
www.allitebooks.com

http://www.allitebooks.org

Android Studio
Cookbook

Design, debug, and test your apps using Android Studio

Mike van Drongelen

BIRMINGHAM - MUMBAI

www.allitebooks.com

https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=81df25da-32be-2d5b-bb18-550aad91976e
http://www.allitebooks.org

Android Studio Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1231015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-618-6

www.packtpub.com

Cover image by Wim Wepster

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Mike van Drongelen

Reviewers
Aliaksandr Zhukovich

Ankit Garg

Nico Küchler

Acquisition Editor
Nikhil Karkal

Content Development Editor
Zeeyan Pinheiro

Technical Editor
Pranjali Mistry

Copy Editor
Neha Vyas

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=81df25da-32be-2d5b-bb18-550aad91976e
https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=47de3331-6288-9b4e-54e9-55718526cb60
https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=9532e0e4-3550-a5e9-2c8e-53d258467c53
https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=8b32cfdb-b481-5e3a-e9e8-557185ecf5f6
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=7a01abf0-c659-413c-1794-51fbbd2c7001
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=27c192bb-eff0-a790-e86b-54eda48b5928
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=2366b8ca-186e-593e-8092-559ba520eea2
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=e51f08bd-635b-cd2c-7cea-5461b12b20d6
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=d80f0910-be7d-2ede-33d9-53db6882a905
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=e0894944-b51d-019b-e017-53db7b60be21
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=338a884a-985c-9804-3d8c-53db72f95757
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=39819f69-e76f-88c6-cf2a-53db89b1c850
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=39819f69-e76f-88c6-cf2a-53db89b1c850
http://www.allitebooks.org

About the Author

Mike van Drongelen started developing software from the very first moment he had
access to a computer. At the age of nine, he started programming in an obscure Basic variant.
Currently, he works as a mobile solution consultant in the Netherlands. Besides this, he also
runs his own start-up. He speaks English, Dutch, German, and a little French, but most of the
time, he speaks Java, JavaScript, HTML, Objective C, Swift, C#, and ASP.NET. He develops
Android, iOS, and .NET solutions for various customers and has some projects of his own. One
of his projects is an e-learning solution called TeamSpot. Another one is Finiware, which is a
company developing B2B specific solutions.

Creating better software using less code is what he is aiming for, which explains why
he is interested in the lean start up methodology. In addition to this, he is interested in
technology and topics such as continuous delivery, Test-driven development, and Behaviour
Driven Development.

About these and other mobile related topics you can read his blog on www.mikevandrongelen.
info. When he is not developing, he likes to go on trips on his motorbike or with his 2 CV.

You can find out more about his companies—Miker Works (www.mikerworks.nl), Finiware
(www.finiware.nl), and TeamSpot (www.teamspot.nl)—on the Internet.

First of all, I would like to thank my wife, Lan Nguyen, for her support, and to
Wim Wepster, who has been kind enough to create the front cover image in
a material design style.

Also, I would like to thank the reviewers for their comments, and all the
people at Packt Publishing who were involved in the creation of this book.

Finally, I would like to thank you for reading this book. I hope you enjoy
reading it as much as did writing it.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Aliaksandr Zhukovich is a software enthusiast with a passion for technology and has
more than four years of experience in professional software development. He has developed
and designed software solutions for different areas. He graduated from College Business and
Law and Baranovichi State University as a software developer.

He has already worked for multinational companies, such as Ericpol, as as Software developer
and has worked with Java, C++, TTCN, and Android technologies. Currently, he works for
TomTom as a mobile software engineer and works for a cross-platform Navigation Engine.

Ankit Garg works as a mobile engineer at AOL. He works in the Product Research and
Development team and has about five years of experience in developing mobile applications.
He is really passionate about making user-friendly mobile apps.

Nico Küchler lives in Berlin, Germany. He did an apprenticeship as a mathematical-technical
software developer. He has worked for the gambling industry and as an online shop provider.

Since he last few years, he is working at Deutsche Post E-POST Development GmbH within the
scope of Android app development.

He has also reviewed Testing and Securing Android Studio Applications for packt.

He is maintaining a project which provide a fast start with test driven Android app
development https://github.com/nenick/android-gradle-template.

www.allitebooks.com

https://github.com/nenick/android-gradle-template
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

i

Table of Contents
Preface	 iii
Chapter 1: Welcome to Android Studio	 1

Introduction	 1
Creating your first app called Hello Android Studio	 4
The use of Gradle build scripts	 8
Testing your app with an emulator called Genymotion	 9
Refactoring your code	 13

Chapter 2: Applications with a Cloud-based Backend	 17
Introduction	 17
Setting up Parse	 18
Consuming data from the cloud	 22
Submitting data to the cloud	 28

Chapter 3: Material Design	 37
Introduction	 37
Reycler views and card views	 39
Ripples and elevations	 46
Great transitions	 54

Chapter 4: Android Wear	 61
Wearables	 61
Fullscreen wearable app	 62
Watch faces	 67
Notifications	 71

Chapter 5: Size Does Matter	 77
Size and context	 77
Phone, phablet, and tablet	 78
Media playback	 92
TV and media centre	 96

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 6: Capture and Share	 99
Introduction	 99
Capturing images the easy way	 100
Image capturing using the Camera2 API	 101
Image sharing	 108
Orientation issues	 111

Chapter 7: Content Providers and Observers	 117
Introduction	 117
Content providers	 118
Consuming and updating data using a content provider – daily thoughts	 119
Change projections to display KPIs in your app	 133
Communicate with other apps using content providers	 138

Chapter 8: Improving Quality	 143
Introduction	 143
Patterns and support annotations	 144
Unit testing using Robolectric	 158
Code analysis	 164

Chapter 9: Improving Performance	 169
Introduction	 170
Memory profilers and performance tools	 170
Here comes the bad app – performance improvements	 175
Overdraw issues	 185

Chapter 10: Beta Testing Your Apps	 191
Introduction	 192
Build variants	 192
Runtime permissions	 201
Play Store beta distribution	 205

Index	 211

www.allitebooks.com

http://www.allitebooks.org

iii

Preface
Android Studio is the best IDE for developing Android apps, and it is available for free to
anyone who wants to develop professional Android apps.

Now with Android Studio, we have a stable and faster IDE, and it comes with a lot of cool stuff
such as Gradle, better refactoring methods, and a much better layout editor. If you have used
Eclipse, then you will love this IDE.

In short, Android Studio has really brought back the fun of mobile development, and in this
book, we will see how.

What this book covers
Chapter 1, Welcome to Android Studio, demonstrates how to configure Android Studio and
Genymotion, which is a really fast emulator.

Chapter 2, Applications with a Cloud-based Backend, explains how to use Parse to develop an
app using a cloud-based backend in no time.

Chapter 3, Material Design, explains the concept of material design and how to implement it
using RecycleViews, CardViews, and transitions.

Chapter 4, Android Wear, covers the Android Wear API and how to develop your own watch
face or other apps running on a smart watch.

Chapter 5, Size Does Matter, demonstrates how using fragments and additional resources
can help you to create an app that is able to run on a phone, phablet, tablet, or even on TV.
On the fly, we will connect to the YouTube API to make the recipes more fun.

Chapter 6, Capture and Share, is an in-depth tutorial about capturing and previewing images
using the new Camera2 API, in particular. It also tells you how to share a captured image
on Facebook.

www.allitebooks.com

http://www.allitebooks.org

Preface

iv

Chapter 7, Content Providers and Observers, explains how you can benefit from using content
providers to display and observe persisting data.

Chapter 8, Improving Quality, elaborates on applying patterns, unit testing, and code
analysis tools.

Chapter 9, Improving Performance, covers how the Device Monitor can be used to optimize
your apps' memory management and how the developer options on your phone can be used
to detect overdraw and other performance issues.

Chapter 10, Beta Testing Your Apps, guides you through some of the final steps such as using
build variants (types and flavors) and beta distribution on the Google Play Store. In addition to
this, it covers how the run time permissions that come with Android Marshmallow (6.0) differ
from the install permissions.

What you need for this book
For this book, you need to download and set up Android Studio and the latest SDKs. Android
Studio is free and is available for Windows, OSX, and Linux.

Having at least one phone, phablet, or tablet is strongly recommended, but in Chapter 1,
Welcome to Android Studio we will introduce you to Genymotion, a really fast emulator,
which you can use instead of a real device in most cases.

Finally, for some recipes, you need to have a Google developer account. If you do not have one
yet, I suggest that you get one as soon as possible. After all, you will need one in order to be
able to get your app into the Play Store.

Who this book is for
This book is for anyone who is already familiar with the Java syntax and perhaps has already
developed some Android apps, for example, using the Eclipse IDE.

This book explains the concepts of Android development using Android Studio in particular. To
demonstrate these concepts, real-world recipes are provided. And, by real-world apps, I mean
apps that do connect to a backend and communicate with Google Play services or Facebook
and so on.

Preface

v

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
All screenshots, shortcuts and other elements that are specific for Android Studio are based
on Android Studio for OSX.

The main reason that OSX is being used is because it allows us to develop apps for both
Android and iOS on the same machine. Other than that there is no reason to choose a
particular OS other than your personal (or companies) preferences.

Preface

vi

While the screenshots are based on Android Studio for OSX it is not too difficult for you to
figure things out in case your OS is Windows or Linux.

Where needed the short cuts for Windows are mentioned as well.

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "We can include other
contexts through the use of the include directive."

A block of code is set as follows:

public void onSectionAttached(int number) {
 switch (number) {
 case 0:
 mTitle = getString(
 R.string.title_section_daily_notes);
 break;

 case 1:
 mTitle = getString(
 R.string.title_section_note_list);
 break;
 }
}

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

vii

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/B04299_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support
https://www.packtpub.com/sites/default/files/downloads/B04299_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/B04299_ColoredImages.pdf

Preface

viii

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1

Welcome to
Android Studio

In this chapter, we will cover some basic tasks related to Android Studio. While reading this
and the other chapters, you will learn how to use Android Studio efficiently.

In this chapter, you will learn the following recipes:

ff Creating your first app called Hello Android Studio.

ff The use of Gradle build scripts

ff Testing your app with an emulator called Genymotion

ff Refactoring your code

Introduction
This chapter is an introduction to Android Studio and provides a helicopter view of the
different tools that come with this Integrated Development Environment (IDE). In addition
to this, some other important tools will be discussed here, such as Genymotion, the emulator
that I highly recommend you to use to test your app on different kinds of devices.

Using Android Studio, you can create any app you like. Apps for phones, phablets, tablets,
watches and other wearables, Google Glass, TV apps, and even auto apps.

If you already have mobile programming experience or even have worked with Android apps
and Eclipse before and you want to discover how to create apps that take pictures, play
media, work on any device, connect to a cloud, or anything else that you can think of,
then this book is for you!

1

Welcome to Android Studio

2

All recipes described in this book are based on Android Studio for Mac; however, it is not a
problem at all if you are using Android Studio for Windows or Linux instead. The terminology
is the same for all platforms. Just the screenshots provided with each recipe may look a little
bit different, but I am pretty sure you can figure that out with a little effort. If there are any
significant differences for Windows, I will let you know.

Reasons why we should use Android Studio
Android Studio is the recommended IDE to develop Android apps and is available for free for
anyone who develops professional Android apps. Android Studio is based on the JetBrains
IntelliJ IDEA software, which might explain why even the preview and beta versions of Android
studio were already better than Eclipse and why many Android developers were using it as
their IDE from the beginning.

The first stable build of Android Studio was released in December 2014 and has replaced
Eclipse (with Android Development Tools) as the primary IDE for Android development. Now,
with Android Studio, we do not just have a more stable and faster IDE, but it also comes with
cool stuff such as Gradle, better refactoring methods, and a much better layout editor to name
just a few of them.

Okay, I still have some weird issues every now and then (I guess that is what life as a mobile
developer is all about sometimes) but I certainly do not feel the frustration that I had felt when
I was working with Eclipse. If you are using Eclipse for plain Java development, it is just fine
I guess; however, it does not play nicely with Android. If you have been using IntelliJ IDEA for
Java development tasks before, then Android Studio will look pretty familiar to you.

Android Studio really brought back the fun of mobile development. If you are using Eclipse
currently, then you should switch to Android Studio instantly! To see it for yourself, get it from
https://developer.android.com/sdk/index.html and start building cool apps using
Android Studio right away.

Fragmentation
What has remained is the fragmentation challenge that you need to deal with when it comes to
Android development. There are many devices running on many Android flavors and versions.

There are a lot of Android versions, resulting in fragmentation. Because of this, you cannot
expect that all devices will run on the latest Android version. In fact, most do not. Many
devices still run on Android 4.x (or even older versions), for example.

https://developer.android.com/sdk/index.html

Chapter 1

3

Here, you can see a table with all the relevant Android versions and distribution numbers. The
numbers in this table indicate that if you decide to support Android 4.0 and later releases,
you will reach 88.7 percent of all Android users. In this example, the numbers for Q2 2015 are
shown, which explains why Android Marshmallow (6.0) is not being listed here. If you create
a new project in Android Studio, you can get the actual numbers by clicking on a Help me
Choose link in the Create New project wizard dialog, as we will find out in the next chapters.

Let's have a look at the following screenshot which describes the cumulative distribution of
different Android platform version along with their API level:

In addition to software fragmentation, there is also a lot of hardware fragmentation that you
should be aware of. Writing an Android app is not that hard but writing an app that functions
well on any Android device actually is.

A good app should be able to run on as many different devices as possible. For example,
think of an app that takes pictures. Android devices do have a camera or multiple ones or no
camera at all. Depending on other functionalities that your app provides, you might need to
worry about other things as well, such as whether a device is able to record sound or not.

I can imagine you want to reach an audience as large as possible so you should always ask
yourself which of your app feature demands will or will not have to be mandatory. If a device
does not have a camera, the user might not be able to take pictures, but should that really be
a reason for not allowing the user to use the app at all?

Welcome to Android Studio

4

The introduction of runtime permissions in Android Marshmallow (6.0) makes it even more
important for you to provide some kind of a fallback functionality in your app. At least you
need to explain why a particular functionality is not available in your app. For example, the
user device does not support it or the user did not gave permission for it.

This book is going to help you deal with Android fragmentation and other issues.

Creating your first app called Hello Android
Studio

After downloading Android Studio, install it and go through the setup wizards. The wizard
checks for some requirements, whether the Java Development Kit (JDK) is available, and
other important elements that the installation wizards guide you through.

Once the installation is complete, it is time to develop your first Android app using Android
Studio, just to check whether everything has been installed correctly and works the way it
should. It probably will be no surprise that this is where the Hello Android Studio recipe
comes in.

Getting ready
To go through this recipe, you will need a running Android Studio IDE, an Android Software
Development Kit (SDK), and an Android device. No other prerequisites are required.

How to do it...
Let's create our first Android app using Android Studio to check whether everything works fine
with the help of the following steps:

1.	 Start Android Studio. The Welcome to Android Studio dialog will be shown to you
after a few seconds.

2.	 Select the Start a new Android Studio project option. Then, the Configure your new
project dialog appears.

3.	 For Application name, enter HelloAndroidStudio; and for the Company domain
field, enter packtpub.com (or use the domain name of your own company if you
prefer to do so).

Chapter 1

5

4.	 Package names such as packtpub.com and helloandroidstudio are suggested
and updated while you type. If you wish, you can edit the Project location before you
click on the Next button.

5.	 In the Target Android Devices dialog box, check the Phone and Tablet option. Leave
the other options unchecked. We will create some of those other interesting targets,
such as an Android Wear app, later. For the Minimum SDK, choose API 14. If that
one is not (yet) available, click on any of the other available SDKs. We will install more
SDKs later. Click on the Next button to continue.

6.	 In the next dialog box, Add an activity to Mobile, choose the Blank Activity option
and click on the Next button.

7.	 The final dialog Customize the activity will be displayed after this. Leave all the
values the way they are and click on the Finish button.

8.	 Android Studio is now going to create this new app for you. After a while, the project
view, a MainActivity class, and an activity_main.xml layout are displayed. If you
change the perspective of the project view on the left-hand side of your Android
Studio by clicking on the button, that displays the little green Android guy and the text
that reads Android, from Android to Project, the layout will look a little bit more like
you are used to, that is, if you have used Eclipse before.

9.	 Double-click on the app folder to expand it. You will notice a file called the
build.gradle file (note that this file also exists on the root level).

10.	 Double-click on the build.gradle file to open it and have a look at the values for
compileSdkVersion, minSdkVersion, and targetSdkVersion. By default, the
compileSdkVersion value is always related to the latest (available) SDK. The value
for minSdkVersion is the one that you have chosen in the Target Android devices
dialog box.

If you want, use a different SDK to compile against; you must
change the value for compileSdkVersion. The version you
choose might need to be installed first. If you are happy with the
current configuration, go to step 14 right away.

www.allitebooks.com

http://www.allitebooks.org

Welcome to Android Studio

6

11.	 If you want to check which SDKs are installed, go the Tools option from the main
menu and choose Android from the SDK Manager submenu.

12.	 The Android SDK Manager dialog box displays which SDKs are installed. If you need
to install a different SDK, you can check the elements you need and click on the
Install n packages… button.

13.	 After installing the SDKs that you need and having configured your build.gradle
file, you can now run your app.

14.	 If you are using a physical device for Android development, you need to unlock the
developer options first. On your device, start the Settings app and go to the Device
info option. (This option may be on the General tab or section or at another place,
depending on the version and flavor of Android that your device is running on).

Chapter 1

7

If you do not have a real device, I strongly recommend you get one as soon
as possible. To get started, you can use an emulator for now. You can use
the emulator that comes with the Android SDK or you can read the recipe
about Genymotion first to find out how to use emulated devices.

15.	 In the Device Info view, scroll all the way down until you see the Build number option.
Now, click seven (7) times on Build number to unlock (enable) the developer mode.
(No, this is not a joke). You now have the developer's menu unlocked.

On older Android versions (below 4.2), this step may be skipped,
or if the developer options are already available as a menu item
in the settings app, this step may be skipped.

16.	 Now that you have got a new option in your Settings app, called Developer options,
click on it and have a look at it. It is important that you enable the USB debugging
option within this menu. In addition, you might want to enable or disable some of the
other options.

17.	 Connect your device and run your app from Android Studio by clicking on the green
triangle next to the drop-down box that reads the app. Or, choose the Run... option
from the Run menu. Then, the Choose Device dialog box appears. Your device should
now appear in the list of the Choose a running device option. (If your device does
not appear in the list, reconnect your device).

18.	 Click on the OK button. (For Windows, before you are able to connect your device, it is
often necessary to install a driver first.)

19.	 On your device, a dialog box may pop up, requiring you to accept the finger print.
Choose Allow in order to continue.

The app is now being deployed on your device. If everything goes well, your new app is
now shown on your device that says Hello world! Hurrah! I admit this is not really a very
exciting app, but at least we know now that Android Studio and your device have been
configured correctly.

How it works...
Android Studio will take care of the basic parts of your app setup. All you need to do is choose
the target and minimal SDK for your app. Using the API level 14 (Android 4.0) is currently the
best option, as this will allow your app to run on most Android devices.

The app will be compiled against the chosen (compile) SDK by Android Studio.

The app will be copied to your device. Having the USB debugging option enabled will help you
troubleshoot any issues, as we will find out later.

Welcome to Android Studio

8

The use of Gradle build scripts
Android Studio uses Gradle build scripts. It is a project automation tool and uses a
Domain-specific Language (DSL) instead of the more common XML form to create
the configuration of a project.

Projects come with a top-level build file and a build file for each module. These files are
called build.gradle. Most of the time, it is only the build file for the app module that
needs your attention.

You may note that some properties that you could find in the
Android manifest file previously, such as the target SDK and
versioning properties, are now defined in a build file and should
reside in the build file only.

A typical build.gradle file may look like this:

applylugin: 'com.android.application'
android {
 compileSdkVersion 21
 buildToolsVersion "21.0.0"
 defaultConfig {
 minSdkVersion 8
 targetSdkVersion 21
 versionCode 1
 versionName "0.1"
 }
}
dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
}

The Gradle build system is not something that you need to worry too much about right now.
In later recipes, we will see what the real power of it will be. The system is also designed to
support complex scenarios that may be faced while creating Android applications, such as
handling customized versions of the same app for various customers (build flavors) or creating
multiple APK files for different device types or different Android OS versions.

For now, it is ok just to know that this is the place where we will define compileSdkVersion,
targetSdkVersion, and minSdkVersion, just like we did in the manifest file previously in
case you have been using Eclipse.

Also, this is the place where we define versionCode and versionName, which reflect the
version of your app that is useful if someone is going to update the app you wrote.

Chapter 1

9

Another interesting key element of the Gradle functionality is that of dependencies.
Dependencies can be local or remote libraries and JAR files. The project depends on them
in order to be able to compile and run. In the build.gradle file that you will find in the
previous folder the app folder you will find the defined repository in which the libraries reside.
jCenter is the default repository.

If for example you wish to add the Parse functionality, which is something that we will do in
the recipes found in the next chapter, the following dependency declaration will add the local
Parse library to your project:

dependencies {
 compile fileTree(dir: 'libs', include: 'Parse-*.jar')
 compile project(':Parse-1.9.1')
}

Using external libraries has become much easier. For example, if you want to add
UniversalImageLoader, a well-known library to load images from the Internet, or if you
want to use the functionality from the Gson library, which basically is an object wrapper
for JSON data, to your app, the following dependency declaration will make these libraries
available to the project:

dependencies {
compile 'com.google.code.gson:gson:2.3+'
compile 'com.nostra13.universalimageloader:universal-image-
loader:1.9.3'
}

There's more...
Some other Gradle concepts will be explained in the recipes of the next chapters. Gradle
is a topic that one could write a book about on, and you can find many interesting in-depth
tutorials on the Internet if you would like to know more about it.

See also
ff For more information about Gradle build scripts, refer to Chapter 2, Applications with

a Cloud-based Backend

Testing your app with an emulator called
Genymotion

The best way to test your app is by using a real device. The Android emulator is pretty slow and
does not provide you with all the features that come with a real device, such as a camera and
all kinds of sensors.

Welcome to Android Studio

10

I can image that you do have just one or perhaps a few devices. With thousands of Android
devices being available and many brands and models that run on a customized (for example, the
Samsung devices) or a plain (like the Nexus devices) flavor of the Android OS and on any Android
version that you can think of, testing on real devices only would become pretty expensive.

If, for example, you are creating an app that should run well on Android 2.3, Android 4.x,
and Android 5.x, using emulated devices can be handy. Unfortunately, the default emulator
is terribly slow. It takes ages to start Android on the emulator, and debugging can be very
slow on it as well. To make the emulator a little bit faster, you could try to install Hardware
Accelerated Execution Manager (HAXM). There are some topics on the Internet that tell you
how to do this; however, there is a much better solution, Genymotion.

Genymotion is a real, fast, and easy-to-use emulator and comes with many real-world device
configurations. You can read more about Genymotion on its website at www.genymotion.
com. It is available as a free or paid solution. The free one will be all right to start with.

Getting ready
Make sure you have Internet access and sufficient space on your hard drive. We will need to
download both VirtualBox and Genymotion. After this, you are ready to create your first virtual
device. Let the magic begin.

How to do it...
Let's install Genymotion to prepare Android Studio to work with smoothly running
emulated devices:

1.	 Both Oracle's VirtualBox and the Genymotion app need to be installed. This
is because Genymotion virtualizes various Android operating systems using
the virtualization techniques of Oracle Virtual Machine (VM) VirtualBox in the
background. If you do not already have Oracle VM VirtualBox installed on your
computer (or if you have a version of VirtualBox that is below 4.1.1 which is not
compatible with Genymotion), you need to install it first.

Download VirtualBox for OS X hosts (or for Windows) from the VirtualBox download
page at https://www.virtualbox.org/wiki/Downloads.

Install VirtualBox, and after that, reboot your computer.

Download Genymotion from its web page at https://www.genymotion.com/#!/
download.

2.	 Now, open and install the downloaded file.

3.	 Run Genymotion. A dialog box then asks you whether you want to create a new
device. Click on the Yes button to do so. Later, you can create additional devices
by clicking on the + (plus) button on the main screen.

www.genymotion.com
www.genymotion.com
https://www.virtualbox.org/wiki/Downloads
https://www.genymotion.com/#!/download
https://www.genymotion.com/#!/download

Chapter 1

11

4.	 Select the Android OS version from the drop-down list on the left-hand side of
dialog box.

5.	 Select a virtual device (brand and model) from the drop-down list on the center and
click on the Next button.

6.	 Name your device. It's recommended that you include both the device and the OS
version in your device name so what you are testing on can be easily recognized
when you want to use it later.

7.	 Click on the Next button to confirm the name. Your virtual device will be created, and
it will appear in the list on the main screen of Genymotion. Create as many virtual
devices as you need.

8.	 To run a virtual device, select it and click on the Play button. It will launch the
Genymotion emulator so that you can use it together with Android Studio. When it is
launched, you can unlock the device so that it is ready to use.

9.	 If you hit the Run button in Android Studio again, you will notice that the running
virtual device is shown in the list of available devices in the Choose Device dialog
box. Just click on the OK button to let the magic begin. Your Android app will be
launched on the emulator.

And it is running fast and smooth! Pretty cool, isn't it?

The following is an example of the main screen of Genymotion listing a couple of virtual
devices that have been created:

Welcome to Android Studio

12

There's more...
Genymotion comes with emulated front and/or backend cameras, depending on the chosen
configuration. To enable them, click on the camera icon. A new dialog box appears in which
you can change the slider to On and choose a real camera for the front and backend camera
of your virtual device.

After selecting a camera, you can close the dialog box. A green checkbox will now appear next
to the Camera button. Now, whenever an app needs to use a camera, it will use the selected
camera, which in my case is the webcam on the laptop. To check whether this is working,
choose the Camera app on the virtual device.

The paid version of Genymotion has additional features available, including emulated
sensors such as GPS and accelerometers. If you like, you can check out the differences
at https://www.genymotion.com/#!/store.

Remember that although using virtual devices for testing purposes works really great with
Genymotion, it is important to always test it on multiple real devices. Some issues, in particular
the ones that are related to memory management that we will see later in this book, are easy to
reproduce on real devices, but may be somewhat harder to reproduce on virtual devices.

In addition to this, real devices are much more pixel perfect and some issues may appear only
on a particular device so when it comes to see how the artwork looks, you are going to need a
couple of them.

By the time your app is nearly complete, you might be interested in the (paid) services from
Testdroid, a cloud-based service that allows to run (automated) tests on many real devices.
Visit www.testdroid.com to learn more about this great service!

https://www.genymotion.com/#!/store
www.testdroid.com

Chapter 1

13

The following screenshot provides an example of the Hello Android Studio app running on a
virtual Nexus 5 device using Genymotion:

Refactoring your code
Good software engineers refactor their work continuously. Names of methods and members
should always indicate what they are doing. Since business requirements often change during
the development process, in particular when agile methodologies come in, so do your apps.

If you choose the right names and stick to the rule that the length of methods must be limited
to, well let's say, scrolling one page at most to view the whole method, often you do not need
many comments to explain what your code is doing. If it is hard to come up with a good name
for a particular method, then it is probably doing too much.

Welcome to Android Studio

14

Since changing names could be scary, as it could break your code, developers often choose
not to do so. Or, they decide to do it later. You save yourself a few minutes by doing so in
advance. Your code could be hard to understand if some one else has a look at your code or if
you have a look at your code one year later. Going through the code to find out what a method
does can be very time consuming. A descriptive name for your method can solve this.

The good news is that using Android Studio, refactoring is painless and pretty easy. Just
highlight the name of a member or method, right-click on it, and pick the Refactor item
from the context menu that pops up.

In the Refactor submenu that appears when you choose the Refactor item, you will find many
interesting options. The one option that you will use here and which you will be using the most
is the Rename… option.

How to do it…
The following steps describe how to rename a method in the Refactor submenu:

1.	 Highlight the name of the method you would like to rename.

2.	 From the context menu, choose Refactor.

3.	 From the submenu, choose Rename (or use the shortcut Shift + F6).

4.	 Now, you can rename your method or member in place and apply the changes by
hitting the Enter button. Android Studio provides you with some suggestions that you
can accept or you can type the name you want.

If you repeat step 2 and 3, a dialog box appears in which you
can edit the name. (Or use the shortcut Shift + F6 twice).

5.	 Click on the Preview button to see what the effect of the renaming will be.

6.	 At the bottom of your screen, a new view appears, which shows you the impact of the
renaming in each file (class, resource, or otherwise).

7.	 Click on the Do refactor button in that view to apply all the changes.

Chapter 1

15

The following screenshot shows an example of an in-place refactoring (renaming).

How it works...
Android Studio will take care of renaming a method or member and any references to it
everywhere in the project. This includes Java classes, layouts, drawables, and anything else
that you can think of.

There are many other interesting options available from the Refactor menu that you can use.
Some of them will be discussed in the next chapters in the recipes where they will come
in handy.

Now, let's move on to the next chapter and build a real app, shall we?

See also
ff For more information about refactoring code, refer to Chapter 8, Improving quality.

www.allitebooks.com

http://www.allitebooks.org

17

2
Applications with a

Cloud-based Backend

This chapter will teach you how to build an app that does not need a backend of its own but
uses a cloud-based solution instead.

In this chapter, you will learn the following recipes:

ff Setting up Parse

ff Consuming data from the cloud

ff Submitting data to the cloud

Introduction
Many applications require a backend solution, allowing users to communicate with a server
or with each other like in social apps, for example, and which application is not social today?
You can also think of a business app, for example, one for logistic purposes.

Sure, we can write our own API, host it somewhere, and write some Android code to
communicate with it, including querying, caching, and all other functionalities that our
application needs to support. Unfortunately, developing all this could be a very time-consuming
process, and since this is often the most valuable asset, there must be another way to do this.

The good news is that you do not have to do all these things yourself. There are a couple of
ready-made mobile backend solutions available on the Internet, such as QuickBlox, Firebase,
Google App Engine, and Parse to mention just a few of the most well-known ones.

Applications with a Cloud-based Backend

18

Each of these solutions do particular things well; although, one solution will be more suitable
than another. For example, take QuickBlox, which provides the quickest way to set things up,
but at a price. It also is not as flexible as the other options. Firebase, recently acquired by
Google, is a very great solution in particular if you need real-time support; for example, for a
chat app. Parse, acquired by Facebook, has no real-time options but is more flexible and has
some interesting third-party integrations to offer.

There are, of course, other considerations when choosing a particular solution. The parties
(Facebook and Google) that provide this kind of solutions might have access to the data that
you store in the cloud, including your user base, which is not necessarily a bad thing right
away, but it may have an impact on the strategy that you choose. Also, think about issues such
as scalability and data lock-in that are both luxury problems, but nevertheless could become
issues when your app becomes more popular.

Parse is my favourite as it currently is the most flexible solution for most purposes. It has no
data lock-in (all data is exportable), but it is scalable (if you choose a paid plan instead of the
free one), it is available for all relevant mobile platforms, and it even allows us to create cloud
modules (methods that run in the cloud that could be scheduled on a regular base and/or
that could be approached by your application). From all the available popular services, this
one provides the easiest way to attach a backend to a mobile app.

In future this might change, in particular for Android developers, if the
Google App Engine (which by the way can be used for iOS apps as well)
integration with Android Studio is further improved. You can find the
Deploy Module to App Engine option in the Build menu already.

Setting up Parse
Think of a scenario that goes like this: at a central point, orders are being collected and will
be prepared for transport. Goods need to be delivered and customers need to sign in the app
once they receive the goods that they have ordered. Each driver has a mobile device and an
app to support this process digitally.

This is the process for which we will provide the next three recipes and we will be using Parse
for it, as it is the most suitable backend for the solution that we are going to create.

The upcoming recipe describes how to set up Parse, how to consume data from Parse into
your Android app, and how to send data, such as a signature, from the app to Parse.

Getting ready
To go through this recipe, you will need Android Studio up and running and Internet access.
That's all folks.

Chapter 2

19

How to do it...
Let's create an app that connects to a Parse backend first so that we have a fundament
on which we can build our app. Let's name our app CloudOrder. The further steps are
as follows:

1.	 Start Android Studio and start a new Android Studio Project. Name your application
CloudOrder and enter packtpub.com for the Company Domain field or any other
name that suits you or your company best. Then, click on the Next button.

2.	 Select the Phone and Tablet option and optionally change the minimum SDK field.
In my case, this will be API 14 (Android 4.x), which at the time of writing is the best
choice to both reach an audience as large as possible and to benefit from the SDK
functionality that we need. Make sure you will be targeting at least API level 9 as Parse
does not support lower levels than this one. Click on the Next button to continue.

3.	 Next, select Blank activity and click on the Next button. On the next page, just click
on the Finish button. Your new project will be set up by Android Studio.

4.	 Now, let's go to www.parse.com to create a new account and an app. Sign up with
www.Parse.com. Enter your name, e-mail address, and chosen password, and then
click on the Sign up button.

5.	 The next page on www.Parse.com is the Get Started page. Enter CloudOrder
or something similar in the field displaying the hint about your app name. Pick a
value for Company type that suits your situation best and depending on the chosen
value, complete any of the other fields. Once this is done, hit the Start using Parse
button. Select Data as the product you want to start using. Choose Mobile as your
environment. Next, select a platform. Choose Android, and in the next view, choose
the Native (Java) option.

6.	 Choose the Existing project option. We are creating a new project; however, to know
what is going on here, we will do the following things ourselves.

7.	 Now, download the SDK. While downloading, switch to Android Studio and change the
project view perspective from Android to Project. Then, expand the app folder. Note
that one of the underlying folders is called libs.

