




Apache	Kafka	Cookbook



Table	of	Contents

Apache	Kafka	Cookbook

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Sections

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Initiating	Kafka

Introduction

Setting	up	multiple	Kafka	brokers

Getting	ready



How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	topics

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Sending	some	messages	from	the	console

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Consuming	from	the	console

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

2.	Configuring	Brokers

Introduction

Configuring	the	basic	settings

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Configuring	threads	and	performance

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…



Configuring	the	log	settings

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Configuring	the	replica	settings

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Configuring	the	ZooKeeper	settings

Getting	ready

How	to	do	it…

How	it	works…

See	also

Configuring	other	miscellaneous	parameters

Getting	ready

How	to	do	it…

How	it	works…

See	also

3.	Configuring	a	Producer	and	Consumer

Introduction

Configuring	the	basic	settings	for	producer

Getting	ready

How	to	do	it…

How	it	works…

Configuring	the	thread	and	performance	for	producer

Getting	ready

How	to	do	it…

How	it	works…



See	also

Configuring	the	basic	settings	for	consumer

Getting	ready

How	to	do	it…

How	it	works…

Configuring	the	thread	and	performance	for	consumer

Getting	ready

How	to	do	it…

How	it	works…

Configuring	the	log	settings	for	consumer

Getting	ready

How	to	do	it…

How	it	works…

Configuring	the	ZooKeeper	settings	for	consumer

Getting	ready

How	to	do	it…

How	it	works…

Other	configurations	for	consumer

Getting	ready

How	to	do	it…

How	it	works…

See	also

4.	Managing	Kafka

Introduction

Consumer	offset	checker

Getting	ready

How	to	do	it…

How	it	works…

Understanding	dump	log	segments

Getting	ready

How	to	do	it…



How	it	works…

Exporting	the	ZooKeeper	offsets

Getting	ready

How	to	do	it…

How	it	works…

Importing	the	ZooKeeper	offsets

Getting	ready

How	to	do	it…

How	it	works…

Using	GetOffsetShell

Getting	ready

How	to	do	it…

How	it	works…

Using	the	JMX	tool

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	the	Kafka	migration	tool

Getting	ready

How	to	do	it…

How	it	works…

The	MirrorMaker	tool

Getting	ready

How	to	do	it…

How	it	works…

See	also

Replay	Log	Producer

Getting	ready

How	to	do	it…

How	it	works…



Simple	Consumer	Shell

Getting	ready

How	to	do	it…

How	it	works…

State	Change	Log	Merger

Getting	ready

How	to	do	it…

How	it	works…

Updating	offsets	in	Zookeeper

Getting	ready

How	to	do	it…

How	it	works…

Verifying	consumer	rebalance

Getting	ready

How	to	do	it…

How	it	works…

5.	Integrating	Kafka	with	Java

Introduction

Writing	a	simple	producer

Getting	ready

How	to	do	it…

How	it	works…

See	also

Writing	a	simple	consumer

Getting	ready

How	to	do	it…

How	it	works…

See	also

Writing	a	high-level	consumer

Getting	ready

How	to	do	it…



How	it	works…

See	also

Writing	a	producer	with	message	partitioning

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Multithreaded	consumers	in	Kafka

Getting	ready

How	to	do	it…

How	it	works…

6.	Operating	Kafka

Introduction

Adding	and	removing	topics

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Modifying	topics

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Implementing	a	graceful	shutdown

Getting	ready

How	to	do	it…

How	it	works…

Balancing	leadership

Getting	ready

How	to	do	it…



How	it	works…

There’s	more…

Mirroring	data	between	Kafka	clusters

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Expanding	clusters

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Increasing	the	replication	factor

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Checking	the	consumer	position

Getting	ready

How	to	do	it…

How	it	works…

Decommissioning	brokers

Getting	ready

How	to	do	it…

How	it	works…

7.	Integrating	Kafka	with	Third-Party	Platforms

Introduction

Using	Flume

Getting	ready

How	to	do	it…

How	it	works…



See	also

Using	Gobblin

Getting	ready

How	to	do	it…

How	it	works…

See	also

Using	Logstash

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Configuring	Kafka	for	real-time

Getting	ready

How	to	do	it…

How	it	works…

Integrating	Spark	with	Kafka

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Integrating	Storm	with	Kafka

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Integrating	Elasticsearch	with	Kafka

Getting	ready

How	to	do	it…

How	it	works…



There’s	more…

See	also

Integrating	SolrCloud	with	Kafka

Getting	ready

How	to	do	it…

How	it	works…

See	also

8.	Monitoring	Kafka

Introduction

Monitoring	server	stats

Getting	ready

How	to	do	it…

How	it	works…

See	also

Monitoring	producer	stats

Getting	ready

How	to	do	it…

How	it	works…

See	also

Monitoring	consumer	stats

Getting	ready

How	to	do	it…

How	it	works…

See	also

Connecting	to	Graphite

Getting	ready

How	to	do	it…

How	it	works…

See	also

Monitoring	with	Ganglia

Getting	ready



How	to	do	it…

How	it	works…

See	also

Index





Apache	Kafka	Cookbook





Apache	Kafka	Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2015

Production	reference:	1251115

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-244-9

www.packtpub.com

http://www.packtpub.com




Credits
Author

Saurabh	Minni

Reviewers

Brian	Gatt

Izzet	Mustafaiev

Commissioning	Editor

Priya	Singh

Acquisition	Editor

Shaon	Basu

Content	Development	Editor

Athira	Laji

Technical	Editor

Shivani	Kiran	Mistry

Copy	Editor

Akshata	Lobo

Project	Coordinator

Harshal	Ved

Proofreader

Safis	Editing

Indexer

Hemangini	Bari

Production	Coordinator

Conidon	Miranda

Cover	Work

Conidon	Miranda





About	the	Author
Saurabh	Minni	has	an	BE	in	computer	science	and	engineering.	A	polyglot	programmer
with	over	10	years	of	experience,	he	has	worked	on	a	variety	of	technologies,	including
Assembly,	C,	C++,	Java,	Delphi,	JavaScript,	Android,	iOS,	PHP,	Python,	ZMQ,	Redis,
Mongo,	Kyoto	Tycoon,	Cocoa,	Carbon,	Apache	Storm,	and	Elasticsearch.	In	short,	he	is	a
programmer	at	heart,	and	loves	learning	new	tech-related	things	each	day.

Currently,	he	is	working	as	a	technical	architect	with	Near	(an	amazing	start-up	that	builds
a	location	intelligence	platform).	Apart	from	handling	several	projects,	he	was	also
responsible	for	deploying	Apache	Kafka	cluster.	This	was	instrumental	in	streamlining	the
consumption	of	data	in	the	big	data	processing	systems,	such	as	Apache	Storm,	Hadoop,
and	others	at	Near.

He	has	also	reviewed	Learning	Apache	Kafka,	Packt	Publishing.

He	is	reachable	on	Twitter	at	@the100rabh	and	on	Github	at
https://github.com/the100rabh/.

This	book	would	not	have	been	possible	without	the	continuous	support	of	my	parents,
Suresh	and	Sarla,	and	my	wife,	Puja.	Thank	you	for	always	being	there.

I	would	also	like	to	thank	Arun	Vijayan,	chief	architect	at	Near,	who	encouraged	me	to
learn	and	experiment	with	different	technologies	at	work.	Without	his	encouragement,	this
book	would	not	exist.

https://github.com/the100rabh/




About	the	Reviewers
Brian	Gatt	is	a	software	developer	who	holds	a	bachelor’s	degree	in	computer	science
and	artificial	intelligence	from	the	University	of	Malta	and	a	master’s	degree	in	computer
games	and	entertainment	from	the	Goldsmiths	University	of	London.	In	his	spare	time,	he
likes	to	keep	up	with	what	the	latest	graphic	APIs	have	to	offer,	native	C++	programming,
and	game	development	techniques.

Izzet	Mustafaiev	is	a	family	guy	who	loves	traveling	and	organizing	BBQ	parties.
Professionally,	he	is	a	software	engineer	working	with	EPAM	Systems	with	primary	skills
in	Java	and	Groovy/Ruby,	and	explores	FP	with	Erlang/Elixir.	He	has	participated	in
different	projects	as	a	developer	and	architect.	He	also	advocates	XP,	Clean	Code,	and
DevOps	habits	and	practices,	and	speaks	at	engineering	conferences.





www.PacktPub.com



Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib


Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser



Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com




Preface
Apache	Kafka	is	a	fault-tolerant	persistent	queuing	system,	which	enables	you	to	process
large	amount	of	data	in	real	time.	This	guide	will	teach	you	how	to	maintain	your	Kafka
cluster	for	maximum	efficiency	and	easily	connect	it	to	your	big	data	processing	systems
such	as	Hadoop	or	Apache	Storm	for	quick	processing.

This	book	will	give	you	details	about	how	to	manage	and	administer	your	Apache	Kafka
cluster.	We	will	cover	topics	such	as	how	to	configure	your	broker,	producer,	and
consumers	for	maximum	efficiency	for	your	situation.	You	will	also	learn	how	to	maintain
and	administer	your	cluster	for	fault	tolerance.	We	will	also	explore	the	tools	provided
with	Apache	Kafka	to	do	regular	maintenance	operations.	We	will	also	look	at	how	to
easily	integrate	Apache	Kafka	with	big	data	tools	such	as	Hadoop,	Apache	Spark,	Apache
Storm,	and	Elasticsearch.



What	this	book	covers
Chapter	1,	Initiating	Kafka,	lets	you	learn	how	to	get	things	done	in	Apache	Kafka	via	the
command	line.

Chapter	2,	Configuring	Brokers,	covers	the	configuration	of	the	Apache	Kafka	broker.

Chapter	3,	Configuring	a	Consumer	and	Producer,	covers	the	configuration	of	your
consumers	and	producers	in	detail.

Chapter	4,	Managing	Kafka,	walks	you	through	some	of	the	important	operations	that	you
might	have	performed	for	managing	a	Kafka	cluster.

Chapter	5,	Integrating	Kafka	with	Java,	explains	how	to	integrate	Apache	Kafka	in	our
Java	code.

Chapter	6,	Operating	Kafka,	explains	how	to	do	some	of	the	important	operations	that
need	to	be	performed	while	running	a	Kafka	cluster.

