
www.allitebooks.com

http://www.allitebooks.org

Android Programming for
Beginners

Learn all the Java and Android skills you need to start
making powerful mobile applications

John Horton

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Android Programming for Beginners

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1221215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-326-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
John Horton

Reviewers
Nayanesh Ramchandra Gupte

Klaas Kabini

Márton Kodok

Paresh Mayani

Commissioning Editor
Edward Gordon

Acquisition Editor
Nadeem Bagban

Content Development Editor
Divij Kotian

Technical Editor
Mrunmayee Patil

Copy Editor
Neha Vyas

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Kirk D'Penha

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

John Horton is a coding and gaming enthusiast based in the UK. He has a passion for
writing apps, games, books, and blog articles about coding, especially for beginners.

He is the founder of Game Code School, http://www.gamecodeschool.com, which
is dedicated to helping complete beginners to get started with coding, using the
language and platform that suits them best.

John sincerely believes that anyone can learn to code and that everybody has a game
or an app inside their mind, but they just need to do enough work to bring it out.

He has authored around a dozen technology books, most recently, the following:

• Android Game Programming by Example (https://www.packtpub.com/game-
development/android-game-programming-example)

• Learning Java Building Android Games (https://www.packtpub.com/game-
development/learning-java-building-android-games)

Thanks to Jo, Jack, James, Ray, and Rita.

Also to everybody at Packt Publishing who lent a hand with this
book: Edward Gordon, Divij Kotian, and Mrunmayee Patil. Thank
you for your continuous support throughout this journey.

www.allitebooks.com

http://www.gamecodeschool.com
https://www.packtpub.com/game-development/android-game-programming-example
https://www.packtpub.com/game-development/android-game-programming-example
https://www.packtpub.com/game-development/learning-java-building-android-games
https://www.packtpub.com/game-development/learning-java-building-android-games
http://www.allitebooks.org

About the Reviewers

Nayanesh Ramchandra Gupte is an enthusiastic Android professional based
in Bangalore—the Silicon Valley of India. He is a full-stack engineer and has been
exploring Android for more than 5 years. Until now, he has worked with different
organizations and developed more than 40 Android applications. Some of these apps
are featured with the Top Developer badge on Google Play. Programming, especially
in Java and Android, is not just a part of his career, but his passion as well.

Besides being a software engineer, he works as an Android consultant and is
associated with the Google Developers Group based in Bangalore. Writing personal
blogs and articles on Java and Android remain a couple of his interests. He works as
a professional Android trainer and pursues teaching and illustration as his hobbies.

Associated with one of the e-commerce giants in India, Nayanesh is a part of the core
engineering team. He also works closely with the Product and UX team to build a
next-generation platform for e-commerce.

You can know more about him at https://about.me/NayaneshGupte, and you can
find him on LinkedIn at http://in.linkedin.com/in/nayaneshgupte/.

To begin with, I credit my parents who have always nurtured my
dreams and constantly supported me to make them happen. I want
to thank my fiancée, Aakanksha, and my in-laws who trusted my
dynamic decisions while I was hopping cities and organizations with
the aim of improving my career graph. I sincerely want to thank
Sudarshan Shetty, my guide, because of whom I got engrossed in
Java and Android. His teachings have brought me a long way. I am
sure there is much more to explore. I owe a lot to my best buddies,
Saurabh and Rahul, since it was all because of them that I decided to
get into this field of programming. Lastly, the journey would have
been incomplete without my colleagues and mentors, Rishi and
Vishal, from whom I learned what passion for programming really is!

www.allitebooks.com

https://about.me/NayaneshGupte
http://in.linkedin.com/in/nayaneshgupte/
http://www.allitebooks.org

Márton Kodok has extensive experience as a web, mobile, and desktop software
engineer. He has also been a backend programmer and team leader, where he
mostly concluded projects for various U.S. companies. He is a lead developer in
various scalable projects and an active contributor to scalable solutions such as
Beanstalkd Console and Riak-admin interface. He is an expert in databases and
search systems such as Google, BigQuery, and Elasticsearch. He is also an active
member of Stack Overflow, has spoken at many conferences, and has mentored
many young, talented enthusiasts. You can find him at ro.linkedin.com/in/
pentium10 and http://stackoverflow.com/users/243782/pentium10.

Paresh Mayani is a software engineer who has been exploring the horizon of
Android development since Cupcake (Android 1.5). He has hands-on experience of
designing, building, and publishing Android Apps. His skills range from technical
documentation, UX/UI design, code and performance optimization, to writing
extensive testing for applications.

He's actively involved in the Android community too—writing blog posts, helping
fellow Android developers by posting answers on Stack Overflow, and giving talks
around the world. He is among top 0.25% with and manages more than 60,000
reputation points. He is one of the top 10 highest contributors to the Android tag on
Stack Overflow.

He is the founder/organizer of the Google Developers Group, Ahmedabad, India.
By looking at his experience and his contribution to the Android community, he was
recently nominated for the Google Developers Expert program led by Google. You
can find more about him at his blog, http://www.technotalkative.com/.

www.allitebooks.com

ro.linkedin.com/in/pentium10
ro.linkedin.com/in/pentium10
http://stackoverflow.com/users/243782/pentium10
http://www.technotalkative.com/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Dedicated to everyone who has no place to stay or insufficient strength and want to live,
especially those who used up all their strength serving someone else or their community, in

the hope that just one reader might reach out to just one of them.

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface xv
Chapter 1: The First App 1

How Java and Android work together 1
The Android API 2
Java is object-oriented 3
What exactly is Android? 4

The development environment 5
A note to the existing developers who use Eclipse 6
The JDK 7

What if I already have Java? 7
Installing the JDK 7

Setting up Android Studio 14
What makes an Android app 22

Android resources 23
The structure of Android's Java code 23

Android packages 23
Our first Android app 25

Creating the project 26
A note on version controlling 33

Deploying and testing the app 34
Deploying to an emulator 34
Deploying to a real Android device 39

FAQ 40
Summary 41

Chapter 2: Java – First Contact 43
Examining the log output 43

Exploring the project assets and code 45
Examining the layout file 48

Table of Contents

[ii]

Improving our app and deploying again 49
Modifying the UI 50

Meet Java 59
Java comments 60

Sending messages 60
Writing our first Java code 61

Writing our own Java methods 63
Examining the log output 64

FAQ 65
Summary 66

Chapter 3: Exploring Android Studio 67
The Android Studio guided tour 67

Parts of the UI 68
The console 69
More console features 70
The project explorer 71

Transforming the editor into a design studio 71
E1 – the Preview toolbar 73
E2 – exploring the palette 74
E3 – the layout preview 76
E4 – the Component Tree 77
E5 – the Properties window 77
E6 – text and design view tabs 77

The project folder and file structure 77
FAQ 82
Summary 82

Chapter 4: Designing Layouts 83
Exploring Android UI design 83
Structure of a UI design 84

Configuring and using widgets 85
Widget properties 85
Experimenting with widgets 93

Containing widgets in layouts 98
RelativeLayout 98
Using LinearLayout 101

Summary 106
Chapter 5: Real-World Layouts 107

Building a real-world UI 107
Creating a tablet emulator 108
List-detail layout with ScrollView and LinearLayout 109
Designing a form with RelativeLayout 112

Summary 119

Table of Contents

[iii]

Chapter 6: The Life and Times of an Android App 121
Introduction to the Android lifecycle 121
A simplified explanation of the Android lifecycle 123
Lifecycle phases – what we need to know 123
Lifecycle phases – what we need to do 125
The lifecycle demonstration app 126

Some other overridden methods 132
The structure of Java code – revisited 133
Summary 134

Chapter 7: Coding in Java Part 1 – Variables, Decisions,
and Loops 135

Java is everywhere 136
Syntax and jargon 136
More code comments 137
Storing and using data with variables 139

Types of variables 140
Primitive types 140
Reference types 143
Variable declaration 144
Variable initialization 144

Changing values in variables with operators 145
Expressing yourself demo app 147
Decisions 150

Indenting our code 151
More operators 152
If they come over the bridge, shoot them 153
Else do this instead 154
Switching to make decisions 156
The Switch Demo app 157

Repeating code with loops 159
While loops 160

Breaking out of a loop 161
Continue 162

Do while loops 163
For loops 163
Loops demo app 164

Summary 168
Chapter 8: Coding in Java Part 2 – Methods 169

Methods revisited 169
The method structure 170

Modifiers 172

Table of Contents

[iv]

Return types 172
The name of a method 174
Parameters 175
Working in the method body 175

Using methods – demo apps 176
Real-world methods 176
Exploring method overloading 178

Scope and variables revisited 181
FAQ 182
Further reading 183
Summary 183

Chapter 9: Object-Oriented Programming 185
Important memory management warning 185
Introducing OOP 186

What is OOP exactly? 186
Encapsulation 187
Polymorphism 187
Inheritance 187

Why do it like this? 188
A class recap 188

Taking a look at the code for a class 188
The class implementation 189
Declaring, initializing, and using an object of the class 190

The basic classes mini app 193
More things we can do with our first class 196

Remember that encapsulation thing? 197
Controlling class use with access modifiers 198

Class access in a nutshell 199
Controlling variable use with access modifiers 199

Variable access summary 201
Methods have access modifiers too 201

A method access summary 202
Accessing private variables with getters and setters 202
Setting up our objects with constructors 206
Static methods 208

Encapsulation and static methods mini app 210
OOP and inheritance 215
The inheritance mini app 217
Polymorphism 221

Abstract classes 222
Interfaces 224

FAQ 225
Summary 226

Table of Contents

[v]

Chapter 10: Everything's a Class 227
All Android UI elements are classes too 227

Reintroducing references 227
A quick break to throw out the trash 228
Stack and heap – a quick summary 229

So, how does this heap thing help me? 229
Using Button and TextView widgets from our layout 230
Inner and anonymous classes 239

FAQ 240
Summary 240

Chapter 11: Widget Mania 241
Exploring Android UI objects 241

Declaring and initializing objects 242
Widget news flash 242

Exploring the palette 243
EditText 244
ImageView 244
Radio button and group 245

Anonymous classes 246
A switch widget 249
CheckBox 250
WebView 251
Date & Time 252

Android permissions and Marshmallows 252
Pre-Marshmallow permissions 252
Marshmallow permissions 253
The permission solution used in this book 254

The Widget exploration mini app 254
Setting up the widget exploration project and UI 254
Coding the widget exploration app 258

Summary 265
Chapter 12: Having a Dialogue with the User 267

Dialog windows 267
The dialog demo mini project – introducing chaining 268

About the Note To Self app 272
Using naming conventions and String resources 273
How to get the Note To Self code 273
What we will do and when we will do it 274
What the user can do 275

Table of Contents

[vi]

Building the project and gathering resources 278
Downloading the images 278
Preparing the String resources 281

Coding the Note class 282
Implementing the dialog designs 285
Coding the dialog boxes 289

Coding the DialogNewNote class 289
Coding the DialogShowNote class 292
Showing our new dialogs 294
Adding a + icon to the action bar 296

Summary 296
Chapter 13: Handling and Displaying Arrays of Data 297

A random diversion 298
Handling large amount of data with arrays 298

Arrays are objects 300
A simple array example mini app 301
Getting dynamic with arrays 303

A dynamic array example 303
Entering the nth dimension with arrays 305

A multidimensional array mini app 305
Array out of bounds exceptions 309

ArrayLists 309
The enhanced for loop 311

Arrays and ArrayLists are polymorphic 311
ListView and BaseAdapter 313

The problem with displaying lots of widgets 313
The solution 313
How to use ListView and BaseAdapter 314
Inner classes revisited 317

FAQ 318
Summary 318

Chapter 14: Handling and Displaying Notes in Note To Self 319
Note To Self continued 319

Updating onCreate and preparing the UI 319
Creating a list item for ListView 320

Improvements in Note To Self 327
Persistence 327
Animation 328
Sound FX 328

Table of Contents

[vii]

Problems with the design of the code 328
FAQ 328
Summary 329

Chapter 15: Android Intent and Persistence 331
Good Intents 331

Switching Activity 332
Passing data between activities 333

Adding a settings page to the Note To Self app 334
Creating SettingsActivity 335
Designing the Settings screen's layout 335
Enabling the user to switch to the Settings screen 337

Persisting data with SharedPreferences 338
Making the Note To Self app's settings persist 340

Coding the SettingsActivity class 340
Coding the MainActivity class 344
Specifying a parent Activity 345

More advanced persistence 346
What is JSON? 346
Java exceptions - try, catch, and finally 347

Backing up user data in Note To Self 348
FAQ 353
Summary 354

Chapter 16: UI Animations 355
Animations in Android 355

Designing cool animations in XML 356
Fading in and out 356
Movement 356
Scaling or stretching 357
Controlling the duration 357
Rotating animations 357
Repeating animations 357
Combining animation properties with a set tag 358

Instantiating animations and controlling them with Java code 358
More animation features 359

Listeners 359
Animation interpolators 360

The Animations Demo app – introducing SeekBar 360
Laying out the animation demo 361
Coding the XML animations 363
Wiring up the Animations Demo app in Java 367

Table of Contents

[viii]

Adding animations to Note To Self 375
Defining the animations in XML 375
Controlling the animations in Java 376

FAQ 378
Summary 378

Chapter 17: Sound FX and Supporting Different Versions
of Android 379

Supporting multiple versions of Android 379
Detecting the current Android version 380
The SoundPool class 380

Building SoundPool the new way and the old way 381
Loading sound files into memory 382
Playing a sound 383
Stopping a sound 383

Introducing the Spinner widget 383
Making sound FX 384
Laying out Sound Demo UI 386
Coding the Sound Demo app 389

Sound FX touches to Note To Self 394
Deleting a note – introducing OnLongClick 396
FAQ 397
Summary 398

Chapter 18: Design Patterns, Fragments, and the Real World 399
Introducing the model-view-controller pattern 400

The model 400
The view 400
The controller 400

The imperfections of Note To Self revisited 401
Android design guidelines 402
Real-world apps 403
The device detection mini app 406
Configuration qualifiers 409
Using configuration qualifiers – mini app 411

The configuration qualifier's summary 412
Fragments 412

Fragments have a lifecycle too 412
onCreate 412
onCreateView 412
onAttach and onDetach 413
onStart, onPause, and onStop 413

Managing Fragments with FragmentManager 413

Table of Contents

[ix]

Our first working Fragment mini app 414
Fragment reality check 420
FAQ 421
Summary 422

Chapter 19: Using Multiple Fragments 423
Using singletons for the model layer 423
Inter-Fragment communications – interfaces revisited 427
The dual-Fragment address book mini app 430

Getting started 432
Alias resources 432
The NameAndAddress class 435
Creating the communication interface 444
Explaining the structure of the onListItemSelected method 447
Explaining the code that starts a new Activity 447
Explaining the code when the detail Fragment is already present 448
What do we need to do? 448
Creating the AddressDetailFragment class and layout 449
Coding PortraitDetailActivity and the layout 453

FAQ 455
Summary 456

Chapter 20: Paging and Swiping 457
Building an image gallery/slider app 459

Implementing the layout 460
Coding the PagerAdapter class 461
Coding the MainActivity class 464
Running the gallery app 465

Building a Fragment pager/slider app 466
Coding the SimpleFragment class 467
fragment_layout 469
Coding the MainActivity class 469
The activity_main layout 471
Running the Fragment slider app 472

Summary 472
Chapter 21: Navigation Drawer and Where It's Snap 473

Introducing the navigation drawer 474
The Where it's snap app 475

Preparing the resources 477
Placeholder code for three Fragments 478

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[x]

Coding the MainActivity class and layout 480
Switching between Fragments 483
Setting up the drawer 485
Handling the back button 487

Summary 492
Chapter 22: Capturing Images 493

Capturing images using the camera 493
The capturing images mini app 494

Adding the camera permission to the manifest 495
Defining a simple layout 496
Coding the MainActivity class 497
Running the Simple Photo app 499

Where it's snap – coding the capture Fragment 500
Creating the layout for the capture Fragment 501
Coding the capture Fragment 503
Testing the capture Fragment 508

Summary 508
Chapter 23: Using SQLite Databases in Our Apps 509

Database 101 510
What is a database? 510
What is SQL? 510
What is SQLite? 510

The SQL syntax primer 511
The SQLite example code 511

Creating a table 512
Inserting data into the database 512
Retrieving data from the database 513
Updating the database structure 513

The Android SQLite API 513
SQLiteOpenHelper and SQLiteDatabase 514
Building and executing queries 514
Database cursors 516

The database mini app 517
Implementing the layout 517
Coding the database class 520
Coding MainActivity 524
Running the mini app 527

Summary 528

Table of Contents

[xi]

Chapter 24: Adding a Database to Where It's Snap 529
The Photo class 530
Handling the SQLite database 532
Saving a new photo from the capture fragment 539
Displaying a photo from the database 542

Preparing the View layout 542
Coding the ViewFragment class 543

Coding the communications interface 546
Coding TitlesFragment 547
Coding TagsFragment 550
Coding the fragment communications in MainActivity 552
Running the app so far 555
Summary 556

Chapter 25: Integrating Google Maps and GPS Locations 557
Global Positioning System 557
Where in the world – the GPS mini app 558

Where in the world – implementing a simple layout 559
Coding the Where in the world mini app 561
Running the Where in the world mini app 564

The Google Maps mini app 564
Preparing to connect to Google Maps 565

Acquiring an API key 565
Installing the Google Play services API 568

Coding the maps_activity layout 570
Coding MapsActivity 570
Running the Simple Map app 571

Summary 572
Chapter 26: Upgrading SQLite – Adding Locations and Maps 573

Adding locations and maps to Where it's Snap 573
Updating the database 574

Adding member variables to represent location data 575
Updating the database version 576
Adding code in onUpgrade to upgrade the database for existing users 576
Updating the database creation code in onCreate for new users 577
Updating the addPhoto method to handle GPS coordinates 578

Updating the Photo class 579
Updating CaptureFragment 580

Updating ViewFragment 583
Adding location permissions 584
Testing the new map feature 586
Summary 586

Table of Contents

[xii]

Chapter 27: Going Local – Hola! 587
The Localization mini app 587

Preparing the layout 587
Preparing the first strings.xml file 588
Making the app multilingual with the second strings.xml file 589
Adding a third language 591
Running the app 592

Localizing the Where it's snap app 593
Summary 595

Chapter 28: Threads, Touches, Drawing, and a Simple Game 597
Threads 598
Problems with threads 598

Drawing with canvas and paint 601
The Android coordinate system 601

Android Canvas demo app 603
Handling touches 607
A simple game engine 608
Building a simple game of Pong 608

Adding sound files to the project 608
Coding the ball 608
Coding the paddle 612
Coding MainActivity 615
Coding SurfaceView 617

Coding the update method 623
Coding the draw method 626

Lock the screen orientation and make it full-screen 629
Running the game 630
Pong enhancements 631

Summary 631
Chapter 29: Publishing Apps 633

Preparing to publish 633
Creating an app icon 634
Preparing the required resources 634

Building the publishable APK file 636
Publishing the app 639
Marketing 643
More to see 643
Summary 644

Table of Contents

[xiii]

Chapter 30: Before You Go 645
What next 645

Keep reading 645
GitHub 646
StackOverflow 647
Android user forums 648

For further study 648
Make some apps! 649

gamecodeschool.com 649
Goodbye and thank you 650

Index 651

[xv]

Preface
Learn by example and build three real-world apps and over 40 mini apps throughout
the book!

Why Android?
When Android first arrived in 2008, it was almost seen as a poor relation to the
much more stylish iOS on Apple iPhone. But, quite quickly, through diverse handset
offers that struck a chord with both the practical price-conscious as well as the
fashion-conscious and tech-hungry consumers, Android user numbers exploded.
Now, after seven major releases, the annual sales of Android devices is increasing
almost every year.

For many, myself included, developing Android apps is the most rewarding thing
(apart from our friends and family) in the world.

Quickly putting together a prototype of an idea, refining it, and then deciding to
run with it as well wiring it up into a fully-fledged app is an exciting and rewarding
process. Any programming can be fun, and I have been programming all my life, but
creating for Android is somehow extraordinarily rewarding.

Defining exactly why this is so is quite difficult. Perhaps it is the fact that the platform
is free and open. You can distribute your apps without requiring the permission of a
big controlling corporation—nobody can stop you. And at the same time, you have
the well-established, corporate-controlled mass markets such as Amazon App Store,
Google Play, Samsung Galaxy Apps, as well as other smaller marketplaces.

More likely, the reason developing for Android gives such a buzz is the nature of the
devices. They are deeply personal. You can create apps that actually interact with
people's lives. You can educate, entertain, organize them, and so on. But it is there
in their pocket ready to serve them in the home, workplace, or on holiday. Everyone
uses them, from infants to seniors.

Preface

[xvi]

This is no longer considered geeky, nerdy, or reclusive; developing Android apps
is considered highly skillful and really successful developers are hugely admired,
even revered.

If all this fluffy kind of spiritual stuff doesn't mean anything to you, then that's fine
too; developing for Android can make you a good living or even make you wealthy.
With the continued growth of device ownership, the ongoing increase in CPU and
GPU power and the non-stop evolution of the Android operating system (OS) itself,
the need for professional app developers is only going to grow.

In short, the best Android developers—and perhaps more importantly, Android
developers with the best ideas—are in greater demand than ever. Nobody knows
who these future Android coding heroes are and they might not even have written
their first line of Java yet.

But is this book for me?
So why isn't everybody an Android developer? Obviously, not everybody will share
my enthusiasm for the thrill of creating software that can help people make their
lives better, but I'm guessing that because you are reading this, you might.

Unfortunately, for those who do, there is a kind of glass wall on the path of progress
that frustrates many aspiring Android developers.

Android uses Java to make its apps respond, think, and communicate with users.
Every Android book, even those aimed at so-called beginners, assumes at least an
intermediate level of Java and at most, a fairly advanced level. So, good to excellent
Java knowledge is a prerequisite for learning Android.

Unfortunately, learning Java in a completely different context to Android can
sometimes be a little dull, and some of what you learn is not directly transferable into
the world of Android either.

I think it makes more sense, is vastly more enjoyable, and is significantly quicker
and more rewarding, to teach Java in a purely Android environment—to teach Java
with the single overriding goal of learning to develop professional standard Android
apps. And that's what this book is about.

Preface

[xvii]

What this book covers
Chapter 1, The First App, sets up your Android development environment, and
then it helps you build and deploy your first simple app to an emulator and a real
Android device.

Chapter 2, Java – First Contact, teaches some absolute beginner Java coding as well
as shows you how to implement your first user interface design.

Chapter 3, Exploring Android Studio, gets to grips with the tools of the trade of
professional Android developers with a fast tour around Android Studio.

Chapter 4, Designing Layouts, focuses on building user interfaces by exploring the
layouts and widgets that make up an Android app as well as builds some apps that
demo our new skills.

Chapter 5, Real-World Layouts, takes user interfaces a step further by designing and
implementing some apps with layouts more like what you would see on professional
Android apps.

Chapter 6, The Life and Times of an Android App, explores how the Android operating
system works under the surface by building apps that demonstrate the Android
lifecycle and how we make it work for us.

Chapter 7, Coding in Java Part 1 – Variables, Decisions, and Loops, gives you the first
major glimpse of Java, the native language of Android, and the way we will be
bringing our apps to life. Zero previous coding experience is assumed.

Chapter 8, Coding in Java Part 2 – Methods, discusses that methods are one of the key
building blocks of all the apps we will make in this book. In this chapter, we will
build a few working mini apps to explore how to use methods.

Chapter 9, Object-Oriented Programming, states that OOP is the way that all modern
programming is done, especially Java. This chapter holds the key to using all the
advanced and exciting features contained in Android.

Chapter 10, Everything's a Class, will bring together everything we have seen in all the
other chapters so far. By the end of this chapter, our design and Java skills will be as
one and we will be well placed to start building apps with more advanced features.

Chapter 11, Widget Mania, covers the use of our new OOP, Java, and UI knowledge
that we will be able to use and interact with many of the user interface features
available in Android.

Preface

[xviii]

Chapter 12, Having a Dialogue with the User, starts ramping up what we can do now. In
this chapter, we will build apps that use pop-up windows to get input from the user
as well as start the first major app of the book, Note To Self.

Chapter 13, Handling and Displaying Arrays of Data, will discuss Java arrays and then
show you how to use them in some apps, as almost any app that we build will need
to be able to handle significant amounts of data.

Chapter 14, Handling and Displaying Notes in Note To Self, will use the skills you
learned and practiced in the previous chapter and will enhance our Note To Self app
in order for the user to be able to view and access all their data.

Chapter 15, Android Intent and Persistence, covers how to build multiscreen apps, how
to let the user seamlessly navigate between them, and how to implement a settings
screen that remembers user's preferences.

Chapter 16, UI Animations, teaches how to use the really useful Android SeekBar
widget and how to animate our UI to make it spin, bounce, flash, and more.

Chapter 17, Sound FX and Supporting Different Versions of Android, finds out how
to bring our apps to life with sound effects. In this chapter, you will explore the
SoundPool class to add beeps, buzzes, clicks, or even explosions.

Chapter 18, Design Patterns, Fragments, and the Real World, sets the scene for the
final and most advanced third of the book. In this chapter, you will learn how
professionals organize their code with patterns and see exactly how to use this
knowledge to build Android apps.

Chapter 19, Using Multiple Fragments, shows you how to use the Android Fragment
to make our apps modular so they can run on multiple different device types, such
as phones and tablets, and appear differently on each but run from exactly the same
code that we write.

Chapter 20, Paging and Swiping, builds some apps that use the really cool swiping
effect. In this chapter, you will learn how to swipe left and right between pages,
menus, and images in an app.

Chapter 21, Navigation Drawer and Where It's Snap, explains how to use the navigation
drawer UI in your apps, how to swipe from the edge of the screen to reveal the user's
navigation choices, and how to get started on the most advanced app we will build
using navigation drawer.

Chapter 22, Capturing Images, builds a mini app to use the device camera in order to
capture and store images and then enhance our main app as well.

Preface

[xix]

Chapter 23, Using SQLite Databases in Our Apps, teaches you how databases work with
a focus on the Android database of choice, SQLite. In this chapter, we will build a
database mini app.

Chapter 24, Adding a Database to Where It's Snap, shows you how to code an advanced
database to store user data, photos, and even GPS coordinates.

Chapter 25, Integrating Google Maps and GPS Locations, shows you how to connect live
to the Google Maps service to add real global mapping data to your apps.

Chapter 26, Upgrading SQLite – Adding Locations and Maps, teaches you how to
upgrade the database from Chapter 24, Adding a Database to the Where It's Snap App
and add the ability to capture and show a map and GPS locations along with the
user's photos in the Where it's snap app.

Chapter 27, Going Local – Hola!, will help you understand how to easily add multiple
different languages to make apps with a truly global reach.

Chapter 28, Threads, Touches, Drawing, and a Simple Game, discusses how to build a
simple but working retro Pong game to explore the important topics of drawing,
screen touches, and multithreaded computing.

Chapter 29, Publishing Apps, shows you how to build deployable apps and publish
them on the Google Play global marketplace.

Chapter 30, Before You Go, discusses briefly how you might like to take your Android
and Java skills further.

What you need for this book
Any recent and free version of Eclipse or Android Studio running on any of the
major operating systems can use the code in this book.

Android Studio is the recommended development tool, and at the time of
publication, the minimum system requirements were as follows:

Windows
• Microsoft® Windows® 8/7/Vista/2003 (32 or 64 bit)
• 2 GB RAM minimum; however, 4 GB RAM is recommended
• 400 MB hard disk space
• At least 1 GB for Android SDK, emulator system images, and caches
• 1280 x 800 minimum screen resolution

www.allitebooks.com

http://www.allitebooks.org

Preface

[xx]

• Java Development Kit (JDK) 7
• Optional for accelerated emulator: Intel® processor with support for Intel®

VT-x, Intel® EM64T (Intel® 64), and Execute Disable (XD) Bit functionality

Mac OS X
• Mac® OS X® 10.8.5 or a higher version, up to 10.9 (Mavericks)
• 2 GB RAM minimum; however, 4 GB RAM is recommended
• 400 MB hard disk space
• At least 1 GB for the Android SDK, emulator system images, and caches
• 1280 x 800 minimum screen resolution
• Java Runtime Environment (JRE) 6
• Java Development Kit (JDK) 7
• Optional for accelerated emulator: Intel® processor with support for Intel®

VT-x, Intel® EM64T (Intel® 64), and Execute Disable (XD) Bit functionality

On a Mac OS, run Android Studio with Java Runtime Environment (JRE) 6
for optimized font rendering. You can then configure your project to use Java
Development Kit (JDK) 6 or JDK 7.

Linux
• A GNOME or KDE desktop
• GNU C Library (glibc) 2.15 or later
• 2 GB RAM minimum; however, 4 GB RAM is recommended
• 400 MB hard disk space
• At least 1 GB for the Android SDK, emulator system images, and caches
• 1280 x 800 minimum screen resolution
• Oracle® Java Development Kit (JDK) 7

Tested on Ubuntu® 14.04, Trusty Tahr (64-bit distribution capable of running
32-bit applications).

Preface

[xxi]

Who this book is for
Are you trying to start a career in programming, but haven't found the right way
in? Do you have a great idea for an app, but don't know how to make it a reality? Or
maybe you're just frustrated that "to learn Android, you must know Java." If so, this
book is for you. You don't need any programming experience to follow along with
this book, just a computer and a sense of adventure.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We will see this, perhaps most distinctly, when we look at RelativeLayout later in
the chapter."

A block of code is set as follows:

android:layout_below="@+id/textView"

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<RelativeLayout xmlns:
 android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".LayoutExperiments">

</RelativeLayout>

Preface

[xxii]

Any command-line input or output is written as follows:

Rambo's health =﹕ 150

Vassily's health =﹕ 50

Wellington's health =﹕ 100

Green Beret﹕ is shooting

Sniper﹕ is shooting

Sailor﹕ is shooting

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "As we
have already seen, widgets have properties that we can either set in XML or through
the Properties window."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xxiii]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

All the finished code and resources for every one of the projects in this book can
be found in the download bundle in a folder named after the chapter number for
example Chapter 1, Chapter 2, and so on. Furthermore inside each of these folders
you will find a sub-folder with the name of the app. Then as you would expect,
within this folder will be the code files and the resources for that app. And finally, the
resources and code files are further sub divided into folder names that correspond to
their correct place within a project. So for example, to explore the completed files for
the project in Chapter 1, The First App you would look in Chapter 1/Hello Android.
In there you will find code files and resources in folders named java and layout. As
we learn about and use more resource types, so the number of subfolders within the
application folder in the download bundle will grow. Our Android Studio projects
actually contain dozens of files and folders. The download bundle will only contain
the files and folders we need to edit, or that are being discussed. We will take a closer
look at the structure of an Android project in the second chapter.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/AndroidProgrammingforBeginners_
ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/AndroidProgrammingforBeginners_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AndroidProgrammingforBeginners_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AndroidProgrammingforBeginners_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[xxiv]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

The First App
Welcome! In this chapter, we won't waste any time in getting started with
developing Android apps.

We will look at what is so great about Android, what Android and Java are exactly,
how they work and complement each other, and what this means to us as future
developers.

After this, we will spend a little time setting up our development environment and
then get straight to building and deploying our first app.

By the end of this chapter, we will have done the following:

• Set up the Java Development Kit (JDK), part of the required Android
development environment

• Installed Android Studio, the final part of our Android development
environment

• Built our very first Android app
• Deployed an Android emulator
• Run our app on an Android emulator and a real device

How Java and Android work together
After we write a program in Java for Android, we click on a button to change our
code into another form that is understood by Android. This other form is called
Dalvik EXecutable (DEX) code, and the transformation process is called compiling.
Compiling takes place on the development machine after we click on that button.
We will see this work right after we set up our development environment.

The First App

[2]

Android is a fairly complex system, but you do not need to understand it in depth
to be able to make amazing apps. The part of the Android system that executes
(runs) our compiled DEX code is called the Dalvik Virtual Machine (DVM). The
DVM itself is a piece of software written in another language that runs on a specially
adapted version of the Linux operating system. So what the user sees of Android, is
itself just an app running on another operating system.

The purpose of the DVM is to hide the complexity and diversity of the hardware
and software that Android runs on but, at the same time, its purpose is to expose
all of its useful features. This exposing of features generally works in two ways. The
DVM itself must have access to the hardware, which it does, but this access must be
programmer friendly and easy to use. The way the DVM allows us access is indeed
easy to use because of the Android Application Programming Interface (API).

The Android API
The Android API is the code that makes it really easy to do exceptional things.
A simple analogy could be drawn with a machine, perhaps a car. When you step on
the accelerator, a whole bunch of things happen under the hood. We don't need to
understand about combustion or fuel pumps because a smart engineer has provided
an interface for us. In this case, a mechanical interface—the accelerator pedal.

Take the following line of Java code as an example; it will probably look a little
intimidating if you are completely new to Android:

locationManager.getLastKnownLocation
 (LocationManager.GPS_PROVIDER);

However, once you learn that this single line of code searches for the available
satellites and then communicates with them in orbit around the Earth while
retrieving your precise latitude and longitude on the planet, it is easy to begin to
glimpse the power and depth of the Android API in conjunction with the DVM.
Even if that code does look a little challenging at the moment, imagine talking to a
satellite in some other way!

The Android API is mainly a whole bunch of Java code. So, how do we use all this
code to do cool stuff without getting swamped by its complexity? How do we find
and manipulate the pedals, steering wheel, and sunroof of the Android API?

There are many different estimates to the number of lines of
code that have gone into Android. Some estimates are as low
as 1 million, some as high as 20 million. What might seem
surprising is that, despite this vast amount of code, Android is
known in programming circles for being "lightweight".

Chapter 1

[3]

Java is object-oriented
Java is a programming language that has been around a lot longer than Android.
It is an object-oriented language. This means that it uses the concept of reusable
programming objects. If this sounds like technical jargon, another analogy will help.
Java enables us and others (such as the Android development team) to write Java
code that can be structured based on real-world "things" and, here is the important
part, it can be reused.

So, using the car analogy, we could ask the question: if a manufacturer makes more
than one car in a day, do they redesign each and every part for each and every car?

The answer, of course, is no. They get highly skilled engineers to develop exactly
the right components that are honed, refined, and improved over years. Then, that
same component is reused again and again, as well as occasionally improved. Now,
if you are going to be picky about my analogy, then you can argue that each of the
car's components still have to be built from raw materials using real-life engineers, or
robots, and so on.

This is true. What the software engineers actually do when they write their code is
build a blueprint for an object. We then create an object from their blueprint using
Java code and, once we have that object, we can configure it, use it, combine it with
other objects, and more. Furthermore, we can design blueprints and make objects
from them as well. The compiler then translates (manufactures) our custom-built
creation into DEX code.

In Java, a blueprint is called a class. When a class is transformed into a real working
thing, we call it an object.

Objects in a nutshell
We could go on making analogies all day long. As far as we care at
this point:

• Java is a language that allows us to write code once that can
be used over and over again.

• This is very useful because it saves us time and allows us to
use other people's code to perform tasks we might otherwise
not have the time or knowledge to write for ourselves.

• Most of the time, we do not even need to see this code or
even know how it does its work!

One last analogy. We just need to know how to use that code, just as
we only need to learn to drive the car.

The First App

[4]

So, a smart software engineer up at Google HQ writes a desperately complex Java
program that can talk to satellites. He then considers how he can make this code
useful to all the Android programmers out there. One of the things he does is he
makes features such as getting the device's location in the world a simple one-line
task. So the one line of code we saw previously sets many more lines of code in
action that we don't see. This is an example of using somebody else's code to make
our code infinitely simpler.

What exactly is Android?
We know that to get things done on Android, we write Java code of our own, which
also uses the Java code of the Android API. This is then compiled into DEX code and
run by the DVM, which in turn has connections to an underlying operating system
called Linux.

Then the manufacturers of the Android devices and individual hardware
components write advanced software called drivers, which ensure that their
hardware (CPU, GPU, GPS receivers, and so on) can run on the underlying Linux
operating system.

Our compiled Java code, along with some other resources, is placed in a bundle of
files called an Android application package (APK), and this is what the DVM needs
to run our app. This process is explained in the following figure:

Chapter 1

[5]

In summary, all we need to do is learn how to read and code Java, so we can begin to
learn and take advantage of the Android API.

All these tools are free, so let's take a look at the development environment we
will be using.

The development environment
A development environment is a term that refers to having everything you need in
order to develop, set up, and be ready to go in one place. We need the following two
things to get started:

• We talked a fair bit about compiling our Java code, as well as other people's
Java code, into DEX code that will run on the DVM, on people's Android
devices. In order to use Java code, we need a free software called the JDK.
The JDK also includes other people's code, which is separate from the
Android API.

• There is a whole range of tools that are required to develop for Android, and
we also need the Android API, of course. This whole suite of requirements
is collectively known as the Android software development kit (SDK).
Fortunately, downloading and installing a single application will give us these
things all bundled together. This single application is called Android Studio.

Android Studio is an integrated development environment (IDE) that takes care of
all the complexities of compiling our code and linking with the JDK and the Android
API. Once we have installed the JDK and Android Studio, we can do everything we
need inside this application.

The First App

[6]

What could possibly go wrong?
I got a lot of feedback via my website http://gamecodeschool.com
about a previous book of mine that showed how to install an Android
development environment. People said that setting this up can be the
hardest part. So I've written this section to be as thorough as possible
because not everybody has a smooth setup experience.
Hopefully, you won't need all the extra tips and detailed figures,
but there are a few vagaries that can trip us up while setting up the
development environment.
Most likely, these instructions will get you up and running quickly
and cover all your issues. If there is an issue that I haven't managed to
anticipate, don't let it beat you! I guarantee that you are not the first
to have that exact issue. Perform a web search (use Google), be really
specific in your search criteria, and I am confident you will be coding
in no time at all.
This guide will get around 99% of the Windows user's setup in a
couple of hours. All the coding and development information you
need will be covered 100% step by step.
For Mac and Linux users, most of these instructions can be easily
interpreted as the key points of the tutorial are more about what
we do inside of the setup programs and less about the specific
environment we are using. My apologies for not providing
comprehensive instructions for every operating system.

A note to the existing developers who use
Eclipse
There are multiple options regarding which software to use when developing
Android apps. In the early days of developing Android, an IDE called Eclipse
was most commonly used. A few years ago, a new "official" contender for the best
Android IDE was released. This was Android Studio. The problem after its first
release was that it was still in the beta (not finished) stage. It had numerous bugs,
including some quite awkward ones. However, even then it was the preferred
IDE for many because of its smooth operation, cool looks, official status, and
prestigious heritage.

http://gamecodeschool.com

Chapter 1

[7]

Now that Android Studio has exceeded version 1, there is virtually no reason to use
anything else, especially if you are just getting started with Android. If you already
have Eclipse set up for Android development and really don't want to change, that's
fine, the code in this book will work. However, there will be significant differences in
the instructions, especially regarding the user interface (UI) designer. Also, the code in
this book has been thoroughly tested by others and me in Android Studio.

The sections that follow will set up a development environment with the JDK and
Android Studio as our IDE of choice.

The JDK
This can be as simple as downloading, double-clicking on the downloaded file, and
following the installation instructions. However, sometimes it isn't. So, it is probably
worth running through the installation process step by step and pointing out along
the way a few options that can make things easier.

What if I already have Java?
Most PC/Mac computers already have Java installed. Many modern apps
require Java, and a classic example of this is the game Minecraft. Java is subtly,
but significantly, different from the JDK. Java on its own just runs programs that
have been written in Java for PC. This is the PC equivalent to the DVM. Java on
its own, however, will not compile our code or make other people's code that we
need available. This more common version of Java is called the Java Runtime
Environment (JRE). When we install the JDK, it will also install the JRE, whether you
already have it or not. So, if you are conscientious about keeping your hard drive
in order, you could uninstall the JRE using the Windows Control Panel in the usual
way before proceeding. Then find and delete your existing Java folder.

This tutorial will then reinstall the latest version of the JRE as well as the JDK. If,
however, you know that you have a program that uses Java and you don't want to
mess with its configuration, then go ahead with this tutorial, but just be aware that
there will be a JRE and an associated Java folder in two places on your hard drive.

To summarize the preceding in case anything is unclear: this tutorial assumes that
you don't have an existing folder named Java, but will work just fine even if you do.

Installing the JDK
As a little bit of preparation before we install the JDK, you need to know which
operating system you have and whether it is 32 or 64 bit. If you are unsure, use this
little tip to find out.

The First App

[8]

Do I have a 32-bit or 64-bit Windows system?
To find out, right-click on My Computer (This PC on Windows 8)
icon, left-click on the Properties option, and look under the System
heading of the System type entry like this:

Now we are ready to install the JDK. This fairly simple set of steps will set up the
JDK quickly. The only slight delay is the download itself, which could take a while
on slower Internet connections. The actual installation process should be fast and
trouble free:

1. Visit the Java JDK downloads page at http://www.oracle.com/
technetwork/java/javase/downloads/jdk8-downloads-2133151.html.

2. If the link has changed, conduct a web search for Java JDK download. The
only potential stumbling block at this stage is that you click on a link for
the JRE instead. JDK is what we need. The following is a screenshot of the
important part of this page:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Chapter 1

[9]

3. Your download page will most likely be slightly different. There will be a
newer version of the JDK by the time you read these words, so the 8u51 will
be different. That's OK, we just need whichever is the newest version. Simply
click on the Accept License Agreement radio button that is highlighted in
the previous screenshot and then click on the download link, which is on
the right-hand side column corresponding to your operating system in the
Product/File Description column. If you are not sure whether you have 32-
bit or 64-bit Windows, refer to the tip before this section.

4. Wait while the JDK is downloaded to your hard drive.
5. In the folder where you've downloaded the JDK, right-click on the jdk-8u51-

windows-x64.exe file and select Run as administrator. The precise name
of the file you have will vary based on whether you have 32-bit or 64-bit
Windows and what the current version of the JDK happens to be at the time.

6. There will be a series of windows that will guide us through the installation
process. The most we have to do is just click on Next to proceed. As
promised, I will guide you through them one at a time and point out when
you might like to make changes or make a note of things. The following is a
screenshot of the first window that you will see during the installation:

The First App

[10]

7. Now, click on Next and you will see this window:

8. On the window pictured in the previous screenshot, we can leave all the
options at their default values. They are just what we need. The Install
to setting is worth considering, however. By the time we install the JDK,
Android Studio, and all the extra tools and files that come with it, we will
have around 6 gigabytes of files and folders. Now, consider that we will
also be making lots of projects throughout the course of this book. Ideally,
we want all of these files, folders, and projects to be on the same hard drive.
They don't have to be, but we might avoid some problems later on if they are.
So, do you have at least 6 gigabytes of space on the hard drive that you've
chosen by default? If not, you might like to browse to another folder. In
addition to this, as we will see later on in this tutorial, it will be handy (but
not essential) to simplify the folder names used to install the JDK. So, click on
the Change button and you will see this window:

Chapter 1

[11]

9. Browse to the hard drive where you will be installing all of your
development tools. Then simplify the names of the folders in which you will
install the JDK to just Java\JDK\. As you can see in the next screenshot, I
have also switched to my D:\ drive, as I have more space there:

10. It actually doesn't matter what you call these folders as long as you
remember where they are and what they are called, including whether they
are uppercase or lowercase letters. Perhaps you can jot down a note or copy
and paste them to a file on your desktop. When you are happy with the
chosen installation location and folder names, go ahead and click on Next.

The First App

[12]

11. The next window will not appear on every installation. If you don't see the
window pictured as follows, its fine, you can skip to step 13. If you do see
the window, proceed to step 12.

12. Understandably, this window could cause confusion if you have never done
any Java development before. You might be thinking that we had already
chosen the destination folder for Java. We chose the location for the JDK. This
window refers to the bog-standard Java—the JRE. This is what runs Java
programs on your PC and, since we are developing for Android, we don't need
it. However, we still need to choose a location in order to proceed. Accept the
default and just click on Next. If you are a tidiness obsessive like me, you can
change to the same Java folder from step 8 and then click on Next.

13. Next, you will see the window that says 3 Billion Devices Run Java.
Android has over 1.1 billion devices alone at the time of writing this despite
a slow start in 2015. You might also like to know that there are more than
18,000 different distinct devices. Seriously, Google it if you think it sounds
crazy. You can do this while you wait for the installation to complete.

Chapter 1

[13]

14. Now, you will see the final screen. Click on Next Steps if you are curious,
but there is no need because we will be covering Android-specific next steps
without delay.

The First App

[14]

15. Click on Close, and we are almost done installing the JDK, with just a few
more precautionary steps left.

16. Now, we will make sure that Windows (and all its applications) know where
to find the JDK. Right-click on your My Computer (This PC on Windows 8)
icon and Properties | Advanced system settings | Environment Variables |
New (under System variables and not under User variables). Now you can
see the New System Variable dialog as follows:

17. As shown in the previous screenshot, type JAVA_HOME in Variable name
and enter D:\Java\JDK in the Variable value field. If you've installed the
JDK somewhere else, then the file path you enter in the Variable value field
will need to point to where you've placed it. Be sure to type it correctly, make
sure that the slashes \ are the right way around, and don't add any extra
slashes.

18. Click on OK to save your new settings. Now, click on OK again to clear the
Advanced system settings window.

We have successfully installed the JDK, which we need to develop Android apps
with Android Studio, and we have also installed the JRE, if it wasn't installed
already, which we won't be using, but this won't cause us any problems either.

Setting up Android Studio
Now that the JDK is installed and ready to go, we are only one step away from
building our first Android app. Installing Android Studio can take a bit longer
than the JDK and is a little more nuanced, but it is nothing a determined, aspiring,
developer won't be able to handle with ease.

Chapter 1

[15]

What could possibly go wrong?
This whole process could take an hour or two. Not because
there is lots of work for us to do, but because we need
to initiate some fairly large downloads. Also, at several
different stages in the process, Android Studio will connect
to the internet and update itself. If you have a fast internet
connection, then you can probably knock a good percentage
off of my rough estimate of the time required.

Now that we know what to expect, we can get on with the installation of Android
Studio. Follow the given steps to do so. There is nothing especially tricky about this,
and the few aspects that might need some consideration will be discussed as they arise:

1. Visit https://developer.android.com/sdk/index.html and click on the
Download Android Studio for Windows button. If at the time of reading
this the link has changed, simply Google Download Android Studio.

2. Next, you will see the Terms and Conditions page as shown in the
following screenshot:

3. Click on the I have read and agree with the above terms and conditions
checkbox as highlighted in the previous screenshot.

www.allitebooks.com

https://developer.android.com/sdk/index.html
http://www.allitebooks.org

The First App

[16]

4. Now, click on the DOWNLOAD ANDROID STUDIO FOR WINDOWS
button. Wait for the download to complete.

5. Open the folder where you have downloaded Android Studio. Right-click
on the android-studio-bundle-141.1980579-windows.exe file and select
Run as administrator. Your file will most likely have a different name based
on whichever is the current version of Android Studio at the time.

6. When you get the Do you want the following program to be allowed to
make changes to this computer message, click on Yes. You will see the first
window of the installation process.

7. Let's step through the setup process a window at a time. Pictured next is the
first window that you will see when you start the setup process:

Chapter 1

[17]

8. Click on Next. Now we can see a few options, as in this next screenshot:

9. Make sure that all the options have a tick next to them, and then click on Next.
10. The next window is the license agreement. Click on I Agree and you will

see some settings that warrant a short discussion. Take a look at the next
screenshot that shows you the Install Locations window:

The First App

[18]

11. In this step, we want to install the Android Studio IDE and Android SDK
to the same hard drive where we installed the JDK. So you might just be able
to click on Next at this point. However, if you've installed the JDK to another
drive, then we need to change the drive and the folders we use at this step
too. This isn't strictly essential, but it can avoid problems for some users.

12. For Android Studio Installation Location, choose the root of the drive where
you've installed the JDK followed by \Android Studio. So in my case,
this will be D:\Android Studio. For Android SDK Installation Location,
choose the same hard drive and simply add Android\sdk as the location. So
if, like me, you've installed the JDK on D:, then choose D:\Android\sdk. The
next screenshot makes this clear:

13. Click on Next when you have selected your installation locations.

Chapter 1

[19]

14. Next, you might see the Emulator Setup window as pictured in the next
figure. If you do, then accept the default settings and click on Next; otherwise,
you can skip to step 15. Don't worry if you don't see this screen, it is a minor
issue to do with running the Android emulators a bit more smoothly. Most of
the time, you will probably want to use a real device anyway.

15. We are nearly there now. The next window asks you to choose a start menu
folder, just as when we install any new Windows app. You might want to
make a note of this location. Click on Install to accept the default settings,
and Android Studio will begin to install itself and extract the SDK to the
appropriate folder that we selected earlier. This might take some time.

The First App

[20]

16. When you see the Installation Complete window, click on Next. Now, you
will see the following window:

17. Click on Finish to bring up the second to last window of the installation
process. Assuming that this is your first time using Android Studio, click on
the I do not have a previous version of Android Studio or I do not want to
import my settings radio button and click on OK.

Chapter 1

[21]

18. Now, in the next figure, you get to choose the theme that Android Studio will
use. If you like a conventional black text on white background appearance,
then choose IntelliJ, and if you want a cool dark style, choose Darcula. You
can alter any of these schemes from within Android Studio if you change
your mind later.

19. Click on Next when you have chosen your theme.
20. Now Android Studio will connect to the Internet and download some of the

Android tools that we will be using soon. Again, this could take a while.
21. When the Downloading Components window has done its work, it will

present you with a Finish button. Click on it.

The First App

[22]

22. Finally, we are presented with the Welcome to Android Studio screen.
This screen, among other things, allows us to start a new project or open an
existing project. Take a look at the next screenshot:

23. You can close this window and take a break or leave it open and read on
because we will be back here really soon.

This was a fairly lengthy tutorial but, hopefully, it wasn't too tough. Android Studio
and the supporting tools that we need are installed and ready to go. We are really
close now to building our first app.

First, let's look at the composition of an Android app a little.

What makes an Android app
We already know that we will write Java code that will itself use other people's
Java code and will be compiled into DEX code that runs on the DVM. In addition to
this, we will also be adding and editing other files as well. These files are known as
Android resources.

Chapter 1

[23]

Android resources
Our app will include resources such as images, sounds, and user interface layouts
that are kept in separate files from the Java code. We will slowly introduce ourselves
to them over the course of this book.

They will also include files that contain the textual content of our app. It is a
convention to refer to the text in our app through separate files because it makes
them easy to change, and this makes it easy to create apps that work for multiple
different languages.

Furthermore, the actual UI layouts of our apps, despite the option to implement
them with a visual designer, are actually read from text-based files by Android.

Android (or any computer), of course, cannot read and recognize text in the same
way that a human can. Therefore, we must present our resources in a highly
organized and predefined manner. To do so, we will use Extensible Markup
Language (XML). XML is a huge topic but, fortunately, its whole purpose is to be
both human and machine readable. We do not need to learn this language, we just
need to observe (and then conform to) a few rules. Furthermore, most of the time
when we interact with XML, we will do so through a neat visual editor provided by
Android Studio. We can tell when we are dealing with an XML resource because the
filename will end with the .xml extension.

You do not need to memorize this, as we will constantly be returning to this concept
throughout the book.

The structure of Android's Java code
In addition to these resources, it is worth noting that Java, as used in Android, has
a structure to its code. There are many millions of lines of code that we can take
advantage of. This code will obviously need to be organized in a way that makes it
easy to find and refer to. It is organized under predefined packages that are specific
to Android.

Android packages
Whenever we create a new Android app, we will choose a unique name known as
a package. We will see how to do this in the Our first Android app section. Packages
are often separated into subpackages, so they can be grouped together with other
similar packages. We can simply think of these as folders and subfolders.

The First App

[24]

We can also think of all the packages that the Android API makes available to us as
books that contain code, from a library. Some common Android packages we will
use include the following:

• android.graphics

• android.database

• android.view.animation

As you can see, they are arranged and named to make what is contained in them as
obvious as possible.

If you want to get an idea for the sheer depth and breadth
of the Android API, then take a look at the Android
package index at http://developer.android.com/
reference/packages.html.

Earlier, we learned that reusable code blueprints that we can transform into objects are
called classes. Classes are contained in these packages. We will see in our very first app
how to easily import other people's packages along with specific classes from those
packages for use in our projects. A class will almost always be contained in its own file,
with the same name as the class, and have the .java file extension.

In Java, we further break up our classes into sections that perform the different
actions for our class. We call these sections methods. These are, most often, the
methods of the class that we will use to access the functionality provided within
all those millions of lines of code. We do not need to read the code. We just need to
know which class does what we need, which package it is in, and which methods
from within the class give us precisely the results we are after.

The next diagram shows a representation of the Android API. We can think about
the structure of the code that we will write in exactly the same way, although we will
most likely have just one package per app. Of course, because of the object-oriented
nature of Java, we will only be using selective parts from this API. Also note that
each class has its own distinct data. Typically, if you want access to the data in a
class, you need to have an object of that class.

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html

Chapter 1

[25]

You do not need to memorize this, as we will constantly be returning to this concept
throughout the book.

By the end of this chapter, we will have imported multiple packages and some classes
from them and we will have used other people's methods. By the end of Chapter 2,
Java – First Contact, we will have even written our very own methods as well.

Our first Android app
In programming, it is a tradition for the first app of a new student to use whichever
language/OS they are using to say hello to the world. We will quickly build an app
that does just that, and in Chapter 2, Java – First Contact, we will go beyond this and
add some buttons that actually respond to the user.

The First App

[26]

Creating the project
We will start with the creation of this project. What follows here are the steps to
create a new project. My instructions at each step might seem a little verbose, but
that is just because this is the first time we are running through them. After a few
chapters, when we create new projects, I will be able to describe the instructions in
a sentence and you will be able to create the project in 30 seconds. As this is the first
one, let's do this step by step and learn it all along the way:

1. Start Android Studio by clicking on its icon in the start menu folder that you
chose in step 15 of the previous tutorial.

If you can't find the icon, you can find the file directly in the bin
folder at the location where you installed Android Studio. Find
the studio64.exe file on a 64-bit PC or the studio.exe file on
a 32-bit PC and double-click on it in the same way that you start
any other Windows app.

2. If you get the Windows Firewall has blocked some features of this program
message, as pictured in the next screenshot, click on Allow access:

Chapter 1

[27]

3. Now, you will see the Welcome to Android Studio start menu that we
saw at the end of the previous tutorial. Go ahead and click on Start a new
Android Studio project. You will see the New Project screen pictured next.
Starting a new project is very easy and mainly involves accepting the default
settings on a few different screens. Let's take a closer look at some of the
options, however, because they will increase our understanding of Android
and Android Studio:

4. First, note that we can name our application in the Application name field.
You can choose any name you like for your first application, but just be
aware that Android Studio will soon generate a whole bunch of code and
files for us and that the name you choose will be reflected in them. If you
want your code and files to be identical to those that we will be examining
shortly, call your application Hello Android.

The First App

[28]

5. Next, note the Company Domain field. This is where you will enter the
details of your company. It is a convention and very practical (because it
is unique) to use the domain name of your company website. If you don't
have a company or domain name, enter the domain name I am using:
gamecodeschool.com. Unlike the application name, using a different
company domain will have almost zero effect on the code and files that
we will examine later. Although if you are using your own domain name,
do refer to the tip Using your own domain name or application name, after this
tutorial. Choose and enter a company domain name.

6. Now, look at the Package name field. It has been automatically derived from
the previous two fields. If you used the same two values as suggested in
the previous two steps, your package name will be com.gamecodeschool.
helloandroid. Remember that a package is a collection of the Java classes
that are our code files, and our apps can comprise one or more packages if we
wish them to, but they must comprise at least one package. We can edit the
package name by clicking on the edit link, but we have no need to do so here.

7. Finally, in the Project location field, you can accept the default settings
or browse to the location where you would like to store all your Android
projects. You have the option to change this for each project that you create.
I've put personal projects in my Dropbox folder so, if my PC breaks down
mid project, I know my files are safe. Android Studio can also work from an
online code repository, such as GitHub, but we are not covering that in this
book. Here is a screenshot of the New project window after steps 5, 6, and 7:

Chapter 1

[29]

8. Click on the Next button to continue and you will see the Target Android
Devices window:

9. Here, we can see that we have the option of developing an application
for a phone, tablet, TV, and wear. Wear is the range of Android-enabled
smartwatches. In the preceding screenshot, in the grayed-out part at the
bottom of the window, we can also see that we can develop for Glass,
Google's trendy Android-enabled glasses, although we would need to install
additional files to do this. In this book, we will be developing for phones
and tablets, so the already selected option is just what we need. The only
other thing we need to choose on this screen is the Minimum SDK. We
already know that the Android SDK is a collection of packages of code that
we will be using to develop our apps. Like any good SDK, the Android SDK
is regularly updated, and each time it gets a significant update, the version
number is increased. Simply put, the higher the version number, the newer
the features you get to use; the lower the version number, the more devices
our app will work on. For now, the default setting API 15: Android 4.0.3
(IceCreamSandwich) will give us lots of great features and at least 90%
compatibility with the Android devices that are currently in use. If, at the time
of reading this, Android Studio is suggesting a newer API, then go with it.

The First App

[30]

10. Click on the Next button. Now we can see the Add an activity to
Mobile window:

11. In the previous sections, we discussed Java classes in brief. An Activity
class is a special Java class and every Android app must have at least one.
It is the part of the code where our app will start when it is launched by the
user, and this also handles any interaction with the user. The options on this
screen provide different ready-made templates of the Activity class code in
order to give programmers a fast start when creating various types of apps.
As we are starting from scratch, the most appropriate option for us is Blank
Activity. Make sure that Blank Activity is selected by clicking on it and then
clicking on Next. Now, take a look at the Customize the Activity window:

Chapter 1

[31]

12. The Customize the Activity window gives us four things that we can play
with. It is perfectly possible to leave them all at their default settings, but
let's change them to make them more meaningful and discuss what each one
is. Activity Name is the name of the class that will contain our code. If this
sounds odd, to be more specific, we will have a class that is an activity called
whatever we name it here. Name the activity MyActivity.

13. The next field is Layout Name. We discussed earlier in this chapter that
Android UI layouts are usually defined in a separate XML text file, not with
our Java code. The layout name is what this file will be called. Name the
layout my_layout.

14. The next field is Title. This is different than the Activity Name field and will
be used by Android on the device's screen as the name of the app. Name the
title My App.

The First App

[32]

15. Finally for this screen, we have Menu Resource Name. Menus are the
pop-up options that you get on Android when (perhaps unsurprisingly) you
click on the menu button. They might also be shown on the topmost bar of the
app known as the action bar. This varies depending on the version of Android
a device is running. These are considered to be part of the UI as well and are
usually defined in this separate XML file. Name our menu file my_menu.

16. It is important that the exact case and spacing is used for the information we
enter in steps 12, 13, 14, and 15. Check out the next close-up figure to see that
you have entered the text just right:

17. Click on the Finish button, and Android Studio will now create a project for
us based on our choices from the previous 16 steps.

We now have a project ready for us to deploy or modify.

Using your own domain name and application name
Using your own domain and application name is absolutely fine.
The only thing to be aware of is that the first line of code that we
will see when we look at our Java code (in Chapter 2, Java – First
Contact), will be, and needs to be, different. This is the package
name. In the context of this book, we won't ever need to change the
package name or do anything with it, so it doesn't matter what you
call your apps or whether you use your own domain name.
The only time this could cause a problem is when you create a
project (with a different name or package name) and then copy and
paste the code from the download bundle. The reason for this is
that this code will have a different package name. All you need to
do to overcome this problem is either create your project with the
same package name as the code files you are copying and pasting
from or change the very first line of code, after you have copied and
pasted it, to reflect the package name of the project you've created.

Chapter 1

[33]

A note on version controlling
In this book, we will be covering everything you need to know to publish
professional apps. One thing we will not be discussing is working collaboratively
as part of a team or any backup strategies for your code. If you only intend to build
apps on your own, then you don't need to know any more. However, Android
Studio works almost seamlessly with a number of different Version Control Systems
(VCS) and code repositories. VCS and their related code repositories have a number
of advantages, which are as follows:

• You can allow multiple programmers to contribute to the same project and
even the same file

• You can click on a button to roll back your work to a specified position if you
realize you have gone wrong

• You can store your code seamlessly in a repository on the cloud/Web and
work on your project from any development machine without any concern
about backing up the files

Achieving all these benefits is not complicated and, in some cases, it is even free.
The problem with introducing VCS in a book like this is that there are an awful lot
of options and there is no simple, universally best option that will suit everybody. In
addition, it introduces yet another hurdle before we can get down to the business of
making apps.

If the topic of version control sounds interesting, try
exploring these two providers:

• http:bitbucket.org
• http:.github.com

Now, you might be surprised to know that we can actually deploy our app to an
emulator or a real Android device. Throughout this book, all the code for each
project is supplied in the download bundle in a folder that reflects the chapter
number. There is no code, however, in the Chapter 1 folder because all the code in
this project has been automatically generated by Android Studio and we don't need
to type anything for this project. We will, however, examine, modify, and add to this
autogenerated code in the next chapter.

http:bitbucket.org
http:.github.com

The First App

[34]

Deploying and testing the app
We need to test our apps frequently throughout development to check for any errors,
crashes, or anything else unintended. It is also important to make sure that the app
looks good and runs correctly on every device type/size that you want to target.
Clearly, we do not own each of the many thousands of Android devices. This is
where emulators come in.

Emulators, however, are sometimes a bit slow and cumbersome, although they
have improved a lot recently. If we want to get a genuine feel of the experience that
our user will get, then nothing beats deploying an app to a real device. So we will
probably want to use both real devices and emulators while developing our apps.

First, we will deploy to an emulator and then on a real device.

Deploying to an emulator
Deploying to an emulator is a matter of a few mouse clicks. There is a ready-made
emulator that is included with Android Studio. At the time of writing this, it is
Nexus 5. This may well be updated to a newer device by the time you read this. The
basic functionality described here will likely be identical, but the device name and
screenshots might vary slightly from your experience:

1. Just below the menu bar is a row of neat-looking buttons that we will
explore as the book progresses. The button we want right now is the green
triangle that represents play. Identify the button using the next screenshot
and click on it:

Chapter 1

[35]

2. Next, you will see the Choose Device window. Click on the Launch
emulator option as shown in the next screenshot:

3. Click on OK to launch the emulator. Nexus 5 comes preconfigured when you
install Android Studio, but you can also choose and customize emulators
yourself. Refer to the tip Creating a new emulator after this tutorial.

The First App

[36]

4. The emulator might take some time to start! Sometimes, it might even take
5 minutes or more. This is partly dependent on whether Android Studio
has detected whether your PC can run HAXM (Hardware Acceleration
Execution Manager) during the setup phase or not. Either way, all the
tutorials in this book will work just fine. Wait for the emulator to start. When
your emulator has loaded, you will see something like the next screenshot:

Chapter 1

[37]

5. We need to simulate swiping a finger up on the screen to unlock. So click and
drag up from somewhere near the bottom on the emulator screen. You can
now see your first app in action, as shown in the following screenshot:

6. Let's play a little bit with the emulator. Click on the back button to quit the
app, as shown in the next screenshot:

The First App

[38]

7. Note that you can see the launcher icon for your app with the name you
gave it when we created the project. Obviously, we will need to replace the
default Android icon before we release our app into the world. This will do
for now though.

8. You can click on the launcher icon to run the app again or try running any of
the other apps. Play with the emulator for a bit.

Congratulations, you have now run and played with your first app. In addition to
this, we have seen that we can do many things on an emulator that we previously
could only do on a real device.

Emulators take time to start up
If you are planning to use the emulator again soon, then leave
it running in order to avoid having to wait for it to start again.

If you want to try out your app on a tablet, TV, or even a watch, you're going to need
a different emulator.

Chapter 1

[39]

Creating a new emulator
If you want to create an emulator for a different Android device,
this is really simple. From the main menu, navigate to Tools |
Android | AVD Manager. On the AVD Manager window, click
on Create New Virtual Device. Now click on the type of device
you want to create: TV, Phone, Wear, or Tablet. Now simply
click on Next and follow the instructions to create your new
AVD. The next time you run your app, the new AVD will appear
as an option to run the app on.

Now we can take a look at how to get our app onto a real device.

Deploying to a real Android device
The first thing to do is to visit your device manufacturer's website and obtain and
install any drivers that are required for your device and operating system.

Many of the more recent Android devices don't need any
drivers at all. You could try simply plugging it in!

The next few steps will set up the Android device for debugging. Note that different
manufacturers structure the menu options slightly differently to others. However,
the following sequence is probably very close, if not exact, to enable debugging on
most devices:

1. Click on the Settings menu option or the Settings app.
2. Click on Developer options.
3. Tick the checkbox for USB Debugging.

The First App

[40]

4. Connect your Android device to the USB port of your development system.
You can see in the following figure that on the Devices | Logcat subtab of
the Android tab, at the bottom of the Android Studio window, my Samsung
GT I9100 has been detected:

5. Click on the Play icon from the Android Studio toolbar, just as we did when
running the app on the emulator.

6. When the Choose Device window appears, click on Choose running device
and then on your device; in my case, this would be Samsung GT I9100.

7. Finally, click on OK to debug the app on your chosen device.

You can now see your app in all its glory on your device and show it to your friends
and admirers alike.

Note that although the app is running on a real device, this is still running in the
debug mode so we can get feedback about what is happening to our app. In Chapter
29, Publishing Apps, we will see how to generate a signed, distributable app that can
be uploaded to Google Play.

FAQ
1. So is Android not really an operating system, but just a virtual machine? And

are all phones and tablets really Linux machines?
No, all the different subsystems of an Android device, which includes Linux,
the DVM, and the libraries and drivers together, are what make up the
Android operating system.

Chapter 1

[41]

2. I still don't understand all of these technical terms, such as DVM,
object-oriented, APK, and so on. Should I reread this chapter?
No, that isn't necessary, as we just need to introduce this jargon, and we
will be revisiting them all as well as clarifying them as the book progresses.
You just need to understand the following:

 ° We will be writing Java code and creating other resources
 ° Android Studio, with the help of the JDK, will turn this code and

these resources into real Android apps

Now, you are good to go and can move on to Chapter 2, Java – First Contact.

Summary
So far, we have set up an Android development environment and created and
deployed an app on both an emulator and a real device. If you still have unanswered
questions (and you probably have more than at the start of this chapter), don't worry
because as we dig deeper into the world of Android and Java, things will become
clearer. As the chapters progress, you will build a very rounded understanding of
how everything fits together, and then success will just be a matter of practice and
digging deeper into the Android API.

In the next chapter, we will edit the UI using the visual designer and raw XML code,
write our first Java methods, and get to use some methods provided to us by the
Android API.

[43]

Java – First Contact
We now have a working Android development environment, and we have built
and deployed our first app. It is obvious, however, that autogenerated code by
Android Studio is not going to make the next top-selling app on Google Play. We
need to explore this autogenerated code in order to understand Android and then
begin to build on this useful template. With this aim in mind, in this chapter, we will
do the following:

• See how to get technical feedback from our apps
• Examine the Java code and UI XML code from our first app
• Get the first taste of using the Android UI designer
• Write our first Java code
• Learn a few core Java fundamentals and how they relate to Android

First, let's see how to find out whether things are going wrong.

Examining the log output
In the previous chapter, we mentioned that our app was running in a debug mode
so we could monitor it and get feedback when things go wrong. So, where is all this
feedback then?

Java – First Contact

[44]

You might have noticed a whole load of scrolling text at the bottom of the Android
Studio window. If not, click on the Android tab at the bottom-left corner of the
screen and then make sure that the logcat tab is selected as well, as indicated by
the areas highlighted in solid red in the next figure (the dashed red areas will be
discussed in a moment):

You can drag the window to make it taller, just like you can in most other Windows
applications.

This is called the logcat or sometimes, it is referred to as the console. It is our
app's way of telling us what is going on underneath what the user sees. If the app
crashes, the reason or clues about the reason will appear here. If we need to output
debugging information, we can do so here as well.

If you just cannot work out why your app is crashing,
copy and pasting a bit of text from logcat in to Google
will often reveal the reason.

You might have noticed that most, if not all, of the contents is fairly unintelligible.
That's OK. At the moment, we are only interested in the errors that will be
highlighted in red and the debugging information, which you will learn about next.
If we want to see less unneeded text in our logcat window, we can turn on a filter.

In the previous figure, I highlighted two areas with dashed red lines. One of them
is the drop-down list that controls this filter. Click on it now and change it from
Verbose to Info. We have cut down the text output significantly. We will see how
this is useful when we have made some changes to our app and redeployed it. We
will do this after we have explored the code and the assets that make up our project.
Also, double-check the second red-dashed highlighted area if it says Show only the
selected application. If it doesn't, click on it and change it to this now.

Now, we can take a look at what Android Studio automatically generated for us, and
then, we can set about changing it to personalize it beyond what we got from the
project creation phase.

Chapter 2

[45]

Exploring the project assets and code
We are going to take a look at the resource files that contain the code that defines our
simple UI layout, and the file that contains our Java code. At this stage, we will not
attempt to understand it all, as you need to learn more before it makes sense to do so.
What we will see, however, is the basic content and structure of both the files so that
we can reconcile it with what we already know about Android resources and Java.

Let's look at the Java code first. You can see this code for real by clicking on the
MyActivity.java tab, which is shown in the next figure:

As we are not looking at the details of the code, an annotated screenshot is probably
more useful than reproducing the actual code in the text form. Refer to the next
figure while reading on. I've labeled key parts of the code here to explain it further:

Java – First Contact

[46]

Let's get to understand this code a bit better. The first thing to point out is the part
labeled as 9. This points to all the little + and - buttons in the editor that can collapse
and expand parts of the code. I have indeed collapsed two parts of the code: parts
7 and 8. I have done so because they are not of interest to us at the moment and
provide none of the functionality we are discussing. So, what you can see here is
probably slightly different than what you will see when you look at the code in
Android Studio directly.

The part labeled as 1 is called the package declaration, and as you can see, it contains
the package name that we chose when we created the project. Every Java file will
have a package declaration at the top of the code.

The part labeled as 2 is four lines of code that all begin with the word import. After
the word import, we can see that there are various dot-separated words. The last
word of each line is the name of the class that the line imports into our project, and all
the previous words are the packages and subpackages that contain these classes. This
means that in our project, we will have access to AppCompatActivity, Bundle, Menu,
and MenuItem. We will not discuss all of these classes immediately, just the concept of
importing, which is important right now. Note that we can add extra classes from any
package at any time, and we will when we improve upon our app shortly.

The part labeled as 3 of our code is called the class declaration. Here is that line in
full. I have highlighted one part of it here:

public class MyActivity extends AppCompatActivity {

The class declaration is the start of a class. Take a note of the highlighted part. Here,
MyActivity is the name we've chosen when we created the project, and it is also
the same as the MyActivity.java filename, as we would expect it to be, having
discussed Java classes previously. The extends keyword means that our class called
MyActivity will be of the type AppCompatActivity. We can, and will, use some
classes without this extends part.

Chapter 2

[47]

We use extends here because we want to use all the code that went into the
AppCompatActivity class as well as add our own code to it as well. So we extend it.
All this and more will become clear in Chapter 9, Object-Oriented Programming.

Finally, for the part labeled as 2, look at the opening curly brace at the end of the
line: {. Now look at the bottom of the figure at the part labeled as 4 of our code. This
closing curly brace } denotes the end of the class. Everything in between the opening
and closing curly braces, {...}, is part of the class.

Now look at the part labeled as 5 of the code. Here is that line of code in full,
including the key part for our discussion at the moment, which is highlighted as
shown:

protected void onCreate(Bundle savedInstanceState) {

This is a method signature. The highlighted part, onCreate, is the method name. We
make a method execute its code by using its name. We say we are calling a method
when we do this. Although we will not concern ourselves at the moment with the
parts of the code on either side of the method name, you might have noticed Bundle,
one of the classes we import at the part labeled as 2 of our code. If we remove this
import line, Android Studio would not know what Bundle was, and it would be
unusable and indicated in a red underline as an error. Our code would not compile
and run. Note that the very last thing in the line of the preceding code is an opening
curly brace {. This denotes the start of the code that is contained within the onCreate
method. Now, jump to the part labeled as 6 of our code and you will see a closing
curly brace }. You can probably guess this is the end of the method.

The parts labeled as 7 and 8 are also methods that I have collapsed to make the figure
and this discussion more straightforward. Their names are onCreateOptionsMenu
and onOptionsItemSelected.

We know enough about our Java code to make some progress. We will see this code
for real and change it in the Improving our app and deploying again section.

Java – First Contact

[48]

Examining the layout file
Now we will look at just one of the many .xml files. The following is the my_layout.
xml file that contains the XML code that defines the UI design of our app. If you
want to view this code for real, just click on the my_layout.xml tab next to the
MyActivity.java tab that we clicked on to find the Java code:

If we first look at the part of the code labeled as 1, we can see that the very first thing
is <RelativeLayout.... A RelativeLayout tag is a UI element that is used to wrap
other parts of the UI.

When we add a new element to a UI in Android, we always start with < followed by
the element's name. The code that follows defines the properties that this element
will have. This can include dozens of different things depending upon the type
of UI element it is. Here, among a bit of other XML code, we can see properties
such as layout_height, paddingRight, paddingTop, and paddingBottom. All
these properties define how RelativeLayout will appear on the user's screen. The
properties for RelativeLayout end at the first > symbol.

If we look at the bottom of our XML figure, we will see the code labeled as 2.
This code, </RelativeLayout>, marks the end of RelativeLayout. Anything in
between the closing > symbol of the element's properties and </RelativeLayout>,
which defines its end, is considered a child of the element. So, we can see that
RelativeLayout has/contains a child. Let's look at that child now.

Chapter 2

[49]

Using what you just learned, we can devise that the UI element that starts at the
position labeled as 3 in the figure is called TextView. Just like its parent, the tag
starts with < and its name is <TextView.... If we look further at TextView, we can
see that it has a number of properties. It has a text property that is set to "Hello
world!". This, of course, is the exact text that our app shows to the user. It also
has the layout_width and layout_height properties that are both set to "wrap_
content". This tells TextView that it can take up as much space as the content it
contains needs. As we will see throughout the book, there are many more properties
available for this and other UI elements. The final property in TextView is id, and
we will see how we and Android use the id property in the next section when we
improve our first app.

Note that the code at the part labeled as 4 in our XML figure is />. This marks
the end of the TextView element. This is slightly different to how the end of
RelativeLayout was written. When an element in XML contains no children, we
can just end it like this />. When the element contains children and its end comes
further on in the code from where its properties are defined, it is much clearer to end
the element by repeating its name, as </RelativeLayout>.

We will see this code for real in the next section and learn more about the properties,
as well as see a totally new type of UI element: Button.

Improving our app and deploying again
We will take a more thorough and structured look at Android Studio, in particular
the visual designer in the next chapter. For now, I thought it would be good to make
a small addition to our UI, as well as write our first few lines of Java code.

You can get the completed code files for this project in the
Chapter 2 folder of the download bundle.

In Android, there are often multiple ways to get the same thing done. Here, we will
see how we can refer to a method in our Java code directly from the UI designer or
XML code. Then, once we have done this, we will jump to the Java code and write
our very own methods that our new UI refers to. Not only that, but we will write
code within our methods that both gives an output on the logcat/console and uses a
really cool Android feature that pops up a message to the user.

Java – First Contact

[50]

Modifying the UI
Here, we will add a couple of buttons to the screen and we will then see a really fast
way to make them actually do something. We will add a button in two different
ways. First, using the visual designer, and second, by adding and editing XML code
directly. Follow these right here in the UI designer steps:

1. Let's make our view of Android Studio as clear and straightforward as
possible. Click on the Android tab to hide the logcat. The window will
automatically reveal itself again next time it has a new output.

2. Make sure that the my_layout.xml file is selected by clicking on its tab above
the main editing window, as shown in the following figure:

3. When the file is selected, you have two choices in the way you want to view
it. Either Design or Text can be selected from the two tabs underneath the
main editing window. Make sure that Design is selected, as shown in the
following figure:

4. You will know that the previous steps have been successful when you see a
nice big representation of your app in a smartphone template in the editor
window, as shown in the next figure:

Chapter 2

[51]

5. Also, in the previous figure, note the tall thin area to the immediate
left-hand side of the smartphone in the editor window. It is called Palette
and is labeled accordingly.

6. In the Palette window, under the Widgets heading, find the Button widget,
as shown in the next figure. Depending on the size and resolution of your
monitor, you might need to scroll the Palette window a little:

Java – First Contact

[52]

7. Click on and hold the Button widget and then drag it onto the smartphone
somewhere near the top and the center of the layout. It doesn't matter if
the widget is not exact. In fact, it doesn't matter at all where it goes as long
as it is on the smartphone somewhere. It is good to practice to get it right,
however. So, if you are not happy with the position of your button, then you
can click on it to select it on the smartphone and then press the Delete key on
the keyboard to get rid of it. Now you can repeat this step until you have one
neatly placed button that you are happy with. Perhaps, like in this next figure:

8. At this point, we could run the app on the emulator or a real device and
the button would be there. If we clicked on it, there would even be a simple
animation to represent that the button is being pressed and released. Feel free
to try this now if you like. However, the next best-selling app on Google Play
will need to do more than this. We are going to edit the properties of our
widget using the Properties window. Make sure that the button is selected
by clicking on it. Now, find the Properties window on the right-hand side of
the editing window, as shown in the next figure:

Chapter 2

[53]

9. As you can see, there is a large array of different properties that we can edit
right here in the UI designer. In Chapter 10, Everything's a Class, we will also
edit and manipulate these properties in our Java code. For now, we will edit
just one property. Scroll the Properties window until you see the onClick
property and then click on it to select it for editing, as shown in the following
figure:

Java – First Contact

[54]

10. Type topClick in the available field and press Enter on the keyboard. Be
sure to use the same case, including the slightly counterintuitive lowercase t
and uppercase C. What we have done here is we've named the Java method
in the code that we want to call when this button is clicked by the user. The
name is arbitrary, but as this button is on the top part of the screen, the name
seems meaningful and easy to remember. The odd casing that we've used is a
convention that will help us keep our code clear and easy to read. We will see
the benefits of this as our code gets longer and more complicated. Of course,
at the moment we don't have a method called topClick. We will write this
method using Java code after we have looked at another way to add widgets
to our UI. You could run the app at this point and it would still work. But if
you click on the button, it will crash and the user will get an error because
the method does not exist. For more such information, refer to the Common
errors info box at the end of these steps.

11. Now we will add our final button for this project. Click on the Text tab below
the editor to see the XML code that makes our UI:

12. You will see a button as well as the XML code through which we can still see
our design in a slightly smaller window on the right-hand side of the code.
Click on the button on the UI design and you will note that the code that
represents the start and end of our button is highlighted, albeit, quite subtly:

Chapter 2

[55]

13. Very carefully and accurately, click the cursor before the opening < of our
button code. Now, click and drag the first < symbol from before, to just after
the last > symbol of the code that represents our button. This will highlight
the code that we are after, as in this next figure:

www.allitebooks.com

http://www.allitebooks.org

Java – First Contact

[56]

14. Now, use the keyboard shortcut Ctrl + c to copy the code. Leave just one
empty line of space below our button code and click on it to place the cursor.
Then, use the keyboard shortcut Ctrl + v to paste the copied code. This figure
is what you will see when you do so:

15. If you look at the editor, you will see that our code has one line in each
of our buttons underlined in red, indicating two apparent errors. This is
because Android Studio cannot tell the difference between our two buttons.
Or more specifically, both buttons claim to be the same button. A button is
distinguished from other buttons by its ID. We can set a button's id property
in XML code directly or via the Properties window. Let's fix our two errors
by making the two buttons have a different ID to each other. On the second
button, simply change the following line:
android:id="@+id/button"

Change the preceding line of code to this:
android:id="@+id/button2"

16. Now we have two distinct buttons with unique IDs. We will see in Chapter
9, Object-Oriented Programming how to use these IDs to manipulate buttons
in our UI by referring to these IDs in our Java code. Take a look at the visual
design. Here, we can still see only one button. Look at the following line of
XML code that is present in both our buttons:
android:layout_below="@+id/textView"

Chapter 2

[57]

17. This is the line of code that describes where the button should go in the layout
to Android. As with our IDs, until we changed them, this line of code is
identical in both the buttons. So, it is not surprising that the buttons are in the
exact same place, and this is the reason we can only see one of them. Again,
in the second button, change the line of code in question to the following:
android:layout_below="@+id/button"

18. Now, the second button is below the first. We will examine what has
happened a little more closely when we have edited just one more property.
Here is a close-up figure of our two buttons on our UI design:

19. Let's change one more thing about our second button before we consider our
UI for this project complete. Identify the following line of code at the end of
the code for the second button:
android:onClick="topClick" />

Note that it has the name of our soon-to-be-written method, topClick,
within double quotation marks "".

20. Be sure that you have identified the code in the second button and then
change the word top to bottom. Now, we must create two Java methods
(topClick and bottomClick) to avoid crashes when our user starts clicking
on buttons.

21. Run the app and see that everything looks good, unless you click on a button
and the app crashes.

We have achieved a lot through this simple exercise. It is true that much of the
XML code is most likely still generally incomprehensible. That's OK, because in the
next two chapters we will be really getting to grips with the visual designer and the
XML code.

Java – First Contact

[58]

We have seen how when we drag a button onto our design, the XML code is
generated for us. Also, if we change a property in the Properties window, the XML
code is edited for us. Furthermore, we can type (or in our case, copy and paste) the
XML code directly to create new buttons on our UI, or edit the existing ones.

Despite not having explained anything about the actual makeup of the XML code,
you have probably deduced a few things from it. If you have not taken a minute
to read through the XML, it might help to take a glance over it now. Perhaps, the
following are among your deductions:

• The line that starts with android:onClick=... allows us to define a Java
method that will handle what happens when that button is clicked.

• The line that starts with android:layout_below=... allows us to
specify the ID of another UI element below which we wish to display
this current element.

• The line that starts with android:text=... allows us to specify the text that
will appear on the button.

• We can probably also take a guess that the line android:layout_
centerHorizontal="true" will center the button (or other UI elements)
horizontally.

• And anyone who has done some basic web programming will be able to
guess that the line android:layout_marginTop="43dp" will give the
element a margin at the top of 43 of whatever dp is referring to.

• In addition to this, each line defines or sets a different property, starts
with android:, and then states the property that is to be defined. For
example, layout_marginTop=, and then the value to set this property to:
"43dp" or "true".

• We can also see that a button starts with the code <Button and ends with
the code />.

You don't need to remember all these points, as we will keep bumping into them,
as well as other similar conventions, throughout the book, especially in the next
two chapters.

Chapter 2

[59]

Common errors
Remember when we clicked on the button, as we had not written the
method that it calls, the app crashed? If you call a method that does
not exist from the user interface, you will get a long but helpful error
message in logcat, which among a lot of other things, will contain
the Caused by: java.lang.NoSuchMethodException:
topClick message. We will slowly get to grips with common errors
that we might see in tips like this throughout the book.
If you call a method that does not exist from the user interface, the
user will get this message.

In Chapter 4, Designing Layouts, we will examine much more closely how to control
the position and appearance of lots of different widgets and other UI elements from
the palette. You will also learn exactly what dp and other useful Android units of
measurement are.

Now, let's write our first Java code and wire up our buttons by writing the methods
for them.

Meet Java
Take a look at the MyActivity.java tab. Here, we can see the code that we
briefly discussed.

Before we write our own methods to correspond with the methods that our buttons
are already wired up to call, let's take a look at Java comments. Java comments are
really handy when we are learning to code, as well as for experienced developers too.

Java – First Contact

[60]

Java comments
In programming, it is always a good idea to write messages known as code
comments and sprinkle them liberally among your code. This is to remind us what
on earth we were thinking at the time we wrote the code. To do this, you simply
need to append a double forward slash and then type your comment like this:

// This is a comment and it could be useful

In addition to this, we can use comments to comment out a line of code. Suppose we
have a line of code that we temporarily want to disable, then we can do so by adding
two forward slashes, like this:

// The code below used to send a message
// Log.i("info","our message here");
// But now it doesn't do anything
// And I am getting ahead of where I should be

Using comments to comment out code should only be a
temporary measure. Once you have ascertained the correct
code to be used, the commented out code should be deleted
in order to keep the code file clean and organized.

Let's look at the two different ways to send messages in Android, and then we can
write a few methods that will send messages when our new UI buttons are pressed.

Sending messages
In the introduction section of the previous chapter, we talked a bit about using other
people's code. We saw that we could do some quite complex things with a relatively
small amount of code (like talk to satellites). To get our coding started, we are going
to use two different classes from the Android API that simply allow us to output
messages. The first class, Log, allows us to output messages to the logcat window.
The second class, Toast, is not a tasty breakfast treat, but it will produce a toast-
shaped pop-up message for the user to see.

Here is the code that we need to write to send a message to the logcat:

Log.i("info","our message here");

Exactly why this works will become clearer in Chapter 9, Object-Oriented
Programming, but for now, we just need to know that whatever we put between the
two sets of quote marks will be the output of the logcat window. We will see where
to put this type of code shortly.

Chapter 2

[61]

Here is the code we need to write in order to send a message to the user's screen:

Toast.makeText(this, "our message", Toast.LENGTH_SHORT).show();

This is a very convoluted-looking line of code, and exactly how it works, again, will
not become clear until Chapter 9, Object-Oriented Programming. The important thing
here is that whatever we put between the quote marks will appear in a pop-up
message to our users.

Let's put some code just like this into a real app.

Writing our first Java code
So we now know the code that will provide an output to logcat or the user's screen.
But, where do we put it? For now, we just need to understand that the onCreate
method is executed as the app prepares to be shown to the user. So if we put our
code at the end of this method, it will run just as the user sees the app. Sounds good.

We know that to execute the code in a method, we need to call
it. We have wired our buttons up to call a couple of methods:
topClick and bottomClick. Soon, we will write these
methods. But who or what is calling onCreate!? The answer to
this mystery is that Android itself calls onCreate in response
to the user clicking on the app icon to run the app. In Chapter 6,
The Life and Times of an Android App, we will explore the Android
lifecycle and it will be really clear exactly which code is executed
and when. You don't need to completely comprehend this now. I
just wanted to give you an overview of what was going on.

Let's quickly try this out. We know that the onCreate method is called just before the
app starts for real. Let's copy and paste the following lines of code into the onCreate
method of our Hello Android app and see what happens when we run it:

1. Identify the closing curly brace } of the onCreate method and add the
highlighted code, as shown in the next snippet:
@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.my_layout);

 // Let's take a look at Toast and Log in action
 Toast.makeText(this, "Can you see me",
 Toast.LENGTH_SHORT).show();

 Log.i("info", "Done creating the app");
 }

Java – First Contact

[62]

2. Note that the two instances of the word Toast and the word Log are
highlighted in red in Android Studio. They are errors. We know that Toast
and Log are classes and that classes are containers for code. Android Studio
doesn't know about them until we tell it about them. We must add import
to each class. Fortunately, this is semi-automatic. Click anywhere in the
onCreate method.

3. Hold the Alt key and then press Enter. You need to perform this step twice.
Once for Toast and once for Log. Android Studio adds the import directives at
the top of the code with our other imports, and with this, the errors are gone.

4. Scroll to the top of MyActivity.java and take a look at the added import
directives. Here they are, in case you are following along on a tablet or a
paperback and don't have your development machine close by:
import android.util.Log;
import android.widget.Toast;

5. Now, run the app in the usual way.

The next figure is a screenshot of the output in the logcat window:

Look at the logcat you can see that our message Done creating the app was the
output. Although it is mixed up among other system messages that we are currently
not interested in. If you watch the emulator when the app first starts you will also see
the neat pop-up message that the user will see.

It is possible that you might be wondering why the messages were output at the
time they were. The simple answer is that the onCreate method is called just before
the app starts to actually respond to the user. We will often put code in this method
to get our apps set up and ready for user input. This is part of the lifecycle of an
Android app, and you will learn more about it in Chapter 6, The Life and Times of an
Android App.

Alt + E is just one of the numerous useful keyboard shortcuts.
The following is a keyboard shortcut reference for Android
Studio. More specifically, it is for the IntelliJ Idea IDE, on
which Android Studio is based. Take a look at it and bookmark
this web page as it will be invaluable over the course of
this book: http://www.jetbrains.com/idea/docs/
IntelliJIDEA_ReferenceCard.pdf

http://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf
http://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf

Chapter 2

[63]

Now, we will go a step further and write our own methods that are called by our UI
buttons. We will place similar Log and Toast messages in them.

Writing our own Java methods
Let's get straight on with writing our first Java methods with a few more Log and
Toast messages inside them. Open up our Hello Android project in Android Studio
if it is not open already:

1. Identify the closing curly brace } of the MyActivity class, as discussed
previously. Inside that curly brace, enter the following code that is
highlighted after the onCreate method that we just dealt with:
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.my_layout);

 // Let's take a look at Toast and Log in action
 Toast.makeText(this, "Can you see me", Toast.LENGTH_SHORT).
 show();
 Log.i("info", "Done creating the app");
}

public void topClick(View v){
 Toast.makeText(this, "Top button clicked",
 Toast.LENGTH_SHORT).show();
 Log.i("info","The user clicked the top button");
}

public void bottomClick(View v){
 Toast.makeText(this, "Bottom button clicked",
 Toast.LENGTH_SHORT).show();
 Log.i("info","The user clicked the bottom button");
}

2. First, note that we appear to have two lines that contain part of our Toast
code each. This is not strictly true. The problem is that the line of code is
quite long and it wraps onto a second line in this book. If you check the code
from the download bundle, you will see that it is on one line. The actual
ending of a line of code in a method can be determined by the position of the
semicolon ;. When you enter the code from step 1, be sure to enter all the
Toast code on one line.

Java – First Contact

[64]

3. Note that the two instances of the word "View" are in red, indicating an error.
Simply use the Alt + Enter keyboard combination to import the View class
and remove the errors.

4. Deploy the app on a real device or emulator and start tapping away so we
can observe the output.

At last, our app does something we told it to do and when we told it to. We can see
that the method names we defined in the button properties are indeed called when
the buttons are clicked. Admittedly, we still don't understand why Toast
and Log really work, and neither do we fully comprehend the public void and
(View v) parts of our method's syntax. This will become clear as we progress.

Presenting the code as clearly as possible
Future code will usually not be presented as numbered steps. On this
occasion, I have presented the code as part of some numbered steps in a
tutorial. Presenting code in a book, especially when it is being read on a
mobile device, can be problematic. As soon as a line of code is too long
for the width of the medium it is being presented on, the line wraps to
the next, causing a lack of clarity. We saw this with our Toast code in
the last tutorial. As we will see, to some extent this is unavoidable, but
to mitigate this as much as possible, blocks of code will typically not be
shown as numbered steps any more. Instead, great effort will be made
on my part to make sure that the context of the code and the order it
should be entered in is made abundantly clear in other ways.

Examining the log output
If you check the logcat output, you can see that a log entry was made from the
onCreate method, just as before, as well as from the two methods that we wrote
each time you clicked on a button.

And in the next figure, you can see that the top button has been clicked and the
topClick method was called, triggering the Toast pop-up message, which is
highlighted in the following figure:

Chapter 2

[65]

Throughout this book, we will regularly provide an output to the logcat so we can
see what is going on behind the UI of our apps. Toast messages are more appropriate
for notifying the user that something has occurred, perhaps a download that has
completed or a new e-mail has arrived.

FAQ
1. Can you remind me what methods are?

Methods are containers for our code that can be executed (called) from other
parts of our code. Methods are contained within a class.

2. Like the last, I found this chapter really hard. Do I need to reread it?
No, as long as you've built the app, you have made enough progress to
handle the next chapter. All the blanks in our knowledge will be steadily filled
in and replaced with glorious moments of realization as the book progresses.

Java – First Contact

[66]

Summary
In this chapter, we achieved quite a bit. We saw and edited our layout XML file
using both the UI designer, as well as through tinkering with the raw code. We took
a glimpse at our first Java code and even added our own methods in order to output
debugging messages to the console, and pop-up Toast messages to the user.

In the next chapter, we will take a complete guided tour of Android Studio to see
exactly where different things get done at the same time, to understand how our
projects assets, such as files and folders, are structured, and to learn how to manage
them. This will prepare us to take a more in-depth look at the UI design in Chapter 4,
Designing Layouts and Chapter 5, Real-World Layouts, and build some significant real-
world layouts for our apps.

[67]

Exploring Android Studio
In this chapter, we will take a guided tour of the most important areas of Android
Studio. This is so that we can quickly and easily discuss where the different actions
that we will perform take place. This is the only chapter in this book where we won't
actually build an app or do some coding, but it is nice and short and will set us up
for all the apps that we will build.

Here are the key things that we will do:

• We will take a fairly detailed tour of the windows, tabs, and features of
Android Studio

• We will get to know the different files and folders involved in an
Android project

Let's get started with the Android Studio tour.

The Android Studio guided tour
Android Studio remembers what you were doing just before you shut it down. So it
is possible that when you start it up next, it will initially look a little different from
how I show and describe it here. Start reading this guided tour, and it shouldn't take
more than a couple of clicks to follow along and inspect all the different areas.

I rarely suggest that it is worth memorizing information, as repeated use and practice
of concepts is a much better method to make important ideas take hold. However,
on this occasion, it is worth remembering the names of the key Android Studio
windows; this is so that you can easily follow along with where the action is when
we are doing future tutorials. Of course, we have seen a few of these already (such as
the editor and the Properties window), and if you can't remember them all, you can
easily refer to this section later.

Exploring Android Studio

[68]

Tip of the day
Each time you start Android Studio, you will be presented with
a "Tip of the day" message box. It is well worth reading these, as
although some of the tips might not make sense at the moment,
many of them contain really, valuable information that can either
save time or enlighten us in some way.

Parts of the UI
In this next figure, you can see Android Studio open with the Hello Android app
from the previous chapter. Although we are done with this project, it can serve us
one more time here.

Let's take a quick look at the different areas that are labeled in the preceding
screenshot, and then we can focus on the design views that Android Studio offers us:

• A: This is the menu bar. As with most applications, we can get to almost any
option from here.

• B: This is the tool bar, from which you can access one of the many quick-
launch icons. From here, some of the most commonly used options can be
accessed with a single click.

Chapter 3

[69]

• C: This is the navigation bar. It shows us the location of the file that is
currently open in the editor window within our project and allows us to
quickly navigate to a file or folder.

• D: These are the editor tabs. We can click on a tab to see its contents in the
editor window. Note that there are more files in our project than are shown
in the editor tabs. We can add a file to the editor tabs by double-clicking on
them in the project explorer. Refer to H to see the files and folders.

• E: This is the editor and this is where we will spend the majority of our time.
Note that although the previous screenshot shows a plain old code file in the
editor, when we select a layout file to open, the editor window transforms
itself into a mini design studio. And, it also performs some other context-
sensitive transformations for other file types, as we will see throughout the
rest of the book.

The console
The F window in the preceding screenshot is labeled Android. This is where we have
been viewing the logcat output. Note, however, that on the top of this window, there
are the following tabs:

• logcat: This is the place where errors, the Log output, and other useful
information will appear.

• ADB logs: This is like a virtual console where we can get things done from
the command line. There will be no need to do so in this book.

• Memory: Click on this tab when your app is running to see a pretty graph of
your app's memory usage. We can use this tab to look for unexpected spikes
in memory usage and try and make our apps more memory efficient.

• CPU: Click on this tab when your app is running to see a pretty graph of
your app's CPU usage. We can use this tab to look for unexpected spikes in
CPU usage and try and make our apps more efficient.

Including the four tabs we just discussed here, there are another four tabs below the
window. If you click on one of the following tabs, the Android window changes the
window name or divides the current window in two. Here is what you can do with
the four tabs that are below the Android window:

• TODO: This shows the TODO comments spread throughout the project's
code. This is really useful; try this out: type // TODO note to self
anywhere in your code. Perhaps like this:
// TODO: The flashing pig bug might be caused by the code below!

Exploring Android Studio

[70]

And no matter how many code files you have, you will see your note and
be able to jump to the precise line in the code directly from your TODO
window. Think of it as a code comment on steroids. Why not try it now?

• Android: This takes us back to the Android window and the four tabs we
discussed previously.

• Terminal: You can use this to navigate your OS and do anything you can do
from a console (DOS) window.

• Messages: As the name suggests, you will get system and error messages in
this window.

More console features
At the part labeled G, in the corner of the preceding screenshot, we have two more
tabs: Event log and Gradle console. Immediately below the two tabs is the status
bar. When Android Studio is busy doing something for us, it will let us know here.
So if things seem a bit unresponsive or you are not sure whether you actually clicked
on the play icon, then check here first before clicking on it again.

Now let's look at the two tabs in detail:

• Event Log: Every time Android Studio completes a significant event, it is
logged here. So if you can't remember the steps you have taken so far or
whether a particular process has been completed successfully, you can
check here.

• Gradle console: Gradle is a build system. Without us even realizing, Android
Studio has been using Gradle to automate the process of turning the files in
our project into an app that can be run on a device. This console allows you
to give the Gradle tool a few commands and see it's response. We won't need
to do this, however.

If you want to learn more about Gradle and go beyond the
knowledge you need to complete this book, you can do so
with this exploratory tutorial: http://www.vogella.
com/tutorials/AndroidBuild/article.html

http://www.vogella.com/tutorials/AndroidBuild/article.html
http://www.vogella.com/tutorials/AndroidBuild/article.html

Chapter 3

[71]

The project explorer
The part labeled as H is the project explorer. This is essentially a file browser. We
will explore the file and folder structure of our project in the next section, but just
know that you can navigate to a file in this window and double-click on it to open it
and add a tab for it to the editor window.

Note that there are a number of tabs down the left-hand side of Android Studio that
cause the project explorer window to be replaced. Here is a quick run down of what
the main ones do, starting from the top:

• Project: Click on this tab to switch back to the project explorer we
just discussed.

• Structure: Here, we can see the hierarchy of our project broken down into
classes, methods, and other components. Then, we can simply click on
a part of the hierarchy to be taken to the selected part of the code in the
editor window.

• Build variants: Android Studio enables us to test multiple different
versions—builds—of our app. This isn't something that we need to discuss
in this book.

• Favorites: Through this, you can see all the places that you have visited the
most, bookmark files, or the points in your code that you have been debugging.

Transforming the editor into a design studio
I declined to label all the possible tab options around the edge of the UI because
there are so many of them and as we saw, sometimes exactly which tabs you can
see depends upon the context and the view that is currently occupying the given
window. We gave most of the tabs a mention in this quick tour when we talked
about the window that is nearest to them.

One set of tabs that does require further coverage are the tabs that contain the open
files (D). The reason for this is that the editor window (E) completely transforms
itself depending upon what file type is open in it. We have already seen the editor
window transform itself when we switch between our Java code and our layout file.

Exploring Android Studio

[72]

As a reminder, click on the my_layout.xml tab (D). Next, make sure that we have
the main design view by clicking on the Design tab at the bottom-left corner of the
editor window. Here is another labeled screenshot to make sure that we are referring
to the right parts of the editor window when in the design view:

We will spend most of our time, in the next few chapters, in the design view of the
editor window. If the previous screenshot looks slightly different than your layout,
then you can take the following steps to make your layout more design friendly:

1. Make the editor window larger by making sure that the Android window
is closed. Click on the Android tab if the window is open, and this will make
it disappear.

