
Android Studio
IDE Quick
Reference

A Pocket Guide to Android Studio
Development
—
Ted Hagos

www.allitebooks.com

http://www.allitebooks.org

Android Studio IDE
Quick Reference

A Pocket Guide to Android Studio
Development

Ted Hagos

www.allitebooks.com

http://www.allitebooks.org

Android Studio IDE Quick Reference: A Pocket Guide to Android
Studio Development

ISBN-13 (pbk): 978-1-4842-4952-9	 ISBN-13 (electronic): 978-1-4842-4953-6
https://doi.org/10.1007/978-1-4842-4953-6

Copyright © 2019 by Ted Hagos

This work is subject to copyright. All rights are reserved by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image, we use
the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.
Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail editorial@apress.com; for reprint,
paperback, or audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information,
reference our Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/9781484249529. For more detailed information, please visit
www.apress.com/source-code.

Printed on acid-free paper

Ted Hagos
Manila, National Capital Region, Philippines

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4953-6
http://www.allitebooks.org

For Adrianne and Stephanie.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author��� xi

About the Technical Reviewers��� xiii

Acknowledgments���xv

Introduction���xvii

Contents

■■Chapter 1: �Setup�� 1

Setting Up Android Studio�� 2

Configuring Android Studio�� 4

Hardware Acceleration��� 8

Chapter Summary�� 9

■■Chapter 2: �Quick How-Tos��� 11

Creating a Project��� 11

Creating an Activity�� 17

Creating a Class��� 20

Creating an Interface�� 21

Override Methods��� 21

Running a Project��� 24

Chapter Summary�� 24

www.allitebooks.com

http://www.allitebooks.org

vi

■■Chapter 3: �The IDE��� 25

The IDE��� 26

Main Editor��� 28

Editing Layout Files��� 29

Inserting TODO Items��� 31

How to Get More Screen Space for Code�� 31

Project Tool Window��� 34

Preferences/Settings�� 35

The SDK Manager��� 36

Code Styles�� 38

Chapter Summary�� 38

■■Chapter 4: �Debugging�� 41

Types of Errors��� 41

Syntax Errors��� 41

Runtime Errors��� 42

Logic Errors��� 44

Debugger�� 46

Single Stepping��� 48

Chapter Summary�� 49

■■Chapter 5: �Unit Testing�� 51

JVM Test vs. Instrumented Test�� 52

A Simple Demo��� 53

Implementing a Test��� 57

Running a Unit Test�� 59

Test First��� 61

Chapter Summary�� 61

ContentsContents

vii

■■Chapter 6: �Instrumented Testing��� 63

About Espresso�� 63

Setting Up a Simple Test�� 64

Recording Espresso Tests�� 67

More on Espresso Matchers��� 70

Espresso Actions�� 71

Chapter Summary�� 72

■■Chapter 7: �Android Studio Profiler�� 73

The Profiler��� 73

CPU��� 75

Memory�� 78

Network�� 80

Energy�� 81

Chapter Summary�� 82

■■Chapter 8: �Gradle��� 83

The Build Process��� 83

The Build Files�� 84

Module-Level Gradle File�� 85

Dependencies��� 88

Android Support Library��� 91

Chapter Summary�� 93

■■Chapter 9: �Git��� 95

Getting Git�� 95

Using Android Studio with GitHub�� 97

Sharing a Project on GitHub�� 99

Opening a Project from GitHub��� 103

Contents

viii

Updating Git Projects�� 105

Using Other Git Repos�� 107

Chapter Summary�� 115

■■Chapter 10: �Navigation�� 117

Navigation Before Architecture Components��������������������������������������� 117

Navigation Components��� 120

Working with Jetpack Navigation��� 122

Chapter Summary�� 132

■■Chapter 11: �Lifecycle, ViewModel, LiveData, and Room�������������� 135

Lifecycle-Aware Components��� 135

ViewModel�� 139

LiveData��� 143

Room�� 147

Chapter Summary�� 153

■■Chapter 12: �Release Builds�� 155

Preparing the App for Release�� 155

Preparing the Material and Assets for Release��� 156

Configuring the App for Release�� 156

Building a Release-Ready Application��� 157

Releasing the App�� 161

Chapter Summary�� 165

ContentsContents

ix

■■Chapter 13: �Short Takes�� 167

Productivity Features��� 167

Importing Samples�� 168

Refactoring�� 169

Generate�� 171

Coding Styles��� 173

Live Templates�� 175

Important Keyboard Shortcuts��� 176

Chapter Summary�� 177

�Index��� 179

Contents

xi

About the Author

Ted Hagos is the CTO and Data Protection Officer of RenditionDigital
International, a software development company based out of Dublin. Before
he joined RDI, he had various software development roles and also spent
time as trainer at IBM Advanced Career Education, Ateneo ITI, and Asia
Pacific College. He spent many years in software development dating back
to the days of Turbo C, Clipper, dBase IV, and Visual Basic. Eventually, he
found Java and spent many years working with it. Nowadays, he’s busy with
full-stack JavaScript and Android.

xiii

About the Technical
Reviewers

Marcos Placona is a developer evangelist at Twilio and a GDE. He serves
communities in London and all over Europe. He is passionate about
technology and security and he spends a great deal of his time building
mobile and web apps and occasionally connecting them to physical
devices. Marcos is a great believer in open source projects. When he’s not
writing open source code, he’s probably blogging about code at https://
androidsecurity.info, https://androidthings.rocks, or https://
realkotlin.com. He’s also a great API enthusiast and believes they bring
peace to the software engineering world.

Massimo Nardone has more than 24 years of experience in security,
web/mobile development, cloud, and IT architecture. His true IT passions
are security and Android. He has been programming and teaching how to
program with Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for
more than 20 years. He holds a Master of Science degree in Computing
Science from the University of Salerno, Italy. He has worked as a Project
Manager, Software Engineer, Research Engineer, Chief Security Architect,
Information Security Manager, PCI/SCADA Auditor, and Senior Lead IT
Security/Cloud/SCADA Architect. His technical skills include security,
Android, cloud, Java, MySQL, Drupal, Cobol, Perl, web and mobile
development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python,
Pro Rails, Django CMS, Jekyll, Scratch, etc. He was a visiting lecturer
and supervisor for exercises at the Networking Laboratory of the Helsinki
University of Technology (Aalto University). He holds four international
patents (PKI, SIP, SAML, and Proxy areas). He currently works as the Chief

https://androidsecurity.info/
https://androidsecurity.info/
https://androidthings.rocks/
https://realkotlin.com/
https://realkotlin.com/

xiv

Information Security Officer (CISO) for Cargotec Oyj and he is member of
the ISACA Finland Chapter Board. Massimo has reviewed more than 45 IT
books for different publishers; he is the coauthor of Pro JPA in Java EE 8
(Apress, 2018), Beginning EJB in Java EE 8 (Apress, 2018), and Pro Android
Games (Apress, 2015).

About the Technical ReviewersAbout the Technical Reviewers

xv

Acknowledgments

To Stephanie and Adrianne, my thanks and my love.

xvii

Introduction

Welcome to Android Studio IDE Quick Reference. I wrote this book to serve
as a handy reference to the notable capabilities of Android Studio.

This book is comprised of 13 short chapters. Each chapter breezes through
some features of Android Studio. While the book is focused on the IDE,
many chapters actually deal with Android programming as well, so you’re
going to see some code samples.

�Who This Book Is For
This book is for the experienced programmer who needs a quick reference
on how to do some common tasks in Android Studio IDE. The code
examples are in Java, so it’s for those devs who build Android apps in Java.
This book might also work for someone new to Android Studio but not new
in Android development—such as an Eclipse user who wants to try out
Android Studio.

�Source Code
Source code for this book can be downloaded by clicking the Download
Source Code button located at www.apress.com/us/book/9781484249529.

http://www.apress.com/us/book/9781484249529

1© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_1

Chapter 1
Setup

What this chapter covers:

	Installing Android Studio

	Setting up the IDE

	Basic configuration

Developing applications for Android was not always as convenient as it is
today. When Android 1.0 was released in 2008, what developers got by way
of a development kit was little more than a handful of command line tools
and Ant build scripts. Building apps with Vim, Ant, and other command line
tools wasn’t so bad if you’re used to that kind of thing, but many developers
were not used to it. The lack of IDE capabilities like code hinting, project
setups, and integrated debugging was somewhat of a barrier to entry.

Thankfully, Android Development Tools (ADT) for the Eclipse IDE were
released, also in 2008. Eclipse was, and still is, a favorite and the IDE of
choice for many Java developers. It was natural that it would also be the go-
to IDE for Android developers.

From 2009 to 2012, Eclipse remained the preferred IDE for Android
development. The Android SDK has undergone both major and incremental
changes in structure and in scope. In 2009, the SDK manager was released;
it was used to download tools, individual SDK versions, and Android images
for use with the emulator. In 2010, additional images were released for the
ARM processor and x86 CPUs.

2012 was a big year because Eclipse and the ADT were finally bundled.
Until that time, developers had to install Eclipse and ADT separately,
and the installation process wasn’t always smooth. So the bundling

2

of the two made it a whole lot easier to get started with Android
development. 2012 also marked the last year of Eclipse being the
dominant IDE for Android.

In 2013, Android Studio (AS) was released. To be sure, it was still beta, but
the writing on the wall was clear: it would be the official IDE for Android
development. Android Studio is based on JetBrains’s IntelliJ. IntelliJ is a
commercial Java IDE that also has a community (non-paid) version. This
version serves as the base for Android Studio.

�Setting Up Android Studio
Android Studio’s version at the time of writing is 3.2.1; hopefully the version
won’t be very different by the time you read this book. You can download
it from https://developer.android.com/studio. It’s available for Windows
(both 32- and 64-bit), macOS, and Linux. I ran the installation instructions
on macOS (Mojave), Windows 10 64-bit, and Ubuntu 18. I work primarily in
a macOS environment, which explains why most of the screen grabs for this
book looks like macOS. Android Studio looks, runs, and feels (mostly) the
same on all three platforms, with very minor differences like key bindings
and the main menu bar in macOS.

Before we go further, let’s look at the system requirements for Android
Studio. At a minimum, you’ll need the following:

	Microsoft Windows 7/8/10 (32 or 64-bit) or

	macOS 10.10 (Yosemite or higher) or

	Linux (Gnome or KDE Desktop), Ubuntu 14.04 or higher
(64-bit but capable of running 32-bit applications)

	GNU C Library (glibc 2.19 or later) if you’re on Linux

For hardware, your workstation needs to have at least

	3GB RAM (8GB or more recommended)

	2GB of available HDD space

	1280 x 800 minimum screen resolution

This list came from the official Android website (developer.android.com/
studio) and, of course, more is better. If you can snag 16GB RAM, 512GB
SSD (or bigger), and a full HD (or UHD) monitor, that wouldn’t be bad—not
at all.

And now we get to the JDK (Java Development Kit) requirement. Starting
with Android Studio 2.2, the installer comes with OpenJDK embedded.
This way, a beginner programmer won’t have to bother with the installation

CHAPTER 1: Setup

https://developer.android.com/studio
https://developer.android.com/studio/
https://developer.android.com/studio/

3

of a separate JDK, but you can still install a separate JDK if that’s your
preference. In this book, I’ll assume that you will use the embedded
OpenJDK that comes with Android Studio.

Download the installer from https://developer.android.com/studio/ and
get the proper binary file for your platform.

If you’re in macOS, do the following:

	1.	 Unpack the installer zipped file.

	2.	 Drag the application file into the Applications folder.

	3.	 Launch Android Studio.

	4.	 Android Studio will prompt you to import some
settings if you have a previous installation. You can
import that—it’s the default option.

If you’re in Windows, do the following:

	1.	 Unzip the installer file.

	2.	 Move the unzipped directory to a location of your
choice, such as C:\Users\myname\AndroidStudio.

	3.	 Drill down to the AndroidStudio folder. Inside it is the
studio64.exe file. This is the file you need to launch.
It’s a good idea to create a shortcut for this file. If
you right-click studio64.exe and choose Pin to Start
Menu, you can make Android Studio available from
the Windows Start menu. Alternatively, you can also
pin it to the taskbar.

The Linux installation requires a bit more work than simply double-clicking
and following the installer prompts. In future releases of Ubuntu (and its
derivatives), this might change and become as simple and frictionless as
its Windows and macOS counterparts, but for now, you need to do some
tweaking. The extra activities on Linux are mostly because AS needs some
32-bit libraries and hardware acceleration.

Note  If you have an existing installation of Android Studio, you can keep
using that version and still install Android Studio 3. It can coexist with your
existing version of Android Studio because its settings will be kept in a different
directory.

CHAPTER 1: Setup

https://developer.android.com/studio/

4

To start pulling the 32-bit libraries for Linux, run the following commands in a
terminal window:

sudo apt-get update && sudo apt-get upgrade -y
sudo dpkg --add-architecture i386
sudo apt-get install libncurses5:i386 libstdc++6:i386 zlib1g:i386

When all the prep work is done, you need to do the following:

	1.	 Unpack the downloaded installer file. You can unpack
the file using command line tools or the GUI tools.
You can, for example, right-click the file and select the
“Unpack here” option, if your file manager has it.

	2.	 After unzipping the file, rename the folder to
AndroidStudio.

	3.	 Move the folder to a location where you have read,
write, and execute privileges. Alternatively, you can
also move it to /usr/local/AndroidStudio.

	4.	 Open a terminal window, go to the AndroidStudio/
bin folder, and run the ./studio.sh command.

	5.	 At first launch, Android Studio will ask if you want to
import some settings. If you have installed a previous
version of Android Studio, you may want to import
those settings.

�Configuring Android Studio
If this is the first time you’ve installed Android Studio, you may want to
configure a couple of things before diving into coding work. In this section,
I’ll walk you through the following:

	Acquiring some software that you’ll need in order to
create programs that target specific versions of Android

	Making sure you have all the SDK tools you need

	And, optionally, changing the way you get updates

Note  The installation instructions in this section are meant for Ubuntu 64-bit
and other Ubuntu derivatives (e.g. Linux Mint, Lubuntu, Xubuntu, Ubuntu MATE,
etc.). I chose this distribution because it is a very common Linux flavor, so readers
of this book will be using this distribution. If you are running a 64-bit version of
Ubuntu, you will need to pull some 32-bit libraries in order for AS to function well.

CHAPTER 1: Setup

5

Launch the IDE if you haven’t done so yet, and click the Configure option, as
shown in Figure 1-1. Choose Preferences from the drop-down list.

Clicking the Preferences option opens the Preferences dialog, as shown in
Figure 1-2. On the left-hand side of the dialog, choose the Android SDK option.

Figure 1-1.  Go to Preferences from Android Studio’s opening dialog

Figure 1-2.  SDK platforms

CHAPTER 1: Setup

6

When you get to the SDK window, enable the Show Package Details option
so you can see a more detailed view of each API level. You don’t need to
download everything in the SDK window. You will get only the items you
need.

SDK levels or platform numbers are specific versions of Android. Android
9 (Pie) is API level 28, Android 8 (Oreo) is API levels 26 and 27, and Nougat
is API levels 24 and 25. You don’t need to memorize the platform numbers,
at least not anymore, because the IDE shows the platform number with the
corresponding Android nickname.

Download the API levels you want to target for your applications, but for the
purpose of this book, please download API level 27 (Oreo). It’s what you will
use for the sample projects. Make sure that together with the platforms, you
also download the Google APIs Intel x86 Atom_64 System Image. You will
need it when you get to the part where you test-run your applications.

Choosing an API level may not be a big deal right now because at this
point you’re working with practice apps. When you plan to release your
application to the public, you may not be able to take this choice lightly,
though. Choosing a minimum SDK or API level for your app will determine
how many people will be able to use your application. At the time of writing,
25% of all Android devices are using Marshmallow, 22% for Nougat, and
4% for Oreo. These stats are from dashboard page of developer.android.
com. It’s a good idea to check these stats from time to time at http://bit.
ly/droiddashboard.

Figure 1-3 shows the SDK Tools section.

Figure 1-3.  SDK Tools section

CHAPTER 1: Setup

http://developer.android.com
http://developer.android.com
http://bit.ly/droiddashboard
http://bit.ly/droiddashboard

7

You don’t generally have to change anything in this window, but it wouldn’t
hurt to check if you have the tools, shown in the list below, marked as
Installed:

	Android SDK Build Tools

	Android SDK Platform Tools

	Android SDK Tools

	Android Emulator

	Support Repository

	HAXM Installer

Checking for these tools ensures that you get tools like adb, sqlite, aapt,
and zipalign. These tools help with debugging, creating builds, working with
databases, running emulations, and so on.

Once you’re happy with your selection, click the OK button to start
downloading the packages.

The last configuration check you need to do is to set the update channel. It’s
in the same Preferences window. Click the Updates item on the right-hand
side to show the Updates settings, as shown in Figure 1-4.

Note  If you are on the Linux platform, you cannot use HAXM even if you have
an Intel processor. KVM will be used in Linux instead of HAXM.

Figure 1-4.  Updates

CHAPTER 1: Setup

8

Android Studio is configured by default to get updates from the channel
where you originally downloaded the installer. Since you downloaded the
installer from the stable channel, it will get its update from that channel by
default. You can change the channel to one of these four:

	Canary channel: This channel is for bleeding edge
releases. Because it can be updated as often as every
week, you don’t want to use it for production code.

	Dev channel: This channel is just like the Canary
channel but a bit more stable. You still don’t want to use
it for production.

	Beta channel: This channel contains release
candidates. The devs are basically waiting for feedback
before it gets fed to the stable channel.

	Stable channel: This is the official stable release and it
is suitable for production work.

�Hardware Acceleration
As you write your app, it’s useful to test and run it from time to time in order
to get immediate feedback and find out if it is running as expected, or if it
is running at all. To do this, you will use either a physical or a virtual device.
Each option has its pros and cons and you don’t have to choose one over
the other; in fact, you will have to use both options eventually.

An Android Virtual Device (AVD) is an emulator where you can run your
apps. Running on an emulator can sometimes be slow; this is why Google
and Intel came up with HAXM, an emulator acceleration tool that makes
testing your app a bit more bearable. This is definitely a boon to developers.
That is, if you are using a machine that has an Intel processor that supports
virtualization and if you are not on Linux. But don’t worry if you’re not lucky
enough to fall into that part of the pie; there are ways to achieve emulator
acceleration in Linux, as you’ll see later.

macOS users probably have it the easiest because HAXM is automatically
installed with AS3. You don’t have to do anything to get it because the AS3
installer took care of it for you.

Windows users can get HAXM either by

	Downloading it from https://software.intel.com/en-
us/android. Install it like you would any other Windows
software: double-click and follow the prompts.

	Alternatively, you can get HAXM via AS3’s SDK
manager. This is the recommended method.

CHAPTER 1: Setup

https://software.intel.com/en-us/android
https://software.intel.com/en-us/android

9

For Linux users, the recommended software is KVM instead. KVM (Kernel-
based Virtual Machine) is a virtualization solution for Linux. It contains
virtualization extensions (Intel VT or AMD-V).

To get KVM, you need to pull some software from the repos. But even before
you can do that, you need to do the following first:

	1.	 Make sure that virtualization is enabled on your BIOS
or UEFI settings. Consult your hardware manual
on how to get to these settings. It usually involves
shutting down the PC, restarting it, and pressing an
interrupt key like F2 or DEL as soon as you hear the
chime of your system speaker, but like I said, consult
your hardware manual.

	2.	 Once you’ve made your changes and rebooted to
Linux, find out if your system can run virtualization.
This can be accomplished by running the following
command from a terminal: egrep –c '(vmx|svm)' /
proc/cpuinfo. If the result is a number higher than
zero, you can go ahead with the installation.

To install KVM, type the commands shown in example 1-1 in a terminal
window.

Example 1-1.  Commands to Install KVM

sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder bridge-utils
sudo adduser your_user_name kvm
sudo adduser your_user_name libvirtd

You may have to reboot the system to complete the installation.

Hopefully everything went well and you now have a proper development
environment. In the next chapter, you will familiarize yourself with the various
parts of Android Studio IDE.

�Chapter Summary
	You can get Android and Android Studio for macOS,

Windows, and Linux. Each platform has an available
precompiled binary available on the Android website.

	HAXM gives you a way to accelerate emulation on
Android Virtual Devices. You will automatically get
HAX when you’re on macOS or Windows (with an Intel
processor). If you’re on Linux, you can use KVM instead
of HAXM.

CHAPTER 1: Setup

11© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_2

Chapter 2
Quick How-Tos

What this chapter covers:

	Creating a project

	Creating an activity

	Creating a class and an interface

	Generating code for method overrides

	Running a project

In this chapter, you’ll take a look at some of the basic activities in Android
project development, such as creating a project, activities, classes, interfaces,
methods, and how to run an app. A lot of these elements can be managed
manually (by hand) without much difficulty, but Android Studio has some nifty
capabilities that can help you with these tasks. Android Studio can make these
tasks quicker and more accurate. For example, typing override signatures by
hand can be prone to error, especially if the method signature is long.

�Creating a Project
To create an Android app, you need to create a project. A project is simply
a folder that holds all the things you need to build an app: the Java program
files, images, XML resources, and so on. You can create a project from the
opening screen of Android Studio (when there aren’t any projects open yet),
as shown in Figure 2-1, or from the main menu bar (when another project is
currently open), as shown in Figure 2-2.