Chapter	7,	Integrating	Kafka	with	Third-Party	Platforms,	covers	the	basic	methods	of
integrating	Apache	Kafka	in	various	big	data	tools.

Chapter	8,	Monitoring	Kafka,	walks	you	through	the	various	steps	of	monitoring	your
Kafka	cluster.





What	you	need	for	this	book
The	following	are	the	software	required	for	this	book:

Apache	Kafka	8.2
Maven	3
JDK	1.7+
Flume
Camus
Logstash
Apache	Spark
Apache	Storm
Elasticsearch
Solr
Graphite
Ganglia





Who	this	book	is	for
If	you	are	a	student,	programmer,	or	big	data	engineer	using,	or	planning	to	use,	Apache
Kafka,	then	this	book	is	for	you.	This	has	several	recipes	that	will	teach	you	how	to
effectively	use	Apache	Kafka.	You	need	to	have	some	basic	knowledge	of	Java.	If	you
don’t	know	big	data	tools,	this	would	be	your	stepping	stone	for	learning	how	to	consume
data	in	that	kind	of	systems.





Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it…,	How	it	works…,	There’s	more…,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:



Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.



How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.



How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.



There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.



See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.





Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	”	The
port	number	for	Kafka	to	run	and	the	location	of	the	Kafka	logs	using	log.dir	needs	to
be	specified.”

A	block	of	code	is	set	as	follows:

Properties	properties	=	new	Properties();

properties.put("metadata.broker.list",	"127.0.0.1:9092");

properties.put("serializer.class",	"kafka.serializer.StringEncoder");

properties.put("request.required.acks",	"1");

Any	command-line	input	or	output	is	written	as	follows:

>	cp	config/server.properties	config/server-1.properties

>	cp	config/server.properties	config/server-2.properties

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Under	the	MBean	tab
in	the	JConsole,	you	can	see	all	the	different	Kafka	MBeans	available	for	monitoring.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com




Chapter	1.	Initiating	Kafka
In	this	chapter,	we	will	cover	the	following	topics:

Setting	up	multiple	Kafka	brokers
Creating	topics
Sending	some	messages	from	the	console
Consuming	from	the	console



Introduction
This	chapter	explains	the	basics	of	getting	started	with	Kafka.	We	do	not	cover	the
theoretical	details	of	Kafka,	but	the	practical	aspects	of	it.	It	assumes	that	you	have	already
installed	Kafka	version	0.8.2	and	ZooKeeper	and	have	started	a	node	as	well.	You
understand	that	Kafka	is	a	highly	distributed	messaging	system	that	connects	your	data
ingestion	system	to	your	real-time	or	batch	processing	systems	such	as	Storm,	Spark,	or
Hadoop.	Kafka	allows	you	to	scale	your	systems	very	well	in	a	horizontal	fashion	without
compromising	on	speed	or	efficiency.	You	are	now	ready	to	get	started	with	Kafka	broker.
We	will	discuss	how	you	can	do	basic	operations	on	your	Kafka	broker;	this	will	also
check	whether	the	installation	is	working	well.	Since	Kafka	is	usually	used	on	Linux
servers,	this	book	assumes	that	you	are	using	a	similar	environment.	Though	you	can	run
Kafka	on	Mac	OS	X,	similar	to	Linux,	running	Kafka	on	a	Windows	environment	is	a
very	complex	process.	There	is	no	direct	way	of	running	Kafka	on	Windows,	so	we	are
keeping	that	out	of	this	book.	We	are	going	to	only	consider	bash	environment	for	usage
here.





Setting	up	multiple	Kafka	brokers
You	can	easily	run	Kafka	in	the	standalone	mode,	but	the	real	power	of	Kafka	is	unlocked
when	it	is	run	in	the	cluster	mode	with	replication	and	the	topics	are	appropriately
partitioned.	It	gives	you	the	power	of	parallelism	and	data	safety	by	making	sure	that,	even
if	a	Kafka	node	goes	down,	your	data	is	still	safe	and	accessible	from	other	nodes.	In	this
recipe,	you	will	learn	how	to	run	multiple	Kafka	brokers.



Getting	ready
I	assume	that	you	already	have	the	experience	of	starting	a	Kafka	node	with	the
configuration	files	present	at	the	Kafka	install	location.	Change	your	current	directory	to
the	place	where	you	have	Kafka	installed:

>	cd	/opt/kafka



How	to	do	it…
To	start	multiple	brokers,	the	first	thing	we	need	to	do	is	we	have	to	write	the
configuration	files.	For	ease,	you	can	start	with	the	configuration	file	present	in
config/server.properties	and	perform	the	following	steps.

1.	 For	creating	three	different	brokers	in	our	single	test	machine,	we	will	create	two
copies	of	the	configuration	file	and	modify	them	accordingly:

>	cp	config/server.properties	config/server-1.properties

>	cp	config/server.properties	config/server-2.properties

2.	 We	need	to	modify	these	files	before	they	can	be	used	to	start	other	Kafka	nodes	for
our	cluster.	We	need	to	change	the	broker.id	property,	which	has	to	be	unique	for
each	broker	in	the	cluster.	The	port	number	for	Kafka	to	run	and	the	location	of	the
Kafka	logs	using	log.dir	needs	to	be	specified.	So,	we	will	modify	the	files	as
follows:

config/server-1.properties:

				broker.id=1

				port=9093

				log.dir=/tmp/kafka-logs-1

config/server-2.properties:

				broker.id=2

				port=9094

				log.dir=/tmp/kafka-logs-2

3.	 You	now	need	to	start	the	Kafka	brokers	with	this	configuration	file.	This	is	assuming
that	you	have	already	started	ZooKeeper	and	have	a	single	Kafka	node	that	is
running:

>	bin/kafka-server-start.sh	config/server-1.properties	&

...

>	bin/kafka-server-start.sh	config/server-2.properties	&



How	it	works…
The	server.properties	files	contain	the	configuration	of	your	brokers.	They	all	should
point	to	the	same	ZooKeeper	cluster.	The	broker.id	property	in	each	of	the	files	is	unique
and	defines	the	name	of	the	node	in	the	cluster.	The	port	number	and	log.dir	are
changed	so	we	can	get	them	running	on	the	same	machine;	else	all	the	nodes	will	try	to
bind	at	the	same	port	and	will	overwrite	the	data.	If	you	want	to	run	them	on	different
machines,	you	need	not	change	them.



There’s	more…
To	run	Kafka	nodes	on	different	servers,	you	also	need	to	change	the	ZooKeeper
connection	string’s	details	in	the	config	file:

ZooKeeper.connect=localhost:2181

This	is	good	if	you	are	running	Kafka	off	the	same	server	as	ZooKeeper;	but	in	real	life,
you	would	be	running	them	off	different	servers.	So,	you	might	want	to	change	them	to
the	correct	ZooKeeper	connection	strings	as	follows:

ZooKeeper.connect=localhost:2181,	192.168.0.2:2181,		192.168.0.3:2181

This	means	that	you	are	running	the	ZooKeeper	cluster	at	the	localhost	nodes,
192.168.0.2	and	192.168.0.3,	at	the	port	number	2181.



See	also
Look	at	the	configuration	file	in	config/server.properties	for	details	on	several
other	properties	that	can	also	be	set.	You	can	also	look	it	up	online	at
https://github.com/apache/kafka/blob/trunk/config/server.properties.

https://github.com/apache/kafka/blob/trunk/config/server.properties




Creating	topics
Now	that	we	have	our	cluster	up	and	running,	let’s	get	started	with	other	interesting	things.
In	this	recipe,	you	will	learn	how	to	create	topics	in	Kafka	that	would	be	your	first	step
toward	getting	things	done	using	Kafka.



Getting	ready
You	must	have	already	downloaded	and	set	up	Kafka.	Now,	in	the	command	line,	change
to	the	Kafka	directory.	You	also	must	have	at	least	one	Kafka	node	up	and	running.



How	to	do	it…
1.	 It’s	very	easy	to	create	topics	from	the	command	line.	Kafka	comes	with	a	built-in

utility	to	create	topics.	You	need	to	enter	the	following	command	from	the	directory
where	you	have	installed	Kafka:

>	bin/kafka-topics.sh	--create	--ZooKeeper	localhost:2181	--

replication-factor	1	--partitions	1	--topic	kafkatest



How	it	works…
What	the	preceding	command	does	is	that	it	creates	a	topic	named	test	with	a	replication
factor	of	1	with	1	partition.	You	need	to	mention	the	ZooKeeper	host	and	port	number	as
well.

The	number	of	partitions	determines	the	parallelism	that	can	be	achieved	on	the
consumer’s	side.	So,	it	is	important	that	the	partition	number	is	selected	carefully	based	on
how	your	Kafka	data	will	be	consumed.

The	replication	factor	determines	the	number	of	replicas	of	this	topic	present	in	the
cluster.	There	can	be	a	maximum	of	one	replica	for	a	topic	in	each	broker.	This	means
that,	if	the	number	of	replicas	is	more	than	the	number	of	brokers,	the	number	of	replicas
will	be	capped	at	the	number	of	brokers.



There’s	more…
If	you	want	to	check	whether	your	topic	has	been	successfully	created,	you	can	run	the
following	command:

>	bin/kafka-topics.sh	--list	--ZooKeeper	localhost:2181

kafkatest

This	will	print	out	all	the	topics	that	exist	in	the	Kafka	cluster.	After	successfully	running
the	earlier	command,	your	Kafka	topic	will	be	created	and	printed.

To	get	details	of	a	particular	topic,	you	can	run	the	following	command:

>	bin/kafka-topics.sh	--describe	--ZooKeeper	localhost:2181	--topic	

kafkatest

Topic:kafkatest			PartitionCount:1		ReplicationFactor:1	Configs:

Topic:	kafkatest		Partition:	0		Leader:	0		Replicas:	0			Isr:	0

The	explanation	of	the	output	is	as	follows:

PartitionCount:	The	number	of	partitions	existing	for	this	particular	topic.
ReplicationFactor:	The	number	of	replicas	that	exist	for	this	particular	topic.
Leader:	The	node	responsible	for	the	reading	and	writing	operations	of	a	given
partition.
Replicas:	The	list	of	nodes	replicating	the	Kafka	data.	Some	of	these	might	be	even
dead.
ISR:	This	is	the	list	of	nodes	that	are	currently	in-sync	or	in-sync	replicas.	It	is	a
subset	of	all	the	replica	nodes	in	the	Kafka	cluster.