2. Make the project explorer window smaller by dragging the area between it
and the editor to the left.

3. Make the Palette area (E2) larger by dragging its right-hand side edge to
the right.

4. Tweak all the window sizes to suit your preferences.

You will note that all the windows we discussed right from A to H are still
present/available, and it is just the editor window that has been radically
transformed. Let's have a look at what the editor window has to offer by following
the labels on the previous screenshot.

Chapter 3

[73]

E1 – the Preview toolbar
This small, but useful, area of Android Studio is certainly worth talking about. I won't
cover every button, but here are some of the highlights. If you want to see what your
layout will look like on a particular phone or tablet, click on the virtual device drop-
down list and select the device of your choice, as shown in the following screenshot:

You can also click on the button pictured as follows to rotate the preview to
landscape. Click on the button shown here to try this out:

As you might expect, this will make our layouts look significantly different. We will
start to see how we can handle this later in the chapter and throughout the book.

We can zoom in and out of our layout design with the buttons shown here:

And the button shown next is the refresh button, which is just like the refresh button
in a web browser. It forces the preview of our layout to be updated in case it doesn't
happen automatically.

We haven't covered every button or control, but we have seen enough to move on.

Exploring Android Studio

[74]

E2 – exploring the palette
Next, we have the Palette window. The palette contains dozens of different design
elements that we can drag onto our layouts. These are divided into categories and
are all covered in the following sections. The key categories for this chapter are
widgets and layouts, so we will cover them more thoroughly than the rest. Take a
look at this close-up shot of the palette:

Chapter 3

[75]

Let's go through some of the key sections of the palette and later, we will begin to
actually use them:

• Layouts: Layouts are, as their name suggests, used to lay out all the other
elements within them. What is key, however, and will become apparent as we
progress, is how different layouts are more suited to different situations. In
addition, we can use the same widgets on different types of layouts, and the
XML code that will be generated for us will vary quite a lot. This will not be
a problem for us because we will look at lots of examples, and as we will see
later, we do not need to remember the different syntax for each layout type;
we just need to be aware of the different situations suited to each layout type.
Also, we will regularly use multiple layouts as part of the same design. That is,
there will be layouts within layouts. Just think about putting storage containers
of different shapes and sizes within bigger containers. It's the same concept.
You will learn through practice about which containers are best for which
contents in different situations.

• Widgets: Are the most commonly used elements on the palette. Typically,
there will be multiple widgets contained within a layout. Widgets are the
part of our layout that the user will most often see and interact with. We have
already seen the Button and PlainTextView widgets.

• Text Fields: These are like PlainTextView from the Widgets category, but are
very specific to the type of text that they are most suited to and are most often
used when the user actually interacts with or changes the values that they
hold. Take a look at the names of the elements in the Text Fields category and
you will see that they all have names that allude to their likely use.

• Containers: Containers are like layouts with a specific purpose. For example,
the Radio Group container will hold multiple Radio Button elements from
the widget category. The ScrollView container will hold a whole bunch of
other elements and enable the user to scroll through them. VideoView is a
fast and easy way to allow the user to have a fully functional video player
with little to no coding. We will see some of these containers in action later
in the book.

• Date & Time: Ever wondered why the pop-up date or calendar selector
looks so similar on so many apps? That's because they are using the Date
and Time elements.

• Expert: These elements are fairly diverse from each other. We will see
some of the elements from the expert category throughout the book. For
example, in Chapter 28, Threads, Touches, Drawing, and a Simple Game, we will
see SurfaceView in action when we take a whirlwind tour of how to make
animated 2D games for Android.

Exploring Android Studio

[76]

• Custom: We can think of these as the building blocks of specialized layout
elements. Fragment is probably the most powerful and versatile of all the
layout elements, and we will spend the majority of latter part of this book
taking advantage of it.

After that fast overview of the palette, let's move on to E3.

E3 – the layout preview
This is the layout preview where we will preview our masterpieces. Take a closer
look at E1 to see how we can switch between landscape and portrait, refresh or zoom
the preview, and change the virtual device. And here is a close-up view of E3, which
shows the layout preview just after a new project is started:

As we will see when we take a look at the area labeled E6, we can view our
layouts/designs visually or as code.

Chapter 3

[77]

E4 – the Component Tree
This is the Component Tree. It can be a UI designer's life saver. As our layouts get
more complicated with layout elements nested inside other layout elements and
widgets all over the place, the XML code as a whole can become awkward to navigate.
The Component Tree allows us to see the structure as well as the individual elements
of our design. We can expand and collapse parts of it; jump to specific sections of the
XML code; as well as drag, drop, and rearrange parts of our design with it.

E5 – the Properties window
This is the Properties window. We have already been here when we were editing
the properties of our widgets back in Chapter 2, Java – First Contact. We have seen
that we can edit properties in both the XML code and the Properties window.
There is no right or wrong way to do this and, most likely, you will end up using
both. Where the Properties window can be really helpful, when we are just starting
to program for Android, is in two areas. One obvious one less so. The obvious
advantage is that we don't have to mess around with all that nasty-looking XML
code. The other advantage is that, even when we get comfortable with the XML code,
it is going to be a long time before we remember the names of all the properties.
The Properties window allows us to browse through all the available properties for
the selected element. When we add a property, it will, of course, add the full line of
XML, negating the need for us to remember what the property was called and the
convoluted syntax needed to add it.

E6 – text and design view tabs
Here, we can see the tabs that are used to switch between the Text (XML) view and
the Design view. These tabs are only visible when we are viewing a file that has
these views available. For example, when we are viewing our Java code, these tabs
will not be present.

Let's talk some more about the project folder and file structure now.

The project folder and file structure
Let's take a closer look at the files and folders that are part of our project. Open up
the Hello Android app from earlier to follow along. Android is a fussy thing, and it
likes all of the different resources (layout files, code, images, sounds, and so on) to go
in the correct folders or it will complain and not compile or run correctly.

Exploring Android Studio

[78]

Android Studio, with the help of Gradle, keeps track of the resources in our project
and can advise us when we are trying to use something that doesn't exist or if we've
misspelled the name of an image or a sound file, for example. Almost instantly after
adding a resource to the project, Android Studio will 'know' about it and make it
available to us.

If you expand all of the folders in the project explorer, even from our simple project
from Chapter 1, The First App, you will see a vast array of files and folders.

If the vastness and depth of some of the files and folders is a bit intimidating, then
you will be pleased to learn that we will never need to look at or edit most of them.
Most of them are managed by Android Studio. We will focus on the key folders and
file types that we will be using as Android developers.

Expand the following folders (if they aren't already) by clicking on the little triangle
to the left-hand side of each of them, once each on: app, src, main, java, res, main,
and layout folder. You will see something close to this next figure. This figure is a
close-up view of the folders we are most interested in. As usual, I have labeled the
most useful parts, so we can refer to them and describe them.

Chapter 3

[79]

We can find almost every file and folder we will need in the app/src/main folder as
indicated by (1).

Note that in the java folder (2), inside a subfolder with the same name as the
package for this project (com.gamecodeschool.helloandroid), we can see our
MyActivity.java (3) code file. Android Studio hides the file extension for .java
files, but being inside the java folder should make it plain what we are dealing with.
If we create two or more different packages in a project, then the subfolders with
the names of the packages will appear in the java folder and, of course, will contain
their .java files as we might expect.

The other major thing we will be constantly adding to and editing in our Android
projects is resources. These are all contained within the res folder (4). As we saw in
Chapter 1, The First App, the variety of resources our projects can use is wide. Let's see
where some of them go.

The drawable folder (5) is where all the graphical assets go. If we design a fancy
button, background, or icon, then this is the place for it. In addition to this, we will
create subfolders within the res folder that contain scaled versions of our graphical
resources. These subfolders are used by devices with varying screen densities and
sizes and have names such as drawable-hdpi, drawable-mdpi, drawable-xhdpi,
and drawable-xxhdpi.

These folders will contain equivalent graphical resources for devices with high (h),
medium (m), extra high (xh), and extra extra high (xxh) dpi screens. This is optional
because Android will scale any graphics where a version specific to the current
screen type is not provided; however, this often results in a stretched or low-quality
appearance.

Inside the layout folder, we can find our my_layout.xml (6) file, which, of course,
contains the layout from our project. We can have more than one layout in a project
and when we create them, they will appear in this folder. As an example, we might
have a project with home_layout.xml, settings_layout.xml, and main_layout.
xml. In addition to this, just like with the drawable folders, we can have subfolders
within res for the layouts of devices with different dpi screens. The names are fairly
predictable, but for the sake of clarity, they would be layout-hdpi, layout-mdpi,
and so on.

We can also add folders that handle different orientations such as layout-landscape
and layout-portait.

Exploring Android Studio

[80]

Furthermore, we can add folders that handle the screen size as opposed to density,
such as layout-large, layout-xlarge, and more.

Folders galore
All this talk of folders might be making your brain ache. The first
thing to note is that, as we already mentioned with the drawable
folder, the extra folders are always optional. You can easily build
an app with only one set of graphics and layout files. In fact, the
techniques we learn in the latter part of this book reduce the need
for dozens of different folders in the res folder. However, being
aware of devices of different sizes/dpi's, testing on the related
emulators, and catering for them when necessary will make your
app truly versatile with a consistent appearance. Now for the
bad news; there are even more screen qualifiers than these main
qualifiers that we mentioned here. If you want to take a look,
you can do so at http://developer.android.com/guide/
practices/screens_support.html. We will make some use
of these different folders throughout the book and deal with them
in a step-by-step manner when we do.

Moving on to number 7 on our folder structure diagram, we have the values folder.
This contains the strings.xml file. Note that the name of our app is not mentioned
anywhere in our Java code. The reason for this is that although you can hardcode
text into your Java code or a layout file, it is much better to use string resources in
the strings.xml file. Here is why. String resources are the indexed text (words
and phrases) that the user sees in our app (such as Hello world!) contained in the
strings.xml file.

Let's say you have a settings screen and on at that settings screen layout, you
hardcode the words Settings, Volume, and Theme. No problem so far. Now consider
that your app might have multiple different screens and each of them has a button
that the user can click on to go to the Settings screen. That's OK, just hardcode the
text in the buttons as well. Now imagine that the lead designer decides that the
Settings screen should be called Options and not Settings, and the app is also going
to be released in the German market, which will require all the strings changed to
German, of course. Now consider that your app has more than just a settings screen;
perhaps, it has pop-up tips on how to use your app. Even something as apparently
straightforward as the app's title might not only be different when translated to
other languages but might even be different, perhaps for cultural reasons in some
countries.

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html

Chapter 3

[81]

By using string resources, we can manage this problem simply. Take a look at
the strings.xml file in the values folder by double-clicking on it. Here are the
contents for your convenience. Note that I have highlighted one line of code in the
following snippet:

<resources>
 <string name="app_name">Hello Android</string>
 <string name="hello_world">Hello world!</string>
 <string name="action_settings">Settings</string>
</resources>

Now look at this next figure that shows a line of code on TextView in the my_
layout.xml file from the Hello Android project:

In the previous figure, I was hovering the mouse cursor over the phrase "Hello
world!". Note that the code reads text="Hello world!", but the pop up shows that
actually the phrase is not contained directly in the TextView tag itself, but is being
referenced in the strings.xml file via the @string/hello_world identifier.

So, string resources allow us to define the text that appears in our app and then refer
to its index in the strings.xml file. This makes problems such as words and phrases
that appear multiple times or translating to new languages more manageable.

Doing things this way does seem longwinded for one simple phrase, but when we
consider the previous scenario of the settings screen, then the advantages are plain.
Throughout this book, we will hardcode and use string resources depending on
which seems most appropriate for the situation. Generally, when implementing a
complete project, we will do things properly, and when we are making a simple app
just to learn a concept, we will cheat and hardcode our Strings.

All is not as it seems
If you use your operating system's file browser and browse to the
project folder, then you will see that things are quite different than
how they appear in the project explorer. There are many more
subfolders than the project explorer reveals. The project explorer
not only gives you access to all the files and folders you need, it
also simplifies their location and un-buries them a little. The real
file and folder structure is required by Android, so we mustn't try
and change it. So performing all the editing, moving, and adding
directly through Android Studio is a good idea.

Exploring Android Studio

[82]

It is not necessary to memorize everything we have said about files and folders.
Each time we need to do something with a folder or file, I will be really specific
about what to do. It is just helpful to have an overview of the structure that Android
needs to work properly. Just think of Android as a fussy (but loving) flatmate who
absolutely must have a place for everything and everything in its place.

FAQ
1. How can I possibly keep track of where all the different files and folders go?

It is true that Android is a filesystem control freak and we need to make sure
that every file is named and placed carefully. However, you don't need to
remember the details because we will discuss exactly where to put things as
we proceed.

2. String resources seem like they are going to be a bit of a burden, are they?
The right way to add text to our app is using String resources. Throughout
the book, when we are just looking at examples, we will not usually bother
with String resources, but when we implement the main projects throughout
this book, we will use String resources as they were intended. So we will
avoid the overhead most of the time and use them when they are of genuine
time-saving/practical benefit.

Summary
Now that we know the names and locations of all the key parts of Android Studio,
we can make fast progress.

In the next chapter, we are going to start looking in more depth at the UI designer
and see how we can control the positioning and appearance of our design at
the same time by becoming more familiar with the XML layout code and the UI
designer. Let's get on with some UI design.

[83]

Designing Layouts
In this chapter we will learn some UI basics, such as how we control the size and
position of the widgets in our layouts. We will further come to understand the
slightly scary XML code and see new ways we can avoid having to edit the code
directly by using the UI designer, by covering the following:

• Looking at the code structure underlying a UI design/layout
• Learning how to position widgets precisely
• Building three really simple UI designs from scratch

Exploring Android UI design
We will see with Android UI design that so much of what we learn is context sensitive.
The way that a given widget's x property will influence its appearance might depend
on a widget's y property. It probably isn't possible to learn this verbatim. It is most
likely best to expect to gradually get better and faster results with practice.

For example, if you play with the designer by dragging and dropping widgets onto
the design, the XML code that is generated will vary quite extensively depending
upon which layout type you are using. This is because different layout types use
different means to determine the position of their children. We will see this, perhaps
most distinctly, when we look at RelativeLayout later in the chapter.

This information might initially seem like a problem, or a bad idea, and it certainly is
a little awkward at first. What we will grow to learn, however, is that this apparent
abundance of layout options and their individual quirks are actually a good thing
because they give us almost unlimited design potential. There are very few layouts
you can imagine that are not possible to achieve.

Designing Layouts

[84]

This unlimited potential comes with a bit of complexity however. So, rather than a
few step-by-step examples that lack explanation, I thought a three-pronged approach
would be worthwhile. A bit of theory, a bit of experimenting, and finally some
practical examples. This chapter deals with theory and experimenting, and in the
next chapter, we'll deal with the practical examples.

Structure of a UI design
When we create a new project, Android Studio creates a new layout for us. As we
have seen, this autogenerated layout is very simple and contains a single TextView
widget. The TextView widget is unsurprisingly the standard way of displaying text.
On the palette it is labeled as Plain TextView but in XML code it just says TextView.
I will refer to it in the way that seems most appropriate for the current context.

It will become apparent as we progress, but it is worth making
clear at this point that all our layouts will be designed in XML,
not Java. In later chapters, you will learn more Java and then we
will see how we write Java code to manipulate these layouts.

What we haven't looked at quite as closely is that the generated activity_main.xml
file also contains a layout. Layouts come in a few different types and the one that is
provided with our auto-generated layout is called RelativeLayout. Here is the XML
that makes this layout:

<RelativeLayout xmlns:
 android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".LayoutExperiments">
</RelativeLayout>

Chapter 4

[85]

Anything in between the closing > that defines the properties of the layout itself and
the </RelativeLayout> is a child (like our solitary TextView) of the layout. That
child will be influenced by the properties of its parent, and also must use properties
appropriate to its parent. For example, when we placed a button as a child of the
RelativeLayout in Chapter 2, Java – First Contact, it used the following syntax to
position itself immediately below the TextView that has an ID of textView:

android:layout_below="@+id/textView"

Depending upon the type of layout a child is contained within, it will need to use
appropriate syntax to influence its appearance/position. The only way to learn all
the different intricacies of the different layout types, and how they affect their child
widgets, is to start using them.

As we add, edit, and delete widgets and views in this section, it is
not important to make your project the same as mine. The purpose
of this section is not to achieve a meaningful end result, only to
explore as many of the widgets, layouts, and their properties
as we can in as few pages as possible. Do try everything. Don't
worry about making it the same as the pictures or following the
instructions to the letter. If I add a small margin or other property
to a widget, feel free to add an enormous one if you want to give it
a go. If you want to see exactly what I created then the project files
are in the Chapter 4 folder in the download bundle.

First we will explore the straightforward widgets and their properties, then the
layouts, and finally we will use them meaningfully together in a series of mini
layout projects.

Configuring and using widgets
Widgets are all the UI elements on the palette under the heading Widgets. First
let's have a look at some of the properties of a widget. Note that some widgets have
properties unique to themselves, but there are a lot of properties that all the widgets
share, and they are useful to take a look at. Let's learn about some of the ways we can
configure and use widgets before we use them for real.

Widget properties
As we have already seen, widgets have properties that we can either set in XML or
through the Properties window.

Designing Layouts

[86]

Setting the size
A widget's size can depend on a number of properties and the context in which they
are used. Probably the most straightforward is by using actual units of size. We
briefly saw this in the last chapter but we didn't look into it in any depth.

Sizing using dp
As we know, there are thousands of different Android devices. In order to try and
have a system of measurement that works across different devices, Android uses
density independent pixels or dp as a unit of measurement. The way this works is
by first calculating the density of the pixels on the device an app is running on.

We can calculate density by dividing the horizontal resolution
by the horizontal size, in inches, of the screen. This is all done
on-the-fly, on the device on which our app is running.

All we have to do is use dp in conjunction with a number when setting the size of the
various properties of our widgets. Using density independent measurements we can
design layouts that scale to create a uniform appearance on as many different screens
as possible.

So, problem solved then? We just use dp everywhere and our layouts will work
everywhere? Unfortunately, density independence is only part of the solution. We
will see more of how we can make our apps look great on a range of different screens
in this chapter and throughout the rest of the book.

As an example we can affect the height and width of a widget directly, by adding the
following code to its properties:

...
android:height="50dp"
android:width="150dp"
...

Alternatively we can use the properties window and add them through the comfort
of the appropriate edit boxes as shown next. Which option you use will depend on
your personal preference but sometimes one way will feel more appropriate than
another in a given situation. Either way is correct and as we go through the book
making mini-apps, I will usually point out if one way is better than another.

Chapter 4

[87]

Or we can use the same dp units to set other properties such as margin and padding.
We will look at margin and padding in a minute.

Sizing fonts using sp
Another device dependent unit of measurement, used for sizing Android fonts
is scalable pixels or sp. The sp unit of measurement is used for fonts and is pixel
density dependent in the exact same way that dp is. The extra calculation that an
Android device will take into account when deciding how big your font will be,
based on the value of sp you use, is the user's own font size settings. So, if you test
your app on devices and emulators with normal size fonts, then a user who has a
sight impairment (or just likes big fonts) and has the font setting on large, will see
something different to what you saw during testing.

If you want to try playing with your Android device's font size settings, you can do
so by selecting Settings | Display | Font size, as shown:

As we can see in the previous image there are quite a number of settings and if you
try it on Huge the difference is, well, huge!

We can set the size of fonts using sp in any widget that contains text. This includes
Button, TextView, and all the UI elements under the Text Fields category in the
palette, as well as some others. We do so by setting the textSize property like so:

android:textSize="50sp"

As usual we can also use the properties window to achieve the same thing.

Designing Layouts

[88]

Determining size with wrap or match
We can also determine how the size of widgets and many other UI elements behave in
relation to the containing/parent element. We can do so by setting the layoutWidth
and layoutHeight properties to either wrap_content or match_parent.

For example, if we set the properties of a lone button on a layout to the following:

...
android:layout_width="match_parent"
android:layout_height="match_parent"
....

Then the button will expand in both height and width to match the parent. We can
see that the button in the next screenshot fills the entire screen:

Chapter 4

[89]

More common for a button is wrap_content, as shown next:

....
android:layout_width="wrap_content"
android:layout_height="wrap_content"
....

This causes the button to be as big as it needs to be, to wrap its content (width and
height in dp and text in sp).

Using padding and margin
If you have ever done any web design, then you will be very familiar with the next
two properties. Padding is the space from the edge of the widget to the start of the
content in the widget. Margin is the space outside of the widget that is left between
other widgets—including the margin of other widgets, should they have any. Here is
a visual representation:

We can set padding and margin in a straightforward way, equally for all sides,
like this:

...
android:layout_margin="43dp"
android:padding="10dp"
...

Look at the slight difference in the naming convention for the margin and the
padding. The padding is just called padding but the margin is referred to as
layout_margin. This reflects the fact that padding only affects the widget itself but
margin can affect other widgets in the layout.

Designing Layouts

[90]

Or we can specify different top, bottom, left, and right margins and padding, like this:

android:layout_marginTop="43dp"
android:layout_marginBottom="43dp"
android:paddingLeft="5dp"
android:paddingRight="5dp"

Specifying margin and padding values for a widget is optional and a value of zero
will be assumed if nothing is specified. We can also choose to specify some of the
different side's margin and padding but not others, as in the previous example.

It is probably becoming obvious that the way we design our layouts is extremely
flexible, but also that it is going to take some practice to achieve precise results
with this many options. We can even specify negative margin values to create
overlapping widgets.

Let's look at a few more properties and then we will go ahead and play around with
a few widgets for real.

Using the layout_weight property
Weight refers to the relative amount compared to other UI elements. So, for layout_
weight to be useful, we need to assign a value to the layout_weight property on
two or more elements. We can then assign portions that add up to 100% in total. This
is especially useful for dividing up screen space between parts of the UI where we
want the relative space they occupy to remain the same regardless of screen size.
Using layout_weight in conjunction with sp and dp units can make for a really
simple and flexible layout. For example, take a look at this code:

<Button
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight=".1"
 android:text="one tenth" />

<Button
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight=".2"
 android:text="two tenths" />

<Button
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight=".3"

Chapter 4

[91]

 android:text="three tenths" />

<Button
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight=".4"
 android:text="four tenths" />

Here is what this code will do:

Notice that all the layout_height properties are set to 0dp. Effectively the
layout_weight is replacing the layout_height property. The context in which we
use layout_weight is important (or it won't work) and we will see this in a real
project soon. Also note that we don't have to use fractions of 1, we can use whole
numbers, percentages, and any other number, and as long as they are relative to
each other they will probably achieve the effect you are after. Note that
layout_weight only works in certain contexts and we will get to see where
when we build some layouts.

Designing Layouts

[92]

Using gravity
Gravity can be our friend and can be used in so many ways in our layouts. It helps
us affect the position of a widget by moving it in a given direction; like it was being
acted upon by gravity. The best way to see what gravity can do is to take a look at
some example code and pictures.

Setting the gravity property on a button (or other widget) to left|center_
vertical like this:

android:gravity="left|center_vertical"

Will have an effect that looks like this:

Notice that the contents of the widget (in this case the button's text) are indeed
aligned left and centrally vertical.

In addition, a widget can influence its own position within a layout element with the
layout_gravity element, like this:

android:layout_gravity="left"

This would set the widget within its layout, probably as expected, like this:

The previous code allows different widgets within the same layout to be effected as
if the layout has multiple, different gravities.

Chapter 4

[93]

The contents of all the widgets in a layout can be affected by the gravity property of
their parent layout by using the same code as a widget:

android:gravity="left"

Let's mention a few more properties and then we can go about using some of them.

More properties
There are in fact many more properties than those we have discussed. Some we
won't need in this book and some are quite obscure and you might never need
them in your entire Android career. But others are quite commonly used such as:
background, textColor, alignment, typeface, visibility, and shadowColor; but
these are best explored with a practical experiment. So let's do that now.

Experimenting with widgets
If you are unsure on any of the following steps then refer back to Chapter 1, The
First App for further discussion and images for most of the steps. You can find the
completed code files for this tutorial in Chapter 4/Widget Experiments:

1. Start the new project wizard by left-clicking on File | New Project. If you
are on the Welcome to Android Studio start menu then left-click Start a new
Android Studio project.

2. Name the application Widget Experiments, enter your preferred domain
name and project location, then click on Next.

3. On the Target Android Devices window accept the default settings by left-
clicking on Next.

4. On the Add an Activity to Mobile window left-click Blank Activity then
left-click on Next to proceed.

5. On the Customize the Activity window, name the activity
WidgetExperimentsActivity, make the title Widget Experiments, and
leave everything else at default. Now press Finish.

6. Wait for Android Studio to create the new project.
7. If you already had a project open at the start of this tutorial you will now

have two completely separate instances of Android Studio running. You can
close the previous one.

8. Arrange your design view as we did earlier to give extra space to the Palette,
Component Tree, and Properties windows.

9. Now we have a new project we will talk about and play with some widgets.
Left-click and drag a Button from the Widgets category of the palette onto
the top-left corner of the design preview.

Designing Layouts

[94]

10. In the Properties window scroll to find the text property and change it to
Left Button.

11. In the properties window scroll to find the width property and change it to
150dp. Note there is no space between 150 and dp.

12. Scroll to the layout:margin property. Note there is a little grey triangle to the
left that when clicked will reveal more options to this property. Set the left
property to 10dp, the top property to 100dp, the right property to 50dp, and
the bottom property to 50dp. The next screenshot should help with this step:

13. Of course if we wanted a consistent margin on all sides of our button we could
have entered a value in the all property. Observe the design preview after
these steps. We can see the effect of the larger 100dp top margin and the smaller
10dp left margin. We can also observe the button text is just as we set it and
the button is more elongated because we set the width property to 150dp. The
right and bottom margins are not visually apparent at the moment.

14. Now, drag another Button onto the layout and place it vertically in line with
the previous button and to the right.

Chapter 4

[95]

15. Set the text property to Right and the width property to 80dp. Notice that
the button does indeed shrink a little. Let's experiment some more.

16. Drag Plain TextView onto the layout and center it horizontally and below
the two buttons.

17. Change the textSize property to 100sp. We can see in the next screenshot
that the text is too wide to fit onto one line and it wraps onto two. We
can also see by the blue rectangle surrounding TextView that it is even
overlapping the two buttons above:

Designing Layouts

[96]

18. Now, change both the width and height properties to 150dp. We have now
constrained TextView, however the textSize property we set remains,
causing the text to be partially obscured.

19. Let's fix this and add a few enhancements through a few more properties.
Change the textSize property to 65sp. Change the layoutWidth property
to match_parent. This will make it as wide as its parent (RelativeLayout).
Change the gravity property to center. Set the alpha property, which
changes the transparency, to .5. Notice that the text now fits quite nicely as it
is smaller and has the entire width of the device, and is also centered.

20. Now find and click on the background property, left-click on the three
periods ..., and now left-click on the Color tab. You can now click the color
chooser on any color you like. Now our TextView has a background color.

21. Find and left-click on the textColor property. Left-click the Color tab and
choose a color for your text that compliments the background color you
chose in the previous step.

22. Now change the typeface property to serif and notice that the font
has changed.

23. Add ImageView from the palette, below TextView. Notice that it is almost
unnoticeable. This is because it needs an image to display. Scroll to the src
property, left-click the three periods ..., and scroll down the list of possible
sources for our image. Right near the end under the Mip Map heading,
double left-click on ic_launcher. We now have the cute Android logo
embedded in ImageView. The next screenshot shows how my experiment
ended. Obviously if you are reading this in print you will be unable to see the
precise colors of the text and the background:

Chapter 4

[97]

24. Finally, left-click on TextView to select it. Find the visibility property. By
default this is set to visible. Try changing it to invisible. It disappears.
This is probably what you expected and not the highlight of the chapter. But
now try changing the visibility property to gone. Note how ImageView
jumps up the layout to below the buttons. It does indeed behave as if the text
is "gone". You probably remember that we said we can change properties
on-the-fly while our app is running, using our Java code. Switching between
visible, invisible, and gone can be really useful.

25. You can run this app on an emulator or a real device.

In this widget experiment we could see how many of the properties we have
discussed interact with each other. We also saw a few new properties. You probably
also noticed that a few of the properties we mentioned in some detail before the
experiment haven't been demonstrated yet. Most notably padding. These are best
showcased using Layouts from the palette and will be seen soon.

Designing Layouts

[98]

You only need to glance at the Palette window and the Properties window to realize
we have only scratched the surface of the layout options in Android. But what we
have learned will actually allow us to design a surprisingly large variety of layouts.

Let's look at some layouts.

Containing widgets in layouts
We know that layouts are one of the main building blocks of our UI. And in
Android we have several types of layout that we can choose from to suit our
specific design goals.

We will now do some experimentation with some of the main layout types.

RelativeLayout
This is the type of layout that was automatically included within our Hello Android
project for us. Let's just play around with it some more.

RelativeLayout in action
If you are unsure on any of the following steps then refer back to Chapter 1, The First
App, for further discussion and images for most of the steps. The code for this mini
app can be found in the Chapter 4/Layout Experiments folder:

1. Start the new project wizard by left-clicking on File | New Project if you
already have an existing project open or, if you are on the Welcome to Android
Studio start menu, then left-click on Start a new Android Studio project.

2. Name the application Layout Experiments, enter your preferred domain
name and project location, then click on Next.

3. On the Target Android Devices window accept the default settings by left-
clicking on Next.

4. On the Add an Activity to Mobile window left-click Blank Activity then
left-click Next to proceed.

5. On the Customize the Activity window name the activity
LayoutExperimentsActivity, make the app title Layout Experiments, and
leave everything else at the default. You don't need to change the Activity
name for this to work, it just makes this project more distinct from the others
we will build. Now press Finish.

Chapter 4

[99]

6. Wait for Android Studio to create the new project.
7. Arrange your design view as we did earlier to give extra space to the Palette,

Component tree, and Properties windows.

Now we have a new project we will talk about and play with some layouts.

Notice the top element of the Component tree window, after the Device Screen
element. We already have RelativeLayout by default. This type of layout allows its
children to use descriptions of positions relative to itself and its other children. Let's
explore this:

1. Left-click and drag a Plain TextView widget from the palette and drop it just
underneath the existing Plain TextView.

2. Now do the same with Button and drop it below the TextView we added in
the previous step.

3. Next place a Switch widget below the Button widget from the last step.

Your layout will probably look something like this next screenshot, which is a close-
up view of the top left of the UI designer:

What is more interesting than the appearance, however, is the XML code that has
been generated. Let's explore it now. Left-click on the Text tab below the editor
window to reveal the generated XML.

Here are the entire contents of activity_layout_experiments.xml with the code
for the parent RelativeLayout removed. Take a look at the code and take a close
look at the three highlighted lines:

<TextView
 android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Designing Layouts

[100]

 android:id="@+id/textView" />

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="New Text"
 android:id="@+id/textView2"
 android﹕layout_below="@+id/textView"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="New Button"
 android:id="@+id/button"
 android﹕layout_below="@+id/textView2"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />

<Switch
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="New Switch"
 android:id="@+id/switch1"
 android﹕layout_below="@+id/button"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />

In the code we can identify each of the widgets we added to our layout by the opening
word of each code block. So the first <TextView block is the start of the text that reads
Hello world! in the previous screenshot. The second block that begins with <TextView
is therefore our very own TextView that we dragged onto the UI design ourselves.
This TextView is the one with the text New Text in the previous screenshot.

Furthermore, the block of code that starts with <Button is of course our button
labeled NEW BUTTON in the previous screenshot. And at this point you can
probably guess that the code block that begins with <Switch is the Switch widget.

Chapter 4

[101]

Also note that the last two lines of code for each widget are the same. Here they
are again:

android:layout_alignParentLeft="true"
android:layout_alignParentStart="true" />

What this is effectively saying is to place this widget on the top left of its parent.
So you might expect the widgets to be on top of one another?

Previously I suggested taking a close look at the three highlighted lines in the code.
Let's examine the first highlighted line, which is from the first TextView that we
added below TextView that was already there (the one with the text Hello world!).
Here is the highlighted line of code again:

android:layout_below="@+id/textView"

What this is saying is place me below the widget with the id of textView. If you
look at the main code listing again you will indeed see that the id property of
TextView containing the text Hello world! is set to textView with the following
line of XML:

android:id="@+id/textView" />

This method of describing where the contents of a layout go is for RelativeLayout
only. It is perfect for some types of practical app designs (perhaps forms) and
extremely awkward for others.

Let's explore some other layout types and then we will build some layouts that take
advantage of each layout type we have experimented with.

Using LinearLayout
With this layout the clue is in the name. All the widgets contained in LinearLayout
will be displayed in the order in which they are added. We can certainly still add
margins, padding, and so on, but the order is fixed. It is linear (or sequential).
LinearLayouts applies either vertical or horizontal ordering. Let's quickly make a
project and combine a few LinearLayouts with some widgets.

The code for this mini app can be found in the Chapter 4/Linear Layout
Experiment folder:

1. Create a new project in Android Studio. Call it Linear Layout Experiment,
choose a Blank Activity, and leave all the other settings at their defaults.

Designing Layouts

[102]

2. Let's start with a completely clean sheet. Right-click on the layout folder in
the project explorer. From the menu, choose New | Layout resource file as
shown in the next screenshot:

3. Then in the File name field enter linear_experiment and then left-click
on OK.

Chapter 4

[103]

4. The new file is created and opened in the editor. If the file is not
automatically opened in design view then left-click on the Design tab at the
bottom left of the editor window.

5. Look in the Component Tree window and you will see that we have
been provided, by default, with LinearLayout as the root of our design.
Also notice the word vertical in brackets, which indicates this is a vertical
LinearLayout.

6. From the Layouts category of the palette drag a LinearLayout (Horizontal)
onto the design. Drop it at the top of the layout.

7. Now drag a LinearLayout (Vertical) onto the design and confirm in
Component Tree that it has indeed been added after the previous
LinearLayout, as shown next:

8. Now find the layout:weight property in the Properties window of the
currently selected LinearLayout and set it to .5. Do this for the other
LinearLayout that we added by left-clicking it in the Component Tree,
finding the layout:weight property, and setting it to .5. We can see that
the Component Tree is especially useful when the design itself is not clear
about where exactly the elements that make our layout are situated. We
now have two vertically nested LinearLayouts, the top one is a horizontal
LinearLayout and the bottom one is a vertical LinearLayout. And they
both take up exactly .5 (half) of the screen.

9. Add two Buttons from the Widgets category of the palette to the top
(horizontal) LinearLayout. Notice how they arrange themselves horizontally.
But they are rather untidily stuck to the left-hand side of the layout.

Designing Layouts

[104]

10. Select the horizontal (top) LinearLayout by left-clicking it in either the
design or Component Tree. Find the gravity property and left-click on the
small triangle to the left of the word gravity to reveal the options for this
property. Now left-click on the center_horizontal check box. The next
image should make this step clear:

11. Now drag three Plain TextView widgets from the palette to the vertical
(bottom) LinearLayout. Notice how they are nicely ordered from top to
bottom but squashed to the top.

12. Select the vertical (bottom) LinearLayout either by clicking on it in the
layout or the component tree. Find the gravity property and click the
triangle to reveal the options, just as we did for the other LinearLayout in
step 8. Left-click the check box for center_vertical. Now the TextViews
are neatly centered but are squashed together.

13. Let's add a margin to each of the TextView widgets to solve this problem.
Left-click to select the topmost TextView. Scroll to find the layout_margin
property. Left-click the layout_margin property then add the value 20dp
next to the top option.

14. Repeat the previous step for each TextView.

Chapter 4

[105]

Now we have a nice neat layout of buttons and text, as shown in the following
screenshot:

This works because the first vertical LinearLayout wraps the other two on top of
each other. We use layout_weight in the wrapped layouts to make them take up
half the screen space each. The first wrapped layout lays its buttons out from left to
right because it is horizontal, and the second wrapped layout lays its text from top
to bottom because it is vertical. In addition both wrapped layouts use the gravity
property to center the widgets as well.

The one issue that you will notice if you try and run the app to see it on an emulator
or a real device is that the default "Hello world!" layout from the activity_main.
xml file is shown to the user, not our linear_experiment.xml layout.

Designing Layouts

[106]

We can fix this with these simple steps:

1. Open up MainActivity.java in the editor.
2. Look at the onCreate method and find the following line of code:

setContentView(R.layout.activity_main);

3. Change the highlighted part, activity_main to the name of the layout we
want to display, linear_experiment.

4. Run the app again and it will display our neat and tidy experiment.

Here we can see that the setContentView method call, within the onCreate method,
is what displays a layout to the user. We just need to pass in the name of the XML
layout as an argument. We append R. (for the res folder) and layout. (for the
layout folder) and it just works. Don't worry too much about the new terminology,
we will look at passing in arguments in Chapter 8, Coding in Java Part 2 – Methods.

The new knowledge we have just gained about how to use Java to display a given UI
layout in XML will be useful in the next project.

We have probably done enough experimenting. Now let's build some slightly more
real-world UI's.

Summary
Although the layout projects from this chapter were not really very realistic in
nature, they have served the purpose of introducing many aspects of Android UI
design. We know about sizing, positioning, spacing, and gravity. We have also seen
some options for layout type as well, such as Relative and LinearLayout.

In the next chapter we will actually build some UI layouts like you might find in a
real-world app.

[107]

Real-World Layouts
So far, we have only used a single phone emulator. As we will be building some
layouts more suited to Android tablets, it is time to look at configuring a tablet
emulator. We will then be in a position to be a bit more daring with our UI designs.
We will build two different UI designs, however, we will do so in just one mini-app.
We will soon see how we can change our Java code to see the layout we are currently
interested in. In this chapter we will cover the following:

• Configuring a tablet emulator
• Building a scrolling list-detail layout
• Building a fairly intricate form submission layout

Building a real-world UI
These simple yet practical projects will begin to demonstrate how we can create
some designs that might actually make it into a real app.

As usual, you can find all the code for this section in the download bundle in the
Chapter 5/RealUI folder.

For a bit of variation, we can see the process of creating a new emulator; let's make
ourselves a Nexus 7 AVD.

Real-World Layouts

[108]

Creating a tablet emulator
So, we can really go to town on our designs and add loads of new widgets and
views; let's make an emulator with more screen real estate. Note that the subsequent
UI projects will work fine on a phone (although look a bit more squashed) but now
seemed like a good time to take a look at making a new emulator:

1. Click the AVD Manager icon in the toolbar.

2. On the Your Virtual Devices screen, left-click the Create Virtual
Device... button.

3. Now we can see the Select Hardware window. In the Category column
left-click Tablet. In the Name column left-click Nexus 7 (2012). Now
left-click Next.

4. On the System Image screen left-click Next to accept the default options.
5. Left-click Finish and we have a shiny new Nexus 7 emulator ready to test

our future apps on.

You can repeat these steps and choose a different device type and model at step 3,
and at step 4 you can further customize the device to your liking.

Help, my emulator is stuck
Some emulators will appear slightly off-screen when you run
them. If it is the title bar of their window that is hidden, this can
be really awkward to move or close. Press Alt + Space, then select
Move from the context menu. You can now move your emulator
window with the keyboard arrow (cursor) keys or the mouse.
Left-click to place the emulator window in a better position.

Now we will build two real-world UI's. Create a new project and call it Real UI. As
usual choose a Blank Activity and leave all the other settings at their defaults.

Now switch to our new Nexus 7 in design view by left-clicking it from the drop-
down list of AVDs we discovered during the Android Studio guided tour. Click on
the rotate button to switch the design view to landscape.

Chapter 5

[109]

All of our practical UI's will be in this one project. However, for each we will create
a new layout file. The automatically generated layout_main.xml file will not be
used. Of course, when we are done building our UI we will need to change the call to
setContentView in our Java code to choose the UI that we would like to see in action.

Let's start with a LinearLayout.

List-detail layout with ScrollView and
LinearLayout
A common layout seen in quite a few Android apps is the list-detail layout. That
is on one part of the screen there is a list of some item types (perhaps small images
and product names), and then on another part of the screen there is the detail of
whichever item from the list is currently selected.

Making a fully functional app of this type will take a little more Java practice but we
can quickly see how to make a simple layout along these lines:

1. Use the Real UI project we recently created but let's start with a completely
clean sheet for the layout. Right-click the layout folder in the project
explorer. From the pop-up context sensitive options menu, choose New |
Layout resource file.

2. Make sure LinearLayout is selected for the Root element.
3. Name the file list_detail_layout then left-click OK.
4. In the Properties window, find the orientation property of the

LinearLayout, which is provided by default, and change it to horizontal.
5. Drag a LinearLayout(vertical) onto the design.
6. Now drag a LinearLayout(horizontal) onto the design.
7. To be able to discern between the two new layouts we have just added you

will probably need to look at the component window. Here is an image of the
component window after step 6:

Real-World Layouts

[110]

8. Select the first (vertical) LinearLayout within the root LinearLayout, find
its layout:weight property, and set it to 40. Set its background to a color of
your choice by finding and left-clicking the background property ellipses ...,
then left-clicking the Color tab and choosing a color.

9. Select the second (horizontal) LinearLayout within the root LinearLayout,
find its layout:weight property, and set it to 60. We now have two
clearly discernible areas of the screen: one taking up 40%, the other 60%,
as shown next:

10. Now drag a ScrollView from the Containers section of the palette and drop
it on the left-hand smaller (40%) width LinearLayout.

11. Now drag another LinearLayout(vertical) on top of the ScrollView.
12. Now drag around 20 (seriously!) Large Text widgets onto the LinearLayout

you added in the previous step. As the LinearLayout is initially squashed
flat, it will be easier to start by dragging the Large Text widgets onto the
LinearLayout via the component tree window.

Chapter 5

[111]

13. Now drag an ImageView to the right-hand LinearLayout. Make it display
the Android icon by finding its src property and browsing to ic_launcher
at the end of the list on the Projects tab, as we did while experimenting
with ImageView earlier. The image serves no purpose here other than to
demonstrate that it is completely distinct from the functionality we are about
to witness in the left-hand side of our UI.

14. Change the ImageView layout:weight property to 1 to make the image larger.
15. Change the call to setContentView in MainActivity.java to the same as

the next line of code:
setContentView(R.layout.list_detail_layout);

16. The code will now set our new layout as the layout for our app. Run the app
on the Nexus 7 emulator.

When the app is running you can left-click and drag the left-hand pane of the app
to scroll the contents up and down. Notice that the Android image in the right-hand
pane stays still:

Real-World Layouts

[112]

We achieved this by adding two LinearLayouts to our root LinearLayout. We
made one cover 40% and the other 60% of the parent by setting their layout_weight
properties to 40 and 60 respectively. Then we put a ScrollView into the left-hand
LinearLayout and put another vertical LinearLayout into the ScrollView. We did
this step because ScrollView can only have one child (very wise). However, once
we have the LinearLayout inside the ScrollView we can add as many widgets as
we like and they will all scroll nicely, as we saw.

Designing a form with RelativeLayout
We have already played around with RelativeLayout as it is the default
layout when we create a new project. With this project we will lay out a fairly
comprehensive form—similar to what you might ask a user to fill out when
subscribing to a service.

It will probably help to see the layout before we get started. So here it is with the
name and password fields already filled out so we can see what different fields will
look like:

Chapter 5

[113]

Now we can see the end goal, let's get on with creating it for real:

1. Use the same project as we did for the previous layout but let's start with a
completely clean sheet for the layout. Right-click the layout folder in the
project explorer. From the pop-up context sensitive options menu, choose
New | Layout resource file.

2. Make sure LinearLayout is selected for the Root element. Why we use
LinearLayout when we are supposed to be learning about RelativeLayout
will soon become apparent.

3. Name the file form_layout then left-click OK.
4. Select the LinearLayout at the root of our design and change its orientation

property from vertical to horizontal from the properties window.
5. Drag and drop two RelativeLayout elements onto the design. Make

sure they are both children of the root LinearLayout. If this is awkward,
remember you can drag them directly onto the component tree view to
make sure they have the intended parent. The end result is as shown in the
following component tree image:

6. Now we will make sure that each of the RelativeLayout elements take up
exactly half the screen each. Find the layout:weight property of each in
turn and set them both to .5. By doing so each layout will take up half the
space. As long as the amounts are relative to each other they will work. So
you could use 50 and 50 if you prefer.

7. As a precautionary step, check that there are no values set in the
layout:margin property for either of the RelativeLayout elements. Sometimes
when we drag and drop elements onto the design, Android Studio will
add a margin without us realizing. If there are any values for any of the
RelativeLayout margins, delete them. You should now have two equal-sized
layouts filling the design.

8. Drag and drop a Large Text widget onto the top-left corner of the design. Put
it right in the corner, don't worry about leaving a margin at the moment.

Real-World Layouts

[114]

9. Double left-click the widget from the previous step to open up an editing
window for its text property. Enter the text Please submit your details.
This has exactly the same effect as editing the text property in the
Properties window.

10. From the Text Fields category of the palette, drag a Person Name widget
onto the design but don't drop it straight away. Position the widget hard to
the left of the design and slightly below the previous text we added in step 9.
Notice that as you move the Edit Text up and down you can see the margin
property changing. The next image should make this clear:

11. Try and get the margin property as close as possible to 46 dp, then, while
still against the left side of the design, drop the Edit Text. If you didn't get
the margin quite right, in the Properties window set margin:top to 46dp.

12. In the properties window find the hint property and set it to Name. This will
put text on our widget but as soon as the user taps it to enter his name the
text will disappear.

13. From the Text Fields category of the palette, drag an Email widget onto the
design but don't drop it straight away. Position the widget hard to the left of
the design and slightly below the previous text we added in step 9. Notice,
as before, that as you move the widget up and down you can see the margin
property changing. Drop it when it is 46 dp exactly or edit margin:top in the
Properties window.

14. Find the hint property and change it to Email.

Chapter 5

[115]

15. From the Text Fields category of the palette, drag a Password widget onto
the design but don't drop it straight away. Position the widget hard to the left
of the design and slightly below the previous text we added in step 9. Drop
it when it is 46 dp exactly or edit margin:top in the Properties window. The
Password widget is simply an editable text field that obscures what the user
has entered. You can see this in action in the image showing the completed
layout that we saw before this tutorial.

16. Find the hint property and change it to Password.
17. From the Text Fields category of the palette, drag a Password widget onto

the design but don't drop it straight away. Position the widget hard to the left
of the design and slightly below the previous text we added in step 15. Drop
it when it is 46 dp exactly or edit margin:top in the Properties window.

18. Find the hint property and change it to Confirm password. At this point
your layout should look like this next image:

19. Moving on to the right-hand side of the form, drag an ImageView and drop
it on the hard left and top of the right-hand RelativeLayout.

20. Set its src property to ic_launcher by browsing to it on the Projects tab after
left-clicking the ... link, as we have done before.

21. Set the layout:width property to match_parent. This doesn't make the actual
image larger but it prevents it being wrapped so that the next step will work.

22. Find the layout:centerInParent property and set it to horizontal. The
Android robot image should now be in the center-top of the right-hand
RelativeLayout.

www.allitebooks.com

http://www.allitebooks.org

Real-World Layouts

[116]

23. Drag a Large Text widget from the palette onto the right-hand
RelativeLayout. You should be able to center it and set the margin between
the ImageView to 46 dp before letting go of it. If your mouse doesn't have
quite the right sensitivity to achieve this, you can set margin:top in the
Properties window. You can also use the Properties window to set the
layout:centerInParent property to horizontal if necessary.

24. Now we will add the actual terms and conditions. Obviously, following in the
long tradition of all terms and conditions, we want to make this text smaller
than the rest of the text on the form. Drag a Small Text widget to 10 dp below
and exactly central to the previous Large Text widget. You can achieve this
using exactly the same techniques that we used in the previous step.

25. Find the text property in the Properties window. Copy and paste some
random text, sufficient to fill about the same amount of space as the terms
and conditions takes up in the completed layout image we looked at before
this tutorial. Leave just enough space for a button and some margin below.

26. Drag a Check Box widget onto the layout and position it on the hard left of
the right-hand RelativeLayout and 46 dp below the terms and conditions.

27. Edit the text property to I agree.
28. Drag a Button onto the layout and line it up with the bottom edge of the

Check Box and around 85 dp from the right. This next image should make
this clear, as well as show all our progress to date:

Chapter 5

[117]

29. Change the text property to Can't wait! Sign me up!.
30. Next, you will notice that the base of the button is in line with the

check box base but the top isn't. In the Properties window find the
layout:alignComponent property and in the top:top sub-property select the
checkBox widget.

31. Now go to the root LinearLayout and find the padding property and set its
sub-property all to 20dp.

32. Change the call to setContentView in MainActivity.java to the same as
the next line of code:
setContentView(R.layout.form_layout);

33. The code will now set our new layout as the layout for our app. Run the app
on the Nexus 7 emulator.

You should have a nearly-identical layout to the image we saw before the start of
the tutorial. We achieved these tidy results by inserting two RelativeLayouts in a
parent horizontal LinearLayout. Actually we could have achieved an initially neat
looking layout in just one RelativeLayout. The problem is that if we had done this,
the second column of widgets would have been positioned using a margin from the
left-hand column. The dp units are perfect for creating small margins and padding,
but when we use them across a significant amount of screen real estate then we get
very inconsistent results on different devices.

By first dividing the screen into two halves, based on the weight property, we get
a consistently neat layout. If the form was more complicated we would probably
want to further sub-divide the screen to be even more sure that when we lay out the
individual widgets relatively, they are always consistent.

Real-World Layouts

[118]

As an experiment, try rotating the screen to portrait orientation. You can do so on an
emulator with the Ctrl + F11 keyboard combination.

Not too bad but certainly imperfect. There are a few possible solutions to
this problem:

1. Provide an additional layout in a file with the same name and put it in a
folder named layout-portrait in the res folder.

2. Lock the layout to landscape and prevent the user from rotating the layout.
We can do this in either XML or Java code.

3. Come up with an entirely more elegant but slightly more complex solution
using Fragments.

Chapter 5

[119]

We will use the second solution when we build our first full app from Chapter
12, Having a Dialogue with the User to Chapter 17, Sound FX and Supporting Different
Versions of Android. We will see the third solution when we build more advanced
apps starting from Chapter 18, Design Patterns, Fragments, and the Real World. There
are pros and cons to all of the solutions, and which one you use depends upon the
experience you want your user to have. They are all as valid as each other.

Summary
The main thing to learn from this chapter is that experience and practice are a lot
more valuable than vast volumes of knowledge. If you have a neat idea for a cool
new UI, but this chapter hasn't shown you how to do it, then chances are somebody
else has already shared that knowledge, and a quick web search will usually provide
a tutorial or discussion that provides your solutions. Now you know your way
around the UI designer, tutorials on the web should be easily understandable.

As we progress through the book we will look at much more advanced UIs than we
have so far. Hopefully this chapter will have been a good all-round introduction to
building more real-world UIs in the Android Studio visual designer.

Despite significant progress, there is a very big elephant in the room. Of course, our
UI doesn't actually do anything! Our neat looking form will not collect a single scrap
of data and our smart scrolling list doesn't show any details when we click on one of
the items.

To solve these problems we first need to get really familiar with Java. That is what
we will start to do in the next chapter.

[121]

The Life and Times of
an Android App

In this short chapter, we will look at the lifecycle of an Android app. At first, it might
sound a bit strange that a computer program has a lifecycle, but it will soon make
sense. We will see the phases an app goes through, from creation to destruction, and
how this helps us know where to put our Java code, depending on what we are trying
to achieve.

In brief, we will look at:

• An introduction to the Android lifecycle
• What method overriding @Override is
• The phases of the Android lifecycle
• What exactly we need to know and do to code our apps
• A lifecycle demonstration mini app
• A quick look at code structure, ready to get Java coding in the next chapter

Let's start learning about the Android lifecycle.

Introduction to the Android lifecycle
We have talked a bit about the structure of our code; that we write classes, and
within those classes we have methods that contain our code. We also know that
when we want the code within a method to run (be executed), we call that method
by using its name.

The Life and Times of an Android App

[122]

Also, in Chapter 2, Java - First Contact, we learned that Android itself calls the onCreate
method just before the app is ready to start. We saw this when we outputted to the
logcat and used the Toast class to send a pop-up message to the user.

What we will look at now is what happens throughout the lifecycle of every app we
write: when it starts and ends, as well as a few stages in between. And what we will
see is that Android actually interacts with our app on numerous occasions, each and
every time it is run.

It does so by calling methods that are contained within the Activity class. Even if
the method is not visible within our Java code, it is still being called by Android at
the appropriate time. If this doesn't seem to make any sense, then read on.

Did you ever wonder why the onCreate method had the strange-looking line of
code just before it?

@Override

What is going on here is that, when you call onCreate, we are asking Android to
please use our overridden version, because we have some things to do at that time.

Furthermore, you might remember the odd-looking first line of code in the
onCreate method:

super.onCreate(savedInstanceState)

This is telling Android to call the original/official version of onCreate before
proceeding with our overridden version. This is not just a quirk of Android, method
overriding is built into Java.

There are also quite a lot of other methods that we can optionally override, and they
allow us to add our code at appropriate times within the lifecycle of our Android app.

The reason we need to care about the methods of our app that Android calls
whenever it wants, is because they control the very life and death of our code. For
instance, what if our app allows the user to type a moment of inspiration, perhaps
a poem or vital reminder, into our hypothetical note-taking app, when halfway
through the phone rings, our app disappears and the data (the note) is gone?

It is vital, and thankfully quite straightforward, that we learn when, why, and which
methods Android will call as part of the lifecycle of our app. We can then know
where we need to override methods to add our own code and where to add the real
functionality (code) that defines our app. Let's examine the Android lifecycle, then
we can move on to the ins and outs of Java, and we will know exactly where to put
the code that we write.

Chapter 6

[123]

A simplified explanation of the
Android lifecycle
If you have ever used an Android device, you have probably noticed it works quite
differently than many other operating systems. For example, you can be using an
app, say you're checking what people are doing on Facebook. Then you get an e-mail
notification and you tap the e-mail icon to read it. Mid-way through reading the
e-mail you might get a Twitter notification, and because you're waiting on important
news from someone you follow, you interrupt your e-mail reading and change apps
to Twitter, with one touch.

After reading the tweet, you fancy a game of Angry Birds, but mid-way through the
first daring fling you suddenly remember that Facebook post. So you quit Angry
Birds and tap the Facebook icon.

Then you resume Facebook, probably at the same point you left it. You could
have resumed reading the e-mail, decided to reply to the tweet, or started an
entirely new app.

All this backwards and forwards takes quite a lot of management on the part of the
operating system, apparently independent from the individual apps themselves.

The difference between, say, a Windows PC and Android in the context we have just
discussed is this: with Android, although the user decides which app they are using,
the OS decides if and when to actually close down (destroy) an application, and our
user's data (like the hypothetical note) along with it. We just need to consider this
when coding our apps.

Lifecycle phases – what we need to know
The Android system has multiple different phases that any given app can be in.
Depending upon the phase, the Android system determines how the app is viewed
by the user or whether it is viewed at all. Android has these phases, so it can decide
which app is in current use and then allocate the right amount of resources, such as
memory and processing power. But it also allows us as app developers to interact
with these phases.

We have already raised the issue of what will happen if the user quits our app to
answer a phone call, will they lose their progress/data/important note?

The Life and Times of an Android App

[124]

Android has a fairly complex system that, when simplified a little for the purposes
of explanation, means that every app on an Android device is in one of the
following phases:

• Being created
• Starting
• Resuming
• Running
• Pausing
• Stopping
• Being destroyed

The list of phases will hopefully appear fairly logical. As an example, the user
presses the Facebook app icon and the app is created. Then it is started. All fairly
straightforward so far, but next in the list is resuming. It is not as illogical as it might
first appear. If, for a moment, we can just accept that the app resumes after it starts,
then all will become clear as we proceed.

After resuming, the app is running. This is when the Facebook app has control of
the screen and probably the greater share of system memory and processing power.
Now, what about our example when we switched from the Facebook app to the
e-mail app?

As we tap to go to read our e-mail, the Facebook app will probably have entered the
paused phase, followed by stopping, and the e-mail app will enter the being created
phase, followed by resuming, then running. If we decide to revisit Facebook, as in
the scenario earlier, the Facebook app will probably skip being created, then it will
restart, resume, and be running again, most likely exactly on the post we left it on.

Note that, at any time, Android can decide to stop, then destroy an app. In which
case, when we run the app again, it will need to be created at the first phase all over
again. So, had the Facebook app been inactive long enough, or had Angry Birds
required so many system resources that Android had destroyed the Facebook app,
then our experience of finding the exact post we were previously reading might have
been different.

If all this phase stuff is starting to get confusing then you will be pleased to know
that the only reason to mention it is so that:

• You know it exists
• We occasionally need to interact with it
• We will take things step by step when we do

Chapter 6

[125]

Lifecycle phases – what we need to do
When we are programming an app, how do we possibly interact with this
complexity? The good news is that the Android code that was auto-generated when
we created our first project does most of it for us. As we have discussed, we just
don't see the methods that handle this, but we do have the opportunity to override
them and add our own code to that phase.

This means we can get on with learning Java and making Android apps until we
come to one of the few instances for which we need to do something, specifically in
one of the phases.

Each Activity has its own lifecycle
Actually, this discussion is relevant to just an Activity. So,
if our app has more than one Activity, they will each have
their own lifecycle. This doesn't have to complicate things,
and in the long run it will make things easier for us.

Here is a quick explanation of the methods provided by Android, for our
convenience, to manage the lifecycle phases. To clarify our discussion of lifecycle
methods, they are listed next to their corresponding phases, which we have been
discussing. However, as you will see, the method names make it fairly clear on their
own where they fit in.

There is also a brief explanation or suggestion about when we might use a given
method, and thereby interact during a specific phase. We will meet most of these
methods as we progress through the book. We have of course already seen onCreate:

• onCreate: This method is executed when the Activity is being created.
Here we get everything ready for the app including UI (such as calling
setContentView), graphics, and sound.

• onStart: This method is executed when the app is in the starting phase.
• onResume: This method runs after onStart but can also be entered, perhaps

most logically, if our Activity is resumed after being previously paused. We
might reload previously saved user data (such as an important note) from
when the app had been interrupted, perhaps by a phone call or the user
running another app.

• onPause: You are probably getting the hang of these methods. This occurs
when our app is pausing. Here we might save unsaved data (such as the
note) that could be reloaded in onResume. Activities always transition into
a paused state when another UI element is displayed on top of the current
activity (for example, a pop-up dialog), or when the activity is about to be
stopped (for example, when the user navigates to a different activity).

The Life and Times of an Android App

[126]

• onStop: This relates to the stopping phase. This is where we might undo
everything we did in onCreate, such as releasing system resources or
writing information to a database. If we reach here, we are probably going to
get destroyed sometime soon.

• onDestroy: This is when our activity is finally being destroyed. There is no
turning back at this phase. This is our last chance to dismantle our app in an
orderly manner. If we reach here, we will definitely be going through the
lifecycle phases from the beginning next time.

All the method descriptions and their related phases should appear straightforward.
Perhaps the only real question is: what about the running phase? As we will see
when we write our code in the other methods/phases, the onCreate, onStart, and
onResume methods will prepare the app, which then persists, forming the running
phase. Then the onPause, onStop, and onDestroy methods will occur afterwards.
Now, we can actually take a look at these lifecycle methods in action. We will do so
by overriding them all and adding a Log message and a Toast message to each.

The lifecycle demonstration app
This quick experiment will help familiarize ourselves with the lifecycle methods our
app uses, as well as give us a chance to play around with a bit more Java code:

1. Start a new project and call it Lifecycle Demonstration. Of course,
the code is in the download bundle in the Chapter 6/Lifecycle
Demonstration folder should you wish to refer to it or copy and paste it.

2. Accept the default target devices.
3. Choose Blank Activity and don't worry about customizing the activity

options at all.
4. Open the MainActivity.java file in the code editor, if it is not opened

for you by default, by left-clicking on the MainActivity tab above
the editor.

If the previous steps were not detailed enough, check back to
any of the previous occasions when we created a new project
for further details.

You have created a new project with all the settings on default. We will only need the
MainActivity.java file for this demonstration and we will not be building a UI.

Chapter 6

[127]

In the MainActivity.java file, find the onCreate method and add these two
lines of code just before the closing curly brace }, which marks the end of the
onCreate method:

Toast.makeText(this, "In onCreate", Toast.LENGTH_SHORT).show();
Log.i("info", "In onCreate");

The entire onCreate method should now look exactly like this, where the
highlighted code is the two lines we just added:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Toast.makeText(this, "In onCreate", Toast.LENGTH_SHORT).show();
 Log.i("info", "In onCreate");
}

After the closing curly brace } of the onCreate method, leave one clear line and
add the following five lifecycle methods and their contained code. Remember, you
will need to use the Alt + Enter keyboard combination twice to import the classes
needed for Toast and Log. Also note that it doesn't matter what order we add our
overridden methods. Android will call them in the correct order regardless of the
order we type them:

@Override
public void onStart() {
 // First call the "official" version of this method
 super.onStart();

 Toast.makeText(this, "In onStart", Toast.LENGTH_SHORT).show();
 Log.i("info", "In onStart");
}

@Override
public void onResume() {
 // First call the "official" version of this method
 super.onResume();

 Toast.makeText(this, "In onResume", Toast.LENGTH_SHORT).show();
 Log.i("info", "In onResume");
}

@Override

The Life and Times of an Android App

[128]

public void onPause() {
 // First call the "official" version of this method
 super.onPause();

 Toast.makeText(this, "In onPause", Toast.LENGTH_SHORT).show();
 Log.i("info", "In onPause");
}

@Override
public void onStop() {
 // First call the "official" version of this method
 super.onStop();

 Toast.makeText(this, "In onStop", Toast.LENGTH_SHORT).show();
 Log.i("info", "In onStop");
}

@Override
public void onDestroy() {
 // First call the "official" version of this method
 super.onDestroy();

 Toast.makeText(this, "In onDestroy", Toast.LENGTH_SHORT).show();
 Log.i("info", "In onDestroy");
}

First of all, let's talk about the code itself. Notice that the method names all
correspond to the lifecycle methods and phases we have just discussed. Notice that
all of the method declarations are preceded by the @Override line of code. Also see
that the first line of code inside each method is super.on….

What it is that is going on here is this:

• Android calls our methods at the various times we have already discussed.
• The @Override keyword indicates that these methods replace/override the

original version of the method that is provided as part of the Android API.
Note we don't see these overridden methods but they are there, and if we
didn't override them, these original versions would be called by Android
instead of ours.

• The super.on… syntax, which is the first line of code within each of the
overridden methods, then calls these original versions.

Chapter 6

[129]

So, we don't simply override these original methods in order to add our own code,
we also call them and their code is executed too.

For the curious, the keyword super is for super-class.
We will explore method overriding and super classes in
several chapters as we progress.

Finally, the code that you added will make each of the methods output one Toast
message and one Log message. However, the messages that are output vary, as can
be seen by the text in between the double quote marks "". The messages that are
output will make it plain which method produced them.

Now that we have looked at the code, we can play with our app and learn about the
lifecycle from what happens:

1. Run the app on either a device or an emulator.
2. Watch the screen of the emulator and you will see the following appear, one

after the other, as Toast messages on the screen: In onCreate, In onStart, and
In onResume.

3. Notice the following messages in the logcat window. If there are too many
messages, remember you can filter them by setting the Log level drop-down
to Info:
info:in onCreate
info:in onStart
info:in onResume

4. Now tap the back button on the emulator or the device. Notice you get
the following three Toast messages in exactly this order. In onPause,
In onStop, In onDestroy. Verify that we have matching output in the
logcat window.

5. Next, run a different app. Perhaps the Hello Android app from Chapter 1, The
First App by tapping its icon on the emulator screen.

6. Now try this: tap the task manager button. This is a square (as shown next)
on the emulator but does vary a little on different devices:

The Life and Times of an Android App

[130]

7. You should now see all the recently run apps on the device. Here is what my
Nexus 5 emulator looks like at this point:

8. Tap the Lifecycle Demonstration app and notice that the usual three starting
messages are shown. This is because our app was previously destroyed.

9. However, now tap the task manager button again and switch to the Hello
Android app. Notice that this time, only the In onPause and In onStop
messages are shown. Verify that we have matching output in the logcat.
The app has not been destroyed.

10. Now, again using the task manager button, switch to the Lifecycle
Demonstration app. You will see that only the In onStart and In onResume
messages were shown, indicating that onCreate was not required to get the
app running again. This is as expected because the app was not previously
destroyed, merely stopped.

Chapter 6

[131]

Next let's talk about what we saw when we ran the app. When we started the
Lifecycle Demonstration app for the first time, we saw that the onCreate, onStart,
and onResume methods were called. Then, when we closed the app using the back
button, the onPause, onStop, and onDestroy methods were called. Furthermore, we
know from our code that the original versions of all these methods are also called
because we are calling them ourselves with the super.on… code, which is the first
thing we do in each of our overridden methods.

The quirk in our apps' behavior came when we used the task manager to switch
between apps, and also, when switching away from Lifecycle Demonstration, it
was not destroyed; subsequently, when switching back, it was not necessary
to run onCreate.

Where's my Toast?
Actually, the opening three and closing three Toast messages
are queued and the methods have already completed by the time
they are shown. You can verify this by running the experiments
again and seeing that all three starting/closing log messages
are output before even the second Toast message is shown.
However, the Toast messages do reinforce our knowledge about
the order, if not the timing.

It is entirely possible (but not that likely) that you got slightly different results when
you followed the previous steps. What is for sure is that when our apps are run
on thousands of different devices by millions of different users who have different
preferences for interacting with their devices, Android will be calling the lifecycle
methods at times we cannot really predict.

For example, what happens when the user exits the app by pressing the home button?
When we open two apps, one after the other, and then use the back button to switch to
the previous app: will that destroy or just stop the app? What happens when the user
has a dozen apps in his task manager and the operating system needs to destroy some
apps that were previously only stopped: will our app be one of the "victims"?

You can of course test out all of these scenarios on the emulator, but the results will
only be true for the one time you test it. It is not guaranteed that the same behavior
will be exhibited every time, and certainly not on every different Android device.

At last some good news! The solution to all this complexity is to follow a few
simple rules:

• Set up your app ready to run in the onCreate method
• Load your user's data in the onResume method
• Save your user's data in the onPause method

The Life and Times of an Android App

[132]

• Tidy up your app and make it a good Android citizen in the onDestroy method
• Watch out throughout the book for a couple of occasions when we might like

to use onStart and onStop

If we do these things, and we will see how to over the course of the book, we can just
stop worrying about all this lifecycle stuff and let Android handle it!

There are a few more methods we can override as well. So let's take a look at them.

Some other overridden methods
Almost certainly you have noticed that there are two other auto-generated
methods in the code of all our projects so far. They are onCreateOptionsMenu and
onOptionsItemSelected. Most Android apps have a pop-up menu, so Android
Studio generates one by default; including the basic code to make it work.

You can see the XML that describes the menu in menu/menu_main.xml from the
project explorer. The key line of XML code is this:

<item android:id="@+id/action_settings"
 android:title="@string/action_settings"
 android:orderInCategory="100" app:showAsAction="never" />

This describes a menu item with the text, Settings. If you run any of the apps we
have created so far you can see the button, as shown next:

If you tap the button you can see it in action, as shown next:

So, how do the onCreateOptionsMenu and onOptionsItemSelected methods
produce these results?

The onCreateOptionsMenu method loads the menu from the menu_main.xml file
with this line of code:

getMenuInflater().inflate(R.menu.menu_main, menu);

Chapter 6

[133]

It is called by the default version of the onCreate method, which is why we don't see
it happen.

Some very old versions of Android do this slightly differently
but we will not need to concern ourselves with this in the
context of this book.

The onOptionsItemSelected method is called when the user taps the menu button.
This method handles what will happen when a particular item is selected. At the
moment nothing happens, it just returns true.

Feel free to add Toast and Log messages to these methods to test out the order and
timing I have just described.

We will be using menus in our first major app project. I just thought it a good time to
quickly introduce these two methods because they have been lurking around in our
code without an introduction and I didn't want them to feel left out.

Now that we have seen how the Android lifecycle works and have been introduced
to a whole bunch of methods we can override to interact with the lifecycle, we had
better learn the fundamentals of Java so that we can write some code to go in these
methods, as well as our own methods.

The structure of Java code – revisited
We have already seen that each time we create a new Android project we also create
a new Java package, as a kind of container for the code we will write.

We have also learned about and played around with classes. We have imported and
taken direct advantage of classes from the Android API such as Log and Toast. We
have also used the AppCompatActivity class, but in a different manner to that of Log
and Toast. You might remember the first line of code in all our projects so far, after
the import statements, used the extends keyword:

public class MyActivity extends AppCompatActivity {

When we extend a class as opposed to just importing it, we are kind of making
it our own. In fact, if you take another look at the line of code you can see that
we are making a new class, with a new name, MyActivity, but basing it on the
AppCompatActivity class from the Android API.

The Life and Times of an Android App

[134]

AppCompatActivity is a slightly modified version of
Activity. It basically provides extra features for older versions
of Android that would otherwise not be present. Everything
we have discussed about Activity is equally true for
AppCompatActivity. We will see some more variations on
the Activity class as we progress. It is entirely possible that
you have a different class in place of AppCompatActivity,
dependent upon changes that have taken place since this was
written. Updates of Android Studio will often change the default
Activity class that it uses when it creates a new project. As
long as the name ends in …Activity it doesn't matter because
everything we have discussed and will discuss is equally true. I
will usually just refer to this class simply as Activity.

In summary, we can import classes to use them, we can extend classes to use them
and, very importantly, we will eventually make our own classes.

The important point
Classes, in their various forms, are the foundation of every single
line of code in Java. Everything in Java is, or is part of, a class.

Our own classes and those written by others are the building blocks of our code, and
the methods within the classes wrap the functional code, the code that actually does
the work.

We can write methods within the classes that we extend, as we did with topClick
and bottomClick in Chapter 2, Java – First Contact. Furthermore, we overrode
methods that are already part of classes written by others, such as onCreate,
onPause, and so on.

However, the only code that we put in these methods was a few calls using Toast
and Log. We aren't going to code the next killer app with just that.

Summary
In this chapter we have seen that it is not only us who can call our code. The
operating system can also call the code contained within the methods we have
overridden. By adding the appropriate code into the appropriate overridden lifecycle
methods, we can be sure that the right code will be executed at the right time.

What we need to do now is learn how to write some more Java code.

[135]

Coding in Java
Part 1 – Variables,

Decisions, and Loops
In this chapter, we are going to learn and practice the core fundamentals of Java, that
is, the code that goes into the classes, and the methods that we create, along with the
data that the code acts upon.

We will also quickly recap on what we learned in the previous chapters about Java
and then immediately dive into learning how to write our very own Java code.
The principles we are about to learn are not limited to Java but are also applicable
to other programming languages as well. By the end of the chapter, you will be
comfortable writing Java code that actually creates and uses data within Android.

This chapter takes you through:

• Java syntax and jargon
• Variables, operators, and expressions
• Decisions and branching
• Loops

Coding in Java Part 1 – Variables, Decisions, and Loops

[136]

Java is everywhere
The core Java fundamentals that we are about to learn apply to classes that we
inherit from (such as Activity), as well as classes that we write ourselves (as we will
start to do in Chapter 9, Object-Oriented Programming). As it is more logical to learn
the basics before we write our own classes, we will be using the extended Activity
class in a whole bunch of mini-projects in this chapter to learn and practice Java, and
we will use Log and Toast again to observe the results of our coding. In addition, we
will use more methods that we will write ourselves (called from buttons), as well as
the overridden methods of the Activity class to trigger the execution of our code.

However, when we move onto Chapter 9, Object-Oriented Programming and start to
write our own classes, as well as understand more about how classes written by
others work, everything we have learned here will apply then too. In fact, all the Java
that you learn in this chapter will work in the following Java environments if you
strip it out of the Activity class and paste it into these environments:

• Any of the major desktop operating systems
• Many modern televisions
• Sat nav
• Smart fridges and more...

Calling all Java gurus
If you have already done some Java programming and
understand the following words: if, else, while, do while,
switch, and for, you can probably skip to the next chapter. Or
you might like to skim over this information as a refresher.

Let's get on with learning how to code in Java.

Syntax and jargon
Throughout this book we will use plain English to discuss some fairly technical
things. You will never be asked to read a technical explanation of a Java or Android
concept that has not been previously explained in non-technical language.

So far, on a few occasions, I have asked that you accept a simplified explanation
in order to offer a fuller explanation at a more appropriate time, like with classes
and methods.

Chapter 7

[137]

Having said that, the Java and Android communities are full of people who speak
in technical terms, and to join in and learn from these communities you need to
understand the terms they use. So, the approach this book takes is to learn a concept
or appreciate an idea using entirely plain-speaking language, but, at the same time,
introduce the jargon/technical term as part of the learning.

Java syntax is the way we put together the language elements of Java in order
to produce code that works in the Dalvik virtual machine. The Java syntax is a
combination of the words we use and the formation of those words into the
sentence-like structures that are our code.

These Java "words" are many in number, but taken in small chunks are almost certainly
easier to learn than any human spoken language. We call these words keywords.

I am confident that if you can read then you can learn Java because learning Java
is much easier. What then separates someone who has finished an elementary Java
course and an expert programmer? The exact same thing that separates a student
of language and a master poet. Expertise in Java comes not in the number of Java
keywords we know how to use but rather in the way we use them. Mastery of the
language comes through practice, further study, and using the keywords more
skillfully. Many consider programming an art as much as a science and there is
probably some truth to this.

More code comments
As you become more advanced at writing Java programs, the solutions you use to
create your programs will become longer and more complicated. Furthermore, as
we will see in later chapters, Java was designed to manage complexity by having us
divide up our code into separate classes, very often across multiple files.

Code comments are a part of the Java program that do not have any function in
the program itself. The compiler ignores them. They serve to help the programmer
document, explain, and clarify their code to make it more understandable to
themselves at a later date, or to other programmers who might need to use or modify it.

We have already seen a single-line comment:

// this is a comment explaining what is going on

Coding in Java Part 1 – Variables, Decisions, and Loops

[138]

The previous comment begins with the two forward slash characters //. The
comment ends at the end of the line. So, anything on that line is for humans only,
whereas anything on the next line (unless it's another comment) needs to be
syntactically correct Java code:

// I can write anything I like here
but this line will cause an error

We can use multiple single-line comments:

// Below is an important note
// I am an important note
// We can have as many single line comments like this as we like

Single-line comments are also useful if we want to temporarily disable a line of
code. We can put // in front of the code and it will not be included in the program.
Remember this code, which tells Android to load our layout?

// setContentView(R.layout.activity_main);

In the previous situation, the layout will not be loaded and the app will have a blank
screen when run, as the entire line of code is ignored by the compiler.

There is another type of comment in Java known as the multi-line comment. The
multi-line comment is useful for longer comments that span across multiple lines,
and also for adding things such as copyright information at the top of a code file.
Similar to the single-line comment, a multi-line comment can be used to temporarily
disable code, in this case across multiple lines.

Everything in between the leading /* and the ending */ is ignored by the compiler.
Here are some examples:

/*
 You can tell I am good at this because my
 code has so many helpful comments in it.
*/

There is no limit to the number of lines in a multi-line comment. Which type of
comment is best to use will depend upon the situation. In this book, I will always
explain every line of code explicitly in the text but you will often find liberally
sprinkled comments within the code itself that add further explanation, insight, or
context. So, it's always a good idea to read all the code thoroughly too:

/*
 The winning lottery numbers for next Saturday are
 9,7,12,34,29,22
 But you still want to make Android apps?
*/

Chapter 7

[139]

All the best Java programmers liberally sprinkle their code
with comments!

Storing and using data with variables
We can think of a variable as a named storage box. We choose a name, perhaps
variableA. These names are kind of like our programmer's window into the
memory of the user's Android device.

Variables are values in memory ready to be used or altered when necessary by using
the appropriate name.

Computer memory has a highly complex system of addressing, which fortunately we
do not need to interact with. Java variables allow us to devise our own convenient
names for all the data we need our program to work with. The DVM will handle all
the technicalities of interacting with the operating system, and the operating system
will, in turn, interact with the physical memory.

So, we can think of our Android device's memory as a huge warehouse just waiting
for us to add our variables. When we assign names to our variables, they are stored
in the warehouse, ready for when we need them. When we use our variable's name,
the device knows exactly what we are referring to. We can then tell it to do things
such as: get variableA and add it to variableC, delete variableB, and so on.

In a typical app, we might have a variable named unreadMessages, perhaps to hold
the number of unread messages the user has. We could add to it when a new message
arrives, take away from it when the user reads a message, and show it to the user
somewhere in the app layout, so they know how many unread messages they have.

Some situations that might arise are:

• User gets three new messages so add three to the value of unreadMessages.
• User logs into app so use Toast to display a message along with the value

stored in unreadMessages.
• User sees that a bunch of the messages are from someone she doesn't like and

deletes six messages. We could then subtract six from unreadMessages.

These are fairly arbitrary examples of names for variables and as long as you don't
use any of the characters or keywords that Java restricts, you can actually call your
variables whatever you like.

Coding in Java Part 1 – Variables, Decisions, and Loops

[140]

In practice, however, it is best to adopt a naming convention so that your variable
names will be consistent. In this book, we will use a loose convention of variable
names starting with a lowercase letter. When there is more than one word in the
variable's name, the second word will begin with an uppercase letter. This is called
camel casing.

Something like:

• unreadMessages

• contactName

• isFriend

Before we look at some real Java code with some variables, we need to first look at
the types of variables we can create and use.

Types of variables
It is not hard to imagine that even a simple app will probably have quite a few
variables. In the previous section, we introduced the unreadMessages variable as a
hypothetical example. What if the app has a list of contacts and needs to remember
each of their names? We might then need variables for each contact.

And what about when an app needs to know whether a contact is also a friend, or
just a regular contact? We might need code that tests for friend status and then adds
messages from that contact into an appropriate folder so the user knows whether
they were messages from a friend or not.

Another common requirement in a computer program, including Android apps,
is the right or wrong calculation. Computer programs represent right or wrong
calculations using true or false.

To cover these and many other types of data you might want to store or manipulate,
Java has types.

Primitive types
There are many types of variables and we can even invent our own types as well. But
for now, we will look at the most used built-in Java types. And to be fair, they cover
just about every situation we are likely to run into for a while. These examples are
the best way to explain types.

Chapter 7

[141]

We have already discussed the hypothetical unreadMessages variable. This variable
is of course a number, so we have to tell the Java compiler this by giving it an
appropriate type. The hypothetical contactName will of course hold the characters
that make up the contact name. Jumping ahead a couple of paragraphs, the type that
holds a regular number is called int and the type that holds name-like data is called
String. And if we try to store a contact name, perhaps "Ada Lovelace" in an int like
unreadMessages, meant for numbers, we will certainly run into trouble, as we can
see from the next screenshot:

As we can see, Java was designed to make it impossible for such errors to make it
into a running program. With the compiler protecting us from ourselves, what could
possibly go wrong?

Here are the main types in Java, then we will see how to start using them:

• int: The int type is for storing integers, whole numbers. This type uses 32
pieces (bits) of memory and can therefore store values with a magnitude a
little in excess of two billion, including negative values too.

• long: As the name hints at, long data types can be used when even larger
numbers are required. A long type uses 64 bits of memory and 2 to the
power of 63 is what we can store in this. If you want to see what that looks
like, here it is: 9,223,372,036,854,775,807. Perhaps, surprisingly, there are uses
for long variables but the point is, if a smaller variable will do, we should
use it because our program will use less memory.

You might be wondering when you might use numbers of
this magnitude. The obvious examples would be math or
science applications that do complex calculations, but another
use might be for timing. When you time how long something
takes, the Java Date class uses the number of milliseconds
since January 1, 1970. A millisecond is one thousandth of a
second, so there have been quite a few of them since 1970.

Coding in Java Part 1 – Variables, Decisions, and Loops

[142]

• float: This is for floating point numbers. That is, numbers where there is
precision beyond the decimal point. As the fractional part of a number takes
memory space just as the whole number portion, the range of a number
possible in a float is therefore decreased compared to non-floating point
numbers. So, unless our variable will definitely use the extra precision, float
would not be our data type of choice.

• double: When the precision in float is not enough we have double.
• boolean: We will be using plenty of Booleans throughout the book. The

boolean variable type can be either true or false; nothing else. Perhaps
Booleans answer questions such as:

 ° Is the contact a friend?
 ° Are there any new messages?
 ° Are two examples for Boolean enough?

• char: A single alphanumeric character is stored in char. It's not going
to change the world on its own but could be useful if we put lots of
them together.

I have kept this discussion of data types to a practical level
that is useful in the context of this book. If you are interested in
how a data type's value is stored and why the limits are what
they are, then have a look on the Oracle Java tutorials site here:
http://docs.oracle.com/javase/tutorial/java/
nutsandbolts/datatypes.html. Note that you do not
need any more information than we have already discussed to
continue with this book.

As we just learned, each type of data that we might want to store will require a
specific amount of memory; so we must let the Java compiler know the type of the
variable before we begin to use it.

The previous variables are known as the primitive types. They use predefined
amounts of memory and so, using our warehouse storage analogy, fit into
predefined sizes of storage box.

As the "primitive" label suggests, they are not as sophisticated as reference types.

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Chapter 7

[143]

Reference types
You might have noticed that we didn't cover the String variable type that we
previously used to introduce the concept of variables that hold alphanumeric data
such as a contact's name.

Strings are one of a special type of variable known as a reference type. They quite
simply refer to a place in memory where storage of the variable begins but the
reference type itself does not define a specific amount of memory. The reason for this
is fairly straightforward.

It's because we don't always know how much data will need to be stored in it until
the program is actually run.

We can think of Strings and other reference types as continually expanding and
contracting storage boxes. So won't one of these String reference types bump into
another variable eventually?

As we are thinking about the device's memory as a huge warehouse full of racks of
labeled storage boxes, then you can think of the DVM as a super-efficient forklift truck
driver that puts the different types of storage boxes in the most appropriate place.

And if it becomes necessary, the DVM will quickly move stuff around in a fraction of
a second to avoid collisions. Also, when appropriate, Dalvik, the forklift driver, will
even incinerate unwanted storage boxes. This happens at the same time as constantly
unloading new storage boxes of all types and placing them in the best place, for that
type of variable. Dalvik keeps reference variables in a different part of the warehouse
to the primitive variables. And we will learn more details about this in Chapter 9,
Object-Oriented Programming.

So, Strings can be used to store any keyboard character. Kind of like char but of
almost any length. Anything from a contact's name to an entire book can be stored in
a single String. We will be using Strings regularly, including in this chapter.

There are a couple more reference types we will explore as well. Arrays are a way to
store lots of variables of the same type, ready for quick and efficient access. We will
look at arrays in Chapter 13, Handling and Displaying Arrays of Data.

Think of an array as an aisle in our warehouse with all the variables of a certain type
lined up in a precise order. Arrays are reference types, so Dalvik keeps these in the
same part of the warehouse as Strings. We might, for example, use an array to store
dozens of contacts in.

The other reference type is the class that we have already discussed but not
explained properly. We will be getting familiar with classes in Chapter 9,
Object-Oriented Programming.

Coding in Java Part 1 – Variables, Decisions, and Loops

[144]

Now we know that each type of data that we might want to store will require an
amount of memory. Hence, we must let the Java compiler know the type of the
variable before we begin to use it. We do this with a variable declaration.

Variable declaration
That's enough theory. Let's see how we would actually use our variables and
types. Remember that each primitive type requires a specific amount of real device
memory. This is one of the reasons that the compiler needs to know what type a
variable will be. So, we must first declare a variable and its type before we attempt to
do anything with it.

To declare a variable of type int with the name unreadMessages, we would type:

int unreadMessages;

That's it, simply state the type, in this case int, then leave a space and type the name
you want to use for this variable. Note also the semicolon ; on the end of the line will
tell the compiler that we are done with this line and what follows, if anything, is not
part of the declaration.

Similarly, for almost all the other variable types, declaration would occur in the same
way. Here are some examples. The variable names in the examples are arbitrary. This
is like reserving a labeled storage box in the warehouse:

long millisecondsElapsed;
float accountBalance;
boolean isFriend;
char contactFirstInitial;
String messageText;

Variable initialization
Initialization is the next step. Here, for each type, we initialize a value to the
variable. Think about placing a value inside the storage box:

unreadMessages = 10;
millisecondsElapsed = 1438165116841l;// 29th July 2016 11:19am
accountBalance = 129.52f;
isFriend = true;
contactFirstInitial = 'C';
messageText = "Hi reader, Just thought I would let you know that
Charles Babbage was an early computing pioneer and he invented the
difference engine. If you want to know more about him you can click
this link www.charlesbabbage.net. Thanks, John";

Chapter 7

[145]

Notice that the char variable uses single quotes ' around the initialized value while
the String uses double quotes ".

We can also combine the declaration and initialization steps. In the following we
declare and initialize the same variables as we have previously, but in one step:

int unreadMessages = 10;
long millisecondsElapsed = 1438165116841l;//29th July 2016 11:19am
float accountBalance = 129.52f;
boolean isFriend = true;
char contactFirstInitial = 'C';
String messageText = "Hi reader, Just thought I would let you know
that Charles Babbage was an early computing pioneer and he invented
the difference engine. If you want to know more about him you can
click this link http://www.charlesbabbage.net/. Thanks, John";

Whether we declare and initialize separately or together is probably dependent upon
the specific situation. The important thing is that we must do both:

int a;
// That's me declared and ready to go?
// The line below attempts to output a to the console
Log.i("info", "int a = " + a);
// Oh no I forgot to initialize a!!

This would cause the following:
Compiler Error﹕ Variable a might not have been initialized

There is a significant exception to this rule. Under certain circumstances variables
can have default values. We will see this in Chapter 9, Object-Oriented Programming;
however, it is good practice to both declare and initialize variables.

Changing values in variables with
operators
Of course, in almost any program, we are going to need to do things with these
values. We manipulate (change) variables with operators. Here is a list of perhaps
the most common Java operators that allow us to manipulate variables. You do not
need to memorize them as we will look at every line of code as and when we use
them for the first time. We have already seen the first operator when we initialized
our variables but we will see it again being a bit more adventurous:

• The assignment operator (=): This makes the variable to the left of the
operator the same as the value to the right. For example, unreadMessages =
newMessages;.

Coding in Java Part 1 – Variables, Decisions, and Loops

[146]

• The addition operator (+): This adds together values on either side of the
operator. It is usually used in conjunction with the assignment operator, or
slightly differently; add together two variables that contain numeric values.
Perhaps like this unreadMessages = newMessages + unreadMessages; or
accountBalance = yesterdaysBalance + todaysDeposits;. Notice it is
perfectly acceptable to use the same variable, simultaneously on both sides of
an operator.

• The subtraction operator (-): This subtracts the value on the right side of the
operator from the value on the left. Usually used in conjunction with the
assignment operator. Perhaps, unreadMessages = unreadMessages - 1;
or accountBalance = accountBalance - withdrawals;.

• The division operator (/): This divides the number on the left by the number
on the right. Again, usually used in conjunction with the assignment
operator. For example, fairShare = numSweets / numChildren;.

• The multiplication operator (*): This multiplies variables and numbers
together. For example, answer = 10 * 10; or biggerAnswer = 10 * 10 *
10;.

• The increment operator (++): This is a really neat way to add 1 to something.
myVariable = myVariable + 1; is the same as myVariable ++;.

• The decrement operator (--): You guessed it. This is a really neat way to
subtract 1 from something. myVariable = myVariable -1; is the same as
myVariable --;.

The formal names for these operators are slightly different to
that previously explained. For example, the division operator
is actually one of the multiplicative operators, but the names
given previously are far more useful for the purpose of
learning Java, and if you used the term division operator while
conversing with someone from the Java community, they
would know exactly what you mean.

There are actually many more operators than this in Java. We will meet a whole
bunch more later in this chapter when we learn about decisions in Java.

If you are curious about operators, there is a complete list of
them on the Java website here: http://docs.oracle.com/
javase/tutorial/java/nutsandbolts/operators.
html. All the operators required to complete the projects will
be fully explained in this book. The link is provided for the
curious among us.

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Chapter 7

[147]

Expressing yourself demo app
Let's try using some declarations, assignments, and operators. When we bundle
these elements together into some meaningful syntax, we call it an expression. So
let's write a quick app to try some out. We will then use Toast and Log to check
our results.

Create a new project called Expressing Yourself, use a Blank Activity, and leave
all the other settings at their defaults. The completed code that we will write in
this project can be found in the Chapter 7/Expressing Yourself folder of the
download bundle.

Switch to the MainActivity tab in the editor and we will write some code. In the
onCreate method, just before the closing curly brace }, add this code:

int numMessages;

Directly below the previous line of code we will assign a value to numMessages. But
as you begin to type nu notice we get a little pop-up message like this:

If you look at the first option in the pop-up message it is in fact numMessages.
Android Studio is offering to complete our typing for us. We can either left-click
numMessages to have the variable name auto-completed or simply select it because it
is already highlighted by pressing Enter on the keyboard. Whenever Android Studio
thinks it might know what we want to type, it will pop up some options. It is a great
time-saving habit to get into.

Coding in Java Part 1 – Variables, Decisions, and Loops

[148]

Add this line of code using auto-complete:

numMessages = 10;

Now that we have introduced the really handy code completion feature we will add
a larger chunk of code. Immediately after the previous line of code and before the
closing } of onCreate, add the following code:

// Output the value of numMessages
Log.i("numMessages = ", "" + numMessages);

numMessages++;
numMessages = numMessages + 1;
Log.i("numMessages = ", "" + numMessages);

// Now a boolean (just true or false)
boolean isFriend = true;
Log.i("isFriend = ", "" + isFriend);

// A contact and an important message
String contact = "James Gosling";
String message = "Dear reader, I invented Java.";

// Now let's play with those String variables
Toast.makeText(this, "Message from" + contact,
 Toast.LENGTH_SHORT).show();

Toast.makeText(this, "Message is:" + message,
 Toast.LENGTH_SHORT).show();

Run the app and we can examine the output and then the code. In the logcat
window, you will see the following output:

numMessages =﹕ 10

numMessages =﹕ 12

isFriend =﹕ true

Chapter 7

[149]

On the screen, you will see two pop-up Toast messages. The first says Message from
James Gosling. The second says Message is: Dear Reader, I invented Java. and is
shown in the next screenshot:

Let's step through the code and make sure that each line is clear before moving on.

First, we declared and initialized an int type variable called numMessages. We could
have done it on one line but we did it like this:

int numMessages;
numMessages = 10;

Next we used Log to output a message. Instead of simply typing the message
between the double quote marks "", this time we used the + operator to add
numMessages onto the output. And as we saw in the console, the actual value of
numMessages was output:

// Output the value of numMessages
Log.i("numMessages = ", "" + numMessages);

Coding in Java Part 1 – Variables, Decisions, and Loops

[150]

Just to further prove that our numMessages variable is as versatile as it should
be, we use the ++ operator, which should increase its value by one and then add
numMessages to itself +1. We then output the new value of numMessages and indeed
found its value was increased to 12 from 10:

numMessages ++;
numMessages = numMessages + 1;
Log.i("numMessages = ", "" + numMessages);

Next, we created a boolean type variable called isFriend and output that to the
console. We saw from the output that true was displayed. This variable type will
fully demonstrate its usefulness when we look at decision-making in the next section:

// Now a boolean (just true or false)
boolean isFriend = true;
Log.i("isFriend = ", "" + isFriend);

After this, we declared and initialized two String type variables:

// A contact and an important message
String contact = "James Gosling";
String message = "Dear reader, I invented Java.";

Finally, we output the String variables using Toast. We used a hard-coded part
of the message "Message from " and added the variable part of the message with
+ contact. We used the same technique to form the second Toast message as well.
When we add two Strings together to make a longer String, it is called concatenation:

// Now let's play with those String variables
Toast.makeText(this, "Message from " + contact,
 Toast.LENGTH_SHORT).show();

Toast.makeText(this, "Message is:" + message,
 Toast.LENGTH_SHORT).show();

Now we can declare variables, initialize them to a value, change them around a bit,
and output them using Toast or Log. Now let's look at how we can make decisions
based on the value of these variables and how this is useful to us.

Decisions
Our Java code will constantly be making decisions. For example, we might need to
know whether the user has new messages or whether they have a certain number
of friends. We need to be able to test our variables to see whether they meet certain
conditions and then execute a certain section of code depending upon whether it did
or not.

Chapter 7

[151]

In this section, as our code gets more in-depth, it helps to present it in a way that
makes it more readable. Let's take a look at code indenting to make our discussion
about decisions easier.

Indenting our code
You have probably noticed that the Java code in our projects is indented. For
example, the first line of code inside the MainActivity class is indented by one tab.
And the first line of code is indented inside each method. Here is an annotated image
as another quick example to make this clear:

Notice also that when the indented block has ended, often with a closing curly
brace }, that } is indented to the same extent as the line of code that began the block.

We do this to make the code more readable. It is not part of the Java syntax however,
and the code will still compile if we don't bother to do this.

As our code gets more complicated, indenting along with comments helps to keep
the meaning and structure of our code clear. I mention this now because when we
start to learn the syntax for making decisions in Java, indenting becomes especially
useful, and it is recommended that you indent your code the same way.

Much of this indenting is done for us by Android Studio, but not all of it.

Now that we know how to present our code more clearly, let's learn some more
operators and then we can really get to work taking decisions with Java.

Coding in Java Part 1 – Variables, Decisions, and Loops

[152]

More operators
We can already add (+), take away (-), multiply (*), divide (/), assign (=), increment
(++), and decrement (--) with operators. Let's introduce some more super-useful
operators, and then we will go straight on to actually understanding how to use
them in Java.

Don't worry about memorizing each of the following operators.
Glance over them and their explanations, and then move quickly
on to the next section. There we will put some operators to use and
they will become much clearer as we see a few examples of what
they allow us to do. They are presented here in a list just to make
the variety and scope of operators plain from the start. The list will
also be more convenient to refer back to when not intermingled
with the discussion about implementation that follows it.

We use operators to create an expression that is either true or false. We wrap that
expression in parentheses like this, (expression goes here):

• ==: This comparison operator tests for equality and is either true or false.
An expression such as (10 == 9), for example, is false. 10 is obviously
not equal to 9.

• !: This is the logical NOT operator. The expression (! (2+2 == 5)) is true
because 2+2 is not 5.

• !=: Another comparison operator. This tests whether something is not equal.
For example, the expression (10 != 9) is true. 10 is not equal to 9.

• >: Another comparison operator; actually, there are a few more as well. This
tests whether something is greater than something else. The expression
(10 > 9) is true.

• <: You guessed it. This tests for values less than. The expression (10 < 9)
is false.

• >=: This operator tests for whether one value is greater than or equal to the
other and if either is true, the result is true. For example, the expression
(10 >= 9) is true. The expression (10 >= 10) is also true.

• <=: Like the previous operator, this one tests for two conditions but this time
less than or equal to. The expression (10 <= 9) is false. The expression
(10 <= 10) is true.

Chapter 7

[153]

• &&: This operator is known as logical AND. It tests two or more separate
parts of an expression and all parts must be true in order for the result to be
true. Logical AND is usually used in conjunction with the other operators
to build more complex tests. The expression ((10 > 9) && (10 < 11)) is
true because both parts are true so the expression is true. The expression
((10 > 9) && (10 < 9)) is false because only one part of the expression
is true and the other is false.

• ||: This operator is called logical OR and it is just like logical AND except
that only one of two or more parts of an expression need to be true for the
expression to be true. Let's look at the last example we used but switch the
&& for ||. The expression ((10 > 9) || (10 < 9)) is now true because
one part of the expression is true.

All these operators are virtually useless without a way of properly using them to
make real decisions that affect real variables and code.

Now we have all the information we need, we can look at a hypothetical situation
then actually see some code for decision-making.

If they come over the bridge, shoot them
As we saw, operators serve very little purpose on their own but it was probably
useful to see just part of the wide and varied range available to us. Now, when we
look at putting the most common operator == to use, we can start to see the powerful
yet fine control that they offer us.

Let's make the previous examples less abstract. Meet the Java if keyword. We will
use if and a few conditional operators along with a small story to demonstrate their
use. Next follows a made up military situation that will hopefully be less abstract
than the previous examples.

The captain is dying and knowing that his remaining subordinates are not very
experienced, he decides to write a Java program to convey his last orders after he has
died. The troops must hold one side of a bridge while awaiting reinforcements.

The first command the captain wants to make sure his troops understand is this:

If they come over the bridge, shoot them.

So, how do we simulate this situation in Java? We need a Boolean variable
isComingOverBridge. The next bit of code assumes that the isComingOverBridge
variable has been declared and initialized to either true or false.

Coding in Java Part 1 – Variables, Decisions, and Loops

[154]

We can then use if like this:

if(isComingOverBridge){

 // Shoot them

}

If the isComingOverBridge Boolean is true, the code inside the opening and closing
curly braces will run. If not, the program continues after the if block and without
running the code within it.

Else do this instead
The captain also wants to tell his troops what to do (stay put) if the enemy is not
coming over the bridge.

Now we introduce another Java keyword, else. When we want to explicitly do
something when the if does not evaluate to true, we can use else.

For example, to tell the troops to stay put if the enemy is not coming over the bridge,
we could write this code:

if(isComingOverBridge){

 // Shoot them

}else{

 // Hold position

}

The captain then realized that the problem wasn't as simple as he first thought. What
if the enemy comes over the bridge, but has too many troops? His squad would be
overrun. So, he came up with this code (we'll use some variables as well this time):

boolean isComingOverBridge;
int enemyTroops;
int friendlyTroops;
// Code that initializes the above variables one way or another

// Now the if
if(isComingOverBridge && friendlyTroops > enemyTroops){

 // shoot them

Chapter 7

[155]

}else if(isComingOveBridge && friendlyTroops < enemyTroops) {

 // blow the bridge

}else{

 // Hold position

}

The previous code has three possible paths of execution. First, if the enemy is coming
over the bridge and the friendly troops are greater in number:

if(isComingOverBridge && friendlyTroops > enemyTroops)

Second, if the enemy troops are coming over the bridge but outnumber the
friendly troops:

else if(isComingOveBridge && friendlyTroops < enemyTroops)

Then the third and final possible outcome, which will execute if neither of the others
is true, is captured by the final else without an if condition.

Readers challenge
Can you spot a flaw with the previous code? One that
might leave a bunch of inexperienced troops in complete
disarray? The possibility of the enemy troops and friendly
troops being exactly equal in number has not been handled
explicitly and would therefore be handled by the final else,
which is meant for when there is no enemy troops. I guess
any self-respecting captain would expect his troops to fight
in this situation, and he could have changed the first if
statement to accommodate this possibility:

if(isComingOverBridge && friendlyTroops >=
enemyTroops)

And finally, the captain's last concern was that if the enemy came over the bridge
waving the white flag of surrender and were promptly slaughtered, then his men
would end up as war criminals. The Java code that was needed was obvious. Using
the wavingWhiteFlag Boolean variable, he wrote this test:

if (wavingWhiteFlag){

 // Take prisoners

}

Coding in Java Part 1 – Variables, Decisions, and Loops

[156]

But where to put this code was less clear. In the end, the captain opted for the
following nested solution and for changing the test for wavingWhiteFlag to logical
NOT, like this:

if (!wavingWhiteFlag){

 // not surrendering so check everything else

 if(isComingOverTheBridge && friendlyTroops >= enemyTroops){

 // shoot them

 }else if(isComingOverTheBridge && friendlyTroops
 < enemyTroops) {

 // blow the bridge

 }

}else{

 // this is the else for our first if
 // Take prisoners

}

// Holding position

This demonstrates that we can nest if and else statements inside of one another to
create quite deep and detailed decisions.