If it’s your first time using Android Studio and the very first time you are creating
a project, you’ll probably do it from the opening screen, as shown in Figure 2-1.

12

If you have an existing project open in the IDE, and you’d like to start
another one, you can do so from the main menu bar via File ➤ New ➤
Project, as shown in Figure 2-2.

Figure 2-1.  Creating a project from the opening screen

Figure 2-2.  Creating a project from the main menu bar

CHAPTER 2: Quick How-Tos

13

No matter how you start the project, you’ll see the next screen, shown in
Figure 2-3, where you can fill in some details about the project.

Figure 2-3.  Details of the new project

Details like application name, company domain, and the actual location of
the project will be on this screen. I left the C++ and Kotlin support boxes
unchecked because you won’t need them in this project. If you intend to
mix Java code with C or C++ (NDK, or Native Development Kit), you need
to check the C++ box; otherwise, leave it alone, like I did. If you would like
to use Kotlin instead of Java for development, you need to check the Kotlin
box; otherwise, leave it unchecked, as I did.

The next screen, shown in Figure 2-4, lets you configure the project
some more.

CHAPTER 2: Quick How-Tos

14

On this screen, you get to configure the project for Android watch (wear
OS), TV, or IoT (Internet of Things). I’m assuming that most beginner Android
developers, like the probable readers of this book, will want to start with an
app that runs on a phone or tablet, so only the "Phone and Tablet" box is
checked.

In the next screen, shown in Figure 2-5, you decide if you want the wizard to
generate an activity. There are a couple of choices for the activity, like basic,
bottom navigation, and so on. Most Android applications will include at least
one activity. You can choose the empty activity.

Figure 2-4.  The SDK and form factor

CHAPTER 2: Quick How-Tos

15

Now you come to the final screen of the wizard, shown in Figure 2-6, where
you get to decide on the name of the activity and the name of the XML
layout for the activity. Check the AppCompat checkbox so you can use
modern Android features even if the app will run on older Android versions.

Figure 2-5.  The activity options

CHAPTER 2: Quick How-Tos

16

Click the Finish button and the IDE will start to generate and scaffold an
Android project with one empty activity. Figure 2-7 shows the MyApplication
project open in the IDE.

Figure 2-6.  The activity name

CHAPTER 2: Quick How-Tos

17

A simple app that shows a screen to the user requires at least three things:

	An Activity class that acts as the main program file

	A layout file that contains all the UI definitions (in XML)

	A manifest file that ties all the project’s contents
together (also in XML)

The project creation wizard took care of all of these things.

�Creating an Activity
An activity is largely responsible for what a user sees on the screen. The
Activity class, together with an XML layout file, is what makes up the UI.
Some apps only have one activity and some apps have more. If you need to
add another activity to the project, you can do so on the main menu bar via
File ➤ New ➤ Activity ➤ Empty Activity. Alternatively, you can also create an
activity using the context menu shown in Figure 2-8.

Figure 2-7.  The MyApplication open in the IDE

CHAPTER 2: Quick How-Tos

18

To use the context menu, right-click the app folder (in the project tool
window), as shown in Figure 2-8, and then go to New ➤ Activity ➤ Empty
Activity. Whichever method you use to add another activity, you’ll get to a
dialog screen (shown in Figure 2-9) where you can fill in some details about
the new activity.

Figure 2-8.  Creating a new activity

CHAPTER 2: Quick How-Tos

19

Most of these fields should be familiar to you because you filled them up
during the project creation process. The only checkbox that may be a bit
mysterious is the Launcher Activity checkbox. As you can see from
Figure 2-9, it’s unchecked, and you should leave it that way. If you check the
Launcher Activity box, you’re telling Android Studio to replace the launcher
activity (the first activity you created during the project creation) with this
new activity; that’s not what you’d like to do, so leave the box unchecked.

Note  A launcher activity is the activity that is first shown to the user after an
app has been launched. The configuration of the launcher activity is found in
ActivityMain.XML.

Figure 2-9.  New Android activity

CHAPTER 2: Quick How-Tos

20

�Creating a Class
To create a new class, it’s best to select the project’s package from the
Project Tool window, as shown in Figure 2-10. From there, you can either
use the context menu (right-click) ➤ New ➤ Java class. Alternatively, you
can also use the main menu bar via File ➤ New ➤ Java class.

Figure 2-10.  Using the context menu to create a new class

In the next screen, shown in Figure 2-11, you get to fill in some details for
the new class.

Figure 2-11.  The Create New Class dialog

The Package section of the dialog window is already prepopulated with the
correct package name because you selected the project’s package (in the
Project Tool window) before creating the class. If you hadn’t selected the

CHAPTER 2: Quick How-Tos

21

project’s package, the Package field would be empty. It’s not a big deal to
type the package name yourself, but it’s a potential source of error if you
mistype it.

�Creating an Interface
To create an interface, follow the same steps you took when you created a
class.

	1.	 Using the context menu, right-click a project’s
package to select it.

	2.	 Choose New ➤ Java class.

Figure 2-12 shows the Create New Class dialog. Click the Kind drop-down,
as shown, and choose the Interface option.

Figure 2-12.  Creating a new interface

�Override Methods
Typing all the override method signatures by hand shouldn’t be a big deal,
but Android Studio actually has some nifty features to help you out with
those override signatures.

Figure 2-13 shows the Sample.java class you created earlier. The red
squiggly lines mean the class has errors. Hovering your mouse on the red
squiggly lines shows a balloon tip which contains some information about
the error.

CHAPTER 2: Quick How-Tos

22

Figure 2-13.  Sample.java with errors

To solve the error, you have to override the run() method of the Runnable
interface. You can use the Quick Fix feature of Android Studio to solve this
issue. Press ALT-Enter (Linux or Windows) or Option + Enter (macOS) while
the keyboard cursor is somewhere along the red squiggly lines, as shown in
Figure 2-14.

Figure 2-14.  A quick fix

Figure 2-15.  Selecting methods to implement

Choose the Implement methods option. The Select Methods to Implement
dialog, shown in Figure 2-15, appears next.

CHAPTER 2: Quick How-Tos

23

Select run():void and then click OK. Android Studio will generate the
method signature for you.

Android Studio’s Quick Fix feature isn’t only for overriding methods. You can
use it whenever you see a red squiggly line or any other indication in the IDE
that shows an error. The IDE is robust enough to figure out how to help you
in most situations.

Another way to generate code for overridden methods is to use Android
Studio’s Generate feature. Figure 2-16 shows how to go about this.

Figure 2-16.  Overriding methods using the Generate feature

The Generate feature is versatile. You can use it to generate quite a few
things like getters/setters, constructors, new files, and new classes but for
your purpose now, you’ll use it to generate methods to override. Figure 2-16
shows the general flow of the code generation process, but let’s recap the
steps anyway.

	1.	 Make sure that your editing cursor is inside the class.
The Generate feature is context sensitive, so if the
editing cursor is outside a class body, you won’t get
the options shown in Figure 2-16.

	2.	 Press Alt + Insert (if you’re on Windows or Linux)
or Cmd + N (if you’re on macOS).

CHAPTER 2: Quick How-Tos

24

	3.	 Choose the Override Methods option.

	4.	 Choose the method to override.

�Running a Project
Android Studio has a couple of options for building and running a project;
see Table 2-1.

Table 2-1.  Keyboard Shortcuts for Building and Running a Project

Windows and
Linux

macOS Description

Build Ctrl + F9 Cmd + F9 Runs the build process of Android
Studio and produces an APK
(Android Package)

Build and
Run

Shift + F10 Ctrl + R
Same as “Build” but it also pushes
the APK into a connected device or
a running emulator (AVD)

Apply
changes (with
Instant Run)

Ctrl + F10 Ctrl + Cmd + R Allows you to push code changes to
a connected device or emulator
without building a new APK. It’s
faster than “Build and Run,” so use
it whenever you possible.

�Chapter Summary
	Android Studio has more than one way to accomplish

a task. You can use both the main menu bar and the
context menu to create quite a few things like a new
activity, class, or interface.

	Keyboard shortcuts are much faster than using the main
menu bar or the context menu, so it’s worth the time to
memorize some of these shortcuts.

	Android Studio’s Generate feature can do more than
just generate override methods. You’ll explore its other
capabilities in later chapters.

	The Quick Fix in Android Studio is a versatile tool.
Just click a red squiggly line, and press Alt + Enter
(Windows or Linux) or Option + Enter (macOS).

CHAPTER 2: Quick How-Tos

25© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_3

Chapter 3
The IDE

What this chapter covers:

	Parts of the IDE

	Main editor

	Project tool window

	SDK Manager

	Code styles

In the previous chapter, you learned how to create a project and open it in
the IDE. In this chapter, you’ll take a closer look at its parts.

If you haven’t launched Android Studio yet, now is a good time to do so.
After opening Android Studio, you’ll see the Welcome Screen, as shown in
Figure 3-1.

26

�The IDE
From the opening screen, assuming you either created a new project or
opened an existing one, Figure 3-2 shows the various parts of Android
Studio while a project is open in it.

Figure 3-1.  Welcome to Android Studio

CHAPTER 3: The IDE

27

➊ Main menu bar: You can navigate Android Studio in various ways. Often, there’s
more than one way to do a task, but the primary navigation is done in the main
menu bar. If you’re in Linux or Windows, the main menu bar sits directly at the
top of the IDE; if you’re in macOS, the main menu bar is disconnected from the
IDE (which is how all macOS software works).

➋ Navigation bar: This bar lets you navigate the project files. It’s a horizontally
arranged collection of chevrons that resembles the breadcrumb navigation you
find on some websites. You can open your project files either through the
navigation bar or the Project tool window.

➌ Tool bar: It lets you do a wide range of actions (e.g., save files, run the app,
open the AVD Manager, open the SDK Manager, and undo and redo actions).

➍ Main editor window: This is the most prominent window and has the most
screen real estate. The editor window is where you can create and modify
project files. It changes its appearance depending on what you are editing. If
you’re working on a program source file, this window will show just the source
files. When you are editing layout files, you may see either the raw XML file or a
visual rendering of the layout.

➎ Project tool window: This window shows the contents of the project folders.
You’ll be able to see and launch all your project assets (source code, XML files,
graphics, etc.) from here.

Figure 3-2.  Main parts of Android Studio

CHAPTER 3: The IDE

28

➏ Tool window bar: The tool window bar runs along the perimeter of the IDE
window. It contains the individual buttons you need to activate specific tool
windows (e.g., TODO, Logcat, Project window, Connected Devices, etc.).

➐ Show/hide tool window: It shows (or hides) the tool window bar. It’s a toggle.

➑ Tool window: You will find tool windows on the sides and bottom of the Android
Studio workspace. They’re secondary windows that let you look at the project
from different perspectives. They also let you access the typical tools you need
for development tasks (e.g., debugging, integration with version control, looking
at the build logs, inspecting Logcat dumps, looking at TODO items, etc.). Here
are couple of things you can do with the tool windows:

	You can expand or collapse them by clicking
the tool’s name in the tool window bar. You can
also drag, pin, unpin, attach, and detach the tool
windows.

	You can rearrange the tool windows, but if you feel
you need to restore the tool window to the default
layout, you can do so from the main menu bar; click
Window ➤ Restore Default Layout. Also, if you want
to customize the default layout, you can rearrange
the windows to your liking from the main menu bar by
clicking Window ➤ Store Current Layout as Default.

�Main Editor
Like in most IDEs, the main editor window lets you modify and work with
source files. What makes it stand out is how well it understands Android
development assets. Android Studio lets you work with a variety of file types,
but you’ll probably spend most of your time editing these types of files:

	Java source files

	XML files

	UI layout files

When you’re working with Java source files, you get all the code hinting
and completions that you’ve come to expect from a modern editor. What’s
more, it gives you plenty of early warning when something is wrong with
your code. Figure 3-3 shows a Java class file open in the main editor. The
class file is an activity and it’s missing a semicolon in one of its statements.
Android Studio peppers the IDE with (red) squiggly lines, which indicate that
the class won’t compile.

CHAPTER 3: The IDE

29

Android Studio places the squiggly lines very near the offending code. As
you can see in Figure 3-3, the squiggly lines are placed right at the point
where the semicolon is expected.

�Editing Layout Files
The screens that your user sees are made up of activity source files and
layout files. The layout files are written in XML. Android Studio undoubtedly
can edit XML files, but what sets it apart is how intuitively it can render the
XML files in a WYSIWYG mode (what you see is what you get). Figure 3-4
shows the two ways you can work with layout files.

Figure 3-3.  Main editor showing error indicators

Figure 3-4.  Design mode and Text mode editing of layout files

CHAPTER 3: The IDE

30

Figure 3-5 shows the various parts of Android Studio that are relevant when
working on a layout file during Design mode.

	View palette: The View palette contains the views
(widgets) that you can drag and drop on either the
Design surface or Blueprint surface.

	Design surface: It acts like a real-world preview of your
screen.

	Blueprint surface: Similar to the Design surface, but it
only contains the outlines of the UI elements.

	Attributes window: You can change the properties of
the UI element (view) in here. When you make a change
on the properties of a view using the Attributes window,
that change will be automatically reflected in the layout’s
XML file. Similarly, when you make a change in the XML
file, it will automatically be reflected in the Attributes
window.

Figure 3-5.  Layout design tools of Android Studio

CHAPTER 3: The IDE

31

�Inserting TODO Items
You don’t have to create a separate file to keep track of your TODO list for
your app. When you create a comment with TODO text like

// TODO This is a sample todo

Android Studio will keep track of all the TODO comments in all of your
source files. See Figure 3-6.

To view all your TODO items, click the TODO tab in the tool window bar.

�How to Get More Screen Space for Code
You can get more screen real estate by closing all tool windows. Figure 3-7
shows a Java source file open in the main editor window while all the tool
windows are closed. You can collapse any tool window by simply clicking its
name, so to collapse the Project tool window, click Project.

Figure 3-6.  TODO items

CHAPTER 3: The IDE

32

You can get even more screen real estate by hiding all the tool window bars,
as shown in Figure 3-8.

Figure 3-7.  Main editor, with all tool windows closed

CHAPTER 3: The IDE

33

You can get even more screen space by entering distraction-free mode,
as shown in Figure 3-9. You can enter distraction-free mode from the main
menu bar via View ➤ Enter Distraction Free Mode. To exit the mode, click
View ➤ Exit Distraction Free Mode.

Figure 3-8.  Main editor, with all tool windows closed and toolbars hidden

Figure 3-9.  Distraction-free mode

CHAPTER 3: The IDE

34

You may also try two other modes that can increase screen real estate.
They’re also found in the View menu from the main menu bar.

	Presentation mode

	Full screen

�Project Tool Window
You can get to your project’s files and assets via the Project tool window,
shown in Figure 3-10. It has a tree-like structure and the sections are
collapsible. You can launch any file from this window. If you want to open a
file, you simply double-click the file from this window.

By default, Android Studio displays the project files in Android view, as
shown in Figure 3-10. The Android view is organized by modules to provide
quick access to the project’s most relevant files. You change how you view
the project files by clicking the down arrow on top of the Project window, as
shown in Figure 3-11.

Figure 3-10.  Project tool window

CHAPTER 3: The IDE

35

�Preferences/Settings
If you want to customize the behavior or look of Android Studio, you can
do so in its Settings or Preferences window; it’s called Settings if you’re in
Windows or Linux and Preferences if you’re in macOS. See Figure 3-12.

For Windows and Linux users, you can get to the Settings window in one of
two ways:

	From the main menu bar, click File ➤ Settings.

	Use the keyboard shortcut Ctrl + Alt + S.

For macOS users, you can do it this way:

	From the main menu bar, click Android Studio ➤
Preferences.

	Use the keyboard shortcut Command + ,.

Figure 3-11.  How to change views in the Project tool window

CHAPTER 3: The IDE

36

You can access a variety of settings in this window, such as how Android
Studio looks, whether to use spaces or tabs in the editor, how many spaces
to use for tabs, which version control to use, what API to download, and
what system images to use for AVD.

�The SDK Manager
The SDK Manager is used to manage what API levels (Android versions)
and other Android tools you want downloaded into your local system. You
can get to the SDK Manager via the Settings or Preferences window, and
then you click the Android SDK item (found on the left side), as shown in
Figure 3-13.

Figure 3-12.  Settings/Preferences window

CHAPTER 3: The IDE

37

The SDK platforms (where you can select the Android versions to
download), SDK tools, and SDK update sites can be accessed by clicking
their tabs, which are found in the upper middle portion of the window.

You can also launch the SDK Manager from the tool bars, as shown in
Figure 3-14.

Figure 3-13.  SDK Manager

Figure 3-14.  Launch the SDK Manager from the tool bar

CHAPTER 3: The IDE

38

�Code Styles
You can change the code style scheme in Settings/Preferences ➤ Editor ➤
Code Style, as shown in Figure 3-15.

In this window, you can customize tab sizes, indents, how much white
space is the default for your code, how getters and setters are generated,
code generation, how imports are done, and more.

�Chapter Summary
	You can see more of your code by increasing the screen

real estate for the main editor. You can do this by

�� Collapsing all the tool windows

�� Hiding the tool window bars

�� Entering distraction-free mode

�� Going to full-screen mode

Figure 3-15.  Code styles

CHAPTER 3: The IDE

39

	You can change the coding scheme for Java (or any
language you like) in Settings/Preferences ➤ Editor ➤
Code Style.

	You can change how you view the project files from
switching the view in the Project tool window.

	Adding a TODO item is easy in Android Studio. Just
add a single line comment followed by some TODO
text, like this:

// TODO This is my todo list

CHAPTER 3: The IDE

41© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_4

Chapter 4
Debugging

What this chapter covers:

	Common errors you’ll encounter

	Logging debug statements

	Using the debugger

Dealing with errors is a big part of your life as a developer. This chapter will
discuss the kinds of errors you’ve faced and will still face in the foreseeable
future. You’ll see how you can use Android Studio to ease the difficulty of
dealing with these errors.

�Types of Errors
The three most common errors you’ll face in programming are

	Syntax errors

	Runtime errors

	Logic errors

�Syntax Errors
Syntax errors are exactly what you think they are: errors in the syntax. They
happen because you wrote something in the code that’s not allowed by the set
of rules of the Java compiler. In other words, the compiler doesn’t understand
it. The error can be as simple as forgetting to close a parenthesis or a missing

42

pair of curly braces. It can be as complex as passing the wrong type of
argument to a function or using a parameterized class when using generics.

You can catch syntax errors in Android Studio with ease. The clue is the red
squiggly lines in the main editor, as in Figure 4-1.

They mean something is syntactically wrong with your code. The IDE places
the red squiggly lines very near the offending code. If you hover your mouse
on a red squiggly line, most of the time Android Studio can tell you, with a high
degree of accuracy, what’s wrong with the code. What’s more, you can quickly
fix these kinds of errors using a technique that’s aptly named “quick fix”.

To do a quick fix, bring the cursor anywhere within the red squiggly lines and
then press Alt + Enter (for Windows or Linux) or Option + Enter (for macOS).
The IDE takes care of the rest. If there’s more than one way to fix the error,
the IDE will show you some options.

�Runtime Errors
Runtime errors happen when your code hits a situation it doesn’t expect. As
the name implies, this error happens only when your program is running. It’s
not something you’ll see during compilation.

Java has two types of exceptions, checked and unchecked. Android Studio
gives you lots of assistance with checked exceptions. Figure 4-2 shows
what happens in the main editor when you try to call to a method that
throws a checked exception; with unchecked exceptions, you’re still on your
own.

Figure 4-1.  Main editor showing error indicators

CHAPTER 4: Debugging

43

There are two ways to resolve the error shown in Figure 4-2: you can
enclose the openFileOutput() method call inside a try-catch structure or
you add an exception to the method signature, as shown in Figure 4-3.

Figure 4-2.  The IDE reminder that you need to handle the exception

Figure 4-3.  Quick fixes

Listing 4-1 shows how to handle the FileNotFoundException by adding a
throws clause to the method signature.

Listing 4-1.  FileNotFoundException Thrown in saveData()

import java.io.FileNotFoundException;
...
void saveData() throws FileNotFoundException {
 String fn = "somefile.txt";

 FileOutputStream out = openFileOutput(fn, Context.MODE_APPEND);
}

Listing 4-2 shows the code for handling the same exception using a
try-catch block.

CHAPTER 4: Debugging

44

Listing 4-2.  Handling an Exception Using try-catch

void saveData() {
 String fn = "somefile.txt";

 try {
 FileOutputStream out = openFileOutput(fn, Context.MODE_APPEND);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 finally {
 ...
 }
}

I use a try-catch when I want to handle the exception locally, meaning in the
same block of code where the exception might be thrown. Most of the time,
the only things to do are to (1) log the error and (2) try to recover from the
error, if at all possible, and let the user try again.

Using a throws clause, on the other hand, means you don’t want to handle
the error on the local block; you’d like the calling method to take care of the
error instead. If the calling method also uses a throws clause in its signature,
then the error handling is passed along up the call stack.

�Logic Errors
Logic errors are the hardest to find. As the name suggests, it’s an error
in your logic. When your code is not doing what you thought it should be
doing, that’s logic error. There are many ways to cope with a logic error,
but in this section, you’ll take a look at two: printing debugging statements
in certain places of your code and walking through your code using the
debugger.

