click the Show expert properties button () at the top of the Properties window.

Fig. 8.14 | Twitter Searches GUI’s components labeled with their id property values.

tagTextInputLayout

recyclerView

queryTextInputLayout

ptg16518503

302 Chapter 8 Twitter® Searches App

Step 2: Adding the tagTextInputLayout and Its Nested EditText
Using the techniques from the previous step, add the tagTextInputLayout and its nested
EditText, with the following changes:

1. After adding the TextInputLayout, set its id to tagTextInputLayout.

2. In Text view, add the following line to the tagTextInputLayout’s XML element
to indicate that this TextInputLayout should appear below the queryTextIn-
putLayout:

3. In Design view, set the String resource tag_prompt as the tagTextInputLayout
EditText’s hint.

4. Set the EditText’s imeOptions to actionDone—for this option, the keyboard dis-
plays a button to dismiss the keyboard.

Step 3: Adding the LinearLayout
Next, add a LinearLayout below the tagTextInputLayout:

1. In Design view, drag a LinearLayout (vertical) onto the RelativeLayout node in the
Component Tree.

2. In the Properties window, expand the layout:alignComponent property’s node,
then click the value field to the right of top:bottom and select tagTextInputLay-
out. This indicates that the top of the LinearLayout will be placed below the bot-
tom of the tagTextInputLayout.

Step 3: Adding the LinearLayout’s Nested TextView and RecyclerView
Finally, add the LinearLayout’s nested TextView and RecyclerView:

1. Drag a Medium Text onto the LinearLayout (vertical) node in the Component Tree,
then set its layout:width to match_parent, its text to the String resource named
tagged_searches, its gravity to center_horizontal and its textStyle to bold.
Also, expand its padding property and set top and bottom to the dimension re-
source named activity_vertical_margin.

2. Next, you’ll insert a RecyclerView. In the layout editor’s Design view, click Cus-
tomView in the Palette’s Custom section. In the dialog that appears, begin typing
RecyclerView to search the list of custom GUI components. Once the IDE high-
lights RecyclerView, click OK, then in the Component Tree, click the LinearLay-
out to insert the RecyclerView as a nested view.

3. Select the RecyclerView in the Component Tree, then set its id to recyclerView,
its layout:width to match_parent, its layout:height to 0dp and its layout:weight to
1—the RecyclerView will fill all remaining vertical space in the LinearLayout.
Also, expand the RecyclerView’s padding property and set left and right to the
dimension resource named activity_horizontal_margin.

8.4.11 RecyclerView Item’s Layout: list_item.xml
When populating a RecyclerView with data, you must specify each list item’s layout. The
list items in this app each display the tag name of one saved search. You’ll now create a

 android:layout_below="@id/queryTextInputLayout"

ptg16518503

8.5 MainActivity Class 303

new layout that contains only a TextView with the appropriate formatting. Perform the
following steps:

1. In the Project window, expand the project’s res folder, then right click the layout
folder and select New > Layout resource file to display the New Resource File dialog.

2. In the File name field, specify list_item.xml.

3. In the Root element field, specify TextView.

4. Click OK. The new list_item.xml file will appear in the res/layout folder.

The IDE opens the new layout in the layout editor. Select the TextView in the Com-
ponent Tree window, set its id to textView, then set the following properties:

• layout:width—match_parent

• layout:height—?android:attr/listPreferredItemHeight—This value is a pre-
defined Android resource that represents a list item’s preferred height for a touch-
able view.3

• gravity—center_vertical

• textAppearance—?android:attr/textAppearanceMedium—This is the pre-
defined theme resource that specifies the font size for medium-sized text.

Other Predefined Android Resources
There are many predefined Android resources like the ones used to set the height and text-
Appearance for a list item. You can view the complete list at:

To use a value in your layouts, specify it in the format

8.5 MainActivity Class
This app consists of three classes:

• Class MainActivity—which we discuss in this section—configures the app’s
GUI and defines the app’s logic.

• Class SearchesAdapter (Section 8.6) is a subclass of RecyclerView.Adapter
that defines how to bind the tag names for the user’s searches to the Recy-
clerView’s items. Class MainActivity’s onCreate method creates an object of
class SearchesAdapter as the RecyclerView’s adapter.

Look-and-Feel Observation 8.1
The Android design guidelines specify that the minimum recommended size for a touch-
able item on the screen is 48dp-by-48dp. For more information on GUI sizing and spac-
ing, see https://www.google.com/design/spec/layout/metrics-keylines.html.

3. At the time of this writing, you must set this directly in the XML due to an Android Studio bug that
erroneously appends dp to the end of this property value when you set it via the Properties window.

http://developer.android.com/reference/android/R.attr.html

?android:attr/resourceName

https://www.google.com/design/spec/layout/metrics-keylines.html
http://developer.android.com/reference/android/R.attr.html

ptg16518503

304 Chapter 8 Twitter® Searches App

• Class ItemDivider (Section 8.7) is a subclass of RecyclerView.ItemDecoration
that the RecyclerView uses to draw a horizontal line between items.

Sections 8.5.1–8.5.10 discuss class MainActivity in detail. This app does not need a
menu, so we removed the MainActivity methods onCreateOptionsMenu and onOptions-
ItemSelected, and the corresponding menu resource from the project’s res/menu folder.

8.5.1 package and import Statements
Figure 8.15 shows MainActivity’s package and import statements. We discuss the import-
ed types in Section 8.3 and as we encounter them in class MainActivity.

8.5.2 MainActivity Fields
As in the WeatherViewer app, class MainActivity (Fig. 8.16) extends AppCompatActivity
(line 32) so that it can display an app bar and use other AppCompat library features on de-
vices running past or current Android versions. The static String constant SEARCHES
(line 34) represents the name of a SharedPreferences file that will store tag–query pairs
on the device.

1 // MainActivity.java
2 // Manages your favorite Twitter searches for easy
3 // access and display in the device's web browser
4 package com.deitel.twittersearches;
5
6 import android.app.AlertDialog;
7 import android.content.Context;
8 import android.content.DialogInterface;
9

10
11
12 import android.os.Bundle;
13 import android.support.design.widget.FloatingActionButton;
14 import android.support.design.widget.TextInputLayout;
15 import android.support.v7.app.AppCompatActivity;
16
17
18
19
20
21 import android.view.View;
22 import android.view.View.OnClickListener;
23
24 import android.view.inputmethod.InputMethodManager;
25 import android.widget.EditText;
26 import android.widget.TextView;
27
28 import java.util.ArrayList;
29 import java.util.Collections;
30 import java.util.List;
31

Fig. 8.15 | MainActivity’s package and import statements.

import android.content.Intent;
import android.content.SharedPreferences;
import android.net.Uri;

import android.support.v7.widget.LinearLayoutManager;
import android.support.v7.widget.RecyclerView;
import android.support.v7.widget.Toolbar;
import android.text.Editable;
import android.text.TextWatcher;

import android.view.View.OnLongClickListener;

ptg16518503

8.5 MainActivity Class 305

Lines 36–41 define MainActivity’s instance variables:

• Lines 36–37 declare EditTexts that we’ll use to access the queries and tags that
the user enters as input.

• Line 38 declares a FloatingActionButton that the user touches to save a search.
In the Blank Activity app template, this was declared as a local variable in method
onCreate (Section 8.5.3)—we renamed it and made it an instance variable, so we
can hide the button when the EditTexts are empty and show it when the Edit-
Texts both contain input.

• Line 39 declares the SharedPreferences instance variable savedSearches,
which we’ll use to manipulate the tag–query pairs representing the user’s saved
searches.

• Line 40 declares the List<String> tags that will store the sorted tag names for
the user’s searches.

• Line 41 declares the SearchesAdapter instance variable adapter, which will refer
to the RecyclerView.Adapter subclass object that provides data to the Recy-
clerView.

8.5.3 Overriden Activity Method onCreate
Overridden Activity method onCreate (Fig. 8.17) initializes the Activity’s instance
variables and configures the GUI components. Lines 52–57 obtain references to the
queryEditText and tagEditText and, for each, register a TextWatcher (Section 8.5.4)
that’s notified when the user enters or removes characters in the EditTexts.

32 public class MainActivity extends AppCompatActivity {
33 // name of SharedPreferences XML file that stores the saved searches
34 private static final String SEARCHES = "searches";
35
36 private EditText queryEditText; // where user enters a query
37 private EditText tagEditText; // where user enters a query's tag
38 private FloatingActionButton saveFloatingActionButton; // save search
39
40 private List<String> tags; // list of tags for saved searches
41 private SearchesAdapter adapter; // for binding data to RecyclerView
42

Fig. 8.16 | MainActivity fields.

43 // configures the GUI and registers event listeners
44 @Override
45 protected void onCreate(Bundle savedInstanceState) {
46 super.onCreate(savedInstanceState);
47 setContentView(R.layout.activity_main);
48 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
49 setSupportActionBar(toolbar);

Fig. 8.17 | Overridden Activity method onCreate. (Part 1 of 2.)

private SharedPreferences savedSearches; // user's favorite searches

ptg16518503

306 Chapter 8 Twitter® Searches App

Getting a SharedPreferences Object
Line 60 uses the method getSharedPreferences (inherited indirectly from class Context)
to get a SharedPreferences object that can read existing tag–query pairs (if any) from the
searches file. The first argument indicates the name of the file that contains the data. The
second argument specifies the file’s access-level and can be set to:

• MODE_PRIVATE—Accessible only to this app. In most cases, you’ll use this option.

• MODE_WORLD_READABLE—Any app on the device can read the file.

• MODE_WORLD_WRITABLE—Any app on the device can write to the file.

These constants can be combined with the bitwise OR operator (|).

50
51 // get references to the EditTexts and add TextWatchers to them
52 queryEditText = ((TextInputLayout) findViewById(
53 R.id.queryTextInputLayout)).getEditText();
54
55 tagEditText = ((TextInputLayout) findViewById(
56 R.id.tagTextInputLayout)).getEditText();
57
58
59
60
61
62 // store the saved tags in an ArrayList then sort them
63 tags = new ArrayList<>();
64 Collections.sort(tags, String.CASE_INSENSITIVE_ORDER);
65
66 // get reference to the RecyclerView to configure it
67 RecyclerView recyclerView =
68 (RecyclerView) findViewById(R.id.recyclerView);
69
70
71
72
73
74
75
76
77
78
79
80
81 // register listener to save a new or edited search
82 saveFloatingActionButton =
83 (FloatingActionButton) findViewById(R.id.fab);
84 saveFloatingActionButton.setOnClickListener(saveButtonListener);
85 updateSaveFAB(); // hides button because EditTexts initially empty
86 }
87

Fig. 8.17 | Overridden Activity method onCreate. (Part 2 of 2.)

queryEditText.addTextChangedListener(textWatcher);

tagEditText.addTextChangedListener(textWatcher);

// get the SharedPreferences containing the user's saved searches
savedSearches = getSharedPreferences(SEARCHES, MODE_PRIVATE);

savedSearches.getAll().keySet()

// use a LinearLayoutManager to display items in a vertical list
recyclerView.setLayoutManager(new LinearLayoutManager(this));

// create RecyclerView.Adapter to bind tags to the RecyclerView
adapter = new SearchesAdapter(
 tags, itemClickListener, itemLongClickListener);
recyclerView.setAdapter(adapter);

// specify a custom ItemDecorator to draw lines between list items
recyclerView.addItemDecoration(new ItemDivider(this));

ptg16518503

8.5 MainActivity Class 307

Getting the Keys Stored in the SharedPreferences Object
We’d like to display the search tags alphabetically so the user can easily find a search to per-
form. First, line 63 gets the Strings representing the keys in the SharedPreferences object
and stores them in tags (an ArrayList<String>). SharedPreferences method getAll re-
turns all the saved searches as a Map (package java.util)—a collection of key–value pairs.
We then call method keySet on the Map object to get all the keys as a Set<String> (package
java.util)—a collection of unique values. The result is used to initialize tags.

Sorting the ArrayList of Tags
Line 64 uses Collections.sort to sort tags. Since the user could enter tags using mix-
tures of uppercase and lowercase letters, we perform a case-insensitive sort by passing the
predefined Comparator<String> object String.CASE_INSENSITIVE_ORDER as the second
argument to Collections.sort.

Configuring the RecyclerView
Lines 67–79 configure the RecyclerView:

• Lines 67–68 get a reference to the RecyclerView.

• A RecyclerView can arrange its items for display in difference ways. For this app,
we use the LinearLayoutManager to display the items in a vertical list. The Lin-
earLayoutManager’s constructor receives a Context object, which is the MainAc-
tivity in this case. Line 71 creates a LinearLayoutManager calls RecyclerView
method setLayoutManager to set the new object as the RecyclerView’s layout
manager.

• Lines 74–75 create a SearchesAdapter (Section 8.6)—a subclass of Recy-
clerView.Adapter—that will supply data for display in the RecyclerView. Line
76 calls RecyclerView method setAdapter to specify that the SearchesAdapter
will supply the RecyclerView’s data.

• Line 79 creates a subclass of RecyclerView.ItemDecoration named ItemDivider
(Section 8.7) and passes the object to RecyclerView method addItemDecora-
tion. This enables the RecyclerView to draw a horizontal line decoration be-
tween list items.

Registering a Listener for the FloatingActionButton
Lines 82–85 obtain a reference to the saveFloatingActionButton and register its On-
ClickListener. Instance variable saveButtonListener refers to an anonymous-inner-class
object that implements interface View.OnClickListener (Section 8.5.5). Line 85 calls
method updateSaveFAB (Section 8.5.4), which initially hides the saveFloatingAction-
Button, because the EditTexts are empty when onCreate is first called—the button dis-
plays only when both EditTexts contain input.

8.5.4 TextWatcher Event Handler and Method updateSaveFAB
Figure 8.18 defines an anonymous inner class that implements interface TextWatcher
(lines 89–103). The TextWatcher’s onTextChanged method calls updateSaveFAB when the
contents change in either of the app’s EditTexts. Lines 54 and 57 (Fig. 8.17) register the
instance variable textWatcher as the listener for the EditTexts events.

ptg16518503

308 Chapter 8 Twitter® Searches App

The updatedSaveFAB method (Fig. 8.18, lines 106–113) checks whether there’s text
in both EditTexts (lines 108–109). If either (or both) of the EditTexts is empty, line 110
calls the FloatingActionButton’s hide method to hide the button, because both the query
and tag are required before a tag–query pair can be saved. If both contain text, line 112 calls
the FloatingActionButton’s show method, to display the button so the user can touch it to
store a tag–query pair.

8.5.5 saveButton’s OnClickListener
Figure 8.19 defines instance variable saveButtonListener, which refers to an anonymous
inner class object that implements the interface OnClickListener. Line 84 (Fig. 8.17) reg-
istered saveButtonListener as the saveFloatingActionButton’s event handler. Lines
119–135 (Fig. 8.19) override interface OnClickListener’s onClick method. Lines 121–
122 get the Strings from the EditTexts. If the user entered a query and a tag (line 124):

• lines 126–128 hide the soft keyboard

• line 130 calls method addTaggedSearch (Section 8.5.6) to store the tag–query
pair

• lines 131–132 clear the two EditTexts, and

• line 133 calls the queryEditText’s requestFocus method to position the input
cursor in the queryEditText.

88 // hide/show saveFloatingActionButton based on EditTexts' contents
89 private final TextWatcher textWatcher = new TextWatcher() {
90 @Override
91 public void beforeTextChanged(CharSequence s, int start, int count,
92 int after) { }
93
94 // hide/show the saveFloatingActionButton after user changes input
95 @Override
96 public void (CharSequence s, int start, int before,
97 int count) {
98 updateSaveFAB();
99 }
100
101 @Override
102 public void afterTextChanged(Editable s) { }
103 };
104
105 // shows or hides the saveFloatingActionButton
106 private void updateSaveFAB() {
107 // check if there is input in both EditTexts
108 if (queryEditText.getText().toString().isEmpty() ||
109 tagEditText.getText().toString().isEmpty())
110
111 else
112
113 }
114

Fig. 8.18 | TextWatcher event handler and method updateSaveFAB.

onTextChanged

saveFloatingActionButton.hide();

saveFloatingActionButton.show();

ptg16518503

8.5 MainActivity Class 309

8.5.6 addTaggedSearch Method
The event handler in Fig. 8.19 calls method addTaggedSearch (Fig. 8.20) to add a new
search to savedSearches or to modify an existing search.

Editing a SharedPreferences Object’s Contents
Recall from Section 4.6.7 that to change a SharedPreferences object’s contents, you
must first call its edit method to obtain a SharedPreferences.Editor object (Fig. 8.20,

115 // saveButtonListener save a tag-query pair into SharedPreferences
116 private final OnClickListener saveButtonListener =
117 new OnClickListener() {
118 // add/update search if neither query nor tag is empty
119 @Override
120 public void onClick(View view) {
121 String query = queryEditText.getText().toString();
122 String tag = tagEditText.getText().toString();
123
124 if (!query.isEmpty() && !tag.isEmpty()) {
125 // hide the virtual keyboard
126 ((InputMethodManager) getSystemService(
127 Context.INPUT_METHOD_SERVICE)).hideSoftInputFromWindow(
128 view.getWindowToken(), 0);
129
130
131 queryEditText.setText(""); // clear queryEditText
132 tagEditText.setText(""); // clear tagEditText
133
134 }
135 }
136 };
137

Fig. 8.19 | Anonymous inner class that implements the saveButton’s OnClickListener to
save a new or updated search.

138 // add new search to file, then refresh all buttons
139 private void addTaggedSearch(String tag, String query) {
140
141
142
143
144
145 // if tag is new, add to and sort tags, then display updated list
146 if (!tags.contains(tag)) {
147 tags.add(tag); // add new tag
148 Collections.sort(tags, String.CASE_INSENSITIVE_ORDER);
149
150 }
151 }
152

Fig. 8.20 | MainActivity’s addTaggedSearch method.

addTaggedSearch(tag, query); // add/update the search

queryEditText.requestFocus(); // queryEditText gets focus

// get a SharedPreferences.Editor to store new tag/query pair
SharedPreferences.Editor preferencesEditor = savedSearches.edit();
preferencesEditor.putString(tag, query); // store current search
preferencesEditor.apply(); // store the updated preferences

adapter.notifyDataSetChanged(); // update tags in RecyclerView

ptg16518503

310 Chapter 8 Twitter® Searches App

line 141), which can add key–value pairs to, remove key–value pairs from, and modify the
value associated with a particular key in a SharedPreferences file. Line 142 calls Shared-
Preferences.Editor method putString to save the search’s tag (the key) and query (the
corresponding value)—if the tag already exists in the SharedPreferences this updates the
value. Line 143 commits the changes by calling SharedPreferences.Editor method
apply to make the changes to the file.

Notifying the RecyclerView.Adapter That Its Data Has Changed
When the user adds a new search, the RecyclerView should be updated to display it. Line
146 determines whether a new tag was added. If so, lines 147–148 add the new search’s
tag to tags, then sort tags. Line 149 calls the RecyclerView.Adapter’s notifyDataSet-
Changed method to indicate that the underlying data in tags has changed. As with a List-
View adapter, the RecyclerView.Adapter then notifies the RecyclerView to update its list
of displayed items.

8.5.7 Anonymous Inner Class That Implements
View.OnClickListener to Display Search Results
Figure 8.21 defines instance variable itemClickListener, which refers to an anonymous
inner-class object that implements interface OnClickListener (a nested interface of class
View). Lines 156–168 override the interface’s onClick method. The method’s argument
is the View that the user touched—in this case, the TextView that displays a search tag in
the RecyclerView.

Getting String Resources
Line 159 gets the text of the View that the user touched in the RecyclerView—this is the tag
for a search. Lines 160–161 create a String containing the Twitter search URL and the que-

153 // itemClickListener launches web browser to display search results
154 private final OnClickListener itemClickListener =
155 new OnClickListener() {
156 @Override
157 public void onClick(View view) {
158 // get query string and create a URL representing the search
159 String tag = ((TextView) view).getText().toString();
160 String urlString = +
161 ;
162
163
164
165
166
167
168 }
169 };
170

Fig. 8.21 | Anonymous inner class that implements View.OnClickListener to display search
results.

getString(R.string.search_URL)
Uri.encode(savedSearches.getString(tag, ""), "UTF-8")

// create an Intent to launch a web browser
Intent webIntent = new Intent(Intent.ACTION_VIEW,
 Uri.parse(urlString));

startActivity(webIntent); // show results in web browser

ptg16518503

8.5 MainActivity Class 311

ry to perform. Line 160 calls Activity’s inherited method getString with one argument to
get the String resource named search_URL, then we append the query String to it.

Getting Strings from a SharedPreferences Object
We append the result of line 161 to the search URL to complete the urlString. Shared-
Preferences method getString returns the query associated with the tag. If the tag does
not already exist, the second argument ("" in this case) is returned. Line 161 passes the
query to Uri method encode, which escapes any special URL characters (such as ?, /, :,
etc.) and returns a so-called URL-encoded String. Class Uri (uniform resource identifier)
of package android.net enables us to convert a URL into the format required by an In-
tent that launches the device’s web browser.4 This is important to ensure that the Twitter
web server that receives the request can parse the URL properly to obtain the search query.

Creating an Intent to Launch the Device’s Web Browser
Lines 164–165 create a new Intent, which we’ll use to launch the device’s web browser
and display the search results. In Chapter 4, you used an explicit Intent to launch another
activity in the same app. Here you’ll use an implicit Intent to launch another app. The
first argument of Intent’s constructor is a constant describing the action to perform. In-
tent.ACTION_VIEW indicates that we’d like to display a representation of the Intent’s data.
Many constants are defined in the Intent class describing actions such as searching, choos-
ing, sending and playing:

The second argument (line 165) is a Uri representing the data for which to perform the
action. Class Uri’s parse method converts a String representing a URL (uniform re-
source locator) to a Uri.

Starting an Activity for an Intent
Line 167 passes the Intent to the inherited Activity method startActivity, which starts
an Activity that can perform the specified action for the given data. In this case, because
we’ve specified to view a URI, the Intent launches the device’s web browser to display the
corresponding web page. This page shows the results of the supplied Twitter search.

8.5.8 Anonymous Inner Class That Implements
View.OnLongClickListener to Share, Edit or Delete a Search
Figure 8.22 defines instance variable itemLongClickListener, which refers to an anony-
mous inner-class object that implements interface OnLongClickListener. Lines 175–216
override interface OnLongClickListener’s onLongClick method.

4. A Uniform Resource Identifier (URI) uniquely identifies a resource on a network. One common type
of URI is a Uniform Resource Locator (URL) that identifies items on the Web, such as web pages,
image files, web service methods and more.

http://developer.android.com/reference/android/content/Intent.html

http://developer.android.com/reference/android/content/Intent.html

ptg16518503

312 Chapter 8 Twitter® Searches App

final Local Variables for Use in Anonymous Inner Classes
Line 178 assigns to final local variable tag the text of the item the user long pressed—final

is required for any local variable or method parameter used in an anonymous inner class.

171 // itemLongClickListener displays a dialog allowing the user to share
172 // edit or delete a saved search
173 private final OnLongClickListener itemLongClickListener =
174 new OnLongClickListener() {
175 @Override
176 public boolean onLongClick(View view) {
177 // get the tag that the user long touched
178 final String tag = ((TextView) view).getText().toString();
179
180 // create a new AlertDialog
181 AlertDialog.Builder builder =
182 new AlertDialog.Builder(MainActivity.this);
183
184 // set the AlertDialog's title
185 builder.setTitle(
186 getString(R.string.share_edit_delete_title, tag));
187
188 // set list of items to display and create event handler
189
190
191 @Override
192 public void onClick(DialogInterface dialog, int which) {
193 {
194 case 0: // share
195 shareSearch(tag);
196 break;
197 case 1: // edit
198 // set EditTexts to match chosen tag and query
199 tagEditText.setText(tag);
200 queryEditText.setText(
201 savedSearches.getString(tag, ""));
202 break;
203 case 2: // delete
204 deleteSearch(tag);
205 break;
206 }
207 }
208 }
209
210
211 // set the AlertDialog's negative Button
212 builder.setNegativeButton(getString(R.string.cancel), null);
213
214 builder.create().show(); // display the AlertDialog
215 return true;
216 }
217 };
218

Fig. 8.22 | Anonymous inner class that implements View.OnLongClickListener.

builder.setItems(R.array.dialog_items,
 new DialogInterface.OnClickListener() {

switch (which)

);

ptg16518503

8.5 MainActivity Class 313

AlertDialog That Displays a List of Items
Lines 181–186 create an AlertDialog.Builder and set the dialog’s title to a formatted
String (R.string.share_edit_delete_title) in which tag replaces the format specifier.
Line 186 calls Activity’s inherited method getString that receives multiple arguments—
a String resource ID representing a format String and the values that should replace the
format specifiers in the format String. In addition to buttons, an AlertDialog can display
a list of items. Lines 189–209 use AlertDialog.Builder method setItems to specify that
the dialog should display the array of Strings R.array.dialog_items and to define an
anonymous inner class object that responds when the user touches any item in the list.

Event Handler for the Dialog’s List of Items
The anonymous inner class in lines 190–208 determines which item the user selected in
the dialog’s list and performs the appropriate action. If the user selects Share, shareSearch
is called (line 195). If the user selects Edit, lines 199–201 display the search’s query and tag
in the EditTexts. If the user selects Delete, deleteSearch is called (line 204).

Configuring the Negative Button and Displaying the Dialog
Line 212 configures the dialog’s negative button. When the negative button’s event han-
dler is null, touching the negative button simply dismisses the dialog. Line 214 creates
and shows the dialog.

8.5.9 shareSearch Method
Method shareSearch (Fig. 8.23) is called when the user selects to share a search
(Fig. 8.22). Lines 222–223 create a String representing the search to share. Lines 226–
232 create and configure an Intent that allows the user to send the search URL using an
Activity that can handle the Intent.ACTION_SEND.

219 // allow user to choose an app for sharing URL of a saved search
220 private void shareSearch(String tag) {
221 // create the URL representing the search
222 String urlString = getString(R.string.search_URL) +
223 Uri.encode(savedSearches.getString(tag, ""), "UTF-8");
224
225
226
227
228
229
230
231
232
233
234
235
236
237 }
238

Fig. 8.23 | MainActivity’s shareSearch method.

// create Intent to share urlString
Intent shareIntent = new Intent();
shareIntent.setAction(Intent.ACTION_SEND);
shareIntent.putExtra(Intent.EXTRA_SUBJECT,
 getString(R.string.share_subject));
shareIntent.putExtra(Intent.EXTRA_TEXT,
 getString(R.string.share_message, urlString));
shareIntent.setType("text/plain");

// display apps that can share plain text
startActivity(Intent.createChooser(shareIntent,
 getString(R.string.share_search)));

ptg16518503

314 Chapter 8 Twitter® Searches App

Adding Extras to an Intent
An Intent includes a Bundle of extras—additional information that’s passed to the Activ-
ity that handles the Intent. For example, an e-mail Activity can receive extras represent-
ing the e-mail’s subject, CC and BCC addresses, and the body text. Lines 228–231 use
Intent method putExtra to add to the Intent’s Bundle key–value pairs representing the
extras. The method’s first argument is a String key representing the purpose of the extra
and the second argument is the corresponding extra data. Extras may be primitive type val-
ues, primitive type arrays, entire Bundle objects and more—see class Intent’s documen-
tation for a complete list of the putExtra overloads.

The extra at lines 228–229 specifies an e-mail’s subject with the String resource
R.string.share_subject. For an Activity that does not use a subject (such as sharing
on a social network), this extra is ignored. The extra at lines 230–231 represents the text
to share—a formatted String in which the urlString is substituted into the String
resource R.string.share_message. Line 232 sets the Intent’s MIME type to text/
plain—such data can be handled by any Activity capable of sending plain text messages.

Displaying an Intent Chooser
To display the intent chooser shown in Fig. 8.8(a), we pass the Intent and a String title
to Intent’s static createChooser method (lines 235–236). The intent chooser’s title is
specified by the second argument (R.string.share_search). It’s important to set this title
to remind the user to select an appropriate Activity. You cannot control the apps in-
stalled on a user’s phone or the Intent filters that can launch those apps, so it’s possible
that incompatible activities could appear in the chooser. Method createChooser returns
an Intent that we pass to startActivity to display the intent chooser.

8.5.10 deleteSearch Method
The deleteSearch method (Fig. 8.24) is called when the user long presses a search tag and
selects Delete from the dialog displayed by the code in Fig. 8.22. Before deleting the
search, the app displays an AlertDialog to confirm the delete operation. Line 243
(Fig. 8.24) sets the dialog’s title to a formatted String in which tag replaces the format
specifier in the String resource R.string.confirm_message. Line 246 configures the di-
alog’s negative button to dismiss the dialog. Lines 249–264 configure the dialog’s positive
button to remove the search. Line 252 removes the tag from the tags collection, and lines
255–258 use a SharedPreferences.Editor to remove the search from the app’s Shared-
Preferences. Line 261 then notifies the RecyclerView.Adapter that the underlying data
has changed so that the RecyclerView can update its displayed list of items.

239 // deletes a search after the user confirms the delete operation
240 private void deleteSearch(final String tag) {
241 // create a new AlertDialog and set its message
242 AlertDialog.Builder confirmBuilder = new AlertDialog.Builder(this);
243 confirmBuilder.setMessage(getString(R.string.confirm_message, tag));
244
245 // configure the negative (CANCEL) Button
246 confirmBuilder.setNegativeButton(getString(R.string.cancel), null);

Fig. 8.24 | MainActivity’s deleteSearch method. (Part 1 of 2.)

ptg16518503

8.6 SearchesAdapter Subclass of RecyclerView.Adapter 315

8.6 SearchesAdapter Subclass of
RecyclerView.Adapter
This section presents the RecyclerView.Adapter that binds the items in MainActivity’s
List<String> named tags to the app’s RecyclerView.

8.6.1 package Statement, import statements, Instance Variables and
Constructor
Figure 8.25 shows the beginning of class SearchesAdapter’s definition. The class extends
generic class RecyclerView.Adapter, using as its type argument the nested class
SearchesAdapter.ViewHolder (defined in Section 8.6.2). The instance variables in lines
17–18 maintain references to the event listeners (defined in class MainActivity) that are
registered for each RecyclerView item. The instance variable in line 21 maintains a refer-
ence to MainActivity’s List<String> that contains the tag names to display.

247
248 // configure the positive (DELETE) Button
249 confirmBuilder.setPositiveButton(getString(R.string.delete),
250 new DialogInterface.OnClickListener() {
251 public void onClick(DialogInterface dialog, int id) {
252 tags.remove(tag); // remove tag from tags
253
254 // get SharedPreferences.Editor to remove saved search
255 SharedPreferences.Editor preferencesEditor =
256 savedSearches.edit();
257 preferencesEditor.remove(tag); // remove search
258 preferencesEditor.apply(); // save the changes
259
260 // rebind tags to RecyclerView to show updated list
261
262 }
263 }
264);
265
266 confirmBuilder.create().show(); // display AlertDialog
267 }
268 }

1 // SearchesAdapter.java
2 // Subclass of RecyclerView.Adapter for binding data to RecyclerView items
3 package com.deitel.twittersearches;
4
5 import android.support.v7.widget.RecyclerView;
6 import android.view.LayoutInflater;
7 import android.view.View;

Fig. 8.25 | SearchesAdapter package statement, import statements, instance variables and
constructor. (Part 1 of 2.)

Fig. 8.24 | MainActivity’s deleteSearch method. (Part 2 of 2.)

adapter.notifyDataSetChanged();

ptg16518503

316 Chapter 8 Twitter® Searches App

8.6.2 Nested ViewHolder Subclass of RecyclerView.ViewHolder
Every item in a RecyclerView must be wrapped in its own RecyclerView.ViewHolder.
For this app, we defined a RecyclerView.ViewHolder called ViewHolder (Fig. 8.26). The
ViewHolder constructor (line 39–48) receives a View object and listeners for that View’s
OnClick and OnLongClick events. The View represents an item in the RecyclerView,
which is passed to the superclass’s constructor (line 42). Line 43 stores a reference to the
TextView for the item. Line 46 registers the TextView’s OnClickListener, which displays
the search results for that TextView’s tag. Line 47 registers the TextView’s OnLongClick-
Listener, which opens the Share, Edit or Delete dialog for that TextView’s tag. The con-
structor is called when the RecyclerView.Adapter creates a new list item method
onCreateViewHolder (Section 8.6.3).

8 import android.view.ViewGroup;
9 import android.widget.TextView;

10
11 import java.util.List;
12
13
14 {
15
16 // listeners from MainActivity that are registered for each list item
17 private final View.OnClickListener clickListener;
18 private final View.OnLongClickListener longClickListener;
19
20 // List<String> used to obtain RecyclerView items' data
21 private final List<String> tags; // search tags
22
23 // constructor
24 public SearchesAdapter(List<String> tags,
25 View.OnClickListener clickListener,
26 View.OnLongClickListener longClickListener) {
27 this.tags = tags;
28 this.clickListener = clickListener;
29 this.longClickListener = longClickListener;
30 }
31

32 // nested subclass of RecyclerView.ViewHolder used to implement
33 // the view-holder pattern in the context of a RecyclerView--the logic
34 // of recycling views that have scrolled offscreen is handled for you
35 {
36 public final TextView textView;
37

Fig. 8.26 | SearchesAdapter nested ViewHolder subclass of RecyclerView.ViewHolder.
(Part 1 of 2.)

Fig. 8.25 | SearchesAdapter package statement, import statements, instance variables and
constructor. (Part 2 of 2.)

public class SearchesAdapter
 extends RecyclerView.Adapter<SearchesAdapter.ViewHolder>

public static class ViewHolder extends RecyclerView.ViewHolder

ptg16518503

8.6 SearchesAdapter Subclass of RecyclerView.Adapter 317

8.6.3 Overridden RecyclerView.Adapter Methods
Figure 8.27 defines the overridden RecyclerView.Adapter methods onCreateViewHolder
(lines 52–61), onBindViewHolder (lines 64–67) and getItemCount (lines 70–73).

38 // configures a RecyclerView item's ViewHolder
39 public ViewHolder(View itemView,
40 View.OnClickListener clickListener,
41 View.OnLongClickListener longClickListener) {
42 super(itemView);
43 textView = (TextView) itemView.findViewById(R.id.textView);
44
45 // attach listeners to itemView
46 itemView.setOnClickListener(clickListener);
47 itemView.setOnLongClickListener(longClickListener);
48 }
49 }
50

51 // sets up new list item and its ViewHolder
52 @Override
53
54
55 // inflate the list_item layout
56 View view = LayoutInflater.from(parent.getContext()).inflate(
57 R.layout.list_item, parent, false);
58
59 // create a ViewHolder for current item
60
61 }
62
63 // sets the text of the list item to display the search tag
64 @Override
65 {
66 holder.textView.setText(tags.get(position));
67 }
68
69 // returns the number of items that adapter binds
70 @Override
71 {
72 return tags.size();
73 }
74 }

Fig. 8.27 | SearchesAdapter overridden RecyclerView.Adapter methods onCreate-
ViewHolder, onBindViewHolder and getItemCount.

Fig. 8.26 | SearchesAdapter nested ViewHolder subclass of RecyclerView.ViewHolder.
(Part 2 of 2.)

public ViewHolder onCreateViewHolder(ViewGroup parent,
 int viewType) {

return (new ViewHolder(view, clickListener, longClickListener));

public void onBindViewHolder(ViewHolder holder, int position)

public int getItemCount()

ptg16518503

318 Chapter 8 Twitter® Searches App

Overriding the onCreateViewHolder Method
The RecyclerView calls its RecyclerView.Adapter’s onCreateViewHolder method (lines
52–61) to inflate the layout for each RecyclerView item (lines 56–57) and wrap it in an
object of the RecyclerView.ViewHolder subclass named ViewHolder (line 60). This new
ViewHolder object is then returned to the RecyclerView for display.

Overriding the onBindViewHolder Method
The RecyclerView calls its RecyclerView.Adapter’s onBindViewHolder method (lines
64–67) to set the data that’s displayed for a particular RecyclerView item. The method
receives:

• an object of our custom subclass of RecyclerView.ViewHolder containing the
Views in which data will be displayed—in this case, one TextView—and

• an int representing the item’s position in the RecyclerView.

Line 66 sets the TextView’s text to the String in tags at the given position.

Overriding the getItemCount Method
The RecyclerView calls its RecyclerView.Adapter’s getItemCount method (lines 70–73)
to obtain the total number of items that that the RecyclerView needs to display—in this
case, the number of items in tags (line 72).