We could go on making more and more complicated decisions with if and else
but what we have seen is more than sufficient as an introduction. It is probably
worth pointing out that very often there is more than one way to arrive at a solution
to a problem. The right way will usually be the way that solves the problem in the
clearest and simplest manner.

Let's look at some other ways to make decisions in Java and then we can put them all
together in an app.

Switching to make decisions
We have seen the vast and virtually limitless possibilities of combining the Java
operators with if and else statements. But sometimes a decision in Java can be
better made in other ways.

Chapter 7

[157]

When we have to make a decision based on a clear list of possibilities that doesn't
involve complex combinations, then switch is usually the way to go.

We start a switch decision like this:

switch(argument){

}

In the previous example, an argument could be an expression or a variable. Within
the curly braces {} we can make decisions based on the argument with case and
break elements:

case x:
 // code to for case x
 break;

case y:
 // code for case y
 break;

You can see in the previous example each case states a possible result and each
break denotes the end of that case, and also the point at which no further case
statements should be evaluated.

The first break encountered breaks out of the switch block to proceed with the next
line of code after the closing brace } of the entire switch block.

We can also use default without a value to run some code in case none of the case
statements evaluate to true. Like this:

default:// Look no value
 // Do something here if no other case statements are true
 break;

Let's write a quick demo app that uses switch.

The Switch Demo app
To get started, create a new Android project called Switch Demo, use a
Blank Activity, and leave all the other settings at their default. Switch to the
MainActivity.java file by left-clicking the MainActivity.java tab above the editor
and we can start coding.

Coding in Java Part 1 – Variables, Decisions, and Loops

[158]

Let's pretend we are writing an old-fashioned text adventure game, the kind of game
where the player types commands such as "Go East", "Go West", "Take Sword", and
so on. In this case, switch could handle that situation with this code and we could
use default to handle the player typing a command that is not specifically handled.

Enter the following code in the onCreate method just before the closing curly
brace }:

// get input from user in a String variable called command
String command = "go east";

switch(command){

 case "go east":
 Log.i("Player: ", "Moves to the east");
 break;

 case "go west":
 Log.i("Player: ", "Moves to the West");
 break;

 case "go north":
 Log.i("Player: ", "Moves to the North");
 break;

 case "go south":
 Log.i("Player: ", "Moves to the South");
 break;

 case "take sword":
 Log.i("Player: ", "Takes the silver sword");
 break;

 // more possible cases

 default:
 Log.i("Message: ", "Sorry I don't speak Elfish");
 break;

}

Run the app a few times. Each time, change the initialization of command to
something new. Notice that when you initialize command to something that is
explicitly handled by a case statement, we get the expected output. Otherwise we
get the default Sorry I don't speak Elfish.

Chapter 7

[159]

If we had a lot of code to execute for a particular case, we could contain it all in a
method, perhaps, like this next piece of code. I have highlighted the new line:

 default:
 goWest();
 break;

Of course, we would then need to write the new goWest method. Then, when
command was initialized to "go west", the goWest method would be executed and
execution would return to the break statement, which would cause the code to
continue after the switch block.

Of course, one of the things this code seriously lacks is interaction with a UI. We
have seen how we can call methods from button clicks but even that isn't enough to
make this code worthwhile in a real app. We will see how we solve this problem in
Chapter 10, Everything's a Class.

The other problem we have is that after the code has been executed, that's it. We
need it to continually ask the player for instructions, not just once but over and over.
We will look at a solution to this problem next.

Repeating code with loops
Here we will learn how to repeatedly execute portions of our code in a controlled
and precise way by looking at different types of loops in Java. These include while
loops, do while loops, and for loops. We will also learn the most appropriate
situations to use the different types of loops.

It would be completely reasonable to ask what loops have to do with programming,
but they are exactly what the name implies. They are a way of repeating the same
part of the code more than once, or looping over the same part of code although
potentially for a different outcome each time.

This can simply mean doing the same thing until the code being looped over
(iterated) prompts the loop to end. It could be a predetermined number of iterations
as specified by the loop code itself. It might be until a predetermined situation or
condition is met. Or it could be a combination of more than one of these things.
Along with if, else, and switch, loops are part of the Java control flow statements.

We will look at all the major types of loops that Java offers us to control our code
and we will use some of them to implement a working mini-app to make sure we
understand them completely. Let's look at the first and simplest loop type in Java
called the while loop.

Coding in Java Part 1 – Variables, Decisions, and Loops

[160]

While loops
Java while loops have the simplest syntax. Think back to the if statements for a
moment. We could put virtually any combination of operators and variables in the
conditional expression of the if statement. If the expression evaluated to true then
the code in the body of the if block is executed. With the while loop we also put an
expression that can evaluate to true or false. Take a look at this code:

int x = 10;

while(x > 0){
 x--;
 // x decreases by one each pass through the loop
}

What happens here is this: outside of the while loop an int named x is declared and
initialized to 10. Then, the while loop begins. Its condition is x > 0. So, the while
loop will continue looping through the code in its body until the condition evaluates
to false. So the previous code will execute 10 times.

On the first pass x = 10 then 9 then 8, and so on. But once x is equal to 0, it is of
course no longer greater than 0, the program will exit the loop and continue with the
first line of code after the while loop.

Just like an if statement, it is possible that the while loop will not execute even once.
Take a look at this:

int x = 10;

while(x > 10){
 // more code here.
 // but it will never run unless x is greater than 10.
}

Moreover, there is no limit to the complexity of the conditional expression or the
amount of code that can go into the loop body:

int newMessages = 3;
int unreadMessages = 0;

while(newMessages > 0 || unreadMessages > 0){
 // Display next message
 // etc.
}

// continue here when newMessages and unreadMessages equal 0

Chapter 7

[161]

The previous while loop would continue to execute until both newMessages and
unreadMessages were equal to or less than zero. As the condition uses logical OR
operator || either one of those conditions being true will cause the while loop to
continue executing.

It is worth noting that once the body of the loop has been entered, it will always
complete, even if the expression evaluates to false part way through, as it is not
tested again until the code tries to start another pass. For example:

int x = 1;

while(x > 0){
 x--;
 // x is now 0 so the condition is false
 // But this line still runs
 // and this one
 // and me!

}

The previous loop body will execute exactly once. We can also set a while loop that
will run forever; unsurprisingly called an infinite loop. Here is one:

int x = 0;

while(true){
 x++; // I am going to get mighty big!
}

Breaking out of a loop
We might use an infinite loop like this so that we can decide when to exit the loop
from within its body. We would do this by using the break keyword when we are
ready to leave the loop body. Like this:

int x = 0;

while(true){
 x++; //I am going to get mighty big!
 break; // No you're not haha.
 // code doesn't reach here
}

Coding in Java Part 1 – Variables, Decisions, and Loops

[162]

And you might have been able to guess that we can combine any of the
decision-making tools like if, else, and switch within our while loops and
all the rest of the loops we will look at in a minute. For example:

int x = 0;
int tooBig = 10;

while(true){
 x++; // I am going to get mighty big!
 if(x == tooBig){
 break;
 } // No you're not haha.

 // code reaches here only until x = 10
}

It would be simple to go on for many more pages demonstrating the versatility
of while loops, but at some point we want to get back to doing some real
programming. So, here is one last concept combined with while loops.

Continue
The continue keyword acts in a similar way to break, up to a point. The continue
keyword will break out of the loop body but will also check the condition expression
afterwards so the loop could run again. An example will help:

int x = 0;
int tooBig = 10;
int tooBigToPrint = 5;

while(true){
 x++; // I am going to get mighty big!
 if(x == tooBig){
 break;
 } // No you're not haha.

 // code reaches here only until x = 10

 if(x >= tooBigToPrint){
 // No more printing but keep looping
 continue;
 }
 // code reaches here only until x = 5

 // Print out x

}

Chapter 7

[163]

Do while loops
A do while loop is very much the same as a while loop with the exception that a do
while loop evaluates its expression after the body. This means that a do while loop
will always execute at least once before checking the loop condition:

int x= 0
do{
 x++;
}while(x < 10);
// x now = 10

Note that break and continue can also be used in
do while loops.

For loops
A for loop has a slightly more complicated syntax than while or do while loops as it
takes three parts to initialize. Have a look at the code first then we will break it apart:

for(int i = 0; i < 10; i++){

 //Something that needs to happen 10 times goes here

}

The apparently obscure form of the for loop is clearer when put like this:

for(declaration and initialization; condition;
 change after each pass through loop)

To clarify further we have:

• Declaration and initialization: We create a new int variable i and initialize
it to zero.

• Condition: Just like the other loops, it refers to the condition that must
evaluate to true for the loop to continue.

• Change after each pass through loop: In the example, i++ means that 1 is
added/incremented to i on each pass. We could also use i-- to reduce/
decrement i each pass. Consider the following code:
for(int i = 10; i > 0; i--){
 // countdown
}
// blast off i = 0

Coding in Java Part 1 – Variables, Decisions, and Loops

[164]

Note that break and continue can also be used in for loops.

The for loop essentially takes control of initialization, condition evaluation, and the
control variable itself.

Loops demo app
To get started, create a new Android project called Loops, use a Blank Activity, and
leave all the other settings at their default.

Let's add a few buttons to our UI to make this more fun:

1. Drag a button onto the UI and center it horizontally near the top.
2. In the Properties window change the text property to countUp.
3. In the properties window change the onClick property to countUp.
4. Place a new button just below the previous one and repeat steps 2 and 3, but

this time use countDown for the text property and the onClick property.
5. Place a new button just below the previous one and repeat steps 2 and 3, but

this time use nested for the text property and the onClick property.

Looks are not important for this demo but the layout should look something like this
next screenshot:

Chapter 7

[165]

What is important is that we have three buttons labeled COUNTUP, COUNTDOWN,
and NESTED, which call methods named countUp, countdown, and nested.

Switch to the MainActivity.java file by left-clicking the MainActivity.java tab
above the editor and we can start coding our methods.

After the closing curly brace of the onCreate method, add the countUp method
as shown next:

public void countUp(View v){
 Log.i("message:","In countUp method");

 int x = 0;

 // Now an apparently infinite while loop
 while(true){

 // Add 1 to x each time
 x++;
 Log.i("x =", "" + x);

 if(x == 3){
 // Get me out of here
 break;
 }
 }
}

We will be able to call this method we have just written, from the appropriately
labeled button.

After the closing curly brace of the countUp method, add the countDown method:

public void countDown(View v){
 Log.i("message:","In countDown method");
 int x = 4;
 // Now an apparently infinite while loop
 while(true){
 // Add 1 to x each time
 x--;
 Log.i("x =", "" + x);
 if(x == 1){
 // Get me out of here
 break;
 }
 }
}

Coding in Java Part 1 – Variables, Decisions, and Loops

[166]

We will be able to call this method we have just written, from the appropriately
labeled button.

After the closing curly brace of the countDown method, add the nested method:

public void nested(View v){
 Log.i("message:","In nested method");

 // a nested for loop
 for(int i = 0; i < 3; i ++){

 for(int j = 3; j > 0; j --){

 // Output the values of i and j
 Log.i("i =" + i,"j=" + j);
 }
 }
}

We will be able to call this method we have just written, from the appropriately
labeled button.

Now, let's run the app and start tapping buttons. If you tap each of the buttons once
from top to bottom, this is the console output you will see:

message﹕﹕ In countUp method

x =﹕ 1

x =﹕ 2

x =﹕ 3

message﹕﹕ In countDown method

x =﹕ 3

x =﹕ 2

x =﹕ 1

message﹕﹕ In nested method

i =0﹕ j=3

i =0﹕ j=2

i =0﹕ j=1

i =1﹕ j=3

Chapter 7

[167]

i =1﹕ j=2

i =1﹕ j=1

i =2﹕ j=3

i =2﹕ j=2

i =2﹕ j=1

We can see that the countUp method does exactly that. The int x variable is
initialized to zero, an infinite while loop is entered, and x is incremented with the
increment ++ operator. Fortunately, on each iteration of the loop, we test for x being
equal to 3 with if (x == 3) and break when this is true.

Next, in the countDown method, we do the same in reverse. The int x variable is
initialized to 4, an infinite while loop is entered, and x is decremented with the
decrement -- operator. This time, on each iteration of the loop, we test for x being
equal to 1 with if (x == 1) and break when this is true.

Finally, we nest two for loops within each other. We can see from the output that
for each time i (which is controlled by the outer loop) is incremented, j (which is
controlled by the inner loop) is decremented from 3 to 1. Look carefully at this image
that shows where the start and end of each for loop is, to help fully understand this:

You can of course keep tapping to observe each button's output for as long as you
like. As an experiment, try making the loops longer, perhaps 1,000.

Coding in Java Part 1 – Variables, Decisions, and Loops

[168]

Summary
At last we have used some serious Java. We learned about variables, declaration, and
initialization. We saw how to use operators to change the value of variables, we used
if, else, and switch to make decisions with expressions and branch our code. We
saw and practiced while, for, and do while to repeat parts of our code.

It doesn't matter if you don't remember everything straight away as we will
constantly be using these techniques and keywords throughout the book.

Next, we will take a much closer look at Java methods, which is where all our
code will go.

[169]

Coding in Java
Part 2 – Methods

As we are starting to get comfortable with Java programming, in this chapter, we
will take a closer look at methods because although we know that you can call them
to make them execute their code, it is plain that there is more to them than has been
discussed so far.

In this chapter, we will look at the following topics:

• The method structure
• Method overloading versus overriding
• A method's demo mini app
• How methods affect our variables

First, let's go through a quick method recap.

Methods revisited
This figure probably roughly sums up where our understanding of methods is
at the moment:

Coding in Java Part 2 – Methods

[170]

As we can see in the previous figure, there are still a couple of question marks
around methods. We will completely take the lid off of methods and see how they
work, and what exactly the other parts of the method are doing for us later in the
chapter. In Chapter 9, Object-Oriented Programming, we will clear up the last few parts
of the mystery of methods.

So, what exactly are Java methods? A method is a collection of variables, expressions,
and control flow statements bundled together inside an opening curly brace and
closing curly brace preceded by a name. We have already been using lots of methods,
but we just haven't looked very closely at them yet.

Let's start with the method structure.

The method structure
The first part of a method that we write is called the signature. Here is a hypothetical
method signature:

public boolean addContact(boolean isFriend, string name)

If we add an opening and closing pair of curly braces, {}, with some code that the
method performs, then we have a complete method—a definition. Here is another
made up, yet syntactically correct, method:

private void setCoordinates(int x, int y){
 // code to set coordinates goes here
}

As we have seen, we could then use our new method from another part of our code
like this:

// I like it here

setCoordinates(4,6);
// now I am going off to setCoordinates method

// Phew, I'm back again - code continues here

At the point where we call setCoordinates, our program's execution would branch
out to the code that is contained within that method. The method would execute all
the statements inside it step by step until it reaches the end and returns the control to
the code that called it, or sooner if it hits a return statement. Then, the code would
continue running from the first line after the method call.

Chapter 8

[171]

Here is another example of a method complete with the code to make the method
return to the code that called it:

int addAToB(int a, int b){
 int answer = a + b;
 return answer;
}

The call to use the preceding method could look like this:

int myAnswer = addAToB(2, 4);

Clearly, we don't need to write methods to add two int variables together but, the
example helps us see a little more into the workings of methods. First, we pass in the
values 2 and 4. In the signature, the value 2 is assigned to int a and the value 4 is
assigned to int b.

Within the method body, the variables a and b are added together and used to
initialize the new int answer variable. The return answer line returns the value
stored in answer to the calling code, causing myAnswer to be initialized with the
value 6.

Note that each of the method signatures in the preceding examples varies a little.
The reason for this is that the Java method signature is quite flexible and allows us to
build exactly the methods we require.

Exactly how the method signature defines how the method must be called and how
the method must return a value deserves further discussion. Let's give each part of
the signature a name, so we can break it into chunks and learn about the parts.

Here is a signature of a method with its parts labeled up and ready
for discussion. Also, have a look at the table to further identify
which part of the signature is which. This will make the rest of our
discussions on methods straightforward:
modifier | return type | name of method (parameters)

And here are a few examples that we have used so far so you can clearly identify the
part of the signature under discussion:

Part of signature Examples
Modifier public, private, and package-private (without modifier specified)
Return type int, you can also use any of the Java primitive types (such as boolean,

float, double, char, int and long) or any predefined reference types (
such as String) and user-defined types (such as Employee, Person)

Coding in Java Part 2 – Methods

[172]

Part of signature Examples
Name of method addContact, setCoordinates, and addAToB
Parameters (boolean isFriend, String name), (int x, int y), and (int a, int b)

Modifiers
In our previous examples, we only used a modifier in a couple of examples, partly
because the method doesn't have to use the modifier. The modifier is a way of
specifying which code can use (call) your method using modifiers such as public
and private. Actually, regular variables can have modifiers too, for example:

// Most code can see me
public int a;

// Code in other classes can't see me
private String secret = "Shhh, I am private";

Modifiers (for methods and variables) are an essential Java topic, but they are best
dealt with when we are discussing the other vital Java topic that we have skirted
around so many times already—classes. We will discuss them in the next chapter.

As we can see from our example methods and the fact that all
the code we have written so far works just fine, modifiers are
not necessary to facilitate our learning so far, although they
will be a big part of our future learning from Chapter 9,
Object-Oriented Programming onwards.

Return types
Next up is the return type. Like a modifier, a return type is optional. So, let's look
a bit closer at it. We have seen that our methods do stuff. But what if we need the
results from what they have done? The simplest example of a return type we have
seen so far is:

int addAToB(int a, int b){
 int answer = a + b;
 return answer;
}

Here, the return type in the signature is highlighted, so the return type is int. The
addAToB method sends back (returns) to the code that called it a value that will fit in
an int variable.

Chapter 8

[173]

The return type can be of any Java type that we have seen so far. The method does
not have to return a value at all, however. In this case, the signature must use the
void keyword as the return type. When the void keyword is used, the method
body must not attempt to return a value, as this will cause a compiler error. It can,
however, use the return keyword without a value. Here are some combinations of
the return type and the use of the return keyword that are valid:

void doSomething(){
 // our code

 // I'm done going back to calling code here
 // no return is necessary
}

Another combination of them is as follows:

void doSomethingElse(){
 // our code

 // I can do this as long as I don't try and add a value
 return;
}

The following code is yet another combination:

void doYetAnotherThing(){
 // some code
 if(someCondition){

 // if someCondition is true returning to calling code
 // before the end of the method body
 return;
 }

 // More code that might or might not get executed

 return;
 /*
 As I'm at the bottom of the method body
 and the return type is void, I'm
 really not necessary but I suppose I make it
 clear that the method is over.
 */
}

Coding in Java Part 2 – Methods

[174]

And in this final example we return a String:

String joinTogether(String firstName, String lastName){
 return firstName + lastName;
}

We could call each of the preceding methods, in turn, like this:

// OK time to call some methods

doSomething();
doSomethingElse();
doYetAnotherThing();
String fullName = joinTogether("Alan ","Turing")

// fullName now = Alan Turing
// continue with code from here

The preceding code would execute all the code in each method in turn.

The name of a method
The method name when we design our own methods is arbitrary. But it is a
convention to use verbs that clearly explain what the method will do. Also, use the
convention of the first letter of the first word of the name being lower case and the
first letter of subsequent words being upper case. This is called camel case as we
learned while learning about variable names, for example:

XGHHY78802c(){
 // code here
}

The preceding method is perfectly legal and will work; however, let's take a look at a
much clearer example that uses the conventions:

doSomeVerySpecificTask(){
 // code here
}

getMyFriendsList(){
 // code here
}

startNewMessage(){
 // code here
}

Now that this is much clearer, let's have a look at the parameters in methods.

Chapter 8

[175]

Parameters
We know that a method can return a result to the calling code. But what if we need
to share some data values from the calling code with the method? Parameters allow
us to share values with the method. We have actually already seen an example with
parameters when we looked at return types. We will look at the same example but a
little more closely at the parameters:

int addAToB(int a, int b){
 int answer = a + b;
 return answer;
}

In the preceding code, the parameters are highlighted. Parameters are contained in
the parentheses (parameters go here) immediately after the method name. Note
that in the first line of the method body, we use a + b as if they are already declared
and initialized variables. This is because they are. The parameters of the method
signature is their declaration, and the code that calls the method, initializes them as
highlighted in the next line of code:

int returnedAnswer = addAToB(10,5);

Also, as we have partly seen in the previous examples, we don't have to use just
int in our parameters, we can use any Java type, including types that we design
ourselves. What's more is that we can mix and match types as well. We can also use
as many parameters as necessary to solve our problem. This example might help:

void addToAddressBook
 (char firstInitial, String lastName, String city, int age){

 /*
 all the parameters are now living breathing,
 declared and initialized variables.

 The code to add details to address book goes here.
 */
}

Now, it's time to get serious about our bodies (method bodies, obviously).

Working in the method body
The body is the part that we have been kind of avoiding with comments such as:

// code here

Coding in Java Part 2 – Methods

[176]

Or comments like:

// some code

But actually, we know exactly what to do in the body already. Any Java syntax that
we have learned so far will work in the body of a method. In fact, if we think back,
all the code we have written so far has been in a method.

The best thing we can do next is write a few methods that actually do something in
the body.

Using methods – demo apps
Here, we will quickly build two apps to explore methods a bit further. First, we will
look into the fundamentals with the Real World Methods app and then we will
glimpse at a new topic, method overloading, in action with the Exploring Method
Overloading app.

As usual, you can open the ready-typed code files in the usual way. The next two
examples on methods can be found in the download bundle in the chapter 8 folder
and the Real World Methods and Exploring Method Overloading subfolders.

Real-world methods
First, let's make ourselves some simple working methods complete with the return
types parameters and fully functioning bodies.

To get started, create a new Android project called Real World Methods, use a
Blank Activity template, and leave all the other settings at their default. Switch to
the MainActivity.java file by clicking on the MainActivity.java tab above the
editor, and then we can start coding.

First, add these three methods to MainActivity. Add them just after the closing
curly brace, }, of the onCreate method:

String joinThese(String a, String b, String c){
 return a + b + c;
}

float getAreaCircle(float radius){
 return 3.141f * radius * radius;
}

void changeA(int a){
 a++;
}

Chapter 8

[177]

The first method that we added is called joinThese. It will return a String variable
and requires three String variables passed into it. In the method body, there is only
one line of code. The return a + b + c code will concatenate the three Strings that
are passed into it and return the joined Strings as the result.

The next method getAreaCircle takes a float variable as an argument and then
returns a float variable too. The body of the method simply uses the formula for the
area of a circle to incorporate the passed-in radius and then returns the answer to the
calling code. The odd-looking f at the end of 3.141 is to let the compiler know that
the number is of the type float. Any floating point number is assumed to be of the
type double unless it has the trailing f.

The third and final method is the simplest of all the methods. Note that it doesn't
return anything; it has a void return type. We have included this method to make
clear an important point that we want to remember about methods. But, let's see it in
action before we talk about it.

Now in onCreate, after the call to setContentView, add this code that calls
our methods:

String joinedString =
 joinThese("Methods ", "are ", "cool ");
Log.e("joinedString = ","" + joinedString);

float area = getAreaCircle(5f);
Log.e("area = ","" + area);

int a = 0;
changeA(a);
Log.e("a = ","" + a);

Run the app and observe the output in the logcat window, which is shown next for
your convenience:

joinedString =﹕ Methods are cool

area =﹕ 78.525

a =﹕ 0

In the logcat output, the first thing we can see is the value of the String:
joinedString. As expected, it is the concatenation of the three words we passed into
the joinThese method.

Next, we can see that getAreaCircle has indeed calculated and returned the area of
a circle based on the length of the radius passed in.

Coding in Java Part 2 – Methods

[178]

The final line of output is perhaps the most interesting: a=: 0. In the onCreate
method, we declared and initialized int a to 0 and then we called changeA. In the
body of changeA, we incremented a with the a++ code. Yet back in onCreate, we see
that when we use Log to print the value of a on the logcat window, it is still 0.

So, when we passed in a to the changeA method, we were actually passing the value
stored in a and not the actual variable a. This is referred to as passing by value in Java.

When we declare a variable in a method, it can only be seen in that
method. When we declare a variable in another method, even if
it has the exact same name, it is not the same variable. A variable
only has scope within the method that it was declared in.

With all primitive variables, this is how passing them to methods works. With
reference variables, it works slightly different, and we will see how it works in the
next chapter.

I have talked about this scope concept with a number of people
who are new to Java. To some, it seems blindingly obvious, even
natural. To others, however, it is a cause of constant confusion.
Should you fall into the latter category, don't worry because
we will talk a bit more about this later in the chapter, and in
subsequent chapters, we will go into great detail exploring scope
and make sure that it is no longer an issue.

Let's look at another practical example of methods and learn something new at the
same time.

Exploring method overloading
As you can see, methods are really quite diverse and deep as a topic. But hopefully,
by taking them a step at a time, we will see that they are not daunting in any way.
We will also be returning to methods in the next chapter. For now, let's create a new
project to explore method overloading.

Create a new blank project called Exploring Method Overloading, and then we
will get on with writing three methods, but with a slight twist.

As we will now see, we can create more than one method with the same name
provided that the parameters are different. The code in this project is very simple.
It is how it works that might appear slightly curious until we analyze it after.

Chapter 8

[179]

In the first method, we will simply call it printStuff and pass in an int variable
via a parameter that is to be printed. Insert this method after the closing brace, }, of
onCreate but before the closing brace, }, of MainActivity. Remember to import the
Log class in the usual way:

void printStuff(int myInt){
 Log.i("info", "This is the int only version");
 Log.i("info", "myInt = "+ myInt);
}

In this second method, we will also call it printStuff but pass in a String variable
that is to be printed. Insert this method after the closing brace, }, of onCreate but
before the closing brace, }, of MainActivity:

void printStuff(String myString){
 Log.i("info", "This is the String only version");
 Log.i("info", "myString = "+ myString);
}

In this third method, we will call it printStuff but pass in a String variable and
int that is to be printed. Insert this method after the closing brace, }, of onCreate
but before the closing brace, }, of MainActivity:

void printStuff(int myInt, String myString){
 Log.i("info", "This is the combined int and String version");
 Log.i("info", "myInt = "+ myInt);
 Log.i("info", "myString = "+ myString);
}

Now, insert this code just before the closing brace, }, of the onCreate method to call
the methods and print some values on the Android console:

// Declare and initialize a String and an int
int anInt = 10;
String aString = "I am a string";

// Now call the different versions of printStuff
// The name stays the same, only the parameters vary
printStuff(anInt);
printStuff(aString);
printStuff(anInt, aString);

Now, we can run the app on the emulator or a real device. Here is the console output:

info﹕ This is the int only version

info﹕ myInt = 10

Coding in Java Part 2 – Methods

[180]

info﹕ This is the String only version

info﹕ myString = I am a string

info﹕ This is the combined int and String version

info﹕ myInt = 10

info﹕ myString = I am a string

As you can see, Java has treated three methods with the same name as totally
different methods. This, as we have just demonstrated, can be really useful. It is
called method overloading.

Method overloading and overriding confusion
Overloading is when we have more than one method with the
same name but different parameters.
Overriding is when we essentially replace a method with the
same name and the same parameter list.
We know enough about overloading and overriding to complete
this book, but if you are brave and your mind is wandering,
yes you can override an overloaded method; however, that is
something that we've kept for another time.

This is how it all works. In each of the steps in which we wrote code, we created a
method called printStuff. But each printStuff method has different parameters,
so each is actually a different method that can be called individually:

void printStuff(int myInt){
 ...
}

void printStuff(String myString){
 ...
}

void printStuff(int myInt, String myString){
 ...
}

The body of each of the methods is simple and just prints out the passed-in
parameters and confirms which version of the method is being called currently.

Chapter 8

[181]

The next important part of our code is when we make it plain, which we mean to
call by using the appropriate arguments that match the parameters in the signature.
Then, we call each method in turn, using the appropriate parameters so that the
compiler knows the exact method required:

printStuff(anInt);
printStuff(aString);
printStuff(anInt, aString);

We now know all we need to about methods, so let's take a quick second look at the
relationship between methods and variables. Then, we'll get our heads around this
scope phenomenon a bit more.

Scope and variables revisited
You might remember that in the Real World Methods project, the slightly
disturbing anomaly was that variables in one method were not apparently the same
as those from another, even if they did have the same name. If you declare a variable
in a method, whether that is one of the lifecycle methods or one of our own methods,
it can only be used within that method.

It is no use doing this in onCreate:

int a = 0;

And then, trying to do this in onPause or some other method:

a++;

We will get an error because a is only visible within the method it was declared in.
At first, this might seem like a problem, but perhaps surprisingly, it is actually a very
useful feature of Java.

The term used to describe this is "scope". A variable is said to be in a scope when
it is usable and out of the scope when it is not. The topic of scope is best discussed
along with classes, and we will in the next chapter, but as a sneak look at what lies
ahead you might like to know that a class can have its very own variables, and when
it does, they have a scope for the whole class. That is, all its methods can see and use
them. We call them member variables or fields.

To declare a member variable, you can simply use the usual syntax after the start of
the class, outside of any method declared in the class. If our app started like this:

public class MainActivity extends AppCompatActivity {

 int mSomeVariable = 0;

Coding in Java Part 2 – Methods

[182]

 // Rest of code and methods follow as usual
 // …

We could use mSomeVariable anywhere, inside any method in this class. Our new
variable, mSomeVariable, has class scope. We append m to the variable name simply
to remind us when we see it that it is a member variable. This is not required, but it is
a useful convention.

Here are a couple of hypothetical method questions to try and make some of what
we have learned stick a little more. Try and answer them yourself.

FAQ
1. What is wrong with this method definition?

doSomething(){
 // Do something here
}

No return type is declared. You do not have to return a value from a method,
but its return type must be void in this case. This is how the method should
look:

void doSomething(){
 // Do something here
}

2. What is wrong with this method definition?
float getBalance(){
 String customerName = "Linus Torvalds";
 float balance = 429.66f;
 return userName;
}

The method returns a String (userName) variable, but the signature states
that it must return a float. With a method name like getBalance, this code is
probably what was intended:

float getBalance(){
 String customerName = "Linus Torvalds";
 float balance = 429.66f;
 return balance;
}

Chapter 8

[183]

3. When do we call the onCreate method? !Trick question alert!
We don't. Android decides when to call onCreate as well as all the other
methods that make up the lifecycle of an Activity. We just override the ones
that are useful to us. We do, however, call super.onCreate so that our
overridden version and the original version both get executed.

For the sake of technical accuracy, it is possible to call the lifecycle
methods from our code, but we will never need to do this in the
context of this book. It is best to leave these things to Android.

Further reading
You have learned enough Java to proceed with this book. It is always beneficial,
however, to see more examples of Java in action and to go beyond the minimum
necessary to proceed. If you want a good source to learn Java in greater depth, then
the official Oracle website is good. Note that you do not need to study this website to
continue with this book. Also note that the tutorials are not set in an Android context.
The site is a useful resource to bookmark and browse all the same. The official Java
tutorials can be found at https://docs.oracle.com/javase/tutorial/.

Summary
In previous chapters, we got quite proficient with a whole array of widgets and
other UI elements and we built a fairly good selection of UI layouts. In this chapter
and the previous two, we explored Java and the Android Activity lifecycle in quite
significant depth, especially considering how quickly we have done it.

What we really need to do now is bring these things together so that we can begin
to display and manipulate our data using the Android UI. To achieve this, we need
to understand a bit more about classes. They have been lurking in our code since
Chapter 1, The First App, and we have even used them a bit. Up until now, however,
we haven't tackled them properly other than constantly referring to Chapter 9,
Object-Oriented Programming. In the next chapter, we will quickly get to grips with
classes and then we can finally start to build apps in which the UI designs and our
Java code work in perfect harmony.

https://docs.oracle.com/javase/tutorial/

[185]

Object-Oriented
Programming

In this chapter we will discover that in Java, classes are fundamental to just about
everything. We will begin to understand why the software engineers at Sun
Microsystems back in the early 1990's made Java the way they did.

We have already talked about reusing other people's code, specifically the Android
API, but in this chapter, we will really get to grips with how this works and learn
about object-oriented programming (OOP) and how to use it.

In short, we will cover the following topics:

• What OOP is including encapsulation, inheritance, and polymorphism
• Writing and using our first, very own class
• Encapsulation in depth and how it helps us
• Inheritance in depth and how to take full advantage of it
• Polymorphism explained in greater detail
• Static classes and how we have been using them already
• Abstract classes and interfaces

Important memory management warning
Before we get into exactly what OOP is, a quick warning.

I'm referring to our memories for a change. If you try to memorize this chapter, you
will have to make a lot of room in your brain and you will probably forget something
really important in its place, like going to work or thanking the author for telling you
not to try and memorize this stuff.

Object-Oriented Programming

[186]

A good goal would be to try and just about get it. This way, your understanding will
become more rounded. You can then refer back to this chapter for a refresher when
needed.

It doesn't matter if you don't completely understand everything
in this chapter straight away! Keep on reading and make sure to
complete all the apps and mini apps.

Introducing OOP
In Chapter 1, The First App, we mentioned that Java was an object-oriented language.
An object-oriented language requires us to use object-oriented programming.

My ten-year-old son has been especially helpful in devising a
unique way of remembering OOP. He suggests simply reversing
its letters. I will let the reader decide whether to use this particular
memory jogger or one of his or her own.

Let's find out a little bit more.

What is OOP exactly?
OOP is a way of programming that involves breaking our requirements down into
chunks that are more manageable than the whole.

Each chunk is self-contained yet potentially reusable by other programs, while
working together as a whole with the other chunks.

These chunks are what we have been referring to as objects. When we plan/code an
object, we do so with a class. A class can be thought of as the blueprint of an object.

We implement an object of a class. This is called an instance of a class. Think about a
house blueprint. You can't live in it, but you can build a house from it; you build an
instance of it. Often, when we design classes for our apps, we write them to represent
real world things.

However, OOP is more than this. It is also a way of doing things, a methodology that
defines best practices.

The three core principles of OOP are encapsulation, polymorphism, and
inheritance. This might sound complex but actually, when taken a step at a time, is
reasonably straightforward.

Chapter 9

[187]

Encapsulation
Encapsulation means keeping the internal workings of your code safe from
interference from the code that uses it, by allowing only the variables and methods
you choose to be accessed. This means your code can always be updated, extended,
or improved without affecting the programs that use it, as long as the exposed parts
are still accessed in the same way.

Remember this line of code from Chapter 1, The First App?

locationManager.getLastKnownLocation
 (LocationManager.GPS_PROVIDER);

With proper encapsulation, it doesn't matter if the satellite company or the
Android API team need to update the way their code works. As long as the
getLastKnownLocation method signature remains the same, we don't have to
worry about what goes on inside. Our code written before the update will still work
after the update. If the manufacturers of a car get rid of the wheels and make it an
electrically powered hover car, as long as it still has a steering wheel, accelerator, and
brake pedal, driving it should not be a challenge.

When we use the classes of the Android API, we are doing so in the way the Android
developers designed their classes to allow us to.

Polymorphism
Polymorphism allows us to write code that is less dependent on the types we are
trying to manipulate, making our code clearer and more efficient. Polymorphism
means different forms. If the objects that we code can be more than one type of thing,
then we can take advantage of this. Some examples later in the chapter will make
this clear.

Inheritance
Just like it sounds, inheritance means we can harness all the features and benefits
of other people's classes, including encapsulation and polymorphism, while further
refining their code specifically to our situation. Actually, we have done this already,
every time we used the extends keyword:

public class MyActivity extends AppCompatActivity {

The AppCompatActivity class itself inherits from Activity. So, we inherited from
Activity every time we created a new Android project. We can go further than this,
and we will see how it is useful.

Object-Oriented Programming

[188]

Why do it like this?
When written properly, all this OOP allows you to add new features without
worrying as much about how they interact with existing features. When you do have
to change a class, its self-contained (encapsulated) nature means less or perhaps even
zero consequences for other parts of the program. This is the encapsulation part.

You can use other people's code (like the Android API) without knowing or perhaps
even caring how it works. Think about the Android lifecycle, Toast, Log, all the UI
widgets, listening to satellites, and so on. For example, the Button class has nearly
50 methods—do we really want to write all that ourselves, just for a button? Much
better to use someone else's Button class.

OOP allows you to write apps for highly complex situations without breaking a sweat.

You can create multiple, similar, and yet different versions of a class without
starting the class from scratch by using inheritance; and you can still use the
methods intended for the original type of object with your new object because of
polymorphism.

It makes sense, really. And Java was designed from the start with all of this in mind,
so we are forced into using all this OOP; however, this is a definitely a good thing.
Let's have a quick class recap.

A class recap
A class is a bunch of code that can contain methods, variables, loops, and all the
other Java syntax we have learned. A class is part of a Java package, and most
packages will normally have multiple classes. Usually, although not always, each
new class will be defined in its own .java code file with the same name as the class,
as with all our Activity classes so far.

Once we have written a class, we can use it to make as many objects from it as
we want. Remember, the class is the blueprint, and we make objects based on the
blueprint. The house isn't the blueprint, just as the object isn't the class; it is an object
made from the class. An object is a reference variable, just like a String, and later we
will discover exactly what being a reference variable means. For now, let's take a
look at some actual code.

Taking a look at the code for a class
Let's say we are making an app for the military. It is designed for use by senior
officers to micromanage their troops in the battle. Among others, we would probably
need a class to represent a soldier.

Chapter 9

[189]

The class implementation
Here is real code for our hypothetical class. We call it a class implementation.
Because the class is called Soldier, if we implement this for real, we would do so in
a file called Soldier.java:

public class Soldier {

 // Member variables
 int health;
 String soldierType;

 // Method of the class
 void shootEnemy(){
 // bang bang
 }

}

The code snippet in the preceding example is the implementation for a class called
Soldier. There are two member variables or fields, an int variable called health
and a String variable called soldierType.

There is also a method called shootEnemy. The method has no parameters and a
void return type, but class methods can be of any shape or size as we discussed in
Chapter 8, Coding in Java Part 2 – Methods.

To be precise about member variables and fields, when the class is instantiated into a
real object, the fields become variables of the object itself, and we call them instance
or member variables.

They are just variables of the class, whichever fancy name they are referred to by.
However, the difference between fields and variables declared in methods (called
local variables) does become more important as we progress. We briefly discussed
variable scope at the end of Chapter 8, Coding in Java Part 2 – Methods. We will look at
all types of variables again later in this chapter.

Object-Oriented Programming

[190]

Declaring, initializing, and using an object of
the class
Remember that Soldier is just a class, not an actual usable object. It is a blueprint
for a soldier and not an actual soldier object, just as int, String, and boolean are
not variables; they are just types we can make variables of. This is how we make an
object of the type Soldier from our Soldier class:

Soldier mySoldier = new Soldier();

In the first part of the code, Soldier mySoldier declares a new variable of the type
Soldier called mySoldier. The last part of the code, new Soldier(), calls a special
method called a constructor that is automatically made for all classes by the compiler
that creates an actual Soldier object. As you can see, the constructor method has
the same name as the class. We will look at constructors in more depth later in the
chapter.

And, of course, the assignment operator = in the middle of the two parts assigns
the result of the second part to that of the first. The next image summarizes all this
information:

This is not far off how we deal with a regular variable, apart from the odd-looking
parentheses () on the end of the line of code. These parentheses will be explained
shortly.

Hmm, looks a bit like a method call, right?

Chapter 9

[191]

Just like regular variables, we could also have done it in two parts, like this:

Soldier mySoldier;
mySoldier = new Soldier();

This is how we would assign and use the variables of our hypothetical class:

mySoldier.health = 100;
mySoldier.soldierType = "sniper";

// Notice that we use the object name mySoldier.
// Not the class name Soldier.
// We didn't do this:
// Soldier.health = 100;
// ERROR!

In the preceding code, the dot operator . is used to access the variables of the class;
and this is how we would call the method, again, by using the object name and not
the class name and followed by the dot operator:

mySoldier.shootEnemy();

We can summarize the use of the dot operator with a diagram:

Object-Oriented Programming

[192]

We can think of a class's methods in terms of what it can do and
its instance/member variables as what it knows about itself.

We can also go ahead and make another Soldier object and access its methods and
variables:

Soldier mySoldier2 = new Soldier();
mySoldier2.health = 150;
mySoldier2.soldierType = "special forces";
mySoldier2.shootEnemy();

It is important to realize that mySoldier2 is a totally separate object with completely
separate instance variables to mySoldier:

What is also key here is that this previous code would not be written within the
class itself. For example, we could create the Soldier class in an external file
called Soldier.java and then use the code that we have just seen, perhaps in our
MainActivity class.

This will become clearer when we write our first class in an actual project shortly.

Chapter 9

[193]

Also, notice that everything is done on the object itself. We must create objects of
classes in order to make them useful.

As always, there are exceptions to this rule. But they are in the minority,
and we will look at the exception later in the chapter. In fact, we have
already seen two exceptions in the book so far: the Toast and Log
classes. Exactly what is going on with them will be explained soon.

Let's explore basic classes a little more deeply by writing one for real.

The basic classes mini app
The generals who will be using our app will need more than one Soldier object. In
our app that we are about to build, we will instantiate and use multiple objects. We
will also demonstrate using the dot operator on variables and methods to show that
different objects have their very own instance variables.

You can get the completed code for this example in the code download. It is in
the chapter 9/Basic Classes folder. Alternatively, read on to create your own
working example.

Create a project with a blank activity. Call the application BasicClasses. Now, we
create a new class called Soldier:

1. Right-click the com.gamecodeschool.basicclasses (or whatever your
package name is) folder in the project explorer window.

2. Select New | Java Class.
3. In the Name field, type Soldier and left-click on OK.

The new class is created for us with a code template ready to put our implementation
within it, just like the next image shows:

Object-Oriented Programming

[194]

Notice that Android Studio has put the class in the same package as the rest of our
app. And now, we can write its implementation.

Write the following class implementation code within the opening and closing curly
braces of the Soldier class as shown. The new code to type is highlighted:

public class Soldier {
 int health;
 String soldierType;

 void shootEnemy(){
 //let's print which type of soldier is shooting
 Log.i(soldierType, " is shooting");
 }
}

Now that we have a class, a blueprint for our future objects of the type Soldier, we
can start to build our army. In the editor window, left-click on the tab MainActivity.
java. We will write this code within the onCreate method just after the call to
setContentView. Type this code:

// first we make an object of type soldier
Soldier rambo = new Soldier();
rambo.soldierType = "Green Beret";
rambo.health = 150;
// It takes allot to kill Rambo

// Now we make another Soldier object
Soldier vassily = new Soldier();
vassily.soldierType = "Sniper";
vassily.health = 50;
// Snipers have less health

// And one more Soldier object
Soldier wellington = new Soldier();
wellington.soldierType = "Sailor";
wellington.health = 100;
// He's tough but no green beret

If you aren't doing so already, this is a really good time to start taking
advantage of the auto-complete feature in Android Studio. Notice
after you have declared and created a new object, all you have to do
is begin typing the object's name and all the auto-complete options
present themselves.

Chapter 9

[195]

Now that we have our extremely varied and somewhat unlikely army, we can use it
and also verify the identity of each object. Type the following code below the code in
the previous step:

Log.i("Rambo's health = ", "" + rambo.health);
Log.i("Vassily's health = ", "" + vassily.health);
Log.i("Wellington's health = ", "" + wellington.health);

rambo.shootEnemy();
vassily.shootEnemy();
wellington.shootEnemy();

Now, we can run our app. All the output will be in the logcat console window.

This is how it works. First, we created a template for our new Soldier class. Then,
we implemented our class including the declaring of two fields (member variables),
an int and a String called health and soldierType.

We also have a method in our class called shootEnemy. Let's look at it again and
examine what is going on:

void shootEnemy(){
 //lets print which type of soldier is shooting
 Log.i(soldierType, " is shooting");
}

In the body of the method, we print to the console, first the string soldierType and
then the arbitrary " is shooting". What's neat here is that the string soldierType
will be different depending upon which object we call the shootEnemy method on.

Next, we declared and created three new objects of the type Soldier. They were
rambo, vassily, and wellington. Finally, we initialized each with a different value
for health as well as soldierType.

Object-Oriented Programming

[196]

Here is the output:

Rambo's health =﹕ 150

Vassily›s health =﹕ 50

Wellington›s health =﹕ 100

Green Beret﹕ is shooting

Sniper﹕ is shooting

Sailor﹕ is shooting

Notice that each time we access the health variable of each Soldier object, it prints
the value we assigned it, demonstrating that although the three objects are of the
same type, they are completely separate, individual instances/objects.

Perhaps more interesting is the three calls to shootEnemy. One by one, each of our
Soldier object's shootEnemy methods is called and we print the soldierType
variable to the console. The method has the appropriate value for each individual
object, further demonstrating that we have three distinct objects (instances of the
class), albeit created from the same Soldier class.

We saw how each object is completely independent of the other objects. However,
if we imagine whole armies of Soldier objects in our app, then we realize we are
going to need to learn new ways of handling large numbers of objects (and regular
variables, too).

Think about managing just 100 separate Soldier objects. What about when we have
thousands of objects? In addition, this isn't very dynamic. The way we are writing
the code at the moment relies on us (the developers) knowing the exact details of the
soldiers that the generals (the user) will be commanding. We will see the solution for
this in Chapter 13, Handling and Displaying Arrays of Data.

More things we can do with our first class
We can treat a class much like we can other variables. We can use a class as a
parameter in a method signature:

public void healSoldier(Soldier soldierToBeHealed){

And when we actually call the method, we must, of course, pass an object of that
type. Here is a hypothetical call to a healSoldier method:

// Perhaps healSoldier could add to the health instance variable
healSoldier(rambo);

Chapter 9

[197]

Of course, the preceding example might raise questions like, should the
healSoldier method be a method of a class?

fieldhospital.healSoldier(rambo);

It could be or not. It would depend upon what the best solution is for the situation.
We will look at more OOP, and then the best solution for lots of similar conundrums
should present themselves more easily.

And, as you might guess, we can also use an object as the return value of a method.
Here is what the updated hypothetical healSoldier signature and implementation
might look like now:

Soldier healSoldier(Soldier soldierToBeHealed){
 soldierToBeHealed.health++;

 return soldierToBeHealed;
}

In fact, we have already seen classes being used as parameters. For example, here is
our topClick method from Chapter 2, Java – First Contact. It receives an object called
v of the type View:

public void topClick(View v){

Although, in the case of topClick, we didn't do anything with the passed in object
of the type View, partly because we didn't need to and partly because we don't know
what we can do with an object of the type View yet.

All this information will likely raise a few questions. OOP is like that. So, let's try and
consolidate all this class stuff with what we already know by taking another look at
variables and encapsulation.

Remember that encapsulation thing?
So far, what we have really seen is what amounts to a kind of code-organizing
convention; although, we did discuss the wider goals of all this OOP stuff. So, now
we will take things further and begin to see how we actually manage to achieve
encapsulation with OOP.

Object-Oriented Programming

[198]

Definition of encapsulation
Encapsulation involves keeping the internal workings of your code
safe from interference from the programs that use it, allowing only
the variables and methods you choose, to be accessed. This means
your code can always be updated, extended, or improved without
affecting the programs that use it, as long as the exposed parts are still
made available in the same way. It also allows the code that uses your
encapsulated code to be much simpler and easier to maintain because
much of the complexity of the task is encapsulated in your code.

But didn't you say we don't have to know what is going on inside? So, you might
question what we have seen so far, for example, if we are constantly setting the
instance variables like this: rambo.health = 100;, isn't it possible that eventually
things could start to go wrong, perhaps like this?

rambo.soldierType = "fluffy bunny";

Encapsulation protects your class/objects of your class/code from being used in a
way that it wasn't meant to be. By strictly controlling the way your code is used, it
can only ever do what you want it to do and with value ranges that you can control.

It can't be forced into errors or crashes. Also, you are then free to make changes to
the way your code works internally, without breaking the rest of your program or
any other programs that are using an older version of the code:

weightlifter.legstrength = 100;
weightlifter.armstrength = -100;
weightlifter.liftHeavyWeight();

// one typo and weightlifter rips own arms off

We can encapsulate our classes to avoid this and here is how.

Controlling class use with access modifiers
The designer of the class controls what can be seen and manipulated by any program
that uses their class. We can add an access modifier before the class keyword, like
this:

public class Soldier{
 //Implementation goes here
}

Chapter 9

[199]

There are two main access modifiers for classes in the context we have discussed so
far. Let's briefly look at each in turn:

• public: This is straightforward. A class declared as public can be seen by all
other classes.

• default: A class has default access when no access modifier is specified. This
will make it public, but only to classes in the same package, and inaccessible
to all others.

So, now we can make a start at this encapsulation thing. But even at a glance, the
access modifiers described are not very fine-grained. We seem to be limited to
complete lock down to anything outside the package or a complete free-for-all.

Actually, the benefits here are easily taken advantage of. The idea would be to
design a package that fulfills a set of tasks. Then, all the complex inner workings of
the package, the stuff that shouldn't be messed with by anybody but our package,
should be given default access (only accessible to classes within the package). We can
then make available a careful selection of public classes that can be used by others (or
other distinct parts of our program).

For the size and complexity of the apps in this book, creating
multiple packages is probably overkill. We will, of course, be using
other people's packages and classes, so this stuff is worth knowing.

Class access in a nutshell
A well-designed app will probably consist of one or more packages, each containing
only default or default and public classes.

In addition to class level privacy controls, Java gives us programmers very fine-
grained controls, but to use these controls, we have to look into variables with a little
more detail.

Controlling variable use with access
modifiers
To build on the class visibility controls, we have variable access modifiers. Here is a
variable with the private access modifier being declared:

private int myInt;

Object-Oriented Programming

[200]

Note also that all our discussion of variable access modifiers applies to object
variables, too. For example, here is an instance of our Soldier class being declared,
created, and assigned. As you can see, the access specified in this case is public:

public Soldier mySoldier = new Soldier();

Before you apply a modifier to a variable, you must first consider the class visibility.
If class a is not visible to class b, say because class a has default access and class b is in
another package, then it doesn't make any difference what access modifiers you use
on the variables in class a; class b can't see any of them.

So, it makes sense to show a class to another class when necessary but only to expose
the variables that are needed, not everything.

Here is an explanation of the different variable access modifiers. They are more
numerous and finely-grained than the class access modifiers. The depth and
complexity of access modification is not so much in the range of modifiers but
rather in the smart ways we can combine them to achieve the worthy goals of
encapsulation. Here are the variable access modifiers:

• public: You guessed it, any class or method from any package can see this
variable. Use public only when you are sure this is what you want.

• protected: This is the next least restrictive after public. Protected variables
can be seen by any class and any method as long as they are in the same
package.

• default: Default doesn't sound as restrictive as protected, but it is more
so. A variable has default access when no access is specified. The fact that
default is restrictive perhaps implies we should be thinking on the side of
hiding our variables more than we should be exposing them. At this point,
we need to introduce a new concept. Do you remember we briefly discussed
inheritance and how we can quickly take on the attributes of a class and yet
refine it by using the extends keyword? Just for the record, default access
variables are not visible to sub classes; that is, when we extend a class like
we did with Activity, we cannot see it's default variables. We will look at
inheritance in more detail later in the chapter.

• private: Private variables can only be seen within the class they are
declared. Including default access, they cannot be seen by subclasses (classes
that inherit from the class in question).

Chapter 9

[201]

Variable access summary
A well-designed app will probably consist of one or more packages, each containing
only default or default and public classes. Within these classes, variables will
have carefully chosen and most likely varied access modifiers, chosen with a view to
achieving our goal of encapsulation.

One more twist in all this access modification stuff before we get practical with it.

Methods have access modifiers too
We already briefly mentioned in the previous chapter that methods have access
modifiers. It makes sense as methods are the things that our classes can do. We will
want to control what users of our class can and can't do.

The general idea here is that some methods will do things internally only and are
therefore not needed by users of the class, and some methods will be fundamental to
how users of the class use your class.

The access modifiers for methods are the same as for the class variables. This makes
things easy to remember but suggests, again, that successful encapsulation is a
matter of design rather than of following any specific set of rules.

As an example, this method, provided it is in a public class, could be used by any
other class:

public useMeEverybody(){
 //do something everyone needs to do here
}

Whereas this method could only be used internally by the class that created it:

private secretInternalTask(){
 /*
 do something that helps the class function internally
 Perhaps, if it is part of the same class,
 useMeEverybody could use this method...
 On behalf of the classes outside of this class.
 Neat!
 */
}

Object-Oriented Programming

[202]

And this next method with no access specified has default visibility. It can be used
only by other classes in the same package. If we extend the class containing this
default access method, the class will not have access to this method:

fairlySecretTask(){
 // allow just the classes in the package
 // Not for external use
}

As a last example before we move on, here is a protected method, only visible to the
package but usable by our classes that extend it, just like onCreate:

protected packageTask(){
 // Allow just the classes in the package
 // And you can use me if you extend me too
}

A method access summary
Method access should be chosen to best enforce the principles we have already
discussed. It should provide the users of your class with just the access they need
and preferably nothing more, Thereby, we achieve our encapsulation goals, like
keeping the internal workings of our code safe from interference from the programs
that use it, for all the reasons we have discussed.

Accessing private variables with getters and
setters
Now, we need to consider, if it is best practice to hide our variables away as private;
how do we allow access to them without spoiling our encapsulation? What if an
object of the class Hospital wanted access to the health member variable from an
object of the type Soldier, so it could increase it? The health variable should be
private because we don't want just any piece of code changing it.

In order to be able to make as many member variables as possible private and yet
still allow some kind of limited access to some of them, we use getters and setters.
Getters and setters are just methods that get and set variable values.

This is not some special new Java thing we have to learn. It is just a convention
for using what we already know. Let's have a look at getters and setters using our
Soldier and Hospital class example.

Chapter 9

[203]

In this example, each of our two classes are created in their own file but the same
package. First of all, here is our hypothetical Hospital class:

class Hospital{
 private void healSoldier(Soldier soldierToHeal){
 int health = soldierToHeal.getHealth();
 health = health + 10;
 soldierToHeal.setHealth(health);
 }
}

Our implementation of the Hospital class has just one method, healSoldier. It
receives a reference to a Soldier object as a parameter. So, this method will work on
whichever Soldier object is passed in: vassily, wellington, Rambo, or whoever.

It also has a local health variable that it uses to temporarily hold and increase the
soldier's health. In the same line, it initializes the health variable to the Soldier
object's current health. The Soldier object's health is private, so the public getter
method getHealth is used instead.

Then, health is increased by 10 and the setHealth setter method loads up the new
revived health value back to the Soldier object.

The key here is that although a Hospital object can change a Soldier object's
health, it only does so within the bounds of the getter and setter methods. The getter
and setter methods can be written to control and check for potentially erroneous or
harmful values.

Next, look at our hypothetical Soldier class with the simplest implementation
possible of its getter and setter methods:

public class Soldier{

 private int health;

 public int getHealth(){
 return health;
 }

 public void setHealth(int newHealth){

 // Check for stupid values of newHealth
 health = newHealth;
 }
}

Object-Oriented Programming

[204]

We have one instance variable called health, and it is private. Private means it
can only be changed by methods of the Soldier class. We then have a public
getHealth method that unsurprisingly returns the value held in the private health
int variable. As this method is public, any code with access to an object of the type
Soldier can use it.

Next, the setHealth method is implemented. Again, it is public, but this time it
takes an int data type as a parameter and assigns whatever is passed in to the
private health variable. In a more lifelike example, we would write some more code
here to make sure the value passed in is within the bounds we expect.

Now, we declare, create, and assign to make an object of each of our two new classes
and see how our getters and setters work:

Soldier mySoldier = new Soldier();
// mySoldier.health = 100;//Doesn't work, private

// we can use the public setter setHealth()
mySoldier.setHealth(100);//That's better

Hospital militaryHospital = new Hospital();

// Oh no mySoldier has been wounded
mySoldier.setHealth(10);

/*
 Take him to the hospital
 But my health variable is private
 And Hospital won't be able to access it
 I'm doomed - tell Laura I love her

 No wait- what about my public getters and setters?
 We can use the public getters and setters from another class
*/

militaryHospital.healSoldier(mySoldier);

// mySoldiers private variable health has been increased by 10
// I'm feeling much better thanks!

We see that we can call our public setHealth and getHealth methods directly on
our object of the type Soldier. Not only that, we can call the healSoldier method
of the Hospital object, passing in a reference to the Soldier object, which can also
use the public getters and setters to manipulate the private health variable.

Chapter 9

[205]

We see that the private health variable is simply accessible, yet totally within the
control of the designer of the Soldier class.

If you want to play around with this example, there is code for a working app in the
code bundle in the Chapter 9 folder called GettersAndSetters. I have added a few
lines of code to print to the console. We deliberately covered this the way we did to
keep the key parts of the code as clear as possible.

Getters and setters are sometimes referred to by their more correct
names, accessors and mutators. We will stick to getters and
setters. I just thought you might like to know the jargon.

Yet again, our example and the explanation is probably raising more questions.
That's good.

By using encapsulation features (like access control), it is kind of like signing a really
important deal about how to use and access a class and its methods and variables.
The contract is not just an agreement about now, but an implied guarantee for the
future. We will see that as we proceed through this chapter, there are more ways that
we refine and strengthen this contract.

Use encapsulation where it is needed or, of course, if you are being
paid to use it by an employer. Often, encapsulation is overkill on small
learning projects, like some of the examples in this book, except, of
course, when the topic you are learning is encapsulation itself.
We are learning this Java OOP stuff under the assumption that you
will one day want to write much more complex apps, whether on
Android or some other platform that uses OOP. In addition, we will
be using classes from the Android API that uses it extensively, and it
will help us understand what is happening then, as well. Typically,
throughout this book, we will use encapsulation when implementing
full projects and often overlook it when showing small code samples
to demonstrate a single idea or topic.

Object-Oriented Programming

[206]

Setting up our objects with constructors
With all these private variables and their getters and setters, does it mean that we
need a getter and a setter for every private variable? What about a class with lots of
variables that need initializing at the start? Think about:

mySoldier.name
mysoldier.type
mySoldier.weapon
mySoldier.regiment
…

Some of these variables might need getters and setters, but what if we just want to
set things up when the object is first created, to make the object function correctly?

Surely, we don't need two methods (a getter and a setter) for each?

Fortunately, this is unnecessary. For solving this potential problem, there is a special
method called a constructor. We briefly mentioned the existence of a constructor
when we discussed instantiating an object from a class. Let's take a look again. Here,
we create an object of the type Soldier and assign it to an object called mySoldier:

Soldier mySoldier = new Soldier();

Nothing new here, but look at the last part of that line of code:

…Soldier();

This looks suspiciously like a method.

All along, we have been calling a special method known as a constructor that has
been created behind the scenes automatically by the compiler.

However, and this is getting to the point now, like a method, we can override it,
which means we can do really useful things to set up our new object before it is used.
This next code shows how we could do this:

public Soldier(){
 // Someone is creating a new Soldier object

 health = 200;
 // more setup here
}

The constructor has a lot of syntactical similarities to a method. It can, however, only
be called with the use of the new keyword, and it is created for us automatically by
the compiler, unless we create our own like in the previous code.

Chapter 9

[207]

Constructors have the following attributes:

• They have no return type

• They have the exact same name as the class

• They can have parameters

• They can be overloaded

One more piece of Java syntax that is useful to introduce at this point is the Java this
keyword.

The this keyword is used when we want to be explicit about exactly which variables
we are referring to. Look at this example constructor, again for a hypothetical
variation of the Soldier class:

public class Soldier{

 String name;
 String type;
 int health;

 public Soldier(String name, String type, int health){

 // Someone is creating a new Soldier object

 this.name = name;
 this.type = type;
 this.health = health;

 // more setup here
 }
}

This time, the constructor has a parameter for each of the variables we want to
initialize. By using the this keyword, it is clear when we mean the member variable
or the parameter.

There are more twists and turns to be learned with regard to variables and this, and
they make much more sense when applied to a practical project. In the next mini
app, we will explore all we have learned so far in this chapter and some more new
ideas, too.

But first, a bit more OOP.

Object-Oriented Programming

[208]

Static methods
We know quite a lot about classes—how to turn them into objects and use their
methods and variables. But something isn't quite right. Since the very start of the
book, we have been using two classes more than any other. We have repeatedly used
Log and Toast to output to the logcat or the user's screen, but have not instantiated
them once! How can this be?

The static methods of classes can be used without first instantiating an object of
the class. We can think of this as a static method belonging to the class and all other
methods belonging to an object of a class.

And as you have probably realized by now, Log and Toast both contain static
methods. To be clear: Log and Toast contain static methods; they themselves are still
classes.

Classes can have both static and regular methods, as well, but the regular methods
would need to be used in the regular way, via an instance of the class.

Take another look at Log.i in action:

Log.i("info","our message here");

Here, i is the method being statically accessed, and the method takes two
parameters, both of the type String.

Next, we see the static method makeText of the Toast class in use:

Toast.makeText(this, "our message", Toast.LENGTH_SHORT).show();

The makeText method of the Toast class takes three arguments.

The first argument is this, which takes some explaining. We saw when talking
about constructors that to explicitly refer to the member variables of the current
instance of an object, we can use this.health, this.regiment, and so on.

When we use this as we do in the previous line of code, we are referring to the
instance of the class itself. It is not the Toast class but the this keyword in the
previous line of code is a reference to the class the method is being used from. In
our case, we have used it from MainActivity. Many things in Android require
a reference to an instance of Activity to do their job. We will fairly regularly,
throughout this book, pass in this (a reference to Activity) in order to help a class/
object from the Android API do its work. We will also write classes that need this as
an argument in one or more of its methods. So, we will see how to handle this when
it is passed in, as well.

The second argument is, of course, a String.

Chapter 9

[209]

The third argument is accessing a final variable, LENGTH_SHORT, again via the class
name, not an instance of the class. If we declare a variable like this next line of code:

public static final int LENGTH_SHORT = 1;

Assuming that the variable was declared in a class called MyClass, we could access
the variable like this: MyClass.LENGTH_SHORT and use it like any other variable, but
the final keyword makes sure that the value of the variable can never be changed.
This type of variable is called a constant.

The static keyword also has another consequence for a variable, especially when it
is not a constant (can be changed), and we will see this in action in our next mini app.

Now, if you look carefully at the very end of the line of code that shows a Toast
message to the user, you will see something else new: .show().

This is called chaining, and all we are doing is calling a second method of the
Toast class but using just one line of code. It is the show method that actually
triggers the message.

We will see some more chaining as we proceed through the book, like in Chapter 12,
Having a Dialogue with the User, when we make pop-up dialog windows, and in
Chapter 17, Sound FX and Supporting Different Versions of Android, when we start to use
sound in our apps.

If you want to read about the Toast class and some of its other
methods in detail, you can do so here: http://developer.
android.com/reference/android/widget/Toast.html.

Static methods are often provided in classes with uses that are so generic, it doesn't
make sense to have to create an object of the class. Another really useful class with static
methods is Math. This class is actually a part of the Java API, not the Android API.

Want to write a calculator app? It's easier than you think with
the static methods of the Math class. You can take a look at them
here: http://docs.oracle.com/javase/7/docs/api/
java/lang/Math.html.

If you try this out, you will need to import the Math class the same way you
imported all the other classes we have used.

http://developer.android.com/reference/android/widget/Toast.html
http://developer.android.com/reference/android/widget/Toast.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

Object-Oriented Programming

[210]

Encapsulation and static methods
mini app
We have looked at the intricate way that access to variables and their scope is
controlled, and it would probably serve us well to look at an example of them in
action. These will not so much be practical real-world examples of variable use, but
more a demonstration to help understand access modifiers for classes, methods, and
variables. This is alongside the different types of variable-like references or primitive
and local instances, along with the new concepts of static and final variables and
the this keyword. The completed code is in the chapter 9 folder of the download
bundle. It is called Access Scope This And Static.

Create a new blank activity project and call it Access Scope This And Static.

Create a new class by right-clicking on the existing MainActivity class in the project
explorer and clicking New | Class. Name the new class AlienShip.

Now, we declare our new class and some member variables. Note that numShips is
private and static. We will see how this variable is the same across all instances of
the class soon. The shieldStrength variable is private. shipName is public:

public class AlienShip {

 private static int numShips;
 private int shieldStrength;
 public String shipName;

Next is the constructor. We can see that the constructor is public, has no return
type, and has the same name as the class—as per the rules. In it, we increment the
private static numShips variable. Remember, this will happen each time we create a
new object of the type AlienShip. Also, the constructor sets a value for the private
variable shieldStrength using the private setShieldStrength method:

public AlienShip(){
 numShips++;

 /*
 Can call private methods from here because I am part
 of the class.
 If didn't have "this" then this call
 might be less clear
 But this "this" isn't strictly necessary

Chapter 9

[211]

 Because of "this" I am sure I am setting
 the correct shieldStrength
 */

 this.setShieldStrength(100);

}

Here is the public static getter method so classes outside of AlienShip can find
out how many AlienShip objects there are. We will also explore the way in which
we use static methods:

public static int getNumShips(){
 return numShips;

}

And this is our private setShieldStrength method. We could have just set
shieldStrength directly from within the class, but the following code shows how
we distinguish between the shieldStrength local variable/parameter and the
shieldStrength member variable by using the this keyword:

private void setShieldStrength(int shieldStrength){

 // "this" distinguishes between the
 // member variable shieldStrength
 // And the local variable/paramater of the same name
 this.shieldStrength = shieldStrength;

}

This next method is the getter, so other classes can read but not alter the shield
strength of each AlienShip object:

public int getShieldStrength(){
 return this.shieldStrength;
}

Now, we have a public method that can be called every time an AlienShip
object is hit. It just prints to the console and then detects if that particular object's
shieldStrength is zero. If it is, it calls the destroyShip method that we'll look
at next:

public void hitDetected(){

 shieldStrength -=25;

Object-Oriented Programming

[212]

 Log.i("Incomiming: ","Bam!!");
 if (shieldStrength == 0){
 destroyShip();
 }

}

And lastly, for our AlienShip class, we have the destroyShip method. We print a
message that indicates which ship has been destroyed based on its shipName, as well
as decrement the numShips static variable so we can keep track of how many objects
of the type AlienShip we have:

private void destroyShip(){
 numShips--;
 Log.i("Explosion: ", ""+this.shipName + " destroyed");
} // End of the class

Now, we switch over to our MainActivity class and write some code that uses our
new AlienShip class. All the code goes in the onCreate method after the call to
setContentView. First, we create two new AlienShip objects called girlShip and
boyShip:

// every time we do this the constructor runs
AlienShip girlShip = new AlienShip();
AlienShip boyShip = new AlienShip();

Look how we get the value in numShips. We use the getNumShips method as we
might expect. However, look closely at the syntax. We are using the class name and
not an object. We can also access static variables with methods that are not static. We
did it this way to see a static method in action:

// Look no objects but using the static method
Log.i("numShips: ", "" + AlienShip.getNumShips());

Now, we assign names to our public shipName String variables:

// This works because shipName is public
girlShip.shipName = "Corrine Yu";
boyShip.shipName = "Andre LaMothe";

If we attempt to assign a value directly to a private variable, it won't work. So, we
use the public getter method getShieldStrength to print out the shieldStrength
that was assigned in the constructor:

// This won't work because shieldStrength is private
// girlship.shieldStrength = 999;

// But we have a public getter

Chapter 9

[213]

Log.i("girlShip shieldStrngth: ", "" +
 girlShip.getShieldStrength());

Log.i("boyShip shieldStrngth: ", "" +
 boyShip.getShieldStrength());

// And we can't do this because it's private
// boyship.setShieldStrength(1000000);

Finally, we get to blow some stuff up by playing with the hitDetected method and
occasionally checking the shieldStrength of our two objects:

// lets shoot some ships
girlShip.hitDetected();
Log.i("girlShip shieldStrngth: ", "" +
 girlShip.getShieldStrength());

Log.i("boyShip shieldStrngth: ", "" +
 boyShip.getShieldStrength());

boyShip.hitDetected();
boyShip.hitDetected();
boyShip.hitDetected();

Log.i("girlShip shieldStrngth: ", "" +
 girlShip.getShieldStrength());

Log.i("boyShip shieldStrngth: ", "" +
 boyShip.getShieldStrength());

boyShip.hitDetected(); //ahhh

Log.i("girlShip shieldStrngth: ", "" +
 girlShip.getShieldStrength());

Log.i("boyShip shieldStrngth: ", "" +
 boyShip.getShieldStrength());

When we think we have destroyed a ship, we again use our static getNumShips
method to see if our static variable numShips was changed by the destroyShip
method:

Log.i("numShips: ", "" + AlienShip.getNumShips());

Object-Oriented Programming

[214]

Run the demo and look at the console output:

numShips﹕ 2

girlShip shieldStrngth﹕ 100

boyShip shieldStrngth﹕ 100

Incomiming﹕ Bam!!

girlShip shieldStrngth﹕﹕ 75

boyShip shieldStrngth﹕﹕ 100

Incomiming﹕ Bam!!

Incomiming﹕ Bam!!

Incomiming﹕ Bam!!

girlShip shieldStrngth﹕﹕ 75

boyShip shieldStrngth﹕﹕ 25

Incomiming﹕ Bam!!

Explosion﹕ Andre LaMothe destroyed

girlShip shieldStrngth﹕ 75

boyShip shieldStrngth﹕ 0

numShips﹕ 1

boyShip shieldStrngth﹕ 0

numShips﹕ 1

In the previous example, we saw that we can distinguish between local and member
variables of the same name by using the this keyword. We can also use the this
keyword to write code that refers to whatever the current object being acted upon is.

We saw that a static variable, in this case numShips, is consistent across all
instances; moreover, by incrementing it in the constructor and decrementing it in
our destroyShip method, we can keep track of the number of AlienShip objects we
created.

We also saw that we can use static methods by using the class name with the
dot operator instead of an actual object. Yes, I know it is kind of like living in the
blueprint of a house, but it's quite useful.

Finally, we demonstrated how we could hide and expose certain methods and
variables using an access specifier.

Chapter 9

[215]

OOP and inheritance
We have seen how we can use other people's hard work by instantiating/creating
objects from the classes of an API like Android. But this whole OOP thing goes even
further than that.

What if there is a class that has loads of useful functionality in it but is not quite
what we want? We can inherit from the class and then further refine or add to how it
works and what it does.

You might be surprised to hear that we have done this already. In fact, we have done
this with every single app we have created. When we use the extends keyword, we
are inheriting. Remember this?

public class MainActivity extends AppCompatActivity ...

Here, we are inheriting the AppCompatActivity class along with all its
functionality—or more specifically, all the functionality that the class designers want
us to have access to. Now, we will discuss some of the things we can do to classes we
have extended.

We can even override a method and still rely in part on the overridden method in
the class we inherit from. For example, we overrode the onCreate method every
time we extended the AppCompatActivity class. But we also called on the default
implementation provided by the class designers when we did this:

super.onCreate(…

And in Chapter 6, The Life and Times of an Android App, we overrode just about all of
the Activity class's lifecycle methods.

We discuss inheritance mainly so that we understand what is going on around us
and as the first step toward being able to eventually design useful classes that we or
others can extend.

With this in mind, let's look at some example classes and see how we can extend
them, just to see the syntax and as a first step, and also to be able to say we have
done it.

When we look at the final major topic of this chapter, polymorphism, we will
also dig a little deeper into inheritance at the same time. Here is some code using
inheritance:

Object-Oriented Programming

[216]

This code would go in a file named Animal.java:

public class Animal{

 // Some member variables
 public int age;
 public int weight;
 public String type;
 public int hungerLevel;

 public void eat(){
 hungerLevel--;
 }

 public void walk(){
 hungerLevel++;
 }

}

Then, in a separate file named Elephant.java, we could do this:

public class Elelphant extends Animal{

 public Elephant(int age, int weight){
 this.age = 57;
 this.weight = 1000;
 this.type = "Elephant";
 int hungerLevel = 0;
 }

}

We can see in the previous code that we have implemented a class called Animal,
and it has four member variables: age, weight, type, and hungerLevel. It also has
two methods, eat and walk.

We then extended Animal with Elephant. Elephant can now do anything Animal
can, and it also has all its variables. We initialized the variables from Animal, which
Elephant has in the Elephant constructor. Two variables (age and weight) are
passed into the constructor when an Elephant object is created, and two variables
(type and hungerLevel) are assigned the same for all Elephant objects.

Chapter 9

[217]

We could go ahead and write a bunch of other classes that are an extension of the
Animal class, perhaps Lion, Tiger, and ThreeToedSloth. Each would have an age,
weight, type, hungerLevel, and each would be able to walk and eat.

As if OOP were not useful enough already, we can now model real-world objects.
We have also seen we can make OOP even more useful by subclassing/extending/
inheriting from other classes. The terminology we might like to learn here is that
the class that is extended from is the super class, and the class that inherits from the
super class is the subclass. We can also say parent and child class.

As usual, we might find ourselves asking this question about inheritance.
Why? The reason is something like this: we can write common code once;
in the parent class, we can update that common code and all classes that
inherit from it are also updated. Furthermore, a subclass only gets to use
public/protected instance variables and methods. So, designed properly,
this also further enhances the goals of encapsulation.

Let's take a closer look at the final major OOP concept. Then, we will be able to do
some more really practical things with the Android API.

The inheritance mini app
We have looked at the way we can create hierarchies of classes to model the
system that fits our app. So, let's try out some simple code that uses inheritance.
The completed code is in the Chapter 9 folder of the code download. It is called
Inheritance Example.

Create three new classes in the usual way. Name one AlienShip, another Fighter,
and the last one Bomber.

The following is the code for the AlienShip class. It is very similar to our previous
class demo, AlienShip. The differences are that the constructor now takes an int
parameter, which it uses to set the shield strength.

Object-Oriented Programming

[218]

The constructor also outputs a message to the console, so we can see when it is
being used. Additionally, the AlienShip class has a new method, fireWeapon, that
is declared abstract. This guarantees that any class that subclasses AlienShip
must implement its own version of fireWeapon. Notice the class has the abstract
keyword as part of its declaration. We have to do this because one of its methods also
uses the keyword abstract. We will explain the abstract method when discussing
this demo and the abstract class when we talk about polymorphism. Create a class
called AlienShip and type this code:

public abstract class AlienShip {
 private static int numShips;
 private int shieldStrength;
 public String shipName;

 public AlienShip(int shieldStrength){
 Log.i("Location: ", "AlienShip constructor");
 numShips++;
 setShieldStrength(shieldStrength);
 }

 public abstract void fireWeapon();
 // Ahh my body where is it?

 public static int getNumShips(){
 return numShips;
 }

 private void setShieldStrength(int shieldStrength){
 this.shieldStrength = shieldStrength;
 }

 public int getShieldStrength(){
 return this.shieldStrength;
 }

 public void hitDetected(){
 shieldStrength -=25;
 Log.i("Incomiming: ", "Bam!!");
 if (shieldStrength == 0){
 destroyShip();
 }

 }

 private void destroyShip(){

Chapter 9

[219]

 numShips--;
 Log.i("Explosion: ", "" + this.shipName + " destroyed");
 }

}

Now, we will implement the Bomber class. Notice the call to super(100). This calls
the constructor of the super class with the value for shieldStrength. We could
do further specific Bomber initialization in this constructor, but for now, we just
print out the location so we can see when the Bomber constructor is being executed.
Because we must, we also implement a Bomber specific version of the abstract
fireWeapon method. Create a class called Bomber and type this code:

public class Bomber extends AlienShip {

 public Bomber(){
 super(100);
 // Weak shields for a bomber
 Log.i("Location: ", "Bomber constructor");
 }

 public void fireWeapon(){
 Log.i("Firing weapon: ", "bombs away");
 }
}

Now, we will implement the Fighter class. Notice the call to super(400). This calls
the constructor of the super class with the value for shieldStrength. We could do
further specific Fighter initialization in this constructor, but for now, we just print
out the location so we can see when the Fighter constructor is being executed.
Because we must, we also implement Fighter specific version of the abstract
fireWeapon method. Create a class called Fighter and type this code:

public class Fighter extends AlienShip{

 public Fighter(){
 super(400);
 // Strong shields for a fighter
 Log.i("Location: ", "Fighter constructor");
 }

 public void fireWeapon(){
 Log.i("Firing weapon: ", "lasers firing");
 }

}

Object-Oriented Programming

[220]

And here is our code in the onCreate method of MainActivity. As usual, enter
this code after the call to setContentView. This is the code that uses our three new
classes. The code looks quite ordinary and is nothing new; it is the output that is
interesting:

Fighter aFighter = new Fighter();
Bomber aBomber = new Bomber();

// Can't do this AlienShip is abstract -
// Literally speaking as well as in code
// AlienShip alienShip = new AlienShip(500);

// But our objects of the subclasses can still do
// everything the AlienShip is meant to do

aBomber.shipName = "Newell Bomber";
aFighter.shipName = "Meier Fighter";

// And because of the overridden constructor
// That still calls the super constructor
// They have unique properties
Log.i("aFighter Shield:", ""+ aFighter.getShieldStrength());
Log.i("aBomber Shield:", ""+ aBomber.getShieldStrength());

// As well as certain things in certain ways
// That are unique to the subclass
aBomber.fireWeapon();
aFighter.fireWeapon();

// Take down those alien ships
// Focus on the bomber it has a weaker shield
aBomber.hitDetected();
aBomber.hitDetected();
aBomber.hitDetected();
aBomber.hitDetected();

Run the app and you will get the following output in the logcat window:

Location﹕﹕ AlienShip constructor

Location﹕﹕ Fighter constructor

Location﹕﹕ AlienShip constructor

Location﹕﹕ Bomber constructor

aFighter Shield﹕﹕ 400

aBomber Shield﹕﹕ 100

Chapter 9

[221]

Firing weapon﹕﹕ bombs away

Firing weapon﹕﹕ lasers firing

Incomiming﹕﹕ Bam!!

Incomiming﹕﹕ Bam!!

Incomiming﹕﹕ Bam!!

Incomiming﹕﹕ Bam!!

Explosion﹕﹕ Newell Bomber destroyed

We can see how the constructor of the subclass can call the constructor of the super
class. We can also clearly see that the individual implementations of the fireWeapon
method work exactly as expected.

Polymorphism
We already know that polymorphism means different forms. But what does it mean
to us?

Boiled down to its simplest definition, polymorphism is: any subclass can be used as
part of the code that uses the super class.

This means we can write code that is simpler and easier to understand and also
easier to modify or change.

Also, we can write code for the super class and rely on the fact that no matter how
many times it is subclassed, within certain parameters, the code will still work.

Let's discuss an example.

Suppose we want to use polymorphism to help write a zoo management app. We
will probably want to have a method like feed. We will also probably want to pass a
reference to the animal to be fed into the feed method. This might seem like we need
to write a feed method for each and every type of Animal.

However, we can write polymorphic methods with polymorphic return types and
arguments:

Animal feed(Animal animalToFeed){
 // Feed any animal here
 return animalToFeed;
}

Object-Oriented Programming

[222]

The preceding method has Animal as a parameter, meaning that any object that is
built from a class that extends Animal can be passed into it. And as you can see in
the preceding code, the method also returns Animal, which has exactly the same
benefits.

There is a small gotcha with polymorphic return types, and that is why we need
to be aware of what is being returned and make it explicit in the code that calls the
method.

For example, we could handle Elephant being passed into the feed method like this:

someElephant = (Elephant) feed(someElephant);

Notice the highlighted (Elephant) in the previous code. This makes it clear that we
want Elephant from the returned Animal. This is called casting. We will use casting
with methods from the Android API in the next chapter and throughout the rest of
the book, when we look at how to interact with our UI from our Java code.

So, you can even write code today and make another subclass in a week, month, or
year, and the very same methods and data structures will still work.

Also, we can enforce upon our subclasses a set of rules as to what they can and
cannot do, as well as how they do it. So, good design in one stage can influence it at
other stages.

But will we ever really want to instantiate an actual Animal?

Abstract classes
An abstract class is a class that cannot be instantiated and therefore cannot be made
into an object. So, it's a blueprint that will never be used, then? But that's like paying
an architect to design your home and then never building it! You might be saying
to yourself, "I kind of got the idea of an abstract method, but abstract classes are just
silly."

If we, or the designer of a class, wants to force us to inherit before we use their class,
they can declare a class abstract. Then, we cannot make an object from it; therefore,
we must extend it first and make an object from the subclass.

We can also declare a method abstract and then that method must be overridden in
any class that extends the class with the abstract method.

Chapter 9

[223]

Let's look at an example; it will help. We make a class abstract by declaring it with
the abstract keyword, like this:

abstract class someClass{
 /*
 All methods and variables here.
 As usual!
 Just don't try and make
 an object out of me!
 */
}

Yes, but why?

Sometimes, we want a class that can be used as a polymorphic type, but we need to
guarantee it can never be used as an object. For example, Animal doesn't really make
sense on its own.

We don't talk about animals; we talk about types of animals. We don't say, "ooh, look
at that lovely, fluffy, white animal!" Or, "yesterday we went to the pet shop and got
an animal and an animal bed." It's just too, well, abstract.

So, an abstract class is kind of like a template to be used by any class that extends it
(inherits from it).

We might want a Worker class, for example, and extend it to make, Miner,
Steelworker, OfficeWorker, and, of course, Programmer. But what exactly does a
plain Worker do? Why would we ever want to instantiate one?

The answer is we wouldn't want to instantiate one, but we might want to use it as a
polymorphic type so we can pass multiple worker subclasses between methods and
have data structures that can hold all types of Workers.

We call this type of class an abstract class, and when a class has even one abstract
method, it must be declared abstract itself. And all abstract methods must be
overridden by any class that extends it. This means that the abstract class can
provide some of the common functionality that would be available in all its
subclasses. For example, the Worker class might have the height, weight, and age
member variables.

It might have the getPayCheck method, which is not abstract and is the same in
all the subclasses, but a doWork method instead, which is abstract and must be
overridden, because all the different types of worker doWork very differently.

This leads us neatly to another area of polymorphism that is going to make life easier
for us throughout this book.

Object-Oriented Programming

[224]

Interfaces
An interface is like a class. Phew! Nothing complicated here, then. But it's like a class
that is always abstract and with only abstract methods.

We can think of an interface as an entirely abstract class with all its methods abstract
and no member variables either. OK, so you can just about wrap your head around
an abstract class because at least it can pass on some functionality in its methods that
are not abstract and serve as a polymorphic type.

But seriously, this interface seems a bit pointless. Let's look at the simplest possible
generic example of an interface, and then we can discuss it further.

To define an interface, we type:

public interface myInterface{
 void someAbstractMethod();
 // omg I've got no body

 int anotherAbstractMethod();
 // Ahh! Me too

 // Interface methods are always abstract and public implicitly
 // but we could make it explicit if we prefer

 public abstract explicitlyAbstractAndPublicMethod();
 // still no body though

}

The methods of an interface have no body because they are abstract, but they can still
have return types and parameters, or not.

To use an interface, we use the implements keyword after the class declaration:

public class someClass implements someInterface{

 // class stuff here

 /*
 Better implement the methods of the interface
 or we will have errors.

Chapter 9

[225]

 And nothing will work
 */

 public void someAbstractMethod(){
 // code here if you like
 // but just an empty implementation will do
 }

 public int anotherAbstractMethod(){
 // code here if you like
 // but just an empty implementation will do

 // Must have a return type though
 // as that is part of the contract
 return 1;
 }
}

This enables us to use polymorphism with multiple different objects that are from
completely unrelated inheritance hierarchies. As long as a class implements an
interface, the whole thing can be passed along or used as if it is that thing, because it
is that thing. It is polymorphic (many things).

We can even have a class implement multiple different interfaces at the same
time. Just add a comma between each interface and list them after the implements
keyword. Just be sure to implement all the necessary methods.

In this book, we will use the interfaces of the Android API a lot more frequently than
we write our own. In the next chapter, one such interface we will use in the Java
Meet UI mini app is the OnClickListener interface.

Anything might like to know when it is being clicked, perhaps a Button or a
TextView widget and so on. So, using an interface, we don't need different methods
for every type of UI element we might like to click.

FAQ
1. What is wrong with this class declaration?

private class someClass{
 // class implementation goes here
}

There are no private classes. Classes can be public or default. Public is public;
default is like being private within its own package.

Object-Oriented Programming

[226]

2. What is encapsulation?
Encapsulation is how we contain our variables, code, and methods in
a manner that exposes just the parts and functionality we want for the
code that uses it.

Summary
In this chapter, we covered more theory than in any other chapter. If you haven't
memorized everything or some of the code seemed a bit too in-depth, then you
have still succeeded completely. If you just understand that OOP is about writing
reusable, extendable, and efficient code through encapsulation, inheritance, and
polymorphism, then you have the potential to be a Java master. Simply put, OOP
enables us to use other people's code even when those other people were not aware
of exactly what we would be doing at the time they did the work. All you have to do
is keep practicing.

We will constantly be using these same concepts over and over again throughout the
book, so you do not need to have even begun to master them at this point.

In the next chapter, we will be revisiting some concepts from this one as well as
looking at some new aspects of OOP and how that enables our Java to interact with
our XML layouts.

But first, there is an important incoming news flash!

[227]

Everything's a Class
In this chapter, we will indeed see that everything's a class. By the end of this
chapter, the missing link between Java and our XML layouts will be fully revealed,
leaving us with the power to add all kinds of widgets to our apps.

Here, you will learn about the following topics:

• Android UI elements as classes
• Garbage collection
• Our UI on the heap
• Special types of a class that includes inner and anonymous

So, what do I mean by everything's a class?

All Android UI elements are classes too
When our app is run and the setContentView method is called from onCreate, the
layout is inflated from XML UI classes and loaded into memory as usable objects.
They are stored in a part of the DVM memory called the heap.

Reintroducing references
However, where are all these UI objects/classes? We certainly can't see them in our
code. And how on earth do we get our hands on them?

The DVM inside every Android device takes care of memory allocation to our apps.
In addition, it stores different types of variables in different places.

Everything's a Class

[228]

Variables that we declare and initialize in methods are stored in the area of memory
that is known as the stack. We can stick to our existing warehouse analogy when
talking about the stack—almost. We already know how we can manipulate variables
on the stack. So, let's talk about the heap and what is stored there.

Important fact: All objects of classes are reference type variables
and are just references to the actual objects that are stored on the
heap; they are not actual objects.

Think of the heap as a separate area of the same warehouse. The heap has lots of
floor space for odd-shaped objects, racks for smaller objects, lots of long rows with
small-sized cubby holes, and so on. This is where objects are stored. The problem
is we have no direct access to the heap. Let's look at what exactly a reference
variable is.

It is a variable that we refer to and use via a reference. A reference can be loosely, but
usefully, defined as an address or a location. The reference (address or location) of
the object is on the stack. So, when we use the dot operator, we are asking Dalvik to
perform a task at a specific location, a location that is stored in the reference.

Reference variables are just that—a reference. A way to access and
manipulate the object (variables and methods), but they are not
the actual variable itself.

Why, oh why would we ever want a system like this? Just give me my objects on the
Stack already. Here is why.

A quick break to throw out the trash
This is what the whole stack and heap thing does for us. As we know, the DVM
keeps track of all our objects for us and stores them in a special area of our
warehouse called the heap. Regularly, while our app is running, the DVM will scan
the stack, the regular racks of our warehouse, and match up references to objects
that are on the heap. And it destroys any objects that it finds without a matching
reference. Or in Java terminology, it collects garbage.

Think of a very discriminating refuse vehicle driving through the middle of our
heap, scanning objects to match up references (on the stack). No reference, you're
garbage now. After all, if an object has no reference variable, we can't possibly do
anything with it anyway because we have no way to access it. This system of garbage
collection helps our apps run more efficiently by freeing up unused memory.

If this task was left to us, our apps would be much more complicated to code.

Chapter 10

[229]

So, the variables declared in a method are local, on the stack, and only visible within
the method they were declared in. A member variable (in an object) is on the heap
and can be referenced from anywhere there is a reference to it and from anywhere
that the access specification (encapsulation) allows.

Stack and heap – a quick summary
Let's take a quick look at what you learned about a stack and heap:

• You don't delete objects, but the VM sends the garbage collector when it
thinks it's appropriate. This is usually when there is no active reference to
the object.

• Local variables and methods are on the stack, and the local variables are local
to the specific method within which they were declared.

• Instance/class variables are on the heap (with their objects), but the reference
to the object, the address, is a local variable on the stack.

• We control what goes onto the stack. We can use the objects on the heap, but
only by referencing them.

• The heap is maintained by the garbage collector.
• An object is garbage collected when there is no longer a valid reference to it.

So, when a reference variable, either local or instance, is removed from the
stack, then its related object becomes viable for garbage collection. And when
the DVM decides the time is right (usually very promptly), it will free up the
RAM memory to avoid running out of memory.

• If we try to reference an object that doesn't exist, we will get a
NullPointerException error and the app will crash.

So, how does this heap thing help me?
Any UI element that has its id property set can have its reference retrieved from
the heap using the findViewById method, which is part of the Activity, the
AppCompatActivity class. As it is part of the class that we extend, we have access to it:

myButton = (Button) findViewById(R.id.myButton);

The preceding code assumes that myButton has been declared previously to an
appropriate type; in this case, Button. Also, the preceding code assumes that within
the XML layout, there is a button with an ID property set to myButton.

Everything's a Class

[230]

Note that findViewById is also polymorphic. We know this because we use a cast,
(Button), to be explicit about making the returned object Button from its View
parent type, just like we did with our object of the type Elephant with the feed
method in the last chapter.

This is quite exciting because it implies that we can grab a reference to a whole bunch
of stuff from our layout. We can then start using all the methods that these objects
have. Here are some examples of the methods we can use for Button objects:

myButton.setText
myButton.setHeight
myButton.setOnCLickListener
myButton.setVisibility

Remember that Button alone has around 50 methods! If you think that after nearly
10 chapters we are finally going to start doing some really neat stuff with Android,
you would be right!

Using Button and TextView widgets from our
layout
To follow along with this mini project, create a new Android Studio project, call it Java
Meet UI, and leave all the other options at their default values. As usual, you can find
the Java code and the XML layout code in the Chapter 10/Java Meet UI folder.

First, let's build a simple UI:

1. Delete the autogenerated TextView widget, the one that reads "Hello world!".
2. Add a Large Text widget on the top and at the center of the layout.
3. Set its text property to 0 and its id property to txtValue. Pay careful

attention to the case of the ID. It has an uppercase V.

Chapter 10

[231]

4. Now, drag-and-drop six buttons on the layout so that it looks fairly similar to
this next screenshot. The exact layout isn't important:

Everything's a Class

[232]

5. Double-click on each button in turn (left to right and then top to bottom) and
set the text and id properties as shown in the next table. When you see the
pop-up message as shown in the next figure, choose Yes each time:

The text property The id property
add btnAdd

take btnTake

grow btnGrow

shrink btnShrink

Hide btnHide

Reset btnReset

When you're done, your layout should look as shown in the next screenshot:

Chapter 10

[233]

The precise position and text on the buttons is not very important, but the values
given to the id properties must be exactly the same. The reason for this is we will be
using these IDs to get a reference to the buttons and TextView in this layout from
our Java code.

Switch to the MainActivity.java tab in the editor and find the following code:

public class MainActivity extends AppCompatActivity{

Amend the preceding line to:

public class MainActivity extends
 AppCompatActivity implements View.OnClickListener{

Note that the entire line we just amended is underlined in red, indicating an error.
Now, because we have made MainActivity into OnClickListener by adding it
as an interface, we must implement the abstract method of OnClickListener. The
method is called onClick. When we add the method, the error will be gone.

We can get Android Studio to add it for us by clicking anywhere on the line with an
error and then using the keyboard combination Alt + Enter. After this, click on the
Implement methods option, as shown in the next figure:

Now, click on OK to confirm that we want Android Studio to add the onClick
method. The error goes away and we can carry on with adding code. We also have
an onClick method, and we will soon see what we will do with that.

Now, we will declare a int variable called value and initialize it to 0. We will also
declare six Button objects and a TextView object. We will give them the same names
that we gave the id property values in our UI layout. This name association is not
required, but it is useful to keep track of which Button in our Java code will be
holding a reference to which Button from our UI.

Furthermore, we are declaring them all with the private access specification
because we know that they will not be needed outside of this class.

Everything's a Class

[234]

Before you go ahead and type the code, note that all these variables are members
of the MainActivity class. This means that we enter all the code that is shown next
immediately after the class declaration that we amended in the previous step.

Making all these variables into members/fields means that they have a class scope,
and we can access them from anywhere within the MainActivity class. This will be
essential for this project because we will need to use them all in onCreate and in our
new onClick method.

Enter this next code that we just discussed after the opening curly brace, {, of the
MainActivity class and before the onCreate method:

// An int variable to hold a value
private int value = 0;

// A bunch of Buttons and a TextView
private Button btnAdd;
private Button btnTake;
private TextView txtValue;
private Button btnGrow;
private Button btnShrink;
private Button btnReset;
private Button btnHide;

Remember to use the Alt + Enter keyboard combination to
import new classes.

Next, we want to prepare all our variables ready for action. The best place for this to
happen is in the onCreate method because we know that will be called by Android
just before the app is shown to the user. This code uses the findViewById method to
associate each of our Java objects with a widget from our UI.

It does so by returning a reference to the object that is associated with the UI widget
on the heap. It knows which one we are after because we use the appropriate id as an
argument. For example, ...(R.id.btnAdd) will return Button with the ADD text that
we created in our layout.

As a reminder, we use the odd-looking = (Button) syntax because the method is
polymorphic and could potentially return any object type that is a subclass of the
View class. This is called casting.

Chapter 10

[235]

Enter the following code just after the call to setContentView in the onCreate
method:

// Get a reference to all the buttons in our UI
// Match them up to all our Button objects we declared earlier
btnAdd = (Button) findViewById(R.id.btnAdd);
btnTake = (Button) findViewById(R.id.btnTake);
txtValue = (TextView) findViewById(R.id.txtValue);
btnGrow = (Button) findViewById(R.id.btnGrow);
btnShrink = (Button) findViewById(R.id.btnShrink);
btnReset = (Button) findViewById(R.id.btnReset);
btnHide = (Button) findViewById(R.id.btnHide);

Now that we have a reference to all of our Button objects and TextView, we can
start using their methods. In the code that follows, we use the setOnClickListener
method on each of the Button references to make Android pass any clicks from the
user onto our onClick method.

This works because when we implemented the View.OnClickListener interface,
our MainActivity class effectively became an OnClickListener.

So, all we have to do is call setOnClickListener on each button in turn. As a
reminder, the this argument is a reference to MainActivity. So, the method
call says, "hey Android, I want an OnClickListener and I want it to be the
MainActivity class". Android now knows which class to call onClick on. This next
code wouldn't work if we hadn't implemented the interface first. Also, we must set
up these listeners before the Activity starts, which is why we do it in onCreate.

We will add code to onClick to actually handle what happens soon.

Add this code after the previous code inside the onCreate method:

// Listen for all the button clicks
btnAdd.setOnClickListener(this);
btnTake.setOnClickListener(this);
txtValue.setOnClickListener(this);
btnGrow.setOnClickListener(this);
btnShrink.setOnClickListener(this);
btnReset.setOnClickListener(this);
btnHide.setOnClickListener(this);

Everything's a Class

[236]

Now, scroll down to the onClick method that Android Studio added for us after
we implemented the OnClickListener interface. Add the float size; variable
declaration and an empty switch block inside it so that it looks like this next code.
The new code to be added is highlighted here:

public void onClick(View v)

 // A local variable to use later
 float size;

 switch(v.getId()){

 }
}

Remember that switch will check for case to match the condition inside the
switch statement.

In the previous code, the switch condition is v.getId(). Let's step through and
understand this. The v variable is a reference to an object of the type View, which was
passed into the onClick method by Android:

public void onClick(View v)

View is the parent class for Button, TextView, and more. So, perhaps, as we might
expect, calling v.getId() will return the ID property of the UI widget that has been
clicke, the widget that triggered the call to onClick in the first place.

All we need to do then is provide a case statement (and appropriate action) for each
of the Button references we want to respond to.

We will see that this next code has the first three case statements. They handle R.id.
btnAdd, R.id.btnTake, and R.id.btnReset.

The code in the R.id.btnAdd case simply increments the value variable, and
then it does something new. It calls the setText method on the txtValue object.
Here is the argument (""+ value). This argument uses an empty string and adds
(concatenates) whatever value is stored in value to it. This has the effect of causing
our TextView txtValue widget to display whatever value is stored in value.

The TAKE button (R.id.btnTake) does exactly the same, but subtracts 1 from value
instead of adding 1.

The third case statement handles the RESET button, sets value to 0, and again
updates the text property of txtValue.

Chapter 10

[237]

Then, at the end of each case, there is a break statement. At this point, the switch
block exits, the onClick method returns, and life returns to normal—until the user's
next click.

Enter this code that we just discussed inside the switch block after the opening curly
brace, {:

case R.id.btnAdd:
 value ++;
 txtValue.setText(""+ value);

 break;

case R.id.btnTake:
 value--;
 txtValue.setText(""+ value);

 break;

case R.id.btnReset:
 value = 0;
 txtValue.setText(""+ value);

 break;

The next two case statements handle the SHRINK and GROW buttons from our UI.
We can confirm this from the R.id.btnGrow and R.id.btnShrink IDs. What is new
and more interesting are the two new methods that are used.

The getTextScaleX method returns the horizontal scale of the text within the object
it is used on. We can see that the object it is used on is our TextView txtValue.
The size = at the start of the line of code assigns the returned value to our float
variable, size.

The next line of code in each case statement changes the horizontal scale of the text
using setTextScaleX. When the GROW button is pressed, the scale is set to size +
1, and when the SHRINK button is pressed, the scale is set to size - 1.

The overall effect is to allow these two buttons to grow and shrink the text in
txtValue by a scale of 1 on each click.

Everything's a Class

[238]

Enter the next two case statements that we just discussed below the previous code:

case R.id.btnGrow:
 size = txtValue.getTextScaleX();
 txtValue.setTextScaleX(size + 1);

 break;

case R.id.btnShrink:
 size = txtValue.getTextScaleX();
 txtValue.setTextScaleX(size - 1);

 break;

In our last case statement, which we will code next, we have an if-else block. The
condition takes a little bit of explaining. Here it goes.

The condition to be evaluated is txtValue.getVisibility() == View.VISIBLE.
The first part of this condition before the == operator returns the visibility
property of txtValue TextView. The return value will be one of the three possible
constant values defined in the View class. They are View.VISIBLE, View.INVISIBLE,
and View.GONE.

If TextView is visible to the user on the UI, the method returns View.VISIBLE, the
condition is evaluated as true, and the if block is executed.

Inside the if block, we use the setVisibility method on txtValue and make it
invisible to the user with the View.INVISIBLE argument.

In addition to this, we change the text on btnHide to SHOW using the setText method.

After the if block is executed, txtValue becomes invisible, and we have a button
on our UI that says SHOW. When the user clicks on it in this state, the if statement
will be false and the else block will be executed. In the else block, we reverse the
situation. We set txtValue back to View.VISIBLE and the text property on btnHide
back to HIDE.

If this is in anyway unclear, just enter the code, run the app, and revisit this last code
and explanation once you have seen it in action:

case R.id.btnHide:
 if(txtValue.getVisibility() == View.VISIBLE)
 {
 // Currently visible so hide it

Chapter 10

[239]

 txtValue.setVisibility(View.INVISIBLE);

 // Change text on the button
 btnHide.setText("SHOW");

 }else{
 // Currently hidden so show it
 txtValue.setVisibility(View.VISIBLE);

 // Change text on the button
 btnHide.setText("HIDE");
 }

 break;

We have the UI and the code in place, so it is time to run the app. Try out all the
buttons. Note that the ADD and TAKE buttons change the value of value by 1 in
either direction and then display the result in TextView. Also note that the SHRINK
and GROW buttons decrease and increase the width of the text and RESET sets the
value variable to 0 and displays it on TextView. Finally, the HIDE button not only hides
TextView, but also changes its own text to SHOW, and it will indeed reshow TextView if
it is tapped again.