As you inspect your code, you will recognize certain areas where you’re
pretty sure about what’s going on, and then there are areas where you
are not so sure. You can place debugging statements in the latter areas.
It’s like leaving breadcrumbs to follow. There are a couple of ways to print
debugging statements. You can either use println, Log, or the Logger class.

When you set Logcat’s mode to verbose, info, or debug, you will see all
the messages that Android’s runtime generates. If you want to be able to
filter out messages such as warn or error, you need to use either the Log or
Logger class.

CHAPTER 4: Debugging

45

The Log class has five static methods:

Log.v(tag, message) // verbose
Log.d(tag, message) // debug
Log.i(tag, message) // info
Log.w(tag, message) // warning
Log.e(tag, message) // error

In each case, tag is a String literal or variable, typically the name of the
class where Log is called. The message is also String literal or variable which
contains what you actually want to see in the log. See Listing 4-3.

Listing 4-3.  Typical Use of the Log Class

package net.workingdev.myapplication;

import android.content.Context;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;

public class MainActivity extends AppCompatActivity {

 String TAG = this.getClass().getName();

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...
 }

 void saveData() {
 String fn = "somefile.txt";

 try {
 FileOutputStream out = openFileOutput(fn, Context.MODE_APPEND);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 Log.e(TAG, "error");
 }
 finally {
 Log.v(TAG, "My Message");
 }
 }
}

When the app is running, you can see the Log messages in the Logcat tool
window, as shown in Figure 4-4. You can launch the Logcat window either
by clicking its tab in the menu strip at the bottom of the IDE or from the main
menu bar via View ➤ Tool Windows ➤ Logcat.

CHAPTER 4: Debugging

46

�Debugger
Android Studio includes an interactive debugger which allows you to walk
and step through the code while it’s running. With the interactive debugger,
you can inspect snapshots of the application—values of variables, running
threads, and so on—at specific locations in the code and at specific points
in time. These specific locations in the code are called breakpoints; you get
to choose these breakpoints.

To set a breakpoint, choose a line that has an executable statement and
then click its line number in the gutter. When you set a breakpoint, there
will be a pink circle icon in the gutter and the whole line will be lit in pink, as
shown in Figure 4-5.

Figure 4-4.  Logcat tool window

CHAPTER 4: Debugging

47

After the breakpoints are set, you have to run the app in debug mode. Stop
the app if it is currently running and from the main menu bar, click Run ➤
Debug App.

Use the application as usual. When the execution comes to a line where
you set a breakpoint, the line turns from pink to blue. This is how you
know the code execution is at your breakpoint. At this point, the debugger
window opens, the execution stops, and Android Studio gets into interactive
debugging mode. While you are here, the state of the application is

Note  Running the app in debug mode isn’t the only way to debug the app. You
can also attach the debugger process in a currently running application. There
are situations where this second technique is useful. For example, when the bug
you are trying to solve occurs in very specific conditions, you may want to run
the app for a while, and when you think you are close to the point of error, you
can then attach the debugger.

Breakpoints

Debugger toolbar

Watch Window

Figure 4-5.  Debugger window

CHAPTER 4: Debugging

48

displayed in the Debug tool window. During this time, you can inspect
values of variables and even see the threads running in the app.

You can also add variables or expression in the Watch window by clicking
the plus sign with the spectacles icon. You’ll get a text field where you
can enter any valid expression. When you press Enter, Android Studio
will evaluate the expression and show you the result. To remove a watch
expression, select the expression and click the minus sign icon in the Watch
window.

�Single Stepping
Like most debuggers, Android Studio lets you step line by line through your
program. When the debugger stops at a breakpoint, you have a couple of
tools at your disposal. You’d typically want to know how to do the following.

	Resume: Resumes execution until you get to the next
breakpoint. If there aren’t any more breakpoints, then
the program runs like it would in normal execution.

	Step into: If the next line has a method call, this will
jump to the method and pause it at the first line.

	Step over: Executes whatever happens on the next line
and then jumps to the next line.

	Step out: Executes the remainder of the current method
and then pauses at the next statement after the method.
It essentially gets out of the method.

You can get to these actions from the main menu bar under the Run menu.
You can also get to them from the Debugger tool bar (shown in Figure 4-6).

Figure 4-6.  Debugger tool bar

CHAPTER 4: Debugging

49

Lastly, you can get the single-step actions via the keyboard shortcuts
explained in Table 4-1.

Table 4-1.  Debugger Keyboard Shortcuts

Windows/Linux macOS

Debug Shift + F9 Ctrl + D

Resume F9 Command + Option + R

Step into F7 F7

Step over F8 F8

Step out Shift + F8 Shift + F8

�Chapter Summary
	The three kinds of errors you may encounter are compile

type or syntax errors, runtime errors, and logic errors.

	Syntax errors are the easiest to fix. Android Studio
bends over backwards for you so you can quickly spot
syntax errors. There are various ways to fix syntax errors
with AS3, but most of the time, the quick fix should do it.

	You can walk through your code line by line by setting
breakpoints and using the single-step actions.

CHAPTER 4: Debugging

51© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_5

Chapter 5
Unit Testing

What this chapter covers:

	Testing basics

	How to run efficient unit tests

	Adding and implementing unit tests

The practice of software testing has been around since the dawn of software
development. When you write programs, you need a way to verify that they
work in the intended manner. In the early days of software development,
testing was done in a somewhat ad hoc way: you’d write some code, write
a few manual tests to see if it looks right, go back to the code for some
adjustment, and rinse-repeat. That’s not the case anymore. Modern software
has become so sophisticated that it cannot simply rely on a few manual
tests to ensure it works properly.

In this chapter, you’ll breeze through how to do unit testing in Android. Unit
testing is functional testing that’s done by a developer; not a QA. A unit test
is usually simple; it’s a particular thing that a method might do or produce.
An application typically has many unit tests because each test is a very
narrowly defined set of behaviors. So, you’ll need lots of tests to cover the
whole functionality. You will use JUnit to write your tests.

JUnit is a regression testing framework written by Kent Beck and Erich
Gamma. Among their other achievements, you might remember one of them
as the guy who created extreme programming and the other one from Gang
of Four (GoF, Design Patterns), respectively.

Java developers have long used JUnit for unit testing. Android Studio comes
with JUnit and is very well integrated in it. You don’t have to do much by
way of setup. You only need to write your tests.

52

�JVM Test vs. Instrumented Test
If you examine any Android application, you’ll see that it has two parts: a
Java-based behavior and an Android-based behavior.

The Java part is where you code business logic, calculations, and data
transformations. The Android part is where you actually interact with the
Android platform. This is where you receive input from users or show results
to them. It makes perfect sense if you can test the Java-based behavior
separate from the Android part because it’s much quicker to execute.
Fortunately, this is already the way it’s done in Android Studio. When you
create a project, Android Studio creates two separate folders: one for the
JVM tests and another for the instrumented tests. Figure 5-1 shows the two
test folders in the Android view and Figure 5-2 shows the same two folders
in the Project view.

Figure 5-1.  The JVM test and the instrumented test in the Android view

The JVM test folder is simply referred to as test while the one for the
instrumented test is called androidTest.

CHAPTER 5: Unit Testing

53

As you can see from either Figure 5-1 or 5-2, Android Studio went the extra
mile to generate sample test files for both the JVM and instrumented tests.
The example files are there to serve as quick references; they show what
unit tests might look like.

�A Simple Demo
To get started, create a project with an empty activity in Android Studio.
Create a class and name it Factorial.java. Fill it up with the code shown
in Listing 5-1.

Listing 5-1.  Factorial.java

public class Factorial {
 public static double factorial(int arg) {
 if (arg == 0) {
 return 1.0;
 }

Figure 5-2.  The JVM test and the instrumented test in the Project view

CHAPTER 5: Unit Testing

54

 else {
 return arg + factorial(arg - 1);
 }
 }
}

Make sure that Factorial.java is open in the main editor, as shown in
Figure 5-3. Then, from the main menu bar, go to Navigate ➤ Test. Similarly,
you can also create a test using the keyboard shortcut (Shift + Command + T
in macOS and Ctrl + Shift + T for Linux and Windows).

Figure 5-3.  Creating a test for Factorial.java

Figure 5-4.  The Create New Test pop-up

Right after you click the Test option, a pop-up dialog (Figure 5-4) will prompt
you to click another link. Click the Create New Test option, as shown in
Figure 5-4.

CHAPTER 5: Unit Testing

55

Right after creating a new test, you’ll see another pop-up dialog, shown
in Figure 5-5, which I’ve annotated. Please follow the annotations and
instructions in Figure 5-5.

Figure 5-5.  Creating FactorialTest

➊ You can choose which testing library you want to use. You can choose JUnit 3,
4, or 5. You can even choose Groovy JUnit, Spock, or TestNG. I used JUnit4
because it comes installed with Android Studio.

➋ The convention for naming a test class is “name of the class to test” + “Test”.
Android Studio populates this field using this convention.

➌ Leave this field blank because you don’t need to inherit from anything.

➍ You don’t need the setUp() and tearDown() routines for now, so leave them
unchecked.

➎ Check the factorial() method because you want to generate a test for this.

When you click the OK button, Android Studio will ask where you want to
save the test file. This is a JVM test, so you want to save it in the test folder
(not in androidTest), as shown in Figure 5-6. Click OK.

CHAPTER 5: Unit Testing

56

Android Studio will now create the test file for you. If you open
FactorialTest.java, you’ll see the generated skeleton code shown in
Figure 5-7.

Figure 5-6.  Choosing the destination directory

Figure 5-7.  FactorialTest.java in Project view and the main editor

➊ The file Factorial.java was created under the test folder.

➋ A factorial() method was created and it’s annotated as @Test. This is how
JUnit will know that this method is a unit test. You can prepend your method
names with “test,” as in testFactorial(), but that is not necessary. The @Test
annotation is enough.

➌ This is where you put your assertions.

CHAPTER 5: Unit Testing

57

See how simple that was? Creating a test case in Android Studio doesn’t
really involve you that much in terms of setup and configuration. All you
need to do now is write your test.

�Implementing a Test
JUnit supplies several static methods that you can use in your test to
make assertions about your code’s behavior. You use assertions to show
an expected result, which is your control data. It’s usually calculated
independently and is known to be true or correct—that’s why you use it as
control data. When the expected data is returned from the assertion, the
test passes; otherwise, the test fails. Table 5-1 shows the common assert
methods you might need for your code.

Table 5-1.  Common Assert Methods

Method Description

assertEquals() Returns true if two objects or primitives have the same value

assertNotEquals() The reverse of assertEquals()

assertSame() Returns true if two references point to the same object

assertNotSame() Reverse of assertSame()

assertTrue() Tests a Boolean expression

assertFalse() The reverse of assertTrue()

assertNull() Tests for a null object

assertNotNull() The reverse of assertNull()

Now that you know a couple of assert methods, you’re ready to write some
tests. Listing 5-2 shows the code for FactorialTest.java.

Listing 5-2.  FactorialTest.java

import org.junit.Test;
import static org.junit.Assert.*;

public class FactorialTest {

 @Test
 public void factorial() {
 assertEquals(1.0, Factorial.factorial(1),0.0);
 assertEquals(120.0, Factorial.factorial(5), 0.0);
 }
}

CHAPTER 5: Unit Testing

58

Your FactorialTest class has only one method because it’s for illustration
purposes only. Real-world code would have many more methods than this,
to be sure.

Notice that each test (method) is annotated by @Test. This is how JUnit
knows that factorial() is a test case. Notice also that assertEquals() is a
method of the Assert class, but you’re not writing the fully qualified name
here because you’ve got a static import on Assert. It certainly makes life
easier.

The assertEquals() method takes three parameters. They’re illustrated in
Figure 5-8.

Expected value Actual value Delta

Figure 5-8.  The assertEquals Method

➊ The Expected value is your control data; this is usually hard-coded in the test.

➋ The Actual value is what your method returns. If the expected value is the same
as actual value, the assertEquals() passes; your code is behaving as
expected.

➌ Delta is intended to reflect how close the actual and expected values can be
and still be considered equal. Some developers call this parameter the “fuzz
factor.” When the difference between the expected and actual value is greater
than the fuzz factor, then assertEquals() will fail. I used 0.0 here because I
don’t want to tolerate any kind of deviation. You can use other values like 0.001,
0.002, and so on; it depends on your use-case and how much fuzz your app is
willing to tolerate.

Now your code is complete. You can insert a couple more asserts in the
code so you can get into the groove of things, if you prefer.

There are couple of things I did not include in this sample code. I did not
override the setUp() and tearDown() methods because I didn’t need to.
You would normally use the setUp() method if you need to set up database
connections, network connections, and so on. Use the tearDown() method
to close whatever you opened in the setUp().

Now let’s run the test.

CHAPTER 5: Unit Testing

59

�Running a Unit Test
You can run just one test or all the tests in the class. The little green arrows
in the gutter of the main editor are clickable. Clicking the little arrow beside
the name of the class will run all the tests in the class. When you click the
one beside the name of test method, it will run only that test case. See
Figure 5-9.

Figure 5-9.  FactorialTest.java in the main editor

Figure 5-10.  Result of running FactorialTest.java

Similarly, you can also run the test from the main menu bar via Run ➤ Run.

Figure 5-10 shows the result of the text execution.

CHAPTER 5: Unit Testing

60

Android Studio gives you plenty of cues so you can tell if your tests are
passing or failing. The first run tells you that there’s something wrong with
Factorial.java; the assertEquals() has failed.

The test failed because the factorial of 1 isn’t 2, it’s 1. If you look closer at
Factorial.java, you’ll notice that the factorial value isn’t calculated properly.

Edit the Factorial.java file to change

return arg + factorial(arg - 1);

to

return arg * factorial(arg - 1);

If you run the test again, you will see successful results, as shown in
Figure 5-11.

Tip  When a test fails, it’s best to use the debugger to investigate the code.
FactorialTest.java is no different than any other class in the project; it’s
just another Java file, so you can definitely debug it. Put some breakpoints
in strategic places of your test code, and then instead of “running” it, run the
debugger so you can walk through it.

Figure 5-11.  Successful test

CHAPTER 5: Unit Testing

61

Instead of yellow exclamation marks, you now see green check marks.
Instead of seeing “Test failed,” you now see “Test passed.” Now you know
that your code works as expected.

�Test First
Having a way to test your code in an automated way and at a high frequency
is important. It’s so important that many developers advocate writing
your test suite first, even before you write your actual code. This is called
test-driven development, or TDD for short. The basic idea is that the tests
represent the requirements of your application which the code must satisfy.

To see how to do TDD in Android Studio, delete the Factorial.java file in
your project and run the tests again. Of course, it will fail; that’s the idea.
You always start with failing tests. Now, create the Factorial class and start
putting in the methods and the code that will make the tests pass.

Once you have a couple of test cases, a bit more code, and no errors, try
running the tests again. The idea is to run the tests every time you make
significant (enough) changes to the code. That way, when all your tests pass,
you know that you’re not introducing any breaking changes to your code.

Compare this practice to what a lot of devs do, which is write a bunch of code
first and then write a little test program to verify the code, maybe something
with a static main() method and a couple of printlns. Then they throw away
the test code—as if their code won’t ever break again! Hopefully with this
chapter, you now know better than to throw away test code. You should
cultivate it and run it often to make sure that your code is to spec.

�Chapter Summary
	Unit testing is a core development task. It should

be a core development task because modern and
sophisticated software shouldn’t rely on puny, ad hoc,
throw-away tests.

	A JVM test is different from an instrumented test. A JVM
test is used for the Java part of your code—the part that
doesn’t need to interact with the Android platform.

	Android Studio lets you separate the JVM test from
instrumented tests.

	JVM tests are like regular class files: you can debug and
step through them.

	Each JUnit test is annotated by @Test. This is how JUnit
knows which methods are supposed to be test cases.

CHAPTER 5: Unit Testing

63© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_6

Chapter 6
Instrumented Testing

What this chapter covers:

	Details about instrumented testing

	How to create UI test interactions

	Basic test interactions

	Implementing test verifications

	Test recording

You learned how to perform JVM testing in the previous chapter. In this
chapter, you’ll do some testing that deals with the Android part of an
application. Unit testing that interacts with the Android platform is known as
instrumented testing, and you will use the Espresso framework to do this.

�About Espresso
Google released Espresso in 2013, and with its 2.0 release, Espresso
became a part of the Android Support Repository. The general steps when
working with Espresso tests are the following:

	1.	 Match: Use a matcher to target a specific
component like a button or TextView. A ViewMatcher
lets you find a View object in the hierarchy.

	2.	 Act: Use a ViewAction object to perform an action
like a click on a targeted View object.

	3.	 Assert: Use an assertion on the state of a View.

64

Imagine you have a simple screen that has a button and a TextView. When
you click the button, you see the text “Hello World” on the TextView. You can
write the test like this:

onView(withId(R.id.button)) ➊
 .perform(Click()) ➋
onView(withId(R.id.textview)) ➌
 .check(matches(withText("Hello World"))); ➍

➊ Use a ViewMatcher to find a View object. You’re looking for a View with an id of
button. Remember that when you’re using onView(), Espresso waits until all
synchronization conditions are met before it performs the corresponding UI action.

➋ When you find it, use a ViewAction to do something with it; in this case, you
want to click it.

➌ Once again, you use a ViewMatcher to find a View object. This time, you’re
trying to find a TextView with an id of textview.

➍ When you find it, you want to check if its text property is a match to “Hello World.”

�Setting Up a Simple Test
Let’s set up a simple project, something that has an empty activity. Listing 6-1
shows the XML layout code and Listing 6-2 shows the MainActivity code.

Listing 6-1.  activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <TextView
 android:id="@+id/textView"
 android:layout_width="241dp"
 android:layout_height="wrap_content"
 android:layout_marginTop="147dp"
 android:text="TextView"
 android:textSize="36sp"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

CHAPTER 6: Instrumented Testing

65

 <Button
 android:id="@+id/btnhello"
 android:layout_width="146dp"
 android:layout_height="wrap_content"
 android:layout_marginTop="20dp"
 android:onClick="onClick"
 android:text="hello"
 android:textSize="36sp"
 app:layout_constraintEnd_toEndOf="@+id/textView"
 app:layout_constraintHorizontal_bias="0.494"
 app:layout_constraintStart_toStartOf="@+id/textView"
 app:layout_constraintTop_toBottomOf="@+id/textView" />

 <Button
 android:id="@+id/btnworld"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="8dp"
 android:onClick="onClick"
 android:text="world"
 android:textSize="36sp"
 app:layout_constraintEnd_toEndOf="@+id/btnhello"
 app:layout_constraintHorizontal_bias="0.0"
 app:layout_constraintStart_toStartOf="@+id/btnhello"
 app:layout_constraintTop_toBottomOf="@+id/btnhello" />
</android.support.constraint.ConstraintLayout>

The layout code is fairly simple, as you can see: it has one TextView and two
buttons. Both buttons call the onClick() method in MainActivity when the
user clicks them.

Listing 6-2.  MainActivity

public class MainActivity extends AppCompatActivity {

 TextView txtview;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 txtview = (TextView) findViewById(R.id.textView);
 }

 public void onClick(View view) {
 switch(view.getId()) {
 case R.id.btnhello:
 txtview.setText("hello");
 break;

CHAPTER 6: Instrumented Testing

66

 case R.id.btnworld:
 txtview.setText("world");
 break;
 }
 }
}

The onClick() method in MainActivity basically tries to get the id of the
button that was clicked and routes program logic according to it. If btnhello
is clicked, you set text content of the TextView to “hello” and if btnworld is
clicked, you set the content to “world”—it’s simple enough. To verify this
behavior, you can set up an instrumented test.

In the previous chapter, you wrote the test class in src/test because it
was a JVM test. Now, you will write the test class inside src/androidTest
because this will be an instrumented test. Listing 6-3 shows the code for the
instrumented test class.

Listing 6-3.  MainActivityTest

import android.support.test.rule.ActivityTestRule;
import android.support.test.runner.AndroidJUnit4;
import org.junit.Rule;
import org.junit.Test;

import static android.support.test.espresso.Espresso.onView; ➊
import static android.support.test.espresso.action.ViewActions.click;
import static android.support.test.espresso.assertion.ViewAssertions.matches;
import static android.support.test.espresso.matcher.ViewMatchers.withId;
import static android.support.test.espresso.matcher.ViewMatchers.withText;

public class MainActivityTest {

 @Rule ➋
 �public ActivityTestRule<MainActivity> mActivityTestRule = new
ActivityTestRule<>(MainActivity.class);

 @Test ➌
 public void buttonHelloTest() {
 onView(withId(R.id.btnhello)) ➍
 .perform(click()); ➎

 onView(withId(R.id.textView)) ➏
 .check(matches(withText("hello"))); ➐
 }

CHAPTER 6: Instrumented Testing

67

 @Test
 public void buttonWorldTest() {
 onView(withId(R.id.btnworld))
 .perform(click());

 onView(withId(R.id.textView))
 .check(matches(withText("world")));
 }
}

➊ You want to statically import the Espresso matchers, actions, and asserts so you
won’t have to fully qualify them later in the code.

➋ This just intercepts your test method calls and makes sure that the activity is
launched before you perform any test.

➌ You need to annotate each test method with @Test.

➍ Find the btnhello object using the withId() method.

➎ Then you simulate a click using a ViewAction.click().

➏ Then you find the TextView, using a withId() method again.

➐ Finally, you assert if the TextView contains the text “hello.”