We	will	create	a	topic	with	multiple	replicas	as	shown	by	the	following	command:

>	bin/kafka-topics.sh	--create	--ZooKeeper	localhost:2181	--replication-

factor	3	--partitions	1	--topic	replicatedkafkatest

This	will	give	the	following	output	while	checking	for	the	details	of	the	topic:

>	bin/kafka-topics.sh	--describe	--ZooKeeper	localhost:2181	--topic	

replicatedkafkatest

Topic:replicatedkafkatest			PartitionCount:1		ReplicationFactor:3	Configs:

Topic:	replicatedkafkatest		Partition:	0		Leader:	2		Replicas:	2,0,1	Isr:	

2,0,1

This	means	that	there	is	a	replicatedkafkatest	topic,	which	has	a	single	partition	with
replication	factor	of	3.	All	the	three	nodes	are	in-sync.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support




Sending	some	messages	from	the	console
Kafka	installation	has	a	command-line	utility	that	enables	you	to	produce	data.	You	can
give	a	file	as	an	input	or	you	can	give	a	standard	input.	It	will	send	each	line	in	these
inputs	as	a	message	to	the	Kafka	clusters.



Getting	ready
As	in	the	previous	recipe,	you	must	have	already	downloaded	and	set	up	Kafka.	Now,	in
the	command	line,	change	to	the	Kafka	directory.	You	have	already	started	the	Kafka
nodes	as	mentioned	in	the	previous	recipes.	You	will	need	to	create	a	topic	as	well.	Now,
you	are	ready	to	send	some	messages	to	Kafka	from	your	console.



How	to	do	it…
To	send	messages	from	the	console	perform	the	following	steps:

1.	 You	can	run	the	next	command	followed	by	some	text	that	will	be	sent	to	the	server
as	messages:

>	bin/kafka-console-producer.sh	--broker-list	localhost:9092	--topic	

kafkatest

First	message

Second	message



How	it	works…
The	earlier	inputs	will	push	two	messages	to	the	kafkatest	topic	present	in	the	Kafka
running	on	localhost	at	port	9092.



There’s	more…
There	are	more	parameters	that	you	can	pass	to	the	console	producer	program.	A	short	list
of	them	is	as	follows:

--broker-list:	This	specifies	the	ZooKeeper	servers.	It	is	followed	by	a	list	of	the
ZooKeeper	server’s	hostname	and	port	number	that	can	be	separated	by	a	comma.
--topic:	This	specifies	the	name	of	the	topic.	The	name	of	the	topic	follows	this
parameter.
--sync:	This	specifies	that	the	messages	should	be	sent	synchronously—one	at	a
time	as	they	survive.
--compression-codec:	This	specifies	the	compression	codec	that	will	be	used	to
produce	the	messages.	It	can	be	none,	gzip,	snappy,	or	lz4.	If	it	is	not	specified,	it
will	by	default	be	set	to	gzip.
--batch-size:	This	specifies	the	number	of	messages	to	be	sent	in	a	single	batch	in
case	they	are	not	being	sent	synchronously.	This	is	followed	by	the	batch’s	size	value.
--message-send-max-retries:	Brokers	can	sometimes	fail	to	receive	messages	for	a
number	of	reasons	and	being	unavailable	transiently	is	just	one	of	them.	This
property	specifies	the	number	of	retries	before	a	producer	gives	up	and	drops	the
message.	This	is	followed	by	the	number	of	retries	that	you	want	to	set.
--retry-backoff-ms:	Before	each	retry,	the	producer	refreshes	the	metadata	of
relevant	topics.	Since	leader	election	might	take	some	time,	it’s	good	to	specify	some
time	before	producer	retries.	This	parameter	does	just	that.	This	follows	the	time	in
ms.

This	is	a	simple	way	of	checking	whether	your	broker	with	a	topic	is	up	and	running	as
expected.





Consuming	from	the	console
You	have	produced	some	messages	from	the	console,	but	it	is	important	to	check	whether
they	can	be	read	properly.	For	this,	Kafka	provides	a	command-line	utility	that	enables
you	to	consume	messages.	Each	line	of	its	output	will	be	a	message	from	the	Kafka	log.



Getting	ready
As	in	the	previous	recipe,	you	must	have	already	downloaded	and	set	up	Kafka.	Now,	in
the	command	line,	change	to	the	Kafka	directory.	I	would	also	assume	that	you	have	set
up	a	Kafka	node	and	created	a	topic	with	it.	You	also	have	to	send	some	messages	to	a
Kafka	topic,	as	mentioned	in	the	previous	recipes,	before	you	consume	anything.



How	to	do	it…
To	consume	the	messages	from	the	console	perform	the	following	steps:

1.	 You	can	run	the	following	command	and	get	the	messages	in	Kafka	as	an	output:

>	bin/kafka-console-consumer.sh	--zookeeper	localhost:2181	--topic	

kafkatest	--from-beginning

First	message

Second	message



How	it	works…
The	given	parameters	are	the	ZooKeeper’s	host	and	portTopic	nameOptional	directive
to	start	consuming	the	messages	from	the	beginning	instead	of	consuming	the	latest
messages	in	the	Kafka	log.

This	tells	the	program	to	get	data	from	the	Kafka	logs	under	the	given	topic	from	the	node
mentioned	in	the	given	ZooKeeper	from	the	beginning.	It	will	then	print	them	on	the
console.



There’s	more…
Some	other	parameters	that	you	can	pass	are	shown	as	follows:

--fetch-size:	This	specifies	the	amount	of	data	to	be	fetched	in	a	single	request.	Its
size	in	bytes	follows	this	argument.
--socket-buffer-size:	This	specifies	the	size	of	the	TCP	RECV	size.	The	size	in
bytes	follows	the	argument.
--autocommit.interval.ms:	This	specifies	the	time	interval	in	which	the	current
offset	is	saved	in	ms.	The	time	in	ms	follows	the	argument.
--max-messages:	This	specifies	the	maximum	number	of	messages	to	consume
before	exiting.	If	it	is	not	set,	the	consumption	is	unlimited.	The	number	of	messages
follows	the	argument.
--skip-message-on-error:	This	specifies	that,	if	there	is	an	error	while	processing	a
message,	the	system	should	not	stop.	Instead,	it	should	just	skip	the	current	messages.





Chapter	2.	Configuring	Brokers
In	this	chapter,	we	will	cover	the	following	topics:

Configuring	the	basic	settings
Configuring	threads	and	performance
Configuring	the	log	settings
Configuring	the	replica	settings
Configuring	the	ZooKeeper	settings
Configuring	other	miscellaneous	parameters



Introduction
This	chapter	explains	the	configurations	of	a	Kafka	broker.	Before	we	get	started	with
Kafka,	it	is	critical	to	configure	it	to	suit	us	best.	The	best	part	of	Kafka	is	that	it	is	highly
configurable.	Though	most	of	the	time	you	will	be	good	to	go	with	the	default	settings,
while	dealing	with	scale	and	performance,	you	might	want	to	dirty	your	hands	with	the
configuration	that	suits	your	application	best.





Configuring	the	basic	settings
Basic	settings	are	exactly	what	it	says.	Let’s	get	started	with	them.



Getting	ready
I	believe,	you	have	already	installed	Kafka.	Make	a	copy	of	the	server.properties	file
from	the	config	folder.	Now,	let’s	get	cracking	at	it	with	your	favorite	editor.



How	to	do	it…
Open	your	server.properties	file	to	configure	the	basic	settings:

1.	 The	first	configuration	that	you	need	to	change	is	broker.id:

broker.id=0

2.	 Next,	give	the	host	name	of	the	machine:

host.name=localhost

3.	 You	also	need	to	set	the	port	number	to	listen	to:

port=9092

4.	 Lastly,	give	the	directory	for	data	persistence:

log.dirs=/disk1/kafka-logs



How	it	works…
With	these	basic	configuration	parameters,	your	Kafka	broker	is	ready	to	be	set	up.	All
you	need	to	do	is	to	pass	on	this	new	configuration	file	when	you	start	the	broker	as	a
parameter.	Some	of	the	important	configurations	used	in	the	configuration	files	are
explained	as	follows:

broker.id:	This	should	be	a	non-negative	integer	ID.	The	name	of	the	broker	should
be	unique	in	a	cluster,	as	it	is	for	all	intents	and	purposes.	This	also	allows	the	broker
to	be	moved	to	a	different	host	and/or	port	without	additional	changes	on	the
consumer’s	side.	Its	default	value	is	0.
host.name:	Its	default	value	is	null.	If	it	is	not	specified,	Kafka	will	bind	to	all	the
interfaces	on	the	system.	If	specified,	it	will	bind	only	to	that	particular	address.	If
you	want	the	clients	to	connect	only	to	a	particular	interface,	it	is	a	good	idea	to
specify	the	host	name.
port:	This	defines	the	port	number	that	the	Kafka	broker	will	be	listening	to	in	order
to	accept	client	connections.
log.dirs:	This	tells	the	broker	the	directory	where	it	should	store	the	files	for	the
persistence	of	messages.	You	can	specify	multiple	directories	here	by	comma-
separating	the	locations.	The	default	value	for	this	is	/tmp/kafka-logs.



There’s	more…
Kafka	also	lets	you	specify	two	more	parameters	that	are	very	interesting:

advertised.host.name:	This	is	the	hostname	that	is	given	to	producers,	consumers,
and	other	brokers	you	wish	to	connect	to.	Usually,	this	would	be	the	same	as
host.name;	you	need	not	specify	it.
advertised.port:	This	specifies	the	port	that	other	producers,	consumers,	and
brokers	need	to	connect	to.	If	it	is	not	specified,	they	use	the	one	mentioned	in	the
port’s	configuration	parameters.

The	real	usage	of	the	preceding	two	parameters	is	when	you	make	use	of	bridged
connections	where	your	internal	host.name	and	port	number	could	be	different	from	the
one	which	the	external	parties	need	to	connect	to.





Configuring	threads	and	performance
While	using	Kafka,	you	need	not	modify	these	settings;	but	when	you	want	to	extract
every	last	bit	of	performance	from	your	machines,	it	will	come	in	handy.



Getting	ready
You	are	all	set	to	edit	your	broker	properties	file	in	your	favorite	editor.