Note that there was no need for Log or Toast in this app, as we are finally
manipulating the UI using our Java code.

Inner and anonymous classes
Before we proceed to the next chapter and build apps with loads of different
widgets, which will put into practice and reinforce everything you have learned in
this chapter, we will have a very brief introduction to anonymous and inner classes.

When we implemented our Basic Classes demo app in the last chapter, we declared
and implemented the class in a separate file to our MainActivity class. That file had
to have the same name as the class.

We can also declare and implement classes within a class. The only question
remaining, of course, is why would we do this? When we implement an inner
class, the inner class can access the member variables of the enclosing class, and
the enclosing class can access the members of the inner class. This often makes the
structure of our code more straightforward. So, inner classes are sometimes the way
to go.

Everything's a Class

[240]

In addition, we can also declare and implement an entire class within a method of
one of our classes. When we do so, we use a slightly different syntax and do not use
a name with the class. This is an anonymous class.

We will see both inner and anonymous classes in action throughout the rest of the
book, and we will thoroughly discuss them when we use them.

FAQ
1. I don't get it all, and actually, I have more questions now than I had at the

start of the chapter. What should I do?
You know enough about OOP to make significant progress with Android
and any other type of Java programming. If you are desperate to know more
about OOP right now, there are plenty of highly rated books that discuss
nothing but OOP. However, practice and familiarity with the syntax will go
a long way to achieve the same thing and will probably be more fun. This is
exactly what we will do for the rest of the book.

Summary
In this chapter, we finally had some real interaction between our code and our UI. It
turns out that every time we add a widget to our UI, we are actually adding a Java
object of a class that we can access with an appropriate reference in our Java code.
All these objects are stored in a separate area of memory called the heap.

You are now in a position where you can learn about and do cool things with some
of the more interesting widgets. We will look at loads of them in the next chapter,
and then, we will keep introducing further new widgets throughout the rest of the
book as well.

[241]

Widget Mania
Now that we have a really good overview of the layout and coding of an Android
app, our newly acquired insight into object-oriented programming, and how we can
manipulate a UI from our Java code, we are ready to experiment with more widgets
from the palette.

OOP is tricky at times, but by gradually learning new concepts, practicing, and
becoming familiar with them, over time, it will actually become our friend.

In this chapter, we will diversify a lot by going back to the Android Studio palette
and looking around at half a dozen widgets that we have either not seen at all or
have not used fully yet.

Once we have done so, we will put them all into a layout and practice manipulating
them with Java code. In this chapter, we will:

• Refresh our memories on how to declare and initialize layout widgets
• Quickly see how to create widgets with just Java code
• Take a look at the EditText, ImageView, RadioButton (and RadioGroup),

Switch, CheckBox, WebView, and TextClock widgets
• Learn how to use an anonymous class
• Make a widget demo mini app using all of the preceding widgets

Let's start with a quick recap.

Exploring Android UI objects
Let's power up Android Studio and get ready to dig a little deeper into the palette.
While we are waiting for it to boot up, let's have a quick object recap, especially
using objects from our UI layout.

Widget Mania

[242]

Declaring and initializing objects
We know that when we call setContentView in the onCreate method, Android
inflates all the widgets and layouts and turns them into real Java objects on the heap.

We know that to use a widget from the heap, we must first declare an object of the
correct type and then use it to get a reference to the UI widget object on the heap
using its unique id property. For example, we get a reference to TextView with an
id property of txtTitle and assign it to a new object called myTextView like this:

// Grab a reference to an object on the heap
TextView myTextView = (TextView) findViewById(R.id.txtTitle);

Now, using our myTextView instance variable, we can do anything that the
TextView class was designed to do. For example, we can set the text so that it is
displayed like this:

myTextView.setText("Hi there");

We can make it disappear like this:

// Bye bye
myTextView.setVisibility(View.GONE)

We can change its text again and make it reappear:

myTextView.setText("BOO!");

// Surprise
myTextView.setVisibility(View.VISIBLE)

It is worth mentioning that we can manipulate any property in Java that we set using
XML in the previous chapters. Furthermore, we have hinted at, but not actually seen,
that we can create widgets from nothing using just Java code.

Widget news flash
We can also create widgets from Java objects that are not a reference to an object in
our layout. We can declare, instantiate, and set a widget's properties, all in code,
like this:

Button myButton = new Button();

The preceding code creates a new button using new(). The only caveat is that Button
has to be part of a layout before it can be shown. So, we could either get a reference
to a layout element from our XML layout or create a new one in code.

Chapter 11

[243]

If we assume that we have LinearLayout in our XML layout with an id property
equal to linearLayout1, we could put our button from the previous line of code into
it, like this:

// Get a reference to the LinearLayout
LinearLayout linearLayout = (LinearLayout) findViewById
 (R.id.linearLayout);

// Add our Button to it
linearLayout.addView(myButton)

We could even create an entire layout in pure Java code by first creating a new layout,
then all the widgets that we want to add, and finally by calling setContentView on
the layout that contains our widgets. In this next code, we create a layout just in Java,
albeit a very simple one with a single Button widget inside LinearLayout:

// Create a new LinearLayout
LinearLayout linearLayout = new LinearLayout();

// Create a new Button
Button myButton = new Button();

// Add myButton to the LinearLayout
linearLayout.addView(myButton);

// Make the LinearLayout the main view
setContentView(linearLayout);

It is probably obvious, but well worth pointing out as well, that designing a detailed
and nuanced layout in Java only is significantly more awkward, harder to visualize,
and not the way it is most commonly done. There are times, however, when we will
find it useful to do things in this way.

We are getting quite advanced now with layouts and widgets. It is plain to see,
however, that there is a whole bunch of other widgets (and UI elements) from the
palette that we have not explored yet. So, let's do that.

Exploring the palette
Let's take a whirlwind tour of some of the previously unexplored items from the
palette, and then we can drag a bunch of them onto a layout and see some of the
methods they have that might be useful. We can then implement a mini project to
put them all to use.

Widget Mania

[244]

We have already explored Button and TextView in the last chapter. Let's take a
closer look at a few more widgets.

EditText
The EditText widget does what its name suggests. If we make EditText available
to our users, they will indeed be able to edit the text in it. We saw this in Chapter 5
Real-World Layouts, when we were designing a sign-up form. What we didn't see
was how to capture the information from within it or where we would put this text-
capturing code.

The next block of code assumes that we have declared an object of the EditText type
and used it to get a reference to EditText in our XML layout. We might write code
like the following for a button click, perhaps a submit button for a form, but it could
also go anywhere we deem it necessary for our app:

String editTextContents = editText.getText()
// editTextContents now contains whatever the user entered

We will see this in a real context in the next mini app.

ImageView
We have already put an image onto our layout a couple of times so far, but we have
never got a reference to image from our Java code or done anything with it before.
The process is exactly the same. Follow the next steps to get a reference to ImageView
as you would to any other widget:

1. Declare an object
2. Get a reference using the findViewById method and a valid id property

like this:
ImageView imageView = (ImageView)
 findViewById(R.id.imageView);

Then, we can go on to do some neat things with our image using code like this:

// Make the image 50% TRANSPARENT
imageView.setAlpha(.5f);

The odd-looking f term simply lets the compiler know that the widget's
value is of the type float, as required by the setAlpha method.

Chapter 11

[245]

In the preceding code, we used the setAlpha method on imageView. The setAlpha
method takes a value between 0 and 1. Completely see-through is 0 and no
transparency at all is 1.

There is also an overloaded setAlpha method that takes an int value
from 0 (completely see-through to 255, with no transparency). We can
choose whichever value is the most appropriate at the time. If you want
a reminder about method overloading, refer to Chapter 8, Coding in Java
Part 2 – Methods.

We will use some of the ImageView methods in our next mini app.

Radio button and group
RadioButton is used when there are two or more mutually exclusive options for the
user to choose from. That is, if you choose one, the other choices cannot be chosen,
such as an old-fashioned radio. Take a look at a simple radiogroup with a few
RadioButton options in this next image:

As the user selects an option, the other options will automatically be deselected. We
control RadioButton widgets by placing them within RadioGroup in our UI layout.
We can, of course, use the visual designer to simply drag a bunch of RadioButtons
onto RadioGroup. When we do so, the XML layout looks something like this:

<RadioGroup
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:id="@+id/radioGroup">

 <RadioButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Option 1"

Widget Mania

[246]

 android:id="@+id/radioButton3"
 android:checked="true" />

 <RadioButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Option 2"
 android:id="@+id/radioButton2"
 android:checked="false" />

 <RadioButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Option 3"
 android:id="@+id/radioButton3"
 android:checked="false" />

<RadioGroup/>

Note that in the previous code, each radio button and radiogroup has an appropriate
id property set. We can then get a reference to them, as we might expect, as follows:

// Get a reference to all our widgets
RadioGroup radioGroup = (RadioGroup) findViewById(R.id.radioGroup);
RadioButton rb1 = (RadioButton) findViewById(R.id.radioButton1);
RadioButton rb2 = (RadioButton) findViewById(R.id.radioButton2);
RadioButton rbnew3 = (RadioButton) findViewById(R.id.radioButton3);

In practice, however, as we will see, we can manage just about everything from the
RadioGroup reference alone.

You might be thinking, how do we know when they have been clicked on? Or you
may think that keeping track of which one is selected might be awkward. For this,
we need some help from the Android API and Java.

Anonymous classes
In the last chapter, we briefly introduced anonymous classes. Here, you will learn a
little more about them and see how they can help us. When RadioButton is part of
RadioGroup, the visual appearance of all of them is coordinated for us. All we need
to do is react when any given radio button is pressed. Of course, as with any other
button, we need to know when they have been clicked on.

Chapter 11

[247]

RadioButton behaves differently than a regular Button, and simply listening for
clicks in onClick (after implementing OnClickListener) will not work because
RadioButton is not designed that way.

What we need to do is use another Java feature. We need to implement a class, an
anonymous class, for the sole purpose of listening for clicks on RadioGroup. The next
block of code assumes that we have a reference to RadioGroup called radioGroup:

radioGroup.setOnCheckedChangeListener(
 new RadioGroup.OnCheckedChangeListener() {

 @Override
 public void onCheckedChanged(RadioGroup group, int checkedId) {

 // Handle clicks here
 }
 }
);

In the preceding code, specifically RadioGroup.OnCheckedChangedListener line
from its opening curly brace, {, to the closing curly brace, }, is what is known as
an anonymous class because it has no name. The actual class code does not run
when onCreate is called; it simply prepares the class to handle any clicks on the
radiogroup. We will now discuss this in more detail.

This class is technically known as an anonymous inner class because it
is inside another class. Inner classes can be anonymous or have names.
We will see an inner class with a name in Chapter 13, Handling and
Displaying Arrays of Data.

I remember the first time I saw an anonymous class, and it almost made me want to
hide in a cupboard, but it is not as complex as it might look at first.

What the code does is add a listener to radioGroup. This will have very much
the same effect as when we implemented View.OnClickListener in Chapter 10,
Everything's a Class; only this time, we are declaring and instantiating a listener
class and preparing it to listen to radioGroup while simultaneously overriding
the required method, which in this case is onCheckedChanged. This is like the
RadioGroup equivalent of onClick.

Let's walk through it. First, we will call the setOnCheckedChangedListener method
on our radioGroup class:

radioGroup.setOnCheckedChangeListener(

Widget Mania

[248]

We pass in a new anonymous class and the details of its overridden method as the
argument:

new RadioGroup.OnCheckedChangeListener() {

 @Override
 public void onCheckedChanged(RadioGroup group, int checkedId) {

 // Handle clicks here
 }
}

Finally, we have the closing parenthesis of the method and, of course, the semicolon
to mark the end of the line. The only reason we present it on multiple lines is to make
it more readable. As far as the compiler cares, it could all be lumped together:

);

If we use the preceding code to create and instantiate a class that listens for clicks to
our RadioGroup class, perhaps in the onCreate method, this method will listen and
respond for the entire life of the Activity. All you need to learn now is how to handle
the clicks in the onCheckedChanged method that we overrode.

Note that one of the parameters of the method that is passed in when radiogroup is
pressed is int checkedId. This holds the ID of the currently selected radio button.
This is just what we need—almost.

It might be surprising to you that checkedId is int. Android stores all IDs as int
even though we declare them with alphanumeric characters, such as radioButton1
or radioGroup. All our human-friendly names are converted to int when the
app is compiled. So, how do we know which int element refers to an ID such as
radioButton1, or radioButton2, and so on?

What we need to do is get a reference to the actual object that checkedId is referring
to. We would do so like this:

RadioButton rb = (RadioButton) group.findViewById(checkedId);

Now, we can retrieve the familiar ID that we use for the currently selected radio
button, for which we now have a reference stored in rb. We do so with the getId
method, like this:

rb.getId();

Chapter 11

[249]

We could therefore handle RadioButton clicks using a switch block with case
for each possible RadioButton that could be pressed, and the rb.getId() method
as the switch block's expression. This next code shows all the contents of the
onCheckedChanged method that we discussed:

// Get a reference to the RadioButton that is currently checked
RadioButton rb = (RadioButton) group.findViewById(checkedId);

// Switch based on the 'friendly' id
switch (rb.getId()) {

 case R.id.radioButton1:
 // Do something here
 break;

 case R.id.radioButton2:
 // Do something here
 break;

 case R.id.radioButton3:
 // Do something here
 break;

}
// End switch block

Seeing this block in action in the next working mini app where we can press the
buttons for real will make this clearer.

A switch widget
The Switch (not to be confused with the lowercase Java keyword, switch) widget is
just like a Button widget, except that it has two possible states that can be read and
responded to. An obvious use for the Switch widget would be to show and hide
something. Remember in our Java meet UI app in Chapter 10, Everything's a Class, we
used a button to show and hide TextView. Each time we hid/showed TextView,
we changed the Text property on Button to make it plain what would happen
if it was clicked again. What might have been more logical for the user and more
straightforward for us as programmers would have been to use Switch, as pictured
in the next figure:

Widget Mania

[250]

The next code assumes that we already have an object called mySwitch with a
reference to a Switch object in the layout. We could show and hide TextView just
like we did in our Java Meet UI app in Chapter 10, Everything's a Class. To listen to and
respond to clicks, we again use an anonymous class. This time, however, we use the
CompoundButton version of OnCheckedChangedListener instead of RadioGroup.

We need to override the onCheckedChanged method, and this method has a Boolean
parameter, isChecked. The isChecked variable simply is false for off and true for on.

Here is how we could more intuitively replace this text hiding/showing code:

mySwitch.setOnCheckedChangeListener(
 new CompoundButton.OnCheckedChangeListener() {

 public void onCheckedChanged(
 CompoundButton buttonView, boolean isChecked) {

 if(isChecked){
 // Currently visible so hide it
 txtValue.setVisibility(View.INVISIBLE);

 }else{
 // Currently hidden so show it
 txtValue.setVisibility(View. VISIBLE);
 }
 }
 }
);

If the anonymous class code still looks a little odd, don't worry because it will get
more familiar the more we use it. And we will do so again now when we look at
CheckBox.

CheckBox
We used CheckBox in our form layout in Chapter 5, Real-World Layouts. As with
EditText, however, we didn't explore how to actually get data from it. With
CheckBox, we simply detect its state (checked or unchecked) at a given moment,
perhaps, when a form's submit button is clicked. This next code gives us a glimpse
of how this might happen, again, using an inner class that acts as a listener:

myCheckBox.setOnCheckedChangeListener(
 new CompoundButton.OnCheckedChangeListener() {

 public void onCheckedChanged(

Chapter 11

[251]

 CompoundButton buttonView, boolean isChecked) {

 if (myCheckBox.isChecked()) {
 // It's checked so do something
 } else {
 // It's not checked do something else
 }

 }
}
);

In the previous code, we assume that myCheckBox has been declared and initialized,
and we then use exactly the same type of anonymous class as we did for Switch to
detect and respond to clicks.

WebView
This widget can be used as a container for an entire app. We can put the code for
complete web pages in our res folder and then manipulate these pages using the
JavaScript language from within our apps. It is quite common for an entire app's
functionality to be contained within web pages, to just have the Android app present
it, and perhaps add a bit of extra functionality via WebView.

Apps that do this, however, rarely achieve the same level of professional look and
feel that a true native Android app has because the UI features you are learning
about in this book are far more powerful and flexible than those that can be achieved
through regular web programming.

We can also use WebView in an app to show the user a web page, but in a way that
they don't have to leave our app to open a web browser. This code loads Google in
WebView:

WebView webView = (WebView) findViewById(R.id.webView);
webView.loadUrl("http://google.com");

As usual, the previous Java code assumes that we have a WebView widget in our
layout XML with its id property set to webView.

When we use this widget, we need to let the user know that the app will be accessing
the Internet and ask for their permission at the time they install the app. We do so by
adding the following line to the AndroidManifest.xml file:

<uses-permission android:name="android.
 permission.INTERNET"></uses-permission>

We will do this for real in the next mini app.

Widget Mania

[252]

Date & Time
Android devices typically have clocks and calendars. Sometimes, however, we
might want to show a clock or have the user pick a date in our app. From the
palette, we can select a whole range of useful date and time widgets. Widgets with a
strikethrough are deprecated and are generally no longer used:

In our next app, we will use the TextClock widget to show you some of its features.

With all this new information, let's make an app to use the Android widgets more
deeply than what we have so far. We will take a quick detour, however, to talk about
Android permissions, especially with regard to the latest version of (at the time of
writing this) Marshmallow.

Android permissions and Marshmallows
When our apps want to do something that has the potential to cause harm to a user's
device or perhaps the user's privacy, Android requires us to deal with it in a specific
way, usually by having our app ask permission from the user before we do
certain things.

With the introduction of Android Marshmallow at the end of 2015, the way that we
had to handle things changed—but only for the new Marshmallow devices.

The current situation, therefore, is that we need to deal with two possible situations:
Marshmallow and pre-Marshmallow.

Pre-Marshmallow permissions
Before Marshmallow, if we wanted our app to do something that could potentially
cause harm, such as connect to the Internet (our next app will do this), get a GPS
location, take pictures, access the address book, and much more, we needed to add
a line of code to the AndroidManifest.xml file.

Then, when users install our app from Google Play, a little pop-up warning appears
letting them know exactly what potentially harmful operations our app wants to do.
Users have to agree that they trust our app or the installation would be aborted.

Chapter 11

[253]

How this works is outlined in the next steps:

1. We want to add the potentially harmful feature x.
2. We add a permission for the feature x to AndroidManifest.xml.
3. The user downloads the app from Google Play and is warned that our app

uses the feature x.
4. The user decides whether to let our app use the feature x. If the user does, the

app is installed; if the user doesn't, it is not.

No need for us as developers or the user to ever consider the
permission again

But then Marshmallow came along and changed it all.

Marshmallow permissions
Marshmallow does not ask for permissions at the time the app is installed. It asks
for permissions when the specific feature that requires the permission is about to be
used. This can be considered a good thing or a bad thing for the user, depending on
your opinion.

One potential upside is that users can install an app with, for example, two
permissions: the permission to access their address book and the permission to make
phone calls. This hypothetical example might be an address book app that lets the
users add contacts and tap a contact to call them.

With Marshmallow, users will be able to grant a permission to one of the features,
for example, access to the address book to allow them to manage their contacts.
They could decline the permission to allow the app to make phone calls and be
confident that the app will never be responsible for a big phone bill. With the pre-
Marshmallow permissions, it is all or nothing.

One downside is that users will more easily install apps that contain features
they might not approve of, and not realize until they have wasted some time and
potentially missed the 15-minute refund window that Google Play offers. However,
I am sure that Google only had user security in mind when they devised this system.

What this means to us as developers is that we will need to not only add permissions
to the AndroidManifest.xml file for pre-Marshmallow devices, but we will also
need to add code in all the right places to handle the Marshmallow permissions
at runtime.

Widget Mania

[254]

The situation is further complicated by the fact that Marshmallow considers some
permissions as dangerous and others as normal. This will add significant complexity
to our code.

The permission solution used in this book
It was considered very carefully before starting this book that the amount of
coverage that would be necessary to use Marshmallow runtime permissions in
the projects of this book would cloud the other learning objectives and provide
little immediate benefit to readers who are developers or to our future users. This
is especially true as it is unlikely that Marshmallow ownership will reach even
10 percent market share before a new edition of this book is required. In addition
to this, there is a very simple workaround to make all our apps compatible with
Marshmallow and pre-Marshmallow permissions, and we will see this when we
build our first app with a dangerous permission in Chapter 21, Navigation Drawer and
Where It's Snap.

Now that we have considered permissions, let's build our widget demo app that
requires the android.permission.INTERNET permission. This is considered a normal
permission, so it doesn't require any special handling for Marshmallow devices.

The Widget exploration mini app
We just talked about seven widgets. The EditText, ImageView, RadioButton (and
RadioGroup), Switch, CheckBox, WebView, and TextClock widgets. Let's make a mini
app and do something real with each of them. We will also use Button as well.

Setting up the widget exploration project
and UI
First, we will set up a new project and prepare the UI layout. These quick steps will
get all the widgets on the screen and set the id properties, ready to grab a reference
to them. It will help us to take a look at the target app (as shown in this next figure),
which is up and running, before we get started:

Chapter 11

[255]

Here is how this app will demonstrate these new widgets:

• The radio buttons will allow the user to change the time displayed on the
clock with a choice of three time zones

• The button on the left side, when clicked, will change its text to whatever is
currently in the EditText widget

• The three checkboxes will add and remove visual effects from the Android
robot image

• Switch will turn on and off WebView, which displays information about an
eminent computer scientist

The exact layout positions are not essential, but the id properties specified must
match with each other exactly. If you just want to see/use the code, you can find all
the files in the Chapter 11/Widget Exploration folder of the download bundle.

1. Create a new project called Widget Exploration, set the Minimum API to
17, use a blank Activity and keep all the other settings at their default values.
We are using API 17 because one of the features of the TextClock widget
requires us to.

2. Let's create a new layout file as we want our new layout to be based on
LinearLayout. Right-click on the layout folder in the project explorer and
select Layout resource file under New from the pop-up menu.

3. In the New resource file window, enter exploration_layout.xml in the
File name field and LinearLayout in the Root element field. Now, click
on OK.

Widget Mania

[256]

4. In the properties window, change the orientation property of
LinearLayout to horizontal.

5. Using the drop-down controls above the design view, make sure that you
have Nexus 5 selected in the Landscape view.

6. We can now begin to create our layout. Drag and drop three RelativeLayout
layouts onto the design to create three vertical divisions of our design. Set
the weight property of each RelativeLayout layout in turn to .33. We now
have three equal vertical divisions just like in the previous figure.

7. Drag Switch and then WebView from the palette to the right-hand side of
RelativeLayout. The right-hand side of our layout should now look like as
the previous figure.

8. Drag three CheckBox widgets, one above the other, and then drag
ImageView below them onto the central RelativeLayout layout. The
central column should now look like it does in the previous figure, except
that we can't see ImageView until we put an appropriate value in its src
property. We will do this in a few steps' time.

9. Drag RadioGroup to the left-hand side of RelativeLayout and add four
RadioButton widgets within RadioGroup.

10. Under RadioGroup, drag a PlainText widget from the TextFields category
of the palette. Add a Button widget to the right-hand side of the PlainText
widget. Add TextClock from the palette to the bottom half of the left-hand
side of RelativeLayout. You will get a warning about the API level. We
can ignore this because we will be running this on an up-to-date Nexus 5
emulator.

11. Below radio group, add a Large Text widget. You will now have a layout
that looks a bit like this:

Chapter 11

[257]

12. Try and tweak your layout so that it resembles the previous image as much
as possible. Note that ImageView is invisible until we add an actual image
to it.

13. Now, add the following properties shown in the following table to the
widgets that we just laid out:

Widget Type Property Value to set to
RadioGroup id radioGroup
RadioButton (top) id radioButtonLondon
RadioButton (top) text London
RadioButton (top) checked true
RadioButton (middle) id radioButtonBeijing
RadioButton (middle) text Beijing
RadioButton (bottom) id radioButtonNewYork
RadioButton (bottom) text New York
EditText id editText
Button id Button
TextClock id textClock
CheckBox (top) text Transparency
CheckBox (top) id checkBoxTransparency
CheckBox (middle) text Tint
CheckBox (middle) id checkBoxTint
CheckBox (bottom) text Re-Size
CheckBox (bottom) id checkBoxReSize
ImageView src @mipmap/ic_launcher
ImageView id imageView
Switch id switch1
Switch enabled true
Switch clickable true
WebView id webView

We just laid out and set the required properties for our layout. There is nothing that
we haven't done before, except that some of the widget types are new to us.

Now, we can get on with using all these widgets in our Java code.

Widget Mania

[258]

Coding the widget exploration app
As we have WebView that will connect to the Internet (to show a web page), we need
the user's permission as well. So, we need to add a line to the AndroidManifest.xml
file. Open it up from the manifests folder in the project explorer.

Now, add the following line of code that is highlighted in the position indicated by
the highlighted line's context:

...
<uses-permission android﹕name="android.permission.INTERNET" />
 <application
 android:allowBackup="true"
...

Now, let's make sure that our new layout is displayed by changing the call to
setContentView in onCreate so that it looks like this:

setContentView(R.layout.exploration_layout);

This next block of code looks quite long and sprawling, but all we have done is get
a reference to each of the widgets in our layout. When we come to use them, we will
discuss the code in more detail.

The only thing that is new in this next block of code is that some of the objects
are declared as final. This is required as they are going to be used within an
anonymous class.

But doesn't final mean that the object can't be changed?
If you remember, back in Chapter 9, Object-Oriented Programming,
we saw that variables declared as final cannot be changed, they are
constant. So, how are we going to change the properties of these
objects? Remember that objects are reference-type variables. That is,
they refer to an object on the heap. They are not an object themselves.
We can think of them as holding an address of an object. It is the
address that cannot change. We can still use the address to reference the
object on the heap and change the actual object as much as we like.

Enter this code just after the call to setContentView in the onCreate method:

// Get a reference to all our widgets

RadioGroup radioGroup = (RadioGroup) findViewById(R.id.radioGroup);
RadioButton rbBeijing = (RadioButton) findViewById
 (R.id.radioButtonBeijing);

Chapter 11

[259]

RadioButton rbLondon = (RadioButton) findViewById
 (R.id.radioButtonLondon);
RadioButton rbnewYork = (RadioButton) findViewById
 (R.id.radioButtonNewYork);
final EditText editText = (EditText) findViewById(R.id.editText);
final Button button = (Button) findViewById(R.id.button);
final TextClock tClock = (TextClock) findViewById(R.id.textClock);
final CheckBox cbTransparency = (CheckBox) findViewById
 (R.id.checkBoxTransparency);
final CheckBox cbTint = (CheckBox) findViewById(R.id.checkBoxTint);
final CheckBox cbReSize = (CheckBox) findViewById
 (R.id.checkBoxReSize);

final ImageView imageView = (ImageView) findViewById(R.id.imageView);

Switch switch1 = (Switch) findViewById(R.id.switch1);
final WebView webView = (WebView) findViewById(R.id.webView);

Now we can create an anonymous class to listen for and handle clicks on the
checkboxes. Each of the next three blocks of code implement an anonymous class for
each of the checkboxes in turn. What is different in each of the next three blocks of
code, however, is the way in which we respond to a click, and we will discuss each
of them in turn.

The first checkbox is labeled Transparency, and we use the setAlpha method on
imageView to change how transparent (see-through) it is. The setAlpha method
takes a floating point value between 0 and 1 as an argument. Here, 0 is invisible
and 1 is no transparency at all. So, when this checkbox is checked, we set the alpha
to .1, so the image is barely visible, and when it is unchecked, we set it to 1, which
is completely visible with no transparency. The boolean isChecked parameter of
onCheckedChanged contains true or false as to whether the checkbox is checked
or not.

Add this code after the previous block of code in onCreate:

/*
 Now we need to listen for clicks
 on the button, the CheckBoxes
 and the RadioButtons
*/

// First the check boxes using an anonymous class

Widget Mania

[260]

cbTransparency.setOnCheckedChangeListener(new CompoundButton.
OnCheckedChangeListener()
{
 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked)
 {
 if(cbTransparency.isChecked()){
 // Set some transparency
 imageView.setAlpha(.1f);
 }else{
 imageView.setAlpha(1f);
 }

 }
});

In the next anonymous class, we handle the checkbox labeled as Tint. In the
onCheckedChanged method, we use the setColorFilter method on imageView to
overlay a color layer on the image. When isChecked is true, we layer a color, and
when isChecked is false, we remove it.

The setColorFilter method takes a color in the alpha, red, green, and blue
(ARGB) format as an argument. The color is provided by the argb static method of
the Color class. The four arguments of the argb method are, as you might expect,
values for alpha, red, green, and blue. These four values create a color. In our case,
the 150, 255, 0, 0 values creates a strong red tint. And the 0, 0, 0, 0 values
creates no tint at all.

To understand more about the Color class, check out the Android
developer site at http://developer.android.com/reference/
android/graphics/Color.html, and to understand the RGB
color system more, take a look at the Wikipedia website https://
en.wikipedia.org/wiki/RGB_color_model.

Add this code after the previous block of code in onCreate:

// Now the next checkbox
cbTint.setOnCheckedChangeListener(new CompoundButton.
 OnCheckedChangeListener() {
 public void onCheckedChanged(CompoundButton buttonView, boolean
 isChecked) {
 if (cbTint.isChecked()) {
 // Checked so set some tint
 imageView.setColorFilter(Color.argb(150, 255, 0, 0));
 } else {

http://developer.android.com/reference/android/graphics/Color.html
http://developer.android.com/reference/android/graphics/Color.html
https://en.wikipedia.org/wiki/RGB_color_model
https://en.wikipedia.org/wiki/RGB_color_model

Chapter 11

[261]

 // No tint required
 imageView.setColorFilter(Color.argb(0, 0, 0, 0));
 }

 }
});

In the anonymous class that handles the Resize labeled checkbox, we use the
setScaleX method to resize the robot image. When we call setScaleX(2)
and setScaleY(2) on imageView, we will double the size of the image, and
setScaleX(1) and setScaleY(1) will return it to normal.

Add this code after the previous block of code in onCreate:

// And the last check box
cbReSize.setOnCheckedChangeListener
 (new CompoundButton.OnCheckedChangeListener() {
 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 if (cbReSize.isChecked()) {
 // It's checked so make bigger
 imageView.setScaleX(2);
 imageView.setScaleY(2);
 } else {
 // It's not checked make regular size
 imageView.setScaleX(1);
 imageView.setScaleY(1);
 }
 }
});

Now we will handle the three radio buttons. As they are part of RadioGroup, we can
handle them much more succinctly than we did the CheckBox objects. Here is how
we do it.

First, we make sure that they are clear to start with by calling
clearCheck() on radioGroup. Then, we create our anonymous class of the
OnCheckedChangedListener type and override the onCheckedChanged method.

This method will be called when any radio button from RadioGroup is clicked. All
we need to do is get the id of the RadioButton widget that was clicked on and
respond accordingly using a switch statement with the three possible cases, one for
each RadioButton widget.

Widget Mania

[262]

Remember when we first talked about RadioButton that the ID supplied in the
checkedId parameter of onCheckedChanged is int? This is why we must first
create a new RadioButton object from checkedId:

RadioButton rb = (RadioButton) group.findViewById(checkedId);

Then, we can call getId on the new RadioButton widget as the condition for switch:

switch (rb.getId())

Then, in each case, we use the setTimeZone method with the appropriate Android
time zone code as an argument.

You can see all the Android time zone codes here at https://gist.
github.com/arpit/1035596.

Add this next code that incorporates everything we just discussed and includes the
previous two lines of code. Add it in onCreate after the last code that we entered to
handle the checkboxes:

// Now for the radio buttons
// Uncheck all buttons
radioGroup.clearCheck();

radioGroup.setOnCheckedChangeListener(new RadioGroup.
 OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(RadioGroup group, int checkedId) {

 RadioButton rb = (RadioButton) group.findViewById
 (checkedId);

 switch (rb.getId()) {

 case R.id.radioButtonLondon:
 tClock.setTimeZone("Europe/London");
 break;

 case R.id.radioButtonBeijing:
 tClock.setTimeZone("CST6CDT");
 break;

 case R.id.radioButtonNewYork:
 tClock.setTimeZone("America/New_York");

https://gist.github.com/arpit/1035596
https://gist.github.com/arpit/1035596

Chapter 11

[263]

 break;

 }// End switch block
 }
 });

Now it's time for something a little bit new. In this next block of code, we use
an anonymous class to handle the clicks on a regular button. We've called
button.setOnclickListener as we have before. This time, however, instead
of passing this as an argument, we've created a brand new class of the View.
OnClickListener type and overridden onClick as the argument, just like we did
with our other anonymous classes.

This method is probably preferable in this situation because there is
only one button. If we had lots of buttons, then having MainActivity
implement View.OnClickListener and then overriding onClick
to handle all clicks in one method would probably be preferable, as we
did previously.

In the onClick method, we use setText to set the text property on button and
the getText method of editText to get whatever text is currently in the EditText
widget.

Add this code after the previous block of code in onCreate:

/*
 Let's listen for clicks on our regular Button.
 We can do this with an anonymous class as well.

*/

button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // We only handle one button
 // So no switching required
 button.setText(editText.getText());
 }
});

In the next block of code, we use the loadUrl method to load up a web page into
webView:

Widget Mania

[264]

Next, we will create yet another anonymous class to listen for and handle the
changes made to our Switch widget.

When the isChecked variable is true, we show webView, and when it is false, we
hide it.

Add this code after the previous block of code in onCreate:

// Make the webview display a page
webView.loadUrl("http://www.cs.yale.edu/homes/tap/Files/hopper-story.
 html");

webView.setVisibility(View.INVISIBLE);

switch1.setOnCheckedChangeListener(new CompoundButton.
 OnCheckedChangeListener() {
 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 if(isChecked){
 webView.setVisibility(View.VISIBLE);
 }else{
 webView.setVisibility(View.INVISIBLE);
 }
 }
});

Now, we can run our app and try out all the features. The Android emulators can be
rotated into the landscape mode by pressing the Ctrl + F11 keyboard combination on
PC or Ctrl + fn + F11 on Mac.

At the time of writing this, the emulators seem to crash when
their orientation is changed using Ctrl + F11. So if you have any
trouble getting your emulator displayed in the landscape mode, just
reconfigure it to startup in the landscape mode. You can do this by
clicking on the AVD icon from the toolbar, then clicking on the edit
(pencil icon) next to the Nexus 5 AVD, and selecting Landscape. Click
on Finish and you're ready to run the app.

Chapter 11

[265]

Try checking the radio buttons to see the time zone change on the clock. Enter
different values into EditText and then click on the button to see it grab the text
and display it on itself.

Change what the image looks like with different combinations of checked and
unchecked checkboxes and hide and show the web page using the switch widget.

Let's move on to look at another way in which we can significantly enhance our UIs.

Summary
In this chapter, we explored a plethora of widgets, saw how to implement widgets in
Java code without any XML layout, used our first anonymous classes to handle clicks
on a widget, and put all our new widget prowess into a mini app.

In the next chapter, we will see a totally new UI element that we can't just drag and
drop from the palette, but we will still have plenty of help from the Android API.
Next up are dialog boxes. We will also make a start on our most significant app so
far—the Note To Self, memo, to-do, and personal note app.

[267]

Having a Dialogue with
the User

In this chapter, we will see how to present a user with a pop-up dialog window. We
can then put all we know into the first phase of our first app, Note To Self. You will
learn about new Android and Java features in this chapter and the next five chapters
as well, and we will use your newly acquired knowledge to enhance the Note To Self
app each time.

In each chapter, we will also build a selection of mini apps that are separate from this
main app. So, this chapter holds the following in store for you:

• How to implement a simple app with a pop-up dialog box
• How to add DialogFragments to start the Note To Self app
• How to add resources such as Strings and graphics to a project
• How to use Android naming conventions for the first time to make

our code more readable
• How to implement more complex dialog boxes to capture input from

the user

Let's get started.

Dialog windows
Often, we will want to show the user some information or perhaps ask for
confirmation of an action in a pop-up window. This is known as a dialog
window. If you quickly scan the palette, you might be surprised to see no
mention of dialogs whatsoever.

Having a Dialogue with the User

[268]

Dialogs in Android are more advanced than a simple widget or even a layout.
They are classes that can contain layouts and widgets of their own.

The best way to create a dialog window in Android is to use the Fragment class.
Fragments are a wide and vital topic in Android, and we will spend much of the
second half of this book exploring and using them.

Creating a neat pop-up dialog for our user to interact with, however, is a great
introduction to fragments and not too complicated at all.

The dialog demo mini project – introducing
chaining
We previously mentioned that the best way to create a dialog in Android is with the
Fragment class. In Android, there is another way to create dialogs that is arguably
a little bit simpler. The problem with this slightly simpler Dialog class is that it is
not as well supported in the Activity lifecycle. It is even possible that Dialog could
accidentally crash the app.

If you were writing an app with one fixed orientation layout that required one
simple pop-up dialog, it could be argued that the simpler Dialog class should be
used. However, as we are aiming to build modern, professional apps with advanced
features, we will benefit from ignoring this class. More specifically, we will be using
the DialogFragment class.

To start the mini project, create a new blank project in Android Studio and call it
Dialog Demo. As you have come to expect, the completed code for this project is in
the Chapter 12/Dialog Demo folder of the download bundle.

Create a new class by right-clicking on the folder with the name of your package
that contains the MainActivity.java file. Select Java class under New and name it
MyDialog. Click on OK to create the class.

The first thing to do is to change the class declaration in order to extend
DialogFragment. When you have done so, your new class will look like this:

public class MyDialog extends DialogFragment {

…
}

Now, let's add code to this class, a bit at a time, and see what is happening at
each step.

Chapter 12

[269]

First, we override the onCreateDialog method that will be called when we later
show the dialog window via code from MainActivity.

Then, inside the onCreateDialog method, we get our hands on a new class. We
declare and initialize an object of the AlertDialog.Builder type that needs a
reference to MainActivity that is passed in its constructor. This is why we use
getActivity() as the argument. The getActivity method is part of the Fragment
class (and therefore, DialogFragment too), and it returns a reference to the Activity
that created DialogFragment. In this case, it is our MainActivity class. Add this
code to get the builder reference variable ready for use, and then we will see what
we can do with it:

@Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {

 // Use the Builder class because this dialog has a simple UI
 AlertDialog.Builder builder =
 new AlertDialog.Builder(getActivity());

Now, we can use our builder object to do the rest of the work. There is something
slightly odd in the next three blocks of code. If you quickly scan the next three
blocks, you will note that there is a distinct lack of semicolons, ;. This indicates that
these three blocks of code are in fact just one line to the compiler.

What is going on here is something that we have actually seen before in a less
pronounced situation. When we create a Toast message and we add a .show()
method to the end of it, we are chaining, that is, we are calling more than one
method, in sequence, on the same object. This is equivalent to writing multiple lines
of code; it is just clearer and shorter this way.

In the first of the three blocks that uses chaining, we call builder.setMessage that
sets the main message the user will see in the dialog box. Note also that it is fine to
have comments in between parts of the chained method calls, as these are ignored
entirely by the compiler.

Then, we add a button to our dialog with the .setPositiveButton method, and
the first argument sets the text on it to OK. The second argument is an anonymous
DialogInterface.OnClickListener class that handles clicks on the button. Note
that we are not going to add any code to the onClick method.

Add this code, without any semicolons, of course:

// Dialog will have "Make a selection" as the title

builder.setMessage("Make a selection")

Having a Dialogue with the User

[270]

// An OK button that does nothing

.setPositiveButton("OK", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 // Nothing happening here
 }
})

Next, we call yet another method on the same builder object. This time, it's the
setNegativeButton method. Again, the two arguments set Cancel as the text for
the button and an anonymous class to listen for clicks. For the purpose of this demo,
we are not taking any action in the overridden onClick method.

After the call to setNegativeButton, we finally see a semicolon marking the end
of the line of code. We then code return builder.create(). This has the effect of
returning to MainActivity (which called onDialogCreate in the first place), which
is our new, fully configured, dialog window. We will see this calling code quite soon.

Add the following code directly after the previous block of code and within the
onCreateDialog method:

// A "Cancel" button that does nothing
.setNegativeButton("Cancel", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 // Nothing happening here either

 }

});

// Create the object and return it
return builder.create();

}// End onCreateDialog

Now, we have our MyDialog class that extends FragmentDialog; all we have
to do for this is declare an object of MyDialog, instantiate it, and call its
createDialog method.

Let's add a button to our layout. Navigate to the layout_main.xml tab and then
switch to the Design tab. Drag a button onto the layout and make sure that its id
property is set to button.

Chapter 12

[271]

Now, go to the MainActivity tab, and we will handle a click on this button using an
anonymous class. As we only have one button in the layout, it seems sensible to do
things this way.

Note that in the next code, the anonymous class has exactly the same type as that of
the class for which we implemented an interface in Chapter 10, Everything's a Class.
Add this code to the onCreate method.

Just before you do, note also that the only thing that happens in the code is that the
onClick method creates a new instance of MyDialog and calls its show method,
which, unsurprisingly, will show our dialog window as we configured it in the
MyDialog class. The show method requires a reference to FragmentManager (which
we get with getFragmentManager); this is the class that tracks and controls all
Fragment instances for an Activity. We also pass in an ID (we pass 123). More details
about FragmentManager will be revealed when we look more deeply at Fragments,
discussed in Chapter 18, Design Patterns, Fragments, and the Real World:

/*
 Let's listen for clicks on our regular Button.
 We can do this with an anonymous class.
*/

Button button = (Button) findViewById(R.id.button);

button.setOnClickListener(
 new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 // We only handle one button
 // So no switching required
 MyDialog myDialog = new MyDialog();
 myDialog.show(getFragmentManager(), "123");
 // This calls onCreateDialog
 // Don't worry about the strange looking 123
 // We will find out about this in chapter 18
 }
 }
);

Having a Dialogue with the User

[272]

Now, we can run the app and admire our new dialog window that appears when
we click on the button in the main layout. Note that clicking on either of the buttons
in the dialog window will close it. This is the default behavior. This next screenshot
shows our dialog window in action:

Next, in this chapter, we will make two more classes that implement dialogs as
the first phase of our Note To Self app. We will see that a dialog window can have
almost any layout we choose, and we don't have to rely on the simple layouts that
the Dialog.Builder class provided us with in this mini app.

About the Note To Self app
Welcome to the first of the three major apps that we will implement in this book.
When we do these projects, we will work on them more professionally than we work
on the mini apps. We will use Android naming conventions, string resources, and
proper encapsulation.

Sometimes, these things are overkill when you try to learn a new Android/Java
topic, but they are really useful and important for real-world projects. It is good to
start using them as soon as possible. Then, they become like your second nature,
and the quality of our apps will benefit from this. Here is a quick refresher of String
resources and Android naming conventions.

Chapter 12

[273]

Using naming conventions and String
resources
In Chapter 3, Exploring Android Studio, we talked about using String resources instead
of hardcoding text in our layout files. There were a few benefits of doing things this
way, but it was also slightly long-winded.

As this is our first real-world project, it would be a good time to do things the right
way, so we can get an experience of doing this. If you want a quick refresher on the
benefits of String resources, refer to Chapter 3, Exploring Android Studio.

Naming conventions are the conventions or rules that are used to name the variables,
methods, and classes in our code. Throughout this book, we have somewhat loosely
applied the Android naming conventions. As this is our first real-world app, we
will be slightly stricter in applying these naming conventions. Most notably, when a
variable is a member of a class, we will add a lowercase prefix m to it .

You can find more information about Android naming
conventions and code style at https://source.android.
com/source/code-style.html.

In general, throughout the book, we will be fairly relaxed about naming conventions
and String resources when learning new things or building mini apps, but we
will apply them fairly strictly when building the main apps. There are three such
apps (four if you include Chapter 18, Design Patterns, Fragments, and the Real World)
throughout the book, of which Note To Self is the first.

How to get the Note To Self code
The fully completed app, including all the code and resources, can be found in
the Chapter 17/Note to self folder within the download bundle. As we are
implementing this app over the next six chapters, it will probably be useful to see the
part-completed, runnable app at the end of almost every chapter as well. The part-
completed runnable apps and all their associated code and resources can be found in
their respective folders:

• Chapter 12/Note to self

• Chapter 14/Note to self

• Chapter 15/Note to self

• Chapter 16/Note to self

• Chapter 17/Note to self

https://source.android.com/source/code-style.html
https://source.android.com/source/code-style.html

Having a Dialogue with the User

[274]

The runnable project for Chapter 16, UI Animations, is combined with the new code
for Chapter 17, Sound FX and Supporting Different Versions of Android?

Be aware that each of these is a separate, runnable project and each is contained
within its own unique Java package. This is because then you can easily see the
app running, as it would be having completed a given chapter. When copying and
pasting the code, be careful not to include the package name because it will likely be
different from yours and the code will not compile.

If you are following along and intend to build Note To Self from start to finish, we
will simply build a project called Note To Self. There is still nothing stopping you,
however, from taking a look at the code files of the projects from each chapter if
you want to do a bit of copying and pasting at any time. Just don't copy the package
directive from the top of a file, and be aware that at a couple of rare points in the
instructions, you will be asked to delete/replace the occasional line of code from a
previous chapter.

So, even if you are copying and pasting more than you are typing the code, be sure to
read the instructions completely and look at the code in the book for extra comments
that might be useful.

In each chapter, the code will be presented as if you have completed the last chapter
completely, showing code from previous chapters where necessary as context for our
new code.

Each chapter will not be solely devoted to the Note To Self app; you will learn about
other, usually related, things and build a few mini apps as well. So, when we come to
the Note To Self implementation, we will be technically prepared for it.

What we will do and when we will do it
It is worth having a heads-up on when we will implement the different parts of
the app:

• In this chapter, we will look into the resources, dialogs, and the Note class.
We will gather and add to the project all of the String and image resources
that we will need throughout the entire project. The image resources are quite
important, and for copyright reasons, they are not included in the download
bundle. They are, however, free to download from the Android developer site.
We will also create two classes that extend DialogFragment and create custom
layout files, which enable the user to add a new note or view an existing
note. We will also see how the dialog windows can communicate with the
MainActivity class. In addition to this, we will implement a simple class of
our own that will represent the structure of the data contained in a note.

Chapter 12

[275]

• In Chapter 13, Handling and Displaying Arrays of Data, we will complete a few
mini apps; this will prepare us to add new features to Note To Self in Chapter
14, Handling and Displaying Notes in Note To Self.

• In Chapter 14, Handling and Displaying Notes in Note To Self, we will use our
new-found data handling skills along with a few neat new classes from the
Android API to enable all our app's data that is to be shown in a scrolling list.

• In Chapter 15, Android Intent and Persistence, none of this data is any good to
our user if it disappears when they quit the app or turn the phone off. You
will learn and use two strategies to permanently persist data. One strategy
is for simple data from the Settings screen of the app and the other for the
actual app data: the notes.

• In Chapter 16, UI Animations, we will add neat animations such as flashing
notes when they have been marked important by the user.

• In Chapter 17, Sound FX and Supporting Different Versions of Android? we will
add a simple sound to our app and the ability to delete notes from the app.

So, what exactly can the user of our new app do?

What the user can do
The following features and screenshots are from the completed app. The app
will look slightly different than this at the various stages of development. Where
necessary, we will look at more images either as a reminder or to see the slight
differences throughout the development process.

The completed app will allow the user to tap a + icon in the action bar of the
app to open a dialog window to add a new note. Here is the action bar with the
+ icon highlighted:

Having a Dialogue with the User

[276]

This screenshot shows the dialog window where the user can add a new note:

The user will have a list of all the notes that they have added on the main screen of
the app, as shown in this next screenshot. Notice the little icons above some of the
notes? Through these, the user can see whether the note is important, an idea,
and/or a to-do list.

Chapter 12

[277]

They will be able to scroll down the list and tap on a note to see it shown in another
dialog window that is dedicated to the one note. Here is that dialog window:

There will also be a Settings screen accessible from the menu in the action bar that
will allow the user to configure basic settings, such as sound and animation speed.
Here is the settings menu option in action:

Having a Dialogue with the User

[278]

This is the settings screen itself:

The user will also be able to long-press a note in the list to permanently delete a note
when they don't need it any more.

Now that we know exactly what we are going to build, we can go ahead and start
implementing it.

Building the project and gathering
resources
Let's create our new project now. Create a new project and call it Note to self.
Leave the other settings at their default values, including choosing a blank activity.

Downloading the images
Open a web browser and visit the Android developer website, https://www.
google.com/design/icons/index.html.

https://www.google.com/design/icons/index.html
https://www.google.com/design/icons/index.html

Chapter 12

[279]

We want to download four icon sets, which are listed as follows:

• An add icon that we will add to the action bar later in this chapter
• An item that looks like a light bulb that we will use for an icon to represent

an idea
• An exclamation mark icon that we will use to represent important notes
• A blank checkbox icon that we will use to represent something that the user

needs to do

We saw all these icons when we looked at the final appearance of our app.

You can find all these icons at the previous URL in the categories described
as follows:

1. Find an image called add under the Content category. Select white
(white is the best with a dark default action bar). Click on PNGS to download
add - ic_add_white_24dp.

2. In the toggle category, you will find check box outline blank; select the black
version of ic_outline_blank_black_24dp. Click on PNGS to download it.

3. In the Alert category, find warning and select the black version of ic_
warning_black_24dp. Click on PNGS to download it.

4. In the Image category, find wb incandescent and select the black version of
ic_wb_incandescent_black_24dp. Click on PNGS to download it.

5. Unzip each of the preceding downloads. In each of the unzipped downloads,
we want the full contents of the Android folder. Note that within the
Android folder there is a fairly complicated hierarchy of folders and icons.
Here is a figure of the contents of the incandescent (black)- ic_wb_
incandescent_black_24dp/Android folder as an example:

Having a Dialogue with the User

[280]

6. Copy and paste all the folders (from inside the Android folder) and their
contents into the res folder in the project explorer. Android Studio will
arrange them for us. Note that dragging and dropping does not work. You
need to select each of the folders shown in the previous figure, copy them,
then select the res folder, right-click on it, and select Paste.

7. Finally, to ensure that Android Studio has properly prepared and registered
all the new files and folders that we just added, from the menu bar, navigate
to Tools | Android | Sync Project with Gradle Files. Give this process a little
time to complete. You can watch the progress of the process in the status bar.

The reason we need this hierarchy of folders with multiple versions of the same
image is so that our app can use the appropriately sized icon depending upon the
density of the screen on the Android device it is running on.

Here is a screenshot showing the drawable folder in the project explorer window
after the previous actions. Compare the results in the next figure to your own:

We now have all the images we need for the entire project.

Chapter 12

[281]

Preparing the String resources
Here, we will create all the String resources that we will refer to from our layout
files instead of hardcoding the text property, as we have been doing up until now.
Strictly speaking, this is a step that could be avoided; however, if you are looking to
make in-depth Android apps sometime in the near future, you will definitely benefit
from learning to do things this way.

To get started, open the strings.xml file from the values folder in the project
explorer. You will see a few autogenerated resources there. Add the following
highlighted string resources that we will use in our app throughout the rest of the
project. Add the code before the closing </resources> tag:

…
<resources>
 <string name="app_name">Note To Self</string>
 <string name="hello_world">Hello world!</string>
 <string name="action_settings">Settings</string>

 <string name="action_add">add</string>
 <string name="title_hint">Title</string>
 <string name="description_hint">Description</string>
 <string name="idea_checkbox">Idea</string>
 <string name="important_checkbox">Important</string>
 <string name="todo_checkbox">To do</string>
 <string name="cancel_button">Cancel</string>
 <string name="ok_button">OK</string>

 <string name="sound_checkbox">On or Off</string>
 <string name="settings_title">Settings</string>
 <string name="sound_title">Sound</string>
 <string name="amims_title">Animation Speed</string>
 <string name="rb_fast">Fast</string>
 <string name="rb_slow">Slow</string>
 <string name="rb_none">None</string>
</resources>

Having a Dialogue with the User

[282]

Note that in the preceding code, each string resource has a name property, which is
unique and distinguishes it from all the others, as well as provides a meaningful and,
hopefully, memorable clue as to the actual string value that it represents. It is these
name values that we will use to refer to the String that we want to use from within
our layout files.

In later chapters, we will also add more resources in the form
of sound and animations.

We will not need to revisit this file for the rest of the app.

Coding the Note class
This is the fundamental data structure of the app. It is a class that we will write
ourselves from scratch and has all the member variables we need to represent
one user note. In Chapter 13, Handling and Displaying Arrays of Data, you will learn
some new Java to understand how we can let the user have dozens, hundreds, or
thousands of notes.

Create a new class by right-clicking on the folder with the name of your package,
the one that contains the MainActivity.java file. Select Java class under New and
name it Note. Click on OK to create the class.

Add the highlighted code to the new Note class:

public class Note {

 private String mTitle;
 private String mDescription;
 private boolean mIdea;
 private boolean mTodo;
 private boolean mImportant;

}

Note that our member variable names are prefixed with m as per the Android
convention. Furthermore, as there is no reason for any other class to access these
variables directly, they are all declared private.

Chapter 12

[283]

We will, therefore, require a getter and a setter method for each of our members.
Android Studio can quickly do this for us:

1. Right-click below the last member variable declaration, but above the closing
curly brace of the class.

2. From the context menu, select Getter and setter under Generate.
3. As we want to generate getters and setters for all the members, in the

Select fields to generate getters and setters window, select each of the
members individually by holding the Shift key and clicking on each of the
members in turn. After this step, this window will look like as shown in the
next screenshot:

4. Now, click on OK and all the getter and setter methods will be generated
for us.

Having a Dialogue with the User

[284]

Take a look at the code that was just generated, and then we can discuss it. Note
that Android Studio has saved us a lot of time by generating many methods. Also
note that the names of the methods are imperfect. They have been generated as
getmTitle, setmTitle, and so on. We want them to be neater and easier to read. So,
quickly modify each of the method names by removing m from between the middle
of each method name so that they are like this: getTitle and setTitle.

Here is what our getter and setter methods should look like at this point:

public String getTitle() {
 return mTitle;
}

public void setTitle(String mTitle) {
 this.mTitle = mTitle;
}

public String getDescription() {
 return mDescription;
}

public void setDescription(String mDescription) {
 this.mDescription = mDescription;
}

public boolean isIdea() {
 return mIdea;
}

public void setIdea(boolean mIdea) {
 this.mIdea = mIdea;
}

public boolean isTodo() {
 return mTodo;
}

public void setTodo(boolean mTodo) {
 this.mTodo = mTodo;
}

Chapter 12

[285]

public boolean isImportant() {
 return mImportant;
}

public void setImportant(boolean mImportant) {
 this.mImportant = mImportant;
}

There is quite a lot of code here but nothing complicated. Each of the methods has
public access specified so that it can be used by any other class that has a reference
to an object of the Note type. Furthermore, for each variable, there is a method with
the name get… and a method of the name set…. The getters for the Boolean type
variables are named is…. This is a logical name if you think about it because the
returned answer will be either true or false.

Each of the getters simply returns the value of the variable and each of the setters sets
the value of the variable to whatever value/parameter is passed in to the method.

In fact, we should really enhance our setters a little to do a bit of checking to make
sure that the values passed in are within reasonable limits. For example, we might
want to set a maximum or minimum length for String mTtile and String
mDescription. We won't do so here, however, as this extraneousness will only serve
to cloud the real learning objectives of this project.

Implementing the dialog designs
Now, we will do something that we have done many times before, but for a new
reason. As we know, we will have two dialog windows. One for the user to enter a
new note and one for the user to view a note of their choice.

We can design the layouts of these two dialog windows in exactly the same way as
we have designed all our previous layouts. When we come to create the Java code for
the FragmentDialog classes, we will then see how we incorporate these layouts.

First, let's add a layout for our "new note" dialog:

1. Right-click on the layout folder in the project explorer and select Layout
resource file under New. Enter dialog_new_note in the File name field
and RelativeLayout in the Root element field. Click on OK to generate the
new layout.

Having a Dialogue with the User

[286]

2. Refer to the target design in the next screenshot while following the rest of
these instructions:

3. Drag and drop PlainText (from the Text Fields category) to the very top and
on the left-hand side of the layout and then add another one immediately
below it. Don't worry about padding and margins for now.

4. Drag and drop three CheckBox widgets one below the other. Look at the
previous reference image for guidance. Again, don't worry about padding,
margins, and so on.

5. Drag and drop two buttons on the layout, the first directly below the
last CheckBox widget from the previous step and the second button
horizontally in line with the first button, but immediately on the right-hand
side of the layout.

6. Now, we will quickly tidy up our layout with a few steps, starting with the
top widget (PlainText). In the Properties window, find the layout margin
property and set top to 35dp.

7. Do exactly the same as the previous step for each and every widget in our
layout except for the final button. They should all then be nice and uniformly
spread out with their new margins, and the final button (on the right-hand
side) should just automatically line itself up with the left-hand button, even
though we didn't adjust its margin.

Chapter 12

[287]

8. Click on the RelativeLayout root in the Component Tree window. Set the
padding all property to 10dp to further neaten up our layout by moving all
the widgets away from the edges of the screen.

9. Now, we can set up all our text, id, and hint properties. You can do so by
using the values from the following table. Remember we are using our string
resources for text and hint properties:

Widget type Property Value to set to
Plain Text (top) id editTitle

Plain Text (top) hint @string/title_hint

Plain Text (Bottom) id editDescription

Plain Text (Bottom) tip @string/description_hint

Plain Text (Bottom) inputType textMultiLine

CheckBox (top) id checkBoxIdea

CheckBox (top) text @string/idea_checkbox

CheckBox (middle) id checkBoxTodo

CheckBox (middle) text @string/todo_checkbox

CheckBox (bottom) id checkBoxImportant

CheckBox (bottom) text @string/important_
checkbox

Button (left) id btnCancel

Button (left) text @string/cancel_button

Button (right) id btnOK

Button (right) text @string/ok_button

We now have a nice neat layout ready for our Java code to display. Be sure to keep in
mind the names of the different widgets because we will see them in action when we
write our Java code. The important thing is that our layout looks nice and has an ID
for every relevant item, so we can get a reference to it.

Let's layout our dialog to show the note to the user:

1. Right-click on the layout folder in the project explorer and select Layout
resource file under New. Enter dialog_show_note in the File name field
and RelativeLayout in the Root element field. Click on OK to generate the
new layout.

Having a Dialogue with the User

[288]

2. Refer to the target design in the next figure while following the rest
of these instructions:

3. First of all, drag and drop three ImageView widgets side by side on the
top left side of the layout. This is very easy to do if you drag them onto
RelativeLayout in the component tree.

4. Next, drag and drop a Large Text widget just below the images, but in the
center.

5. Add Plain TextView just below the Large Text but immediately (hard) on
the left-hand side.

6. Now add a button horizontally in the center and near the bottom of the layout.
7. Click on the RelativeLayout root and find the padding: all property. Set it

to 10dp.
8. Let's quickly configure the properties from the following table:

Widget type Property Value to set to
ImageView (left) id imageViewImportant

ImageView (left) src @drawable/ic_warning_black_24dp

ImageView (center) id imageViewTodo

ImageView (center) src @drawable/ic_check_box_outline_blank_
black_24dp

ImageView (right) id imageViewIdea

Chapter 12

[289]

Widget type Property Value to set to
ImageView (right) src @drawable/ic_wb_incandescent_black_24dp

Large Text id txtTitle

Plain TextView id txtDescription

Button id BtnOK

Button text @string/ok_button

Now we have a layout that we can use to show a note to the user. Note that we get
to reuse a string resource for our OK button. The bigger our apps get, the more
beneficial it is to do things this way.

Coding the dialog boxes
Now that we have a design for both our dialog windows (show note and new note),
we can use what we know about the FragmentDialog class to implement a class that
represents each of the dialog windows that the user can interact with.

We will start with the new note screen.

Coding the DialogNewNote class
Create a new class by right-clicking on the project folder that contains all the .java
files and choose Java class under New. Name the class DialogNewNote.

First, change the class declaration and extend FragmentDialog. Also, override the
onCreateDialog method, which is where all the rest of the code in this class will go:

public class DialogNewNote extends DialogFragment {

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {

 // All the rest of the code goes here

 }
}

We temporarily have an error because we need a return statement, but we will get
to that in just a moment.

In the next block of code, first we declare and initialize an AlertDialog.Builder
object, as we have done before when creating dialog windows. This time, however,
we will use this object much less than previously.

Having a Dialogue with the User

[290]

Next we initialize a LayoutInflater object, which we will use to inflate our XML
layout. Inflate simply means to turn our XML layout into a Java object. Once this
is done, we can then access all our widgets in the usual way. We can think of
inflater.inflate replacing setContentView for our dialog. And in the second
line, we do just that with the inflate method.

Add the following code as we just discussed:

AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

LayoutInflater inflater = getActivity().getLayoutInflater();
View dialogView = inflater.inflate(R.layout.dialog_new_note, null);

We now have a View object called dialogView, which contains all the UI elements
from our dialog_new_note.xml layout file.

Immediately after the previous block of code, we simply get a reference to each of the
UI widgets in the usual way. Many of the objects are declared final because they
will be used in an anonymous class, and as you learned previously, this is required.
Remember that it is the reference that is final (cannot change), and we can still
change the objects on the heap for which they are a reference to.

Add this code just after the previous block of code:

final EditText editTitle = (EditText) dialogView.findViewById
 (R.id.editTitle);
final EditText editDescription = (EditText) dialogView.findViewById
 (R.id.editDescription);
final CheckBox checkBoxIdea = (CheckBox) dialogView.findViewById
 (R.id.checkBoxIdea);
final CheckBox checkBoxTodo = (CheckBox) dialogView.findViewById
 (R.id.checkBoxTodo);
final CheckBox checkBoxImportant = (CheckBox) dialogView.findViewById
 (R.id.checkBoxImportant);
Button btnCancel = (Button) dialogView.findViewById(R.id.btnCancel);
Button btnOK = (Button) dialogView.findViewById(R.id.btnOK);

In the next code block, we simply set the message of the dialog using builder.
Then, we write an anonymous class to handle clicks on btnCancel. In the
overridden onClick method, we simply call dismiss(), which is a public method
of DialogFragment, to close the dialog window. This is just what we need when the
user clicks on Cancel.

Chapter 12

[291]

Add the following code as we just discussed:

builder.setView(dialogView).setMessage("Add a new note");

// Handle the cancel button
btnCancel.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 dismiss();
 }
});

Now, we add an anonymous class to handle what happens when the user clicks on
the OK button (btnOK).

First we create a new Note called newNote. Then we set each of the member variables
from newNote to the appropriate contents of the form.

After this, we do something new. We create a reference to MainActivity using the
getActivity method, and then, we use that reference to call the createNewNote
method in MainActivity. Note that we have not written this method yet. The
argument sent in this method is our newly initialized newNote object. This has the
effect of sending the users, note back to MainActivity. We will see what we do with
this later in this chapter.

Finally, we call dismiss to close the dialog window.

Add this next code after the last block:

// Handle the OK button
btnOK.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

 // Create a new note
 Note newNote = new Note();

 // Set its variables to match the users entries on the form
 newNote.setTitle(editTitle.getText().toString());
 newNote.setDescription(editDescription.getText().toString());
 newNote.setIdea(checkBoxIdea.isChecked());
 newNote.setTodo(checkBoxTodo.isChecked());
 newNote.setImportant(checkBoxImportant.isChecked());

 // Get a reference to MainActivity

Having a Dialogue with the User

[292]

 MainActivity callingActivity = (MainActivity) getActivity();

 // Pass newNote back to MainActivity
 callingActivity.createNewNote(newNote);

 // Quit the dialog
 dismiss();
 }
 });

return builder.create();

Now, our first dialog's done. We haven't wired it up to appear from the
MainActivity class yet, and we need to implement the createNewNote method too.
We will do this right after we create the next dialog.

Coding the DialogShowNote class
Create a new class by right-clicking on the project folder that contains all the .java
files and choose Java class under New. Name the class DialogShowNote.

First, change the class declaration, extend FragmentDialog, and override
the onCreateDialog method. As most of the code for this class goes in the
onCreateDialog method, implement the signature and empty body as shown in the
next code snippet, and we will revisit it in a minute. Note that we declare a member
variable mNote of the Note type. Also, add the sendNoteSelected method and its
one line of code that initializes mNote. This method will be called by MainActivity
and it will pass in the Note object the user has clicked on.

Add the code we just discussed and then we can look at and code the details of
onCreateDialog:

public class DialogShowNote extends DialogFragment {

 private Note mNote;

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {

 // All the other code goes here

 }

Chapter 12

[293]

 // Receive a note from the MainActivity
 public void sendNoteSelected(Note noteSelected) {
 mNote = noteSelected;
 }

}

Next up, as usual, we will declare and initialize an instance of AlertDialog.
Builder. Next, as we did for DialogNewNote, we will declare and initialize
LayoutInflater and then use it to create a View object that contains the layout for
the dialog. In this case, it is the layout from dialog_show_note.xml.

Finally, in the following block of code, we get a reference to each of the UI
widgets and set the text properties on txtTitle and textDescription from the
appropriate member variables of mNote, which was initialized in sendNoteSelected.

Add the code we just discussed within the onCreateDialog method:

AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

LayoutInflater inflater = getActivity().getLayoutInflater();
View dialogView = inflater.inflate(R.layout.dialog_show_note, null);

TextView txtTitle = (TextView) dialogView.findViewById(R.id.txtTitle);

TextView txtDescription = (TextView) dialogView.findViewById
 (R.id.txtDescription);

txtTitle.setText(mNote.getTitle());
txtDescription.setText(mNote.getDescription());

ImageView ivImportant = (ImageView) dialogView.findViewById
 (R.id.imageViewImportant);

ImageView ivTodo = (ImageView) dialogView.findViewById
 (R.id.imageViewTodo);
ImageView ivIdea = (ImageView) dialogView.findViewById
 (R.id.imageViewIdea);

This next code is also in the onCreateDialog method. It checks whether the note
being shown is important and then shows or hides ivImportant ImageView
accordingly. We then do exactly the same for ivTodo and ivIdea.

Having a Dialogue with the User

[294]

Add this code after the previous block of code, which is still in the
onCreateDialog method:

if (!mNote.isImportant()){
 ivImportant.setVisibility(View.GONE);
}

if (!mNote.isTodo()){
 ivTodo.setVisibility(View.GONE);
}

if (!mNote.isIdea()){
 ivIdea.setVisibility(View.GONE);
}

All we need to do now is dismiss (close) the dialog window when the user clicks on
the OK button. This is done with an anonymous class, as we have seen several times
before now. The onClick method simply calls the dismiss method to achieve this.

Add this code in the onCreateDialog method after the previous block of code:

Button btnOK = (Button) dialogView.findViewById(R.id.btnOK);

builder.setView(dialogView).setMessage("Your Note");

btnOK.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 dismiss();
 }
});

return builder.create();

We have two dialog windows that are ready to roll. Now, we just have to add some
code to MainActivity to finish the job.

Showing our new dialogs
Add a new temporary member variable just after the MainActivity declaration.
This won't be in the final app as it is just so we can test our dialogs:

// Temporary code
Note mTempNote = new Note();

Chapter 12

[295]

Now, add this method so that we can receive a new note from the
DialogNewNote class:

public void createNewNote(Note n){
 // Temporary code
 mTempNote = n;
}

Now, to send a note into the DialogShowNote method, we need to add a button with
the button ID to the layout_main.xml layout file.

Just so it is clear as to what this button is for, change its text property to Show Note,
drag a button onto layout_main.xml, and configure it as we just described.

Just to clarify, this is a temporary button that is used for testing purposes and will
not be in the final app.

Now, in the onCreate method, we will set up an anonymous class to handle clicks
on our temporary button. The code in onClick does the following:

1. Creates a new DialogShowNote instance called dialog.
2. Calls the sendNoteSelected method on dialog to pass in our Note object,

mTempNote, as a parameter.
3. Finally, we call show, which breathes life into our new dialog.

Add the following code to onCreate that we just described:

// Temporary code
Button button = (Button) findViewById(R.id.button);
button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

 // Create a new DialogShowNote called dialog
 DialogShowNote dialog = new DialogShowNote();

 // Send the note via the sendNoteSelected method
 dialog.sendNoteSelected(mTempNote);

 // Create the dialog
 dialog.show(getFragmentManager(), "123");
 }
});

We can now summon our DialogShowNote dialog window at the click of a button.

Having a Dialogue with the User

[296]

Adding a + icon to the action bar
Next, we will add a + icon to the action bar and wire it up to display our
DialogNewNote dialog.

In the menu folder, open the menu_main.xml file and add the highlighted code just
before the closing</menu> tag, as shown in the following code for context:

<!-- Our add icon will have its own button -->
<item android﹕id="@+id/action_add"
 android﹕icon="@drawable/ic_add_white_24dp"
 android﹕title="@string/action_add"
 app﹕showAsAction="ifRoom" />

</menu>

This will add the icon we downloaded, while gathering our resources previously, to
the action bar.

Finally, back in MainActivity.java, add this code to the onOptionsItemSelected
method just before the return statement. This will show a new dialog that will add a
new note when the + icon is tapped:

if (id == R.id.action_add) {
 NewNoteDialog dialog = new NewNoteDialog();
 dialog.show(getFragmentManager(), "");
 return true;
}

We can now run the app. Click on the + icon and add a note. Then, click on the Show
Note button to see it in a dialog window. Note that if you add a second note, it will
overwrite the first because we only have one Note object.

Summary
In this chapter, we saw and implemented a common user interface design with
dialog windows using the FragmentDialog class.

We went a step further when we started the Note To Self app by implementing
more complicated dialogs that can capture information from the user. We saw that
DialogFragment basically enables us to have any UI that we like in a dialog box.

In the next chapter, we will deal with the obvious problem that the user can only
have one note, by exploring Java arrays and their close cousin, ArrayList.

[297]

Handling and Displaying
Arrays of Data

In this chapter, you will learn about Java arrays that allow us to manipulate a
potentially huge amount of data in an organized and efficient manner. We will also use
a close Java relation to arrays, ArrayLists and see the differences between them.

Once we are comfortable with handling a large amount of data, we will see what the
Android API has that will help us to easily connect our new-found data handling
skills to the user interface without breaking a sweat.

The topics in this chapter are as follows:

• A random diversion
• Handling large amount of data with arrays
• A simple array example
• A dynamic array example
• A multidimensional array example
• ArrayLists
• The enhanced for loop
• ListViews and BaseAdapter

First, let's take a look at a random diversion

Handling and Displaying Arrays of Data

[298]

A random diversion
Sometimes in our apps, we will want a random number. There are many possible uses
for random numbers, for example, when our app wants to show a random tip of the
day, a game that has to choose between scenarios, or a quiz that asks random questions.

The Random class is part of the Java API and is fully compatible with our
Android apps.

Let's have a look at how we can create random numbers, and later in the chapter,
we will put it to practical use. All the hard work is done by the Random class. First,
we need to create an object of the Random type:

Random randGenerator = new Random();

Then, we use our new object's nextInt method to generate a random number
between a certain range.

This line of code generates a random number using our Random object and stores the
result in the ourRandomNumber variable:

int ourRandomNumber = randGenerator.nextInt(10);

The number that we enter for the range starts from 0. So, the preceding line will
generate a random number between 0 and 9. If we want a random number between 1
and 10, we just use this:

ourRandomNumber ++;

We can also use the Random object to get other types of random numbers using
nextLong, nextFloat, and nextDouble.

We will put the Random class to practical use later in the chapter with a quick
geography quiz app.

Handling large amount of data with arrays
You might be wondering what happens when we have an app with lots of variables
that we need to keep track of. What about our Note To Self app with 100 notes or a
high score table in a game with the top 100 scores? We could declare and initialize
100 separate variables, like so:

Note note1;
Note note2;
Note note3;
//96 more lines like the above
Note note100;

Chapter 13

[299]

Or, we could begin to handle the high scores scenario like this:

int topScore1;
int topScore2;
int topScore3;
//96 more lines like the above
int topScore100;

Straight away, this can seem unwieldy, but what about when someone gets a new
top score or we want to let our users sort the order their notes are displayed in?
Using the high scores scenario, we have to shift the scores in every variable down
one place. A nightmare begins. We could handle the high scores as follows:

topScore100 = topScore99;
topScore99 = topScore98;
topScore98 = topScore97;
//96 more lines like the above
topScore1 = score;

There must be a better way to do this. When we have a whole array of variables,
what we need is a Java array. An array is a reference variable that holds up to a
predetermined fixed maximum number of elements. Each element is a variable with
a consistent type.

The following code declares an array that can hold int type variables, for example, a
high score table or a series of exam grades:

int [] intArray;

We could also declare arrays of other types, including classes such as Note, like this:

String [] classNames;
boolean [] bankOfSwitches;
float [] closingBalancesInMarch;
Note [] notes;

Each of these arrays would need to have a fixed maximum amount of storage space
allocated before they are used. Just like other objects, we must initialize arrays before
we use them:

intArray = new int [100];

The preceding line allocates storage space for up to a maximum of 100 int values.
Think of a long aisle of 100 consecutive storage spaces in our variable warehouse.
The spaces would probably be labeled as intArray[0], intArray [1], intArray
[2], and so on, where each space holds a single int value. The slightly surprising
thing here is that the storage spaces start off at 0, not 1. Therefore, in an array that is
100 elements wide, the storage spaces would run from 0 to 99.

Handling and Displaying Arrays of Data

[300]

We could actually initialize some of these storage spaces like this:

intArray[0] = 5;
intArray[1] = 6;
intArray[2] = 7;

However, note that we can only ever put the predeclared type into an array, and the
type that an array holds can never change:

intArray[3]= "John Carmack"; // Won't compile String not int

So, when we have an array of int types, what are each of these int variables called?
What are the names of these variables and how do we access the values stored in
them? The array notation syntax replaces the name, and we can do anything with a
variable in an array that we could do with a regular variable with a name, as shown
in the following code:

intArray [3] = 123;

Here is another example of initializing an array element:

intArray[10] = intArray[9] - intArray[4];

This declaration also includes assigning the value from an array to a regular variable
of the same type, like this:

int myNamedInt = intArray [3];

Note, however, that myNamedInt is a separate and distinct primitive variable, and
any changes to it do not affect the value stored in the intArray reference. It has its
own space in the warehouse and is unconnected to the array. To be more specific, the
array is on the heap and int is on the stack.

Arrays are objects
We said that arrays are reference variables. Think of an array variable as an address
to a group of variables of a given type. Perhaps, using the warehouse analogy,
someArray is an aisle number. So, someArray[0], someArray[1], and so on are the
aisle numbers followed by their position numbers in the aisle.

Arrays are also objects, that is, they have methods and properties that we can use,
for example:

int lengthOfSomeArray = someArray.length;

Here, we assigned the length of someArray to the int variable called
lengthOfSomeArray.

Chapter 13

[301]

We can even declare an array of arrays. This is an array that, in each of its elements,
lurks another array. The declaration is shown as follows:

String[][] countriesAndCities;

In the preceding array, we could hold a list of cities within each country. Let's not go
array crazy just yet though. Just remember that an array holds up to a predetermined
number of variables of any predetermined type, and these values are accessed using
this syntax:

someArray[someLocation];

Let's actually use some arrays to try and get an understanding of how to use them in
real code and what we might use them for.

A simple array example mini app
Let's make a really simple working array example. You can get the completed code
for this example in the downloadable code bundle. It's at Chapter 13/Simple
Array Example/MainActivity.java.

Create a project with a blank Activity and call it Simple Array Example.

First, we declare our array, allocate five spaces, and initialize values to each of the
elements. Then, we output each of the values to the logcat console. Add this code to
the onCreate method just after the call to setContentView:

// Declaring an array
int[] ourArray;

// Allocate memory for a maximum size of 5 elements
ourArray = new int[5];

// Initialize ourArray with values
// The values are arbitrary as long as they are int
// The indexes are not arbitrary. 0 through 4 or crash!

ourArray[0] = 25;
ourArray[1] = 50;
ourArray[2] = 125;
ourArray[3] = 68;
ourArray[4] = 47;

// Output all the stored values
Log.i("info", "Here is ourArray:");

Handling and Displaying Arrays of Data

[302]

Log.i("info", "[0] = " + ourArray[0]);
Log.i("info", "[1] = " + ourArray[1]);
Log.i("info", "[2] = " + ourArray[2]);
Log.i("info", "[3] = " + ourArray[3]);
Log.i("info", "[4] = " + ourArray[4]);

Next, we add each of the elements of the array together, just as we do in regular int
type variables. Note that when we add the array elements together, we are doing
so over multiple lines. This is fine as we have omitted a semicolon until the last
operation, so the Java compiler treats the lines as one statement. Add the code that
we just discussed to MainActivity.java:

/*
 We can do any calculation with an array element
 As long as it is appropriate to the contained type
 Like this:
*/
int answer = ourArray[0] +
ourArray[1] +
ourArray[2] +
ourArray[3] +
ourArray[4];

Log.i("info", "Answer = " + answer);

Run the example and observe the output in the logcat window.

Remember that nothing will happen on the emulator display, as all the output will
be sent to our logcat console window in Android Studio. Here is the output:

info﹕ Here is ourArray﹕

info﹕ [0] = 25

info﹕ [1] = 50

info﹕ [2] = 125

info﹕ [3] = 68

info﹕ [4] = 47

info﹕ Answer = 315

We declared an array called ourArray to hold int variables and then allocated space
for up to 5 allocations of that type.

Next, we assigned a value to each of the five spaces in our array. Remember that the
first space is ourArray[0] and the last space is ourArray[4].

Chapter 13

[303]

Next, we simply printed the value in each array location on the console. From the
output, we can see that they hold the value we initialized them to be in the previous
step. Then, we added together each of the elements in ourArray and initialized their
value to the answer variable. We then printed answer on the console, and we can
see that indeed all the values were added together, just as if they were plain old int
types, which they are, but just that they are stored in a different manner.

Getting dynamic with arrays
As we discussed at the beginning of all this array discussion, if we need to declare
and initialize each element of an array individually, there isn't a huge amount of
benefit to an array over regular variables. Let's look at an example of declaring and
initializing arrays dynamically.

A dynamic array example
Let's make a really simple dynamic array example. You can get the working project
for this example in the download bundle. It is located at Chapter 13/Dynamic
Array Example/MainActivity.java.

Create a project with a blank Activity and call it Dynamic Array Example.

Type the following just after the call to setContentView in onCreate. Check whether
you can work out what the output is before we discuss it and analyze the code:

// Declaring and allocating in one step
int[] ourArray = new int[1000];

// Let's initialize ourArray using a for loop
// Because more than a few variables is allot of typing!

for(int i = 0; i < 1000; i++){

 // Put the value of ourValue into our array
 // At the position determined by i.
 ourArray[i] = i*5;

 // Output what is going on
 Log.i("info", "i = " + i);
 Log.i("info", "ourArray[i] = " + ourArray[i]);
}

Handling and Displaying Arrays of Data

[304]

Run the example app, remembering that nothing will happen on the screen, as
all the output will be sent to our logcat console window in Android Studio. Here is
the output:

info﹕ i = 0

info﹕ ourArray[i] = 0

info﹕ i = 1

info﹕ ourArray[i] = 5

info﹕ i = 2

info﹕ ourArray[i] = 10

We removed 994 iterations of the loop for brevity, and the output will be as follows:

info﹕ ourArray[i] = 4985

info﹕ i = 998

info﹕ ourArray[i] = 4990

info﹕ i = 999

info﹕ ourArray[i] = 4995

First, we declared and allocated an array called ourArray to hold up to 1000 int
values. Note that this time we performed these two steps in one line of code:

int[] ourArray = new int[1000];

Then, we used a for loop that was set to loop 1000 times:

(int i = 0; i < 1000; i++){

We initialized the spaces in the array, starting at 0 through to 999 with the value of i
multiplied by 5, like this:

ourArray[i] = i*5;

Then, to demonstrate the value of i and the value held in each position of the array,
we output the value of i followed by the value held in the corresponding position in
the array like this:

Log.i("info", "i = " + i);
Log.i("info", "ourArray[i] = " + ourArray[i]);

And all this happened 1000 times, producing the output we saw. Of course, we are
yet to use this technique in a real-world app, but we will use it soon to make our
Note To Self app hold an almost infinite number of notes.

Chapter 13

[305]

Entering the nth dimension with arrays
We very briefly mentioned that an array can even hold other arrays at each position.
And of course, if an array holds lots of arrays that hold lots of some other type,
how do we access the values in the contained arrays? And why would we ever
need this anyway? Take a look at this next example where multidimensional arrays
can be useful.

A multidimensional array mini app
Let's make a really simple multidimensional array example. You can get the working
project for this example in the download bundle. It is located at Chapter 13/
Multidimensional Array Example/MainActivity.java.

Create a project with a blank Activity and call it Multidimensional Array Example.

After the call to setContentView in onCreate, declare and initialize a two-
dimensional array like this:

// Random object for generating question numbers
Random randInt = new Random();
// a variable to hold the random value generated
int questionNumber;

// declare and allocate in separate stages for clarity
// but we don't have to
String[][] countriesAndCities;
// Now we have a 2 dimensional array

countriesAndCities = new String[5][2];
// 5 arrays with 2 elements each
// Perfect for 5 "What's the capital city" questions

// Now we load the questions and answers into our arrays
// You could do this with less questions to save typing
// But don't do more or you will get an exception
countriesAndCities [0][0] = "United Kingdom";
countriesAndCities [0][1] = "London";

countriesAndCities [1][0] = "USA";
countriesAndCities [1][1] = "Washington";

countriesAndCities [2][0] = "India";
countriesAndCities [2][1] = "New Delhi";

Handling and Displaying Arrays of Data

[306]

countriesAndCities [3][0] = "Brazil";
countriesAndCities [3][1] = "Brasilia";

countriesAndCities [4][0] = "Kenya";
countriesAndCities [4][1] = "Nairobi";

Now, we output the contents of the array using a for loop and our Random object.
Note how we've ensured that although the question is random, we can always pick
the correct answer. Add this next code after the previous code:

/*
 Now we know that the country is stored at element 0
 The matching capital at element 1
 Here are two variables that reflect this
*/
int country = 0;
int capital = 1;

// A quick for loop to ask 3 questions
for(int i = 0; i < 3; i++){
 // get a random question number between 0 and 4
 questionNumber = randInt.nextInt(5);

 // and ask the question and in this case just
 // give the answer for the sake of brevity
 Log.i("info", "The capital of "
 +countriesAndCities[questionNumber][country]);

 Log.i("info", "is "
 +countriesAndCities[questionNumber][capital]);

} // end of for loop

Run the example remembering that nothing will happen on the screen, as all
the output will be sent to our logcat console window in Android Studio. Here
is the output:

info﹕ The capital of USA

info﹕ is Washington

info﹕ The capital of India

info﹕ is New Delhi

info﹕ The capital of United Kingdom

info﹕ is London

Chapter 13

[307]

What just happened? Let's go through this chunk by chunk so we know exactly what
is going on.

We make a new object of the Random type called randInt, as shown in the following
code, that is ready to generate random numbers later in the program:

Random randInt = new Random();

And a simple int variable to hold a question number is declared as:

int questionNumber;

And here, we declare our array of arrays called countriesAndCities. The outer
array holds the arrays:

String[][] countriesAndCities;

Now, we allocate space within our arrays. The first outer array will now be able to
hold 5 arrays and each of the inner arrays will be able to hold 2 Strings.

countriesAndCities = new String[5][2];

Now, we initialize our arrays so that they hold country names and their
corresponding capital city names. Note that with each pair of initializations, the
outer array number stays the same, indicating that each country/capital pair is
within one inner array (a String array). And of course, each of these inner arrays
is held in one element of the outer array (which holds arrays), as shown in the
following code:

countriesAndCities [0][0] = "United Kingdom";
countriesAndCities [0][1] = "London";

countriesAndCities [1][0] = "USA";
countriesAndCities [1][1] = "Washington";

countriesAndCities [2][0] = "India";
countriesAndCities [2][1] = "New Delhi";

countriesAndCities [3][0] = "Brazil";
countriesAndCities [3][1] = "Brasilia";

countriesAndCities [4][0] = "Kenya";
countriesAndCities [4][1] = "Nairobi";

Handling and Displaying Arrays of Data

[308]

To make the upcoming for loop clearer, we declare and initialize int variables to
represent the country and capital names from our arrays. If you glance back at the
array initialization, all the country names are held in position 0 of the inner array
and all the corresponding capital city names are held at position 1:

int country = 0;
int capital = 1;

Now, we set up a for loop to run 3 times. Note that this does not simply access
the first three elements of our array, it just determines the number of times we go
through the loop. We could make it loop one time or a thousand times, the example
would still work:

for(int i = 0; i < 3; i++){

Next, we actually determine which question to ask. Or more specifically, which
element of our outer array needs to be accessed. Remember that randInt.
nextInt(5) returns a number between 0 and 4. Just what we need as we have an
outer array with 5 elements: 0 through 4:

questionNumber = randInt.nextInt(5);

Now, we can ask a question by providing an output of the Strings held in the inner
array, which in turn is held by the outer array that was chosen in the previous line by
the randomly generated number:

 Log.i("info", "The capital of "
 +countriesAndCities[questionNumber][country]);

 Log.i("info", "is "
 +countriesAndCities[questionNumber][capital]);

}//end of for loop

For the record, we will not be using any multidimensional arrays in the rest of this
book. So if there is still a little bit of murkiness around these arrays inside arrays,
then that doesn't matter. You know they exist, what they can do, and you can revisit
them if necessary.

Chapter 13

[309]

Array out of bounds exceptions
An array out of bounds exception occurs when we attempt to access an element of an
array that does not exist. Sometimes, the compiler will catch it for us to prevent the error
from making it into a working app. For example, we can declare the array like this:

int[] ourArray = new int[1000];
int someValue = 1; // Arbitrary value
ourArray[1000] = someValue;
// Won't compile as compiler knows this won't work.
// Only locations 0 through 999 are valid

However, what if we do something like this:

int[] ourArray = new int[1000];
int someValue = 1;// Arbitrary value
int x = 999;
if(userDoesSomething){
 x++; // x now equals 1000
}

ourArray[x] = someValue;
/*
 Array out of bounds exception if userDoesSomething evaluates to
 true! This is because we end up referencing position 1000 when the
 array only has positions 0 through 999.
 Compiler can't spot it. App will crash!
*/

The only way to avoid this problem is to know the rule. The rule states that arrays
start at 0 and go up to their length -1. We can also use clear readable code where it is
easy to evaluate what we have done and spot problems more easily.

ArrayLists
ArrayList is like a regular Java array on steroids. It overcomes some of the shortfalls
of arrays such as having to predetermine its size. It adds some really useful methods
to make its data easy to manage, and it uses an enhanced version of a for loop,
which is clearer to use than a regular for loop.

Let's look at some code that uses ArrayList:

// Declare a new ArrayList called myList to hold int variables
ArrayList<int> myList;

// Initialize the myList ready for use
myList = new ArrayList<int>();

Handling and Displaying Arrays of Data

[310]

In the previous code, we declared and initialized a new ArrayList called myList.
We can also do this in a single step as shown in the following code:

ArrayList<int> myList = new ArrayList<int>();

We have seen nothing especially interesting so far, so let's take a look at what we can
actually do with ArrayList. Let's use String ArrayList this time:

// declare and initialize a new ArrayList
ArrayList<String> myList = new ArrayList<String>();

// Add a new String to myList in the next available location
myList.add("Donald Knuth");
// And another
myList.add("Rasmus Lerdorf");
// And another
myList.add("Richard Stallman");
// We can also choose 'where' to add an entry
myList.add(1, "James Gosling");

// Is there anything in our ArrayList?
if(myList.isEmpty()){
 // Nothing to see here
}else{
 // Do something with the data
}

// How many items in our ArrayList?
int numItems = myList.size();

// Now where did I put James Gosling?
int position = myList.indexOf("James Gosling");

In the previous code, we saw that we can use some really useful methods of the
ArrayList class in our ArrayList object. We can add an item (myList.add), add it
at a specific location (myList.add(x, value)), check whether ArrayList is empty
(myList.isEmpty), see how big the array is (myList.size()), and get the current
position of a given item (myList.indexOf).

There are even more methods in the ArrayList class, and
you can read about them at http://docs.oracle.com/
javase/7/docs/api/java/util/ArrayList.html.
What we have seen so far is enough to complete this book.

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html

Chapter 13

[311]

With all this functionality, all we need now is a way to handle ArrayLists
dynamically.

The enhanced for loop
This is what the condition of an enhanced for loop looks like:

for (String s : myList)

The previous example would iterate (step through) all of the items in myList one at a
time. At each step, s would hold the current String.

So, this code would print on the console all our eminent programmers from the
previous section's ArrayList code sample:

for (String s : myList){
 Log.i("Programmer: ","" + s);
}

We can also use the enhanced for loop with regular arrays too:

int [] anArray = new int [];
// We can initialize arrays quickly like this
anArray {0, 1, 2, 3, 4, 5}

for (int s : anArray){
 Log.i("Contents = ","" + s);
}

There's another incoming newsflash!

Arrays and ArrayLists are polymorphic
We already know that we can put objects into arrays and ArrayList. But being
polymorphic means that they can handle objects of multiple different types as long
as they have a common parent type, all within the same array or ArrayList.

In Chapter 9, Object-Oriented Programming, you learned that polymorphism roughly
means different forms. But what does it mean to us in the context of arrays and
ArrayList?

Handling and Displaying Arrays of Data

[312]

Boiled down to its simplest, any subclass can be used as part of the code that uses the
super class.

For example, if we have an array of Animals, we could put any object that is a type,
that is a subclass of Animal in the Animal array, perhaps, Cats and Dogs.

This means that we can write code that is simpler and easier to understand and
easier to modify or change:

// This code assumes we have an Animal class
// And we have a Cat and Dog class that extends Animal
Animal myAnimal = new Animal();
Dog myDog = new Dog();
Cat myCat = new Cat();
Animal [] myAnimals = new Animal[10];
myAnimals[0] = myAnimal; // As expected
myAnimals[1] = myDog; // This is OK too
myAnimals[2] = myCat; // And this is fine as well

Also, we can write code for the super class and rely on the fact that no matter how
many times it is subclassed, within certain parameters, the code will still work. Let's
continue our previous example:

// 6 months later we need elephants
// with its own unique aspects
// As long as it extends Animal we can still do this
Elephant myElephant = new Elephant();
myAnimals[3] = myElephant; // And this is fine as well

However, when we remove an object from a polymorphic array, we must remember
to cast it to the type we want. This is just like what we do every time we get a
reference to a UI element from our XML layout that uses findViewById:

Cat newCat = (Cat) myAnimals[2];

All we just discussed is true for ArrayLists as well. Armed with this new toolkit
of arrays and ArrayLists and the fact that they are polymorphic, we can move
on to learn about some more Android classes that we will soon use to enhance our
Note To Self app.

Chapter 13

[313]

ListView and BaseAdapter
In Chapter 5, Real-World Layouts, we used ScrollView and we populated it with
around 20 TextView widgets, so we could see it scrolling. We could take what we
just learned about arrays and ArrayList and create an array of TextViews and use
them to populate ScrollView. This sounds like a perfect solution to display excerpts
of a note in our Note To Self app.

We could create TextViews dynamically in Java code, set their text property to be
the title of a note, and then add TextViews to LinearLayout that is contained in
ScrollView. However, this is imperfect.

The problem with displaying lots of widgets
This might seem fine, but what if there were dozens, hundreds, or even thousands of
notes? We couldn't have thousands of TextViews in memory because the Android
device might simply run out of memory or, at the very least, grind to a halt as it tries
to handle the scrolling of such a vast amount of data.

Now consider that we want each note in ScrollView to show an image about the
type of note it is—whether it is important, a to-do list, or an idea. How about a small
snippet from the description as well.

We would need to devise some really clever code that loads and destroys Note
objects, TextViews, and ImageViews from an array. This can be done, but to do it
efficiently is far from straightforward.

The solution
Fortunately, this is a problem faced so commonly by mobile developers that the
Android API has a solution built in.

We can add a single ListView widget (like ScrollView with boosters) to our UI
layout and then interact with it using an adapter. We will use the BaseAdapter
class, extend it, customize it, and then use it to control the data from ArrayList and
display it in ListView.

Let's find out a bit more about how the ListView and BaseAdapter classes work.

Handling and Displaying Arrays of Data

[314]

How to use ListView and BaseAdapter
To add ListView to our layout, we can simply drag and drop it from the palette onto
our UI in the usual way. ListView will look like this in the UI designer:

This appearance, however, is more a representation of the possibilities than the
actual appearance in an app. If we run the app immediately after adding ListView,
we just get a blank screen.

The first thing we need to do to make practical use of ListView is to decide what
each list item will look like. A simple case is implied in the previous figure: an item
and a sub item, perhaps, a title and a description.

A list item needs to be defined in its own XML file and then ListView can hold
multiple instances of a list item.

Of course, none of this explains how we overcome the complexity of managing what
data is shown in which list item and how it is retrieved from ArrayList.

Chapter 13

[315]

This data handling is taken care of by our implementation of BaseAdapter. The
BaseAdapter class implements the Adapter interface. We don't need to know how
Adapter works internally; we just need to override the appropriate methods and
then BaseAdapter will do all the work of communicating with ListView.

Wiring up an implementation of BaseAdapter to ListView is certainly more
complicated than dragging 20 TextViews onto ScrollView; but once this is done, we
can forget about the ListView and it will keep on working.

We need to override four methods and add a little code of our own. Let's take a look
at a skeleton of the code that we need to extend BaseAdapter and make it work with
our data and ListView.

Here is some sample code that extends and implements BaseAdapter itself:

public class MyAdapter extends BaseAdapter {

 List<MyObject> myList = new ArrayList<MyObject>();

 @Override
 public int getCount() {
 return myList.size();
 }

 @Override
 public MyObject getItem(int whichItem) {
 // Simply returns the position of the required item
 return myList.get(whichItem);
 }

 @Override
 public long getItemId(int whichItem) {

 return whichItem;
 }

 @Override
 public View getView(int whichItem, View view, ViewGroup viewGroup) {

 /*
 Prepare a list item to show our data.
 The list item is contained in the
 view parameter. The position of the
 data in our ArrayList is contained

Handling and Displaying Arrays of Data

[316]

 in whichItem parameter
 */

 return view;
 }

}

At first glance, the preceding code might look slightly complicated, but if we step
through it a bit at a time, we will see that it is not as daunting as it might seem.

After the class declaration that extends BaseAdapter (of course), we declare and
initialize ArrayList called myList, which holds a list of hypothetical MyObject
objects. This could easily be changed to hold a list of Note objects, for example.

Next, we override the getCount method. All this does is return the size of
ArrayList by calling myList.size(). Note that we don't need to use this method
ourselves directly.

The next overridden method is getItem. This method does no more than return an
item from ArrayList (myList). As such, the return type in the signature matches the
type held in ArrayList.

The next method getItemId is slightly counterintuitive at first glance. It returns a long
variable in place of int that is passed in. BaseAdapter uses this method internally
because it needs to distinguish between the id property that we give to an item in our
list and the internally held id. Again, we will not be using this method directly.

Finally, we get to the getView method. This is the method that is key to us. This
method has a View object named view as a parameter. This object is the list item that
according to what MyAdapter (through it's internal workings) has determined needs
to be prepared so that it can be displayed to the user. It is here that we can use the
techniques you already learned to prepare the list item.

In the getView method, we simply, inflate view, get a reference to the widgets we
want from our list item layout and set the widgets' properties. We have done all
these things many times before. We will see this part of the code for real in the next
chapter when we enhance our Note To Self app.

Chapter 13

[317]

So what happens is that the BaseAdapter class already handles everything and we
just stick our bit of customization in (object type, ArrayList, and the getView code),
and after this, everything is taken care of for us.

Take a look at an outline of the required steps so that we know what to expect
when we do this for real. To set the whole thing up and running, we would do
the following:

• Add ListView to our layout with an appropriate id property.
• Create an XML layout to represent a list item.
• Extend BaseAdapter as we just discussed.
• Add code in onCreate to create an instance of MyAdapter, get a reference to

ListView, and bind it to our adapter instance. Again, we will see this for real
in the next chapter.

The only caveats are that we are assuming there is some data in ArrayList held by
myAdapter and we haven't yet got an implementation for our list item.

Let's do all this for real by adding features to our Note To Self app. First, let's take a
quick look at inner classes.

Inner classes revisited
As BaseAdapter is very closely associated with the Activity that it is created within,
it is a perfect candidate to be an inner class. Recall from Chapter 9, Object-Oriented
Programming, that inner classes are classes declared within another class. Unlike
anonymous classes, they must be declared outside the body of any methods of the
containing class and have their own name as well. Inner classes can be our own
classes or subclasses of a class from the Android API, for example, BaseAdapter.

The advantage of an inner class is that it can access all the member variables and
methods of its containing class, and we will see in the next chapter how this can be
useful. Just note that BaseAdapter does not have to be an inner class, it just suits us
on this occasion.

Handling and Displaying Arrays of Data

[318]

FAQ
1. How does a computer which can only make real calculations possibly generate a
genuinely random number?

In reality, a computer cannot create a number that is truly random, but
the Random class uses a seed that produces a number that would stand
up as genuinely random under close statistical scrutiny. To find out more
about seeds and generating random numbers, take a look at the article at
https://en.wikipedia.org/wiki/Random_number_generation.

2. Where is the code that manages the creation, showing, hiding, and scrolling of list
items and ListView?

It is tucked away in the BaseAdapter class and we don't need to know how
it works. But if you are curious, you could find out more about it at http://
developer.android.com/reference/android/widget/BaseAdapter.html.

Summary
In this chapter, we looked at how to use simple Java arrays to store large amount
of data with the same type. We also used ArrayList, which is like an array with
a lot of extra features. Furthermore, we found out that both arrays and ArrayList
are polymorphic, which means that a single array (or ArrayList) can hold multiple
different objects as long as they are all derived from the same parent class.

Also, we learned about the BaseAdapter class that implements the Adapter
interface. It allows us to bind together ListView and ArrayList, allowing the
seamless display of data without us (the programmer) having to worry about the
complex code that is part of these classes.

In the next chapter, we will put our theory into practice and enhance our
Note To Self app.

https://en.wikipedia.org/wiki/Random_number_generation
http://developer.android.com/reference/android/widget/BaseAdapter.html
http://developer.android.com/reference/android/widget/BaseAdapter.html

[319]

Handling and Displaying
Notes in Note To Self

Now that we have thoroughly practiced and theorized data handling and how the
Android SDK can help us with ListView and BaseAdapter, we can begin to stretch
our knowledge a little further to make our Note To Self app handle almost
unlimited notes.

In this chapter, we will do the following:

• Create a list item layout
• Implement the adapter
• Bind the adapter to ListView
• Discuss how we can improve our app

Note To Self continued
Open up the Note To Self app. As a reminder, if you want to see the completed code
and working app after completing this chapter, it can be found in the Chapter 14/
Note to self folder. As the actions in this chapter require you to jump around
between different files, classes, and methods, I encourage you to follow along with
the files from the download bundle opened for reference.