8.	 Drag and drop the Parse-x.x.x.jar file (where x.x.x indicates the version
number) into the libs folder in Android Studio. If the Non-Project Files Access
dialog box appears, just click on the OK button. When you do this, Parse-
x.x.x.jar will appear under the libs folder.

www.parse.com
www.Parse.com
www.Parse.com

Applications with a Cloud-based Backend

20

9.	 As we saw in Chapter 1, Welcome to Android Studio, we need to tell Gradle about this
Parse library. Open the build.gradle file in the apps folder by double-clicking on
it. In the dependencies section, we need to add two lines, so it will look like as shown
in the following example. Just after the two lines that are already in there, add the
dependencies for both the bolts and parse libraries:
dependencies {
 compile 'com.android.support:appcompat-v7:22.0.0'
 compile 'com.parse.bolts:bolts-android:1.+'
 compile fileTree(dir: 'libs', include: 'Parse-*.jar')
}

Instead of using the local JAR file, as described through step 6 to 8,
we could also use a dependency like this:

dependencies {
…
 compile 'com.parse:android:1.8.2'
}

10.	 In the AndroidManifest.xml file, add permissions needed to access the Internet.
The Manifest file will reside in the /app/src/main folder. Double-click on it to
open it. Add the permissions for both the Internet and to access the network state,
as shown in the following example. Also, define the name for the package name +
CloudOrderApplication application:
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.packtpub.cloudorder" >
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name= "android.permission.ACCESS_
NETWORK_STATE" />
<application
 android:name="com.packtpub.cloudorder.CloudOrderApplication"

11.	 Select and expand the src/main/java/com.packt.cloudorder folder.
Right-click on this folder. In the context menu that pops up, choose New, and
in the submenu, choose Java Class. In the dialog box that will be shown, enter
CloudOrderApplication as the content for the Name field. Then, click on
the OK button.

12.	 Make the new class a descendant of the Application class and override the
onCreate method. In the onCreate method, right after super.OnCreate(),
add the initialization for Parse, as indicated by Parse using the following code:
Parse.initialize(this, "your application Id", "your client Id");

Chapter 2

21

13.	 Android Studio is not happy yet. You will notice that the Parse part in your code is
highlighted in red in the Android Studio IDE. This is because your app is not aware of
this class. Any time you change a gradle file, your project needs to be synchronized.
To do so, click on the button with the tooltip that reads Sync project with Gradle
Files. You will find this on the navigation bar. Alternatively, you may also click on the
Sync Now link.

14.	 After this synchronization, Android Studio will have a clue about the Parse class, but
you still need to add an import clause for that. If you hover over the part of your code
that reads Parse, you will notice that Android Studio suggests that this probably
refers to com.parse.Parse. Press Alt + Enter to accept this suggestion or just add
the import com.parse.Parse line yourself. Finally, your class will look like this:
package com.packt.cloudorder;
import android.app.Application;
import com.parse.Parse;
public class CloudOrderApplication extends Application{
 @Override
 public void onCreate(){
 super.onCreate();
 Parse.enableLocalDatastore(this);
 Parse.initialize(this, "your application Id", "your client
 Id");
 }
}

15.	 We are almost done configuring our Parse-based app. Open the MainActivity file
and add the following lines to your onCreate method:
ParseObject testObject = new ParseObject("CloudOrder");
testObject.put("customer", "Packt Publishing Ltd");
testObject.saveInBackground();

16.	 Don't forget to add the appropriate import statement. Run your app. If everything
is set up successfully, a new object of the CloudOrder class is sent to Parse and
created at Parse.

Applications with a Cloud-based Backend

22

17.	 On the parse web page, click on the Core button at the top of the navigation bar.
Have a look at the Data section on the left-hand side of web page. CloudOrder
should appear there, and if you click on it, you will see the entry (row), containing
the properties (fields) that you just sent.

This is what the data section at www.Parse.com looks like:

If this test succeeds, remove the three lines that you have added to the onCreate method of
MainActivity as we no longer need them.

Well done! You have just created your first Parse app! Let's move on and see how to extend
the CloudOrder app!

How it works...
The Parse SDK will take care of retrieving or sending data. Using the ParseObject class,
Query and other Parse classes' all data communication takes place automatically.

There's more...
At www.parse.com, you will find additional information about caching policies, saving data to
the cloud, and other interesting features.

Consuming data from the cloud
We have our Parse-based app up and running. Now, let's see how we can get the orders from
Parse into our app and display them in a list.

Getting ready
To go through this recipe, you will need to have the previous recipe up and running, Internet
access, and some coffee, although I must admit that last one is not strictly necessary. Tea will
be just as fine.

www.Parse.com
www.parse.com

Chapter 2

23

How to do it...
Let's see how we can extend our CloudOrder app by consuming orders from the Parse
backend and display them using a list view with the help of the following steps:

1.	 In the last step in the Setting up Parse recipe, we were looking at the newly created
Parse entity and the data in there. Entities can be created or extended on the fly
from your app like we did, but we can also define columns and add data here on the
webpage. Click on the +Col button to add a new column to the CargoOrder entity.

2.	 In the modal, display Add a column, choose String from Select a type, and name the
new column address. Then, click on the Create Column button. The new column will
be added to the row that is already available (you might need to scroll to the right to
see this.)

3.	 Add another column. From the type drop down box, choose File and name this field
as signature. And finally, add a last column with the Number type and the Status
name. We now have three new custom columns for each CargoOrder row.

4.	 Click on the address column and enter an address for it; for example, let's say
that the delivery address for the order should be 1600 Amphitheatre Pkwy,
Mountain View, CA 94043, United States (it's where you can find the
Google headquarters, but you can of course enter any address you like here).

5.	 Click on the +Row button to create a new Cargo Order row and enter some other
values for the customer and address fields. Repeat this a couple of times to make
sure that we have some data to consume in our app.

6.	 To retrieve rows from the CargoOrder entry, we first need to create a model that
represents the orders. Create a new class at the location where your MainActivity
and CloudOrderApplication classes reside. Right-click on the package name
and select New and Java Class. Name your new class CloudOrder and hit the OK
button. Make your model a descendant of the ParseObject class and indicate to
which entity this class is mapping. Your class should look like this:
package com.packt.cloudorder;
import com.parse.ParseClassName;
import com.parse.ParseObject;
@ParseClassName("CloudOrder")
public class CloudOrder extends ParseObject {
 ...

7.	 Add getters and setters for the columns that we have created in Parse using the
following code:
public void setCustomer (String value) {
 put("customer", value);
}
public String getCustomer (){
 return getString("customer");

Applications with a Cloud-based Backend

24

}
public void setAddress (String value) {
 put("address", value);
}
public String getAddress (){
 return getString("address");
}

8.	 Now, tell Parse about this new class. In the CloudOrderApplication class, add
this line right before the Parse.Initialize line:
ParseObject.registerSubclass(CloudOrder.class);

9.	 To get the cloud orders in our app, we need to define a query indicating what exactly
it is that we are looking for. In its most basic form, query looks like the following
snippet. Add it to the onCreate method of MainActivity:
ParseQuery<ParseObject> query = ParseQuery.getQuery("CloudOrder");

10.	 We are going to tell Parse that we want to perform this query asynchronously by using
the findInBackground method. Add the following lines to do so:
query.findInBackground(new FindCallback<ParseObject>() {
 public void done(List<ParseObject> items, ParseException e) {
 if (e==null){
 Log.i("TEST", String.format("%d objects found", items.
 size()));
 }
 }
});

11.	 Run the app and check LogCat (use the shortcut Cmd + 6 to make it appear).
It displays the number of objects that have been found. This should return the
numbers of rows that you have created for CargoOrder at www.parse.com.

12.	 Great! Now, if only we had an adapter to make these items available in the list view.
Create a new class and name it CloudOrderAdapter. Make it an array adapter
descendant with the CloudOrder type:
public class CloudOrderAdapter extends ArrayAdapter<CloudOrder> {
…

13.	 Implement the constructor, create a view holder, and add the implementation for all
the methods that need to be overridden. Finally, your adapter will look like this:
public class CloudOrderAdapter extends ArrayAdapter<CloudOrder> {
 private Context mContext;
 private int mAdapterResourceId;
 public ArrayList<CloudOrder> mItems = null;
 static class ViewHolder{

www.parse.com

Chapter 2

25

 TextView customer;
 TextView address;
 }
 @Override	
 public int getCount(){
 super.getCount();
 int count = mItems !=null ? mItems.size() : 0;
 return count;
 }
 public CloudOrderAdapter (Context context, int
adapterResourceId, ArrayList<CloudOrder>items) {
 super(context, adapterResourceId, items);
 this.mItems = items;
 this.mContext = context;
 this.mAdapterResourceId = adapterResourceId;
 }
 @Override
 public View getView(int position, View convertView, ViewGroup
parent) {
 View v = null;
 v = convertView;
 if (v == null){
 LayoutInflater vi = (LayoutInflater)this.getContext().
 getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 v = vi.inflate(mAdapterResourceId, null);
 ViewHolder holder = new ViewHolder();
 holder.customer = (TextView) v.findViewById(R.
id.adapter_main_customer);
 holder.address = (TextView)v.findViewById(R.
id.adapter_main_address);
 v.setTag(holder);
 }
 final CloudOrder item = mItems.get(position);
 if(item != null){
 final ViewHolder holder = (ViewHolder)v.getTag();
 holder.customer.setText(item.getCustomer());
 holder.address.setText(item.getAddress());
 }
 return v;
 }
}

Applications with a Cloud-based Backend

26

14.	 Go back to the MainActivity class and modify the code of the query call back so
that we can feed our newly created adapter with the results over there, like this:
ParseQuery<ParseObject> query = ParseQuery.getQuery("CloudOrder");

query.findInBackground(new FindCallback<ParseObject>(){
 public void done(List<ParseObject> items, ParseException e) {
 Object result = items;
 if (e == null){
 ArrayList<CloudOrder> orders = (ArrayList<CloudOrder>)
 result;
 Log.i("TEST", String.format("%d objects found",
 orders.size()));
 CloudOrderAdapter adapter = new CloudOrderAdapter
 (getApplicationContext(), R.layout.adapter_main, orders);
 ListView listView = (ListView)findViewById(R.id.main_
 list_orders);
 listView.setAdapter(adapter);;
 }
 }
});

15.	 To display the orders in our app, we have to create a layout for it. Expand the layout
folder and double-click on the activity_main.xml file to open it. By default, a
preview of the layout is shown. Change the perspective to text by clicking on the Text
tab at the bottom of Android Studio, which makes the layout display as XML.

16.	 Remove the TextView widget that displays Hello world and add a list view:
<ListView
 android:id="@+id/main_list_orders"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"/>

17.	 Select the layout folder again and right-click on it. From the menu, choose New,
and from the submenu, choose Layout resource. Choose adapter_main for the
File name and click on the OK button. A new layout file will be created. Change the
perspective from design to text.

18.	 Add two text views to the layout so that we can display both the customer name and
the address and add some formatting, like this:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="vertical" android:layout_width="match_
parent"
 android:padding="8dp" android:layout_height="match_parent">
 <TextView
 android:text="(Customer)"

Chapter 2

27

 android:textStyle="bold"
 android:textSize="20sp"
 android:textColor="@android:color/black"
 android:id="@+id/adapter_main_customer"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <TextView
 android:text="(Address)"
 android:textSize="16sp"
 android:textColor="@android:color/darker_gray"
 android:id="@+id/adapter_main_address"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

19.	 You are done. Run your app. If everything goes well, you will see an output like the
one shown in the following screenshot, and this is what your list view may look like
after having the orders consumed from www.parse.com:

20.	 If you run into a class exception error, have a look again at step 8. Did
you register your ParseOrder subclass? In case you are running into any other
errors, repeat each step carefully to check whether there are any missing parts
or mismatches.

There's more...
This recipe is nothing but a brief introduction to Parse. At www.parse.com, you will find much
more information about how to retrieve data from a cloud, including using where and order
by statements in your queries. It also provides you with information that is needed to create
relational or compound queries.

www.parse.com
www.parse.com

Applications with a Cloud-based Backend

28

Submitting data to the cloud
Now that we have completed the previous recipes and the driver that will be using our
CloudOrder app knows where to go to for a particular order, it would be great if, once the
goods are delivered, he (or she) will be able to select that order and have it signed for delivery
by the customer on the device.

In this last recipe, we will implement code to make the customer draws his or her signature on
the device. The signature will be sent to Parse as an image and the CloudOrder record will
be updated.

Getting ready
To go through this recipe, you will need to have the previous recipes up and running.

How to do it…
1.	 Create a new class and name it SignatureActivity.

2.	 Create a new layout and name it activity_signature.xml.

3.	 Switch the layout to Text. Add the TextView and the Button widget to the layout.
Make sure that the layout looks like this:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="vertical" android:layout_width="match_
parent"
 android:padding="8dp" android:layout_height="match_parent">
 <TextView
 android:id="@+id/signature_text"
 android:text=" Please sign here:"
 android:textSize="24sp"
 android:textColor="@android:color/black"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <Button
 android:id="@+id/signature_button"
 android:text="Send signature"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

4.	 To allow the customer to draw his signature, we need to create a custom widget.

Chapter 2

29

5.	 Right under the com.packt.cloudorder package, create a new package and
name it widget.

6.	 Within this new package, create a new class and name it SignatureView.

7.	 Make the SignatureView class descend from the View class and override the
onDraw method to draw a path wherever we put our finger or stylus on the screen.
Override the onTouch method to create the path. snippet for creating the path will
look like this:
package com.packt.cloudorder.widget;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.drawable.Drawable;
import android.util.AttributeSet;
import android.view.MotionEvent;
import android.view.View;
public class SignatureView extends View {
 private Paint paint = new Paint();
 private Path path = new Path();
 public SignatureView(Context context, AttributeSet attrs) {
 super(context, attrs);
 paint.setAntiAlias(true);
 paint.setStrokeWidth(3f);
 paint.setColor(Color.BLACK);
 paint.setStyle(Paint.Style.STROKE);
 paint.setStrokeJoin(Paint.Join.ROUND);
 }
 @Override
 protected void onDraw(Canvas canvas) {
 canvas.drawPath(path, paint);
 }
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 float eventX = event.getX();
 float eventY = event.getY();
 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 path.moveTo(eventX, eventY);
 return true;
 case MotionEvent.ACTION_MOVE:
 path.lineTo(eventX, eventY);

Applications with a Cloud-based Backend

30

 break;
 case MotionEvent.ACTION_UP:
 break;
 default:
 return false;
 }
 invalidate();
 return true;
 }

8.	 Add the getSignatureBitmap method to the SignatureView class so that we
can get the signature as a bitmap from the Signature view widget:
public Bitmap getSignatureBitmap() {
 Bitmap result = Bitmap.createBitmap(getWidth(),
 getHeight(), Bitmap.Config.ARGB_8888);
 Canvas canvas = new Canvas(result);
 Drawable bgDrawable =getBackground();
 if (bgDrawable!=null) {
 bgDrawable.draw(canvas);
 }else {
 canvas.drawColor(Color.WHITE);
 draw(canvas);
 }
 return result;
 }
}

9.	 Go back to the signature_activity layout and add the signature view between
the text view and the button:
<com.packt.cloudorder.widget.SignatureView
 android:id="@+id/signature_view"
 android:layout_width="match_parent"
 android:layout_height="200dp"
 android:layout_marginLeft="3dp"
 android:layout_marginTop="3dp"
 android:layout_marginRight="0dp"
 android:layout_marginBottom="18dp"/>

10.	 Build the project. It should make any rendering issues disappear.

11.	 Implement the SignatureActivity class. First, make it an Activity descendant
and override the onCreate method. Set the content view to the layout we have just
created and add an onClick implementation for the button in the layout, like this:
public class SignatureActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {

Chapter 2

31

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_signature);
 findViewById(R.id.signature_button).setOnClickListener(new
 View.OnClickListener(){
 @Override
 public void onClick(View v) {
 }
 });
 }
}

12.	 Add the activity to the manifest file after the MainActivity declaration as follows:
<activity android:name=".SignatureActivity"/>

13.	 If the driver selects any of the orders, we need to display the signature activity that in
turn needs to know which order has been selected. Go to the MainActivity class
and append OnItemClickListener on the list view at the end of the OnCreate
method, just after the Query.findInBackground call:
((ListView)findViewById(R.id.main_list_orders)).
setOnItemClickListener(new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view, int
position, long id) {
 }
});

14.	 In the onItemClick event, let's figure out which order has been selected using the
following code snippet:
ListView listView = (ListView)findViewById(R.id.main_list_orders);
CloudOrder order = (CloudOrder)listView.getAdapter().
getItem(position);
gotoSignatureActivity(order);

15.	 In the gotoSignatureActivity method, we want to start the Signature
activity, using an intent, and pass the selected order from MainActivity to
SignatureActivity, using a bundle as shown:
private void gotoSignatureActivity(CloudOrder order){
 Intent intent = new Intent(this, SignatureActivity.class);
 Bundle extras = new Bundle();
 extras.putString("orderId", order.getObjectId());
 intent.putExtras(extras);
 this.startActivity(intent);
}

Applications with a Cloud-based Backend

32

16.	 In the SignatureActivity class, add the following to the OnClick
implementation of the button:
sendSignature();

17.	 For the sendSignature method implementation, we will create a new ParseFile
object and feed it with the bitmap data that comes from the signature view. We will
send the file to Parse using the saveInBackground method:
private void sendSignature() {
 final Activity activity = this;
 SignatureView signatureView = (SignatureView)findViewById(R.
id.signature_view);
 ByteArrayOutputStream stream = new ByteArrayOutputStream();
 signatureView.getSignatureBitmap().compress(Bitmap.
CompressFormat.PNG, 100, stream);
 byte[] data = stream.toByteArray();
 final ParseFile file = new ParseFile("signature.jpg", data);
 file.saveInBackground(new SaveCallback() {
 @Override
 public void done(com.parse.ParseException e) {
 }
 });
}

18.	 Once the saving is done, we want to update the order with information about the file
we have created and the status, for example 10, which could indicate that the order
has been finished or something like that. Its actually value does not really matter here.

19.	 If no error occurred during saving, we use the createWithoutData method of the
ParseObject class so that we could pass the right object ID and the fields that we
want to update. We will save these changes as well so that the record at Parse will
be updated. (For the sake of simplicity, we use this approach; although, we could
accomplish the same thing using the CloudOrder object) The implementation
of the done call back looks like this:
if (e == null) {
 Bundle extras = getIntent().getExtras();
ParseObject order = ParseObject.createWithoutData("CloudOrder",
 extras.getString("orderId"));
 order.put("signature", file);
 order.put("status", 10);

 order.saveInBackground(new SaveCallback() {
 @Override
 public void done(ParseException e) {
 if (e==null){

Chapter 2

33

 Toast.makeText(activity, "Signature
has been sent!", Toast.LENGTH_SHORT).show();
 }
 }
 });

20.	 Run the app, select an order, sign it, and click on the SEND SIGNATURE button.
If everything goes well, a toast will be shown, indicating that the signature has
been sent.

This is what your signature looks like after signing by a customer:

21.	 Check it out for yourself at www.parse.com. Refresh the view for Cloud order.
Notice that for the order that you have selected in the app, the signature.jpg file
appears in the signature column. Double-click on it to see its contents. This is what
your data rows may look like at www.parse.com after submitting a signature image
to it:

www.parse.com

Applications with a Cloud-based Backend

34

Actually, you should be using string resources instead of hardcoded values. By reusing string
resources (or constant values) not only for the class and field names but also for other texts,
you will reduce the number of errors caused by typos. This will improve the quality of your app.
It also will make it much easier to localize your app later. (In the last three chapters, we will
focus more on these kind of things but here is some good practice to start with right away.)
The following steps gives usage of string resources:

1.	 Check out the strings.xml file. It resides in the res/values folder. Imagine
we would have included the text for the toast being displayed in step 19. Your
strings.xml file could look like this:
<?xml version="1.0" encoding="utf-8"?>
<resources>
…
 <string name="app_name">Cloud order</string>
 <string name="parse_class_cargo_order">CargoOrder</string>
 <string name="signature_send">Your signature has been sent.</
string>
...

2.	 In your code, you could refer to a string resource using the getString method.
You could replace the hardcoded string for the toast being displayed in step 19
for example with a string reference, like this:
Toast.makeText(activity, getString(R.string.signature_send),
Toast.LENGTH_SHORT).show();

3.	 In your layout file, you could also refer to this string resource, for example, in a
text view:
<TextView
 android:text="@string/signature_send"
 android:layout_width="wrap_content"
 android:layout_height="match_parent" />

We will describe how to use strings, colors, dimensions, and other type of resources in depth
later, but you can already get a bit familiar with the concepts by replacing all hardcoded
strings in this recipe with string resource references or where applicable, use constant
values for them.

With the implementation of this recipe, we have completed our CloudOrder app. Feel free to
further customize it and make enhancements wherever you want to.

How it works...
The custom widget draws a path on the view, for which a bitmap will be created. Using a
ParseFile object, the bitmap data will be send to Parse (which in turn will store the file
in Amazon and keep a reference to the file).

Chapter 2

35

If this succeeds, we will update the CloudOrder row to which the signature applies by denoting
to which file the image in the signature column refers to.

There's more...
Have a closer look at the documentation at www.parse.com. There are a couple of
interesting features available including the saveEventually method and the cloud
code options.

The saveEventually method will store the update locally if there is no Internet connection
available, which is a common scenario for mobile apps. Once the Internet connection has
been restored, this method will take of, sending the data that has been queued to be sent to
the cloud. This option will save you much troubles and time.

Also check out the other features such as cloud code and the various third-party integrations
that are available, such as Twilio, if you want to send text or voice messages (which could be
handy for confirmation purposes in on-boarding processes) and SendGrid, which is a tool for
e-mail delivery.

Following the recipes in this chapter, we have implemented some very interesting
functionalities with little effort, which is really great! The app however is not very eye-catching
yet. By applying the concepts of Material design, which will be explained in the next chapter,
we can make the app look great and more intuitive to use.

See also
ff For more information, refer to Chapter 3, Material Design.

www.allitebooks.com

www.parse.com
http://www.allitebooks.org

37

3
Material Design

This chapter will teach you what material design is about, why it is such a great improvement,
and why you should use it for your apps.

In this chapter, you will learn about:

ff Recycler views and card views

ff Ripples and elevations

ff Great transitions

Introduction
With the introduction of material design, the looks of Android apps will finally mature. They can
compete very well with iOS designs. Android material apps have a flat design, but come with
some interesting differences such as elevations. Consider the following figure for example:

Material Design

38

Think of it as multiple slides of paper. It is based on, well, materials. Each slide of paper has
a particular elevation. So, the environment is in fact a 3D world with effects such as light
and shadow. Any motion should have real-world behaviour as if the moved elements are real
physical objects. Animation is another important element of material design.

First have a look at https://www.google.co.in/design/spec/material-design/
introduction.html to see what material design is all about. Sure, many things
are interesting for designers in particular, and you probably are interested only in the
implementation of all this beautiful stuff; however, this link provides you with a little bit more
context about what material design is about.

For a long time, most Android apps suffered from bad design or, in the early days no design at
all. Or, they looked pretty similar to those made for iPhone, including all the elements that are
typical for iOS.

Have a look at the next app screenshot:

Using Material design, this is what most of Google apps look like nowadays.

https://www.google.co.in/design/spec/material-design/introduction.html
https://www.google.co.in/design/spec/material-design/introduction.html

Chapter 3

39

Many Google's apps for Android use material design now. They all follow the same guidelines for
interaction and design. The interface is minimalistic, as one would expect from Google. Also, the
interface has become more uniform, making it easier to understand and use.

Earlier, responsiveness was something you had to take care of yourself. Material design
comes with ripples and other effects, doing the same thing, which is providing feedback on
user input, but it is much easier to implement and is much more elegant.

As for the components, material design dictates for example how buttons in a particular
situation should look. Think of floating buttons used for actions, or flat buttons used in dialog
boxes. It also replaces the ListView with RecyclerView, which provide more flexibility to show
lists. CardViews are common elements and you can see them being used in the Google
apps quite often. Various animations provide more natural transitions, such as those for
navigational or scrolling purposes.

Material design is not just for the latest and greatest. While it comes with Android Lollipop
(5.0) and higher versions, most material design features can be used in Android version 2.1
and up via the v7 support libraries, which allow us to apply a material design and still
support virtually almost all Android devices.

Altogether, material design provides quite a lot to the beautification of your app. People want
to be beautiful too. Health apps are booming because of this. Finding out what is healthy to
eat, suggesting to drink more water, and advising on running or fitness exercises are common
objectives that come with these type of apps. To demonstrate the beauty of Material design,
we will be creating an app that will help people become healthier.

So, what about a drink water and take a selfie app? People need to drink water
more often and if they do, they could see the effect of it. Beautiful people deserve a beautiful
app. This makes sense, does it not?

Reycler views and card views
The recycler view replaces the good old list view. It provides more flexibility in how the
elements of a list are shown, for example, as a grid and as horizontal or vertical items.
Instead of rows, we can now choose to display cards wherever it is suitable.

In our app, each card should display some text about the entry and a thumbnail of the picture
that we took. This is what this recipe will be all about.

Getting ready
To go through this recipe, you need to have Android up and running. Also make sure that you
have installed the latest SDK. (You can check whether you have the latest SDK by opening the
SDK manager). To do so, open the Tools menu, choose Android, and next, choose the SDK
Manager option.

Material Design

40

How to do it...
Let's investigate, using the following steps, how to use recycler views and cards:

1.	 Start Android Studio and start a new project. Name your application WaterApp and
enter packtpub.com in the Company Domain field. Then, click on the Next button.

2.	 Choose Blank Activity in the next dialog box and click on the Next button.

3.	 In the following dialog box, click on the Finish button.

4.	 Open the build.gradle file within your app folder and add the dependency for the
recycler view to the dependencies section as shown in the following code:
dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:appcompat-v7:22.1.1'
 compile 'com.android.support:recyclerview-v7:+'
}

5.	 Change minSdkVersion to at least 21 in the build.gradle file.

This does not really have to be the minimal required version, but
since the support libraries for backward compatibility purposes
do not contain all of the Material design features, I have chosen
to pick API level 21 here, just to be on the safe side.

6.	 Synchronize your project by clicking on the Sync now label on the yellow bar that
appears after we edit the build.gradle file, or in case it does not, click on the
Sync Project with Gradle files button on the toolbar.

7.	 Open the activity_main.xml layout file, remove the Hello World TextView,
and add a RecyclerView tag to the layout, like this:
<android.support.v7.widget.RecyclerView
 android:id="@+id/main_recycler_view"
 android:scrollbars="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

8.	 In your MainActivity class, add the following to the onCreate method just after
setContentView:
RecyclerView recyclerView = (RecyclerView)
 findViewById(R.id.main_recycler_view);

9.	 The RecyclerView class is not a known class yet. Use the Alt + Enter shortcut to
add the right import statement or add the following line yourself:
import android.support.v7.widget.RecyclerView;

Chapter 3

41

10.	 We are going to use a linear layout manager for this recipe. Add the following lines
after the line we have added in step 9:
LinearLayoutManager layoutManager = new LinearLayoutManager(this);
recyclerView.setLayoutManager(layoutManager);

11.	 Create a new package and name it models, and within this package, create a new
Drink class as follows:
package com.packt.waterapp.models;
import java.util.Date;
public class Drink {
 public Date dateAndTime;
 public String comments;
 public String imageUri;
}

Here, the Date class refers to the java.util.Date package (this is specified since
there is also a SQL-related class with the same class name).

12.	 Let's create a layout to display the items. Right-click on the layout package in the
project tree and create a new resource file. To do so, choose New and New Layout
Resource File from the menu. Name it adapter_main.xml and hit the OK button.

13.	 Switch the layout to the Text modus, change the orientation of LinearLayout from
vertical to horizontal, add some padding to it and add an image view to it,
as shown in the following snippet. We will also add a default image so that we have
something to look at:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal" android:layout_width="match_
parent"
android:padding="8dp" android:layout_height="match_parent">
<ImageView android:id="@+id/main_image_view"
android:src="@android:drawable/ic_menu_camera"
android:scaleType="center"
android:layout_width="90dp"
android:layout_height="90dp" />
</LinearLayout>

14.	 Next to the image, we want to display a date and time and the comments using two
TextView widgets wrapped in another LinearLayout widget. Add these after the
ImageView tag:
<LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

Material Design

42

 <TextView
 android:id="@+id/main_date_time_textview"
 android:layout_marginTop="8dp"
 android:textSize="12sp"
 android:textColor="@color/material_blue_grey_800"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <TextView
 android:id="@+id/main_comment_textview"
 android:layout_marginTop="16dp"
 android:maxLines="3"
 android:textSize="16sp"
 android:textColor="@color/material_deep_teal_500"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

15.	 Create another package and name it adapters. Within that package, create the
MainAdapter class that will be using a ViewHolder class, helping us to display the
data exactly where we want it to appear. We also include all methods that need to be
overridden such as the onBindViewHolder method and the getItemCount method:
public class MainAdapter extends RecyclerView.Adapter<MainAdapter.
ViewHolder> {
 private ArrayList<Drink> mDrinks;
 private Context mContext;
 public static class ViewHolder extends
 RecyclerView.ViewHolder {
 public TextView mCommentTextView;
 public TextView mDateTimeTextView;
 public ImageView mImageView;
 public ViewHolder(View v) {
 super(v);
 }
 }
 public MainAdapter(Context context,
 ArrayList<Drink> drinks) {
 mDrinks = drinks;
 mContext = context;
 }
 @Override
 public MainAdapter.ViewHolder
 onCreateViewHolder(ViewGroup parent, int viewType) {
 View v = LayoutInflater.from(
 parent.getContext()).inflate(
 R.layout.adapter_main, parent, false);
 ViewHolder viewHolder = new ViewHolder(v);
 viewHolder.mDateTimeTextView =

Chapter 3

43

 (TextView)v.findViewById(
 R.id.main_date_time_textview);
 viewHolder.mCommentTextView =
 (TextView)v.findViewById(
 R.id.main_comment_textview);
 viewHolder.mImageView =
 (ImageView)v.findViewById(
 R.id.main_image_view);
 return viewHolder;
 }
 @Override
 public int getItemCount() {
 return mDrinks.size();
 }
}

16.	 We have more things to do. Add the onBindViewHolder method and add the
implementation to actually bind the data to the right widgets:
@Override
public void onBindViewHolder(ViewHolder holder,
 int position) {
 Drink currentDrink = mDrinks.get(position);
 holder.mCommentTextView.setText(
 currentDrink.comments);
 holder.mDateTimeTextView.setText(
 currentDrink.dateAndTime.toString());
 if (currentDrink.imageUri != null){
 holder.mImageView.setImageURI(
 Uri.parse(currentDrink.imageUri));
 }
}

17.	 In the MainActivity file, we need to have an instance of the adapter and
some data to display. Add a private adapter and a private array list containing
the Drink items:
private MainAdapter mAdapter;
private ArrayList<Drink> mDrinks;

18.	 At the end of the onCreate method, tell recyclerView which adapter to use and
tell the adapter which dataset to use:
mAdapter = new MainAdapter(this, mDrinks);
recyclerView.setAdapter(mAdapter);

Material Design

44

19.	 In the MainActivity file, we want to add some dummy data so that we have some
idea about what things are going to look like. Add the following to the onCreate
method just before the part where we create the MainAdapter class:
mDrinks = new ArrayList<Drink>();
Drink firstDrink = new Drink();
firstDrink.comments = "I like water with bubbles most of the
time...";
firstDrink.dateAndTime = new Date();
mDrinks.add(firstDrink);
Drink secondDrink = new Drink();
secondDrink.comments = "I also like water without bubbles. It
depends on my mood I guess ;-)";
secondDrink.dateAndTime = new Date();
mDrinks.add(secondDrink);

Import the required packages using the Alt + enter shortcut.

Run your app to verify that everything has gone well so far. Your app will display two entries
containing the sample data that we have created in the previous step.

Using card views
The app looks okay but I would not want to call it beautiful yet. Let's see if we can improve this
a little. The following steps will help us to create the app using card views:

1.	 Open the build.gradle file in the app folder and add a CardView dependency,
just after the one for the recycler view:
compile 'com.android.support:cardview-v7:+'

And synchronize your project again.

By the way, if this app was for real, then avoid unpleasant surprises by
specifying an exact version instead of using the + sign in the version
number for any dependency your app may have. Currently, this is
21.0.0 for this particular dependency, but By the time you read this, a
new version might be available.

2.	 If an error appears indicating Gradle failed to resolve the card view dependency, then
click on the Install Repository and sync project link, accept the license, and click on
the Next button. Wait a while until the download is complete and the installation has
finished. Once this is done, click on the Finish button. Sync your project again.

3.	 Create a new layout and name it adapter_main_card_view.xml. Add some padding
to the LinearLayout tag and within the linear layout tag, add a CardView:
<?xml version="1.0" encoding="utf-8"?> <LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android" 
 android:orientation="vertical"

Chapter 3

45

 android:layout_width="match_parent" 
 android:padding="4dp"
 android:layout_height="match_parent"> 
  <android.support.v7.widget.CardView 
 xmlns:card_view=
 "http://schemas.android.com/apk/res-auto"
  android:id="@+id/card_view" 
 android:layout_gravity="center" 
 android:layout_width="match_parent" 
 android:layout_height="wrap_content"
  card_view:cardCornerRadius="4dp">
  </android.support.v7.widget.CardView>
 </LinearLayout>

4.	 From the previous layout, the adapter_main.xml file, copy ImageView and the
two TextView widgets (but not LinearLayout that contains the two TextView
widgets) and paste them within CardView that you have added to the adapter_
main_card_view.xml file.

5.	 Because CardView behaves as if it is FrameLayout, you need to set the margins
for the text labels. Add a left margin to both text views. Also modify the top margin
for the TextView comment:
<TextView
 android:id="@+id/main_date_time_textview"
 android:layout_marginTop="8dp"
 android:layout_marginLeft="100dp"
 android:textSize="12sp"
 android:textColor="@color/material_blue_grey_800"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
<TextView
 android:id="@+id/main_comment_textview"
 android:layout_marginTop="32dp"
 android:layout_marginLeft="100dp"
 android:maxLines="3"
 android:textSize="16sp"
 android:textColor="@color/material_deep_teal_500"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

6.	 Now you tell the MainAdapter class to use this layout by changing the layout ID in
the onCreateViewHolder method:
View v = LayoutInflater.from(parent.getContext()). inflate(R.
layout.adapter_main_card_view, parent, false);

Material Design

46

Run the app again and we will see what it will look like this time:

7.	 In the next recipe, we will add an elevated floating button and we will create a new
activity that allows the users of our app to add drinks, comments, and a selfie.