How	to	do	it…
Open	your	server.properties	file	to	configure	threads	and	performance:

1.	 Change	message.max.bytes:

message.max.bytes=1000000

2.	 Set	the	number	of	network	threads:.

num.network.threads=3

3.	 Set	the	number	of	IO	threads:

num.io.threads=8

4.	 Set	the	number	of	threads	that	do	background	processing:

background.threads=10

5.	 Set	the	maximum	number	of	requests	to	be	queued	up:

queued.max.requests=500

6.	 Set	the	send	socket	buffer	size:

socket.send.buffer.bytes=102400

7.	 Set	the	receive	socket	buffer	size:

socket.receive.buffer.bytes=102400

8.	 Set	the	maximum	request	size:

socket.request.max.bytes=104857600

9.	 Set	the	number	of	partitions:

num.partitions=1



How	it	works…
With	these	steps,	the	network	and	performance	configurations	have	been	set	to	optimum
levels	for	your	application.	You	might	need	to	experiment	a	little	to	come	up	with	the
optimal	one.	Here	is	an	explanation	of	them:

message.max.bytes:	This	sets	the	maximum	size	of	the	message	that	the	server	can
receive.	This	should	be	set	to	prevent	any	producer	from	inadvertently	sending	extra
large	messages	and	swamping	the	consumers.	The	default	size	is	1000000.
num.network.threads:	This	sets	the	number	of	threads	running	to	handle	the
network’s	request.	If	you	are	going	to	have	too	many	requests	coming	in,	then	you
need	to	change	this	value.	Else,	you	are	good	to	go.	Its	default	value	is	3.
num.io.threads:	This	sets	the	number	of	threads	spawned	for	IO	operations.	This	is
should	be	set	to	the	number	of	disks	present	at	the	least.	Its	default	value	is	8.
background.threads:	This	sets	the	number	of	threads	that	will	be	running	and	doing
various	background	jobs.	These	include	deleting	old	log	files.	Its	default	value	is	10
and	you	might	not	need	to	change	it.
queued.max.requests:	This	sets	the	queue	size	that	holds	the	pending	messages
while	others	are	being	processed	by	the	IO	threads.	If	the	queue	is	full,	the	network
threads	will	stop	accepting	any	more	messages.	If	you	have	erratic	loads	in	your
application,	you	need	to	set	queued.max.requests	to	a	value	at	which	it	will	not
throttle.
socket.send.buffer.bytes:	This	sets	the	SO_SNDBUFF	buffer	size,	which	is	used	for
socket	connections.
socket.receive.buffer.bytes:	This	sets	the	SO_RCVBUFF	buffer	size,	which	is	used
for	socket	connections.
socket.request.max.bytes:	This	sets	the	maximum	size	of	the	request	that	the
server	can	receive.	This	should	be	smaller	than	the	Java	heap	size	you	have	set.
num.partitions:	This	sets	the	number	of	default	partitions	of	a	topic	you	create
without	explicitly	giving	any	partition	size.



There’s	more…
You	may	need	to	configure	your	Java	installation	for	maximum	performance.	This
includes	the	settings	for	heap,	socket	size,	and	so	on.





Configuring	the	log	settings
Log	settings	are	perhaps	the	most	important	configuration	you	will	be	changing	based	on
your	system	requirements.



Getting	ready
Just	open	the	server.properties	file	in	your	favorite	editor.



How	to	do	it…
Open	your	server.properties	file.	Following	are	the	default	values:

1.	 Change	log.segment.bytes:

log.segment.bytes=1073741824

2.	 Set	log.roll.hours:

log.roll.hours=168

3.	 Set	log.cleanup.policy:

log.cleanup.policy=delete

4.	 Set	log.retention.hours:

log.retention.hours=168

5.	 Set	log.retention.bytes:

log.retention.bytes=-1

6.	 Set	log.retention.check.interval.ms:

log.retention.check.interval.ms=	30000

7.	 Set	log.cleaner.enable:

log.cleaner.enable=false

8.	 Set	log.cleaner.threads:

log.cleaner.threads=1

9.	 Set	log.cleaner.backoff.ms:

log.cleaner.backoff.ms=15000

10.	 Set	log.index.size.max.bytes:

log.index.size.max.bytes=10485760

11.	 Set	log.index.interval.bytes:

log.index.interval.bytes=4096

12.	 Set	log.flush.interval.messages:

log.flush.interval.messages=Long.MaxValue

13.	 Set	log.flush.interval.ms:

log.flush.interval.ms=Long.MaxValue



How	it	works…
Here	is	an	explanation	of	these	settings:

log.segment.bytes:	This	defines	the	maximum	segment	size	in	bytes.	Once	a
segment	reaches	that	size,	a	new	segment	file	is	created.	A	topic	is	stored	as	a	bunch
of	segment	files	in	a	directory.	This	can	also	be	set	on	a	per-topic	basis.	Its	default
value	is	1	GB.
log.roll.{ms,hours}:	This	sets	the	time	period	after	which	a	new	segment	file	is
created,	even	if	it	has	not	reached	the	size	limit.	These	settings	can	also	be	set	on	a
per-topic	basis.	Its	default	value	is	7	days.
log.cleanup.policy:	Its	value	can	be	either	delete	or	compact.	If	the	delete	option
is	set,	the	log	segments	will	be	deleted	periodically	when	it	reaches	its	time	threshold
or	size	limit.	If	the	compact	option	is	set,	log	compaction	will	be	used	to	clean	up
obsolete	records.	This	setting	can	be	set	on	a	per-topic	basis.
log.retention.{ms,minutes,hours}:	This	sets	the	amount	of	time	the	logs
segments	will	be	retained.	This	can	be	set	on	a	per-topic	basis	and	its	default	value	is
7	days.
log.retention.bytes:	This	sets	the	maximum	number	of	log	bytes	per	partition	that
is	retained	before	it	is	deleted.	This	value	can	be	set	on	a	per-topic	basis.	When	either
the	log	time	or	size	limit	is	reached,	the	segments	are	deleted.
log.retention.check.interval.ms:	This	sets	the	time	interval	at	which	the	logs	are
checked	for	deletion	to	meet	retention	policies.	Its	default	value	is	5	minutes.
log.cleaner.enable:	For	log	compaction	to	be	enabled,	it	has	to	be	set	true.
log.cleaner.threads:	This	sets	the	number	of	threads	that	need	to	be	working	to
clean	logs	for	compaction.
log.cleaner.backoff.ms:	This	defines	the	interval	at	which	the	logs	will	check
whether	any	log	needs	cleaning.
log.index.size.max.bytes:	These	settings	set	the	maximum	size	allowed	for	the
offset	index	of	each	log	segment.	It	can	be	set	on	a	per-topic	basis	as	well.
log.index.interval.bytes:	This	defines	the	byte	interval	at	which	a	new	entry	is
added	to	the	offset	index.	For	each	fetch	request,	the	broker	does	a	linear	scan	for	up
to	those	many	bytes	to	find	the	correct	position	in	the	log	to	begin	and	end	the	fetch.
Setting	this	value	to	be	high	will	mean	larger	index	files	(and	a	bit	more	memory
usage),	but	less	scanning.
log.flush.interval.messages:	This	is	the	number	of	messages	that	are	kept	in
memory	till	they	are	flushed	to	the	disk.	Though	it	does	not	guarantee	durability,	it
still	gives	finer	control.
log.flush.interval.ms:	This	sets	the	time	interval	at	which	the	messages	are
flushed	to	the	disk.



There’s	more…
Some	other	settings	are	listed	at
http://kafka.apache.org/documentation.html#brokerconfigs.

http://kafka.apache.org/documentation.html#brokerconfigs


See	also
More	on	log	compaction	is	available	at
http://kafka.apache.org/documentation.html#compaction

http://kafka.apache.org/documentation.html#compaction




Configuring	the	replica	settings
You	will	also	want	to	set	up	a	replica	for	reliability	purposes.	Let’s	see	some	important
settings	you	would	need	to	handle	for	replication	to	work	best	for	you.



Getting	ready
Just	open	the	server.properties	file	in	your	favorite	editor.



How	to	do	it…
Open	your	server.properties	file.	Following	are	the	default	values	for	these	settings:

1.	 Set	default.replication.factor.

default.replication.factor=1

2.	 Set	replica.lag.time.max.ms:

replica.lag.time.max.ms=10000

3.	 Set	replica.lag.max.messages:

replica.lag.max.messages=4000

4.	 Set	replica.fetch.max.bytes:

replica.fetch.max.bytes=1048576

5.	 Set	replica.fetch.wait.max.ms:

replica.fetch.wait.max.ms=500

6.	 Set	num.replica.fetchers:

num.replica.fetchers=1

7.	 Set	replica.high.watermark.checkpoint.interval.ms:

replica.high.watermark.checkpoint.interval.ms=5000

8.	 Set	fetch.purgatory.purge.interval.requests:

fetch.purgatory.purge.interval.requests=1000

9.	 Set	producer.purgatory.purge.interval.requests:

producer.purgatory.purge.interval.requests=1000

10.	 Set	replica.socket.timeout.ms:

replica.socket.timeout.ms=30000

11.	 Set	replica.socket.receive.buffer.bytes:

replica.socket.receive.buffer.bytes=65536



How	it	works…
Here	is	an	explanation	of	these	settings:

default.replication.factor:	This	sets	the	default	replication	factor	for	the
automatically	created	topics.
replica.lag.time.max.ms:	This	is	the	time	period	within	which,	if	the	leader	does
not	receive	any	fetch	requests,	it	is	moved	out	of	in-sync	replicas	and	is	treated	as
dead.
replica.lag.max.messages:	This	is	the	maximum	number	of	messages	a	follower
can	be	behind	the	leader	before	it	is	considered	to	be	dead	and	not	in-sync.
replica.fetch.max.bytes:	This	sets	the	maximum	number	of	the	bytes	of	data	a
follower	will	fetch	in	a	request	from	its	leader.
replica.fetch.wait.max.ms:	This	sets	the	maximum	amount	of	time	for	the	leader
to	respond	to	a	replica’s	fetch	request.
num.replica.fetchers:	This	specifies	the	number	of	threads	used	to	replicate	the
messages	from	the	leader.	Increasing	the	number	of	threads	increases	the	IO	rate	to	a
degree.
replica.high.watermark.checkpoint.interval.ms:	This	specifies	the	frequency	at
which	each	replica	saves	its	high	watermark	in	the	disk	for	recovery.
fetch.purgatory.purge.interval.requests:	This	sets	the	interval	at	which	the
fetch	request	purgatory’s	purge	is	invoked.	This	purgatory	is	the	place	where	the
fetch	requests	are	kept	on	hold	till	they	can	be	serviced.
producer.purgatory.purge.interval.requests:	This	sets	the	interval	at	which
producer	request	purgatory’s	purge	is	invoked.	This	purgatory	is	the	place	where	the
producer	requests	are	kept	on	hold	till	they	are	serviced.