Updating onCreate and preparing the UI
Now, let's prepare our UI. To do so, follow these steps:

1. In the layout_main.xml file, delete the temporary button with a button ID
that we added previously for testing purposes.

Handling and Displaying Notes in Note To Self

[320]

2. In the onCreate method of MainActivity.java, we can delete the
anonymous class that handles its clicks. In order to do so, delete the code
shown next:
// Temporary code
Button button = (Button) findViewById(R.id.button);
button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

 DialogShowNote dialog = new DialogShowNote();
 dialog.sendNoteSelected(mTempNote);
 dialog.show(getFragmentManager(), "");
 }
});

3. Now, switch back to layout_main.xml and drag ListView from the palette
onto the layout.

4. Set its id property to listView.

Creating a list item for ListView
Next, let's create a list item to be used within ListView. Follow the given steps for
the same:

1. Right-click on the layout folder and navigate to New | Layout resource
file. Enter listitem in the Name field and make the Root element field
RelativeLayout.

2. Take a look at the next screenshot to see what we are trying to achieve:

3. Drag three ImageView widgets onto the top-left corner of the layout.
4. It will make the rest of the layout easier to complete if we enter the src

properties for each of these ImageView widgets. So, we might as well add
id properties while we are doing so. Add the following properties from
the table:

Chapter 14

[321]

Widget type Property Value to set to
ImageView (left) id imageViewImportant

ImageView (left) src @drawable/ic_warning_black_24dp

ImageView (center) id imageViewTodo

ImageView (center) src @drawable/ic_check_box_outline_
blank_black_24dp

ImageView (right) id imageViewIdea

ImageView (right) src @drawable/ic_wb_incandescent_
black_24dp

5. Drag a LargeText widget immediately below ImageViews, again to the
immediate left-hand side of the layout.

6. Now, drag a Plain TextView widget immediately below the LargeText
widget from the previous step.

7. Follow this table to assign values to the properties:

Widget type Property Value to set to
LargeText id txtTitle

Plain TextView id txtDescription

Now we have ListView and a layout that we can use for each list item. We can go
ahead and code our BaseAdapter implementation.

Let's call our new class NoteAdapter. Here is the entire implementation with just
the skeleton code for the getView method because it warrants extra discussion and
presentation on its own. Add this code within the MainActivity class just before its
closing curly brace } because it will be an inner class:

public class NoteAdapter extends BaseAdapter {

 List<Note> noteList = new ArrayList<Note>();

 @Override
 public int getCount() {
 return noteList.size();
 }

 @Override
 public Note getItem(int whichItem) {
 return noteList.get(whichItem);

Handling and Displaying Notes in Note To Self

[322]

 }

 @Override
 public long getItemId(int whichItem) {
 return whichItem;
 }

 @Override
 public View getView(int whichItem, View view, ViewGroup viewGroup)
 {

 // Implement this method next

 return view;
 }
}

The preceding class is nearly identical to the code we discussed previously, except
we've called it NoteAdapter. This class holds ArrayList called noteList and the
getItem method returns a Note object.

Now, we will look at the code for the getView method. The first thing to note is the
parameters that provide us with some useful variables. Most notably, view of the
View type and whichItem of the int type.

The view object reference is, in fact, an instance of the list item that is necessary to be
displayed as evaluated by BaseAdapter, and whichItem is the position in ArrayList
of the Note object that needs to be displayed in it. It seems like BaseAdapter must
have read our minds.

All we need to do is write the code to put the data from the Note object into our list
item from the list_item.xml layout.

First, we check if (view == null). If it is true, this means that this view has not
been inflated to make it ready for use. So, inside the if block we inflate view, which
makes all the widgets from list_item.xml available for use in the usual way.

We can then hide any ImageView widgets depending upon the combination of
whether the current Note object is TODO, Important, or Idea.

Then, we finally use the setText method on our TextView widgets to display the
title and description.

Add the code for the getView method. The entire method including the signature
and return statement is shown again for context with the new code highlighted
as follows:

Chapter 14

[323]

@Override
public View getView(
 int whichItem, View view, ViewGroup viewGroup) {

 // Implement this method next
 // Has view been inflated already
 if(view == null){

 // If not, do so here
 // First create a LayoutInflater
 LayoutInflater inflater = (LayoutInflater)
 getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 // Now instantiate view using inflater.inflate
 // using the listitem layout
 view = inflater.inflate(R.layout.listitem, viewGroup,false);
 // The false parameter is neccessary
 // because of the way that we want to use listitem

 }// End if

 // Grab a reference to all our TextView and ImageView widgets
 TextView txtTitle = (TextView) view.findViewById(R.id.txtTitle);
TextView txtDescription = (TextView) view.findViewById
 (R.id.txtDescription);
ImageView ivImportant = (ImageView) view.findViewById
 (R.id.imageViewImportant);
ImageView ivTodo = (ImageView) iew.findViewById(R.id.imageViewTodo);
ImageView ivIdea = (ImageView) view.findViewById
 (R.id.imageViewIdea);

 // Hide any ImageView widgets that are not relevant
 Note tempNote = noteList.get(whichItem);

 if (!tempNote.isImportant()){
 ivImportant.setVisibility(View.GONE);
 }

 if (!tempNote.isTodo()){
 ivTodo.setVisibility(View.GONE);
 }

 if (!tempNote.isIdea()){
 ivIdea.setVisibility(View.GONE);

Handling and Displaying Notes in Note To Self

[324]

 }

 // Add the text to the heading and description
 txtTitle.setText(tempNote.getTitle());
 txtDescription.setText(tempNote.getDescription());

 return view;
}

Now, we will add one more method to the class. Not an overridden method, one
of our own. Just before the closing curly brace } of the NoteAdapter class, add the
addNote method. We will call this method when we want to add a Note object to
noteList:

public void addNote(Note n){

 noteList.add(n);
 notifyDataSetChanged();

}

The notifyDataSetChanged method does exactly what the name suggests. It tells
NoteAdapter that the data in noteList has changed and that ListView might need
to be updated.

Now, in the MainActivity class, modify the createNewNote method that we
wrote previously. Add the call to the addNote method that we just wrote inside the
NoteAdapter class. The entire method should now look like this:

public void createNewNote(Note n){

 mNoteAdapter.addNote(n);

}

Now, when DialogNewNote calls createNewNote, createNewNote will pass it straight
to the addNote method in the NoteAdapter class, and will be added to ArrayList
(noteList). The adapter will be notified of the change as well, which will then trigger
the BaseAdapter class to do its work and keep the view up-to-date.

Declare a new NoteAdapter class as a member so that we can access it throughout
the class. Add this code just after the opening curly brace, {, of the MainActivity
class:

private NoteAdapter mNoteAdapter;

Chapter 14

[325]

Delete this temporary member from the last chapter as well:

// Temporary code
Note mTempNote = new Note();

Next, in the onCreate method, we need to initialize mNoteAdapter, get a reference to
ListView, and bind them together:

mNoteAdapter = new NoteAdapter();

ListView listNote = (ListView) findViewById(R.id.listView);

listNote.setAdapter(mNoteAdapter);

Now, we are really close to being able to use our new features. If you remember,
we deleted the temporary button that opened the DialogShowNote dialog window.
Now, we will click on a list item within ListView to open the DialogShowNote
window instead.

First, we will create a new AdapterView.OnItemClickListener anonymous class,
set it to listNote (ListView), and override the onItemClick method.

Within this method, we will create a temporary Note reference called tempNote by
calling mNoteAdapter.getItem(whichItem).

Then, we will create a new instance of DialogShowNote called dialog, send in the
temporary Note reference using sendNoteSelected, and then show the dialog
window.

Enter the following code, which we just discussed, just before the closing curly brace,
}, inside the onCreate method:

// Handle clicks on the ListView
listNote.setOnItemClickListener(new AdapterView.OnItemClickListener()
{

 @Override
 public void onItemClick(AdapterView<?> adapter, View view, int
 whichItem, long id) {

 /*
 Create a temporary Note
 Which is a reference to the Note
 that has just been clicked
 */
 Note tempNote = mNoteAdapter.getItem(whichItem);

Handling and Displaying Notes in Note To Self

[326]

 // Create a new dialog window
 DialogShowNote dialog = new DialogShowNote();
 // Send in a reference to the note to be shown
 dialog.sendNoteSelected(tempNote);

 // Show the dialog window with the note in it
 dialog.show(getFragmentManager(), "");

 }
});

You can now run the app and create a whole bunch of notes, view them in the list,
and select any note from the list to be shown:

Chapter 14

[327]

Here is one of the notes from the list:

Don't spend too much time on adding new notes, however, because there is a slight
problem. Close and restart the app. Uh oh, all the notes are gone!

Improvements in Note To Self
Here are some of the aspects we will fix over the next few chapters.

Persistence
It seems that our ArrayList, BaseAdapter, and ListView combination, while
versatile and timesaving, does not persist when the app is quit. In Chapter 15, Android
Intent and Persistence, we will add the Settings menu and look at two separate
solutions to save data in a persistent way. One for simple data, such as the Settings
screen options and one for more complex data, such as the objects in ArrayList.

Handling and Displaying Notes in Note To Self

[328]

Animation
In Chapter 16, UI Animations, we will also add some simple animations to Note To
Self that make the user's experience more visually pleasing. We will also experiment
with an animation mini app.

Sound FX
The addition of pleasing sounds can enhance an app as well as give audible feedback
to the user that the action they just took was successful. In Chapter 17, Sound FX and
Supporting Different Versions of Android we will add sound to Note To Self, as well as
experiment with sounds in a mini app.

Problems with the design of the code
It might seem worthwhile if noteList was a class of its own. Actually, it probably
should be. It would make a lot of sense to have a class that held ArrayList and
provided us access to that list with a getter method. Furthermore, it would allow us
to put into effect other best practices. As an example, we could ensure that we only
ever have one noteList, and wherever this notelist is accessed from, throughout
our app, there would be no danger of creating a second, third, or fourth list.

You have learned many new classes and concepts in the last few chapters, and
you will learn a lot more in the next three. Therefore, I thought I would defer the
discussion of the Java singleton, which helps us achieve all these things, until
Chapter 18, Design Patterns, Fragments, and the Real World, where we will also discuss
design patterns that are useful for Android and programming in general.

FAQ
1. I still don't understand how BaseAdapter works?

That's because we haven't really discussed it. The reason we have not
discussed the behind-the-scenes details is because we don't need to know
them. As long as we override the required methods, as we just saw,
everything will work. This is how BaseAdapter and most other classes we
use are meant to be, the hidden implementation with public methods to
expose the necessary functionality.

Chapter 14

[329]

2. I feel like I need to know what is going on inside BaseAdapter and other
classes as well.
It is true that there are more details for BaseAdapter (and almost every
class that we use in this book) that we don't have the space to discuss. It is
good practice to read the official documentation of the classes you use. You
can read more about BaseAdapter at http://developer.android.com/
reference/android/widget/BaseAdapter.html.

Summary
Now that we have added the ability to hold multiple notes, we can work on the list
of improvements that we just discussed.

We will start with making the users' notes persist when they quit the app or switch
off their device. In addition to this, we will create a settings screen and see how we
can make the settings persist as well. We will use different techniques to achieve
each of these goals.

http://developer.android.com/reference/android/widget/BaseAdapter.html
http://developer.android.com/reference/android/widget/BaseAdapter.html

[331]

Android Intent and
Persistence

In this chapter, we will look at a couple of different ways to save data to the Android
device's permanent storage. Also, for the first time, we will add a second Activity to
our app. It often makes sense when implementing a separate "screen," like a settings
screen in our app, to do so in a new Activity. We could go to the trouble of hiding the
original UI and then showing the new UI, but this would quickly lead to confusing
and error-prone code. So, we will see how to add an Activity and navigate the user
between them.

In this chapter, we will:

• Learn about Android Intents to switch the Activity and pass data
• Create a settings screen in a new Activity
• Persist the settings screen data using the SharedPreferences class
• Learn about JavaScript object notation for serialization
• Explore Java try-catch-finally
• Implement saving data in our Note To Self app

Good Intents
The Intent class is appropriately named. It is a class that demonstrates the Intent of
an Activity from our app. It makes clear Intent and it also facilitates it.

All our apps so far have had just one Activity, but most Android apps are comprised
of more than one.

Android Intent and Persistence

[332]

In perhaps its most common use, an Intent object allows us to switch between
activities. But, of course, activities are classes. So, what happens to their data when
we switch between them? Intents handle this problem for us, as well, by allowing us
to pass data between activities.

Intents aren't just about wiring up the activities of our app. They also make it
possible to interact with other apps. For example, we could provide a link in our app
for the user to send e-mail, make a phone call, interact with social media, and open a
web page in a browser and have the e-mail, dialer, browser, or relevant social media
app do all the work.

There aren't enough pages to really dig deep into interacting with other apps, and we
will mainly focus on switching between activities and passing data.

If you want to know more about the Intent class than this chapter
has the time to cover, I recommend the book Learning Android
Intents by Muhammad Usama bin Aftab and Wajahat Karim,
published by Packt Publishing (https://www.packtpub.com/
application-development/learning-android-intents).
The book assumes you already know how to program in Java but
has a very gentle learning curve and explores the Intent class in
vastly greater detail than we have room for in this book.

Throughout the rest of the book, we will occasionally bump into the Intent class
again and see more of the things it can do.

Switching Activity
Let's say we have an app with two activities, because we will soon. We can assume
that, as usual, we have an Activity called MainActivity, which is where the app
starts, and a second Activity called SettingsActivity. This is how we can swap
from MainActivity to SettingsActivity:

// Declare and initialize a new Intent object called myIntent
Intent myIntent = new Intent(this,SettingsActivity.class);

// Switch to the SettingsActivity
startActivity(myIntent);

https://www.packtpub.com/application-development/learning-android-intents
https://www.packtpub.com/application-development/learning-android-intents

Chapter 15

[333]

Look carefully at how we initialized the Intent object. The Intent class has a
constructor that takes two arguments. The first is a reference to the current Activity,
this. And the second parameter is the name of the Activity we want to open,
SettingsActivity.class. The .class on the end of SettingsActivity makes it
the full name of the Activity, as declared in the AndroidManifest.xml file, and we
will peek at that when we experiment with Intents shortly.

The only problem is that SettingsActivity doesn't share any of the data of
MainActivity. In a way, this is a good thing because if you need all the data from
MainActivity, then it is a reasonable indication that switching activities might not
be the best way of proceeding with your app's design. It is, however, unreasonable
to have encapsulation so thorough that the two activities know absolutely nothing
about each other.

Passing data between activities
What if we have a sign-in screen for the user and we want to pass the login
credentials to each and every Activity of our app? We could do so using Intents.

We can add data to Intent like this:

// Create a String called username
// and set its value to bob
String username = "Bob";

// Create a new Intent as we have already seen
Intent myIntent = new Intent(this,SettingsActivity.class);

// Add the username String to the Intent
// using the putExtra method of the Intent class
myIntent.putExtra("USER_NAME", username);

// Start the new Activity as we have before
startActivity(myIntent);

In SettingsActivity, we could then retrieve the string like this:

// Here we need an Intent also
// But the default constructor will do
// as we are not switching Activity
Intent myIntent = new Intent();

// Initialize username with the passed in String
String username = intent.getExtra().getStringKey("USER_NAME");

Android Intent and Persistence

[334]

In the previous two blocks of code, we switched the Activity in the same way as we
have already seen. But before we called startActivity, we used the putExtra
method to load a string into the Intent.

We add data using key-value pairs. Each piece of data needs to be accompanied
by an identifier that can be used in the retrieving Activity to identify and retrieve
the data.

The identifier name is arbitrary, but useful/memorable values should be used.

Then, in the receiving Activity, we simply create Intent using the default
constructor:

Intent myIntent = new Intent();

And we can then retrieve the data using the getExtras method and the appropriate
identifier from the key-value pair.

Once we want to start sending more than a few values, then it is worth considering
different tactics.

The Intent class can help us in sending more complex data than this, but the Intent
class does have its limits. For example, we wouldn't be able to pass a Note object.

We can also save data (complex and simple) to the device's disk, and this is covered
later in this chapter. We can even create and use a database dedicated to our app.
Databases will be primarily discussed in Chapter 23, Using SQLite Databases in Our Apps.

Adding a settings page to the Note To
Self app
Now that we are armed with all this knowledge about Android Intents, we can add
another screen (Activity) to our Note To Self app.

We will first create a new Activity and see what effect that has on the
AndroidManifest.xml file. We will then create a layout for our Settings screen and
add the Java code to switch from MainActivity to the new one. We will, however,
defer wiring up our settings screen with Java until we have learned how to save
those settings to disk. We will do this later in this chapter and then come back to the
settings screen to make the data persist.

First, let's create that new Activity.

Chapter 15

[335]

Creating SettingsActivity
This will be a screen where the user can turn on or off the sound effects as well
as choose the speed of animations. Clearly, our app does not yet have sound and
animations, but we can still fully code this screen and see how to save data to the
device's permanent storage by following the given steps:

1. In the project explorer, right-click on the folder that contains all your .java
files and has the same name as your package. From the pop-up context
menu, select New | Activity | Blank Activity.

2. In the Activity Name field, enter SettingsActivity.
3. Leave all the other options at their defaults and left-click on Finish.

Android Studio has created a new Activity for us and its associated .java file. Let's
take a quick peek at some of the work that was done behind the scenes for us because
it is useful to know what is going on.

Open the AndroidManifest.xml file from within the manifests folder in the project
explorer. Notice the following four lines of code near the end of this file:

<activity
 android:name=".SettingsActivity"
 android:label="@string/title_activity_settings" >
</activity>

This is how an Activity is registered with the operating system. If an Activity is not
registered, then an attempt to run it will crash the app. We could create an Activity
simply by creating a class that extends the Activity class
 (or AppCompatActivity) in a new .java file. However, we would then have had to add
the previous code ourselves. Also, by using the new Activity wizard, we got both a
layout XML file and menu XML file all automatically generated for us.

Designing the Settings screen's layout
We will quickly build a user interface for our Settings screen, and the following
steps and image should make this straightforward:

1. Open the activity_settings.xml file, switch to the Design tab, and we
will quickly lay out our Settings screen.

2. Delete the Hello world! widget that was put in automatically.

Android Intent and Persistence

[336]

3. Use this next image as a guide while following the rest of the steps:

4. Drag and drop a LargeText widget onto the center-top of the layout.
5. Drag and drop a Plain TextView widget and place it on the left and slightly

below the previous widget.
6. Drag and drop a CheckBox widget immediately below the previous widget.
7. Drag a Plain TextView widget below the previous CheckBox widget, and

leave a small space as shown in the previous image.
8. Drag and drop a RadioGroup widget from the Palette and place it

immediately below the widget in the previous step.
9. Drag three RadioButton widgets and place them one below the other inside

of the RadioGroup widget.

Chapter 15

[337]

10. Use the following table to set the properties on the layout elements we have
just added. In case there is any doubt which widget I am referring to in the
table, we are working from the top to bottom of the layout:

Widget type Property Value to set to
LargeText text @string/settings_title

Plain TextView text @string/sound_title

CheckBox text @string/sound_checkbox

CheckBox id checkBoxSound

Plain TextView text @string/amims_title

RadioGroup id radioGroup

RadioButton (top) text @string/rb_fast

RadioButton (top) id radioFast

RadioButton (middle) text @string/rb_slow

RadioButton (middle) id radioSlow

RadioButton (bottom) text @string/rb_none

RadioButton (bottom) id radioNone

We now have a nice new layout for our Settings screen and the id properties are in
place, ready for when we wire it up with our Java code later in the chapter.

Enabling the user to switch to the Settings
screen
We already know how to switch to SettingsActivity. Also, as we won't be passing
any data to it or from it, we can get this working with just two lines of Java.

You might have noticed that in the action bar of our app, there is the menu icon. It is
indicated in the following image:

If you tap it, there is already a menu option in there for Settings, provided by default
when we first created the app. And all we need to do is place our code to switch to
SettingsActivity within the onOptionsItemSelected method. Android Studio
even provided an if block for us to paste our code into with the assumption we
would one day want to add a Settings menu. How thoughtful!

Android Intent and Persistence

[338]

Find the following block of code in the onOptionsItemSelected method in
MainActivity.java:

//noinspection SimplifiableIfStatement
if (id == R.id.action_settings) {
 return true;
}

Add this code into the if block shown previously, just before the return true
statement:

Intent intent = new Intent(this, SettingsActivity.class);
startActivity(intent);

You can now run the app and visit the new Settings screen by tapping the Settings
screen's menu option.

To return from SettingsActivity to MainActivity, you can tap the back button
on the device. We will be making this a bit more intuitive for the user later in the
chapter in the section Specifying a parent Activity.

Persisting data with SharedPreferences
In Android, there are a number of ways to make data persist. By persist, I mean that
if the user quits the app, when they come back to it, their data is still available. The
correct method to use is dependent upon the app and type of data.

In this book, we will look at three ways to make data persist. For saving our users'
settings, we only need a really simple method. After all, we just need to know if they
want sound and at which speed they want their animations.

Let's take a look at how we can make our apps save and reload variables to the
internal storage of the device. We need to use the SharedPreferences class.
SharedPreferences is a class that provides access to data that can be accessed
and edited by all activities of an app. Let's look at how we can use it:

// A SharedPreferences for reading data
SharedPreferences prefs;

// A SharedPreferences.Editor for writing data
SharedPreferences.Editor editor;

Chapter 15

[339]

As with all objects, we need to initialize them before we can use them. We can
initialize the prefs object using the getSharedPreferences method and by passing
in String, which will be used to refer to all the data read and written using this
object. Typically, we could use the name of the app as this string. In the next code,
Mode_Private means that any class, in this app only, can access it:

prefs = getSharedPreferences("My App", MODE_PRIVATE);

We then use our newly initialized prefs object to initialize our editor object by
calling the edit method:

editor = prefs.edit();

Let's say we wanted to save the user's name that we have in a string called username.
We can then write the data to the internal memory of the device like this:

editor.putString("username", username);
editor.commit();

The first argument used in the putString method is a label that can be used to refer
to the data, and the second is the actual variable that holds the data we want to save.
The second line in the previous code initiates the saving process. So, we could write
multiple variables to disk like this:

editor.putString("username", username);
editor.putInt("age", age);
editor.putBoolean("newsletter-subscriber", subscribed);

// Save all the above data
editor.commit();

The preceding code demonstrates that you can save other variable types, and it of
course assumes that the username, age, and subscribed variables have previously
been initialized with appropriate values.

Once editor.commit() is executed, the data is stored. We can quit the app and even
turn off the device and the data will persist.

Let's see how we can reload our data the next time the app is run. This code will
reload the three values that the previous code saved. We could even declare our
variables and initialize them with the stored values:

String username =
 prefs.getString("username", "new user");

int age = prefs.getInt("age", -1);

Android Intent and Persistence

[340]

boolean subscribed =
 prefs.getBoolean("newsletter-subscriber", false)

In the previous code, we load the data from disk using the method appropriate for
the data type and the same label we used to save the data in the first place. What is
less clear is the second argument to each of the method calls. The getString, getInt,
and getBoolean methods require a default value as the second parameter. If there is
no data stored with that label, it will then return the default value. We could then
check for these default values in our code and go about trying to obtain the real
values. For example:

if (age == -1){
 // Ask the user for his age
}

We now know enough to save our users' settings in the Note To Self app.

Making the Note To Self app's settings
persist
We have already learned how to save data to the device's memory. As we implement
saving users' settings, we will also see again how we handle the CheckBox,
RadioGroup, and RadioButton input.

Coding the SettingsActivity class
Most of the action will take place in the SettingsActivity.java file. So, click on the
appropriate tab and we will add the code a bit at a time.

First, we need some member variables that will give us a working
SharedPreferences and Editor reference. We also want a member variable to
represent each of the users' settings options. We need one for sound (boolean
for on or off) and int for their preferred animation option (fast, slow, or none).
Furthermore, as you will see in the next code, we have three member variables:
public, static, and final. These serve several purposes.

As they are final, they cannot be changed, so they are useful for remembering the
three possible states the animation option can be set to. This is a lot easier than
trying to remember which value represents which animation state. In addition, these
variables are static.

Chapter 15

[341]

Reminder: Static variables persist and are the same throughout
multiple instances of a class. They will be accessible in
MainActivity as well as SettingsActivity, even when
an instance of SettingsActivity does not exist. We will
soon see how this is useful.

Add the following member variables to SettingsActivity:

private SharedPreferences mPrefs;
private SharedPreferences.Editor mEditor;

private boolean mSound;

public static final int FAST = 0;
public static final int SLOW = 1;
public static final int NONE = 2;

private int mAnimOption;

Now, in onCreate, add the highlighted code to initialize mPrefs and mEditor:

mPrefs = getSharedPreferences("Note to self", MODE_PRIVATE);
mEditor = mPrefs.edit();

Next, still in onCreate, let's get a reference to our checkbox and load up the saved
data that represents our user's previous choice for sound. We get a reference to the
checkbox in the usual way and based on the value of mSound, we either check or
uncheck the box:

mSound = mPrefs.getBoolean("sound", true);

CheckBox checkBoxSound = (CheckBox) findViewById(R.id.checkBoxSound);

if(mSound){
 checkBoxSound.setChecked(true);
}else{
 checkBoxSound.setChecked(false);
}

Next, we make an anonymous class to handle any changes to the sound options by
detecting taps on the CheckBox class.

Android Intent and Persistence

[342]

Notice the onCheckedChanged method has a Boolean parameter, isChecked. We
add some logging code so we can see what is going on in the console, but the real
functionality is simple. Change the status of mSound by reversing it, by making it !
(not) what it was previously. Then, use Editor to put the new value into the sound
key-value pair.

Add the following code to the onCreate method that we have just discussed:

checkBoxSound.setOnCheckedChangeListener
 (new CompoundButton.OnCheckedChangeListener()
{
 public void onCheckedChanged(
 CompoundButton buttonView, boolean isChecked)
 {
 Log.i("sound = ", "" + mSound);
 Log.i("isChecked = ", "" + isChecked);

 // If mSound is true make it false
 // If mSound is false make it true
 mSound = ! mSound;
 mEditor.putBoolean("sound", mSound);

 }
});

Next, let's turn our attention to the RadioGroup/RadioButtons and the user's
preferences for the animation speed. We get the current setting with mPrefs.getInt
and then we get a reference to RadioGroup in the usual way. Then, we clear any
RadioButtons that might have already been pressed.

We then use a switch statement with mAnimOption as the argument and check the
appropriate button based on the value that we loaded.

Add this new code to onCreate:

// Now for the radio buttons
mAnimOption = mPrefs.getInt("anim option", FAST);

RadioGroup radioGroup = (RadioGroup) findViewById(R.id.radioGroup);

// Deselect all buttons
radioGroup.clearCheck();

// Which radio button should be selected?
switch(mAnimOption){

Chapter 15

[343]

 case FAST:
 radioGroup.check(R.id.radioFast);
 break;

 case SLOW:
 radioGroup.check(R.id.radioSlow);
 break;

 case NONE:
 radioGroup.check(R.id.radioNone);
 break;

}

And now, we can handle clicks on the radio buttons. In the onCheckedChanged
method, we use the switch block based on the ID of the just-checked button. In each
of the case statements, we assign the appropriate value to mAnimOption and after
the switch block, we use the Editor object to put that value away in the appropriate
key-value pair.

Add this code to the onCreate method:

radioGroup.setOnCheckedChangeListener
 (new RadioGroup.OnCheckedChangeListener() {
@Override
public void onCheckedChanged(RadioGroup group, int checkedId) {
 RadioButton rb = (RadioButton) group.findViewById(checkedId);
 if (null != rb && checkedId > -1) {

 switch (rb.getId()){

 case R.id.radioFast:
 mAnimOption = FAST;
 break;

 case R.id.radioSlow:
 mAnimOption = SLOW;
 break;

 case R.id.radioNone:
 mAnimOption = NONE;
 break;

 }

Android Intent and Persistence

[344]

 // End switch block

 mEditor.putInt("anim option", mAnimOption);

 }

}
});

You might have noticed that at no point in any of that code did we call mEditor.
comit to actually save the user's settings. We could have placed it after we detected
a change to CheckBox or RadioButton; however, is much simpler to put where it is
guaranteed to be called, but only once.

We will use our knowledge of the Activity lifecycle and override the onPause
method. When the user leaves SettingsActivity either to go back to MainActivity
or to quit the app, onPause will be called and the settings will be saved. Add this
code to override onPause and save the user's settings. Add the code just before the
closing curly brace of the SettingsActivity class:

@Override
protected void onPause() {
 super.onPause();

 // Save the settings here
 mEditor.commit();
}

Coding the MainActivity class
Finally, we can add some code to MainActivity to load the settings when the app
starts or when the user switches back from the Settings screen to the main screen.

Add this highlighted code to add some member variables after NoteAdapter:

private NoteAdapter mNoteAdapter;
private boolean mSound;
private int mAnimOption;
private SharedPreferences mPrefs;

At this time, we will override the onResume method, initialize our mPrefs variable,
and load the settings into the mSound and mAnimOption variables. Now, when we
add our sound and animation code in Chapter 16, UI Animations and Chapter 17,
Sound FX and Supporting Different Versions of Android, we will use animations and
sound effects at the right time and speed.

Chapter 15

[345]

Add the overriden onResume method as shown next:

@Override
protected void onResume(){
 super.onResume();

 mPrefs = getSharedPreferences("Note to self", MODE_PRIVATE);
 mSound = mPrefs.getBoolean("sound", true);
 mAnimOption = mPrefs.getInt("anim option", SettingsActivity.FAST);
}

The user is now able to choose their settings. The app will both save and reload them
as necessary.

Specifying a parent Activity
It is not essential but it is good practice (with benefits) to declare a parent Activity for
new activities. By doing so, we will also enhance our app visually and improve its
usability as well.

Open up the AndroidManifest.xml file from the manifests folder. Add the
highlighted line of the following code in the position shown:

…
<activity
 android:name=".SettingsActivity"
 android﹕parentActivityName=".MainActivity"
 android:label="@string/title_activity_settings" >
</activity>
…

SettingsActivity now officially has MainActivity as its parent. Now, we can run
the app and see a minor visual enhancement. The user can now use the device's back
button or the icon added to the UI upon adding that last bit of code:

Android Intent and Persistence

[346]

Now we have a neat Settings screen, and we can permanently save the user's
choices. Of course, the big missing link with regard to persistence is that the user's
fundamental data, his or her notes, still do not persist.

More advanced persistence
Let's think about what we need to do. We want to save a bunch of notes to the
internal storage. Being more specific, we want to store a selection of strings and
related Boolean values. These strings and Boolean values represent the user's note
title, the note's text, and whether or not it is a to-do, important, or idea.

Given what we already know about the SharedPreferences class, at first glance, this
might not seem especially challenging until we dig a little deeper into our requirements.
What if the user loves our app and ends up with 100 notes? We would need 100
identifiers for the key-value pairs. This is not impossible but is starting to get awkward.

Now, consider that we want to enhance the note app and give the user the ability to
add dates to them. Android has a Date class that is perfect for this. It would be fairly
straightforward to then add neat features like reminders to our app. But when it
comes to saving data, all of a sudden, things start to get complicated.

How would we store a date using SharedPreferences? It wasn't designed for this.
We could convert it to a string when we save it and convert it back again when we
load it, but this is far from simple.

And as our app grows in features and our users get more and more notes, the whole
persistence thing becomes a nightmare. What we need is a way to save and load
objects, actual Java objects. If we can simply save and load objects, including their
internal data (strings, Booleans, dates, or anything else), our apps can have any kind
of data we can think of to suit our users.

The process of converting data objects into bits and bytes to store on a disk is called
serialization; the reverse process is called de-serialization. Serialization on its own
is a vast topic and far from straightforward. Fortunately, as we are coming to expect,
there is a class to handle most of the complexity for us.

What is JSON?
JSON stands for JavaScript Object Notation and is widely used in fields beyond
Android and the Java language. It is perhaps more frequently used for sending data
between web applications and servers.

Chapter 15

[347]

Fortunately, there are JSON classes available for Android that almost entirely hide
the complexity of the serialization process. By learning about a few more Java
concepts, we can quickly begin to use these classes and start writing entire Java
objects to the device storage rather than having to worry ourselves about what
primitive types make up the objects.

The JSON classes, compared with other classes we have seen so far, undertake
operations that have a higher than normal possibility of failure beyond their control.
To find out why this is so and what can be done about it, let's take a look at Java
exceptions.

Java exceptions - try, catch, and finally
All this talk of JSON requires us to learn a new Java concept: exceptions. When we
write a class that performs operations that have a possibility of failure, especially
for reasons beyond our control, it is advisable to make this clear in our code so that
anyone using our class is prepared for the possibility.

Saving and loading data is one such scenario where failure is possible beyond our
control. Think about trying to load data when the SD card has been removed or
corrupted. Another instance where code might fail is perhaps when we write code
that relies on a network connection—what if the user goes offline part of the way
through a data transfer?

Java exceptions are the solution, and the JSON classes use them, so it is a good time
to learn about them.

When we write a class that uses code with a chance of failure, we can prepare the
users of our class by using exceptions with try, catch, and finally.

We can write methods in our classes using the throws Java keyword at the end of the
signature. A bit like this, perhaps:

public void somePrecariousMethod() throws someException{
 // Risky code goes here
}

Now, any code that uses somePrecariousMethod will need to handle the exception.
The way we handle exceptions is by wrapping code in the try and catch blocks.
Perhaps like this:

try{
 …
 somePrecariousMethod();
 …

Android Intent and Persistence

[348]

}catch(someException e){
 Log.e("Exception:" + e, "Uh ohh")
 // Take action if possible
}

Optionally, we can also add a finally block if we want to take any further action
after the try and catch blocks, as shown here:

finally{
 // More action here
}

In our Note To Self app, we will take the minimum necessary action to handle
exceptions and simply output an error to logcat, but you could do things like notify
the user, retry the operation, or put into operation some clever back-up plan.

Backing up user data in Note To Self
So, with our newfound insight into exceptions, let's modify our Note To Self code
and then we can be introduced to JSONObject and JSONException.

First, let's make some minor modifications to our Note class. Add some more
members that will act as the key in a key-value pair for each aspect of our Note class:

private static final String JSON_TITLE = "title";
private static final String JSON_DESCRIPTION = "description";
private static final String JSON_IDEA = "idea" ;
private static final String JSON_TODO = "todo";
private static final String JSON_IMPORTANT = "important";

Now, add a constructor and empty default constructor that receives JSONObject
and throws JSONException. The body of the constructor initializes each of the
members that define the properties of a single Note object by calling the getString
or getBoolean method of JSONObject, passing in the key as an argument. We also
provide an empty default constructor, which is required now that we are providing
our specialized constructor:

// Constructor
// Only used when new is called with a JSONObject
public Note(JSONObject jo) throws JSONException {

 mTitle = jo.getString(JSON_TITLE);
 mDescription = jo.getString(JSON_DESCRIPTION);
 mIdea = jo.getBoolean(JSON_IDEA);
 mTodo = jo.getBoolean(JSON_TODO);
 mImportant = jo.getBoolean(JSON_IMPORTANT);

Chapter 15

[349]

}
// Now we must provide an empty default constructor
// for when we create a Note as we provide a
// specialized constructor that must be used.
public Note (){

}

In the next code, we will see how to load the member variables of a given Note object
into JSONObject. This is where the Note object's members are packed up as a single
JSONObject ready for when the actual serialization takes place.

All we need to do is call put with the appropriate key and the matching member
variable. This method returns JSONObject (we will see where in a minute), and it
also throws a JSONException exception. Add the code we have just discussed:

public JSONObject convertToJSON() throws JSONException{

 JSONObject jo = new JSONObject();

 jo.put(JSON_TITLE, mTitle);
 jo.put(JSON_DESCRIPTION, mDescription);
 jo.put(JSON_IDEA, mIdea);
 jo.put(JSON_TODO, mTodo);
 jo.put(JSON_IMPORTANT, mImportant);

 return jo;
}

Now, let's make a JSONSerializer class that will perform the actual serialization
and deserialization. Create a new class and call it JSONSerializer.

Let's split it up into a few chunks and talk about what we are doing as we code
each chunk.

First, we'll incorporate the declaration and a couple of member variables—a string to
hold the filename where the data will be saved and a Context object that is necessary
in Android to write data to a file:

public class JSONSerializer {

 private String mFilename;
 private Context mContext;

 // All the rest of the code for the class goes here

}// End of class

Android Intent and Persistence

[350]

The previous code shows the closing curly brace of the class and all the code that
follows, for this class should be entered inside of it. Here is the very straightforward
constructor where we initialize the two member variables that are passed in as
parameters to the constructor:

public JSONSerializer(String fn, Context con){
 mFilename = fn;
 mContext = con;

}

Now, we can start coding the real guts of the class. The save method is next. It first
creates a JSONArray object, which is a specialized ArrayList for handling JSON objects.

Next, the code uses an enhanced for loop to go through all the Note objects in
notes and convert them to JSON objects, using the convertToJSON method from the
Note class that we added previously. Then, we load these converted JSONObjects
into jArray.

Next, the code uses a Writer instance combined with an Outputstream instance
to write the data to an actual file. Notice the OutputStream instance needed the
mContext to be initialized. Add the code we have just discussed:

public void save(List<Note> notes)
 throws IOException, JSONException{

 // Make an array in JSON format
 JSONArray jArray = new JSONArray();

 // And load it with the notes
 for (Note n : notes)
 jArray.put(n.convertToJSON());

 // Now write it to the private disk space of our app
 Writer writer = null;
 try {
 OutputStream out = mContext.openFileOutput
 (mFilename, mContext.MODE_PRIVATE);

 writer = new OutputStreamWriter(out);
 writer.write(jArray.toString());
 } finally {
 if (writer != null) {

 writer.close();
 }
 }
}

Chapter 15

[351]

Now, for the de-serialization—loading the data. This time, as we might expect, the
method receives no parameters but instead returns ArrayList. An InputStream
instance is created using mContext.openFileInput, and our file containing all our
data is opened.

We use a while loop to append all the data to a string in addition to our new Note
constructor, which extracts JSON data to regular primitive variables to unpack each
JSONObject into a Note object and add it to ArrayList, which is returned to the
calling code:

public ArrayList<Note> load() throws IOException, JSONException{
 ArrayList<Note> noteList = new ArrayList<Note>();
 BufferedReader reader = null;
 try {

 InputStream in = mContext.openFileInput(mFilename);
 reader = new BufferedReader(new InputStreamReader(in));
 StringBuilder jsonString = new StringBuilder();
 String line = null;

 while ((line = reader.readLine()) != null) {

 jsonString.append(line);
 }

 JSONArray jArray = (JSONArray) new JSONTokener
 (jsonString.toString()).nextValue();
 for (int i = 0; i < jArray.length(); i++) {
 noteList.add(new Note(jArray.getJSONObject(i)));
 }
 } catch (FileNotFoundException e) {
 // we will ignore this one, since it happens
 // when we start fresh. You could add a log here.
 } finally {// This will always run
 if (reader != null)
 reader.close();
 }

 return noteList;
}

Android Intent and Persistence

[352]

Now, all we need to do is put our new class to work in the MainActivity class or,
more specifically, our NoteAdapter class within MainActivity. Add a new member
after the NoteAdapter declaration to the NoteAdapter class in MainActivity.java:

public class NoteAdapter extends BaseAdapter {

 private JSONSerializer mSerializer;
 List<Note> noteList = new ArrayList<Note>();
 …
 …

Now, in the same class, we will add a new constructor. In the constructor, we
initialize mSerializer by calling the JSONSerializer constructor with the filename
and MainActivity.this.getApplicationContext(), which is the Context of the
application and is required. We can then use the JSONSerializer load method to
load any saved data:

public NoteAdapter(){

mSerializer = new JSONSerializer("NoteToSelf.json",
 MainActivity.this.getApplicationContext());

 try {
 noteList = mSerializer.load();
 } catch (Exception e) {
 noteList = new ArrayList<Note>();
 Log.e("Error loading notes: ", "", e);
 }

}

Now, add a new method to our NoteAdapter inner class that we can call to
save all our users' data. All this new method does is call the save method of the
JSONSerializer class, passing in the required list of Note objects:

public void saveNotes(){
 try{
 mSerializer.save(noteList);

 }catch(Exception e){
 Log.e("Error Saving Notes","", e);
 }
}

Chapter 15

[353]

Now, just as we did when saving our users' settings, we will override the onPause
method to save our users' data. Be sure to add this code in the MainActivity class
and not the inner class we have just been working with:

@Override
protected void onPause(){
 super.onPause();

 mNoteAdapter.saveNotes();

}

That's it. We can now run the app and add as many notes as we like. ArrayList will
store them all in our running app, BaseAdapter will manage displaying them in
ListView, and now JSON will take care of loading them from disk and saving them
back as well.

FAQ
1. I didn't understand everything in this chapter, so maybe I am not cut out to

be a programmer.
This chapter introduced many new classes, concepts, and methods. If your
head is aching a little, that is to be expected. If some of the detail is unclear,
don't let it hold you back. Proceed with the next couple of chapters (they are
much more straightforward), then revisit this one and especially examine the
completed code files.

2. So, how does serialization work in detail?
Serialization really is a vast topic. It is possible to write apps your whole
life and never really need to understand it. It is the type of topic that would
be the subject of a computer science degree. If you are curious to know
more, have a look at this article: https://en.wikipedia.org/wiki/
Serialization.

3. What exactly does the data in the file look like when it has been
written there?
The JSON data is in a text format and it is actually possible to view this file.
You can use the Android Debug Bridge to "talk" to the emulator. If you are
interested, you can see a quick guide for the ADB here: http://developer.
android.com/tools/help/adb.html. You can then use the pull command
to get a file from the emulator on to your PC. Or, if you are in a hurry, you
can see some sample JSON data, as well as a discussion here: http://www.
w3schools.com/json/json_syntax.asp.

https://en.wikipedia.org/wiki/Serialization
https://en.wikipedia.org/wiki/Serialization
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://www.w3schools.com/json/json_syntax.asp
http://www.w3schools.com/json/json_syntax.asp

Android Intent and Persistence

[354]

Summary
At this point in our journey through the Android API, it is worth taking stock of
what we know. We can lay out our own UI designs and choose from a fairly wide
and diverse range of widgets to allow the user to interact. We can create multiple
screens, as well as pop-up dialogs, and we can capture comprehensive user data.
Furthermore, we can now make this data persist.

Certainly, there is still a lot more to the Android API to learn, even beyond what this
book will teach you, but the point is we know enough now to plan and implement a
working app. You could just skip to Chapter 29, Publishing Apps, and publish.

If you have the urge to start your own project right away, then my advice is to go
ahead and do it. Don't wait until you consider yourself an "expert" or "more ready."
Reading this book and, more importantly, implementing the apps will make you a
better Android programmer, but nothing will teach you faster than designing and
implementing your own app! It is perfectly possible to complete this book and work
on your own project simultaneously.

We will spend two more chapters learning about sound and animation, then we will
turn to more advanced topics to really make your apps professional.

Next up is how to play sounds in our apps with the Android SoundPool class.

[355]

UI Animations
In this chapter, we will see how to use the Animation class to make our UI more
mobile and interesting. As we have come to expect, and the Animation class is no
different, the Android API will allow us to do some quite advanced things with
relatively straightforward code.

This chapter can be approximately divided into these topics:

• An introduction to how animations in Android work and are implemented
• An introduction to a new UI widget: SeekBar
• A working animated mini app
• Adding simple, pleasing animations to the Note To Self app

First, let's see how do animations in Android work?

Animations in Android
The normal way to create an animation in Android is through XML. We can write
XML animations and then load and play them in Java on a specified UI widget. So, for
example, we can write an animation that fades in and out five times over 3 seconds and
then play that animation on ImageView or any other widget. We can think of these
XML animations as a script as they define the type, order, and timing of the animation.

Let's explore some of the different properties that we can assign to our animations
and how to use them in our Java code, and finally, we can make a neat animated
mini app to try it all out.

UI Animations

[356]

Designing cool animations in XML
We have learned that XML can also be used to describe animations as well as UI
layouts, but let's find out exactly how. We can state properties of an animation that
describe the starting and ending appearance of a widget. The XML can then be
loaded by our Java code by referencing the name of the XML file that contains it and
turning it into a usable Java object, again, like a UI layout.

Let's take a quick look at some of the animation property pairs that we can state in
order to create an animation. Straight after we have looked at some XML, we will see
how to use it in Java.

Fading in and out
Alpha is the measure of transparency. So, by stating the starting fromAlpha values
and ending toAlpha values, we can fade items in and out. A value of 0.0 is invisible,
and the value 1.0 is an object's normal appearance. Steadily moving between the
two makes a fading-in effect, as shown in the following code:

<alpha
 android:fromAlpha="0.0"
 android:toAlpha="1.0" />

Movement
We can move an object within our UI using a similar technique: fromXDelta
and toXDelta can have values set as a percentage of the size of the object that is
being animated.

So, the code here would move an object from the left-hand side to the right-hand side
by a distance that is equal to the width of the object itself:

<translate
 android:fromXDelta="-100%"
 android:toXDelta="0%"/>

In addition to this, there are the fromYDelta and toYDelta properties that can be
used to animate the movements up and down.

Chapter 16

[357]

Scaling or stretching
The fromXScale and toXScale values will increase or decrease the scale of an object.
As an example, the code shown here will change the object that runs the animation
from a normal size to invisible:

<scale
 android:fromXScale="1.0"
 android:fromYScale="0.0"
/>

As another example, we could shrink the object to a tenth of its usual
size using android:fromYScale="0.1" or make it 10 times as big using
android:fromYScale="10.0".

Controlling the duration
Of course, none of these animations would be especially interesting if they just
instantly arrived at their conclusion. To make our animations more interesting, we
can, therefore, set their duration in milliseconds. A millisecond is one thousandth of
a second. We can also make timing easier, especially in relation to other animations
by setting startOffset, also in milliseconds.

The next code would begin an animation one-third of a second after we started it,
and it would take two-thirds of a second to complete:

android:duration="666"
android:startOffset="333"

Rotating animations
If you want to spin something around, just use fromDegrees and toDegrees. This
next code, predictably, will spin a widget around in a complete circle because, of
course, there are 360 degrees in a circle:

<rotate android:fromDegrees="360"
 android:toDegrees="0"
/>

Repeating animations
Repetition might be important in some animations, for example, a wobble or shake
effect, so we can add a repeatCount property. In addition, we can specify how the
animation is repeated by setting repeatMode.

UI Animations

[358]

The following code would repeat an animation 10 times, each time reversing the
direction of the animation. The repeatMode property is relative to the current state of
the animation. What this means is that if you, for example, rotated a button from 0 to
360 degrees, the second part of the animation (the first repeat) would rotate the other
way from 360 degrees back to 0. The third part of the animation (the second repeat)
would again reverse and rotate from 0 to 360 degrees:

android:repeatMode="reverse"
android:repeatCount="10"

Combining animation properties with a set tag
To combine groups of these effects, we need a set tag. This code shows how we can
combine all the previous code snippets that we have just seen into an actual XML
animation that will be compiled:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
…All our animations go here
</set>

We still haven't seen any Java code with which we can bring these animations to life.
Let's fix that now.

Instantiating animations and controlling them
with Java code
This next snippet of Java code shows us how we would declare an object of the type
Animation, initialize it with an animation contained in an XML file named fade_
in.xml, and start the animation on ImageView. Soon, we will do this in a project and
see where to put the XML animations as well:

// Declare an Animation object
Animation animFadeIn;

// Initialize it
animFadeIn = AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.fade_in);

// Get an ImageView from the UI in the usual way
ImageView (ImageView) findViewById(R.id.imageView);

// Start the animation on the ImageView
imageView.startAnimation(animFadeIn);

Chapter 16

[359]

We already have quite a powerful arsenal of animations and control features for
things such as timing, but the Android API gives us a little bit more than this as well.

More animation features
We can listen for the status of animations much like we can listen for clicks on a
button. We can also use interpolators to make our animations more life-like and
pleasing. Let's look at listeners first.

Listeners
If we implement the AnimationListener interface, we can indeed listen to the status
of animations by overriding the three methods that tell us when something has
occurred. We could then take actions based on these events.

In the following code snippet, OnAnimationEnd announces the end of an animation;
onAnimationRepeat is called each and every time an animation begins a repeat, and
perhaps predictably, onAnimationStart is called when an animation has started
animating. This might not be the same time as when startAnimation is called if
startOffset is set in the animation's XML:

@Override
public void onAnimationEnd(Animation animation) {
 // Take some action here

}

@Override
public void onAnimationRepeat(Animation animation) {

 // Take some action here

}

@Override
public void onAnimationStart(Animation animation) {

 // Take some action here

}

We will see how AnimationListener works in the Animations Demo app, as well as
how to put another widget, SeekBar, into action.

UI Animations

[360]

Animation interpolators
If you can think back to high school, you might remember really exciting lessons
about calculating acceleration. If we animate something at a constant speed, then
at first glance things might seem OK. If we then compare the animation to another
that uses gradual acceleration, then the latter will almost certainly be more pleasing
to watch. It is possible that if we were not told that the only difference between the
two animations was that one used acceleration and the other didn't, we wouldn't be
able to say why we preferred it. Our brains are more receptive to things that conform
to the norms of the world around us. This is why adding a bit of real-world physics,
such as acceleration and deceleration, improves our animations.

The last thing we want to do, however, is start performing a bunch of calculations
just to slide a button onto the screen or spin a piece of text in a circle.

This is where interpolators come in. They are animation modifiers that we can set in
a single line of code within our XML.

Some examples of interpolators are accelerate_interpolator and bounce_
interpolator, as shown:

android:interpolator="@android:anim/accelerate_interpolator"
android:interpolator="@android:anim/cycle_interpolator"/>

We will put some interpolators along with some XML animations and the related
Java code into action next.

You can learn more about interpolators and the Android
Animation class at the developer website, http://
developer.android.com/guide/topics/resources/
animation-resource.html.

The Animations Demo app – introducing
SeekBar
That was enough theory, especially with something that should be so visible. Let's
build an animation demo app that explores everything that we just discussed and
a bit more.

This app involves a little amount of code in lots of different files. So, I have tried to
make it plain which code is in which file, so you can keep track of what is going on. This
will make the Java code that we write in this mini app more understandable as well.

http://developer.android.com/guide/topics/resources/animation-resource.html
http://developer.android.com/guide/topics/resources/animation-resource.html
http://developer.android.com/guide/topics/resources/animation-resource.html

Chapter 16

[361]

The app will demonstrate rotations, fades, translations, animation events,
interpolations, and controlling duration with SeekBar. The best way to explain
what SeekBar does is to build it and then watch it in action.

Laying out the animation demo
Create a new project called Animation Demo, leaving all the settings at their defaults
as usual.

Here is how we can lay out the UI for this app:

1. Delete the default Hello world! widget.
2. Add LinearLayout (vertical).
3. Inside the layout from the previous step, place LinearLayout (vertical) and

RelativeLayout.
4. Set layout:weight on the two layouts that we added in the previous steps to

.3 for LinearLayout and .7 for RelativeLayout.
5. Now, set layout:height of both to unset so that they fill three tenths and

seven tenths of the screen, respectively.
6. For LinearLayout (vertical), change its gravity property to

centerHorizontal.
7. Add ImageView to the inner LinearLayout (vertical). Set the ImageView src

property to @mipmap/ic_launcher to display the Android robot. Of
course, you could choose any image that you have added to the drawable
folder instead.

8. Set the id property of ImageView to imageView.
9. Directly below ImageView (still inside LinearLayout), add LargeText.

Set the id property to textStatus and layout:margin top to 10dp. This
should look like this next screenshot:

UI Animations

[362]

10. Now, we will add a selection of SmallButton widgets to RelativeLayout.
These are just the same as Buttons but with a smaller starting size. The exact
positioning is not important, but the exact id property values that we add in a
few steps time will be essential. Follow this next figure to lay out 12 buttons
in RelativeLayout:

11. Add SeekBar on the left-hand side below the buttons. Set the id property to
seekBarSpeed, the layout:width property to 250dp, and the max property
to 5000. This means that the SeekBar widget will hold a value between 0 and
5000 as it is dragged by the user from left to right. We will see how we can
read and use this data soon.

12. Add a plain TextView widget just on the right-hand side of SeekBar and set
its id property to textSeekerSpeed.

13. The RelativeLayout portion of our design should now look like this:

Chapter 16

[363]

14. Next, add the following id properties to the buttons, as identified by the
text property that is already set:

Existing text property Value of the ID property to be set
FADE IN btnFadeIn

FADE OUT btnFadeOut

FADE IN OUT btnFadeInOut

ZOOM IN btnZoomIn

ZOOM OUT btnZoomOut

LEFT RIGHT btnLeftRight

RIGHT LEFT btnRightLeft

TOP BOT btnTopBottom

BOUNCE btnBounce

FLASH btnFlash

ROTATE LEFT btnRotateLeft

ROTATE RIGHT btnRotateRight

We will see how to use this newcomer in our UI (SeekBar) when we get to coding
MainActivity.

Coding the XML animations
Right-click on the res folder and navigate to New | Android resource directory.
Enter anim in the Directory name field and click on OK.

Now, right-click on the new anim directory and navigate to New | Animation
resource file. In the File name field, type fade_in and then click on OK. Delete the
entire contents and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
android:fillAfter="true" >

 <alpha
 android:fromAlpha="0.0"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:toAlpha="1.0" />

</set>

UI Animations

[364]

Right-click on the anim directory and navigate to New | Animation resource file.
In the File name field, type fade_out and then click on OK. Delete all the contents
and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
android:fillAfter="true" >

 <alpha
 android:fromAlpha="1.0"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:toAlpha="0.0" />

</set>

Right-click on the anim directory and navigate to New | Animation resource file. In
the File name field, type fade_in_out and then click on OK. Delete all the contents
and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:fillAfter="true" >

 <alpha
 android:fromAlpha="0.0"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:toAlpha="1.0" />

 <alpha
 android:fromAlpha="1.0"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:toAlpha="0.0" />

</set>

Right-click on the anim directory and navigate to New | Animation resource file. In
the File name field, type left_right and then click on OK. Delete all the contents
and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <translate

 android:fromXDelta="-500%"
 android:toXDelta="0%"/>
</set>

Chapter 16

[365]

Right-click on the anim directory and navigate to New | Animation resource file. In
the File name field, type right_left and then click on OK. Delete all the contents
and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <translate
 android:fillAfter="false"
 android:fromXDelta="500%"
 android:toXDelta="0%"/>
</set>

Right-click on the anim directory and navigate to New | Animation resource file. In
the File name field, type top_bot and then click on OK. Delete all the contents and
add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <translate
 android:fillAfter="false"
 android:fromYDelta="-100%"
 android:toYDelta="0%"/>
</set>

Right-click on the anim directory and navigate to New | Animation resource file. In
the File name field, type flash and then click on OK. Delete all the contents and add
this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <alpha android:fromAlpha="0.0"
 android:toAlpha="1.0"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:repeatMode="reverse"
 android:repeatCount="10"/>
</set>

Right-click on the anim directory and navigate to New | Animation resource file. In
the File name field, type bounce and then click on OK. Delete all the contents and
add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:fillAfter="true"
 android:interpolator="@android:anim/bounce_interpolator">

UI Animations

[366]

 <scale
 android:fromXScale="1.0"
 android:fromYScale="0.0"
 android:toXScale="1.0"
 android:toYScale="1.0" />

</set>

Right-click on the anim directory and navigate to New | Animation resource file. In
the File name field, type rotate_left and then click on OK. Delete all the contents
and add this code to create the animation. Here, we see something new, pivotX="50%"
and pivotY="50%". This makes the rotating animation central on the widget that will
be animated. We can think of this as setting the pivot point of the animation:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <rotate android:fromDegrees="360"
 android:toDegrees="0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:interpolator="@android:anim/cycle_interpolator"/>

</set>

Right-click on the anim directory and navigate to New | Animation resource file. In
the File name field, type rotate_right and then click on OK. Delete all the contents
and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <rotate android:fromDegrees="0"
 android:toDegrees="360"
 android:pivotX="50%"
 android:pivotY="50%"
 android:interpolator="@android:anim/cycle_interpolator"/>

</set>

Now, we can write the Java code to add our animations to our UI.

Chapter 16

[367]

Wiring up the Animations Demo app in Java
Open up the MainActivity.java file. Now, after the class declaration, we can
declare the following member variables for animation:

Animation animFadeIn;
Animation animFadeOut;
Animation animFadeInOut;

Animation animZoomIn;
Animation animZoomOut;

Animation animLeftRight;
Animation animRightLeft;
Animation animTopBottom;

Animation animBounce;
Animation animFlash;

Animation animRotateLeft;
Animation animRotateRight;

Now, add these member variables for the UI after the previous code:

ImageView imageView;
TextView textStatus;

Button btnFadeIn;
Button btnFadeOut;
Button btnFadeInOut;
Button zoomIn;
Button zoomOut;
Button leftRight;
Button rightLeft;
Button topBottom;
Button bounce;
Button flash;
Button rotateLeft;
Button rotateRight;
SeekBar seekBarSpeed;
TextView textSeekerSpeed;

Next, we add an int member variable that will be used to track the current
value/position of SeekBar:

int seekSpeedProgress;

UI Animations

[368]

Now, let's call two new highlighted methods from onCreate after the call to
setContentView:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 loadAnimations();
 loadUI();

}

Now, we will implement the loadAnimations method. Although the code in this
method is quite extensive, it is also very straightforward. All we are doing is using
the loadAnimation static method of the AnimationUtils class to initialize each
of our animation references with one of our XML animations. Note also that for
animFadeIn animation, we call setAnimationListener on it. We will write the
methods to listen for events shortly.

Add the loadAnimations method:

private void loadAnimations(){
 animFadeIn = AnimationUtils.loadAnimation(this, R.anim.fade_in);
 animFadeIn.setAnimationListener(this);
 animFadeOut = AnimationUtils.loadAnimation(this,
 R.anim.fade_out);
 animFadeInOut = AnimationUtils.loadAnimation(this,
 R.anim.fade_in_out);

 animZoomIn = AnimationUtils.loadAnimation(this, R.anim.zoom_in);
 animZoomOut = AnimationUtils.loadAnimation(this,
 R.anim.zoom_out);

 animLeftRight = AnimationUtils.loadAnimation(this,
 R.anim.left_right);
 animRightLeft = AnimationUtils.loadAnimation(this,
 R.anim.right_left);
 animTopBottom = AnimationUtils.loadAnimation(this,
 R.anim.top_bot);

 animBounce = AnimationUtils.loadAnimation(this, R.anim.bounce);
 animFlash = AnimationUtils.loadAnimation(this, R.anim.flash);

Chapter 16

[369]

 animRotateLeft = AnimationUtils.loadAnimation(this,
 R.anim.rotate_left);
 animRotateRight = AnimationUtils.loadAnimation(this,
 R.anim.rotate_right);
}

We will discuss and implement the loadUI method in three sections. First, let's get a
reference to the parts of our XML layout in the usual way:

private void loadUI(){

 imageView = (ImageView) findViewById(R.id.imageView);
 textStatus = (TextView) findViewById(R.id.textStatus);

 btnFadeIn = (Button) findViewById(R.id.btnFadeIn);
 btnFadeOut = (Button) findViewById(R.id.btnFadeOut);
 btnFadeInOut = (Button) findViewById(R.id.btnFadeInOut);
 zoomIn = (Button) findViewById(R.id.btnZoomIn);
 zoomOut = (Button) findViewById(R.id.btnZoomOut);
 leftRight = (Button) findViewById(R.id.btnLeftRight);
 rightLeft = (Button) findViewById(R.id.btnRightLeft);
 topBottom = (Button) findViewById(R.id.btnTopBottom);
 bounce = (Button) findViewById(R.id.btnBounce);
 flash = (Button) findViewById(R.id.btnFlash);
 rotateLeft = (Button) findViewById(R.id.btnRotateLeft);
 rotateRight = (Button) findViewById(R.id.btnRotateRight);

Now, we will add ClickListener for each button. Add this code immediately after
the last block within the loadUI method:

btnFadeIn.setOnClickListener(this);
btnFadeOut.setOnClickListener(this);
btnFadeInOut.setOnClickListener(this);
zoomIn.setOnClickListener(this);
zoomOut.setOnClickListener(this);
leftRight.setOnClickListener(this);
rightLeft.setOnClickListener(this);
topBottom.setOnClickListener(this);
bounce.setOnClickListener(this);
flash.setOnClickListener(this);
rotateLeft.setOnClickListener(this);
rotateRight.setOnClickListener(this);

UI Animations

[370]

The third and last section of the loadUI method sets up an anonymous class
to handle the SeekBar widget. We could have added this as an interface to
MainActivity as we did with listening for button clicks and animation events, but
with a single SeekBar like this, it makes sense to handle it directly.

We will override three methods, as this is required by the interface when
implementing OnSeekBarChangeListener:

• A method that detects a change in the position of the seek bar called
onProgressChanged

• A method that detects whether the user has started to change the position
called onStartTrackingTouch

• A method that detects when the user has finished using the seek bar called
onStopTrackingTouch

To achieve our goals, we only need to add code to the onProgressChanged method,
but we must still override them all.

All we do in the onProgressChanged method is assign the current value of the
SeekBar widget to the seekSpeedProgress member variable so that it can be
accessed from elsewhere. Then, we use this value along with the maximum possible
value of SeekBar, which is obtained by calling seekBarSpeed.getMax(), and output
a message to the textSeekerSpeed TextView.

Add the code we just discussed into the loadUI method:

seekBarSpeed = (SeekBar) findViewById(R.id.seekBarSpeed);
textSeekerSpeed = (TextView) findViewById(R.id.textSeekerSpeed);

seekBarSpeed.setOnSeekBarChangeListener(new SeekBar.
OnSeekBarChangeListener() {

 @Override
 public void onProgressChanged(SeekBar seekBar, int value,
 boolean fromUser) {
 seekSpeedProgress = value;
 textSeekerSpeed.setText("" + seekSpeedProgress + " of " +
 seekBarSpeed.getMax());
 }

 @Override
 public void onStartTrackingTouch(SeekBar seekBar) {
 }

 @Override

Chapter 16

[371]

 public void onStopTrackingTouch(SeekBar seekBar) {

}
});

}

Now, we need to alter the MainActivity class declaration in order to implement
two interfaces. In this app, we will be listening for clicks and animation events, so
the two interfaces we will be using are View.OnClickListener and Animation.
AnimationListener. Note that to implement more than one interface, we simply
separate the interfaces with a comma.

Alter the MainActivity class declaration by adding the highlighted code that we
just discussed:

public class MainActivity extends AppCompatActivity
implements View.OnClickListener, Animation.AnimationListener {

Next, we can add and implement the required methods for these interfaces. First,
the AnimationListener methods: onAnimationEnd, onAnimationRepeat, and
onaAnimationStart. We only need to add a little code to two of these methods.
In onAnimationEnd, we set the text property of textStatus to STOPPED, and in
onAnimationStart, we set it to RUNNING. This will demonstrate that our animation
listeners are indeed listening and working:

@Override
public void onAnimationEnd(Animation animation) {
 textStatus.setText("STOPPED");

}

@Override
public void onAnimationRepeat(Animation animation) {

}

@Override
public void onAnimationStart(Animation animation) {
 textStatus.setText("RUNNING");

}

UI Animations

[372]

The onClick method is quite long but not complicated. Each case that handles each
button from the UI simply sets the duration of an animation based on the current
position of the seek bar, sets up the animation so it can be listened to for events, and
then starts the animation.

Add the onClick method that we just discussed, and now, we have completed this
mini app:

@Override
public void onClick(View v) {

switch(v.getId()){
 case R.id.btnFadeIn:
 animFadeIn.setDuration(seekSpeedProgress);
 animFadeIn.setAnimationListener(this);
 imageView.startAnimation(animFadeIn);

 break;

 case R.id.btnFadeOut:

 animFadeOut.setDuration(seekSpeedProgress);
 animFadeOut.setAnimationListener(this);
 imageView.startAnimation(animFadeOut);

 break;

 case R.id.btnFadeInOut:

 animFadeInOut.setDuration(seekSpeedProgress);
 animFadeInOut.setAnimationListener(this);
 imageView.startAnimation(animFadeInOut);

 break;

 case R.id.btnZoomIn:
 animZoomIn.setDuration(seekSpeedProgress);
 animZoomIn.setAnimationListener(this);
 imageView.startAnimation(animZoomIn);

 break;

 case R.id.btnZoomOut:
 animZoomOut.setDuration(seekSpeedProgress);
 animZoomOut.setAnimationListener(this);

Chapter 16

[373]

 imageView.startAnimation(animZoomOut);

 break;

 case R.id.btnLeftRight:
 animLeftRight.setDuration(seekSpeedProgress);
 animLeftRight.setAnimationListener(this);
 imageView.startAnimation(animLeftRight);

 break;

 case R.id.btnRightLeft:
 animRightLeft.setDuration(seekSpeedProgress);
 animRightLeft.setAnimationListener(this);
 imageView.startAnimation(animRightLeft);

 break;

 case R.id.btnTopBottom:
 animTopBottom.setDuration(seekSpeedProgress);
 animTopBottom.setAnimationListener(this);
 imageView.startAnimation(animTopBottom);

 break;

 case R.id.btnBounce:
 /*
 Divide seekSpeedProgress by 10 because with
 the seekbar having a max value of 5000 it
 will make the animations range between
 almost instant and half a second
 5000 / 10 = 500 milliseconds
 */
 animBounce.setDuration(seekSpeedProgress / 10);
 animBounce.setAnimationListener(this);
 imageView.startAnimation(animBounce);

 break;

 case R.id.btnFlash:
 animFlash.setDuration(seekSpeedProgress / 10);
 animFlash.setAnimationListener(this);
 imageView.startAnimation(animFlash);

UI Animations

[374]

 break;

 case R.id.btnRotateLeft:
 animRotateLeft.setDuration(seekSpeedProgress);
 animRotateLeft.setAnimationListener(this);
 imageView.startAnimation(animRotateLeft);

 break;

 case R.id.btnRotateRight:
 animRotateRight.setDuration(seekSpeedProgress);
 animRotateRight.setAnimationListener(this);
 imageView.startAnimation(animRotateRight);

 break;
}

}

Now, run the app. Move the seek bar to roughly the center so that the animations
run for a reasonable amount of time. After this, the app will look as follows:

Chapter 16

[375]

Now, click on the ZOOM IN button:

Notice how the text on the Android robot changes from RUNNING to STOPPED at
the appropriate time. Now, click on one of the ROTATE buttons:

Most of the other animations don't do themselves justice in a screenshot, so be sure
to try them all out for yourself.

Now, let's add some simple animations to our Note To Self app.

Adding animations to Note To Self
The completed code for this chapter is in the usual place: Chapter 16/Note to self.
Note, however, that the code also includes the minor additions that we will make in
the next chapter.

Defining the animations in XML
First, let's define two animations in XML that we can use. A FADE IN animation,
which is the normal behavior when a note appears in the list and a flash, which will
be the behavior that can be tweaked from the settings screen. If the note is important,
the user will be able to set it to either flash fast, flash slow, or not flash at all.

Right-click on the res folder and navigate to New | Android resource directory.
Enter anim in the Directory name field and click on OK.

UI Animations

[376]

Now, right-click on the new anim directory and navigate to New | Animation
resource file. In the File name field, type fade_in and then click on OK. Delete all
the contents and add this code to create the animation:

<set xmlns:android="http://schemas.android.com/apk/res/android">
 <alpha
 android:fromAlpha="0.0"
 android:toAlpha="1.0"
 android:duration="500"
 android:interpolator="@android:anim/accelerate_interpolator">
 </alpha>
</set>

Now, right-click on the new anim directory and navigate to New | Animation
resource file. In the File name field, type flash and then click on OK. Delete all the
contents and add this code to create the animation:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <alpha android:fromAlpha="0.0"
 android:toAlpha="1.0"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:repeatMode="reverse"
 android:repeatCount="infinite"/>
</set>

Our XML animations are ready, so let's add the Java code.

Controlling the animations in Java
Add these highlighted member variables to MainActivity just after the class
declaration:

public class MainActivity extends AppCompatActivity {

 Animation mAnimFlash;
 Animation mFadeIn;
…

Now, let's initialize these animations based on the user's current settings. The best
place to do this is in onResume because that is where we load the settings, and it is
guaranteed to run every time MainActivity is run, whether that is because the app
has just started or because the user is just returning from the settings screen (perhaps
having just changed the settings). Add this code just after the code that loads the
settings that we implemented in the previous chapter. The next listing shows the
entire onResume method. The new code to add is highlighted here:

@Override
protected void onResume(){

Chapter 16

[377]

 super.onResume();

 mPrefs = getSharedPreferences("Note to self", MODE_PRIVATE);
 mSound = mPrefs.getBoolean("sound", true);
 mAnimOption = mPrefs.getInt("anim option", SettingsActivity.FAST);

 mAnimFlash = AnimationUtils.
 loadAnimation(getApplicationContext(), R.anim.flash);
 mFadeIn = AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.fade_in);

 // Set the rate of flash based on settings
 if(mAnimOption == SettingsActivity.FAST){

 mAnimFlash.setDuration(100);
 Log.i("anim = ",""+ mAnimOption);
 }else if(mAnimOption == SettingsActivity.SLOW){

 Log.i("anim = ",""+ mAnimOption);
 mAnimFlash.setDuration(1000);
 }

 mNoteAdapter.notifyDataSetChanged();
}

Now, we just need to apply the appropriate animation to the appropriate part of our
UI. We can do so in the NoteAdapter inner class in the getView method, just after
we initialize tempNote with the details of the note we are currently dealing with. We
are then in a position to call isImportant to make a decision about which animation
to play. I have included the line before the new code and the line after the new code
as well as highlighted the new code to show exactly where this code goes:

…
Note tempNote = noteList.get(whichItem);

// To animate or not to animate
if (tempNote.isImportant() && mAnimOption !=
 SettingsActivity.NONE) {

 view.setAnimation(mAnimFlash);

}else{
 view.setAnimation(mFadeIn);
}

if (!tempNote.isImportant()){
…

UI Animations

[378]

If you run Note To Self now, you will be able to see the nice FADE IN animations as
well as the flashing animations on any note that the user has labeled as important.
And, of course, you can change the speed of the flashing animation or switch it off
completely from the settings screen. That's it for animation in Note To Self.

FAQ
1. We know how to animate widgets now, but what about shapes or images

that I create myself?
ImageView can hold any image you like. Just add the image to the drawable
folder and then set the appropriate src property on the ImageView. You can
then animate whatever image is being shown in the ImageView widget.

2. What if I want more flexibility than this, more like a drawing app or even
a game?
To implement this kind of functionality, you will need to learn another
general computing concept (threads) as well as some more Android classes
(such as Paint, Canvas, and SurfaceView). You will learn how to draw
anything from a single pixel to shapes, and then how to move them around
the screen in Chapter 28, Threads, Touches, Drawing, and a Simple Game.

Summary
Now, we have another app-enhancing trick up our sleeves, and we have seen that
animations in Android are quite straightforward. We design an animation in XML
and add the file to the anim folder. Next, we get a reference to the animation in XML
with an Animation object in our Java code.

We can then use a reference to a widget in our UI and set an animation to it using
setAmimation and passing in the Animation object. We actually commence the
animation by calling startAnimation on the reference to the widget.

In this chapter, we also saw that we can control the timing of animations as well as
listen for animation events.

Is it me or is it a little quiet around here?

[379]

Sound FX and Supporting
Different Versions of Android

In this chapter, you will learn how to load and play sound effects (FX) on Android.
As the sound part of the Android API has recently been updated, this is also a good
opportunity to look at a strategy for supporting different versions of Android.
Throughout the book, we have been writing apps that run on 95% of devices by
default, but there are times when we want to support more devices. Also, it is useful
to be able to future-proof our apps a bit when we know that the code we write will
eventually not work on new devices. This chapter includes the following topics:

• How to code for different versions of Android in the same app
• How does the SoundPool class work
• The sound FX mini app
• How to add sound to the Note To Self app

Supporting multiple versions of Android
Most of the time throughout this book, we haven't paid any attention to supporting
older Android devices because it did not seem worthwhile. The main reason being
that all the up-to-date parts of the API we have been using work on such a high
percentage of devices (in excess of 95%). Unless you intend to carve out a niche in
apps for ancient Android relics, this seems like a sensible approach. With regard to
playing sounds, however, there have been some fairly recent modifications to the
Android API.

Sound FX and Supporting Different Versions of Android

[380]

Actually, this isn't immediately a big deal because devices newer than this can still
use the old parts of the API. However, it is good practice to specifically handle these
differences in compatibility because eventually, one day, the older parts might not
work on newer versions of Android.

The main reason for discussing this here is that the slight differences in pre- and
post-android Lollipop sound handling give us a good excuse to see how we can deal
with things like this in our code.

In this chapter, we will see how we can make our app compatible with the very latest
devices and the pre-Lollipop devices as well.

The class we will be using to make some noise is the SoundPool class. First, let's look
at some simple code to detect the current Android version.

Detecting the current Android version
We can determine the current version of Android using the static variables of the
Build.Version class, SDK_INT, and we can determine whether it is newer than
a specific version by comparing it to that version's appropriate variable, Build.
VERSION_CODES, as shown in the following code snippet. If this explanation was a bit
mouthful, just look at how we determine whether the current version is equal to or
newer (greater) than Lollipop:

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {

 // Lollipop or newer code goes here

} else {

 // Code for devices older than lollipop here

}

Now, let's see how to make some noise with Android devices that are newer and
older than Lollipop.

The SoundPool class
The SoundPool class allows us to hold and manipulate a collection of sound
FX—literally, a pool of sounds. The class handles everything from decompressing
a sound file, such as .wav or .ogg, to keeping an identifying reference to it via an
integer ID, and of course, playing the sound. When the sound is played, it is done so
in a nonblocking manner that does not interfere with the smooth running of our app
or our users' interactions with it.

Chapter 17

[381]

The first thing we need to do is add the sound effects to a folder called assets in
the main folder. Next, in our Java code, we declare an object of the type SoundPool
and an int identifier for each and every sound effect that we intend to use. We also
declare another int identifier called nowPlaying, which we can use to track the
sound that is currently playing, and we will see how to do this shortly. Take a look at
the following code snippet:

// create an identifier
SoundPool sp;
int nowPlaying =-1;
int idFX1 = -1;

Now, we will look at the two different ways in which we initialize SoundPool
depending upon the version of Android that the device is using.

Building SoundPool the new way and the old way
The new way involves us using an AudioAttributes object to set the attributes of
the pool of sound we want. We use chaining and the Builder method of this class
to initialize the AudioAttributes object to let it know that it will be used for user
interface interaction with USAGE_ASSISTANCE_SONIFICATION. We will also use
CONTENT_TYPE_SONIFICATION, which lets the class know that it is to be used for
responsive sounds, for example, a user button click or similar tasks.

Now, we can initialize SoundPool (sp) itself by passing in the AudioAttributes
object (audioAttributes) and the maximum number of simultaneous sounds we
likely want to play:

// Instantiate a SoundPool dependent on Android version
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {

 // The new way
 // Build an AudioAttributes object
 AudioAttributes audioAttributes = new AudioAttributes.Builder()
 .setUsage(AudioAttributes.
 USAGE_ASSISTANCE_SONIFICATION)
 .setContentType(AudioAttributes.CONTENT_TYPE_SONIFICATION)
 .build();

 // Initialize the SoundPool
 sp = new SoundPool.Builder()
 .setMaxStreams(5)
 .setAudioAttributes(audioAttributes)
 .build();
}

Sound FX and Supporting Different Versions of Android

[382]

The else block of code shown here will, of course, contain the code for the old way
of doing things. No need for an AudioAttributes object; we simply need to initialize
SoundPool (sp) by passing in the number of simultaneous sounds. The final parameter
is for sound quality, and passing zero is all that we need to do. This is much simpler
than the new way but also less flexible with regard to the choices we can make:

else {
 // The old way
 sp = new SoundPool(5, AudioManager.STREAM_MUSIC, 0);
}

Now that we have sound effects in the assets folder and a SoundPool object built
in one way or another, we can go ahead and load up (decompress) the sound files in
our SoundPool class.

Loading sound files into memory
As we often do with methods that load or save files to disks, we are required to wrap
our code in try-catch blocks. This makes sense because reading a file can fail for
reasons beyond our control and as we are forced to do so, because the method that we
use throws an exception and the code that we write will not be compiled otherwise.

Inside the try block, we declare and initialize an object of the AssetManager and
AssetFileDescriptor types.

AssetFileDescriptor is initialized here using the openFd method of the
AssetManager object, which actually decompresses the sound file. We then initialize
our ID (idFX1) at the same time as we load the contents of AssetFileDescriptor
into SoundPool. The catch block simply outputs a message to the console to let us
know if something has gone wrong. Note that this code is the same regardless of the
Android version:

try{

 // Create objects of the 2 required classes
 AssetManager assetManager = this.getAssets();
 AssetFileDescriptor descriptor;

 // Load our fx in memory ready for use
 descriptor = assetManager.openFd("fx1.ogg");
 idFX1 = sp.load(descriptor, 0);
}catch(IOException e){

 // Print an error message to the console
 Log.e("error", "failed to load sound files");
}

Chapter 17

[383]

Now, we are ready to make some noise.

Playing a sound
At this point, there is a sound effect in our SoundPool class and we have an ID by
which we can refer to it.

This code is the same regardless of how we built the SoundPool object, and this is
how we play the sound. Note that we initialize the nowPlaying variable with the
return value from the same method that actually plays the sound. The following
code, therefore, simultaneously plays a sound and loads the value of the ID that is
being played into nowPlaying. We will see how this will be useful when we make a
real mini app to play some sounds:

nowPlaying = sp.play(idFX1, volume, volume, 0, repeats, 1);

The parameters of the play method are: the ID of the sound effect, the left-hand side
speaker volume, the right-hand side speaker volume, the priority over other sounds,
the number of times to repeat the sound, and the rate/speed at which it is played (1
is the normal rate).

Just one more quick thing before we make the real app.

Stopping a sound
It is also very simple to stop a sound when it is still playing with the stop method.
Note that there might be more than one sound effect playing at any given time, so
the stop method requires the ID of the sound effect to stop:

sp.stop(nowPlaying);

Now, we will go ahead and make some noise for real at the same time as we try out a
UI widget that we haven't used yet.

Introducing the Spinner widget
Of course, with all this talk of sound FX we need some actual sound files. You can
download sound FX from various free websites, and you can also buy premium
sound effects as well. The sound effects for this app are supplied in the download
bundle and are in the assets folder of the Chapter 17/Sound Demo folder. But you
might like to make your own.

Sound FX and Supporting Different Versions of Android

[384]

Making sound FX
There is an open source app called Bfxr that allows us to make our own sound FX.
Here is a guide to making your own sound FX very fast using Bfxr. Grab a free copy
from www.bfxr.net.

Follow the simple instructions on the website to set it up. Try out a few of these
things to make cool sound FX.

This is a seriously condensed tutorial. You can do so much with Bfxr.
To learn more, read the tips on the website at the previous URL.

1. Run Bfxr, as shown:

www.bfxr.net

Chapter 17

[385]

2. Try out all the preset types, as shown in the next screenshot, which generate
a random sound of that type. When you have a sound that is close to what
you want, move to the next step:

3. Use the sliders to fine tune the pitch, duration, and other aspects of your new
sound, as shown in the following figure:

Sound FX and Supporting Different Versions of Android

[386]

4. Save your sound by clicking on the Export Wav button. Despite the text of
this button, we can save the sound in formats other than .wav too:

5. Android works very well with sounds in the OGG format, so when you're
asked to name your file, use the .ogg extension at the end of the filename.

6. Repeat steps 2 to 5 to create three cool sound FX. Name them fx1.ogg, fx2.
ogg, and fx3.ogg. We use the .ogg file format as it is more compressed
than formats such as WAV. When you have your sound files ready, we can
proceed with the app.

Laying out Sound Demo UI
I will describe the parts of the project that we are getting used to a little more tersely
than the previous projects. Every time there is a new concept, however, I will be
sure to explain it in full. I guess you will be just fine dragging a few widgets onto
RelativeLayout and changing their text properties.

With this in mind, complete the following steps. If you have any problems at all,
you can copy or view the code in the Chapter 17/Sound Demo folder of the
download bundle:

1. Create a new project, call it Sound Demo, and choose Blank Activity. Leave
all the other settings at their defaults and delete the Hello world! widget.

2. In this order, drag Spinner, SeekBar, and four Buttons from the palette and
onto the layout while arranging them and setting their text properties, as
shown in the next screenshot:

Chapter 17

[387]

3. Use the following table to set the widget's properties that we will need in
our Java code:

Widget Property to be changed Value to set
Spinner id spinner

Spinner spinnerMode dropdown

Spinner options @array/spinner_
options

SeekBar id seekBar

SeekBar max 10

Button (FX 1) id btnFX1

Button (FX 2) id btnFX2

Button (FX 3) id btnFX3

Button (STOP) id btnStop

Sound FX and Supporting Different Versions of Android

[388]

Next, add the following highlighted code to the strings.xml file in the values folder.
We used the array of string resources named spinner_options for the options
property in the previous step. It will represent the options that can be chosen from our
Spinner widget:

<resources>
 <string name="app_name">Sound Demo</string>

 <string name="hello_world">Hello world!</string>
 <string name="action_settings">Settings</string>

 <string-array name="spinner_options">
 <item>0</item>
 <item>1</item>
 <item>3</item>
 <item>5</item>
 <item>10</item>
 </string-array>
</resources>

Run the app now, and you will not initially see anything new. If you click on the
Spinner widget, however, then you will see the options from our string array called
spinner_options. We will use the spinner to control the number of times a sound
effect repeats itself when played, as shown in the following screenshot:

Chapter 17

[389]

Let's write the Java code to make this app work, including how we interact with
our spinner.

Using your operating system's file browser, go to the app\src\main folder of the
project and add a new folder called assets.

There are three sound files ready-made for you in the Chapter 17/SoundDemo/
assets folder of the download bundle. Place these three files into the assets
directory you just created or use the ones you've created yourself. The important
thing is that their filenames must be fx1.ogg, fx2.ogg, and fx3.ogg.

Coding the Sound Demo app
To code the Sound Demo app, we first add a few member variables for our SoundPool,
sound FX IDs, and nowPlaying int as previously discussed, and we will also add
float to hold a value for the volume between 0 (silent) and 1 (full volume relative
to the current volume of the device). We will also add int called repeats, which
unsurprisingly holds the value of the number of times we will repeat a given sound FX:

SoundPool sp;

int idFX1 = -1;
int idFX2 = -1;
int idFX3 = -1;
int nowPlaying = -1;

float volume = .1f;
int repeats = 2;

Now, in onCreate, we can get a reference and set a click listener for our buttons in
the usual way:

Button buttonFX1 = (Button) findViewById(R.id.btnFX1);
buttonFX1.setOnClickListener(this);

Button buttonFX2 = (Button) findViewById(R.id.btnFX2);
buttonFX2.setOnClickListener(this);

Button buttonFX3 = (Button) findViewById(R.id.btnFX3);
buttonFX3.setOnClickListener(this);

Button buttonStop = (Button) findViewById(R.id.btnStop);
buttonStop.setOnClickListener(this);

Sound FX and Supporting Different Versions of Android

[390]

Still, in onCreate, we can initialize SoundPool (sp) based on the version of Android
that the device is using:

// Instantiate our sound pool dependent
// upon which version of Android
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 AudioAttributes audioAttributes = new AudioAttributes.Builder()
 .setUsage(AudioAttributes. USAGE_ASSISTANCE_SONIFICATION)
 .setContentType(AudioAttributes.CONTENT_TYPE_SONIFICATION)
 .build();

 sp = new SoundPool.Builder()
 .setMaxStreams(5)
 .setAudioAttributes(audioAttributes)
 .build();
} else {
 sp = new SoundPool(5, AudioManager.STREAM_MUSIC, 0);
}

Next, we load each sound FX in turn and initialize our IDs with a value that points to
the related sound FX that we loaded into SoundPool. The whole thing is wrapped in
a try-catch block as required:

try{
 // Create objects of the 2 required classes
 AssetManager assetManager = this.getAssets();
 AssetFileDescriptor descriptor;

 // Load our fx in memory ready for use
 descriptor = assetManager.openFd("fx1.ogg");
 idFX1 = sp.load(descriptor, 0);

 descriptor = assetManager.openFd("fx2.ogg");
 idFX2 = sp.load(descriptor, 0);

 descriptor = assetManager.openFd("fx3.ogg");
 idFX3 = sp.load(descriptor, 0);

 }catch(IOException e){
 // Print an error message to the console
 Log.e("error", "failed to load sound files");
}

Chapter 17

[391]

Then, we see how we are going to handle SeekBar. As you probably have come to
expect, we will use an anonymous class. We will use OnSeekBarChangeListener
and override the onProgressChanged, onStartTrackingTouch, and
onStopTrackingTouch methods.

We only need to add code to the onProgressChanged method. Within this method,
we simply change the value of our volume variable and then use the setVolume
method on our SoundPool object, passing in the currently playing sound FX and the
volume of the left and right channels of sound:

// Now setup the seekbar
SeekBar seekBar = (SeekBar) findViewById(R.id.seekBar);

seekBar.setOnSeekBarChangeListener(new SeekBar.
 OnSeekBarChangeListener() {

 @Override
 public void onProgressChanged(SeekBar seekBar, int value,
 boolean fromUser) {
 volume = value / 10f;
 sp.setVolume(nowPlaying, volume, volume);
 }

 @Override
 public void onStartTrackingTouch(SeekBar seekBar) {
 }

 @Override
 public void onStopTrackingTouch(SeekBar seekBar) {

 }
});

After SeekBar comes Spinner and yet another anonymous class which is used
to handle user interaction. We use AdapterView.OnItemSelectedListener to
override the onItemSelected and onNothingSelected methods.

All our code goes in the onItemSelected method, which creates a temporary String
named temp and then uses the Integer.ValueOf method to convert String to int,
which we can use to initialize the repeats variable:

// Now for the spinner
Spinner spinner = (Spinner) findViewById(R.id.spinner);
spinner.setOnItemSelectedListener(new AdapterView.
 OnItemSelectedListener() {

Sound FX and Supporting Different Versions of Android

[392]

 @Override
 public void onItemSelected(AdapterView<?> parentView,
 View selectedItemView, int position, long id) {
 String temp = String.valueOf(spinner.getSelectedItem());
 repeats = Integer.valueOf(temp);
 }

 @Override
 public void onNothingSelected(AdapterView<?> parentView) {

 }

});

That's everything from onCreate. Now, change the class declaration to implement
View.OnClickListener, as highlighted in the next code:

public class MainActivity extends
 AppCompatActivity implements View.OnClickListener{

Now, implement the onClick method. Quite simply, there is a case statement for
each button. There is a case to play each of our three sound FX, set the volume and
set the number of times to repeat a sound. Note that the return value for each call to
play is stored in nowPlaying. When the user clicks on the STOP button, we simply
call stop with the current value of nowPlaying, causing the most recently started
sound FX to stop, as shown in the following code:

@Override
public void onClick(View v) {
 switch (v.getId()){
 case R.id.btnFX1:
 sp.stop(nowPlaying);
 nowPlaying = sp.play(idFX1, volume, volume, 0, repeats, 1);
 break;

 case R.id.btnFX2:
 sp.stop(nowPlaying);
 nowPlaying = sp.play(idFX2, volume, volume, 0, repeats, 1);
 break;

 case R.id.btnFX3:
 sp.stop(nowPlaying);
 nowPlaying = sp.play(idFX3, volume, volume, 0, repeats, 1);
 break;

Chapter 17

[393]

 case R.id.btnStop:
 sp.stop(nowPlaying);
 break;
 }
}

We can now run the app. Make sure that the volume on your device is turned up if
you can't hear anything. Here is a screenshot of the sound demo app:

Click on the appropriate button for the sound FX you want to play. Change the
volume and the number of times it is repeated and, of course, try stopping it with the
STOP button.

Also note that you can repeatedly tap on multiple play buttons when a sound FX is
already playing, and the sounds will be played simultaneously up to the maximum
number of streams (5) that we've set. However, this shows a slight inadequacy with
regard to the way we handle stopping sounds, as the stop button will only stop the
most recently started sound.

Sound FX and Supporting Different Versions of Android

[394]

Sound FX touches to Note To Self
As it has become customary over the last few chapters, we will use our new-found
knowledge to add an enhancement to our Note To Self app. This chapter will be the
last time we do this, however, before we move on to new coding pastures.

Using your operating system's file browser, go to the app\src\main folder of the
project and add a new folder called assets.

There is a sound file called beep.ogg ready-made for you in the Chapter 17/Note
To Self/assets folder of the download bundle. Of course, you can make your own
sound FX using Bfxr if you prefer.

Place the file into the assets directory that you just created.

Now, we can add some Java code to play the beep sound each time a note from the
list is selected.

First, let's add a couple of new member variables to the MainActivity class:

public class MainActivity extends AppCompatActivity {

 Animation mAnimFlash;
 Animation mFadeIn;

 int mIdBeep = -1;
 SoundPool mSp;

 private NoteAdapter mNoteAdapter;
 private boolean mSound;
 private int mAnimOption;
 private SharedPreferences mPrefs;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 …
 …

Now, in onCreate, as we have done in the Sound Demo app, after the call to
setContentView, add code to initialize SoundPool in a version-specific manner, as
highlighted in this next code:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

Chapter 17

[395]

 setContentView(R.layout.activity_main);

 // Instantiate our sound pool
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 AudioAttributes audioAttributes = new
 AudioAttributes.Builder()
 .setUsage(AudioAttributes.USAGE_MEDIA)
 .setContentType(AudioAttributes.CONTENT_TYPE_SONIFICATION)
 .build();

 mSp = new SoundPool.Builder()
 .setMaxStreams(5)
 .setAudioAttributes(audioAttributes)
 .build();
 } else {
 mSp = new SoundPool(5, AudioManager.STREAM_MUSIC, 0);
 }

 try{
 // Create objects of the 2 required classes
 AssetManager assetManager = this.getAssets();
 AssetFileDescriptor descriptor;

 // Load our fx in memory ready for use
 descriptor = assetManager.openFd("beep.ogg");
 mIdBeep = mSp.load(descriptor, 0);

 }catch(IOException e){
 // Print an error message to the console
 Log.e("error", "failed to load sound files");
 }
 mNoteAdapter = new NoteAdapter();

 ListView listNote = (ListView) findViewById(R.id.listView);

 listNote.setAdapter(mNoteAdapter);
 …
 …

Sound FX and Supporting Different Versions of Android

[396]

Now, add this next code that plays a sound in the onItemClick method. I have
added some context and highlighted the new code to make it plain as to where
it goes:

…
public void onItemClick(AdapterView<?> adapter, View view,
 int whichItem, long id) {

 if(mSound) {
 mSp.play(idBeep, 1, 1, 0, 0, 1);
 }

 Note tempNote = mNoteAdapter.getItem(whichItem);
…

That's it. You can now run the Note To Self app and receive a satisfying click each
time a note from the list is clicked on.

Deleting a note – introducing
OnLongClick
As a final improvement to Note To Self and as an excuse to talk about a neat Android
UI feature, we will add the ability to delete a note. Context actions are often chosen
in Android apps by long clicking. Long clicking is when the user holds their finger
on the device screen rather than simply tapping and removing their finger.

First, let's add a delete note method to the NoteAdapter class. Here is the code that
removes a Note object from the array list and then asks the adapter to update itself
and ListView:

public void deleteNote(int n){

 noteList.remove(n);
 notifyDataSetChanged();

}

Chapter 17

[397]

Now, in onCreate, we can prepare ListView to accept long clicks and then use an
anonymous class to listen and respond to them. This inner class simply calls our new
deleteNote method. Add this code just before the anonymous class that handles the
regular click of ListView and just after the call to setAdapter. Here, I have included
the context and highlighted the new code that is to be added:

…
listNote.setAdapter(mNoteAdapter);

// So we can long click it
listNote.setLongClickable(true);

// Now to detect long clicks and delete the note
listNote.setOnItemLongClickListener(new AdapterView.
OnItemLongClickListener() {

 public boolean onItemLongClick(AdapterView<?> adapter,
 View view,
 int whichItem, long id) {

 // Ask NoteAdapter to delete this entry
 mNoteAdapter.deleteNote(whichItem);

 return true;
 }
});

listNote.setOnItemClickListener(new AdapterView.OnItemClickListener()
{
…

Now you can long click to delete a note. In an app that we are going to release to real
users, we might like to use a popup dialog window to confirm their decision before
deleting the note.

FAQ
1. What do I do if I want to play music?

You can play some music in the background of your app using the
MediaPlayer class. Here is some sample code to show how simple this can be:
// Create a MediaPlayer object
MediaPlayer mp = new MediaPlayer();
// Choose where to load the music from

Sound FX and Supporting Different Versions of Android

[398]

mp.setDataSource(musicFileToLoad);
// Call the prepare method
mp.prepare();
// Play some music
mp.start();

Take a look at the official documentation for full details at http://
developer.android.com/reference/android/media/MediaPlayer.html.

2. How about if I want to make an actual music playing app where the user can
select music from their library to play.
This is also made easy for us by Android. On the Android Studio palette,
you can drag a MediaController widget, which not only allows your user to
control music playback but video as well. Find out how to use this widget on
the Android developer site, http://developer.android.com/reference/
android/widget/MediaController.html.

Summary
Now we know how to make our apps audible. Most apps we will build in this book
are of the type to which you would probably only add a few beeps or buzzes, but
when you design your own apps, you might want to go further, and now you can.
We also saw how to use yet another useful widget from the palette: Spinner.

This chapter concludes the Note To Self app, and it is time to move on to more
advanced Android programming. As we will see, more advanced does not
necessarily mean more complicated; however, we will see quite a few new topics
that will be introduced over the rest of the book.

In the next chapter, we will see how we can start to code even more real-world apps
using the Fragment class, and how we can keep our ever-growing code organized
with design patterns.

http://developer.android.com/reference/android/media/MediaPlayer.html
http://developer.android.com/reference/android/media/MediaPlayer.html
http://developer.android.com/reference/android/widget/MediaController.html
http://developer.android.com/reference/android/widget/MediaController.html

[399]

Design Patterns, Fragments,
and the Real World

We have come a long way since the start of the book when we were just setting up
Java and Android Studio. Back then, we went through everything step by step. But
as we proceeded, we have tried to show you not only how to add x to y or feature
a to app b, but we've also tried to enable you to use what you have learned in your
own ways so that you can bring your own ideas to life.

This chapter is more about your future apps and is different than anything that
we've covered in this book so far. We will look at a number of aspects of Java and
Android that you can use as a framework or template to make even more exciting
and complex apps at the same time as keeping the code manageable. Furthermore,
in this chapter, I will suggest the areas of further study that you can take a look at,
which are out of the scope of this book.

You will learn about the following topics in this chapter:

• Patterns and the model-view-controller pattern
• Android design guidelines
• Getting started with real-world designs and handling multiple different

devices
• An introduction to Fragments

Let's get started.

Design Patterns, Fragments, and the Real World

[400]

Introducing the model-view-controller
pattern
MVC refers to the separation of different aspects of our app into distinct parts called
layers. Android apps commonly use the model-view-controller pattern. A pattern is
simply a recognized way to structure our code and other application resources, such
as layout files, images, databases, and so on. Patterns are useful to us because by
conforming to a pattern, we can be more confident that we are doing things right and
are less likely to have to undo lots of hard work because we have coded ourselves
into an awkward situation.

There are many patterns in computer science, but an understanding of MVC will be
enough to create some really professional Android apps.

We have actually been partly using MVC already, so let's take a look at each of the
three layers in turn.

The model
The model refers to the data that drives our app and any logic/code that specifically
manages it and makes it available to the other layers. For example, in our Note To
Self app, the Note class along with its getters, setters, and JSON code was the data
and logic.

The view
The view of the Note To Self app referred to all the widgets in all the different
layouts. Anything the user can see or interact with on screen is typically part of the
view. And as you can probably remember, the widgets actually came from the View
class hierarchy of the Android API.

The controller
The controller is the bit in between the view and model. It interacts with both
and also keeps them separate. It contains what is known in geek language as the
application logic. If a user clicks on a button, the application layer decides what to do
about it. When the user clicks on OK to add a new note, the application logic listens
for the interaction on the view layer. It captures the data contained in the view and
passes it to the model layer. Almost...

Chapter 18

[401]

The imperfections of Note To Self
revisited
Actually, as mentioned before, we did not use a strict MVC pattern in that app. If
you remember, the ArrayList of notes was actually held in the Activity class. In
our next app, we will see how to improve our adherence to the MVC pattern with
the use of a specially designed Java class, the singleton. The singleton is not yet
another class type such as, inner, anonymous, static, interface, and so on. It is simply
a way in which we can design and code a regular class in order to make our code
more adherent to the MVC pattern and therefore more manageable as it becomes
more complex, more potentially reusable in the future, and more understandable to
other developers who might get involved with the project.

So, why did we do it wrong in our Note To Self app? For simplicity. When designing
the Note To Self app, we knew that it was never going to be a big or complex project,
and it was never going to be worked on simultaneously by more than one developer.
It simply served the purpose of learning about aspects of Android and not cramming
yet more concepts (MVC and singleton) into the list of things to know before
achieving anything meaningful. Having said that, we were about 95% right in the
design of Note To Self.

So in summary, the Note To Self app is a great demonstration of MVC, and we just
need to see how we can tweak things a little in future apps because it will benefit us
as our apps get more complicated. The reason we use the MVC pattern is because
by separating our code into classes and then our classes into the MVC layers, we can
enhance the goals of object-oriented design and use proven techniques.

This whole thing might seem like overkill and an unnecessary complication at
first, but even in the context of this beginners programming book, we will reap
the benefits of conformity with it. So, this is why it is worth introducing all these
concepts as fast as possible—but not too fast.

Design patterns are a huge topic. There are many different design
patterns, and if you want a beginner-friendly introduction to the topic
in general, I would recommend you read Head First Design Patterns
by O'Reilly Media. If you want to really dive into the world of design
patterns, then you can try reading Design Patterns: Elements of Reusable
Object-Oriented Software, which is recognized as a kind of design pattern
Oracle, but is more difficult to read.

Design Patterns, Fragments, and the Real World

[402]

As we progress through Chapter 19, Using Multiple Fragments, and Chapter 20,
Paging and Swiping, we will steadily introduce Java that we need to conform more
closely to the MVC pattern. We will also begin to utilize more of the object-oriented
programming aspects that we discussed, but haven't fully benefited from so far. We
will do this step by step.

Android design guidelines
App design is a vast topic. It is a topic that we could only begin if it is taught in
a book of its own. Also, like programming, you can only start to get good at app
design with constant practice, review, and improvement.

So, what exactly do I mean by design? I am talking about where you put the widgets
on the screen, which widgets, what color should they be, how big should they be,
how to transition between screens, the best way to scroll a page, when and which
interpolators to use, what screens should your app be divided into, and much more.

This book will hopefully leave you well qualified so that you are able to implement
all your choices of the preceding questions and many more besides them. This book
unfortunately doesn't have the space and the author probably doesn't have the skill
to teach you how to make these choices.

You might be wondering, what should I do? Keep making apps
and don't let the lack of design experience and knowledge stop you!
Even release your apps on the app store. Keep in mind, however,
that there is an entire other topic, design, that needs some attention
if your apps are going to truly be world class.

In medium-sized development companies, the designer is rarely also the
programmer, and even very small companies will often outsource the design of their
app (or designers might outsource the coding).

Designing is both art and science, and Google has demonstrated that they recognize
this with really high-quality support for both existing designers and aspiring new
designers.