There's more...
There is a lot of documentation about material design. Browse through the various examples
that are available on various websites, such as https://www.materialup.com,
http://materialdesignblog.com or http://material-design.tumblr.com.

Or, download some of the material designed apps that are available in the Play Store, such as
the Inbox, Google+, Wunderlist, Evernote, LocalCast, and SoundCast apps.

Ripples and elevations
While elevations and ripples are not exactly to be considered to make people more beautiful,
applying these and other material design principles to our app will certainly contribute to the
beautification of it.

In the previous recipe, we created a list to show all logged drinks. In this recipe we will add an
elevated button to add new entries. Also, we will create a new activity.

For each entry, the user can describe some thoughts on what he drank. Of course, the user
has to be able to take a selfie each time so that later he can check whether drinking all that
water or green tea (or beer for that matter, if the user of our app does have a slightly different
objective than that this app has been intended for) indeed did have a positive effect on his
health and his (or her) looks.

https://www.materialup.com
http://materialdesignblog.com
http://material-design.tumblr.com

Chapter 3

47

Getting ready
For this recipe, it would be great if you have the previous recipe completed as this will build
upon our previous achievements.

How to do it...
Let's add a floating button and create a new activity to edit new entries:

1.	 Add a new drawable resource file to the res/drawable folder, name it
button_round_teal_bg.xml, and hit the OK button.

2.	 Using XML, we will create a round oval shape for the button. Remove the selector
tags first (if any). Wrap it up in a ripple tag. A ripple provides visible feedback in
case the button is being pressed; I have chosen a material design variant of teal as
the color but you can of course pick any color that you like. For inspiration, you could
check out http://www.google.com/design/spec/style/ color.html. The
content for the file looks like as shown in the following example:
<ripple xmlns:android="http://schemas.android.com/apk/res/android"
 android:color="#009789">
 <item>
 <shape android:shape="oval">
 <solid android:color="?android:colorAccent"/>
 </shape>
 </item>
</ripple>

In case you run into any error, check minSdkVersion in
the build.gradle file. Refer to step 5 of the first recipe
for further information.

3.	 Add a button to the activity_main.xml layout file just after the recycler view:
<ImageButton
 android:id="@+id/main_button_add"
 android:elevation="1dp"
 android:layout_width="48dp"
 android:layout_height="48dp"
 android:layout_alignParentBottom="true"
 android:layout_alignParentRight="true"
 android:layout_margin="16dp"
 android:tint="@android:color/white"
 android:background="@drawable/button_round_teal_bg"
 android:src="@android:drawable/ic_input_add"/>

http://www.google.com/design/spec/style/ color.html.

Material Design

48

Colors should be defined in a separate color resource file. Also,
elevations and margins should be placed in a dimension resource file.
Since this is out of scope for this recipe, I suggest you do this later.

4.	 Next we want to have some shadows, and also we want to change the elevation if
the button is being pushed or released. Create a new directory in the res folder and
name it anim. Within this folder, create a new animation resource file. Name the file
button_elevation.xml and hit the OK button:
<selector xmlns:android="http://schemas.android.com/apk/res/
android">
 <item android:state_pressed="true">
 <objectAnimator
 android:propertyName="translationZ"android:duration="@
android:integer/config_shortAnimTime"
 android:valueFrom="1dp"
 android:valueTo="4dp"
 android:valueType="floatType"/>
 </item>
 <item>
 <objectAnimator
 android:propertyName="translationZ"
 android:duration="@android:integer/config_shortAnimTime"
 android:valueFrom="4dp"
 android:valueTo="1dp"
 android:valueType="floatType"/>
 </item>
</selector>

5.	 Inform the image button about this new resource file. In your activity_main.xml
layout, add the following line to your image button:
android:stateListAnimator="@anim/button_elevation"

6.	 At the end of the onCreate method in the MainActivity class add an
OnClickListener to the button that we just created and call the
showEntry method, which we will be creating in a minute or two:
findViewById(R.id.main_button_add).setOnClickListener(new
 View.OnClickListener() {
 @Override
 public void onClick(View v) {
 showEntry();}
});

7.	 Create a new layout resource file, name it activity_entry.xml, and use
FrameLayout as the root element. Then hit the OK button.

Chapter 3

49

8.	 Add an EditText widget for comments, a button to take pictures and another
button to save the entry. Then wrap these elements in a CardView widget.
Add an ImageView widget after the CardView widget, like this:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:padding="8dp" android:layout_width="match_parent"
 android:layout_height="match_parent">
 <android.support.v7.widget.CardView xmlns:card_view="http://
schemas.android.com/apk/res-auto"
 android:id="@+id/card_view"
 android:layout_width="match_parent"
 android:layout_height="200dp"
 card_view:cardCornerRadius="4dp">
 <EditText
 android:id="@+id/entry_edit_text_comment"
 android:lines="6"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginRight="60dp"/>
 <ImageButton
 android:id="@+id/entry_image_button_camera"
 android:src="@android:drawable/ic_menu_camera"
 android:layout_gravity="right"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <Button
 android:id="@+id/entry_button_add"
 android:layout_gravity="bottom"
 android:text="Add entry"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 </android.support.v7.widget.CardView>
 <ImageView
 android:id="@+id/entry_image_view_preview"
 android:scaleType="fitCenter"
 android:layout_marginTop="210dp"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</FrameLayout>

9.	 Create a new class, name it EntryActivity, and click on the OK button.

Material Design

50

10.	 Make your class descend from Activity, override the onCreate method, and set
the content view to the layout that you just created:
public class EntryActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_entry);
 }
}

11.	 Do not forget to add your new activity in the AndroidManifest.xml file:
<activity android:name=".EntryActivity"/>

12.	 In the MainActivity class, add the showEntry method and the
implementation that is needed to display the new activity. We will be using
the startActivityForResult method here because this will allow the
EntryActivity to return data later:
private int REQUEST_NEW_ENTRY = 1;
private void showEntry(){
 Intent intent = new Intent(this, EntryActivity.class);
 startActivityForResult(intent, REQUEST_NEW_ENTRY);
}

Now if you run the app and push the button, you will notice the visual feedback. To see the
effect properly, you may want to use a stylus or enlarge the size of the button. If you release the
button, you will see the entry layout. In the layout, if you push (and hold) the Add entry button
(or the camera button), you will notice the ripple effect. We did not have to do anything special
for that. With the introduction of Lollipop (and previous description), this is the default behavior
for buttons. However, these buttons do look a bit boring and as you have seen with the floating
button, there are plenty of customization options available. Let's follow the next steps:

1.	 In the EntryActivity class, set the OnClickListener for the camera button and
do the same thing for the add button:
findViewById(R.id.entry_image_button_camera).setOnClickListener(
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 takePicture();
 }
});
findViewById(R.id.entry_button_add).setOnClickListener(new
 View.OnClickListener() {
 @Override
 public void onClick(View v) {
 }
});

Chapter 3

51

2.	 Add a private member that will contain the URI for the photo that we are going
to take:
private Uri mUri;

3.	 Create a takePicture method and add the implementation for it. We will create
a file with a unique image name up front by using a time stamp and we will tell the
image capture intent to use Uri for that file:
private int REQUEST_IMAGE_CAPTURE = 1;
private void takePicture(){
 File filePhoto = new
 File(Environment.getExternalStorageDirectory(),
 String.valueOf(new Date().getTime())+"selfie.jpg");
 mUri = Uri.fromFile(filePhoto);
 Intent intent = new
 Intent("android.media.action.IMAGE_CAPTURE");
 intent.putExtra(MediaStore.EXTRA_OUTPUT, mUri);
 startActivityForResult(intent, REQUEST_IMAGE_CAPTURE);
}

4.	 Override the onActivityResult method that will be triggered once a photo has
been taken. If everything goes well, we need to create a bitmap of the file we just
created by taking the picture and show a preview of it:
@Override
protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 if (requestCode == REQUEST_IMAGE_CAPTURE &&
 resultCode == RESULT_OK){
 Bitmap bitmap = getBitmapFromUri();
 ImageView preview = (ImageView)
 findViewById(R.id.entry_image_view_preview);
 preview.setImageBitmap(bitmap);
 }
}

5.	 Next, implement the getBitmapFromUri method:
public Bitmap getBitmapFromUri() {
 getContentResolver().notifyChange(mUri, null);
 ContentResolver resolver = getContentResolver();
 Bitmap bitmap;
 try {
 bitmap = android.provider.MediaStore.Images.Media.
getBitmap(
 resolver, mUri);
 return bitmap;
 }

Material Design

52

 catch (Exception e) {
 Toast.makeText(this, e.getMessage(),
 Toast.LENGTH_SHORT).show();
 return null;
 }
}

6.	 Add the appropriate permission and feature to the AndroidManifest.xml file:
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission
 android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-feature android:name="android.hardware.camera" />

7.	 Now let's implement the submitEntry method. We will return the comment and
uri of the picture and end the activity:
private void submitEntry(){
 EditText editComment = (EditText)
 findViewById(R.id.entry_edit_text_comment);
 Intent intent = new Intent();
 intent.putExtra("comments", editComment.getText().toString());
 if (mUri != null) {
 intent.putExtra("uri", "file://" +
 mUri.getPath().toString());
 }
 setResult(Activity.RESULT_OK, intent);
 finish();
}

8.	 Add the implementation for the onClick event of the add button. Just call the
submitEntry method:
findViewById(R.id.entry_button_add).setOnClickListener(new View.
OnClickListener() {
 @Override
 public void onClick(View v) {
 submitEntry();
 }
});

9.	 In the MainActivity class, we will handle the returned result by overriding the
onActivityResult method. A new drink will be created and added to the list of
drinks. Finally, we will notify the adapter that there is an update to be displayed by
adding the following snippet:
@Override
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

Chapter 3

53

 if (requestCode == REQUEST_NEW_ENTRY &&
 resultCode == RESULT_OK) {
 Bundle bundle = data.getExtras();
 Drink newDrink = new Drink();
 newDrink.comments = bundle.getString("comments");
 newDrink.imageUri = bundle.getString("uri");
 newDrink.dateAndTime = new Date();
 mDrinks.add(newDrink);
 mAdapter.notifyDataSetChanged();
}

10.	 In the MainAdapter class, we need to do some work to display thumbnails of each
image. Add this to the end of the onBindViewHolder method:
if (currentDrink.imageUri != null){
 Bitmap bitmap =
 getBitmapFromUri(Uri.parse(currentDrink.imageUri));
 holder.mImageView.setImageBitmap(bitmap);
}

11.	 If an Uri is known for the item, we need to display a thumbnail for it. We will implement
getBitmapFromUri in MainAdapter slightly different. The method to do so goes
like this:
public Bitmap getBitmapFromUri(Uri uri) {
 mContext.getContentResolver().notifyChange(uri, null);
 ContentResolver cr = mContext.getContentResolver();
 try {
 Bitmap bitmap =
android.provider.MediaStore.Images.Media.getBitmap(cr, uri);
 return bitmap;
 }
 catch (Exception e) {
 Toast.makeText(mContext, e.getMessage(),
 Toast.LENGTH_SHORT).show();
 return null;
 }
}

Now, run the app. You can use a real device or Genymotion for that. If you are using
Genymotion you have to enable the camera, as described in Chapter 1, Welcome to Android
Studio. Click on the add button, have a glass of water, enter some comments, and then take a
selfie. Hit the Add entry button to make it appear in the list.

This is amazing! You are done for now. The app is far from pixel perfect but we have made
some interesting moves. Beautification takes time. In the next recipe, we are going to
implement some wow stuff by adding transitions.

Material Design

54

On some devices, but not all of them, the picture may be rotated.
This is one of the challenges that come with Android development
and we will cover that topic in Chapter 6, Capture and Share.

There's more...
The list with entries is not yet persisting other than during the life time of the application.
If you want, you can make the entries persistent, for example, by storing the entries in a
SQLite database or eventually by using Parse, which is discussed in Chapter 2, Applications
with a Cloud-based Backend. Since persistency is not the objective for this recipe, it will not
be discussed any further here. In Chapter 7, Content providers and observers, SQLite and
content providers are discussed.

Since API level 23 there is a FloatingActionButton widget that you
can use as well. It comes in two sizes: default and mini.

See also
ff Chapter 2, Applications with a Cloud-based Backend

ff Chapter 6, Capture and Share

ff Chapter 7, Content providers and observers

Great transitions
If you click on any of the cards it will display the entry view again with the comments and a
preview of the picture that we took previously.

We do not just want to move from the list view to the detail view. Material design also takes
care of great natural transitions. This recipe is going to apply just that.

Getting ready
To go through this recipe, you will need to have the previous recipes up and running. This
recipe is going to add some animations to it.

Chapter 3

55

How to do it…
The following steps will help us to add the animations to our app:

1.	 Add a mDrink member to ViewHolder in the MainAdapter class:
public Drink mDrink;

2.	 In the same file in the onBindViewHolder method inform the view holder about
the actual drink, just after the initialization of currentDrink:
Drink currentDrink = mDrinks.get(position);
holder.mDrink = currentDrink;

3.	 In the onCreateViewHolder method, add an OnClickListener to the end:
v.setTag(viewHolder);
v.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 ViewHolder holder = (ViewHolder) view.getTag();
 if (view.getId() == holder.itemView.getId())
 {
 }
 }
});

4.	 If the view is being clicked on, we want the EntryActivity class to display the
selected drink entry. In order to be able to inform the entry about the selection,
we need to make the Drink model a parcelable class:
public class Drink implements Parcelable

5.	 We need to implement a couple of methods for that:
@Override
public int describeContents() {
 return 0;
}
@Override
public void writeToParcel(Parcel out, int flags) {
 out.writeLong(dateAndTime.getTime());
 out.writeString(comments);
 out.writeString(imageUri);
}
public static final Parcelable.Creator<Drink> CREATOR = new
 Parcelable.Creator<Drink>() {
 public Drink createFromParcel(Parcel in) {
 return new Drink(in);
 }

Material Design

56

 public Drink[] newArray(int size) {
 return new Drink[size];
 }
};

6.	 Add two constructors for the Drink class—a default one and one that takes a parcel—
so we can recreate the object and populate it with the appropriate values:
public Drink(){
}
public Drink(Parcel in) {
 dateAndTime = new Date(in.readLong());
 comments = in.readString();
 imageUri = in.readString();
}

7.	 In the MainAdapter class, add a private variable for the request. This approach
makes your code more readable:
private int REQUEST_EDIT_ENTRY = 2;

The so-called magical numbers are easy to misunderstand and should
be avoided as much as possible. This and other recipes are just for
demo purposes but in the real world, you should use self-explaining
constants where possible. Here, REQUEST_EDIT_ENTRY makes much
more sense than just putting the number 2 in your code somewhere.

8.	 Now within the onClick method that we created previously in the
onCreateViewHolder method of the MainAdapter, we can start a new entry
activity and pass the selected drink as a parameter. The implementation of the
onClick method will now look like this:
v.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 ViewHolder holder = (ViewHolder) view.getTag();
 if (view.getId() == holder.itemView.getId()) {
 Intent intent = new Intent(mContext,
 EntryActivity.class);
 intent.putExtra("edit_drink", holder.mDrink);
 ((Activity)mContext).startActivityForResult(intent,
 REQUEST_EDIT_ENTRY); }
 }
});

Chapter 3

57

9.	 In the onCreate method of the EntryActivity class, we will retrieve and
display the properties of the selected drink. Add this implementation to the
end of the method:
Intent intent = getIntent();
if (intent.hasExtra("edit_drink")) {
 Drink editableDrink = intent.getParcelableExtra("edit_drink");
 EditText editComment =
 (EditText)findViewById(R.id.entry_edit_text_comment);
 editComment.setText(editableDrink.comments);
 if (editableDrink.imageUri != null) {
 mUri = Uri.parse(editableDrink.imageUri);
 Bitmap bitmap = getBitmapFromUri();
 ImageView preview = (ImageView)
 findViewById(R.id.entry_image_view_preview);
 preview.setImageBitmap(bitmap);
 }
}

The EditText for the comments will be filled with the comments so that the user can edit them.
If an image is attached to the drink entry, it will be shown in the preview image view. Now if
only we had an easy and cool way of animating the thumbnail of the image into the preview:

1.	 Surprise! There is. Add a new string resource in the strings.xml (in the res/
values folder) file:
<string name="transition_preview">transition_preview
 </string>

2.	 In the onCreateViewHolder method in the MainAdapter class, within the
onClick implementation, and right before the startActivityForResult
method, we will use the ActivityOptionsCompat class to create a transition from
the thumbnail (the holder's mImageView member) to the preview image in the layout
for the entry activity:
ActivityOptionsCompat options =
 ActivityOptionsCompat.makeSceneTransitionAnimation(
 ((Activity)mContext), holder.mImageView,
 mContext.getString (R.string.transition_preview));

3.	 Supply these options by replacing the startActivityForResult call on the next
line with this implementation:
ActivityCompat.startActivityForResult(((Activity) mContext),
 intent, REQUEST_EDIT_ENTRY, options.toBundle());

4.	 Open the adapter_main_card_view.xml layout file and add this line to the image
view (the one with the main_image_view ID):
android:transitionName="@string/transition_preview"

Material Design

58

5.	 In the activity_entry.xml layout, add this line as well to the ImageView widget
(the one with the entry_image_view_preview ID). This way Android knows where
the transition of the thumbnail into the larger preview image has to go).

It is good practice to use string resources. We can use these resources
here to make sure we are talking about the same transition everywhere
in the code but it will also be great for localization purposes.

Now if you run your app and click on any of the cards in the MainActivity class, you will
see that the thumbnail is enlarged and fits into the place holder for the preview image in the
layout of the EntryActivity class. The reversed transition is shown if you choose the back
button. In previous versions we could not do this with only a few lines of code!

Theming
As a bonus, let's do some theming using the following steps:

1.	 Visit http://www.materialpalette.com and pick two colors. Theming comes up
with a color set that we can use for a theme as shown in the following screenshot:

2.	 Create a color.xml file in the res/values folder and add the suggested color
names and values. I have chosen blue and indigo on the website so my color
resource file looks like this:
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="primary_dark">#1976d2</color>
 <color name="primary">#2193f3</color>
 <color name="light_primary">#bbdefb</color>
 <color name="text">#ffffff</color>
 <color name="accent">#536dfe</color>
 <color name="primary_text">#212121</color>
 <color name="secondary_text">#727272</color>
 <color name="divider_color">#b6b6b6</color>
</resources>

http://www.materialpalette.com

Chapter 3

59

3.	 Edit the styles.xml file in the res/values folder and make it look like this:
<resources>
 <style name="AppTheme" parent="Theme.AppCompat.Light">
 <item name="android:colorPrimary">@color/primary</item>
 <item name="android:colorPrimaryDark">@color/primary_dark
 /item>
 <item name="android:colorAccent">@color/accent</item>
 <item name="android:textColor">@color/text</item>
 <item name="android:textColorPrimary">@color/primary_text
 </item>
 <item name="android:textColorSecondary">
 @color/secondary_text
 </item>
 </style>
</resources>

The output of the preceding code is as shown in the following screenshot:

Material Design

60

4.	 Modify your layout files and change text views and other elements so that it can
reflect the color scheme. Run the app.

How it works...
Android's activity transitions will take care of everything. We just need to tell what, where, and
how. With just a few lines of code the API allows you to create meaningful transitions between
activities, which will heavily improve the User Experience (UX) of your application.

With each new step, the looks of your app become better and better! Unfortunately, this is
where this introduction to material design ends. Make improvements wherever you want. Play
with it and have fun! Animations, UX, and layouts are important elements of high-quality apps.

For wearable apps, this may be even more important as we will see in the next chapter. But
how can we enable a great user experience on such as small screen?

There's more...
We have seen only a few aspects of Material Design. There is so much more to discover.

Improve the looks and UX of the app further, add the implementation in the MainActivity
class to handle the data of drink entries that you have added, and make enhancements
wherever you want them. Or, you can have a look at your existing apps and see how you can
materialize them.

61

4
Android Wear

This chapter will inform you about Android Wear and how the phenomenon materializes as
watches and other devices.

In this chapter, you will learn about:

ff Wearables

ff A fullscreen wearable app

ff Watch faces

ff Notifications

Wearables
Android Wear is what many wearable devices run on. You might have a smartwatch yourself.
Will wearables be the next hype after phones, phablets, and tablets? Or will smartwatches
become part of something bigger, such as the Internet of Things (IoT)?

Android Wear is a special version of the Android SDK and is dedicated to wearables that are
often more limited in hardware and available sensors and have smaller screens. Wearables
may appear as watches, glasses, or maybe in future as contact lenses, tattoos, or clothing.

Android Wear

62

Currently, we see wearables appearing mostly as watches but there are plenty of other
wearable devices that you can think of. However, it will take some time for people to adopt
this new technology. Think of the Google Glass project for example. It is a brilliant solution
but mostly because of the built-in camera, people are having serious objections to it. In San
Francisco, they have even made up a word for it: glass hole. Hmm. That is not really flattering
is it? Let's have a look at the following device:

Devices do not necessarily have to be wearable. When the IOT is discussed, project Brillo
comes to mind. It extends the Android platform to any connected device that you can think of.
In future, Brillo and Android Wear might even be merged.

Imagine a hot summer day; the fridge notifies us about the fact that we are running out of
sparkling water (or was it beer?). Cool! The learning thermostat sets the temperature to 18°C
an hour before you come home. Even cooler! The light in the living room dims automatically
because it is late in the evening; you are playing some romantic music and the system knows
you have just opened a bottle of wine-Ehrm. Weird. That is a completely different story and so
is Brillo for now.

Instead, let's find out which apps we can build for a smart watch such as a brand new watch
face or a health app displaying notifications from time to time. In the upcoming recipes, we
will see what we need to do for that.

First things first, let's see if we can get things up and running on a wearable device. For the
first two recipes, you do not need to have a real smartwatch. We will create a virtual one in
the first recipe.

Fullscreen wearable app
Wearable fullscreen apps do have a phone (or other handheld device) and a wearable
component. The user install the handheld app on their phone and the wearable component
is pushed to the paired wear device automatically.

Chapter 4

63

This is a great start to exploring the interesting world of developing apps for wearables, as
they are basically the same as Android phone apps. However, Google encourages you to
integrate your app with Android Wear's context stream. This context stream does contain
various interesting pieces of information. Think of them as incoming e-mails, the weather, the
number of steps you have taken today, or your heart beat rate. We will find out more about
this in the recipe about notifications.

Getting ready
To go through this recipe, you need to have Android Studio up and running. Also make sure
that you have installed the latest SDK, including the Android Wear SDK. You can check
whether this is the case when you open the SDK manager. (Navigate to the Tools menu,
Android SDK Manager) as shown in the following screenshot:

Android Wear

64

How to do it...
Let's see how we can create our own wearable app and make it run on a virtual device using
the following steps:

1.	 Start a new Android Studio project. Name your application WatchApp and enter
packtpub.com in the Company Domain field. Then, click on the Next button.

2.	 In the next dialog, check Phone and tablet. Also check the Wear option.

3.	 For both options, select API 21 or higher and click on the Next button.

4.	 In the Add an activity to wear dialog, choose Blank Wear Activity and click on the
Next button.

5.	 Select Blank Activity and click on the Next button.

6.	 Name your new activity PhoneActivity and click on the Next button.

7.	 Select Blank Wear Activity and click on the Next button as shown in the
following screenshot:

8.	 Name your new wear activity WatchActivity and click on the Finish button.

Chapter 4

65

9.	 Android Studio will create two modules: mobile and wear. The mobile one runs on a
smartphone (or phablet or tablet). The wear app will be pushed to a paired wearable
device such as your smart watch for example. The project view now looks like this:

10.	 Let's see what it will look like on a smartphone by default. To do so, we will create
a wearable virtual device. From the Tools menu, select the Android option and next
select the AVD Manager option.

11.	 Then, click on the button that reads Create virtual device.

12.	 In the dialog that comes up, choose Wear in the Category list. Choose the Android
Wear Round device in the list next to it and click on the Next button as shown in the
following screenshot:

Android Wear

66

13.	 In the next dialog, choose a system image, for example Lollipop, API level 21, x86
(or higher if available. You might need to click on the Download link first to do so).
Then, click on the Next button to continue.

14.	 Give your virtual device a nice name and click on the Finish button. Your new Android
wear device will now appear in the list as shown in the next screenshot:

15.	 Start the device by clicking on the play icon.

16.	 Once the virtual device has been booted, change the configuration to wear and click
on the Run button next to it on the toolbar.

After the app has been installed, it will look like this:

Chapter 4

67

If the Hello Round World! message does not appear immediately, the app may have been
installed but may not be visible yet. Swipe the screen a couple of times to check whether
it is there.

If your app is up and running, it is time to explore something that is even more fun. Let's
create a watch face in the next recipe.

There's more...
At the time of writing this, Genymotion does not support wearable devices yet. This is why we
are using the default emulator instead in this recipe.

But that one is so sloooow! You might say. That is true, but by installing HAXM, you
can make it a little bit faster. There is some interesting information about this topic
at http://developer.android.com/tools/devices/emulator.html.

In case you do have a real device, you can of course also deploy your app on a smartwatch.
If you want to do so, you also need to have the Android wear companion app installed on a
handheld device since you cannot install and test your wearable app on it directly.

You can get this companion app from Google Play. Download the app, install it, and connect
your handheld device through a USB.

See also
ff Refer Testing your app with an emulator called Genymotion section from Chapter 1,

Welcome to Android Studio

Watch faces
Out of the box, your Android smartwatch comes with various watch faces and there are plenty
of other watch faces that you can download. They are available in any shape or type: square
and round or analogue and digital. Actually, there is even another shape - the so-called flat
tire one - as seen on the Moto 360 device.

There are many customization options that you can think of but all watch faces are about
displaying time and date information in an easy way. This is what watches are for in the first
place, aren't they?

They should be aware of incoming notifications and also need to make room for the system
indicators such as the battery life icon and the Ok Google text. For more information, check
out https://developer.android.com/design/wear/watchfaces.html.

What we will create in the upcoming recipe is a watch face that tells you the time, for example,
half past seven or five minutes past ten.

http://developer.android.com/tools/devices/emulator.html
https://developer.android.com/design/wear/watchfaces.html

Android Wear

68

Getting ready
To go through this recipe, you need to have Android Studio up and running. Also make sure
you have installed the latest SDK, including the Android Wear SDK. You can check whether
this is the case by opening the SDK manager, which is accessible when you navigate to the
Tools menu under Android which is under the SDK Manager menu item.

How to do it…
Let's create a new Android project with the following steps to create a watch face app:

1.	 Create a new Android Studio project.

2.	 Name your app HelloTime or whatever you want the name of your app to be. Enter
packtpub.com in the Company Domain field. Then click on the Next button.

3.	 In the next dialog, check Phone and tablet. Also check the Wear option.

4.	 For both options, select API 21 or a higher version and click on the Next button.

5.	 Select Blank activity and click on the Next button.

6.	 Name your new activity PhoneActivity and click on the Next button.

7.	 Select Watch Face and click on the Next button.

8.	 Name the watch face HelloTimeWatchFace and choose Digital for Style. After
that, click on the Finish button.

9.	 Android Studio will create the necessary modules for both the phone or tablet and the
wearable device.

10.	 In the project view, open the HelloTimeWatchFace class of the wear module.

11.	 Open the strings.xml file in the res/values folder within the wear module and
change the string for my_digital_name to Hello Time!

12.	 Let's see what we have got so far. Start the virtual (or your real) wearable device.
In case you do not know how to create a virtual wearable device, refer to the
previous recipe.

13.	 Once the virtual device has been booted, change the configuration to Wear and click
on the Run button next to it on the toolbar as shown in the following figure:

14.	 On the wearable, swipe to see the Settings icon and click on it.

15.	 Swipe down to Change watch face and click on it.

16.	 Swipe to the right until you see the Hello Time! watch face and click on it.

17.	 You will now see the digital watch face that Android Studio has created for you.

Chapter 4

69

Let's examine this code for a bit. The HelloTimeWatchFace class that has been created for
you extends CanvasWatchFaceService and an inner Engine class has been added. The
engine has a handler so that the time could be updated. It also has a broadcast receiver that
will handle the situation if the user moves to another time zone while traveling.

The Engine class has some interesting methods. The onCreate method allocates
two Paint objects: one for the background and one for the foreground (text). The
onVisibilityChanged method will be called when the user displays or hides the watch
face. The onApplyWindowInSets method is used to determine whether the app is running
on a round or square screen.

Next there is the onPropertiesChanged method, which will be called once the hardware
properties of the wearable device are known, for example, if the low-bit ambient mode is
supported. The onAmbientModeChanged method is very important because it can save the
battery. It can also be used to apply burn-in protection. Here you may want to change the color
of the background or foreground.

Let's change the way the time is shown:

1.	 Add a method that returns the current time in the spoken language, something
like this:
private String[] getFullTextTime(){
 String time = "";
 Calendar cal = Calendar.getInstance();
 int minute = cal.get(Calendar.MINUTE);
 int hour = cal.get(Calendar.HOUR);
 if (minute<=7){
 time = String.format("%s o'clock",
 getTextDigit(hour));
 }
 else if (minute<=15){
 time = String.format("ten past %s",
 getTextDigit(hour));
 }
 else if (minute<=25){
 time = String.format("Quarter past %s",
 getTextDigit(hour));
 }
 else if (minute<=40){
 time = String.format("Half past %s",
 getTextDigit(hour));
 }
 else if (minute<53){
 time = String.format("Quarter to %s",

Android Wear

70

 getTextDigit(hour));
 }
 else {
 time = String.format("Almost %d o'clock",
 (hour<=11)? hour+1: 1);
 }
 return time.split(" ");
}

2.	 Add this method to convert the numbers to text:
private String getTextDigit(int digit){
 String[] texts ={ "twelve", "one", "two", "three",
 "four", "five", "six", "seven", "eight", "nine",
 "eleven"};
 return texts[digit];

3.	 In the onDraw method, replace the canvas.DrawText part with the lines shown
here. This method displays multiple lines of the current time in the spoken language:
String[] timeTextArray = getFullTextTime();
float y = mYOffset;
for (String timeText : timeTextArray){
 canvas.drawText(timeText, mXOffset, y, mTextPaint);
 y+=65;
}

Magic is not always cool…
Wait! What is that magic number doing there in the previous step?
65 is not really meaningful. What does this mean? What does it do?
Create a constant value for it somewhere in your class and use that
variable name instead (here it would be even better to put the value in
a dimension resource file, but we will have a look at that later so let's
forget about that for now):

private static final int ROW_HEIGHT = 65;

y+= ROW_HEIGHT;

4.	 Go to the onCreate method and add this line to make the text appear with a nice
green color (yep, GREEN is a constant as well):
mTextPaint.setColor(Color.GREEN);

Chapter 4

71

Run your app again. It will look like this:

To prepare the watch face for the Play Store later, you need to take screenshots once you
have completed it. You need to provide screenshots for both square and circular watches. In
the res/drawable folder, you will find the default preview images that Android Studio has
created for you.

For now, you have just created your first watch face app in its most basic shape. In the next
recipe, we will see what happens when a notification comes in.

There's more...
The watch face app in this recipe is far from perfect. The text is not aligned; it does not
properly respond to ambient mode changes and you may want to localize it to display
the time in your own language.

To see where this could be going, you could check out the many watch faces that are already
available at the Play Store.

Notifications
Android Wear is somewhat different from apps running on phones or tablets. Instead of icons
and lists, Android Wear uses cards, which is something we saw already in the recipes that
introduced us to the basic concepts of material design.

Android Wear

72

According to the context and only at a relevant moment, a card is added to the stream of
cards once a new notification arrives. This is known as the context stream, and it does contain
various interesting pieces of information. Think of them as incoming emails, the weather, the
number of steps you took today, your heart beat rate, and other events or reminders.

Remember the water app from the previous chapter? For example, we could create a
notification to remind us to drink water more often and to add a new card for it. This
would be a nice feature to have.

Getting ready
This recipe requires Android Studio and the latest SDKs, including the wear SDK, installed.
Check out the previous recipe for more information.

You also need a handheld device running on Android Lollipop or above that has the
Android Wear app installed and a wearable device that is connected to your handheld
device through Bluetooth.

How to do it...
Let's see how notifications can be triggered and how to display them nicely on a smartwatch:

1.	 Create a new project in Android Studio. Name it WaterNowNotification and click
on the Next button.

2.	 Choose Phone and Tablet as smartwatch platform. Do not check the Wear option.
Click on the Next button.

3.	 Select Blank Activity and click on the Next button.

4.	 Name your activity WaterNowActivity and click on the Finish button.

5.	 Open the build.gradle file in your app. Add this to the dependencies section and
apply the appropriate version for it:
compile 'com.android.support:support-v4:22.0+'

6.	 Click on the Sync project with Gradle files button that you can find on the toolbar.

7.	 Open the activity_water_now.xml file and change it to the Text mode using the
tab at the bottom of Android Studio.

8.	 Create a layout with a button that we will use to send a test notification:
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
tools:context=".WaterNowActivity">

Chapter 4

73

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Drink water now!"
android:id="@+id/water_now_button"
android:layout_gravity="center" />
</LinearLayout>

9.	 In the onCreate method of the WaterNowActivity class, add an onClick
handler for the button that we just created. Use the Alt + Enter shortcut to add
import statements as needed:
Button waterNowButton = (Button)findViewById(R.id.water_now_
button);
waterNowButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
 sendNotification();
 }
});

10.	 Create the sendNotification method:
private void sendNotification(){
 NotificationCompat.Builder notificationBuilder =
 new NotificationCompat.Builder(
 WaterNowActivity.this)
 .setContentTitle("Water app!")
 .setSmallIcon(R.drawable.icon)
 .setContentText("Hey there! Drink water now!");
 NotificationManagerCompat notificationManager =
 NotificationManagerCompat.from(
 WaterNowActivity.this);
 notificationManager.notify(1 ,
 notificationBuilder.build());
}

11.	 Notifications do require an icon, so create one in the res/drawable folder. Create a
drawable icon.xml file and add the implementation to create a nice blue circle:
<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android= "http://schemas.android.com/apk/res/android"
android:shape="oval">
<corners android:radius="10dip"/>
<stroke android:color="#0000FF" android:width="15dip"/>
<solid android:color="#0000FF"/>
</shape>

Android Wear

74

12.	 Connect your handheld device; make sure that the wearable device is connected
(use the Android wear app to check this) and run the app. You will see the output
similar to the following screenshot:

13.	 Click on the Drink water now button within your app.

14.	 A notification will be shown on your phone similar to the following screenshot. If it
does not appear right away, there will be some indicator at the top of the screen. In
this case, open the notification center to see it.