8.7 ItemDivider Subclass of
RecyclerView.ItemDecoration
A RecyclerView.ItemDecoration object draws decorations—such as separators between
items—on a RecyclerView. The RecyclerView.ItemDecoration subclass ItemDivider
(Fig. 8.28) draws divider lines between list items. Lines 17–18 in the constructor obtain
the predefined Android Drawable resource android.R.attr.listDivider, which is the
standard Android list-item divider used by default in ListViews.

1 // ItemDivider.java
2 // Class that defines dividers displayed between the RecyclerView items;
3 // based on Google's sample implementation at bit.ly/DividerItemDecoration
4 package com.deitel.twittersearches;
5
6 import android.content.Context;
7 import android.graphics.Canvas;
8 import android.graphics.drawable.Drawable;
9 import android.support.v7.widget.RecyclerView;

10 import android.view.View;
11
12 {
13 private final Drawable divider;
14

Fig. 8.28 | ItemDivider subclass of RecyclerView.ItemDecoration for displaying a hori-
zontal line between items in the RecyclerView. (Part 1 of 2.)

class ItemDivider extends RecyclerView.ItemDecoration

ptg16518503

8.7 ItemDivider Subclass of RecyclerView.ItemDecoration 319

Overriding the onDrawOver Method
As the user scrolls through the RecyclerView’s items, the RecyclerView’s contents are
repeatedly redrawn to display the items in their new positions on the screen. As part of this
process, the RecyclerView calls its RecyclerView.ItemDecoration’s onDrawOver method
(lines 22–44) to draw the decorations on the RecyclerView. The method receives:

• a Canvas for drawing the decorations on the RecyclerView.

• the RecyclerView object on which the Canvas draws

• the RecyclerView.State—an object that stores information passed between vari-
ous RecyclerView components. In this app, we simply pass this value to the super-
class’s onDrawOver method (line 25).

Lines 28–29 calculate the left and right x-coordinates that are used to specify the
bound’s of the Drawable that will be displayed. The left x-coordinate is determined by
calling the RecyclerView’s getPaddingLeft method, which returns the amount of padding
between the RecyclerView’s left edge and its content. The right x-coordinate is determined

15 // constructor loads built-in Android list item divider
16 public ItemDivider(Context context) {
17
18
19 }
20
21 // draws the list item dividers onto the RecyclerView
22 @Override
23
24
25 super.onDrawOver(c, parent, state);
26
27 // calculate left/right x-coordinates for all dividers
28 int left = parent.getPaddingLeft();
29 int right = parent.getWidth() - parent.getPaddingRight();
30
31 // for every item but the last, draw a line below it
32 for (int i = 0; i < parent.getChildCount() - 1; ++i) {
33 View item = parent.getChildAt(i); // get ith list item
34
35 // calculate top/bottom y-coordinates for current divider
36 int top = item.getBottom() + ((RecyclerView.LayoutParams)
37 item.getLayoutParams()).bottomMargin;
38 int bottom = top + divider.getIntrinsicHeight();
39
40 // draw the divider with the calculated bounds
41
42
43 }
44 }
45 }

Fig. 8.28 | ItemDivider subclass of RecyclerView.ItemDecoration for displaying a hori-
zontal line between items in the RecyclerView. (Part 2 of 2.)

int[] attrs = {android.R.attr.listDivider};
divider = context.obtainStyledAttributes(attrs).getDrawable(0);

public void onDrawOver(Canvas c, RecyclerView parent,
 RecyclerView.State state) {

divider.setBounds(left, top, right, bottom);
divider.draw(c);

ptg16518503

320 Chapter 8 Twitter® Searches App

by calling the RecyclerView’s getWidth method and subtracting the result of calling the
RecyclerView’s getPaddingRight method, which returns the amount of padding between
the RecyclerView’s right edge and its content.

Lines 32–43 draw the dividers on the RecyclerView’s Canvas by iterating through all
but the last item and drawing the dividers below each item. Line 33 gets and stores the cur-
rent RecyclerView item. Lines 36–37 calculate one divider’s top y-coordinate, using the
item’s bottom y-coordinate plus the item’s margin. Line 38 calculates the divider’s bottom
y-coordinate, using the top y-coordinate plus the divider’s height—returned by Drawable
method getIntrinsicHeight. Line 41 sets the divider’s bounds and line 42 draws it to the
Canvas.

8.8 A Note on Fabric: Twitter’s New Mobile
Development Platform
In Chapter 7, you used REST web services to obtain a weather forecast. Twitter provides
extensive REST web services that enable you to integrate Twitter functionality into your
apps. Using these web services requires a Twitter developer account and special authenti-
cation. The focus of this chapter is not on how to use Twitter’s web services. For this rea-
son, the app performs searches as if you enter them directly on the Twitter website in the
web browser. The Twitter website then returns the results directly to the device’s web
browser for display.

Working with the Twitter web services directly using Chapter 7’s techniques can be
challenging. Twitter recognized this and now offers Fabric—a robust mobile development
platform for Android and iOS. Fabric encapsulates the Twitter web services’s details in
libraries that you incorporate into your projects, making it easier for developers to add
Twitter capabilities to their apps. In addition, you can add mobile identity management
(called Digits; for user sign-in to websites and apps), advertising-based monetization capa-
bilities (called MoPub) and app crash reporting (called Crashlytics).

To use Fabric, sign up at

and install the Android Studio plug-in. Once installed, you simply click the plug-in’s icon
on the Android Studio toolbar and it walks you through the steps that add the Fabric li-
braries to your project. The preceding website also provides extensive Fabric documenta-
tion and tutorials.

8.9 Wrap-Up
In this chapter, you created the Twitter Searches app. You used a SharedPreferences file
to store and manipulate key–value pairs representing the user’s saved Twitter searches.

We introduced the RecyclerView (from package android.support.v7.widget)—a
flexible, customizable view that enables you to control how an app displays a scrolling list of
data. You learned that RecyclerViews support different layout managers and arranged this
app’s RecyclerView items vertically using a LinearLayoutManager—a subclass of Recy-
clerView.LayoutManager.

https://get.fabric.io/

https://get.fabric.io/

ptg16518503

8.9 Wrap-Up 321

We once again used the view-holder pattern for reusing views that scroll off-screen. You
learned that RecyclerView formalizes the view–holder pattern, making it required. You cre-
ated a subclass of RecyclerView.Adapter to bind the RecyclerView’s list items to data. You
also created a subclass of RecyclerView.ViewHolder to maintains references to each list
item’s view for reuse. To display decorations between a RecyclerView’s items, you defined
a subclass of RecyclerView.ItemDecoration to draw divider lines onto the RecyclerView.

You used two implicit Intents for which you did not specify the precise component
that should handle each Intent. You used one to launch the device’s default web browser to
display Twitter search results, based on a search query embedded in a URL, and that dis-
played an Intent chooser, enabling the user to select from a variety of apps that could share
text.

Finally, you displayed an AlertDialog containing a list of options from which the user
could select only one. You used an AlertDialog.Builder’s setItems method to specify a
String array resource containing names of the option to display and to set the event handler
that was called when the user touched one of the options.

In Chapter 9, we build the database-driven Address Book app, which provides quick
and easy access to stored contact information and the ability to add contacts, delete contacts
and edit existing contacts. You’ll learn how to dynamically swap Fragments in a GUI and
provide layouts that optimize screen real estate on phones and tablets.

ptg16518503

9
Address Book App

FragmentTransactions and the Fragment Back Stack,
SQLite, SQLiteDatabase, SQLiteOpenHelper,
ContentProvider, ContentResolver, Loader,

LoaderManager, Cursor and GUI Styles

O b j e c t i v e s
In this chapter you’ll:

■ Use FragmentTransactions and the back stack to
dynamically attach Fragments to and detach Fragments
from the GUI.

■ Use a RecyclerView to display data from a database.

■ Create and open databases with SQLiteOpenHelper.

■ Use a ContentProvider and a SQLiteDatabase
object to interact with data in a SQLite database.

■ Use a ContentResolver to invoke methods of a
ContentProvider to perform tasks with a database.

■ Use a LoaderManager and Loaders to perform database
access asynchronously outside the GUI thread.

■ Use Cursors to manipulate database query results.

■ Define styles containing common GUI attributes and
values, then apply them to multiple GUI components.

ptg16518503

323
O

u
tl

in
e 9.1 Introduction

9.2 Test-Driving the Address Book App
9.2.1 Adding a Contact
9.2.2 Viewing a Contact
9.2.3 Editing a Contact
9.2.4 Deleting a Contact

9.3 Technologies Overview
9.3.1 Displaying Fragments with Frag-

mentTransactions
9.3.2 Communicating Data Between a

Fragment and a Host Activity
9.3.3 Manipulating a SQLite Database
9.3.4 ContentProviders and Content-

Resolvers
9.3.5 Loader and LoaderManager—

Asynchronous Database Access
9.3.6 Defining Styles and Applying Them to

GUI Components
9.3.7 Specifying a TextView Background

9.4 Building the GUI and Resource Files
9.4.1 Creating the Project
9.4.2 Creating the App’s Classes
9.4.3 Add the App’s Icons
9.4.4 strings.xml
9.4.5 styles.xml
9.4.6 textview_border.xml
9.4.7 MainActivity’s Layout
9.4.8 ContactsFragment’s Layout
9.4.9 DetailFragment’s Layout

9.4.10 AddEditFragment’s Layout
9.4.11 DetailFragment’s Menu

9.5 Overview of This Chapter’s Classes
9.6 DatabaseDescription Class

9.6.1 static Fields
9.6.2 Nested Class Contact

9.7 AddressBookDatabaseHelper
Class

9.8 AddressBookContentProvider
Class

9.8.1 AddressBookContentProvider
Fields

9.8.2 Overridden Methods onCreate and
getType

9.8.3 Overridden Method query
9.8.4 Overridden Method insert
9.8.5 Overridden Method update
9.8.6 Overridden Method delete

9.9 MainActivity Class
9.9.1 Superclass, Implemented Interfaces

and Fields

9.9.2 Overridden Method onCreate
9.9.3 ContactsFragment.ContactsFrag-

mentListener Methods
9.9.4 Method displayContact
9.9.5 Method displayAddEditFragment
9.9.6 DetailFragment.DetailFragment-

Listener Methods
9.9.7 AddEditFragment.AddEditFragment-

Listener Method
9.10 ContactsFragment Class

9.10.1 Superclass and Implemented Interface
9.10.2 ContactsFragmentListener
9.10.3 Fields
9.10.4 Overridden Fragment Method on-

CreateView
9.10.5 Overridden Fragment Methods

onAttach and onDetach
9.10.6 Overridden Fragment Method

onActivityCreated
9.10.7 Method updateContactList
9.10.8 LoaderManager.LoaderCall-

backs<Cursor> Methods
9.11 ContactsAdapter Class
9.12 AddEditFragment Class

9.12.1 Superclass and Implemented Interface
9.12.2 AddEditFragmentListener
9.12.3 Fields
9.12.4 Overridden Fragment Methods

onAttach, onDetach and
onCreateView

9.12.5 TextWatcher nameChangedLis-
tener and Method updateSave-
ButtonFAB

9.12.6 View.OnClickListener save-
ContactButtonClicked and
Method saveContact

9.12.7 LoaderManager.LoaderCall-
backs<Cursor> Methods

9.13 DetailFragment Class
9.13.1 Superclass and Implemented Interface
9.13.2 DetailFragmentListener
9.13.3 Fields
9.13.4 Overridden Methods onAttach, on-

Detach and onCreateView
9.13.5 Overridden Methods onCreateOp-

tionsMenu and onOptionsItem-
Selected

9.13.6 Method deleteContact and Dia-
logFragment confirmDelete

9.13.7 LoaderManager.LoaderCall-
back<Cursor> Methods

9.14 Wrap-Up

ptg16518503

324 Chapter 9 Address Book App

9.1 Introduction
The Address Book app (Fig. 9.1) provides convenient access to contact information that’s
stored in a SQLite database on the device. You can:

• scroll through an alphabetical contact list

• view a contact’s details by touching a contact’s name in the contact list

• add new contacts

• edit or delete existing contacts.

The app provides a separate tablet layout (Fig. 9.2) that always displays the contact list in
one third of the screen and uses the screen’s remaining two thirds to display either the se-
lected contact’s data or the screen for adding and editing a contact.

Fig. 9.1 | Contact list and a selected contact’s details.

a) Contact list
b) Details displayed after the user touches Paul in the
contact list

ptg16518503

9.1 Introduction 325

This app presents several new technologies:

• You’ll dynamically add Fragments to and remove Fragments from an Activity’s
GUI using FragmentTransactions. You’ll also take advantage of the Fragment
back stack to enable back-button support, so the user can navigate backward
through the Fragments that have been displayed.

• You’ll display database data in a RecyclerView.

• You’ll create and open a database with a subclass of SQLiteOpenHelper.

• You’ll use a ContentProvider, a ContentResolver and a SQLiteDatabase object
to perform database insert, update, delete and query operations.

• You’ll use a LoaderManager and Loaders to perform database access asynchro-
nously outside the GUI thread and to receive those results in the GUI thread.

• Finally, you’ll define styles containing common GUI attributes and values, then
apply them to multiple GUI components.

First, you’ll test-drive the app. Then we’ll overview the technologies we used to build
it. Next, you’ll create the app’s GUI and resource files. Finally, we’ll present and walk
through the app’s complete source code, discussing the app’s new features in more detail.

Fig. 9.2 | Address Book running in landscape on a tablet.

a) In landscape orientation on a phone or tablet, the app bar icons are displayed with their text

ptg16518503

326 Chapter 9 Address Book App

9.2 Test-Driving the Address Book App

Opening and Running the App
Open Android Studio and open the Address Book app from the AddressBook folder in the
book’s examples folder, then execute the app in the AVD or on a device. This builds the
project and runs the app.

9.2.1 Adding a Contact
The first time you run the app, the contact list will be empty. Touch the FloatingAc-
tionButton to display the screen for adding a new entry (Fig. 9.3). The app requires each
contact to have a name, so the save () FloatingActionButton appears only when the
Name EditText is not empty. After adding the contact’s information, touch to store
the contact in the database and return to the app’s main screen. If you choose not to add
the contact, you can simply touch the device’s back button to return to the main screen.
Add more contacts if you wish. On a tablet, after adding a contact, the new contact’s de-
tails are displayed next to the contact list (Fig. 9.2). Notice that on tablets, the contact list
is always displayed.

Fig. 9.3 | Adding a contact to the database.

Touching this button
displays a Fragment
for entering a new
contact

a) Touch the FloatingActionButton to add a new contact b) Fragment for adding the contact

ptg16518503

9.2 Test-Driving the Address Book App 327

9.2.2 Viewing a Contact
On a phone or phone AVD, touch the name of the contact you just added to view that
contact’s details (as you saw in Fig. 9.1). Again, on a tablet, the details are displayed auto-
matically to the right of the contact list (Fig. 9.2).

9.2.3 Editing a Contact
While viewing the contact’s details, touch on the app bar to display a screen of Edit-
Texts that are prepopulated with the contact’s data (Fig. 9.4). Edit the data as necessary,
then touch the FloatingActionButton to store the updated contact in the database
and return to the app’s main screen. If you choose not to edit the contact, you can simply
touch the device’s back button () to return to the prior screen. On a tablet, after editing
a contact, the updated contact details are displayed to the right of the contact list.

9.2.4 Deleting a Contact
While viewing the contact’s details, touch on the app bar to delete the contact. A dialog
will ask you to confirm this action (Fig. 9.5). Touching DELETE removes the contact from
the database and the app will display the updated contact list. Touching CANCEL retains
the contact.

Fig. 9.4 | Editing a contact’s data.

Touch this icon on
the app bar to
display a Fragment
for editing the
current contact’s
data

a) Details for a contact b) Fragment for editing the contact

ptg16518503

328 Chapter 9 Address Book App

9.3 Technologies Overview
This section introduces the features you’ll use to build the Address Book app.

9.3.1 Displaying Fragments with FragmentTransactions
In earlier apps that used Fragments, you declared each Fragment in an Activity’s layout
or, for a DialogFragment, called its show method to create it. The Flag Quiz app demon-
strated how to use multiple activities to host each of the app’s Fragments on a phone de-
vice, and a single Activity to host multiple Fragments on a tablet device.

In this app, you’ll use only one Activity to host all of the app’s Fragments. On a
phone-sized device, you’ll display one Fragment at a time. On a tablet, you’ll always dis-
play the Fragment containing the contact list and display the Fragments for viewing,
adding and editing contacts as they’re needed. To do this, you’ll use the FragmentManager
and FragmentTransactions to dynamically display Fragments. In addition, you’ll use
Android’s Fragment back stack—a data structure that stores Fragments in last-in-first-out
(LIFO) order—to provide automatic support for Android’s back button (). This enables
users to go back to prior Fragments via the back button. For more information on Frag-
ments and FragmentTransactions, visit:

Fig. 9.5 | Deleting a contact from the database.

http://developer.android.com/guide/components/fragments.html

Touching this icon
to display a dialog
asking the user to
confirm the
deletion

a) Details for a contact b) Deleting the selected contact

http://developer.android.com/guide/components/fragments.html

ptg16518503

9.3 Technologies Overview 329

9.3.2 Communicating Data Between a Fragment and a Host Activity
To communicate data between Fragments and a host Activity or the Activity’s other
Fragments, it’s considered best practice to do so through the host Activity—this makes the
Fragments more reusable, because they do not refer to one another directly. Typically, each
Fragment defines an interface of callback methods that are implemented in the host Activity.
We’ll use this technique to enable this app’s MainActivity to be notified when the user:

• selects a contact to display,

• touches the contact-list Fragment’s add () FloatingActionButton,

• touches the contact details Fragment’s or actions,

• or touches to finish editing an existing contact or adding a new one.

9.3.3 Manipulating a SQLite Database
The contact information is stored in a SQLite database. According to www.sqlite.org,
SQLite is one of the world’s most widely deployed database engines. You’ll use a subclass
of SQLiteOpenHelper (package android.database.sqlite) to simplify creating the data-
base and to obtain a SQLiteDatabase object (package android.database.sqlite) for ma-
nipulating the database’s contents. Database queries are performed with Structured Query
Language (SQL). Query results are managed via a Cursor (package android.database).
For more information on SQLite in Android, visit:

9.3.4 ContentProviders and ContentResolvers
A ContentProvider (package android.provider) exposes an app’s data for use in that app
or in other apps. Android provides various built-in ContentProviders. For example, your
apps can interact with data from the Android Contacts and Calendar apps. There are also
ContentProviders for various telephony features, the media store (e.g., for images/video)
and the user dictionary (used with Android’s predictive text-input capabilities).

In addition to exposing data to other apps, ContentProviders also enable your app to
provide custom search suggestions when a user performs searches on a device and are used
to support copy-and-paste operations between apps.

In this app, we use a ContentProvider to help access the database asynchronously
outside the GUI thread—this is required when working with Loaders and the LoaderMan-
ager (introduced in Section 9.3.5). You’ll define a subclass of ContentProvider that spec-
ifies how to:

• query the database to locate a specific contact or all the contacts

• insert a new contact into the database

• update an existing contact in the database, and

• delete an existing contact from the database.

The ContentProvider will use a subclass of SQLiteOpenHelper to create the database and
to obtain SQLiteDatabase objects to perform the preceding tasks. When changes are made
to the database, the ContentProvider will notify listeners of those changes so data can be
updated in the GUI.

http://developer.android.com/guide/topics/data/data-storage.html#db

http://www.sqlite.org
http://developer.android.com/guide/topics/data/data-storage.html#db

ptg16518503

330 Chapter 9 Address Book App

Uris
The ContentProvider will define Uris that help determine the tasks to perform. For ex-
ample, in this app the ContentProvider’s query method is used for two different que-
ries—one that returns a Cursor for a single contact and one that returns a Cursor for the
names of all contacts in the database.

ContentResolver
To invoke the ContentProvider’s query, insert, update and delete capabilities, we’ll use
the corresponding methods of the Activity’s built-in ContentResolver (package an-
droid.content). The ContentProvider and ContentResolver handle communication for
you—including between apps if your ContentProvider exposes its data to other apps. As
you’ll see, the ContentResolver’s methods receive as their first argument a Uri that specifies
the ContentProvider to access. Each ContentResolver method invokes the corresponding
method of the ContentProvider, which uses the Uri to help determine the task to perform.
For more information on ContentProviders and ContentResolvers, see:

9.3.5 Loader and LoaderManager—Asynchronous Database Access
As we’ve stated previously, long-running operations or operations that block execution un-
til they complete (e.g., file and database access) should be performed outside the GUI
thread. This helps maintain application responsiveness and avoid Activity Not Respond-
ing (ANR) dialogs that appear when Android determines that the GUI is not responsive.
Loaders and the LoaderManager help you perform asynchronous data access from any Ac-
tivity or Fragment.

Loaders
A Loader (package android.content) performs asynchronous data access. When interact-
ing with a ContentProvider to load and manipulate data, you’ll typically use a Cursor-
Loader—a subclass of AsyncTaskLoader that uses an AsyncTask to perform the data access
in a separate thread. Loaders also:

• Watch for changes to the corresponding data source and make the updated data
available to the corresponding Activity or Fragment.

• Reconnect to the last Loader’s Cursor, rather than perform a new query, when a
configuration change occurs.

LoaderManager and LoaderManager.LoaderCallbacks
An Activity’s or Fragment’s Loaders are created and managed by its LoaderManager
(package android.app), which ties each Loader’s lifecycle to its Activity’s or Fragment’s
lifecycle. In addition, a LoaderManager invokes methods of the LoaderManager.Loader-
Callbacks interface to notify an Activity or Fragment when a Loader

• should be created,

• finishes loading its data, or

• is reset and the data is no longer available.

http://developer.android.com/guide/topics/providers/content-
providers.html

http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html

ptg16518503

9.4 Building the GUI and Resource Files 331

You’ll use Loaders and LoaderManagers in several of this app’s Fragment subclasses. For
more information about Loaders and LoaderManagers, see:

9.3.6 Defining Styles and Applying Them to GUI Components
You can define common GUI component attribute–value pairs as style resources
(Section 9.4.5). You can then apply the styles to all components that share those values
(Section 9.4.9) by using the style attribute. Any subsequent changes you make to a style
are automatically applied to all GUI components that use it. We use this to style the Tex-
tViews that display a contact’s information. For more information on styles, visit:

9.3.7 Specifying a TextView Background
By default TextViews do not have a border. To define one, you can specify a Drawable as
the value for the TextView’s android:background attribute. The Drawable could be an
image, but in this app you’ll define a Drawable as a shape in a resource file (Section 9.4.6).
Like an image, the resource file for such a Drawable is defined in one (or more) of the app’s
drawable folders. For more information on drawable resources, visit:

9.4 Building the GUI and Resource Files
In this section, you’ll create the Address Book app’s additional Java source-code files, re-
source files and GUI layout files.

9.4.1 Creating the Project
Create a new project using the Blank Activity template. When configuring the project,
check the Use a Fragment checkbox. Specify the following values in the Create New Project
dialog’s New Project step:

• Application name: Address Book

• Company Domain: deitel.com (or specify your own domain name)

Follow the steps you used in earlier apps to add an app icon to your project. Follow the
steps in Section 4.4.3 to configure Java SE 7 support for the project. Follow the steps in
Section 8.4.3 to add the RecyclerView library to this project. In colors.xml, change the
colorAccent color’s value to #FF4081.

9.4.2 Creating the App’s Classes
When you create this project, Android Studio defines the classes MainActivity and Main-
ActivityFragment for you. In this app, we renamed MainActivityFragment as Con-
tactsFragment. To do so:

1. Open class MainActivityFragment in the editor.

http://developer.android.com/guide/components/loaders.html

http://developer.android.com/guide/topics/ui/themes.html

http://developer.android.com/guide/topics/resources/drawable-
resource.html

http://developer.android.com/guide/components/loaders.html
http://developer.android.com/guide/topics/ui/themes.html
http://developer.android.com/guide/topics/resources/drawable-resource.html
http://developer.android.com/guide/topics/resources/drawable-resource.html

ptg16518503

332 Chapter 9 Address Book App

2. Right click the class name and select Refactor > Rename…. The IDE highlights
the class name for editing.

3. Type ContactsFragment and press Enter. The IDE renames the class and its con-
structor, and changes class’s file name.

Package com.deitel.addressbook
This app consists of seven additional classes that you must add to the project (File > New >
Java Class). The additional classes in package com.deitel.addressbook are:

• Class ContactsAdapter is a subclass of RecyclerView.Adapter that supplies data
to the ContactsFragment’s RecyclerView.

• Class AddEditFragment is a subclass of Fragment that provides a GUI for adding
a new contact or editing an existing one.

• Class DetailFragment is a subclass of Fragment that displays one contact’s data
and provides menu items for editing and deleting that contact.

• Class ItemDivider is a subclass of RecyclerView.ItemDecoration that the Con-
tactsFragment’s RecyclerView uses to draw a horizontal line between items.
This class is identical to the one in Section 8.7, so you can simply copy this class
from the Twitter Searches app’s project and paste it into the app > java > com.de-
itel.addressbook node in the Project window.

Package com.deitel.addressbook.data
This class also defines a nested package named com.deitel.addressbook.data that con-
tains the classes used to manipulate this app’s database. To create the package:

1. In the Project window, right click the package com.deitel.addressbook and se-
lect New > Package.

2. Type data as the new package name to create the com.deitel.addressbook.da-
ta package.

Next add the following classes to the com.deitel.addressbook.data package:

• Class DatabaseDescription describes the database’s contacts table.

• Class AddressBookDatabaseHelper is a subclass of SQLiteOpenHelper that cre-
ates the database and is used to access the database.

• Class AddressBookContentProvider is a subclass of ContentProvider that de-
fines how to manipulate the database. To create this class, use New > Other > Con-
tent Provider. For URI authorities specify com.deitel.addressbook.data and
uncheck the Exported checkbox, then click Finish. Unchecking Exported indi-
cates that this ContentProvider is for use only in this app. The IDE defines a
subclass of ContentProvider and overrides its required methods. In addition, the
IDE declares the ContentProvider AndroidManifest.xml as a <provider> ele-
ment nested in the <application> element. This is required to register the Con-
tentProvider with the Android operating system—not only for use in this app,
but for use in other apps (when the ContentProvider is exported).

We overview all of the classes in Section 9.5 and discuss their details in Sections 9.6–9.13.

ptg16518503

9.4 Building the GUI and Resource Files 333

9.4.3 Add the App’s Icons
Use Android Studio’s Vector Asset Studio (Section 4.4.9) to add the material design save
(), add (), edit () and delete () icons to the project—this will be used as the
FloatingActionButton’s icon. After adding the vector icons, go to the project’s res/
drawable folder, open each icon’s XML file and change the <path> element’s
android:fillColor to

9.4.4 strings.xml
Figure 9.6 shows this app’s String resource names and corresponding values. Double
click strings.xml in the res/values folder to display the resource editor for creating
these String resources.

"@android:color/white"

Resource name Value

menuitem_edit Edit

menuitem_delete Delete

hint_name_required Name (Required)

hint_email E-Mail

hint_phone Phone

hint_street Street

hint_city City

hint_state State

hint_zip Zip

label_name Name:

label_email E-Mail:

label_phone Phone:

label_street Street:

label_city City:

label_state State:

label_zip Zip:

confirm_title Are You Sure?

confirm_message This will permanently delete the contact

button_cancel Cancel

button_delete Delete

contact_added Contact added successfully

contact_not_added Contact was not added due to an error

contact_updated Contact updated

contact_not_updated Contact was not updated due to an error

Fig. 9.6 | String resources used in the Address Book app. (Part 1 of 2.)

ptg16518503

334 Chapter 9 Address Book App

9.4.5 styles.xml
In this section, you’ll define the styles for the DetailFragment’s TextViews that display a
contact’s information (Section 9.4.9). Like other resources, style resources are placed in
the app’s res/values folder. When you create a project, the IDE creates a styles.xml file
containing predefined styles. Each new style you create specifies a name that’s used to ap-
ply that style to GUI components and one or more items specifying property values to ap-
ply. To create the new styles, in the app’s res/values folder, open the styles.xml file
then add the code in Fig. 9.7 before the file’s closing </resources> tag. When you’re
done, save and close styles.xml.

Lines 1–5 define a new style named ContactLabelTextView that defines values for
the layout properties layout_width, layout_height and layout_gravity. You’ll apply
this style to the DetailFragment’s TextViews displayed to the left of each piece of a con-
tact’s information. Each new style consists of a style element containing item elements.
The style’s name is used to apply it. An item element’s name specifies the property to set
and its value is assigned to that property when the style is applied to a view. Lines 7–13
define another new style named ContactTextView that will be applied to the Detail-
Fragment’s TextViews that display the contact’s information. Line 12 sets the property
android:background to the drawable resource defined in Section 9.4.6.

invalid_query_uri Invalid query Uri:

invalid_insert_uri Invalid insert Uri:

invalid_update_uri Invalid update Uri:

invalid_delete_uri Invalid delete Uri:

insert_failed Insert failed: s

1
2
3 <item name="android:layout_height">wrap_content</item>
4 <item name="android:layout_gravity">right|center_vertical</item>
5 </style>
6
7
8 <item name="android:layout_width">wrap_content</item>
9 <item name="android:layout_height">wrap_content</item>

10 <item name="android:layout_gravity">fill_horizontal</item>
11 <item name="android:textSize">16sp</item>
12 <item name="android:background">@drawable/textview_border</item>
13 </style>

Fig. 9.7 | New styles for formatting the DetailFragment’s TextViews.

Resource name Value

Fig. 9.6 | String resources used in the Address Book app. (Part 2 of 2.)

<style name="ContactLabelTextView">
<item name="android:layout_width">wrap_content</item>

<style name="ContactTextView">

ptg16518503

9.4 Building the GUI and Resource Files 335

9.4.6 textview_border.xml
The style ContactTextView that you created in the preceding section defines the appear-
ance of the TextViews that are used to display a contact’s details. You specified a Drawable
(i.e., an image or graphic) named @drawable/textview_border as the value for the Text-
View’s android:background attribute. In this section, you’ll define that Drawable in the
app’s res/drawable folder. To define the Drawable:

1. Right click the res/drawable folder and select New > Drawable resource file.

2. Specify textview_border.xml as the File name and click OK.

3. Replace the file’s contents with the XML code in Fig. 9.8.

The shape element’s android:shape attribute (line 3) can have the value "rect-
angle" (used in this example), "oval", "line" or "ring". The corners element (line 4)
specifies the rectangle’s corner radius, which rounds the corners. The stroke element (line
5) defines the rectangle’s line width and line color. The padding element (lines 6–7) spec-
ifies the spacing around the content in the element to which this Drawable is applied. You
must specify the top, left, bottom and right padding amounts separately. The complete
details of defining shapes can be viewed at:

9.4.7 MainActivity’s Layout
By default, MainActivity’s layout contains a FloatingActionButton and includes the
layout file content_main.xml. In this app, we provide FloatingActionButtons as needed
in the app’s Fragments. For this reason, open activity_main.xml in the res/layout fold-
er and remove the predefined FloatingActionButton. Also, set the CoordinatorLayout’s
id to coordinatorLayout—we use this when displaying SnackBars. Remove the code that
configures the FloatingActionButton from MainActivity’s onCreate method.

Phone Layout: content_main.xml
In this app, you’ll provide two content_main.xml layouts to be included into MainActiv-
ity—one for phone-sized devices and one for tablet-sized devices. For the phone layout,
open content_main.xml in the res/layout folder and replace its contents with the XML
in Fig. 9.9. MainActivity dynamically displays the app’s Fragments in the FrameLayout
named fragmentContainer. This layout fills the available space in MainActivity’s layout
with 16dp padding on all sides. The app:layout_behavior property (line 20) is used by

1 <?xml version="1.0" encoding="utf-8"?>
2 <shape xmlns:android="http://schemas.android.com/apk/res/android"
3 android:shape="rectangle">
4 <corners android:radius="5dp"/>
5 <stroke android:width="1dp" android:color="#555"/>
6 <padding android:top="10dp" android:left="10dp" android:bottom="10dp"
7 android:right="10dp"/>
8 </shape>

Fig. 9.8 | XML representation of a Drawable that’s used to place a border on a TextView.

http://developer.android.com/guide/topics/resources/drawable-
resource.html#Shape

http://developer.android.com/guide/topics/resources/drawable-resource.html#Shape
http://developer.android.com/guide/topics/resources/drawable-resource.html#Shape

ptg16518503

336 Chapter 9 Address Book App

activity_main.xml’s CoordinatorLayout to manage interactions between its views. Set-
ting this property ensures that the contents of the FrameLayout scroll below the Toolbar
defined in activity_main.xml.

Tablet Layout: content_main.xml for Large Devices
Create the new tablet layout content_main.xml (as in Section 4.5.4). This layout should
use a horizontal LinearLayout containing a ContactsFragment and an empty FrameLay-
out as shown in Fig. 9.10. Create the divider_margin resource (16dp) used in lines 24
and 32. This LinearLayout uses several properties that we have not discussed previously:

• divider (line 9)—This property specifies a drawable resource that’s used to sep-
arate items in the LinearLayout. In this case, we use the predefined Android
drawable theme resource ?android:listDivider. The ?android: indicates that
the LinearLayout should use the list divider defined in the current theme.

• showDividers (line 15)—This property is used with the divider property to
specify where the dividers appear—in this case, middle indicates that the dividers
should appear only between the LinearLayout’s elements. You can also display a
divider before the first item in the layout (beginning) and after the last item
(end), and you can combine these values using |.

• weightSum (line 16)—This helps allocate the horizontal space between the Con-
tactsFragment and FrameLayout. Setting weightSum to 3, then setting the Con-
tactsFragment’s and FrameLayout’s layout_weights to 1 and 2, respectively,
indicates that the ContactsFragment should occupy one-third of the LinearLay-
out’s width and the FrameLayout should occupy the remaining two-thirds.

9 <FrameLayout
10 android:id="@+id/fragmentContainer"
11 xmlns:android="http://schemas.android.com/apk/res/android"
12 xmlns:app="http://schemas.android.com/apk/res-auto"
13 xmlns:tools="http://schemas.android.com/tools"
14 android:layout_width="match_parent"
15 android:layout_height="match_parent"
16 android:paddingBottom="@dimen/activity_vertical_margin"
17 android:paddingLeft="@dimen/activity_horizontal_margin"
18 android:paddingRight="@dimen/activity_horizontal_margin"
19 android:paddingTop="@dimen/activity_vertical_margin"
20 "
21 tools:context=".MainActivity"/>

Fig. 9.9 | content_main.xml used on a phone device.

1 <?xml version="1.0" encoding="utf-8"?>
2 <LinearLayout
3 xmlns:android="http://schemas.android.com/apk/res/android"
4 xmlns:app="http://schemas.android.com/apk/res-auto"
5 xmlns:tools="http://schemas.android.com/tools"
6 android:layout_width="match_parent"

Fig. 9.10 | content_main.xml used on a tablet device. (Part 1 of 2.)

app:layout_behavior="@string/appbar_scrolling_view_behavior

ptg16518503

9.4 Building the GUI and Resource Files 337

9.4.8 ContactsFragment’s Layout
In addition to renaming class MainActivityFragment as ContactsFragment, we renamed
the corresponding layout file as fragment_contacts.xml. We then removed the default
TextView, changed the default layout from a RelativeLayout to a FrameLayout and re-
moved the layout’s padding properties. Next, we added a RecyclerView named recy-
clerView and a FloatingActionButton named addButton. The layout’s final XML is
shown in Fig. 9.11. Ensure that you set the RecyclerView and a FloatingActionButton
properties as shown.

7 android:layout_height="match_parent"
8 android:baselineAligned="false"
9

10 android:orientation="horizontal"
11 android:paddingBottom="@dimen/activity_vertical_margin"
12 android:paddingLeft="@dimen/activity_horizontal_margin"
13 android:paddingRight="@dimen/activity_horizontal_margin"
14 android:paddingTop="@dimen/activity_vertical_margin"
15
16
17 app:layout_behavior="@string/appbar_scrolling_view_behavior">
18
19 <fragment
20
21 android:name="com.deitel.addressbook.ContactsFragment"
22 android:layout_width="0dp"
23 android:layout_height="match_parent"
24 android:layout_marginEnd="@dimen/divider_margin"
25 android:layout_weight="1"
26 tools:layout="@layout/fragment_contacts"/>
27
28 <FrameLayout
29 android:id="@+id/rightPaneContainer"
30 android:layout_width="0dp"
31 android:layout_height="match_parent"
32 android:layout_marginStart="@dimen/divider_margin"
33 android:layout_weight="2"/>
34 </LinearLayout>

1 <FrameLayout
2 xmlns:android="http://schemas.android.com/apk/res/android"
3 android:layout_width="match_parent"
4 android:layout_height="match_parent">
5
6 <android.support.v7.widget.RecyclerView
7 android:id="@+id/recyclerView"
8 android:layout_width="match_parent"
9 android:layout_height="match_parent"/>

10

Fig. 9.11 | fragment_contacts.xml layout. (Part 1 of 2.)