You can run the instrumented test the same way you run the JVM test. You
can either

	Click the arrows in the IDE gutter,

	Right-click the test and use the context-sensitive menu,
and then choose the Run MainActivityTest option, or

	Go to the main menu bar, choose Run ➤ Run, and then
choose MainActivityTest.

�Recording Espresso Tests
Android Studio includes a feature where you can run your app, record the
interaction, and create an Espresso test using the recording. To get started,
go to the main menu bar and then choose Run ➤ Record Espresso Test, as
shown in Figure 6-1.

CHAPTER 6: Instrumented Testing

68

After choosing the Record Espresso Test option, you can now interact with
the app like usual, but this time, the interaction is recorded. If you click one
of the buttons, say the HELLO button, the test recorder screen will pop up,
as shown in Figure 6-2.

Figure 6-1.  Recording an Espresso test

Figure 6-2.  Espresso recorder

CHAPTER 6: Instrumented Testing

69

➊ This section shows each interaction with the app. At this point, I clicked the app
only once; I clicked the HELLO button.

➋ This section is the ViewMatcher, but done visually. If you click the TextView, like I
did here, it goes over as an item to the Edit Assertion section.

➌ The TextView is selected here because I clicked it in the ViewMatcher section
(item 2).

➍ This is where you choose the assertion. In this case, it’s the hamcrest “text is.”

➎ The actual value of the TextView you’d like to assert.

You can click the Save and Add Another option if you’d like to add another
test, or the Save the Assertion option and finish the recording. Figure 6-3
shows the next screen.

Figure 6-3.  Espresso recorder with assertion saved

CHAPTER 6: Instrumented Testing

70

When you click OK, the recorder will prompt for the name of the class where
it will save the recording as a test class, as shown in Figure 6-4.

When you go the src/androidTest folder, you’ll find the newly generated
test class from your recording. You can now run the generated test the same
way you ran MainActivityTest earlier.

�More on Espresso Matchers
Espresso has a variety of matchers but the one that’s commonly used is the
ViewMatcher; it’s what you used in the earlier examples. Here are the other
matchers in Espresso:

	CursorMatcher: Used for Android Adapter Views that
are backed by Cursors to match specific data rows

	LayoutMatcher: To match and detect typical layout
issues, such as TextViews that have ellipses or
multi-line text

	RootMatcher: To match Root objects that are dialogs
or Roots that can receive touch events

	PreferenceMatcher: To match Android Preferences
and let you find View components based on their key,
summary text, etc.

	BoundedMatcher: To create your own custom matcher
for a given type

Note  Two factoids about Espresso: 1) The Espresso recorder is one of the
most used tools when using Espresso, according to Android Studio analytics,
and 2) The Espresso recorder was originally named “cassette.”

Figure 6-4.  Espresso test with test saved

CHAPTER 6: Instrumented Testing

71

In the previous examples, you used the ViewMatcher to find Views via their
ids. You can find Views using other things, such as

	Its value: You can use the withText() method to find a
View that matches a certain String expression.

	The number of its child: Using the hasChildCount()
method, you can match a View that has a very specific
child count.

	Its class name: Using the withClassName() method.

ViewMatchers can also tell you whether a View object is

	Enabled, by using the isEnabled() method

	Focusable, by using the isFocusable() method

	Displayed via isDisplayed()

	Checked via isChecked()

	Selected via isSelected()

There are plenty more methods you can use in the ViewMatchers class so
make sure to check them out at https://bit.ly/viewmatchers.

�Espresso Actions
Espresso Actions let you interact with View objects programmatically
during a test. You used the click earlier, but there’s a lot more that
ViewActions will let you do. The method names are very descriptive so they
don’t need further explanations; you can clearly see what they do. Here are
a few of them:

	clearText()

	closeSoftKeyboard()

	doubleClick()

	longClick()

	openLink()

	pressBack() presses the back button

	replaceText(String arg)

	swipeDown()

CHAPTER 6: Instrumented Testing

https://bit.ly/viewmatchers

72

	swipeRight()

	swipeUp()

	typeText(String arg)

There are more actions available so make sure you visit the API
documentation for the ViewAction object.

Also, make sure you visit the official documentation for Espresso on the
Android Develop website at https://bit.ly/androidstudioespresso.
You’ve only scratched the surface of Espresso here!

�Chapter Summary
	Put JVM tests in src/test and put instrumented tests in

src/androidTest.

	You can use Espresso to create instrumented tests; the
two things you need in Espresso are the ViewMatchers
and ViewActions.

	The general steps for writing Espresso tests are
1) find the View object using ViewMatchers, 2) perform
an action on the View with ViewActions, and 3) do your
assertions.

	An easy way to create Espresso tests is to use the
Espresso recorder.

CHAPTER 6: Instrumented Testing

https://bit.ly/androidstudioespresso

73© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_7

Chapter 7
Android Studio Profiler

What this chapter covers:

	Android Studio Profiler

	CPU view

	Memory view

Android Studio 3.0 replaces the old Android Monitor with the new Android
Profiler. It’s an integrated view for profiling an app’s memory consumption,
network usage, CPU usage, and power usage. In this chapter, you’ll take a
quick look at the Profiler.

�The Profiler
The Profiler is new in Android Studio 3. It replaces the Android Monitor and
offers a new, unified, shared timeline view for CPU, memory, network, and
energy graphs.

You can get to the Profiler by going to the main menu bar and then View ➤
Tool Windows ➤ Profiler. Figure 7-1 shows the Profiler.

74

➊ Shows the process and device being profiled.

➋ Shows you which sessions to view. You can also add new sessions from here
by clicking the + button.

➌ Use the zoom buttons to control how much of the timeline to view.

➍ The new shared timeline view lets you see all the graphs for CPU, memory,
network, and energy usage. At the top, you will also see important app events,
like user inputs or activity state transitions.

As soon as you launch an application, either on an attached device or an
emulator, you’ll see its graph on the Profiler.

If you click any of the charts, the Profiler window will take you to one of the
detailed views. If you click the CPU, for example, you’ll see the detailed view
for the CPU utilization.

Figure 7-1.  Profiler

Note  If you try to profile an APK with a version lower than API level 26, you
will see some warnings because Android Studio needs to fully instrument your
code. You will need to enable advance profiling, but if your APK is Oreo or higher,
you won’t see any warnings.

CHAPTER 7: Android Studio Profiler

75

�CPU
Figure 7-2 shows the detailed view for the CPU utilization on the sample app
I was running.

Figure 7-2.  CPU view

Aside the from live utilization graph, the CPU detailed view also shows a list
of all the threads in the app and their states. You can see if the threads are
waiting for I/O or when they are active.

You may have noticed the Record button in Figure 7-2. If you click that
button, you can get a report on all the methods that were executed in a
given period. Notice also the selected trace type in the dropdown menu
(Sample Java Methods); this trace type has a smaller overhead but it’s not
as detailed or as accurate as the instrumented type (Trace Java Methods),
meaning the sampled type may miss the execution of a very short-lived
method. You might think, “Just always use the instrumented type then.”
You have to remember, though, that while an instrumented type can record
every method call, on Android Devices before version 8, there is a limit
on how much data can be captured, so if you use the instrumented trace,
that limit will be reached quickly. You can change that limit by editing the
configuration for the instrumented capture. On the trace type dropdown,
choose the Edit Configurations options, as shown in Figure 7-3.

CHAPTER 7: Android Studio Profiler

76

Figure 7-4 shows the sampling interval and file size limit settings, which
you can use to adjust how frequent the sampling will be and how big of a
file size you’d like to allocate for the recording. Just to reiterate, the file size
limitation is only present on Android devices that are running Android 8.0 or
lower (< API level 26). If your device has a higher Android version, you’re not
constrained by these limitations.

Figure 7-4.  CPU recording configuration

Figure 7-3.  Editing the configuration

If you click Record, Android Studio will begin capturing data. Click the Stop
button when you’d like to stop recording, as shown in Figure 7-5.

CHAPTER 7: Android Studio Profiler

77

When you press Stop, you can take look at the individual threads, as shown
in Figure 7-6.

Figure 7-5.  Recording a session

Figure 7-6.  Inspecting the threads

CHAPTER 7: Android Studio Profiler

78

�Memory
The Memory profiler shows, in real time, how much memory your app
is consuming. Figure 7-7 shows a snapshot of the memory view as I
captured the memory footprint of a test app. As you can see, not only
does the graph show how much memory your app is gulping, it also shows
the breakdown, such as how much memory is used by the code, stack,
graphics, Java, and so on.

Figure 7-7.  Memory view

You can force garbage collection in the Memory view. See that garbage can
icon at the top? Yup, if you click that, it’ll force a GC. The button to its right
is also useful: the icon with a down-pointing arrow inside a box is a memory
dump. If you click it, the Java heap will be dumped, and then you can
inspect it, as shown in Figure 7-8.

CHAPTER 7: Android Studio Profiler

79

The heap is a preserved amount of storage memory that the Android runtime
allocates for the app. When you dump the heap, it gives you a chance to
examine instance properties of objects, as shown in Figure 7-9.

Figure 7-8.  Java heap

Figure 7-9.  Instance view, Reference tab

CHAPTER 7: Android Studio Profiler

80

The Reference tab can be very useful in finding memory leaks because it
shows all the references pointing to object you’re examining.

Another useful tool in the memory view is the Allocation tracker, shown in
Figure 7-10.

Figure 7-10.  Allocation tracker

➊ Click anywhere in the timeline of the memory graph to view the allocation
tracker. This will show you a list of all objects that were allocated and
de-allocated at that point in time.

➋ This shows a list of all classes being used by the app at a point in time.

➌ This shows the list of all those objects allocated and de-allocated at a specific
point in time.

➍ The tracker even includes the call-stack of the allocation.

�Network
Like the other views in the Profiler, the Network view also shows real-time
data. It lets you see and inspect data that is sent and received by your
app. It also shows the total number of connections. Figure 7-11 shows a
snapshot of the Network profiler.

CHAPTER 7: Android Studio Profiler

81

Every time your app makes a request to the network, it uses the WiFi
radio to send and receive data. The radio isn’t the most energy efficient;
it’s power-hungry, and if you don’t pay attention to how your app makes
network requests, that’s a sure way to drain the device battery faster than
usual.

When you use the Network profiler, a good way to start is to look for short
spikes of network activity. When you see sharp spikes that rise and fall
abruptly and are scattered all over the timeline, that smells like you could use
some optimization by batching your network requests so as to reduce the
number of times the WiFi radio needs to wake up and send or receive data.

�Energy
By now you’re probably seeing a pattern of how the Profiler works. It shows
you real-time data. In the case of the Energy profiler, it shows data on how
much energy your app is guzzling. Though it doesn’t really show the direct
measure of energy consumption, the Energy profiler shows an estimation
of the energy consumption of the CPU, the radio, and the GPS sensor.
Figure 7-12 shows a snapshot of the Energy profiler.

Figure 7-11.  Network profiler

CHAPTER 7: Android Studio Profiler

82

You can also use the Energy profiler to find system events that affect energy
consumption, such as wake locks, jobs, and alarms.

	A wake lock is a mechanism for keeping the screen
on when the device would otherwise go to sleep. For
example, when an app plays a video, it may use a
wake lock to keep the screen on even when there’s no
user interaction. Using a wake lock isn’t a problem, but
forgetting to release one is; it keeps the CPU on longer
than necessary, which will surely drain the battery faster.

	Alarms can be used to run background tasks that are
outside your application’s context at specific intervals.
When an alarm goes off, the app can run some tasks.
If it runs an energy-intensive piece of code, you’ll
definitely see it in the Energy profiler.

	A job can perform actions when certain conditions are
met, such as when the network becomes available.
You would usually create a job with JobBuilder and use
JobScheduler to schedule the execution. When a job
kicks in, you will be able to see it in the Energy profiler.

That was a quick tour of the Android Studio Profiler. Make sure you check
out the official documentation at https://bit.ly/androidstudioprofiler.

�Chapter Summary
	The old Android Monitor is gone. We use the Profiler now.

	The Profiler shows a unified view of how your app
consumes memory, CPU, network, and battery resources.

Figure 7-12.  Energy profiler

CHAPTER 7: Android Studio Profiler

https://bit.ly/androidstudioprofiler

83© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_8

Chapter 8
Gradle

What this chapter covers:

	The Android build process

	Gradle files

	Dependencies

	The Android Support Library

�The Build Process
Building an APK or a bundle requires many involved steps. Figure 8-1
roughly illustrates the process.

Note  A bundle is a newer format for delivering Android executables. I’ll talk
about bundles a bit more in Chapter 12.

An app is a combination of loosely related Java source files, XML
configuration files, UI definitions in XML, and more. Then it goes through
compilation; there are resource compilers and the Java compiler. There are
also libraries and other dependencies that need to be considered.

The compilation process produces some intermediate files like DEX
executables and other compiled resources. A packager combines DEX
executables, compiled resources, and certificates, and eventually produces
either an APK or a bundle.

84

Gradle and Android Studio take care of all the heavy lifting. If you’ve
used ANT or Maven in your Java development before, Gradle is a lot like
that, except instead of using XML for the syntax, it uses its own DSL
(domain-specific language), which is based on the Groovy language.

�The Build Files
Gradle relies on a couple of files. Figure 8-2 points them out.

Figure 8-1.  Android build process

Note  A DEX file is similar to a Java class file; they are executables but they’re
intended to run in Android’s runtime—they’re not the same as the Java runtime
you have on your desktop. It’s a byte-code runtime that’s specifically designed
for Android.

CHAPTER 8: Gradle

85

➊ build.gradle (Project): This is it the root folder of the project. Some projects
may have more than one module and it may be useful to define some
properties that can be shared by all modules. This is the file where you do that.

➋ build.gradle (module: app): The module-level build.gradle file is located
inside, well, a module. In this example, the module-level Gradle file is inside the
app folder; the app module is a default module that Android Studio generates
when you create a project. This is the file that you’re most likely to spend more
time on, instead of the project-level Gradle file.

➌ gradle.properties: You can configure project-wide Gradle settings in this file,
such as the amount of memory to allocate for the Gradle daemon. I usually just
leave this alone.

➍ settings.gradle: This tells Gradle which module you to include in the build.
If you’re working on just the one module (which is “app”), then you also can
simply leave this file alone.

➎ local.properties: This contains settings for your local environment, such as
the location of the SDK, user credentials for Firebase, etc.

�Module-Level Gradle File
Since you’re most likely to interact with the module-level Gradle file, let’s get
to know it better. Listing 8-1 shows an annotated example of a module-level
build.gradle file.

Figure 8-2.  Gradle files

CHAPTER 8: Gradle

86

Listing 8-1.  build.gradle (Module)

apply plugin: 'com.android.application'

android {
 compileSdkVersion 28 ➊
 defaultConfig { ➋
 applicationId "net.workingdev.demoappbitbucket" ➌
 minSdkVersion 27 ➍
 targetSdkVersion 28 ➎
 versionCode 1 ➏
 versionName "1.0" ➐
 �testInstrumentationRunner "android.support.test.runner.

AndroidJUnitRunner"
 }
...

➊ compileSdkVersion: Indicates what API level or what version of Android you
are using to build your app.

➋ defaultConfig: This block contains the default configuration for the module.
Can you have more than one config? Yes, you can have more than one
configuration for the app. This will happen when you have different behaviors
targeting different platforms and so on. You could have a couple of build
variants. But for now, let’s just work with the default config.

➌ applicationId: This is the name your app will use in Google Play; it’s how the
app will be known.

➍ minSdkVersion: This will tell Google Play the minimum version of Android that
the application supports.

➎ targetSdkVersion: If Android ever changes the API, this setting tells the
runtime that the app expects the API to behave the way it did at API level 24.
This way you have a consistent environment for your app.

➏ versionCode: Identifies the app’s version. This is an incrementing integer.

➐ versionName: This is the string representation of versionCode. This is the one
that’s displayed in Google Play and the device’s settings.

When you change anything in the Gradle file, Android Studio will prompt you
to sync the file. A bar will be displayed on the top portion of the IDE telling
you to “Sync now.” You may also sync Gradle files by clicking the Sync
button on the toolbar, as shown in Figure 8-3. Another way to do a sync is
from the main menu bar: go to File ➤ Sync Project with Gradle Files.

CHAPTER 8: Gradle

87

If you don’t want to edit the Gradle file by hand, there are ways to effect the
changes via the GUI. Go to the main menu bar and choose File ➤ Project
Structure, then click the app section, as shown in Figure 8-4.

Figure 8-3.  Sync the project with the Gradle files

Figure 8-4.  Project structure

If you explore the tabs of the Project Structure window, you’ll see that you
can also edit the entries of Gradle file from there.

CHAPTER 8: Gradle

88

�Dependencies
Most applications rarely stand alone; they rely on other code. Your apps
may either rely on external binaries or another library that you’re building
within the same project. Whatever the case, these dependencies have to be
declared in the dependencies block of the Gradle file.

In the dependencies block, you must list all the direct dependencies of your
app; if those dependencies in turn have their own dependencies, Gradle will
also fetch them for you. There are three kinds of dependencies of note:

	Module dependency: If you created a module in your
app—other than the default app module—and you want
it to serve as a library for your project, you can declare it
as a module dependency.

	Jar dependency: When you want to use external
libraries in your app, like jdom.jar, you simply drop the
jar file into the libs folder of the project and declare it
as a jar dependency. Remember that you can’t just use
any jar file here; you can only use jars that are intended
to be used as libraries. It’s best to always read the docs
of a library before using it.

	Library dependency: This kind of dependency will pull
things from a repository like a Maven repo or jcenter.
A repository is simply a collection of binaries that are
available for your use. You already have a repository
on your local machine when you installed Android
Studio and then pulled some additional software during
installation. The Android Support repository is already
locally available to you—so this repo doesn’t need to be
declared in the Gradle file (the project-level Gradle file),
but any repo other than this needs to be declared. You’ll
notice that when you create a new project in Android
Studio, the generated Gradle file already includes a
reference to jcenter and google, which are massive
Java and Android repositories. Listing 8-2 shows
an excerpt from the project-level Gradle file; notice
the repositories section both in the buildscript and
allprojects blocks—they already contain references to
jcenter and google. Of course, if you need to reference
any repo outside jcenter and google, you can simply
add it to the Gradle file.

CHAPTER 8: Gradle

89

Listing 8-2.  build.gradle (Project Level)

buildscript {
 repositories {
 google()
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:3.3.1'

 // NOTE: Do not place your application dependencies here; they belong
 // in the individual module build.gradle files
 }
}

allprojects {
 repositories {
 google()
 jcenter()
 }
}
...

Notice that there’s a note in the project-level Gradle file to NOT place your
application dependencies in that file, and to do it in the app module Gradle
file instead. Anything you define in the project-level Gradle file affects all
module-level Gradle files.

In addition to understanding the dependency types, you also need to
understand how to associate dependencies. There are at least three
directives to consider:

	implementation: It means that this dependency will be
applied to your build variants or all the different kinds of
builds that you do.

	testImplementation: This is a testing-specific variant.
In here, you declare the things you need for the JVM
testing. It’s the kind of unit testing that only needs the
JVM and not the full Android runtime.

	androidTestImplementation: In here you declare what
libraries you need for the instrumented testing—the kind
of testing that needs the full Android runtime.

Listing 8-3 shows an annotated excerpt of the module-level build.gradle file.

CHAPTER 8: Gradle

90

Listing 8-3.  /app/build.gradle

apply plugin: 'com.android.application'

android {
 ...
}

dependencies {
 implementation fileTree(dir: 'libs', include: ['∗.jar']) ➊
 implementation 'com.android.support:appcompat-v7:28.0.0' ➋
 implementation 'com.android.support.constraint:constraint-layout:1.1.3' ➌
 testImplementation 'junit:junit:4.12' ➍
 androidTestImplementation 'com.android.support.test:runner:1.0.2' ➎
 �androidTestImplementation 'com.android.support.test.espresso:espresso-
core:3.0.2'

}

➊ This implementation directive with the fileTree command, a dir parameter,
and the ANT style glob pattern ∗.jar means you want all jar files inside the lib
folder of the project to become dependencies. So, including a jar dependency
for the project is as easy as dropping a jar file into your project’s lib folder.

➋ This directive means you’re pulling a dependency from a repository—a local
repository, to be exact. This pulls in the compatibility library from the Android
Support Library. Use AppCompat so that the newer capabilities of Android can
run on older versions. Don’t worry too much about the versions; Android
Studio does a decent job of pulling the right and most recent versions of the
compatibility libs most of the time.

➌ Same as number 2, this is also a library dependency coming from the Android
Support Library. This time, you’re referencing the constraint layout library that
you need to use when creating activities that use the Constraint layout.

➍ This testImplementation directive pulls the JUnit 4 library that you use for
JVM unit testing.

➎ This androidTestImplementation pulls the libraries you’ll use for instrumented
testing.

Note  A build variant is the combination of a build type and build config. Build
type examples are release and debug. A build config was discussed in an earlier
section of this chapter. You can see the current build variants by going to the
main menu bar and choosing View ➤ Tool Windows ➤ Build Variant.

CHAPTER 8: Gradle

91

�Android Support Library
The topic of Android Support Library is a big one. I won’t deal with all of it
here, but you need a passing knowledge of it, at least in the context of our
current discussion.

The Android Support Library is a very important part of Android. It basically
supplements the Android SDK. One of the most important things it does is
to provide backwards compatibility; at least it started out that way.