Chapter 4

75

15.	 If all is up and running and configured correctly, the same notification appears on the
wearable device, shown as follows:

16.	 If notifications are shown on your phone but do not appear on your wearable, then
verify the Notification access settings. Open the Settings app and choose Sound
and messages. Next, choose Notification access and check whether the Android
Wear option has been checked.

For other Android versions or for particular brands (customized Android versions), the setting
you are looking for may be located elsewhere and/or may have a different name.

There's more...
Where to go from here? You can combine this notification recipe with the Water app from the
recipes within the Chapter 3, Material Design and create something cooler or you can check
whether you can find a way to customize the notification.

Smartwatches, phones, phablets, and tablets come with screens of all sizes and shapes.
How can we benefit from a larger screen or how can we provide smart navigations for smaller
screens and maintain the same functionality and code within one app?

Different layouts for different Android versions? Multiple layouts are what we need combined
with multiple fragments. This is where the recipes in the next chapter come in.

See also
ff Refer to the RecyclerView and CardView section from Chapter 3, Material Design

ff Refer to Chapter 5, Size does matter

www.allitebooks.com

http://www.allitebooks.org

77

5
Size Does Matter

This chapter is about building apps that will be running on a wide variety of devices: phones,
phablets, tablets, and TVs. We will connect to YouTube to get some data and videos to display.

Size and context actually do matter. We could of course scale up everything but that does not
really make it a better app. Tablets offer more space than phones, and when it comes to user
interaction, TV differs from a smart phone. How do we make the layout scale and look smooth
on each device? How do we find the right approach for each type of device?

In this chapter, you will learn from the following recipes:

ff Size and context

ff Phone, phablet, and tablet layouts

ff Media playback

ff TV and media centre

Size and context
Devices such as phones, phablets, tablets, and TVs come with screens of all sizes and
shapes. How can we benefit from a larger screen or how can we provide smart navigation for
smaller screens and maintain the same functionality and code within one app? That is what
this first recipe is about.

What about the various kinds of devices? With the introduction of wearable devices, we saw
that the user behavior for these types of devices is quite different. The same thing applies
to TVs. As always, let's do first things first. Let's examine an app that runs on both a phone
and tablet.

Size Does Matter

78

Phone, phablet, and tablet
A well-known pattern for phones is the list or the recycler view that show you some details
when you click on any of the rows. On a small screen, the app will navigate you to a different
view. This pattern simply exists because of the lack of space on the screen of a phone. If you
run the same app on a device that has sufficient space, we can show the list on the left-hand
side of the screen and the details on the right-hand side.

Multiple layouts are what we need, combined with multiple fragments. If we do this, we can
reduce the amount of code we need to write. We just do not want to repeat ourselves, do we?

Fragments are a powerful but also an often misunderstood component of Android
development. Fragments are (little) pieces of functionality and most of the time do have their
own layouts. Using fragment containers, a fragment may reside in multiple places and on
multiple activity-related layouts. This is how we can reuse functionality and layouts.

Fragments should be used carefully though. Without a proper strategy, an app that uses
fragments can cause you a lot of trouble. Code within a fragment frequently refers to an
activity. While this code may still be running, the fragment may be detached from the activity
in between (for example, because the user has pressed the back button). This could result in
a crash of your app.

Getting ready
To go through this recipe, you need to have Android Studio up and running, and a phone,
phablet, and/or tablet device (physical ones are recommended as always; however, you
can use Genymotion to create virtual ones).

Since we will be using the YouTube Android API, you need to have the latest YouTube
Android app installed on your device as well. Check on your device whether it is there,
or install or update it using the Google Play app in case it is not on your device or an
update for it is available.

Finally, you need to have a developer's account. In case you do not have one yet, you need to
create one first from http://developer.android.com/distribute/ googleplay/
start.html.

In addition to buying this book, getting yourself a developer's account is a very good
investment, and I strongly recommend you to get one. You will need one in order to
be able to submit your app to the Google Play store anyway!

http://developer.android.com/distribute/ googleplay/start.html
http://developer.android.com/distribute/ googleplay/start.html

Chapter 5

79

How to do it...
Let's see how we can create our own wearable app and make it run on a device:

1.	 Start a new Android Studio project. Name your application YouTubeMediaApp and
enter packt.com in the Company Domain field. Click on the Next button.

2.	 In the following dialog, only check the Phone and Tablet option and click on the
Next button.

3.	 In the next dialog, choose Blank activity and click on the Next button.

4.	 In the Customize the Activity dialog, click on the Finish button.

5.	 Android Studio will create the new project for you. From the Project view on the
left-hand side of Android Studio, locate build.gradle within the app folder
and open it.

6.	 Open the build.gradle file within the app folder and add a dependency to the
dependencies section for the YouTube services API. We are going to use this
API to search for videos on YouTube:
compile 'com.google.apis:google-api-services-
youtube:v3-rev120-1.19.0'

7.	 Synchronize the project (click on the Sync now link or use the Sync project with
Gradle files button from the toolbar).

8.	 Open the activity_main.xml layout. Create a frame layout that will act as a
container for the fragment that we want to display here later. We will give it a nice
background color for demonstration purposes. Let's pick orange:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@android:color/holo_orange_light"
 android:id="@+id/main_container_for_list_fragment">
</FrameLayout>

9.	 Add a new layout and name it fragment_list.xml. Create a list view within a
container. This list will contain the title and other information about the videos that
we will find on YouTube:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

Size Does Matter

80

<ListView
 android:id="@+id/main_video_list_view"
 android:visibility="visible"
 android:padding="6dp"
 android:layout_marginTop="0dp"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
</ListView>
</FrameLayout>

10.	 Add a new Java class, name it ListFragment, and click on the OK button
to continue.

11.	 Make the new class a Fragment descendant and override the onCreate method.
Create a private member for the list view and add a reference to the list view in the
layout as shown in the following code:
public class ListFragment extends Fragment {
 private ListView mListView;
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState)
 final View view= inflater.inflate(
 R.layout.fragment_list, container, false);
 mListView = (ListView)view.findViewById(
 R.id.main_video_list_view);
 return view;
 }
}

Besides ListActivity, there is also a ListFragment class
that you can descend from. For demo purposes, we will descend
from Fragment class here and do some things ourselves.

12.	 While adding the correct import statements (using the Alt + Enter shortcut or
otherwise) you will be able to choose which package to import. You can choose
between the android.app.Fragment and android.support.v4.app.
Fragment packages. The last one is for backward compatibility purposes only. Since
we will be using the latest SDK for our app, choose this import statement if asked:
import android.app.Fragment;

Chapter 5

81

13.	 Add another private member for YouTube and a YouTube list and create a method
named loadVideos. First, we will initialize the YouTube member:
private YouTube mYoutube;
private YouTube.Search.List mYouTubeList;
private void loadVideos(String queryString){
 mYoutube = new YouTube.Builder(new NetHttpTransport(),
 new JacksonFactory(), new HttpRequestInitializer() {
 @Override
 public void initialize(HttpRequest hr) throws
 IOException {}
 }).setApplicationName(
 getString(R.string.app_name)).build();
}

14.	 Next, we will tell YouTube what we are looking for and what information we want the
API to return. We need to wrap our code in a try catch construction as we do not know
in advance whether we will be able to connect to YouTube. Add this to the end of the
loadVideos method:
try{
 mYouTubeList = mYoutube.search().list("id,snippet");
 mYouTubeList.setType("video");
 mYouTubeList.setFields(
 "items(id/videoId,snippet/title,snippet/
 description,snippet/thumbnails/default/url)");
}
catch (IOException e) {
 Log.d(this.getClass().toString(), "Could not
 initialize: " + e);
}

15.	 To use the YouTube API, you must register your app first. To do so, navigate your
browser to https://console.developers.google.com/project.

16.	 Click on the Create a project button. Enter YouTubeApp as the project name and
click on the Create button.

17.	 Once the project is created, the dashboard will be shown on the webpage. On the
left-hand side, expand APIs and auth and click on APIs.

18.	 On the right-hand side of the page, click on YouTube Data API. Click on the
Enable API button.

19.	 On the left-hand side again, click on Credentials just after APIs. Under Public API
access, click on the Create new Key button.

https://console.developers.google.com/project

Size Does Matter

82

20.	 On the Create new key popup dialog box, click on the Android key button.

21.	 Since this app is for demo purposes only, we do not need to look up the requested
SHA1 value. Just click on the Create button.

22.	 Now, an API key will be created for you. Copy the value for API key.

23.	 In the AndroidManifest.xml file, add a permission to access the Internet:
android:name="android.permission.INTERNET"/>

Glue it together!
1.	 Now back in the ListFragment class, tell the API about your key that is just next to

the search call on the YouTube object:
mYouTubeList.setKey("Your API key goes here");

2.	 Create a new VideoItem class and add members to hold the requested information
for each video. Note that we are using getters and setters here:
private String title;
private String description;
private String thumbnailURL;
private String id;
public String getId() {
 return id;
}

Chapter 5

83

public void setId(String id) {
 this.id = id;
}
public String getTitle() {
 return title;
}
public void setTitle(String title) {
 this.title = title;
}
public String getDescription() {
 return description;
}
public void setDescription(String description) {
 this.description = description;
}
public String getThumbnailURL() {
 return thumbnailURL;
}
public void setThumbnailURL(String thumbnail) {
 this.thumbnailURL = thumbnail;
}

3.	 Create a new layout and name it adapter_video.xml. Then, add text views to
display the video information:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:padding="6dp">
<TextView
 android:id="@+id/adapter_video_id"
 android:textSize="14sp"
 android:textStyle="bold"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
<TextView
 android:id="@+id/adapter_video_title"
 android:textSize="20sp"
 android:layout_marginTop="2dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

Size Does Matter

84

4.	 Create a new VideoAdapter class and make it an ArrayAdapter descendant that
will be holding entries of the VideoItem type. A view holder will help us fill the text
views with the properties of the listed VideoItem object:
public class VideoAdapter extends ArrayAdapter<VideoItem> {
 private Context mContext;
 private int mAdapterResourceId;
 public ArrayList<VideoItem>mVideos = null;
 static class ViewHolder{
 TextView videoId;
 TextView videoTitle;
 }
@Override
public int getCount(){
 super.getCount();
 int count = mVideos !=null ? mVideos.size() : 0;
 return count;
}
public VideoAdapter (Context context, int
 adapterResourceId, ArrayList<VideoItem> items)
{
 super(context, adapterResourceId, items);
 this.mVideos = items;
 this.mContext = context;
 this.mAdapterResourceId = adapterResourceId;
}
@Override
public View getView(int position, View convertView, ViewGroup
parent)
{
 View v = convertView;
if (v == null){
 LayoutInflater vi =
 (LayoutInflater)this.getContext().getSystemService(
 Context.LAYOUT_INFLATER_SERVICE);
 v = vi.inflate(mAdapterResourceId, null);
 ViewHolder holder = new ViewHolder();
 holder.videoId = (TextView)
 v.findViewById(R.id.adapter_video_id);
 holder.videoTitle = (TextView)
 v.findViewById(R.id.adapter_video_title);

 v.setTag(holder);
 }
 final VideoItem item = mVideos.get(position);
 if(item != null){

Chapter 5

85

 final ViewHolder holder = (ViewHolder)v.getTag();
 holder.videoId.setText(item.getId());
 holder.videoTitle.setText(item.getTitle());
 }
 return v;
}

5.	 Now back to the ListFragment class. Add two more private members in it,
one for the list of videos that we have found and one for the adapter that we
have just created:
private List<VideoItem>mVideos;
private VideoAdapter mAdapter;

6.	 Add a search method to the ListFragment class:
public List<VideoItem> search(String keywords){
 mYouTubeList.setQ(keywords);
try{
 SearchListResponse response = mYouTubeList.execute();
 List<SearchResult> results = response.getItems();
 List<VideoItem> items = new ArrayList<VideoItem>();
 for(SearchResult result:results){

 VideoItem item = new VideoItem();
 item.setTitle(result.getSnippet().getTitle());
 item.setDescription(result.getSnippet().
 getDescription());

 item.setThumbnailURL(result.getSnippet().
 getThumbnails().getDefault().getUrl());
 item.setId(result.getId().getVideoId());
 items.add(item);
 }
 return items;
 }
catch(IOException e){
 Log.d("TEST", "Could not search: " + e);
 return null;
 }
}

7.	 Toward the end of the loadVideos method, add the implementation to call the
search method and initialize the adapter:
mVideos =search(queryString§);
mAdapter = new VideoAdapter(getActivity(), R.layout.adapter_video,
(ArrayList<VideoItem>) mVideos);

Size Does Matter

86

8.	 Tell the list view about the adapter and call the notifyDataSetChanged method of
the adapter to inform that new entries are available to be shown. For this, we will use
a Runnable instance that will be running on the UI thread:
getActivity().runOnUiThread(new Runnable() {
public void run() {
 mListView.setAdapter(mAdapter);
 mAdapter.notifyDataSetChanged();
 }
});

9.	 Now we will load the video information asynchronously, as we do want the app to
be responsive while getting data from the Internet. Create a new thread and call
loadVideos inside within the run method. Let's assume we want to look at
Android development videos:
@Override
public void onActivityCreated(Bundle bundle){
 super.onActivityCreated(bundle);
 new Thread(new Runnable() {
 public void run(){
 loadVideos("Android development");
 }
}).start();
}

10.	 Create a new layout and name it fragment_details.xml. In this fragment, we will
display a thumbnail and the description of a video that the user has selected from
the list. Since we are here anyway, let's add a play button as well. We will need it in
the next recipe:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
android:orientation="vertical" android:layout_width="match_parent"
android:layout_height="match_parent">
<Button
android:id="@+id/detail_button_play"
android:text="@string/play"
android:layout_width="match_parent"
android:layout_height="wrap_content" />
<ImageView
android:id="@+id/detail_image"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:src="@android:drawable/gallery_thumb"/>
<TextView
android:layout_marginTop="16dp"
android:id="@+id/detail_text"

Chapter 5

87

android:minHeight="200dp"
android:layout_width="match_parent"
android:layout_height="wrap_content" />
</LinearLayout>

11.	 Create the DetailsFragment class:
public class DetailsFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 final View view= inflater.inflate(
 R.layout.fragment_details, container, false);
 return view;
 }
}

12.	 Add the showDetails private method to DetailsFragment class. In this method,
we will set the text for the description and create a new runnable instance to load
the thumbnail for the video. Also, add the setVideo method and override the
onResume method:
private void showDetails(){
if (getView()!=null &&mVideo != null)
 {
 TextView tv = (TextView)
 getView().findViewById(R.id.detail_text);
 final ImageView iv = (ImageView)
 getView().findViewById(R.id.detail_image);
 tv.setText(mVideo.getDescription());
 new Thread(new Runnable() {
 public void run() {
 loadThumbnail(mVideo, iv);
 }
 }).start();
 }
}
public void setVideo(VideoItem video)
{
 mVideo = video;
 showDetails();
}
@Override
public void onResume(){
 super.onResume();
 showDetails();
}

Size Does Matter

88

13.	 Now, add the loadThumbnail method to DetailsFragment class and the
implementation to load the thumbnail image from the given URL:
private void loadThumbnail(VideoItem video,final
 ImageView iv){
try
 {
 URL url = new URL(video.getThumbnailURL());
 final Bitmap bmp = BitmapFactory.decodeStream(
 url.openConnection().getInputStream());

 getActivity().runOnUiThread(new Runnable() {
 public void run() {
 iv.setImageBitmap(bmp);
 }
 });
 }
 catch (Exception ex){
 Log.d(this.getClass().toString(), ex.getMessage());
 }
}

14.	 If the user selects an item from the list view in the ListFragment class, we need to
tell DetailFragment to display the corresponding details. In the onCreateView
method of the ListFragment class, add the onItemClick handler:
mListView.setOnItemClickListener(new
 AdapterView.OnItemClickListener()
{
 @Override
 public void onItemClick(AdapterView<?> adapterView,
 View view, int i, long l)
 {
 VideoItem video = mVideos.get(i);
 onVideoClicked(video);
 }
});
return view;

15.	 In the MainActivity class, add two static members that will represent the tags for
both the ListFragment and DetailsFragment classes:
public static String TAG_LIST_FRAGMENT = "LIST";
public static String TAG_DETAILS_FRAGMENT = "DETAILS";

Chapter 5

89

16.	 Create the onVideoClicked method in the ListFragment class. If
DetailsFragment exists (there is a fragment out there with the DETAILS tag), it
will call the showDetails method of DetailsFragment:
private void onVideoClicked(VideoItem video) {
 DetailFragment detailsFragment = (DetailFragment)
 getFragmentManager().findFragmentByTag(
 MainActivity.TAG_DETAILS_FRAGMENT);
if (detailsFragment != null) {
 detailsFragment.setVideo(video);
 }
}

17.	 We are almost done. In the activity_main.xml layout, we created a container for
our fragment. Now we will add some code to show the content for ListFragment
in that container. In the MainActivity class, add two private members for both
the fragments:
private DetailFragment mDetailsFragment;
private ListFragment mListFragment;

18.	 Create ListFragment and add it to the container:
mListFragment = new ListFragment();
FragmentTransaction ft =
 getFragmentManager().beginTransaction();
ft.add(R.id.main_container_for_list_fragment,
 mListFragment, TAG_LIST_FRAGMENT);
ft.commit();

19.	 Let's create another layout for the main activity but this time it will be one for the
large screens, let's say tablets. To the res folder, add a new Android resource
directory by right-clicking on the res item. Choose layout for resource type,
name the directory layout-large, and click on the To button.

20.	 Within the new layout-large directory, add a new layout and name it activity_
main as well. A tablet device is big enough to hold both our fragments so for this
layout, we will create two containers: one for the list and one for the details:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:id="@+id/main_container">
<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="300dp"
android:layout_height="match_parent"
android:background="@android:color/holo_orange_light"

Size Does Matter

90

android:id="@+id/main_container_for_list_fragment">
</FrameLayout>
<FrameLayout
android:id="@+id/main_container_for_detail_fragment"
android:background="@android:color/holo_blue_light"
android:layout_marginLeft="300dp"
android:layout_width="match_parent"
android:layout_height="match_parent">
</FrameLayout>
</FrameLayout>

21.	 Modify the onCreate implementation for MainActivity. If the container is
available, we will load the details fragment as well. Move the commit call to the end:
mListFragment = new ListFragment();
FragmentTransaction ft =
 getFragmentManager().beginTransaction();
ft.add(R.id.main_container_for_list_fragment,
 mListFragment, TAG_LIST_FRAGMENT);
if (findViewById(
 R.id.main_container_for_detail_fragment)!= null){
 mDetailsFragment = new DetailFragment();
 ft.add(R.id.main_container_for_detail_fragment,
 mDetailsFragment, TAG_DETAILS_FRAGMENT);
}
ft.commit();

22.	 One more thing, if you'll allow me to explain. Well, a couple of things actually. If the
app is running on a phone, we need to have some kind of navigation from the list
fragment view to the details fragment view. Modify the onVideoClicked method in
the MainActivity file so that in case it does not exist yet, the detail fragment will
be created there:
private void onVideoClicked(VideoItem video) {
 DetailFragment detailsFragment = (DetailFragment)
 getFragmentManager().findFragmentByTag(
 MainActivity.TAG_DETAILS_FRAGMENT);
 if (detailsFragment != null) {
 detailsFragment.setVideo(video);
 }
 else
 {
 FragmentTransaction ft =
 getFragmentManager().beginTransaction();
 detailsFragment = new DetailFragment();
 ft.add(R.id.main_container_for_list_fragment,
 detailsFragment, MainActivity.TAG_DETAILS_FRAGMENT);

Chapter 5

91

 ft.addToBackStack(MainActivity.TAG_DETAILS_FRAGMENT);
 ft.commit();
 detailsFragment.setVideo(video);
 }
}

23.	 The call to addToBackStack that we added in the previous step informs the fragment
manager about all fragments being on stack, so we can provide a way of navigation. We
need to tell our activity how to behave in case the back button is being pressed: do we
want to leave the activity or do we want to pop a fragment from stack? We will override
the onBackPressed method of the MainActivity, just like this:
@Override
public void onBackPressed() {
if (getFragmentManager().getBackStackEntryCount()>0){
 getFragmentManager().popBackStack();
 }
else {
this.finish();
 }
}

And we are done! We had some work to do but now we have got an app that will work on a
phone with navigation and that will display both the fragments if there is sufficient space
as is the case with a tablet.

To see the differences, run the app on a smart phone and on a tablet as well. On a phone, it
will look similar to the following screenshot. On a tablet (you can use Genymotion for that if
you do not have one available) both the list and details are shown in a single view:

Size Does Matter

92

There's more...
The next recipe will show how to implement the functionality that allows us to watch the video
that we have just found. After all, playing videos is what we want!

Media playback
In the previous recipe, we retrieved search results from YouTube and displayed them in a list
and detail fragment. The entries found represent videos, so it would be nice if we were able to
play them as well in our app. Let's find a way to do this.

Since we do know the video ID, it is not that difficult to compose a URL for it and load them
in a web view; however, Google provides an easier solution for this and offers the YouTube
Android Player API for this purpose. It has a couple of limitations but is interesting enough
to explore.

Getting ready
To go through this recipe, you need to complete the previous recipe as this one picks up where
we left off. While I recommend you to test the app on a physical phone and tablet, you can, of
course, use Genymotion as well.

If you are using virtual devices, then Google apps (and the YouTube app on which the API and
the player depend) will be missing, and the app will fail for that reason. You need to download
and install them on the virtual device first.

How to do it...
Let's see how we can extend the app using the following steps, so it can play back a video
for us:

1.	 Download the YouTube Player API from https://developers.google.com/
youtube/android/player/downloads.

2.	 In the downloaded file, find the YouTubeAndroidPlayerApi.jar file in the libs
folder and copy it.

3.	 Open the project from the previous recipe.

4.	 Find the libs folder within the app module and paste the
YouTubeAndroidPlayerApi.jar file.

5.	 The dependencies in the build.gradle file may have already been prepared to
include any files in the lib file; however if it is not, add the dependency:
compile fileTree(dir: 'libs', include: ['YouTubeAndroidPlayerApi.
jar'])

https://developers.google.com/youtube/android/player/downloads
https://developers.google.com/youtube/android/player/downloads

Chapter 5

93

6.	 Click on the Sync now link, or in case it does not appear, click on the Sync project
with Gradle files button on the toolbar.

7.	 In the MainActivity class, add a static tag for the player fragment that we are
going to create. Also add the private member for YouTubePlayerFragment
and a public member to store the YouTube player if the initialization succeeds:
public static String TAG_PLAYER_FRAGMENT = "PLAYER";
private YouTubePlayerFragment mPlayerFragment;
public YouTubePlayer mYouTubePlayer = null;

8.	 Open activity_main.xml in the layout-large directory, change the height of
the detail fragment to 300dp, and add YouTubePlayerFragment to it. The preview
might complain as it is not aware of how things should be rendered, but that is not
really an issue as long as the package is being recognized, which will be the case if
you have completed steps 5 and 6 successfully:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:id="@+id/main_container">
<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="300dp"
android:layout_height="match_parent"
android:background="@android:color/holo_orange_light"
android:id="@+id/main_container_for_list_fragment">
</FrameLayout>
<FrameLayout
android:id="@+id/main_container_for_detail_fragment"
android:background="@android:color/holo_blue_light"
android:layout_marginLeft="300dp"
android:layout_width="match_parent"
android:layout_height="300dp">
</FrameLayout>
<fragment
android:name="com.google.android.youtube.player.
YouTubePlayerFragment"
android:id="@+id/main_youtube_player_fragment"
android:layout_marginTop="300dp"
android:layout_marginLeft="300dp"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="3"/>
</FrameLayout>

Size Does Matter

94

9.	 In onCreateView, just before ft.commit, find the container for the player fragment
and initialize YouTuberPlayer:
mPlayerFragment = (YouTubePlayerFragment)
 getFragmentManager().findFragmentById(
 R.id.main_youtube_player_fragment);
if (mPlayerFragment != null) {
 ft.add(mPlayerFragment, TAG_PLAYER_FRAGMENT);
 mPlayerFragment.initialize("Your API key", new
 YouTubePlayer.OnInitializedListener()
 {
 @Override
 public void onInitializationSuccess(YouTubePlayer.Provider
 provider, YouTubePlayer youTubePlayer, boolean isRestored)
 {
 mYouTubePlayer = youTubePlayer;
 }
 @Override
 public void onInitializationFailure(YouTubePlayer.Provider
 provider, YouTubeInitializationResult
 youTubeInitializationResult) {

 Log.d(this.getClass().toString(),
 youTubeInitializationResult.toString());
 });
}

10.	 In DetailFragment, add an on click handler for the Play button in the
onCreateView method, just before returning the view object:
view.findViewById(R.id.detail_button_play).setOnClickListener(
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 playVideo();
 }
});

11.	 Create the playVideo method in DetailFragment. If the player fragment is there
(on devices with large screens) and has been initialized, it will play the video; if it is
not there (on devices with smaller screens), we will create a player fragment, initialize
it, and add it to the stack:
private void playVideo(){
if (getActivity() != null &&
 ((MainActivity)getActivity()).mYouTubePlayer != null){
 ((MainActivity)getActivity()

Chapter 5

95

).mYouTubePlayer.cueVideo(mVideo.getId());
 }
 else {
 FragmentTransaction ft =
 getFragmentManager().beginTransaction();

 YouTubePlayerFragment playerFragment = new
 YouTubePlayerFragment();
 ft.add(R.id.main_container_for_list_fragment,
 playerFragment, MainActivity.TAG_DETAILS_FRAGMENT);

 ft.addToBackStack(MainActivity.TAG_PLAYER_FRAGMENT);
 ft.commit();
 playerFragment.initialize("Your API key", new
 YouTubePlayer.OnInitializedListener() {
 @Override
 public void onInitializationSuccess(YouTubePlayer.Provider
 provider, YouTubePlayer youTubePlayer, boolean
 isRestored) {
 if (!isRestored) {
 youTubePlayer.cueVideo(mVideo.getId());
 }
 }
 @Override
 public void onInitializationFailure(YouTubePlayer.Provider
 provider, YouTubeInitializationResult
 youTubeInitializationResult) {
 Log.d(this.getClass().toString(),
 youTubeInitializationResult.toString());
 }
 });
 }
}

And with that, we have added a simple but fully functional implementation to play the
selected video.

There's more...
There are many options available to play a video, such as fullscreen or in place, with or
without buttons, and so on. Using Chrome Cast, media can also be sent to your TV or
as we will see in the final recipe, we can create an app for an Android TV.

Size Does Matter

96

TV and media centre
Boring! Again there is nothing to see on the TV! At least not something that seems to be
interesting enough. Smart TVs running on Android create a whole new interesting world
for developers. Finally, we get the screen size we deserve!

However, it also comes with a different type of audience. Users interact with their phones
and tablets to a very large extent. When it comes to watching TV, the focus is much more
on consuming.

Well, what is there on the TV? Have a cup of tea and start watching the show. Occasionally,
users might be interested in some interaction (a phenomenon that mostly appears as a
second screen app since not anyone does own a smart TV already), but most of the time,
TV watchers just want to lean back.

Getting ready
This recipe requires Android Studio up and running and the latest SDKs installed. In this
recipe, we will provide you a brief introduction to a TV app. In only a few steps, we will create
a media centre app. Don't worry, you do not need to have an Android TV. We will create a
virtual one.

How to do it...
Let's see what we need to do to develop an Android TV app:

1.	 Create a new project in Android Studio. Name it PersonalTeeVee and click on the
Next button.

2.	 Select the TV option and click on the Next button.

3.	 Choose Android TV Activity and click on Next.

4.	 Enter TeeVeeActivity in the Activity Name field and Personal Tee Vee in the
Title field and click on the Finish button.

5.	 Android Studio creates a phone and a TV module for you. Change the configuration to
TV. You will see something as shown in the following figure:

Chapter 5

97

6.	 Check out the AndroidManifest.xml file in the tv module. Note the lean back
feature requirement (which tells us that this is a TV app with fullscreen experience
without any heavy interaction and basically is about consuming content such as
watching a video). Also note that we do not require a touch screen. The TV screen is
too far away to touch. Besides, nobody likes smears on their TV screens:
<uses-feature
android:name="android.hardware.touchscreen"
android:required="false" />
<uses-feature
android:name="android.software.leanback"
android:required="true" />

7.	 To test the TV app, we need to have a virtual TV device. Open the AVD manager
option from the Tools | Android menu.

8.	 Click on the Create Virtual Device button.

9.	 Select TV from the category list and choose a TV device (1080p or better). Click on
the Next button.

10.	 Pick a system image. I chose, for example, API level 22 x86. Click on Next.

11.	 Modify the name of the AVD to whatever you think suits best and click on the Finish
button. A new virtual TV device will be created for you.

12.	 Start your TV device by clicking on the play button. If it says that Google Play
Services has stopped, you may ignore this message for now (although you will need
it if you want to play a video).

13.	 Once the device is booted, run your TV app from Android Studio. By default, it looks
like this:

Wow, this is a fully functional media centre app already!

This was just a brief introduction to building an Android TV app. Play with it and tweak it.

Size Does Matter

98

There's more...
While the app in this recipe is dedicated to a TV, I see no reason why you couldn't make it
an app for any kind of device: phone, phablet, and TV. If you want, you can combine all the
recipes in this chapter into a single app. That's a nice challenge, isn't it?

Besides YouTube, there are also interesting media-related APIs to investigate. On
www.programmableweb.com, for example, you can find some interesting APIs.
Some of them are listed here:

API Navigation
YouTube http://www.programmableweb.com/api/youtube-live-streaming
Vimeo http://www.programmableweb.com/api/vimeo
Hey! Spread http://www.programmableweb.com/api/heyspread
Pirateplay http://www.programmableweb.com/api/pirateplay
Tinysong http://www.programmableweb.com/api/tinysong
TwitVid http://www.programmableweb.com/api/twitvid

Well, now we know where to get media items from, how to play them, and how to
automagically create a media centre app.

Coming up next: let's create some media ourselves by capturing some images. See you at the
next chapter!

See also
ff Chapter 6, Capture and Share

www.programmableweb.com

99

6
Capture and Share

We love to share the world we live in with others, so we will use our smartphones to take
images or videos of all the things and all the people we care about. With Android, this is
pretty easy.

In this chapter, you will learn about the following:

ff Capturing images the easy way

ff Image capturing using the Camera2 API

ff Image sharing

ff Orientation issues

Introduction
As a developer, you can just launch an intent, grab the data, and do with it whatever you want.

Things become a little bit more complicated if you want to handle image or video capturing
yourself. So, why would someone want to do that in the first place? It gives us more flexibility
in the way the camera is being previewed, filtered, or handled.

With Android Lollipop onwards, the old Camera API that we had been using has been replaced
with the Camera2 API, which has turned out to be a huge improvement. Unfortunately, some
orientation issues remain, mostly due to the large fragmentation of Android hardware and
software. On some devices, captured images seem to be rotated 90 degrees. Why is that?
You will find out in the last recipe in this chapter.

Capture and Share

100

Capturing images the easy way
There are of course, many ways on Android to take a picture or record a video. The easiest way
to capture an image is by using an intent to launch the camera app and grabbing the results
once the image has been taken.

Getting ready
For this recipe, you just need to have Android Studio up and running.

How to do it...
Launching a camera intent typically goes like this:

1.	 In Android Studio, create a new project.

2.	 In the activity_main.xml layout, add a new button and an image view. Name the
image view image.

3.	 Create an on-click handler for that button.

4.	 Call the takePicture method from the event handler implementation.

5.	 Implement the takePicture method. If supported by the device, launch the
capture intent:
static final int REQUEST_IMAGE_CAPTURE = 1;
private void takePicture() {
 Intent captureIntent = new
 Intent(MediaStore.ACTION_IMAGE_CAPTURE);

 if (captureIntent.resolveActivity(
 getPackageManager()) != null) {
 startActivityForResult(captureIntent,
 REQUEST_IMAGE_CAPTURE);
 }
}

6.	 Override the onActivityResult method. You will get the thumbnail from the data
being returned and display the result in the image view:
@Override
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
 if (requestCode == REQUEST_IMAGE_CAPTURE &&
 resultCode == RESULT_OK) {
 Bundle extras = data.getExtras();
 Bitmap thumbBitmap = (Bitmap)

Chapter 6

101

 extras.get("data");");
 ((ImageView)findViewById(R.id.image)
).setImageBitmap(thumbBitmap);
 }
}

This is the easiest way to capture an image, and perhaps you have already done it this
way before.

There's more...
If you want to preview the image within your own app, there is more work to do. The Camera2
API can be used for previewing, capturing, and encoding purposes.

Within the Camera2 API, you will find components such as CameraManager, CameraDevice,
CaptureRequest, and CameraCaptureSession.

Listed here are the most important Camera2 API classes:

Class Objectives
CameraManager Select camera, create camera device
CameraDevice Create CaptureRequest,

CameraCaptureSession

CaptureRequest,
CameraBuilder

Link to surface view (previewing)

CameraCaptureSession Capture an image and display it on the surface view

The sample that we are going to investigate in the next recipe, Image capturing, may look a bit
confusing at first. This is mostly because the setup process requires many steps, and most of
them will be executed asynchronously. But do not worry, though - we will investigate it step
by step.

Image capturing using the Camera2 API
Let us share the world around us with the ones we love. It all starts with previewing and
capturing it. That is what this recipe is all about. We will also go back to those good old
days when photos were sepia toned.

There are many apps, such as Instagram, that provide options to add filters or effects to
your photos. What would happen if sepia were the only option for filtering and sharing your
pictures? Maybe we can set a trend. #EverybodyLovesSepia!