There’s	more…
Some	other	settings	are	listed	at
http://kafka.apache.org/documentation.html#brokerconfigs.

http://kafka.apache.org/documentation.html#brokerconfigs




Configuring	the	ZooKeeper	settings
ZooKeeper	is	used	in	Kafka	for	cluster	management	and	to	maintain	the	details	of	the
topics.



Getting	ready
Just	open	the	server.properties	file	in	your	favorite	editor.



How	to	do	it…
Open	your	server.properties	file.	Following	are	the	default	values	of	the	settings:

1.	 Set	the	zookeeper.connect	property:

zookeeper.connect=127.0.0.1:2181,192.168.0.32:2181

2.	 Set	the	zookeeper.session.timeout.ms	property:

zookeeper.session.timeout.ms=6000

3.	 Set	the	zookeeper.connection.timeout.ms	property:

zookeeper.connection.timeout.ms=6000

4.	 Set	the	zookeeper.sync.time.ms	property:

zookeeper.sync.time.ms=2000



How	it	works…
Here	is	an	explanation	of	these	settings:

zookeeper.connect:	This	is	where	you	specify	the	ZooKeeper	connection	string	in
the	form	of	hostname:port.	You	can	use	comma-separated	values	to	specify	multiple
ZooKeeper	nodes.	This	ensures	reliability	and	continuity	of	the	Kafka	cluster	even	in
the	event	of	a	ZooKeeper	node	being	down.	ZooKeeper	allows	you	to	use	the	chroot
path	to	make	a	particular	Kafka	data	available	only	under	the	particular	path.	This
enables	you	to	have	the	same	ZooKeeper	cluster	support	for	multiple	Kafka	clusters.
Following	is	the	method	to	specify	connection	strings	in	this	case:

host1:port1,host2:port2,host3:port3/chroot/path

The	preceding	statement	puts	all	the	cluster	data	in	path	/chroot/path.	This	path
must	be	created	prior	to	starting	off	the	Kafka	cluster	and	consumers	must	use	the
same	string.

zookeeper.session.timeout.ms:	This	specifies	the	time	within	which,	if	the
heartbeat	from	the	server	is	not	received,	it	is	considered	dead.	The	value	for	this
must	be	carefully	selected	as,	if	this	heartbeat	has	too	long	an	interval,	it	will	not	be
able	to	detect	a	dead	server	in	time	and	also	lead	to	issues.	Also,	if	the	time	period	is
too	small,	a	live	server	might	be	considered	dead.
zookeeper.connection.timeout.ms:	This	specifies	the	maximum	connection	time
that	a	client	waits	to	accept	a	connection.
zookeeper.sync.time.ms:	This	specifies	the	time	a	ZooKeeper	follower	can	be
behind	its	leader.



See	also
The	ZooKeeper	management	details	from	the	Kafka	perspective	are	highlighted	at
http://kafka.apache.org/documentation.html#zk
The	home	of	ZooKeeper	is	at	https://zookeeper.apache.org/

http://kafka.apache.org/documentation.html#zk
https://zookeeper.apache.org/




Configuring	other	miscellaneous
parameters
Besides	the	earlier	mentioned	configurations,	there	are	some	other	configurations	that	also
need	to	be	set.



Getting	ready
Just	open	the	server.properties	file	in	your	favorite	editor.



How	to	do	it…
We	will	look	at	the	default	values	of	the	properties	as	follows:

1.	 Set	auto.create.topics.enable:

auto.create.topics.enable=true

2.	 Set	controlled.shutdown.enable:

controlled.shutdown.enable=true

3.	 Set	controlled.shutdown.max.retries:

controlled.shutdown.max.retries=3

4.	 Set	controlled.shutdown.retry.backoff.ms:

controlled.shutdown.retry.backoff.ms=5000

5.	 Set	auto.leader.rebalance.enable:

auto.leader.rebalance.enable=true

6.	 Set	leader.imbalance.per.broker.percentage:

leader.imbalance.per.broker.percentage=10

7.	 Set	leader.imbalance.check.interval.seconds:

leader.imbalance.check.interval.seconds=300

8.	 Set	offset.metadata.max.bytes:

offset.metadata.max.bytes=4096

9.	 Set	max.connections.per.ip:

max.connections.per.ip=Int.MaxValue

10.	 Set	connections.max.idle.ms:

connections.max.idle.ms=600000

11.	 Set	unclean.leader.election.enable:

unclean.leader.election.enable=true

12.	 Set	offsets.topic.num.partitions:

offsets.topic.num.partitions=50

13.	 Set	offsets.topic.retention.minutes:

offsets.topic.retention.minutes=1440

14.	 Set	offsets.retention.check.interval.ms:

offsets.retention.check.interval.ms=600000



15.	 Set	offsets.topic.replication.factor:

offsets.topic.replication.factor=3

16.	 Set	offsets.topic.segment.bytes:

offsets.topic.segment.bytes=104857600

17.	 Set	offsets.load.buffer.size:

offsets.load.buffer.size=5242880

18.	 Set	offsets.commit.required.acks:

offsets.commit.required.acks=-1

19.	 Set	offsets.commit.timeout.ms:

offsets.commit.timeout.ms=5000



How	it	works…
An	explanation	of	the	settings	is	as	follows:

auto.create.topics.enable:	Setting	this	value	to	true	will	make	sure	that,	if	you
fetch	metadata	or	produce	messages	for	a	nonexistent	topic,	it	will	be	automatically
created.	Ideally,	in	a	production	environment,	you	should	set	this	value	to	false.
controlled.shutdown.enable:	This	setting,	if	set	to	true,	makes	sure	that	when	a
shutdown	is	called	on	the	broker,	and	if	it’s	the	leader	of	any	topic,	then	it	will
gracefully	move	all	leaders	to	a	different	broker	before	it	shuts	down.	This	increases
the	availability	of	the	system,	overall.
controlled.shutdown.max.retries:	This	sets	the	maximum	number	of	retries	that
the	broker	makes	to	do	a	controlled	shutdown	before	doing	an	unclean	one.
controlled.shutdown.retry.backoff.ms:	This	sets	the	backoff	time	between	the
controlled	shutdown	retries.
auto.leader.rebalance.enable:	If	this	is	set	to	true,	the	broker	will	automatically
try	to	balance	the	leadership	of	partitions	among	the	brokers	by	periodically	setting
the	leadership	to	the	preferred	replica	of	each	partition	if	available.
leader.imbalance.per.broker.percentage:	These	settings	set	the	percentage	of
the	leader	imbalance	allowed	per	broker.	The	cluster	will	rebalance	the	leadership	if
this	ratio	goes	above	the	set	value.
leader.imbalance.check.interval.seconds:	This	defines	the	time	period	to	check
the	leader	imbalance.
offset.metadata.max.bytes:	This	defines	the	maximum	amount	of	metadata
allowed	to	the	client	to	be	stored	with	their	offset.
max.connections.per.ip:	This	sets	the	maximum	number	of	connections	that	the
broker	accepts	from	a	given	IP	address.
connections.max.idle.ms:	This	sets	the	maximum	time	the	broker	waits	idle	before
it	closes	the	socket	connection.
unclean.leader.election.enable:	This	setting,	if	set	to	true,	allows	the	replicas
that	are	not	in-sync	replicas	(ISR)	to	become	the	leader.	This	can	lead	to	data	loss.
This	is	the	last	option	for	the	cluster	though.
offsets.topic.num.partitions:	This	sets	the	number	of	partitions	for	the	offset
commit	topic.	This	cannot	be	changed	post	deployment,	so	it	is	suggested	that	the
number	be	set	to	a	higher	limit.	Its	default	value	is	50.
offsets.topic.retention.minutes:	This	sets	the	time	till	which	offsets	will	be
kept.	Post	this	time,	the	offsets	will	be	marked	for	deletion.	The	actual	deletion	of
offsets	will	happen	only	later	when	the	log	cleaner	is	run	for	the	compaction	of	offset
topic.
offsets.retention.check.interval.ms:	This	sets	the	time	interval	to	check	for
stale	offsets.
offsets.topic.replication.factor:	This	sets	the	replication	factor	for	the	offset
commit	topic.	Higher	the	value,	higher	will	be	the	availability.	If,	at	the	time	of
creating	the	offset	topic,	the	number	of	brokers	is	lower	than	the	replication	factor,
the	number	of	replicas	created	will	be	equal	to	the	brokers.



offsets.topic.segment.bytes:	This	sets	the	segment	size	for	topic	of	offsets.	This,
if	kept	low,	leads	to	faster	log	compaction	and	loads.
offsets.load.buffer.size:	This	sets	the	buffer	size	to	be	used	for	reading	offset
segments	into	the	offset	manager’s	cache.
offsets.commit.required.acks:	This	sets	the	number	of	acknowledgements
required	before	the	offset	commit	can	be	accepted.
offsets.commit.timeout.ms:	These	settings	set	the	time	after	which	the	offset
commit	will	be	performed	in	case	the	required	number	of	replicas	has	not	received
the	offset	commit.



See	also
There	are	more	broker	configurations	that	are	available.	Read	more	about	them	at
http://kafka.apache.org/documentation.html#brokerconfigs.

http://kafka.apache.org/documentation.html#brokerconfigs




Chapter	3.	Configuring	a	Producer	and
Consumer
In	this	chapter,	we	will	cover	the	following	topics:

Configuring	the	basic	settings	for	producer
Configuring	thread	and	performance	for	producer
Configuring	the	basic	settings	for	consumer
Configuring	the	thread	and	performance	for	consumer
Configuring	the	log	settings	for	consumer
Configuring	the	ZooKeeper	settings	for	consumer
Other	configurations	for	consumer



Introduction
This	chapter	explains	the	configurations	of	Kafka	consumer	and	producer	and	how	to	use
them	to	our	advantage.	The	default	settings	are	good;	but	when	you	want	to	extract	that
extra	mileage	out	of	Kafka,	these	come	in	handy.	Though	these	are	explained	with	respect
to	command-line	configurations,	the	same	can	be	done	in	your	favorite	Kafka	client
library.