I highly recommend you visit and bookmark this page:
http://developer.android.com/design/index.html.
It is quite detailed and comprehensive, and it is totally focused
on Android. It also has a digital ton of resources in the form of
images, color palettes and guidelines.

http://developer.android.com/design/index.html

Chapter 18

[403]

Make understanding the design principles your short term goal. Make improving
your actual design skills an ongoing task. Visit and read design focused websites and
try and implement the ideas that you find exciting.

Most important of all, however, don't wait until you are a design expert to make
apps. Keep bringing your ideas to life and publish them. Make it a point to make
each app a little better designed than the last.

We will see in the coming chapters, and have seen already, that the Android API
makes a whole bunch of super-stylish UI available to us that we can take advantage
of with very little code. These go a long way to making your apps look like they have
been designed by a professional.

Real-world apps
So far, we have designed one fairly significant app and a dozen or more mini apps.
Some we designed for tablets, but we designed most of them on the Nexus 5 phone.
Also, most of the screenshots in this book have been on the Nexus 5 emulator.

Of course, in the real world, our apps need to work well on any device and must
be able to handle what happens when in either portrait or landscape view (on all
devices).

Furthermore, it is often not enough for our apps to just work and look OK on
different devices. Often, our apps will need to behave differently and appear with a
significantly different UI based on whether the device is a phone, a tablet, or in the
landscape/portrait orientation.

Android has supported apps for large screen TV's for some
time now, and in 2015, it introduced the Wear API to build
apps for Android watches. We will not be covering these two
most-extreme cases in this book.

Design Patterns, Fragments, and the Real World

[404]

Take a look at this screenshot of the BBC news app running on an Android phone in
the portrait orientation. Look at the basic layout, but also note that the categories of
news (TOP STORIES, WORLD, and UK) are all visible and allow the user to scroll
down so that they can see more categories or swipe to the left or right between the
stories within each category.

Chapter 18

[405]

We will see how we can implement a swiping/paging UI using the ImagePager and
FragmentPager classes in Chapter 20, Paging and Swiping. For now, the purpose of
the diagram is not so much to show you the specific UI features, but to allow you to
compare it with the next screenshot. Look at the exact same app running on a tablet
in the landscape orientation:

Note that the stories (data layer) are identical, but the layout (the view layer) is very
different. The user is not only given the option to select categories from a menu of
tabs at the top of the app, but they are also invited to add their own tabs through the
+ Add Topics option.

The point of this image, again, is not so much the specific UI or even how we might
implement one like it, but more that they are so different they could easily be
mistaken for totally different apps.

Android allows us to design real-world apps like these, where not only is the layout
different for varying device types/orientations/sizes, but so is the behavior. The
Android secret weapon that makes this possible is Fragments.

Design Patterns, Fragments, and the Real World

[406]

Google says
A Fragment represents a behavior or a portion of user interface in an
activity. You can combine multiple Fragments in a single activity to
build a multipane UI and reuse a Fragment in multiple activities.
You can think of a Fragment as a modular section of an activity,
which has its own lifecycle, receives its own input events, and which
you can add or remove while the activity is running (sort of like a
subactivity that you can reuse in different activities).
A Fragment must always be embedded in an activity, and the
Fragment's lifecycle is directly affected by the host activity's lifecycle.

We can design multiple different layouts in different XML files, and we will do so
soon. We can also detect things such as device orientation and screen resolution in
code so that we can then make decisions about layouts dynamically.

Let's try this out and then we will take a look at Fragments.

The device detection mini app
To make this app, create a new project and call it Device Detection. Delete the
default Hello world! widget. Drag Button onto the top of the screen and set its
onClick property to detectDevice. We will code this method in a minute.

Drag two LargeText widgets onto the layout and set their id properties to
txtOrientation and txtResolution, respectively. You should now have a layout
that looks something like this:

Chapter 18

[407]

Add the following members just after the MainActivity class declaration to hold
references to our two TextView widgets:

private TextView txtOrientation;
private TextView txtResolution;

Now, in the onCreate method of MainActivity, just after the call to
setContentView, add this code:

// Get a reference to our TextView widgets
txtOrientation = (TextView) findViewById(R.id.txtOrientation);
txtResolution = (TextView) findViewById(R.id.txtResolution);

Design Patterns, Fragments, and the Real World

[408]

After onCreate, add the method that handles our button click and runs our
detection code:

public void detectDevice(View v){

 // What is the orientation?
 Display display = getWindowManager().getDefaultDisplay();
 txtOrientation.setText("" + display.getRotation());

 // What is the resolution?
 Point xy = new Point();
 display.getSize(xy);
 txtResolution.setText("x = " + xy.x + " y = " + xy.y);

}

Now, run the app. On some computers, the emulator is prone to crashing when it is
rotated. If necessary, test this on a real device:

Chapter 18

[409]

Rotate the device to landscape (use Ctrl + F11 on PC or Ctrl + fn + F11 on Mac). Now,
click on the NEW BUTTON button, as shown here:

If the 0 and 1 results are less than obvious regarding the device orientation, they
refer to the public static final variables of the Surface class, where Surfcae.
ROTATION_0 equals 0 and Surface.ROTATION_180 equals 1.

And we could switch based on the results of these detection tests and load up
different layouts.

Android makes this simpler than this for us by allowing us to add specific layouts
into folders with configuration qualifiers.

Configuration qualifiers
We have already seen configuration qualifiers such as layout-large or layout-
xhdpi in The Android Studio guided tour section from Chapter 3, Exploring Android
Studio. Here, we will refresh and expand our understanding of them.

We can begin to remove the reliance on the controller layer to influence the app
layout by using configuration qualifiers. There are configuration qualifiers for
size, orientation, and pixel density. To take advantage of a configuration qualifier,
we simply design a layout in the usual way that is optimized for our preferred
configuration and then place that layout in a folder with a name that Android
recognizes as being of that particular configuration.

Design Patterns, Fragments, and the Real World

[410]

So, if we want to have a different layout for landscape and portrait, we would create
a folder called layout-land in the res folder and place our specially designed
layout within it. When the device is in the portrait position, the regular layout from
the layout folder would be used, and when it is in landscape, the layout from the
layout-land folder would be used.

If we are designing for different sizes of screen, we place layouts into folders with
the following names:

• layout-small

• layout-normal

• layout-large

• layout-xlarge

If we are designing for screens with different pixel densities, we can place XML
layouts into folders with names like these:

• The layout-ldpi layout for low DPI devices
• The layout-mdpi layout for medium DPI devices
• The layout-hdpi layout for high DPI devices
• The layout-xhdpi layout for extra high DPI devices
• The layout-xxhdpi layout for extra, extra high DPI devices
• The layout-xxxhdpi layout for extra, extra, extra high DPI devices
• The layout-nodpi layout for devices with a DPI that you have not otherwise

catered for
• The layout-tvdpi layout for TVs

What exactly qualifies as a low, high, or extra high DPI can be researched at the
link in the next information box. The point here is the principle, and we will do
something practical with this knowledge in the next mini app.

You might also remember that we added icons of different sizes into folders with
names such as drawable-mdpi and drawable-hdpi when we started the Note To
Self app in Chapter 12, Having a Dialogue with the User. This was because Android
would use different graphics based upon the screen density of the device our app is
being run on.

It is worth pointing out that what we have just discussed is a long way from the
whole story regarding the configuration qualifiers, and as with design, it is worth
putting this on your list of things to study further.

Chapter 18

[411]

As so often, the Android developer site has lots of detailed
information on handling layouts for different devices. Try out
http://developer.android.com/guide/practices/
screens_support.html for more information.

Let's try out some device qualifiers now.

Using configuration qualifiers – mini app
Create a new project and call it Configuration Qualifiers and follow the next
steps:

1. Right-click on the res folder in the project explorer and navigate to New |
Android resource directory. Type layout-land and click on OK.

If you don't see your new directory in the project explorer, you need
to change the view of the project explorer through its drop-down
selector at the top of the project explorer window. Click on the
drop-down selector and choose Project.

2. In the layout_main.xml file, change the text of the default TextView widget
from Hello world to Hello portrait!.

3. Right-click on the layout-land folder and navigate to New | Layout
resource. Name the file layout_main.xml. Add a single Plain TextView
widget and change the text property to Hello landscape!.

4. Run the app and rotate the device between landscape and portrait
orientations. Note that the OS automatically uses the appropriate version of
layout_main.xml.

If we got a reference to TextView (or any other widget) in our Java code, the same
exact code would work as long as the id values in the different layouts were the
same.

Effectively, we have two different layouts controlled by the same Java code.

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html

Design Patterns, Fragments, and the Real World

[412]

The configuration qualifier's summary
What the last two mini apps and our discussion on configuration qualifiers have
shown us is certainly very useful in a number of situations. Unfortunately, however,
configuration qualifiers and detecting attributes in code only solve the problem in
the view layer of our MVC pattern. As discussed in the Real-world apps section, our
apps sometimes need to have a different behavior as well as layout. This perhaps
implies multiple branches of our code in the controller layer and perhaps summons
nightmarish visions of having huge great if or switch blocks with different code for
each different scenario.

Fortunately, this is not how it's done. For such situations (actually for most apps),
Android has Fragments.

Fragments
Fragments will likely become a staple of almost every real app you make. They are
so useful; there are so many reasons to use them; and once you get used to them,
they are so simple. There is almost no reason not to use them.

Fragments are reusable elements of an app just like any class, but as mentioned
previously, they have special features, such as the ability to load their own view as
well as having their very own lifecycle methods that make them perfect to achieve
the goals that we've discussed in the Real-world apps section.

Let's dig a bit deeper into Fragments one feature at a time.

Fragments have a lifecycle too
We can set up and control Fragments very much like we do Activities, by overriding
the appropriate lifecycle methods.

onCreate
In the onCreate method, we can initialize variables and do almost all the things we
would typically do in the Activity onCreate method. The big exception to this is
initializing our UI.

onCreateView
In this method, we will, as the name suggests, get a reference to any of our UI
widgets, set up anonymous classes to listen for clicks, and do more besides these
tasks, as you will soon see.

Chapter 18

[413]

onAttach and onDetach
These methods are called just before the Fragment is actually put into use/taken out
of use.

onStart, onPause, and onStop
In these methods, we can take certain actions such as creating or deleting objects or
saving data, just like we did with their counterparts that were based on Activity.

There are other Fragment lifecycle methods as well, but we know
enough to start using Fragments already. If you want to study the
details of the fragment lifecycle, you can do so on the Android
developer website at http://developer.android.com/
guide/components/fragments.html.

This is all very well, but we need a way to create our Fragments in the first place and
be able to call these methods at the right time.

Managing Fragments with FragmentManager
The FragmentManager class is part of Activity. We use it to initialize Fragment,
add Fragments to the Activities layout, and to end Fragment. We actually briefly saw
FragmentManager earlier when we initialized some FragmentDialog. It is very hard
to learn much about Android without bumping into the Fragment class just as it is
tough to learn much about Java without OOP. The highlighted code here shows how
we used FragmentManager (which is already a part of the Activity) that was passed
in as an argument to create the pop-up dialog:

button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

 // Create a new DialogShowNote called dialog
 DialogShowNote dialog = new DialogShowNote();

 // Send the note via the sendNoteSelected method
 dialog.sendNoteSelected(mTempNote);

 // Create the dialog
 dialog.show(getFragmentManager(), "123");
 }
});

http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html

Design Patterns, Fragments, and the Real World

[414]

At the time when we used the previous code, I had asked you not to concern yourself
with the arguments of the method call. The second argument of the method call is an
ID for Fragment. We will see how to use FragmentManager more extensively as well
as use the Fragment ID.

FragmentManager does exactly what its name suggests. What is important here is
that Activity only has one FragmentManager, but it can take care of many fragments;
just what we need to have multiple behaviors and layouts within a single app.

FragmentManager also calls the various lifecycle methods of the fragments it is
responsible for. This is distinct from the Activity lifecycle methods that are called by
Android, yet closely related because FragmentManager calls many of the Fragment
lifecycle methods in response to the Activity lifecycle methods being called. As usual,
we don't need to worry too much about when and how as long as we respond
appropriately in each situation.

Fragments are going to be a fundamental part of many, if not all,
of our future apps. As we did with naming conventions, string
resources, and encapsulation, however, we will not use fragments for
simple learning purposes or mini apps when they would be overkill.
The exception to this will, of course, be when we are learning about
or making mini apps to specifically demonstrate fragments.

In addition, there will be a few fragment-based mini apps where we will focus on
just the fragment-related code in order to understand it properly.

Our first working Fragment mini app
Let's build a Fragment in its simplest possible form so that we can understand what
is going on before in later chapters we start producing Fragments all over the place.

I urge all readers to go through and actually build this project.
There is a lot of jumping around from file to file and just reading
alone can make it seem more complex than it really is. You can
copy and paste the code from the download bundle but please
also follow the steps and create your own projects and classes.
Fragments are not too tough but their implementation, like there
name suggests is a little fragmented.

Chapter 18

[415]

Create a new project called Simple Fragment using the same default settings as
always. Note that there is the option to create a project with Fragment, but you will
learn more about them by doing things from scratch.

Switch to activity_main.xml and delete the default Hello world! widget.
Now, make sure that the RelativeLayout root is selected by clicking on it in the
Component Tree window. Change its id property to fragmentHolder. We will
now be able to get a reference to this layout in our Java code, and as the id property
implies, we will be adding a Fragment to it.

Now, we will create a layout that will define our Fragment's appearance. Right-click
on the layout folder and navigate to New | Layout resource file. In the File name
field, type fragment_layout and click on OK.

Add a single Button widget anywhere on the layout and make its id property
button.

Now that we have a simple layout for our fragment to use, let's write some Java code
to make the actual fragment.

Note that you can create a Fragment by simply dragging and
dropping one from the palette, but doing things this way is much
less flexible and controllable. Also, flexibility and control are the
big benefits to fragments, as we will see throughout this chapter.
By creating a class that extends Fragment, we can make as many
fragments from it as we like.

In the project explorer, right-click on the folder that contains the MainActivity
file. From the context menu, navigate to New | Java class. In the Name field, type
SimpleFragment and click on OK.

Note that there are options to create Fragment classes in
various precoded states to implement Fragment more quickly,
but at the moment, they will slightly cloud the learning
objectives of this mini app.

Design Patterns, Fragments, and the Real World

[416]

In our new SimpleFragment class, change the code to extend Fragment. As you type
the code, you will be asked to choose a specific Fragment class to import, as shown
in the next screenshot:

Choose the top option (as shown in the previous screenshot), which is a regular
Fragment class.

Now, add a single String variable called myString and a Button variable called
myButton as members and override the onCreate method. Inside the onCreate
method, initialize myString to Hello from SimpleFragment. Our code so far
(excluding the package declaration) will look exactly like this next code:

import android.app.Fragment;
import android.os.Bundle;

public class SimpleFragment extends Fragment {

 // member variables accessible from anywhere in this fragment
 String myString;
 Button myButton;

 @Override
 public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);

 myString = "Hello from SimpleFragment";
 }
}

Chapter 18

[417]

In the previous code, we created a member variable called myString, and then in the
onCreate method, we initialized it. This is very much like we do for our previous
apps when we only use Activity. The difference, however, is that we did not set the
view or attempt to get a reference to our Button member variable, myButton.

When using Fragment, we need to do this in the onCreateView method. Let's
override this now and see how we set the view and get a reference to our Button.

Add this code to the SimpleFragment class after the onCreate method:

@Override
public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {

 View view = inflater.inflate
 (R.layout.fragment_layout, container, false);

 myButton = (Button) view.findViewById(R.id.button);

 return view;
}

To understand the previous block of code, we must first look at the onCreateView
method signature. First, note that the start of the method states that it must return an
object of the type View:

public View onCreateView...

Next, we have the three arguments. Let's look at the first two now:

(LayoutInflater inflater, ViewGroup container,...

We need LayoutInflater as we cannot call setContentView because Fragment
provides no such method. In the body of onCreateView, we use the inflate method
of inflater to inflate our layout contained in fragment_layout.xml and initialize
view (an object of the type View) with the result.

We use container that was passed in to onCreateView as an argument in the
inflate method. The container variable is a reference to the layout in activity_
main.xml.

Design Patterns, Fragments, and the Real World

[418]

It might seem obvious that activity_main.xml is the containing layout, but as
we will see later in the chapter, the ViewGroup container argument allows any
Activity with any layout to be the container for our fragment. This is exceptionally
flexible and makes our Fragment code reusable to a significant extent. The third
argument that we pass into inflate is false, which means that we don't want our
layout to be immediately added to the containing layout. We will do this soon from
another part of the code.

The third argument of onCreateView is Bundle savedInstanceState, which is
there to help us maintain the data that our fragments hold. We will see this in action
in Chapter 22, Capturing Images.

Now that we have an inflated layout contained in view, we can use this to get a
reference to Button like this:

myButton = (Button) view.findViewById(R.id.button);

And we can also use it as the return value to the calling code, as required:

return view;

Now, we can add an anonymous class to listen for clicks on our button in the usual
manner. In the onClick method, we display a pop-up Toast message to demonstrate
that everything is working as expected. Add this code just before the return
statement in onCreateView as highlighted in this next code:

@Override
public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {

 View view = inflater.inflate(R.layout.fragment_layout,
 container, false);

 myButton = (Button) view.findViewById(R.id.button);

 myButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

 Toast.makeText(getActivity(),myString ,
 Toast.LENGTH_SHORT).show();
 }
 });

 return view;
}

Chapter 18

[419]

As a reminder, the getActivity() call that is used as an argument in makeText gets
a reference to the Activity that contains Fragment. This is required to display a Toast
message. We also used getActivity in our classes based on FragmentDialog in the
Note To Self app.

We can't run our mini app just yet, as it will not work because there is one more step
that we need to complete. We need to create an instance of SimpleFragment and
initialize it appropriately. This is where FragmentManager will get introduced.

This next code creates a new FragmentManager by calling getFragmentManager.
It creates a new Fragment based on our SimpleFragment class by using
FragmentManager and passing in the ID of the layout (within the Activity) that
will hold it.

Add this code in the onCreate method of MainActivity.java just after the call to
setContentView:

// Get a fragment manager
FragmentManager fManager = getFragmentManager();

// Create a new fragment using the manager
// Passing in the id of the layout to hold it
Fragment frag = fManager.findFragmentById(R.id.fragmentHolder);

// Check the fragment has not already been initialized
if(frag == null){

 // Initialize the fragment based on our SimpleFragment
 frag = new SimpleFragment();
 fManager.beginTransaction()
 .add(R.id.fragmentHolder, frag)
 .commit();

}

Design Patterns, Fragments, and the Real World

[420]

Now, run the app and gaze in wonder at our clickable button that took two layouts
and two complete classes for us to create as shown in the following screenshot:

I think we need a fragment reality check to answer a few questions like, why!

Fragment reality check
So, what does this Fragment stuff really do for us? Our first Fragment mini app
would have exactly the same appearance and functionality had we not bothered with
Fragment at all. In fact, using Fragment has made the whole thing more complicated!
Why would we want to do this?

Chapter 18

[421]

We kind of know the answer to this already, but it just isn't especially clear based
on what we have seen so far. We know that Fragment or fragments can be added to
the layout of an Activity. We know that a Fragment not only contains its own layout
(view), but also its very own code (controller), which although hosted by Activity,
the Fragment is virtually independent.

Our quick mini app only showed one Fragment in action, but we could have
an Activity that hosts two or more fragments. We can then effectively have two
almost-independent controllers displayed on a single screen. This sounds like it
could be useful.

What is most useful about this, however, is that when the Activity starts, we can
detect attributes of the device that our app is running on, perhaps a phone or tablet
or in the portrait or landscape orientation. We can then use this information to decide
to display either just one or two of our fragments simultaneously.

This not only helps us achieve the kind of functionality discussed in the Real-
world apps section at the start of the chapter, but it also allows us to do so using the
exact same Fragment code for both possible scenarios! This really is the essence
of fragments. We can create a complete app by pairing up both functionality
(controller) and appearance (view) into a bunch of fragments that we can reuse in
different ways, almost without care.

It is, of course, possible to foresee a few stumbling blocks, so take a look at these FAQs.

FAQ
1. As each Fragment is an entirely separate class, how will they communicate

with each other?
We will solve this problem with a practical use of Java that you have already
learned about—interfaces—along with some other tools as well, starting in
the next chapter.

2. The other missing link is that, if all these fragments are fully functioning
independent controllers, then you need to learn a bit more about how we
would implement our model layer. If we simply have ArrayList, like with
Note To Self, where will it go? How would we share it between fragments
(assuming both fragments need access to the same data)?
There is an entirely more elegant solution that we can use to create a model
layer (both the data itself and the code to maintain the data). We can use the
Java singleton, and we will do so in the next chapter.

Design Patterns, Fragments, and the Real World

[422]

Summary
Now that we have a broad understanding of what Fragments are for and how we
can begin to use them, we can start to go deeper into how they are used. In the next
chapter, we will complete a couple of apps that will enable us to finally implement
the data layer of our apps as they are meant to and to create a simple app that uses
multiple layouts, multiple fragments, and our new data layer. At the same time, we
will see another type of adapter that is used to link our UI to our data layer.

[423]

Using Multiple Fragments
Now that we have discussed the principals of MVC as well as seen how to
implement a Fragment, we can take things a stage further. You will learn how to
separate the data layer using a Java singleton and then we will see how Fragments
can communicate with each other.

Once we have achieved both of these things, we can implement our first multi-
Fragment, orientation-aware app that will put everything we know so far into practice.

In this chapter, to save digital ink, I will stop giving specific
instructions on how to make classes and layout files. As a
reminder, to create a new class, right-click on the folder that
contains all the .java files and navigate to New | Class. Type
the name and click on OK. To create a new layout file, right-click
on the layout folder and navigate to New | Resource layout file.

In short, we will do the following in this chapter:

• Explore Java singletons to implement the data layer
• Implement inter-Fragment communication with a Java interface
• Build an address book app with two Fragments that behave differently

between the landscape view and the portrait view

Using singletons for the model layer
A singleton, as the name suggests, is a class where there can only be one instance of
that class. If you think about data storage, this makes sense. If you have more than
one place to store the same set of data, it is possible, if not highly likely, that at some
point you will attempt to store or retrieve something inconsistently.

Using Multiple Fragments

[424]

Think about having two identical sets of folders to manage your e-mails. If you have
two (or more) folders marked as Urgent, how will you know where to store that
urgent e-mail. And when you need to check if you have any urgent emails, you will
need to check both. What if you forget and only check one?

Also, consider a shopping app, where the user browses from page to page and each
page is, perhaps, a separate Fragment/Activity. If they add something to the cart on
more than one page, they could end up with two separate carts instead of one with
both the items in it.

When we are making straightforward apps, it is possible that we could survive
without using singletons. But as our apps quickly become more complicated, it will
be very easy to find our data storage solution, literally all over the place.

If it's starting to sound like singletons might be complicated, be reassured that they
are quite straightforward. In software engineering, the singleton pattern is simply a
design pattern that restricts the instantiation/creation of a class to one object. This is
useful when exactly one object is needed to coordinate actions across the system. Note
that our singleton will be accessible throughout the entire app but not to other apps.

The other thing that our singleton design will ensure is that the data persists for the
entire life of the app and is available throughout the classes (including fragments) of
the app.

This makes sense for us because although there are ways to communicate between
classes, some of which we have already seen, if the data is fundamental to the app, it
should be easily available throughout.

Let's review our requirements. We need a class that can only have one instance, but
this one instance must be available to all throughout the life of the app at the same
time as controlling how its data is accessed.

Take a look at this block of code for example:

public class Movie{
 private String mTitle;
 private boolean mOnLoan;

 public void setTitle(String title){
 mTitle = title;
 }

 public String getTitle(){
 return mTitle;

Chapter 19

[425]

 }

 public void setLoanStatus(boolean loanStatus){
 mOnLoan = loanStatus;

 }

 public boolean getLoanStatus(){
 return mLoanStatus;
 }
}

In the previous code, we have a simple class called Movie with two private members:
mTitle and mOnLoan. The two variables would hold the tile of a movie and the status
whether it is currently out on loan or not. This could be a useful class for an app to
manage a movie rental store or perhaps a personal movie collection. The code also
has two getters and two setters that are used to check and change the value of these
two private member variables, which would otherwise be inaccessible from outside
the class.

The class is public, so any part of our app can create instances of the class in order to
manipulate data of the Movie type. The trick is how our app obtains these instances,
and this is where the singleton comes in handy. Take a look at this next code block as
an example:

public class RentalStore {

 // I am instantiating an instance of myself - weird!
 // This is the only RentalStore that will ever exist
 private static RentalStore ourInstance = new RentalStore();

 private ArrayList <Movie> mMovies;

 // Anyone who wants my one and only instance will
 // need to use this method
 public static RentalStore getInstance() {
 return ourInstance;
 }

 // Here is the constructor and it is private
 // So only this class itself can ever instantiate it
 private RentalStore() {
 mMovies = new ArrayList<Movie>();
 }

Using Multiple Fragments

[426]

 // Anyone can get the list of movies though
 public ArrayList <Movie> getMovies(){

 return mMovies;
 }
}

The previous code might look complicated, but when we break it down, it really
isn't. First, look at the constructor (the method with the same name as the class).
The RentalStore constructor method is private. Since we have provided a default
constructor that is private, it might at first seem that it is now impossible to ever
instantiate RentalStore.

Just before the constructor, we have a public static method called getInstance.
Recall that in Chapter 9, Object-Oriented Programming, we discussed that a static
method can be called without an instance of the class. Look again at the getInstance
method and note that its return type is RentalStore. This means that any code
anywhere in our app can call the getInstance method and receive a RentalStore
instance.

Now, look at the body of getInstance, and it does indeed return ourInstance,
which was instantiated just after the class declaration.

This means that nobody can ever instantiate RentalStore, but everybody can get a
reference to the one and only RentalStore stored in our singleton.

Furthermore, the class has a public method getMovies that returns ArrayList of
all the Movie objects that have been created so that they can do what they like to the
movies in it—as long as it is allowed by the getters and setters of the Movie class.
This is a kind of data paradox. Complete freedom with complete control! Any code
that does anything to any movie in ArrayList or adds or removes anything to/from
ArrayList is guaranteed to be working on exactly the same set of data as any other
part of our app that does so.

We could go on to add more features to our singleton, perhaps, to add getters and
setters and to control exactly what can and can't be done to ArrayList instead of
simply handing ArrayList to the calling code. This discussion has taken the concept
of a singleton far enough for the purpose of the next few apps.

We can now go about using RentalShop in our code like this:

RentalShop myRentalShop = RentalShop.getInstance();

We can then get hold of the list of movies like this:

ArrayList <Movie> myMovies = myRentalShop.getMovies();

Chapter 19

[427]

We can now do whatever we like within the constraints of the Movie class. And if
later on in our code, probably in another Activity or Fragment, we have code like
this, we can be confident that the code is working on exactly the same set of data as
the code in the other Activity or Fragment:

RentalShop someRentalShop = RentalShop.getInstance();
ArrayList <Movie> myMovies = someRentalShop.getMovies();

Inter-Fragment communications –
interfaces revisited
The main point of Fragments is that they have flexibility and reusability. If you
remember, back in Chapter 12, Having a Dialogue with the User, when we were passing
Note to and from a Fragment dialog, we added a method to Fragment and then
called this method from the instance of the dialog in order to pass in the correct
note that is to be shown. And when we added a new note in a dialog, we used
getActivity() to get a reference to MainActivity in order to return the new note
to be added to ArrayList of notes. Here is the code as a reminder:

// Get a reference to MainActivity
MainActivity callingActivity = (MainActivity) getActivity();

// Pass newNote back to MainActivity
callingActivity.createNewNote(newNote);

The problem with this is that it assumes that the communication is with an Activity
called MainActivity.

Although this works in the Note To Self scenario, it is inflexible because this means
that our fragments can only be used in Activities that have the correct methods, or
that fragments must have the right methods so that our Activities can be called.

This didn't bother us much in the Note To Self app, but when we will be showing
different combinations of fragments on different Activities, then we need a uniform
way to communicate, and we need a way to guarantee/force our code that uses our
Fragments, to be aware of this communication method.

Interfaces are the solution! Recall that in Chapter 9, Object-Oriented Programming, we
saw that an interface is a class in which all the methods have no body and all the
methods are abstract by default. So any class that implements the interface must
override all its methods using the correct name and parameters.

Using Multiple Fragments

[428]

Take a look at the code in this interface. It has one method, onListItemSelected. It
takes a Movie object as an argument, but this argument could, of course, be whatever
we want it to be and there could be more than one argument:

public interface ActivityComs {

 void onListItemSelected(Movie movie);
}

We can then declare an instance of the interface within any Fragment that needs
to communicate:

private ActivityComs mActivityComs;

We can then override the Fragments onAttach method and initialize it like the next
block of code. Note that onAttach receives Activity as a parameter. This is the
parent Activity where Fragment is created. So, provided Activity implements the
interface, when we call the interfaces method from Fragment, we will be calling the
overridden method in Activity. Seeing this in action is the best way to understand
this and we will soon. Here is the overridden onAttach method in Fragment:

@Override
public void onAttach(Activity activity) {
 super.onAttach(activity);

 /*
 activity is a ActivityComs but must
 still be explicitly cast to the type
 */
 mActivityComs = (ActivityComs)activity;
}

In the onDetach method, we can render it harmless like this:

@Override
public void onDetach() {
 super.onDetach();

 /*
 Set the reference to null.
 Now there is no active reference
 the garbage collector will clean it up
 */
 mActivityComs = null;
}

Chapter 19

[429]

And most importantly, we can, of course, call its one and only method on the event
that we want the communication to take place on, most likely a click, perhaps on an
item in ListView, as shown in the next code snippet. Remember that this code is still
taking place within Fragment, and we will see the Activity code afterwards:

public void onListItemClick(ListView l, View v, int position, long id)
{

 Movie movie =
 ((MovieListAdapter)getListAdapter()).getItem(position);

 mActivityComs.onListItemSelected(movie);
}

The previous code assumes that we have an adapter called MovieListAdapter. It
creates a new Movie object and calls onListItemSelected on the interface, passing
in the new Movie object as an argument. So, if the Activity that created Fragment
has implemented ActivityComs, the new Movie object will be passed into the
overridden onListItemSelected method in Activity.

The last piece of the puzzle takes place in the related Activity when we first
implement the interface:

public class MainActivity extends AppCompatActivity implements
 ActivityComs{

And then, we must override the method to handle the data that is passed in:

public void onListItemSelected(Movie movie) {

 // Do whatever you want with the Movie
}

As we will see in the Address book app, and as implied in the previous block of
code, we still need to decide what exactly we will do with the passed-in data.

We can do something with the data right there in the Activity or pass it to another
Fragment using the onCreate method's Bundle.

It makes sense that these bundles be configured (packed with data) in the same
place and in the same method of the interface so that the Bundle passed into a new
Activity that we know is destined for a particular Fragment in the end, will be
managed from the same place.

Using Multiple Fragments

[430]

We will see this happen in the Address book app very soon, but you will probably
be pleased to hear that once we have prepared data in Bundle and passed it to
the appropriate Activity, Fragments can also receive and unpack these
Bundle packages in the same way as implied by the signature of the onCreate
method, as shown:

public void onCreate(Bundle savedInstanceState)

We can now put all our new information about Fragment, interfaces, singleton and
a new trick, configuration qualifiers all together in our next app to create a true dual
fragment app that behaves differently depending upon whether the device is in
landscape or portrait orientation.

In this next app, we will not save data to a disk or add new data via the UI, as this
could be almost copy pasted from the Note To Self app with minor amendments to
cater for names and addresses instead of notes.

The dual-Fragment address book
mini app
The app will show a list of names and allow the user to tap on a name so that it
displays the address. What is new about this app is that when we compare it to
the Note To Self app, it will behave differently depending upon whether it is in the
portrait or landscape orientation.

When in the portrait orientation, tapping on a name will cause a new Activity to
open and display the address. When in the landscape mode, tapping on a name
will cause the address to be shown on the right-hand side of the screen in the same
Activity. This next image clarifies this visually:

Chapter 19

[431]

This is the kind of behavior a user might expect from a mobile app. The best part is
that it doesn't matter whether the user is in the portrait or landscape orientation, the
exact same Java code and XML layout will be used for both the list and the detail
parts. We will, of course, achieve this feat by using Fragments.

Using Multiple Fragments

[432]

Getting started
Create a new blank project called Dual Fragment. This mini app has us jumping
between files and directories. I have made every effort to ensure that the exact
location in which the action is taking place is made clear. If there is any doubt about
exactly what goes where, be sure to refer to the code in the download bundle in the
Chapter 19/Dual Fragments folder. Every file or folder that we either need to
create or amend is in there.

Alias resources
First, you will learn a new trick that is a more flexible, although slightly more
complicated, method of determining which layout file is used depending upon the
device orientation.

The project explorer window has a number of different layout options. Some are
very subtly different, and for this next part of the mini app, it is really important that
you are using the right layout as we will be creating new directories.

Click on the drop-down Project list and make sure that the Project option is selected.
It might have been already, but if it isn't, this next part won't work. The next
screenshot makes this step clear:

First, we will use an Android trick known as alias resources.

Chapter 19

[433]

Follow this tutorial through to the end. It will be clearer as to exactly what we are
achieving as we implement the final steps:

1. Right-click on res/values and navigate to New | Values resource file. In the
File name field, enter refs and then click on OK.

2. In the new refs.xml file that we just created, add the highlighted code that
is shown next:
<?xml version="1.0" encoding="utf-8"?>
<resources>

 <item name = "activity_dualfragment" type= "layout">
 @layout/activity_main
 </item>

</resources>

What we have just done will make more sense when we implement the next
step as well.

3. Right-click on the res folder and navigate to New | Android resource
directory. Now, enter values-land in the Directory name field.

4. Right-click on the directory that you just created and navigate to New |
Values resource file. In the File name field, enter refs and then click on OK.

5. Now in the new refs file that is in the values-land directory, add the
highlighted line of code shown here:.
<?xml version="1.0" encoding="utf-8"?>
<resources>

 <item name = "activity_dualfragment" type= "layout">
 @layout/activity_main_land
 </item>

</resources>

6. Right-click on the layout folder and navigate to New | Layout resource file.
In the File name field, type activity_main_land.

Very quickly, for the sake of testing, add Plain TextView to activity_main_land
and change its text property to Landscape. In activity_main, add Plain TextView
and change its text property to Portrait.

Using Multiple Fragments

[434]

We can now update the call to setContentView in the onCreate method of
MainActivity so that it looks like this:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_dualfragment);
}

This setContentView line of code passes the activity_dualfragment alias and
not either of the actual layout files. The two refs.xml files each contain an alias
for activity_dualfragment that will ensure that a different layout file is used
depending upon which orientation the device is in. So when the device is in the
landscape orientation, activity_main_land will be loaded as the view, and when
the device is in the portrait orientation, activity_main will be used.

We could have just as easily added a folder named layout_
land and added our landscape layout there. We didn't have
to use aliases. Using aliases, however, is more flexible as the
number of potential layouts grow as it allows us to use the
same layout for multiple different devices/orientations. For
example, what if we decide to use the activity_main_land
layout on tablets that are over 1,000 pixels wide, even when
they are in the portrait orientation? Aliases would give us this
flexibility without duplicating the activity_main_land
file and creating a maintenance problem where we need to
remember to update the file in two different places.

Run the app and try it now. Note that as you rotate the device, a new layout is
loaded. This one for the landscape orientation:

Chapter 19

[435]

This one for the portrait orientation:

Our app now shows a different layout between different orientations using resource
aliases. Soon, we will add to these layouts so that it either holds two fragments for
landscape (a list and the details) or holds one Fragment for portrait (just the list).

Before we can make much progress, we need a class to store a single name
and address.

The NameAndAddress class
Create a new class and call it NameAndAddress. We implement Serializable as this
is required by ArrayAdapter, which will act as our adapter between ListView and
our data. We will see this in action soon. We will see that ArrayAdapter saves us a
mountain of code at the expense of a slight loss in flexibility.

Using Multiple Fragments

[436]

Add this code for the NameAndAddress class:

public class NameAndAddress implements Serializable{

 private String mName;
 private String mAddress1;
 private String mAddress2;
 private String mZipCode;

 public NameAndAddress(String name,
 String address1,
 String address2,
 String zipCode){

 mName = name;
 mAddress1 = address1;
 mAddress2 = address2;
 mZipCode = zipCode;
 }
}

We need a getter method for each member, so you can use one of these three methods:

1. Type the next code block.
2. Copy and paste it from the download bundle.
3. Right-click below the last line of code and navigate to Generate | Getters.

Then, highlight all the members and click on OK. This generates getter
methods with names such as getmName that you will need to tidy up the
names to match the more friendly method names that we will be using, such
as getName, as per the next code block.

Here is the code that needs to be added to the NameAndAddress class using the
method of your choice:

public String getName() {
 return mName;
}

public String getAddress1() {
 return mAddress1;
}

public String getAddress2() {

Chapter 19

[437]

 return mAddress2;
}

public String getZipCode() {
 return mZipCode;
}

Next, we can implement the logic of our model layer, and, of course, we will do so
with a singleton class. Right-click on the folder with our MainActivity.java file
in it. Now, navigate to New | Java class. Type AddressBook in the Name field and
click on the Kind drop-down menu and choose Singleton. Android Studio will give
us a template for our singleton class called AddressBook. Here is the generated code:

public class AddressBook {
 private static AddressBook ourInstance = new AddressBook();

 public static AddressBook getInstance() {
 return ourInstance;
 }

 private AddressBook() {
 }
}

Now, we can add our code to make it our own. We will require an ArrayList
member that will hold all the instances of our NameAndAddress class. We will call
this mNamesAndAddresses and initialize it in the private constructor. We also need
a public getter method so that it returns a reference to ArrayList. We will call this
method getBook. Here is the next phase of the AddressBook class in which the new
code that we just discussed is highlighted:

public class AddressBook {
 private static AddressBook ourInstance = new AddressBook();

 private ArrayList <NameAndAddress> mNamesAndAddresses;

 public static AddressBook getInstance() {
 return ourInstance;
 }

 private AddressBook() {
 mNamesAndAddresses = new ArrayList<NameAndAddress>();
 }

Using Multiple Fragments

[438]

 public ArrayList <NameAndAddress> getBook(){

 return mNamesAndAddresses;
 }
}

As this will not be a fully functioning app, we need to cheat a bit by creating some
dummy data for us to play around with. We know that the constructor will only be
called once, so let's add a few names and addresses by adding the highlighted code
into the constructor after we initialize ArrayList, as shown in the next code snippet:

private AddressBook() {
 mNamesAndAddresses = new ArrayList<NameAndAddress>();

 // Some hardcoded dummy data

 // Create a new entry
 NameAndAddress tempEntry = new NameAndAddress("B Obama",
 "The White House",
 "Washington",
 "DC1");

 // Add it to the ArrayList
 mNamesAndAddresses.add(tempEntry);

 // Create a new entry
 tempEntry = new NameAndAddress("E Windsor",
 "Buckingham Palace",
 "London",
 "SW1A 1AA");

 // Add it to the ArrayList
 mNamesAndAddresses.add(tempEntry);

 // Create a new entry
 tempEntry = new NameAndAddress("V Putin",
 "The Kremlin",
 "Moscow",
 "MS1");

 // Add it to the ArrayList
 mNamesAndAddresses.add(tempEntry);
}

Chapter 19

[439]

With the model layer taken care of and our controller already determining which
layout should be used based upon the orientation of the device, we can now move on
to creating the Fragment that will handle the list of names.

Create a new Java class in the usual manner and call it AddressListFragment.
Amend the code so that it extends ListFragment. Make sure when you're given the
choice, import android.app.ListFragment.

Here is what the code in AdressListFragment should look like:

import android.app.ListFragment;

public class AddressListFragment extends ListFragment {
}

Now, add the ArrayList member that will be managed by ArrayAdapter, which
will be bound to ListFragment. Note that ArrayList will hold a copy of what is in
our model layer but does not replace it.

In addition, add the overridden onCreate method. In onCreate, we also create
and initialize an instance of AddressListAdapter, for which we will code the
class in a moment.

All the contents of the class so far are shown in the following code where the new
parts that we just discussed are highlighted:

public class AddressListFragment extends ListFragment {

 private ArrayList<NameAndAddress> mNamesAndAddresses;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mNamesAndAddresses = AddressBook.getInstance().getBook();
 AddressListAdapter adapter = new AddressListAdapter
 (mNamesAndAddresses);
 setListAdapter(adapter);

 }
}

Using Multiple Fragments

[440]

Now, we can add an inner class to AddressListFragment that extends
ArrayAdapter and will bind ListView to our data. Most of the code should look like
a simplified version of when we extended BaseAdapter. We use getView, inflate
list_item.xml, and add a name to it from the appropriate NameAndAddress object.

However, you might be curious as to why we don't need to bother with getCount,
getItem, or getItemID. This is because ArrayAdapter itself extends BaseAdapter
and handles these things for us.

Add this inner class to AddressListFragment:

private class AddressListAdapter extends ArrayAdapter<NameAndAddress>
{

 /*
 This simple constructor lets the ArrayAdapter
 super class
 know what data to use. Notice we didn't need to bind
 the data in onCreate.

 Neither do we need to override getCount,
 getItem or getItemId
 It is all handled by ArrayAdapter because it is a more
 specialized version of Base Adapter
 */
 public AddressListAdapter(ArrayList<NameAndAddress>
 namesAndAddresses) {
 super(getActivity(), R.layout.list_item, namesAndAddresses);
 }

 @Override
 public View getView(int whichItem, View view,
 ViewGroup viewGroup) {

 if (view == null) {

 LayoutInflater inflater = (LayoutInflater)
 getActivity().getLayoutInflater();
 view = inflater.inflate(R.layout.list_item, null);
 }

 // We also have this super-handy getItem method
 NameAndAddress tempNameAndAddress = getItem(whichItem);

Chapter 19

[441]

 TextView txtName = (TextView)
 view.findViewById(R.id.txtName);
 txtName.setText(tempNameAndAddress.getName());

 return view;
 }
}

Now, we need to create a layout for our list item called list_item.xml. Create a
new layout resource file called list_item in the layout folder in the usual way,
drag a single Plain TextView widget onto the layout, and give the id property the
value txtName.

While dealing with layouts, we need to modify our activity_main and activity_
main_land layout files. The former so that it contains a single Fragment and the
latter so that it contains two Fragments side by side. We will now set the IDs that
we will use to place the Fragments.

In activity_main.xml, delete the portrait TextView widget and add
FrameLayout from the Containers category of the palette. Set its id property to
listFragmentHolder. Here is the code that you should now have in activity_main.
xml. Check whether you have the same code as the following that we just discussed:

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity"
 android:id="@+id/layout">

<FrameLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:id="@+id/listFragmentHolder"></FrameLayout>
</RelativeLayout>

Using Multiple Fragments

[442]

Switch to the activity_main_land.xml file and delete the landscape
TextView widget.

Change the existing LinearLayout to set the orientation property to horizontal.
Drag two FrameLayouts to the layout and set both their width properties to unset
and both their layout_weight properties to .5. Set the id property of the left-hand
side FrameLayout to listFragmentHolder and the id property of the right-hand
side FrameLayout to detailFragmentHolder.

To be absolutely certain that you have the correct code for activity_main_land.
xml, you can compare it to this listing. Just copy and paste the code if necessary:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal" android:layout_width="match_parent"
 android:layout_height="match_parent">

<FrameLayout
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:id="@+id/listFragmentHolder"
 android:layout_weight=".5"></FrameLayout>

<FrameLayout
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:id="@+id/detailFragmentHolder"
 android:layout_weight=".5">

</FrameLayout>
</LinearLayout>

The activity_main_land layout should now look like as shown in the next
screenshot in the designer. Remember that you can switch between the landscape
and portrait view in the designer, but that whichever way you view the layout in the
designer, it will still work properly in the app. The designer is unaware of what our
Java code or aliases will do:

Chapter 19

[443]

We are making good progress. At this point, we can run the app, and our slightly
short and somewhat unlikely list of names from our address book will be displayed
in both the portrait and landscape orientation.

The landscape view might not be exactly what we expect because the list side
expands to fill the entire screen as the detail side is currently empty. But our two
different layouts both use the same AddressListFragment class, which doesn't need
a layout file itself because ListView is supplied with ListFragment.

Now, we need to handle what happens when a list item is clicked. We already know
how to handle list-item clicks, but we have a few small problems:

• If a list item is clicked on in the landscape view, we need to show the
appropriate details in the detail pane (on the right-hand side)

• If a list item is clicked on in the portrait view, we need a whole new Activity
to show the detail (albeit still in an instance from the same Fragment)

Whichever of the preceding is the case, the detail view is a different class. So, we
need to somehow communicate with that class. Before we look at the solution, which
we have already discussed in the Inter-Fragment communications – interfaces revisited
section earlier in this chapter, it is worth pointing out that we haven't created this
class yet.

Using Multiple Fragments

[444]

It is worth dealing with the communication issue first, however. We need an
efficient way for AddressListFragment to communicate with MainActivity so that
MainActivity can populate the detail pane (if in the landscape orientation) or start a
new Activity to show a detail pane (if in the portrait orientation).

We will first code a solution to the communication issue. Then, we will create
AddressDetailFragment that can be used in both our dual-Fragment landscape
layout as well as a new Activity that we will call PortraitDetailActivity, which
will be for the devices that are held in the portrait orientation.

Creating the communication interface
This code will be surprisingly straight forward and nearly identical to the one we
discussed in the Inter-Fragment communications – interfaces revisited section earlier
in this chapter. The only difference is that we will see exactly where and how to
implement the interface, and the onListItemClicked method will be fully coded to
see how it either starts a new Activity with the Fragment detail in it or repopulates/
renews the existing Fragment detail when it is in the landscape orientation.

I will show you the code and then we will discuss where and how to use the code
again to try and reinforce what we are doing:

public interface ActivityComs {

 void onListItemSelected(int pos);
}

We will create an interface (the one we just saw) with a single method. We will then
make MainActivity implement this interface, and it will then be forced to override
the onListItemSelected method.

The AddressListFragment class can then call the method when a list item is clicked
on and pass the appropriate NameAndAddress reference as well as its position in
ArrayList. We will see why both the pieces of data are used.

MainActivity can then handle either starting a new Activity (when in the portrait
orientation) or just passing the data onto DetailFragment directly (when in the
landscape orientation).

Right-click on the folder that contains all our .java files and navigate to New |
Class. Type ActivityComs in the Name field and select Interface from the drop-
down list named Kind. Then, click on OK and code the new interface exactly as
shown in the previous block of code.

Chapter 19

[445]

Next, we need to create an instance of this interface in the AddressListFragment
class as a member. Add this member just after the class declaration, as highlighted
in the next snippet:

public class AddressListFragment extends ListFragment {

 private ActivityComs mActivityComs;

 private ArrayList<NameAndAddress> mNamesAndAddresses;

Now, we need to initialize the member as a reference to MainActivity but cast to
the type ActivityComs, and we do this in the overridden onAttach method. Then,
we need to use it in the onListItemClick method, and finally, we need to delete the
reference by setting it to null in the onDetach method. Add these three methods to
the AddressListFragment class, as shown in the next code snippet:

@Override
public void onAttach(Activity activity) {
 super.onAttach(activity);

 /*
 activity is a ActivityComs but must
 still be explicitly cast to the type
 */
 mActivityComs = (ActivityComs)activity;
}

@Override
public void onDetach() {
 super.onDetach();
 mActivityComs = null;
}

public void onListItemClick(ListView l,
 View v, int position, long id) {
 // pass the position to MainActivity

 mActivityComs.onListItemSelected(position);
}

Now, change the class declaration in MainActivity.java to implement our
new interface:

public class MainActivity extends ActionBarActivity implements
 ActivityComs{

Using Multiple Fragments

[446]

Now, we need to implement the onListItemClicked method within the
MainActivity class. We will do this in one go so that we don't need to keep coming
back to this method. Study this code carefully as we will go through it in a minute.
Add the onListItemClicked method to MainActivity:

public void onListItemSelected(int position) {

// Is there a layout with an id that matches the detail container?
if (findViewById(R.id.detailFragmentHolder) == null) {
 // If not we need to start a new activity

 Intent i = new Intent(this, PortraitDetailActivity.class);

 // We can't pass an object in an intent.
 // Neither do we want to.
 // So we pass its position in the array list
 i.putExtra("Position", position);
 startActivity (i);

} else {
 // Fragment already exists

 FragmentManager fManager= getFragmentManager();
 FragmentTransaction fTransaction= fManager.beginTransaction();

 Fragment fragOld =
 fManager.findFragmentById(R.id.detailFragmentContainer);
 Fragment fragNew =
 AddressDetailFragment.newInstance(position);

 if (fragOld != null) {
 fTransaction.remove(fragOld);
 }

 fTransaction.add(R.id.detailFragmentContainer, fragNew);
 fTransaction.commit();
 }
}

We will now examine this code in three parts.

Chapter 19

[447]

Explaining the structure of the
onListItemSelected method
In the previous code, we first check whether there is an appropriate Fragment
holder for the Fragment details. If there isn't, it implies that we are in the portrait
orientation, and if there is, we are in the landscape. Here is the structure of the
preceding if-else block with the functional code stripped out for now:

// Is there a layout with an id that matches the detail container?
if (findViewById(R.id.detailFragmentHolder) == null) {
 // If not we need to start a new activity

...

} else {
 // Fragment already exists

 ...
}

If findViewById(R.id.detailFragmentHolder) equates to null, then
detailFragmentHolder cannot exist and the appropriate part of if-else is accessed.

Let's look at the code in each part now.

Explaining the code that starts a new Activity
Now, we can explain the following code that handles the situation when we need a
new Activity to host the detail Fragment. We simply create a new Intent, load the
position of NameAndAddress in ArrayList, and then start the Activity. Remember
that all the data is held in our singleton, and we don't need to worry about passing
the actual details, just the position:

 Intent i = new Intent(this, PortraitDetailActivity.class);

 // We can't pass an object in an intent
 // So we pass its position in the array list
 i.putExtra("Position", position);
 startActivity (i);

We will see exactly what happens when PortraitDetailActivity is started when
we implement it. Now, we will see how the existing Fragment is updated.

Using Multiple Fragments

[448]

Explaining the code when the detail Fragment
is already present
Now, you can learn about the code that handles the situation when the detail
Fragment already exists. Here is the code in question again, piece by piece.

First, we get a reference to FragmentManager and then begin a transaction:

FragmentManager fManager= getFragmentManager();
FragmentTransaction fTransaction= fManager.beginTransaction();

Second, we get a reference to the existing Fragment and create a new one. Note that
we pass in the position of NameAndAddress so that it is displayed in the constructor:

Fragment fragOld =
 fManager.findFragmentById(R.id.detailFragmentContainer);
Fragment fragNew = AddressDetailFragment.newInstance(position);

Now, we check whether the old Fragment actually exists, and if it does, we
remove/destroy it:

if (fragOld != null) {
 fTransaction.remove(fragOld);
}

Finally, we add the new Fragment in the usual manner:

fTransaction.add(R.id.detailFragmentContainer, fragNew);
fTransaction.commit();

We are close to running this project now.

What do we need to do?
Now, to make the previous code work, we need to do the following:

1. Create a new class called AddressDetailFragment that takes int in its
constructor.

2. Create a suitable layout for AddressDetailFragment.
3. Create a new Activity class called PortraitDetailActivity to host

AddressDetailFragment when the device is in the portrait orientation.
4. Create a simple layout for PortraitDetailActivity that has a single

FrameLayout in it with an id property of detailFragmentHolder.

The next three sections will deal with these points.

Chapter 19

[449]

Creating the AddressDetailFragment class
and layout
Create a new class and call it AddressDetailFragment. Amend the class declaration
and add two new members that can hold the entire collection of NameAndAdress
objects as well as a single object for whatever the current one is. Add code so that the
new class looks like this:

public class AddressDetailFragment extends Fragment {

 private ArrayList<NameAndAddress> mNamesAndAddresses;

 private NameAndAddress mCurrentNameAndAddress;

}

Now, add the onCreate method that gets an AddressBook instance from our
singleton. Then, we chain getArguments and getInt to get the position of the
NameAndAdress object that we want.

Now, override onCreate with this code:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mNamesAndAddresses = AddressBook.getInstance().getBook();

 // Get the position from the Bundle
 // using the constant string
 int position = (int)getArguments().getInt("Position");

 // Initialize with the current name and address
 mCurrentNameAndAddress = mNamesAndAddresses.get(position);

 }

Before we move on, you may probably be wondering where getArguments().
getInt magically acquired the position of the NameAndAddress object that we need?
The answer is that it is placed there in the newInstance method. Here is how we add
values into the Bundle.

Using Multiple Fragments

[450]

Now, add the newInstance method, as shown in the following code snippet:

 public static AddressDetailFragment newInstance(int position) {
 Bundle args = new Bundle();
 args.putInt("Position", position);

 AddressDetailFragment frag = new AddressDetailFragment();
 frag.setArguments(args);

 return frag;
 }

Next, we override the onCreateView method to inflate and initialize our simple UI
that consists of four TextView widgets that have their text properties initialized with
the appropriate values from the current NameAndAddress object:

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup
 container, Bundle savedInstanceState) {

 View view = inflater.inflate(R.layout.detail_fragment,
 container, false);

 TextView txtName = (TextView)
 view.findViewById(R.id.txtName);
 TextView txtAddress1 = (TextView)
 view.findViewById(R.id.txtAddress1);
 TextView txtAddress2 = (TextView)
 view.findViewById(R.id.txtAddress2);
 TextView txtZip = (TextView) view.findViewById(R.id.txtZip);

 txtName.setText(mCurrentNameAndAddress.getName());
 txtAddress1.setText(mCurrentNameAndAddress.getAddress1());
 txtAddress2.setText(mCurrentNameAndAddress.getAddress2());
 txtZip.setText(mCurrentNameAndAddress.getZipCode());

 return view;
 }

Now, we need to actually make that layout for AddressDetailFragment. Create a
new layout called detail_fragment in the usual way.

Drag four TextView widgets with the following id properties: from top to bottom,
the id properties are, txtName, txtAddress1, txtAddress2, and txtZip.

Chapter 19

[451]

The finished result will look like as shown in this screenshot:

To make the preceding layout absolutely clear, here is the XML layout code. If
you are uncertain in any way, copy and paste this code into the detail_fragment
layout file:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity"
 android:id="@+id/layout">

<TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"

Using Multiple Fragments

[452]

 android:text="Large Text"
 android:id="@+id/txtName"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Large Text"
 android:id="@+id/txtAddress1"
 android:layout_below="@+id/txtName"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Large Text"
 android:id="@+id/txtAddress2"
 android:layout_below="@+id/txtAddress1"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Large Text"
 android:id="@+id/txtZip"
 android:layout_below="@+id/txtAddress2"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />
</RelativeLayout>

All we need to do now is add a hosting Activity for when the detail Fragment is
viewed in the portrait orientation.

Chapter 19

[453]

Coding PortraitDetailActivity and the layout
First, we need a very simple layout. To get a simple layout, follow the given steps:

1. Create a layout called activity_portrait_layout.
2. Add a single FrameLayout.
3. Set its id property to detailFragmentHolder.

Now, we can create a new Activity called PortraitDetailActivity. Do so
by right-clicking on the folder that contains all the Java files. Navigate to New
| Activity | Blank Activity. This is almost the same as creating a new class and
then adding the extends... code to turn it into an Activity. The difference of
doing things this way is that Android Studio will also add the new Activity to the
AndroidManifest.xml file for us, which saves us a few minute's work.

In the PortraitDetailActivity onCreate method, which is the only method in
this class that we need to concern ourselves with, we do the following:

1. First, we get a reference to FragmentManager and begin a transaction.
2. Second, we get a reference to the existing Fragment and create a new

reference. Now, we check whether the old Fragment actually exists, and if it
does, we remove/destroy it.

3. Then, we extract the single int variable that was passed in by MainActivity.
Finally, we add the new Fragment in the usual manner, passing in the
position of the NameAndAdress object that is to be shown.

4. Add the overridden onCreate method shown next that we just discussed:
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_portrait_detail);

 // Get a fragment manager
 FragmentManager fManager = getFragmentManager();

 // Create a new fragment using the manager
 // Passing in the id of the layout to hold it
 Fragment frag =
 fManager.findFragmentById(R.id.detailFragmentHolder);

 // Pass the Bundle onto the fragment
 int position = 0;
 Bundle extras = getIntent().getExtras();
 if (extras != null) {

Using Multiple Fragments

[454]

 position = extras.getInt("Position");
 }

 // Check the fragment has not already been initialized
 if(frag == null){

 frag = AddressDetailFragment.newInstance(position);

 fManager.beginTransaction()
 .add(R.id.detailFragmentHolder, frag)
 .commit();
 }
}

We can now run our app in the portrait orientation and see the list:

Tap on an item to see the details open up in a new Activity:

Chapter 19

[455]

Tap the back button, rotate the device to landscape, and tap on V Putin to see our
two Fragments displayed side by side:

Let's think about when we should use Fragments and when we shouldn't by looking
at some frequently asked questions.

FAQ
1. When should I use Fragments?

Hopefully, you have learned enough in this chapter to realize that using
Fragments further enhances reusability and encapsulation of our code, and
whenever we implement anything more than just a single, simple UI, it is
well worth the overhead to use Fragments.

Using Multiple Fragments

[456]

2. Any other times I should use Fragments?
Further consider that even the most simple of apps can evolve. If your simple
single-screen app for phones only, suddenly needs to be ported for tablets,
you will need to refactor everything to use Fragments. This is always harder
than using Fragments from the start.

3. So are you saying that I should always use Fragments?
Probably, yes! Unless you have an extremely compelling case not too.
However, in this book, to learn new ideas, such as capturing an image on an
Android device or displaying the users' location in Google maps, we will do
so without Fragments getting in the way of the new code.

Summary
Potentially, this was one of the most complicated apps we have built. If it is at all
unclear exactly what happened, the way to overcome this is to break it into
pieces (or fragments).

Each Fragment has a class and a layout. The Fragment with the list communicates
with the Activity via the interface, and the Activity either loads a new (detail)
Fragment into itself (when in landscape) or starts a new Activity that loads the
same (detail) Fragment when in the portrait orientation. All the data is tucked away
in our singleton and can be basically forgotten about because it can only ever be
instantiated once, and it is guaranteed that any class changing or reading the data
will do so from the same instance.

Certainly, there may be some aspects of the code or principles from this chapter
that may be still unclear to you but with repeated use, you can make them like
second nature.

In the next chapter, we are not going to increase the complexity any further. So if all
these Fragments and interfaces are not totally clear, it doesn't matter. We will revisit
these concepts one at a time over the course of the rest of the book at the same time
as we investigate more about the Android API.

If you have ever wanted to make one of those cool swiping UIs like the Angry Birds
level-selection menu where you can swipe from screen to screen, then the next
chapter is for you. And as you might expect, we will get a bit more familiar with
Fragments while we are at it.

[457]

Paging and Swiping
Paging is the act of moving from page to page, and on Android, we do this by
swiping a finger across the screen. The current page transitions in a direction and
speed to match the finger movement. It is a useful and practical way to navigate
around an app, but perhaps even more than this, it is an extremely satisfying visual
effect for the user. Also, as with ListView, we can selectively load just the data required
for the current page, and perhaps the data for the previous and next pages.

In the next screenshot, you can see the calendar app on the Nexus 5 emulator paging
between months. Be sure to launch an emulator and give it a try if you are unsure
how paging and swiping works:

Paging and Swiping

[458]

In the next figure, we can see the famous Angry Birds level-selection menu showing
swiping/paging in action:

The Android API, as you would have come to expect by now, has some solutions
through which you can achieve paging in a quite simple manner.

In this chapter, you will learn to:

• Achieve paging and swiping with images like you might do in a photo
gallery app.

• Implement paging and swiping with Fragments, which will give our app the
potential to offer our users the ability to swipe their way through a selection
of user interfaces. This will give our apps enormous potential.

We will not be adding paging/swiping to the Where it's snap app, but let's build two
paging mini apps: one with images and one with Fragments.

Chapter 20

[459]

Building an image gallery/slider app
The first thing we should do is add the six images that we will have in our gallery
to the drawable folder. But we want to do things a bit differently here. You can
find these images in the Chapter 20/Image Slider/drawable-xhdpi folder of the
download bundle. The following is a representation of these images:

Create a new folder called drawable-xhdpi in the res folder by right-clicking on the
res folder and navigating to New | Android resource directory. Name the directory
drawable-xhdpi and click on OK.

Add the images to the folder that you just created or, of course, you could add more
interesting images, perhaps some photos you have taken.

The reason we do things this way is because of the way a few modern Android
devices handle images. We already know that in an ideal situation, we should
provide images for the whole range of different screen densities and place them in
their appropriate folders. To do so for this demonstration would be overkill; in fact,
depending upon the exact project, it is sometimes overkill in a real app as well.

It is because the manufacturers of some modern phones want their devices to look
great, they make them automatically scale-up in size any images it thinks might not
already be high quality. The effect of this is that any images we place in the regular
drawable folder are likely to be supersized by these devices with high-density screens.

This often has the effect of causing the devices to run out of memory and crash. By
placing the images in the drawable-xhdpi folder, we avoid this problem because the
device assumes that the image doesn't need to be scaled up. Also, devices with lower
density screens will happily use the images from the drawable-xhdpi folder as well.

Paging and Swiping

[460]

Implementing the layout
For a simple image-paging app, we use the PagerAdapter class. We can think of this to
be like BaseApater, as it will handle the display of an array of images in a ViewPager
widget. This is much like how BaseAdapter handles the display of the contents of
ArrayList in ListView. All we need to do is override the appropriate methods.

To implement an image gallery with PagerAdapter, we first need ViewPager in our
main layout. So you can see precisely what is required here is the actual XML code
for layout_main.xml. Edit layout_main.xml so that it looks exactly like this:

<RelativeLayout
 xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >

 <android.support.v4.view.ViewPager
 android:id="@+id/pager"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</RelativeLayout>

The slightly unusually named class android.support.v4. view.ViewPager is the
class that makes this functionality available in Android versions that were released
before ViewPager.

The same manner in which we needed a layout to represent a list item, we need a
layout to represent an item; in this case, an image in our pager. Create a new layout
file in the usual way and call it pager_item.xml. It will have a single ImageView
widget with an ID of ImageView.

Use the visual designer to achieve this or copy the following XML into
pager_item.xml:

<RelativeLayout
 xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center"
 android:padding="10dp" >

 <ImageView

Chapter 20

[461]

 android:id="@+id/imageView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

</RelativeLayout>

Now, we can make a start with our PagerAdapter class.

Coding the PagerAdapter class
Next, we need to extend PagerAdapter so that it handles images. Create a new class
called ImagePagerAdapter and make it extend PagerAdapter.

Add the following imports to the top of the ImagePagerAdapter class. We normally
rely on using the shortcut Alt + Enter to add imports. We are doing things slightly
differently this time because there are a few very similarly named classes that will
not suit our objectives.

Add the following imports to the ImagePagerAdapter class:

import android.content.Context;
import android.support.v4.view.PagerAdapter;
import android.support.v4.view.ViewPager;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import android.widget.RelativeLayout;

Here is the class declaration with the extends... code added as well as a couple
of member variables. These variables are the Context object that we will put to
use shortly and an int array called images. The reason for having an int array for
images is because we will store int identifiers for images. We see how this works in
a few code blocks time. The last member variable is LayoutInflater, which as you
can probably guess will be used to inflate each of the instances of pager_item.xml.

Extend PagerAdapter and add the member variables we just discussed:

public class ImagePagerAdapter extends PagerAdapter {

 Context context;

 int[] images;
 LayoutInflater inflater;

}

Paging and Swiping

[462]

Now, we need a constructor that sets up ImagerPagerAdapter by receiving Context
from MainActivity as well as the int array for the images and to initialize the
member variables with them.

Add the highlighted constructor method to the ImagePagerAdapter class:

public class ImagePagerAdapter extends PagerAdapter {

 Context context;

 int[] images;
 LayoutInflater inflater;

 public ImagePagerAdapter(Context context, int[] images) {
 this.context = context;
 this.images = images;
 }

}

Now, we must override the required methods of PagerAdapter. Immediately after
the previous code, add the overridden getCount method, which simply returns the
number of image IDs in the array. This method is used internally by the class:

@Override
public int getCount() {

 return images.length;
}

Now, we must override the isViewFromObject method that just returns boolean that
is dependent upon whether the current View is the same or associated with the current
Object that is passed in as a parameter. Again, this is a method that is used internally
by the class. Immediately after the previous code, add this overridden method:

@Override
public boolean isViewFromObject(View view, Object object) {
 return view == object;
}

Now, we must override the instantiateItem method, and this is where we get
most of the work that concerns us done. First, we declare a new ImageView object
and then we initialize our LayoutInflater member. Next, we use LayoutInflater
to declare and initialize a new View from our pager_item.xml layout file.

Chapter 20

[463]

After this, we get a reference to ImageView inside the pager_item.xml layout. We
can now add the appropriate image as the content of ImageView is based on the
position parameter of the instantiateItem method and the appropriate ID from
the images array.

Finally, we add the layout to PagerAdapter with addView and return from
the method.

Now, we will add the method we just discussed here:

@Override
public Object instantiateItem(ViewGroup container, int position) {

 ImageView image;

 inflater = (LayoutInflater)
 context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 View itemView = inflater.inflate(R.layout.pager_item,
 container,false);

 // get reference to imageView in pager_item layout
 image = (ImageView) itemView.findViewById(R.id.imageView);

 // Set an image to the ImageView
 image.setImageResource(images[position]);

 // Add pager_item layout as the current page to the ViewPager
 ((ViewPager) container).addView(itemView);

 return itemView;
}

The last method we must override is destroyItem, which the class can call when it
needs to remove an appropriate item based on the value of the position parameter.

Add the destroyItem method after the previous code and before the closing curly
brace of the ImagePagerAdapter class:

@Override
public void destroyItem(ViewGroup container, int position,
 Object object) {
 // Remove pager_item layout from ViewPager
 ((ViewPager) container).removeView((RelativeLayout) object);

}

Paging and Swiping

[464]

As we saw when coding ImagePagerAdapter, there is very little to it. Just a case of
properly implementing the instantiateItem method and putting straightforward
overridden methods that the PagerAdapter class uses to help make things work
smoothly behind the scenes.

Coding the MainActivity class
Finally, we can code our MainActivity class. As with the ImagePagerAdapter class,
for clarity, add the following import statements manually to the MainActivity.java
class before the class declaration, as shown in the next code snippet:

import android.support.v4.view.PagerAdapter;
import android.support.v4.view.ViewPager;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;

Now, we need a few member variables. Unsurprisingly, we need ViewPager,
which will be used to get a reference to ViewPager in our layout, as well as a
ImagePagerAdapter reference for the class that we have just coded. We also need an
int array to hold an array of image IDs:

public class MainActivity extends AppCompatActivity {

 ViewPager viewPager;
 PagerAdapter adapter;

 int[] images;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...

All the rest of the code goes in onCreate. We initialize our int array with each of the
images that we added to the drawable-xhdpi folder.

We initialize ViewPager in the usual way with the findViewByID method. We also
initialize ImagePagerAdapter by passing in a reference to MainActivity and the
images array, as required by the constructor that we coded previously. Finally, we
bind the adapter to the pager with setAdapter.

Chapter 20

[465]

Add the highlighted code in the onCreate method:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 // reference the images and put them in our array
 images = new int[] { R.drawable.image1,
 R.drawable.image2,
 R.drawable.image3,
 R.drawable.image4,
 R.drawable.image5,
 R.drawable.image6 };

 // get a reference to the ViewPager in the layout
 viewPager = (ViewPager) findViewById(R.id.pager);

 // Initialize our PagerAdapter
 adapter = new ImagePagerAdapter(MainActivity.this, images);

 // Bind the PagerAdapter to the ViewPager
 viewPager.setAdapter(adapter);

}

Now, we are ready to run the app.

Running the gallery app
Run the app in the usual way on either the emulator or a real device. Using a real
device instead of the emulator will be more satisfying because you will be able to use
a real swiping motion with your finger instead of a simulated swipe(drag) with the
mouse. In this screenshot, we can see the first image from our int array:

Paging and Swiping

[466]

Swipe a little to the right-hand side and left-hand side to see the smooth pleasing
manner in which the images transition:

Now, we will build an app with almost identical functionality except that each page
in the pager will be a Fragment, which could have any or all of the functionality that
a regular Fragment can have because they are regular Fragments.

Building a Fragment pager/slider app
We can put complete Fragments as pages in PagerAdapter. This is quite powerful
because as we know, a Fragment can have a lot of functionality, even a full-fledged UI.

To keep the code short and straightforward, we will add a single TextView to each
Fragment layout, just to demonstrate that the pager is working. When we see how
easy it is to get a reference to TextView, however, it should be clear as to how we could
easily add any layout that we have learned about so far and then let the user interact
with it.

The first thing we will do is build the content for the slider. In this case, of course, the
content is Fragment. We will build one simple class called SimpleFragment and one
really simple layout called fragment_layout.

This implies that each slide will be identical in appearance, but we will use the
Fragment ID passed in by FragmentManager at the instantiation as the text for the
one and only TextView. This way, when we flip/swipe through Fragments, it will be
clear that each Fragment is a new distinct instance.

Chapter 20

[467]

When we see the code that loads Fragments from a list, it will be simple to design
completely different Fragment classes, as we have done before, and use these
different classes for some or all the slides. Each of these classes could, of course, also
use a different layout as well.

Coding the SimpleFragment class
As with the Image Slider app, it is not straightforward exactly which classes need
to be autoimported by Android Studio. We use the classes that we do because they
are all compatible with each other and it is possible that if you let Android Studio
suggest which classes to import, Android Studio will get it 'wrong'. The project files
are in the Chapter 20/Fragment Pager folder.

Create a new project called Fragment Slider and leave all the settings at the
default values.

Now, create a new class called SimpleFragment, make it extend Fragment, and add
the import statements and one member variable, as shown in the following snippet:

import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.TextView;

public class SimpleFragment extends Fragment {

 // Holds the fragment id passed in when created
 public static final String MESSAGE = "";

}

We have to add two methods. The first of which is newInstance, which we will call
from MainActivity to set up and return a reference to Fragment. The next code does
what we have seen before. It creates a new instance of the class, but it also puts a
String into the Bundle object that will eventually be read from the onCreate method.
The String that is added to Bundle is that which is passed in the one-and-only
parameter of this newInstance method.

Add the newInstance method to the SimpleFragment class:

// Our newInstance method which we call to make a new Fragment
public static SimpleFragment newInstance(String message)
{

Paging and Swiping

[468]

 // Create the fragment
 SimpleFragment fragment = new SimpleFragment();

 // Create a bundle for our message/id
 Bundle bundle = new Bundle(1);
 // Load up the Bundle
 bundle.putString(MESSAGE, message);
 // Call setArguments ready for when onCreate is called
 fragment.setArguments(bundle);
 return fragment;
}

In the final method for our SimpleFragment class, we need to override
onCreateView, where, as usual, we will get a reference to the layout that was passed
in, and load up fragment_layout as the layout.

Then, the first line of code unpacks the String from Bundle using getArguments.
getString and the MESSAGE identifier of the key-value pair.

Add the onCreateView method that we just discussed:

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 // Get the id from the Bundle
 String message = getArguments().getString(MESSAGE);

 // Inflate the view as normal
 View view = inflater.inflate(R.layout.fragment_layout,
 container, false);

 // Get a reference to textView
 TextView messageTextView = (TextView)view.findViewById(R.id.textView);

 // Display the id in the TextView
 messageTextView.setText(message);

 // We could also handle any UI
 // of any complexity in the usual way
 // ..
 // ..

 return view;
}

Chapter 20

[469]

Let's also make a super simple layout for Fragment, which will, of course, contain
TextView that we have just been using.

fragment_layout
fragment_layout is the simplest layout we have ever made. Right-click on the
layout folder and navigate to New | Resource layout file. Name the file fragment_
layout and click on OK. Now, add a single TextView and set its id property to
textView.

We can now code the MainActivity class that handles FragmentPager and brings
our SimpleFragment instances to life.

Coding the MainActivity class
This class consists of two main parts. First, the changes we will make to the
overridden onCreate method, and second, the implementation of our inner class and
its overridden methods of FragmentPagerAdapter.

To code this class, we first add the following imports and a single member variable
that will be the instance of our implementation of FragmentPagerAdapter and
SimpleFragmentPagerAdapter:

import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentPagerAdapter;
import android.support.v4.view.ViewPager;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import java.util.ArrayList;
import java.util.List;

public class MainActivity extends AppCompatActivity {

 SimpleFragmentPagerAdapter pageAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

}

Paging and Swiping

[470]

Next, in the onCreate method, we create a List for Fragments and then create and
add three instances of SimpleFragment, passing in a numerical identifier that is to be
packed away in Bundle.

Then, we initialize SimpleFragmentPagerAdapter (that we will code soon), passing
in our list of Fragments.

We get a reference to ViewPager with findViewByID and bind our adapter to it with
setAdapter.

Now, add the highlighted code to the onCreate method of MainActivity:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Initialize a list of three fragments
 List<Fragment> fragmentList = new ArrayList<Fragment>();

 // Add three new Fragments to the list
 fragmentList.add(SimpleFragment.newInstance("1"));
 fragmentList.add(SimpleFragment.newInstance("2"));
 fragmentList.add(SimpleFragment.newInstance("3"));

 pageAdapter = new SimpleFragmentPagerAdapter
 (getSupportFragmentManager(), fragmentList);

 ViewPager pager = (ViewPager)findViewById(R.id.pager);
 pager.setAdapter(pageAdapter);

}

Now, we will add our inner class, SimpleFragmentPagerAdapter. All we do is add
List for Fragments as a member variable and a constructor that initializes it with the
passed-in List.

Then, we override the getItem and getCount methods, which are used internally
in the same way as we used them in the last project, except this time, we use the
methods of List instead of the size of the array.

Add the following inner class that we just discussed to the MainActivity class:

private class SimpleFragmentPagerAdapter extends
 FragmentPagerAdapter {
 // A List to hold our fragments
 private List<Fragment> fragments;

Chapter 20

[471]

 // A constructor to receive a fragment manager and a List
 public SimpleFragmentPagerAdapter(FragmentManager fm,
 List<Fragment> fragments) {
 // Call the super class' version
 // of this constructor
 super(fm);
 this.fragments = fragments;
 }

 // Just two methods to override
 // to get the current position of
 // the adapter and the size of the List

 @Override
 public Fragment getItem(int position) {
 return this.fragments.get(position);
 }

 @Override
 public int getCount() {
 return this.fragments.size();
 }
}

The last thing we need to do is add the layout for MainActivity.

The activity_main layout
Implement the activity_main layout by copying the following code. It
contains a single widget, ViewPager, and it is important that it is from the
android.support.v4.view hierarchy so that it is compatible with the other
classes that we use in this project.

Amend the code in the layout_main.xml file that we just discussed:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
 android"
 xmlns:tools="http://schemas.android.com/tools" android:layout_
 width="match_parent"
 android:layout_height="match_parent" android:paddingLeft="@dimen/
 activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity">

 <android.support.v4.view.ViewPager

Paging and Swiping

[472]

 android:id="@+id/pager"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</RelativeLayout>

Let's see our Fragment slider in action now.

Running the Fragment slider app
Run the app and you can swipe your way, to the left or the right, through the
Fragments in the slider. The next image shows the visual effect produced by
FragmentPagerAdapter when the user tries to swipe beyond the final Fragment
in List:

Summary
In this chapter, we saw that we can use pagers for simple image galleries or to swipe
through complex pages of an entire UI; however, we demonstrated this with a very
simple TextView.

In the next chapter, we will look at another really cool UI element that is
used in many of the latest Android apps, probably because it looks great and
is a real pleasure, as well as extremely practical to use. Let's take a look at
NavigationDrawer.

[473]

Navigation Drawer and
Where It's Snap

In this chapter, we will start the Where it's snap project, and we will talk more
about the features that it will have later. The project will be discussed right up
until Chapter 27, Going Local – Hola! where it is completed, but we won't only be
working on this app.

Where it's snap will feature a navigation drawer as a means of allowing the users
to access the features and screens of the app, and this will be the main focus of
this chapter.

In this chapter, we will:

• Introduce the navigation drawer
• Look at the features of the Where it's snap project
• Get started on the Where it's snap project, including implementing its

navigation drawer

Let's take a look at this extremely cool UI pattern.

Navigation Drawer and Where It's Snap

[474]

Introducing the navigation drawer
What's so great about navigation drawer. Well, the first thing that might catch your
eye is that it can be made to look extremely stylish. Take a look at this next figure ,
which shows off a navigation drawer in action in the Google Play app:

To be honest, right from the start, our navigation drawer is not going to be as fancy
as the one in the Google Play app. However, the same functionality will be present in
our app.

What else is neat about the navigation drawer is the way that it slides to hide/reveal
itself when required. It is because of this behavior that it can be of a significant size,
making it extremely flexible with regard to the options that can be put on it. When
the user is finished with it, it completely disappears like a drawer.

I suggest that you open up the Google Play app now and see how it works, if you
haven't already.

You can slide your thumb/finger from the left-hand side edge of the screen and
the drawer will slowly slide out. You can, of course, slide it away again in the
opposite direction.

Chapter 21

[475]

While the navigation drawer is open, the rest of the screen is slightly dimmed, as
seen the previous figure, helping the users to focus on the navigation options offered.

You can also tap anywhere off of the navigation drawer while it is open, and it will
slide itself away, leaving the entire screen clear for the rest of the app.

The drawer is also opened by tapping on the menu icon in the top-left corner, as
highlighted in the next screenshot:

We can also tweak and refine the behavior of the navigation drawer, as we will see
toward the end of the chapter, by overriding a few more lifecycle methods that are
called at just the right time.

Here, we will see the onPostCreate and onConfigurationChanged methods. Let's
see what we will do with our Where it's snap app, and then, we can get on with
implementing a navigation drawer.

The Where it's snap app
Where it's snap will be our most-advanced app! It will have the following features:

• It will show a list of photos by their titles.
• It will offer the alternative of a list of tags, which when clicked takes you to a

list of titles with that matching tag.
• It will allow the user to take photos with the device camera and assign a title

as well as related tags.
• All of the data required (titles and tags) will be stored in a database. You will

learn about databases in Chapter 23, Using SQLite Databases in Our Apps, and
we will add a database functionality to Where it's snap in Chapter 24, Adding
a Database to Where It's Snap.

Navigation Drawer and Where It's Snap

[476]

• When the user taps on a photo's title in a list, he/she will see that photo and
also be offered the option of showing a Google map of the location the photo
was taken at.

• We will also see how to make this app multilingual (Spanish and English).
Hola!

As with the Note To Self app, we will do things as correctly as possible and use
string resources and Android naming conventions in our code.

We will build this app over the course of the next six chapters. As we explore and
practice new features of the Android API, we will then utilize them by improving or
adding features to Where it's snap.

The first thing we will do is prepare the project's resources and implement a
navigation drawer. This will be the fundamental part of the UI for this project.

The project files that represent a runnable version of this app, as it is at the end of
this chapter, can be found in the download bundle in the Chapter 21/Where its
snap 1 folder.

Create a new project called Where Its Snap and accept all the default settings
as usual.

To handle Marshmallow runtime permissions, as discussed in Chapter 11, Widget
Mania in the Android permissions and marshmallows, we need to set the target
API to 22.

To do this, select Android from the drop-down list at the top of the project explorer.
Now, double-click on the build.gradle (module: app) option that is near the bottom
of the project explorer window.

Change the highlighted line of code to make sure that targetSdkVersion is set
to 22, as shown in the following code snippet:

defaultConfig {
 applicationId "com.gamecodeschool.whereitssnap"
 minSdkVersion 15
 targetSdkVersion 22
 versionCode 1
 versionName "1.0"
}

Now, we can add the resources that we will need in the next six chapters.

Chapter 21

[477]

Preparing the resources
In this section, we will prepare the String resources. For this, open up the strings.
xml file from the res folder. We will not need to come back to this file for the entire
project. Some of the resources might look a little odd and indeed may not be used right
away, but if you look back at the features of the project, it will be quite easy to guess
where these String resources will eventually be used. We will, however, create another
strings.xml file in Chapter 27, Going Local – Hola! when we make our app multilingual.

As well as some regular String resources, there is a string-array element with the
name property set to nav_drawer_items. We will shortly see how in our Java code
we can use this just like a regular Java array, like the ones we discussed in Chapter 13,
Handling and Displaying Arrays of Data.

Modify the contents of the strings.xml file so that they are the same as the
next code:

<resources>
 <string name="app_name">Where It's Snap!</string>

 <string name="action_settings">Settings</string>
 <string name="drawer_open">Open navigation drawer</string>
 <string name="drawer_close">Close navigation drawer</string>

 <string name="enter_photo_title">Enter photo title</string>

 <string name="tag1">Tag 1</string>
 <string name="tag2">Tag 2</string>
 <string name="tag3">Tag 3</string>

 <string name="capture">Capture</string>
 <string name="save">Save</string>

 <string name="tags">Tags</string>
 <string name="titles">Titles</string>
 <string name="show_map">Show Map</string>

 <!-- These are the items in our Navigation drawer -->
 <string-array name="nav_drawer_items">
 <item >Titles</item>
 <item >Tags</item>
 <item >Capture</item>
 </string-array>

</resources>

Navigation Drawer and Where It's Snap

[478]

We are now nearly ready to implement our navigation drawer. Before we do, let's
add some empty placeholder Fragments that we can use for each of the options of
the drawer.

Placeholder code for three Fragments
As we know from our plan, there are four Fragments: image capture, title list, tag
list, and showing a picture.

The first three are directly accessible from the main navigation drawer UI. For these
three Fragments, we will quickly create placeholder classes and layouts so that we
can get MainActivity wired up. Then, over the coming chapters, we will add the
real functionality and layouts.

Two of these three Fragments (titles view and tags view) will be a list of clickable
options, and so, using ListFragment seems like a good choice. The third (the image
capture view) will be much more like a regular layout; so, Fragment is the best choice.

Let's go ahead and quickly create these classes.

Create a new class and call it TitlesFragment. Amend the code so that it looks
exactly like the next code, where we extend ListFragment and implement a basic
onCreate method ready in the project for later use:

public class TitlesFragment extends ListFragment {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 }

}

Now, for the tags list view, create a new class and call it TagsFragment. Amend the
code so that it looks exactly like the next code, where we extend ListFragment and
implement a basic onCreate method that is ready for later use in the project:

public class TagsFragment extends ListFragment {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

Chapter 21

[479]

 }

}

Now, for the Fragment that will eventually allow the user to take a photo as well as
add a title and tags to it.

Create a new class and call it CaptureFragment. Amend the code so that it looks
exactly like the next code, where we extend Fragment and implement a basic version
of onCreate and onCreateView ready for later use in the project.

Here is the code for CaptureFragment.java:

public class CaptureFragment extends Fragment{

 @Override
 public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);

 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,Bundle savedInstanceState) {

 //Inflate the layout file then get all necessary references
 View view = inflater.inflate
 (R.layout.fragment_capture, container, false);

 return view;
 }

}

The reason the two classes previous to CaptureFragment didn't
need an onCreateView method was because ListFragment
has ListView built in, and will have its functionality and
appearance handled by an array adapter later in the project.

Now, we also need to create a placeholder layout for fragment_capture.xml to get
rid of the error caused by referencing R.id.fragment_capture in the previous code.

Right-click on the layout folder and navigate to New | Layout resource file. Name
it fragment_capture and click on OK.

Navigation Drawer and Where It's Snap

[480]

Finally, drag a single TextView onto the layout and set its text property to Capture.

We can now write code in MainActivity.java to bring these Fragments to life.
However, they are currently just blank, apart from the single TextView that we just
added to fragment_capture.xml.

Coding the MainActivity class and layout
Let's add a really simple, but totally new, layout that will define the appearance of
our app. Unsurprisingly, the layout will have our navigation drawer in it.

The code for the layout that follows in a moment looks long and complicated, but
on close inspection, it is just DrawerLayout within a regular RelativeLayout. Then,
within DrawerLayout is RelativeLayout that has an id of fragmentHolder. This
RelativeLayout is where we will swap our various Fragments in and out. Then, still
within DrawerLayout, we have ListView. It is this ListView that will hold all the
options of navigation drawer.

Note that the id property of ListView is navList. We will see exactly how we use
this id property to make it come to life (slide in and out) shortly.

Also, note that we set the width property of ListView to 200dp. Feel free to play
with this and make it wider or narrower as you like.

As neither of the previous UI elements (RelativeLayout and ListView) have been
given any relative layout instructions, they will both start in the top-left corner and
fill the entire screen, with the exception that ListView will only be 200dp wide. Also,
because ListView is declared after RelativeLayout, which will hold our Fragments,
it will be on the top. This is exactly what we need.

Here is the code for activity_main.xml that we just discussed. Edit activity_
main.xml so that it looks exactly like this:

<RelativeLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <android.support.v4.widget.DrawerLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/drawerLayout"
 android:layout_width="match_parent"

Chapter 21

[481]

 android:layout_height="match_parent">

 <!-- For our fragments-->
 <RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity"
 android:background="#ffffffff"
 android:id="@+id/fragmentHolder">

 </RelativeLayout>

 <!-- Side navigation drawer UI -->
 <ListView
 android:id="@+id/navList"
 android:layout_width="200dp"
 android:layout_height="match_parent"
 android:layout_gravity="left|start"
 android:background="#ffeeeeee"/>

 </android.support.v4.widget.DrawerLayout>

</RelativeLayout>

Now, we can get on with coding MainActivity.java itself. As with many of the
files in this project, it will evolve as we progress. The following code is the minimum
requirement to get the navigation drawer working and load up our Fragments.

First, we need to add some imports, and these need to be just the right classes and as
with our paging apps in the last chapter, Android Studio doesn't always suggest the
best class to import.

Furthermore, we need a few member variables, which are as follows:

• ListView: This will hold the navigation options.
• DrawerLayout: This is our navigation drawer.
• ArrayAdapter: This is used to bind our array (from strings.xml)

to ListView.

Navigation Drawer and Where It's Snap

[482]

• ActionBarDrawerToggle: This enables us to bring the menu icon in the
action bar to life and interact with DrawerLayout to open and close it. We
will do so by calling its methods, and ActionBarDrawerToggle will handle
all the complexity as well as provide a neat animation on the menu icon.

• String: This will be used to hold the title of our app.

Add the imports and member variables that we just discussed through this
code snippet:

package com.gamecodeschool.whereitssnap1;

import android.app.Fragment;
import android.app.FragmentManager;
import android.content.res.Configuration;
import android.os.Bundle;
import android.support.v4.view.GravityCompat;
import android.support.v4.widget.DrawerLayout;
import android.support.v7.app.AppCompatActivity;
import android.support.v7.app.ActionBarDrawerToggle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class MainActivity extends AppCompatActivity {

 private ListView mNavDrawerList;
 private DrawerLayout mDrawerLayout;
 private ArrayAdapter<String> mAdapter;
 private ActionBarDrawerToggle mDrawerToggle;
 private String mActivityTitle;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // We will come back here in a minute!
 }

Chapter 21

[483]

 // ...
 // Usual auto-generated methods
 // ...

}

We are now in a position to think about how to handle Fragments. As we are dealing
with more and more varied range of Fragments, let's create a method that we can call
to specifically handle switching between Fragments.

Switching between Fragments
Next, right after onCreate, we will add a method called switchFragment that will
handle switching between our Fragments when the user taps on an option in the
navigation drawer UI.

Notice how the method takes a single int called position. We then declare a Fragment
called fragment and set it to null. Then, we initialize a String called fragmentID as an
empty string. We will use this same null Fragment object and empty String regardless
of which navigation option the user chooses. What will vary, however, is how we
initialize it.

The initialization is handled using switch and position as the argument. We
have three case statements: 0, 1, and 2. These values represent TitlesFragment,
TagsFragment, and CaptureFragment respectively.

For each case, we initialize fragment with the appropriate type of the Fragment class
and set the fragmentID String to a similarly appropriate value, as we will soon need
to be able to detect the currently displayed Fragment.

Note also that for TitlesFragment, we also create Bundle. At present, Bundle has
no function. We add it here so that we don't need to amend this method later. It will
eventually pass in the tag that a user has clicked on in order to help TitlesFragment
show an appropriate list of related titles.

Add the first part of the switchFragment method that we just discussed:

private void switchFragment(int position) {

 Fragment fragment = null;
 String fragmentID ="";
 switch (position) {
 case 0:
 fragmentID = "TITLES";
 Bundle args = new Bundle();

Navigation Drawer and Where It's Snap

[484]

 args.putString("Tag", "_NO_TAG");
 fragment = new TitlesFragment();
 fragment.setArguments(args);
 break;

 case 1:
 fragmentID = "TAGS";
 fragment = new TagsFragment();
 break;

 case 2:
 fragmentID = "CAPTURE";
 fragment = new CaptureFragment();
 break;

 default:
 break;
 }

 // More code goes here next

}

In the next block of code, which completes the method we started in the
previous block, we create a new FragmentManager as usual. After this, we call
beginTransaction that is chained with the replace method, which handles the
destruction of the existing Fragment, at the same time as using our newly initialized
Fragment and ID, held in fragment and fragmentID respectively.

The last line of code will shut the drawer in order to fully reveal the newly selected
option/Fragment.

Add the highlighted code to the switchFragment method at the point indicated by
the comment that is highlighted in the following code:

private void switchFragment(int position) {

 ...

 // More code goes here next

 FragmentManager fragmentManager = getFragmentManager();
 fragmentManager.beginTransaction()
 .replace(R.id.fragmentHolder, fragment,
 fragmentID).commit();

Chapter 21

[485]

 // Close the drawer
 mDrawerLayout.closeDrawer(mNavDrawerList);

}

Setting up the drawer
Next, we will create a single method that will do everything to actually set up a
navigation drawer. The method is called setupDrawer, and we will write code to
call it from onCreate soon.

Here is how it works. We initialize mDrawerToggle at the same time as we create a
new ActionBarDrawerToggle reference.

Within it, we handle the following two key events:

• The event when the drawer is opened
• The event when the drawer is closed

The onDrawerOpened method first calls the parent method and then sets the title of
the action bar. When the drawer is open, we want to encourage the user to make a
selection. We do so by setting the title as Make selection. Finally, in this method,
the call to invalidateOptionsMenu causes the action bar to be redrawn.

In the onDrawerClosed method, we again start by calling the parent method. Again,
we set the title of the action bar, but this time, we use the mActivityTitle String, and
we will see exactly how this is configured in the onCreate method later in this chapter.

The last two lines in this class are called when the instance is created and sets up
mDrawerToggle and then passes it in setDrawerListener, which has the combined
effect of animating the menu button on the left-hand side of the action bar as the
drawer is toggled between open and closed.

The following screenshot shows the drawer toggle when the drawer is closed:

Navigation Drawer and Where It's Snap

[486]

This next screenshot shows the drawer toggle when the drawer is open:

We will be able to see this for real near the end of this chapter, including how a neat
animation morphs between the preceding two highlighted states.

Add the setupDrawer method that we just discussed right after the switchFragment
method in MainActivity.java:

private void setupDrawer() {

 mDrawerToggle = new ActionBarDrawerToggle
 (this, mDrawerLayout, R.string.drawer_open,
 R.string.drawer_close) {

 // Called when drawer is opened
 public void onDrawerOpened(View drawerView) {
 super.onDrawerOpened(drawerView);

 getSupportActionBar().setTitle("Make selection");

 // triggers call to onPrepareOptionsMenu
 invalidateOptionsMenu();
 }

 // Called when drawer is closed
 public void onDrawerClosed(View view) {
 super.onDrawerClosed(view);

 getSupportActionBar().setTitle(mActivityTitle);

 // triggers call to onPrepareOptionsMenu
 invalidateOptionsMenu();
 }

Chapter 21

[487]

 };

 mDrawerToggle.setDrawerIndicatorEnabled(true);
 mDrawerLayout.setDrawerListener(mDrawerToggle);
}

Next, we override the onPostCreate and onConfigurationChanged methods and
call syncState and onConfigurationChanged on mDrawerToggle.

We have not seen onPostCreate or onConfigurationChanged before, and there are
not that many situations where we need to use them.

As the names suggests, they are called after onCreate and after a configuration
change of the Activity, respectively.

We use them here so that if the application goes into the background or if the
device gets rotated, the app will use onPostCreate and onConfigurationChanged
to make sure that it remembers the state of the drawer and the toggle, and keeps
them both in sync.

Add these two overridden methods to the MainActivity class:

@Override
protected void onPostCreate(Bundle savedInstanceState) {
 super.onPostCreate(savedInstanceState);

 mDrawerToggle.syncState();
}

@Override
public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);

 mDrawerToggle.onConfigurationChanged(newConfig);
}

Handling the back button
There are just two more areas to pay attention to before we can turn our attention to
onCreate and get all this code working.

The onBackPressed method is an overridden method that is called when the back
button is pressed. It is useful to apply this method to add a functionality because we
can make the app behave a little more as the user might expect.

Navigation Drawer and Where It's Snap

[488]

The first if statement detects whether the drawer is open, and if it is, it closes it.
The else block is more nuanced and this is what it does.

If you are on the home screen of an app and you tap on the back button, you
probably expect it to quit. If you are on the second screen of an app and you tap on
the back button, you probably expect to go back to the first screen.

The else block achieves this by creating a temporary Fragment reference, f,
and using the f instanceof TitleFragment condition, which returns true if
TitlesFragment is currently the type in fragmentHolder. As the title's screen is
effectively our home screen, when this condition is true the app quits by calling
finish, followed by System.exit(0).

If, on the other hand, any other Fragment is present, then we can assume that the
user wants to go back a screen, so we call our switchFragment method with 0 as
the argument to load TitlesFragment.

Enter the code for the onBackPressed method:

@Override
public void onBackPressed() {

 // Close drawer if open
 if (mDrawerLayout.isDrawerOpen(GravityCompat.START)) {

 //drawer is open so close it
 mDrawerLayout.closeDrawer(mNavDrawerList);

 }else {

 // Go back to titles fragment
 // Quit if already at titles fragment
 Fragment f = getFragmentManager().
 findFragmentById(R.id.fragmentHolder);
 if (f instanceof TitlesFragment) {

 finish();
 System.exit(0);

 }else{

 switchFragment(0);

 }

 }
}

Chapter 21

[489]

Now, add the highlighted code to the onOptionsItemSelected method, which will
ensure that our drawer toggle is handled correctly each time it is pressed:

@Override
public boolean onOptionsItemSelected(MenuItem item) {

 int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.action_settings) {
 return true;
 }

 // Activate the navigation drawer toggle
 if (mDrawerToggle.onOptionsItemSelected(item)) {
 return true;
 }

 return super.onOptionsItemSelected(item);
}

Finally, in onCreate, we can put all the other pieces of our code together.

First, we get a reference to ListView by calling findViewByID. Then, we get a
reference to DrawerLayout in the same way.

Next, we use the getTitle().toString() method and assign the result to
mActivityTitle. The effect of this is that the title of our app is now held in
mActivityTitle.

Add the first part of the new code that we just discussed, as highlighted, in the
onCreate method:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // We will come back here in a minute!
 mNavDrawerList = (ListView)findViewById(R.id.navList);

Navigation Drawer and Where It's Snap

[490]

 mDrawerLayout = (DrawerLayout)findViewById(R.id.drawerLayout);
 mActivityTitle = getTitle().toString();

 // We will finish off this method next
 // From here

}

Now, we will discuss the last part of the code that goes in the onCreate method from
where we just left it.

We create a String array by calling getResources.getStringArray and passing in
the name of our array in the strings.xml file.

After this, we initialize ArrayAdapter (with the previous array) and set it as the
adapter for ListView.

Look at these two lines of code (don't add them yet):

getSupportActionBar().setDisplayHomeAsUpEnabled(true);
getSupportActionBar().setHomeButtonEnabled(true);

They enable the drawer control in the action bar that we previously configured when
we initialized our drawer in the setupDrawer method.

Lastly, we create an anonymous class to handle clicks on ListView, and we simply
call switchFragment with the appropriate position (whichItem) that was clicked.

Add the highlighted code that we discussed just after the code that we added
previously into the onCreate method:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 ...

 // We will finish off this method next
 // From here

 // Initialize an array with our titles from strings.xml
 String[] navMenuTitles = getResources().
 getStringArray(R.array.nav_drawer_items);
 // Initialize our ArrayAdapter
 mAdapter = new ArrayAdapter<String>
 (this, android.R.layout.simple_list_item_1, navMenuTitles);
 // Set the adapter to the ListView

Chapter 21

[491]

 mNavDrawerList.setAdapter(mAdapter);

 setupDrawer();

 getSupportActionBar().setDisplayHomeAsUpEnabled(true);
 getSupportActionBar().setHomeButtonEnabled(true);

 mNavDrawerList.setOnItemClickListener
 (new AdapterView.OnItemClickListener() {

 @Override
 public void onItemClick(AdapterView<?> adapter,
 View view, int whichItem, long id) {

 switchFragment(whichItem);

 }
 });

 switchFragment(0);
}

That's it for our navigation drawer, and we can run the project so far. Now,
we can see the loading data animation provided by default in ListView from
TitlesFragment and ListFragment:

Navigation Drawer and Where It's Snap

[492]

When we drag from the left-hand edge of the screen, the drawer slides open:

Notice the behavior of the drawer when the back key is pressed. This is because of
the code that we added in onBackPressed. You can also swipe the drawer away or
tap/click on the left-pointing arrow in the action bar.

Note that if you tap on Capture in the navigation drawer, you will see the single
TextView with the word "Capture" from the fragment_capture layout, indicating
that our Fragments are indeed switching themselves around as intended.

Summary
Now, we have a working Activity that happily swaps different Fragments in and
out of RelativeLayout with an id property of fragmentHolder. Of course, these
Fragments don't actually do anything, and we will begin to put this right in the next
chapter when we see how to use the device's camera to take pictures. We will then
proceed to expand on what we know to add a picture capture function within the
CaptureFragment class of Where it's snap.

[493]

Capturing Images
In this chapter, we will see how we can harness the Android Intent class to add the
otherwise complicated functionality with ease. Although this is a short chapter, it is
surprising how much we can get done in these few pages. We will not only build a
very quick mini app with the image capture functionality, but we will also add this
functionality to the Where it's snap app. At the same time, we will see how Android
stores images that are captured by the camera and how we interact with them. In this
chapter, we will:

• Look at how to capture an image from a camera with the Intent class
• Put this knowledge to work in a camera mini app
• Code the Where it's snap capture Fragment

Capturing images using the camera
Android provides two ways to write apps that use a camera:

• One way is to write a camera app from scratch and utilize any or all of the
features of any camera that the device may have. This is a big topic and
is usually only used when the app is designed to add some kind of a new
camera functionality.

• The other way is to use the existing camera app to do the work for us.

We will be cheating (in a good way) by using the existing camera app of the device
(option 2). We can do this using the Intent class that we first saw in Chapter 15,
Android Intent and Persistence.

By carefully constructing the argument passed into the constructor of the Intent
class, we can get other apps to do work for us. We will see the code to capture an
image, but the same simple techniques can be used to send an e-mail, post a message
on social media platforms, play media, and much more besides this.

Capturing Images

[494]

To have an Intent class launch the camera app, we will build an Intent class with
android.provider.MediaStore.ACTION_IMAGE_CAPTURE.