Fig. 9.10 | content_main.xml used on a tablet device. (Part 2 of 2.)

android:divider="?android:listDivider"

android:showDividers="middle"
android:weightSum="3"

android:id="@+id/contactsFragment"

ptg16518503

338 Chapter 9 Address Book App

9.4.9 DetailFragment’s Layout
When the user touches a contact in the MainActivity, the app displays the DetailFrag-
ment (Fig. 9.12). This Fragment’s layout (fragment_details.xml) consists of a Scroll-
View containing a vertical GridLayout with two columns of TextViews. A ScrollView is
a ViewGroup that provides scrolling functionality for a view with content too large to dis-
play on the screen. We use a ScrollView here to ensure that the user can scroll through a
contact’s details if a device does not have enough vertical space to show all the TextViews
in Fig. 9.12. For this fragment, create a new fragment_details.xml layout resource file
and specify a ScrollView as the Root Element. After creating the file add a GridLayout to
the ScrollView.

11 <android.support.design.widget.FloatingActionButton
12 android:id="@+id/addButton"
13 android:layout_width="wrap_content"
14 android:layout_height="wrap_content"
15 android:layout_gravity="top|end"
16 android:layout_margin="@dimen/fab_margin"
17 android:src="@drawable/ic_add_24dp"/>
18 </FrameLayout>

Fig. 9.12 | DetailFragment’s GUI components labeled with their id property values.

Fig. 9.11 | fragment_contacts.xml layout. (Part 2 of 2.)

phoneLabelTextView

emailLabelTextView

nameLabelTextView

streetLabelTextView

cityLabelTextView

nameTextView

phoneTextView

emailTextView

streetTextView

cityTextView

stateLabelTextView

zipLabelTextView

stateTextView

zipTextView

ptg16518503

9.4 Building the GUI and Resource Files 339

GridLayout Settings
For the GridLayout, we set the layout:width to match_parent, layout:height to
wrap_content, columnCount to 2 and useDefaultMargins to true. The layout:height value
enables the parent ScrollView to determine the GridLayout’s actual height and decide
whether to provide scrolling. Add TextViews to the GridLayout as shown in Fig. 9.12.

Left Column TextView Settings
For each TextView in the left column set the TextView’s id property as specified in
Fig. 9.12 and set:

• layout:row to a value from 0–6 depending on the row.

• layout:column to 0.

• text to the appropriate String resource from strings.xml.

• style to @style/ContactLabelTextView—style resources are specified using the
syntax @style/styleName.

Right Column TextView Settings
For each TextView in the right column set the TextView’s id property as specified in
Fig. 9.12 and set:

• layout:row to a value from 0–6 depending on the row.

• layout:column to 1.

• style to @style/ContactTextView.

9.4.10 AddEditFragment’s Layout
When the user touches the FloatingActionButton in the ContactsFragment or the
edit () app bar item in the DetailFragment, the MainActivity displays the AddEdit-
Fragment (Fig. 9.13) with the layout fragment_add_edit.xml with a root FrameLayout
that contains a ScrollView and a FloatingActionButton. The ScrollView contains a
vertical LinearLayout with seven TextInputLayouts.

ScrollView Settings
For the ScrollView, we set the layout:width and layout:height to match_parent.

LinearLayout Settings
For the LinearLayout, we set the layout:width to match_parent, the layout:height to
wrap_content and the orientation to vertical. We then added the seven TextInputLay-
outs with the ids in Fig. 9.13, each with its layout:width set to match_parent and lay-
out:height to wrap_content.

EditText Settings
We placed an EditText in each TextInputLayout, then set its hint property to the appro-
priate String resource in strings.xml. We also set each EditText’s inputType and imeOp-
tions properties. For devices that display a soft keyboard, the inputType specifies which
keyboard to display for the corresponding EditText. This enables us to customize the key-
board to the specific type of data the user must enter in a given EditText. To display a next
button () on the soft keyboards for the EditTexts in the nameTextInputLayout,

ptg16518503

340 Chapter 9 Address Book App

phoneTextInputLayout, emailTextInputLayout, streetTextInputLayout, cityText-
InputLayout and stateTextInputLayout, we set the imeOptions property to actionNext.
When one of these EditTexts has the focus, touching transfers the focus to the next
EditText in the layout. If the EditText in the zipTextInputLayout has the focus, you
can hide the soft keyboard by touching the keyboard’s Button—for this EditText, set
the imeOptions property to actionDone.

Set the EditTexts’ inputType properties to display appropriate keyboards as follows:

• nameTextInputLayout’s EditText: check textPersonName and textCapWords—
for entering names and starts each word with a capital letter.

• phoneTextInputLayout’s EditText: check phone—for entering phone numbers.

• emailTextInputLayout’s EditText: check textEmailAddress—for entering an
e-mail address.

• streetTextInputLayout’s EditText: check textPostalAddress and textCap-
Words—for entering an address and starts each word with a capital letter.

• cityTextInputLayout’s EditText: check textPostalAddress and textCapWords.

• stateTextInputLayout’s EditText: check textPostalAddress and textCap-
Characters—ensures that state abbreviations are displayed in capital letters.

• zipTextInputLayout’s EditText: check number—for entering numbers.

Fig. 9.13 | AddEditFragment’s GUI components labeled with their id property values. This
GUI’s root component is a ScrollView that contains a vertical GridLayout.

phoneTextInputLayout

emailTextInputLayout

nameTextInputLayout

cityTextInputLayout

zipTextInputLayout

streetTextInputLayout

stateTextInputLayout

saveFloatingActionButton

ptg16518503

9.5 Overview of This Chapter’s Classes 341

9.4.11 DetailFragment’s Menu
When you created the project, the IDE defined the menu resource menu_main.xml. The
MainActivity in this app does not need a menu, so you can remove MainActivity’s on-
CreateOptionsMenu and onOptionsItemSelected methods, and rename this menu re-
source for use in the DetailFragment, which displays menu items on the app bar for
editing an existing contact and deleting a contact. Rename the file menu_main.xml as
fragment_details_menu.xml, then replace the Settings menu item with the menu items
in Fig. 9.14. For each menu item’s android:icon value, we specified a drawable resource
that you added in Section 9.4.3.

9.5 Overview of This Chapter’s Classes
This app consists of nine classes in two packages. Due to the size of this app we overview
the classes and their purposes here.

com.deitel.addressbook.data Package
This package contains the three classes that define this app’s SQLite database access:

• DatabaseDescription (Section 9.6)—This class contains public static fields
that are used with the app’s ContentProvider and ContentResolver. The nested
Contact class defines static fields for the name of a database table, the Uri used
to access that table via the ContentProvider and the names of the database table’s
columns, and a static method for creating a Uri that references a specific con-
tact in the database.

• AddressBookDatabaseHelper (Section 9.7)—A subclass of SQLiteOpenHelper.
that creates the database and enables AddressBookContentProvider to access it.

• AddressBookContentProvider (Section 9.8)—A ContentProvider subclass that
defines query, insert, update and delete operations on the database.

1 <?xml version="1.0" encoding="utf-8"?>
2 <menu xmlns:android="http://schemas.android.com/apk/res/android"
3 xmlns:app="http://schemas.android.com/apk/res-auto">
4
5 <item
6 android:id="@+id/action_edit"
7 android:icon="@drawable/ic_mode_edit_24dp"
8 android:orderInCategory="1"
9 android:title="@string/menuitem_edit"

10 app:showAsAction="always"/>
11
12 <item
13 android:id="@+id/action_delete"
14 android:icon="@drawable/ic_delete_24dp"
15 android:orderInCategory="2"
16 android:title="@string/menuitem_delete"
17 app:showAsAction="always"/>
18 </menu>

Fig. 9.14 | Menu resource file fragment_details_menu.xml.

ptg16518503

342 Chapter 9 Address Book App

com.deitel.addressbook Package
This package contains the classes that define this app’s MainActivity, Fragments and the
adapter that’s used to display database contents in a RecyclerView:

• MainActivity (Section 9.9)—This class manages the app’s Fragments and im-
plements their callback interface methods to respond when a contact is selected,
a new contact is added, or an existing contact is updated or deleted.

• ContactsFragment (Section 9.10)—This class manages the contact-list Recy-
clerView and the FloatingActionButton for adding contacts. On a phone, this
is the first Fragment presented by MainActivity. On a tablet, MainActivity al-
ways displays this Fragment. ContactsFragment’s nested interface defines call-
back methods implemented by MainActivity so that it can respond when a
contact is selected or added.

• ContactsAdapter (Section 9.11)—This subclass of RecyclerView.Adapter is
used by ContactsFragment’s RecyclerView to bind the sorted list of contact
names to the RecyclerView. RecyclerView.Adapter was introduced in
Sections 8.3.4 and 8.6, so we discuss only the database-specific operations in this
class.

• AddEditFragment (Section 9.12)—This class manages the TextInputLayouts
and a FloatingActionButton for adding a new contact or editing and existing
one. AddEditFragment’s nested interface defines a callback method implemented
by MainActivity so that it can respond when a new or updated contact is saved.

• DetailFragment (Section 9.13)—This class manages the styled TextViews that
display a selected contact’s details and the app bar items that enable the user to
edit or delete the currently displayed contact. DetailFragment’s nested interface
defines callback methods implemented by MainActivity so that it can respond
when a contact is deleted or when the user touches the app bar item to edit a con-
tact.

• ItemDivider—This class defines the divider that’s displayed between items in
the ContactsFragment’s RecyclerView. We do not present the class in the chap-
ter, because it’s identical to the one presented in Section 8.7.

9.6 DatabaseDescription Class
Class DatabaseDescription contains static fields that are used with the app’s Content-
Provider and ContentResolver, and a nested Contact class that describes the database’s
only table and its columns.

9.6.1 static Fields
Class DatabaseDescription defines two static fields (Fig. 9.15; lines 12–17) that to-
gether are used to define the ContentProvider’s authority—the name that’s supplied to
a ContentResolver to locate a ContentProvider. The authority is typically the package
name of the ContentProvider subclass. Each Uri that’s used to access a specific Content-
Provider begins with "content://" followed by the authority—this is the ContentPro-
vider’s base Uri. Line 17 uses Uri method parse to create the base Uri.

ptg16518503

9.6 DatabaseDescription Class 343

9.6.2 Nested Class Contact
The nested class Contact (Fig. 9.16) defines the database’s table name (line 21), the table’s
Uri for accessing the table via the ContentProvider (lines 24–25) and the table’s column
names (lines 28–34). The table name and column names will be used by the AddressBook-
DatabaseHelper class (Section 9.7) to create the database. Method buildContactUri cre-
ates a Uri for a specific contact in the database table (lines 37–39). Class ContentUris
(package android.content) contains static utility methods for manipulating "con-
tent://" Uris. Method withAppendedId appends a forward slash (/) and a record ID to
the end of the Uri in its first argument. For every database table, you’d typically have a
class similar to class Contact.

1 // DatabaseDescription.java
2 // Describes the table name and column names for this app's database,
3 // and other information required by the ContentProvider
4 package com.deitel.addressbook.data;
5
6 import android.content.ContentUris;
7 import android.net.Uri;
8 import android.provider.BaseColumns;
9

10 public class DatabaseDescription {
11 // ContentProvider's name: typically the package name
12
13
14
15 // base URI used to interact with the ContentProvider
16
17
18

Fig. 9.15 | DatabaseDescription class declaration and static fields.

19 // nested class defines contents of the contacts table
20 {
21 public static final String TABLE_NAME = "contacts"; // table's name
22
23 // Uri for the contacts table
24
25
26
27 // column names for contacts table's columns
28 public static final String COLUMN_NAME = "name";
29 public static final String COLUMN_PHONE = "phone";
30 public static final String COLUMN_EMAIL = "email";
31 public static final String COLUMN_STREET = "street";
32 public static final String COLUMN_CITY = "city";
33 public static final String COLUMN_STATE = "state";
34 public static final String COLUMN_ZIP = "zip";
35

Fig. 9.16 | DatabaseDescription nested class Contact. (Part 1 of 2.)

public static final String AUTHORITY =
 "com.deitel.addressbook.data";

private static final Uri BASE_CONTENT_URI =
 Uri.parse("content://" + AUTHORITY);

public static final class Contact implements BaseColumns

public static final Uri CONTENT_URI =
 BASE_CONTENT_URI.buildUpon().appendPath(TABLE_NAME).build();

ptg16518503

344 Chapter 9 Address Book App

In a database table, each row typically has a primary key that uniquely identifies the
row. When working with ListViews and Cursors, this column’s name must be "_id"—
Android also uses this for the ID column in SQLite database tables. This name is not
required for RecyclerViews, but we use it here due to the similarities between ListViews
and RecyclerViews, and because we’re using Cursors and a SQLite database. Rather than
defining this constant directly in class Contact, we implement interface BaseColumns
(package android.provider; line 20), which defines the constant _ID with the value
"_id".

9.7 AddressBookDatabaseHelper Class
The AddressBookDatabaseHelper class (Fig. 9.17) extends abstract class SQLiteOpen-
Helper, which helps apps create databases and manage database version changes.

36 // creates a Uri for a specific contact
37 public static Uri buildContactUri(long id) {
38 return ;
39 }
40 }
41 }

1 // AddressBookDatabaseHelper.java
2 // SQLiteOpenHelper subclass that defines the app's database
3 package com.deitel.addressbook.data;
4
5 import android.content.Context;
6 import android.database.sqlite.SQLiteDatabase;
7 import android.database.sqlite.SQLiteOpenHelper;
8
9 import com.deitel.addressbook.data.DatabaseDescription.Contact;

10
11 {
12 private static final String DATABASE_NAME = "AddressBook.db";
13 private static final int DATABASE_VERSION = 1;
14
15 // constructor
16 public AddressBookDatabaseHelper(Context context) {
17
18 }
19
20 // creates the contacts table when the database is created
21 @Override
22 {
23 // SQL for creating the contacts table
24 final String CREATE_CONTACTS_TABLE =
25 "CREATE TABLE " + Contact.TABLE_NAME + "(" +

Fig. 9.17 | AddressBookDatabaseHelper subclass of SQLiteOpenHelper defines the app’s
database. (Part 1 of 2.)

Fig. 9.16 | DatabaseDescription nested class Contact. (Part 2 of 2.)

ContentUris.withAppendedId(CONTENT_URI, id)

class AddressBookDatabaseHelper extends SQLiteOpenHelper

super(context, DATABASE_NAME, null, DATABASE_VERSION);

public void onCreate(SQLiteDatabase db)

ptg16518503

9.7 AddressBookDatabaseHelper Class 345

Constructor
The constructor (lines 16–18) simply calls the superclass constructor, which requires four
arguments:

• the Context in which the database is being created or opened,

• the database name—this can be null if you wish to use an in-memory database,

• the CursorFactory to use—null indicates that you wish to use the default
SQLite CursorFactory (typically for most apps) and

• the database version number (starting from 1).

Overridden Methods
You must override this class’s abstract methods onCreate and onUpgrade. If the database
does not yet exist, the DatabaseOpenHelper’s onCreate method will be called to create it.
If you supply a newer version number than the database version currently stored on the
device, the DatabaseOpenHelper’s onUpgrade method will be called to upgrade the data-
base to the new version (perhaps to add tables or to add columns to an existing table).

The onCreate method (lines 22–35) specifies the table to create with the SQL CREATE
TABLE command, which is defined as a String (lines 24–33) that’s constructed using con-
stants from class Contact (Section 9.6.2). In this case, the contacts table contains an
integer primary key field (Contact._ID), and text fields for all the other columns. Line 34
uses SQLiteDatabase’s execSQL method to execute the CREATE TABLE command.

Since we don’t need to upgrade the database, we simply override method onUpgrade
with an empty body. Class SQLiteOpenHelper also provides the onDowngrade method that
can be used to downgrade a database when the currently stored version has a higher version
number than the one requested in the call to class SQLiteOpenHelper’s constructor.
Downgrading might be used to revert the database back to a prior version with fewer col-
umns in a table or fewer tables in the database—perhaps to fix a bug in the app.

26 Contact._ID + " integer primary key, " +
27 Contact.COLUMN_NAME + " TEXT, " +
28 Contact.COLUMN_PHONE + " TEXT, " +
29 Contact.COLUMN_EMAIL + " TEXT, " +
30 Contact.COLUMN_STREET + " TEXT, " +
31 Contact.COLUMN_CITY + " TEXT, " +
32 Contact.COLUMN_STATE + " TEXT, " +
33 Contact.COLUMN_ZIP + " TEXT);";
34
35 }
36
37 // normally defines how to upgrade the database when the schema changes
38 @Override
39
40
41 }

Fig. 9.17 | AddressBookDatabaseHelper subclass of SQLiteOpenHelper defines the app’s
database. (Part 2 of 2.)

db.execSQL(CREATE_CONTACTS_TABLE); // create the contacts table

public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) { }

ptg16518503

346 Chapter 9 Address Book App

9.8 AddressBookContentProvider Class
The AddressBookContentProvider subclass of ContentProvider defines how to perform
query, insert, update and delete operations on this app’s database.

9.8.1 AddressBookContentProvider Fields
Class AddressBookContentProvider (Fig. 9.18) defines several fields:

• Instance variable dbHelper (line 17) is a reference to an AddressBookDatabase-
Helper object that creates the database and enables this ContentProvider to get
readable and writable access to the database.

• Class variable uriMatcher (lines 20–21) is an object of class UriMatcher (package
android.content). A ContentProvider uses a UriMatcher to help determine
which operation to perform in its query, insert, update and delete methods.

• The UriMatcher returns the integer constants ONE_CONTACT and CONTACTS (lines
24–25)—the ContentProvider uses these constants in switch statements in its
query, insert, update and delete methods.

Error-Prevention Tip 9.1
ContentProviders can be invoked from multiple threads in one process and multiple pro-
cesses, so it’s important to note that ContentProviders do not provide any synchroniza-
tion by default. However, SQLite does synchronize access to the database, so in this app
it’s unnecessary to provide your own synchronization mechanisms.

1 // AddressBookContentProvider.java
2 // ContentProvider subclass for manipulating the app's database
3 package com.deitel.addressbook.data;
4
5 import android.content.ContentProvider;
6 import android.content.ContentValues;
7 import android.content.UriMatcher;
8 import android.database.Cursor;
9 import android.database.SQLException;

10 import android.database.sqlite.SQLiteQueryBuilder;
11 import android.net.Uri;
12
13 import com.deitel.addressbook.data.DatabaseDescription.Contact;
14
15 {
16 // used to access the database
17
18
19 // UriMatcher helps ContentProvider determine operation to perform
20
21
22
23 // constants used with UriMatcher to determine operation to perform
24 private static final int ONE_CONTACT = 1; // manipulate one contact
25 private static final int CONTACTS = 2; // manipulate contacts table

Fig. 9.18 | AddressBookContentProvider fields. (Part 1 of 2.)

public class AddressBookContentProvider extends ContentProvider

private AddressBookDatabaseHelper dbHelper;

private static final UriMatcher uriMatcher =
 new UriMatcher(UriMatcher.NO_MATCH);

ptg16518503

9.8 AddressBookContentProvider Class 347

Lines 28–36 define a static block that adds Uris to the static UriMatcher—this
block executes once when class AddressBookContentProvider is loaded into memory.
UriMatcher method addUri takes three arguments:

• a String representing the ContentProvider’s authority (DatabaseDescrip-
tion.AUTHORITY in this app)

• a String representing a path—each Uri used to invoke the ContentProvider
contains "content://" followed by the authority and a path that the Content-
Provider uses to determine the task to perform

• an int code that the UriMatcher returns when a Uri supplied to to the Content-
Provider matches a Uri stored in the UriMatcher.

Lines 30–31 add a Uri of the form:

where # is a wildcard that matches a string of numeric characters—in this case, the unique
primary-key value for one contact in the contacts table. There is also a * wildcard that
matches any number of characters. When a Uri matches this format, the UriMatcher re-
turns the constant ONE_CONTACT.

Lines 34–35 add a Uri of the form:

which represents the entire contacts table. When a Uri matches this format, the Uri-
Matcher returns the constant CONTACTS. As we discuss the rest of class AddressBookCon-
tentProvider, you’ll see how the UriMatcher and the constants ONE_CONTACT and
CONTACTS are used.

9.8.2 Overridden Methods onCreate and getType
As you’ll see, you use a ContentResolver to invoke a ContentProvider’s methods. When
Android receives a request from a ContentResolver, it automatically creates the corre-
sponding ContentProvider object—or uses an existing one, if it was created previously.
When a ContentProvider is created, Android calls its onCreate method to configure the
ContentProvider (Fig. 9.19, lines 39–44). Line 42 creates the AddressBookDatabase-

26
27 // static block to configure this ContentProvider's UriMatcher
28 static {
29 // Uri for Contact with the specified id (#)
30
31
32
33 // Uri for Contacts table
34
35
36 }
37

content://com.deitel.addressbook.data/contacts/#

content://com.deitel.addressbook.data/contacts

Fig. 9.18 | AddressBookContentProvider fields. (Part 2 of 2.)

uriMatcher.addURI(DatabaseDescription.AUTHORITY,
 Contact.TABLE_NAME + "/#", ONE_CONTACT);

uriMatcher.addURI(DatabaseDescription.AUTHORITY,
 Contact.TABLE_NAME, CONTACTS);

content://com.deitel.addressbook.data/contacts/#
content://com.deitel.addressbook.data/contacts

ptg16518503

348 Chapter 9 Address Book App

Helper object that enables the provider to access the database. The first time the provider
is invoked to write to the database, the AddressBookDatabaseHelper object’s onCreate
method will be called to create the database (Fig. 9.17, lines 22–35).

Method getType (Fig. 9.19, lines 47–50) is a required ContentProvider method that
simply returns null in this app. This method typically is used when creating and starting
Intents for Uris with specific MIME types. Android can use MIME types to determine
appropriate activities to handle the Intents.

9.8.3 Overridden Method query
The overridden ContentProvider method query (Fig. 9.20) retrieves data from the pro-
vider’s data source—in this case, the database. The method returns a Cursor that’s used to
interact with the results. Method query receives five arguments:

• uri—A Uri representing the data to retrieve.

• projection—A String array representing the specific columns to retrieve. If this
argument is null, all columns will be included in the result.

• selection—A String containing the selection criteria. This is the SQL WHERE
clause, specified without the WHERE keyword. If this argument is null, all rows will
be included in the result.

• selectionArgs—A String array containing the arguments used to replace any
argument placeholders (?) in the selection String.

• sortOrder—A String representing the sort order. This is the SQL ORDER BY
clause, specified without the ORDER BY keywords. If this argument is null, the pro-
vider determines this sort order—the order in which results are returned to the
app is not guaranteed unless you provide an appropriate sort order.

SQLiteQueryBuilder
Line 58 creates a SQLiteQueryBuilder (package android.database.sqlite) for building
SQL queries that are submitted to a SQLite database. Line 59 uses method setTables to
specify that the query will select data from the database’s contacts table. This method’s

38 // called when the AddressBookContentProvider is created
39 @Override
40 {
41 // create the AddressBookDatabaseHelper
42 dbHelper = new AddressBookDatabaseHelper(getContext());
43 return true; // ContentProvider successfully created
44 }
45
46 // required method: Not used in this app, so we return null
47 @Override
48 {
49 return null;
50 }
51

Fig. 9.19 | Overridden ContentProvider methods onCreate and getType.

public boolean onCreate()

public String getType(Uri uri)

ptg16518503

9.8 AddressBookContentProvider Class 349

String argument can be used to perform table join operations by specifying multiple ta-
bles in a comma separated list or as an appropriate SQL JOIN clause.

Using the UriMatcher to Determine the Operation to Perform
In this app, there are two queries:

• select a specific contact from the database to display or edit its details, and

• select all contacts in the database to display their names in the ContactsFrag-
ment’s RecyclerView.

Lines 61–71 use UriMatcher method match to determine which query operation to per-
form. This method returns one of the constants that was registered with the UriMatcher
(Section 9.8.1). If the constant returned is ONE_CONTACT, only the contact with the ID
specified in the Uri should be selected. In this case, lines 63–64 use the SQLiteQuery-
Builder’s appendWhere method to add a WHERE clause containing the contact’s ID to the
query. Uri method getLastPathSegment returns the last segment in the Uri—for exam-
ple, the contact ID 5 in the following Uri

52 // query the database
53 @Override
54
55 {
56
57 // create SQLiteQueryBuilder for querying contacts table
58
59
60
61 switch () {
62 case ONE_CONTACT: // contact with specified id will be selected
63
64
65 break;
66 case CONTACTS: // all contacts will be selected
67 break;
68 default:
69 throw new UnsupportedOperationException(
70 getContext().getString(R.string.invalid_query_uri) + uri);
71 }
72
73 // execute the query to select one or all contacts
74
75
76
77 // configure to watch for content changes
78
79 return cursor;
80 }
81

Fig. 9.20 | Overridden ContentProvider method query.

content://com.deitel.addressbook.data/contacts/5

public Cursor query(Uri uri, String[] projection,
 String selection, String[] selectionArgs, String sortOrder)

SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();
queryBuilder.setTables(Contact.TABLE_NAME);

uriMatcher.match(uri)

queryBuilder.appendWhere(
 Contact._ID + "=" + uri.getLastPathSegment());

Cursor cursor = queryBuilder.query(dbHelper.getReadableDatabase(),
 projection, selection, selectionArgs, null, null, sortOrder);

cursor.setNotificationUri(getContext().getContentResolver(), uri);

content://com.deitel.addressbook.data/contacts/5

ptg16518503

350 Chapter 9 Address Book App

If the constant returned is CONTACTS, the switch terminates without adding anything to
the query—in this case, all contacts will be selected because there is no WHERE clause. For
any Uri that is not a match, lines 69–70 throw an UnsupportedOperationException in-
dicating that the Uri was invalid.

Querying the Database
Lines 74–75 use the SQLiteQueryBuilder’s query method to perform the database query
and get a Cursor representing the results. The method’s arguments are similar to those re-
ceived by the ContentProvider’s query method:

• A SQLiteDatabase to query—the AddressBookDatabaseHelper’s getReadable-
Database method returns a read-only SQLiteDatabase object.

• projection—A String array representing the specific columns to retrieve. If this
argument is null, all columns will be included in the result.

• selection—A String containing the selection criteria. This is the SQL WHERE
clause, specified without the WHERE keyword. If this argument is null, all rows will
be included in the result.

• selectionArgs—A String array containing the arguments used to replace any
argument placeholders (?) in the selection String.

• groupBy—A String containing the grouping criteria. This is the SQL GROUP BY
clause, specified without the GROUP BY keywords. If this argument is null, no
grouping is performed.

• having—When using groupBy, this argument is a String indicating which
groups to include in the results. This is the SQL HAVING clause, specified without
the HAVING keyword. If this argument is null, all groups specified by the groupBy
argument will be included in the results.

• sortOrder—A String representing the sort order. This is the SQL ORDER BY
clause, specified without the ORDER BY keywords. If this argument is null, the pro-
vider determines this sort order.

Registering the Cursor to Watch for Content Changes
Line 78 calls the Cursor’s setNotificationUri method to indicate that the Cursor
should be updated if the data it refers to changes. This first argument is the ContentRe-
solver that invoked the ContentProvider and the second is the Uri used to invoke the
ContentProvider. Line 79 returns the Cursor containing the query results.

9.8.4 Overridden Method insert
The overridden ContentProvider method insert (Fig. 9.21) adds a new record to the
contacts table. Method insert receives two arguments:

• uri—A Uri representing the table in which the data will be inserted.

• values—A ContentValues object containing key–value pairs in which the col-
umn names are the keys and each key’s value is the data to insert in that column.

Lines 87–108 check whether the Uri is for the contacts table—if not, the Uri is
invalid for the insert operation and lines 106–107 throw an UnsupportedOperation-

ptg16518503

9.8 AddressBookContentProvider Class 351

Exception. If the Uri is a match, lines 90–91 insert the new contact in the database. First,
we use the AddressBookDatabaseHelper’s getWritableDatabase method to get a SQLite-
DatabaseObject for modifying data in the database.

SQLiteDatabase’s insert method (lines 90–91) inserts the values from the third
argument’s ContentValues object into the table specified as the first argument—the con-
tacts table in this case. The second parameter of this method, which is not used in this
app, is named nullColumnHack and is needed because SQLite does not support inserting a
completely empty row into a table—this would be the equivalent of passing an empty Con-
tentValues object to insert. Instead of making it illegal to pass an empty ContentValues
to the method, the nullColumnHack parameter is used to identify a column that accepts
NULL values.

Method insert returns the new contact’s unique ID if the insert operation is suc-
cessful or -1 otherwise. Line 95 checks whether the rowID is greater than 0 (rows are
indexed from 1 in SQLite). If so, line 96 creates a Uri representing the new contact and
line 99 notifies the ContentResolver that the database changed, so the ContentRe-
solver’s client code can respond to the database changes. If the rowID is not greater than
0, the database operation failed and lines 102–103 throws a SQLException.

82 // insert a new contact in the database
83 @Override
84 {
85 Uri newContactUri = null;
86
87 switch (uriMatcher.match(uri)) {
88 case CONTACTS:
89 // insert the new contact--success yields new contact's row id
90
91
92
93 // if the contact was inserted, create an appropriate Uri;
94 // otherwise, throw an exception
95 if (rowId > 0) { // SQLite row IDs start at 1
96 newContactUri = Contact.buildContactUri(rowId);
97
98 // notify observers that the database changed
99
100 }
101 else
102 throw new SQLException(
103 getContext().getString(R.string.insert_failed) + uri);
104 break;
105 default:
106 throw new UnsupportedOperationException(
107 getContext().getString(R.string.invalid_insert_uri) + uri);
108 }
109
110 return newContactUri;
111 }
112

Fig. 9.21 | Overridden ContentProvider method insert.

public Uri insert(Uri uri, ContentValues values)

long rowId = dbHelper.getWritableDatabase().insert(
 Contact.TABLE_NAME, null, values);

getContext().getContentResolver().notifyChange(uri, null);

ptg16518503

352 Chapter 9 Address Book App

9.8.5 Overridden Method update
The overridden ContentProvider method update (Fig. 9.22) updates an existing record.
Method update receives four arguments:

• uri—A Uri representing the rows to update.

• values—A ContentValues object containig the columns to update and their
corresponding values.

• selection—A String containing the selection criteria. This is the SQL WHERE
clause, specified without the WHERE keyword. If this argument is null, all rows will
be included in the result.

• selectionArgs—A String array containing the arguments used to replace any
argument placeholders (?) in the selection String.

Updates in this app are performed only on a specific contact, so lines 119–132 check
only for a ONE_CONTACT Uri. Line 122 gets the Uri argument’s last path segement, which
is the contact’s unique ID. Lines 125–127 get a writeable SQLiteDatabase object then call
its update method to update the specified contact with the values from the Content-
Values argument. The update method’s arguments are:

113 // update an existing contact in the database
114 @Override
115
116
117 int numberOfRowsUpdated; // 1 if update successful; 0 otherwise
118
119 switch (uriMatcher.match(uri)) {
120 case ONE_CONTACT:
121 // get from the uri the id of contact to update
122 String id = uri.getLastPathSegment();
123
124 // update the contact
125
126
127
128 break;
129 default:
130 throw new UnsupportedOperationException(
131 getContext().getString(R.string.invalid_update_uri) + uri);
132 }
133
134 // if changes were made, notify observers that the database changed
135 if (numberOfRowsUpdated != 0) {
136 getContext().getContentResolver().notifyChange(uri, null);
137 }
138
139 return numberOfRowsUpdated;
140 }
141

Fig. 9.22 | Overridden ContentProvider method update.

public int update(Uri uri, ContentValues values,
 String selection, String[] selectionArgs) {

numberOfRowsUpdated = dbHelper.getWritableDatabase().update(
 Contact.TABLE_NAME, values, Contact._ID + "=" + id,
 selectionArgs);

ptg16518503

9.8 AddressBookContentProvider Class 353

• the String name of the table to update

• the ContentValues object containing the columns to update and their new values

• the String representing the SQL WHERE clause that specifies the rows to update

• a String array containing any arguments that should replace ? placeholders in
the WHERE clause.

If the operation is successful, method update returns an integer indicating the number of
modified rows; otherwise, update returns 0. Line 136 notifies the ContentResolver that
the database changed, so the ContentResolver’s client code can respond to the changes.
Line 139 returns the number of modified rows.

9.8.6 Overridden Method delete
The overridden ContentProvider method delete (Fig. 9.23) removes an existing record.
Method delete receives three arguments:

• uri—A Uri representing the row(s) to delete.

• selection—A String containing the WHERE clause specifying the rows to delete.

• selectionArgs—A String array containing the arguments used to replace any
argument placeholders (?) in the selection String.

142 // delete an existing contact from the database
143 @Override
144 {
145 int numberOfRowsDeleted;
146
147 switch (uriMatcher.match(uri)) {
148 case ONE_CONTACT:
149 // get from the uri the id of contact to update
150 String id = uri.getLastPathSegment();
151
152 // delete the contact
153
154
155 break;
156 default:
157 throw new UnsupportedOperationException(
158 getContext().getString(R.string.invalid_delete_uri) + uri);
159 }
160
161 // notify observers that the database changed
162 if (numberOfRowsDeleted != 0) {
163 getContext().getContentResolver().notifyChange(uri, null);
164 }
165
166 return numberOfRowsDeleted;
167 }
168 }

Fig. 9.23 | Overridden ContentProvider method delete.

public int delete(Uri uri, String selection, String[] selectionArgs)

numberOfRowsDeleted = dbHelper.getWritableDatabase().delete(
 Contact.TABLE_NAME, Contact._ID + "=" + id, selectionArgs);

ptg16518503

354 Chapter 9 Address Book App

Deletions in this app are performed only on a specific contact, so lines 147–159 check
for a ONE_CONTACT Uri—any other Uri represents an unsupported operation. Line 150
gets the Uri argument’s last path segment, which is the contact’s unique ID. Lines 153–
154 get a writeable SQLiteDatabase object then call its delete method to remove the
specified contact. The three arguments are the database table from which to delete the
record, the WHERE clause and, if the WHERE clause has arguments, a String array of values
to substitute into the WHERE clause. The method returns the number of rows deleted. Line
163 notifies the ContentResolver that the database changed, so the ContentResolver’s
client code can respond to the changes. Line 166 returns the number of deleted rows.

9.9 MainActivity Class
Class MainActivity manages the app’s fragments and coordinates the interactions be-
tween them. On phones, MainActivity displays one Fragment at a time, starting with the
ContactsFragment. On tablets, MainActivity always displays the ContactsFragment at
the left of the layout and, depending on the context, displays either the DetailFragment
or the AddEditFragment in the right two-thirds of the layout.

9.9.1 Superclass, Implemented Interfaces and Fields
Class MainActivity (Fig. 9.24) uses class FragmentTransaction from the v4 support li-
brary to add and remove the app’s Fragments. MainActivity implements three interfaces:

• ContactsFragment.ContactsFragmentListener (Section 9.10.2) contains call-
back methods that the ContactsFragment uses to tell the MainActivity when the
user selects a contact in the contact list or adds a new contact.

• DetailFragment.DetailFragmentListener (Section 9.13.2) contains callback
methods that the DetailFragment uses to tell the MainActivity when the user
deletes a contact or wishes to edit an existing contact.

• AddEditFragment.AddEditFragmentListener (Section 9.12.2) contains a call-
back method that the AddEditFragment uses to tell the MainActivity when the
user saves a new contact or saves changes to an existing contact.

The constant CONTACT_URI (line 17) is used as a key in a key–value pair that’s passed be-
tween the MainActivity and its Fragments. The instance variable ContactsFragment (line
19) is used to tell the ContactsFragment to update the displayed list of contacts after a
contact is added or deleted.