Backwards compatibility was important to support because newer versions
of Android are being released at a rapid pace while quite a few devices are
still running older versions of Android. Newer Android versions mean newer
capabilities and features; does that mean devices running older versions of
Android cannot use the newer features? No. Backwards compatibility means
that the newer platform features can be made available to older platform
versions.

As time went on, the Android Support Library got bigger. It started providing
capabilities that were not part of the platform like in the areas of user
interfaces, like Recycler Views or Card Views. The Support Library also
included capabilities in the areas of debugging and testing, and so it needed
to be reorganized.

In the early days of the Android Support Library, it was just a single library;
but as it grew, its organization evolved. So, instead of having just a single
library, the support library became a bunch of smaller and more manageable
libraries. The groupings of these libraries were organized mainly according to
platform support, which meant that the name of a support library indicated
what platform or API level it supported.

You might still see libraries named v4, v7, and v13, which historically meant
v4 supported API level 4 and up, v7 supported level 7 and up, and v13
supported API level 13 and up. I said “historically” because that’s no longer
true. There’s a lot that goes on every time a newer Android version comes
along; deprecations happen left and right. So you must make it a point to
read the Support Library documentation from time to time.

At the time writing, v4 no longer supports level 4 and up. It now supports
only API level 14 and higher; v7 as well no longer supports level 7 and up,
but instead supports only level 14 and up. This effectively means that the
minimum SDK version for all support library packages is now level 14 (Ice
Cream Sandwich).

CHAPTER 8: Gradle

92

More importantly, with the release of Android 9 (API level 28), there is a new
version of the Android Support Library called AndroidX, which is part of
Jetpack. You can continue to use the support libraries (android.support.*
versions 27 and earlier). They will remain on Google Maven, but note that all
development will happen in AndroidX.

In Listing 8-3, you saw the line

implementation 'com.android.support:appcompat-v7:28.0.0'

What this means is, even if the device running your app is at API level 14,
you can still use

	An ActionBar

	Material design

	AppCompatActivity classes

	AppCompatDialog

	ShareActionProvider

All these capabilities are pretty modern, but you can still make them
available on older platforms because of the AppCompat libraries.

Note  Android Jetpack is a collection of components that makes it easier to
develop apps. The libraries are in the androidx.* packages and they are
unbundled from the platform APIs. This is where the backward compatibility
libraries now reside. Jetpack is big. It’s not just about compatibility libraries; it
has lots of other software components that deal with architecture, foundation,
UI, and behavior. You can read more about it at https://developer.
android.com/jetpack.

Note  When you target the lower API levels, your app can rely on fewer modern
Android features, but a larger percentage of Android devices are able to run your
app. The opposite is true when you target higher level APIs. You can always look
at the data or the cumulative distribution of the Android versions by clicking the
“Help me choose” link when you create a new Android project.

CHAPTER 8: Gradle

https://developer.android.com/jetpack
https://developer.android.com/jetpack

93

�Chapter Summary
	The build process can be very involved. Thankfully,

Gradle takes care of all the heavy lifting.

	There are two build.gradle files: one in the project root
and one for each module. The project-level Gradle file is
a good place to define directives that you want to share
to all module-level Gradle files.

	The module-level Gradle file is where you define most
of your configurations. Module dependencies and target
SDKs are defined in here.

CHAPTER 8: Gradle

95© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_9

Chapter 9
Git

What this chapter covers:

	How to get Git

	Setting up GitHub in Android Studio

	Sharing and cloning with GitHub

	Sharing and cloning from other Git repos

Android Studio provides integration with quite a few version control
systems, and one of the more popular version control systems is Git. In this
chapter, you’ll look at how to use Git in Android Studio.

�Getting Git
Git is available for macOS, Linux, and Windows. If you’re on macOS and
you’ve installed the XCode CLI, chances are you already have Git. On
Windows and Linux, you’ll have to get it somehow before you can proceed
with the rest of these instructions.

The simplest way to get Git on your system is to head over to
https://git-scm.com/download and get the version for your platform. You
can get precompiled binaries for Windows and macOS; for Linux, you get
instructions on how to use your package manager to get Git.

If you already use a package manager like chocolatey (Windows), MacPorts
(macOS), or HomeBrew (also macOS), you can get Git using these package
managers.

https://git-scm.com/download

96

On Windows with chocolatey, you can run the following on a command line
or PowerShell:

choco install git

On macOS with HomeBrew, you can try

brew install git

On macOS with MacPorts, you can use

sudo port install git

Next, let’s move on to Android Studio. Open the IDE, go to Preferences
(macOS) or the Settings window (Windows and Linux), and then go to
Version Control ➤ Git, as shown in Figure 9-1.

Figure 9-1.  Preferences ➤ Version Control ➤ Git

Notice the Path to Git executable field. As you can see from Figure 9-1, mine
was filled up and auto-detected; this is usually right, and you don’t have
to do anything else. If Android Studio did not detect the location of the Git
executable automatically or you don’t like to use the auto-detected version,
you can always change it. To change the Git executable, click the ellipsis (it’s
the button with three dots on the left side of the Test button, shown also in
Figure 9-1).

CHAPTER 9: Git

97

Now you’re ready to use Android Studio with Git version control. You can
now integrate with Git repos.

�Using Android Studio with GitHub
Go to the Preferences/Settings window again and then go to GitHub, as
shown in Figure 9-3.

Figure 9-2.  Git executed successfully

Tip  for Windows users. If you used the installer from git-scm and
installed it using the default options, the Git executable will be in the
folder C:\Program Files\(x86)\Git\bin\.

Locate the Git executable that you’d like to use for Android Studio. After
that, click the Test button. See the results in Figure 9-2.

CHAPTER 9: Git

98

Click the Add account link. You’ll see the Login window shown in Figure 9-4.

Figure 9-3.  Preferences, GitHub

Figure 9-4.  Log in to GitHub

If you already have a GitHub account, you can provide your GitHub login
credentials in this window; if you don’t have an account yet, you can click
the Sign up for GitHub link (shown in Figure 9-4) and you’ll be taken to the
GitHub web page where you can sign up for a new account.

You can create either private or public repos with your free GitHub account.
A public repo is shared with everyone; you don’t have control over its
visibility—everybody sees it. A private repo, on the other hand, isn’t shared
with everyone; you can control the admission to the repo.

CHAPTER 9: Git

99

When you have your GitHub credentials ready, put them in the login and
password fields shown in Figure 9-4 and click OK. If everything goes well,
you should see your GitHub avatar in the Preferences/Settings window, as
shown in Figure 9-5.

Figure 9-5.  GitHub settings

Click the OK button, and you should be ready pull and share projects in
GitHub.

�Sharing a Project on GitHub
If this is the first time you’ve installed Git, you might have to configure the
global variables user.email and user.name for Git. To do this, type the code
in Listing 9-1 from a command line window.

Listing 9-1.  Set Git Global Variables

Git config --global user.name "your name"
Git config --global user.email "your email"

Don’t forget to substitute your actual name and actual email for “your name”
and “your email,” respectively.

CHAPTER 9: Git

100

Open any project that you’d like to share via GitHub; then, from the main
menu bar, go to VCS ➤ Import into Version Control ➤ Share Project on
GitHub, as shown in Figure 9-6.

Provide the necessary information, as shown in Figure 9-7. The following is
a brief explanation of what the fields mean:

	Repository name: The name of the public repository
you’d like to create. When you share a project on
GitHub, it is called a repository (or repo for short), which
is simply a place where data is stored and managed. In
this case, you’re creating a repo for just the one project.
So, it’s best that you store only project-related artifacts
in it.

	Private: If you leave this box unchecked, as I’m doing
here, it means the repo will be public. You need to
decide on the visibility of the repo. Remember, if it’s
public, everybody sees it; if it’s private, you control who
sees it.

Figure 9-6.  Importing into version control

Tip  for Windows users. The Git installer won’t update the PATH variable,
so you might encounter the “bad command or filename” error. In order
to do the commands shown in Listing 9-1, you must navigate first to
the location of the Git executable. So, change directory to C:\Program
Files\(x86)\Git\bin\ and then execute the commands shown in
Listing 9-1.

CHAPTER 9: Git

101

	Remote: Leave this as is. It reads as “remote” because
the files will be stored on a remote server (on GitHub’s
servers), as opposed to “local,” which means the files
will be stored on your computer.

	Description: It’s best to provide some words that
describe the project here.

Figure 9-7.  Share a project on GitHub

Figure 9-8.  Adding files for the initial commit

When you click the Share button, Android Studio will prompt you for which
files you want to share. In version control parlance, instead of saying “share”
we say “commit.” See Figure 9-8.

CHAPTER 9: Git

102

By default, everything shown in the dialog box is checked, which means
everything in the project folder will be committed, but not quite. Try to scroll
down so you can see all the files that have checkmarks. You might notice a
file named .gitignore, as shown in Figure 9-9.

.gitignore is a special file that contains a list of files that won’t be included
in the repo—these files will be, well, ignored.

If the view in the Project tool window is set to Android, you won’t be able to
see the .gitignore file, but if you change the view of the Project tool window
to Project, as shown in Figure 9-10, you should see the .gitignore file.

Figure 9-9.  Adding .gitignore

Figure 9-10.  Project tool window set to Project view

CHAPTER 9: Git

103

Listing 9-2 shows the contents of .gitignore.

Listing 9-2.  .gitignore

*.iml
.gradle
/local.properties
/.idea/caches
/.idea/libraries
/.idea/modules.xml
/.idea/workspace.xml
/.idea/navEditor.xml
/.idea/assetWizardSettings.xml
.DS_Store
/build
/captures
.externalNativeBuild

You want to keep all the entries in .gitignore most of the time. Of course
you can add to the list, but you don’t want to remove anything from it, as
shown in Listing 9-2. By default, the list of files in .gitignore refers to things
that are unique to your computer; for example, the /local.properties lists
the location of the JDK on your computer. It may also contain data that’s
specific to you as a user, like Firebase keys; clearly, you don’t want to
commit that info into source control. Another example is the .DS_Store file,
which you will only have if you’re using a Mac; macOS creates this file every
time you create a directory. This file isn’t important to your project.

Going back to the commit dialog window, when you click OK, all the
(checked) files in the commit window get committed and then pushed to the
remote repo.

�Opening a Project from GitHub
You can restore a project by fetching it from a remote repo like GitHub; in
Git parlance, this is called “cloning” a repo. The basic scenario when you
do this is when one of your teammates has shared a project repo on GitHub
and you’d like to work on it as well. The first step is to fetch the project from
the remote repo. You can do this in one of two ways.

When you already have an open project in Android Studio, you can go to the
main menu bar and choose File ➤ New ➤ Project from Version Control ➤ Git.

You may also do this from the Android Studio welcome screen, as shown in
Figure 9-11.

CHAPTER 9: Git

104

Either way you do it is fine. The next screen is the Clone Repository window,
as shown in Figure 9-12.

The fields are described below:

	URL: This is the remote URL of the repo. I’m using
the URL git@github.com:/etc because I’m fetching
the project via SSH. I can do this because I’ve already
set up my SSH keys in GitHub. If you haven’t set up
your SSH keys yet, you may have to use the HTTPS
URL. You can find the HTTPS URL for the repo on
its GitHub page, shown in Figure 9-13. Click the Use
HTTPS option to get the HTTPS URL.

Figure 9-11.  Welcome Screen, Git

Figure 9-12.  Clone repository

CHAPTER 9: Git

105

	Directory: This is the location on your hard drive where
you would like to store the project.

To complete the process of cloning, click the Clone button, as shown in
Figure 9-12. You can now open the project as you would any other project in
Android Studio.

�Updating Git Projects
When a project is under source control management, Android Studio will
give you additional prompts every time you create a new file, whether it’s a
Java class, XML file, picture, or other file. If you add, say, a new Java class
into a project (under Git source control), you’ll see a dialog window like the
one shown in Figure 9-14.

Note  GitHub allows for both SSH and HTTPS to be used when you interact
with the repo. GitHub published some guidelines as to when to use SSH
or HTTPS at https://bit.ly/sshvshttps. If you want to know more
about the Git protocols, you can get more information from https://bit.
ly/gitprotocols.

Figure 9-13.  GitHub page for a repo

CHAPTER 9: Git

https://bit.ly/sshvshttps
https://bit.ly/gitprotocols
https://bit.ly/gitprotocols

106

If you want to add the file to Git, of course press Yes. If you accidentally
press No, you can still add the new file in two ways:

	1.	 Select the file you’d like to add to Git in the Project
tool window and then from the main menu bar
choose VCS ➤ Git ➤ Add.

	2.	 You can also use the context menu by right-clicking
the file and choosing Git ➤ Add.

Adding the file doesn’t automatically update the remote repo. You must
do two things to achieve this. You need to commit the changes you made
and then do a push. To do so, select the whole project in the Project tool
window, as shown in Figure 9-15, and from the main menu bar, choose VCS
➤ Git ➤ Commit Directory.

Figure 9-15.  Git ➤ Commit directory

Figure 9-14.  Adding a file to Git

Next, you’ll see the Commit Changes window, shown in Figure 9-16.

CHAPTER 9: Git

107

Click the down arrow on the Commit button and choose the Commit and Push
option. Now your local project is completely in sync with the remote repo.

�Using Other Git Repos
GitHub is a very popular repo platform among developers, so no wonder
that it’s well integrated with Android Studio, but what if your teammates or
company don’t use GitHub. What if they use BitBucket or some other Git
repo? Well, you can handle that too. In this section, you’ll use a BitBucket
repo.

With BitBucket, just like in GitHub, you need an account. Head over to
https://bitbucket.org to sign up, if you don’t have an account yet, and
then log into that account. After that, create a new repo, as shown in
Figure 9-17.

Figure 9-16.  Committing and pushing changes

CHAPTER 9: Git

https://bitbucket.org

108

When you click the big plus sign and choose to create a new repo, you’ll be
asked for some details, as shown in Figure 9-18. Don’t forget to click the
Advanced Settings option so you can see all the fields.

Take note of the following;

	Repository name: The name of your repo on BitBucket.
It doesn’t have to be the same as the project stored
locally in your computer, but it’s a good idea if it is.

	Access level: Unlike GitHub, you’ll be able to create
private repos in BitBucket, even if you’re not a paying
member.

	Include a README: It’s good practice to have a
README file in a project, but this is optional.

	Version control: Choose Git.

	Description: Some words to best describe what you’re
doing.

	Language: You’re working on an Android project, so put
Android.

Figure 9-17.  Creating a repo

CHAPTER 9: Git

109

After you click the Create repository button, you’ll see the repo page detail,
as shown in Figure 9-19. Click the Clone button.

Figure 9-18.  Repo details

CHAPTER 9: Git

110

Figure 9-19.  Newly created BitBucket repo

You might see SSH instead of HTTPS on the Clone this repository page.
Click the dropdown button to switch over to HTTPS, as shown in
Figure 9-20.

Note  You can use the SSH protocol as a means of cloning repos in
BitBucket after you’ve provided your SSH keys to BitBucket. If you haven’t
done that yet, just use HTTPS to clone the repo.

Figure 9-20.  Remote address of repo

CHAPTER 9: Git

111

The remote URL for your repo is the one that starts with https:// and ends
with .git. As pointed out in Figure 9-20; you don’t need the git clone part
because that’s a command that is intended to be typed from a command
line. You won’t be using the command line for Git, instead, you will use
Android Studio’s facilities.

Now that the remote repo is ready, you can either open an existing project
that you’d like to share on BitBucket or create a new one; it’s up to you.

Once you’ve chosen a project to share in BitBucket, do the following;

1.	 Open the project if it isn’t open yet.

2.	 Enable version control on it, if it’s not yet under any
source control. To do that, go to the main menu
bar and choose VCS ➤ Enable Version Control
Integration.

3.	 Select Git for version control, as shown in
Figure 9-21.

Figure 9-21.  Enabling version control integration

The next thing to do is to associate this project with the remote repo; go to
the main menu bar and choose VCS ➤ Git ➤ Remotes. You should see the
Git Remotes screen, as shown in Figure 9-22.

Figure 9-22.  Git remotes

CHAPTER 9: Git

112

The next thing to do is to pull from the remote repo. This is a prudent thing
to do especially if you generated README files while creating the repo in
BitBucket because this prevents merge conflicts. You can do a pull from the
main menu bar; go to VCS ➤ Git ➤ Pull. You’ll see the Pull Changes screen,
as shown in Figure 9-25. Click the refresh button (to the right of the Remote
text field).

Figure 9-24.  Git login

Figure 9-23.  Defining the remote

Click the plus sign shown in Figure 9-22. After that, the Define Remote
screen appears, as shown in Figure 9-23.

Copy the repo’s remote URL (refer to Figure 9-20; I highlighted the remote
URL repo in that figure). Paste it in the URL field of the Define Remote
screen, as shown in Figure 9-23. You need to give your BitBucket username
and password in the next screen, as shown in Figure 9-24.

CHAPTER 9: Git

113

Figure 9-25.  Pull changes

In the Branches to merge field, choose the origin/master option and then
click OK.

Try to add some files to your new project. You’ll notice that when you add a
new file to the project, say DemoApp.java, Android Studio prompts you if you
want to add the new file to Git; see Figure 9-26.

Figure 9-26.  Adding a file to Git

You can save some time by checking the Remember, don’t ask again box.
The next time you add a new file, Android Studio will automatically add it
to Git.

If you answered No to the prompt, you can still add files to Git by using the
context menu on the new Java file. Select the new Java file from the Project
Tool window, right-click, and go to Git ➤ Add. To be sure that all project
files are added to Git, instead of selecting just the new file in the Project tool
window, select the whole project instead.

The next step is to commit your changes to Git—remember all these
changes are still happening locally. For the changes to reflect in the remote
BitBucket repo, you must push the changes.

CHAPTER 9: Git

114

Remember that only checked items will be committed to Git. So, pay
attention to the change list. Write something descriptive in the Commit
Message box and then click the Commit button.

When you’ve made significant changes to the local repo and you want to
reflect the changes back to the remote repo, you can do a push. To do that,
go to the main menu bar and choose VCS ➤ Git ➤ Push. You’ll see the
Push Commits screen, as shown in Figure 9-28.

Figure 9-27.  Committing changes

To commit the changes, go to the main menu bar and choose VCS ➤ Git
➤ Commit Directory. You’ll see the Commit Changes dialog, as shown in
Figure 9-27. You saw this in the previous section; it’s the same as the one
when you were using GitHub.

CHAPTER 9: Git

115

Figure 9-28.  Pushing commits

Click Push to complete the operation.

That should do it. Now you can clone a repo and restore it on your local
directory. You can also add, commit, and push changes to a remote repo;
you also now know how to get a local repo in sync with the remote one.

�Chapter Summary
	The Git software isn’t included in Android Studio, so you

must get it separately. You can get precompiled binaries
and platform instructions from https://git-scm.com/
download.

	GitHub is very integrated into Android Studio. There’s
only a few steps that you need to do in order to work
with a remote GitHub repo.

	You can work with other Git platforms like BitBucket by
enabling the version control integration in a project and
then defining the remote repo URL.

CHAPTER 9: Git

https://git-scm.com/download
https://git-scm.com/download

117© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_10

Chapter 10
Navigation

What this chapter covers:

	A review of navigation in Android

	Navigation components

�Navigation Before Architecture Components
In the early days of Android, if you had a non-trivial app, you almost certainly
needed to partition your app across multiple activities. That meant you
needed the skill to navigate from one activity to another, and back. So, in
those days, you might have written something that looked like the code in
Listing 10-1.

Listing 10-1.  How to Launch an Activity

class FirstActivity extends AppCompatActivity
 implements View.OnClickListener {

 public void onClick(View v) {
 Intent intent = new Intent(this, SecondActivity.class);
 startActivity(intent);
 }
}

// SecondActivity.java
class SecondActivity extends AppCompatActivity { }

And if you needed to pass data from one activity to another, you might have
coded it like the code snippet shown in Listing 10-2.

118

Listing 10-2.  How to Pass Data to Another Activity

Intent intent = new Intent(this, SecondActivity.class);
Intent.putExtra("key", value);
startActivity(intent);

This kind of screen management has the following advantages;

	It’s simple to do. Just call the startActivity() method
from any activity.

	The currently running activity can be closed
programmatically by calling the finish() method. The user
can also close the activity by pressing the back button.

	The back stack is completely managed by the Android
runtime; see Figure 10-1.

Figure 10-1.  Simple activity workflow

But it’s not all good; activity navigation comes with some baggage. The
disadvantages are

	You don’t have a clear idea which activities are on
the back stack because you don’t manage it. Here is
an example of a trait being both an advantage and
disadvantage at the same time.

	Each screen requires a new activity, which can be quite
heavy on resources.

	Each activity needs to be declared on the Android
manifest file, which Android Studio does for you
automatically each time you create an activity using the
wizards, so it’s not much of an issue.

	It will be difficult for you to use the more modern
navigation patterns like the bottom navigation bar.

CHAPTER 10: Navigation

119

Because of these limitations, another way of screen navigation emerged. In
2011, when Google released Android 4.0, we got to use fragments. If you’ve
forgotten about fragments, think of them this way: an activity is basically a
composition unit for the UI, and the fragment is an even smaller composition
unit.

A fragment, like an activity, is comprised of two parts: a Java or Kotlin
program and a layout file. The idea is basically the same: define the UI in an
XML file and then inflate the XML file during runtime so that all the UI in the
XML file becomes actual Java objects.