Capture and Share

102

We will be using the Camera2 API to capture an image, based on Google's Camera2 Basic
sample that is available on GitHub. As a reference for the steps in the recipe, you can have a
look at the following class diagram. It will make clear what classes we are dealing with and
how they interact with each other:

We will investigate what exactly is in there, and once you have found out what is going on, we
will add a little bit of ourselves to it by making the preview and the captured image appear in
sepia (or another effect, if you prefer).

Getting ready
For this recipe, we will be using the Camera2 API. As we will be using this API, you need to
have a real device that is running Android 5.0 or above (recommended), or you will need to
create a virtual device.

How to do it...
Let's take a look at how we can get up to speed quickly. Google has already prepared a neat
example for us:

1.	 In Android Studio, choose Import Android code sample from the launch wizard, or
choose Import Sample on the File menu.

Chapter 6

103

2.	 In the next dialog you will see many interesting sample apps demonstrating various
Android features. Choose the Camera2 Basic sample, and click on the Next button:

3.	 Name your project EverybodyLovesSepia and click on the Finish button.

If nothing happens after clicking on the button (due to a bug in
some versions of Android Studio), try again, but leave the project
name unchanged this time.

4.	 Android Studio will get the sample project from GitHub for you. You can find it at
https://github.com/googlesamples/android-Camera2Basic as well.

5.	 Run the app on a device or on a virtual device.

If you are using a virtual device running on Genymotion, enable the
camera first by clicking on the camera icon on the right, turning the
camera switch on, and selecting a (web) camera.

https://github.com/googlesamples/android-Camera2Basic

Capture and Share

104

Within the app, you will see a preview of the camera, as shown in the following screenshot:

A lot of things have happened automatically again! What is in this Camera2 API
sample? What is needed to capture an image? Actually, quite a lot is needed.
Open the Camera2BasicFragment class. This is where most of the magic happens.

Collapsing all methods
To create a less overwhelming view, collapse all methods:

1.	 You can do this by choosing the Folding option from the Code menu. In the submenu,
choose Collapse all.

2.	 You will also find other options in this submenu; for example, Expand all methods or
Expand (which expands only the selected method).

Chapter 6

105

Use the shortcuts Cmd followed by + and Cmd followed by – (or Ctrl with +
and Ctrl with – for Windows) to expand or collapse a method, respectively.
Use the shortcuts Cmd + Shift with + and Cmd + Shift with – (Ctrl + Shift and
+ and Shift + Ctrl and – for Windows) to expand or collapse, respectively, all
methods within a class.

3.	 Expand the onViewCreated method. Here, we see the initialization of
mTextureView, which is a reference to the custom widget AutoFitTextureView.
It will display the camera preview.

4.	 Next, expand the onResume method. Initially, this is where the
SurfaceTextureListener class will be set. As the comments in the sample
already suggest, this allows us to wait for the surface to be ready before we try to
open a camera. Double click on mSurfaceTextureListener and jump to its
declaration using the shortcut Cmd + B (for Windows, that's Ctrl + B) to see what
this is about.

5.	 Fully expand the initialization of mSurfaceTextureListener. Just like an activity,
the texture view has a life cycle. Events are being handled here. For now, the most
interesting one here is the onSurfaceTextureAvailable event. As soon as the
surface is available, the openCamera method will be called. Double-click on it and
jump to it.

6.	 Many things happen in the openCamera method. There is a call to the
setUpCameraOutputs method. This method will handle which camera to use (if
there are multiple ones) by setting the private member mCameraId and the (preview)
size of the image. This may be different for each type of device. It will also take care
of the aspect ratio. Almost any device supports the 4:3 aspect ratio, but many also
support 16:9 or other aspect ratios.

Most devices have one or two cameras on board. Some have only a back
camera and some have only a front camera. Front cameras often support
fewer image sizes and aspect ratios.
Also, with the new permission policy that comes with Android
Marshmallow (Android 6.0), your app may not be allowed to use any
camera at all. This means that you always need to test whether or not the
cameras functionality is available to your app. You will have to provide
some feedback to your user by displaying a dialog or toast if it cannot.

7.	 Next, let's have a look at the following line in the openCamera method. It says to
open the camera that the setCameraOutputs method has selected for us:
manager.openCamera(mCameraId, mStateCallback, mBackgroundHandler);

8.	 It also provides a mStateCallback parameter. If you double-click on it and jump to
it, you can see its declaration. Things are again happening asynchronously here.

Capture and Share

106

9.	 As soon as the camera has been opened, the preview session will be started. Let's
jump to the createCameraPreviewSession method.

10.	 Have a look at mCameraDevice.createCaptureSession. One of the parameters
that go into that method is a capture session state callback. It is used to determine
whether or not the session is configured successfully so the preview can be shown.

11.	 Now, what needs to be done to take a picture? Find the onClick method. You will
notice a call to the takePicture method. Jump to it. The takePicture method in
turn calls the lockFocus method. Jump to it.

12.	 Taking a picture involves several steps. The focus of the camera has to be locked.
Next, a new capture request needs to be created and the capture method needs to
be called:
mCaptureSession.capture(mPreviewRequestBuilder.build(),
 mCaptureCallback, mBackgroundHandler);

13.	 One of the parameters that go into capture method is mCaptureCallback.
Jump to its declaration using Cmd + B (or Ctrl + B for Windows).

14.	 You will notice two methods: onCaptureProgressed and onCaptureCompleted.
They both call the private method process and pass the result or partial result to it.

15.	 The process method will act differently on the various possible states. Finally, it
will call the captureStillPicture method. Go to its declaration using Cmd + B
(or Ctrl + B for Windows).

16.	 The captureStillPicture method initializes a CaptureRequest.Builder
class, which is used to take the picture and store it with the right properties, such as
orientation information. Once the capturing is completed and the file has been saved,
the camera focus is unlocked and the user is notified through a toast:
CameraCaptureSession.CaptureCallback CaptureCallback
 = new CameraCaptureSession.CaptureCallback() {
 @Override
 public void onCaptureCompleted
 (CameraCaptureSession session,
 CaptureRequest request, TotalCaptureResult
 result) {
 showToast("Saved: " + mFile);
 unlockFocus();
 }
};

The preceding steps showed you the highlights of the basic (!) Camera2 example app. Quite
a bit of work for just taking a picture within your app! If you do not need a preview within your
app, you may want to consider taking pictures just using an intent. However, having your own
preview gives you more flexibility for controls and effects.

Chapter 6

107

Adding the sepia effect
We will add a sepia effect to the preview just because it looks cool (and because of course,
everything used to be better in the early days), using the following steps:

1.	 Go to the createCameraPreviewSession method, and within the
onConfigured class of the camera capture session state call back implementation,
add this line just before setting the autofocus parameter:
mPreviewRequestBuilder.set(
 CaptureRequest.CONTROL_EFFECT_MODE,
 CaptureRequest.CONTROL_EFFECT_MODE_SEPIA);

2.	 If you run your app now, your preview will be in sepia. However, if you press the button
to capture an image, it will not have this effect. In the onCaptureStillPicture
method, you will have to do the same thing. Add this line just above the line that sets
the autofocus parameter:
captureBuilder.set(
 CaptureRequest.CONTROL_EFFECT_MODE,
 CaptureRequest.CONTROL_EFFECT_MODE_SEPIA);

Run your app one more time, capture an image, and find the captured file using the Astro app
(or another file browser app). You can find it at Android/data/com.example.android.
camera2basic (Obviously that is if you have accepted the suggested package name or else
the path includes the package name you have provided). Sepia it is!

If you like, you can perform some further experiments with the negative or any of the other
available effects, which is fun too, at least for a while.

That is it for now. We haven't done much programming yet, but we have looked at some
interesting pieces of code. In the next recipe, we will share our captured image on Facebook.

There's more...
For more information, check out GitHub at https://github.com/googlesamples/
android-Camera2Basic and the Google Camera2 API reference at https://developer.
android.com/reference/android/hardware/camera2/package-summary.html.

An interesting fork of the Camera2 API sample, with QR code scanning support can be found
at https://github.com/ChristianBecker/Camera2Basic.

https://github.com/googlesamples/ android-Camera2Basic
https://github.com/googlesamples/ android-Camera2Basic
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://github.com/ChristianBecker/Camera2Basic

Capture and Share

108

Image sharing
Image capturing is no fun without the ability to share images; for example, on Facebook.
We will be using the Facebook SDK for that.

Challenge! If you are building an app running on a Parse backend, as we did in Chapter 2,
Applications with a Cloud-based Backend, there is no need for that, as the Facebook SDK is
already in there. If you want, you can combine the recipes from Chapter 2, Applications with a
Cloud-based Backend with this one, and create a real cool app real quick!

Getting ready
For this recipe, you need to have the previous recipe completed successfully and you need to
have a real Android device (or a virtual one, but this will require some additional steps).

You also need to have a Facebook account, or you can create one just for testing purposes.

How to do it...
Let's take a look at how we can share our sepia captured image on Facebook:

1.	 Get the code from the previous recipe. Open the build.gradle file in the app
folder. Add a new dependency to the dependencies section, and click on the
Sync now link that will appear after you have added this line:
compile 'com.facebook.android:facebook-android-sdk:4.1.0'

2.	 To obtain a Facebook app ID, browse to https://developers.facebook.com
(yeah, this requires a Facebook account). From the MyApps menu, choose Add a new
app, select Android as your platform, enter a name for your app, and click on Create
new Facebook App ID. Choose a category- for example, Entertainment- and click on
Create App ID.

3.	 Your app will be created, and a QuickStart page will be shown. Scroll down all the way
to the Tell us about your Android project section. Enter details in the package name
and default activity class name fields, and click on the Next button.

4.	 A pop-up warning will be shown. You can safely ignore the warning and click on the
Use this package name button. Facebook will start thinking, and after a while the
section Add your development and release key hashes will appear.

5.	 To obtain development key hashes, open the Terminal app (in Windows, start
Command Prompt) and type the following:
keytool -exportcert -alias androiddebugkey -keystore ~/.android/
debug.keystore | openssl sha1 -binary | openssl base64

https://developers.facebook.com

Chapter 6

109

If prompted for the keystore password, enter android, which
should do the trick - unless you have changed the password
previously, of course.

6.	 Hit Enter, copy the value that is shown, and paste it into the Facebook web page at
Development Key Hashes. Click on the Next button to proceed.

7.	 In the section Next Steps, click on the Skip to developer dashboard button. It will
bring you straight to the information you need, the app ID. Copy the value in the
App ID field:

8.	 Next, initialize the Facebook SDK. Open the CameraActivity class, and within the
onCreate method, add the following line just after the super.OnCreate line. Use the
Alt + Enter shortcut to import the required package com.facebook.FacebookSdk:
FacebookSdk.sdkInitialize(getApplicationContext());

9.	 Now we need to tell the app about the Facebook app ID. Open the strings.xml file
from the res/values folder. Add a new string that will contain your Facebook app id:
<string name="facebook_app_id">Your facebook app id</string>

10.	 Open the AndroidManifest.xml file.

11.	 Add a metadata element to the application element:
<meta-data android:name="com.facebook.sdk.ApplicationId"
android:value="@string/facebook_app_id"/>

12.	 Add a FacebookActivity declaration to the manifest file:
<activity android:name="com.facebook.FacebookActivity"
 android:configChanges=
 "keyboard|keyboardHidden|screenLayout|
 screenSize|orientation"
 android:theme="@android:style/Theme.Translucent.
 NoTitleBar"
 android:label="@string/app_name" />

Capture and Share

110

13.	 In the Camera2BasicFragment class, locate the captureStillPicture method.
Add a new call to the end of the onCaptureCompleted callback implementation,
just after the unlockFocus class:
sharePictureOnFacebook();

14.	 Finally, add a provider to the manifest file (within the application
section), which will allow you to share images on Facebook. The next chapter
will discuss content providers. For now just append your app ID to the end of
FaceBookContentProvider at authorities, replacing the zeros in the
example shown here:
<provider android:authorities="com.facebook.app.
 FacebookContentProvider000000000000"
 android:name="com.facebook.FacebookContentProvider"
 android:exported="true" />

15.	 Implement the sharePictureOnFacebook method. We will load the bitmap
from the file. In a real app, we would have to calculate the required value for
inSampleSize, but for the sake of simplicity, we will just use a fixed inSampleSize
setting of 4 here. On most devices, this will be sufficient to avoid any OutOfMemory
exceptions that may occur otherwise. Also, we will add the photo to the share dialog
that will be displayed after taking a picture:
private void sharePictureOnFacebook(){
 final BitmapFactory.Options options = new
 BitmapFactory.Options();
 options.inJustDecodeBounds = false;
 options.inSampleSize = 4;
 Bitmap bitmap =
 BitmapFactory.decodeFile(mFile.getPath(), options);
 SharePhoto photo = new
 SharePhoto.Builder().setBitmap(bitmap).build();
 SharePhotoContent content = new
 SharePhotoContent.Builder().addPhoto(photo).build();
 ShareDialog.show(getActivity(), content);
}

16.	 To be on the safe side, we want to create a unique file name for each picture. Modify
the onActivityCreated method to do so:
@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 mFile = new
 File(getActivity().getExternalFilesDir(null),
 "pic"+ new Date().getTime()+".jpg");
}

Chapter 6

111

17.	 The page will look like this on your Facebook timeline. Here it is shown in the
Dutch language:

18.	 Run the app and share some sepia images on your own Facebook timeline!

Our app is fully functional already, although it may require a few tweaks. On my Samsung
device, all images that I have captured in portrait mode are rotated 90 degrees. That is
just a little bit too artistic. Let's fix it in the next recipe!

Orientation issues
On some devices (such as the Samsung ones), captured images in portrait mode are rotated
90 degrees; and on other devices (such as the Nexus devices), things seem to be just fine.
You won't notice this if you have a look at the file using the Astro app, for example, but you
will if you see the preview in the Facebook share dialog.

Capture and Share

112

This is a well-known challenge for many Android developers. Images may contain metadata
about the rotation degree, but apparently not every app respects that metadata. What is the
best solution? Should you rotate the image every time you want to display it? Should you
rotate the bitmap itself, which could be very time and processor consuming?

Getting ready
For this recipe, you need to have the previous recipe completed successfully. It would be ideal
if you had multiple Android devices to test your app on. Otherwise, it would be great if you had
at least a Samsung device available, as the orientation issue can be reproduced for most (if
not all) models from this brand.

How to do it...
Let's take a look at how you can fix this orientation issue if it appears:

1.	 In the Facebook share dialog, the preview image is rotated 90 degrees (on some
devices), as shown here:

Chapter 6

113

2.	 This does not look like the world I live in. It appears this way on my Samsung Galaxy
Note 3 device, but not on my Nexus 5 device. Apparently, Samsung stores the picture
as it is from a landscape point of view, and then adds metadata to it to indicate that
the image has been rotated (compared to the default orientation). Things, however,
will go wrong if you want to share it on Facebook, for example, as the orientation
information in the metadata is not being respected.

3.	 So, we need to examine the meta data and find out if there is any rotation information
in there. Add the getRotationFromMetaData method:
private int getRotationFromMetaData(){
 try {
 ExifInterface exif = new
 ExifInterface(mFile.getAbsolutePath());

 int orientation = exif.getAttributeInt(
 ExifInterface.TAG_ORIENTATION,
 ExifInterface.ORIENTATION_NORMAL);
 switch (orientation) {
 case ExifInterface.ORIENTATION_ROTATE_270:
 return 270;
 case ExifInterface.ORIENTATION_ROTATE_180:
 return 180;
 case ExifInterface.ORIENTATION_ROTATE_90:
 return 90;
 default:
 return 0;
 }
 }
 catch (IOException ex){
 return 0;
 }
}

4.	 If needed, you have to rotate the bitmap before showing the sharing preview. That is
where the rotateCaptureImageIfNeeded method comes in.

Here, we can safely rotate the bitmap in memory, because of the inSampleSet
value of 4. If you rotate the original full-size bitmap, chances are that you will run
out of memory. Either way, it is going to be time consuming and will result in a delay
between capturing an image and displaying the sharing preview dialog:
private Bitmap rotateCapturedImageIfNeeded(Bitmap bitmap){
 int rotate = getRotationFromMetaData();
 Matrix matrix = new Matrix();
 matrix.postRotate(rotate);
 bitmap = Bitmap.createBitmap(bitmap, 0, 0, bitmap.getWidth(),
 bitmap.getHeight(), matrix, true);

Capture and Share

114

 Bitmap mutableBitmap = bitmap.copy(Bitmap.Config.ARGB_8888,
 true);
 return mutableBitmap;
}

5.	 Then, in the sharePictureOnFacebook method, right after you
have retrieved the bitmap using the BitmapFactory class , call the
onRotateCaptureImageIfNeeded method and pass the bitmap as a parameter:
bitmap = rotateCapturedImageIfNeeded(bitmap);

6.	 If you run the app again, you will see that everything is fine in portrait mode too:

Chapter 6

115

These things are easy to implement and will improve the quality of your app, although they
can also drive you nuts sometimes and make you wonder why one solution cannot just work
on any device. Everything looks fine now, but what will it look like on a tablet or on a Huawei,
LG, or HTC device? There's nothing that cannot be fixed, but since you do not have a drawerful
of Android devices (or maybe you do), testing is hard.

It always is a good thing to test your app on as many devices as possible. Consider
using a service for remote testing, for example, TestDroid. You can find their website
at www.testdroid.com. In Chapter 8, Improving quality, this and other topics will
be discussed, but first will we have a look at observables and content providers in the
upcoming chapter.

There's more...
Capturing video is even more fun to do. There is also a Camera2 API sample for video
capturing available. You can examine the sample project through the Import sample
option as well.

See also
ff Chapter 8, Improving quality

www.testdroid.com

117

7
Content Providers

and Observers

In most apps, we need to persist data and often use SQLite for this purpose.

A very common situation is that of the list and detail views. By using content providers, we do
not just provide a way of communication between apps but also save ourselves much work in
our own app.

In this chapter, you will learn about:

ff Content providers

ff Consuming and updating data using a content provider

ff Changing projections to display Key Performance Indicators (KPIs) in your app

ff Communicating with other apps using content providers

Introduction
If we want to create a new row or if we want to edit a row in the database, the app will show
the fragment or activity containing the details, where the user can enter or modify some text
and other values. Once the record has been inserted or updated, the list needs to know about
the changes. Telling the list activity or fragment about the changes is not hard to do, but there
is a more elegant way to accomplish this. For this, and for other reasons that we will find out
about later, we will examine what content providers are about.

The Android content provider framework allows us to create a much better design for our app.
One of its features is that it allows us to notice when certain data has been changed. That
could work even across different applications.

Content Providers and Observers

118

Content providers
Building a content provider is a really smart thing to do. The content provider API comes with
an interesting feature that allows applications to observe changes in a data set.

Content providers connect data in one process with code running in another process, even
between two completely different applications if you want. If you ever wrote code to pick
an image from the Gallery app, you may have experienced this behavior. Some component
manipulates the persistent dataset that other components depend upon. A content provider
can use many different ways to store data, which can be stored in a database, in files, or even
over a network.

Datasets are identified by unique URIs, so it is possible to ask for notifications if a certain URI
is changed. Here is where the observer pattern comes in.

The observer pattern is a common software design pattern in which an object (the
subject) has one or more dependents (the observers, also known as the listeners) that will
automatically be notified of any state changes.

There's more...

Design patterns
To learn more about this and other object-oriented (OO) design patterns, you can have a look
at http://www.oodesign.com/observer-pattern.html.

RxJava
RxJava is a very interesting library and is available in an Android flavor as well. Reactive
programming has principal similarities with the observer pattern. The basic building
blocks of reactive code are also Observables and Subscribers.

To learn more about Rx and RxJava, you can visit these web sites:

ff https://github.com/reactivex/rxandroid

ff https://github.com/ReactiveX/RxJava/wiki/How-To-Use-RxJava

ff http://blog.danlew.net/2014/09/15/grokking-rxjava-part-1/

See also
ff Chapter 8, Improving Quality

http://www.oodesign.com/observer-pattern.html
https://github.com/reactivex/rxandroid
https://github.com/ReactiveX/RxJava/wiki/How-To-Use-RxJava
http://blog.danlew.net/2014/09/15/grokking-rxjava-part-1/

Chapter 7

119

Consuming and updating data using a
content provider – daily thoughts

To demonstrate how to create and use content providers we will create an app to store what is
on your mind and how happy you are on a daily basis.

Yes, there are apps doing that; however, if you want to create an app to record sport notes and
scores instead, feel free to modify the code as it involves basically the same functionality.

In this recipe, we will store new thoughts and retrieve them using a content provider. For the
various elements of the app, we will be using fragments because they will neatly demonstrate
the effect of the observer pattern.

Getting ready
For this recipe, you just need to have Android Studio up and running and a physical or virtual
Android device.

How to do it...
Let's see how to set up a project using a content provider. We will be using the Navigation
Drawer template for it:

1.	 Create a new project in Android Studio and name it DailyThoughts. Click on the
Next button.

2.	 Select the Phone and Tablet option and click on the Next button.

3.	 Choose Navigation Drawer Activity and click on the Next button.

4.	 Accept all values on the Customize the Activity page and click on the Finish button.

5.	 Open the strings.xml file within the res/values folder. Modify the strings for the
entries that start with title_section. Replace them with the menu items needed
for our app. Also replace the action_sample string:
<string name="title_section_daily_notes">Daily
 thoughts</string>
<string name="title_section_note_list">Thoughts
 list</string>
<string name="action_add">Add thought</string>

Content Providers and Observers

120

6.	 Open the NavigationDrawerFragment file, and in the onCreate method, modify
the strings for the adapter accordingly:
mDrawerListView.setAdapter(new ArrayAdapter<String>(
 getActionBar().getThemedContext(),
 android.R.layout.simple_list_item_activated_1,
 android.R.id.text1,
 new String[]{
 getString(R.string.title_section_daily_notes),
 getString(R.string.title_section_note_list)
 }));

7.	 In the same class, within the onOptionsItemSelected method, remove the
second if statement that is displaying a toast. We do not need it.

8.	 Open main.xml from the res/menu folder. Remove the item for the settings and
modify the first item so it will use the action_add string. Also rename it's ID and
add a neat icon for it:
<menu xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 tools:context=".MainActivity">
<item android:id="@+id/action_add"
 android:title="@string/action_add"
 android:icon="@android:drawable/ic_input_add"
 android:showAsAction="withText|ifRoom" />
</menu>

9.	 In the MainActivity file, in the onSectionAttached section, apply the correct
strings for the different options:
public void onSectionAttached(int number) {
 switch (number) {
 case 0:
 mTitle = getString(
 R.string.title_section_daily_notes);
 break;
 case 1:
 mTitle = getString(
 R.string.title_section_note_list);
 break;
 }
}

Chapter 7

121

10.	 Create a new package named db. Within this package, create a new class,
DatabaseHelper, that extends the SQLiteOpenHelper class. It will help us to
create a new database for our application. It will contain just one table: thoughts.
Each Thought table will have an id, a name and a happiness rating:
public class DatabaseHelper extends SQLiteOpenHelper {
 public static final String DATABASE_NAME =
 "DAILY_THOUGHTS";
 public static final String THOUGHTS_TABLE_NAME =
 "thoughts";
 static final int DATABASE_VERSION = 1;
 static final String CREATE_DB_TABLE =
 " CREATE TABLE " + THOUGHTS_TABLE_NAME +
 " (_id INTEGER PRIMARY KEY AUTOINCREMENT, " +
 " name TEXT NOT NULL, " +
 " happiness INT NOT NULL);";
 public DatabaseHelper(Context context){
 super(context, DATABASE_NAME, null,
 DATABASE_VERSION);
 }
 @Override
 public void onCreate(SQLiteDatabase db)
 {
 db.execSQL(CREATE_DB_TABLE);
 }
 @Override
 public void onUpgrade(SQLiteDatabase db, int
 oldVersion, int newVersion) {
 db.execSQL("DROP TABLE IF EXISTS " +
 THOUGHTS_TABLE_NAME);
 onCreate(db);
 }
}

11.	 Create another package and name it providers. Within this package, create a new
class called ThoughtsProvider. This will be our content provider for all our daily
thoughts. Make it a descendant of the ContentProvider class.

12.	 From the Code menu, choose the Implement methods option. In the dialog that
appears, all available methods are selected. Accept this suggestion and click on
the OK button. Your new class will be extended with these methods.

13.	 On top of the class, we will create some static variables:
static final String PROVIDER_NAME =
 "com.packt.dailythoughts";
static final String URL = "content://" + PROVIDER_NAME +
 "/thoughts";

Content Providers and Observers

122

public static final Uri CONTENT_URI = Uri.parse(URL);
public static final String THOUGHTS_ID = "_id";
public static final String THOUGHTS_NAME = "name";
public static final String THOUGHTS_HAPPINESS =
 "happiness";
static final int THOUGHTS = 1;
static final int THOUGHT_ID = 2;
static final UriMatcher uriMatcher;
static{
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(PROVIDER_NAME, "thoughts",
 THOUGHTS);
 uriMatcher.addURI(PROVIDER_NAME, "thoughts/#",
 THOUGHT_ID);
}

14.	 Add a private member, db, that refers to the SQLiteDatabase class, and modify the
onCreate method. We create a new database helper:
private SQLiteDatabase db;
@Override
public boolean onCreate() {
 Context context = getContext();
 DatabaseHelper dbHelper = new DatabaseHelper(context);
 db = dbHelper.getWritableDatabase();
 return (db == null)? false:true;
}

Queries
Next, implement the query method. A query returns a cursor object. A cursor represents
the result of the query and points to one of the query results so the results can be buffered
efficiently as it does not need to load data into memory:

private static HashMap<String, String>
 THOUGHTS_PROJECTION;
@Override
public Cursor query(Uri uri, String[] projection,
 String selection, String[] selectionArgs, String
 sortOrder) {
 SQLiteQueryBuilder builder = new
 SQLiteQueryBuilder();
 builder.setTables(
 DatabaseHelper.THOUGHTS_TABLE_NAME);
 switch (uriMatcher.match(uri)) {
 case THOUGHTS:
 builder.setProjectionMap(
 THOUGHTS_PROJECTION);
 break;

Chapter 7

123

 case THOUGHT_ID:
 builder.appendWhere(THOUGHTS_ID + "=" +
 uri.getPathSegments().get(1));
 break;
 default:
 throw new IllegalArgumentException(
 "Unknown URI: " + uri);
 }
 if (sortOrder == null || sortOrder == ""){
 sortOrder = THOUGHTS_NAME;
 }
 Cursor c = builder.query(db, projection,
 selection, selectionArgs,null, null, sortOrder);
 c.setNotificationUri(
 getContext().getContentResolver(), uri);
 return c;
}

The setNotificationUri call registers the instruction
to watch a content URI for changes.

We will implement the other methods using the following steps:

1.	 Implement the getType method. The dir directory suggests we want to get all
thought records. The item term indicates that we are looking for a particular thought:
@Override
public String getType(Uri uri) {
 switch (uriMatcher.match(uri)){
 case THOUGHTS:
 return "vnd.android.cursor.dir/vnd.df.thoughts";
 case THOUGHT_ID:
 return "vnd.android.cursor.item/vnd.df.thoughts";
 default:
 throw new IllegalArgumentException(
 "Unsupported URI: " + uri);
 }
}

2.	 Implement the insert method. It will create a new record based on the provided
values, and if this succeeds we will be notified about the change:
@Override
public Uri insert(Uri uri, ContentValues values) {
 long rowID = db.insert(
 DatabaseHelper.THOUGHTS_TABLE_NAME , "", values);

Content Providers and Observers

124

 if (rowID > 0)
 {
 Uri _uri = ContentUris.withAppendedId(CONTENT_URI,
 rowID);
 getContext().getContentResolver().notifyChange(_uri,
 null);
 return _uri;
 }
 throw new SQLException("Failed to add record: " +
 uri);
}

3.	 The delete and update methods are out of scope for this recipe, so we will not
implement them now. Challenge: Add your own implementation here.

4.	 Open the AndroidManifest.xml file and add add the provider tag within the
application tag:
<provider
 android:name=".providers.ThoughtsProvider"
 android:authorities="com.packt.dailythoughts"
 android:readPermission=
 "com.packt.dailythoughts.READ_DATABASE"
 android:exported="true" />

For security reasons, you should use false as the value for the
exported property in most cases. The reason why we set the value of this
property to true here is that later we will create another app that will
be able to read the content from this app.

5.	 Add the permission for other apps to read data. We will use that in the last recipe.
Add it outside the application tag:
<permission
 android:name="com.packt.dailythoughts.READ_DATABASE"
 android:protectionLevel="normal"/>

6.	 Open the strings.xml file and add new strings to it:
<string name="my_thoughts">My thoughts</string>
<string name="save">Save</string>
<string name="average_happiness">Average
 happiness</string>

7.	 Create two new layout files: fragment_thoughts.xml for our list of thoughts and
fragment_thoughts_detail to enter new thoughts.

Chapter 7

125

8.	 Define the layout for fragment_thoughts.xml. A ListView widget is just fine to
display all thoughts:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <ListView
 android:id="@+id/thoughts_list"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" >
 </ListView>
</LinearLayout>

9.	 The layout for fragment_thoughts_detail.xml will contain the EditText and
RatingBar widgets so we can enter what we are thinking and how happy how we
currently are:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_gravity="center"
 android:layout_margin="32dp"
 android:padding="16dp"
 android:layout_width="match_parent"
 android:background=
 "@android:color/holo_green_light"
 android:layout_height="wrap_content">
 <TextView
 android:layout_margin="8dp"
 android:textSize="16sp"
 android:text="@string/my_thoughts"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <EditText
 android:id="@+id/thoughts_edit_thoughts"
 android:layout_margin="8dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <RatingBar
 android:id="@+id/thoughs_rating_bar_happy"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:clickable="true"
 android:numStars="5"
 android:rating="0" />

Content Providers and Observers

126

 <Button
 android:id="@+id/thoughts_detail_button"
 android:text="@string/save"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

10.	 Also create a layout for the rows in the list of thoughts. Name it adapter_thought.
xml. Add text views to display an ID a title, or name and the rating:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:padding="8dp"
 android:layout_height="match_parent">
 <TextView
 android:textSize="32sp"
 android:text="0"
 android:textStyle="bold"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/adapter_thought_id"/>
 <TextView
 android:id="@+id/adapter_thought_title"
 android:textSize="18sp"
 android:maxLines="2"
 android:ellipsize="end"
 android:layout_margin="4dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <TextView
 android:id="@+id/adapter_thought_rating"
 android:textSize="24sp"
 android:textStyle="bold"
 android:textColor=
 "@android:color/holo_green_dark"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

11.	 Create a new package, name it: fragments, and add two new classes to it:
ThoughtsDetailFragment and ThoughtsFragment, both of which will be
descendants of the Fragment class.

Chapter 7

127

12.	 To the ThoughtsFragment class, add the LoaderCallBack implementation:
public class ThoughtsFragment extends Fragment
 implements
 LoaderManager.LoaderCallbacks<Cursor>{

13.	 From the Code menu, choose Implement methods, accept the suggested methods,
and click on the OK button. It will create the onCreateLoader, onLoadFinished,
and onLoaderReset implementations.

14.	 Add two private members that will hold the list view and an adapter:
private ListView mListView;
private SimpleCursorAdapter mAdapter;

15.	 Override the onCreateView method, where we will inflate the layout and get a
reference to the list view. From here we also will call the getData method:
@Override
public View onCreateView(LayoutInflater inflater, ViewGroup
container, Bundle savedInstanceState) {
 final View view = inflater.inflate(
 R.layout.fragment_thoughts, container, false);
 mListView = (ListView)view.findViewById(
 R.id.thoughts_list);
 getData();
 return view;
}

Loader manager
The following steps will help us to add a loader manager to our app:

1.	 Implement the getData method. We will use the initLoader method of
loaderManager for that. The projection defines the fields we want to retrieve,
and the target is an array of ID's within the adapter_thought_title layout,
which will save us some work using the SimpleCursorAdapter class.
private void getData(){
 String[] projection = new String[] {
 ThoughtsProvider.THOUGHTS_ID,
 ThoughtsProvider.THOUGHTS_NAME,
 ThoughtsProvider.THOUGHTS_HAPPINESS};
 int[] target = new int[] {
 R.id.adapter_thought_id,
 R.id.adapter_thought_title,
 R.id.adapter_thought_rating };

 getLoaderManager().initLoader(0, null, this);

 mAdapter = new SimpleCursorAdapter(getActivity(),

Content Providers and Observers

128

 R.layout.adapter_thought, null, projection,
 target, 0);
 mListView.setAdapter(mAdapter);
}

2.	 After the initLoader call, a new loader needs to be created. For this we will have
to implement the onLoadFinished method. We use the same projection as we did
for the adapter and we will create a CursorLoader class using the uri content of
the ThoughtsProvider we have created in the preceding steps. We will sort the
outcome by ID (descending):
@Override
public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 String[] projection = new String[] {
 ThoughtsProvider.THOUGHTS_ID,
 ThoughtsProvider.THOUGHTS_NAME,
 ThoughtsProvider.THOUGHTS_HAPPINESS};
 String sortBy = "_id DESC";
 CursorLoader cursorLoader = new
 CursorLoader(getActivity(),
 ThoughtsProvider.CONTENT_URI, projection, null,
 null, sortBy);
 return cursorLoader;
}

3.	 In onLoadFinished, notify the adapter about the loaded data:
mAdapter.swapCursor(data);

4.	 Finally, let's add the implementation for the onLoaderReset method. In this
situation, the data is no longer available so we can delete the reference.
mAdapter.swapCursor(null);

5.	 Let's have a look at the ThoughtsDetailFragmentmethod. Override the
onCreateView method, inflate the layout, and add an on-click listener for
the save button in the layout:
@Override
public View onCreateView(LayoutInflater inflater, ViewGroup
container, Bundle savedInstanceState) {
 final View view = inflater.inflate(
 R.layout.fragment_thoughts_detail, container,
 false);
 view.findViewById(
 R.id.thoughts_detail_button).setOnClickListener(

Chapter 7

129

 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 addThought();
 }
 });
 return view;
}

6.	 Add the addThought method. We will create new content values based on the
input via the EditText and RatingBar field We will use the insert method
of the content resolver based on the provided URI. After inserting the new record,
we will clear the input:
private void addThought(){
 EditText thoughtsEdit =
 (EditText)getView().findViewById(
 R.id.thoughts_edit_thoughts);
 RatingBar happinessRatingBar =
 (RatingBar)getView().findViewById(
 R.id.thoughs_rating_bar_happy);
 ContentValues values = new ContentValues();
 values.put(ThoughtsProvider.THOUGHTS_NAME,
 thoughtsEdit.getText().toString());
 values.put(ThoughtsProvider.THOUGHTS_HAPPINESS,
 happinessRatingBar.getRating());
 getActivity().getContentResolver().insert(
 ThoughtsProvider.CONTENT_URI, values);
 thoughtsEdit.setText("");
 happinessRatingBar.setRating(0);
}

7.	 Again it is time to glue things together. Open the MainActivity class and add two
private members that will refer to the fragments we have created as follows:
private ThoughtsFragment mThoughtsFragment;
private ThoughtsDetailFragment mThoughtsDetailFragment;

8.	 Add two private members that will initialize them if needed, and return the instance:
private ThoughtsFragment getThoughtsFragment(){
 if (mThoughtsFragment==null) {
 mThoughtsFragment = new ThoughtsFragment();
 }
 return mThoughtsFragment;
}
private ThoughtsDetailFragment
getThoughtDetailFragment() {

Content Providers and Observers

130

 if (mThoughtsDetailFragment==null){
 mThoughtsDetailFragment = new
 ThoughtsDetailFragment();
 }
 return mThoughtsDetailFragment;
}

9.	 Remove the implementation for onNavigationDrawerItemSelected and a new
one to display the list of thoughts. We will implement the KPI option later:
@Override
public void onNavigationDrawerItemSelected(int
 position) {
 FragmentManager fragmentManager =
 getFragmentManager();
 if (position==1) {
 fragmentManager.beginTransaction().
 replace(R.id.container,
 getThoughtsFragment()).commit();
 }
}

10.	 In the onOptionsItemSelected method, test whether the id is action_add, and
if so, display the details fragment. Add the implementation just after the line where
we get the id:
if (id== R.id.action_add)
{
 FragmentManager fragmentManager =
 getFragmentManager();
 fragmentManager.beginTransaction().add(
 R.id.container, getThoughtDetailFragment()
).commit();
}

Instead of replace, we use add here. We want the
details fragment to appear on top of the stack.