1 // MainActivity.java
2 // Hosts the app's fragments and handles communication between them
3 package com.deitel.addressbook;
4
5 import android.net.Uri;
6 import android.os.Bundle;
7 import android.support.v4.app.FragmentTransaction;
8 import android.support.v7.app.AppCompatActivity;
9 import android.support.v7.widget.Toolbar;

Fig. 9.24 | MainActivity’s superclass, implemented interfaces and fields, (Part 1 of 2.)

ptg16518503

9.9 MainActivity Class 355

9.9.2 Overridden Method onCreate
Overridden Activity method onCreate (Fig. 9.25) inflates MainActivity’s GUI and, if
the app is running on a phone-sized device, creates and displays a ContactsFragment. If
the Activity is being restored after being shut down or recreated from a configuration
change, savedInstanceState will not be null. In this case, lines 43–45 simply get a ref-
erence to the existing ContactsFragment—on a phone, it would have been saved by An-
droid and on a tablet, it’s part of the MainActivity’s layout that was inflated in line 25.

10
11 public class MainActivity extends AppCompatActivity
12 implements ContactsFragment.ContactsFragmentListener,
13 DetailFragment.DetailFragmentListener,
14 AddEditFragment.AddEditFragmentListener {
15
16 // key for storing a contact's Uri in a Bundle passed to a fragment
17 public static final String CONTACT_URI = "contact_uri";
18
19 private ContactsFragment contactsFragment; // displays contact list
20

21 // display ContactsFragment when MainActivity first loads
22 @Override
23 protected void onCreate(Bundle savedInstanceState) {
24 super.onCreate(savedInstanceState);
25 setContentView(R.layout.activity_main);
26 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
27 setSupportActionBar(toolbar);
28
29 // if layout contains fragmentContainer, the phone layout is in use;
30 // create and display a ContactsFragment
31 if (savedInstanceState != null &&
32 findViewById(R.id.fragmentContainer) != null) {
33 // create ContactsFragment
34 contactsFragment = new ContactsFragment();
35
36 // add the fragment to the FrameLayout
37
38
39
40
41 }
42 else {
43
44
45
46 }
47 }
48

Fig. 9.25 | Overridden Activity method onCreate.

Fig. 9.24 | MainActivity’s superclass, implemented interfaces and fields, (Part 2 of 2.)

FragmentTransaction transaction =
 getSupportFragmentManager().beginTransaction();
transaction.add(R.id.fragmentContainer, contactsFragment);
transaction.commit(); // display ContactsFragment

contactsFragment =
 (ContactsFragment) getSupportFragmentManager().

 findFragmentById(R.id.contactsFragment);

ptg16518503

356 Chapter 9 Address Book App

If the R.id.fragmentContainer exists in MainActivity’s layout (line 32), then the
app is running on a phone. In this case, line 34 creates the ContactsFragment, then lines
37–40 use a FragmentTransaction to add the ContactsFragment to the user interface.
Lines 37–38 call FragmentManager’s beginTransaction method to obtain a Fragment-
Transaction. Next, line 39 calls FragmentTransaction method add to specify that, when
the FragmentTransaction completes, the ContactsFragment should be attached to the
View with the ID specified as the first argument. Finally, line 40 uses FragmentTransac-
tion method commit to finalize the transaction and display the ContactsFragment.

9.9.3 ContactsFragment.ContactsFragmentListener Methods
Figure 9.26 contains MainActivity’s implementations of the callback methods in the in-
terface ContactsFragment.ContactsFragmentListener. Method onContactSelected
(lines 50–60) is called by the ContactsFragment to notify the MainActivity when the
user selects a contact to display. If the app is running on a phone (line 52), line 53 calls
method displayContact (Section 9.9.4), which replaces the ContactsFragment in the
fragmentContainer (defined in Section 9.4.7) with the DetailFragment that shows the
contact’s information. On a tablet, line 56 calls the FragmentManager’s popBackStack
method to pop (remove) the top Fragment on the back stack (if there is one), then line 58
calls displayContact, which replaces the contents of the rightPaneContainer (defined
in Section 9.4.7) with the DetailFragment that shows the contact’s information.

Method onAddContact (lines 63–69) is called by the ContactsFragment to notify the
MainActivity when the user chooses to add a new contact. If the layout contains the frag-
mentContainer, line 66 calls displayAddEditFragment (Section 9.9.5) to display the Add-

49 // display DetailFragment for selected contact
50 @Override
51 public void onContactSelected(Uri contactUri) {
52 if (findViewById(R.id.fragmentContainer) != null) // phone
53 displayContact(contactUri, R.id.fragmentContainer);
54 else { // tablet
55 // removes top of back stack
56
57
58 displayContact(contactUri, R.id.rightPaneContainer);
59 }
60 }
61
62 // display AddEditFragment to add a new contact
63 @Override
64 public void onAddContact() {
65 if (findViewById(R.id.fragmentContainer) != null) // phone
66 displayAddEditFragment(R.id.fragmentContainer, null);
67 else // tablet
68 displayAddEditFragment(R.id.rightPaneContainer, null);
69 }
70

Fig. 9.26 | ContactsFragment.ContactsFragmentListener methods.

getSupportFragmentManager().popBackStack();

ptg16518503

9.9 MainActivity Class 357

EditFragment in the fragmentContainer; otherwise, line 68 displays the Fragment in the
rightPaneContainer. The second argument to displayAddEditFragment is a Bundle that
the AddEditFragment uses to determine whether a new contact is being added or an
existing contact is being edited—null indicates that a new contact is being added; other-
wise, the bundle includes the existing contact’s Uri.

9.9.4 Method displayContact
Method displayContact (Fig. 9.27) creates the DetailFragment that displays the select-
ed contact. You can pass arguments to a Fragment by placing them in a Bundle of key–
value pairs—we do this to pass the selected contact’s Uri so that the DetailFragment
knows which contact to get from the ContentProvider. Line 76 creates the Bundle. Line
77 calls its putParcelable method to store a key–value pair containing the CONTACT_URI
(a String) as the key and the contactUri (a Uri) as the value. Class Uri implements the
Parcelable interface, so a Uri can be stored in a Bundle as a Parcel object. Line 78 passes
the Bundle to the Fragment’s setArguments method—the Fragment can then extract the
information from the Bundle (as you’ll see in Section 9.13).

Lines 81–82 get a FragmentTransaction, then line 83 calls FragmentTransaction
method replace to specify that, when the FragmentTransaction completes, the Detail-
Fragment should replace the contents of the View with the ID specified as the first argu-
ment. Line 84 calls FragmentTransaction method addToBackStack to push (add) the
DetailFragment onto the back stack. This allows the user to touch the back button to pop
the Fragment from the back stack and allows MainActivity to programmatically pop the
Fragment from the back stack. Method addToBackStack’s argument is an optional name
for a back state. This can be used to pop multiple Fragments from the back stack to return
to a prior state after multiple Fragments have been added to the back stack. By default,
only the topmost Fragment is popped.

71 // display a contact
72 private void displayContact(Uri contactUri, int viewID) {
73 DetailFragment detailFragment = new DetailFragment();
74
75 // specify contact's Uri as an argument to the DetailFragment
76 Bundle arguments = new Bundle();
77
78
79
80 // use a FragmentTransaction to display the DetailFragment
81 FragmentTransaction transaction =
82 getSupportFragmentManager().beginTransaction();
83
84
85 transaction.commit(); // causes DetailFragment to display
86 }
87

Fig. 9.27 | Method displayContact.

arguments.putParcelable(CONTACT_URI, contactUri);
detailFragment.setArguments(arguments);

transaction.replace(viewID, detailFragment);
transaction.addToBackStack(null);

ptg16518503

358 Chapter 9 Address Book App

9.9.5 Method displayAddEditFragment
Method displayAddEditFragment (Fig. 9.28) receives a View’s resource ID specifying
where to attach the AddEditFragment and a Uri representing a contact to edit. If the second
argument is null, a new contact is being added. Line 90 creates the AddEditFragment. If the
contactUri argument is not null, line 95 puts it into the Bundle that’s used to supply the
Fragment’s arguments. Lines 100–104 then create the FragmentTransaction, replace the
contents of the View with the specified resource ID, add the Fragment to the back stack and
commit the transaction.

9.9.6 DetailFragment.DetailFragmentListener Methods
Figure 9.29 contains MainActivity’s implementations of the callback methods in the in-
terface DetailFragment.DetailFragmentListener. Method onContactDeleted (lines
108–113) is called by the DetailFragment to notify the MainActivity when the user de-
letes a contact. In this case, line 111 pops the DetailFragment from the back stack so that
the now deleted contact’s information is no longer displayed. Line 112 calls the Contacts-
Fragment’s updateContactList method to refresh the contacts list.

88 // display fragment for adding a new or editing an existing contact
89 private void displayAddEditFragment(int viewID, Uri contactUri) {
90 AddEditFragment addEditFragment = new AddEditFragment();
91
92 // if editing existing contact, provide contactUri as an argument
93 if (contactUri != null) {
94 Bundle arguments = new Bundle();
95
96 addEditFragment.setArguments(arguments);
97 }
98
99 // use a FragmentTransaction to display the AddEditFragment
100 FragmentTransaction transaction =
101 getSupportFragmentManager().beginTransaction();
102 transaction.replace(viewID, addEditFragment);
103 transaction.addToBackStack(null);
104 transaction.commit(); // causes AddEditFragment to display
105 }
106

Fig. 9.28 | Method displayAddEditFragment.

107 // return to contact list when displayed contact deleted
108 @Override
109 public void onContactDeleted() {
110 // removes top of back stack
111 getSupportFragmentManager().popBackStack();
112 contactsFragment.updateContactList(); // refresh contacts
113 }
114

Fig. 9.29 | DetailFragment.DetailFragmentListener methods. (Part 1 of 2.)

arguments.putParcelable(CONTACT_URI, contactUri);

ptg16518503

9.9 MainActivity Class 359

Method onEditContact (lines 116–122) is called by the DetailFragment to notify
the MainActivity when the user touches the app bar item to edit a contact. The Detail-
Fragment passes a Uri representing the contact to edit so that it can be displayed in the
AddEditFragment’s EditTexts for editing. If the layout contains the fragmentContainer,
line 119 calls displayAddEditFragment (Section 9.9.5) to display the AddEditFragment
in the fragmentContainer; otherwise, line 121 displays the AddEditFragment in the
rightPaneContainer.

9.9.7 AddEditFragment.AddEditFragmentListener Method
Method onAddEditCompleted (Fig. 9.30) from the AddEditFragment.AddEditFragment-
Listener interface is called by the AddEditFragment to notify the MainActivity when the
user saves a new contact or saves changes to an existing one. Line 128 pops the AddEdit-
Fragment from the back stack and line 129 updates the ContactsFragment’s contact list.
If the app is running on a tablet (line 131), line 133 pops the back stack again to remove
the DetailFragment (if there is one). Then line 136 displays the new or updated contact’s
details in the rightPaneContainer.

115 // display the AddEditFragment to edit an existing contact
116 @Override
117 public void onEditContact(Uri contactUri) {
118 if (findViewById(R.id.fragmentContainer) != null) // phone
119 displayAddEditFragment(R.id.fragmentContainer, contactUri);
120 else // tablet
121 displayAddEditFragment(R.id.rightPaneContainer, contactUri);
122 }
123

124 // update GUI after new contact or updated contact saved
125 @Override
126 public void onAddEditCompleted(Uri contactUri) {
127 // removes top of back stack
128 getSupportFragmentManager().popBackStack();
129 contactsFragment.updateContactList(); // refresh contacts
130
131 if (findViewById(R.id.fragmentContainer) == null) { // tablet
132 // removes top of back stack
133 getSupportFragmentManager().popBackStack();
134
135 // on tablet, display contact that was just added or edited
136 displayContact(contactUri, R.id.rightPaneContainer);
137 }
138 }
139 }

Fig. 9.30 | AddEditFragment.AddEditFragmentListener method.

Fig. 9.29 | DetailFragment.DetailFragmentListener methods. (Part 2 of 2.)

ptg16518503

360 Chapter 9 Address Book App

9.10 ContactsFragment Class
Class ContactsFragment displays the contact list in a RecyclerView and provides a
FloatingActionButton that the user can touch to add a new contact.

9.10.1 Superclass and Implemented Interface
Figure 9.31 lists ContactsFragment’s package statement and import statements and the
beginning of its class definition. The ContactsFragment uses a LoaderManager and a
Loader to query the AddressBookContentProvider and receive a Cursor that the Con-
tactsAdapter (Section 9.11) uses to supply data to the RecyclerView. ContactsFrag-
ment implements interface LoaderManager.LoaderCallbacks<Cursor> (line 23) so that it
can respond to method calls from the LoaderManager to create the Loader and process the
results returned by the AddressBookContentProvider.

9.10.2 ContactsFragmentListener
Figure 9.32 defines the nested interface ContactsFragmentListener, which contains the
callback methods that MainActivity implements to be notified when the user selects a
contact (line 28) and when the user touches the FloatingActionButton to add a new con-
tact (line 31).

1 // ContactsFragment.java
2 // Fragment subclass that displays the alphabetical list of contact names
3 package com.deitel.addressbook;
4
5 import android.content.Context;
6 import android.database.Cursor;
7 import android.net.Uri;
8 import android.os.Bundle;
9 import android.support.design.widget.FloatingActionButton;

10 import android.support.v4.app.Fragment;
11 import android.support.v4.app.LoaderManager;
12 import android.support.v4.content.CursorLoader;
13 import android.support.v4.content.Loader;
14 import android.support.v7.widget.LinearLayoutManager;
15 import android.support.v7.widget.RecyclerView;
16 import android.view.LayoutInflater;
17 import android.view.View;
18 import android.view.ViewGroup;
19
20 import com.deitel.addressbook.data.DatabaseDescription.Contact;
21
22 public class ContactsFragment extends Fragment
23 {
24

Fig. 9.31 | ContactsFragment superclass and implemented interface.

implements LoaderManager.LoaderCallbacks<Cursor>

ptg16518503

9.10 ContactsFragment Class 361

9.10.3 Fields
Figure 9.33 shows class ContactsFragment’s fields. Line 34 declares a constant that’s used
to identify the Loader when processing the results returned from the AddressBookCon-
tentProvider. In this case, we have only one Loader—if a class uses more than one Load-
er, each should have a constant with a unique integer value so that you can identify which
Loader to manipulate in the LoaderManager.LoaderCallbacks<Cursor> callback meth-
ods. The instance variable listener (line 37) will refer to the object that implements the
interface (MainActivity). Instance variable contactsAdapter (line 39) will refer to the
ContactsAdapter that binds data to the RecyclerView.

9.10.4 Overridden Fragment Method onCreateView
Overridden Fragment method onCreateView (Fig. 9.34) inflates and configures the Frag-
ment’s GUI. Most of this method’s code has been presented in prior chapters, so we focus
only on the new features here. Line 47 indicates that the ContactsFragment has menu
items that should be displayed on the Activity’s app bar (or in its options menu). Lines
56–74 configure the RecyclerView. Lines 60–67 create the ContactsAdapter that popu-
lates the RecyclerView. The argument to the constructor is an implementation of the
ContactsAdapter.ContactClickListener interface (Section 9.11) specifying that when
the user touches a contact, the ContactsFragmentListener’s onContactSelected should
be called with the Uri of the contact to display in a DetailFragment.

25 // callback method implemented by MainActivity
26 public interface ContactsFragmentListener {
27 // called when contact selected
28 void onContactSelected(Uri contactUri);
29
30 // called when add button is pressed
31 void onAddContact();
32 }
33

Fig. 9.32 | Nested interface ContactsFragmentListener.

34
35
36 // used to inform the MainActivity when a contact is selected
37 private ContactsFragmentListener listener;
38
39 private ContactsAdapter contactsAdapter; // adapter for recyclerView
40

Fig. 9.33 | ContactsFragment fields.

private static final int CONTACTS_LOADER = 0; // identifies Loader

ptg16518503

362 Chapter 9 Address Book App

41 // configures this fragment's GUI
42 @Override
43 public View onCreateView(
44 LayoutInflater inflater, ViewGroup container,
45 Bundle savedInstanceState) {
46 super.onCreateView(inflater, container, savedInstanceState);
47 setHasOptionsMenu(true); // fragment has menu items to display
48
49 // inflate GUI and get reference to the RecyclerView
50 View view = inflater.inflate(
51 R.layout.fragment_contacts, container, false);
52 RecyclerView recyclerView =
53 (RecyclerView) view.findViewById(R.id.recyclerView);
54
55 // recyclerView should display items in a vertical list
56 recyclerView.setLayoutManager(
57 new LinearLayoutManager(getActivity().getBaseContext()));
58
59 // create recyclerView's adapter and item click listener
60
61
62
63
64
65
66
67
68 recyclerView.setAdapter(contactsAdapter); // set the adapter
69
70 // attach a custom ItemDecorator to draw dividers between list items
71 recyclerView.addItemDecoration(new ItemDivider(getContext()));
72
73 // improves performance if RecyclerView's layout size never changes
74 recyclerView.setHasFixedSize(true);
75
76 // get the FloatingActionButton and configure its listener
77 FloatingActionButton addButton =
78 (FloatingActionButton) view.findViewById(R.id.addButton);
79 addButton.setOnClickListener(
80 new View.OnClickListener() {
81 // displays the AddEditFragment when FAB is touched
82 @Override
83 public void onClick(View view) {
84 listener.onAddContact();
85 }
86 }
87);
88
89 return view;
90 }
91

Fig. 9.34 | Overridden Fragment method onCreateView.

contactsAdapter = new ContactsAdapter(
 new ContactsAdapter.ContactClickListener() {

 @Override
 public void onClick(Uri contactUri) {

 listener.onContactSelected(contactUri);
 }

 }
);

ptg16518503

9.10 ContactsFragment Class 363

9.10.5 Overridden Fragment Methods onAttach and onDetach
Class ContactsFragment overrides Fragment lifecycle methods onAttach and onDetach
(Fig. 9.35) to set instance variable listener. In this app, listener refers to the host Ac-
tivity (line 96) when the ContactsFragment is attached and is set to null (line 103)
when the ContactsFragment is detached.

9.10.6 Overridden Fragment Method onActivityCreated
Fragment lifecycle method onActivityCreated (Fig. 9.36) is called after a Fragment’s
host Activity has been created and the Fragment’s onCreateView method completes ex-
ecution—at this point, the Fragment’s GUI is part of the Activity’s view hierarchy. We
use this method to tell the LoaderManager to initialize a Loader—doing this after the view
hierarchy exists is important because the RecyclerView must exist before we can display
the loaded data. Line 110 uses Fragment method getLoaderManager to obtain the Frag-
ment’s LoaderManager object. Next we call LoaderManager’s initLoader method, which
receives three arguments:

• the integer ID used to identify the Loader

• a Bundle containing arguments for the Loader’s constructor, or null if there are
no arguments

• a reference to the implementation of the interface LoaderManager.LoaderCall-
backs<Cursor> (this represents the ContactsAdapter)—you’ll see the imple-
mentations of this interface’s methods onCreateLoader, onLoadFinished and
onLoaderReset in Section 9.10.8.

If there is not already an active Loader with the specified ID, the initLoader method
asynchronously calls the onCreateLoader method to create and start a Loader for that ID.
If there is an active Loader, the initLoader method immediately calls the onLoadFin-
ished method.

92 // set ContactsFragmentListener when fragment attached
93 @Override
94 {
95 super.onAttach(context);
96 listener = (ContactsFragmentListener) context;
97 }
98
99 // remove ContactsFragmentListener when Fragment detached
100 @Override
101 {
102 super.onDetach();
103 listener = null;
104 }
105

Fig. 9.35 | Overridden Fragment methods onAttach and onDetach.

public void onAttach(Context context)

public void onDetach()

ptg16518503

364 Chapter 9 Address Book App

9.10.7 Method updateContactList
ContactsFragment method updateContactList (Fig. 9.37) simply notifies the Contacts-
Adapter when the data changes. This method is called when new contacts are added and
when existing contacts are updated or deleted.

9.10.8 LoaderManager.LoaderCallbacks<Cursor> Methods
Figure 9.38 presents class ContactsFragment’s implementations of the callback methods
in interface LoaderManager.LoaderCallbacks<Cursor>.

106 // initialize a Loader when this fragment's activity is created
107 @Override
108 {
109 super.onActivityCreated(savedInstanceState);
110
111 }
112

Fig. 9.36 | Overridden Fragment method onActivityCreated.

113 // called from MainActivity when other Fragment's update database
114 public void updateContactList() {
115 contactsAdapter.notifyDataSetChanged();
116 }
117

Fig. 9.37 | ContactsFragment method updateContactList.

118 // called by LoaderManager to create a Loader
119 @Override
120 {
121 // create an appropriate CursorLoader based on the id argument;
122 // only one Loader in this fragment, so the switch is unnecessary
123 switch (id) {
124 case CONTACTS_LOADER:
125
126
127
128
129
130
131 default:
132 return null;
133 }
134 }
135

Fig. 9.38 | LoaderManager.LoaderCallbacks<Cursor> methods. (Part 1 of 2.)

public void onActivityCreated(Bundle savedInstanceState)

getLoaderManager().initLoader(CONTACTS_LOADER, null, this);

public Loader<Cursor> onCreateLoader(int id, Bundle args)

return new CursorLoader(getActivity(),
 Contact.CONTENT_URI, // Uri of contacts table
 null, // null projection returns all columns
 null, // null selection returns all rows
 null, // no selection arguments
 Contact.COLUMN_NAME + " COLLATE NOCASE ASC"); // sort order

ptg16518503

9.11 ContactsAdapter Class 365

Method onCreateLoader
The LoaderManager calls method onCreateLoader (lines 119–134) to create and return a
new Loader for the specified ID, which the LoaderManager manages in the context of
the Fragment’s or Activity’s lifecycle. Lines 123–133 determine the Loader to create,
based on the ID received as onCreateLoader’s first argument.

Lines 125–130 create and return a CursorLoader that queries the AddressBookCon-
tentProvider to get the list of contacts, then makes the results available as a Cursor. The
CursorLoader constructor receives the Context in which the Loader’s lifecycle is managed
and uri, projection, selection, selectionArgs and sortOrder arguments that have the
same meaning as those in the ContentProvider’s query method (Section 9.8.3). In this
case, we specified null for the projection, selection and selectionArgs arguments and
indicated that the contacts should be sorted by name in a case insensitive manner.

Method onLoadFinished
Method onLoadFinished (lines 137–140) is called by the LoaderManager after a Loader
finishes loading its data, so you can process the results in the Cursor argument. In this case,
we call the ContactsAdapter’s swapCursor method with the Cursor as an argument, so
the ContactsAdapter can refresh the RecyclerView based on the new Cursor contents.

Method onLoaderReset
Method onLoaderReset (lines 143–146) is called by the LoaderManager when a Loader
is reset and its data is no longer available. At this point, the app should immediately dis-
connect from the data. In this case, we call the ContactsAdapter’s swapCursor method
with the argument null to indicate that there is no data to bind to the RecyclerView.

9.11 ContactsAdapter Class
In Section 8.6, we discussed how to create a RecyclerView.Adapter that’s used to bind
data to a RecyclerView. Here we highlight only the new code that helps the Contacts-
Adapter (Fig. 9.39) to populate the RecyclerView with contact names from a Cursor.

136 // called by LoaderManager when loading completes
137 @Override
138 {
139 contactsAdapter.swapCursor(data);
140 }
141
142 // called by LoaderManager when the Loader is being reset
143 @Override
144 {
145 contactsAdapter.swapCursor(null);
146 }
147 }

Good Programming Practice 9.1
For the ContactsFragment, we need only one Loader, so the switch statement is unnec-
essary, but we included it here as a good practice.

Fig. 9.38 | LoaderManager.LoaderCallbacks<Cursor> methods. (Part 2 of 2.)

public void onLoadFinished(Loader<Cursor> loader, Cursor data)

public void onLoaderReset(Loader<Cursor> loader)

ptg16518503

366 Chapter 9 Address Book App

1 // ContactsAdapter.java
2 // Subclass of RecyclerView.Adapter that binds contacts to RecyclerView
3 package com.deitel.addressbook;
4
5 import android.database.Cursor;
6 import android.net.Uri;
7 import android.support.v7.widget.RecyclerView;
8 import android.view.LayoutInflater;
9 import android.view.View;

10 import android.view.ViewGroup;
11 import android.widget.TextView;
12
13 import com.deitel.addressbook.data.DatabaseDescription.Contact;
14
15 public class ContactsAdapter
16 extends RecyclerView.Adapter<ContactsAdapter.ViewHolder> {
17
18 // interface implemented by ContactsFragment to respond
19 // when the user touches an item in the RecyclerView
20
21
22
23
24 // nested subclass of RecyclerView.ViewHolder used to implement
25 // the view-holder pattern in the context of a RecyclerView
26 public class ViewHolder extends RecyclerView.ViewHolder {
27 public final TextView textView;
28
29
30 // configures a RecyclerView item's ViewHolder
31 public ViewHolder(View itemView) {
32 super(itemView);
33
34
35 // attach listener to itemView
36 itemView.setOnClickListener(
37 new View.OnClickListener() {
38 // executes when the contact in this ViewHolder is clicked
39 @Override
40 public void onClick(View view) {
41
42 }
43 }
44);
45 }
46
47 // set the database row ID for the contact in this ViewHolder
48 public void setRowID(long rowID) {
49 this.rowID = rowID;
50 }
51 }

Fig. 9.39 | Subclass of RecyclerView.Adapter that binds contacts to RecyclerView. (Part 1
of 2.)

public interface ContactClickListener {
 void onClick(Uri contactUri);
}

private long rowID;

textView = (TextView) itemView.findViewById(android.R.id.text1);

clickListener.onClick(Contact.buildContactUri(rowID));

ptg16518503

9.11 ContactsAdapter Class 367

Nested Interface ContactClickListener
Lines 20–22 define the nested interface ContactClickListener that class ContactsFrag-
ment implements to be notified when the user touches a contact in the RecyclerView.
Each item in the RecyclerView has a click listener that calls the ContactClickListener’s
onClick method and passes the selected contact’s Uri. The ContactsFragment then noti-
fies the MainActivity that a contact was selected, so the MainActivity can display the
contact in a DetailFragment.

52
53 // ContactsAdapter instance variables
54
55
56
57 // constructor
58 public ContactsAdapter(ContactClickListener clickListener) {
59 this.clickListener = clickListener;
60 }
61
62 // sets up new list item and its ViewHolder
63 @Override
64 public ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
65 // inflate the android.R.layout.simple_list_item_1 layout
66
67
68 return new ViewHolder(view); // return current item's ViewHolder
69 }
70
71 // sets the text of the list item to display the search tag
72 @Override
73 public void onBindViewHolder(ViewHolder holder, int position) {
74
75
76
77
78 }
79
80 // returns the number of items that adapter binds
81 @Override
82 public int getItemCount() {
83 return (cursor != null) ? : 0;
84 }
85
86 // swap this adapter's current Cursor for a new one
87 {
88 this.cursor = cursor;
89 notifyDataSetChanged();
90 }
91 }

Fig. 9.39 | Subclass of RecyclerView.Adapter that binds contacts to RecyclerView. (Part 2
of 2.)

private Cursor cursor = null;
private final ContactClickListener clickListener;

View view = LayoutInflater.from(parent.getContext()).inflate(
 android.R.layout.simple_list_item_1, parent, false);

cursor.moveToPosition(position);
holder.setRowID(cursor.getLong(cursor.getColumnIndex(Contact._ID)));
holder.textView.setText(cursor.getString(cursor.getColumnIndex(
 Contact.COLUMN_NAME)));

cursor.getCount()

public void swapCursor(Cursor cursor)

ptg16518503

368 Chapter 9 Address Book App

Nested Class ViewHolder
Class ViewHolder (lines 26–51) maintains a reference to a RecyclerView item’s TextView
and the database’s rowID for the corresponding contact. The rowID is necessary because we
sort the contacts before displaying them, so each contact’s position number in the Recy-
clerView most likely does not match the contact’s row ID in the database. ViewHolder’s
constructor stores a reference to the RecyclerView item’s TextView and sets its View.On-
ClickListener, which passes the contact’s URI to the adapter’s ContactClickListener.

Overridden RecyclerView.Adapter Method onCreateViewHolder
Method onCreateViewHolder (lines 63–69) inflates the GUI for a ViewHolder object. In
this case we used the predefined layout android.R.layout.simple_list_item_1, which
defines a layout containing one TextView named text1.

Overridden RecyclerView.Adapter Method onBindViewHolder
Method onBindViewHolder (lines 72–78) uses Cursor method moveToPosition to move to
the contact that corresponds to the current RecyclerView item’s position. Line 75 sets the
ViewHolder’s rowID. To get this value, we use Cursor method getColumnIndex to look up
the column number of the Contact._ID column. We then pass that number to Cursor
method getLong to get the contact’s row ID. Lines 76–77 set the text for the ViewHolder’s
textView, using a similar process—in this case, look up the column number for the Con-
tact.COLUMN_NAME column, then call Cursor method getString to get the contact’s name.

Overridden RecyclerView.Adapter Method getItemCount
Method getItemCount (lines 81–84) returns the total number of rows in the Cursor or 0
if Cursor is null.

Method swapCursor
Method swapCursor (lines 87–90) replaces the adapter’s current Cursor and notifies the
adapter that its data changed. This method is called from the ContactsFragment’s on-
LoadFinished and onLoaderReset methods.

9.12 AddEditFragment Class
The AddEditFragment class provides a GUI for adding new contacts or editing existing
ones. Many of the programming concepts used in this class have been presented earlier in
this chapter or in prior chapters, so we focus here only on the new features.

9.12.1 Superclass and Implemented Interface
Figure 9.40 lists the package statement, import statements and the beginning of the Add-
EditFragment class definition. The class extends Fragment and implements the Loader-
Manager.LoaderCallbacks<Cursor> interface to respond to LoaderManager events.

1 // AddEditFragment.java
2 // Fragment for adding a new contact or editing an existing one
3 package com.deitel.addressbook;

Fig. 9.40 | AddEditFragment package statement and import statements. (Part 1 of 2.)

ptg16518503

9.12 AddEditFragment Class 369

9.12.2 AddEditFragmentListener
Figure 9.41 declares the nested interface AddEditFragmentListener containing the call-
back method onAddEditCompleted. MainActivity implements this interface to be notified
when the user saves a new contact or saves changes to an existing one.

9.12.3 Fields
Figure 9.42 lists the class’s fields:

• The constant CONTACT_LOADER (line 37) identifies the Loader that queries the
AddressBookContentProvider to retrieve one contact for editing.

• The instance variable listener (line 39) refers to the AddEditFragmentListener
(MainActivity) that’s notified when the user saves a new or updated contact.

4
5 import android.content.ContentValues;
6 import android.content.Context;
7 import android.database.Cursor;
8 import android.net.Uri;
9 import android.os.Bundle;

10 import android.support.design.widget.CoordinatorLayout;
11 import android.support.design.widget.FloatingActionButton;
12 import android.support.design.widget.Snackbar;
13 import android.support.design.widget.TextInputLayout;
14 import android.support.v4.app.Fragment;
15 import android.support.v4.app.LoaderManager;
16 import android.support.v4.content.CursorLoader;
17 import android.support.v4.content.Loader;
18 import android.text.Editable;
19 import android.text.TextWatcher;
20 import android.view.LayoutInflater;
21 import android.view.View;
22 import android.view.ViewGroup;
23 import android.view.inputmethod.InputMethodManager;
24
25 import com.deitel.addressbook.data.DatabaseDescription.Contact;
26
27 public class AddEditFragment extends Fragment
28 {
29

30 // defines callback method implemented by MainActivity
31 public interface AddEditFragmentListener {
32 // called when contact is saved
33 void onAddEditCompleted(Uri contactUri);
34 }
35

Fig. 9.41 | Nested interface AddEditFragmentListener.

Fig. 9.40 | AddEditFragment package statement and import statements. (Part 2 of 2.)

implements LoaderManager.LoaderCallbacks<Cursor>

ptg16518503

370 Chapter 9 Address Book App

• The instance variable contactUri (line 40) represents the contact to edit.

• The instance variable addingNewContact (line 41) specifies whether a new con-
tact is being added (true) or an existing contact is being edited (false).

• The instance variables at lines 44–53 refer to the Fragment’s TextInputLayouts,
FloatingActionButton and CoordinatorLayout.

9.12.4 Overridden Fragment Methods onAttach, onDetach and
onCreateView
Figure 9.43 contains the overridden Fragment methods onAttach, onDetach and onCre-
ateView. Methods onAttach and onDetach set instance variable listener to refer to the
host Activity when the AddEditFragment is attached and to set listener to null when
the AddEditFragment is detached.

36 // constant used to identify the Loader
37 private static final int CONTACT_LOADER = 0;
38
39 private AddEditFragmentListener listener; // MainActivity
40 private Uri contactUri; // Uri of selected contact
41 private boolean addingNewContact = true; // adding (true) or editing
42
43 // EditTexts for contact information
44 private TextInputLayout nameTextInputLayout;
45 private TextInputLayout phoneTextInputLayout;
46 private TextInputLayout emailTextInputLayout;
47 private TextInputLayout streetTextInputLayout;
48 private TextInputLayout cityTextInputLayout;
49 private TextInputLayout stateTextInputLayout;
50 private TextInputLayout zipTextInputLayout;
51 private FloatingActionButton saveContactFAB;
52
53 private CoordinatorLayout coordinatorLayout; // used with SnackBars
54

Fig. 9.42 | AddEditFragment fields.

55 // set AddEditFragmentListener when Fragment attached
56 @Override
57 public void onAttach(Context context) {
58 super.onAttach(context);
59 listener = (AddEditFragmentListener) context;
60 }
61
62 // remove AddEditFragmentListener when Fragment detached
63 @Override
64 public void onDetach() {
65 super.onDetach();
66 listener = null;
67 }

Fig. 9.43 | Overridden Fragment Methods onAttach, onDetach and onCreateView. (Part 1 of 2.)

ptg16518503

9.12 AddEditFragment Class 371

68
69 // called when Fragment's view needs to be created
70 @Override
71 public View onCreateView(
72 LayoutInflater inflater, ViewGroup container,
73 Bundle savedInstanceState) {
74 super.onCreateView(inflater, container, savedInstanceState);
75 setHasOptionsMenu(true); // fragment has menu items to display
76
77 // inflate GUI and get references to EditTexts
78 View view =
79 inflater.inflate(R.layout.fragment_add_edit, container, false);
80 nameTextInputLayout =
81 (TextInputLayout) view.findViewById(R.id.nameTextInputLayout);
82
83
84 phoneTextInputLayout =
85 (TextInputLayout) view.findViewById(R.id.phoneTextInputLayout);
86 emailTextInputLayout =
87 (TextInputLayout) view.findViewById(R.id.emailTextInputLayout);
88 streetTextInputLayout =
89 (TextInputLayout) view.findViewById(R.id.streetTextInputLayout);
90 cityTextInputLayout =
91 (TextInputLayout) view.findViewById(R.id.cityTextInputLayout);
92 stateTextInputLayout =
93 (TextInputLayout) view.findViewById(R.id.stateTextInputLayout);
94 zipTextInputLayout =
95 (TextInputLayout) view.findViewById(R.id.zipTextInputLayout);
96
97 // set FloatingActionButton's event listener
98 saveContactFAB = (FloatingActionButton) view.findViewById(
99 R.id.saveFloatingActionButton);
100
101 updateSaveButtonFAB();
102
103 // used to display SnackBars with brief messages
104 coordinatorLayout = (CoordinatorLayout) getActivity().findViewById(
105 R.id.coordinatorLayout);
106
107
108
109 if (arguments != null) {
110 addingNewContact = false;
111
112 }
113
114 // if editing an existing contact, create Loader to get the contact
115 if (contactUri != null)
116
117
118 return view;
119 }
120

Fig. 9.43 | Overridden Fragment Methods onAttach, onDetach and onCreateView. (Part 2 of 2.)

nameTextInputLayout.getEditText().addTextChangedListener(
 nameChangedListener);

saveContactFAB.setOnClickListener(saveContactButtonClicked);

Bundle arguments = getArguments(); // null if creating new contact

contactUri = arguments.getParcelable(MainActivity.CONTACT_URI);

getLoaderManager().initLoader(CONTACT_LOADER, null, this);

ptg16518503

372 Chapter 9 Address Book App

Method onCreateView inflates the GUI and gets references to the Fragment’s Text-
InputLayouts and configures the FloatingActionButton. Next, we use Fragment method
getArguments to get the Bundle of arguments (line 107). When we launch the AddEdit-
Fragment from the MainActivity, we pass null for the Bundle argument, because the user
is adding a new contact’s information. In this case, getArguments returns null. If getAr-
guments returns a Bundle (line 109), then the user is editing an existing contact. Line 111
reads the contact’s Uri from the Bundle by calling method getParcelable. If contactUri
is not null, line 116 uses the Fragment’s LoaderManager to initialize a Loader that the
AddEditFragment will use to get the data for the contact being edited.