The idea is to create multiple fragments and contain them in a single activity.
You generally hide or show a fragment depending on either a user action,
the orientation of the device, or the form-factor of the device; and this is
usually done with the FragmentManager and FragmentTransaction objects. If
you’ve worked with fragments before, the code snippet shown in Listing 10-3
might be familiar.

Listing 10-3.  Fragment Snippet

FragmentManager fm = getFragmentManager();
FragmentTransaction ft = fm.beginTransaction();
Fragment fragment = new FirstFragment();
ft.add(R.id.fragment_container, fragment);
ft.commit();

When using fragments, you know exactly what’s in the navigation stack,
unlike when you use activity navigation; however, as you can see in
Listing 10-1, it can get cumbersome because you must manually manage
the navigation stack.

Thus far, you’ve only had two options for navigation: either you use
activity-based navigation, which is easy and simple to use but you take a
performance penalty and you don’t have control over the navigation stack,
or you use fragments, which offer you full control of the navigation stack but
the API is cumbersome and prone to error.

Fast forward to 2017 when Google introduced the navigation components.
Now you can use fragments but without the baggage of the complicated
API. With navigation components, all the code in Listing 10-3 can now be
replaced with a single line of code, shown in Listing 10-4.

CHAPTER 10: Navigation

120

Listing 10-4.  Navigation Component Snippet

findNavController().navigate(destination);
// FragmentManager fm = getFragmentManager();
// FragmentTransaction ft = fm.beginTransaction();
// Fragment fragment = new FirstFragment();
// ft.add(R.id.fragment_container, fragment);
// ft.commit();

�Navigation Components
Alright, that single line of code reference from the previous section probably
got you excited—and relieved. But it’s not the savings of keystrokes that’s
the big picture here; it’s the fact that now you can get the best of both
activity-based and fragment-based navigation. Now, fragment navigation
also has an easy API.

But first you need to understand a bit about navigation components.
They’re a small part of the architecture components, which are in turn a
part of a bigger thing called Android Jetpack. (I’m not getting into Jetpack
or architecture components in detail here; they are large topics; but a brief
background can’t hurt.)

At Google I/O 2017, Google introduced the Android architecture
components. These libraries are part of a larger collection called Android
Jetpack. Together with architecture components, there were others like
foundation, behavior, and UI.

Jetpack is a collection of Android software components to make our lives
easier. It helps us follow best practices and lets us avoid writing too much
boiler-plate code. You’ll find the Jetpack code in the androidx.* package
libraries.

Here’s a brief description of the Jetpack components.

Foundation

	AppCompat: Lets you write code that degrades
gracefully on older versions of Android

	Android KTX: So you write more concise, idiomatic
Kotlin code if you’re using Kotlin

	Multidex: Provides support for apps with multiple
DEX files

	Test: A testing framework for unit and runtime UI tests

CHAPTER 10: Navigation

121

Behavior

	Download manager: Lets you write programs that
schedule and manage large downloads

	Media and Playback: Backwards-compatible APIs for
media playback and routing

	Notifications: Provides a backwards-compatible
notification API with support for Wear and Auto

	Permissions: Compatibility APIs for checking and
requesting app permissions

	Preferences: Creates an interactive settings screen

	Sharing: Provides a share action suitable for an app’s
Action bar

	Slices: Creates flexible UI elements that can display
app data outside the app

UI

	Animations and Transitions: Moves widgets and
transitions between screens

	Auto: If you’re working on apps that will run in the
infotainment consoles in vehicles, you’ll need this.
These are the components that help you build apps for
Android Auto.

	Emoji: Enables an up-to-date emoji font on older
platforms

	Fragment: All the fragment code is already moved here.

	Layout: Lays out widgets using different algorithms

	Palette: Pulls useful information out of color palettes

	TV: Components to help develop apps for Android TV

	Wear OS by Google: If you want to work with Android
wearables like the watch, this is what you need.

Architecture

	Data binding: Declaratively bind observable data to UI
elements

	Lifecycles: Manage activity and fragment lifecycles

CHAPTER 10: Navigation

122

	LiveData: Notifies views when underlying database
changes

	Paging: Gradually loads information on demand from
your data source. Think of when the user is scrolling
through a list—this helps you handle the loading of data.
It’s coupled with the Recycler view.

	ViewModel: Manages UI-related data in a lifecycle-
conscious way

	WorkManager: Manages background jobs

	Navigation: Implementation of navigation in an app.
Passes data between screens. Provides deep links from
outside the app.

	Room: Think ORM for your SQLite database

There’s a lot to explore in Jetpack, so make sure you check it out.

Going back to our topic, the Navigation components simplify the
implementation of, well, navigation between destinations in an app. A
destination is any place in your app. It could be an activity, a fragment
inside an activity, or a custom view; and destinations are managed using a
navigation graph.

A navigation graph groups all the destinations and defines the different
connections between the destinations; these connections are called
actions. The graph is simply an XML resource file that represents all your
app’s navigation paths. You can have more than one navigation graph in
your app.

�Working with Jetpack Navigation
To get a better appreciation of the navigation components, it’s best if
you can work on a small project. So, create a new, empty project in
Android Studio, as shown in Figure 10-2. Don’t forget to check the Use
AndroidX artifacts option. Remember that all support libraries are now in
the AndroidX packages; you need them because you’ll be working with
fragments.

CHAPTER 10: Navigation

123

By the way, if you haven’t updated or upgraded to the latest version of
Android Studio, now would be a good time to do so. At the time of writing,
you must use Android Studio v3.3 or higher if you want to use navigation;
also, you need to add the navigation component’s dependencies to your
project. So, after you’ve created the project, locate the module-level build.
gradle file and add the entries, as shown in Listing 10-5.

Listing 10-5.  Adding Navigation to build.gradle

dependencies {
 def nav_version = "2.1.0-alpha02"
 ...
 implementation "androidx.navigation:navigation-fragment:$nav_version"
 implementation "androidx.navigation:navigation-ui:$nav_version"
}

You’ll have to sync the Gradle file after adding the dependencies.

Note  Remember that there are two Gradle files in your project. You need
to edit the module-level Gradle file, as shown in Figure 10-3.

Figure 10-2.  New, empty project with AndroidX artifacts

CHAPTER 10: Navigation

124

When the sync is done, add a navigation graph to the project. You can
create a navigation graph by creating a new resource file; right-click
the project’s res folder and select New ➤ Resource File, as shown in
Figure 10-4.

In the New Resource File dialog, change the resource type to Navigation and
supply the file name:

	File name: nav_graph

	Resource type: Navigation (you must click the down-
arrow to select it)

Figure 10-3.  build.gradle (module)

Figure 10-4.  Adding a new resource file

CHAPTER 10: Navigation

125

Figure 10-5 shows the New Resource File dialog.

Click OK to create the new resource file.

When the resource is created, you’ll see a new folder (navigation) and a
new file (nav_graph.xml) under the res folder of the project, as shown in
Figure 10-6. Android Studio will open the newly created navigation graph
in the editor. Figure 10-6 shows the newly created navigation graph; it’s
empty, of course.

Figure 10-5.  The new resource file info

CHAPTER 10: Navigation

126

When you’re using navigation components, navigation happens as an
interaction between destinations. Destinations are what your users can
navigate to, and destinations are connected via actions. At the moment, you
don’t have any destination yet, so let’s add one. Click the plus sign on the
top panel of the navigation editor, as shown in Figure 10-7, and then choose
the Create a New Destination option.

This will show the dialog for creating a new fragment. I changed the name
of the new fragment and left the rest of the fields alone, as shown in
Figure 10-7. The details of this new fragment are as follows:

	Fragment Name: One

	Fragment Layout Name: fragment_one

	Keep the source language as Java

Figure 10-6.  Navigation graph

CHAPTER 10: Navigation

127

Click Finish to start the creation of the new fragment; this fragment will
become one of the destinations in your app. Create another destination
and make the fragment’s name “Two.” The navigation editor should look
like Figure 10-8.

Figure 10-7.  New Android component

Figure 10-8.  Navigation editor

CHAPTER 10: Navigation

128

Notice also there are two new Java classes (One.java and Two.java) and
two new layout files (fragment_one.xml and fragment_two.xml). These
files were generated when you created destinations One and Two. Notice
in Figure 10-8 that fragment One has the home icon beside it. This is only
because you created it first. The home destination or start destination is the
first screen that your users will see. You can change the start destination
any time by right-clicking any destination and then clicking the Set as start
destination option, but for now, keep One as the start destination.

Now, your navigation graph doesn’t have a NavHost yet; it needs one. A
NavHost acts like a viewport for all your destinations. It’s an empty container
where destinations are swapped in and out as the user navigates through
the app. The NavHost needs to be in an activity. You’re going to put the
NavHost in your MainActivity.

Open the layout file for your MainActivity (it’s in res/layout/activity_main.xml)
and then edit it in Text mode. The default activity_main contains a single
TextView object; remove it and replace it with the code snippet in Listing 10-6.

Listing 10-6.  Defining a NavHost in activity_main.xml

<fragment
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/nav_container" ❶
 android:name="androidx.navigation.fragment.NavHostFragment" ❷
 app:navGraph="@navigation/nav_graph" ❸
 app:defaultNavHost="true" ❹
 >
</fragment>

❶ It needs an id, just like any other element in the resource file. I used nav_
container for this one; you can name it whatever you like.

❷ This is the fully qualified name of the NavHostFragment class. It belongs to the
navigation component and it will be responsible for making your MainActivity
the view port for all your defined destinations.

❸ The app:navGraph attribute tells the runtime which navigation graph you want to
host in the MainActivity. Remember that you can have more than one navigation
graph in the app; nav_graph is the name you gave to the navigation graph XML
resource earlier.

❹ When you set the defaultNavHost to true, this makes sure that the
NavHostFragment intercepts the system back button; that way, when the user
clicks the back button, Android will show you the previous screen in your app,
and not an external app’s screen that happened to be on the back stack.

CHAPTER 10: Navigation

129

Now it’s time to connect your two destinations. Open the navigation graph
again; it’s in res/navigation/nav_graph.

You want the user to navigate from destination One to destination Two. So,
hover your mouse over destination One until a small circle appears on its
right side. Click and drag this point over to destination Two so that the two
destinations can be connected, as shown in Figure 10-9.

Figure 10-9.  Connecting One to Two

Now, destination One is connected to destination Two. If you select the
connection between One and Two, you’ll see that it has attributes you can
set, as shown in Figure 10-10. You won’t deal with the attributes; you just
want to connect the two destinations.

CHAPTER 10: Navigation

130

In order to test this small app, you need an object in the start destination
that will trigger an action, like a button. Modify the layout of the two
fragments as follows:

fragment_one

	Change the layout to ConstraintLayout or whatever
layout is appropriate for you.

	Remove the TextView and replace it with a button and
center it.

fragment_two

	Like fragment_one, change the layout to
ConstraintLayout.

	Change the text of the TextView and center it.

Figure 10-11 shows the navigation graph with a preview of the changes.

Figure 10-10.  Navigation graph

CHAPTER 10: Navigation

131

Next, add a click handler to your button. You’ll add the code that will make
fragment_one navigate to fragment_two when the button is clicked.

Navigating to a destination is done using a NavController; it’s an object
that manages app navigation within a NavHost. Each NavHost has its own
corresponding NavController.

A NavController lets you navigate to destinations in two ways: 1) navigate to
a destination using an ID, which is what you will use here, and 2) navigate
using a URI, which I will leave up to you to explore.

To add a click handler to your button, open One.java, which contains the
Java source file for your One destination, and make sure it looks something
like the one in Listing 10-7.

Figure 10-11.  Modified fragments

CHAPTER 10: Navigation

132

Listing 10-7.  Class One

public class One extends Fragment {

 public One() {
 // Required empty public constructor
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 // Inflate the layout for this fragment

 �final View view = inflater.inflate(R.layout.fragment_one, container, false);
 view.findViewById(R.id.button2).setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Navigation.findNavController(view).navigate(R.id.action_one_to_two2);
 }
 });
 return view;
 }
}

The most important line of code in Listing 10-7 is the navigate() method of
the NavController object. You simply pass the ID of the action you created in
the navigation graph as a parameter to navigate() and that does the trick.
You can now launch the emulator and test the app.

This chapter merely scratched the surface of navigation components.
There’s a lot to discover in this area, so keep exploring.

�Chapter Summary
	You can still use activity-based or fragment-based

navigation in your app, just remember their pros and
cons.

	Navigation components combine the best features of
activity-based and fragment-based navigation; the API
is easy to work with and you have more control on the
back stack.

	Navigation components introduce the concept of
destinations. Destinations can be fragments, activities,
or custom views; they are what your users will navigate to.

CHAPTER 10: Navigation

133

	Destinations are grouped using a navigation graph;
it’s an XML resource file that contains all the actions
between destinations.

	Destinations are connected to each other by actions.

	The basic idea of navigation is to

	1.	 Create a navigation graph.

	2.	 Create destinations.

	3.	 Connect the destinations; each connection
becomes an action.

	4.	 Navigate programmatically from one destination
to another using the NavController object. You can
navigate using an ID or a URI.

CHAPTER 10: Navigation

135© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_11

Chapter 11
Lifecycle, ViewModel,
LiveData, and Room

What this chapter covers:

	Lifecycle-aware components

	ViewModel

	LiveData

	Room

You saw a bit of the architecture components in the previous chapter. In this
chapter, you’ll look at some other libraries in the architecture components,
namely Room. It’s a persistence library that sits on top of SQLite. If you’ve
used an ORM (object-relational mapper) before, you can think of Room as
something like that.

Also in this chapter, you’ll explore some more libraries in the architecture
components that go hand in hand with the Room library. You’ll look at
lifecycle-aware components, LiveData, and ViewModel; these, together
with Room, are some of the libraries you’ll need to build a fluid and fluent
database application.

�Lifecycle-Aware Components
Lifecycle-aware components perform actions in response to a change in the
lifecycle status of another component. If you’re familiar with the Observable-
Observer design pattern, lifecycle-aware components operate like that.

136 CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

You need to learn some new vocabulary:

	Lifecycle Owner: A component that has a, well,
lifecycle, like an activity or a fragment. It can enter
various states in its lifecycle, like CREATED, RESUMED,
PAUSED, DESTROYED, etc. A Lifecycle Observer can
tap into a Lifecycle Owner and be notified when the
lifecycle status changes, like when the activity enters
the CREATED state. After it enters onCreate(), for
example, I sometimes refer to the Lifecycle Owner as an
observable.

	Lifecycle Observer: An object that listens to the
changes in the lifecycle status of a Lifecycle Owner. It’s
a class that implements the LifecycleObserver interface.

With the lifecycle-aware components, you can observe a component like
an activity and perform actions as it enters any of its lifecycle statuses.
Listings 11-1 and 11-2 show an example of how to set up an observer-
observable relationship between a Lifecycle Owner (MainActivity) and a
Lifecycle Observer (MainActivityObserver).

Note  If you’re creating a project to follow the code examples in this chapter,
don’t forget to check the Use AndroidX artifacts box, as shown in Figure 11-1.
You need the new capabilities of the AppCompatActivity to work with the
lifecycle extensions.

Figure 11-1.  AndroidX artifacts

137CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

To demonstrate the lifecycle concepts, you will examine two classes:

	MainActivity: This is a simple activity, pretty much
like any other activity that the IDE generates when you
create a project with an empty activity. The code sample
is shown in Listing 11-2.

	MainActivityObserver: A Java class that will implement
the LifeCycleObserver interface. This will be your
listener object; the code is listed and annotated in
Listing 11-1.

You’ll take a look at the observer object first. Listing 11-1 shows the
annotated code.

Listing 11-1.  MainActivityObserver Class

import androidx.lifecycle.Lifecycle;
import androidx.lifecycle.LifecycleObserver;
import androidx.lifecycle.OnLifecycleEvent;

public class MainActivityObserver implements LifecycleObserver { ➊

 @OnLifecycleEvent(Lifecycle.Event.ON_CREATE) ➋
 public void onCreateEvent() { ➌
 System.out.println("EVENT: onCreate Event fired"); ➍
 }

 @OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
 public void onPauseEvent() {
 System.out.println("EVENT: onPause Event fired");
 }

 @OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
 public void onResumeEvent() {
 System.out.println("EVENT: onResume Event fired");
 }
}

Note  You can type the code examples if you prefer, or you can refer to the
included book source code. If you prefer to work on the code by yourself, you
need to follow this sequence:

	 1.	 Create a project with an empty activity.

	 2.	 Include the dependencies for Room, shown in Listing 11-3.

138 CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

➊ If you want to observe another component’s lifecycle changes, you need to
implement the LifecycleObserver interface. This line makes this class an
observer.

➋ Use the OnLifecycleEvent annotation to tell the Android runtime that the
decorated method is supposed to be called when the lifecycle event
happens. In this case, you’re listening for the ON_CREATE event of the
observed object. The parameter to the decorator indicates which lifecycle
event you’re listening for.

➌ This is the decorated method. It gets called when the object you’re observing
enters the ON_CREATE lifecycle status. You can name this method anything
you want; I just named it onCreateEvent() because it’s descriptive.
Otherwise, you’re free to name it to your liking; the name of the method
doesn’t matter because you already decorated it, so the annotation is
sufficient.

➍ This is where you do something interesting in response to a lifecycle status
change.

Listing 11-2.  MainActivity Class

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 getLifecycle().addObserver(new MainActivityObserver()); ➊

 }
}

➊ From the point of view of the MainActivity (it’s the one being observed), the
only thing you need to do here is to add an observer object using
addObserver() method of the LifeCycleOwner interface. Yes, the
AppCompatActivity implements LifeCycleOwner; that’s the reason you can
call the getLifecycle() method within your activity. You simply need to pass
an instance of an observer class (in your case, it’s the MainActivityObserver)
to set up lifecycle awareness between an activity and a regular class.

Again, if you’re trying out this code, don’t forget to add the Room
dependencies in your project’s build.gradle file (module level), as shown in
the snippet in Listing 11-3.

139CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

Listing 11-3.  build.gradle File, Module Level

dependencies {
 def lifecycle_version = "2.0.0"
 �implementation "androidx.lifecycle:lifecycle-extensions:$lifecycle_

version"
 �annotationProcessor "androidx.lifecycle:lifecycle-compiler:$lifecycle_

version"
 ...
}

�ViewModel
The Android framework manages the lifecycle of UI controllers like activities
and fragments; it may decide to destroy or recreate an activity (or fragment)
in response to some user action like clicking the back button or a device
event like rotating the screen. These configuration changes are out of your
control.

If the runtime decides to destroy the UI controller, any transient UI-related
data that you’re currently storing in it will be lost. Let’s take the example of a
simple app. Listings 11-4, 11-5, and 11-6 show a simple app that displays a
random number every time the activity is created.

Listing 11-4 shows the code for the random number generator. It only has
the two methods, getNumber() and createRandomNumber(); each method
leaves a log statement, so you’ll be able to see in the logs when and how
many times they are called. The logic for the getNumber() method is simple:
if the minitialized variable is false, that means you’re creating an instance
of the RandomNumber class for the first time, so you’ll create the random
number and then simply return it. Otherwise, you’ll return the current value
of minitialized.

Note  The lifecycle_version at the time of writing is 2.0.0, but this will be
different for you since you’ll be reading this at a later time. You can visit
https://bit.ly/lifecyclerelnotes to find out the current version of the lifecycle
libraries.

https://bit.ly/lifecyclerelnotes

140 CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

Listing 11-4.  RandomNumber Class

import android.util.Log;
import java.util.Random;

public class RandomNumber {

 private String TAG = getClass().getSimpleName();

 int mrandomnumber;
 boolean minitialized = false;

 String getNumber() {
 if(!minitialized) {
 createRandomNumber();
 }
 Log.i(TAG, "RETURN Random number");
 return mrandomnumber + "";
 }

 void createRandomNumber() {
 Log.i(TAG, "CREATE NEW Random number");
 Random random = new Random();
 mrandomnumber = random.nextInt(100);
 minitialized = true;
 }
}

Listing 11-5 shows the code for the MainActivity. Everything happens
inside the onCreate() method. When MainActivity enters the CREATED
state, you create an instance of the RandomNumber class, you call the
getNumber() method, and you set the value of the TextView to the result of
the getNumber() method.

Listing 11-5.  MainActivity Class

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 RandomNumber data = new RandomNumber();

 ((TextView) findViewById(R.id.txtrandom)).setText(data.getNumber());
 }
}

141CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

Listing 11-6 shows the layout code, in case you want to follow the code
example.

Listing 11-6.  activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <TextView
 android:id="@+id/txtrandom"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 android:textSize="36sp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

When you run this code for the first time, you’ll see a random number
displayed in the TextView—no surprises there. You’ll also see the log entries
for createNumber() and getNumber() in the Logcat window—no surprises
there either. Now, while the app is running on the emulator, try to change the
orientation of the device. You’ll notice that every time the screen orientation
changes, the displayed number in the TextView changes as well. Also, you’ll
notice that additional logs for the createNumber() and getNumber() methods
show up in Logcat. The reason for this is because the runtime destroys
and recreates the MainActivity every time the screen orientation changes.
Your RandomNumber object also gets destroyed and recreated along with the
MainActivity; your UI data cannot survive orientation changes.