11.	 After saving details, the fragment has to be removed again. Open
ThoughtsDetailFragment one more time. To the end of the addThought
method, add this to do the trick:
getActivity().getFragmentManager().beginTransaction().
 remove(this).commit();

Chapter 7

131

12.	 However, it would be better to let the activity handle the displaying of fragments since
they are intended to be helpers to an activity. Instead, we will create a listener for an
onSave event. On top of the class, add a DetailFragmentListener interface.
Also create a private member and a setter for it:
public interface DetailFragmentListener {
 void onSave();
}
private DetailFragmentListener
 mDetailFragmentListener;
public void setDetailFragmentListener(
 DetailFragmentListener listener){
 mDetailFragmentListener = listener;
}

13.	 Add these lines to the end of the addThought member to let the listener know
things have been saved:
if (mDetailFragmentListener != null){
 mDetailFragmentListener.onSave();
}

14.	 Go back to the MainActivity class, and add a listener implementation for it. You
could use the Implement methods option from the Code menu for it if you want:
public class MainActivity extends Activity
 implements NavigationDrawerFragment.
 NavigationDrawerCallbacks,
 ThoughtsDetailFragment.DetailFragmentListener {
@Override
public void onSave() {
 getFragmentManager().beginTransaction().remove(
 mThoughtsDetailFragment).commit();
}

15.	 To tell the detail fragment that the main activity is listening, scroll to the
getThoughtDetailFragment class and call the setListener method
right after the creation of a new detail fragment:
mThoughtsDetailFragment.setDetailFragmentListener(this);

Content Providers and Observers

132

Now run the app, choose Thoughts list from the navigation drawer, and click on the plus sign
to add new thoughts. Following screenshot gives the example of adding thought:

We do not need to tell the fragment that contains the list about the new thought we have
created in the detail fragment. Using a content provider with an observer, the list will be
updated automatically.

This way we can accomplish more and achieve less error-prone functionality writing less code,
which is exactly what we want. It allows us to improve the quality of our code.

See also
ff Refer Chapter 5, Size Does Matter

ff Refer Chapter 8, Improving Quality

Chapter 7

133

Change projections to display KPIs in
your app

We can use a different projection and the same observer pattern for displaying some KPIs.
Actually that is pretty easy, as we will see in this recipe.

Getting ready
For this recipe, you need to have completed the previous one successfully.

How to do it...
We will continue working on the app from the previous recipe and we will add a new view to
display the KPIs:

1.	 Open the project you have worked on in the previous recipe.

2.	 Add a new layout, fragment_thoughts_kpi.xml:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:gravity="center_horizontal"
 android:padding="16dp"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/thoughts_kpi_count"
 android:textSize="32sp"
 android:layout_margin="16dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <TextView
 android:id="@+id/thoughts_kpi_avg_happiness"
 android:text= "@string/average_happiness"
 android:textSize="32sp"
 android:layout_margin="16dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

Content Providers and Observers

134

 <RatingBar
 android:id="@+id/thoughts_rating_bar_happy"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:clickable="false"
 android:numStars="5"
 android:rating="0" />
</LinearLayout>

3.	 Add a new fragment and name it ThoughtsKpiFragment. It descends from the
Fragment class. We will be using the LoaderManager here as well so it will
basically look like this:
public class ThoughtsKpiFragment extends Fragment
 implements LoaderManager.LoaderCallbacks<Cursor> {
 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 return null;
 }
 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor
 data) {
 }
 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 }
}

4.	 Because we will be using two loaders to display two different KPIs, we are going to
add two constant values first:
public static int LOADER_COUNT_THOUGHTS = 1;
public static int LOADER_AVG_RATING = 2;

5.	 Override the onCreate method:
@Override
public View onCreateView(LayoutInflater inflater, ViewGroup
container, Bundle savedInstanceState) {
 final View view = inflater.inflate(
 R.layout.fragment_thoughts_kpi, container, false);
 getKpis();
 return view;
}

Chapter 7

135

6.	 Create the getKpis method (where we initialize the loader twice for different purposes):
private void getKpis(){
 getLoaderManager().initLoader(LOADER_COUNT_THOUGHTS, null,
 this);
 getLoaderManager().initLoader(LOADER_AVG_RATING, null,
 this);
}

7.	 Add the implementation for the onCreateLoader method. This time the projection
depends on the id of the loader. The projection is just like you would expect it to be
if it was plain SQL. We are counting the number of rows and we are calculating the
average happiness:
@Override
public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 if (id == LOADER_COUNT_THOUGHTS) {
 String[] projection = new String[] {"COUNT(*) AS kpi"};
 android.content.CursorLoader cursorLoader = new
 android.content.CursorLoader(getActivity(),
 ThoughtsProvider.CONTENT_URI, projection, null, null,
 null);
 return cursorLoader;
 }
 else {
 String[] projection = new String[]
 {"AVG(happiness) AS kpi"};
 android.content.CursorLoader cursorLoader = new
 android.content.CursorLoader(getActivity(),
 ThoughtsProvider.CONTENT_URI, projection, null, null,
 null);
 return cursorLoader;
 }
}

8.	 Once the data comes in, we arrive at the onLoadFinished method and will call
methods to display the data, if there is any:
@Override
public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
 if (data == null || !data.moveToNext()) {
 return;
 }
 if (loader.getId() == LOADER_COUNT_THOUGHTS) {
 setCountedThoughts(data.getInt(0));
 }

www.allitebooks.com

http://www.allitebooks.org

Content Providers and Observers

136

 else{
 setAvgHappiness(data.getFloat(0));
 }
}

9.	 Add the setCountedThoughts and setAvgHappiness methods. If the fragment
is still attached to the activity, we will update the text view or the rating bar:
private void setCountedThoughts(final int counted){
 if (getActivity()==null){
 return;
 }
 getActivity().runOnUiThread(new Runnable() {
 @Override
 public void run() {
 TextView countText =
 (TextView)getView().findViewById(
 R.id.thoughts_kpi_count);
 countText.setText(String.valueOf(counted));
 }
 });
}
private void setAvgHappiness(final float avg){
 if (getActivity()==null){
 return;
 }
 getActivity().runOnUiThread(new Runnable() {
 @Override
 public void run() {
 RatingBar ratingBar =
 (RatingBar)getView().findViewById(
 R.id.thoughts_rating_bar_happy);
 ratingBar.setRating(avg);
 }
 });
}

10.	 In the MainActivity file, add a private member for the KPI fragment:
private ThoughtsKpiFragment mThoughtsKpiFragment;

11.	 Create a method getKpiFragment:
private ThoughtsKpiFragment getKpiFragment(){
 if (mThoughtsKpiFragment==null){
 mThoughtsKpiFragment = new ThoughtsKpiFragment();
 }
 return mThoughtsKpiFragment;
}

Chapter 7

137

12.	 Locate the onNavigationDraweItemSelected method and add this to
the if statement:
…
else if (position==0){
 fragmentManager.beginTransaction()
 .replace(R.id.container, getKpiFragment())
 .commit();
}

Run your app. Now we have some neat statistics in our thoughts app:

In this and in the previous recipe, we have seen how easy working with data becomes once
you have grokked the concept of content providers.

So far we did all this within the same app; however, since we are already prepared to export
the content provider, let us find out how to read our thoughts in a different app. Let's do
that now.

Content Providers and Observers

138

See also
Refer Chapter 5, Size Does Matter

Refer Chapter 8, Improving Quality

Communicate with other apps using
content providers

If you read Google's documentation about content providers, you will notice that a content
provider basically is intended to supply data from one application to others on request.
Such requests are handled by the methods of the ContentResolver class.

We will create a new app that will read our daily thoughts from the other one.

Getting ready
For this recipe, you need to have completed the previous one successfully. Make sure you
have added some thoughts to your app as well or there'll be nothing to read otherwise, as
Captain Obvious could tell us.

How to do it...
First we will create a new app. It is going to read our thoughts. That's for sure!

1.	 Create a new project in Android Studio, name it DailyAnalytics, and click on the
OK button.

2.	 Select Phone and tablet and click on the Next button.

3.	 Choose Blank Activity and click on the Next button.

4.	 Accept all values in the Customize the activity view and click on the Finish button.

5.	 Open the AndroidManifest.xml file and add the permission required to
communicate with the content provider from the DailyThought app:
<uses-permission android:name=
 "com.packt.dailythoughts.READ_DATABASE"/>

6.	 Open the activity_main.xml layout and change the id of the TextView app to
main_kpi_count:
<TextView
 android:id="@+id/main_kpi_count"
 android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

Chapter 7

139

7.	 In the MainActivity class, add the LoaderCallBack implementation:
public class MainActivity extends Activity implements
 LoaderManager.LoaderCallbacks<Cursor>

8.	 Call initLoader at the end of the onCreate method:
getLoaderManager().initLoader(0, null, this);

9.	 Add an implementation for the onCreateLoader method. It works pretty much in
the same way as for the app the content provider is part of:
@Override
public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 Uri uri = Uri.parse(
 "content://com.packt.dailythoughts/thoughts");
 String[] projection = new String[] { "_id", "name",
 "happiness"};
 String sortBy = "name";
 CursorLoader cursorLoader = new
 android.content.CursorLoader(
 this,uri, projection, null, null, null);
 return cursorLoader;
}

10.	 In the onLoadFinished method, we can display some analytics based on what you
have entered in the other app:
@Override
public void onLoadFinished(Loader<Cursor> loader,
 Cursor data) {
 final StringBuilder builder = new StringBuilder();
 builder.append(
 "I know what you are thinking of... \n\n");
 while ((data.moveToNext())){
 String onYourMind = data.getString(1);
 builder.append("You think of "+
 onYourMind+". ");
 if (data.getInt(2) <= 2){
 builder.append(
 "You are sad about this...");
 }
 if (data.getInt(2) >= 4) {
 builder.append("That makes you happy!");
 }
 builder.append("\n");
 }
 builder.append("\n Well, am I close? ;-)");
 runOnUiThread(new Runnable() {

Content Providers and Observers

140

 @Override
 public void run() {
 TextView countText = (TextView)
 findViewById(R.id.main_kpi_count);
 countText.setText(String.valueOf(
 builder.toString()));
 }
 });
}

Run the app and see all your thoughts appearing here as shown here:

Scary, isn't it? Using content providers, it is pretty easy to share data between different apps.
This is how many apps such as contacts or the Gallery work.

Chapter 7

141

There's more...
We have learned how content providers work, and we had a sneak peak at the observer
pattern. Using this and other patterns could improve the quality of our app.

Now things will really become serious. Avoid potential errors, reduce the amount of code
you need to write, and make it work on any Android device! We will find out how to do that
in the next chapter.

See also
ff Refer to Chapter 8, Improving Quality

143

8
Improving Quality

You have just finished coding your app. Now what? Get it onto the Play Store as quickly
as possible!

No wait, you are not done yet! Did you test your app properly? Will it work on any Android
version? On any device? In all circumstances?

In this chapter, we will focus on:

ff Patterns and support annotations

ff Unit testing using Robolectrics

ff Code analysis

Introduction
There are some common pitfalls to avoid and some patterns that you may want to apply in
order to improve the quality of your app. You have seen some of them in the previous chapters
already. Also, there are some interesting tools that can be used to test and analyze your code.

In the following road map, you will notice that there are different stages that you need to
complete before you can go live with your app:

Improving Quality

144

The structure of your code, robustness, maintainability, and how well it complies with the
functional requirements are key elements.

Functional quality is measured through software testing, for which we need to distribute our
app to our beta testers. We will discuss this in Chapter 10, Beta Testing Your Apps.

Structural quality is evaluated by running unit tests and code inspections manually (peer
review) or using tools such as Android Lint, which you will learn more about in the final recipe
within this chapter. Now the question is how well does the architecture of the code meet the
demands of good software engineering?

In general, there are some interesting principles that will help you to improve the quality of
your code. Some of them are listed here:

ff Learn the activity lifecycle and use fragments in the right way.

ff Don't allocate memory if it can be avoided.

ff Avoid fragments and activities that are too heavy.

ff Consider a Model View Controller (MVC) approach. Apply the correct patterns.

ff Solve a problem once at a single spot. Do not Repeat Yourself (DRY).

ff Don't do work that you do not need to do (yet). Also known as: You Aren't Gonna
Need It (YAGNI).

The next recipe will give you an idea of what patterns are and why you would want to
apply them.

Patterns and support annotations
Quality is a serious business so we will combine it with some fun. We will be creating a quiz
app in the upcoming recipe. We will use Google Play services for this, and we will have a look
at patterns that we can apply to our app, in particular the MVC and Model View Presenter
(MVP) approach.

So what actually is a design pattern? A design pattern is a solution for a common problem. We
can reuse such a pattern anywhere. There is no need to reinvent the wheel (unless you can
think of a better one of course) and there is no need to repeat ourselves.

Patterns are best practices that we can trust on. They can help us to speed up the
development process, including testing.

Some of the patterns are:

ff MVC

ff MVP

ff Observable

Chapter 8

145

ff Factory

ff Singleton

ff Support annotations

ff Google Play services

MVC
MVC is most suitable for larger projects. The benefit of this pattern is the separation of concerns.
We can separate our UI code from the business logic. A controller will be responsible for which
view is being displayed. It will get data from another layer, a repository-a-like class that will get
its data from somewhere, and pass that data through a model (or list of models) to the UI. The
controller has no clue where the data is coming from and how it is being displayed. These are
tasks of the repository class and the UI, respectively.

MVP
MVP is a more suitable pattern to use with Android app development in most cases because
of the nature of activities and fragments. With MVP patterns, a presenter contains the UI
logic for a view. All invocations from the view are delegated directly to it. The presenter will
communicate with the view through an interface, allowing us to create unit tests with mocked
data later.

The observer pattern
We saw this pattern in Chapter 7, Content Providers and Observers, already. An observer
observes changes in another object.

The factory pattern
This pattern helps to create an object. The bitmap factory that we have been using for
previous recipes (and that we will use again in this recipe) is a great example of the
factory pattern.

The singleton
The singleton pattern will prevent us from having multiple instances of an object. Typically,
it is a (class) method that returns an instance. It will be created if it does not exist or else it
will just return the previously created instance. The application class is an example of the
singleton pattern.

Support annotations
Support annotations can help us to provide hints to code inspection tools, such as lint. They
can help you detect problems such as null pointer exceptions and resource type conflicts just
by adding metadata tags and running code inspections. The support library itself has been
annotated with these annotations. Yes, they eat their own dog food, which proves that using
annotations is the way to go.

Improving Quality

146

There are basically three types of annotations that we can use: Nullness annotations,
resource type annotations, and IntDef \ StringDef annotations. For example, we can use the
@NonNull annotation to indicate that a given parameter cannot be null, or we can use the
@Nullable annotation to indicate that a return value can be null.

Google Play services
The Play Games SDK provides cross-platform Google Play game services that let you easily
integrate popular gaming features, such as achievements, leader boards, saved games, and
real-time multiplayer (on Android) options in your tablet and mobile games.

That is enough theory for now! Let's create our Quiz app and apply some of the theory that we
have discussed here.

Getting ready
For this recipe, you need to have the latest version of Android Studio and a real device on
which Google Play services have been installed, which will be the case for most devices.
Alternatively, you can install them on a virtual Genymotion device, but that will require some
additional preparations.

Also, you need to have (or to create) a Google developer account.

How to do it...
And off we go. Start Android Studio and perform the following steps as we are going to build
something great:

1.	 Create a new project in Android Studio. Name it GetItRight and click on the
Next button.

2.	 Choose the Phone and tablet option and click on the Next button.

3.	 In the Add an activity to mobile view, choose Google Play Service and click on the
Next button.

4.	 Accept the activity name and title fields and click on the Finish button.

5.	 Point your web browser at the Google Developer console and log in or register if you
do not have an account yet. You can find it at: https://console.developers.
google.com.

6.	 In the developer console, click on the game tab (game icon on the left-hand side of
the webpage).

7.	 Accept the terms of service if asked to do so.

8.	 Click on the Setup up Google Play Services button.

https://console.developers.google.com
https://console.developers.google.com

Chapter 8

147

9.	 Enter the name of the app Get It Right Sample, and pick a category: Trivia, and
click on the Continue button.

10.	 In the game details view, enter a description and click on the Save button.

11.	 Next, you need to generate an Oauth2 client ID. To do so, click on the Linked app link.

12.	 Pick Android as your OS, enter packt.com.getitright as the package name,
leave the other settings unchanged, and click on the Save and continue button.

13.	 Click on the Authorize your app now button in step 2. In the Branding information
popup dialog, click on the Continue button.

14.	 The Client ID dialog appears. Enter packt.com.getitright as the package name.
To get the signing certificate fingerprint, open Terminal app (for Windows: Command
Prompt) and type:
keytool -exportcert -alias androiddebugkey -keystore ~/.android/
debug.keystore -list –v

15.	 If asked for the keystore password, the default password for the debug keystore
is android.

16.	 Copy and paste the fingerprint (SHA1) and click on the Create Client button.

17.	 Click on the Back to the list button, and after that click on the Continue to next step
button.

18.	 In the Android app details view, you will see the Application ID (if you scroll down a
little) that we are going to need later. Copy its value.

Leaderboards
Follow the given steps for adding leader boards to your app:

1.	 On the left-hand side of the webpage, choose LEADERBOARDS and click on the Add
new leaderboard button. Name your new leaderboard GetItRight Leaderboard
and click on the Save button. Note the leader board ID. We will be using it later:

Improving Quality

148

2.	 Open the build.gradle file inside the app directory of your project and add a
dependency for Google Play services:
compile 'com.google.android.gms:play-services:7.5.0'

3.	 Sync your project. In case it fails to resolve Google Play services, an error will be
generated including a link that reads Install Repository and sync project. Click on
this link to do so.

4.	 Open the AndroidManifest.xml file and add a metadata tag to the application tag:
<meta-data
 android:name="com.google.android.gms.games.APP_ID"
 android:value="@string/app_id" />

5.	 Also, add app_id to the strings.xml file:
<resources>
 <string name="app_name">GetItRight</string>
 <string name="app_id">your app id</string>

6.	 Add a breakpoint on the first line of the onConnected method of the
GooglePlayServicesActivity class. Do the same thing for the first line of the
onConnectionFailed method. Using the Google Play service template and the
provided app ID, you should be able to connect to Google Play Services already. Run
the app (in debug mode) to find out if it does.

7.	 Create a new Android Resource directory and choose layout as the Resource type;
create a new layout resource file within that directory and name it activity_
google_play_services.xml.

8.	 Add some new strings to the strings.xml resource file:
<string name="incorrect_answer">That is incorrect</string>
<string name="correct_answer">That is the correct
 answer!</string>
<string name="leader_board">LEADER BOARD</string>

9.	 Create a layout for the activity_google_play_service resource file:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:padding="16dp"
 android:background="@android:color/holo_blue_dark"
 android:layout_height="match_parent">
 <ScrollView
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <LinearLayout
 android:orientation="vertical"

Chapter 8

149

 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <ImageView
 android:id="@+id/image"
 android:src=
 "@android:drawable/ic_popup_sync"
 android:layout_width="match_parent"
 android:layout_height="300px" />
 <TextView
 android:id="@+id/text"
 android:textColor="@android:color/white"
 android:text="Question"
 android:textSize="24sp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <Button
 android:id="@+id/button_1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_vertical|left" />
 <Button
 android:id="@+id/button_2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_vertical|left" />
 <Button
 android:id="@+id/button_3"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_vertical|left" />
 <Button
 android:id="@+id/button_4"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_vertical|left" />
 <Button
 android:id="@+id/button_test"
 android:text="@string/leader_board"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_vertical|left" />
 </LinearLayout>
 </LinearLayout>
 </ScrollView>
</LinearLayout>

Improving Quality

150

10.	 Open the GooglePlayServicesActivity file. In the onCreate method, load the
layout and set the on click listeners for all buttons:
setContentView(R.layout.activity_google_play_services);
findViewById(R.id.button_1).setOnClickListener(this);
findViewById(R.id.button_2).setOnClickListener(this);
findViewById(R.id.button_3).setOnClickListener(this);
findViewById(R.id.button_4).setOnClickListener(this);
findViewById(R.id.button_test).setOnClickListener(this);

11.	 Implement the onClickListener method for the GooglePlayServicesActivity
file. Android Studio will suggest an implementation and you can accept this suggestion
or add the implementation yourself:
public class GooglePlayServicesActivity extends Activity
implements GoogleApiClient.ConnectionCallbacks,
 GoogleApiClient.OnConnectionFailedListener,
 View.OnClickListener {
@Override
public void onClick(View v) {
}

12.	 Add two private members, one for our leaderboard request and one that will hold your
leaderboard ID:
private int REQUEST_LEADERBOARD = 1;
private String LEADERBOARD_ID = "<your leaderboard id>";

13.	 Create the implementation for the onClick method. We are preparing the situation
where the user clicks on any of the multiple choice options. For the leaderboard
(test) button, we can add the implementation right away:
@Override
public void onClick(View v) {
 switch (v.getId()){
 case R.id.button_1:
 case R.id.button_2:
 case R.id.button_3:
 case R.id.button_4:
 break;
 case R.id.button_test:
 startActivityForResult(
 Games.Leaderboards.getLeaderboardIntent(
 mGoogleApiClient, LEADERBOARD_ID),
 REQUEST_LEADERBOARD);
 break;
 }
}

Chapter 8

151

14.	 Create a new package and name it models. Create the Answer, Question, and
Quiz classes:

To add the Answer class, you need the following code:
public class Answer {
 private String mId;
 private String mText;
 public String getId() {
 return mId;
 }
 public String getText() {
 return mText;
 }
 public Answer (String id, String text) {
 mId = id;
 mText = text;
 }
}

To add the Question class, use the given code:
public class Question {
 private String mText;
 private String mUri;
 private String mCorrectAnswer;
 private String mAnswer;
 private ArrayList<Answer> mPossibleAnswers;
 public String getText(){
 return mText;
 }
 public String getUri(){
 return mUri;
 }
 public String getCorrectAnswer(){
 return mCorrectAnswer;
 }
 public String getAnswer(){
 return mAnswer;
 }
 public Question (String text, String uri, String
 correctAnswer){
 mText = text;
 mUri = uri;
 mCorrectAnswer = correctAnswer;
 }
 public Answer addAnswer(String id, String text){

Improving Quality

152

 if (mPossibleAnswers==null){
 mPossibleAnswers = new ArrayList<Answer>();
 }
 Answer answer = new Answer(id,text);
 mPossibleAnswers.add(answer);
 return answer;
 }
 public ArrayList<Answer> getPossibleAnswers(){
 return mPossibleAnswers;
 }
}

To add the Quiz class, use the following code:
public class Quiz {
 private ArrayList<Question> mQuestions;
 public ArrayList<Question> getQuestions(){
 return mQuestions;
 }
 public Question addQuestion(String text, String uri, String
 correctAnswer){
 if (mQuestions==null){
 mQuestions = new ArrayList<Question>();
 }
 Question question = new Question(
 text,uri,correctAnswer);
 mQuestions.add(question);
 return question;
 }
}

15.	 Create a new package and name it repositories. Create a new class and name
it QuizRepository. Add some questions to the quiz. You can use the questions
from the following example, but you can create some questions yourself as well if you
would like to do so. In a real app, the questions and answers, of course, would not be
hardcoded but retrieved from a database or from a backend (note that we can always
change this behavior later without the need to modify anything but this class):
public class QuizRepository {
 public Quiz getQuiz(){
 Quiz quiz = new Quiz();
 Question q1 = quiz.addQuestion(
 "1. What is the largest city in the world?",
 "http://cdn.acidcow.com/pics/20100923/
 skylines_of_large_cities_05.jpg" , "tokyo");
 q1.addAnswer("delhi" , "Delhi, India");
 q1.addAnswer("tokyo" , "Tokyo, Japan");

Chapter 8

153

 q1.addAnswer("saopaulo" , "Sao Paulo, Brazil");
 q1.addAnswer("nyc" , "New York, USA");
 Question q2 = quiz.addQuestion("2. What is the
 largest animal in the world?",
 "http://www.onekind.org/uploads/a-
 z/az_aardvark.jpg" , "blue_whale");
 q2.addAnswer("african_elephant" , "African
 Elephant");
 q2.addAnswer("brown_bear" , "Brown Bear");
 q2.addAnswer("giraffe" , "Giraffe");
 q2.addAnswer("blue_whale" , "Blue whale");
 Question q3 = quiz.addQuestion("3. What is the
 highest mountain in the world?",
 "http://images.summitpost.org/medium/
 815426.jpg", "mount_everest");
 q3.addAnswer("mont_blanc" , "Mont Blanc");
 q3.addAnswer("pico_bolivar" , "Pico Bolívar");
 q3.addAnswer("mount_everest" , "Mount Everest");
 q3.addAnswer("kilimanjaro" , "Mount
 Kilimanjaro");
 return quiz;
 }
}

16.	 In the GamePlayServicesActivity class, add these three private members:
private Quiz mQuiz;
private int mScore;
private int mQuestionIndex=0;

17.	 Add the implementation for the newGame method. We will get the Quiz object by
asking the repository for it. After resetting the score and the question index, we call
the displayQuestion method, which implements the UI logic by actually displaying
the question, the possible answers, and a nice image:
private void newGame(){
 mQuiz = new QuizRepository().getQuiz();
 mScore = 0;
 mQuestionIndex = 0;
 displayQuestion(mQuiz.getQuestions().get(mQuestionIndex));
}
private void displayQuestion(Question question){
 TextView questionText = (TextView)findViewById(R.id.text);
 displayImage(question);
 questionText.setText(question.getText());
 ArrayList<Answer> answers = question.getPossibleAnswers();
 setPossibleAnswer(findViewById(R.id.button_1),
 answers.get(0));
 setPossibleAnswer(findViewById(R.id.button_2),

Improving Quality

154

 answers.get(1));
 setPossibleAnswer(findViewById(R.id.button_3),
 answers.get(2));
 setPossibleAnswer(findViewById(R.id.button_4),
 answers.get(3));
}
private void setPossibleAnswer(View v, Answer answer){
 if (v instanceof Button) {
 ((Button) v).setText(answer.getText());
 v.setTag(answer);
 }
}
private void displayImage(final Question question){
 new Thread(new Runnable() {
 public void run(){
 try {
 URL url = new URL(question.getUri());
 final Bitmap image = BitmapFactory.decodeStream(
 url.openConnection().getInputStream());
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 ImageView imageView = (ImageView)
 findViewById(R.id.image);
 imageView.setImageBitmap(image);
 }
 });
 }
 catch (Exception ex){
 Log.d(getClass().toString(), ex.getMessage());
 }
 }
 }).start();
}

Let the game begin!
The following steps can be used to add methods to a new game:

1.	 At the end of the onCreate method, we will call the newGame method:
newGame();

2.	 Modify the onClick method, so we can respond when a user clicks on any of the
buttons. If any of the multiple choice buttons are being clicked on, we will call the
checkAnswer method. Is it the correct answer we have chosen? How exciting:
@Override
public void onClick(View v) {
 switch (v.getId()){

Chapter 8

155

 case R.id.button_1:
 case R.id.button_2:
 case R.id.button_3:
 case R.id.button_4:
 checkAnswer(v);
 break;
 case R.id.button_test: startActivityForResult(
 Games.Leaderboards.getLeaderboardIntent(
 mGoogleApiClient, LEADERBOARD_ID),
 REQUEST_LEADERBOARD);

 break;
 }
}

3.	 Add the checkAnswer method. We will compare the given answer against the
correct answer for the question, and depending on the result, we will call the
onGoodAnswer or onWrongAnswer methods. Depending on the answer, your
progress gets decided: if the answer is wrong, the game is over and we display the
leader board.

4.	 If there are no more questions, we will submit the users score and display the leader
board as well. The leader board itself will take care of all the logic for it. Was the
submitted score high enough to make your name appear on top of the list? Check it
with the help of the following snippet:
private void checkAnswer(View v){
 if (v instanceof Button){
 Answer answer = (Answer)((Button)v).getTag();
 if (mQuiz.getQuestions().get(mQuestionIndex).
 getCorrectAnswer().equalsIgnoreCase(
 answer.getId())){
 onGoodAnswer();
 }
 else{
 onWrongAnswer();
 }
 }
}
private void onWrongAnswer(){
 Toast.makeText(this, getString(
 R.string.incorrect_answer), Toast.LENGTH_SHORT).show();
 startActivityForResult(
 Games.Leaderboards.getLeaderboardIntent(
 mGoogleApiClient, LEADERBOARD_ID),

Improving Quality

156

 REQUEST_LEADERBOARD);
}
private void onGoodAnswer(){
 mScore+= 1000;
 Games.Leaderboards.submitScore(mGoogleApiClient,
 LEADERBOARD_ID, mScore);
 Toast.makeText(this, getString(R.string.correct_answer),
 Toast.LENGTH_SHORT).show();
 mQuestionIndex++;
 if (mQuestionIndex < mQuiz.getQuestions().size()){
 displayQuestion(mQuiz.getQuestions().get(
 mQuestionIndex));
 }
 else{
 startActivityForResult(
 Games.Leaderboards.getLeaderboardIntent(
 mGoogleApiClient, LEADERBOARD_ID),
 REQUEST_LEADERBOARD);
 }
}

5.	 To be prepared for unit testing and code inspection let's add annotation support.
Open the build.gradle file in the app folder and add the dependency. Click
on the Sync now link that appears after modifying the file:
compile 'com.android.support:support-annotations:22.2.0'

6.	 If an error appears that reads Failed to resolve support-annotations,
then click on the Install Repository and Sync Project link that appears.

7.	 If all goes well, then we can add annotations, for example, to the parameter of the
CheckAnswer method:
private void checkAnswer(@NonNull View v){

8.	 In the Question class, we could add a @Nullable annotation to the
getPossibleAnswers method, which could be the case if we did not
provide any multiple choice option for a question:
@Nullable
public ArrayList<Answer> getPossibleAnswers(){
 return mPossibleAnswers;
}

Chapter 8

157

9.	 Later, if we do some analysis, this will result in a warning for
GooglePlayServiceActivity, where we will be calling this method.
We will have a closer look at that in the code analysis recipe:
Method invocation 'answers.get(0)' may produce 'java.lang.
NullPointerException'

You can play the game if you like and add some more annotations. Just don't play too long
with them. Let's play the game instead!

Run your app and become number one on the leader board. Since currently you are the only
test player, that cannot be too hard I guess.

You have just created your own quiz app, which you can extend with some other challenging
questions if you like, as shown in the following screenshot:

Improving Quality

158

We have investigated Google Play services and we have been using a MVC approach for our
app. Also, we had a look at how to use annotations, which could help us to improve code after
doing some code analysis.

There's more...
We had only a sneak peek at patterns and how to apply them. Check out the Internet or get
some great books to learn more about patterns. Also, refer to https://www.google.com/
design/spec/patterns/app-structure.html.

Make sure you read the docs about support annotations as well. There are so many more
possibilities using them. Check the docs out at http://tools.android.com/tech-
docs/support-annotations.

Also, we have been using Google Play services for only a fraction. We just know how to sign
in and how to use a leader board. If you want, you can check out the other options. For that,
refer to https://developers.google.com/games/services/android/quickstart.

See also
ff Refer to Chapter 7, Content Providers and Observers.

Unit testing using Robolectric
Unit testing is a testing method where individual units of code are tested. A view or repository
can be tested, for example, to check whether it meets the demands. Unlike most other tests,
these kinds of tests typically are developed and run by a software developer.

Ideally, a test case is completely independent from other cases and other units. Since classes
often depend on others substitutes such as mock objects needs to be used. In the previous
recipe, the QuizRepository class provides hardcoded quiz data (stubbed or mocked data),
but as suggested, the intention is that the quiz data should be retrieved from a backend.

We are going to prepare the app we created in the previous recipe for unit testing, and we will
create some tests ourselves. Robolectric is going to help us with that. Although since the 1.2
release of Android Studio unit testing (based on JUnit) has become much easier to set up, it
still is not as powerful as Robolectric.