All we need to do is construct an Intent class like this:

Intent intent = new Intent(android.provider.
 MediaStore.ACTION_IMAGE_CAPTURE);

After we have done this, we start an Activity using our new Intent object, but
unlike in Chapter 15, Android Intent and Persistence, where we called startActivity,
this time we call startActivityForResult so that the new Activity knows we want
a result (some data) handed back to our Activity.

We would start the Intent class like this:

startActivityForResult(cameraIntent, CAMERA_REQUEST);

And then, we can capture the result (hopefully, a picture) in the onActivityResult
method, which is the method that Android will call in these situations. We would do
so with the help of the following code:

Bitmap photo = (Bitmap) data.getExtras().get("data");

In the preceding code, we created a new Bitmap (image) object and assigned the
returned data to it. There are a few caveats and missing pieces to the preceding
explanation, and they are best demonstrated rather than explained. Let's see how to
make all this work in a quick mini app.

When we come to code the image capture functionality of the Where it's snap app,
we will take things even further.

The capturing images mini app
Create a new project and call it Simple Photo. You can leave all the settings at their
defaults as usual.

To handle Marshmallow runtime permissions, as discussed in Chapter 11, Widget
Mania in the Android permissions and Marshmallows section, we need to set the target
API to 22.

To do this, select Android from the drop-down list at the top of the project explorer.
Now, double-click on the build.gradle (module: app) option from the bottom of the
project explorer window.

Chapter 22

[495]

Change the highlighted line of code so that targetSdkVersion is set to 22, as shown
in the following code:

defaultConfig {
 applicationId "com.gamecodeschool.simplephoto"
 minSdkVersion 15
 targetSdkVersion 22
 versionCode 1
 versionName "1.0"
}

Now, we need to ask for the users' permission to use the camera.

Adding the camera permission to the manifest
The first thing we need to do is edit the AndroidManifest.xml file. The reason for
this is that we need to ask the users' permission to access their camera. When we add
a permission to the AndroidManifest.xml file, it triggers the user to be notified of
our app's intention to use their camera and asks their permission at install time. Also,
we can add the use of a camera as a feature so that our app would be hidden from
users with devices that don't have a camera at all.

Fortunately, adding the camera permission and feature is easy. Open the
AndroidManifest.xml file from the manifests folder in the project explorer. Add
the highlighted lines shown in the next code:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="com.gamecodeschool.simplephoto" >

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name=
 "android.intent.category.LAUNCHER" />

Capturing Images

[496]

 </intent-filter>
 </activity>

 </application>

 <uses-permission android﹕name="android.permission.CAMERA" />
 <uses-feature android﹕name="android.hardware.camera" />

</manifest>

Now, we can deal with the layout.

Defining a simple layout
This layout is really basic. When we add the picture capture functionality into Where
it's snap later this chapter, we will spend a bit more time and effort laying out the
capture Fragment:

<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <Button android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Take picture"/>

 <ImageView android:id="@+id/imageView1"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"/>

</LinearLayout>

The preceding layout has Button with an id property of button1 and ImageView, to
place the newly captured image, with an id property of imageView1.

Now, we can move on to coding Java in MainActivity.

Chapter 22

[497]

Coding the MainActivity class
First, we need to add two member variables:

• We have final int called CAMERA_REQUEST. When we start a new Activity
and expect some data back, we must send an ID for the request. It is
good practice to use a final variable because when we receive data in
onActivityResult, we need to be certain that it is the camera data that we
are dealing with. Any time we call startActivityForResult, the reply
comes back to onActivityResult. We will see how we can verify that we
are actually dealing with the data we think we are. In this simple app, it is a
foregone conclusion that we will be receiving data from the camera app, but
as our apps get more complex, this will not always be the case.

• ImageView will be used to display the returned Bitmap.

Add the two highlighted member variables:

public class MainActivity extends AppCompatActivity {

 private static final int CAMERA_REQUEST = 123;
 private ImageView imageView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

Next, in the onCreate method, we get a reference to ImageView and Button in
our layout.

Then, we code an anonymous class to listen for clicks on Button. Note that the
onClick method creates the new Intent class, which we discussed earlier, as well
as calls startActivityForResult and passes in the Intent class along with our id
property, CAMERA_REQUEST.

Now, add the code that we just discussed to the onCreate method. It is highlighted
in this next code listing:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 imageView = (ImageView)this.findViewById(R.id.imageView1);
 Button photoButton = (Button) this.findViewById(R.id.button1);

Capturing Images

[498]

 photoButton.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 Intent cameraIntent = new Intent
 (android.provider.MediaStore.ACTION_IMAGE_CAPTURE);
 startActivityForResult(cameraIntent, CAMERA_REQUEST);
 }
 });
}

Finally, we can add the all-important onActivityResult method that captures the
result (a photo) from the Intent class, which is passed in as a parameter. Notice the
int requestCode parameter here, this should match the id property that we sent
into startActivityForResult. Also, notice resultCode, which is also int.

We use an if statement to test for two things:

• Is this the data that we think it is (requestCode == CAMERA_REQUEST)?
• Is there actually some appropriate data at all within the Intent class

(resultCode == RESULT_OK)?

It is possible that the Activity failed; it is also possible that the users changed their
mind and did not take a picture. The if statement handles these possibilities.

If all is well, the execution enters the body of the if statement and we declare and
initialize a new Bitmap from the Intent class and then use the setImageBitmap
method to display it on ImageView.

Add the onActivityResult method that we just discussed:

protected void onActivityResult
 (int requestCode, int resultCode, Intent data) {

 if (requestCode == CAMERA_REQUEST && resultCode == RESULT_OK) {

 Bitmap photo = (Bitmap) data.getExtras().get("data");
 imageView.setImageBitmap(photo);
 }
}

We are now ready to test our mini app.

Chapter 22

[499]

Running the Simple Photo app
If you are running this app on the emulator, then now would be a good time to
slightly change the emulator's configuration to increase compatibility.

To do this, click on the AVD Manager icon in the menu bar of Android Studio. Click
on the pencil icon to edit the emulator. Click on the Advanced Settings button. Find
the Camera section. And set both the Front and Back options to Emulated.

Run the app and click on the TAKE PICTURE button. You will see that the default
camera app for your device has opened. You can take a picture with all of the same
options that you have when taking a photo under normal circumstances. When you
have taken a photo, however, you are offered the option to save or discard the image:

If you choose to discard it (by clicking on the cross icon), then when
onActivityResult is called, resultCode == RESULT_OK will be false, and the
code in the body of the if statement will not be executed.

Capturing Images

[500]

If you choose to save it (by clicking on the tick icon), however, then the picture you
took will be displayed in ImageView, as expected:

The previous two figures look slightly odd. They show how the emulator deals
with using the camera. If you run this on a real device, you will be able to take
a real picture.

Let's add this kind of functionality to Where it's snap, but let's take things a little
further too.

Where it's snap – coding the capture
Fragment
Now we can add the capture functionality to the Where it's snap app. We will
implement the functionality of capturing an image from the camera as well as
allow the user to add a title and tags for the image. We will not, however, add any
functionality to save any of this data, as you will first want to learn about databases
before we do.

In preparation to save the data, however, we will meet the Android Uri and File
classes, which allow us to identify and locate the photos that the user captures.

The completed app, as it is at the end of this chapter, can be found in Chapter 22/
Where Its Snap 2.

Chapter 22

[501]

We will first add a layout that CaptureFragment will use, and we will then add some
code, some of which should look fairly familiar by now, in order to capture an image.
The next two chapters will then look at databases to save and show all our data.

Creating the layout for the capture Fragment
You can add all the String resources and id properties manually if you like, but the
fastest way to proceed is to copy the next code into the capture_fragment.xml file.
Be sure to review the code, however, and make a mental note of the id properties, as
this will make it easier for you to follow along when we code the CaptureFragment
class shortly.

Add this code to the capture_fragment.xml file:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation=
 "vertical" android:layout_width="match_parent"
 android:layout_height="match_parent">

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/capture"
 android:id="@+id/btnCapture"
 android:layout_marginBottom="28dp"
 android:layout_alignParentBottom="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:layout_marginLeft="25dp"
 android:layout_marginStart="25dp" />

 <ImageView
 android:layout_width="150dp"
 android:layout_height="150dp"
 android:id="@+id/imageView"
 android:src="@mipmap/ic_launcher"
 android:layout_below="@+id/editTextTitle"
 android:layout_centerHorizontal="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Capturing Images

[502]

 android:text="@string/save"
 android:id="@+id/btnSave"
 android:layout_alignTop="@+id/btnCapture"
 android:layout_alignParentRight="true"
 android:layout_alignParentEnd="true"
 android:layout_marginRight="22dp"
 android:layout_marginEnd="22dp" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/editTextTitle"
 android:hint="@string/enter_photo_title"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/editTextTag1"
 android:hint="@string/tag1"
 android:layout_marginBottom="121dp"
 android:layout_above="@+id/btnCapture"
 android:layout_alignLeft="@+id/btnCapture"
 android:layout_alignStart="@+id/btnCapture" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/editTextTag2"
 android:hint="@string/tag2"
 android:layout_alignTop="@+id/editTextTag1"
 android:layout_alignLeft="@+id/editTextTag1"
 android:layout_alignStart="@+id/editTextTag1"
 android:layout_marginTop="59dp" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/editTextTag3"
 android:hint="@string/tag3"
 android:layout_above="@+id/btnCapture"
 android:layout_alignLeft="@+id/btnCapture"
 android:layout_alignStart="@+id/btnCapture" />

</RelativeLayout>

Chapter 22

[503]

Take a look and make sure that your layout looks as shown in the next figure.
However, it doesn't have to be exact, the id properties do, and for the coding we
do in Chapter 27, Going Local – Hola! to work correctly, we need to use the string
resources (as in the preceding code) and not hardcode anything:

Coding the capture Fragment
Most of this code will be quite straight forward because of the preparation we have
done, but I will point out all the new code as it arises.

First, we have to add some more permissions to the AndroidManifest.xml file.
Open it up now and add the highlighted lines in the next code listing:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="com.gamecodeschool.whereitssnap2" >

 <uses-permission android﹕name=
 "android.permission.WRITE_EXTERNAL_STORAGE" />

 <application
 android:allowBackup="true"

Capturing Images

[504]

 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.
 LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

As we will soon see, we will be creating our own file, which will be used to save the
photo. This is why we need the WRITE_EXTERNAL_STORAGE permission.

Now, add the four highlighted member variables to the CaptureFragment class:

public class CaptureFragment extends Fragment{

 private static final int CAMERA_REQUEST = 123;
 private ImageView mImageView;

 // The filepath for the photo
 String mCurrentPhotoPath;

 // Where the captured image is stored
 private Uri mImageUri = Uri.EMPTY;

 @Override
 public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);

 }

In the onCreateView method, which is shown next, we get a reference to each of our
UI widgets, ImageView, both the Button widgets, and the four EditText.

We then add an anonymous class to listen for the user clicking on the Capture button.
In the onClick method, we use the same code as we did in the onClick method
in our mini app. The only difference this time is that the action is taking place in
onCreateView instead of onCreate, as required when dealing with a Fragment.

Chapter 22

[505]

In addition, we create a new file for our image by calling the createImageFile
method that we will write soon. After this, we use the Uri.fromFile method to get
a URI, which points to our newly created file. We will talk more about what URIs are
in Chapter 24, Adding a Database to Where It's Snap when we use them to store images
in our database. For now, we can think of them as a link to the image.

Note that we then use the putExtra method to add this same Uri to the Intent class.
This has the effect of telling the camera app to make this Uri point to the place where
the image is saved. In effect, we now have a link to the image that will be captured.

Note that the next code does not handle the Save button. We will do this when you
learn how to handle the data in a couple of chapters.

Add the highlighted code that we just discussed to onCreateView:

@Override
public View onCreateView(LayoutInflater inflater,
 ViewGroup container,Bundle savedInstanceState) {

 // Inflate the layout file then get all necessary references
 View view = inflater.inflate(R.layout.fragment_capture,
 container, false);

 mImageView = (ImageView)view.findViewById(R.id.imageView);
 Button btnCapture = (Button)view.findViewById(R.id.btnCapture);
 Button btnSave = (Button)view.findViewById(R.id.btnSave);

 final EditText mEditTextTitle =
 (EditText)view.findViewById(R.id.editTextTitle);
 final EditText mEditTextTag1 =
 (EditText)view.findViewById(R.id.editTextTag1);
 final EditText mEditTextTag2 =
 (EditText)view.findViewById(R.id.editTextTag2);
 final EditText mEditTextTag3 =
 (EditText)view.findViewById(R.id.editTextTag3);

 // Listen for clicks on the capture button
 btnCapture.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {

 Intent cameraIntent =
 new Intent(MediaStore.ACTION_IMAGE_CAPTURE);

Capturing Images

[506]

 File photoFile = null;
 try {
 photoFile = createImageFile();
 } catch (IOException ex) {
 // Error occurred while creating the File
 Log.e("error", "error creating file");

 }
 // Continue only if the File was successfully created
 if (photoFile != null) {
 mImageUri = Uri.fromFile(photoFile);
 cameraIntent.putExtra(MediaStore.EXTRA_OUTPUT,
 Uri.fromFile(photoFile));
 startActivityForResult(cameraIntent, CAMERA_REQUEST);
 }

 }
 });

 return view;
}

Next, let's write that new createImageFile method. The full details of this method
are somewhat convoluted, but they do need to be.

All we are really doing is creating a new file. This could have been done in a single line
of code. The reason our code is much more verbose than one line is because we use
SimpleDateFormat and its related classes and methods to create a unique filename to
be sure that our file doesn't get repeated as the user takes more and more pictures.

Then, we use getExternalStoragePublicDirectory to get a location to create
the file.

Note that the last thing the method does is return the File reference to the
calling code:

private File createImageFile() throws IOException {
 // Create an image file name
 String timeStamp = new SimpleDateFormat
 ("yyyyMMdd_HHmmss").format(new Date());
 String imageFileName = "JPEG_" + timeStamp + "_";
 File storageDir = Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_PICTURES);
 File image = File.createTempFile(
 imageFileName, // filename

Chapter 22

[507]

 ".jpg", // extension
 storageDir // folder
);

 // Save for use with ACTION_VIEW Intent
 mCurrentPhotoPath = "file:" + image.getAbsolutePath();
 return image;
}

Now, add the onActivityResult method into the CaptureFragment class to set the
captured Bitmap image to ImageView:

@Override
public void onActivityResult
 (int requestCode, int resultCode, Intent data) {
 if (requestCode == CAMERA_REQUEST &&
 resultCode == Activity.RESULT_OK) {

 try {

 mImageView.setImageURI(Uri.parse(mImageUri.toString()));
 }catch(Exception e){
 Log.e("Error","Uri not set");
 }

 }else{
 mImageUri = Uri.EMPTY;
 }
}

We also need to override onDestroy so that we can clean up after ourselves. This
next code gets Bitmap from the drawable, and by calling its chained getBitmap().
recycle() methods, we can prevent the possibility of the app running out of memory:

public void onDestroy(){
 super.onDestroy();

 // Make sure we don't run out of memory
 BitmapDrawable bd = (BitmapDrawable) mImageView.getDrawable();
 bd.getBitmap().recycle();
 mImageView.setImageBitmap(null);
}

Now, we can test the image capturing functionality.

Capturing Images

[508]

Testing the capture Fragment
Run the Where it's snap app and tap on Capture in the navigation drawer. You can
now add tags and a title and capture an image:

Of course, we have the slight issue that none of our users' data is saved.

Summary
In this chapter, we saw how to use other apps installed on our users' device to get
data from them. Specifically, we learned to get an image from the camera app, but
we also know that we can use similar techniques with many other apps; however,
this is beyond the scope of this beginners guide.

In the next two chapters, you will first learn the necessary techniques and then we
will implement a way to save the users' data using an SQLite database. Databases
are a very efficient way to store data in our apps. Certainly, there would be nothing
wrong with using JSON in this app, just as we did in Chapter 15, Android Intent
and Persistence, but we will see some advantages of using a database as the project
proceeds. The least of which will be the ability to easily sort our data, as well as
upgrade/update the structure of the data.

[509]

Using SQLite Databases
in Our Apps

If we are going to make apps that offer our users significant features, then almost
certainly we are going to need a way to manage, store, and filter significant amounts
of data.

It is possible to efficiently store very large amounts of data with JSON, but when we
need to use this data selectively, instead of simply restricting ourselves to the options
of "save everything" and "load everything", we need to think about which other
options are available.

A good computer science course would probably teach the algorithms necessary to
handle sorting and filtering our data, but the efforts involved to do this would be
quite extensive. Also, what are the chances of us coming up with a solution that is as
good as one offered by the people who provide us with the Android API?

As always, it makes sense for us to use the solutions provided in the Android API.
As we have seen, JSON and SharedPreferences classes have their place, but at some
point, we need to move on to using real databases for real-world solutions. Android
uses the SQLite database management system, and as you would expect, there is an
API to make this as easy as possible.

In this chapter, we will do the following:

• Find out exactly what a database is
• Learn what SQL and SQLite are
• Learn the basics of the SQL language
• Take a look at the Android SQLite API
• Build a SQLite mini app

Using SQLite Databases in Our Apps

[510]

Database 101
Let's answer a whole bunch of database-related questions and then we can get
started with making apps that use SQLite. So, what is a database?

What is a database?
A database is both a place of storage and the means to retrieve, store, and manipulate
data. It helps to visualize a database before learning how to use it. The actual
structure of the internals of a database varies greatly depending upon the database in
question. SQLite actually stores all its data in a single file.

It will aid our comprehension greatly; however, if we visualize our data as if it
were in a spreadsheet or sometimes, multiple spreadsheets, our database, just like a
spreadsheet, will be divided into multiple columns that represent different types of
data and rows that represent entries in the database.

Think about a database with names and exam scores. Take a look at the following
visual representation of this data to understand how a database would look:

Note, however, that there is an extra column of data here: an _ID column. We will
talk more about this as we proceed. This single spreadsheet-like structure is called
a table. As mentioned before, there might be, and often are, multiple tables in a
database. Each column of the table will have a name that can be referred to when we
speak about the database.

What is SQL?
SQL stands for Structured Query Language. It is the syntax that is used to get things
done with the database.

What is SQLite?
SQLite is the name of the entire database system that is favored by Android, and it
has its own version of SQL. The reason the SQLite version of SQL needs to be slightly
different than some other versions is because the database has different features.

The SQL syntax primer that follows will be focused on the SQLite version.

Chapter 23

[511]

The SQL syntax primer
Before you learn how to use SQLite with Android, you first need to learn the basics
of how to use SQLite in general in a platform-neutral context.

Let's look at some example SQL code that could be used on an SQLite database
directly, without any Java or Android classes, and then we can more easily
understand what our Java code will doing later.

The SQLite example code
SQL has keywords much like Java that cause things to happen. Here is a flavor of
some of the SQL keywords that we will be using soon:

• INSERT: This allows us to add data to the database
• DELETE: This allows us to remove data from the database
• SELECT: This allows us to read data from the database
• WHERE: This allows us to specify the parts of the database that match a

specific criteria that we want to insert, delete, or select data from
• FROM: This is used to specify a table or column name in a database

There are many more SQLite keywords than this, and for a
full list of keywords, take a look at https://sqlite.org/
lang_keywords.html.

In addition to keywords, SQL has types. A few examples of SQL types are as follows:

• integer: This is just what we need to store whole numbers
• text: This is perfect for storing a simple name or address
• real: This is used for large floating point numbers

There are many more SQLite types than this, and for a full
list of types, take a look at https://www.sqlite.org/
datatype3.html.

Let's look at how we can combine these types with the keywords to create tables and
add, remove, modify, and read data using full SQLite statements.

https://sqlite.org/lang_keywords.html
https://sqlite.org/lang_keywords.html
https://www.sqlite.org/datatype3.html
https://www.sqlite.org/datatype3.html

Using SQLite Databases in Our Apps

[512]

Creating a table
It would be a perfectly decent question to ask why we don't create a new database
first. The reason for this is that every app has access to an SQLite database by
default. The database is private to that app. Here is the statement that we would
use to create a table within that database. I have highlighted a few parts to make the
statement clearer:

create table StudentsAndGrades
 _ID integer primary key autoincrement not null,
 name text not null,
 score int;

The previous code creates a table called StudentsAndGrades with a row id of the
integer type that will be automatically increased (incremented) each time a row of
data is added.

The table will also have a name column that will be of the text type and cannot be
blank (not null).

It will also have a score column that will be of the int type. Also note that the
statement is completed by a semicolon.

Inserting data into the database
Here is how we might insert a new row of data into that database:

INSERT INTO StudentsAndGrades
 (name, score)
 VALUES
 ("Bart", 23);

The previous code added a row to the database. After the preceding statement, the
database will have one entry with the 1, "Bart", and 23 values for the _ID, name,
and score columns.

Here is how we might insert another new row of data into that database:

INSERT INTO StudentsAndGrades
 (name, score)
 VALUES
 ("Lisa", 100);

The previous code added a new row of data with the 2, "Lisa", and 100 values for
the _ID, name, and score columns.

Chapter 23

[513]

Our spreadsheet-like structure would now look as shown in this next figure:

Retrieving data from the database
Here is how we would access all the rows and columns from our database:

SELECT * FROM StudentsAndGrades;

The previous code asks for every row and column. The * symbol can be read as all.

We can also be a little more selective as this code demonstrates:

SELECT score FROM StudentsAndGrades
 where name = "Lisa";

The previous code would only return 100, which, of course, is the score associated
with the name Lisa.

Updating the database structure
We can even add new columns after the table has been created and data has been
added. This is simple as far as the SQL is concerned but can cause some issues with
regard to users' data on already published apps. We will explore this problem more
in Chapter 26, Upgrading SQLite – Adding Locations and Maps. The next statement adds
a new column called age that is of the int type:

ALTER TABLE StudentsAndGrades
 ADD
 age int;

There are many more data types, keywords, and the ways to use them than we have
seen so far. We will see many of them in the two database-driven apps that we will
build. This was just a taste. Next, let's look at the Android SQLite API, and now we
will begin to see how we can use our new SQLite skills.

The Android SQLite API
There are a number of different ways in which the Android API makes it fairly
easy for us to use our app's database. The first class we need to get familiar with is
SQLiteOpenHelper.

Using SQLite Databases in Our Apps

[514]

SQLiteOpenHelper and SQLiteDatabase
The SQLiteDatabase class is the class that represents the actual database. The
SQLiteOpenHelper class, however, is where most of the action takes place.
This class will enable us to get access to a database and initialize an instance of
SQLiteDatabase.

In addition, the SQLiteOpenHelper class, which we will extend in our forthcoming
mini app, has two methods to override. First, it has an onCreate method, which is
called the first time a database is used, and therefore it makes sense that we place our
SQL in this method to create our table structure.

The other method we must override is onUpgrade, which, as you can probably
guess, is called when we upgrade our database (ALTER its structure). Exactly how
this works is best explained with a practical example, which we will see in a few
chapter's time.

Building and executing queries
As our database structures get more complex and as our SQL knowledge grows, our
SQL statements will get quite long and awkward. The potential for errors is high.

The way in which we will help overcome the problem of complexity is by building
our queries from parts into a String. We can then pass this String to the method (we
will see this soon) that will execute the query for us.

Furthermore, we will use final strings to represent things such as table and column
names so that we can't get in a muddle with them.

For example, we could declare the following members that would represent the table
names and column names from the earlier fictitious example. Note that we will also
give the database itself a name and have a string for that too:

private static final String DB_NAME = "MyCollegeDB";
private static final String TABLE_S_AND_G = " StudentsAndGrades";

public static final String TABLE_ROW_ID = "_id";
public static final String TABLE_ROW_NAME = "name";
public static final String TABLE_ROW_SCORE = "score";

As you can see in the preceding code, we will benefit from accessing the string
outside the class as well because we declare it public.

Chapter 23

[515]

We could then build a query like this next example. The following example adds
a new entry to our hypothetical database and incorporates our Java variables into the
SQL statement:

String name = "Divij";
int score = 94;

// Add all the details to the table
String query = "INSERT INTO " + TABLE_S_AND_G + " (" +
 TABLE_ROW_NAME + ", " +
 TABLE_ROW_SCORE + ") " +
 "VALUES (" +
 "'" + name + "'" + ", " +
 score +
 ");";

Note that in the previous code, the regular Java variables name and score are
highlighted. The previous String called query is now the SQL statement that is
exactly equivalent to the following code:

INSERT INTO StudentsAndGrades (
 name, score)
 VALUES ('Divij',94);

It is not essential to completely grasp the previous two
blocks of code in order to proceed with learning Android
programming. But if you want to build your own apps and
construct SQL statements that do exactly what you need, it
will help to do so. Why not study the previous two blocks of
code in order to discern the difference between the pairs of
double quote marks " that are the parts of the String joined
together with +, the pairs of single quote marks ' that are part
of the SQL syntax, the regular Java variables, and the distinct
semicolons from the SQL statement in the String and Java.

Throughout the typing of the query, Android Studio prompts us the names of our
variables, making the chances of an error much less likely even though it is more
verbose than simply typing the query.

Now, we can use the classes that we introduced previously to execute the query:

// This is the actual database
private SQLiteDatabase db;

// Create an instance of our internal CustomSQLiteOpenHelper class

Using SQLite Databases in Our Apps

[516]

CustomSQLiteOpenHelper helper =
 new CustomSQLiteOpenHelper(context);

// Get a writable database
db = helper.getWritableDatabase();

// Run the query
db.execSQL(query);

When adding data to the database, we will use execSQL, as in the previous code, and
when getting data from the database, we will use the rawQuery method, as shown in
the next code snippet:

Cursor c = db.rawQuery(query, null);

Note that the rawQuery method returns an object of the Cursor type.

There are several different ways in which we can interact with
SQLite, and they each have their advantages and disadvantages.
Here, we have chosen to use raw SQL statements, as it is entirely
transparent as to what we are doing and at the same time, we will
be reinforcing our knowledge of the SQL language. Refer to the
next tip if you want to know more.

Database cursors
In addition to the classes that give us access to the database and the methods that
allow us to execute our queries, there is the issue of exactly how the results that we
get back from our queries are formatted.

Fortunately, there is the Cursor class. All our database queries will return objects of
the Cursor type. We can use the methods of the Cursor class to selectively access the
data returned from the queries like we've used in this code:

Log.i(c.getString(1), c.getString(2));

The previous code would output to logcat the two values stored in the first two
columns of the result that the query returned. It is the Cursor object itself that
determines which row of our returned data we will currently read.

We can access a number of methods of the Cursor object including the moveToNext
method, which unsurprisingly would move Cursor to the next row that is ready
for reading:

c.moveToNext();

Chapter 23

[517]

/*
 This same code now outputs the data in the
 first and second column of the returned
 data but from the SECOND row.
*/

Log.i(c.getString(1), c.getString(2));

On some occasions, we will be able to bind Cursor to a part of our UI (such as
ListView) and just leave everything to the Android API. We will see this when we
add a database to the Where it's snap app in the next chapter.

There are many more useful methods of the Cursor class, some of which we will
see soon.

This introduction to the Android SQLite API really only scratches the
surface of its capabilities. We will bump into a few more methods and
classes as we proceed further. It is, however, worth studying further
if your app idea requires complex data management. If you want to
know more, I recommend you read Android Database Programming,
Jason Wei, Packt Publishing, which you can find at https://www.
packtpub.com/application-development/android-
database-programming.

Now, we can see how all this theory comes together and how we will structure our
database code in an actual working mini app.

The database mini app
In this section, we will put into practice everything that you have learned so far and
create a mini database that enables us to add, delete, search, and select data.

First, let's create a new project with all the settings at their default values and call it
Database. The code for this mini app is in the download bundle of the Chapter 23/
Database folder.

Implementing the layout
Create the layout by copying and pasting the next block of XML code. There is
nothing new or complicated in the code, but be sure to review it to make a mental
note of the various id properties on the EditText and Button widgets because it
will make understanding the Java code simpler.

https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming
https://www.packtpub.com/application-development/android-database-programming

Using SQLite Databases in Our Apps

[518]

Add this XML to the layout_main.xml file:

<RelativeLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" android:paddingLeft=
 "@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity">

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/editName"
 android:hint="Type a name"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/editAge"
 android:hint="Type their age"
 android:layout_below="@+id/editName"
 android:layout_alignLeft="@+id/editName"
 android:layout_alignStart="@+id/editName" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="INSERT"
 android:id="@+id/btnInsert"
 android:layout_below="@+id/editAge"
 android:layout_toRightOf="@+id/editSearch"
 android:layout_toEndOf="@+id/editSearch"
 android:layout_marginTop="24dp" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="DELETE"
 android:id="@+id/btnDelete"

Chapter 23

[519]

 android:layout_above="@+id/btnSearch"
 android:layout_alignParentRight="true"
 android:layout_alignParentEnd="true"
 android:layout_marginBottom="40dp" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="SELECT *"
 android:id="@+id/btnSelect"
 android:layout_alignParentBottom="true"
 android:layout_alignRight="@+id/editName"
 android:layout_alignEnd="@+id/editName" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Search"
 android:id="@+id/btnSearch"
 android:layout_above="@+id/btnSelect"
 android:layout_alignLeft="@+id/btnDelete"
 android:layout_alignStart="@+id/btnDelete"
 android:layout_marginBottom="32dp" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/editSearch"
 android:hint="name to search"
 android:layout_alignBottom="@+id/btnSearch"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/editDelete"
 android:hint="name to delete"
 android:layout_alignBottom="@+id/btnDelete"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:focusableInTouchMode="true" />

</RelativeLayout>

Using SQLite Databases in Our Apps

[520]

Here is the completed layout in the Android Studio designer:

Coding the database class
We will create a class that manages our database by implementing
SQLiteOpenHHelper. It will also define a few final Strings to represent the names
of the table and its columns. Furthermore, it will supply a bunch of helper methods
that we can call to perform all the necessary queries. Where necessary, these helper
methods will return a Cursor object that we can use back in MainActivity to
display the data that we have retrieved. It would be trivial then to add new helper
methods should our app need to evolve.

Create a new class called DataManager and add the following member variables:

public class DataManager {

 // This is the actual database
 private SQLiteDatabase db;

Chapter 23

[521]

 /*
 Next we have a public static final string for
 each row/table that we need to refer to both
 inside and outside this class
 */

 public static final String TABLE_ROW_ID = "_id";
 public static final String TABLE_ROW_NAME = "name";
 public static final String TABLE_ROW_AGE = "age";

 /*
 Next we have a private static final strings for
 each row/table that we need to refer to just
 inside this class
 */

 private static final String DB_NAME = "address_book_db";
 private static final int DB_VERSION = 1;
 private static final String TABLE_N_AND_A =
 "names_and_addresses";
}

Next, we add the constructor that will create an instance of our custom version of
SQLiteOpenHelper. We will actually implement this class as an inner class soon. The
constructor also initializes the db member, which is our SQLiteDatabase reference.

Add the following constructor that we just discussed to the DataManager class:

public DataManager(Context context) {
 // Create an instance of our internal
 //CustomSQLiteOpenHelper class
 CustomSQLiteOpenHelper helper =
 new CustomSQLiteOpenHelper(context);

 // Get a writable database
 db = helper.getWritableDatabase();
}

Now, we can add the helper methods that we will access from MainActivity. First,
the insert method that executes an INSERT SQL query based on the name and age
parameters that are passed into the method.

Add the insert method to the DataManager class:

// Here are all our helper methods

Using SQLite Databases in Our Apps

[522]

// Insert a record
public void insert(String name, String age){

 // Add all the details to the table
 String query = "INSERT INTO " + TABLE_N_AND_A + " (" +
 TABLE_ROW_NAME + ", " +
 TABLE_ROW_AGE + ") " +
 "VALUES (" +
 "'" + name + "'" + ", " +
 "'" + age + "'" +
 ");
 ";

 Log.i("insert() = ", query);

 db.execSQL(query);

}

This next method called delete will delete a record from the database if it has a
matching value in the name column to that of the one passed in the name parameter.
It achieves this using the SQL DELETE keyword.

Add the delete method to the DataManager class:

// Delete a record
public void delete(String name){

 // Delete the details from the table if already exists
 String query = "DELETE FROM " + TABLE_N_AND_A +
 " WHERE " + TABLE_ROW_NAME +
 " = '" + name + "';";

 Log.i("delete() = ", query);

 db.execSQL(query);

}

Next, we have the selectAll method that also does as its name suggests. It achieves
this with a SELECT query using the * parameter, which is equivalent to specifying all
the columns individually. Also note that the method returns Cursor, which we will
use in the MainActivity class.

Chapter 23

[523]

Add the selectAll method to the DataManager class:

// Get all the records
public Cursor selectAll() {
 Cursor c = db.rawQuery("SELECT *" +" from " +
 TABLE_N_AND_A, null);

 return c;
}

Now, we add a searchName method, which has a String parameter for the name
the user wants to search for. It also returns Cursor, which will contain all the entries
that were found. Note that the SQL statement uses SELECT, FROM, and WHERE to
achieve this:

// Find a specific record
public Cursor searchName(String name) {
 String query = "SELECT " +
 TABLE_ROW_ID + ", " +
 TABLE_ROW_NAME +
 ", " + TABLE_ROW_AGE +
 " from " +
 TABLE_N_AND_A + " WHERE " +
 TABLE_ROW_NAME + " = '" + name + "';";

 Log.i("searchName() = ", query);

 Cursor c = db.rawQuery(query, null);

 return c;
}

Finally, for the DataManager class, we create an inner class that will be our
implementation of SQLiteOpenHelper. It is a barebones implementation, and over
the course of a few chapters, we will make a more advanced implementation that
also handles the task of upgrading the database for our Where it's snap app.

We have a constructor that receives a Context object, the database name, and the
database version. We will see how the database version is useful in Chapter 26,
Upgrading SQLite – Adding Locations and Maps.

We also override the onCreate method, which has the SQL statement that creates
our database table with the _ID, name, and age columns.

The onUpgrade method is left intentionally blank for this mini app.

Using SQLite Databases in Our Apps

[524]

Add the inner CustomSQLiteOpenHelper class to the DataManager class:

// This class is created when our DataManager is initialized
private class CustomSQLiteOpenHelper extends SQLiteOpenHelper {
 public CustomSQLiteOpenHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 }

 // This method only runs the first time the database is created
 @Override
 public void onCreate(SQLiteDatabase db) {

 // Create a table for photos and all their details
 String newTableQueryString = "create table "
 + TABLE_N_AND_A + " ("
 + TABLE_ROW_ID
 + " integer primary key autoincrement not null,"
 + TABLE_ROW_NAME
 + " text not null,"
 + TABLE_ROW_AGE
 + " text not null);";

 db.execSQL(newTableQueryString);

 }

 // This method only runs when we increment DB_VERSION
 // We will look at this in chapter 26
 @Override
 public void onUpgrade(SQLiteDatabase db,
 int oldVersion, int newVersion) {

 }

}

Now, we can add code to use our new DataManager class.

Coding MainActivity
Make MainActivity implement View.OnClickListener so that it can listen for
button clicks. Also, add the following members for each of the EditText and Button
widgets. Note also that we declare an object of the DataManager type.

Chapter 23

[525]

Amend the MainActivity class as we just discussed so that it matches the
following code:

public class MainActivity extends AppCompatActivity
 implements View.OnClickListener{

 // For all our buttons and edit text
 Button btnInsert;
 Button btnDelete;
 Button btnSelect;
 Button btnSearch;

 EditText editName;
 EditText editAge;
 EditText editDelete;
 EditText editSearch;

 // This is our DataManager instance
 DataManager dm;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
 …
 …

Now, we add code to onCreate that initializes DataManager (dm) by calling its
constructor, gets a reference to all the EditText and Button widgets in the layout,
and sets a listener for each of the buttons.

Add the highlighted code to the onCreate method:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 dm = new DataManager(this);

 // get a reference to the UI item
 btnInsert = (Button) findViewById(R.id.btnInsert);
 btnDelete = (Button) findViewById(R.id.btnDelete);
 btnSelect = (Button) findViewById(R.id.btnSelect);
 btnSearch = (Button) findViewById(R.id.btnSearch);

Using SQLite Databases in Our Apps

[526]

 editName = (EditText) findViewById(R.id.editName);
 editAge = (EditText) findViewById(R.id.editAge);
 editDelete = (EditText) findViewById(R.id.editDelete);
 editSearch = (EditText) findViewById(R.id.editSearch);

 // Register MainActivity as a listener
 btnSelect.setOnClickListener(this);
 btnInsert.setOnClickListener(this);
 btnDelete.setOnClickListener(this);
 btnSearch.setOnClickListener(this);
}

Now, add a method that will print out the contents of our Cursor returned by some
of our DataManager methods. The moveToNext method returns true or false
depending upon whether there is another row of data in Cursor. So, wrapping it as
the condition for a while statement will make sure that all the returned entries are
read and output to the logcat.

Add the showData method to MainActivity:

// Output the cursor contents to the log
public void showData(Cursor c){

 while (c.moveToNext()){
 Log.i(c.getString(1), c.getString(2));
 }
}

Now, we can implement the overridden onClick method to handle all the buttons.
Note how the R.id.btnSearch case of the switch statement calls the appropriate
method of the DataManager class with the appropriate EditText contents by
chaining the getText and toString methods directly within the showData method
call. The effect of this is to pass the returned Cursor object to the showData method
with only one line of code.

The R.id.btnInsert and R.id.btnDelete cases simply pass the contents of
the appropriate EditText widgets to the insert and delete methods of the
DataManager class respectively.

Add the onClick method to the MainActivity class:

@Override
public void onClick(View v){

 switch (v.getId()){
 case R.id.btnInsert:
 dm.insert(editName.getText().toString(),

Chapter 23

[527]

 editAge.getText().toString());

 break;

 case R.id.btnSelect:
 showData(dm.selectAll());
 break;

 case R.id.btnSearch:
 showData(dm.searchName(editSearch.getText().toString()));
 break;

 case R.id.btnDelete:
 dm.delete(editDelete.getText().toString());
 break;

 }

}

Let's take a look at the app in action.

Running the mini app
Add a few names and ages to the database by typing a name and an age followed by
tapping INSERT, as shown in the following screenshot:

Using SQLite Databases in Our Apps

[528]

After you have added a few names, try tapping the SELECT button and then check
the output in the logcat window:

Click on SEARCH, passing in the name you are searching for. Note that just the rows
matching the search term are returned:

Finally, type a name in EditText next to the DELETE button and then tap on the
DELETE button:

Now, click on SELECT and we can see that "bob" is no longer part of the database:

Let's review what we have done in this chapter.

Summary
We covered a lot in this chapter. You learned about databases and, in particular, the
database of Android apps, SQLite. We practiced the basics of communicating with a
database using the SQL language.

We saw how the Android API helps us use a SQLite database, and we implemented
our first working app with a database.

In the next chapter, we will use a more advanced DataManager class, and we will also
use it within the Where it's snap app to save all our user's titles, tags, and photos.

[529]

Adding a Database to
Where It's Snap

In this chapter, we will be entirely focused on using all we know about fragments,
interfaces, and SQLite in order to add significant functionality to Where it's Snap.

We will cover the following tasks:

• Building a new class to represent a photo
• Creating a DataManager class to handle our database, including a selection

of helper methods to make the appropriate queries
• Enabling the saving of photos into the database from the

FragmentCapture class
• Coding an interface to handle communications
• Coding TagsFragment to show a list of tags and sending a tag to

MainActivity when one is clicked
• Coding TitlesFragment to show a list of titles either based upon a specific

tag or the entirety of wis_tables_photos
• Coding the MainActivity class to handle the communications of the

fragments via the interface

As usual, the files for all of the above are in the download bundle in the Chapter
24/Where Its Snap 3 folder.

Adding a Database to Where It's Snap

[530]

The Photo class
The first new thing we need is a class to hold the data structure of a photo.

We will need the class to have four string members for the title and three tags. This
is quite straightforward. The photo itself, however, is worth further discussion. We
have seen in Chapter 22, Capturing Images, that we actually capture a bitmap from the
camera. It is possible to store images directly in a database, but we can probably be
more efficient than this while at the same time keeping our code a lot simpler.

When the camera app in an Android device takes a photo, it saves it in internal
storage already. If there was a way to refer to this image in storage, then we could
just store the location in our database and then load up the image from the regular
internal storage when we need it.

Such a location is known as a URI. In a somewhat simplified way, we can think of
a URI as a file path or address (like a web address) that points to a page, image, or
other resource type. There is even a Uri class in the Android API to make things
easier for us.

So, what exactly is a URI? URI stands for Uniform Resource
Identifier, and it is used to identify a resource in a computer
system or network. If you want to know the full details of how
URIs work (and you have a fair bit of spare time), then take
a look at this Wikipedia article: https://en.wikipedia.
org/wiki/Uniform_Resource_Identifier.

In addition to our member variables, we will also need to add getter and setter
methods so we can keep the members private and still offer access to them.

Create a new class, call it Photo, and add the following members and getter and
setter methods that we have discussed:

import android.net.Uri;

public class Photo {

 private String mTitle;
 private Uri mStorageLocation;
 private String mTag1;
 private String mTag2;
 private String mTag3;

 public String getTitle() {

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Chapter 24

[531]

 return mTitle;
 }

 public void setTitle(String title) {
 this.mTitle = title;
 }

 public Uri getStorageLocation() {
 return mStorageLocation;
 }

 public void setStorageLocation(Uri storageLocation) {
 this.mStorageLocation = storageLocation;
 }

 public String getTag1() {
 return mTag1;
 }

 public void setTag1(String tag1) {
 this.mTag1 = tag1;
 }

 public String getTag2() {
 return mTag2;
 }

 public void setTag2(String tag2) {
 this.mTag2 = tag2;
 }

 public String getTag3() {
 return mTag3;
 }

 public void setTag3(String tag3) {
 this.mTag3 = tag3;
 }
}

Now, we can get started on our DataManager class.

Adding a Database to Where It's Snap

[532]

Handling the SQLite database
Create a new class called DataManager. We need an SQLiteDatabase object and a
whole bunch of final string members for the table and column names.

All the code that we will add first to our DataManager is straightforward, but it is
worth pointing out that we will actually have two tables in this database. One called
wis_table_photos will have a column for each of the member variables of our
Photo class.

Another called wis_table_tags will have just two columns, autoincrement _ID
and a tag column.

The wis_table_photos table will have a row of data for each and every photo the
user takes. The tags column will only have a row for each new/unique tag that the
user enters. So, if the user has more than one photo with the "Barbados" or "2016" tag,
it will only appear once in the wis_table_tags table but will appear with each and
every photo that uses it in the wis_table_photos table.

This way, it will be possible to show the user a list of all the unique tags they have
added, and when they tap on a tag, it will present them with a list of all the photos
that have been tagged with this tag.

It would probably help clarify the usage of all the strings in the code that follow to
have a spreadsheet eye view to help visualize our two tables:

In the previous image, you can see that the wis_table_photos table has all the data
that the user might enter represented for each row. If you look at the next image,
(wis_table_tags) however, you can see that each tag is only stored once. How we
manage to insert data to achieve this and how we manage to select data will become
clear as we proceed.

Chapter 24

[533]

Remember from the previous chapter that we declare the member
public where it is useful to refer to them directly from another
class. They are also static because we do not need new instances
should we end up with more than one DatabaseManager instance.
You might be wondering where the MVC pattern and our separate
data layer that can only be instantiated once corresponds to this
DataManager class. It works because all our strings are static
and are therefore the same instance across multiple instances of
DataManager. When we call getWriteableDatabase, the OS
will always return the same database, so it is not possible that we
will ever end up with multiple out-of-sync databases, and the same
database is automatically accessible from any activity of our app.

Add the member variables we have just discussed that we will use to build our
database queries:

public class DataManager {

 // This is the actual database
 private SQLiteDatabase db;

 /*
 Next we have a public static final string for
 each row/table that we need to refer to both
 inside and outside this class
 */

 public static final String TABLE_ROW_ID = "_id";
 public static final String TABLE_ROW_TITLE = "image_title";
 public static final String TABLE_ROW_URI = "image_uri";

Adding a Database to Where It's Snap

[534]

 /*
 Next we have a private static final strings for
 each row/table that we need to refer to just
 inside this class
 */

 private static final String DB_NAME = "wis_db";
 private static final int DB_VERSION = 1;
 private static final String TABLE_PHOTOS = "wis_table_photos";
 private static final String TABLE_TAGS = "wis_table_tags";
 private static final String TABLE_ROW_TAG1 = "tag1";
 private static final String TABLE_ROW_TAG2 = "tag2";
 private static final String TABLE_ROW_TAG3 = "tag3";
 public static final String TABLE_ROW_TAG =
 "tag";// For the tags table

}

Now, let's add the constructor for our DataManager. It simply instantiates a
CustomSQLiteHelper that we will code soon and then uses it to initialize db, just as
we saw in the previous chapter.

Add the constructor to the DataManager class:

public DataManager(Context context) {
 // Create an instance of our internal
 //CustomSQLiteOpenHelper class
 CustomSQLiteOpenHelper helper =
 new CustomSQLiteOpenHelper(context);

 // Get a writable database
 db = helper.getWritableDatabase();
}

We will now be introduced to our first helper method called addPhoto. It takes a
Photo object parameter and then adds all the values as a new row using the getter
methods of the Photo class, among an INSERT query into the wis_table_photos table.

This next code is only the first part of the addPhoto method. We will look at the
second part next.

Add the addPhoto method to the DataManager class:

// Here are all our helper methods
public void addPhoto(Photo photo){

Chapter 24

[535]

 // Add all the details to the photos table
 String query = "INSERT INTO " + TABLE_PHOTOS + " (" +
 TABLE_ROW_TITLE + ", " +
 TABLE_ROW_URI + ", " +
 TABLE_ROW_TAG1 + ", " +
 TABLE_ROW_TAG2 + ", " +
 TABLE_ROW_TAG3 +
 ") " +
 "VALUES (" +
 "'" + photo.getTitle() + "'" + ", " +
 "'" + photo.getStorageLocation() + "'" + ", " +
 "'" + photo.getTag1() + "'" + ", " +
 "'" + photo.getTag2() + "'" + ", " +
 "'" + photo.getTag3() + "'" +
 ");";

 Log.i("addPhoto()", query);

 db.execSQL(query);

Next, still in addPhoto, we execute three queries, one for each tag, and INSERT them
into the wis_table_tags table, but notice the highlighted WHERE NOT EXISTS
clause in the SQL that we build. This ensures that we only add a tag if it has not
been added already.

Complete the addPhoto method by adding this code:

// Add any NEW tags to the tags table

 query = "INSERT INTO " + TABLE_TAGS + "(" +
 TABLE_ROW_TAG + ") " +
 "SELECT '" + photo.getTag1() + "' " +
 "WHERE NOT EXISTS (SELECT 1 FROM " +
 TABLE_TAGS +
 " WHERE " + TABLE_ROW_TAG + " = " +
 "'" + photo.getTag1() + "');";

 db.execSQL(query);

 query = "INSERT INTO " + TABLE_TAGS + "(" +
 TABLE_ROW_TAG + ") " +
 "SELECT '" + photo.getTag2() + "' " +
 "WHERE NOT EXISTS (SELECT 1 FROM " +
 TABLE_TAGS +
 " WHERE " + TABLE_ROW_TAG + " = " +

Adding a Database to Where It's Snap

[536]

 "'" + photo.getTag2() + "');";

 db.execSQL(query);

 query = "INSERT INTO " + TABLE_TAGS + "(" +
 TABLE_ROW_TAG + ") " +
 "SELECT '" + photo.getTag3() + "' " +
 "WHERE NOT EXISTS (SELECT 1 FROM " +
 TABLE_TAGS +
 " WHERE " + TABLE_ROW_TAG + " = " +
 "'" + photo.getTag3() + "');";

 db.execSQL(query);

}// End addPhoto

Now, we have a really simple query to get all the titles from the wis_table_photos
table. Note that we return Cursor, which contains the data from the query.

Add the getTitles method to the DataManager class:

public Cursor getTitles() {
 Cursor c = db.rawQuery("SELECT " + TABLE_ROW_ID + ",
 " + TABLE_ROW_TITLE + " from " + TABLE_PHOTOS, null);
 c.moveToFirst();

 return c;
}

Now we begin to see how we will selectively filter the titles we display to the user.
The getTitlesWithTag method returns Cursor with photo titles but only if they
contain a specific tag that was passed in to the method.

Add the getTitlesWithTag method to the DataManager class:

public Cursor getTitlesWithTag(String tag) {
 Cursor c = db.rawQuery("SELECT " + TABLE_ROW_ID + ", " +
 TABLE_ROW_TITLE + " from " +
 TABLE_PHOTOS + " WHERE " +
 TABLE_ROW_TAG1 + " = '" + tag + "' or " +
 TABLE_ROW_TAG2 + " = '" + tag + "' or " +
 TABLE_ROW_TAG3 + " = '" + tag + "';"
 , null);

 c.moveToFirst();

 return c;
}

Chapter 24

[537]

This method returns all the columns of a photo with a specific _id value.

Add the getPhoto method to the DataManager class:

public Cursor getPhoto(int id) {

 Cursor c = db.rawQuery("SELECT * from " +
 TABLE_PHOTOS +
 " WHERE " +
 TABLE_ROW_ID + " = " + id, null);

 c.moveToFirst();

 return c;
}

The next method returns all the tags, which is just what we will need for our
TagsFragment class.

Add the getTags method to the DataManager class:

public Cursor getTags(){
 Cursor c = db.rawQuery("SELECT " + TABLE_ROW_ID + ",
 " + TABLE_ROW_TAG + " from " + TABLE_TAGS, null);
 c.moveToFirst();

 return c;
}

Finally, we get to our inner class, CustomSQLiteOpenHelper, which extends
SQLiteOpenHelper. As in the last chapter, we have the same simple constructor,
but the onCreate method builds and executes two queries to create both of our
required tables.

The onUpgrade method will be left blank until Chapter 26, Upgrading SQLite – Adding
Locations and Maps.

Add the CustomSQLiteOpenHelper class as an inner class of DataManager:

// This class is created when our DataManager is initialized
private class CustomSQLiteOpenHelper extends SQLiteOpenHelper {
 public CustomSQLiteOpenHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 }

 // This method only runs the first time the database is created
 @Override

Adding a Database to Where It's Snap

[538]

 public void onCreate(SQLiteDatabase db) {

 // Create a table for photos and all their details
 String newTableQueryString = "create table "
 + TABLE_PHOTOS + " ("
 + TABLE_ROW_ID
 + " integer primary key autoincrement not null,"
 + TABLE_ROW_TITLE
 + " text not null,"
 + TABLE_ROW_URI
 + " text not null,"
 + TABLE_ROW_TAG1
 + " text not null,"
 + TABLE_ROW_TAG2
 + " text not null,"
 + TABLE_ROW_TAG3
 + " text not null" + ");";

 db.execSQL(newTableQueryString);

 // Create a separate table for tags
 newTableQueryString = "create table "
 + TABLE_TAGS + " ("
 + TABLE_ROW_ID
 + " integer primary key autoincrement not null,"
 + TABLE_ROW_TAG
 + " text not null" + ");";

 db.execSQL(newTableQueryString);
 }
 // This method only runs when we increment DB_VERSION
 @Override
 public void onUpgrade(SQLiteDatabase db,
 int oldVersion, int newVersion) {
 }
}

Now that we have implemented our DataManager class and all its helper methods,
we can put them to use and enhance the features of Where it's Snap.

Chapter 24

[539]

Saving a new photo from the capture
fragment
Open up the CaptureFragment.java file in the editor.

We need to add a new member variable for the CaptureFragment class to hold our
new DataManager class instance.

Add the new highlighted member variable to CaptureFragment, which we have
just discussed:

public class CaptureFragment extends Fragment{

 private static final int CAMERA_REQUEST = 123;
 private ImageView mImageView;

 // Where the captured image is stored
 private Uri mImageUri = Uri.EMPTY;

 // Where to save the image
 String mCurrentPhotoPath;

 // A reference to our database
 private DataManager mDataManager;

 @Override
 public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);

 }

Now, we can initialize the DataManager instance by adding this highlighted line of
code to the onCreate method in CaptureFragment:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mDataManager =
 new DataManager(getActivity()
 .getApplicationContext());
}

Adding a Database to Where It's Snap

[540]

Since our DataManager is coded and ready for use and we have an initialized instance
of it, we can go ahead and implement the SAVE button. We already have a reference
to all of the relevant EditText widgets as well as the Button widget via btnSave.

We can finish the job of saving our data in onCreateView by implementing an
anonymous class to handle the button click. Inside the onClick method, we step
through the following tasks:

• First, check that mImageUri has been initialized with if(mImageUri != null).
• Next, check that the mImageUri member is not empty with if (!mImageUri.

equals(Uri.EMPTY)).
• Assuming we have a photo to save, we enter the if block and declare a new

Photo object.
• Store the user's title by calling setTitle and passing in the contents of the

mEditTextTitle EditText widget.
• Store the URI by calling setStorageLocation and passing in mImageUri.
• Capture the user's values for each of the tags in three strings, and then use

the appropriate setters of the Photo class to store them in the Photo object.
• The last thing we do inside the if block is to use our DataManager instance

to call addPhoto, and of course, we pass in our just-constructed Photo
object. The DataManager class will add all the data into the required tables.

• At the end of the if block, we have an else block that delivers a pop-up
message to the user if he or she tries to save a photo that doesn't exist or
if it is successful.

Add the highlighted code in onCreateView, which we have just discussed, right
after the code that handles the CAPTURE button:

// Listen for clicks on the capture button
btnCapture.setOnClickListener(new View.OnClickListener() {
 ...
 ...
});// End capture button handling

// Listen for clicks on the save button
btnSave.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 if(mImageUri != null){
 if(!mImageUri.equals(Uri.EMPTY)) {
 // We have a photo to save

Chapter 24

[541]

 Photo photo = new Photo();
 photo.setTitle(mEditTextTitle.getText().toString());
 photo.setStorageLocation(mImageUri);

 // What is in the tags
 String tag1 = mEditTextTag1.getText().toString();
 String tag2 = mEditTextTag2.getText().toString();
 String tag3 = mEditTextTag3.getText().toString();

 // Assign the strings to the Photo object
 photo.setTag1(tag1);
 photo.setTag2(tag2);
 photo.setTag3(tag3);

 // Send the new object to our DataManager
 mDataManager.addPhoto(photo);
 Toast.makeText(getActivity(), "Saved", Toast.LENGTH_LONG).
 show();
 }else {
 // No image
 Toast.makeText(getActivity(), "No image to save", Toast.
 LENGTH_LONG).show();
 }
 }else {
 // Uri not initialized
 Log.e("Error ", "uri is null");
 }

 }
});

return view;
}// End onCreateView

We could run the app at this point and actually begin to save photos to our database.
The problem, of course, is that we don't yet have any way to see the list of available
tags, photo titles, or any of the photos themselves.

Before TitlesFragment can respond to clicks and show a photo, we need a fragment
to show those photos. So, let's code a fragment to view photos.

Adding a Database to Where It's Snap

[542]

Displaying a photo from the database
Let's start by building a simple layout that our soon-to-be-built fragment can use.

Preparing the View layout
Create a new layout by right-clicking on the layout folder and choosing New |
Resource layout file, naming it fragment_view, and left-clicking OK.

This image is what we are aiming for, but there is also an unseen ImageView
covering the entire layout:

To achieve this layout, add the following XML code to the fragment_view.xml file. I
have highlighted a few points worth noting that we will discuss:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ImageView

Chapter 24

[543]

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/imageView"
 android:layout_gravity="center_horizontal" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/show_map"
 android:id="@+id/buttonShowLocation"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:layout_marginBottom="35dp" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Large Text"
 android:id="@+id/textView"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="33dp" />

</RelativeLayout>

Notice that the ImageView widget's layout_width and layout_height properties
are set to match_parent to fill the screen.

Notice there is a button (buttonShowLocation) that uses a string resource to set
its text. This button is ready for Chapter 26, Upgrading SQLite – Adding Locations and
Maps, after we have learned to handle GPS locations and upgrade a database.

Also notice the id properties of the three widgets in order to better follow what
happens when we code our new Fragment class.

Coding the ViewFragment class
Create a new class called ViewFragment. Now, we need to add some members and
have our new class extend the Fragment class. We have a Cursor member ready
to use the data that we will grab from the database. We also have an ImageView
member, which, unsurprisingly, will be used to get a reference to the ImageView
widget in our layout.

Adding a Database to Where It's Snap

[544]

Amend the ViewFragment class to match the next code as we have just discussed:

public class ViewFragment extends Fragment {

 private Cursor mCursor;
 private ImageView mImageView;
}

Now, we continue by adding the overridden onCreate method. First, we declare and
initialize a new int variable called position from the Bundle passed into onCreate.
From the getInt method, we can see that we are getting some data that was loaded
as a key-value pair with a key of Position. Of course, we haven't written any code
to actually send this data yet, but we will later in the chapter.

Next, we declare and instantiate a DataManager object so we can talk to the database,
and then we initialize our Cursor member by calling the DataManager method
getPhoto and passing in the position variable, whose value we extracted from
Bundle a moment ago.

So now that we have Cursor with Photo in it, we can see how to display it, and then
we can see how we pass in the position.

Code the onCreate method in the ViewFragment class as we have just discussed:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Where is the photo object we want to show?
 int position = getArguments().getInt("Position");

 // Load the appropriate photo from db
 DataManager d = new DataManager
 (getActivity().getApplicationContext());
 mCursor = d.getPhoto(position);

}

As usual, when we want to initialize the view of a regular Fragment, we do so in the
onCreateView method. Here is how the next block of code works.

We inflate the view as we have done several times before. Then, we get a reference
to our TextView, Button, and ImageView widgets. We will not, however, be doing
anything with Button just yet.

Chapter 24

[545]

Then, we see how we access the data in Cursor to set TextView with the title of the
photo and ImageView with the image.

Notice that we can identify the correct column in the returned data (in Cursor) by using
the public static strings from our DataManager class. The DataManager.TABLE_
ROW_TITLE string is the column name for the photo's title, and the DataManager.
TABLE_ROW_URI string is, of course, the column name that holds the URI.

We can also see that Cursor has some useful methods that allow us to use the names
of the columns to extract the data. They are getString and getColumnIndex.

Add the onCreateView method we have just been talking about into the
ViewFragment class:

public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {

 View view = inflater.inflate(R.layout.fragment_view,
 container, false);
 TextView textView = (TextView)
 view.findViewById(R.id.textView);
 Button buttonShowLocation = (Button)
 view.findViewById(R.id.buttonShowLocation);

 // Set the text from the tile column of the data.
 textView.setText(mCursor.getString
 (mCursor.getColumnIndex(DataManager.TABLE_ROW_TITLE)));

 mImageView = (ImageView) view.findViewById(R.id.imageView);

 // Load the image into the TextView via the URI
 mImageView.setImageURI(Uri.parse(mCursor.getString
 (mCursor.getColumnIndex(DataManager.TABLE_ROW_URI))));

 return view;
}

Finally, for the ViewFragment class, we need to override the onDestroy method.
We do so to make sure that as the user views multiple images (which could be quite
large with high-quality cameras on devices these days), we call recycle on the
image we loaded with Uri and set the source of ImageView to null. This has the
effect of freeing up RAM memory and prevents the device from eventually running
out and crashing.

Adding a Database to Where It's Snap

[546]

Actually, the device probably won't run out of memory,
but the amount of memory the OS is prepared to allocate
for our app probably will.

Add the onDestroy method we have just discussed to the ViewFragment class:

public void onDestroy(){
 super.onDestroy();

 // Make sure we don't run out of memory
 BitmapDrawable bd = (BitmapDrawable) mImageView.getDrawable();
 bd.getBitmap().recycle();
 mImageView.setImageBitmap(null);
}

Now, the app has somewhere to show the photo connected to any titles that are
clicked on by the user. It will also need a way of communicating with our new
ViewFragment before it can do so. So, let's create an interface to do just that.

Coding the communications interface
We know that TitlesFragment needs a way to communicate with ViewFragment,
but also TagsFragment needs a way of telling TitlesFragment which tag it would
like to use for the criteria to search for database entries with the matching tag.

This same interface will handle all this work. MainActivity can then implement the
interface and handle the inter-fragment communication.

Create a new class called ActivityComs and code it into our interface by editing it to
exactly the code shown next:

public interface ActivityComs {

 void onTitlesListItemSelected(int pos);

 void onTagsListItemSelected(String tag);
}

We now have two methods we can use for communicating between our Fragment
classes and MainActivity. One (onTitlesListItemSelected) will pass in an int to
represent the _id of the row in our database of the required Photo object. The other
(onTagsListItemSelected) will pass a string that is the tag to be searched for and
matched against rows in the wis_table_photos table.

Chapter 24

[547]

We will handle this in three stages:

1. First, we will add the required code to TitlesFragment.
2. Next, we will add the code to TagsFragment.
3. Finally, we will tie the whole thing together and implement the interface in

MainActivity.

As we will be dipping in and out of existing methods as well as writing new ones,
if you get disoriented in any way, simply open up the relevant files in the Chapter
24/Where Its Snap 3 folder where you can see all the code we add in this chapter
complete in the appropriate places.

Coding TitlesFragment
We are really close to being able to actually show a photo in our Photos app. We
need to load a list of photo titles from our database into ListView, provided by
ListFragment, and handle what happens when the user clicks on a list item.

Some of the code in here won't make complete sense until we finish coding
MainActivity, which will, of course, handle the communication between
TitlesFragment and ViewFragment, as well as TagsFragment and TitlesFragment.

Let's add two new members to TitlesFragment—a Cursor member to load some
data into and an instance of our new interface.

Add the two highlighted member variables where shown:

public class TitlesFragment extends ListFragment {

 private Cursor mCursor;
 private ActivityComs mActivityComs;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }

Next, in the onCreate method, we do the following:

• Get a string to represent the tag from Bundle, using getArguments.
getString to search for in the database.

• Get an instance of DataManager.

Adding a Database to Where It's Snap

[548]

• If TitlesFragment receives a tag to search for, it will only show the photo
titles with that matching tag, but if it receives no tag, it will show all the titles.
With this in mind, the if block either loads the Cursor object up with data
using getTitles or getTitlesWithTag.

• Next, we create an instance of SimpleCursorAdapter. A cursor
adapter is just like an array adapter, except it uses a Cursor object.
SimpleCursorAdapter is perfect for displaying straightforward data in
a ListView from Cursor. The slightly intimidating list of arguments its
constructor takes is not as bad as it looks. The important arguments are a
layout for each list item for ListView. list_item_1 is provided by default;
we don't need to create it. Next is Cursor containing the data, following that
is the way to identify the data within the cursor, and we pass the column
name from the table.

• Then, we call setListAdapter to set our new SimpleCursorAdapter as the
adapter for ListView.

To learn more about SimpleCursorAdapter, check
out the Android developer site: http://developer.
android.com/reference/android/widget/
SimpleCursorAdapter.html.

Add the following highlighted code to onCreate that we have just discussed:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Get the tag to search for
 String tag = getArguments().getString("Tag");

 // Get an instance of DataManager
 DataManager d = new DataManager
 (getActivity().getApplicationContext());

 if(tag == "_NO_TAG"){
 // Get all the titles from the database
 mCursor = d.getTitles();
 }else{
 // Get all the titles with a specific related tag
 mCursor = d.getTitlesWithTag(tag);
 }

http://developer.android.com/reference/android/widget/SimpleCursorAdapter.html
http://developer.android.com/reference/android/widget/SimpleCursorAdapter.html
http://developer.android.com/reference/android/widget/SimpleCursorAdapter.html

Chapter 24

[549]

 // Create a new adapter
 SimpleCursorAdapter cursorAdapter =
 new SimpleCursorAdapter(getActivity(),
 android.R.layout.simple_list_item_1, mCursor,
 new String[] { DataManager.TABLE_ROW_TITLE },
 new int[] { android.R.id.text1 }, 0);

 // Attach the adapter to the ListView
 setListAdapter(cursorAdapter);
}

Now, we can handle what happens when the user taps on a title in ListView.
We implement the onListItemClick method, and all we need is the position
parameter of this method in order to do our work.

We use the moveToPosition method on our Cursor and pass in position to set the
cursor to the right place for the next line of code.

We then declare and initialize an int variable called dBID with the value of the _id
column from the database with this line of code:

int dBID = mCursor.getInt(
 mCursor.getColumnIndex(
 DataManager.TABLE_ROW_ID));

Finally, we can call the onTitlesListItemSelected method of our interface to pass
the appropriate _id value to MainActivity.

Add the onListItemClick method we have just discussed to TitlesFragment:

public void onListItemClick(ListView l, View v,
 int position, long id) {

 // Move the cursor to the clicked item in the list
 mCursor.moveToPosition(position);

 // What is the database _id of this item?
 int dBID = mCursor.getInt(
 mCursor.getColumnIndex(
 DataManager.TABLE_ROW_ID));

 // Use the interface to send the clicked _id
 mActivityComs.onTitlesListItemSelected(dBID);
}

Adding a Database to Where It's Snap

[550]

Of course, we haven't initialized our mActivityComs member yet, and we do so the
same way we did in Chapter 19, Using Multiple Fragments, and set it to null the same
way also.

Add the final two methods to achieve this at the appropriate times:

@Override
public void onAttach(Activity activity) {
 super.onAttach(activity);
 mActivityComs = (ActivityComs)activity;
}

@Override
public void onDetach() {
 super.onDetach();
 mActivityComs = null;
}

We can now code TagsFragment to communicate with TitlesFragment via
MainActivity.

Coding TagsFragment
All the TagsFragment class needs to do is display a list of tags from the
appropriate table and when the user clicks one, let MainActivity know
via the ActivityComs interface.

Add the ActivityComs interface as a new member variable as highlighted in the
following code:

public class TagsFragment extends ListFragment {

 private ActivityComs mActivityComs;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 private ActivityComs mActivityComs;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }
}

Chapter 24

[551]

As we have seen upon just coding TitlesFragment, the next code allows us to:

• Get access to the database
• Get the list of tags from wis_table_tags
• Set up SimpleCursorAdapter and bind it to ListView

Add the highlighted code we have just discussed to the onCreate method:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 DataManager d = new DataManager
 (getActivity().getApplicationContext());
 Cursor c = d.getTags();

 // Create a new adapter
 SimpleCursorAdapter cursorAdapter =
 new SimpleCursorAdapter(getActivity(),
 android.R.layout.simple_list_item_1, c,
 new String[] { DataManager.TABLE_ROW_TAG },
 new int[] { android.R.id.text1 }, 0);

 // Attach the Cursor to the adapter
 setListAdapter(cursorAdapter);
}

Now, to handle the touches. This code does the following:

• Retrieves a Cursor object from SimpleCursorAdapter by chaining
getAdapter and getCursor and then casting the result as a
SimpleCursorAdapter

• Creates a string based on the tag that was just clicked
• Passes the string to MainActivity using the onTagsListItemSelected

method of the interface

Add the onListItemClick method that we have discussed:

public void onListItemClick(ListView l, View v,
 int position, long id) {

 // What tag has just been clicked?
 Cursor c = ((SimpleCursorAdapter)l.getAdapter()).getCursor();
 c.moveToPosition(position);

Adding a Database to Where It's Snap

[552]

 String clickedTag = c.getString(1);
 // 1 is the position of the string
 Log.e("clickedTag = ", " " + clickedTag);

 mActivityComs.onTagsListItemSelected(clickedTag);
}

Now, we need to handle the creation and destruction of our ActivityComs instance
with the usual two methods, as shown next:

@Override
public void onAttach(Activity activity) {
 super.onAttach(activity);
 mActivityComs = (ActivityComs)activity;
}

@Override
public void onDetach() {
 super.onDetach();
 mActivityComs = null;
}

We are nearly there. Let's write some code in MainActivity.

Coding the fragment communications
in MainActivity
We just need to implement the ActivityComs interface and add an instance of our
DataManager class. Then, we'll handle the two methods of the interface, and we are
good to go.

Implement the interface and add an instance of DataManager as shown highlighted
in the next code:

public class MainActivity extends
 ActionBarActivity implements ActivityComs{

 private ListView mNavDrawerList;
 private DrawerLayout mDrawerLayout;
 private ArrayAdapter<String> mAdapter;
 private ActionBarDrawerToggle mDrawerToggle;
 private String mActivityTitle;

 public DataManager dataManager;

Chapter 24

[553]

Initialize the DataManager instance by adding the highlighted line of code
in onCreate:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 dataManager = new DataManager(getApplicationContext());

 // We will come back here in a minute!
 mNavDrawerList = (ListView)findViewById(R.id.navList);
 mDrawerLayout = (DrawerLayout)findViewById(R.id.drawerLayout);
 mActivityTitle = getTitle().toString();
 …

Now, we will code the onTagsListItemSelected method. Here, we put the passed
in string that represents a tag into Bundle and pass it in to the new instance of
TitlesFragment. We have seen already how TitlesFragment deals with this string.

Implement the required onTagsListItemSelected method of the interface
as discussed:

public void onTagsListItemSelected(String clickedTag){
 // We have just received a String for the TitlesFragment

 // Prepare a new Bundle
 Bundle args = new Bundle();

 // Pack the string into the Bundle
 args.putString("Tag", clickedTag);

 Create a new instance of TitlesFragment
 TitlesFragment fragment = new TitlesFragment();

 // Load the Bundle into the Fragment
 fragment.setArguments(args);

 // Start the fragment
 FragmentManager fragmentManager = getFragmentManager();
 fragmentManager.beginTransaction().replace
 (R.id.fragmentHolder, fragment, "TAGS").commit();

 // update selected item and title, then close the drawer
 mNavDrawerList.setItemChecked(1, true);

Adding a Database to Where It's Snap

[554]

 mNavDrawerList.setSelection(1);
 mDrawerLayout.closeDrawer(mNavDrawerList);

}

In the onTitlesListItemSelected method, we have received int, which represents
the _id of a row in the wis_table_photos table that needs to be shown to the user
in the ViewFragment.

The code adds int to Bundle and then adds Bundle to Fragment before
starting Fragment.

Implement the onTitlesListItemSelected method of the interface:

// Open ViewFragment with the photo indicated by position
public void onTitlesListItemSelected(int position) {

 // Load up the bundle with the row _id
 Bundle args = new Bundle();
 args.putInt("Position", position);

 // Create the fragment and add the bundle
 ViewFragment fragment = new ViewFragment();
 fragment.setArguments(args);

 // Start the fragment
 if (fragment != null) {
 FragmentManager fragmentManager = getFragmentManager();
 fragmentManager.beginTransaction().
 replace(R.id.fragmentHolder, fragment, "VIEW").commit();

 // update selected item and title, then close the drawer
 mNavDrawerList.setItemChecked(1, true);
 mNavDrawerList.setSelection(1);
 //setTitle(navMenuTitles[position]);
 mDrawerLayout.closeDrawer(mNavDrawerList);
 } else {
 // error in creating fragment
 Log.e("MainActivity", "Error in creating fragment");
 }

}

That was a code-heavy chapter, but now we have the pleasure of seeing our
app in action.

Chapter 24

[555]

Running the app so far
Add a selection of photos, tags, and titles to the database, and run your app. You will
see the following:

On the Tags screen, click on a tag to see a list of photo titles that contain that tag:

Adding a Database to Where It's Snap

[556]

Click on a title to see the photo in ViewFragment:

Summary
That is probably the most code-intensive chapter so far. It is possible that every
detail of how this works isn't totally clear. The way to make things more clear is to
build the project piece by piece. It might also help to refer back to Chapter 19, Using
Multiple Fragments, for a refresher on interfaces.

If there are a few cloudy parts to your knowledge, this doesn't have to stop you from
moving on because the rest of the book will still provide lots more Android API
goodness that is not dependent on having mastered this chapter.

Next, we will look at how to integrate GPS locations and Google Maps into our apps.

[557]

Integrating Google Maps and
GPS Locations

In this chapter, we are going global and even briefly into space. We will see how
the Android API works with the GNSS (Global Navigation Satellite System) to
provide location data. We can then use this data to plot a position on Google Maps.

In this chapter, we will:

• Learn the very basics of GPS
• Build a GPS mini app
• Learn about Google Maps
• Connect with the Google Maps server to get map data

Let's start with a quick overview of GPS.

Global Positioning System
GPS is one of those technologies that never fails to amaze you when you sit and
think about how it works. When you also consider that a phone you can put in your
pocket is capable of using it too, it is even more mind-numbingly extraordinary.

Warning: If you were born after 1990, you might not
understand the previous paragraph and probably think
that GPS is quite dull.

Integrating Google Maps and GPS Locations

[558]

The system works with 27 satellites in space known as the GNSS. Out of these, 24 of
the satellites are active and three are a backup. Each satellite orbits the Earth every 12
hours constantly broadcasting the changing position data.

By performing calculations on data from at least three of these satellites, our
device can provide us with a location in the world in longitude and latitude.
Oversimplifying a little (ok, oversimplifying quite a lot), these are the degrees
from the poles and equator. They are extremely precise values, as we will see, and
therefore accurate potentially to five meters.

As we already know from Chapter 1, The First App, all the complexity is hidden from
us by the Android API, and we can now build a super-simple app to see GPS in
action.

Where in the world – the GPS mini app
Create a new project and call it Where in the world.

To handle Marshmallow runtime permissions, as discussed in Chapter 11, Widget
Mania in the Android permissions and M arshmallows section, we need to set the target
API to 22.

To do this, select Android from the drop-down list at the top of the project explorer.
Now, double-click on the build.gradle (module: app) option from near the bottom of
the project explorer window.

Make sure to change the highlighted line of code too so that targetSdkVersion is
set to 22, as shown in this code snippet:

defaultConfig {
 applicationId "com.gamecodeschool.whereitssnap3"
 minSdkVersion 15
 targetSdkVersion 22
 versionCode 1
 versionName "1.0"
}

Now, we can add the required permissions to the AndroidManifest.xml file.

Chapter 25

[559]

Open the file and add the three permissions as highlighted in the next code:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="com.gamecodeschool.whereintheworld" >
 <uses-permission android﹕name=
 "android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android﹕name=
 "android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android﹕name="android.permission.INTERNET" />
 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Now, we can get on with the app for real.

Where in the world – implementing a
simple layout
To create the layout, copy and paste the following XML code into layout_main.xml:

<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <TextView
 android:id="@+id/txtLat"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Integrating Google Maps and GPS Locations

[560]

 android:text="Lat ?"
 android:textSize="40dip"
 android:layout_gravity="center_horizontal"
 android:layout_marginTop="20dp">
 </TextView>

 <TextView
 android:id="@+id/txtLong"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Long ?"
 android:textSize="40dip"
 android:layout_gravity="center_horizontal"
 android:layout_marginTop="100dp">
 </TextView>

 <TextView
 android:id="@+id/txtSource"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Source ?"
 android:textSize="40dip"
 android:layout_gravity="center_horizontal"
 android:layout_marginTop="100dp">
 </TextView>

</LinearLayout>

As you can see, the layout is just three TextView widgets with their id properties set
to txtLat, txtLong, txtSource respectively from top to bottom. The result is shown
in the next screenshot:

Now, let's add some Java to MainActivity.java.

Chapter 25

[561]

Coding the Where in the world mini app
Most of the functionality we require is provided by the LocationListener interface
and its methods. Make MainActivity implement LocationListener and add
the member variables for our UI, a String, and a new class, LocationManager, as
highlighted in this code:

public class MainActivity extends
 Activity implements LocationListener {

 private TextView txtLat;
 private TextView txtLong;
 private TextView txtSource;
 private LocationManager locationManager;
 private String provider;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 }
…

Now, in onCreate, we can perform the following tasks:

• Get a reference to all the TextView widgets in the UI
• Initialize LocationManager by calling getSystemService and casting the

result accordingly
• Declare and initialize a Criteria instance
• Initialize our member String (provider) by calling the locationManager.

getBestProvider method
• Declare and initialize a Location object by calling getLastKnownLocation

on our LocationManager object
• Finally, after checking whether the location reference is not null, set the

text on the txtSource widget and call onLocationChanged

Add the code that we just discussed into the onCreate method, as shown in the next
code snippet:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

Integrating Google Maps and GPS Locations

[562]

 txtLat = (TextView) findViewById(R.id.txtLat);
 txtLong = (TextView) findViewById(R.id.txtLong);
 txtSource = (TextView) findViewById(R.id.txtSource);

 // Initialize locationManager
 locationManager = (LocationManager)
 getSystemService(Context.LOCATION_SERVICE);

 Criteria criteria = new Criteria();
 provider = locationManager.getBestProvider(criteria, false);
 Location location = locationManager.
 getLastKnownLocation(provider);

 // Initialize the location
 if (location != null) {
 txtSource.setText("Source = " + provider);
 onLocationChanged(location);
 }
}

Now, we start and stop listening for GPS location updates by calling
requestLocationUpdates in onResume and calling removeUpdates in onPause.

The requestLocationUpdates method takes four arguments. The first is the
provider that was established and saved in our provider variable. The second is the
minimum number of milliseconds between updates, and the third is the minimum
change in location in meters. So, the user only has to move slightly to prompt
another update as we pass in 1 meter. The final argument needs to be a reference to
LocationListener. As our MainActivity class implements LocationListener, it
is indeed LocationListener, so we pass in this.

Now, whenever there are GPS updates, they will be sent to MainActivity, and we
will implement all the necessary methods in a minute.

Add the two overridden methods that we just discussed:

// Start updates when app starts/resumes
@Override
protected void onResume() {
 super.onResume();
 locationManager.requestLocationUpdates
 (provider, 500, 1, this);
}

// pause the location manager when app is paused/stopped

Chapter 25

[563]

@Override
protected void onPause() {
 super.onPause();
 locationManager.removeUpdates(this);
}

Now, all we need to do is add the required methods of the LocationListener
interface.

In onLocationChanged, we get the latitude and longitude by calling getLatitude and
getLongitude. Note that we store the result in a variable of the double type, which is
just what we need for very precise fractions. Then, we update our TextView widgets.

In onStatusChanged, onProviderEnabled, and onProviderDisabled, we update
the TextView widget that displays our provider.

Add the LocationListener methods that we just discussed:

@Override
public void onLocationChanged(Location location) {
 double lat = location.getLatitude();
 double lng = location.getLongitude();
 txtLat.setText(String.valueOf(lat));
 txtLong.setText(String.valueOf(lng));
 txtSource.setText("Source = " + provider);
}

@Override
public void onStatusChanged(String provider,
 int status, Bundle extras) {
 txtSource.setText("Source = " + provider);

}

@Override
public void onProviderEnabled(String provider) {
 txtSource.setText("Source = " + provider);

}

@Override
public void onProviderDisabled(String provider) {
 txtSource.setText("Source = " + provider);
}

We are now ready to test the app.

Integrating Google Maps and GPS Locations

[564]

Running the Where in the world mini app
If GPS is enabled and has a connection, you will see the precise details of where you are;
otherwise, the source for the location could be your wireless network or your mobile
network. The former will be disconnected when you move too far away, and the latter
could be a very long way off. Mine was around 60 miles off with the GPS switched off.

If you have a connection and walk around a bit, you will see the values of latitude
and longitude change.

Of course, in real life, a bunch of numbers isn't especially helpful when you're
trying to find your way around. It would be better if we could plot our GPS
location on a map.

The Google Maps mini app
Create a new project and call it Simple Map. As we will be using a fairly new API,
on the Target Android Devices screen, select API 19 Android 4.4(KitKat) in the
Minimum SDK field. Also, on the Add an Activity to mobile screen, select the Google
Maps Activity option. We will see that this will save us some work as well as provide
us with some helpful information to get our app up and running with less complexity.

Of course, you will also need a device with Android 4.4 or
a later version to run this mini app. Furthermore, this app
won't run on an emulator.

There are a couple of ways to use Google Maps. We can use an Intent to open the
Google Maps app a bit like we did with the camera app, or we can connect directly to
the Google Map's servers, which gives us the flexibility of making a better featured app.

Chapter 25

[565]

We are going to use the second method that we discussed to get map data on our
app by directly connecting to Google Map's servers. We will use the simpler, but less
flexible, method via an Intent and the Google Maps app when we enhance the Where
it's snap app in the next chapter.

So, how do we connect to the Google Maps servers? It has to be complicated.
Fortunately not; as we have come to expect, there are a couple of classes to handle
all the hard stuff for us. There is a little bit of work involved before we can get
coding, however.

Preparing to connect to Google Maps
There are two main stages to get started. First we will see how to get an API key that
our app will use to communicate with the servers and second we must make the app.

First, let's get an API key.

Acquiring an API key
To get an API key, you first need a Google account. If you use Gmail or Google+,
then you already have one. If not, you can get one for free at https//accounts.
google.com.

In the values folder of the project explorer, find the google_maps_api.xml file that
Android Studio created for you. It might already be open in the editor.

In this file, there is a link to the Google Developers Console website where we
obtain our API key. Android Studio has been very helpful as it generated this link.
More than this, within the link, all the details about our app that we would otherwise
have to search for and that are required to obtain the key, are encoded. The location
of the link within the file is highlighted in the following screenshot. I have obscured
a few details as they are specific to my account. Yours will be in exactly the same
place, but with different specific values:

https//accounts.google.com
https//accounts.google.com

Integrating Google Maps and GPS Locations

[566]

Copy the link from your google_maps_api.xml file identified in the previous
screenshot and paste it into your web browser. You will see this next screen then.
Agree with the terms of service and click on Agree and continue:

You will now see this next screen. Click on Go to credentials:

Chapter 25

[567]

Now, click on the Create button as shown in the next screenshot:

You will be shown your new API key in a pop-up window, as shown in
this screenshot:

Integrating Google Maps and GPS Locations

[568]

Copy the API key into the <string> element in the google_maps_api.xml file, as
shown in the next screenshot:

You can always get the key again by logging into your developer console and
navigating to APIs and auth | Credentials from the left-hand side main menu.

Now that we have an API key, we just need to check whether we have the latest APIs
installed and ready for our code to use.

Installing the Google Play services API
From the Android Studio menu, navigate to Tools | Android | SDK Manager. Click
on the SDK Tools tab as indicated in the next screenshot:

Chapter 25

[569]

Find the line that starts with Google Play Services. If the checkbox by this line is
empty, then it needs to be installed. If it has a dash, then it needs updating. If it has a
tick, then you are good to skip to the section titled Coding the maps_activity layout.

If you have a blank checkbox or a dash, then click on the checkbox until it has a
green tick in it, as shown in this figure:

Now, click on OK. Next, you will be prompted for a confirmation in the Confirm
Change pop-up window:

Click on OK and wait for the downloading and installation to complete.

Integrating Google Maps and GPS Locations

[570]

Coding the maps_activity layout
Edit the maps_activity.xml layout file so that it is exactly the same as this
code snippet:

<fragment xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/map"
 tools:context=".MapsActivity"
 android:name="com.google.android.gms.maps.SupportMapFragment" />

The preceding code snippet is actually Fragment with an id property of map.

Coding MapsActivity
As we need to be sure that we've imported exactly the right classes, amend your
imports to be the same as the next code and create a new SupportMapFragment,
as shown in the next code snippet. Also, note that the code already implements
OnMapReadyCallback:

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;
import com.google.android.gms.maps.CameraUpdateFactory;
import com.google.android.gms.maps.GoogleMap;
import com.google.android.gms.maps.OnMapReadyCallback;
import com.google.android.gms.maps.SupportMapFragment;
import com.google.android.gms.maps.model.LatLng;
import com.google.android.gms.maps.model.MarkerOptions;

public class MapsActivity extends
 FragmentActivity implements OnMapReadyCallback {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_maps);
 SupportMapFragment mapFragment =
 (SupportMapFragment) getSupportFragmentManager()
 .findFragmentById(R.id.map);
 mapFragment.getMapAsync(this);

 }

Now, in the onMapReady method, we will put a pin at Silicon Valley, California.

Chapter 25

[571]

For this, we use a LatLng object that holds both a latitude and longitude, and we
pass the coordinates of Silicon Valley into the LatLng constructor.

Next, we call the addMarker method to add a marker to that location and then the
moveCamera method to change the view to make the marker central on the screen:

@Override
public void onMapReady(GoogleMap map) {
 // Add a marker in Silicon Valley
 // 37.3876° N, 123.0575° W
 LatLng siliconValley = new LatLng(37.3876,238.0575);
 map.addMarker(new MarkerOptions().position
 (siliconValley).title("Silicon Valley"));
 map.moveCamera(CameraUpdateFactory.newLatLng(siliconValley));
}

The app will now connect to the Google servers and get the required map data.

Running the Simple Map app
Remember to run the app on a real device with Android 4.4 or a later version. In
addition, your device's Google apps will need to be up-to-date for this app to run.
Here is a screenshot from a Samsung Galaxy S4 phone:

Integrating Google Maps and GPS Locations

[572]

Summary
It is true that the Maps API has a lot more to offer than we have had room to explore
here. It is also true that once you are connected to the Google servers and have
SupportMapFragment and its map object, you can quickly do more.

Take a look at the Google Maps page on the Google developer website at
https://developers.google.com/maps/documentation/android-api/ and
check how to add some more functionality of your own.

In the next chapter, we will do a bit more location and map coding and at the same
time learn how to upgrade/add features to our SQLite database, even after the app
has been published.

https://developers.google.com/maps/documentation/android-api/

[573]

Upgrading SQLite – Adding
Locations and Maps

Now that we know how GPS and Google Maps work together, we will look at
another approach to using them. To achieve this, we will need to make minor
modifications throughout the app, but we will see how to do this and still allow the
existing users to keep their data.

In this chapter, we will:

• Update our database code, which will result in the users of our app getting
an updated database

• Add code to the Photo class to handle location information about where in
the world a photo was taken

• Upgrade the code in CaptureFragment and ViewFragment to give the
functionality we are aiming for

Adding locations and maps to Where
it's Snap
We want to add a feature to our app where the user can click on the SHOW MAP
button while viewing a photo, and the app will then show a map with the location of
where the photo was taken in the world.

We have a good insight into this already from the previous chapter, when we viewed
a specific GPS location on Google Maps.

Upgrading SQLite – Adding Locations and Maps

[574]

The functionality we need to add and the issues we need to overcome are as follows:

• To capture and store the location each time a photo is taken
• When the SHOW MAP button is clicked on, we launch a map screen of

that location
• Change the Photo class and database structures to store GPS locations
• Modify DataManager and helper methods to store and retrieve the extra

bit of data
• Add the Google Maps functionality to the SHOW MAP button

Initially, in the context of simply developing an app, this might seem
straightforward. Now, imagine that our app is already published. We have a million
users with lots of photos already stored in their database. If we simply update
our app with new helper methods and a new database structure that holds GPS
locations, then all the users' existing data will be lost.

Fortunately, SQLite and the supporting Android API are designed around this
problem. What we will do now is we will step through and update the Where
it's Snap database, Photo class, and helper methods and we will add the map
functionality as well.

If you were adding features to an unreleased app, you could
simply update the database structure, the Photo class, and
so on. We are inventing this problem for ourselves just for
the sake of learning about this real-world situation.

Updating the database
We need to update the database, not delete the existing one and create a new one.

We have two scenarios to deal with:

• The existing users of our app need an update (not replacement) to their
existing database so that they can keep all their current data

• New users installing our app for the first time need the new database

To cater for the first scenario, the SQL keyword we need is ALTER. Also, we need to
put our code and SQL into the onUpgrade method of the CustomSQLiteOpenHelper
class in our DataManager class.

Chapter 26

[575]

How will we trigger the upgrade in devices that already have the app installed? All
we need to do is increment the version of the database. In our case, this is held in
the DB_VERSION int. Each time an instance of the CustomSQLiteOpenHelper class
is instantiated, it checks the version held in the DB_VERSION int against the actual
version of the current database on the device. The point at which this check occurs is
when we call the super class constructor from our constructor, which is highlighted
in the next code snippet:

public CustomSQLiteOpenHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
}

This code is already part of our app. All we need to do to get started is increment
the version.

Now that we know what we need to do, we can go ahead and update the database
structure (for new and existing users), increment the database version, and add code
in onUpgrade (for the existing users).

Adding member variables to represent location data
First, add two more public static final String variables to our DataManager
class so that they represent our new fields, as highlighted in the next code:

public static final String TABLE_ROW_ID = "_id";
public static final String TABLE_ROW_TITLE = "image_title";
public static final String TABLE_ROW_URI = "image_uri";

// New with version 2
public static final String TABLE_ROW_LOCATION_LAT = "gps_location_
lat";
public static final String TABLE_ROW_LOCATION_LONG = "gps_location_
long";

/*
 Next we have a private static final strings for
 each row/table that we need to refer to just
 inside this class
*/…

Upgrading SQLite – Adding Locations and Maps

[576]

Updating the database version
The next step will cause the onUpgrade method to be called for any users whose
current database is at version 1. Edit the value of DB_VERSION in the DataManager
class, as highlighted in the following code:

/*
 Next we have a private static final strings for
 each row/table that we need to refer to just
 inside this class
*/

private static final String DB_NAME = "wis_db";
private static final int DB_VERSION = 2;
private static final String TABLE_PHOTOS = "wis_table_photos";
private static final String TABLE_TAGS = "wis_table_tags";
private static final String TABLE_ROW_TAG1 = "tag1";
private static final String TABLE_ROW_TAG2 = "tag2";
private static final String TABLE_ROW_TAG3 = "tag3";
…

Adding code in onUpgrade to upgrade the database
for existing users
Now, we can add code to execute the altered SQL in the onUpgrade method. In the
onUpgrade method, we add code that uses ALTER in two separate queries, uses our
two new Strings, and adds in the columns to the structure. Remember that this
code only runs when the database on the device of the user has a version number
lower than that held in DB_VERSION. In the last step, we incremented DB_VERSION, so
this next method will run once for all existing users.

Add the code that we just discussed to the onUpgrade method:

// This method only runs when we increment DB_VERSION
@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int
newVersion) {

 // Update for version 2
 String addLongColumn = "ALTER TABLE " +
 TABLE_PHOTOS +
 " ADD " +
 TABLE_ROW_LOCATION_LONG +
 " real;";

Chapter 26

[577]

 db.execSQL(addLongColumn);

 String addLatColumn = "ALTER TABLE " +
 TABLE_PHOTOS + " ADD " +
 TABLE_ROW_LOCATION_LAT +
 " real;";

 db.execSQL(addLatColumn);

}

Updating the database creation code in onCreate
for new users
Of course, some users will be completely new to our app and may have never used
it when the database was at version 1. When they install our app for the first time,
onUpgrade won't run, so we need to alter the code that creates the database to add
the extra fields there as well.

We simply modify our create table statement in the overridden onCreate method
of our SQLiteOpenHelper class and add in the two new real columns.

Amend the code in onCreate that we just discussed to be the same as this next code:

// This method only runs the first time the database is created
@Override
public void onCreate(SQLiteDatabase db) {

 // Create a table for photos and all their details
 String newTableQueryString = "create table "
 + TABLE_PHOTOS + " ("
 + TABLE_ROW_ID
 + " integer primary key autoincrement not null,"
 + TABLE_ROW_TITLE
 + " text not null,"
 + TABLE_ROW_URI
 + " text not null,"
 + TABLE_ROW_LOCATION_LAT
 + " real,"
 + TABLE_ROW_LOCATION_LONG
 + " real,"
 + TABLE_ROW_TAG1
 + " text not null,"
 + TABLE_ROW_TAG2

Upgrading SQLite – Adding Locations and Maps

[578]

 + " text not null,"
 + TABLE_ROW_TAG3
 + " text not null" + ");";

 db.execSQL(newTableQueryString);

 // Create a separate table for tags
 newTableQueryString = "create table "
 + TABLE_TAGS + " ("
 + TABLE_ROW_ID
 + " integer primary key autoincrement not null,"
 + TABLE_ROW_TAG
 + " text not null" + ");";

 db.execSQL(newTableQueryString);
}

Updating the addPhoto method to handle GPS
coordinates
Now, we need to make the following minor changes to our helper method that stores
a photo to make sure that it handles the two extra columns.

Amend the addPhoto helper method as shown in the following code:

// Here are all our helper methods
public void addPhoto(Photo photo){

 // Add all the details to the photos table
 String query = "INSERT INTO " + TABLE_PHOTOS + " (" +
 TABLE_ROW_TITLE + ", " +
 TABLE_ROW_URI + ", " +
 TABLE_ROW_LOCATION_LAT + ", " +
 TABLE_ROW_LOCATION_LONG + ", " +
 TABLE_ROW_TAG1 + ", " +
 TABLE_ROW_TAG2 + ", " +
 TABLE_ROW_TAG3 +
 ") " +
 "VALUES (" +
 "'" + photo.getTitle() + "'" + ", " +
 "'" + photo.getStorageLocation() + "'" + ", " +
 photo.getGpsLocation().getLatitude() + ", " +
 photo.getGpsLocation().getLongitude() + ", " +
 "'" + photo.getTag1() + "'" + ", " +

Chapter 26

[579]

 "'" + photo.getTag2() + "'" + ", " +
 "'" + photo.getTag3() + "'" +
 ");";

 Log.i("addPhoto()", query);

 db.execSQL(query);

 // Add any NEW tags to the tags table
…
…

That's all the changes that are needed for the DataManager class.

Updating the Photo class
We need to add one new member as well as a getter and setter method into the
Photo class. The new member is of the type Location that stores both the latitude
and longitude. Add the highlighted part of the next code:

private String mTitle;
private Uri mStorageLocation;
private Location mGpsLocation;
private String mTag1;
private String mTag2;
private String mTag3;

public Location getGpsLocation() {
 return mGpsLocation;
}

public void setGpsLocation(Location mGpsLocation) {
 this.mGpsLocation = mGpsLocation;
}

public String getTitle() {
 return mTitle;
}
…
…

The updated Photo class is ready for use.

Upgrading SQLite – Adding Locations and Maps

[580]

Updating CaptureFragment
This will be a breeze because we have already seen most of the code that we need in
the previous chapter.

Make CaptureFragment implement LocationListener and add the highlighted
member variables:

public class CaptureFragment extends Fragment
 implements LocationListener {

 private static final int CAMERA_REQUEST = 123;
 private ImageView mImageView;

 // The filepath for the photo
 String mCurrentPhotoPath;

 // Where the captured image is stored
 private Uri mImageUri = Uri.EMPTY;

 // A reference to our database
 private DataManager mDataManager;

 // For the Location
 private Location mLocation = new Location("");
 private LocationManager mLocationManager;
 private String mProvider;

In the onCreate method, let's get the location in the usual way. Add the highlighted
code to find it:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mDataManager = new DataManager
 (getActivity().getApplicationContext());

 // Initialize mLocationManager
 mLocationManager = (LocationManager)
 getActivity().getSystemService(Context.LOCATION_SERVICE);
 Criteria criteria = new Criteria();
 mProvider = mLocationManager.getBestProvider(criteria, false);
}

Chapter 26

[581]

Now, we can update the class that listens for clicks on the SAVE button in the
onCreateView method to use our new setter method in the Photo class, as shown
in the following code:

// Listen for clicks on the save button
btnSave.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 if(mImageUri != null){
 if(!mImageUri.equals(Uri.EMPTY)) {

 // We have a photo to save

 Photo photo = new Photo();
 photo.setTitle(mEditTextTitle.getText().toString());
 photo.setStorageLocation(mImageUri);

 // Set the current GPS location
 photo.setGpsLocation(mLocation);

 // What is in the tags
 String tag1 = mEditTextTag1.getText().toString();
 String tag2 = mEditTextTag2.getText().toString();
 String tag3 = mEditTextTag3.getText().toString();

 // Assign the strings to the Photo object
 photo.setTag1(tag1);
 photo.setTag2(tag2);
 photo.setTag3(tag3);

 // Send the new object to our DataManager
 mDataManager.addPhoto(photo);
 Toast.makeText(getActivity(),
 "Saved", Toast.LENGTH_LONG).show();
 }else {
 // No image
 Toast.makeText(getActivity(),
 "No image to save", Toast.LENGTH_LONG).show();
 }
 }else {
 // No image
 Toast.makeText(getActivity(),
 "No image to save", Toast.LENGTH_LONG).show();
 }
 }
});

Upgrading SQLite – Adding Locations and Maps

[582]

And of course, we must override the necessary methods of the LocationListener
interface. We don't use all these next three methods, but we must still override
them as this is required by the interface. Add the following methods to the
CaptureFragment class:

@Override
public void onLocationChanged(Location location) {
 // Update the location if it changed
 mLocation = location;
}

@Override
public void onStatusChanged(String provider,
 int status, Bundle extras) {

}

@Override
public void onProviderEnabled(String provider) {

}

@Override
public void onProviderDisabled(String provider) {

}

Just as we did in the Where in the World mini app, we must start and stop the updates
in the onResume and onPause methods. If we don't call requestLocationUpdates,
then we will never get any updates, and if we don't call removeUpdates, the device
will go on communicating and receiving updates even when our Activity has ended:

// Start updates when app starts/resumes
@Override
public void onResume() {
 super.onResume();

 mLocationManager.requestLocationUpdates
 (mProvider, 500, 1, this);

}

// pause the location manager when app is paused/stopped
@Override

Chapter 26

[583]

public void onPause() {
 super.onPause();

 mLocationManager.removeUpdates(this);
}

That's the CaptureFragment class ready to go.

Updating ViewFragment
Now, let's move on to ViewFragment. We will be using an Intent class to launch the
built-in Google Maps app but with a pin to mark the location the photo was taken at.

The GPS location is already in the Photo object and we just need to do the following:

• Capture the latitude and longitude in Double variables
• Build a String from these values that will represent the URI that we need to

create the Intent object
• Create the Intent class
• Start a Google Maps Activity passing in the Intent class

Of course, all this takes place inside the class that handles the button clicks for
SHOW MAP.

Add the highlighted code that we just discussed to handle what happens when the
user clicks on the SHOW MAP button:

public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {

 View view = inflater.inflate(R.layout.fragment_view, container,
false);
 TextView textView = (TextView) view.findViewById(R.id.textView);
 Button buttonShowLocation = (Button) view.findViewById(R.
id.buttonShowLocation);

 textView.setText(mCursor.getString(mCursor.
getColumnIndex(DataManager.TABLE_ROW_TITLE)));

 mImageView = (ImageView) view.findViewById(R.id.imageView);
 mImageView.setImageURI(Uri.parse(mCursor.getString(mCursor.
getColumnIndex(DataManager.TABLE_ROW_URI))));

Upgrading SQLite – Adding Locations and Maps

[584]

 buttonShowLocation.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {

 double latitude = Double.valueOf(mCursor.getString
 (mCursor.getColumnIndex(DataManager.
 TABLE_ROW_LOCATION_LAT)));
double longitude = Double.valueOf(mCursor.getString
 (mCursor.getColumnIndex(DataManager.
 TABLE_ROW_LOCATION_LONG)));

// Create a URI from the latitude and longitude
String uri = String.format(Locale.ENGLISH,
 "geo﹕%f,%f", latitude, longitude);

 // Create a Google maps intent
 Intent intent = new Intent(Intent.ACTION_VIEW, Uri.parse(uri));

 // Start the maps activity
 getActivity().startActivity(intent);
 }
 });

 return view;
}

Adding location permissions
The last thing to do before we can try out our near-complete Where it's Snap app is
to add the permissions that let us use the device to get the GPS coordinates.

These permissions will work fine with Android 6 (Marshmallow)
because of the way we configured our project back in Chapter 21,
Navigation Drawer and Where It's Snap. If you want a reminder
about the new Android permissions in Marshmallow, refer
to Chapter 11, Widget Mania, which was the first time we used
permissions in this book.

Chapter 26

[585]

Add the highlighted permissions into the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="com.gamecodeschool.whereitsapp" >

 <uses-permission android﹕name=
 "android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android﹕name=
 "android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android﹕name=
 "android.permission.INTERNET" />

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

We can now run our app.