This is a good case for using the ViewModel library so that the UI data can
survive the destruction and recreation of the Activity class. You only need
to do three things to implement ViewModel:

	1.	 Add the lifecycle extensions to your project’s
dependencies, as you did earlier. Go back to
Listing 11-3 for instructions.

	2.	 To make the RandomGenerator class a ViewModel,
you extend the ViewModel class from the AndroidX
lifecycle libraries.

142 CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

	3.	 From the MainActivity, you get an instance of the
RandomNumber class using the factory method of the
ViewModelProviders class, instead of simply creating
an instance of the RandomNumber class.

Listing 11-7 shows the changes in the RandomNumber class; the RandomNumber
class is transformed automatically to a ViewModel object by simply
extending the ViewModel class.

Listing 11-7.  RandomNumber Extends ViewModel

import java.util.Random;
import androidx.lifecycle.ViewModel;

public class RandomNumber extends ViewModel {

 private String TAG = getClass().getSimpleName();

 int mrandomnumber;
 boolean minitialized = false;

 String getNumber() {
 if(!minitialized) {
 createRandomNumber();
 }
 Log.i(TAG, "RETURN Random number");
 return mrandomnumber + "";
 }

 void createRandomNumber() {
 Log.i(TAG, "CREATE NEW Random number");
 Random random = new Random();
 mrandomnumber = random.nextInt(100);
 minitialized = true;
 }
}

The class remains largely the same as its previous version, shown in
Listing 11-4; the only difference is that now it extends ViewModel.

Now, let’s implement the changes on the MainActivity. Listing 11-8 shows
the modified MainActivity, which uses ViewModelProviders to get an
instance of the RandomNumber class, which is the ViewModel object.

143CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

Listing 11-8.  MainActivity and ViewModelProviders

import androidx.lifecycle.ViewModelProviders;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 RandomNumber data;
 data = ViewModelProviders.of(this).get(RandomNumber.class); ➊

 ((TextView) findViewById(R.id.txtrandom)).setText(data.getNumber());
 }
}

➊ This is the only change you need to do in MainActivity. Instead of directly
managing the instance of the ViewModel object (the RandomNumber class)
by creating an instance of it inside the onCreate() method, you let the
ViewModelProviders class manage the scope of your ViewModel object.

�LiveData
Going back to the RandomNumber example, what you have is an app that
shows a random number every time the app is launched. The app uses
ViewModel already, so you don’t have the problem of losing data every time
the activity is destroyed and recreated. The basic data flow is shown in
Figure 11-2.

144 CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

But what if you need to fetch another number? For that, you can add a
trigger in the MainActivity, like a Button, and then it will call getNumber()
on the ViewModel, but how are you going to refresh the TextView in the
MainActivity? There are a couple of ways to do this, and you may have
encountered them already. One way to facilitate data exchange between
your ViewModel and an activity is the creative use of interfaces (but I won’t
discuss that here) or by using an EventBus like Otto (I also won’t discuss
that here)—but now, thankfully, because of architecture components, you
can use LiveData. The new data flow is depicted in Figure 11-3.

Figure 11-2.  Data flow for the RandomNumber example

Figure 11-3.  RandomNumber sample with LiveData

145CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

➊ The user clicks the FETCH button, which calls the getNumber() function; actually,
it calls the createNumber() first and then call the getNumber(). This way, you’re
really fetching a new random number. There are ways to do this more elegantly,
but this is the quickest way to do it, so bear with me.

➋ Your ViewModel object gets a new random number. This isn’t a simple String
anymore; it was changed to a MutableLiveData so it becomes observable.

➌ From the MainActivity, you get an instance of the LiveData coming from your
ViewModel object and write some code to observe it. Next, you simply react
to changes in the LiveData.

Let’s see how that works in code. Listings 11-9 and 11-10 show the code for
your ViewModel and MainActivity, respectively.

Listing 11-9.  ViewModel with LiveData

import androidx.lifecycle.MutableLiveData;
import androidx.lifecycle.ViewModel;

public class RNModel extends ViewModel {
 private String TAG = getClass().getSimpleName();
 MutableLiveData<String> mrandomnumber = new MutableLiveData<>(); ➊
 boolean minitialized = false;

 MutableLiveData<String> getNumber() { ➋
 if(!minitialized) {
 createRandomNumber();
 }
 Log.i(TAG, "RETURN Random number");
 return mrandomnumber;
 }

 void createRandomNumber() {
 Log.i(TAG, "CREATE NEW Random number");
 Random random = new Random();

 mrandomnumber.setValue(random.nextInt(100) + ""); ➌
 minitialized = true;
 }
}

➊ The value of mrandomnumber is what you return to the MainActivity. You
want this to be an observable object. To do this, you change its type from
int to MutableLiveData.

➋ You must make that type change here too. Since mrandomnumber is now
MutableLiveData, this function has to return MutableLiveData too.

➌ To set the value of the MutableLiveData, use the setValue() method.

146 CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

Now you can move on the changes in MainActivity. Listing 11-10 shows
the modified and annotated code for MainActivity.

Listing 11-10.  MainActivity

import androidx.appcompat.app.AppCompatActivity;
import androidx.lifecycle.MutableLiveData;
import androidx.lifecycle.Observer;
import androidx.lifecycle.ViewModelProviders;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 final RNModel data;
 data = ViewModelProviders.of(this).get(RNModel.class);

 final TextView txtnumber = (TextView) findViewById(R.id.txtrandom);
 MutableLiveData<String> mnumber = data.getNumber(); ➊

 Button btn = (Button) findViewById(R.id.button); ➋
 btn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 data.createRandomNumber();
 data.getNumber();
 }
 });

 mnumber.observe(this, new Observer<String>() { ➌
 @Override
 public void onChanged(String val) { ➍
 txtnumber.setText(val);
 }
 });
 }
}

147CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

➊ Fetch the random number from the ViewModel. The random number isn’t of
String type anymore; it’s MutableLiveData.

➋ This is the boilerplate code for a button click. You need this trigger to fetch a
random number from the ViewModel.

➌ To observe a LiveData, you call the observe() method. The method takes two
arguments: the first argument is the lifecycle owner (MainActivity, so you pass
this) and the second argument is an Observer object. You use an anonymous
class here to create the Observer object.

➍ This onChanged() method is called every time the value of the random number
(mrandomnumber) in the ViewModel changes, so when it changes, you set the
value of the TextView accordingly.

Cool, right?! If you’re still not sold on using LiveData, here are a couple of
things to consider. When you use LiveData,

	You’re sure the UI always matches the data state.
You’ve already seen this from the example. LiveData
follows the Observer pattern, so it notifies the observer
when its value changes.

	There are no memory leaks. Observers are bound to
lifecycle objects. If, for example, your MainActivity
enters the paused state (for whatever reason, like
maybe another activity is on the foreground), the
LiveData won’t be observed. If the MainActivity is
destroyed, the LiveData again won’t be observed, and
it will clean up after itself—which also means you won’t
need to manually handle the lifecycles of MainActivity
and the ViewModel.

�Room
If you want to include database functionalities in your app, you might want
to look at Room. Before Room, the two popular ways to build database
apps were to either to use Realm or just use good ole SQLite. Dealing with
SQLite was considered to be a bit low-level; it felt too close to the metal
and as such was a bit cumbersome to use. Realm was quite popular among
developers but no matter the popularity, it wasn’t a first-party solution.
Thankfully, we now have Room.

148 CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

Room is an abstraction on top of SQLite. If you’ve used an ORM before, like
Hibernate, it’s similar to that. Room has several advantages over using plain
vanilla SQLite. With Room,

	You don’t have to deal with raw queries for basic
database operations.

	At compile time, it verifies the SQL queries, so you don’t
need to worry about SQL injection—remember that?

	There is no impedance mismatch between your
database objects and Java objects. Room takes care of
it, so you only need to deal with Java objects.

Room has three major components: Entity, Dao, and Database. Their
relationship with the application is shown in Figure 11-4.

Figure 11-4.  Room components

	Entity: An Entity is used to represent a database table.
You code it as a class that’s decorated by the @Entity
annotation.

	The Dao (Data Access Object) is a class that contains
the method to access the tables in the database. This is
where you code your CRUD (create, read, update, and
delete) operations. This is an interface that’s decorated
by the @Dao annotation.

	Database: This component holds a reference to the
database. It’s an abstract class that is annotated by the
@Database annotation.

Before you can use Room in a project, you need to add its dependencies to
the build.gradle file (module level), as shown in Listing 11-11.

149CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

Listing 11-11.  Room Dependencies

dependencies {
 def room_version = "2.1.0-alpha07"
 implementation "androidx.room:room-runtime:$room_version"
 annotationProcessor "androidx.room:room-compiler:$room_version"
 . . .
}

Listings 11-12, 11-13, 11-14, and 11-15 show the four Java source files that
demonstrate a very basic usage of Room.

Listing 11-12.  Person Class, the Entity

import androidx.annotation.NonNull;
import androidx.room.Entity;
import androidx.room.PrimaryKey;

@Entity(tableName = "person") ➊
public class Person {
 @PrimaryKey(autoGenerate = true) ➋
 @NonNull public int uid;

 @ColumnInfo(name="last_name") ➌
 public String last_name;
 public String first_name;

 public Person(String lname, String fname) {
 last_name = lname;
 first_name = fname;
 }

 public Person() {}
}

➊ The @Entity annotation makes this an Entity. If you don’t pass the tableName
argument, the name of the table will default to the name of the decorated
class. You only need to pass this argument if you want the table’s name to be
different from the decorated class. So, what I wrote here is unnecessary and
redundant because I set the value of tableName to “person”, which is the same
as the name of the decorated class.

➋ You’re making the uid member variable as the primary key; you’re also saying
it can’t be null.

➌ The member variables of the class will automatically become the fields on the
table. The column names on the table will take after the names of the member
variables unless you use the @ColumnInfo annotation. If you want the name of
the table field (column) to be different from the name of the member variable,
use the @ColumnInfo decoration, as shown here, and set the name to your
preferred column name.

150 CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

Listing 11-13.  PersonDAO, the Data Access Object

import java.util.List;
import androidx.room.Dao;
import androidx.room.Delete;
import androidx.room.Insert;
import androidx.room.Query;
import androidx.room.Update;

@Dao ➊
interface PersonDAO { ➋
 @Insert ➌
 void insertPerson(Person person);

 @Update
 void updatePerson(Person person);

 @Delete
 void deletePerson(Person person);

 @Query("SELECT ∗ FROM person") ➍
 public List<Person> listPeople();
}

➊ A DAO needs to be annotated by the @Dao decorator.

➋ DAOs must be written as interfaces.

➌ Use the @Insert decorator to indicate that the decorated method will be used
for inserting records to the table. Similarly, you decorate methods for update,
query, and delete with @Update, @Query, and @Delete, respectively.

➍ Use the @Query to write SQL select statements. Each @Query is verified at
compile time; if there is a problem with the query, a compilation error occurs
instead of a runtime error. This should put your mind at ease.

Listing 11-14.  AppDatabase, the Database Holder

import android.content.Context;
import androidx.room.Database;
import androidx.room.Room;
import androidx.room.RoomDatabase;

@Database(entities = {Person.class}, version = 1) ➊
public abstract class AppDatabase extends RoomDatabase { ➋

 private static AppDatabase minstance;
 private static final String DB_NAME = "person_db";

 public abstract PersonDAO getPersonDAO(); ➌

151CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

 public static synchronized AppDatabase getInstance(Context ctx) { ➍
 if(minstance == null) {
 minstance = Room.databaseBuilder(ctx.getApplicationContext(), ➎
 AppDatabase.class,
 DB_NAME)
 .fallbackToDestructiveMigration()
 .build();
 }
 return minstance;
 }
}

➊ Use the @Database to signify that this class is the Database holder. Use the
entities argument to specify the Entities that are in the Database. If you
have more than one Entity, use commas to separate the list. The second
argument is the version; this is an integer value that specifies the version of
your db.

➋ A Database class is abstract and extends the RoomDatabase.

➌ You need to provide an abstract class that will return an instance of the
DAO object.

➍ You need to provide a static method to get an instance of the Database. It
doesn’t have to be a Singleton, like what I did here, but I imagine you don’t
want more than one instance of the Database class.

➎ Use the databaseBuilder() method to create an instance of the
RoomDatabase. There are three arguments to the builder method: 1) an
application context, 2) the abstract class, which is annotated by @Database,
and 3) the name of the database file. This is file name of the SQLite db.

Now that all of your Room components are in place, you can use them
from your app. Listing 11-15 shows how to use Room components from an
activity.

Listing 11-15.  MainActivity

public class MainActivity extends AppCompatActivity {

 private AppDatabase db;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

152 CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

 Button btn = (Button) findViewById(R.id.button);
 btn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 saveData();
 System.out.println("Clicked");
 }
 });
 db = AppDatabase.getInstance(this); ➊
 }

 private void saveData() {
 �final String mlastname = ((TextView) findViewById(R.id.txtlastname)).

getText().toString();
 �final String mfirstname = ((TextView) findViewById(R.id.txtfirstname)).

getText().toString(); ➋

 new Thread(new Runnable() { ➌
 @Override
 public void run() {
 Person person = new Person(mlastname, mfirstname); ➍
 PersonDAO dao = db.getPersonDAO(); ➎
 dao.insertPerson(person); ➏
 List<Person> people = dao.listPeople(); ➐
 for(Person p:people) { ➑
 System.out.printf("%s , %s\n", p.last_name, p.first_name);
 }
 }
 }).start();
 }
}

➊ To begin using the RoomDatabase, get an instance of it using the factory
method you coded in the AppDatabase earlier.

➋ Let’s collect the data from the TextViews.

➌ Room follows best practices, so it won’t allow you to run any database query
on the main UI thread. You need to create a background thread and run all
your Room commands in there. In here, I used quick and dirty Thread and
Runnable objects, but you’re free to use any other means of background
execution, like AsyncTask.

➍ Create a Person object using the inputs from the TextViews.

➎ Get an instance of the DAO.

➏ Do an insert using the insertPerson() method you coded in the DAO earlier.

➐ Do a SELECT;.

➑ List all entries in the person table.

153CHAPTER 11: Lifecycle, ViewModel, LiveData, and Room

In a real app, you probably wouldn’t access the database from a UI
controller like an activity. You might want to put in a ViewModel class; that
way, the UI controller’s responsibility is strictly to present data and not to act
as a model.

If you use Room with ViewModel and LiveData, it can provide a more
responsive UI experience. I didn’t cover it here, but it’s a great exercise to
pursue after this chapter.

�Chapter Summary
	AppCompatActivity objects are now lifecycle owners.

You can write another class and listen to the lifecycle
changes of a lifecycle owner and then react accordingly.
Fragments too are lifecycle owners—don’t forget to use
AndroidX artifacts on your project when working with
lifecycle-aware components.

	ViewModel makes your UI data resilient to the
destruction and recreation of UI controllers (like
activities and fragments).

	LiveData makes the relationship between your UI
object and model data bidirectional. A change in one is
automatically reflected in the other.

	Room is an ORM for SQLite. It’s a first-party solution
and it’s part of the architecture components. There’s
little reason why you shouldn’t use it.

155© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_12

Chapter 12
Release Builds

What this chapter covers:

	Preparing for release

	Signing the app

	Google Play

	The app bundle

You can distribute your app quite freely and without many restrictions. You
can let your users download it from your website, Google Drive, Dropbox,
and more; you may even email the app directly to users, if you wish. Many
developers choose to distribute their app on a marketplace like Google or
Amazon to maximize reach. Another reason to put your app on a trusted
digital marketplace is, well, it’s trusted. When an app is not downloaded
from a trusted source, the apps won’t be instantly usable because the user
will get a notification that the app is not from a trusted source.

In this chapter, I’ll discuss the things you need to do to get your app out in
Google Play.

�Preparing the App for Release
There are three things you need to keep in mind when preparing an app for
release:

	1.	 Prepare the material and assets for release.

	2.	 Configure the app for release.

	3.	 Build a release-ready app.

156

�Preparing the Material and Assets for Release
Your code is great and you might even think it’s clever, but the user will
never see it. What they will see are your View objects, the icons, and the
other graphical assets. You should polish them.

If you think the app’s icon isn’t a big deal, think again. The icon helps the
users identify your app as it sits on the home screen. This icon also appears
in other areas like the launcher window, the downloads section, and more
importantly, it appears in the store where the app is published. The icon
creates the first impression of your app. It’s a good idea to put some work
into it. Start by reading Google’s guidelines for app icons at http://bit.
ly/androidreleaseiconguidelines. While you’re at it, also visit https://
romannurik.github.io/AndroidAssetStudio/; this resource will save you
plenty of time when generating assets for your app.

Other things to consider if you want to publish the app in Google’s
marketplace are graphical assets like screen captures and the text for
promotional copy. Make sure to read Google’s guideline for graphical assets,
which can be found at http://bit.ly/androidreleasegraphicassets.

�Configuring the App for Release
	1.	 Check the package name. The app may have

started as an exercise or throw-away code, and
then it grew and took on a life on its own. You may
want to check the package name of the app. Make
sure it isn’t still com.example.myapp. The package
name makes the app unique across the Google
marketplace, and once you decide on a package
name, you can’t change it. So give it some thought.
You already know how to change this; it’s covered in
the Gradle chapter, remember?

	2.	 Deal with the debug information. Make sure
that the android:debuggable attribute in the
<application> tag of the Manifest is removed. You
just need to check, really, because Android Studio
would have removed this automatically when you
change the mode to “release.”

	3.	 Remove the log statements. Different developers
do this differently. Some painstakingly go through
the code and remove the statements manually.
Some write sed or awk programs to strip away the
log statements. Some use ProGuard, and others use

CHAPTER 12: Release Builds

http://bit.ly/androidreleaseiconguidelines
http://bit.ly/androidreleaseiconguidelines
https://romannurik.github.io/AndroidAssetStudio/;
https://romannurik.github.io/AndroidAssetStudio/;
http://bit.ly/androidreleasegraphicassets

157

third-party tools like Timber to take care of logging
activities. It’s up to you which you will use, but make
sure that your users won’t accidentally see the log
information. If you haven’t made up your mind yet,
I really urge you to try Timber.

	4.	 Check the application’s permissions. During
development, you may have experimented on some
features of the application and you may have set
permissions on the manifest like permission to use
the network, write to external storage, etc. Review
the <uses-permission> tag on the manifest and
make sure that you don’t grant permissions that the
application does not need.

	5.	 Check remote servers and URLs. If your
application relies on web APIs or cloud services,
make sure that the release build of the app is using
production URLs and not test paths. You may
have been given sandboxes and test URLs during
development; you need to switch them up to the
production version.

�Building a Release-Ready Application
During development, Android Studio did the following things for you:

	1.	 Created a debug certificate

	2.	 Assembled all your project’s assets, config files, and
runtime binaries into an APK

	3.	 Signed the APK using a debug certificate

	4.	 Deployed the APK to an emulator or a connected
device

All these things happened in the background; you didn’t have to do anything
else but write your code. Now you need to take care of that certificate.
Google Play and other similar marketplaces won’t distribute an app that’s
signed with a debug certificate. It needs to be a proper certificate. You
don’t need to go a certificate authority like Thawte or Verisign; a self-signed
certificate will suffice.

In the next steps, I’ll walk you through how to generate a signed bundle or
APK. You already know what an APK is—it’s the package that contains your
application. It’s what you upload to Google Play. A bundle, on the other
hand, is a lot like an APK but it’s a newer upload format. Like the APK, it

CHAPTER 12: Release Builds

158

also includes all your app’s compiled code and resources, but it defers the
APK generation. It’s Google Play’s new app serving model called Dynamic
Delivery. It uses your app bundle to generate and serve an optimized APK
for each user’s device configuration—so they download only the code and
resources that they need to run your app. You don’t have to build, sign, and
manage multiple APKs anymore.

In Android Studio, the steps to generate an APK and a bundle are almost
identical. In the following steps, you’ll see how to generate both the bundle
and an APK.

Launch Android Studio, if it isn’t open yet. Open the project and from the
main menu bar, go to Build ➤ Generate Signed Bundle/APK, as shown in
Figure 12-1.

Choose either Bundle or APK, and then click Next. In this example, I chose
to create a bundle. When you click Next, you will see the Key Store dialog,
as shown in Figure 12-2.

Figure 12-1.  Generating a signed APK

CHAPTER 12: Release Builds

159

The Key store path field is asking for the location of your Java Key Store
(JKS) file. At this point, you don’t have it yet. So, click the Create new
button. You’ll see the dialog window for creating a new key store, as shown
in Figure 12-3.

Figure 12-2.  Key store dialog

Figure 12-3.  New key store

CHAPTER 12: Release Builds

160

Table 12-1 shows the description for the input items of the key store.

When you’re done filling up the New Key Store dialog, click OK. This
will bring you back to the Generate Signed APK window, as shown in
Figure 12-4, but now the JKS file is created and the Key Store dialog is
populated with it.

Table 12-1.  Key store Items and Description

Key store items Description

Key store path The location where you want to keep the key store. This is
entirely up to you. Just make sure you remember this location.

Password This is the password for the key store. Don’t lose it. Make sure
you remember this one. Otherwise, you’ll need to create
another key store file.

Alias This alias identifies the key. It’s just a friendly name for it.

(Key) Password This is the password for the key. This is NOT the same
password as the key store’s (but you can use the same
password if you like).

Validity, in years The default is 25 years; you can just accept the default. If you
publish on Google Play, the certificate must be valid until
October of 2033, so 25 years should be fine

Other information Only the first and last name fields are required.