Configuring	the	basic	settings	for
producer
The	basic	settings	for	producer	are	the	main	settings	that	need	to	be	set	to	get	started.



Getting	ready
I	believe,	you	have	already	installed	Kafka.	There	is	a	starter	file	for	producer	in	the
config	folder	named	producer.properties.	Now,	let’s	get	cracking	at	it	with	your
favorite	editor.



How	to	do	it…
Open	your	producer.properties	file	and	perform	the	following	steps	to	configure	the
basic	settings	for	producer:

1.	 The	first	configuration	that	you	need	to	change	is	metadata.broker.list:

metadata.broker.list=192.168.0.2:9092,192.168.0.3:9092

2.	 Next,	you	need	to	set	the	request.required.acks	value:

request.required.acks=0

3.	 Set	the	request.timeout.ms	value:

request.timeout.ms=10000



How	it	works…
With	these	basic	configuration	parameters,	your	Kafka	producer	is	ready	to	go.	Based	on
your	circumstances,	you	might	have	tweak	these	values	for	optimal	performance.

metadata.broker.list:	This	is	the	most	important	setting	that	is	used	to	get	the
metadata	such	as	topics,	partition,	and	replicas.	This	information	is	used	to	set	up	the
connection	to	produce	the	data.	The	format	is	host1:port1,	host2:port2.	You	may
not	give	all	the	Kafka	brokers,	but	a	subset	of	them	or	a	VIP	pointing	to	a	subset	of
brokers.
request.required.acks:	Based	on	this	setting,	the	producer	determines	when	to
consider	the	produced	message	as	complete.	You	also	need	to	set	how	many	brokers
would	commit	to	their	logs	before	you	acknowledge	the	message.	If	the	value	is	set
to	0,	it	means	that	the	producer	will	send	the	message	in	the	fire	and	forget	mode.	If
the	value	is	set	to	1,	it	means	the	producer	will	wait	till	the	leader	replica	receives	the
message.	If	the	value	is	set	to	-1,	the	producer	will	wait	till	all	the	in-sync	replicas
receive	the	message.	This	is	definitely	the	most	durable	way	to	keep	data,	but	this
will	also	be	the	slowest	way.
request.timeout.ms:	This	sets	the	amount	of	time	the	broker	will	wait,	trying	to
meet	the	request.required.acks	requirement	before	sending	back	an	error	to	the
client.





Configuring	the	thread	and	performance
for	producer
These	are	the	settings	you	need	to	configure	if	you	want	to	get	the	best	performance	out	of
your	Kafka	producer.



Getting	ready
You	can	start	by	editing	the	producer.properties	file	in	the	config	folder	of	your	Kafka
installation.	This	is	another	key	value	pair	file	which	you	can	open	to	edit	in	your	favorite
text	editor.



How	to	do	it…
Proceed	with	the	following	steps	to	configure	the	thread	and	performance	for	producer:

1.	 You	can	set	the	producer.type	value:

producer.type=sync

2.	 Set	the	serializer.class	value:

serializer.class=kafka.serializer.DefaultEncoder

3.	 Set	the	key.serializer.class	value:

key.serializer.class=kafka.serializer.DefaultEncoder

4.	 Set	the	partitioner.class	value:

partitioner.class=kafka.producer.DefaultPartitioner

5.	 Set	the	compression.codec	value:

compression.codec=none

6.	 Set	the	compressed.topics	value:

compressed.topics=mytesttopicl

7.	 Set	the	message.send.max.retries	value:

message.send.max.retries=3

8.	 Set	the	retry.backoff.ms	value:

retry.backoff.ms=100

9.	 Set	the	topic.metadata.refresh.interval.ms	value:

topic.metadata.refresh.interval.ms=600000

10.	 Set	the	queue.buffering.max.ms	value:

queue.buffering.max.ms=5000

11.	 Set	the	queue.buffering.max.messages	value:

queue.buffering.max.messages=10000

12.	 Set	the	queue.enqueue.timeout.ms	value:

queue.enqueue.timeout.ms=-1

13.	 Set	the	batch.num.messages	value:

batch.num.messages=200

14.	 Set	the	send.buffer.bytes	value:

send.buffer.bytes=102400



15.	 Set	the	client.id	value:

client.id=my_client



How	it	works…
In	this	section,	we	will	discuss	in	detail	about	the	properties	set	in	the	previous	section:

producer.type:	This	accepts	the	two	values,	sync	and	async.	When	in	the	async
mode,	the	producer	will	send	data	to	the	broker	via	a	background	thread	that	allows
for	the	batching	up	of	requests.	But	this	might	lead	to	the	loss	of	data	if	the	client
fails.
serializer.class:	This	is	used	to	declare	the	serializer	class,	which	is	used	to
serialize	the	message	and	store	it	in	a	proper	format	to	be	retrieved	later.	The	default
encoder	takes	a	byte	array	and	returns	the	same	byte	array.
key.serializer.class:	This	same	as	the	serializer	class	for	keys.	Its	default	is
the	same	as	the	one	for	messages	if	nothing	is	given.
partitioner.class:	The	default	value	for	partitioning	messages	among	subtopics	is
the	hash	value	of	the	key.
compression.codec:	This	defines	the	compression	codec	for	all	the	generated	data.
The	valid	values	are	none,	gzip,	and	snappy.	In	general,	it	is	a	good	idea	to	send	all
the	messages	in	compressed	format.
compressed.topics:	This	sets	whether	the	compression	is	turned	on	for	a	particular
topic.
message.send.max.retries:	This	property	sets	the	maximum	number	of	retries	to	be
performed	before	sending	messages	is	considered	a	failure.
retry.backoff.ms:	Electing	a	leader	takes	time.	The	producer	cannot	refresh
metadata	during	this	time.	An	error	in	sending	data	will	mean	that	it	should	refresh
the	metadata	as	well	before	retrying.	This	property	specifies	the	time	the	producer
waits	before	it	tries	again.
topic.metadata.refresh.interval.ms:	This	specifies	the	refresh	interval	for	the
metadata	from	the	brokers.	If	this	value	is	set	to	-1,	metadata	will	be	refreshed	only
in	the	case	of	a	failure.	If	this	value	is	set	to	0,	metadata	will	be	refreshed	with	every
sent	message.
queue.buffering.max.ms:	This	sets	the	maximum	time	to	buffer	data	before	it	is
sent	across	to	the	brokers	in	the	async	mode.	This	improves	the	throughput,	but	adds
latency.
queue.buffering.max.messages:	This	sets	the	maximum	number	of	messages	that
are	to	be	queued	before	they	are	sent	across	while	using	the	async	mode.
queue.enqueue.timeout.ms:	This	sets	the	amount	of	time	the	producer	will	block
before	dropping	messages	while	running	in	the	async	mode	once	the	buffer	is	full.	If
this	value	is	set	to	0,	the	events	will	be	queued	immediately.	They	will	be	dropped	if
the	queue	is	full.	If	it	is	set	to	-1,	the	producer	will	block	the	event;	it	will	never
willingly	drop	a	message.
batch.num.messages:	This	specifies	the	number	of	messages	to	be	sent	in	a	batch
while	using	the	async	mode.	The	producer	will	wait	till	it	reaches	the	number	of
messages	to	be	sent.
send.buffer.bytes:	This	sets	the	socket	buffer	size.
client.id:	This	sets	the	client	ID	that	can	be	used	to	debug	messages	sent	from	the



application.



See	also
Please	refer	to	http://kafka.apache.org/documentation.html#producerconfigs	for	more
details	on	producer	configurations.

http://kafka.apache.org/documentation.html#producerconfigs




Configuring	the	basic	settings	for
consumer
Now	that	you	have	the	producers	all	configured	up,	it	is	time	to	configure	the	consumer
for	your	application.



Getting	ready
This	is	another	key	value	pair	file.	You	can	start	by	editing	the	consumer.properties	file
in	the	config	folder	of	your	Kafka	installation.



How	to	do	it…
Proceed	with	the	following	steps:

1.	 You	can	set	the	group.id	value:

group.id=mygid

2.	 Set	the	zookeeper.connect	value:

zookeeper.connect=192.168.0.2:2181

3.	 Set	the	consumer.id	value:

consumer.id=mycid



How	it	works…
In	this	section,	we	will	discuss	in	detail	about	the	properties	set	in	the	previous	section:

group.id:	This	is	the	string	that	identifies	a	group	of	consumers	as	a	single	group.	By
setting	them	to	the	same	ID,	you	can	mark	them	as	a	part	of	the	same	group.
zookeeper.connect:	This	specifies	the	ZooKeeper	connection	string	in	the
host:port	format.	You	can	add	multiple	ZooKeeper	host	names	by	keeping	them
comma-separated.
consumer.id:	This	is	used	to	uniquely	identify	the	consumer.	It	will	be	autogenerated
if	it	is	not	set.





Configuring	the	thread	and	performance
for	consumer
While	using	consumers	in	production,	you	would	want	the	best	performance.	These
configurations	are	what	makes	you	extract	the	last	bit	of	performance	from	your	servers.



Getting	ready
You	can	start	by	editing	the	consumer.properties	file	in	the	config	folder	of	your	Kafka
installation.