9.12.5 TextWatcher nameChangedListener and Method
updateSaveButtonFAB
Figure 9.44 shows the TextWatcher nameChangedListener and method updatedSave-
ButtonFAB. The listener calls method updatedSaveButtonFAB when the user edits the text
in the nameTextInputLayout’s EditText. The name must be non-empty in this app, so
method updatedSaveButtonFAB displays the FloatingActionButton only when the
nameTextInputLayout’s EditText is not empty.

121 // detects when the text in the nameTextInputLayout's EditText changes
122 // to hide or show saveButtonFAB
123 private final TextWatcher nameChangedListener = new TextWatcher() {
124 @Override
125 public void beforeTextChanged(CharSequence s, int start, int count,
126 int after) {}
127
128 // called when the text in nameTextInputLayout changes
129 @Override
130 public void onTextChanged(CharSequence s, int start, int before,
131 int count) {
132 updateSaveButtonFAB();
133 }
134
135 @Override
136 public void afterTextChanged(Editable s) { }
137 };
138
139 // shows saveButtonFAB only if the name is not empty
140 private void updateSaveButtonFAB() {
141 String input =
142 nameTextInputLayout.getEditText().getText().toString();
143
144 // if there is a name for the contact, show the FloatingActionButton
145 if (input.trim().length() != 0)
146 saveContactFAB.show();
147 else
148 saveContactFAB.hide();
149 }
150

Fig. 9.44 | TextWatcher nameChangedListener and method updateSaveButtonFAB.

ptg16518503

9.12 AddEditFragment Class 373

9.12.6 View.OnClickListener saveContactButtonClicked and
Method saveContact
When the user touches this Fragment’s FloatingActionButton, the saveContactButton-
Clicked listener (Fig. 9.45, lines 152–162) executes. Method onClick hides the keyboard
(lines 157–159), then calls method saveContact.

151 // responds to event generated when user saves a contact
152 private final View.OnClickListener saveContactButtonClicked =
153 new View.OnClickListener() {
154 @Override
155 public void onClick(View v) {
156 // hide the virtual keyboard
157 ((InputMethodManager) getActivity().getSystemService(
158 Context.INPUT_METHOD_SERVICE)).hideSoftInputFromWindow(
159 getView().getWindowToken(), 0);
160 saveContact(); // save contact to the database
161 }
162 };
163
164 // saves contact information to the database
165 private void saveContact() {
166 // create ContentValues object containing contact's key-value pairs
167 ContentValues contentValues = new ContentValues();
168 contentValues.put(Contact.COLUMN_NAME,
169 nameTextInputLayout.getEditText().getText().toString());
170 contentValues.put(Contact.COLUMN_PHONE,
171 phoneTextInputLayout.getEditText().getText().toString());
172 contentValues.put(Contact.COLUMN_EMAIL,
173 emailTextInputLayout.getEditText().getText().toString());
174 contentValues.put(Contact.COLUMN_STREET,
175 streetTextInputLayout.getEditText().getText().toString());
176 contentValues.put(Contact.COLUMN_CITY,
177 cityTextInputLayout.getEditText().getText().toString());
178 contentValues.put(Contact.COLUMN_STATE,
179 stateTextInputLayout.getEditText().getText().toString());
180 contentValues.put(Contact.COLUMN_ZIP,
181 zipTextInputLayout.getEditText().getText().toString());
182
183 if (addingNewContact) {
184 // use Activity's ContentResolver to invoke
185 // insert on the AddressBookContentProvider
186
187
188
189 if (newContactUri != null) {
190 Snackbar.make(coordinatorLayout,
191 R.string.contact_added, Snackbar.LENGTH_LONG).show();
192
193 }

Fig. 9.45 | View.OnClickListener saveContactButtonClicked and method saveCon-
tact. (Part 1 of 2.)

Uri newContactUri = getActivity().getContentResolver().insert(
 Contact.CONTENT_URI, contentValues);

listener.onAddEditCompleted(newContactUri);

ptg16518503

374 Chapter 9 Address Book App

The saveContact method (lines 165–215) creates a ContentValues object (line 167)
and adds to it key–value pairs representing the column names and values to be inserted
into or updated in the database (lines 168–181). If the user is adding a new contact (lines
183–198), lines 186–187 use ContentResolver method insert to invoke insert on the
AddressBookContentProvider and place the new contact into the database. If the insert
is successful, the returned Uri is non-null and lines 190–192 display a SnackBar indi-
cating that the contact was added, then notify the AddEditFragmentListener with the
contact that was added. Recall that when the app is running on a tablet, this results in the
contact’s data being displayed in a DetailFragment next to the ContactsFragment. If the
insert is not successful, lines 195–196 display an appropriate SnackBar.

If the user is editing an existing contact (lines 199–214), lines 202–203 use Content-
Resolver method update to invoke update on the AddressBookContentProvider and
store the edited contact’s data. If the update is successful, the returned integer is greater
than 0 (indicating the specific number of rows updated) and lines 206–208 notify the Add-
EditFragmentListener with the contact that was edited, then display an appropriate mes-
sage. If the updated is not successful, lines 211–212 display an appropriate SnackBar.

9.12.7 LoaderManager.LoaderCallbacks<Cursor> Methods
Figure 9.46 presents the AddEditFragment’s implementations of the methods in interface
LoaderManager.LoaderCallbacks<Cursor>. These methods are used in class AddEdit-
Fragment only when the user is editing an existing contact. Method onCreateLoader
(lines 219–233) creates a CursorLoader for the specific contact being edited. Method on-

194 else {
195 Snackbar.make(coordinatorLayout,
196 R.string.contact_not_added, Snackbar.LENGTH_LONG).show();
197 }
198 }
199 else {
200 // use Activity's ContentResolver to invoke
201 // insert on the AddressBookContentProvider
202
203
204
205 if (updatedRows > 0) {
206
207 Snackbar.make(coordinatorLayout,
208 R.string.contact_updated, Snackbar.LENGTH_LONG).show();
209 }
210 else {
211 Snackbar.make(coordinatorLayout,
212 R.string.contact_not_updated, Snackbar.LENGTH_LONG).show();
213 }
214 }
215 }
216

Fig. 9.45 | View.OnClickListener saveContactButtonClicked and method saveCon-
tact. (Part 2 of 2.)

int updatedRows = getActivity().getContentResolver().update(
 contactUri, contentValues, null, null);

listener.onAddEditCompleted(contactUri);

ptg16518503

9.12 AddEditFragment Class 375

LoadFinished (lines 236–267) checks whether the cursor is non-null and, if so, calls cur-
sor method moveToFirst. If this method returns true, then a contact matching the
contactUri was found in the database and lines 241–263 get the contact’s information
from the Cursor and display it in the GUI. Method onLoaderReset is not needed in Add-
EditFragment, so it does nothing.

217 // called by LoaderManager to create a Loader
218 @Override
219 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
220 // create an appropriate CursorLoader based on the id argument;
221 // only one Loader in this fragment, so the switch is unnecessary
222 switch (id) {
223 case CONTACT_LOADER:
224 return new CursorLoader(getActivity(),
225 contactUri, // Uri of contact to display
226 null, // null projection returns all columns
227 null, // null selection returns all rows
228 null, // no selection arguments
229 null); // sort order
230 default:
231 return null;
232 }
233 }
234
235 // called by LoaderManager when loading completes
236 @Override
237 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
238 // if the contact exists in the database, display its data
239 if (data != null &&) {
240 // get the column index for each data item
241 int nameIndex = data.getColumnIndex(Contact.COLUMN_NAME);
242 int phoneIndex = data.getColumnIndex(Contact.COLUMN_PHONE);
243 int emailIndex = data.getColumnIndex(Contact.COLUMN_EMAIL);
244 int streetIndex = data.getColumnIndex(Contact.COLUMN_STREET);
245 int cityIndex = data.getColumnIndex(Contact.COLUMN_CITY);
246 int stateIndex = data.getColumnIndex(Contact.COLUMN_STATE);
247 int zipIndex = data.getColumnIndex(Contact.COLUMN_ZIP);
248
249 // fill EditTexts with the retrieved data
250 nameTextInputLayout.getEditText().setText(
251 data.getString(nameIndex));
252 phoneTextInputLayout.getEditText().setText(
253 data.getString(phoneIndex));
254 emailTextInputLayout.getEditText().setText(
255 data.getString(emailIndex));
256 streetTextInputLayout.getEditText().setText(
257 data.getString(streetIndex));
258 cityTextInputLayout.getEditText().setText(
259 data.getString(cityIndex));
260 stateTextInputLayout.getEditText().setText(
261 data.getString(stateIndex));

Fig. 9.46 | LoaderManager.LoaderCallbacks<Cursor> methods. (Part 1 of 2.)

data.moveToFirst()

ptg16518503

376 Chapter 9 Address Book App

9.13 DetailFragment Class
The DetailFragment class displays one contact’s information and provides menu items on
the app bar that enable the user to edit or delete that contact.

9.13.1 Superclass and Implemented Interface
Figure 9.47 lists the package statement, import statements and the beginning of the
DetailFragment class definition. The class extends Fragment and implements the Load-
erManager.LoaderCallbacks<Cursor> interface to respond to LoaderManager events.

262 zipTextInputLayout.getEditText().setText(
263 data.getString(zipIndex));
264
265 updateSaveButtonFAB();
266 }
267 }
268
269 // called by LoaderManager when the Loader is being reset
270 @Override
271 public void onLoaderReset(Loader<Cursor> loader) { }
272 }

1 // DetailFragment.java
2 // Fragment subclass that displays one contact's details
3 package com.deitel.addressbook;
4
5 import android.app.AlertDialog;
6 import android.app.Dialog;
7 import android.content.Context;
8 import android.content.DialogInterface;
9 import android.database.Cursor;

10 import android.net.Uri;
11 import android.os.Bundle;
12 import android.support.v4.app.DialogFragment;
13 import android.support.v4.app.Fragment;
14 import android.support.v4.app.LoaderManager;
15 import android.support.v4.content.CursorLoader;
16 import android.support.v4.content.Loader;
17 import android.view.LayoutInflater;
18 import android.view.Menu;
19 import android.view.MenuInflater;
20 import android.view.MenuItem;
21 import android.view.View;
22 import android.view.ViewGroup;
23 import android.widget.TextView;
24

Fig. 9.47 | package statement, import statements, superclass and implemented interface.
(Part 1 of 2.)

Fig. 9.46 | LoaderManager.LoaderCallbacks<Cursor> methods. (Part 2 of 2.)

ptg16518503

9.13 DetailFragment Class 377

9.13.2 DetailFragmentListener
Figure 9.48 declares the nested interface DetailFragmentListener containing the call-
back methods that MainActivity implements to be notified when the user deletes a con-
tact (line 32) and when the user touches the edit menu item to edit a contact (line 35).

9.13.3 Fields
Figure 9.49 shows the class’s fields:

• The constant CONTACT_LOADER (line 38) identifies the Loader that queries the
AddressBookContentProvider to retrieve one contact to display.

• The instance variable listener (line 40) refers to the DetailFragmentListener
(MainActivity) that’s notified when the user deletes a contact or initiates editing
of a contact.

• The instance variable contactUri (line 41) represents the contact to display.

• The instance variables at lines 43–49 refer to the Fragment’s TextViews.

25 import com.deitel.addressbook.data.DatabaseDescription.Contact;
26
27 public class DetailFragment extends Fragment
28 implements LoaderManager.LoaderCallbacks<Cursor> {
29

30 // callback methods implemented by MainActivity
31 public interface DetailFragmentListener {
32 void onContactDeleted(); // called when a contact is deleted
33
34 // pass Uri of contact to edit to the DetailFragmentListener
35 void onEditContact(Uri contactUri);
36 }
37

Fig. 9.48 | Nested interface DetailFragmentListener.

38 private static final int CONTACT_LOADER = 0; // identifies the Loader
39
40 private DetailFragmentListener listener; // MainActivity
41 private Uri contactUri; // Uri of selected contact
42
43 private TextView nameTextView; // displays contact's name
44 private TextView phoneTextView; // displays contact's phone
45 private TextView emailTextView; // displays contact's email
46 private TextView streetTextView; // displays contact's street
47 private TextView cityTextView; // displays contact's city

Fig. 9.49 | DetailFragment fields. (Part 1 of 2.)

Fig. 9.47 | package statement, import statements, superclass and implemented interface.
(Part 2 of 2.)

ptg16518503

378 Chapter 9 Address Book App

9.13.4 Overridden Methods onAttach, onDetach and onCreateView
Figure 9.50 contains overridden Fragment methods onAttach, onDetach and onCreate-
View. Methods onAttach and onDetach set instance variable listener to refer to the host
Activity when the DetailFragment is attached and to set listener to null when the
DetailFragment is detached. The onCreateView method (lines 66–95) obtains the select-
ed contact’s Uri (lines 74–77). Lines 80–90 inflate the GUI and get references to the
TextViews. Line 93 uses the Fragment’s LoaderManager to initialize a Loader that the
DetailFragment will use to get the data for the contact to display.

48 private TextView stateTextView; // displays contact's state
49 private TextView zipTextView; // displays contact's zip
50

51 // set DetailFragmentListener when fragment attached
52 @Override
53 public void onAttach(Context context) {
54 super.onAttach(context);
55 listener = (DetailFragmentListener) context;
56 }
57
58 // remove DetailFragmentListener when fragment detached
59 @Override
60 public void onDetach() {
61 super.onDetach();
62 listener = null;
63 }
64
65 // called when DetailFragmentListener's view needs to be created
66 @Override
67 public View onCreateView(
68 LayoutInflater inflater, ViewGroup container,
69 Bundle savedInstanceState) {
70 super.onCreateView(inflater, container, savedInstanceState);
71 setHasOptionsMenu(true); // this fragment has menu items to display
72
73 // get Bundle of arguments then extract the contact's Uri
74 Bundle arguments = getArguments();
75
76 if (arguments != null)
77
78
79 // inflate DetailFragment's layout
80 View view =
81 inflater.inflate(R.layout.fragment_detail, container, false);
82
83 // get the EditTexts
84 nameTextView = (TextView) view.findViewById(R.id.nameTextView);

Fig. 9.50 | Overridden methods onAttach, onDetach and onCreateView. (Part 1 of 2.)

Fig. 9.49 | DetailFragment fields. (Part 2 of 2.)

contactUri = arguments.getParcelable(MainActivity.CONTACT_URI);

ptg16518503

9.13 DetailFragment Class 379

9.13.5 Overridden Methods onCreateOptionsMenu and
onOptionsItemSelected
The DetailFragment displays in the app bar options for editing the current contact and
for deleting it. Method onCreateOptionsMenu (Fig. 9.51, lines 98–102) inflates the menu
resource file fragment_details_menu.xml. Method onOptionsItemSelected (lines 105–
117) uses the selected MenuItem’s resource ID to determine which one was selected. If the
user touched the edit option (), line 109 calls the DetailFragmentListener’s onEdit-
Contact method with the contactUri—MainActivity passes this to the AddEditFrag-
ment. If the user touched the delete option (), line 112 calls method deleteContact
(Fig. 9.52).

85 phoneTextView = (TextView) view.findViewById(R.id.phoneTextView);
86 emailTextView = (TextView) view.findViewById(R.id.emailTextView);
87 streetTextView = (TextView) view.findViewById(R.id.streetTextView);
88 cityTextView = (TextView) view.findViewById(R.id.cityTextView);
89 stateTextView = (TextView) view.findViewById(R.id.stateTextView);
90 zipTextView = (TextView) view.findViewById(R.id.zipTextView);
91
92 // load the contact
93
94 return view;
95 }
96

97 // display this fragment's menu items
98 @Override
99 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
100 super.onCreateOptionsMenu(menu, inflater);
101 inflater.inflate(R.menu.fragment_details_menu, menu);
102 }
103
104 // handle menu item selections
105 @Override
106 public boolean onOptionsItemSelected(MenuItem item) {
107 switch (item.getItemId()) {
108 case R.id.action_edit:
109
110 return true;
111 case R.id.action_delete:
112
113 return true;
114 }
115
116 return super.onOptionsItemSelected(item);
117 }
118

Fig. 9.51 | Overridden methods onCreateOptionsMenu and onOptionsItemSelected.

Fig. 9.50 | Overridden methods onAttach, onDetach and onCreateView. (Part 2 of 2.)

getLoaderManager().initLoader(CONTACT_LOADER, null, this);

listener.onEditContact(contactUri); // pass Uri to listener

deleteContact();

ptg16518503

380 Chapter 9 Address Book App

9.13.6 Method deleteContact and DialogFragment
confirmDelete
Method deleteContact (Fig. 9.52, lines 120–123) displays a DialogFragment (lines
126–157) asking the user to confirm that the currently displayed contact should be delet-
ed. If the user touches DELETE in the dialog, lines 147–148 call ContentResolver method
delete (lines 147–148) to invoke the AddressBookContentProvider’s delete method
and remove the contact from the database. Method delete receives the Uri of the content
to delete, a String representing the WHERE clause that determines what to delete and a
String array of arguments to insert in the WHERE clause. In this case, the last two arguments
are null, because the row ID of the contact to delete is embedded in the Uri—this row
ID is extracted from the Uri by the AddressBookContentProvider’s delete method. Line
149 calls the listener’s onContactDeleted method so that MainActivity can remove the
DetailFragment from the screen.

119 // delete a contact
120 private void deleteContact() {
121 // use FragmentManager to display the confirmDelete DialogFragment
122 confirmDelete.show(getFragmentManager(), "confirm delete");
123 }
124
125 // DialogFragment to confirm deletion of contact
126 private final DialogFragment confirmDelete =
127 new DialogFragment() {
128 // create an AlertDialog and return it
129 @Override
130 public Dialog onCreateDialog(Bundle bundle) {
131 // create a new AlertDialog Builder
132 AlertDialog.Builder builder =
133 new AlertDialog.Builder(getActivity());
134
135 builder.setTitle(R.string.confirm_title);
136 builder.setMessage(R.string.confirm_message);
137
138 // provide an OK button that simply dismisses the dialog
139 builder.setPositiveButton(R.string.button_delete,
140 new DialogInterface.OnClickListener() {
141 @Override
142 public void onClick(
143 DialogInterface dialog, int button) {
144
145 // use Activity's ContentResolver to invoke
146 // delete on the AddressBookContentProvider
147
148
149
150 }
151 }
152);
153

Fig. 9.52 | Method deleteContact and DialogFragment confirmDelete. (Part 1 of 2.)

getActivity().getContentResolver().delete(
 contactUri, null, null);
listener.onContactDeleted(); // notify listener

ptg16518503

9.13 DetailFragment Class 381

9.13.7 LoaderManager.LoaderCallback<Cursor> Methods
Figure 9.53 presents the DetailFragment’s implementations of the methods in interface
LoaderManager.LoaderCallbacks<Cursor>. Method onCreateLoader (lines 160–181)
creates a CursorLoader for the specific contact being displayed. Method onLoadFinished
(lines 184–206) checks whether the cursor is non-null and, if so, calls cursor method
moveToFirst. If this method returns true, then a contact matching the contactUri was
found in the database and lines 189–204 get the contact’s information from the Cursor
and display it in the GUI. Method onLoaderReset is not needed in DetailFragment, so
it does nothing.

154 builder.setNegativeButton(R.string.button_cancel, null);
155 return builder.create(); // return the AlertDialog
156 }
157 };
158

159 // called by LoaderManager to create a Loader
160 @Override
161 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
162 // create an appropriate CursorLoader based on the id argument;
163 // only one Loader in this fragment, so the switch is unnecessary
164 CursorLoader cursorLoader;
165
166 switch (id) {
167 case CONTACT_LOADER:
168 cursorLoader = new CursorLoader(getActivity(),
169 contactUri, // Uri of contact to display
170 null, // null projection returns all columns
171 null, // null selection returns all rows
172 null, // no selection arguments
173 null); // sort order
174 break;
175 default:
176 cursorLoader = null;
177 break;
178 }
179
180 return cursorLoader;
181 }
182
183 // called by LoaderManager when loading completes
184 @Override
185 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
186 // if the contact exists in the database, display its data
187 if (data != null && data.moveToFirst()) {
188 // get the column index for each data item
189 int nameIndex = data.getColumnIndex(Contact.COLUMN_NAME);

Fig. 9.53 | LoaderManager.LoaderCallback<Cursor> methods. (Part 1 of 2.)

Fig. 9.52 | Method deleteContact and DialogFragment confirmDelete. (Part 2 of 2.)

ptg16518503

382 Chapter 9 Address Book App

9.14 Wrap-Up
In this chapter, you created an Address Book app for adding, viewing, editing and deleting
contact information that’s stored in a SQLite database.

You used one activity to host all of the app’s Fragments. On a phone-sized device, you
displayed one Fragment at a time. On a tablet, the activity displayed the Fragment con-
taining the contact list, and you replaced that with Fragments for viewing, adding and
editing contacts as necessary. You used the FragmentManager and FragmentTransactions
to dynamically display Fragments. You used Android’s Fragment back stack to provide
automatic support for Android’s back button. To communicate data between Fragments
and the host activity, you defined in each Fragment subclass a nested interface of callback
methods that the host activity implemented.

You used a subclass of SQLiteOpenHelper to simplify creating the database and to
obtain a SQLiteDatabase object for manipulating the database’s contents. You also man-
aged database query results via a Cursor (package android.database).

To access the database asynchronously outside the GUI thread, you defined a subclass
of ContentProvider that specified how to query, insert, update and delete data. When
changes were made to the SQLite database, the ContentProvider notified listeners so data
could be updated in the GUI. The ContentProvider defined Uris that it used to deter-
mine the tasks to perform.

To invoke the ContentProvider’s query, insert, update and delete capabilities, we
invoked the corresponding methods of the activity’s built-in ContentResolver. You saw
that the ContentProvider and ContentResolver handle communication for you. The
ContentResolver’s methods received as their first argument a Uri that specified the Con-
tentProvider to access. Each ContentResolver method invoked the corresponding

190 int phoneIndex = data.getColumnIndex(Contact.COLUMN_PHONE);
191 int emailIndex = data.getColumnIndex(Contact.COLUMN_EMAIL);
192 int streetIndex = data.getColumnIndex(Contact.COLUMN_STREET);
193 int cityIndex = data.getColumnIndex(Contact.COLUMN_CITY);
194 int stateIndex = data.getColumnIndex(Contact.COLUMN_STATE);
195 int zipIndex = data.getColumnIndex(Contact.COLUMN_ZIP);
196
197 // fill TextViews with the retrieved data
198 nameTextView.setText(data.getString(nameIndex));
199 phoneTextView.setText(data.getString(phoneIndex));
200 emailTextView.setText(data.getString(emailIndex));
201 streetTextView.setText(data.getString(streetIndex));
202 cityTextView.setText(data.getString(cityIndex));
203 stateTextView.setText(data.getString(stateIndex));
204 zipTextView.setText(data.getString(zipIndex));
205 }
206 }
207
208 // called by LoaderManager when the Loader is being reset
209 @Override
210 public void onLoaderReset(Loader<Cursor> loader) { }
211 }

Fig. 9.53 | LoaderManager.LoaderCallback<Cursor> methods. (Part 2 of 2.)

ptg16518503

9.14 Wrap-Up 383

method of the ContentProvider, which in turn used the Uri to help determine the task
to perform.

As we’ve stated previously, long-running operations or operations that block execu-
tion until they complete (e.g., file and database access) should be performed outside the
GUI thread. You used a CursorLoader to perform asynchronous data access. You learned
that Loaders are created and managed by an Activity’s or Fragment’s LoaderManager,
which ties each Loader’s lifecycle to that of its Activity or Fragment. You implmeneted
interface LoaderManager.LoaderCallbacks to respond to Loader events indicating when
a Loader should be created, finishes loading its data, or is reset and the data is no longer
available.

You defined common GUI component attribute–value pairs as a style resource, then
applied the style to the TextViews that display a contact’s information. You also defined
a border for a TextView by specifying a Drawable for the TextView’s background. The
Drawable could be an image, but in this app you defined the Drawable as a shape in a
resource file.

In Chapter 10, we discuss the business side of Android app development. You’ll see
how to prepare your app for submission to Google Play, including making icons. We’ll
discuss how to test your apps on devices and publish them on Google Play. We discuss the
characteristics of great apps and the Android design guidelines to follow. We provide tips
for pricing and marketing your app. We also review the benefits of offering your app for
free to drive sales of other products, such as a more feature-rich version of the app or pre-
mium content. We show how to use Google Play to track app sales, payments and more.

ptg16518503

10
Google Play and App

Business Issues

O b j e c t i v e s
In this chapter you’ll be introduced to:

■ Preparing your apps for publication.

■ Pricing your apps and the benefits of free vs. paid apps.

■ Monetizing your apps with in-app advertising.

■ Selling virtual goods using in-app billing.

■ Registering for Google Play.

■ Setting up a merchant account.

■ Uploading your apps to Google Play.

■ Launching Google Play from within an app.

■ Other Android app marketplaces.

■ Other popular mobile app platforms to which you can port
your apps to broaden your market.

■ Marketing your apps.

ptg16518503

10.1 Introduction 385
O

u
tl

in
e

10.1 Introduction
In Chapters 2–9, we developed a variety of complete working Android apps. Once you’ve
developed and tested your own apps, both in the emulator and on Android devices, the
next step is to submit them to Google Play—and/or other app marketplaces—for distri-
bution to a worldwide audience. In this chapter, we’ll discuss

• registering for Google Play and setting up a Google Payments merchant account
so that you can sell your apps

• preparing your apps for publication and

• uploading them to Google Play.

In a few cases, we’ll refer you to the Android documentation instead of showing the steps
in the book, because the steps are likely to change. We’ll tell you about additional Android
app marketplaces where you can distribute your apps. We’ll discuss whether you should
offer your apps for free or for a fee, and mention key means for monetizing apps, including
in-app advertising, in-app billing and selling virtual goods. We’ll provide resources for
marketing your apps, and mention other app platforms to which you may port your An-
droid apps to broaden your marketplace.

10.2 Preparing Your Apps for Publication
Google provides various documents to help you get ready to release your app. The Prepar-
ing for Release document

summarizes what you need to do, including:

• getting a cryptographic key for digitally signing your app

10.1 Introduction
10.2 Preparing Your Apps for Publication

10.2.1 Testing Your App
10.2.2 End User License Agreement
10.2.3 Icons and Labels
10.2.4 Versioning Your App
10.2.5 Licensing to Control Access to Paid

Apps
10.2.6 Obfuscating Your Code
10.2.7 Getting a Private Key for Digitally

Signing Your App
10.2.8 Featured Image and Screenshots
10.2.9 Promotional App Video

10.3 Pricing Your App: Free or Fee
10.3.1 Paid Apps
10.3.2 Free Apps

10.4 Monetizing Apps with In-App
Advertising

10.5 Monetizing Apps: Using In-App
Billing to Sell Virtual Goods

10.6 Registering at Google Play
10.7 Setting Up a Google Payments

Merchant Account
10.8 Uploading Your Apps to Google Play
10.9 Launching Play Store from Within

Your App
10.10 Managing Your Apps in Google Play
10.11 Other Android App Marketplaces
10.12 Other Mobile App Platforms and

Porting Your Apps
10.13 Marketing Your Apps
10.14 Wrap-Up

http://developer.android.com/tools/publishing/preparing.html

http://developer.android.com/tools/publishing/preparing.html

ptg16518503

386 Chapter 10 Google Play and App Business Issues

• creating an application icon

• including an End User License Agreement with your app (optional)

• versioning your app (e.g., 1.0, 1.1, 2.0, 2.3, 3.0)

• compiling your app for release and

• testing the release version of your app on Android devices

Before publishing your app, you should also read the Core App Quality document

which provides quality guidelines for all apps, the Tablet App Quality document

which provides guidelines specifically for tablet apps, the Launch Checklist for publishing
apps on the Google Play store

and the Localization Checklist for apps that will be sold in various worldwide markets

The remainder of this section discusses in more detail some of the items you’ll need and
other considerations before you publish an app.

10.2.1 Testing Your App
You should test your app thoroughly on a variety of devices. The app might work perfectly
using the emulator on your computer, but problems could arise when running it on par-
ticular Android devices. Google’s Cloud Test Lab1

helps you test your app across a wide range of devices.

10.2.2 End User License Agreement
You have the option to include an End User License Agreement (EULA) with your app.
An EULA is an agreement through which you license your software to the user. It typically
stipulates terms of use, limitations on redistribution and reverse engineering, product lia-
bility, compliance with applicable laws and more. You might want to consult an attorney
when drafting an EULA for your app. To view a sample EULA, see

 http://developer.android.com/tools/testing/what_to_test.html

http://developer.android.com/distribute/essentials/quality/
core.html

http://developer.android.com/distribute/essentials/quality/
tablets.html

http://developer.android.com/distribute/tools/launch-checklist.html

http://developer.android.com/distribute/tools/localization-
checklist.html

https://developers.google.com/cloud-test-lab

1. Not yet available at the time of this writing.

http://www.rocketlawyer.com/document/end-user-license-agreement.rl

http://developer.android.com/tools/testing/what_to_test.html
http://developer.android.com/distribute/essentials/quality/core.html
http://developer.android.com/distribute/essentials/quality/tablets.html
http://developer.android.com/distribute/tools/launch-checklist.html
http://developer.android.com/distribute/tools/localization-checklist.html
http://developer.android.com/distribute/tools/localization-checklist.html
https://developers.google.com/cloud-test-lab
http://www.rocketlawyer.com/document/end-user-license-agreement.rl
http://developer.android.com/distribute/essentials/quality/core.html
http://developer.android.com/distribute/essentials/quality/tablets.html

ptg16518503

10.2 Preparing Your Apps for Publication 387

10.2.3 Icons and Labels
Design an icon for your app and provide a text label (a name) that will appear in Google
Play and on the user’s device. The icon could be your company logo, an image from the
app or a custom image. Google’s material design documentation provides all the details to
consider for your app icons:

Product icons should be 48-by-48 dp with a 1-dp border. Android scales this to the re-
quired size for various screen sizes and densities. For this reason, the guidelines recom-
mend that you design the icon at 192-by-192 dp with a 4-dp edge—larger images that are
scaled down to smaller sizes look better than smaller images scaled to larger sizes.

Google Play also displays a high-resolution app icon. This icon should be:

• 512-by-512 pixels

• 32-bit PNG

• 1 MB maximum

Since the app icon is the most important brand asset, having one that’s high quality is im-
portant. Consider hiring an experienced graphic designer to help you create a compelling,
professional icon. Figure 10.1 lists some design sites and firms that offer free, profession-
ally designed icons and paid custom icon design services. Once you’ve created the icon,
you can add it to your project using Android Studio’s Asset Studio (as you did in
Section 4.4.9), which will produce icons at various scaled sizes based on your original icon.

10.2.4 Versioning Your App
It’s important to include a version name (shown to the users) and a version code (an integer
version number used internally by Google Play) for your app, and to consider your strategy
for numbering updates. For example, the first version name of your app might be 1.0, mi-
nor updates might be 1.1 and 1.2, and the next major update might be 2.0. The version
code is an integer that typically starts at 1 and is incremented by 1 for each new version of
your app that you post. For additional guidelines, see Versioning Your Applications at

https://www.google.com/design/spec/style/icons.html

Company URL Services

glyphlab http://www.glyphlab.com/

icon_design/
Designs custom icons.

Iconiza http://www.iconiza.com Designs custom icons for a flat fee and
sells stock icons.

The Iconfactory http://iconfactory.com/home Custom and stock icons.

Rosetta® http://icondesign.rosetta.com/ Designs custom icons for a fee.

The Noun Project https://thenounproject.com/ Thousands of icons from many artists.

Elance® http://www.elance.com Search for freelance icon designers.

Fig. 10.1 | Some custom app icon design firms.

http://developer.android.com/tools/publishing/versioning.html

https://www.google.com/design/spec/style/icons.html
http://www.glyphlab.com/icon_design/
http://www.iconiza.com
http://iconfactory.com/home
http://icondesign.rosetta.com/
https://thenounproject.com/
http://www.elance.com
http://developer.android.com/tools/publishing/versioning.html
http://www.glyphlab.com/icon_design/

ptg16518503

388 Chapter 10 Google Play and App Business Issues

10.2.5 Licensing to Control Access to Paid Apps
The Google Play licensing service allows you to create licensing policies to control access
to your paid apps. For example, you might use a licensing policy to limit how many simul-
taneous device installs are allowed. To learn more about the licensing service, visit

10.2.6 Obfuscating Your Code
You should “obfuscate” any apps you upload to Google Play to discourage reverse engi-
neering of your code and further protect your apps. The free ProGuard tool—which runs
when you build your app in release mode—shrinks the size of your .apk file (the Android
app package file that contains your app for installation) and optimizes and obfuscates the
code “by removing unused code and renaming classes, fields, and methods with semanti-
cally obscure names.”2 To learn how to set up and use the ProGuard tool, go to

10.2.7 Getting a Private Key for Digitally Signing Your App
Before uploading your app to a device, Google Play or other app marketplaces, you must
digitally sign the .apk file using a digital certificate that identifies you as the app’s author.
A digital certificate includes your name or company name, contact information, and more.
It can be self-signed using a private key (i.e., a secure password used to encrypt the certifi-
cate); you do not need to purchase a certificate from a third-party certificate authority
(though it’s an option). Android Studio automatically digitally signs your app when you
execute it in an emulator or on a device for debugging purposes. That digital certificate is
not valid for use with Google Play. For detailed instructions on digitally signing your apps,
see Signing Your Applications at

10.2.8 Featured Image and Screenshots
The Google Play store shows promotional graphics and screenshots in your app listing—
these provide potential buyers with their first impressions of your app.

Featured Image
The featured image is used by Google Play to promote an app on phones, tablets and via
the Google Play website. The following Android Developers Blog post discusses the fea-
tured image’s importance and its requirements:

Screenshots and Using the Android Device Manager’s Screen Capture Tool
You may upload a maximum of eight screenshots for each device on which your app
runs—smartphone, small tablet, large tablet, Android TV and Android Wear. These

http://developer.android.com/google/play/licensing/index.html

http://developer.android.com/tools/help/proguard.html

2. http://developer.android.com/tools/help/proguard.html.

http://developer.android.com/tools/publishing/app-signing.html

http://android-developers.blogspot.com/2011/10/android-market-
featured-image.html

http://developer.android.com/google/play/licensing/index.html
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/publishing/app-signing.html
http://android-developers.blogspot.com/2011/10/android-market-featured-image.html
http://android-developers.blogspot.com/2011/10/android-market-featured-image.html
http://developer.android.com/tools/help/proguard.html

ptg16518503

10.2 Preparing Your Apps for Publication 389

screenshots provide a preview of your app, since users can’t test it before downloading it—
although they can return an app for a refund within two hours after purchasing it. Choose
attractive screenshots that show the app’s functionality. Figure 10.2 describes the image
requirements.

You can use the Android Device Monitor to capture device screenshots—this tool is
installed with Android Studio and also helps you debug your apps that are running on
emulators and devices. To obtain screenshots:

1. Run your app on an emulator or device.

2. In Android Studio, select Tools > Android > Android Device Monitor to open the
Android Device Monitor.

3. In the Devices tab (Fig. 10.3), select the device from which you’d like to obtain
a screen capture.

4. Click the Screen Capture button to display the Device Screen Capture window.

5. After you’ve ensured that the screen is showing what you’d like to capture, click
the Save button to save the image.

6. If you wish to change what’s on your device’s screen before saving an image, make
the change on the device (or AVD), then press the Refresh button in the Device
Screen Capture window to recapture the device’s screen. You can also click Rotate
to capture an image in landscape orientation.

For more information on the images you can include with your app listing, visit

Specification Description

Size Minimum width or height of 320 pixels and maximum of 3,840
pixels—the maximum dimension may not be more than twice the
minimum.

Format 24-bit PNG or JPEG format with no alpha (transparency) effects.

Fig. 10.2 | Screenshot specifications.

Fig. 10.3 | Devices window in the DDMS perspective.

https://support.google.com/googleplay/android-developer/answer/
1078870

Screen Capture button

https://support.google.com/googleplay/android-developer/answer/1078870
https://support.google.com/googleplay/android-developer/answer/1078870

ptg16518503

390 Chapter 10 Google Play and App Business Issues

10.2.9 Promotional App Video
Google Play also allows you to include a URL for a short promotional video that’s hosted
on YouTube. To use this feature, you must sign up for a YouTube account and upload your
video to the site. Figure 10.4 lists several promo video examples. Some videos show a person
holding a device and interacting with the app. Others use screen captures. Figure 10.5 lists
several video creation tools and services (some free, some paid). In additon, Android Studio
provides a Screen Record tool in the Android Monitor window.