Robolectric does not need additional mock frameworks and it can be run outside the emulator
as well, allowing us to combine unit testing with a continuous integration environment, as we
are going to do in Chapter 10, Beta Testing Your Apps.

https://www.google.com/design/spec/patterns/app-structure.html
https://www.google.com/design/spec/patterns/app-structure.html
http://tools.android.com/tech-docs/support-annotations
http://tools.android.com/tech-docs/support-annotations
https://developers.google.com/games/services/android/quickstart

Chapter 8

159

Getting ready
For this recipe, it would be most ideal to have the previous recipe successfully completed.
In case you prefer to skip that part of this chapter, you can, of course, open your own project
and set up unit testing in more or less the same way. That is up to you.

How to do it...
So what do we have to do to create and run some unit tests? Let's find out:

1.	 Open the project that we created in the previous recipe.

2.	 Open the build.gradle file within the app folder and add a dependency
for Robolectric:
testCompile 'org.robolectric:robolectric:3.0'

3.	 Rename the androidTest folder in the src folder to test.

4.	 From the Run menu choose the Edit configurations option.

5.	 On the left-hand side of Run\Debug Configuration window, choose Defaults
and JUnit. On the right-hand side change the content for Working directory
to $MODULE_DIR$ and click on the OK button.

6.	 Rename the ApplicationTest class to QuizRepositoryTest.

7.	 Add some tests to the QuizRepositoryTest class. We will be using Robolectric for this.
As you can notice, we will be using annotations here as well just like we did in the
previous recipe:
@Config(constants = BuildConfig.class, sdk = 21)
@RunWith(RobolectricGradleTestRunner.class)
public class QuizRepositoryTest {
 private QuizRepository mRepository;
 @Before
 public void setup() throws Exception {
 mRepository = new QuizRepository();
 assertNotNull("QuizRepository is not
 instantiated", mRepository);
 }
 @Test
 public void quizHasQuestions() throws Exception {
 Quiz quiz = mRepository.getQuiz();
 ArrayList<Question> questions = quiz.getQuestions();
 assertNotNull("quiz could not be created", quiz);

 assertNotNull("quiz contains no questions",
 questions);
 assertTrue("quiz contains no questions",

Improving Quality

160

 questions.size()>0);
 }
 @Test
 public void quizHasSufficientQuestions() throws
 Exception {
 Quiz quiz = mRepository.getQuiz();
 ArrayList<Question> questions = quiz.getQuestions();
 assertNotNull("quiz could not be created", quiz);

 assertNotNull("quiz contains no questions",
 questions);

 assertTrue("quiz contains insufficient
 questions", questions.size()>=10);
 }
}

8.	 Create another test class so we can test the activity. Name the new class
GooglePlayServicesActivityTest. Within this test, we could perform
some layout tests as well:
@Config(constants = BuildConfig.class, sdk = 21)
@RunWith(RobolectricGradleTestRunner.class)
public class GooglePlayServicesActivityTest {
 private GooglePlayServicesActivity activity;
 @Before
 public void setup() throws Exception {
 activity = Robolectric.setupActivity(
 GooglePlayServicesActivity.class);
 assertNotNull("GooglePlayServicesActivity is not
 instantiated", activity);
 }
 @Test
 public void testButtonExistsAndHasCorrectText() throws
 Exception {
 Button testButton = (Button) activity.findViewById(
 R.id.button_test);
 assertNotNull("testButton could not be found",
 testButton);
 assertTrue("testButton contains wrong text",
 activity.getString(R.string.leader_board).equals(
 testButton.getText().toString()));
 }
}

9.	 Open the build variants pane and choose Unit tests instead of
Instrumentation tests.

Chapter 8

161

Everything under the test package will be highlighted in green now (you may need to
do a rebuild first). If you right-click on the package name packt.com.getitright or
on any of the test classes you created, you will find an option in the context menu Run
tests in packt.com.getright or Run QuizRepositoryTest. For example, choose to run
QuizRepositoryTest.If you choose this option, Gradle starts thinking for a bit. After a
while, the results are displayed.

Only the tests that fail are shown by default. To see the tests that did succeed as well, click on
the Hide passed button (the button above the test tree shown on the left-hand side).

You will see that the quizHasQuestions test has passed. However, the
quizHasSufficientQuestions test has failed. This makes sense, as our test requires our
quiz to have at least 10 questions while we added only three to the quiz, as shown in the
following figure:

Add seven more questions to Quiz in QuizRepository to get it right. Well, you can cheat, of
course, by modifying the test, but let's just say it is a business requirement.

Rerun the test. Every unit test succeeded. Hurrah! Create a few more unit tests that you can
think of.

Unit testing is a very interesting option because we can use it for continuous integration
purposes as well. Think of a scenario where we run the unit tests each time you commit (and
push) your source to a central repository such as GitHub or BitBucket. If the compilation
and all unit tests succeed, we can create a new (ad hoc) release automatically or be notified
whether the compilation or any of the tests failed.

There's more...
There are plenty of other tools and approaches available for mobile testing purposes.

In addition to unit testing, we want to test the User Interface (UI) as well, for example, by
using Espresso.

Improving Quality

162

Espresso
Espresso is suitable for writing concise and reliable Android UI tests. A test typically contains
clicks, text input, and checks. It is actually pretty simple to write tests. The following is an
example of a test using Espresso:

@Test
public void testLogin() {
 onView(withId(R.id.login)).perform(
 typeText("mike@test.com"));
 onView(withId(R.id.greet_button)).perform(click());
}

To quote the website:

"Espresso tests state expectations, interactions, and assertions clearly without the
distraction of boilerplate content, custom infrastructure, or messy implementation
details getting in the way".

For more information, refer to https://code.google.com/p/android-test-kit/
wiki/Espresso.

Approaches
When it comes to testing, there are different approaches you can think of. One of these
approaches is Test-driven Development (TDD). If the functionality and all requirements are
known, we can define our tests before developing our app. Of course, all tests will fail initially,
but that is actually a good thing. It will set an outline of what needs to be done and create
focus to get things right. If you start developing more and more, tests will succeed, remaining
the amount of work.

Another and more recent approach is Behavior-driven Development (BDD). This testing
approach is based around features, where a feature is a collection of stories expressed
from a particular point of view.

BDD tools come as a unit testing flavor such as Rspec for example and as a higher level
acceptance testing flavor: Cucumber.

Cucumber, Gherkin, and Calabash
No, this is not a greengrocer advertisement that suddenly has popped up here. Cucumber is a
tool that runs automated acceptance tests written in a BDD style. It allows the execution of a
feature documentation written in a business-facing text.

https://code.google.com/p/android-test-kit/wiki/Espresso
https://code.google.com/p/android-test-kit/wiki/Espresso

Chapter 8

163

Here is an example of a feature file using Gherkin. It serves two purposes: documentation and
automated tests:

Scenario: Login
 Given I am on the Login Screen
 Then I touch the "Email" input field
 Then I use the keyboard and type "test@packt.com"
 Then I touch the "Password" input field
 Then I use the keyboard and type "verysecretpassword"
 Then I touch "LOG IN"
 Then I should see "Hello world"

Gherkin is a business-readable, domain-specific language that lets you describe a software's
behavior without detailing on how that behavior is implemented. Therefore, these tests can
also be written by the nondeveloping members of your team.

There is some glue code required to make things happen. In Cucumber, this process is
defined in step definitions. Cucumber typically lets you write these step definitions in the
Ruby language.

Through the Calabash framework, you can use Cucumber to create tests for both Android and
iOS. It enables you to define and execute automated acceptance tests. Another great thing
about Calabash is that it allows you to run automated tests on the cloud, for example, using
the services of TestDroid.

First things first!
To learn more about Cucumber, visit https://cucumber.io.

You will find the Calabash framework at http://calaba.sh.

Also, check out www.testdroid.com for more information about testing on as many devices
as possible using TestDroid a cloud based test environment.

Finally, find a good balance between time, quality, and money. The approach to test your
app depends on how valuable you (or your company or your customer) think each of these
elements are. Create at least unit and UI tests. Also, let's not forget about performance
testing, but that a topic that will be discussed in the next chapter!

See also
ff Refer to Chapter 9, Improving Performance

ff Refer to Chapter 10, Beta Testing Your Apps

https://cucumber.io
http://calaba.sh
www.testdroid.com

Improving Quality

164

Code analysis
Code analysis tools, such as Android Lint, can help you detect potential bugs and how your
app can be optimized for security, usability, and performance.

Android Lint comes with Android Studio, but there are also other tools available such as:
Check Style, Project Mess Detector (PMD), and Find Bugs. In this recipe, we will only
have a look at Android Lint.

Getting ready
ff Most ideally, you would have completed the first two recipes of this chapter, so we

will now examine the results of the app. However, you can use Android Lint
(or another tool) on any project to see where things can be improved.

The support annotations of the first recipe influence the results being
displayed. Yes, that is right, we cause these warnings.

How to do it...
There is nothing that we need to install in order to get an Android Lint report, as it is already in
there with Android Studio. Just follow the next steps to make use of it:

1.	 Open the project you have created in the previous recipes. Or, alternatively, open your
own project.

2.	 From the Analyze menu, choose Code inspection. The inspection scope is the whole
project. Click on the OK button to proceed.

3.	 The results for inspection will be presented as a tree view. Expand and select items to
see what each item is about, as shown in the following snapshot:

Chapter 8

165

4.	 Things look pretty serious here but actually, it is not all that bad. There are some
issues that are no show stoppers at all, but fixing them could greatly improve your
code, which is what we are aiming at for now.

5.	 For example, check out the Declaration redundancy | Declaration access can be
weaker | Can be private issue. Navigate to it. Double-click on it to jump to the code
where the issue appears. Right-click on it. The context menu provides a solution for
this right away. Choose the Make field private option to apply the correct solution.
If you do so, this item will be marked as done (strike-through).

6.	 Now have a look at Hardcoded texts. If you double-click on any of the items that are
related to this issue, you will see what the problem is.

7.	 For our convenience, we did put a temporary text (such as Question in Text View).
If this was for real, we should be using a string resource instead. Here, we can safely
remove the text. If you rerun the code inspection, the issue will disappear:
<TextView
 android:id="@+id/text"
 android:textColor="@android:color/white"
 android:textSize="24sp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

Improving Quality

166

8.	 Next, have a look at Constant conditions & exceptions under Probable bugs. For
the GooglePlayServicesActivity file, it says:
Method invocation 'answers.get(0)' may produce 'java.lang.
NullPointerException'

9.	 If you double-click on this message, you will find what the issue is about:
setPossibleAnswer(findViewById(R.id.button_1), answers.get(0));

10.	 This line may produce Null Pointer Exception Why is that? If you go to the
declaration of the getPossibleAnswers method by selecting it and pressing
Cmd + B (for Windows: Ctrl + B) you will find out why:
@Nullable
public ArrayList<Answer> getPossibleAnswers(){
 return mPossibleAnswers;
}

Ah right! We added this annotation ourselves in the first recipe to remind our later
selves (or fellow developer) that the answers that are returned might be null. There
are a couple of ways to fix this.

11.	 We could remove the @Nullable annotation here, but that would be bad since the
answers actually could be null. We also could choose to suppress the warning.

12.	 The best solution is to actually test the outcome of the getAnswers method before
doing anything with it. Just like that:
ArrayList<Answer> answers = question.getPossibleAnswers();
if (answers == null){
 return;
}

13.	 Expand Declaration redundancy | Method can be void | Question. It says:
Return value of the method is never used

14.	 Double-click on the issue to jump the code. Well, that warning is correct but suppose
I do want to return the answer any way because I am pretty sure (how sure can you
be?) I will be consuming it later. In that case, you could right-click on the issue and
choose the Suppress for Member option. You will not be bothered by this issue again
because it will add the SuppressWarnings annotation to your code:
@SuppressWarnings("UnusedReturnValue")
public Answer addAnswer(String id, String text){

15.	 Finally, have a look at Spelling warnings. Expand Spelling and the underlying Typo
and app items. There it is. A Typo!
Typo: In word 'getitright'

Chapter 8

167

We didn't get getitright right now did we? Since it is the name of our app
and because it is part of the package name, I am pretty sure we can safely
ignore this warning. This time, we right-click on the type and choose the
Save to dictionary option:

16.	 The list of warnings seems to be endless, but how severe are all these items? On
the left-hand side of Android Studio, you will find a button with the Group by Severity
tooltip. Click on it.

17.	 Now the tree view contains an error node (if you have any), a warning node, and a
typo node. If you just concentrate on the errors and warnings and see what each item
is about, then you will improve your code and actually learn quite a lot, as each issue
comes with a description of the problem and a suggestion on how to fix it.

Great, you learned some cool stuff today! And wrote better code by applying patterns, running
unit tests, and by fixing issues reported by Android Lint.

We now know that our app does what it should do and that it is well structured after
some refactoring.

The next thing to wonder about is what would happen if the images we are loading from the
Internet are 10 times the size they are now? What if we have 1000 questions? Unreal? Perhaps.

How will our Quiz app perform on a low-end device? In the next chapter, we will go after the
answers to these and other questions.

See also
ff Refer to Chapter 9, Performance

ff Refer to Chapter 10, Beta Testing Your App

169

9
Improving Performance

Performance matters as it has an impact on the reviews your app gets on the Google Play
Store. A five-star app is what we want! On a high-end device, your app might be running
smoothly without any trouble, but on a user's low-end device, things might look a little bit
different. It performs slowly or runs out of memory, resulting in the crashing of that app.

In this chapter, you will learn the following recipes:

ff Memory profilers and performance tools

ff Here comes the bad app—performance improvements

ff Overdraw issues

Improving Performance

170

Introduction
How can we detect whether there will be any performance issues with our app? What are the
common problems in Android apps? And how can we fix these issues?

When it comes to performance, a few problems that could occur are as follows:

ff Memory leaks: Although Android comes with its own memory management system,
memory leaks may occur.

ff Out of memory exceptions: Your app could easily run out of memory, resulting in a
crash of your app. For example, think of processing large images on low-end devices.

ff Overdraw: Overdraw is the phenomenon of a pixel on a view being drawn more than
once. It can result in an unresponsive or laggy user interface.

In the upcoming recipes, we will examine the problems listed here. The Android SDK and
Android Studio come with some great tools to examine your app.

Memory profilers and performance tools
Your app could suffer from memory leaks or from allocating too much memory.

The Garbage Collector (GC), responsible for cleaning up anything we do not want to use any
more, is a great helper, but unfortunately, it is not perfect. It can only remove objects that
are recognized as unreachable. Objects that are not cleaned up just hang around taking up
space. After a while, if more and more objects are created, an OutOfMemoryError could
occur, as would be the case if a couple of large images are attempted to load, which is a
commonly seen crash scenario for many Android apps.

Memory leaks are somewhat difficult to find. Luckily for us, Android Studio comes with a
memory monitor. It gives you an overview of your app's memory usage and some clue about
memory leaks.

We will be using this Memory monitor to find out whether unwanted GC event patterns are
causing performance issues. In addition to this, we will use Allocation Tracker to identify
where in the code the problem might be.

Getting ready
For this recipe, it would be great if you have completed any of the recipes from the previous
chapters. If possible, it should be the recipe that consumes data (text and images) from the
Internet, for example, the app from Chapter 2, Applications with a Cloud-based Backend. Of
course, any other app will do, as we are going to examine tools that will inspect our app in
order to improve it.

Chapter 9

171

How to do it...
Let's find out how well our app performs!

1.	 Start Android Studio and open the app of your choice.

2.	 Run your app on a device (or use a virtual Genymotion device).

3.	 The Memory monitor is situated on the Memory tab, which you can find on the
Android tab.

4.	 If it is not shown, use the Cmd + 6 (for Windows: Alt + 6) shortcut to make it appear.

5.	 Run your app to see the memory monitor recording your app's memory usage. In
the following example, I have run an app that loads 200 venues (containing text and
images) from the FourSquare API. I request 200 more of them each time I press the
button, resulting in the peaks shown in this graph. Give me more coffee shops in my
neighborhood, please:

6.	 The app's memory usage is displayed in dark blue. The unallocated memory appears
in light blue. The allocated memory will grow when your app starts performing until
there is no more memory left, or it will drop when the GC has arrived and done its job.

7.	 These are common events, and eventually, you call the GC yourself by clicking on
the Initiate GC icon (the button on the upper-left corner of the Memory tab) on
the left-hand side of the window.

8.	 It will only be suspicious if a lot of memory is allocated in a short period of time or if
the GC events occur more often. Your app may have a memory leak.

Improving Performance

172

9.	 In the same way, you can monitor the CPU usage. You can find it on the CPU tab on
the Android panel. If you notice very high peaks here, your app might be doing too
much. In the following screenshot everything looks just fine:

10.	 To learn more about memory issues, we can use another tool. From the Tools menu,
choose Android and the Android Device Monitor option. This tool comes with a heap
view, memory monitor, and allocation tracker, which are all tools that provide insight
on the memory that your app uses.

11.	 If it is not selected yet, click on the Dalvik Debug Monitor Server (DDMS) button that
appears on the top navigator bar. DDMS is a debugging tool that provides thread and
heap information and a couple of other things.

12.	 Select the Heap tab. On the right-hand side of the window, select your running app
that should appear right under the device name. If you do not see your app, you might
need to rerun your app.

Chapter 9

173

13.	 Memory requests will be handled by allocating parts from a pool of memory, which is
called a heap. At any given time, some parts of the heap are in use, while some are
unused and therefore available for future allocations.

14.	 The Heap tab can help you diagnose memory leaks by displaying how much memory
the system has allocated for your app. Here, you can identify object types that get
or stay allocated unexpectedly or unnecessarily. If the allocated memory keeps on
increasing, then this is a strong indication that your app has a memory leak.

If heap updates are not enabled, check out the buttons on the Devices
tab. Click on the update Heap button (second from the left-hand side
of the screenshot).

15.	 The heap output is displayed only after a GC event. On the heap tab, find the Cause
GC button and click on it to force the GC to do its job. After this, the heap tab will look
somewhat like this:

Improving Performance

174

16.	 A lot of information about the app's heap usage is displayed in the preceding
screenshot. Click on any item in the table to get further information. The information
shown here can help you identify which parts of your app are causing too many
allocations. Perhaps, you need to reduce the number of allocations or release
memory earlier.

17.	 To better understand what the critical parts of your app are and what stack trace
exactly is causing the issues, you can click on the Allocation Tracker tab.

18.	 On that tab, click on the Start Tracking button.

19.	 Interact with your app in some way by refreshing the list, going to a detail view or
whatever it is that your app does and that you would like to measure.

20.	 Click on the Get allocations button to update the list of allocations.

21.	 As a result of the operation that you have initiated for your app, you will see all the
recent allocations listed here.

22.	 To see the stack trace, click on any of the allocations. In the example shown next, we
are investigating the loading of an image within a table row. The trace shows what
type of object was allocated in which thread, and where.

Chapter 9

175

If you like, you can play around a little bit to learn more about the Android device monitor. Now
that you have seen some of the tools to measure results, let's have a closer look at how to
deal with them and how we can avoid memory issues. See you at the next recipe!

There's more...
Both the Android Device Monitor and the memory tools that come with Android Studio have
many more options that you could explore. These options will help you improve the quality and
performance of your app. It will make you and your app users happy!

See also
ff Chapter 2, Applications with a Cloud-based Backend

ff Chapter 8, Improve Quality

ff Chapter 10, Beta Testing Your App

Here comes the bad app – performance
improvements

What are the do's and don'ts for Android application development to avoid performance issues,
even if they may not occur on your own device? Testing Android apps is hard because there are
so many devices out there. It is better to be safe than sorry, so write your code carefully.

Some say that there are two basic rules to writing efficient code: don't do the work that you
don't need to do (hence the DRY and YAGNI principles from Chapter 8, Improving Quality) and
do not allocate memory if you can avoid it. In addition to this, it is also interesting to know that
there are various libraries available that will not just save you the time but also prove to be
very efficient. Of course, reinventing the wheel could be error prone as well.

Think of the RetroFit library, for example, that will make it much easier to write code
to consume web services, or think of Picasso, an image loading library that will load
an image from a URL with just one line of code without worrying too much about things
such as threading, image sizing, transforming, or memory management.

In general, some good practices are as follows:

ff Optimize bitmap memory usage.

ff Release memory when hiding the user interface.

ff Do not use too many nested views in your layouts.

ff Do not create unnecessary objects, classes, or inner classes.

ff Use primitive types instead of objects where possible.

Improving Performance

176

ff Prefer static methods over virtual methods if you do not need any of the members of
an object. Static invocations will be faster.

ff Try to avoid internal getters and setters, as direct field access is much faster
in Android.

ff Do not use floating points if integers can do the trick.

ff If you register a listener, then make sure you also unregister it. Register and
unregister in the corresponding pairs of the activity lifecycle. Register, for example, in
the onCreate method and unregister in the onDestroy method. Or, register in the
onResume method and unregister in the onPause method.

ff Provide feedback to the user if an operation takes more time than a few seconds. Let
the user know that your app is not dead but busy! Show that something is going on by
showing a progress indicator.

ff Always measure. Use performance tools to find out how well your app is doing.

Android Studio tip
Are you looking for something? Press Shift two times and start typing
what you're searching for. Or, to display all the recent files, use the
Cmd + E (for Windows: Ctrl + E) shortcut.

Getting ready
For this recipe, you just need to have Android Studio up and running and preferably a real
device with Internet access.

How to do it...
Let's create a really bad application so we have something to fix. We will not optimize bitmap
memory usage. We will use nested views a lot, do a couple of other really bad things, and for
this recipe, we will display a list of the worst movies ever. Here comes the bad app:

1.	 Create a new project in Android Studio.

2.	 Name it BadApp and click on the Next button.

3.	 Check the Phone and Tablet option and click on the Next button.

4.	 Choose Blank Activity and click on the Next button.

5.	 Accept the names as is and click on the Finish button.

Chapter 9

177

6.	 Open the activity_main.xml layout and replace the content with a list view that
has a nice background color within a relative layout that has another nice background
color. We are doing this because we want to demonstrate the overview issue in the
next recipe:
<RelativeLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:background="@android:color/holo_orange_dark"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity">
 <ListView
 android:id="@+id/main_list"
 android:background="@android:color/holo_blue_bright"
 android:layout_width="match_parent"
 android:layout_height="match_parent"></ListView>
</RelativeLayout>

7.	 Create a new layout file and name it adapter.xml. Let's have some nested views
and lots of background colors. All for the bad app:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:background="@android:color/holo_green_light"
 android:padding="8dp"
 android:layout_height="match_parent">
 <ImageView
 android:id="@+id/main_image"
 android:src="@android:drawable/ic_media_play"
 android:layout_marginTop="8dp"
 android:layout_width="80dp"
 android:scaleType="fitCenter"
 android:layout_height="60dp" />
 <TableLayout
 android:layout_marginTop="8dp"
 android:layout_marginLeft="90dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TableRow android:background=
 "@android:color/holo_purple">
 <TextView android:layout_width="match_parent"
 android:id="@+id/main_text_title"

Improving Performance

178

 android:layout_marginTop="8dp"
 android:textSize="24sp"
 android:layout_height="wrap_content"
 android:textColor="@android:color/white"/>
 </TableRow>
 <TableRow android:background=
 "@android:color/holo_blue_light">
 <TextView android:layout_width="match_parent"
 android:id="@+id/main_text_year"
 android:layout_height="wrap_content"
 android:textSize="20sp"
 android:layout_marginTop="8dp"
 android:textColor="@android:color/white"/>
 </TableRow>
 <TableRow android:background=
 "@android:color/holo_green_dark">
 <LinearLayout
 android:orientation="vertical"
 android:layout_height="wrap_content"
 android:layout_width="match_parent"
 android:layout_marginTop="16dp">
 <TextView android:layout_width="match_parent"
 android:id="@+id/main_text_genre"
 android:layout_height="wrap_content"
 android:textSize="16sp"
 android:layout_marginTop="8dp"
 android:background=
 "@android:color/holo_green_dark"
 android:textColor="@android:color/white"/>
 <TextView android:layout_width="match_parent"
 android:id="@+id/main_text_director"
 android:layout_height="wrap_content"
 android:textSize="16sp"
 android:layout_marginTop="8dp"
 android:background=
 "@android:color/holo_green_light"
 android:textColor="@android:color/white"/>
 <TextView android:layout_width="match_parent"
 android:id="@+id/main_text_actors"
 android:layout_height="wrap_content"
 android:textSize="16sp"
 android:layout_marginTop="8dp"
 android:background=
 "@android:color/holo_green_dark"
 android:textColor="@android:color/white"/>
 </LinearLayout>
 </TableRow>
 </TableLayout>
</FrameLayout>

Chapter 9

179

8.	 Open the AndroidManifest.xml file and add a permission for Internet access:
<uses-permission android:name="android.permission.INTERNET" />

9.	 Create a new class and name it BadMovie:
public class BadMovie {
 public String title;
 public String genre;
 public String year;
 public String director;
 public String actors;
 public String imageUrl;
 public BadMovie(String title, String genre, String
 year, String director, String actors, String
 imageUrl){
 this.title = title;
 this.genre = genre;
 this.year =year;
 this.director = director;
 this.actors = actors;
 this.imageUrl = imageUrl;
 }
}

10.	 Create an adapter class and name it MainAdapter. We will be using a ViewHolder
class, and we will create a separate thread to load each movie image from the Net:
public class MainAdapter extends ArrayAdapter<BadMovie> {
 private Context mContext;
 private int mAdapterResourceId;
 public List<BadMovie> Items = null;
 static class ViewHolder
 TextView title;
 TextView genre;
 ImageView image;
 TextView actors;
 TextView director;
 TextView year;
 }
 @Override
 public int getCount() {
 super.getCount();
 int count = Items != null ? Items.size() : 0;
 return count;
 }
 public MainAdapter(Context context, int adapterResourceId,
 List<BadMovie> items) {
 super(context, adapterResourceId, items);
 this.Items = items;
 this.mContext = context;

Improving Performance

180

 this.mAdapterResourceId = adapterResourceId;
 }
 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 View v = null;
 v = convertView;
 if (v == null) {

 LayoutInflater vi = (LayoutInflater)
 this.getContext().getSystemService(
 Context.LAYOUT_INFLATER_SERVICE);
 v = vi.inflate(mAdapterResourceId, null);
 ViewHolder holder = new ViewHolder();
 holder.title = (TextView) v.findViewById(
 R.id.main_text_title);
 holder.actors = (TextView) v.findViewById(
 R.id.main_text_actors);
 holder.image = (ImageView)
 v.findViewById(R.id.main_image);
 holder.genre = (TextView)
 v.findViewById(R.id.main_text_genre);
 holder.director = (TextView)
 v.findViewById(R.id.main_text_director);
 holder.year = (TextView)
 v.findViewById(R.id.main_text_year);
 v.setTag(holder);
 }

 final BadMovie item = Items.get(position);
 if (item != null) {
 final ViewHolder holder = (ViewHolder) v.getTag();
 holder.director.setText(item.director);
 holder.actors.setText(item.actors);
 holder.genre.setText(item.genre);
 holder.year.setText(item.year);
 holder.title.setText(item.title);
 new Thread(new Runnable() {
 public void run(){
 try {
 final Bitmap bitmap =
 BitmapFactory.decodeStream((
 InputStream) new
 URL(item.imageUrl).getContent());
 ((Activity)getContext()).runOnUiThread(new
 Runnable() {

Chapter 9

181

 @Override
 public void run() {

 holder.image.setImageBitmap(bitmap);
 }
 });
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }).start();}
 return v;
 }
}

11.	 In the MainActivity file, add a private member that will contain all the movies:
private ArrayList<BadMovie> mBadMovies;

12.	 Add the implementation to the onCreate method to add a couple of thousand bad
movies, creating an adapter for them and telling the list view about it:
mBadMovies = new ArrayList<BadMovie>();
for (int iRepeat=0;iRepeat<=20000;iRepeat++) {
 mBadMovies.add(new BadMovie("Popstar", "Comedy",
 "2000", "Paulo Segio de Almeida", "Xuxa Meneghel,
 Luighi Baricelli", "https://coversblog.files.
 wordpress.com/2009/03/xuxa-popstar.jpg"));
 mBadMovies.add(new BadMovie("Bimbos in Time", "Comedy",
 "1993", "Todd Sheets", "Jenny Admire, Deric Bernier",
 "http://i.ytimg.com/vi/bCHdQ1MB1D4/
 maxresdefault.jpg"));
 mBadMovies.add(new BadMovie("Chocolat", "Comedy",
 "2013", "Unknown", "Blue Cheng-Lung Lan, Masami
 Nagasawa", "http://i.ytimg.com/vi/EPlbiYD1MmM/
 maxresdefault.jpg"));
 mBadMovies.add(new BadMovie("La boda o la vida",
 "1974", "year", "Rafael Romero Marchent", "Manola
 Codeso, La Polaca", "http://monedasycolecciones.com/
 10655-thickbox_default/la-boda-o-la-vida.jpg"));
 mBadMovies.add(new BadMovie("Spudnuts", "Comedy",
 "2005", "Eric Hurt", "Brian Ashworth, Dave Brown,
 Mendy St. Ours", "http://lipponhomes.com/wp-
 content/uploads/2014/03/DSCN0461.jpg"));
}

//source: www.imdb.com
MainAdapter adapter = new MainAdapter(this,
 R.layout.adapter, mBadMovies);
((ListView)findViewById(R.id.main_list)).setAdapter(adapter);

Improving Performance

182

13.	 Now run your app. According to the users at Internet Movie Database (IMDB),
these are the worst comedy movies ever. We have added the movies many times
on purpose to create a huge list where each row uses a primitive way of loading
thumbnails from the Internet as shown in the following screenshot:

14.	 Depending on the device you are testing your app on, you need to scroll for a while or
maybe the error appears right away.

15.	 This is what sooner or later appears in LogCat. Check the log after your app has
crashed. Use the Cmd + 6 shortcut (for Windows: Alt +6) to display LogCat. It will
show you something like this:
packt.com.thebad E/AndroidRuntime﹕ FATAL EXCEPTION: Thread-3529
java.lang.OutOfMemoryError: Failed to allocate a 7238412 byte
allocation with 53228 free bytes and 51KB until OOM

16.	 And here is where it happens:
At packt.com.thebad.MainAdapter$1.run(MainAdapter.java:82)

Chapter 9

183

17.	 Have a look at the Memory and CPU Monitor as well. Your device is having a hard
time. This is how it looks if you scroll through the list.

The following screenshot provides the Memory report:

The following screenshot provides the CPU report:

18.	 Well, this is what you get if you want to load full-size images multiple times. Since
we are displaying thumbs anyway, there is not need for that and your device cannot
handle it. Let's fix that.

We are also having a threading issue as the wrong images may
appear on the rows.

19.	 Although the best solution is to have a server return thumbnails instead of large
images, we will not always be in the position to control that, in particular when
dealing with third-party sources. So, one way to solve the memory issue is to set the
inSampleSize property for BitmapFactory Options when loading the bitmap in
the MainAdapter class, just like we did in the recipes of previous chapters.

Improving Performance

184

20.	 However, it will be even more efficient to use the Picasso library here. Picasso is a
popular image library that will simplify the process for us. Among other things, it will
load an image from the Internet in a separate thread and will shrink it to the size of
its container, here the image view in the adapter layout.

21.	 Open the build.gradle file in the app folder and add the dependency for Picasso:
dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.squareup.picasso:picasso:2.3.3'
}

22.	 Save the file and click on the Sync now link that appears.

23.	 Open the MainAdapter class and replace the thread (and anything within it)
that loads the image with just one line. Use the Alt + Enter shortcut to add the
Picasso import:
Picasso.with(getContext()).load(item.imageUrl).resize(80,
 60).into(holder.image);

24.	 That is it. Picasso will take care of downloading and resizing the images.

25.	 Now run the app again and scroll through the list as much as you want. Both
the memory and the threading problem have been solved. And the list view
does scroll smoothly.

26.	 You will come to know what difference this makes if you have a look at both the
Memory and the CPU tabs of the Android panel.

The following screenshot provides the Memory report:

Chapter 9

185

The following screenshot provides the CPU report:

We just fixed our app, which is now capable of displaying a huge list of bad movies. In the
next recipe, we will check whether we have any overdraw issues with the app. On older or
less powerful devices, these issues may occur.

There's more...
Picasso also has some other interesting features such as creating round images, rotated
images, or displaying error or placeholder images automatically.

An alternative to Picasso is the Universal Image Loader library.

RetroFit is a strongly recommended library for API communication. It is a REST client for
Android and Java and it could save you a lot of time and headaches.

Android Studio tip
Want to refactor your code? Use the shortcut Ctrl + T (for Windows: Ctrl + Alt +
Shift + T) to see what options you have. You can, for example, rename a class
or method or extract code from a method.

Overdraw issues
The interface of your app needs to render quickly, and interaction, such as scrolling through
a list, for example, should run smoothly. In particular, older or low-end devices often have a
hard time to do these things right. An unresponsive or slow UI can be the result, which is often
caused by something that is called overdraw.

Improving Performance

186

Overdraw is the phenomenon of a pixel on a view being drawn more than once. A colored
background with a view on top of that has another background color is an example of
overdraw (the pixel is drawn twice), but that's not really an issue. Too much overdraw,
however, will have an impact on your app's performance.

Getting ready
You will need to have a real device and you need to complete the The Bad app from the
previous recipe to demonstrate overdraw issues, but you can examine any other app as
well if you like.

How to do it...
Your device contains a couple of interesting developer options. One of them is the Debug GPU
overdraw option which can be obtained by following next steps:

1.	 On your device, open the Settings app.

2.	 Select Developer options.

If the Developer options item is not available on your device, you need
to go to About device first and click seven times on Build number.
Once you're done, go back. A new option called Developer options
now appears in the list.

3.	 Find the Debug GPU overdraw option and click on it:

Chapter 9

187

4.	 In the dialog that pops up, select the Show overdraw area.

5.	 Now, your device looks a little bit like a 3D movie without the corresponding
glasses, but what actually is being shown here is this: colors indicate the amounts
of overdraw, where no color means no overdraw (a pixel is painted only once), blue
shows an overdraw of 1, green an overdraw of 2, light red an overdraw of 3, and dark
red an overdraw of 4 times or even more.