Upgrading SQLite – Adding Locations and Maps

[586]

Testing the new map feature
Run the Where it's Snap app, tap on the Capture button, and take a picture. Then,
save the picture. Now, navigate back to that picture either by its title or tag and title.
Tap on the SHOW MAP button:

Summary
We are almost done with the Where it's Snap app. In this chapter, we added the
locations and maps functionality. We used the Intent class to open the Google Maps
app. This made our code simpler and we didn't need to connect to the Google servers
(directly) either. Another advantage of this approach is that we didn't have to set the
minimum OS version to version 4.4, and therefore, our app caters for a wider range
of Android devices.

The final phase for this app will be to make it accessible to users who don't speak
English. In the next chapter, we will build a simple app to experiment with adding
multiple languages and then we will use what we've learned to make Where it's
Snap in Spanish.

[587]

Going Local – Hola!
This chapter is short and simple, but here you will learn to make your app accessible
to millions of potential users. In this chapter, we will see how to add additional
languages. This is made really easy because we have been using String resources for
the text in our app.

In this chapter, we will:

• Learn the basics by building a very simple app that uses English, Spanish,
and French

• Add Spanish to the Where it's Snap app by adding a single text file

The Localization mini app
Create a new project and call it Localization. Keep all the project settings at their
default values. We don't need to do any Java coding for this project.

Preparing the layout
Edit the activity_main layout file by copying and pasting the following code to
replace the autogenerated code:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity">

Going Local – Hola!

[588]

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="@string/movie_title"
 android:id="@+id/textView"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:text="@string/line_one"
 android:id="@+id/textView2"
 android:layout_below="@+id/textView"
 android:layout_marginTop="35dp"
 android:layout_alignParentRight="true"
 android:layout_alignParentEnd="true" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:text="@string/line_two"
 android:id="@+id/textView3"
 android:layout_below="@+id/textView2"
 android:layout_alignLeft="@+id/textView2"
 android:layout_alignStart="@+id/textView2"
 android:layout_marginTop="52dp" />

</RelativeLayout>

Preparing the first strings.xml file
To prepare the file, copy and paste the following code in to the strings.xml file.
These are the String resources that are referred to in the layout that we just coded:

<resources>
 <string name="app_name">Localization</string>
 <string name="hello_world">Hello world!</string>
 <string name="action_settings">Settings</string>
 <string name="movie_title">Gone with the wind</string>

Chapter 27

[589]

 <string name="line_one">...Rhett,
 if you go, where shall I go? What shall I do?</string>
 <string name="line_two">Frankly, my dear.
 I don't give a damn.</string>
</resources>

Now that all the references in the layout have a matching resource, switch to the
Design tab to see a couple of TextView widgets that contain a couple of famous
lines from a movie:

Now, we can add another language.

Making the app multilingual with the second
strings.xml file
For this, all we have to do is add another strings.xml file into an appropriately
named folder with the same name for each resource, but with an appropriate
translation. Then, the app will detect the user's preferred language based on the
settings of the device on which the app is running.

Going Local – Hola!

[590]

Make sure that the project explorer is in the Project view by clicking on the
drop-down list on the top left-side, as shown in the following screenshot:

After this, click on Project. We can now add resource folders for as many countries
as we like.

Right-click on the res folder and navigate to New | Android resource directory.
Name the new folder values-es. ES is the country code for Spain. So, this is where
an Android device set to the Spanish locale will look for the strings.xml file.

Right-click on the values-es folder and navigate to New | Android resource file.
Name the file strings.xml. Now, copy and paste the following code:

<resources>
 <string name="app_name">Localización</string>
 <string name="movie_title">Lo que el viento se llevó</string>
 <string name="line_one">... Rhett, si te vas,
 dónde iré? ¿Qué debo hacer?</string>
 <string name="line_two">Francamente, querida.
 Me importa un bledo.</string>
</resources>

If you don't provide all the string resources in the second
strings.xml file, then the resources from the default
will be used.

Chapter 27

[591]

Adding a third language
To add another language, right-click on the res folder and navigate to New |
Android resource directory. Name the new folder values-fr. FR is the country code
for France. So, this is where an Android device set to the French locale will look for
the strings.xml file.

Right-click on the values-fr folder and navigate to New | Android resource file.
Name the file strings.xml. Now, copy and paste the following code:

<resources>
 <string name="app_name">Localisation</string>
 <string name="movie_title">Emporté par le vent</string>
 <string name="line_one">... Rhett, si vous allez,
 où irai-je? Que dois-je faire?</string>
 <string name="line_two">Franchement, ma chère.
 Je ne donne pas une putain.</string>
</resources>

If you look at the project explorer window, as shown in the following screenshot,
you can see that Android Studio provides a nice little flag graphic for each of our
translation files:

You can even localize different versions of a language. For
example, US or United Kingdom English. The complete
list of codes can be found at http://stackoverflow.
com/questions/7973023/what-is-the-list-of-
supported-languages-locales-on-android. You can
even localize resources such as images and sound. Find out
more about this at http://developer.android.com/
guide/topics/resources/localization.html.

http://stackoverflow.com/questions/7973023/what-is-the-list-of-supported-languages-locales-on-android
http://stackoverflow.com/questions/7973023/what-is-the-list-of-supported-languages-locales-on-android
http://stackoverflow.com/questions/7973023/what-is-the-list-of-supported-languages-locales-on-android
http://developer.android.com/guide/topics/resources/localization.html
http://developer.android.com/guide/topics/resources/localization.html

Going Local – Hola!

[592]

The translations were copy and pasted from Google Translate, so it is very likely that
some of the translations are far from accurate. Translating on-the-cheap like this can
be a good way to get an app with a basic set of String resources onto devices of users
who speak different languages. Furthermore, if you require in-depth translations,
perhaps the lines from a movie, you will certainly benefit from having the translation
done by human professionals.

The purpose of this exercise is to show you how Android works, and not how
to translate.

My sincere apologies to any Spanish or French speakers who
can likely see the limitations of the translations provided here.

Running the app
Run the app to see it working as normal. Now, we can change the localization
settings to see the app in Spanish. Different devices vary slightly in how to do this,
but the Nexus 5 emulator can be changed by clicking on the Custom Locale app,
selecting es - ES, and then clicking on the SELECT 'ES' button in the bottom-left
corner of the screen, as shown in the next screenshot:

Chapter 27

[593]

Now, run the app again and you will see the translated string resources in action:

To switch back to English, follow these steps. Run the Custom Locale app and select
en-US - en-us. Then, click on the SELECT 'EN-US' button in the bottom-left corner
of the screen.

Localizing the Where it's snap app
The final and complete code for Where it's snap can be found in the Chapter 27/
Where Its Snap folder.

Simply add a folder for any languages that you want to add to the app. To add
Spanish, right-click on the res folder and navigate to New | Android resource
directory. Name it values-es. Now, right-click on the folder that we just created
and navigate to New | Android resource file. Name it strings.xml, and copy and
paste the following code into it:

<resources>
 <string name="app_name">Donde Es Snap!</string>

 <string name="action_settings">Ajustes</string>
 <string name="drawer_open">Abra</string>

Going Local – Hola!

[594]

 <string name="drawer_close">Cerca</string>

 <string name="enter_photo_title">
 Ingrese título de la foto</string>
 <string name="tag1">Tag 1</string>
 <string name="tag2">Tag 2</string>
 <string name="tag3">Tag 3</string>
 <string name="capture">Tomar foto</string>
 <string name="save">Guardar</string>

 <string name="tags">Tags</string>
 <string name="titles">Títulos</string>
 <string name="show_map">Ver mapa</string>

 <!-- These are the items in our list -->
 <string-array name="nav_drawer_items">
 <item >Títulos</item>
 <item >Tags</item>
 <item >Tomar foto</item>
 </string-array>

</resources>

You can now switch the device to Spanish, as we did for the last mini app, and run
Where it's snap to see it as it would look if somebody in Spain downloaded it from
the app store. This next screenshot shows you CaptureFragment in action:

Chapter 27

[595]

Summary
That's it for Where it's snap; we won't be doing anything else with it. Of course, there
are lots of improvements that you could make if you wanted to.

You could offer the ability to delete a photo from the database. Perhaps, by a
long-press on a title in the TitlesFragment class. The facility to edit the tags and
title might be useful. You could add an edit button to ViewFragment that opens up a
new EditFragment class.

In the next chapter, we will do something totally new while exploring the concept of
threads, touches, and drawing in Android.

[597]

Threads, Touches, Drawing,
and a Simple Game

So far throughout the book, we have concentrated on using the diverse range of UI
widgets provided by the Android API. In conventional apps, this is almost always
the best way to do things.

For example, why would we want to reinvent a widget that has been designed and
refined by experts?

Lots of Android apps, however, are not based on this conventional appearance.
Think of the multitude of kids' or artists' drawing apps. And what about the best
selling category on Google Play: games?

In this chapter, we will look at and play with the skills and Android classes that are
needed to build apps of this type. The topics for this chapter are:

• Threads: How to run more than one block of code simultaneously
• Drawing: How we use the Canvas and Paint classes for pixels, lines, shapes,

and custom text, including a mini app
• Screen touches: Detecting and responding to screen touches that are not on a

UI widget
• Pong: Combining the first three things to make a retro arcade game

First up is threads.

Threads, Touches, Drawing, and a Simple Game

[598]

Threads
So, what is a thread? You can think of threads in Java programming in the same
way you think of threads in a story. In one thread of a story, we might have the
primary character battling the enemy on the frontline while in another thread, the
soldier's family is getting by, day-to-day. Of course, a story doesn't have to have just
two threads. We could introduce a third thread; perhaps the story also tells of the
politicians and military commanders making decisions. And these decisions then
subtly, or not so subtly, affect what happens in the other threads.

Programming threads are just like this. We create parts/threads in our program
that control different aspects for us. Threads are especially useful when we need to
ensure that a task does not interfere with the main (UI) thread of the app, or if we
have a background task that takes a long time to complete and must not interrupt the
main thread of execution. We introduce threads to represent these different aspects
because of the following reasons:

• They make sense from an organizational point of view
• They are a proven way of structuring a program that works
• The nature of the system we are working on forces us to use them

from time to time

In Android, we use threads for all three reasons simultaneously. It makes sense, it
works, and we have to use the threads because of the design of the system.

Often, we use threads without knowing about it. This happens because we use
classes that use threads on our behalf. SoundPool for example, loads sounds in a
thread, and BaseAdapter sorts our data and loads up our ListView in a thread. Threads
are also very useful in games, as we will see.

In gaming, think about a thread that is receiving the player's button taps for moving
left and right and another thread that draws all the graphics to the screen.

Problems with threads
Programs with multiple threads can have problems, like the threads of a story in
which if proper synchronization does not occur, then things go wrong. What if our
soldier went into battle before the battle or war even existed? Weird.

What if we have a variable, int x, that represents a key piece of data that three
threads of our program use. What happens if one thread gets slightly ahead of
itself and makes the data "wrong" for the other two? This problem is the problem of
correctness caused by multiple threads racing to completion obliviously—because
after all, they are just dumb code.

Chapter 28

[599]

The problem of correctness can be solved by close oversight of the threads and
locking, locking meaning temporarily preventing execution in one thread to be
sure things are working in a synchronized manner. This is kind of like preventing a
soldier from boarding a ship to war until the ship has actually docked and the gang
plank has been lowered, avoiding an embarrassing splash.

The other problem with programs with multiple threads is the problem of deadlock,
where one or more threads become locked waiting for the right moment to access int
x, but that moment never comes, and eventually the entire program grinds to a halt.

You might have noticed that it was the solution to the first problem (correctness) that
is the cause of the second problem (deadlock). Now, consider all we have just been
discussing and mix it in with the Android activity lifecycle, and it's possible you start
to feel a little nauseous with the complexity.

Fortunately, the problem has been solved for us. Just as we use the Activity class
and override its methods to interact with the lifecycle, we can also use other classes
to create and manage our threads. Just as with Activity, we only need to know how
to use them not how they work.

"So, why tell me all this stuff about threads when I didn't need to know?" you rightly
ask. Simply because we will be writing code that looks different and is structured in
an unfamiliar manner, if we can:

• Accept that the new concepts we introduce are what we need to work with
in order to work with the Android-specific solution to the thread-related
problems

• Understand the general concept of a thread, which is the same thing as a
story thread that happens almost simultaneously

• Learn the few rules of using a thread

Then, we will have no sweat writing our Java code to create and work within our
threads. There are a few different Android classes that handle threads. Different
thread classes work best in different situations.

There are many different thread-related classes in the Android
API, and we will only cover one in this book. If you want
to learn more about threads, then I recommend the book
Asynchronous Android by Steve Liles, and you can find out more
at this link: https://www.packtpub.com/application-
development/asynchronous-android.

https://www.packtpub.com/application-development/asynchronous-android
https://www.packtpub.com/application-development/asynchronous-android

Threads, Touches, Drawing, and a Simple Game

[600]

All we need to remember is that we will be writing parts of our program that will
run at almost the same time as each other.

What do I mean by almost? What is actually happening is that the
CPU switches between threads in turn. However, this happens so
fast that we will not be able to perceive anything but simultaneity.

Let's take a glimpse at what our thread code will look like:

We can declare an object of the type Thread like this:

Thread gameThread;

Initialize and start it like this:

gameThread = new Thread(this);
gameThread.start();

We can then use the Java @override keyword to change what happens when
the operating system allows our gameThread object to run its code. Within the
overridden run method, we call two methods that we will write in our Pong game.
The first is update, which is where all our calculations, artificial intelligence, and
collision detection will go, and then draw, where perhaps unsurprisingly, we will
draw all our graphics:

@override
public void run() {

 // Update the game world based on
 // user input, physics,
 // collision detection and artificial intelligence
 update();

 // Draw all the game objects in their updated locations
 draw();

}

When necessary, we can also stop our thread like this:

gameThread.join();

Now, everything that is in the run method is executing in a separate thread, leaving
the default or UI thread to listen for touches and system events. We will see how the
two threads communicate with each other in the Pong project.

Chapter 28

[601]

Note that exactly where all these parts of the code will go within our game has not
been explained, but it is so much easier to actually show you in a real project.

When we build our retro game, we will see how simple it is to have two sets of code
running apparently simultaneously.

So, how do we draw things?

Drawing with canvas and paint
So far, we have been using the Android Studio UI designer to implement all aspects
of our interface with which our users interact.

If we want smooth-moving customized graphics, then we need to move away from
predefined UI widgets.

We are going to need to start looking at and designing with individual pixels and
lines. Fortunately, as you might have guessed, Android has some classes to make
this nice and easy for us. We will be learning how to get started with the Canvas and
Paint classes.

To achieve this, we will learn about the coordinate system that we use to draw our
pixels and lines. Then, we will look at the Paint and Canvas classes themselves.

The Android coordinate system
A pixel is the smallest graphical element we can manipulate using the Paint and
Canvas classes. It is essentially a dot. If your device resolution is 1920 x 1080 like the
Nexus 5 emulator, then we have 1920 pixels across the longest length of the device
and 1080 across the other.

We can therefore think of our screen onto which we will be drawing as a grid.
We will draw by plotting points (pixels), lines, shapes, and text using coordinates
on this grid.

The coordinate system starts in the top-left corner of the screen.

As an example, take a look at the following line of code:

drawPoint(0, 0); // Not actual code

In this, we would plot a single pixel in the top-left corner of the screen. Now, look at
the following code:

drawPoint(1919, 1079); // Not actual code

Threads, Touches, Drawing, and a Simple Game

[602]

If we use it like that, we would draw a point in the bottom-right corner of one of
these high-end devices (while in the landscape position).

We could also draw lines by specifying a start and end coordinate position, a bit
like this:

drawLine(0,0,1919, 1079); // Not actual code

This would draw a line from the top-left corner of the screen to the bottom-right.

Now, you might have noticed some potential problems. First, not all Android
devices have such a high resolution; in fact, most are very significantly lower. Even
on devices with this high resolution, they will have totally different coordinates
when held in landscape or portrait positions. How will we write code that adapts
regardless of the screen resolution? We will see the solution soon. First, we will do
some basic drawing and ignore this problem.

The aptly named Canvas class provides just what you would expect: a virtual canvas
to draw our graphics on.

We can make a virtual canvas using the Canvas class from any Android UI element.
In our demo app, we will draw onto ImageView, and when we make our game,
we will draw straight onto a special type of view, which will bring some extra
advantages, as we will see.

So, to get started, we need a widget to draw on. Assuming there is ImageView in the
layout, we could do the following to get a reference to it:

ImageView ourVIew = (ImageView) findViewById(R.id.imageView);

Now, we need a bitmap. A bitmap itself has a coordinate system much like the
screen. We are creating a bitmap to turn it into our drawing canvas:

Bitmap ourBitmap = Bitmap.createBitmap
 (300,600, Bitmap.Config.ARGB_8888);

The previous line of code declares and creates an object of the type Bitmap. It will
have a size of 300 x 600 pixels. We will keep this in mind when we draw on it shortly.

The last argument in the createBitmap method, Bitmap.
Config.ARGB_8888, is simply a format. If you want to know
more about bitmap formats, you can do so here: https://
en.wikipedia.org/wiki/BMP_file_format.

Now, we can prepare Bitmap for drawing by creating a Canvas object with it:

Canvas ourCanvas = new Canvas(ourBitmap);

https://en.wikipedia.org/wiki/BMP_file_format
https://en.wikipedia.org/wiki/BMP_file_format

Chapter 28

[603]

Next, we get ourselves an object of the type Paint. Literally, we can think of this
object as both the brush and paint for our virtual canvas:

Paint paint = new Paint();

At this point, we are ready to use our Paint and Canvas objects to do some drawing.
The actual code to draw a pixel in the top-left corner of the screen will look like this:

ourCanvas.drawPoint(0, 0, paint); // How simple is that?

Let's look at a working drawing mini app.

Android Canvas demo app
Let's make an app that uses the Canvas and Paint classes and do a bit of drawing.
This example will be completely static (no animation), so we can clearly see how to
use Canvas and Paint without cluttering up the code with things we will learn later.

In this demo app, we use some conceptually helpful variable names to help us grasp
the role that each object is playing. But we will go through the whole thing at the end
to make sure we know exactly what is going on at each stage. Of course, you don't
have to type all this in; you can open the completed code files from the Canvas Demo
folder in the Chapter 28 folder of the download bundle.

Start a new project and call it Canvas Demo. Open the layout_main.xml file, and
edit it to have a single ImageView with an ID of imageView, as in this code:

<RelativeLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context="com.gamecodeschool.canvasdemo.app.MainActivity">

 <ImageView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/imageView" />

</RelativeLayout>

Threads, Touches, Drawing, and a Simple Game

[604]

Now, we can code the MainActivity class and do some drawing on our ImageView.

Add some import directives:

import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.Menu;
import android.view.MenuItem;
import android.widget.ImageView;
import java.util.Random;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // All our code will go here
 }
...

Set up the Paint and Canvas classes by adding the following code that we have
already discussed. In addition, we call the drawColor method to change the
background color of the Canvas and setColor method, which determines the color
we will use to draw when we start drawing:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // All our code will go here

 // Get a reference to our ImageView in the layout
 ImageView ourFrame = (ImageView) findViewById(R.id.imageView);

 // Create a bitmap object to use as our canvas
 Bitmap ourBitmap = Bitmap.createBitmap
 (750,1500, Bitmap.Config.ARGB_8888);

Chapter 28

[605]

 Canvas ourCanvas = new Canvas(ourBitmap);

 // A paint object that does our drawing, on our canvas
 Paint paint = new Paint();

 // Set the background color
 ourCanvas.drawColor(Color.BLACK);

 // Change the color of the virtual paint brush
 paint.setColor(Color.argb(255, 255, 255, 255));

 ...

Next, add this code, which loops six hundred times and draws a single pixel each
time in a random location, a bit like a star field. This code goes straight after the last
code, still in the onCreate method:

// Draw a bunch of random points
Random random = new Random();
for (int i = 0; i < 600; i ++) {

 int x = random.nextInt(750);
 int y = random.nextInt(1500);

 ourCanvas.drawPoint(x, y, paint);

}

Draw some shapes and a message by adding this code:

// Draw a line
ourCanvas.drawLine(0, 0, 750, 1500, paint);

// Change the color of the virtual paint brush
paint.setColor(Color.argb(255, 0, 255, 0));

// Make the text bigger
paint.setTextSize(120f);

// Draw some text
ourCanvas.drawText("Hello Canvas!", 10, 750, paint);

// Draw a circle
ourCanvas.drawCircle(500, 500, 100, paint);

Threads, Touches, Drawing, and a Simple Game

[606]

// Change the color of the virtual paint brush
paint.setColor(Color.argb(255, 0, 0, 255));

// Draw a rectangle
ourCanvas.drawRect(500, 10, 200, 200, paint);

//Now put the canvas in the frame
ourFrame.setImageBitmap(ourBitmap);

Run the mini app and gaze in awe at our wondrous graphics. It isn't quite Unreal
Engine quality yet, but it's a good first step:

In the previous image, we can see the line, rectangle, circle, and text that we drew. If
you are reading this in paper form, the 600 pixels might be quite hard to see.

Now, we still need to get smarter with managing the screen. Also, we need to look
into a system that will allow us to rub out and redraw our images at a set interval to
create the illusion of movement. We will solve all these problems when we build our
Pong game.

Chapter 28

[607]

The Canvas class, as with so many classes we have seen
throughout the book, is a lot more in depth than we have covered
here. If you want to learn how to make drawing apps and
much more, try the book Learning Android Canvas by Nauman
Tahir, which can be found at https://www.packtpub.com/
application-development/learning-android-canvas.

Now, let's take a look at how the player will control the game. After all, we are not
going to have any handy button widgets to do this for us.

Handling touches
In our Pong game, we will have no UI buttons, and therefore cannot use the
OnCLickListener interface and override the onClick method. This is not a
problem, however. We will just use another interface to suit our situation. We will
use OnTouchListener and override the onTouchEvent method. It works a little bit
differently, so let's take a look before we dive into the game code.

We must implement the OnTouchListener interface for the activity we want to listen
for touches in, like this:

public class MainActivity extends Activity
 implements View.OnTouchListener{

Then, we can override the onTouchEvent method, perhaps a bit like this:

@Override
public boolean onTouchEvent(MotionEvent motionEvent) {

 float x = motionEvent.getX();
 float y = motionEvent.getY();

 //do something with the x and y values

 return false;
}

The variable x will hold the horizontal value of the position on the screen that
was touched, and y will hold the vertical position. It is worth noting that the
motionEvent object parameter contains lots of information as well as the x and y
location. For example, depending on whether the screen was touched or released, we
can make some really useful switch statements with this information, as we will see.

https://www.packtpub.com/application-development/learning-android-canvas
https://www.packtpub.com/application-development/learning-android-canvas

Threads, Touches, Drawing, and a Simple Game

[608]

Exactly how we use this to achieve our goals in the squash game requires us to first
consider the design of the game.

A simple game engine
Drawing shapes, lines, and pixels is all very well, but how do we make them appear
to move? We will be using the same animation trick used in cartoons, movies, and
other video games, given as follows:

1. Draw an object
2. Rub it out
3. Draw it in its new position
4. Repeat steps 1 to 3 fast enough to trick the player's brain that the game

objects are moving
5. Do all the above while listening for touches on a separate thread

The theory makes it all sound more complicated than it is. Let's make our Pong game
and it should all become clear.

Building a simple game of Pong
Create a new project called Pong, and leave all the settings at their defaults.

Adding sound files to the project
Using your operating system's file browser, go to the app/src/main folder of the
project and add a new folder called assets.

There are four sound files already made for you in the Chapter 28/Pong/assets
folder of the download bundle. Place these four files into the assets directory you
just created, or you can use some sound effects you create yourself. The important
thing is that their filenames must be beep1.ogg, beep2.ogg, beep3.ogg, and
loseLife.ogg.

Coding the ball
Create a new class called Ball. Unsurprisingly, this class will handle everything to
do with the ball in the game. We will code it in eight short segments.

Chapter 28

[609]

First, add the following member variables. The only one that is completely new is
the RectF object. This is simply an object that holds four float values that define the
four coordinates of a rectangle. This is perfect for a ball that looks like the primitive
graphics from the 1970s. In addition, we have four more separate float variables to
represent the speed of the ball in the x and y axes, as well as the width and height of
the ball.

Add the member variables to the Ball class:

public class Ball {

 private RectF mRect;
 private float mXVelocity;
 private float mYVelocity;
 private float mBallWidth;
 private float mBallHeight;

}

In the Ball constructor method, we initialize the ball's width and height relative
to the width of the screen that was passed into the constructor method. Then,
we initialize the x and y speed relative to the screen height. The ball will be one
hundredth of the screen width and will travel at one quarter of the screen height per
second. We will see how we control this in our thread shortly.

We also initialize our RectF object, but don't assign any coordinates yet.

Add the Ball constructor method we have just discussed:

public Ball(int screenX, int screenY){

 // Make the mBall size relative to the screen resolution
 mBallWidth = screenX / 100;
 mBallHeight = mBallWidth;

 /*
 Start the ball travelling straight up
 at a quarter of the screen height per second
 */
 mYVelocity = screenY / 4;
 mXVelocity = mYVelocity;

 // Initialize the Rect that represents the mBall
 mRect = new RectF();

}

Threads, Touches, Drawing, and a Simple Game

[610]

Next, we will code a getter method so we can get a hold of the RectF (which will
represent the location of the ball) from outside the Ball class. Add the getRect method:

// Give access to the Rect
public RectF getRect(){
 return mRect;
}

Next, we see the update method, not to be confused with the update method we will
write in our thread. This update method will be called once every frame of the game.

It updates the top and left values of the ball based on the velocity member
variables (mXVelocity and mYVelocity) divided by the number of frames per
second (fps) that the device is managing to run the game at. Then, the other points
of mRect are updated relative to the top-left and size of the ball.

The effect of this is that regardless of how fast or slow the device's CPU might be,
the ball will travel at the same rate. We will soon see how we get fps (frames per
second) and pass it in to the ball's update method.

Add the update method to the Ball class:

// Change the position each frame
public void update(long fps){
 mRect.left = mRect.left + (mXVelocity / fps);
 mRect.top = mRect.top + (mYVelocity / fps);
 mRect.right = mRect.left + mBallWidth;
 mRect.bottom = mRect.top - mBallHeight;
}

Now, we need a few little helper methods that will enable us to easily deal with
various situations we will learn about soon. We need to be able to reverse the
vertical and horizontal headings, set a new random x velocity and speed up by
10%. The reverseYVelocity, reverseXVelocity, setRandomXVelocity, and
increaseVelocity methods achieve these things.

Add the four methods we have just discussed to the Ball class:

// Reverse the vertical heading
public void reverseYVelocity(){
 mYVelocity = -mYVelocity;
}

// Reverse the horizontal heading
public void reverseXVelocity(){
 mXVelocity = -mXVelocity;

Chapter 28

[611]

}

public void setRandomXVelocity(){
 Random generator = new Random();
 int answer = generator.nextInt(2);

 if(answer == 0){
 reverseXVelocity();
 }
}

// Speed up by 10%
// A score of 25 is quite tough on this setting
public void increaseVelocity(){
 mXVelocity = mXVelocity + mXVelocity / 10;
 mYVelocity = mYVelocity + mYVelocity / 10;
}

Next, we add three more helper methods—one that clears an obstacle on the y axis
(clearObstacleY), another that clears an obstacle on the x axis (clearObstacleX),
and one that resets the position of the ball in the bottom-center of the screen (reset).
Each of these methods simply tweaks/repositions the ball. Their usefulness will
become apparent when we see them in action:

public void clearObstacleY(float y){
 mRect.bottom = y;
 mRect.top = y - mBallHeight;
}

public void clearObstacleX(float x){
 mRect.left = x;
 mRect.right = x + mBallWidth;
}

public void reset(int x, int y){
 mRect.left = x / 2;
 mRect.top = y - 20;
 mRect.right = x / 2 + mBallWidth;
 mRect.bottom = y - 20 - mBallHeight;
}

The ball is ready to start bouncing all over the place, so let's get the paddle coded,
and then we can start on the game engine itself.

Threads, Touches, Drawing, and a Simple Game

[612]

Coding the paddle
Create a new class and call it Paddle. First, we will add the constructor method.
We have RectF for holding the paddle's four coordinates. We also have separate
mXcoord and mYCoord float variables, which hold the left and top positions.

We have a float for the speed (mPaddleSpeed). Next, we have three final int
members (STOPPED, LEFT, and RIGHT), which are public. We will be able to refer to
these values from outside the class to manipulate the paddle's direction.

We also have a private variable (mPaddleMoving), which will always be assigned one
of those three public final values. We begin by setting it to STOPPED.

In the Paddle class, we want to keep a permanent copy of the screen resolution (size
in pixels), so we declare mScreenX and mScreenY, which we will initialize soon.

Add the Paddle members we have just discussed:

public class Paddle {

 // RectF is an object that holds four coordinates
 // - just what we need
 private RectF mRect;

 // How long and high our mPaddle will be
 private float mLength;
 private float mHeight;

 // X is the far left of the rectangle which forms our mPaddle
 private float mXCoord;

 // Y is the top coordinate
 private float mYCoord;

 // This will hold the pixels per second speed that
 // the mPaddle will move
 private float mPaddleSpeed;

 // Which ways can the mPaddle move
 public final int STOPPED = 0;
 public final int LEFT = 1;
 public final int RIGHT = 2;

 // Is the mPaddle moving and in which direction
 private int mPaddleMoving = STOPPED;

Chapter 28

[613]

 // The screen length and width in pixels
 private int mScreenX;
 private int mScreenY;

}

In the constructor, we initialize mScreenX and mScreenY with the passed in x and y
values. We initialize the length of the paddle to one-eighth of the screen width and
the height to one-twenty-fifth.

We initialize mXCoord and mYCoord to roughly the bottom-center of the screen. We
set mPaddleSpeed to the same value as mScreenX, which has the effect of setting the
paddle's movement to be able to cover the whole screen in one second. This is not as
overpowering as it might first seem.

Add the Paddle constructor we have just discussed:

// This is the constructor method
// When we create an object from this class we will pass
// in the screen width and mHeight
public Paddle(int x, int y){

 mScreenX = x;
 mScreenY = y;

 // 1/8 screen width wide
 mLength = mScreenX / 8;

 // 1/25 screen mHeight high
 mHeight = mScreenY / 25;

 // Start mPaddle in roughly the screen center
 mXCoord = mScreenX / 2;
 mYCoord = mScreenY - 20;

 mRect = new RectF(mXCoord, mYCoord, mXCoord + mLength,
 mYCoord + mHeight);

 // How fast is the mPaddle in pixels per second
 mPaddleSpeed = mScreenX;
 // Cover entire screen in 1 second
}

Threads, Touches, Drawing, and a Simple Game

[614]

Add the public getter to return the RectF that represents the paddle's location:

// This is a getter method to make the rectangle that
// defines our paddle available in GameView class
public RectF getRect(){
 return mRect;
}

The setMovementState method receives int as a parameter. We will call this
method using one of the three public final int members: LEFT, RIGHT, or
STOPPED. This method will simply set that state to the mPaddleMoving member:

// This method will be used to change/set
// if the mPaddle is going
// left, right or nowhere

public void setMovementState(int state){
 mPaddleMoving = state;
}

The final method for the Paddle class is its update method. First, it uses a couple of
if statements to see if it is moving left or right. If it is, it moves the mXCoord by the
mPaddleSpeed divided by the frames per second, just like the ball.

Then, it does two checks to see if the paddle might be moving off the screen. If the
paddle is about to disappear off the left-hand side, it prevents it from doing so by
setting mXCoord to 0. If it is about to disappear off the right-hand side, it sets mXCoord
to mScreenX, take away the width of the paddle.

Finally, based on the results of all those if statements, it updates the values held by
the RectF, ready for the game engine to make use of them when it calls getRect:

// This update method will be called from update in GameView
// It determines if the paddle needs to move
// and changes the coordinates
// contained in mRect if necessary
public void update(long fps){
 if(paddleMoving == LEFT){
 mXCoord = mXCoord - mPaddleSpeed / fps;
 }
 if(paddleMoving == RIGHT){
 mXCoord = mXCoord + mPaddleSpeed / fps;
 }

 // Make sure it's not leaving screen
 if(mRect.left < 0){

Chapter 28

[615]

 mXCoord = 0;
 }

 if(mRect.right > mScreenX){
 mXCoord = mScreenX -
 // The width of the paddle
 (mRect.right - mRect.left);
 }

 // Update the paddle graphics
 mRect.left = mXCoord;
 mRect.right = mXCoord + mLength;
}

Coding MainActivity
Most of the action will take place in the next class we create. We will call that class
GameView. So, the job of MainActivity is to communicate with the lifecycle events
of the OS and pass on any relevant information to GameView. It needs to instantiate a
GameView object as well. Notice in the next code there is indeed an object of the type
GameView declared as a member.

In the onCreate method, we use a Display object and the getWindowManager().
getDefaultDisplay() chained methods to initialize it. Then, we declare an object
of the type Point. Using the Display object, we can load the screen resolution into
point using the getSize method.

We can now call the constructor of GameView to initialize gameView. Notice when
we do that we pass in x and y, which is the screen resolution. It is from here that our
Paddle and Ball objects will eventually get hold of them.

Finally, in onCreate, we do something that might at first look slightly odd. Look at
the call to setContentView. Instead of passing in the XML layout file, we pass in our
GameView reference.

This is exactly what we need. GameView will extend a class called SurfaceView,
which not only allows us to have a Thread, but also implements onTouchListener
and allows us to attach a Canvas object directly to it.

So, GameView, because it extends SurfaceView, is like an all-in-one solution to
our thread, touching, and drawing needs, and we simply set it as the view of our
entire Activity.

Threads, Touches, Drawing, and a Simple Game

[616]

Add the highlighted member variable and code to onCreate:

// gameView will be the view of the game
// It will also hold the logic of the game
// and respond to screen touches as well
GameView gameView;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Get a Display object to access screen details
 Display display = getWindowManager().getDefaultDisplay();

 // Load the resolution into a Point object
 Point size = new Point();
 display.getSize(size);

 // Initialize gameView and set it as the view
 gameView = new GameView(this, size.x, size.y);
 setContentView(gameView);

}

Lastly, in MainActivity, we will override the onResume and onPause methods. In
these methods, we will call the resume and pause methods on GameView. In these
methods, in the GameView class, we will start and stop our thread. This is just what
we need because after our GameView class is set up, as its constructor is called in
onCreate, then onResume will run and set the thread going as well. Then, when the
player quits the app and the OS calls onPause, our pause method will be called and
the thread will be stopped. Otherwise, our ball will still be bouncing and beeping
around the screen, perhaps while the player is taking a phone call from his boss.

Add the overridden onResume and onPause methods to the MainActivity class:

// This method executes when the player starts the game
@Override
protected void onResume() {
 super.onResume();

 // Tell the gameView resume method to execute
 gameView.resume();
}

// This method executes when the player quits the game

Chapter 28

[617]

@Override
protected void onPause() {
 super.onPause();

 // Tell the gameView pause method to execute
 gameView.pause();
}

Now, we can code the main class of our game.

Coding SurfaceView
Create a new class called GameView, extend SurfaceView, and implement Runnable.

Now, we will add a whole bunch of members:

• A thread called mGameThread that we will start and stop from the pause and
resume methods that we will implement soon. These methods are of course
called by the onResume and onPause methods of the MainActivity class.

• SurfaceHolder is what we need to allow us to do to our drawing.
• Volatile boolean mPlaying will be true when the thread is running and

false otherwise. It will be used to determine whether we enter a while
loop that will control the whole game loop. We have not seen the volatile
keyword before, and we use it because mPlaying can be accessed from
outside and inside the thread.

• We have a boolean mPaused variable, which will determine whether the
game is currently paused.

• We have a Paint and Canvas object, which we will use in the same way we
did in the Canvas Demo mini app.

• Next, we have a long variable, mFPS, which will hold the current number of
frames per second that our game loop is achieving, and of course this is the
value we will be passing in to the update methods of Paddle and Ball to
allow them to move by the correct amount.

• Next, we declare mScreenX and mScreenY to hold the screen resolution,
which as we saw is passed into the constructor from MainActivity when we
instantiate a GameView object. We will code that constructor very soon.

• Now, we get to the neat stuff: a Ball object called mBall and a Paddle object
called mPaddle.

• Next up, we have all the members that will take care of sound effects,
including a SoundPool and four int IDs for sound effects.

• Finally, mLives and mScore will keep track of the player's score and how
many lives he or she has left.

Threads, Touches, Drawing, and a Simple Game

[618]

Code the GameView class and its members as we have just discussed:

// Notice we implement runnable so we have
// A thread and can override the run method.
class GameView extends SurfaceView implements Runnable {

 // This is our thread
 Thread mGameThread = null;

 // This is new. We need a SurfaceHolder
 // When we use Paint and Canvas in a thread
 // We will see it in action in the draw method soon.
 SurfaceHolder mOurHolder;

 // A boolean which we will set and unset
 // when the game is running- or not
 volatile boolean mPlaying;

 // Game is mPaused at the start
 boolean mPaused = true;

 // A Canvas and a Paint object
 Canvas mCanvas;
 Paint mPaint;

 // This variable tracks the game frame rate
 long mFPS;

 // The size of the screen in pixels
 int mScreenX;
 int mScreenY;

 // The players mPaddle
 Paddle mPaddle;

 // A mBall
 Ball mBall;

 // For sound FX
 SoundPool sp;
 int beep1ID = -1;
 int beep2ID = -1;
 int beep3ID = -1;
 int loseLifeID = -1;

Chapter 28

[619]

 // The mScore
 int mScore = 0;

 // Lives
 int mLives = 3;
}

The constructor has quite a lot of code, but we have seen much of it before, and what
is left is fairly straightforward.

We initialize mScreenX and mScreenY from the passed in screen resolution.

We initialize mOurHolder by calling getHolder, and we initialize mPaint by calling
the default Paint constructor.

Next, we instantiate our paddle and ball by calling their constructors and passing in
the screen resolution, as is required.

Almost all the rest of the code sets up the sound in exactly the same manner we saw
in Chapter 17, Sound FX and Supporting Different Versions of Android.

The final line of code calls the setupAndRestart method to start a new game, and
we will code that method shortly.

Add the GameView constructor we have just discussed:

/*
 When we call new() on gameView
 This custom constructor runs
*/

public GameView(Context context, int x, int y) {

 /*
 The next line of code asks the
 SurfaceView class to set up our object.
 */
 super(context);

 // Set the screen width and height
 mScreenX = x;
 mScreenY = y;

 // Initialize mOurHolder and mPaint objects
 mOurHolder = getHolder();
 mPaint = new Paint();

Threads, Touches, Drawing, and a Simple Game

[620]

 // A new mPaddle
 mPaddle = new Paddle(mScreenX, mScreenY);

 // Create a mBall
 mBall = new Ball(mScreenX, mScreenY);

 /*
 Instantiate our sound pool
 dependent upon which version
 of Android is present
 */

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 AudioAttributes audioAttributes =
 new AudioAttributes.Builder()
 .setUsage(AudioAttributes.USAGE_MEDIA)
 .setContentType(AudioAttributes.CONTENT_TYPE_SONIFICATION)
 .build();

 sp = new SoundPool.Builder()
 .setMaxStreams(5)
 .setAudioAttributes(audioAttributes)
 .build();

 } else {
 sp = new SoundPool(5, AudioManager.STREAM_MUSIC, 0);
 }

 try{
 // Create objects of the 2 required classes
 AssetManager assetManager = context.getAssets();
 AssetFileDescriptor descriptor;

 // Load our fx in memory ready for use
 descriptor = assetManager.openFd("beep1.ogg");
 beep1ID = sp.load(descriptor, 0);

 descriptor = assetManager.openFd("beep2.ogg");
 beep2ID = sp.load(descriptor, 0);

 descriptor = assetManager.openFd("beep3.ogg");
 beep3ID = sp.load(descriptor, 0);

Chapter 28

[621]

 descriptor = assetManager.openFd("loseLife.ogg");
 loseLifeID = sp.load(descriptor, 0);

 descriptor = assetManager.openFd("explode.ogg");
 explodeID = sp.load(descriptor, 0);

 }catch(IOException e){
 // Print an error message to the console
 Log.e("error", "failed to load sound files");
 }

 setupAndRestart();

}

Here is the setupAndRestart method that we first call from the constructor. We will
also call this method at the end of every game to start a new one. The code calls the
reset method on ball to position it for the start of a game and if necessary, resets
the mScore and mLives variables to 0 and 3 respectively.

Add the setupAndRestart method to the GameView class:

public void setupAndRestart(){

 // Put the mBall back to the start
 mBall.reset(mScreenX, mScreenY);

 // if game over reset scores and mLives
 if(mLives == 0) {
 mScore = 0;
 mLives = 3;
 }

}

Here, we have our run method, which is the code that is running in a thread.
We have a while loop controlled by the value of our volatile boolean called
mPlaying. This while loop wraps all the rest of the code inside the run method.

Inside the while loop, we get the system time in milliseconds (thousandths of a
second) and initialize the startFrameTime variable with the result. Then, we check if
the game is currently paused if(!mPaused), and if the game isn't paused, we call the
update method. Note this is the update method of the GameView class, not the Ball
or Paddle classes' update methods. We will code this method soon.

Threads, Touches, Drawing, and a Simple Game

[622]

Next, we call the draw method, which will contain all our drawing code. Now,
we calculate the time the frame took to execute by getting the current system time
again and subtracting startFrameTime from the result. We then put the result into
mFPS, which of course will be passed to the update methods of the Ball and Paddle
classes when they are called.

The reason we wrap the last bit of code in if (timeThisFrame >= 1) is because if
timeThisFrame equals zero, trying to divide by zero will crash the app.

Dividing by zero is a bad move in any language and on
any platform. If you want to know more, take a look
at this article: https://en.wikipedia.org/wiki/
Division_by_zero.

Code the overridden run method we have just discussed:

@Override
public void run() {
 while (mPlaying) {

 // Capture the current time in milliseconds in startFrameTime
 long startFrameTime = System.currentTimeMillis();

 // Update the frame
 // Update the frame
 if(!mPaused){
 update();
 }

 // Draw the frame
 draw();

 /*
 Calculate the FPS this frame
 We can then use the result to
 time animations in the update methods.
 */
 long timeThisFrame = System.currentTimeMillis()
 - startFrameTime;
 if (timeThisFrame >= 1) {
 mFPS = 1000 / timeThisFrame;
 }

 }

}

https://en.wikipedia.org/wiki/Division_by_zero
https://en.wikipedia.org/wiki/Division_by_zero

Chapter 28

[623]

Now, we can code the update method.

Coding the update method
The update method is quite long, so we will go through and code it a chunk at a time
to make sure everything is explained.

Add the signature and the body of the update method, and we will steadily add all
the code to it:

// Everything that needs to be updated goes in here
// Movement, collision detection etc.
public void update(){

}

Call the update methods on our ball and paddle to handle any required movement.
Add the highlighted code we have just discussed to the update method:

// Everything that needs to be updated goes in here
// Movement, collision detection etc.
public void update() {

 // Move the mPaddle if required
 mPaddle.update(mFPS);

 mBall.update(mFPS);
}

Now that the ball and paddle are in their new positions for this frame, we can run a
bunch of tests to see if anything important has happened to our game.

The first test is to see if the ball has hit the paddle. Using the getRect methods
of both the ball and the paddle, we pass the two returned results into the static
intersects method of RectF. The intersects method returns true if the ball and
the paddle overlap (have touched) each other.

If a collision is detected, execution enters the if block and does a number of things:

• Calls setRandomXVelocity on the ball to choose a random horizontal
direction for when the ball heads back up the screen

• Calls reverseYVelocity to start to head back up the screen
• Calls clearObstacle, which jumps the ball a few pixels and avoids the

possibility of the ball getting stuck on the paddle
• Increments mScore to increase the player's score
• Plays a beep sound from SoundPool

Threads, Touches, Drawing, and a Simple Game

[624]

Add the code we have just discussed to the update method:

// Check for mBall colliding with mPaddle
if(RectF.intersects(mPaddle.getRect(), mBall.getRect())) {
 mBall.setRandomXVelocity();
 mBall.reverseYVelocity();
 mBall.clearObstacleY(mPaddle.getRect().top - 2);

 mScore++;
 mBall.increaseVelocity();

 sp.play(beep1ID, 1, 1, 0, 0, 1);
}
...

Next, we handle what happens if the ball hits the bottom of the screen. The test
to see if this has happened works by calculating the position of the underside of
the ball (mBall.getRect.bottom) and comparing it to the height of the screen in
pixels (mScreenY).

If a collision has occurred, the following steps happen inside the if block:

• Reversing the ball's velocity
• Jumping a few pixels in case the ball gets stuck
• Decrementing mLives
• Playing a gloomy sound
• Checking if that was the last life and if it was, pause the game and calling

setupAndRestart

Add the highlighted code we have just discussed to the update method:

// Bounce the mBall back when it hits the bottom of screen
if(mBall.getRect().bottom > mScreenY){
 mBall.reverseYVelocity();
 mBall.clearObstacleY(mScreenY - 2);

 // Lose a life
 mLives--;
 sp.play(loseLifeID, 1, 1, 0, 0, 1);

 if(mLives == 0){
 mPaused = true;
 setupAndRestart();
 }
}

Chapter 28

[625]

The next code uses the top of the ball and compares it to zero to see if it has reached
the top of the screen. If it has, it just reverses the ball on the y axis, clears any
potential obstacles, and plays a beep.

Add the highlighted code we have just discussed to the update method:

// Bounce the mBall back when it hits the top of screen
if(mBall.getRect().top < 0){
 mBall.reverseYVelocity();
 mBall.clearObstacleY(12);

 sp.play(beep2ID, 1, 1, 0, 0, 1);
}

The next code uses the left of the ball and compares it to zero to see if it has reached
the left of the screen. If it has, it just reverses the ball on the x axis, clears any
potential obstacles, and plays a beep.

Add the highlighted code we have just discussed to the update method:

// If the mBall hits left wall bounce
if(mBall.getRect().left < 0){
 mBall.reverseXVelocity();
 mBall.clearObstacleX(2);

 sp.play(beep3ID, 1, 1, 0, 0, 1);
}

The next code uses the right of the ball and compares it to mScreenX to see if it has
reached the right of the screen. If it has, it just reverses the ball on the x axis, clears
any potential obstacles, and plays a beep.

Add the highlighted code we have just discussed to the update method:

// If the mBall hits right wall bounce
if(mBall.getRect().right > mScreenX){
 mBall.reverseXVelocity();
 mBall.clearObstacleX(mScreenX - 22);

 sp.play(beep3ID, 1, 1, 0, 0, 1);
}

Now, we move on to the draw method.

Threads, Touches, Drawing, and a Simple Game

[626]

Coding the draw method
The first thing we have to do is attempt to get a lock on the surface to draw on
and check if it is valid. This is achieved with the following line of code (don't add
it just yet):

// Make sure our drawing surface is valid or we crash
 if (mOurHolder.getSurface().isValid()) {

 // Draw everything here

}

If the test returns true, we are almost ready to draw. We just need this code before
we start using our canvas (don't add this yet):

// Lock the mCanvas ready to draw
mCanvas = mOurHolder.lockCanvas();

Now, we can go mad with mPaint. In this order, we:

1. Make sure the surface is valid and lock the canvas, as discussed just now
2. Draw a background
3. Change the brush color
4. Draw the paddle as a rectangle by passing in getRect as the argument
5. Draw the ball as a rectangle by calling getRect as the argument
6. Change the brush color again
7. Change the size of the text
8. Draw the score and number of lives on the screen
9. Call mOurHolder.unlockCanvasAndPost(mCanvas) to finish the drawing

process for this frame

Add the draw method we have just discussed to the GameView class:

// Draw the newly updated scene
public void draw() {

 // Make sure our drawing surface is valid or we crash
 if (mOurHolder.getSurface().isValid()) {

 // Draw everything here

 // Lock the mCanvas ready to draw

Chapter 28

[627]

 mCanvas = mOurHolder.lockCanvas();

 // Draw the background color
 mCanvas.drawColor(Color.argb(255, 26, 128, 182));

 // Choose the brush color for drawing
 mPaint.setColor(Color.argb(255, 255, 255, 255));

 // Draw the mPaddle
 mCanvas.drawRect(mPaddle.getRect(), mPaint);

 // Draw the mBall
 mCanvas.drawRect(mBall.getRect(), mPaint);

 // Choose the brush color for drawing
 mPaint.setColor(Color.argb(255, 255, 255, 255));

 // Draw the mScore
 mPaint.setTextSize(40);
 mCanvas.drawText("Score: " + mScore +
 " Lives: " + mLives, 10, 50, mPaint);

 // Draw everything to the screen
 mOurHolder.unlockCanvasAndPost(mCanvas);
 }

}

Now, we can implement our pause and resume methods, which stop and start the
thread. Of course, these methods are called by the MainActivity class in response to
the Activity lifecycle methods:

// If the Activity is paused/stopped
// shutdown our thread.
public void pause() {
 mPlaying = false;
 try {
 mGameThread.join();
 } catch (InterruptedException e) {
 Log.e("Error:", "joining thread");
 }

}

Threads, Touches, Drawing, and a Simple Game

[628]

// If the Activity starts/restarts
// start our thread.
public void resume() {
 mPlaying = true;
 mGameThread = new Thread(this);
 mGameThread.start();
}

The last major piece of our Pong game is handling the user's touches. To make the
controls as easy as possible, we will say that holding anywhere on the right will
move the paddle right, and anywhere on the left will move the paddle left.

When the onTouchEvent method is called, we switch based on the type of event.
The first case that we handle is MotionEvent.ACTION_DOWN. This occurs when
the player touches the screen. We can access the precise location with the
motionEvent.getX method.

Therefore, in the code that follows, we use the following if statement:

if(motionEvent.getX() > mScreenX / 2){

This determines if the screen has been touched at a position higher than the width of
the screen divided by two (the right-hand side). If the preceding statement is true,
we simply call paddle.setMovementState(mPaddle.RIGHT), and the Paddle class
will take care of moving correctly the next time update is called.

If the previous if statement is false, then it must have been touched on the left, and
we call paddle.setMovementState(mPaddle.LEFT).

We also need to remember to stop the paddle if the player removes their finger
from the screen. We can handle this in the MotionEvent.ACTION_UP case of the
switch block.

Add the overridden onTouchEvent method:

// The SurfaceView class implements onTouchListener
// So we can override this method and detect screen touches.
@Override
public boolean onTouchEvent(MotionEvent motionEvent) {

 switch (motionEvent.getAction() & MotionEvent.ACTION_MASK) {

 // Player has touched the screen
 case MotionEvent.ACTION_DOWN:

 mPaused = false;

Chapter 28

[629]

 // Is the touch on the right or left?
 if(motionEvent.getX() > mScreenX / 2){
 mPaddle.setMovementState(mPaddle.RIGHT);
 }
 else{
 mPaddle.setMovementState(mPaddle.LEFT);
 }

 break;

 // Player has removed finger from screen
 case MotionEvent.ACTION_UP:

 mPaddle.setMovementState(mPaddle.STOPPED);
 break;
 }
 return true;
}

If you are wondering why we set mPaused to false in the MotionEvent.ACTION_
DOWN case, it is because we pause the game when the player runs out of lives. When
the player taps the screen, this will then have the effect of starting it again.

We are nearly there now.

Lock the screen orientation and make
it full-screen
We can achieve this by adding the highlighted line to the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="com.gamecodeschool.pong" >

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MainActivity"
 android﹕theme="@android﹕style/Theme.NoTitleBar.Fullscreen"
 android﹕screenOrientation="landscape"

Threads, Touches, Drawing, and a Simple Game

[630]

 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"

 />
 </intent-filter>
 </activity>
 </application>

</manifest>

And we're ready to play!

Running the game
Apps of this type always work better on a real device if you have one, but they do
run OK on the emulator too:

You will probably find the game gets quite challenging around about a score of 15
(or even lower on the emulator).

Chapter 28

[631]

Pong enhancements
Although our game is quite minimalistic, we already know enough about the
Android API to build a home screen and perhaps a settings screen. We could easily
implement a small database for high scores, as well.

Summary
In this chapter, we covered a lot of ground—threads, drawing, touches, and basic
games. I have already suggested where you can get further information on threads
and drawing, so I hope you will forgive me for a shameless plug to one of my other
books that focuses on Android games. If you want to build a shooter, a platformer,
and a flappy bird-like game and learn how to draw super-fast graphics at sixty
frames per second, please take a look at Android Game Programming by Example at
https://www.packtpub.com/game-development/android-game-programming-
example.

Now that we can plan and build our own apps of many types, we had better find out
how to go about publishing and selling them on the Google Play marketplace.

https://www.packtpub.com/game-development/android-game-programming-example
https://www.packtpub.com/game-development/android-game-programming-example

[633]

Publishing Apps
This is one of the shortest chapters and there is absolutely nothing technical in it at
all. However, it does take a while to complete. In this chapter, we will prepare all the
required resources before we can upload our app, as well as export the publishable
APK file.

This chapter will cover the following topics:

• Preparing to publish
• Building the publishable APK file
• Publishing the app
• The basics of promoting the app

Preparing to publish
You probably don't want to upload any of the apps from this book, so the first step is
to develop an app that you want to publish.

Head over to https://play.google.com/apps/publish/ and follow the
instructions to get a Google Play developer account. This was $25 at the time
of writing and is a one-time charge with no limit on the number of apps you
can publish.

https://play.google.com/apps/publish/

Publishing Apps

[634]

Creating an app icon
Exactly how to design an icon is beyond the remit of this book. But, simply put, you
need to create a nice image for each of the Android screen density categorizations.

This is easier than it sounds. Design one nice app icon in your favorite drawing
program and save it as a .png file. Then, visit http://romannurik.github.io/
AndroidAssetStudio/icons-launcher.html. This will turn your single icon into a
complete set of icons for every single screen density.

Warning! The trade-off for using this service is that the
website will collect your e-mail address for their own
marketing purposes.

There are many sites that offer a similar free service. Once you have downloaded
your .zip file from the preceding site, you can simply copy the res folder from the
download into the main folder within the project explorer. All icons at all densities
have now been updated.

Preparing the required resources
When we log into Google Play to create a new listing in the store, there is nothing
technical to handle, but we do need to prepare quite a few images that we will need
to upload.

Prepare upto 8 screenshots for each device type (a phone/tablet/TV/watch) that
your app is compatible with. Don't crop or pad these images.

Create a 512 x 512 pixel image that will be used to show off your app icon on the
Google Play store. You can prepare your own icon, or the process of creating app
icons that we just discussed will have already autogenerated icons for you.

You also need to create three banner graphics, which are as follows:

• 1024 x 500
• 180 x 120
• 320 x 180

These can be screenshots, but it is usually worth taking a little time to create
something a bit more special. If you are not artistically minded, you can place a
screenshot inside some quite cool device art and then simply add a background
image. You can generate some device art at https://developer.android.com/
distribute/tools/promote/device-art.html.

http://romannurik.github.io/AndroidAssetStudio/icons-launcher.html
http://romannurik.github.io/AndroidAssetStudio/icons-launcher.html
https://developer.android.com/distribute/tools/promote/device-art.html
https://developer.android.com/distribute/tools/promote/device-art.html

Chapter 29

[635]

Then, just add the title or feature of your app to the background. The following
banner was created with no skill at all, just with a pretty background purchased for
$10 and the device art tool I just mentioned:

Also, consider creating a video of your app. Recording video of your Android device
is nearly impossible unless your device is rooted. I cannot recommend you to root
your device; however, there is a tool called ARC (App Runtime for Chrome) that
enables you to run APK files on your desktop. There is no debugging output, but
it can run a demanding app a lot more smoothly than the emulator. It will then be
quite simple to use a free, open source desktop capture program such as OBS (Open
Broadcaster Software) to record your app running within ARC. You can learn more
about ARC at https://developer.chrome.com/apps/getstarted_arc and about
OBS at https://obsproject.com/.

https://developer.chrome.com/apps/getstarted_arc
https://obsproject.com/

Publishing Apps

[636]

Building the publishable APK file
What we are doing in this section is preparing the file that we will upload to Google
Play. The format of the file we will create is .apk. This type of file is often referred
to as an APK. The actual contents of this file are the compiled class files, all the
resources that we've added, and the files and resources that Android Studio has
autogenerated. We don't need to concern ourselves with the details, as we just need
to follow these steps.

The steps not only create the APK, but they also create a key and sign your app with
the key. This process is required and it also protects the ownership of your app:

Note that this is not the same thing as copy protection/digital
rights management.

1. In Android Studio, open the project that you want to publish and navigate to
Build | Generate Signed APK and a pop-up window will open, as shown:

Chapter 29

[637]

2. In the Generate Signed APK window, click on the Create new button.
After this, you will see the New Key Store window, as shown in the
following screenshot:

3. In the Key store path field, browse to a location on your hard disk where you
would like to keep your new key, and enter a name for your key store. If you
don't have a preference, simply enter keys and click on OK.

4. Add a password and then retype it to confirm it.
5. Next, you need to choose an alias and type it into the Alias field. You can

treat this like a name for your key. It can be any word that you like. Now,
enter another password for the key itself and type it again to confirm.

6. Leave Validity (years) at its default value of 25.
7. Now, all you need to do is fill out your personal/business details. This

doesn't need to be 100% complete as the only mandatory field is First and
Last Name.

Publishing Apps

[638]

8. Click on the OK button to continue. You will be taken back to the Generate
Signed APK window with all the fields completed and ready to proceed, as
shown in the following window:

9. Now, click on Next to move to the next screen:

10. Choose where you would like to export your new APK file and select release
for the Build Type field. Click on Finish and Android Studio will build the
shiny new APK into the location you've specified, ready to be uploaded to
the App Store.

Chapter 29

[639]

Taking a backup of your key store in multiple safe places!
The key store is extremely valuable. If you lose it, you will
effectively lose control over your app. For example, if you try
to update an app that you have on Google Play, it will need to
be signed by the same key. Without it, you would not be able to
update it. Think of the chaos if you had lots of users and your
app needed a database update, but you had to issue a whole
new app because of a lost key store.

As we will need it quite soon, locate the file that has been built and ends in the
.apk extension.

Publishing the app
Log in to your developer account at https://play.google.com/apps/publish/.
From the left-hand side of your developer console, make sure that the All
applications tab is selected, as shown:

On the top right-hand side corner, click on the Add new application button, as
shown in the next screenshot:

https://play.google.com/apps/publish/

Publishing Apps

[640]

Now, we have a bit of form filling to do, and you will need all the images from the
Preparing to publish section that is near the start of the chapter.

In the ADD NEW APPLICATION window shown next, choose a default language
and type the title of your application:

Now, click on the Upload APK button and then the Upload your first APK button
and browse to the APK file that you built and signed in the Building the publishable
APK file section. Wait for the file to finish uploading:

Chapter 29

[641]

Now, from the inner left-hand side menu, click on Store Listing:

We are faced with a fair bit of form filling here. If, however, you have all your images
to hand, you can get through this in about 10 minutes.

Almost all the fields are self-explanatory, and the ones that aren't have helpful tips
next to the field entry box. Here are a few hints and tips to make the process smooth
and produce a good end result:

• In the Full description and Short description fields, you enter the text that
will be shown to potential users/buyers of your app. Be sure to make the
description as enticing and exciting as you can. Mention all the best features
in a clear list, but start the description with one sentence that sums up your
app and what it does.

• Don't worry about the New content rating field as we will cover that
in a minute.

• If you haven't built your app for tablet/phone devices, then don't add images
in these tabs. If you have, however, make sure that you add a full range of
images for each because these are the only images that the users of this type
of device will see.

When you have completed the form, click on the Save draft button at the top-right
corner of the web page.

Now, click on the Content rating tab and you can answer questions about your app
to get a content rating that is valid (and sometimes varied) across multiple countries.

Publishing Apps

[642]

The last tab you need to complete is the Pricing and Distribution tab. Click on this
tab and choose the Paid or Free distribution button. Then, enter a price if you've
chosen Paid.

Note that if you choose Free, you can never change this. You
can, however, unpublish it.
If you chose Paid, you can click on Auto-convert prices now to
set up equivalent pricing for all currencies around the world.

In the DISTRIBUTE IN THESE COUNTRIES section, you can select countries
individually or check the SELECT ALL COUNTRIES checkbox, as shown in the
next screenshot:

The next six options under the Device categories and User programs sections in the
context of what you have learned in this book should all be left unchecked. Do read
the tips to find out more about Android Wear, Android TV, Android Auto, Designed
for families, Google Play for work, and Google Play for education, however.

Finally, you must check two boxes to agree with the Google consent guidelines and
US export laws.

Click on the Publish App button in the top-right corner of the web page and your
app will soon be live on Google Play. Congratulations.

Chapter 29

[643]

Marketing
The temptation at this stage is to sit back and wait for your app to hit the top position
in the best-selling apps. This never happens. You can do some things to boost your
app, as shown:

• Improve it: To make sure that our app achieves its full potential, we need
to continuously improve it by squashing bugs, making it run smoother, and
making it easier/more intuitive to use.

• Promote it: This could be the subject of another book, but there are so many
ways in which we can spread the word about our app. We can create a page/
profile on all social media sites, for example, Facebook, Twitter, Flickr, and
the rest. Add regular updates and announcements. We can create a website
to promote our app and promote it in all the ways we would promote any
other website. We can add a message in the app itself, asking players to rate
it. Perhaps, pop up a message just after they have successfully used a key
feature. We can ask everyone we know and everyone who visits our social
media/website to rate and leave a review. There are many more ways to
promote an app as well. The secret to all of them is this: to keep doing it.
For example, don't create a Facebook page and then expect it to grow in
popularity on its own. Keep adding to all of your channels of promotion.

• Add worthwhile features: There is always something new that you can add
to your app. Don't add things for the sake of it. For example, the ability to
play Pong in the Where it's snap app is an example of a bad feature, but the
ability to draw on or customize a photo might be something your users want.

• Various campaigns: You can also run a paid Google Adwords campaign
directly from your Google Play developer console.

More to see
Your Google Play developer console is crammed full of features and tools that are
worth exploring. Some of these things are straightforward; whereas, others are quite
technical. However, all are worth taking at least a quick look:

• The All Applications tab: By clicking on this tab, you can view statistics about
downloads, ratings, and current installs. Also, see an overview of the number
of ANR (Application not responding) crashes that your app has suffered.

• The Reports tab: Through this tab, you can search all your apps and
download detailed PDF reports of your app's statistics.

Publishing Apps

[644]

• The Crashes & ANRs tab: If you click on one of your applications from the
All Applications tab, you can then click on Crashes & ANRs to view the
specific details of crashes that have occurred in a format very similar to what
we have seen in the logcat. You can then fix the problem and quickly issue
an update.

• The Optimization tips tab: If you click on one of your applications from the
All Applications tab, you can then click on Optimization tips, which will
display a recommended list of steps that you can take to improve sales of
your app. Things such as specific localization steps for your app and support
of other form factors will be shown like a to-do list.

• The User Acquisition tab: This tab is new and allows you to see how
effective your store listing is by showing statistics such as page visitors,
installers, and buyers.

Summary
It's been a long journey, and if you've reached this point, you can now pursue
a career in building Android apps. Don't run off and build the next Evernote,
Runtatstic, or Angry Birds just yet. Take a look at the final short chapter about
what you might like to do next.

[645]

Before You Go
When you first opened this book, the last page probably seemed like a long way off.
But it wasn't too tough, I hope.

The point is you are here now, and hopefully, you've built a few of the example apps
and learned a decent amount of Java and Android along the way.

The motive behind this chapter is to congratulate you on your fine achievement. You
have a working Android development environment and know your way around
it. Also, you have a firm grasp of the Java programming language and have seen or
developed around 40 apps.

It is worth pointing out, however, that this short chapter probably shouldn't be the
end of your journey. With this in mind, let's take a look at what you can do next that
might benefit you.

What next
This book has taken a very deliberate path to teach you as many different areas of
Android as possible via a route that makes sense to a previously non-programming
reader.

It is, therefore, possible to take the main topic from any of the chapters and expand
upon it. In some cases, very significantly. Let's look at a few ways in which you can
expand your current app building prowess.

Keep reading
To differentiate between reading and studying, here are a few suggestions where
some light (fairly light) reading will help increase your knowledge.

Before You Go

[646]

GitHub
GitHub allows you to search and browse code that other people have written and
see how they have solved problems. This is really useful because by seeing the file
structure of classes and then dipping into them, you can often see how to plan your
apps from the start, and this will prevent you from starting off on the wrong path.
You can even get a GitHub app that allows you to do this from the comfort of your
phone or tablet. You can even configure Android Studio to save and share your
projects on GitHub. For example, search for "Android Fragment" on the homepage,
https://github.com/, and you will see more than 1,000 related projects that you
can snoop through:

https://github.com/

Chapter 30

[647]

StackOverflow
If you get stuck, have a weird error, or an unexplained crash, often, the best place to
turn is Google. Do this and you will be surprised at how often StackOverflow seems
to be prominent in the search results—and for good reason.

StackOverflow allows users to post a description of their problem along with sample
code so that the community can respond with answers. In my experience, however, it
is rarely necessary to post a question because there is almost always somebody who
has had the exact problem earlier.

StackOverflow is especially good for bleeding-edge issues. If a new Android Studio
version has a bug or a new version of the Android API seems to be not doing what it
should, then you can be almost certain that a few thousand other developers around
the world are having exactly the same problem as you. Then, a smart coder, often
from the Android development team itself, will be there with an answer.

StackOverflow is also good for a bit of light reading. Go to the homepage, http://
stackoverflow.com/, type Android in the search box, and you will see a list of all
the latest problems that the StackOverflow community is having:

http://stackoverflow.com/
http://stackoverflow.com/

Before You Go

[648]

I am not suggesting that you dive in and start trying to answer them all just yet, but
reading the problems and suggestions will teach you a lot. And you will probably
find that more often than you expect, you have the solution or at least an idea of the
solution. There is at least one question from the previous screenshot that readers of
Chapter 17, Sound FX and Supporting Different Versions of Android will be able to answer.

Android user forums
Also, it is well worth signing up to Android forums and visiting them occasionally to
find out what the hot topics and trends are from a user's perspective. I haven't listed
any here because a quick web search is all that is required.

If you're really serious, then you can attend some Android conferences, where you
can rub shoulders with thousands of other developers and attend lectures. If this
interests you, perform a web search for Droidcon, Android Developer Days, and
GDG DevFest.

For further study
You can now read a wider selection of other Android books. I mentioned at the
start of this book that there were very few, arguably none at all, books that taught
Android programming to readers with no Java experience. That was the reason I
wrote this book.

Now that you have a good understanding of OOP and Java , and have also been
briefly introduced to app design and patterns, you are well placed to read the
Android "beginner" books for people who already know how to program in Java,
like you now do.

These books are packed with really good examples that you can build or just read
about to reinforce what you have learned in this book. With these, you can use your
knowledge in different ways and, of course, learn some completely new stuff too.

I have already mentioned around a dozen books throughout these 30 chapters.
It might also be worth reading a few pure Java books as well. It might be hard to
believe, having just waded through around all these pages, but there is a whole lot
more to Java than there was time to cover here.

I could name a few titles, but the books with the largest number of positive reviews
on Amazon tend to be the ones worth exploring.

When you are really confident and want to get your hands dirty with more advanced
concepts, Packt Publishing has a range of "Mastering" titles that are worth exploring.
With these, however, you can expect a steep learning curve.

Chapter 30

[649]

Make some apps!
You can ignore everything we talked about in this chapter if you just put this one
thing into practice.

Don't wait until you are an expert before you start
making apps!

Start building your dream app, the one with all the features that are going to take
Google Play by storm. A simple piece of advice, however, is this: do some planning
first—not too much—and then get started.

Have a few smaller and more easily achievable projects on the sidelines. Projects
that you will be able to show to friends and family, and projects that explore areas
of Android that are new to you. If you are confident about these apps, you could
upload them on to Google Play. If you are worried about how they might be received
by reviewers, then make them free and put a note in the description about it being
"just a prototype" or something similar.

If your experience is anything like mine, you will find that as you read, study, and
build apps, you will discover that your dream app can be improved in many ways
and you will probably be inspired to redesign it or even start again.

When you do this, I can guarantee that the next time you build it, you will do it in
half the time and twice as good, at least!

gamecodeschool.com
I have a website that I hope you will visit sometime. As you can tell from the name,
http://gamecodeschool.com/ focuses on game programming. It does so not just
for Android, but for many platforms and covers a number of different programming
languages too.

Even if your focus is non-gaming apps, you will find lots of articles and projects
that will help your regular coding too. This is especially true if your next app will
use graphics, sound, animation, screen touch handling, databases, threads, and so
on. This is also true if you want to get started making apps for other platforms or
multiple platforms simultaneously.

And if you are new to coding and you want to make games, then the website was
made for you.

http://gamecodeschool.com/

Before You Go

[650]

Goodbye and thank you
I had a lot of fun writing this book. I know that's a cliché, but it's also true. Most
importantly though, I hope you've managed to take something from it and are able
to use it as a stepping stone for your future in programming.

You are perhaps reading this for a bit of fun or the kudos of releasing an app, a
stepping stone to a programming job, or maybe you actually do build that app to
take Google Play by storm. Whatever the case, a big thank you from me for buying
this book, and I wish you all the luck for your future endeavors.

[651]

Index
Symbols
+ icon

adding, to action bar 296

A
abstract classes 222, 223
access modifiers

about 201, 202
class usage, controlling with 199
method access summary 202
used, for controlling variable use 199, 200

accessors 205
activity_main layout

implementing 471
adapter 313
Android

about 4
code style, URL 273
current version, detecting 380
design guidelines 402
design guidelines, URL 402
multiple versions, supporting 379, 380
permissions, and Marshmallows 252
SoundPool class 380
URL 278, 398
version, detecting 380

Android API 2
Android app

about 25
deploying 34
emulator, deploying to 34-38
lifecycle 121, 122
project, creating 26-32
real Android device, deploying to 39, 40
testing 34
version controlling 33

Android application package (APK) 4
Android books 648
Android Canvas demo app 603-607
Android coordinate system 601, 602
Android Debug Bridge (ADB)

URL 353
Android lifecycle

about 123
demonstration app 126-132
overridden methods 132, 133
phases 123-126

Android lifecycle, phases
created 124
destroy 124
onCreate method 125
onDestroy method 126
onPause method 125
onResume method 125
onStart method 125
onStop method 126
paused 124
resuming 124
running 124
started 124
stop 124

Android package index
URL 24

Android resources 22, 23
Android SQLite API

about 513
database cursors 516
executing queries, building 515, 516
queries, building 514-516
queries, executing 514-516
SQLiteDatabase class 514
SQLiteOpenHelper class 514

[652]

Android Studio
setting up 14-22
URL 15

Android Studio tour
about 67
component tree 77
console 69
console, features 70
editor 69
editor tabs 69
editor, transforming into design

studio 71, 72
layout preview 76
menu parts 68
navigation bar 69
palette, exploring 74, 75
Preview toolbar 73
project explorer 71
project folder and file structure 77-80
properties window 77
text and design view tabs 77
tool bar 68
UI, parts 68

Android time zone codes
URL 262

Android UI design
exploring 83
structure 84, 85
widgets, configuring 85

Android UI elements
about 227
Buttons and TextView widgets, using

from layout 230-238
garbage collection 228, 229
inner and anonymous classes 239, 240
references 227, 228
stack and heap 229, 230

Android UI objects
declaring 242
exploring 241
initializing 242
widget news flash 242, 243

Android user forums 648
Android User Interface (UI) designer 43
animations

adding, to Note To Self 375
combining, with set tag 358

controlling, with Java code 358
creating, in Android 355
designing, in XML 356
duration, controlling 357
fading in 356
fading out 356
instantiating 358
interpolators 360
listeners 359
object, moving 356
object, scaling 357
object, stretching 357
repeating 357
rotating 357

Animations Demo app
about 360
laying out 361-363
wiring up, in Java 367-375
XML animations, coding 363-366

ANR (Application not responding) 643
app

about 649
improving 49
marketing 643
publishing 639-642
running 555, 556
UI, modifying 50-59

Application Programming Interface (API) 2
app, publishing

about 633
app icon, creating 634
publishable APK file, building 636-639
required resources, preparing 634, 635
URL 633

ARC (App Runtime for Chrome)
URL 635

ArrayLists
about 309, 310
enhanced for loop 311
polymorphic feature 311
URL 310

array out of bounds exception 309
arrays

as objects 300, 301
dynamic example 303, 304
initializing, dynamically 303
multidimensional array mini app 305-308

[653]

out of bounds exceptions 309
used, for entering nth dimension 305
used, for handling large amount

of data 298-300

B
BaseAdapter

about 313
inner classes 317
URL 318, 329
using, with ListView 314-317

basic classes mini app
about 193-196
first class 196, 197

Bfxr
URL 384

bitmap formats
URL 602

C
camel casing 140
camera

used, for capturing images 493, 494
canvas

drawing with 601
capture Fragment, Where in the

world mini app
coding 500-507
layout, creating 501, 503
testing 508

capturing images mini app
about 494, 495
camera permission, adding to

manifest 495, 496
camera used 493, 494
capture Fragment, coding 500
MainActivity class, coding 497, 498
simple layout, defining 496
Simple Photo app, running 499, 500

chaining 269, 209
CheckBox widget 250, 251
class

about 188
access, in nutshell 199
code 188

implementation 189
object, declaring 190-193
object, initializing 190
object, using 190

class declaration 46
class use

controlling, access modifiers used 198, 199
code

exploring 45-47
code comments 137, 138
Color class

URL 260
communications interface

coding 546
compiling 1
configuration qualifiers

about 409, 410
summary 412
using 411

constant 209
constructor

about 190
objects, setting up 206, 207

controller 400

D
Dalvik EXecutable (DEX) code 1
Dalvik Virtual Machine (DVM) 2
data

passing, between activities 333, 334
persisting, with SharedPreferences 338-340

database mini app
about 510, 517
class, coding 520-523
database class, coding 520-524
layout, implementing 517, 520
MainActivity, coding 524-527
running 527, 528

decisions
about 150
boolean variable 153
code, indenting 151
else keyword 154-156
making 156, 157
operators 152, 153
Switch Demo app 157, 158

[654]

de-serialization 346
development environment

about 5, 6
Android Studio, setting up 14-22
JDK 7
JDK, installing 7-14
note, for developers using Eclipse 6

device art
URL 634

device detection mini app
configuration qualifier, using 411
creating 406-409

dialog boxes
+ icon, adding to action bar 296
coding 289
DialogNewNote class, coding 289-292
DialogShowNote class, coding 292-294
new dialogs, displaying 294, 295

Dialog class 268
dialog demo mini project 268-272
dialog designs

implementing 285-288
DialogFragment class 268
DialogNewNote class

coding 289-292
DialogShowNote class

coding 292-294
dialog windows

about 267, 268
dialog demo mini project 268

Dividing by zero
URL 622

do while loops 163
drivers 4
dual-Fragment address book mini app

about 430, 431
AddressDetailFragment class,

creating 449-452
alias resources 432-435
code, defining for new Activity 447
communication interface, creating 444-446
defining 432
Fragment code, defining 448
Fragment code, implementing 448
layout, coding 453-455
layout, creating 449-452
NameAndAddress class 435-444

onListItemSelected method structure,
defining 447

PortraitDetailActivity, coding 453-455

E
EditText widget 244
encapsulation 197, 198
example code, SQLite

about 511
database structure, updating 513
data, inserting into database 512, 513
data, retrieving from database 513
table, creating 512

expression 147-150
Extensible Markup Language (XML) 23

F
for loops 163
form

designing, with RelativeLayout 112-119
fps (frames per second) 610
Fragment class 268
fragment communications

coding, in MainActivity 552-554
fragment_layout 469
fragment mini app

building 414-420
using 420, 421

fragment pager/slider app
activity_main layout, implementing 471
building 466
fragment_layout 469
MainActivity class, coding 469-471
running 472
SimpleFragment class, coding 467-469

Fragments
about 412
FAQ 455
lifecycle 412
managing, with FragmentManager 413, 414
onAttach method 413
onCreate method 412
onCreateView method 412
onDetach method 413
onPause method 413
onStart method 413

[655]

onStop method 413
reference link 413

G
gamecodeschool.com 649
getActivity method 291
GitHub

about 646
URL 646

Global Positioning System (GPS) 557, 558
GNSS (Global Navigation

Satellite System) 557
Google Developers Console 565
Google Maps mini app

about 564, 565
API key, acquiring 565-568
connecting to 565

Google Play services API
installing 568, 569
MapsActivity, coding 570
maps_activity layout, coding 570
simple map app, running 571

GPS mini app
about 558, 559
simple layout, implementing 559, 560

Gradle
URL 70

gravity
using 92

H
HAXM (Hardware Acceleration Execution

Manager) 36

I
image gallery/slider app

building 459
layout, implementing 460, 461
MainActivity class, coding 464, 465
PagerAdapter class, coding 461-463
running 465, 466

ImageView image 244, 245
inheritance mini app 217-221

instance 186
integrated development

environment (IDE) 5
intent class 331, 332
Inter-Fragment communications

defining 427-429
interpolators

about 360
reference link 360

J
Java

about 3, 59, 136
and Android, working 1
animations, controlling 358
Animations Demo app, wiring up 367-375
class 3
code comments 137, 138
code, structure 133, 134
code, writing 61, 62
comments 60
messages, sending 60
methods, writing 63, 64
object 3
syntax 136, 137

Java array 299
Java code, structure

about 23
Android packages 23-25

Java exceptions 347
Java JDK downloads

URL 8
Java Runtime Environment (JRE) 7
JavaScript Object Notation (JSON) 346
JDK

about 7
installing 7-14

JSON data
URL 353

K
key-value pairs 334

[656]

L
layers 400
layouts

file, examining 48
LinearLayout, using 101-105
RelativeLayout 98-101
widgets 98

layout_weight property
using 90

LinearLayout 101-106, 109-112
listeners, animations 359
ListView

about 313
using, with BaseAdapter 314-317

Localization mini app
about 587
first strings.xml file, preparing 588, 589
layout, preparing 587
making multilingual, second strings.xml

file used 589, 590
running 592, 593
third language, adding 591, 592
URL 591

logcat 44
log output

examining 43, 44, 64
loops

breaking out of 161, 162
code, repeating with 159
continue keyword 162
demo app 164-167
do while loops 163
for loops 163
while loops 160

M
MainActivity class

coding 464-470
margin 89, 90
Marshmallows

permissions 253
permission solution 254
Pre-Marshmallow permissions 252, 253

Master-Detail layout
with LinearLayout 109-112
with scrollView 109-112

Math class
URL 209

member variables 189
memory management

warning 185, 186
method name 47
method overloading

about 176
exploring 178-180

method overriding 122, 180
methods

about 169, 170
Real World Methods app 176

method signature 47
method structure

about 170, 171
method body 175
method name 174
modifiers 172
parameters 175
return types 172-174

model 400
model layer

singletons, using for 423-426
model-view-controller (MVC) pattern

about 400
controller 400
model 400
view 400

modifiers 172
multidimensional array mini app

creating 305-308
multi-line comment 138
mutators 205

N
naming convention 140
navigation drawer 474, 475
new dialogs

displaying 294, 295
note

deleting 396, 397
Note class

coding 282-285
Note To Self app

about 272

[657]

actions, performing by user 275-278
animation 328
animations, adding 375
animations, controlling in Java 376-378
animations, defining in XML 375, 376
code, obtaining 273, 274
code designing, issues 328
data, persisting with

SharedPreferences 338-340
imperfections 401
implementing 274, 275
improvements 327
list item, creating for ListView 320-327
MainActivity classs, coding 344, 345
naming conventions, using 273
onCreate, updating 319, 320
parent Activity, specifying 345, 346
persistence 327
SettingsActivity class, coding 340-344
SettingsActivity class, creating 335
settings page, adding 334
settings, persisting 340
settings screens layout, designing 335-337
sound FX, adding 394-396
Sound FX 328
String resources 273
UI, preparing 319, 320
user data, backing up 348-352
user, enabling to switch to

settings screen 337
Note To Self project

building 278
images, downloading 279, 280
resources, gathering 278
String resources, preparing 281, 282

nutshell
class access 199

O
object-oriented programming (OOP)

about 185, 186
and inheritance 215-217
class 188
encapsulation 187
inheritance 187

polymorphism 187
principles 186

objects
in nutshell 3
setting up, with constructors 206, 207

OBS (Open Broadcaster Software)
URL 635

OnLongClick 396, 397
operators

addition operator (+) 146
assignment operator (=) 145
decrement operator (--) 146
division operator (/) 146
increment operator (++) 146
multiplication operator (*) 146
subtraction operator (-) 146
URL 146
used, for changing values 145, 146

Oracle Java tutorials
URL 142

P
package

about 23
declaration 46

padding 89, 90
PagerAdapter class

coding 461-464
paging

about 457, 458
working 458

paint
drawing with 601

palette
anonymous classes 246-249
CheckBox widget 250, 251
Date & Time 252
EditText widget 244
exploring 243
ImageView 244, 245
radio button and group 245, 246
switch widget 249, 250
WebView widget 251

parameters 175
persistence 346

[658]

photo
displaying, from database 542
fragment communications, coding in

MainActivity 552-554
saving, from capture fragment 539-541
TagsFragment, coding 550-552
TitlesFragment, coding 547-550
ViewFragment class, coding 543-546
View layout, preparing 542, 543

photo class 530, 531
polymorphism

about 221, 222
abstract classes 222, 223
interfaces 224, 225

Pong game
about 608
ball, coding 608-611
building 608
draw method, coding 626-628
enhancements 631
full screen 629
MainActivity, coding 615, 616
paddle, coding 612-614
running 630
screen orientation, locking 629
sound files, adding to project 608
SurfaceView, coding 617-623
update method, coding 623-625

primitive types 140-142
private variables

accessing, with getters 202-205
accessing, with setters 202-205

project assets
exploring 45, 46

publishable APK file
building 636-639

R
RadioButton 245, 246
Random class 298
random numbers

creating 298
generating, URL 318
using 298

real-world apps
about 403

layout design 403-406
Real World Methods app

creating 176-178
method overloading 178-180

real-world UI
building 107
Master-Detail layout, with scrollView and

LinearLayout 109-112
tablet emulator, creating 108

reference types 143
RelativeLayout

about 98-101
form, designing with 112-119

return types 172-174
RGB color system

URL 260

S
scope 181
screen qualifiers

URL 80
scrollView 109-112
seed 318
SeekBar 361
serialization

URL 353
set tag

used, for combining animations 358
signature 170
simple array example mini app

creating 301, 302
SimpleFragment class

coding 467-469
singletons

used, for model layer 423-426
software development kit (SDK) 5
Sound Demo

coding 389-393
laying out 386-389

sound FX
adding, to Note To Self app 394-396
creating 384-386

SoundPool class
about 380, 381
new way, building 381, 382
old way, building 381, 382

[659]

sound files, loading into memory 382
sound, playing 383
sound, stopping 383

Spinner widget
about 383
Sound Demo app, coding 389-393
Sound Demo, laying out 386
sound FX, creating 384-386

SQLite
about 510
database, handling 532-538
types, URL 511

SQL keywords
DELETE 511
FROM 511
INSERT 511
SELECT 511
WHERE 511

SQL syntax primer
about 511
example code 511

stack 228
StackOverflow

about 647
URL 647, 648

static methods mini app
about 208, 209
and encapsulation 210-214

Structured Query Language (SQL) 510
subpackages 23
Switching Activity 332
switch widget 249, 250

T
table 510
tablet emulator

creating 108
TagsFragment

coding 550-552
threads

about 598
issues 598-600
URL 599

TitlesFragment
coding 547-550

Toast class
URL 209

touches
handling 607

types, SQL
integer 511
real 511
text 511

U
Uniform Resource Identifier (URI) 530
user interface (UI) designer 7

V
variable access

summary 201
variables

about 181
data, storing 139
data, using 139
declaration 144
initialization 144
primitive types 140-142
reference types 143
types 140
values, changing with operators 145, 146

variable use
controlling, access modifiers used 199, 200
variable access, summary 201

Version Control Systems (VCS) 33
view 400

W
WebView widget 251
Where in the world mini app

coding 561-563
running 564

Where it's snap app
addPhoto method, updating to handle GPS

coordinates 578
back button, handling 487-492
CaptureFragment, updating 580-582
code, adding in onUpgrade 576
database creation code, updating in

onCreate for new users 577

[660]

database, updating 574, 575
database version, updating 576
drawer, setting up 485-487
features 475, 476
fragments, switching between 483, 484
localizing 593, 594
location permissions, adding 584, 585
locations, adding 573, 574
MainActivity class and layout,

coding 480-483
maps, adding 573, 574
member variables, adding to represent

location data 575
new map feature, testing 586
Photo class, updating 579
placeholder code, for three

fragments 478, 479
resources, preparing 477
ViewFragment, updating 583

while loops 160
widget exploration mini app

about 254
coding 258-262
setting up and UI 254-257

widgets
displaying, issue 313
displaying, solution 313

widgets, Android UI design
configuring 85
containing, in layouts 98
dp, used for sizing 86
experimenting with 93-98
fonts sizing, dp used 87
gravity, using 92
layout_weight property, using 90, 91
margin, using 89, 90
padding, using 89, 90
properties 85
properties, more 93
size, determining with match 88, 89
size, determining with wrap 88, 89
size, setting 86

X
XML

animations, designing 356

Thank you for buying
Android Programming for Beginners

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Android Studio Cookbook
ISBN: 978-1-78528-618-6 Paperback: 232 pages

Design, debug, and test your apps using
Android Studio

1. See what Material design is about and how to
apply it your apps.

2. Explore the possibilities to develop apps that
works on any type of device.

3. A step-by-step practical guide that will help
you build improved applications, change their
look, and debug them.

Learning Android Google Maps
ISBN: 978-1-84969-886-3 Paperback: 356 pages

Integrate Google Maps with your Android
application to offer feature-rich and interactive maps

1. Set up the development environment and
obtain the Google API key to create your first
map application.

2. Create a cutting edge Google maps application
by implementing all the concepts learned.

3. A step-by-step tutorial guide that is full of
pragmatic examples.

Please check www.PacktPub.com for information on our titles

Learning Ionic
ISBN: 978-1-78355-260-3 Paperback: 388 pages

Build real-time and hybrid mobile applications
with Ionic

1. Create hybrid mobile applications by
combining the capabilities of Ionic, Cordova,
and AngularJS.

2. Reduce the time to market your application
using Ionic, that helps in rapid application
development.

3. Detailed code examples and explanations,
helping you get up and running with Ionic
quickly and easily.

Learning Firefox OS Application
Development
ISBN: 978-1-78398-940-9 Paperback: 166 pages

Learn to design, build, and deploy your Firefox OS
applications, built with web technologies, to the
Firefox Marketplace

1. Create beautiful and interactive Firefox OS
applications by applying your knowledge of
web development.

2. Cater your applications to a huge number of
users by porting them to the Firefox OS.

3. A step-by-step learning workflow with real-life
applications to demonstrate the concepts.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The First App
	How Java and Android work together
	The Android API
	Java is object-oriented
	What exactly is Android?

	The development environment
	A note to the existing developers who use Eclipse
	The JDK
	What if I already have Java?
	Installing the JDK

	Setting up Android Studio

	What makes an Android app
	Android resources
	The structure of Android's Java code
	Android packages

	Our first Android app
	Creating the project
	A note on version controlling

	Deploying and testing the app
	Deploying to an emulator
	Deploying to a real Android device

	FAQ
	Summary

	Chapter 2: Java – First Contact
	Examining the log output
	Exploring the project assets and code
	Examining the layout file

	Improving our app and deploying again
	Modifying the UI

	Meet Java
	Java comments
	Sending messages

	Writing our first Java code
	Writing our own Java methods
	Examining the log output

	FAQ
	Summary

	Chapter 3: Exploring Android Studio
	The Android Studio guided tour
	Parts of the UI
	The console
	More console features
	The project explorer

	Transforming the editor into a design studio
	E1 – the Preview toolbar
	E2 – exploring the palette
	E3 – the layout preview
	E4 – the Component Tree
	E5 – the Properties window
	E6 – text and design view tabs

	The project folder and file structure

	FAQ
	Summary

	Chapter 4: Designing Layouts
	Exploring Android UI design
	Structure of a UI design
	Configuring and using widgets
	Widget properties
	Experimenting with widgets

	Containing widgets in layouts
	RelativeLayout
	Using LinearLayout

	Summary

	Chapter 5: Real-World Layouts
	Building a real-world UI
	Creating a tablet emulator
	List-detail layout with scrollView and LinearLayout
	Designing a form with RelativeLayout

	Summary

	Chapter 6: The Life and Times of
an Android App
	Introduction to the Android lifecycle
	A simplified explanation of the
Android lifecycle
	Lifecycle phases – what we need to know
	Lifecycle phases – what we need to do
	The lifecycle demonstration app
	Some other overridden methods

	The structure of Java code – revisited
	Summary

	Chapter 7: Coding in Java
Part 1 – Variables,
Decisions, and Loops
	Java is everywhere
	Syntax and jargon
	More code comments
	Storing and using data with variables
	Types of variables
	Primitive types
	Reference types
	Variable declaration
	Variable initialization

	Changing values in variables with operators
	Expressing yourself demo app
	Decisions
	Indenting our code
	More operators
	If they come over the bridge, shoot them
	Else do this instead
	Switching to make decisions
	The Switch Demo app

	Repeating code with loops
	While loops
	Breaking out of a loop
	Continue

	Do while loops
	For loops
	Loops demo app

	Summary

	Chapter 8: Coding in Java
Part 2 – Methods
	Methods revisited
	The method structure
	Modifiers
	Return types
	The name of a method
	Parameters
	Working in the method body

	Using methods – demo apps
	Real-world methods
	Exploring method overloading

	Scope and variables revisited
	FAQ
	Further reading
	Summary

	Chapter 9: Object-Oriented Programming
	Important memory management warning
	Introducing OOP
	What is OOP exactly?
	Encapsulation
	Polymorphism
	Inheritance

	Why do it like this?
	A class recap

	Taking a look at the code for a class
	The class implementation
	Declaring, initializing, and using an object of the class

	The basic classes mini app
	More things we can do with our first class

	Remember that encapsulation thing?
	Controlling class use with access modifiers
	Class access in a nutshell

	Controlling variable use with access modifiers
	Variable access summary

	Methods have access modifiers too
	A method access summary

	Accessing private variables with getters and setters
	Setting up our objects with constructors
	Static methods

	Encapsulation and static methods mini app
	OOP and inheritance
	The inheritance mini app
	Polymorphism
	Abstract classes
	Interfaces

	FAQ
	Summary

	Chapter 10: Everything's a Class
	All Android UI elements are classes too
	Reintroducing references
	A quick break to throw out the trash
	Stack and heap – a quick summary

	So, how does this heap thing help me?
	Using Button and TextView widgets from our layout
	Inner and anonymous classes

	FAQ
	Summary

	Chapter 11: Widget Mania
	Exploring Android UI objects
	Declaring and initializing objects
	Widget news flash

	Exploring the palette
	EditText
	ImageView
	Radio button and group
	Anonymous classes

	A switch widget
	CheckBox
	WebView
	Date & Time

	Android permissions and Marshmallows
	Pre-Marshmallow permissions
	Marshmallow permissions
	The permission solution used in this book

	The Widget exploration mini app
	Setting up the widget exploration project
and UI
	Coding the widget exploration app

	Summary

	Chapter 12: Having a Dialogue with
the User
	Dialog windows
	The dialog demo mini project – introducing chaining

	About the Note to self app
	Using naming conventions and String resources
	How to get the Note to self code
	What we will do and when we will do it
	What the user can do

	Building the project and gathering resources
	Downloading the images
	Preparing the String resources

	Coding the Note class
	Implementing the dialog designs
	Coding the dialog boxes
	Coding the DialogNewNote class
	Coding the DialogShowNote class
	Showing our new dialogs
	Adding a + icon to the action bar

	Summary

	Chapter 13: Handling and Displaying Arrays of Data
	A random diversion
	Handling large amount of data with arrays
	Arrays are objects

	A simple array example mini app
	Getting dynamic with arrays
	A dynamic array example

	Entering the nth dimension with arrays
	A multidimensional array mini app
	Array out of bounds exceptions

	ArrayLists
	The enhanced for loop

	Arrays and ArrayLists are polymorphic
	ListView and BaseAdapter
	The problem with displaying lots of widgets
	The solution
	How to use ListView and BaseAdapter
	Inner classes revisited

	FAQ
	Summary

	Chapter 14: Handling and Displaying Notes in Note To Self
	Note To Self continued
	Updating onCreate and preparing the UI
	Creating a list item for ListView

	Improvements in Note To Self
	Persistence
	Animation
	Sound FX
	Problems with the design of the code

	FAQ
	Summary

	Chapter 15: Android Intent and Persistence
	Good Intents
	Switching Activity
	Passing data between activities

	Adding a settings page to the Note To Self app
	Creating SettingsActivity
	Designing the Settings screen's layout
	Enabling the user to switch to the Settings screen

	Persisting data with SharedPreferences
	Making the Note To Self app's settings persist
	Coding the SettingsActivity class
	Coding the MainActivity class
	Specifying a parent Activity

	More advanced persistence
	What is JSON?
	Java exceptions - try, catch, and finally

	Backing up user data in Note To Self
	FAQ
	Summary

	Chapter 16: UI Animations
	Animations in Android
	Designing cool animations in XML
	Fading in and out
	Movement
	Scaling or stretching
	Controlling the duration
	Rotating animations
	Repeating animations
	Combining animation properties with a set tag

	Instantiating animations and controlling them with Java code
	More animation features
	Listeners
	Animation interpolators

	The Animations Demo app – introducing SeekBar
	Laying out the animation demo
	Coding the XML animations
	Wiring up the Animations Demo app in Java

	Adding animations to Note To Self
	Defining the animations in XML
	Controlling the animations in Java

	FAQ
	Summary

	Chapter 17: Sound FX and Supporting Different Versions of Android
	Supporting multiple versions of Android
	Detecting the current Android version
	The SoundPool class
	Building SoundPool the new way and the old way
	Loading sound files into memory
	Playing a sound
	Stopping a sound

	Introducing the Spinner widget
	Making sound FX
	Laying out Sound Demo UI
	Coding the Sound Demo app

	Sound FX touches to Note To Self
	Deleting a note – introducing OnLongClick
	FAQ
	Summary

	Chapter 18: Design Patterns, Fragments, and the Real World
	Introducing the model-view-controller pattern
	The model
	The view
	The controller

	The imperfections of Note To Self revisited
	Android design guidelines
	Real-world apps
	The device detection mini app
	Configuration qualifiers
	Using configuration qualifiers – mini app
	The configuration qualifier's summary

	Fragments
	Fragments have a lifecycle too
	onCreate
	onCreateView
	onAttach and onDetach
	onStart, onPause, and onStop

	Managing Fragments with FragmentManager

	Our first working Fragment mini app
	Fragment reality check
	FAQ
	Summary

	Chapter 19: Using Multiple Fragments
	Using singletons for the model layer
	Inter-Fragment communications – interfaces revisited
	The dual-Fragment address book
mini app
	Getting started
	Alias resources
	The NameAndAddress class
	Creating the communication interface
	Explaining the structure of the onListItemSelected method
	Explaining the code that starts a new Activity
	Explaining the code when the detail Fragment is already present
	What do we need to do?
	Creating the AddressDetailFragment class and layout
	Coding PortraitDetailActivity and the layout

	FAQ
	Summary

	Chapter 20: Paging and Swiping
	Building an image gallery/slider app
	Implementing the layout
	Coding the PagerAdapter class
	Coding the MainActivity class
	Running the gallery app

	Building a Fragment pager/slider app
	Coding the SimpleFragment class
	fragment_layout
	Coding the MainActivity class
	The activity_main layout
	Running the Fragment slider app

	Summary

	Chapter 21: Navigation Drawer and Where It's Snap
	Introducing the navigation drawer
	The Where it's snap app
	Preparing the resources
	Placeholder code for three Fragments
	Coding the MainActivity class and layout
	Switching between Fragments
	Setting up the drawer
	Handling the back button

	Summary

	Chapter 22: Capturing Images
	Capturing images using the camera
	The capturing images mini app
	Adding the camera permission to the manifest
	Defining a simple layout
	Coding the MainActivity class
	Running the Simple Photo app

	Where it's snap – coding the capture Fragment
	Creating the layout for the capture Fragment
	Coding the capture Fragment
	Testing the capture Fragment

	Summary

	Chapter 23: Using SQLite Databases
in Our Apps
	Database 101
	What is a database?
	What is SQL?
	What is SQLite?

	The SQL syntax primer
	The SQLite example code
	Creating a table
	Inserting data into the database
	Retrieving data from the database
	Updating the database structure

	The Android SQLite API
	SQLiteOpenHelper and SQLiteDatabase
	Building and executing queries
	Database cursors

	The database mini app
	Implementing the layout
	Coding the database class
	Coding MainActivity
	Running the mini app

	Summary

	Chapter 24: Adding a Database to
Where It's Snap
	The Photo class
	Handling the SQLite database
	Saving a new photo from the capture fragment
	Displaying a photo from the database
	Preparing the View layout
	Coding the ViewFragment class

	Coding the communications interface
	Coding TitlesFragment
	Coding TagsFragment
	Coding the fragment communications
in MainActivity
	Running the app so far
	Summary

	Chapter 25: Integrating Google Maps and GPS Locations
	Global Positioning System
	Where in the world – the GPS mini app
	Where in the world – implementing a
simple layout
	Coding the Where in the world mini app
	Running the Where in the world mini app

	The Google Maps mini app
	Preparing to connect to Google Maps
	Acquiring an API key
	Installing the Google Play services API

	Coding the maps_activity layout
	Coding MapsActivity
	Running the Simple Map app

	Summary

	Chapter 26: Upgrading SQLite – Adding Locations and Maps
	Adding locations and maps to Where
it's Snap
	Updating the database
	Adding member variables to represent location data
	Updating the database version
	Adding code in onUpgrade to upgrade the database for existing users
	Updating the database creation code in onCreate for new users
	Updating the addPhoto method to handle GPS coordinates

	Updating the Photo class
	Updating CaptureFragment

	Updating ViewFragment
	Adding location permissions
	Testing the new map feature
	Summary

	Chapter 27: Going Local – Hola!
	The Localization mini app
	Preparing the layout
	Preparing the first strings.xml file
	Making the app multilingual with the second strings.xml file
	Adding a third language
	Running the app

	Localizing the Where it's snap app
	Summary

	Chapter 28: Threads, Touches, Drawing, and a Simple Game
	Threads
	Problems with threads

	Drawing with canvas and paint
	The Android coordinate system

	Android Canvas demo app
	Handling touches
	A simple game engine
	Building a simple game of Pong
	Adding sound files to the project
	Coding the ball
	Coding the paddle
	Coding MainActivity
	Coding SurfaceView
	Coding the update method
	Coding the draw method

	Lock the screen orientation and make
it full-screen
	Running the game
	Pong enhancements

	Summary

	Chapter 29: Publishing Apps
	Preparing to publish
	Creating an app icon
	Preparing the required resources

	Building the publishable APK file
	Publishing the app
	Marketing
	More to see
	Summary

	Chapter 30: Before You Go
	What next
	Keep reading
	GitHub
	StackOverflow
	Android user forums

	For further study
	Make some apps!
	gamecodeschool.com

	Goodbye and thank you

	Index