10.3 Pricing Your App: Free or Fee
You set the prices for your apps that are distributed through Google Play. Many developers
offer their apps for free as a marketing, publicity and branding tool, earning revenue
through increased sales of products and services, sales of more feature-rich versions of the
same apps and sales of additional content through the apps using in-app purchase or in-app
advertising. Figure 10.6 lists various ways to monetize your apps. The Google Play-specific
ways to monetize your apps are listed at

App URL

Pac-Man 256 https://youtu.be/RF0GfRvm-yg

Angry Birds 2 https://youtu.be/jOUEjknadEY

Real Estate and Homes by Trulia® https://youtu.be/BJDPKBNuqzE

Essential Anatomy 3 https://youtu.be/xmBqxb0aZr8

Fig. 10.4 | Examples of promotional videos for apps in Google Play.

Tools and services URL

Animoto http://animoto.com

Apptamin http://www.apptamin.com

CamStudio™ http://camstudio.org

Jing http://www.techsmith.com/jing.html

Camtasia Studio® http://www.techsmith.com/camtasia.html

TurboDemo™ http://www.turbodemo.com/eng/index.php

Fig. 10.5 | Tools and services for creating promotional videos.

http://developer.android.com/distribute/monetize/index.html

Ways to monetize an app

• Sell the app in Google Play.

• Sell the app in other Android app marketplaces.

Fig. 10.6 | Ways to monetize an app. (Part 1 of 2.)

https://youtu.be/RF0GfRvm-yg
https://youtu.be/jOUEjknadEY
https://youtu.be/BJDPKBNuqzE
https://youtu.be/xmBqxb0aZr8
http://animoto.com
http://www.apptamin.com
http://camstudio.org
http://www.techsmith.com/jing.html
http://www.techsmith.com/camtasia.html
http://www.turbodemo.com/eng/index.php
http://developer.android.com/distribute/monetize/index.html

ptg16518503

10.3 Pricing Your App: Free or Fee 391

10.3.1 Paid Apps
The average price for apps varies widely by category. For example, according to the app
discovery site AppBrain (http://www.appbrain.com), the average price for puzzle-game
apps is $1.51 and for business apps is $8.44.3 Although these prices may seem low, keep
in mind that successful apps could sell tens of thousands, hundreds of thousands or even
millions of copies.

When setting a price for your app, start by researching your competition. How much
do they charge? Do their apps have similar functionality? Is yours more feature-rich? Will
offering your app at a lower price than the competition attract users? Is your goal to recoup
development costs and generate additional revenue?

If you change your strategy, you can eventually offer your paid app for free. However
it’s not currently possible to change your free apps to paid.

Financial transactions for paid apps in Google Play are handled by Google Wallet

though customers of some mobile carriers (such as AT&T, Sprint and T-Mobile) can opt
to use carrier billing to charge paid apps to their wireless bill. Your earnings are paid to
your Google Payments merchant account monthly.4 You’re responsible for paying taxes
on the revenue you earn through Google Play.

10.3.2 Free Apps
More than 90% of the apps users download are free, and that percentage has been increas-
ing for several years.5 Given that users are more likely to download an app if it’s free, con-
sider offering a free “lite” version of your app to encourage users to try it. For example, if
your app is a game, you might offer a free version with just the first few levels. When the
user has finished playing the free levels, the app would offer an option to buy through
Google Play your more robust app with numerous game levels. Or, your app would dis-
play a message that the user can purchase additional levels from within the app for a more

• Sell paid upgrades.
• Sell virtual goods (Section 10.5).
• Sell an app to a company that brands it as their own.
• Use mobile advertising services for in-app ads (Section 10.4).
• Sell in-app advertising space directly to your customers.
• Use it to drive sales of a more feature-rich version of the app.

3. http://www.appbrain.com/stats/android-market-app-categories.

http://google.com/wallet

4. http://support.google.com/googleplay/android-developer/answer/

137997?hl=en&ref_topic=15867.
5. http://www.statista.com/topics/1002/mobile-app-usage/.

Ways to monetize an app

Fig. 10.6 | Ways to monetize an app. (Part 2 of 2.)

http://www.appbrain.com
http://google.com/wallet
http://www.appbrain.com/stats/android-market-app-categories
http://support.google.com/googleplay/android-developer/answer/137997?hl=en&ref_topic=15867
http://www.statista.com/topics/1002/mobile-app-usage/
http://support.google.com/googleplay/android-developer/answer/137997?hl=en&ref_topic=15867

ptg16518503

392 Chapter 10 Google Play and App Business Issues

seamless upgrade (see Section 10.5). Many companies use free apps to build brand aware-
ness and drive sales of other products and services (Fig. 10.7).

10.4 Monetizing Apps with In-App Advertising
Many developers offer free apps monetized with in-app advertising—often banner ads
similar to those you find on websites. Mobile advertising networks such as AdMob

and Google AdSense for Mobile

aggregate advertisers for you and serve relevant ads to your app (see Section 10.13). You
earn advertising revenue based on the number of click-throughs. The top 100 free apps
might earn a few hundred dollars to a few thousand dollars per day. In-app advertising

Free app Functionality

Amazon® Mobile Browse and purchase items on Amazon.

Bank of America Locate ATMs and bank branches in your area, check balances
and pay bills.

Best Buy® Browse and purchase items.

CNN Get the latest world news, receive breaking news alerts and
watch live video.

Epicurious Recipe View thousands of recipes from several Condé Nast magazines,
including Gourmet and Bon Appetit.

ESPN® ScoreCenter Set up personalized scoreboards to track your favorite college
and professional sports teams.

NFL Mobile Get the latest NFL news and updates, live programming, NFL
Replay and more.

UPS® Mobile Track shipments, find drop-off locations, get estimated ship-
ping costs and more.

NYTimes Read articles from The New York Times, free of charge.

Pocket Agent™ State Farm Insurance’s app enables you contact an agent, file
claims, find local repair centers, check your State Farm bank
and mutual fund accounts and more.

Progressive® Insurance Report a claim and submit photos from the scene of a car acci-
dent, find a local agent, get car safety information when you’re
shopping for a new car and more.

USA Today® Read articles from USA Today and get the latest sports scores.

Wells Fargo® Mobile Locate ATMs and bank branches in your area, check balances,
make transfers and pay bills.

Women’s Health
Workouts Lite

View numerous workouts from one of the leading women’s
magazines.

Fig. 10.7 | Companies using free Android apps to build brand awareness.

http://www.google.com/admob/

http://www.google.com/adsense/start/

http://www.google.com/admob/
http://www.google.com/adsense/start/

ptg16518503

10.5 Monetizing Apps: Using In-App Billing to Sell Virtual Goods 393

does not generate significant revenue for most apps, so if your goal is to recoup develop-
ment costs and generate profits, you should consider charging a fee for your app.

10.5 Monetizing Apps: Using In-App Billing to Sell
Virtual Goods
Google Play’s in-app billing service

enables you to sell virtual goods (e.g., digital content) through apps on devices running
Android 2.3 or higher (Fig. 10.8). The in-app billing service is available only for apps pur-
chased through Google Play; it may not be used in apps sold through third-party app
stores. To use in-app billing, you’ll need a Google Play publisher account (see
Section 10.6) and a Google Payments merchant account (see Section 10.7). Google pays
you 70% of the revenue for all in-app purchases made through your apps.

Selling virtual goods can generate higher revenue per user than in-app advertising.6

Some apps that have been particularly successful selling virtual goods include Angry Birds,
DragonVale, Zynga Poker, Bejeweled Blitz, NYTimes and Candy Crush Saga. Virtual
goods are particularly popular in mobile games.

To implement in-app billing, follow the steps at

For additional information about in-app billing, including subscriptions, sample
apps, security best practices, testing and more, visit

You also can take the free Selling In-app Products training class at

http://developer.android.com/google/play/billing/index.html

Virtual goods

Magazine e-subscriptions Localized guides Avatars

Virtual apparel Additional game levels Game scenery

Add-on features Ringtones Icons

E-cards E-gifts Virtual currency

Wallpapers Images Virtual pets

Audios Videos E-books and more

Fig. 10.8 | Virtual goods.

6. http://www.businessinsider.com/its-morning-in-venture-capital-2012-

5?utm_source=readme&utm_medium=rightrail&utm_term=&utm_content=6&utm_campaign=

recirc.

http://developer.android.com/google/play/billing/
billing_integrate.html

http://developer.android.com/google/play/billing/
billing_overview.html

http://developer.android.com/training/in-app-billing/index.html

http://developer.android.com/google/play/billing/index.html
http://developer.android.com/google/play/billing/billing_integrate.html
http://developer.android.com/google/play/billing/billing_overview.html
http://developer.android.com/training/in-app-billing/index.html
http://www.businessinsider.com/its-morning-in-venture-capital-2012-5?utm_source=readme&utm_medium=rightrail&utm_term=&utm_content=6&utm_campaign=recirc
http://www.businessinsider.com/its-morning-in-venture-capital-2012-5?utm_source=readme&utm_medium=rightrail&utm_term=&utm_content=6&utm_campaign=recirc
http://www.businessinsider.com/its-morning-in-venture-capital-2012-5?utm_source=readme&utm_medium=rightrail&utm_term=&utm_content=6&utm_campaign=recirc
http://developer.android.com/google/play/billing/billing_integrate.html
http://developer.android.com/google/play/billing/billing_overview.html

ptg16518503

394 Chapter 10 Google Play and App Business Issues

In-App Purchase for Apps Sold Through Other App Marketplaces
If you choose to sell your apps through other marketplaces (see Section 10.11), several third-
party mobile payment providers can enable you to build in-app purchase into your apps using
APIs from mobile payment providers (Fig. 10.9)—you cannot use Google Play’s in-app bill-
ing. Start by building the additional locked functionality (e.g., game levels, avatars) into your
app. When the user opts to make a purchase, the in-app purchasing tool handles the financial
transaction and returns a message to the app verifying payment. The app then unlocks the
additional functionality.

10.6 Registering at Google Play
To publish your apps on Google Play, you must register for an account at

There’s a one-time $25 registration fee. Unlike other popular mobile platforms, Google Play
has no approval process for uploading apps, though there is some automated malware testing.
You must, however, adhere to the Google Play Developer Program Policies. If your app is in
violation of these policies, it can be removed at any time; serious or repeated violations may
result in account termination (Fig. 10.10).

Provider URL Description

PayPal Mobile
Payments
Library

https://developer.paypal.com/

webapps/developer/docs/

classic/mobile/gs_MPL/

Users click the Pay with PayPal button,
log into their PayPal account, then
click Pay.

Amazon In-App
Purchasing

https://developer.amazon.com/

appsandservices/apis/earn/in-

app-purchasing

In-app purchase for apps sold through
the Amazon App Store for Android.

Samsung In-App
Purchase

http://developer.samsung.com/

in-app-purchase

In-app purchase for apps designed
specifically for Samsung devices.

Boku http://www.boku.com Users click Pay by Mobile, enter their
mobile phone number, then complete
the transaction by replying to a text
message sent to their phone.

Fig. 10.9 | Mobile payment providers for in-app purchase.

http://play.google.com/apps/publish

Violations of the Google Play Content Policy for Developers

• Infringing on others’ intellectual property
rights (e.g., trademarks, patents and copy-
rights).

• Illegal activities.

• Invading personal privacy.

• Interfering with the services of other parties.

• Harming the user’s device or personal data.

• Gambling.

Fig. 10.10 | Some violations of the Google Play Content Policy for Developers (http://
play.google.com/about/developer-content-policy.html#showlanguages). (Part 1 of 2.)

https://developer.paypal.com/webapps/developer/docs/classic/mobile/gs_MPL/
https://developer.amazon.com/appsandservices/apis/earn/inapp-purchasing
http://developer.samsung.com/in-app-purchase
http://www.boku.com
http://play.google.com/apps/publish
http://play.google.com/about/developer-content-policy.html#showlanguages
http://play.google.com/about/developer-content-policy.html#showlanguages
https://developer.paypal.com/webapps/developer/docs/classic/mobile/gs_MPL/
https://developer.paypal.com/webapps/developer/docs/classic/mobile/gs_MPL/
https://developer.amazon.com/appsandservices/apis/earn/inapp-purchasing
https://developer.amazon.com/appsandservices/apis/earn/inapp-purchasing
http://developer.samsung.com/in-app-purchase

ptg16518503

10.7 Setting Up a Google Payments Merchant Account 395

10.7 Setting Up a Google Payments Merchant Account
To sell your apps on Google Play, you’ll need a Google Payments merchant account,
available to Google Play developers in over 150 countries.7 Once you’ve registered and
logged into Google Play at

click the set up a merchant account link and provide

• information by which Google can contact you and

• customer-support contact information where users can contact you.

10.8 Uploading Your Apps to Google Play
Once you’ve prepared your files and you’re ready to upload your app, review the steps in
the Launch Checklist at:

Then log into Google Play at http://play.google.com/apps/publish (Section 10.6)
and click the Publish an Android App on Google Play button to begin the upload process.
You will be asked to upload the following assets:

1. App .apk file that includes the app’s code files, assets, resources and the manifest file.

2. At least two screenshots of your app to be included in Google Play. You may in-
clude screenshots for an Android phone, 7" tablet, 10" tablet, Android TV and
Android Wear.

3. High-resolution app icon (512-by-512 pixels) to be included in Google Play.

4. Feature graphic is used by the Google Play Editorial team to promote apps and on
your app’s product page. This image must be 1024 pixels wide by 500 pixels tall
in JPEG format or 24-bit PNG format with no alpha (transparency).

5. Promotional graphic (optional) for Google Play to be used by Google if they de-
cide to promote your app (for examples, check out some of the graphics for fea-

• Creating a “spammy” user experience (e.g.,
misleading the user about the app’s purpose).

• Adversely impacting a user’s service charges or
a wireless carrier’s network.

• Impersonation or deception.

• Promoting hate or violence.

• Providing pornographic or obscene content, or
anything unsuitable for children under age 18.

• Ads in system-level notifications and widgets.

7. http://support.google.com/googleplay/android-developer/answer/

150324?hl=en&ref_topic=15867.

http://play.google.com/apps/publish/

http://developer.android.com/distribute/tools/launch-checklist.html

Violations of the Google Play Content Policy for Developers

Fig. 10.10 | Some violations of the Google Play Content Policy for Developers (http://
play.google.com/about/developer-content-policy.html#showlanguages). (Part 2 of 2.)

http://play.google.com/about/developer-content-policy.html#showlanguages
http://play.google.com/about/developer-content-policy.html#showlanguages
http://play.google.com/apps/publish/
http://developer.android.com/distribute/tools/launch-checklist.html
http://play.google.com/apps/publish
http://support.google.com/googleplay/android-developer/answer/150324?hl=en&ref_topic=15867
http://support.google.com/googleplay/android-developer/answer/150324?hl=en&ref_topic=15867

ptg16518503

396 Chapter 10 Google Play and App Business Issues

tured apps on Google Play). The graphic must be 180 pixels wide by 120 pixels
tall in JPEG format or 24-bit PNG format with no alpha (transparency).

6. Promotional video (optional) to be included in Google Play. You may include a
URL for a promotional video for your app (e.g., a YouTube link to a video that
demonstrates how your app works).

In addition to app assets, you will be asked to provide the following additional listing
details for Google Play:

1. Language. By default, your app will be listed in English. If you’d like to list it in
additional languages, select them from the list provided (Fig. 10.11).

2. Title. The title of your app as it will appear in Google Play (30 characters maxi-
mum). It does not need to be unique among all Android apps.

3. Short description. A short description of your app (80 characters maximum).

4. Description. A description of your app and its features (4,000 characters maxi-
mum). It’s recommended that you use the last portion of the description to ex-
plain why the app requires each permission and how it’s used.

5. Recent changes. A walkthrough of any changes specific to the latest version of
your app (500 characters maximum).

Language

Afrikaans English (UK) Khmer Romansh

Amharic Estonian Korean (South) Russian

Arabic Filipino Kyrgyz Serbian

Armenian Finnish Lao Sinhala

Azerbaijani French Latvian Slovak

Basque French (Canada) Lithuanian Slovenian

Belarusian Galician Macedonian Spanish (Latin America)

Bengali Georgian Malay Spanish (Spain)

Bulgarian German Malayalam Spanish (US)

Burmese Greek Marathi Swahili

Catalan Hebrew Mongolian Swedish

Chinese (Simplified) Hindi Nepali Tamil

Chinese (Traditional) Hungarian Norwegian Telugu

Croatian Icelandic Persian Thai

Czech Indonesian Polish Turkish

Danish Italian Portuguese (Brazil) Ukrainian

Dutch Japanese Portuguese (Portugal) Vietnamese

English Kannada Romanian Zulu

Fig. 10.11 | Languages for listing apps in Google Play.

ptg16518503

10.9 Launching Play Store from Within Your App 397

6. Promo text. The promotional text for marketing your app (80 characters max).

7. Application type. Choose Applications or Games.

8. Category. Select the category that best suits your game or app.

9. Price. To sell your app for a fee, you’ll need to set up a merchant account.

10. Content rating. You may select High Maturity, Medium Maturity, Low Maturity or Ev-
eryone. For more information, see Rating your application content for Google Play at

11. Locations. By default, the app will be listed in all current and future Google Play
countries. If you do not want your app to be available in all these countries, you
may pick and choose specific ones where you’d like your app to be listed.

12. Website. A Visit Developer’s Website link will be included in your app’s listing in
Google Play. Provide a direct link to the page on your website where users inter-
ested in downloading your app can find more information, including marketing
copy, feature listings, additional screenshots, instructions, etc.

13. E-mail. Your e-mail address will also be included in Google Play, so that custom-
ers can contact you with questions, report errors, etc.

14. Phone number. Sometimes your phone number is included in Google Play. There-
fore it’s recommended that you leave this field blank unless you provide phone sup-
port. You may want to provide a customer-service phone number on your website.

15. Privacy policy. A link to your privacy policy.

In addition, if you sell in-app products or use any Google services, you must add your in-
app products and specify the services you use. For information on adding in-app products,
visit

10.9 Launching Play Store from Within Your App
To drive additional sales of your apps, you can launch the Play Store app (Google Play)
from within your app (typically by including a button) so that the user can download other
apps you’ve published or purchase a related app with functionality beyond that of the pre-
viously downloaded “lite” version. You also can launch the Play Store app to enable users
to download the latest updates.

There are two ways to launch the Play Store app. First, you can bring up Google Play
search results for apps with a specific developer name, package name or string of charac-
ters. For example, if you want to encourage users to download other apps you’ve pub-
lished, you could include a button in your app that, when touched, launches the Play Store
app and initiates a search for apps containing your name or company name. The second
option is to bring the user to the details page in the Play Store app for a specific app. To
learn about launching Play Store from within an app, see Linking Your Products at

 http://support.google.com/googleplay/android-developer/answer/
188189

http://developer.android.com/google/play/billing/billing_admin.html

http://developer.android.com/distribute/tools/promote/linking.html

http://support.google.com/googleplay/android-developer/answer/188189
http://developer.android.com/google/play/billing/billing_admin.html
http://developer.android.com/distribute/tools/promote/linking.html
http://support.google.com/googleplay/android-developer/answer/188189

ptg16518503

398 Chapter 10 Google Play and App Business Issues

10.10 Managing Your Apps in Google Play
The Google Play Developer Console allows you to manage your account and your apps, check
users’ star ratings for your apps (1 to 5 stars), respond to users’ comments, track the overall
number of installs of each app and the number of active installs (installs minus uninstalls).
You can view installation trends and the distribution of app downloads across Android ver-
sions, devices, and more. Crash reports list any crash and freeze information from users. If
you’ve made upgrades to your app, you can easily publish the new version. You can remove
the app from Google Play, but users who downloaded it previously may keep it on their de-
vices. Users who uninstalled the app will be able to reinstall it even after it’s been removed
(it will remain on Google’s servers unless it’s removed for violating the Terms of Service).

10.11 Other Android App Marketplaces
You may choose to make your apps available through other Android app marketplaces
(Fig. 10.12), or through your own website using services such as AndroidLicenser (http://
www.androidlicenser.com). To learn more about releasing your app through a website see

10.12 Other Mobile App Platforms and Porting Your Apps
According to statista.com, users will download approximately 225 billion apps in 2016
and almost 270 billion in 2017.8 By porting your Android apps to other mobile app plat-
forms (Fig. 10.13), especially to iOS (for iPhone, iPad and iPod Touch devices), you
could reach an even bigger audience. There are various tools to help you port your apps.
For example, Microsoft provides tools that iOS and Android developers can use to port
apps to Windows, and similar tools exist for porting Android apps to iOS and vice versa.9

Various cross-platform app-development tools are also available (Fig. 10.14).

http://developer.android.com/tools/publishing/
publishing_overview.html

Marketplace URL

Amazon Appstore https://developer.amazon.com/public/solutions/

platforms/android

Opera Mobile Store http://android.oms.apps.opera.com/en_us/

Moborobo http://www.moborobo.com

Appitalism® http://www.appitalism.com/index.html

GetJar http://www.getjar.com

SlideMe http://www.slideme.org

AndroidPIT http://www.androidpit.com

Fig. 10.12 | Other Android app marketplaces.

8. http://www.statista.com/statistics/266488/forecast-of-mobile-app-downloads/.
9. http://www.wired.com/2015/04/microsoft-unveils-tools-moving-android-ios-apps-

onto-windows/.

http://www.androidlicenser.com
http://www.androidlicenser.com
http://developer.android.com/tools/publishing/publishing_overview.html
https://developer.amazon.com/public/solutions/platforms/android
http://android.oms.apps.opera.com/en_us/
http://www.moborobo.com
http://www.appitalism.com/index.html
http://www.getjar.com
http://www.slideme.org
http://www.androidpit.com
http://www.statista.com/statistics/266488/forecast-of-mobile-app-downloads/
http://www.wired.com/2015/04/microsoft-unveils-tools-moving-android-ios-apps-onto-windows/
http://www.wired.com/2015/04/microsoft-unveils-tools-moving-android-ios-apps-onto-windows/
http://developer.android.com/tools/publishing/publishing_overview.html
https://developer.amazon.com/public/solutions/platforms/android

ptg16518503

10.13 Marketing Your Apps 399

10.13 Marketing Your Apps
Once your app has been published, you’ll want to market it to your audience.10 Viral mar-
keting through social media sites such as Facebook, Twitter, Google+ and YouTube can
help you get your message out. These sites have tremendous visibility. According to a Pew
Research Center study, 71% of adults on the Internet use social networks.11 Figure 10.15
lists some of the most popular social media sites. Also, e-mail and electronic newsletters
are still effective and often inexpensive marketing tools.

Platform URL

Android http://developer.android.com

iOS (Apple) http://developer.apple.com/ios

Windows https://dev.windows.com/en-us/windows-apps

Fig. 10.13 | Popular mobile app platforms.

Tool Website

Appcelerator Titanium http://www.appcelerator.com/product/

PhoneGap http://phonegap.com/

Sencha https://www.sencha.com/

Visual Studio https://www.visualstudio.com/en-us/features/mobile-app-

development-vs.aspx

Xamarin https://xamarin.com/

Fig. 10.14 | Several tools for developing cross-platform mobile apps—there are many more.

10. There are many books about mobile app marketing. Check out the latest ones at http://amzn.to/
1ZgpYxZ.

11. http://bits.blogs.nytimes.com/2015/01/09/americans-use-more-online-social-

networks/?_r=0.

 Name URL Description

Facebook http://www.facebook.com Social networking

Instagram https://instagram.com/ Photo and video sharing

Twitter http://www.twitter.com Microblogging, social networking

Google+ http://plus.google.com Social networking

Vine http://vine.co Social video sharing

Tumblr http://www.tumblr.com Blogging

Groupon http://www.groupon.com Daily deals

Fig. 10.15 | Popular social media sites. (Part 1 of 2.)

http://developer.android.com
http://developer.apple.com/ios
https://dev.windows.com/en-us/windows-apps
http://www.appcelerator.com/product/
http://phonegap.com/
https://www.sencha.com/
https://www.visualstudio.com/en-us/features/mobile-app-development-vs.aspx
https://www.visualstudio.com/en-us/features/mobile-app-development-vs.aspx
https://xamarin.com/
http://www.facebook.com
https://instagram.com/
http://www.twitter.com
http://plus.google.com
http://vine.co
http://www.tumblr.com
http://www.groupon.com
http://amzn.to/
http://bits.blogs.nytimes.com/2015/01/09/americans-use-more-online-social-networks/?_r=0
http://bits.blogs.nytimes.com/2015/01/09/americans-use-more-online-social-networks/?_r=0

ptg16518503

400 Chapter 10 Google Play and App Business Issues

Facebook
Facebook, the premier social networking site, has nearly 1.5 billion active users12 with al-
most one billion active daily.13 It’s an excellent resource for viral marketing. Start by set-
ting up an official Facebook page for your app or business. Use the page to post app
information, news, updates, reviews, tips, videos, screenshots, high scores for games, user
feedback and links to Google Play, where users can download your app. For example, we
post news and updates about Deitel publications on our Facebook page at http://
www.facebook.com/DeitelFan.

Next, you need to spread the word. Encourage your co-workers and friends to “like”
your Facebook page and ask their friends to do so as well. As people interact with your page,
stories will appear in their friends’ news feeds, building awareness to a growing audience.

Twitter
Twitter is a microblogging, social networking site with approximately 1 billion users and
316 million monthly active users.14 You post tweets—messages of 140 characters or less.
Twitter then distributes your tweets to all of your followers (at the time of this writing,
one famous pop star had over 40 million followers). Many people use Twitter to track
news and trends. Tweet about your app—include announcements about new releases,
tips, facts, comments from users, etc. Also, encourage your colleagues and friends to tweet
about your app. Use a hashtag (#) to reference your app. For example, when tweeting
about Android 6 for Programmers on our @deitel Twitter feed, we use the hashtag
#AndroidFP3. Others may use this hashtag as well to write comments about the book. This
enables you to easily search tweets for related messages.

Viral Video
Viral video—shared on video sites (e.g., YouTube), on social networking sites (e.g., Face-
book, Instagram, Twitter, Google+), through e-mail, etc.—is another great way to spread
the word about your app. If you create a compelling video, perhaps one that’s humorous
or even outrageous, it may quickly rise in popularity and may be tagged by users across
multiple social networks.

Foursquare http://www.foursquare.com Check-in

Snapchat http://www.snapchat.com Video messaging

Pinterest http://www.pinterest.com Online pinboard

YouTube http://www.youtube.com Video sharing

LinkedIn http://www.linkedin.com Social networking for business

Flickr http://www.flickr.com Photo sharing

12. http://www.statista.com/statistics/272014/global-social-networks-ranked-by-

number-of-users/.
13. http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/.
14. http://www.statisticbrain.com/twitter-statistics/.

 Name URL Description

Fig. 10.15 | Popular social media sites. (Part 2 of 2.)

http://www.foursquare.com
http://www.snapchat.com
http://www.pinterest.com
http://www.youtube.com
http://www.linkedin.com
http://www.flickr.com
http://www.facebook.com/DeitelFan
http://www.facebook.com/DeitelFan
http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/
http://www.statisticbrain.com/twitter-statistics/

ptg16518503

10.13 Marketing Your Apps 401

E-Mail Newsletters
If you have an e-mail newsletter, use it to promote your app. Include links to Google Play,
where users can download the app. Also include links to your social networking pages,
where users can stay up-to-date with the latest news about your app.

App Reviews
Contact influential bloggers and app review sites (Fig. 10.16) and tell them about your
app. Provide them with a promotional code to download your app for free (see
Section 10.3). Influential bloggers and reviewers receive many requests, so keep yours con-
cise and informative. Many app reviewers post video app reviews on YouTube and other
sites (Fig. 10.17).

Internet Public Relations
The public relations industry uses media outlets to help companies get their message out
to consumers. Public relations practitioners incorporate blogs, tweets, podcasts, RSS feeds

Android app review site URL

Appolicious™ http://www.androidapps.com

AppBrain http://www.appbrain.com

AppZoom http://www.appzoom.com

Appstorm http://android.appstorm.net

Best Android Apps Review http://www.bestandroidappsreview.com

Android App Review Source http://www.androidappreviewsource.com

Androinica http://www.androinica.com

AndroidLib http://www.androlib.com

Android and Me http://www.androidandme.com

AndroidGuys http://www.androidguys.com/category/reviews

Android Police http://www.androidpolice.com

AndroidPIT http://www.androidpit.com

Phandroid http://phandroid.com

Fig. 10.16 | Android app review sites.

Android app review
video site URL

State of Tech http://http://stateoftech.net/

Crazy Mike’s Apps http://crazymikesapps.com

Appolicious™ http://www.appvee.com/?device_filter=android

Life of Android™ http://www.lifeofandroid.com/video/

Fig. 10.17 | Android app review video sites.

http://www.androidapps.com
http://www.appbrain.com
http://www.appzoom.com
http://android.appstorm.net
http://www.bestandroidappsreview.com
http://www.androidappreviewsource.com
http://www.androinica.com
http://www.androlib.com
http://www.androidandme.com
http://www.androidguys.com/category/reviews
http://www.androidpolice.com
http://www.androidpit.com
http://phandroid.com
http://crazymikesapps.com
http://www.appvee.com/?device_filter=android
http://www.lifeofandroid.com/video/
http://http://stateoftech.net/

ptg16518503

402 Chapter 10 Google Play and App Business Issues

and social media into their PR campaigns. Figure 10.18 lists some free and fee-based In-
ternet public relations resources, including press-release distribution sites, press-release
writing services and more.

Mobile Advertising Networks
Purchasing advertising spots (e.g., in other apps, online, in newspapers and magazines or
on radio and television) is another way to market your app. Mobile advertising networks
(Fig. 10.19) specialize in advertising Android (and other) mobile apps on mobile plat-
forms. Many of these networks can target audiences by location, wireless carrier, platform
(e.g., Android, iOS, Windows, BlackBerry) and more. Most apps don’t make much mon-
ey, so be careful how much you spend on advertising.

Internet public
relations resource URL Description

Free Services
PRWeb® http://www.prweb.com Online press-release distribution

service with free and fee-based
services.

ClickPress™ http://www.clickpress.com Submit news stories for approval
(free of charge). If approved, they’ll
be available on the ClickPress site
and to news search engines. For a
fee, ClickPress will distribute your
press releases globally to top finan-
cial newswires.

PRLog http://www.prlog.org/pub/ Free press-release submission and
distribution.

Newswire http://www.newswire.com Free and fee-based press-release sub-
mission and distribution.

openPR® http://www.openpr.com Free press-release publication.

Fee-Based Services
PR Leap http://www.prleap.com Online press-release distribution

service.

Marketwired http://www.marketwired.com Press-release distribution service
allows you to target your audience
by geography, industry, etc.

Mobility PR http://www.mobilitypr.com Public relations services for compa-
nies in the mobile industry.

eReleases http://www.ereleases.com Press-release distribution and ser-
vices including press-release writing,
proofreading and editing. Check
out the tips for writing effective
press releases.

Fig. 10.18 | Internet public relations resources.

http://www.prweb.com
http://www.clickpress.com
http://www.prlog.org/pub/
http://www.newswire.com
http://www.openpr.com
http://www.prleap.com
http://www.marketwired.com
http://www.mobilitypr.com
http://www.ereleases.com

ptg16518503

10.14 Wrap-Up 403

You also can use mobile advertising networks to monetize your free apps by including
ads (e.g., banners, videos) in your apps. The average eCPM (effective cost per 1,000
impressions) for ads in Android apps varies by network, device, world region, etc. Most
ads on Android pay are based on the click-through rate (CTR) of the ads rather than the
number of impressions generated. Like eCPM, CTRs vary based on the app, the device,
targeting of the ads by the ad network and more. If your app has a lot of users and the
CTRs of the ads in your apps are high, you may earn substantial advertising revenue. Also,
your ad network may serve you higher-paying ads, thus increasing your earnings.

10.14 Wrap-Up
In this chapter, we walked through the process of registering for Google Play and setting
up a Google Wallet account so you can sell your apps. We discussed how to prepare apps
for submission to Google Play, including testing them on the emulator and on Android
devices, and the various resources you’ll need to submit your app to Google Play. We
walked through the steps for uploading your apps to Google Play. We showed you alter-
native Android app marketplaces. We provided tips for pricing your apps, and resources
for monetizing them with in-app advertising and in-app sales of virtual goods. And we in-
cluded resources for marketing your apps, once they’re available through Google Play.