A maximum overdraw of 2 times is acceptable, so let's
concentrate on the red sections.

6.	 Run the app you would like to examine. For this recipe, I have chosen to examine the
The Bad app from the previous recipe, shown as follows:

7.	 Yeah, that is pretty bad. Every view has its own background color, resulting in overdraw.

Improving Performance

188

8.	 Android is smart enough to reduce some overdraw cases, but for complex apps,
you need to fix them yourself. When you look at the layout for both the activity and
adapter from the previous recipe, this cannot be that difficult.

9.	 First, open the activity_main.xml layout file. Remove the background property
from the list view, since it is not being used anyway. Also, remove the background
property from the RelativeLayout file, as I do not like orange any way, at least not
for apps.

10.	 Remove the background property from the main_text_genre, main_text_
director, and the main_text_actors text views. Also, remove the background
property from their parent view, which is the last TableRow appearing within
TableLayout.

11.	 If you rerun the app, the app not only does the layout somewhat better, but you will
also notice that there is less indication of overdraw.

12.	 Let's check whether we can make further improvements. Change FrameLayout
at the root to RelativeLayout. Get rid of TableLayout and position the text
views relatively:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:background="@android:color/holo_green_light"
 android:padding="8dp"
 android:layout_height="match_parent">
 <ImageView
 android:id="@+id/main_image"
 android:src="@android:drawable/ic_media_play"
 android:layout_marginTop="8dp"
 android:layout_width="80dp"
 android:scaleType="fitCenter"
 android:layout_height="60dp" />
 <TextView android:layout_width="match_parent"
 android:id="@+id/main_text_title"
 android:layout_marginTop="8dp"
 android:layout_toRightOf="@+id/main_image"
 android:background="@android:color/holo_purple"
 android:textSize="24sp"
 android:layout_height="wrap_content"
 android:textColor="@android:color/white"
 android:text="Line 1"/>
 <TextView android:layout_width="match_parent"
 android:id="@+id/main_text_year"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@+id/main_image"
 android:layout_below="@+id/main_text_title"
 android:background=

Chapter 9

189

 "@android:color/holo_blue_light"
 android:textSize="20sp"
 android:layout_marginTop="8dp"
 android:textColor="@android:color/white"
 android:text="Line 2"/>
 <TextView android:layout_width="match_parent"
 android:id="@+id/main_text_genre"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@+id/main_image"
 android:layout_below="@+id/main_text_year"
 android:textSize="16sp"
 android:layout_marginTop="8dp"
 android:textColor="@android:color/white"
 android:text="Sub 1"/>
 <TextView android:layout_width="match_parent"
 android:id="@+id/main_text_director"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@+id/main_image"
 android:layout_below="@+id/main_text_genre"
 android:textSize="16sp"
 android:layout_marginTop="8dp"
 android:textColor="@android:color/white"
 android:text="Sub 2"/>
 <TextView android:layout_width="match_parent"
 android:id="@+id/main_text_actors"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@+id/main_image"
 android:layout_below="@+id/main_text_director"
 android:textSize="16sp"
 android:layout_marginTop="8dp"
 android:textColor="@android:color/white"
 android:text="Sub 3"/>
</RelativeLayout>

13.	 Run your app again. It is getting better and better, is it not?

14.	 To further improve your app, remove all text properties. They were only there to
check whether we were doing the right thing using the layout_toRightOf and
layout_below properties.

In this recipe, we have further improved our bad app by optimizing its layout. Also, it is no
longer ugly. Actually, it has become quite good.

Improving Performance

190

What layout type to use?
Using RelativeLayout is more effective than LinearLayout but unfortunately it is not so
developer friendly if, for example, you want to move or remove a text view that another view is
referring to using a relative property.

The FrameLayout is much less complex, but it does not have this problem, and it seems to
perform as well as RelativeLayout.

On the other hand it is not intented to contain many child widgets. Please be aware that in
the end what counts is the smallest number of nested layout views, so you should pick the
container that suits your needs and performs best.

Awesome! Our app runs smoothly on all devices. We do not expect any weird errors any more.

Now let's ship it to our beta users to find out what they think of it. We will find out once we
have completed the final chapter, where we will discuss adhoc distribution.

There's more...
There are more interesting tools that you perhaps would like to examine in order to improve
the quality and performance of your app.

We have mentioned Espresso before. Robotium is another Android test automation
framework for UI testing purposes. You can find it at http://robotium.com.

See also
ff Chapter 8, Improving Quality

ff Chapter 10, Beta Testing Your App

http://robotium.com

191

10
Beta Testing Your Apps

You did everything you could do to ensure the quality and performance of your app. Now it is
time to ship your app to your beta users to see what they think of it.

Before shipping your app, you should have a look at Crashlytics first. You
can find it at https://try.crashlytics.com.
Crashlytics can provide you with real-time crash reporting information not
only during your beta tests, but also after releasing your app on the Play
Store. Sooner or later, your app runs on a device that you have not tested
your app on and it crashes on it. Crashlytics can help you find the cause for
this.
Just download their SDK, add a few lines of code to your app, and you are
good to go.

Distribute your app and get it tested before revealing your app to a large audience by
publishing it on the Play Store. Learn from their feedback and improve your app.

At last, you can put this logo on your website:

In this chapter, you will learn about:

ff Build variants

ff Runtime permissions

ff Play Store beta distribution

https://try.crashlytics.com

Beta Testing Your Apps

192

Introduction
A typical software release cycle goes like this, although it does not necessarily have to go
through each phase:

Alpha -> closed beta -> open beta -> release.

You could release your app directly on the Google Play Store, but having at least one beta
round is a clever thing to do. Gathering feedback and applying further improvements can
make your app even better.

We will have a look at how to set up multiple different flavors for your app and how to define
different build types for it. For example, your release app will most likely use different API
endpoints than those you used to debug and test, at least I hope so.

The minimum API level you choose, the required features, and the requested permissions will
affect the number of devices that your app will be available for in the Play Store. Also, we will
have a preview of how runtime permissions that come with Android Marshmallow require a
different approach.

Finally, we will find out what we need to do to distribute a beta or alpha version of our app
using the Google Play Store.

Build variants
Android Studio supports different configurations for your app. For example, your app might
use different API endpoints for debugging. For this purpose, we will use build types.

In addition to this, you may have different versions of your app. A single project can have
multiple customized versions of the app. If these changes are minimal and, for example, just
change the look of an app in case it is a white label solution using a flavor is the way to go.

A build variant is the combination of a build type and a particular flavor. The upcoming recipe
will demonstrate how to use these.

Getting ready
For this recipe, you just need a recent copy of Android Studio.

Chapter 10

193

How to do it...
We will build a simple messaging app that uses different build types and build flavors:

1.	 Create a new project in Android Studio, name it WhiteLabelMessenger, enter a
company name in the Company Domain field, and click on the OK button.

2.	 Next, choose Phone and Tablet and click on the Next button.

3.	 Choose Blank activity and click on the Next button.

4.	 Accept the suggested values and click on the Finish button.

5.	 Open the strings.xml file and add a few extra strings. They should look like these:
<resources>
 <string name="app_name">WhiteLabelMessenger</string>
 <string name="hello_world">Hello world!</string>
 <string name="action_settings">Settings</string>
 <string name="button_send">SEND YEAH!</string>
 <string name="phone_number">Your phone number</string>
 <string name="yeah">Y-E-A-H</string>
 <string name="really_send_sms">YES</string>
</resources>

6.	 Create an icon.xml and a background.xml resource file in the res/drawable
folder.

7.	 In the res/drawable folder, create a new file and name it icon.xml. It will draw a
blue-colored circle:
<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/
android"
 android:shape="oval">
 <solid
 android:color="@android:color/holo_blue_bright"/>
 <size
 android:width="120dp"
 android:height="120dp"/>
</shape>

Beta Testing Your Apps

194

8.	 In the res/drawable folder, create a new file and name it background.xml. It
defines a gradient blue background:
<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android=
 "http://schemas.android.com/apk/res/android">
 <item>
 <shape>
 <gradient
 android:angle="90"
 android:startColor=
 "@android:color/holo_blue_light"
 android:endColor=
 "@android:color/holo_blue_bright"
 android:type="linear" />
 </shape>
 </item>
</selector>

9.	 Open the activity_main.xml file and modify it so that it looks like this:
<FrameLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft=
 "@dimen/activity_horizontal_margin"
 android:paddingRight=
 "@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:background="@drawable/background"
 android:paddingBottom=
 "@dimen/activity_vertical_margin"
 tools:context=".MainActivity">
 <EditText
 android:id="@+id/main_edit_phone_number"
 android:layout_marginTop="38dp"
 android:textSize="32sp"
 android:gravity="center"
 android:hint="@string/phone_number"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <Button
 android:id="@+id/main_button_send"
 android:background="@drawable/icon"
 android:layout_gravity="center"
 android:layout_width="200dp"
 android:layout_height="200dp" />

Chapter 10

195

 <TextView
 android:text="@string/button_send"
 android:textSize="32sp"
 android:gravity="center"
 android:layout_gravity="bottom"
 android:textColor="@android:color/white"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</FrameLayout>

10.	 Open the androidmanifest.xml file and a permission to send SMS messages:
<uses-permission
 android:name="android.permission.SEND_SMS"/>

11.	 Modify the onCreate method of the MainActivity file. You can press Shift two
times to display a search panel. Type onCreate on the search panel and select the
onCreate method of the MainActivity class:
findViewById(R.id.main_button_send).setOnClickListener(this);

12.	 Add an on click listener on the MainActivity class and implement the
onClick method:
public class MainActivity extends Activity implements View.
OnClickListener{
@Override
public void onClick(View v) {
 String phoneNumber = ((EditText)findViewById(
 R.id.main_edit_phone_number)).getText().toString();
 SmsManager sms = SmsManager.getDefault();
 String message = getString(R.string.yeah);
 if (getString(R.string.really_send_sms) == "YES"){
 Toast.makeText(this, String.format(
 "TEST Send %s to %s", message, phoneNumber),
 Toast.LENGTH_SHORT).show();
 }
 else {
 sms.sendTextMessage(phoneNumber, null, message, null,
 null);

 Toast.makeText(this, String.format(
 "Send %s to %s",
 message, phoneNumber), Toast.LENGTH_SHORT).show();
 }
}

Beta Testing Your Apps

196

13.	 Select the app folder. Next, choose Edit flavors from the Build menu.

14.	 The list only contains a defaultConfig. Click on the + button to add a new flavor. Name
it blueFlavor and give it the same values as min sdk version and target
sdk version as is the case with defaultConfig.

15.	 For the application id field, use the package name + the extension .blue.

16.	 Enter the version code and version name for this flavor and click on the OK button.

17.	 Repeat step 14 to 16 for another flavor. Name that flavor greenFlavor.

18.	 Now your build.gradle file should contain the flavors as shown:
productFlavors {
 blueFlavor {
 minSdkVersion 21
 applicationId 'packt.com.whitelabelmessenger.blue'
 targetSdkVersion 21
 versionCode 1
 versionName '1.0'
 }
 greenFlavor {
 minSdkVersion 21
 applicationId 'packt.com.whitelabelmessenger.green'
 targetSdkVersion 21
 versionCode 1
 versionName '1.0'
 }
}

19.	 In the Project panel, select the src folder under the app folder. Then, create a
new folder and name it blueFlavor. Within that folder, you can maintain the
same structure, as is the case for the main folder. For this recipe, it is sufficient
just to add a res folder and within that folder another one called drawable.

Chapter 10

197

20.	 Do the same thing for the greenFlavor build's flavor. The project structure will now
look like this:

21.	 Copy the background.xml and icon.xml files from the /main/res/drawable
folder and paste them in the blueFlavor/res/drawable folder.

22.	 Repeat this for greenFlavor and open the background.xml file in the
greenFlavor/res/drawable folder. Modify its content. For the green
flavor, we will be using a gradient green color:
<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android=
 "http://schemas.android.com/apk/res/android">
 <item>
 <shape>
 <gradient
 android:angle="90"
 android:startColor=
 "@android:color/holo_green_light"
 android:endColor=
 "@android:color/holo_green_dark"
 android:type="linear" />
 </shape>
 </item>
</selector>

Beta Testing Your Apps

198

23.	 Now, within the same folder, open the icon.xml file and make the drawable folder
appear in green as well:
<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:shape="oval">
 <solid
 android:color="@android:color/holo_green_dark"/>
 <size
 android:width="120dp"
 android:height="120dp"/>
</shape>

24.	 The same thing can be done to use different values (or classes or layouts) for the
debug and release build types. Create a debug folder in the app/src folder.

25.	 Within that folder, create a res folder and within that, a values folder.

26.	 Copy the strings.xml file from the main/res/values folder and paste it into the
debug/res/values folder.

27.	 Open the strings.xml file and modify the really_send_sms string resource:
<string name="really_send_sms">NO</string>

A better approach for this purpose of course will be to use a constants
class that defines different values, but for the sake of simplicity, we
will modify the string resource instead.

Build variants
Select the app folder and choose Select Build Variant from the Build menu. It will display the
Build variants panel as shown in the following screenshot:

Chapter 10

199

And follow the next steps in Build Variants:

1.	 Choose the greenFlavorDebug build variant and run the app.

2.	 If everything goes well, the app has a green look and behaves as if it is being debugged.

3.	 Now change the build variant to blueFlavorDebug and run the app again. Indeed, it
looks blue now.

Build types
More or less the same thing applies to the debug and release build types; however, this time
instead of the looks, the behavior or data (or end points for that matter) changes.

Releasing the app requires signing, which is something we will
do when we distribute the app to the Play Store, which has been
described in the last recipe.

Beta Testing Your Apps

200

This is basically all there is to tell about build variants. Most ideal build types and flavors
contain just a small number of modifications. If the differences between the various flavors
of your app are more than just some tweaks in layouts, drawables, or constant values, you will
have to consider a different approach.

There's more...
Android Studio comes with a couple of other great features to finalize your app. One of them
is creating technical documentation automatically. Just add some comments to a class or
method, like this:

/**
 * This is the main activity where all things are happening
 */
public class MainActivity extends Activity implements View.
OnClickListener{

Now if you choose Generate JavaDoc from the Tools menu and define the path in the
output directory field in the dialog that appears, you just need to click the OK button and
all documentation is being generated as HTML files. The outcome will be displayed in your
browser as follows:

Chapter 10

201

Android Studio tip
Do you often need to return to a particular place in your code? Create a
bookmark with the Cmd + F3 (for Windows: F11) shortcut.
To display a list of bookmarks and to choose from them, use the shortcut
Cmd + F3 (for Windows: Shift + F11).

Runtime permissions
The number of different types of devices that your app will target depends on the feature
requirements (which needs permissions) and the markets at which you are targeting (by
explicitly selecting specific countries or by offering your app in specific languages).

If, for example, your app requires both a front and a back camera, you will be targeting a
smaller number of devices, as would be the case if you just require a back camera.

Usually when installing an app, the user is asked to accept (or decline) all the required
permissions, as it has been defined in the AndroidManifest file of an app.

With the introduction of Android 6 (Marshmallow), the way a user is asked for particular
permissions has changed. Only if a certain type of permission is required, the user will be
prompted so that he can allow or deny that permission.

With that, there is an opportunity for the app to explain why this permission is needed.
After this, the whole thing makes much more sense to the user. These so-called runtime
permissions require a somewhat different development approach.

For this recipe, we will modify the previous app that sends SMSs. Now we need to ask the
user's permission once he hits the button in order to send an SMS.

Getting ready
To test runtime permissions, you need to have a device running on Android 6.0 or higher or
you need to have a virtual device running on Android Marshmallow or higher.

Also, make sure that you have downloaded the Android 6.x SDK (API Level 23 or above).

Beta Testing Your Apps

202

How to do it...
So, how do these runtime permissions look and how do we handle them? This can be checked
with the help of the following steps:

1.	 Open the project from the previous recipe.

2.	 Open the AndroidManifest file and add the permission (according to the new
model) to send SMS messages:
<uses-permission-sdk-
 android:name="android.permission.SEND_SMS"/>

3.	 Open the build.gradle file in the app folder and set the value for
compileSdkVersion to the latest available version. Also, change the values for
each minSdkVersion and targetSdkVersion to 23 or above.

4.	 Modify the onClick method:
@Override
public void onClick(View v) {
 String phoneNumber = ((EditText) findViewById(
 R.id.main_edit_phone_number)).getText().toString();
 String message = getString(R.string.yeah);
 if (Constants.isTestSMS) {
 Toast.makeText(this, String.format(
 "TEST Send %s to %s", message, phoneNumber),
 Toast.LENGTH_SHORT).show();
 }
 else {
 if (checkSelfPermission(Manifest.permission.SEND_SMS)
 != PackageManager.PERMISSION_GRANTED) {
 requestPermissions(new String[]{

 Manifest.permission.SEND_SMS},
 REQUEST_PERMISSION_SEND_SMS);
 }
 }
}

5.	 Add a constant value so that later we will know to which permission request the
permission result is referring to:
private final int REQUEST_PERMISSION_SEND_SMS = 1;

6.	 Implement the sendSms method. We will use the SmsManager method to send the
Y-E-A-H text to the phone number that the user has entered. Once the message has
been sent, a toast will be displayed:
private void sendSms(){
 String phoneNumber = ((EditText) findViewById(

Chapter 10

203

 R.id.main_edit_phone_number)).getText().toString();
 String message = getString(R.string.yeah);
 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage(phoneNumber, null,
 getString(R.string.yeah), null, null);
 Toast.makeText(this, String.format("Send %s to %s",
 getString(R.string.yeah), phoneNumber),
 Toast.LENGTH_SHORT).show();
}

7.	 Finally, implement the onRequestPermissionsResult method. If the granted
permission is the permission for an SMS, then call the sendSms method. If the
permission is denied, a toast will be displayed and the send button and the edit
text to enter the phone number will be disabled:
@Override
public void onRequestPermissionsResult(int requestCode, String
permissions[], int[] grantResults) {
 switch (requestCode) {
 case REQUEST_PERMISSION_SEND_SMS: {
 if (grantResults[0] ==
 PackageManager.PERMISSION_GRANTED) {
 sendSms();
 }
 else {
 findViewById(
 R.id.main_edit_phone_number).setEnabled(
 false);
 findViewById(
 R.id.main_button_send).setEnabled(false);
 Toast.makeText(this,
 getString(R.string.no_sms_permission),
 Toast.LENGTH_SHORT).show();
 }
 return;
 }
 }
}

8.	 Run your app. Use a device running on Android 6.0 or higher or create a virtual device
that runs on the API level 23 or above.

9.	 Now the permission to send the SMS will not be asked upfront (that is, if the user
installs the application). Instead, a dialog asking for permission pops up as soon as
you hit the Send button.

Beta Testing Your Apps

204

10.	 If you agree with the request permission, the SMS message will be sent. If you deny
the requested permission, the edit box and the button will be disabled and a toast
will be displayed to provide feedback:

This recipe has demonstrated the basic idea of runtime permissions.

There's more...
To see how and when to ask for permission, or how and when to provide feedback
about particular features that are not available, you can check the Google guidelines
at https://www.google.com/design/spec/patterns/permissions.html.

https://www.google.com/design/spec/patterns/permissions.html

Chapter 10

205

Android Studio tip
You can easily extract code from a method that has become too
large. Just mark the code that you want to move and use the
shortcut Cmd + Alt + M (for Windows: Ctrl + Alt + M).

Play Store beta distribution
All right, we are going to upload our app to the Play Store as a beta distribution. Exciting,
isn't it?

Getting ready
For this recipe, we will be using the app from the first recipe; although, any app that you
consider to be ready for the beta launch will do.

Make sure you do have some artwork for it as well, such as icons and screenshots. Don't
worry, for this recipe, you can download these items as well from <www.packtpub.com>.
Also, think about your app's metadata, such as title, description, and category.

Most important is that you do have a developers account and that you do have access to the
Google Play Developer console. If you do not have an account, you need to register first via
http://developer.android.com/distribute/googleplay/start.html.

How to do it...
Getting your app into the Play Store is not so hard. It just takes some time to set up things the
right way:

1.	 Sign in to your Google Play Developer Console webpage or register first if you
need to.

2.	 On the dashboard, click on the Add new application button.

3.	 In the dialog, enter the Title of the application Blue Messenger and click on the
Upload now APK button.

4.	 You will notice the production, beta, and alpha tabs. Ideally, you start with alpha
testing, but for demonstration purposes, we will choose the beta tab right away. On
that, the Upload your first APK to beta button is shown. Click on that button.

5.	 In Android Studio, open the app that we created for the first (or second) recipe and
from the Build menu, choose the Generate signed APK option.

6.	 Select the app module and click on the Next button.

www.packtpub.com
http://developer.android.com/distribute/googleplay/start.html

Beta Testing Your Apps

206

7.	 Enter the path to your key store. If you do have one, click on the Create new…
button and find a good place for your key store file (with the .jks extension). Enter
a password for it, repeat the password, and enter a suitable value for First and last
name. Then, click on the OK button.

8.	 Enter the key store password, create a new key alias, and name it
whitelabelmessenger. Enter a password for the key and click on the Next button.

9.	 Enter the master password if needed and click on the OK button.

10.	 Modify the destination path if you wish and then select a build type and flavor.
Choose release and blueFlavor and then click on the OK button.

11.	 A new dialog informs us that a new-signed APK has been created successfully if
everything goes well. Click on the Reveal in Finder (or find it using Windows Explorer
in case you are using Windows) button to see the APK file that has just been created.

12.	 In your browser, upload this APK file. Once the APK file has been uploaded, the
version is displayed on the beta tab; you can pick a testing method and you see the
number of supported devices, which will depend on the API level you have chosen
and the required feature that comes with the SMS permission (which will exclude
many tablets right away for example).

13.	 For the testing method, click on the Setup closed beta testing button.

14.	 Create a list by clicking on the Create a list button. Give the list a name, for example,
Internal testing and add the e-mail addresses of the testers (or just for practicing
purpose, enter your own). When you are done, click on the Save button.

15.	 Enter your own e-mail address as Feedback channel and click on the Save draft
button.

16.	 Although we are not publishing anything on the store yet, you need to enter some
values for the Store listing section, which is an option that you can select from the
menu on the left-hand side of the webpage:

Chapter 10

207

17.	 Enter title, short, and long description. Also, add two screenshots, a high-resolution
icon and a feature graphic image. You can download these resources from
<www.packtpub.com> or you can create them yourself by capturing
screenshots from your app and have some fun with some kind of a
paint program to give them the right widths and heights.

18.	 At categorization, choose applications as the application type and Social or
Communication as the category.

19.	 Enter your contact details and select Not submitting a privacy policy at this time
(unless you do want to do so, of course).

20.	 Click on the Save draft button and continue with the Content Rating section by
choosing this option from the menu on the left-hand side of the screen.

Rate your app
Click on the Continue button, enter your e-mail address, and answer the questions about
whether your app has any violent, sexual, or other potential dangerous content or features.
Finally, click on the Save Questionnaire button:

1.	 You may now click on the Calculate Rating button. Your rating will be displayed after
that. Click on the Apply Rating button and you are done.

2.	 The next section is Pricing and Distribution. Pick this option from the menu on the
left-hand side of the page.

3.	 Make it a free app by clicking on the Free button and choose to select all countries
(or specify specific countries if you wish). After that, click on the Save Draft button.

4.	 By now, the Publish app button should be enabled. Click on it. If it is not enabled, you
can click on the I can't publish? link to find out what information is missing.

5.	 Here, the term "publishing" is a bit confusing. It actually means, in this context, that
the app will be published for the test users that are on the list that you just created.
Do not worry. Until you promote the app to production, nothing will be available at the
Play Store, although the term "publishing" seems to suggest this.

6.	 While your app status says Pending publication, you can investigate some other
options such as the list of devices your app is supporting, the required features,
and permissions and options for analytical purposes, including features split testing
(A/B tests).

www.packtpub.com

Beta Testing Your Apps

208

Have a break
The Pending publication status may take a couple of hours (or perhaps even longer) as
recently (since April 2015) Google announced that it will be reviewing the apps upfront (in a
half-manual-half-automated way) even for alpha and beta distributions.

1.	 Eat a marshmallow or have some coffee or have a walk in the park. Return within a
couple of hours to check whether your app's status has changed to Published. It may
take some time, but it will.

Your testers might need to change their (security) settings to
allow to install apps outside of Google Play Store.

2.	 There are some other things that look confusing. Behind the package name, there
will be a link that reads View in Play Store… and a hint saying that alpha and beta
apps are not listed in the Play Store.

3.	 Click on the APK item in the menu on the left-hand side of the webpage. By following
the link, you will find Opt In Url on the Beta tab that your test users can download
and use to install the beta app:

Huge! Your first beta distribution is ready to be tested. You might need multiple iterations to
get things right or maybe just one beta version will turn out to be sufficient to find out that
your app is ready for the Play Store.

To release your app on the Play Store, click on the Promote to Prod button, if you dare…

And with that, this book ends. There is so much more to tell and to learn about Android
development, such as services, Android Pay, Near Field Communication (NFC), and Bluetooth
to name just a few; however, by reading this book, you have seen most of the elements of the
Android Studio IDE and that was what we were aiming at.

So this is it for now. Thank you for reading, and happy coding!

Chapter 10

209

There's more...
You should be aware of the fact that besides technology, methodology will be just as
important. It is hard to develop an app that is not only technically perfect but also has a lot of
users who are so happy with your app and its flow, usability, and appearance that they all give
you the five stars that you deserve.

I assume you do not want to develop an app for months or for years only to find out later that
actually nobody cares about it. To find out at an early stage what makes people really want to
use your app, you should consider the lean start-up methodology for your app development.

Build – Measure – Learn

The lean start-up methodology is a method to develop businesses and products (or services).
The idea is that experiments based on hypotheses, validated learning, and iterative product
releases lead to shorter product development cycles.

Most important key elements of the lean start-up methodology are:

ff Minimum viable product (MVP)

ff Split testing and actionable metrics

ff Continuous deployment

In short, a MVP is a version of a product that takes minimal effort to test particular ypotheses.

To learn more about the Lean start-up methodologies, check out the website
http://theleanstartup.com, read Eric Ries' book, or find a lean start-up
event near you from http://www.leanstartupcircle.com.

The Play Store developer console provides options for split testing and to measure how
your app is being used. Google analytics can help you to do this as it is the easiest way to get
actionable metrics, which you will need to gather for feedback in order to improve your app by
learning from it.

Continuous deployment nicely fits into the Lean Start-up methodology. It can improve the
quality and speed of your app development.

You might wonder what continuous deployment is about. It takes another book to fully explain
the concept, but here is a short introduction to continuous integration and continuous
delivery, which, if combined, is what continuous deployment is about.

Continuous integration (CI) is the process where developers commit their changes and
merge results to a source code repository. A build server observes the code repository for
changes, pulling and compiling code. The server also runs automated tests.

http://theleanstartup.com
http://www.leanstartupcircle.com

Beta Testing Your Apps

210

Continuous delivery is the process of creating deployable versions of your app automatically,
for example, by publishing an alpha or beta app in the Play Store. For this reason, it is
important that the submitted and validated code will be in an always-deployable state.

Setting up continuous deployment will take some upfront, but in the end, it will result in
smaller and faster development cycles.

For a continuous deployment of your Android app, both Jenkins and TeamCity will be
suitable. Teamcity is recommended most often and does integrate with Android Studio
using a plugin.

To learn how to set up a TeamCity server or to find any further information, you can check
the website of Packt Publishing that offers some great books that explain the concept of
continuous integration and TeamCity in particular.

211

Index
A
Android Marshmallow (6.0) 3
Android Studio

about 2
fragmentation 2-4
URL 2

Android Wear 61, 62
annotations

about 145
URL 158

app
communicating with, content

providers used 138-141
Hello Android studio app, creating 4-7
performance improvements 175-185
testing, with Genymotion emulator 9-13

B
Behavior-driven Development (BDD) 162
build types 199-201
build variants 192-198

C
Calabash

about 162, 163
URL 163

card views
about 39-44
using 44-46

cloud
data, consuming from 22-27
data, submitting 28-35

code
refactoring 13-15

code analysis 164-167
content providers

about 118
design patterns 118
loader manager 127-132
query method, implementing 122-127
RxJava 118
used, for communicating with

other apps 138-141
used, for consuming data 119-122
used, for updating data 119-122

context stream 72
continuous delivery 210
continuous deployment 209
continuous integration (CI) 209
Crashlytics

URL 191
Cucumber

about 162, 163
URL 163

D
Dalvik Debug Monitor Server (DDMS) 172
data

consuming, content providers used 119-122
consuming, from cloud 22-27
submitting, to cloud 28-35
updating, content providers used 119-122

devices 77
Domain-specific Language (DSL) 8
Do not Repeat Yourself (DRY) 144

E
elevations 46-53
Espresso 162

212

F
factory pattern 145
fragments 78
fullscreen wearable app

about 62-67
URL 67

G
Garbage Collector (GC) 170
Genymotion emulator

URL 12
used, for testing app 9-13

Gherkin 162, 163
GitHub

URL 107
Google Camera2 API reference

URL 107
Google Play Developer console

URL 205
Google Play services

about 146, 147
URL 158

Gradle build scripts
using 8, 9

H
Hardware Accelerated Execution Manager

(HAXM) 10
Hello Android studio app

creating 4-7

I
images

capturing 100-104
methods, collapsing 104-106
sepia effect, adding 107
sharing 108-111

Integrated Development Environment (IDE) 1
Internet Movie Database (IMDB) 182
Internet of Things (IoT) 61

J
Java Development Kit (JDK) 4

K
Key Performance Indicators (KPIs)

displaying, in app 133-137

L
leaderboards 147-153
Lean Start-up

URL 209
loader manager

adding, to app 127-132

M
material design

about 37-39
URL 38

media playback 92
memory profilers 170-174
methods

adding, to game 154-158
Model View Controller (MVC) 144, 145
Model View Presenter (MVP) 144, 145

N
notifications 71-75

O
object-oriented (OO) design patterns

URL 118
observer pattern 145
Oracle Virtual Machine (VM) 10
orientation issues 111-115
overdraw

examining 185-189
layout type 190

P
Parse

about 18
setting up 18-22
URL 35

patterns
about 144

213

factory pattern 145
MVC 145
MVP 145
observer pattern 145
singleton pattern 145
URL 158

performance improvements
good practices 175-185
tools 170-175

phablet 78
Play Store beta distribution

about 205-207
app, rating 207
Pending publication status 208

projections
modifying, for displaying KPIs 133-137

Project Mess Detector (PMD) 164

R
recycler views 39-46
ripples 46-53
Robolectric

used, for unit testing 158-161
Robotium

URL 190
runtime permissions

testing 201-205
URL 204

RxJava
about 118
URL 118

S
singleton pattern 145
Smart TV 96-98
software

release cycle 192
Software Development Kit (SDK) 4
support annotations 145

T
tablet 78
Test-driven Development (TDD) 162
theming

about 58-60
URL 58

transitions 54-58

U
unit testing

approaches 162
Robolectric used 158-161

User Experience (UX) 60

W
watch faces

about 67, 68
Android project, creating 68-71
URL 67

Y
You Aren't Gonna Need It (YAGNI) 144
YouTube API

URL 81

Thank you for buying

Android Studio Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Android Native Development
Kit Cookbook
ISBN: 978-1-84969-150-5 Paperback: 346 pages

A step-by-step tutorial with more then 60 concise recipes
on Android NDK development skills

1.	 Build, debug, and profile Android NDK apps.

2.	 Implement part of Android apps in native
C/C++ code.

3.	 Optimize code performance in assembly with
Android NDK.

Android 3.0 Application
Development Cookbook
ISBN: 978-1-84951-294-7 Paperback: 272 pages

Over 70 working recipes covering every aspect of
Android development

1.	 Written for Android 3.0 but also applicable to
lower versions.

2.	 Quickly develop applications that take advantage
of the very latest mobile technologies, including
web apps, sensors, and touch screens.

3.	 Part of Packt's Cookbook series: Discover tips and
tricks for varied and imaginative uses of the latest
Android features.

Please check www.PacktPub.com for information on our titles

Android User Interface
Development Beginner's
Guide
ISBN: 978-1-84951-448-4 Paperback: 304 pages

Quickly design and develop compelling user interfaces
for your Android applications

1.	 Leverage the Android platform's flexibility and
power to design impactful user-interfaces.

2.	 Build compelling, user-friendly applications that
will look great on any Android device.

3.	 Make your application stand out from the rest with
styles and themes.

Android 4: New Features for
Application Development
ISBN: 978-1-84951-952-6 Paperback: 166 pages

Develop Android applications using the new features of
Android Ice Cream Sandwich

1.	 Learn new APIs in Android 4.

2.	 Get familiar with the best practices in developing
Android applications.

3.	 Step-by-step approach with clearly explained
sample codes.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Welcome to
Android Studio
	Introduction
	Creating your first app called Hello Android Studio
	The use of Gradle build scripts
	Testing your app with an emulator called Genymotion
	Refactoring your code

	Chapter 2: Applications with a Cloud – Based Backend
	Introduction
	Setting up Parse
	Consuming data from the cloud
	Submitting data to the cloud

	Chapter 3: Material Design
	Introduction
	Reycler views and card views
	Ripples and elevations
	Great transitions

	Chapter 4: Android Wear
	Wearables
	Fullscreen wearable app
	Watch faces
	Notifications

	Chapter 5: Size Does Matter
	Size and context
	Phone, phablet, and tablet
	Media playback
	TV and media centre

	Chapter 6: Capture and Share
	Introduction
	Capturing images the easy way
	Image capturing using the Camera2 API
	Image sharing
	Orientation issues

	Chapter 7: Content Providers
and Observers
	Introduction
	Content providers
	Consuming and updating data using a content provider – daily thoughts
	Change projections to display KPIs in
your app
	Communicate with other apps using
content providers

	Chapter 8: Improving Quality
	Introduction
	Patterns and support annotations
	Unit testing using Robolectric
	Code analysis

	Chapter 9: Improving Performance
	Introduction
	Memory profilers and performance tools
	Here comes the bad app – performance improvements
	Overdraw issues

	Chapter 10: Beta Testing Your Apps
	Introduction
	Build variants
	Runtime permissions
	Play Store beta distribution

	Index