How	to	do	it…
Proceed	with	the	following	steps	to	configure	the	thread	and	performance	for	the
consumer:

1.	 Set	socket.timeout.ms:

socket.timeout.ms=30000

2.	 Set	socket.receive.buffer.bytes:

socket.receive.buffer.bytes=65536

3.	 Set	fetch.message.max.bytes:

fetch.message.max.bytes=1048576

4.	 Set	queued.max.message.chunks:

queued.max.message.chunks=2

5.	 Set	fetch.min.bytes:

fetch.min.bytes=1

6.	 Set	fetch.wait.max.ms:

fetch.wait.max.ms=100

7.	 Set	consumer.timeout.ms:

consumer.timeout.ms=-1



How	it	works…
In	this	section,	we	will	discuss	in	detail	about	the	properties	set	in	the	previous	section:

socket.timeout.ms:	This	sets	the	socket	time	value	for	the	consumer.
socket.receive.buffer.bytes:	This	sets	the	receive	buffer	size	for	network
requests.
fetch.message.max.bytes:	This	sets	the	number	of	bytes	to	fetch	from	each	topic’s
partition	in	each	request.	This	value	must	be	at	least	as	big	as	the	maximum	message
size	for	the	producer;	else	it	may	fail	to	fetch	messages	in	case	the	producer	sends	a
message	greater	than	this	value.	This	also	defines	the	memory	used	by	the	consumer
to	keep	the	messages	fetched	in	memory.	So,	you	must	choose	this	value	carefully.
num.consumer.fetchers:	This	sets	the	number	of	threads	used	to	fetch	data	from
Kafka.
queued.max.message.chunks:	This	sets	the	maximum	number	of	chunks	that	can	be
buffered	for	consumption.	A	chunk	can	have	a	maximum	size	of
fetch.message.max.bytes.
fetch.min.bytes:	This	sets	the	minimum	number	of	bytes	to	be	fetched	from	the
server.	It	will	wait	till	it	has	this	much	amount	of	data	to	be	fetched	before	the	request
is	serviced.
fetch.wait.max.ms:	This	sets	the	maximum	time	a	request	waits	if	there	is	no
sufficient	data	as	specified	by	fetch.min.bytes.
consumer.timeout.ms:	This	sets	the	timeout	for	a	consumer	thread	to	wait	before
throwing	an	exception	if	no	message	is	available	for	consumption.





Configuring	the	log	settings	for	consumer
Log	settings	are	what	are	needed	to	manage	the	logs	settings	and	offsets	from	the
consumer.



Getting	ready
You	can	start	by	editing	the	consumer.properties	file	in	the	config	folder	of	your	Kafka
installation.



How	to	do	it…
Proceed	with	the	following	steps	to	configure	the	log	settings	for	the	consumer:

1.	 Set	auto.commit.enable:

auto.commit.enable=true

2.	 Set	auto.commit.interval.ms:

auto.commit.interval.ms=60000

3.	 Set	rebalance.max.retries:

rebalance.max.retries=4

4.	 Set	rebalance.backoff.ms:

rebalance.backoff.ms=2000

5.	 Set	refresh.leader.backoff.ms:

refresh.leader.backoff.ms=200

6.	 Set	auto.offset.reset:

auto.offset.reset=largest

7.	 Set	partition.assignment.strategy:

partition.assignment.strategy=range



How	it	works…
In	this	section,	we	will	discuss	in	detail	about	the	properties	set	in	the	previous	section:

auto.commit.enable:	If	the	value	for	this	is	set	to	true,	the	consumer	will	save	the
offset	of	the	messages	that	will	be	used	to	recover	in	case	the	consumer	fails.
auto.commit.interval.ms:	This	is	the	interval	in	which	it	will	commit	the	message
offset	to	the	zookeeper.
rebalance.max.retries:	The	number	of	partitions	is	equally	distributed	among	a
group	of	consumers.	If	a	new	one	joins,	it	will	try	to	rebalance	the	allocation	of
partitions.	If	the	group	set	changes	while	the	rebalance	is	happening,	it	will	fail	to
assign	a	partition	to	a	new	consumer.	This	setting	specifies	the	number	of	retries	the
consumer	will	do	before	quitting.
rebalance.backoff.ms:	This	specifies	the	time	interval	between	two	attempts	by	the
consumer	to	rebalance
refresh.leader.backoff.ms:	This	specifies	the	time	the	consumer	will	wait	before
it	tries	to	find	a	new	leader	for	the	partition	that	has	lost	its	leader.
auto.offset.reset:	This	specifies	what	the	consumer	should	do	when	there	is	no
initial	state	saved	in	ZooKeeper	or	if	an	offset	is	out	of	range.	It	can	take	two	values:
smallest	or	largest.	This	will	set	the	offset	to	the	smallest	or	largest	value,
respectively.
partition.assignment.strategy:	This	specifies	the	partition	assignment	strategy
that	can	either	be	range	or	round	robin.





Configuring	the	ZooKeeper	settings	for
consumer
ZooKeeper	is	used	for	cluster	management	and	these	are	the	settings	to	fine-tune	it.



Getting	ready
You	can	start	by	editing	the	consumer.properties	file	in	the	config	folder	of	your	Kafka
installation.



How	to	do	it…
Proceed	with	the	following	steps	to	configure	the	ZooKeeper	settings	for	the	consumer:

1.	 Set	zookeeper.session.timeout.ms:

zookeeper.session.timeout.ms=6000

2.	 Set	zookeeper.connection.timeout.ms:

zookeeper.connection.timeout.ms=6000

3.	 Set	zookeeper.sync.time.ms:

zookeeper.sync.time.ms=2000



How	it	works…
In	this	section,	we	will	discuss	in	detail	about	the	properties	set	in	the	previous	section:

zookeeper.session.timeout.ms:	This	sets	the	time	period	before	which	if	the
consumer	does	not	send	a	heartbeat	message	from	the	ZooKeeper,	it	will	be
considered	dead	and	a	consumer	rebalance	will	happen.
zookeeper.connection.timeout.ms:	This	sets	the	maximum	time	the	client	waits	to
establish	a	connection	with	ZooKeeper.
zookeeper.sync.time.ms:	This	sets	the	time	period	the	ZooKeeper	follower	can	be
behind	the	leader.





Other	configurations	for	consumer
In	this	recipe,	we’ll	see	other	configurations	for	the	consumer.



Getting	ready
You	can	start	by	editing	the	consumer.properties	file	in	the	config	folder	of	your	Kafka
installation.



How	to	do	it…
Proceed	with	the	following	steps	to	set	the	values	of	the	other	configurations	for	the
consumer:

1.	 Set	offsets.storage:

offsets.storage=zookeeper

2.	 Set	offsets.channel.backoff.ms:

offsets.channel.backoff.ms=6000

3.	 Set	offsets.channel.socket.timeout.ms:

offsets.channel.socket.timeout.ms=6000

4.	 Set	offsets.commit.max.retries:

offsets.commit.max.retries=5

5.	 Set	dual.commit.enabled:

dual.commit.enabled=true

6.	 Set	client.id:

client.id=mycid



How	it	works…
In	this	section,	we	will	discuss	in	detail	about	the	properties	set	in	the	previous	section:

offsets.storage:	This	sets	the	location	where	the	offsets	need	to	be	stored;	it	can	be
ZooKeeper	or	Kafka.
offsets.channel.backoff.ms:	This	sets	the	time	period	between	two	attempts	to
reconnect	offset	channel	or	retrying	the	failed	attempt	to	get	offset	fetch/commit
requests.
offsets.channel.socket.timeout.ms:	This	sets	the	socket	timeout	to	read	the
responses	for	offset	fetch	or	commit	requests.
offsets.commit.max.retries:	This	sets	the	number	of	retries	for	the	consumer	to
save	the	offset	during	shut	down.	This	does	not	apply	to	regular	autocommits.
dual.commit.enabled:	If	this	value	is	true	and	your	offset	storage	is	set	to	Kafka,
then	the	offset	will	be	additionally	committed	to	ZooKeeper.
client.id:	This	sets	the	user-specified	string	for	the	application	that	can	help	you
debug.



See	also
More	information	on	the	consumer	configuration	is	available	at
http://kafka.apache.org/documentation.html#consumerconfigs.

http://kafka.apache.org/documentation.html#consumerconfigs




Chapter	4.	Managing	Kafka
In	this	chapter,	we	will	cover	the	following	topics:

Consumer	offset	checker
Understanding	dump	log	segments
Exporting	the	ZooKeeper	offsets
Importing	the	ZooKeeper	offsets
Using	GetOffsetShell
Using	the	JMX	tool
Using	the	Kafka	migration	tool
The	MirrorMaker	tool
Replay	Log	Producer
Simple	Consumer	Shell
State	Change	Log	Merger
Updating	offsets	in	ZooKeeper
Verifying	consumer	rebalance



Introduction
Managing	Kafka	can	be	very	difficult.	There	are	some	command-line	tools	from	the
makers	of	Kafka	that	make	your	life	easier	while	debugging	your	Kafka	cluster.	In	this
chapter,	we	will	cover	some	of	them.





Consumer	offset	checker
Consumer	offset	checker	is	one	of	the	most	important	tools	used	to	debug	consumers.
Using	this	tool	you	can	figure	out	the	offsets	till	which	your	consumer	have	completed
consuming	the	Kafka	logs.



Getting	ready
You	have	installed	Kafka.	You	have	started	the	brokers	and	created	the	topics	as
mentioned	in	the	previous	chapters.	The	topics	also	have	some	messages	produced	and
some	consumers	created	in	a	consumer	group.	You	are	now	set	to	get	some	information	on
the	offsets.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.ConsumerOffsetChecker	--broker-

info	--zookeeper	localhost:2181	--group	test-consumer-group

The	output	for	the	preceding	command	is	shown	as	follows:

Group											Topic																										Pid	Offset										

logSize									Lag													Owner	test-consumer-group	my-

replicated-topic												0			0															0															0															

none	test-consumer-group	my-replicated-topic												1			3															

4															1															none	test-consumer-group	my-replicated-

topic												2			0															0															0															

none	BROKER	INFO	0	->	saurabh-Inspiron:9092



How	it	works…
The	command	in	the	preceding	section	takes	the	following	arguments:

group:	This	accepts	the	name	of	the	consumer	group	of	which	the	offsets	are
monitored.
zookeeper:	This	accepts	comma-separated	values	for	ZooKeeper	in	the	host:offset
format.
topic:	This	accepts	the	topic	name	in	a	comma-separated	format	such	as	topic1,
topic2,	topic3.	It	will	help	in	monitoring	multiple	topics.
broker-info:	If	this	parameter	is	set,	it	will	print	the	broker	details	for	the	topic	as
well.
help:	This	prints	the	help	message	that	includes	the	details	of	all	the	parameters.





Understanding	dump	log	segments
Sometimes,	you	may	want	to	debug	the	Kafka	logs	data	for	various	debugging	purposes
such	as	understanding	how	much	of	the	logs	have	been	written	and	what’s	the	status	of	the
various	segments.	This	tool	helps	us	make	sense	of	the	log	files	generated	by	Kafka.