Staying in Contact with the Authors and Deitel & Associates, Inc.
We hope you enjoyed reading Android 6 for Programmers as much as we enjoyed writing
it. We’d appreciate your feedback. Please send your questions, comments and suggestions
to deitel@deitel.com. To stay up-to-date with the latest news about Android 6 for Pro-
grammers, and Deitel publications and corporate training, sign up for the Deitel® Buzz
Online e-mail newsletter at

and follow us on social media at

• Facebook—http://facebook.com/DeitelFan

• Twitter—http://twitter.com/deitel

• Google+—http://google.com/+DeitelFan

Mobile ad networks URL

AdMob (by Google) http://www.google.com/admob/

Medialets http://www.medialets.com

Tapjoy® http://www.tapjoy.com

Millennial Media® http://www.millennialmedia.com/

Smaato® http://www.smaato.com

mMedia™ http://mmedia.com

InMobi™ http://www.inmobi.com

Fig. 10.19 | Mobile advertising networks.

http://www.deitel.com/newsletter/subscribe.html

http://www.google.com/admob/
http://www.medialets.com
http://www.tapjoy.com
http://www.millennialmedia.com/
http://www.smaato.com
http://mmedia.com
http://www.inmobi.com
http://www.deitel.com/newsletter/subscribe.html
http://facebook.com/DeitelFan
http://twitter.com/deitel
http://google.com/+DeitelFan

ptg16518503

404 Chapter 10 Google Play and App Business Issues

• YouTube—http://youtube.com/DeitelTV

• LinkedIn—http://bit.ly/DeitelLinkedIn

To learn more about Deitel & Associates’ worldwide on-site programming training for
your company or organization, visit

or e-mail deitel@deitel.com. Good luck!

http://www.deitel.com/training

http://youtube.com/DeitelTV
http://bit.ly/DeitelLinkedIn
http://www.deitel.com/training

ptg16518503

Numerics
100 Destinations 5

A
accelerometer 17

listening 190
accelerometer sensor 174, 192
access Android services 142
Accessibility

TalkBack 36, 38, 66
TalkBack localization 71

accessibility 32, 36, 38, 66
contentDescription

property 67
Explore by Touch 9, 36, 38,

66
Accessibility APIs 9
accessing Android content

providers 15
action bar 77
action element of the manifest

file 103
ACTION_SEND constant of class

Intent 313
ACTION_VIEW constant of

classIntent 311
Activity

states 77
activity 76
Activity class 76, 77, 93, 94

findFragmentById method
114, 143

getFragmentManager

method 114, 159
getMenuInflater method

144
getResources method 143,

144
getString method with

mulitple arguments 313

Activity class (cont.)
getSystemService method

190
host a Fragment 114
lifecycle methods 173, 220
onCreate method 77, 95,

173
onCreateOptionsMenu

method 113, 144
onDestroy method 173,

220
onOptionsItemSelected

method 113, 145
onPause method 173
onResume method 173
onStart method 143, 173
onStop method 173
runOnUiThread method 247
sent to background 226
setContentView method 96
setRequestedOrientation

method 143
setVolumeControlStream

method 221, 226
<activity> element

activity element in
AndroidManifest.xml 102

Activity Not Responding
(ANR) dialog 263, 330

Activity templates 43
activity_main.xml 49
ActivityNotFoundException

class 119, 296
Adapter class 263
AdapterView class 263
add method of class

FragmentTransaction 356
addCallback method of class

SurfaceHolder 240
addItemDecoration method of

class RecyclerView 307

addPreferencesFromResource

method of class
PreferenceFragment 161

addToBackStack method of
class FragmentTransaction
357

adjustViewBounds property of
an ImageView 135

AdMob 392
advertising revenue 392
airplane mode 283
AlertDialog class 118, 174
AlertDialog.Builder class 118

setItems method 297, 313
alpha (transparency) values 57
alpha animation for a View 128
alpha method of class Color 209
alternative-resource naming

conventions 68
Amazon Mobile app 392
analysis 20
Android 2.2 (Froyo) 7
Android 2.3 (Gingerbread) 7
Android 3.x

Honeycomb 8
Android 4.0 (Ice Cream

Sandwich) 8
Android 6.0

permissions 167, 176, 195
Android 6.0 (Marshmallow)

permissions 176, 181
Android APIs 4
Android app marketplaces 398

Amazon Appstore 398
AndroidPIT 398
Appitalism 398
GetJar 398
Moborobo 398
Opera Mobile Store 398
SlideMe 398

Android Beam 9, 10

Index

ptg16518503

406 Index

Android Cloud to Device
Messaging (C2DM) 7

Android Design Support
Library xxiv, 121, 122, 264,
265, 298

Android developer
documentation
(developer.android.com)
xxvi

Android Developers Blog 388
Android device manufacturers

xxi
Android Device Monitor 389
Android device type for a project

40
Android emulator xxxiii, 16, 36
Android for Programmers website

xxi, xxvi
Android Jelly Bean 9
Android KitKat 10
Android Lint 60
Android Lollipop 11
Android Market

language 396
location 397
price 397

Android Marshmallow 12
Android Newsgroups

Android Discuss 33
Android project

res folder 46, 54
values folder 55

Android SDK xxi, xxii, xxxi,
xxxiii, 2, 16
versions and API levels 42

Android services
access 142

Android Software Development
Kit (SDK) xxxii

Android source code and
documentation
FAQs 4
licenses 4
source code 3, 4

Android Studio xxxi, xxxii, 2,
16, 36, 37
Component Tree window 74,

78
documentation 33

Android Studio (cont.)
layout editor 36, 37, 38, 44,

46, 47, 49, 52, 60, 67
Screen Record tool 390
Tips and Tricks xxxii

Android Support Library xxiv,
77, 78, 114, 176, 177, 206

Android TV xxv
Android versions

Android 1.5 (Cupcake) 7
Android 1.6 (Donut) 7
Android 2.0–2.1 (Eclair) 7
Android 2.2 (Froyo) 7
Android 2.3 (Gingerbread) 7
Android 3.0–3.2 7
Android 4.0 (Ice Cream

Sandwich) 7
Android 4.1–4.3 7
Android 4.4 7
Android 5 7
Android 6 7

Android Virtual Device (AVD)
xxxiv, 16
Setting hardware emulation

options 30
Android Virtual Device Manager 24
Android Virtual Devices

(AVDs) xxxiii, 24
Android Wear xxv
android XML namespace 179
android:allowBackup attribute

of the manifest application
element 101

android:background attribute
of a TextView 335

android:colorAccent 89
android:colorPrimary 89
android:colorPrimaryDark

89
android:duration attribute of

a translate animation 129
android:fromXDelta attribute

of a translate animation
129

android:icon attribute of the
manifest application
element 101

android:id attribute 54

android:label attribute of the
manifest activity element
102

android:label attribute of the
manifest application
element 101

android:layout_gravity

attribute 60
android:name attribute of the

manifest activity element
102

android:screenOrientation

attribute of the manifest
activity element 102

android:startOffset attribute
of a translate animation
129

android:supportsRtl attribute
of the manifest application
element 101

android:theme attribute of the
manifest application
element 101

android:toXDelta attribute of
a translate animation 129

android:windowSoftInputMod

e attribute of the manifest
activity element 102

android.app package 76, 113,
114, 118, 330

android.content package 115,
142, 175, 330, 343

android.content.res package
115, 117, 143

android.database package
329

android.database.sqlite

package 329, 348
android.graphics package 175
android.graphics.drawable

package 155
android.intent.action.MAIN

103
android.intent.category.LA

UNCHER 103
android.media package 220,

221
android.net package 311
android.os package 93, 117,

263

ptg16518503

Index 407

android.permission.WRITE_

EXTERNAL_PERMISSION 176
android.preference package

113
android.provider package

329, 344
android.support.design.widget

package 265
android.support.v4.app

package 113, 114
android.support.v7.app

package 77, 93
android.support.v7.widget

package 296
android.text package 79, 93
android.util package 119,

239
android.view package 113,

220
android.view.animation

package 117
android.view.inputmethod

package 280
android.widget package 78,

81, 94, 117, 263, 264
Android@Home framework 9
AndroidLicenser 398
AndroidManifest.xml 81, 120,

121
action element 103
activity element 102
application element 101
category element 103
intent-filter element 103
manifest element 101
provider element 332

anim folder of an Android
project 46, 115, 116

animation xxv, 110
alpha animation for a View

128
framework 8
manual 221
options in an XML file 117
rotate animation for a View

128
scale animation for a View

128
set 128
thread 221

animation (cont.)
translate animation for a

View 128
tween 128
View based 128

animation circular reveal 156
Animation class 117

setRepeatCount method
117, 151

AnimationUtils class 117, 151
loadAnimation method

117, 151
Animator class

circular reveal 118
setDuration method 118
start method 118

animator folder of an Android
project 46, ❚

AnimatorListenerAdapter

class 157
onAnimationEnd method

157
anonymous inner class 76, 79
ANR (activity not responding)

dialog 263, 330
ANR (Application Not

Responding) dialog 95, 296
anti-aliasing 199
API key (web services) 260
.apk file (Android application

package file) 388
app xxxi
app bar 43, 77, 107
app development xxxi
app icon

adding 51
app linking 13
app platforms

Android 399
iPhone 399
Windows 399

app resources 38, 46
app review sites

Android and Me 401
Android App Review Source

401
Android Police 401
AndroidGuys 401
AndroidLib 401
AndroidPIT 401

app review sites (cont.)
Androinica 401
AppBrain 401
Appolicious 401
Appstorm 401
AppZoom 401
Best Android Apps Review

401
Phandroid 401

app review video sites
Appolicious 401
Crazy Mike’s Apps 401
Life of Android 401
State of Tech 401

app templates xxiii
app XML namespace 179
AppCompatActivity class 77,

93, 94
app-driven approach xxii, 2
appendWhere method of a

SQLiteQueryBuilder 349
application element in

AndroidManifest.xml 101
Application Not Responding

(ANR) dialog 95, 296
application resource 15
apply method of class

SharedPreferences.Editor

146, 310
ARGB 207
ARGB color scheme 169
argb method of class Color 210
ARGB_8888 constant 200
ArrayAdapter class 263, 272

getView method 273
ArrayList class 120, 263
ART runtime 12
asset 395
AssetManager class 115

list method 152
assets folder of an Android app

115
AsyncTask class 263, 276, 276,

277, 282, 282, 330
execute method 275

AsyncTaskLoader class 330
attribute

in the UML 20
of a class 18
of an object 20

ptg16518503

408 Index

AttributeSet class 239
audio xxv, 15
audio stream

music 226
audio streams 220

music 221
audio volume 221
AudioAttributes class 221

setUsage method 221, 240
AudioAttributes.Builder

class 240
setAudioAttributes

method 240
AudioManager class 221, 226
authority (ContentProvider)

342
automatic backup 13
AVD (Android Virtual Device)

xxxiv, 16

B
back stack 328, 356, 357, 358,

359
pop 356, 357
push 357

background
activity sent to 226

background property of a view
87, 88

base Uri of a ContentProvider
342

BaseColumns interface 344
beginTransaction method of

class FragmentManager 356
behavior

of a class 18
Bezier curve 204
bind data to a ListView 263
Bitmap class 175, 214

bitmap encoding 200
createBitmap method 200
eraseColor method 214
recycle method 200

Bitmap.Config.ARGB_8888

constant 200
BitmapFactory class 277

decodeStream method 277
Blank Activity template 43
blue method of class Color 209
Bluetooth Health Devices 9

bluetooth stylus support 13
brand awareness 392
branding apps

Amazon Mobile 392
Bank of America 392
Best Buy 392
CNN 392
Epicurious Recipe 392
ESPN ScoreCenter 392
NFL Mobile 392
NYTimes 392
Pocket Agent 392
Progressive Insurance 392
UPS Mobile 392
USA Today 392
Wells Fargo Mobile 392
Women’s Health Workouts

Lite 392
broadcast receiver 76
Build.VERSION_SDK_INT 253
Bundle class 93, 96

for an Intent 314
putParcelable method 357

Button class
lines property 137
textColor property 137

C
C2DM (Android Cloud to

Device Messaging) 7
Calendar API 9
callback methods 329
camera 5
Cannon Game app 17
Canvas class 175, 175

drawBitmap method 201
drawCircle method 236
drawLine method 233
drawPath method 201, 205
drawRect method 247
drawText method 248

carrier billing 391
case-insensitive sort 307
category element of the

manifest file 103
cell in a GridLayout 81
characteristics of great apps 31
check-in 400
circular reveal animation 156
circular reveal Animator 118

class 15, 19
instance variable 20

class library 4
classes

Activity 76, 77, 93
ActivityNotFoundExcepti

on 119, 296
Adapter 263
AdapterView 263
AlertDialog 118
AlertDialog.Builder 118
Animation 117
AnimationUtils 117, 151
AnimatorListenerAdapter

157
AppCompatActivity 77, 93
ArrayAdapter 263, 272
ArrayList 120, 263
AssetManager 115
AsyncTask 263, 330
AsyncTaskLoader 330
AttributeSet 239
AudioManager 221, 226
Bitmap 175, 214
BitmapFactory 277
Bundle 93, 96
Canvas 175, 175
Collections 120
Color 209
Configuration 117, 143
ContentProvider 329, 346
ContentResolver 175, 330,

342, 347, 350, 351, 353,
354, 374, 380

ContentUris 343
ContentValues 350, 374
Context 142
CoordinatorLayout 121
Cursor 329
CursorFactory 345
CursorLoader 330
DialogFragment 114, 159,

160
DialogInterface 119
Drawable 155
EditText 78, 94, 265
FloatingActionButton

264
Fragment 113
FragmentManager 114, 328

ptg16518503

Index 409

classes (cont.)
FragmentTransaction 114,

328, 356, 357
FrameLayout 224
GridLayout 78, 81
Handler 117
HttpURLConnection 277
ImageView 38, 60
InputMethodManager 280
InputStream 155
Intent 102, 119
JSONArray 263
JSONObject 262
LayoutInflater 114
LinearLayout 37, 48
LinearLayoutManager 297
ListPreference 115
Loader 330, 363
LoaderManager 330, 360,

363
Log 119, 152
MediaStore 175
MediaStore.Images.Media

175
Menu 113, 144
MenuInflater 144
MotionEvent 175, 202, 220,

251
MultiSelectListPreferen

ce 115
NumberFormat 78, 94, 270
Paint 175
Path 175
Preference 115
PreferenceFragment 113,

115, 161
PreferenceManager 115,

141, 142
PrintHelper 206
R 96
R.drawable 96
R.id 96
R.layout 96
R.string 96
RecyclerView 296, 307
RecyclerView.Adapter

297, 307, 332
RecyclerView.ItemDecora

tion 297, 307, 332

classes (cont.)
RecyclerView.LayoutMana

ger 297
RecyclerView.ViewHolder

297
RelativeLayout 48
Resources 143
ScrollView 338
SeekBar 74, 78, 94
Sensor 174
SensorEvent 193
SensorManager 190
SharedPreferences 115,

295, 305
SharedPreferences.Edito

r 115, 146, 296, 309, 310
Snackbar 265, 267, 280
SoundPool 220, 240
SQLiteDatabase 329
SQLiteOpenHelper 329
SQLiteQueryBuilder 348
SurfaceHolder 221, 240
SurfaceView 221, 240
TextView 38, 54, 78, 94
Thread 221, 252
Toast 117, 147
Uri 311, 330
UriMatcher 346
View 76, 221
ViewAnimationUtils 118
ViewGroup 338

client area 37
cloud computing 7
Cloud Test Lab xxv, xxxiv, 386
code file 395
code highlighting xxv, 2
code license xxi
code walkthrough 2
code-completion 46
code-completion window 53
code-folding xxxiii
collection

shuffle 155
Collections class 120

shuffle method 120
sort method 307

collision detection 221, 235, 244
color 175

hue 80
shade 80

Color class 209
alpha method 209
argb method 210
blue method 209
green method 209
red method 209

color folder of an Android
project 46, 115, 116

color state list 118
color state list resource 126
color state list resource file 118
colorAccent 89
colorPrimary 89
colorPrimaryDark 89
colors.xml 126
columnCount property of a

GridLayout 83
commit method of class

FragmentTransaction 356
commit method of class

SharedPreferences.Editor

147
company domain name used in

a package 40
Comparator<String> object

String.CASE_INSENSITIVE

_ORDER 307
compiling apps 386
component 18
Component Tree window in

Android Studio 45, 74, 78,
83, 136

concurrent documents and
activities 12

Configuration class 117, 143,
144
orientation instance

variable 117
Constants

MODE_PRIVATE 306
MODE_WORLD_READABLE 306
MODE_WORLD_WRITABLE 306

content provider 76
contentDescription property

67
contentDescription property

of a View 135
ContentProvider

base Uri 342

ptg16518503

410 Index

ContentProvider authority
342

ContentProvider class 329,
346
delete method 353
getType method 348
insert method 350
onCreate method 347
query method 348
update method 352

ContentResolver class 175,
330, 342, 347, 350, 351,
353, 354, 374, 380
delete method 380
insert method 374
update method 374

ContentUris class 343
ContentValues class 350, 374
Context class 142

getSharedPreferences

method 306
getSystemService method

280
startActivity method 311

ContextWrapper class
getAssets method 152,

155
control 17
coordinating efforts between

separate apps 102
CoordinatorLayout class 121
corners element of a shape 335
crash report 398
create a new layout 139
Create New Project dialog 39, 82,

83, 121, 176, 222, 265, 298,
331

createBitmap method of class
Bitmap 200

createChooser method of class
Intent 314

createCircularReveal

method of class
ViewAnimationUtils 118,
157

createFromStream method of
class Drawable 155

creating a dimension resource
56

creative commons public license
260

cryptographic key 385
CT

Google Play and App
Business Issues 384

Cursor class 329
getColumnIndex method

368
getLong method 368
getString method 368
moveToFirst method 375,

381
moveToPosition method

368
setNotificationUri

method 350
CursorFactory class 345
CursorLoader class 330
custom subclass of View 237
custom view 174
customize the keyboard 339

D
dark keyboard 74
data binding 263
Data Binding support library 97
database version number 345
Daydream 10
DDMS perspective

LogCat tab 119
debugging

logging exceptions 119, 152
decodeStream method of class

BitmapFactory 277
default preferences 141
default resources 68
define a new style 334
Deitel Buzz Online Newsletter

403
Deitel Facebook page 400
Deitel Training 404
delete method of a

ContentProvider 353
delete method of a

ContentResolver 380
delete method of class

SQLiteDatabase 354
density-independent pixels

dp 56, 56

dependencies
adding to project 298

design preview in layout XML
editor 46

design process 20
Design tab in the layout editor

37
developer documentation

Core App Quality 386
Keeping Your App Responsive

33
Launch Checklist 386
Localization Checklist 386
Performance Tips 33
Signing Your Applications 388
Tablet App Quality 386

developer options 10
developer registration 394
device configuration 15
Device Screen Capture window

389
dialog

negative action 118
neutral action 118
positive action 118

DialogFragment class 114, 159,
160
onCreateDialog method

159
show method 159

DialogInterface class 119
DialogInterface.OnClickLis

tener interface 119, 160
digital certificate 388
digitally sign your app 388
digits property of an EditText

87
@dimen resource 56
dimens.xml 134
dimension resource 56, 134

creating 56
Direct Share 13
disabilities 38, 66
disconnect method of class

HttpURLConnection 277
divider property of a

LinearLayout 336
documentation

Android Design 33
App Components 32

ptg16518503

Index 411

documentation (cont.)
Class Index 32
Data Backup 33
Debugging 33
Getting Started with

Publishing 33
Google Play Developer

Distribution Agreement 33
Launch Checklist (for Google

Play) 33
Managing Your App’s Memory

33
Package Index 32
Security Tips 33
Tools Help 33
Using the Android Emulator

32
doInBackground method of

class AsyncTask 276, 282,
282

domain name used in a package
40

downloading source code xxvi
dp (density-independent pixels)

56
drag event 204
draw

circles 175
lines 175
text 175

Drawable class 155
createFromStream method

155
drawable folder of an Android

project 47
Drawable resource

shape element 335
drawBitmap method of class

Canvas 201
drawCircle method of class

Canvas 236
drawing characterstics 175

color 175
font size 175
line thickness 175

drawLine method of class
Canvas 233

drawPath method of class
Canvas 201, 205

drawRect method of class
Canvas 247

drawText method of class
Canvas 248

drive sales 392

E
e method of class Log 152
edit method of class

SharedPreferences 146,
309

Editable interface 93
EditText

imeOptions 339, 340
inputType 339, 340

EditText class 78, 94, 265
digits property 87
input type 84
maxLength property 87
restrict maximum number of

digits 78
elevation 122
elevation property of a view

80, 87, 88
emulator 16, 386

gestures 17
emulator functionality 17
emulator gestures and controls

17
encapsulation 20, 20
End User License Agreement

(EULA) 386
eraseColor method of class

Bitmap 214
event handling 76
events 4
execSQL method of class

SQLiteDatabase 345
executable components

activity 76
broadcast receiver 76
content provider 76
service 76

execute method of class
AsyncTask 275

explicit Intent 119, 145, 296
Explore by Touch 36, 38, 66
Extensible Markup Language

(XML) 38
externalizing resources 54

F
FAB (floating action button)

264
Fabric (Twitter’s mobile

development platform) 320
face detection 9
Facebook 293, 400

Deitel 400
Deitel page 400

featured image 388
final local variable for use in an

anonymous inner class 312
financial transaction 394
findFragmentById method of

class Activity 114, 143
floating action button (FAB)

264
FloatingActionButton class

122, 264
hide method 308
show method 308

folders
assets 115
res/drawable 335
res/raw 220, 223

font size 175
format method of class

NumberFormat 97
format specifier

multiple in a String
resource 124

numbering in a String
resource 124

forums 33
Android Forums 33
Stack Overflow 33

fragment 8, 113
Fragment class 76, 113

getActivity method 151
getLoaderManager method

363
getString method 146,

151
onActivityCreated

method 226, 363
onAttach method 174, 209,

363, 370, 378
onCreate method 114
onCreateOptionsMenu

method 114, 193

ptg16518503

412 Index

Fragment class (cont.)
onCreateView method 114,

149, 226
onDestroy method 220,

227
onDetach method 174, 209,

363, 370, 378
onOptionsItemSelected

method 114, 193
onPause lifecycle method

191
onPause method 173, 226
onRequestPermissionsRes

ult method 196
onResume lifecycle method

190
requestPermissions

method 195, 196
setArguments method 357
setHasOptionsMenu

method 189
shouldShowRequestPermis

sionRationale method
195

Fragment layout 132
Fragment lifecycle 174, 363,

370, 378
fragment lifecycle 114
Fragment lifecycle methods 209
FragmentActivity class

getSupportFragmentManag

er method 114, 143, 145
FragmentManager class 114,

328
beginTransaction method

356
getFragmentByTag method

159
popBackStack method 356

FragmentTransaction class
114, 328, 356, 357
add method 356
addToBackStack method

357
commit method 356
replace method 357

FrameLayout class 224
free app 390
Froyo (Android 2.2) 7
Fullscreen Activity template 43

fully qualify a custom View’s
class name in an XML layout
174

future proof 32

G
game loop 221, 244, 253
games 31
gaming console 5
gesture 5

double tap 5
double touch 5
drag 5
long press 5
pinch 5
pinch zoom 5
Swipe 5
tap 5
touch 5

getActionIndex method of
class MotionEvent 203

getActionMasked method of
class MotionEvent 202

getActivity method of class
Fragment 151

getAll method of class
SharedPreferences 307

getAssets method of class
ContextWrapper 152, 155

getColumnIndex method of
class Cursor 368

getConfiguration method of
class Resources 143, 144

getDefaultSensor method of
class SensorManager 190

getDouble method of class
JSONObject 284

getFragmentByTag method of
class FragmentManager 159

getFragmentManager method
of class Activity 114, 159

getHolder method of class
SurfaceView 240

getItemCount method of class
RecyclerView.Adapter 318,
368

getItemID method of class
MenuItem 193

getJSONArray method of class
JSONObject 284

getJSONObject method of class
JSONArray 284

getLastPathSegment method
of class Uri 349

getLoaderManager method of
class Fragment 363

getLong method of class Cursor
368

getLong method of class
JSONObject 284

getMenuInflater method of
class Activity 144

getPointerCount method of
class MotionEvent 204

getReadableDatabase method
of class SQLiteOpenHelper
350

getResources method of class
Activity 143, 144

getSharedPreferences

method of class Context 306
getString method of class

Activity 313
getString method of class

Cursor 368
getString method of class

Fragment 146, 151
getString method of class

JSONObject 284
getString method of class

SharedPreferences 311
getStringSet method of class

SharedPreferences 146
getSupportFragmentManager

method of class
FragmentActivity 114,
143, 145

getSystemService method of
class Context 280

getSystemService method of
clsdd Activity 190

getTag method of class View
264

getType method of a
ContentProvider 348

getView method of class
ArrayAdapter 273

getWritableDatabase method
of class SQLiteOpenHelper
351

ptg16518503

Index 413

getX method of class
MotionEvent 204

getY method of class
MotionEvent 204

Go to next state button 64
Google APIs 4
Google Cloud Messaging 7
Google Maps 5
Google Payments 385, 395
Google Payments merchant

account 391, 393
Google Play 13, 385, 391, 394

countries 397
crash report 398
high-resolution app icon 395
promotional graphic 395
promotional video 390, 396
publish 395
Publish an Android App on

Google Play 395
publisher account 393
screenshots 395

Google Play Developer Console
398

Google Play Developer Program
Policies 394

Google Wallet 391
Google+ 293
Gradle build system 176
Graphical Layout editor in the

Android Developer Tools 38
graphics xxv, 15
graphics processing unit (GPU)

xxxiii
gravity property of a TextView

58, 88
gravity sensor 174
green guide lines in layout editor

60
green method of class Color

209
GridLayout

columnCount property 83
layout:column of a view 84
layout:columnSpan of a

view 84
layout:row of a view 84
rowCount property 83
useDefaultMargins

property 83

GridLayout class 78, 81
guesture 17
GUI

layout 46
view (component) 46

GUI component
view 37

GUI components
EditText 78
ImageView 38, 49, 60
naming convention 82
programmatically create 114
ScrollView 338
SeekBar 74, 78
TextView 38, 49, 54
ViewGroup 338

GUI design 31
screen type 47

GUI thread 117, 263, 330
guide lines in layout editor 60
gyroscope sensor 174

H
Handler class 117

postDelayed method 117,
160

hardware accelerated execution
manager (HAXM) xxxiv

hardware support 15
hashtag 400
height of a table row 81
hide method of class

FloatingActionButton 308
hide the soft keyboard 308
hideSoftInputFromWindow

method of class
InputMethodManager 280

hierarchical parent of an
Activity 163

hint property of a TextView 86
Holo user interface 8
host a Fragment in an Activity

114
HttpURLConnection class 277

disconnect method 277
openConnection method

277
hues of a color 80
HyperText Transfer Protocol

(HTTP) 260

I
i-Newswire 402
icon 386, 387
icon design firms

99designs 387
Elance 387
glyphlab 387
Iconiza 387

id property of a layout or
component 53

images xxv
ImageView 38, 49, 60
ImageView class

adjustViewBounds property
135

scaleType property 135
src property 53, 62

imeOptions of an EditText
339, 340

immersive mode 222, 247, 253,
254

implicit Intent 119, 296, 311
in-app advertising 390, 392
in-app billing 393

security best practices 393
in-app purchase 390, 394
<include> element in a layout

XML file 122
inflate method of class

LayoutInflater 149
inflate method of class

MenuInflater 144
inflate the GUI 241
inflating a GUI 96
information hiding 20
inheritance 20
in-memory database 345
input type of an EditText 84
InputMethodManager class 280

hideSoftInputFromWindow

method 280
InputStream class 155

setImageDrawable method
155

inputType of an EditText 339,
340

insert method of a
ContentProvider 350

insert method of a
ContentResolver 374

ptg16518503

414 Index

insert method of class
SQLiteDatabase 351

insertImage method of class
MediaStore.Images.Media

175
instance 19
instance variable 20
Intel HAXM emulator xxxiv
IntelliJ® IDEA xxxii
intent chooser 293, 314
Intent class 102, 119

ACTION_SEND constant 313
ACTION_VIEW constant 311
Bundle 314
createChooser method 314
explicit 119, 296
implicit 119, 296
putExtra method 314
resolveActivity method

119
intent extras 314
intent filter 119
intent messaging 102, 119
intent-filter element in

AndroidManifest.xml 103
intents

coordinating efforts between
separate apps 102

launching activities 103
interfaces

BaseColumns 344
DialogInterface.OnClick

Listener 119, 160
Editable 93
implementing methods in

Java 99
List 120
LoaderManager.LoaderCal

lbacks 330
OnLongClickListener 311
OnSeekBarChangeListener

98
Runnable 117
SeekBar.OnSeekBarChange

Listener 79, 94, 210
SensorEventListener 192
Set 120
SurfaceHolder.Callback

221, 240, 250
TextWatcher 79, 93, 307

interfaces (cont.)
View.OnClickListener 151
View.OnLongClickListener

311
internationalization 37, 38, 67,

78
Internet public relations

resources
ClickPress 402
eReleases 402
Marketwired 402
Mobility PR 402
Newswire 402
openPR 402
PR Leap 402
PRLog 402
PRWeb 402

invalidate method of class
View 200

invoke a REST web service 282

J
Java xxii, 4
Java for Programmers xxii
Java Fundamentals xxii
Java How to Program xxii
Java SE 7 Software

Development Kit xxxi
java.io package 155
java.text package 78, 94
java.util package 120
JavaScript Object Notation

(JSON) 261
JDK 7 xxxi
JetBrains xxxii
join operations 349
JSON (JavaScript Object

Notation) 257, 261
JSONArray class 263

getJSONObject method 284
length method 284

JSONObject class 262
getDouble method 284
getJSONArray method 284
getLong method 284
getString method 284

K
keyboard 5
keyboard types 339

keySet method of interface Map
307

key–value pairs associated with
an app 114, 295

L
landscape mode 241
landscape orientation 102
landscapeorientation 36
large-screen device 8
launch another app 311
launching activities 103
launchMode of the <activity>

element 163
"singleTop" 163
"standard" 163

layout 16, 37
create new 139

layout (GUI) 46
layout editor 36, 37, 38, 44, 46,

47, 49, 52, 60, 67
Design tab 37, 46
guide lines 60
Palette 48
Text tab 37, 46
tooltip 61

layout folder of a project 47
layout XML editor

design preview 46
layout:column of a view in a

GridLayout 84
layout:columnPan of a view in

a GridLayout 84
layout:gravity property of a

view 59, 61, 86, 87, 88, 134
layout:margin property of a

view 134
layout:row of a view in a

GridLayout 84
layout:weight property of a

view 60, 61, 134
LayoutInflater class 114

inflate method 149
layouts

activity_main.xml 49
GridLayout 78, 81
LinearLayout 37, 48
RelativeLayout 48

length method of class
JSONArray 284

ptg16518503

Index 415

license for Android 4
licensing policy 388
licensing service 388
lifecycle methods 173, 220
lifecycle methods of an app 93
light sensor 174
line thickness 175
linear acceleration sensor 174
LinearLayout 37, 48

orientation property 53
LinearLayoutManager class (for

RecyclerViews) 297, 307
lines property of a Button 137
linking your apps 397
Lint, Android 60
Linux 16
List interface 120
list method of class

AssetManager 152
ListPreference class 115
ListView class 360

data binding 263
performance 264
setAdapter method 279
smoothScrollToPosition

method 283
load method of class SoundPool

241
loadAnimation method of class

AnimationUtils 117, 151
Loader class 330, 363
LoaderManager class 330, 360,

363
LoaderManager.LoaderCallba

cks interface 330
onCreateLoader method

365, 374, 381
onLoaderReset method

365, 375, 381
onLoadFinished method

365, 374, 381
localization 37, 38, 54, 67, 124
Localization Checklist 71
localized resources 68
lock screen widgets 10
lockCanvas method of class

SurfaceHolder 253
Log class 119, 152

e method 152
LogCat in Android Studio 119

LogCat tab in the Android
DDMS perspective 119

logcat tool 119
logging 119
logging exceptions 119, 152
long press 291
long-running operations 263,

330

M
Mac OS X 16
magnetic field sensor 174
main thread 117
makeText method of class Toast

147
manifest activity element

android:label attribute
102

android:name attribute 102
android:screenOrientati

on attribute 102
android:windowSoftInput

Mode attribute 102
manifest application element

android:allowBackup

attribute 101
android:icon attribute 101
android:label attribute

101
android:supportsRtl

attribute 101
android:theme attribute

101
manifest element in

AndroidManifest.xml 101
manifest file 395
manually perform an animation

221
Map interface

keySet method 307
mashup 5
Master/Detail Flow template 43
material design 11, 12, 264

color palette 38, 57
icons 127
Material themes xxiii
specification xxiii
vector icons 178

max property of a SeekBar 88

maxLength property of an
EditText 87

media files 220
MediaStore class 175
MediaStore.Images.Media

class 175
insertImage method 175

medium sized font 84
Menu class 113, 144, 193
menu folder of an Android

project 46, 115, 116
menu item

showAsAction 128, 179
MenuInflater class 144, 193

inflate method 144
MenuItem class

getItemID method 193
merchant account 391, 395
method 19
method call 19
micro blogging 399, 400
MIME type 314
minimum screen width qualifier

116
mipmap 51
mipmap folder of an Android

project 46
mipmap resource folder 51
mobile advertising 391
mobile advertising network 392

AdMob 392
mobile advertising networks

402
AdMob 403
InMobi 403
Medialets 403
Millennial Media 403
mMedia 403
Smaato 403
Tapjoy 403

mobile payment provider 394
Boku 394
PayPal Mobile Libraries 394
Samsung In-App Purchase

394
mobile payment providers 394
modal dialog 118
MODE_PRIVATE constant 306
MODE_WORLD_READABLE constant

306

ptg16518503

416 Index

MODE_WORLD_WRITABLE constant
306

monetizing apps 385, 392
MotionEvent class 175, 202,

220, 251
getActionIndex method

203
getActionMasked method

202
getPointerCount method

204
getX method 204
getY method 204

moveTo method of class Path
203

moveToFirst method of class
Cursor 375, 381

moveToPosition method of
class Cursor 368

MP3 player 5
multimedia xxv
multiple format specifiers 124
MultiSelectListPreference

class 115
multitouch 202
multitouch screen 5
music audio stream 221, 226

N
naming convention

GUI components 82
near-field communication

(NFC) 8
negative action in a dialog 118
network access 15
neutral action in a dialog 118
New String Value Resource dialog

55, 86
newsgroups 33

Android Developers 33
newsletter

Deitel Buzz 403
notifyDataSetChanged

method 263, 283, 310
notifyDataSetChanged

method of class
ArrayAdapter 263, 283, 310

NumberFormat class 78, 94, 270
format method 97

numbering format specifiers
124

numeric input 78
numeric keypad 74

O
obfuscate code 388
object 18
object (or instance) 20
object-oriented analysis and

design (OOAD) 20
object-oriented language 20
object-oriented programming

(OOP) 21
Oceania 109
OEM original equipment

manufacturer 4
offset method of class Rect

236
onActivityCreated method of

class Fragment 226, 363
onAnimationEnd method of

class
AnimatorListenerAdapter

157
onAttach method of class

Fragment 174, 209, 363,
370, 378

onBindViewHolder method of
class RecyclerView.Adapter
318, 368

onCreate method of a
ContentProvider 347

onCreate method of class
Activity 77, 95, 173

onCreate method of class
Fragment 114

onCreate method of class
SQLiteOpenHelper 345

onCreateDialog method of
class DialogFragment 159

onCreateLoader method of
interface
LoaderManager.Loader-

Callbacks 365, 374, 381
onCreateOptionsMenu method

of class Activity 113, 144
onCreateOptionsMenu method

of class Fragment 114, 193,
379

onCreateView method of class
Fragment 114, 149, 226

onCreateViewHolder method
of class
RecyclerView.Adapter 318,
368

onDestroy method of class
Activity 173, 220

onDestroy method of class
Fragment 220, 227

onDetach method of class
Fragment 174, 209, 363,
370, 378

onDowngrade method of class
SQLiteOpenHelper 345

onDraw method of class View
201

onLoaderReset method of
interface LoaderManager.
LoaderCallbacks 365, 375,
381

onLoadFinished method of
interface LoaderManager.
LoaderCallbacks 365, 374,
381

onLongClick method of
interface OnLongClick-
Listener 311

OnLongClickListener interface
onLongClick method 311

OnLongClickListener nested
interface of class View 311

onOptionsItemSelected

method of class Activity
113, 145

onOptionsItemSelected

method of class Fragment
114, 193, 379

onPause method of class
Activity 173, 173

onPause method of class
Fragment 173, 191, 226

onPostExecute method 277,
282

onPostExecute method of class
AsyncTask 277, 282

onProgressChanged method of
interface SeekBar.OnSeek-
BarChangeListener 79

ptg16518503

Index 417

onProgressUpdate method of
class AsyncTask 277, 282

onRequestPermissionsResult

method of class Fragment
196

onResume method of class
Activity 173, 173

onResume method of class
Fragment 190

OnSeekBarChangeListener

interface 98
onSensorChanged method 192
onSensorChanged method of

interface SensorEvent-
Listener 192

onSizeChanged method of class
View 200, 241

onStart method of class
Activity 143, 173

onStop method of class
Activity 173

onTextChanged method of
interface TextWatcher 79

OnTouchEvent method of class
View 202

onTouchEvent method of class
View 175, 220, 251

onUpgrade method of class
SQLiteOpenHelper 345

OOAD (object-oriented
analysis and design) 20

OOP (object-oriented
programming) 21

Open Handset Alliance 6
open source 3
open source apps 4
Open Source Project discussion

groups 3
openConnection method of

class HttpURLConnection
277

openPR 402
operating system 6
operating system requirements

xxxi
operating systems services 15
options menu 27, 113, 167, 168
orange guide lines in layout

editor 60
org.json package 262

orientation
landscape 36
portrait 36

orientation instance variable
of class Configuration 117

orientation property of a
LinearLayout 53

orientation qualifier 116
orientation sensor 174
ORIENTATION_LANDSCAPE

constant 117
ORIENTATION_PORTRAIT

constant 117
original equipment

manufacturer (OEM) 4
overflow options menu 167,

168

P
package 14
package name 40
packages

android.animation 15
android.app 15, 76, 113,

114, 118, 330
android.content 15, 115,

142, 175, 330, 343
android.content.res 15,

115, 117, 143
android.database 15, 329
android.database.sqlite

15, 329, 348
android.graphics 15, 175
android.graphics.drawab

le 15, 155
android.hardware 15
android.media 15, 220,

221
android.net 15, 311
android.os 15, 93, 117
android.preference 15,

113
android.provider 15, 329,

344
android.support.design.

widget 265
android.support.v4.app

113, 114
android.support.v7.app

77, 93

packages (cont.)
android.support.v7.widg

et 296
android.text 16, 79, 93
android.util 16, 119, 239
android.view 16, 113, 220
android.view.animation

117
android.view.inputmetho

d 280
android.widget 16,78, 81,

94, 117
java.io 155
java.util 120
java.text 78, 94
org.json 262

padding element of a shape 335
padding property of a view 87,

87, 88
paid app

average price 391
Paint class 175

filled shape with a border
199

filled shape without a border
199

line 199
setAntiAlias method 199
setStrokeCap method 199,

214
setStrokeWidth method

199
setStyle method 199
styles 199

Palette in the layout editor 48
parent of an Activity 163
parse method of class Uri 311
Path class 175

moveTo method 203
quadTo method 204
reset method 203

payment processor 391
permission in Android 6.0

(Marshmallow) 176, 181
WRITE_EXTERNAL_PERMISSI

ON 176
photo sharing 400
Photo Sphere 10
pixel density 50

ptg16518503

418 Index

play method of class SoundPool
241

Play Store app 397
pointer (finger) in touch events

175, 198
pointer (for touch events) 202
pop the back stack 356
popBackStack method of class

FragmentManager 356
portrait orientation 36, 81, 102
positive action in a dialog 118
postDelayed method of class

Handler 117, 160
PR Leap 402
Preference class 115
PreferenceFragment class 113,

115, 161
addPreferencesFrom-

Resource method 161
PreferenceManager class 115,

141, 142
setDefaultValues method

141, 142
Preparing for Release 385
pressure sensor 174
prevent the soft keyboard from

being displayed at app startup
298

Preview All Screen Sizes 64, 138
price 391
pricing your app 390
primary key 344
printBitmap method of class