Figure 12-4.  Generate Signed Bundle/APK screen, populated

CHAPTER 12: Release Builds

161

Click Next. Now you’ll choose the destination of the signed bundle, as
shown in Figure 12-5.

You need to remember the location of the destination folder, as shown in
Figure 12-5. This is where Android Studio will store the signed bundle. Also,
make sure that the build type is set to “release.”

When you click Finish, Android Studio will generate the signed bundle for
your app. This is the file that you will submit to Google Play.

�Releasing the App
Before you can submit an app to Google Play, you’ll need a developer
account. If you don’t have one yet, you can sign up at https://developer.
android.com. There are a lot of assumptions I’m making about the next
activities. I’m assuming that

	1.	 You already have a Google account (Gmail), and

	2.	 You’re using Google Chrome to go to https://
developer.android.com, and

	3.	 Your Google account is logged into Chrome.

If you’re Google account isn’t logged into Chrome, you might see something
like Figure 12-6. Chrome will ask you go select an account (or create one).

Figure 12-5.  Signed APK, APK destination folder

CHAPTER 12: Release Builds

https://developer.android.com
https://developer.android.com
https://developer.android.com
https://developer.android.com

162

When you get your Google account sorted out, you’ll be taken to the
developer.android.com website, as shown in Figure 12-7.

Click Google Play, as shown in Figure 12-7. Click Launch Play Console, as
shown in Figure 12-8.

Figure 12-6.  Choose an account

Figure 12-7.  developer.android.com

CHAPTER 12: Release Builds

163

You need to go through four steps to complete the registration (shown in
Figure 12-9):

	1.	 Sign in with your Google account.

	2.	 Accept the developer agreement.

	3.	 Pay the registration fee.

	4.	 Complete your account details.

Figure 12-8.  Launching the Google Play Console

CHAPTER 12: Release Builds

164

Once you have completed the registration and one-time payment, you will
now have access to the Google Play Console, as shown in Figure 12-10.

Figure 12-9.  The Google Play Console sign up

CHAPTER 12: Release Builds

165

This is where you can start the process of submitting your app to the store.
Click the Create application button to get started.

�Chapter Summary
	Before the users can experience your app, they will see

the icons and other graphical assets first. Make sure the
graphical assets are just as polished as your code.

	Strip your code of all debug info and log statements
before you build a release.

	Code review your own work. If you have buddies or
other people who can review the code with you, that’s
much better. If your app uses servers, RESTful URLs,
etc., make sure they are production ready and not
sandboxed.

	Before you can upload your app to Google Play, you
need to sign your app with a proper certificate.

	You’ll need a Google Play account if want to sell your
apps on Google Play. I paid a one-time fee of $25 USD,
but that was a couple of years ago.

	Don’t forget to test your app on a real device.

Figure 12-10.  The Google Play Console

CHAPTER 12: Release Builds

167© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6_13

Chapter 13
Short Takes

What this chapter covers:

	How to import sample code

	Refactoring

	Code generators

	Live templates

	Code editor preferences

	Keyboard shortcuts

This quick reference book wouldn’t be a quick reference it described every
nuance of Android Studio in detail, but before I end the book, I’d like to point
out some features of Android Studio that makes our coding lives easier. Like
I said, I won’t go into detail because that’s not the goal; rather, the goal is to
let you know that these features exist.

�Productivity Features
What we usually mean when talking about productivity is that we want
to do what we need to do in the shortest possible time, which translates
to keyboard shortcuts, templates, snippets, and so on. In this section,
you’ll take a peek at some of what Android Studio has to offer to give your
productivity a little boost. I’ll show you what’s available.

168

�Importing Samples
A key part of boosting your productivity is to actually learn how to create
things and discover how they work in Android. So, my first productivity tip is
to learn how to use the “import sample” feature. You can get to this feature
from the main menu bar via File ➤ New ➤ Import Sample. Figure 13-1
shows the Import Sample screen.

What you see in Figure 13-1 is a list of code samples you can either browse
or create as a local project.

Let’s say you want to learn something about the Autofill Framework, like
what you see in Figure 13-1. You can see a preview of what it looks like, and
you can also click the Browse in GitHub link. When you click Next, you’ll see
a dialog that’s somewhat similar to when creating a new project, as shown
in Figure 13-2.

Figure 13-1.  Importing a sample

CHAPTER 13: Short Takes

169

If you click Finish in the Import Sample dialog, Android Studio will create a
new project locally and download the sample file from GitHub so you can
take a closer look at it and work on it right away.

�Refactoring
Refactoring is basically rewriting and improving your source code without
creating new functionality; this practice helps keep the code SOLID and
DRY (don’t repeat yourself) and thus easier to maintain.

Note  I spelled SOLID in all caps because it’s also an acronym that
stands for Single Responsibility, Open-Closed Principle, Liskov Principle,
Interface Segregation, and Dependency Inversion Principle. These are
principles of object-oriented design, which was popularized by Robert
C. Martin.

Figure 13-2.  Import Sample, next window

Android Studio has some nifty refactoring capabilities. It’s easy to get
started: just select a piece of code that you’d like to refactor and then use
the context-sensitive right-click, shown in Figure 13-3. Alternatively, you can
use the keyboard shortcuts: Ctrl + T for macOS and Ctrl + Alt + Shift + T
for Windows/Linux.

CHAPTER 13: Short Takes

170

I’m sure you’ve done refactoring many times before, but let’s just jog your
memory here.

	Rename: This will let you safely rename variables and
other identifiers. You should use this instead of Find and
Replace. This works across the entire project, and not
only in the current file.

	Change Signature: This will let you change a method,
either its name or the parameters. It also works at a
class level, so you can turn a class into a generic type
and manipulate the type parameters.

	Move: Moves an element. You can move a method to
another class if you want to.

	Copy: Lets you copy elements, like the currently
selected class.

	Safe Delete: If you need to delete something, Android
Studio will verify that what you’re deleting isn’t in use by
anything else in the code base. If it is in use, you’ll be
prompted so you can address those things before you
actually delete something important.

Figure 13-3.  Refactoring

CHAPTER 13: Short Takes

171

	Extract Constant: Avoid using hard-coded values. You
shouldn’t, you know it, and you know why. The Extract
option for refactoring works not only for constants; you
can extract fields, methods, superclasses, variables,
parameters, and interfaces.

There are plenty more options in the Refactor menu; make sure to check the
others out.

�Generate
Another time-saving feature of Android Studio is the code generator. It’s
aptly named because it does exactly what you think it does—it generates
code. Let’s take an example. Figure 13-4 shows the keyboard cursor inside
a class definition. While the cursor is within the class body, launch the
Generator action; from the main menu bar, go to Code ➤ Generate.

Figure 13-4.  Main menu bar, Code ➤ Generate

As you can see, you can generate quite a lot of boilerplate code. When
you choose any of the Generate options, Android Studio will generate a
generalized stub of code. Choose the getter and setter option. Let’s say
you have a PersonTest class, as shown in Figure 13-4. While the keyboard
cursor is still within the PersonTest class, go to the main menu bar and
choose Code ➤ Generate. Alternatively, you can use the keyboard shortcut
Command + N (macOS) or Alt + Insert (Windows and Linux) and then
choose to generate getters and setters. You’ll see the dialog shown in
Figure 13-5.

CHAPTER 13: Short Takes

172

The generator dialog shows all the autodetected fields in your class. It
shows the mFirstname and mLastname member variables; it also lets you do
multiple selections. Select both member variables and click OK. Listing 13-1
shows the PersonTest class after code generation.

Listing 13-1.  PersonTest Class

class PersonTest {

 String mFirstname;
 String mLastname;

 public String getmFirstname() {
 return mFirstname;
 }

 public void setmFirstname(String mFirstname) {
 this.mFirstname = mFirstname;
 }

 public String getmLastname() {
 return mLastname;
 }

 public void setmLastname(String mLastname) {
 this.mLastname = mLastname;
 }

Figure 13-5.  Generating getters and setters

CHAPTER 13: Short Takes

173

 public PersonTest(String mFirstname, String mLastname) {
 this.mFirstname = mFirstname;
 this.mLastname = mLastname;
 }
}

This is pretty neat already. Anything that lets us save on keystrokes is a
good thing. I’m guessing you probably have just one thing to nitpick in
this example; the method naming isn’t right. You probably would prefer
setLastname() to setmLastname(), wouldn’t you? You’ll fix that in the next
section.

�Coding Styles
If you go to Android Studio’s Preferences or Settings and then go to Editor
➤ Code Style ➤ Java, you’ll find that there are plenty of things you can
change about how the editor behaves. Figure 13-6 shows the options for the
code style, specifically the Java language.

Figure 13-6.  Preferences ➤ Code Style ➤ Java

CHAPTER 13: Short Takes

174

If you want to change the number of spaces for tabs and indents, you can
do that in the Tabs and Indents area. Be sure to check out the other options
in this dialog.

Go to the Code Generation tab (shown in Figure 13-7).

This is where you can tell Android Studio how you name your variables. If
you go back to Listing 13-1, you’ll notice that I like to prefix my variables
with m, like mLastname and mFirstname; initially, Android Studio didn’t
know this, which is why when I generated some getters and setters for the
member vars, it gave me setmLastname() instead of just setLastname().

To tell Android Studio that I prefix my variables with m, I put the m in the
Name Prefix for Field, as shown in Figure 13-7, and clicked OK.

Now, if I generate some getters and setters, I’ll get the more appropriate
method names. Listing 13-2 shows the regenerated code for the PersonTest
class.

Listing 13-2.  PersonTest, Regenerated

class PersonTest {

 String mFirstname;
 String mLastname;

Figure 13-7.  Code generation

Note  Prefixing a member variable with m comes from AOSP (Android
Open Source Project). I used it here because quite a lot of sample code
you will read online uses this convention. You can read further about it at
https://bit.ly/styleguideaosp.

CHAPTER 13: Short Takes

https://bit.ly/styleguideaosp

175

 public String getFirstname() {
 return mFirstname;
 }

 public void setFirstname(String firstname) {
 mFirstname = firstname;
 }

 public String getLastname() {
 return mLastname;
 }

 public void setLastname(String lastname) {
 mLastname = lastname;
 }

 public PersonTest(String mFirstname, String mLastname) {
 this.mFirstname = mFirstname;
 this.mLastname = mLastname;
 }
}

�Live Templates
You can save more time in Android Studio with the live templates, which
work a lot like those text expander applications, if you have used some of
them. The basic idea is when you type a series of characters, like datetoday,
the editor will replace them with the text of the actual date today.

If you’ve done some Android programming in the past, you’ve probably
made this mistake at least once:

Toast.makeText(MainActivity.this, "no show");

This is easy enough to spot, but some other errors may not be as obvious.
Anyway, live templates can help you avoid these hassles. Live templates
are shortcuts that are displayed as code-completion options; for example,
try typing fbc inside an OnClick handler (or any event handler), as shown in
Figure 13-8.

Figure 13-8.  Live template sample

CHAPTER 13: Short Takes

176

You’ll see the code completion options. Press the Tab key and see what
happens.

Table 13-1 lists some common built-in templates.

Make sure you check out the other live templates. Go to the Settings or
Preferences window. If you’re in Windows or Linux, go to the main menu bar
and choose File ➤ Settings ➤ Editor ➤ Live Templates; if you’re in macOS,
go to Android Studio ➤ Preferences ➤ Editor ➤ Live Templates. You can
even create your own live templates from there.

�Important Keyboard Shortcuts
The Android developer website maintains a page where you can
find the keyboard shortcuts for Android Studio: http://bit.ly/
androidstudiokbshortcuts. You should really make it a point to read this
page; but before I close this chapter, I’d like to leave you with six shortcuts
that I find to be very useful. Table 13-2 lists these shortcuts.

Table 13-1.  Common Live Templates

Abbreviation Description Code

fbc Find view by ID with
cast

($cast$) findViewById(R.id.$resId$);

const
Define an Android
style constant

private static final int $name$ = $value$;

Toast
Create a new Toast

Toast.makeText($classname$.this, "$text$").
show();

fori Create a for loop for(int $INDEX$ = 0;$INDEX$<$LIMIT$;
$INDEX++$) {
END
}

CHAPTER 13: Short Takes

http://bit.ly/androidstudiokbshortcuts
http://bit.ly/androidstudiokbshortcuts

177

�Chapter Summary
	You can avoid writing boilerplate code like constructors,

getters, and setters by using code generators.

	Android Studio has plenty of refactoring aides. Before
using the Find/Replace menu, consider using the
refactoring options.

	Live templates are like text expanders; they can save
you time and let you avoid common coding mistakes.
You should use them.

	You can control how the Android Studio editor behaves.
Go to Settings or Preferences and then Editor ➤ Code
Style.

Table 13-2.  Some Useful Keyboard Shortcuts

Shortcut What it does

Press Shift twice It lets you search for a term everywhere. It searches the
assets folder, Gradle files, images, resources, code, XML
configuration files, and so on. If you don’t know which
folder to search, just use this.

Ctrl + Space |
Command + Space

Android Studio already has code completion and code
hinting; this is just a little extra. If you forgot the
parameters for a method that uses lots of parameters, you
can use this to preview all the variants of the method and
the corresponding parameters they expect.

Alt + Insert |
Command + N

You used this in the previous section where you generated
some code. This is the shortcut for the code generator.

Ctrl + O | Command + O When you want to override methods, use this shortcut.

Ctrl + - | Command + - You can use these to expand or collapse code blocks. It’s
handy to be able to fold code when you’re working with a
large codebase. These shortcuts will make your life a bit
easier when you fold/unfold blocks.

Ctrl + Alt + L |
Command + Option + L

Don’t manually indent or reindent your code. If you
messed up the indentation of a for loop or nested
conditional blocks, just highlight the code block and use
this shortcut.

CHAPTER 13: Short Takes

179© Ted Hagos 2019
T. Hagos, Android Studio IDE Quick Reference,
https://doi.org/10.1007/978-1-4842-4953-6

Index

■■A, B, C
Android build process, 83, 84
Android Development Tools (ADT), 1
Android project development

activity, creation, 17–19
Android app, creation, 11

activity, 15, 16
details, 13
MyApplication, 17
opening screen, 12
SDK, 14

class creation, 20
interface creation, 21
override method, 21, 23
running project, 24

Android Studio
AVD, 8
configuration

channel, 8
dialog, 4, 5
SDK platforms, 5
tools, 7

HAXM, 8
KVM, 9
setting up

Linux, 4
macOS, 3
system requirements, 2

Android Studio Profiler, see Profiler
Android Support Library, 91–93
Android Virtual Device (AVD), 8
App for release, 155

activities, 161
configuring, 156, 157
developer.android.com, 162

Google account, 162
Google Play console

launching, 163
sign up, 164

key store
dialog, 159
items and description, 160

material and assets, 156
release-ready

application, 157, 158
signed APK, 158, 161
signed bundle/APK

screen, 160
assertEquals() method, 58

■■D
Debugging

debugger
breakpoints, 46–48
single stepping, 48, 49

logic errors, 44–46
runtime errors, 42–44
syntax errors, 41, 42

■■E
Energy profiler, 81

alarms, 82
job, 82
wake lock, 82

Espresso, 63
actions, 71
BoundedMatcher, 71
CursorMatcher, 70
LayoutMatcher, 70

https://doi.org/10.1007/978-1-4842-4953-6

180

PreferenceMatcher, 70
RootMatcher, 70
test, recording, 67–70
ViewMatcher, 71

■■F
factorial() method, 55

■■G, H
Git, 95

preferences, 96
repos, 107

adding files, 113
Bitbucket repo, 110
committing changes, 114
creation, 108
details, 109
login, 112
pull changes, 113
pushing commits, 115
remote address, 110
remotes, 111
settings, 108
version control integration, 111

GitHub
log in, 98
opening

clone repository, 104
repo page, 105
welcome screen, 104

preferences, 98
settings, 99
sharing, 99

description, 101
files for initial commit, 101
.gitignore, 102, 103
importing into version

control, 100
private, 100
remote, 101
repository name, 100, 101
tool window, 102
variables, 99

updating, 105
adding files, 106
commit directory, 106
committing and pushing

changes, 107
Gradle files, 84, 85

dependencies, 88
directives, 89
jar, 88
library, 88
module, 88

module-level, 86, 89, 90
project structure, 87
sync project, 87

■■I
Instrumented test, 66, 67
Integrated development

environment (IDE)
code style, 38
main editor

distraction-free mode, 33
file types, 28
layout design tools, 30
layout files, 29
TODO items, 31
tool window, 31

parts, 27, 28
preferences/settings, 35, 36
project tool window, 34, 35
SDK manager, 36, 37

■■J
Jetpack

components
architecture, 121
behavior, 121
foundation, 120
UI, 121

navigation, 122
Android component, 127
build.gradle file, 123
connecting one to two, 129
editor, 127

Espresso (cont.)

Index

181

fragment, 126, 130–132
graph, 126, 130
NavHost, 128
navigate() method, 132
project with AndroidX

artifacts, 123
resource file, 124, 125

JUnit, 51
JVM test, 67

■■K
Kernel-based Virtual Machine (KVM), 9
Keyboard shortcuts, 176, 177

■■L
Lifecycle-aware components, 135

build.gradle file, 138
classes, 137, 138
vocabulary, 136

LiveData
consideations, 147
data flow, 144
MainActivity code, 146
onChanged() method, 147
RandomNumber sample, 144
ViewModel with, 145

Live templates, 175, 176
Logic errors, 44

■■M
Memory profiler, 78

allocation tracker, 80
instance view, 79
Java heap, 79
memory view, 78
reference tab, 79, 80

■■N
Navigation

activity workflow, 118
components, 119, 120
disadvantages, 118

fragment, 119
Jetpack (see Jetpack, navigation)
launching activity, 117
pass data to activity, 118
screen management, 118

Network profiler, 80, 81

■■O
onClick() method, 65, 66
Override method, 21

■■P, Q
Productivity features, 167

code generator, 171–173
coding styles, 173–175
importing samples, 168, 169
refactoring, 169, 170

Profiler, 73, 74
CPU utilization, 75

editing configurations, 75, 76
inspecting threads, 77
recording configurations, 76
recording session, 77

energy profiler, 81
memory profiler, 78

■■R
Refactoring, 169, 170
Room, 147

advantages, 148
components, 148
data access object, 150
databaseBuilder() method, 151
Database holder, 150
dependencies, 149
Entity, 149
MainActivity, 151, 152

Runtime errors, 42–44

■■S
SDK manager, 36
Syntax errors, 41, 42

Index

182

■■T
tearDown() methods, 58
Test-driven development (TDD), 61
TextView, 64

■■U
Unit testing

assert methods, 57
assertEquals(), 58
Factorialtest, creation, 53–55, 57
JVM test vs. instrumented

test, 52, 53
running, 59, 60
TDD, 61

■■V
ViewModel

implementation, 141
layout code, 141
onCreate() method, 140
RandomNumber class, 142
random number

generator, 139, 140
ViewModelProviders, 142, 143

■■W, X, Y, Z
Wake lock mechanism, 82

Index

	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Setup
	Setting Up Android Studio
	Configuring Android Studio
	Hardware Acceleration
	Chapter Summary

	Chapter 2: Quick How-Tos
	Creating a Project
	Creating an Activity
	Creating a Class
	Creating an Interface
	Override Methods
	Running a Project
	Chapter Summary

	Chapter 3: The IDE
	The IDE
	Main Editor
	Editing Layout Files
	Inserting TODO Items
	How to Get More Screen Space for Code

	Project Tool Window
	Preferences/Settings
	The SDK Manager
	Code Styles
	Chapter Summary

	Chapter 4: Debugging
	Types of Errors
	Syntax Errors
	Runtime Errors
	Logic Errors

	Debugger
	Single Stepping

	Chapter Summary

	Chapter 5: Unit Testing
	JVM Test vs. Instrumented Test
	A Simple Demo
	Implementing a Test
	Running a Unit Test
	Test First
	Chapter Summary

	Chapter 6: Instrumented Testing
	About Espresso
	Setting Up a Simple Test
	Recording Espresso Tests
	More on Espresso Matchers
	Espresso Actions
	Chapter Summary

	Chapter 7: Android Studio Profiler
	The Profiler
	CPU
	Memory
	Network
	Energy
	Chapter Summary

	Chapter 8: Gradle
	The Build Process
	The Build Files
	Module-Level Gradle File
	Dependencies
	Android Support Library
	Chapter Summary

	Chapter 9: Git
	Getting Git
	Using Android Studio with GitHub
	Sharing a Project on GitHub

	Opening a Project from GitHub
	Updating Git Projects
	Using Other Git Repos
	Chapter Summary

	Chapter 10: Navigation
	Navigation Before Architecture Components
	Navigation Components
	Working with Jetpack Navigation
	Chapter Summary

	Chapter 11: Lifecycle, ViewModel, LiveData, and Room
	Lifecycle-Aware Components
	ViewModel
	LiveData
	Room
	Chapter Summary

	Chapter 12: Release Builds
	Preparing the App for Release
	Preparing the Material and Assets for Release
	Configuring the App for Release
	Building a Release-Ready Application

	Releasing the App
	Chapter Summary

	Chapter 13: Short Takes
	Productivity Features
	Importing Samples
	Refactoring
	Generate
	Coding Styles

	Live Templates
	Important Keyboard Shortcuts
	Chapter Summary

	Index