PrintHelper 206
PrintHelper class 206

printBitmap method 206
SCALE_MODE_FILL 206
SCALE_MODE_FIT 206

private key 388
PRLog 402
product icon

size 387
programmatically create GUI

components 114
progress property of a SeekBar

87
ProGuard 388
project 39

dependencies 298

project templates
Blank Activity 43
Fullscreen Activity 43
Master-Detail Application 43

Project Volta 12
Project window 45
Properties window 45, 52, 55,

56, 86
property animation 116, 129
PROTECTION_NORMAL

permissions 266
<provider> element in

AndroidManifest.xml 332
proximity sensor 174
public relations 401
publish a new version of an app

398
publishing data on an Android

device 15
push onto the back stack 357
putExtra method of class

Intent 314
putParcelable method of class

Bundle 357
putString method of class

SharedPreferences.Editor

310
putStringSet method of class

SharedPreferences.Editor

146

Q
quadratic bezier curve 204
quadTo method of class Path

204
query method of a

ContentProvider 348
query method of class

SQLiteQueryBuilder 350

R
R class 96
R.drawable class 96
R.id class 96
R.layout class 96
R.layout.activity_main

constant 96
R.string class 96
raw folder of an Android project

46, 115, 116

Rect class
offset method 236

recycle method of class Bitmap
200

RecyclerView class 296, 307
addItemDecoration

method 307
format of a list item 302
setAdapter method 307
setLayoutManager method

307
RecyclerView.Adapter class

297, 307, 332
for a Cursor 365
getItemCount method 318,

368
onBindViewHolder method

318, 368
onCreateViewHolder

method 318, 368
RecyclerView.ItemDecoratio

n class 297, 307, 332
RecyclerView.LayoutManager

class 297
RecyclerView.ViewHolder

class 297
red method of class Color 209
redraw a View 201
registerListener method of

class SensorManager 190
registerOnSharedPreference

ChangeListener method of
class SharedPreferences
142

RelativeLayout 48
release method of class

SoundPool 250
remove apps from Market 398
rendering and tracking text 16
replace method of class

FragmentTransaction 357
reporting bugs 3
Representational State Transfer

(REST) 260
requestFocus method of class

View 308
requestPermissions method

of class Fragment 195, 196
requirements 20

ptg16518503

Index 419

res folder of an Android project
46, 54

res/drawable-mdpi folder 335
res/raw folder of an Android

project 220, 223
reset method of class Path 203
resolveActivity method of

class Intent 119
resource 395
resource files 38
resource folders

qualified names 116
resources

alternative-resource naming
conventions 68

default 68
Localization Checklist 71
localized 68
style 88, 331

Resources class 143
getConfiguration method

143, 144
Resources dialog 55, 56, 86
REST (Representational State

Transfer) web service 260
invoke 282

restrict maximum number of
digits in an EditText 78

reusable software components
18

Reuse 19
reuse 19
reverse engineering 388
RGB 169
RGB value 57
rotate animation for a View

128
rotation vector sensor 174
rowCount property of a

GridLayout 83
Runnable interface 117, 247
runOnUiThread method of class

Activity 247

S
saved state 96
scalable vector graphic 127
scale animation for a View 128
scale mode 206
SCALE_MODE_FILL 206

SCALE_MODE_FIT 206
scale-independent pixels (sp) 56
scaleType property of an

ImageView 135
screen capture 389
screen capturing and sharing 12
Screen Record tool in Android

Studio 390
screen resolution 50
screen size 50
screen type for a GUI’s design

47
screenshot specifications 389
ScrollView class 338
SDK versions and API levels 42
search operators (Twitter) 287
SeekBar

max property 88
progress property 87

SeekBar class 74, 78, 94
SeekBar.OnSeekBarChange-

Listener interface 79, 94,
210
onProgressChanged

method 79
send a message to an object 19
Sensor class 174
SENSOR_DELAY_NORMAL constant

of class SensorManager 190
Sensor.TYPE_ACCELEROMETER

constant 190
SensorEvent class 193
SensorEventListener interface

192
SensorEventListener listener

192
SensorManager class 190

getDefaultSensor method
190

registerListener method
190

unregisterListener

method 191
SensorManager.SENSOR_

DELAY_NORMAL constant 190
sensors

accelerometer 174, 192
gravity 174
gyroscope 174
light 174

sensors (cont.)
linear acceleration 174
magnetic field 174
orientation 174
pressure 174
proximity 174
rotation vector 174
temperature 174

service 76
set in an animation 128
Set interface 120
setAdapter method of class

ListView 279
setAdapter method of class

RecyclerView 307
setAntiAlias method of class

Paint 199
setArguments method of class

Fragment 357
setAudioAttributes method

of class
AudioAttributes.Builder

240
setBackgroundColor method

210
setBackgroundColor method

of class View 210
setContentView method of

class Activity 96
setDefaultValues method of

class PreferenceManager
141, 142

setDuration method of class
Animator 118

setDuration method of class
ViewAnimationUtils 157

setHasOptionsMenu method of
class Fragment 189

setImageBitmap method of
class View 214

setImageDrawable method of
class InputStream 155

setItems method of class
AlertDialog.Builder 297,
313

setLayoutManager method of
class RecyclerView 307

setNotificationUri method
of class Cursor 350

ptg16518503

420 Index

setRepeatCount method of
class Animation 117, 151

setRequestedOrientation

method of class Activity
143

setStrokeCap method of class
Paint 199, 214

setStrokeWidth method of
class Paint 199

setStyle method of class Paint
199

setSystemUiVisibility

method of class View 253
setTables method of a

SQLiteQueryBuilder 348,
349

setTag method of class View
264

Setting hardware emulation

options 30
settings icon 107, 108
setUsage method of class

AudioAttributes 221, 240
setVolumeControlStream

method of class Activity
221, 226

shades of a color 80
shape element 335
SharedPreferences class 115,

295, 305
edit method 146, 309
getAll method 307
getString method 311
getStringSet method 146
registerOnSharedPrefere

nceChangeListener

method 142
SharedPreferences.Editor

class 115, 146, 296, 309, 310
apply method 146, 310
commit method 147
putString method 310
putStringSet method 146

shouldShowRequestPermissio

nRationale method of class
Fragment 195

show method of class
DialogFragment 159

show method of class
FloatingActionButton 308

showAsAction attribute of a
menu item 128, 179

showDividers property of a
LinearLayout 336

shuffle a collection 155
shuffle method of class

Collections 120
signing apps 386
simple collision detection 235
simple touch events 220
simple_list_item_1 368
single-screen app 43
slider (SeekBar) 76
smoothScrollToPosition

method of class ListView 283
SMS 293
Snackbar class 265, 267, 280
Social API 9
social media sites 399
social networking 399, 400
soft buttons 27
soft keyboard

prevent display at app
startup 298

remain on screen 81
types 339

sort
case insensitive 307

sort method of class
Collections 307

sound effects 220
sound files 223
SoundPool class 220, 240

load method 241
play method 241
release method 250

SoundPool.Builder class 221,
240

sounds 220
source code 2
source-code listing 2
sp (scale-independent pixels) 56
SQL (Structured Query

Language) 329
SQLite 15, 324, 329
SQLiteDatabase class 329

delete method 354
execSQL method 345
insert method 351
update method 352

SQLiteOpenHelper class 329,
344
getReadableDatabase

method 350
getWritableDatabase

method 351
onCreate method 345
onDowngrade method 345
onUpgrade method 345

SQLiteQueryBuilder class 348
appendWhere method 349
join 349
query method 350
setTables method 348,

349
src property of a ImageView 53,

62
star ratings for apps 398
start method of class Animator

118
startActivity method of class

Context 311
startAnimation method of

class View 117
stateAlwaysHidden (virtual

keyboard mode) 298
states of an Activity 77
stream for playing music 226
@string resource 55
String resource

containing multiple format
specifiers 124

string resource 55
String.CASE_INSENSITIVE_OR

DER Comparator<String>
object 307

strings.xml 55
stroke element of a shape 335
Structured Query Language

(SQL) 329
style (define new) 334
style attribute of a GUI

component 331
style property of a View 339
style property of a view 91
style resource 331, 339
style resources 88
styles.xml 334
support library

FragmentManager 114

ptg16518503

Index 421

surfaceChanged method of
interface SurfaceHolder.
Callback 250

surfaceCreated method of
interface SurfaceHolder.
Callback 250

surfaceDestroyed method of
interface
SurfaceHolder.Callback

250
SurfaceHolder class 221, 240

addCallback method 240
lockCanvas method 253

SurfaceHolder.Callback

interface 221, 240, 250
surfaceChanged method

250
surfaceCreated method

250
surfaceDestroyed method

250
SurfaceView class 221, 240

getHolder method 240
synchronized 253
syntax coloring xxv, 2
system bar 37
SYSTEM_UI_FLAG_IMMERSIVE

254

T
tablet 8
TalkBack 36, 38, 66, 135

enable/disable 66
Localization 71

temperature sensor 174
text box 78
text field 78
text property of a TextView 53,

55, 134
Text tab in the layout editor 37
textAppearance property of a

TextView 84
textColor property of a Button

137
textColor property of a

TextView 58
textSize property of a

TextView 56, 136
textStyle property of a

TextView 136

Text-to-Speech API 9
TextView

gravity property 58, 88
text property 53, 55
textAppearance property 84
textColor property 58
textSize property 56

TextView class 38, 54, 78, 94
hint property 86
text property 134
textSize property 136
textStyle property 136

TextView component 49
TextWatcher interface 79, 93,

307
onTextChanged method 79

theme 88
Theme Editor 80
Theme.AppCompat.Light.Dark

ActionBar 79, 88
thread (for animation) 221
Thread class 252
Threadr class 221
Tip Calculator app 17
Toast class 117, 147

makeText method 147
Tools: logcat 119
tooltip in layout editor 61
touch event 175, 202
touch events

simple 220
track app installs 398
training from Deitel 404
translate animation

android:duration attribute
129

android:fromXDelta

attribute 129
android:startOffset

attribute 129
android:toXDelta attribute

129
translate animation for a View

128
tweened animation 116, 128
tweet 400
Twitter 5, 293, 400

@deitel 400
hashtag 400
tweet 400

Twitter Fabric (mobile
development platform) 320

Twitter search 287
operators 288

TYPE_ACCELEROMETER constant
of class Sensor 190

U
UI thread 117
Uniform Resource Identifier

(URI) 311
Uniform Resource Locator

(URL) 311
unique identifier for an app 40
unregisterListener method

of class SensorManager 191
up button 131, 161
update method of a

ContentProvider 352
update method of a

ContentResolver 374
update method of class

SQLiteDatabase 352
URI (Uniform Resource

Identifier) 311
Uri class 311, 330

getLastPathSegment

method 349
parse method 311

UriMatcher class 346
URL (Uniform Resource

Locator) 311
URL encoded String 311
USB debugging 30
useDefaultMargins property

of a GridLayout 83
utilities 31

V
values folder of an Android

project 47, 55
vector asset

add to project 127
Vector Asset Studio 113, 127,

178
version code 387
version name 387
VERSION_SDK_INT 253
versioning your app 386
Versioning Your Applications 387

ptg16518503

422 Index

video 15
video sharing 400
view 76

GUI component 37
view (GUI component) 46
View animations 128
View class 76, 210, 221

contentDescription

property 135
custom subclass 237
getTag method 264
invalidate method 200
layout:gravity property

134
layout:margin property 134
layout:weight property 134
onDraw method 201
onSizeChanged method

200, 241
onTouchEvent method 175,

202, 220, 251
redraw a View 201
requestFocus method 308
setImageBitmap method

214
setSystemUiVisibility

method 253
setTag method 264
size changes 241
startAnimation method

117
View.OnClickListener

interface 151
View.OnLongClickListener

interface 311
View.SYSTEM_UI_FLAG_IMMERS

IVE 254
ViewAnimationUtils class 118

createCircularReveal

method 118, 157
setDuration method 157

ViewGroup class 338
view-holder pattern 264
view–holder pattern 297
views

ImageView 38, 49, 60
TextView 38, 49, 54

viral marketing 399, 400
viral video 400
virtual camera operator 9
virtual goods 393
virtual keyboard mode

stateAlwaysHidden 298
visual impairment 36
Voice Interaction API 13
volume 221

W
WeatherBug 6
web service 259

API key 260
host 259
REST 260

web services 5
Amazon eCommerce 6
eBay 6
Facebook 6
Flickr 6
Foursquare 6
Google Maps 6
Instagram 6
LinkedIn 6
Microsoft Bing 6
Netflix 6
PayPal 6
Salesforce.com 6
Skype 6
Twitter 6
Wikipedia 6
Yahoo Search 6
YouTube 6
Zillow 6

weightSum property of a
LinearLayout 336

Welcome app 17
Welcome window in Android

Studio 39
widget 16, 94
width of a column 81
Wi-Fi Direct 9
wildcard in a Uri 347
Windows 16
windowSoftInputMode option

298
WRITE_EXTERNAL_PERMISSION

176
www.deitel.com/training

404

X
XML 49
xml folder of an Android project

46, 115, 116
XML namespace

android 179
app 179

XML resource files 38
XML utilities 16

Y
YouTube 390

http://www.deitel.com/training

ptg16518503

You love our titles and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we’ll
take care of the rest.

ApplY And get stArted!
It’s quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/
*Valid for all books, eBooks and video sales at www.informit.com

Join the

InformIt
AffiliAte teAm!

	Contents
	Preface
	Before You Begin
	1 Introduction to Android
	1.1 Introduction
	1.2 Android—The World’s Leading Mobile Operating System
	1.3 Android Features
	1.4 Android Operating System
	1.4.1 Android 2.2 (Froyo)
	1.4.2 Android 2.3 (Gingerbread)
	1.4.3 Android 3.0 through 3.2 (Honeycomb)
	1.4.4 Android 4.0 through 4.0.4 (Ice Cream Sandwich)
	1.4.5 Android 4.1–4.3 (Jelly Bean)
	1.4.6 Android 4.4 (KitKat)
	1.4.7 Android 5.0 and 5.1 (Lollipop)
	1.4.8 Android 6 (Marshmallow)

	1.5 Downloading Apps from Google Play
	1.6 Packages
	1.7 Android Software Development Kit (SDK)
	1.8 Object-Oriented Programming: A Quick Refresher
	1.8.1 The Automobile as an Object
	1.8.2 Methods and Classes
	1.8.3 Instantiation
	1.8.4 Reuse
	1.8.5 Messages and Method Calls
	1.8.6 Attributes and Instance Variables
	1.8.7 Encapsulation
	1.8.8 Inheritance
	1.8.9 Object-Oriented Analysis and Design (OOAD)

	1.9 Test-Driving the Tip Calculator App in an Android Virtual Device (AVD)
	1.9.1 Opening the Tip Calculator App’s Project in Android Studio
	1.9.2 Creating Android Virtual Devices (AVDs)
	1.9.3 Running the Tip Calculator App on the Nexus 6 Smartphone AVD
	1.9.4 Running the Tip Calculator App on an Android Device

	1.10 Building Great Android Apps
	1.11 Android Development Resources
	1.12 Wrap-Up

	2 Welcome App
	2.1 Introduction
	2.2 Technologies Overview
	2.2.1 Android Studio
	2.2.2 LinearLayout, TextView and ImageView
	2.2.3 Extensible Markup Language (XML)
	2.2.4 App Resources
	2.2.5 Accessibility
	2.2.6 Internationalization

	2.3 Creating an App
	2.3.1 Launching Android Studio
	2.3.2 Creating a New Project
	2.3.3 Create New Project Dialog
	2.3.4 Target Android Devices Step
	2.3.5 Add an Activity to Mobile Step
	2.3.6 Customize the Activity Step

	2.4 Android Studio Window
	2.4.1 Project Window
	2.4.2 Editor Windows
	2.4.3 Component Tree Window
	2.4.4 App Resource Files
	2.4.5 Layout Editor
	2.4.6 Default GUI
	2.4.7 XML for the Default GUI

	2.5 Building the App’s GUI with the Layout Editor
	2.5.1 Adding an Image to the Project
	2.5.2 Adding an App Icon
	2.5.3 Changing RelativeLayout to a LinearLayout
	2.5.4 Changing the LinearLayout’s id and orientation
	2.5.5 Configuring the TextView’s id and text Properties
	2.5.6 Configuring the TextView’s textSize Property—Scaled Pixels and Density-Independent Pixels
	2.5.7 Setting the TextView’s textColor Property
	2.5.8 Setting the TextView’s gravity Property
	2.5.9 Setting the TextView’s layout:gravity Property
	2.5.10 Setting the TextView’s layout:weight Property
	2.5.11 Adding an ImageView to Display the Image
	2.5.12 Previewing the Design

	2.6 Running the Welcome App
	2.7 Making Your App Accessible
	2.8 Internationalizing Your App
	2.8.1Localization
	2.8.2 Naming the Folders for Localized Resources
	2.8.3 Adding String Translations to the App’s Project
	2.8.4 Localizing Strings
	2.8.5 Testing the App in Spanish on an AVD
	2.8.6 Testing the App in Spanish on a Device
	2.8.7 TalkBack and Localization
	2.8.8 Localization Checklist
	2.8.9 Professional Translation

	2.9 Wrap-Up

	3 Tip Calculator App
	3.1 Introduction
	3.2 Test-Driving the Tip Calculator App
	3.3 Technologies Overview
	3.3.1 Class Activity
	3.3.2 Activity Lifecycle Methods
	3.3.3 AppCompat Library and Class AppCompatActivity
	3.3.4 Arranging Views with a GridLayout
	3.3.5 Creating and Customizing the GUI with the Layout Editor and the Component Tree and Properties Windows
	3.3.6 Formatting Numbers as Locale-Specific Currency and Percentage Strings
	3.3.7 Implementing Interface TextWatcher for Handling EditText Text Changes
	3.3.8 Implementing Interface OnSeekBarChangeListener for Handling SeekBar Thumb Position Changes
	3.3.9 Material Themes
	3.3.10 Material Design: Elevation and Shadows
	3.3.11 Material Design: Colors
	3.3.12 AndroidManifest.xml
	3.3.13 Searching in the Properties Window

	3.4 Building the GUI
	3.4.1 GridLayout Introduction
	3.4.2 Creating the TipCalculator Project
	3.4.3 Changing to a GridLayout
	3.4.4 Adding the TextViews, EditText and SeekBar
	3.4.5 Customizing the Views

	3.5 Default Theme and Customizing Theme Colors
	3.5.1 parent Themes
	3.5.2 Customizing Theme Colors
	3.5.3 Common View Property Values as Styles

	3.6 Adding the App’s Logic
	3.6.1 package and import Statements
	3.6.2 MainActivity Subclass of AppCompatActivity
	3.6.3 Class Variables and Instance Variables
	3.6.4 Overriding Activity Method onCreate
	3.6.5 MainActivity Method calculate
	3.6.6 Anonymous Inner Class That Implements Interface OnSeekBarChangeListener
	3.6.7 Anonymous Inner Class That Implements Interface TextWatcher

	3.7 AndroidManifest.xml
	3.7.1 manifest Element
	3.7.2 application Element
	3.7.3 activity Element
	3.7.4 intent-filter Element

	3.8 Wrap-Up

	4 Flag Quiz App
	4.1 Introduction
	4.2 Test-Driving the Flag Quiz App
	4.2.1 Configuring the Quiz’s Settings
	4.2.2 Taking the Quiz

	4.3 Technologies Overview
	4.3.1 Menus
	4.3.2 Fragments
	4.3.3 Fragment Lifecycle Methods
	4.3.4 Managing Fragments
	4.3.5 Preferences
	4.3.6 assets Folder
	4.3.7 Resource Folders
	4.3.8 Supporting Different Screen Sizes and Resolutions
	4.3.9 Determining the Device Orientation
	4.3.10 Toasts for Displaying Messages
	4.3.11 Using a Handler to Execute a Runnable in the Future
	4.3.12 Applying an Animation to a View
	4.3.13 Using ViewAnimationUtils to Create a Circular Reveal Animator
	4.3.14 Specifying Colors Based on a View’s State Via a Color State List
	4.3.15 AlertDialog
	4.3.16 Logging Exception Messages
	4.3.17 Launching Another Activity Via an Explicit Intent
	4.3.18 Java Data Structures
	4.3.19 Java SE 7 Features
	4.3.20 AndroidManifest.xml

	4.4 Creating the Project, Resource Files and Additional Classes
	4.4.1 Creating the Project
	4.4.2 Blank Activity Template Layouts
	4.4.3 Configuring Java SE 7 Support
	4.4.4 Adding the Flag Images to the Project
	4.4.5 strings.xml and Formatted String Resources
	4.4.6 arrays.xml
	4.4.7 colors.xml
	4.4.8 button_text_color.xml
	4.4.9 Editing menu_main.xml
	4.4.10 Creating the Flag Shake Animation
	4.4.11 preferences.xml for Specifying the App’s Settings
	4.4.12 Adding Classes SettingsActivity and SettingsActivityFragment to the Project

	4.5 Building the App’s GUI
	4.5.1 activity_main.xml Layout for Devices in Portrait Orientation
	4.5.2 Designing fragment_main.xml Layout
	4.5.3 Graphical Layout Editor Toolbar
	4.5.4 content_main.xml Layout for Tablet Landscape Orientation

	4.6 MainActivity Class
	4.6.1 package Statement and import Statements
	4.6.2 Fields
	4.6.3 Overridden Activity Method onCreate
	4.6.4 Overridden Activity Method onStart
	4.6.5 Overridden Activity Method onCreateOptionsMenu
	4.6.6 Overridden Activity Method onOptionsItemSelected
	4.6.7 Anonymous Inner Class That Implements OnSharedPreferenceChangeListener

	4.7 MainActivityFragment Class
	4.7.1 package and import Statements
	4.7.2 Fields
	4.7.3 Overridden Fragment Method onCreateView
	4.7.4 Method updateGuessRows
	4.7.5 Method updateRegions
	4.7.6 Method resetQuiz
	4.7.7 Method loadNextFlag
	4.7.8 Method getCountryName
	4.7.9 Method animate
	4.7.10 Anonymous Inner Class That Implements OnClickListener
	4.7.11 Method disableButtons
	4.8 SettingsActivity Class
	4.9 SettingsActivityFragment Class
	4.10 AndroidManifest.xml
	4.11 Wrap-Up

	5 Doodlz App
	5.1 Introduction
	5.2 Test-Driving the Doodlz App in an Android Virtual Device (AVD)
	5.3 Technologies Overview
	5.3.1 Activity and Fragment Lifecycle Methods
	5.3.2 Custom Views
	5.3.3 Using SensorManager to Listen for Accelerometer Events
	5.3.4 Custom DialogFragments
	5.3.5 Drawing with Canvas, Paint and Bitmap
	5.3.6 Processing Multiple Touch Events and Storing Lines in Paths
	5.3.7 Saving to the Device
	5.3.8 Printing and the Android Support Library’s PrintHelper Class
	5.3.9 New Android 6.0 (Marshmallow) Permissions Model
	5.3.10 Adding Dependencies Using the Gradle Build System

	5.4 Creating the Project and Resources
	5.4.1 Creating the Project
	5.4.2 Gradle: Adding a Support Library to the Project
	5.4.3 strings.xml
	5.4.4 Importing the Material Design Icons for the App’s Menu Items
	5.4.5 MainActivityFragment Menu
	5.4.6 Adding a Permission to AndroidManifest.xml

	5.5 Building the App’s GUI
	5.5.1 content_main.xml Layout for MainActivity
	5.5.2 fragment_main.xml Layout for MainActivityFragment
	5.5.3 fragment_color.xml Layout for ColorDialogFragment
	5.5.4 fragment_line_width.xml Layout for LineWidthDialogFragment
	5.5.5 Adding Class EraseImageDialogFragment

	5.6 MainActivity Class
	5.7 MainActivityFragment Class
	5.7.1 package Statement, import Statements and Fields
	5.7.2 Overridden Fragment Method onCreateView
	5.7.3 Methods onResume and enableAccelerometerListening
	5.7.4 Methods onPause and disableAccelerometerListening
	5.7.5 Anonymous Inner Class for Processing Accelerometer Events
	5.7.6 Method confirmErase
	5.7.7 Overridden Fragment Methods onCreateOptionsMenu and onOptionsItemSelected
	5.7.8 Method saveImage
	5.7.9 Overridden Method onRequestPermissionsResult
	5.7.10 Methods getDoodleView and setDialogOnScreen

	5.8 DoodleView Class
	5.8.1 package Statement and import Statements
	5.8.2 static and Instance Variables
	5.8.3 Constructor
	5.8.4 Overridden View Method onSizeChanged
	5.8.5 Methods clear, setDrawingColor, getDrawingColor, setLineWidth and getLineWidth
	5.8.6 Overridden View Method onDraw
	5.8.7 Overridden View Method onTouchEvent
	5.8.8 touchStarted Method
	5.8.9 touchMoved Method
	5.8.10 touchEnded Method
	5.8.11 Method saveImage
	5.8.12 Method printImage

	5.9 ColorDialogFragment Class
	5.9.1 Overridden DialogFragment Method onCreateDialog
	5.9.2 Method getDoodleFragment
	5.9.3 Overridden Fragment Lifecycle Methods onAttach and onDetach
	5.9.4 Anonymous Inner Class That Responds to the Events of the Alpha, Red, Green and Blue SeekBars

	5.10 LineWidthDialogFragment Class
	5.10.1 Method onCreateDialog
	5.10.2 Anonymous Inner Class That Responds to the Events of the widthSeekBar

	5.11 EraseImageDialogFragment Class
	5.12 Wrap-Up

	6 Cannon Game App
	6.1 Introduction
	6.2 Test-Driving the Cannon Game App
	6.3 Technologies Overview
	6.3.1 Using the Resource Folder res/raw
	6.3.2 Activity and Fragment Lifecycle Methods
	6.3.3 Overriding View Method onTouchEvent
	6.3.4 Adding Sound with SoundPool and AudioManager
	6.3.5 Frame-by-Frame Animation with Threads, SurfaceView and SurfaceHolder
	6.3.6 Simple Collision Detection
	6.3.7 Immersive Mode

	6.4 Building the GUI and Resource Files
	6.4.1 Creating the Project
	6.4.2 Adjusting the Theme to Remove the App Title and App Bar
	6.4.3 strings.xml
	6.4.4 Colors
	6.4.5 Adding the Sounds to the App
	6.4.6 Adding Class MainActivityFragment
	6.4.7 Editing activity_main.xml
	6.4.8 Adding the CannonView to fragment_main.xml

	6.5 Overview of This App’s Classes
	6.6 MainActivity Subclass of Activity
	6.7 MainActivityFragment Subclass of Fragment
	6.8 Class GameElement
	6.8.1 Instance Variables and Constructor
	6.8.2 Methods update, draw, and playSound

	6.9 Blocker Subclass of GameElement
	6.10 Target Subclass of GameElement
	6.11 Cannon Class
	6.11.1 Instance Variables and Constructor
	6.11.2 Method align
	6.11.3 Method fireCannonball
	6.11.4 Method draw
	6.11.5 Methods getCannonball and removeCannonball

	6.12 Cannonball Subclass of GameElement
	6.12.1 Instance Variables and Constructor
	6.12.2 Methods getRadius, collidesWith, isOnScreen, and reverseVelocityX
	6.12.3 Method update
	6.12.4 Method draw

	6.13 CannonView Subclass of SurfaceView
	6.13.1 package and import Statements
	6.13.2 Instance Variables and Constants
	6.13.3 Constructor
	6.13.4 Overriding View Method onSizeChanged
	6.13.5 Methods getScreenWidth, getScreenHeight, and playSound
	6.13.6 Method newGame
	6.13.7 Method updatePositions
	6.13.8 Method alignAndFireCannonball
	6.13.9 Method showGameOverDialog
	6.13.10 Method drawGameElements
	6.13.11 Method testForCollisions
	6.13.12 Methods stopGame and releaseResources
	6.13.13 Implementing the SurfaceHolder.Callback Methods
	6.13.14 Overriding View Method onTouchEvent
	6.13.15 CannonThread: Using a Thread to Create a Game Loop
	6.13.16 Methods hideSystemBars and showSystemBars

	6.14 Wrap-Up

	7 WeatherViewer App
	7.1 Introduction
	7.2 Test-Driving the WeatherViewer App
	7.3 Technologies Overview
	7.3.1 Web Services
	7.3.2 JavaScript Object Notation (JSON) and the org.json Package
	7.3.3 HttpUrlConnection Invoking a REST Web Service
	7.3.4 Using AsyncTask to Perform Network Requests Outside the GUI Thread
	7.3.5 ListView, ArrayAdapter and the View-Holder Pattern
	7.3.6 FloatingActionButton
	7.3.7 TextInputLayout
	7.3.8 Snackbar

	7.4 Building the App’s GUI and Resource Files
	7.4.1 Creating the Project
	7.4.2 AndroidManifest.xml
	7.4.3 strings.xml
	7.4.4 colors.xml
	7.4.5 activity_main.xml
	7.4.6 content_main.xml
	7.4.7 list_item.xml

	7.5 Class Weather
	7.5.1 package Statement, import Statements and Instance Variables
	7.5.2 Constructor
	7.5.3 Method convertTimeStampToDay

	7.6 Class WeatherArrayAdapter
	7.6.1 package Statement and import Statements
	7.6.2 Nested Class ViewHolder
	7.6.3 Instance Variable and Constructor
	7.6.4 Overridden ArrayAdapter Method getView
	7.6.5 AsyncTask Subclass for Downloading Images in a Separate Thread

	7.7 Class MainActivity
	7.7.1 package Statement and import Statements
	7.7.2 Instance Variables
	7.7.3 Overridden Activity Method onCreate
	7.7.4 Methods dismissKeyboard and createURL
	7.7.5 AsyncTask Subclass for Invoking a Web Service
	7.7.6 Method convertJSONtoArrayList

	7.8 Wrap-Up

	8 Twitter® Searches App
	8.1 Introduction
	8.2 Test-Driving the App
	8.2.1 Adding a Favorite Search
	8.2.2 Viewing Twitter Search Results
	8.2.3 Editing a Search
	8.2.4 Sharing a Search
	8.2.5 Deleting a Search
	8.2.6 Scrolling Through Saved Searches

	8.3 Technologies Overview
	8.3.1 Storing Key–Value Data in a SharedPreferences File
	8.3.2 Implicit Intents and Intent Choosers
	8.3.3 RecyclerView
	8.3.4 RecyclerView.Adapter and RecyclerView.ViewHolder
	8.3.5 RecyclerView.ItemDecoration
	8.3.6 Displaying a List of Options in an AlertDialog

	8.4 Building the App’s GUI and Resource Files
	8.4.1 Creating the Project
	8.4.2 AndroidManifest.xml
	8.4.3 Adding the RecyclerView Library
	8.4.4 colors.xml
	8.4.5 strings.xml
	8.4.6 arrays.xml
	8.4.7 dimens.xml
	8.4.8 Adding the Save Button Icon
	8.4.9 activity_main.xml
	8.4.10 content_main.xml
	8.4.11 RecyclerView Item’s Layout: list_item.xml

	8.5 MainActivity Class
	8.5.1 package and import Statements
	8.5.2 MainActivity Fields
	8.5.3 Overriden Activity Method onCreate
	8.5.4 TextWatcher Event Handler and Method updateSaveFAB
	8.5.5 saveButton’s OnClickListener
	8.5.6 addTaggedSearch Method
	8.5.7 Anonymous Inner Class That Implements View.OnClickListener to Display Search Results
	8.5.8 Anonymous Inner Class That Implements View.OnLongClickListener to Share, Edit or Delete a Search
	8.5.9 shareSearch Method
	8.5.10 deleteSearch Method

	8.6 SearchesAdapter Subclass of RecyclerView.Adapter
	8.6.1 package Statement, import statements, Instance Variables and Constructor
	8.6.2 Nested ViewHolder Subclass of RecyclerView.ViewHolder
	8.6.3 Overridden RecyclerView.Adapter Methods

	8.7 ItemDivider Subclass of RecyclerView.ItemDecoration
	8.8 A Note on Fabric: Twitter’s New Mobile Development Platform
	8.9 Wrap-Up

	9 Address Book App
	9.1 Introduction
	9.2 Test-Driving the Address Book App
	9.2.1 Adding a Contact
	9.2.2 Viewing a Contact
	9.2.3 Editing a Contact
	9.2.4 Deleting a Contact

	9.3 Technologies Overview
	9.3.1 Displaying Fragments with FragmentTransactions
	9.3.2 Communicating Data Between a Fragment and a Host Activity
	9.3.3 Manipulating a SQLite Database
	9.3.4 ContentProviders and ContentResolvers
	9.3.5 Loader and LoaderManager—Asynchronous Database Access
	9.3.6 Defining Styles and Applying Them to GUI Components
	9.3.7 Specifying a TextView Background

	9.4 Building the GUI and Resource Files
	9.4.1 Creating the Project
	9.4.2 Creating the App’s Classes
	9.4.3 Add the App’s Icons
	9.4.4 strings.xml
	9.4.5 styles.xml
	9.4.6 textview_border.xml
	9.4.7 MainActivity’s Layout
	9.4.8 ContactsFragment’s Layout
	9.4.9 DetailFragment’s Layout
	9.4.10 AddEditFragment’s Layout
	9.4.11 DetailFragment’s Menu

	9.5 Overview of This Chapter’s Classes
	9.6 DatabaseDescription Class
	9.6.1 static Fields
	9.6.2 Nested Class Contact

	9.7 AddressBookDatabaseHelper Class
	9.8 AddressBookContentProvider Class
	9.8.1 AddressBookContentProvider Fields
	9.8.2 Overridden Methods onCreate and getType
	9.8.3 Overridden Method query
	9.8.4 Overridden Method insert
	9.8.5 Overridden Method update
	9.8.6 Overridden Method delete

	9.9 MainActivity Class
	9.9.1 Superclass, Implemented Interfaces and Fields
	9.9.2 Overridden Method onCreate
	9.9.3 ContactsFragment.ContactsFragmentListener Methods
	9.9.4 Method displayContact
	9.9.5 Method displayAddEditFragment
	9.9.6 DetailFragment.DetailFragmentListener Methods
	9.9.7 AddEditFragment.AddEditFragmentListener Method

	9.10 ContactsFragment Class
	9.10.1 Superclass and Implemented Interface
	9.10.2 ContactsFragmentListener
	9.10.3 Fields
	9.10.4 Overridden Fragment Method onCreateView
	9.10.5 Overridden Fragment Methods onAttach and onDetach
	9.10.6 Overridden Fragment Method onActivityCreated
	9.10.7 Method updateContactList
	9.10.8 LoaderManager.LoaderCallbacks<Cursor> Methods

	9.11 ContactsAdapter Class
	9.12 AddEditFragment Class
	9.12.1 Superclass and Implemented Interface
	9.12.2 AddEditFragmentListener
	9.12.3 Fields
	9.12.4 Overridden Fragment Methods onAttach, onDetach and onCreateView
	9.12.5 TextWatcher nameChangedListener and Method updateSaveButtonFAB
	9.12.6 View.OnClickListener saveContactButtonClicked and Method saveContact
	9.12.7 LoaderManager.LoaderCallbacks<Cursor> Methods

	9.13 DetailFragment Class
	9.13.1 Superclass and Implemented Interface
	9.13.2 DetailFragmentListener
	9.13.3 Fields
	9.13.4 Overridden Methods onAttach, onDetach and onCreateView
	9.13.5 Overridden Methods onCreateOptionsMenu and onOptionsItemSelected
	9.13.6 Method deleteContact and DialogFragment confirmDelete
	9.13.7 LoaderManager.LoaderCallback<Cursor> Methods

	9.14 Wrap-Up

	10 Google Play and App Business Issues
	10.1 Introduction
	10.2 Preparing Your Apps for Publication
	10.2.1 Testing Your App
	10.2.2 End User License Agreement
	10.2.3 Icons and Labels
	10.2.4 Versioning Your App
	10.2.5 Licensing to Control Access to Paid Apps
	10.2.6 Obfuscating Your Code
	10.2.7 Getting a Private Key for Digitally Signing Your App
	10.2.8 Featured Image and Screenshots
	10.2.9 Promotional App Video

	10.3 Pricing Your App: Free or Fee
	10.3.1 Paid Apps
	10.3.2 Free Apps

	10.4 Monetizing Apps with In-App Advertising
	10.5 Monetizing Apps: Using In-App Billing to Sell Virtual Goods
	10.6 Registering at Google Play
	10.7 Setting Up a Google Payments Merchant Account
	10.8 Uploading Your Apps to Google Play
	10.9 Launching Play Store from Within Your App
	10.10 Managing Your Apps in Google Play
	10.11 Other Android App Marketplaces
	10.12 Other Mobile App Platforms and Porting Your Apps
	10.13 Marketing Your Apps
	10.14 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