Getting	ready
Kafka	is	set	and	has	data	pushed	from	the	producer.	Change	your	current	directory	to	the
Kafka	folder.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.DumpLogSegments	--deep-iteration	-

-files	/tmp/kafka-logs/my-replicated-topic-2/00000000000000000000.log	

Dumping	/tmp/kafka-logs/my-replicated-topic-2/00000000000000000000.log

Starting	offset:	0

offset:	0	position:	0	isvalid:	true	payloadsize:	4	magic:	0	

compresscodec:	NoCompressionCodec	crc:	1495943047

offset:	1	position:	30	isvalid:	true	payloadsize:	7	magic:	0	

compresscodec:	NoCompressionCodec	crc:	2252241273

offset:	2	position:	63	isvalid:	true	payloadsize:	7	magic:	0	

compresscodec:	NoCompressionCodec	crc:	2511132036

offset:	3	position:	96	isvalid:	true	payloadsize:	11	magic:	0	

compresscodec:	NoCompressionCodec	crc:	4090103826

offset:	4	position:	133	isvalid:	true	payloadsize:	6	magic:	0	

compresscodec:	NoCompressionCodec	crc:	3891823159

offset:	5	position:	165	isvalid:	true	payloadsize:	4	magic:	0	

compresscodec:	NoCompressionCodec	crc:	2440616224



How	it	works…
The	preceding	command	takes	the	following	arguments:

--deep-iteration:	If	set,	it	uses	deep	instead	of	shallow	iteration	to	examine	the	log
files.
--files:	This	is	the	only	mandatory	field.	It	is	a	comma-separated	list	of	data	and
index	log	files	that	need	to	be	dumped.
--max-message-size:	This	is	used	to	set	the	size	of	the	largest	message.	The	default
value	of	this	is	5242880.
--print-data-log:	This	parameter	must	be	set	if	you	want	the	messages’	content
while	dumping	the	data	logs.
--verify-index-only:	This	parameter	must	be	set	if	you	want	to	verify	the	index	log
without	printing	its	content.





Exporting	the	ZooKeeper	offsets
You	would	want	to	take	a	backup	of	the	offsets	saved	in	ZooKeeper	sometimes.	This	tool
would	then	come	in	handy.



Getting	ready
Kafka	is	set	and	has	data	pushed	from	the	producer.	Also	run	your	consumer	so	that	they
have	consumed	some	data.	Change	your	current	directory	to	the	Kafka	folder.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.ExportZkOffsets	--zkconnect	

localhost:2181	--group	test-consumer-group	--output-file	/tmp/out.txt

$	cat	/tmp/out.txt

/consumers/test-consumer-group/offsets/mytesttopic/3:0	/consumers/test-

consumer-group/offsets/mytesttopic/2:6	/consumers/test-consumer-

group/offsets/mytesttopic/1:0	/consumers/test-consumer-

group/offsets/mytesttopic/0:0



How	it	works…
The	preceding	command	takes	the	following	arguments:

--zkconnect:	This	specifies	the	ZooKeeper	connection	string.	It	will	be	comma-
separated	in	the	host:port	format.
--group	groupname:	This	specifies	the	consumer’s	group	name.
--help:	This	prints	the	help	message.
--output-file:	This	field	specifies	the	file	the	ZooKeeper	offsets	should	be	written
to.





Importing	the	ZooKeeper	offsets
As	mentioned	previously,	you	can	take	a	backup	of	the	offsets	in	ZooKeeper.	After	you
have	done	this,	you	would	want	to	restore	them	as	well	at	some	point	in	time.	This	tool
would	then	come	in	handy.



Getting	ready
Kafka	is	set	and	has	data	pushed	from	the	producer.	Also,	read	some	data	from	your
consumers.	You	also	have	to	export	the	ZooKeeper	offsets	to	a	file.	Now,	change	your
current	directory	to	the	Kafka	folder.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.ImportZkOffsets	--inputfile	

/tmp/zkoffset.txt	--zkconnect	localhost:2181



How	it	works…
The	preceding	command	takes	the	following	arguments:

--zkconnect:	This	specifies	the	ZooKeeper	connect	string.	It	will	be	comma-
separated	in	the	host:port	format.
--input-file:	This	specifies	the	file	to	import	ZooKeeper	offsets	from.
--help:	This	prints	the	help	message.





Using	GetOffsetShell
To	get	the	offset	values	of	the	various	topics	is	needed	while	debugging	your	Apache
Kafka	based	Big	Data.	This	tool	comes	in	handy	for	the	purpose	of	getting	the	offset
values.



Getting	ready
Kafka	is	set	and	has	data	pushed	from	the	producer.	Also	run	your	consumers	so	that	they
have	read	some	data	from	the	logs.	Change	your	current	directory	to	the	Kafka	folder.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.GetOffsetShell	--broker-list	

localhost:9092	--topic	mytesttopic	--time	-1

mytesttopic:0:0	mytesttopic:1:0	mytesttopic:2:6	mytesttopic:3:0



How	it	works…
The	preceding	command	takes	the	following	arguments:

--broker-list:	This	specifies	the	list	of	server	ports	to	connect	to.	This	can	be	a	list
of	servers	in	the	host:port	format.	You	can	specify	more	than	one	by	comma-
separating	them.
--max-wait-ms:	This	specifies	the	maximum	amount	of	time	each	of	the	fetch
requests	will	wait.	The	default	value	for	this	is	1000,	that	is,	1	second.
--offsets:	This	specifies	the	number	of	offsets	that	are	returned.	By	default,	it	will
return	only	one	offset.
--partitions:	This	is	a	comma-separated	list	of	partition	IDs.	If	it	is	not	specified,	it
will	fetch	the	offsets	for	all	the	partitions	by	default.
--time:	This	specifies	the	timestamp	to	fetch	for	the	offsets.	-1	is	for	the	latest	and
-2	for	the	earliest.
--topic:	This	specifies	the	topic	for	which	the	offset	needs	to	be	fetched.





Using	the	JMX	tool
This	tool	gets	your	JMX	report	for	Kafka	in	an	easy	way.



Getting	ready
You	have	Kafka	up	and	running.	And	you	are	all	set	to	go.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.JmxTool	--jmx-url	

service:jmx:rmi:///jndi/rmi://127.0.0.1:9999/jmxrmi



How	it	works…
The	preceding	command	takes	the	following	arguments:

--attributes:	This	is	a	comma-separated	list	of	objects	that	acts	as	a	whitelist	of
attributes	to	be	queried.	All	the	objects	are	reported	if	none	are	mentioned.
--date-format:	This	specifies	the	data	format	to	be	used	for	the	time	field.	Please
refer	to	java.text.SimpleDateFormat	for	all	the	available	options.
--help:	This	prints	the	help	message.
--jmx-url:	This	specifies	the	URL	to	connect	to	the	poll	JMX	data.	See	Oracle
javadoc	or	JMXServiceURL	for	details.
--object-name:	This	specifies	the	JMX	object	name	to	be	used	as	a	query.	This	can
contain	wild	cards.	This	option	can	be	given	multiple	times	to	specify	more	than	one
query.	If	no	objects	are	specified,	all	the	objects	will	be	queried.
--reporting-interval:	This	specifies	the	interval	in	milliseconds	with	the	poll	JMX
stats.	The	default	reporting	interval	is	2	seconds.



There’s	more…
JConsole	is	also	a	popular	tool	to	view	JMX	data.	More	details	on	this	are	available	at
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html.

https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html




Using	the	Kafka	migration	tool
This	tool	is	very	handy	for	those	who	are	moving	their	existing	Kafka	data	from	the	0.7
version	to	the	0.8	version.



Getting	ready
You	have	Kafka	0.7	already	running	with	data	in	there.	You	also	should	have	started
Kafka	0.8.	Now,	with	all	setup	done,	you	are	set	to	start	the	migration	of	data.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.KafkaMigrationTool	--

consumer.config	consumer.config	--kafka.0.07.jar	

/opt/kafka7/bin/kafka.jar	–num.producer	4	--num.streams	4	--

producer.config	producer.config	--zkclient.01.jar	

/opt/kafka7/bin/zkclient.jar



How	it	works…
The	preceding	command	takes	the	following	arguments:

--blacklist:	This	contains	a	list	of	the	topics	that	are	blacklisted	from	being
migrated	from	the	0.7	cluster.
--consumer.config:	This	specifies	the	path	to	the	Kafka	0.7	consumer	configuration
file	to	consume	from	the	source	0.7	cluster.	Multiple	of	these	might	be	specified.
--help:	This	prints	the	help	message.
--kafka.07.jar:	This	specifies	the	path	to	the	Kafka	0.7	jar	file.
--num.producers:	This	specifies	the	number	of	producer	instances.	The	default
value,	if	not	specified,	is	1.
--num.streams:	This	specifies	the	number	of	consumer	streams.	The	default	value,	if
not	specified,	is	1.
--producer.config:	This	specifies	the	path	to	the	Kafka	producer	configuration	file.
--queue.size:	This	specifies	the	queue	size	in	the	number	of	messages	that	are
buffered	between	the	0.7	consumer	and	the	0.8	producer.	The	default	value	for	this	is
10000.
--whitelist:	This	specifies	the	whitelist	of	topics	to	be	migrated	from	the	0.7
cluster.
--zkclient.01.jar:	This	specifies	the	path	to	the	zkClient	0.1.jar	file	required
by	Kafka	0.7.





The	MirrorMaker	tool
Sometimes,	you	would	want	to	replicate	the	data	in	Kafka,	often	as	staging	the	dataset.
The	MirrorMaker	tool	comes	in	handy	to	replicate	the	same	data	in	a	different	Kafka
cluster.



Getting	ready
You	have	two	different	instances	of	Kafka	up	and	running	and	you	are	ready	to	replicate
data	on	one	to	the	other.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.MirrorMaker	--consumer.config	

config/consumer.config	--producer.config	config/producer.config	--

whitelist	mytesttopic



How	it	works…
The	preceding	command	takes	the	following	arguments:

--blacklist:	This	specifies	the	blacklist	of	topics	to	be	mirrored.	This	can	be	a
regular	expression	as	well.
--consumer.config:	This	specifies	the	path	to	the	consumer	configuration	file	to
consume	from	a	source	cluster.	Multiple	files	may	be	specified.
--help:	This	prints	the	help	message.
--num.producers:	This	specifies	the	number	of	producer	instances.	By	default,	only
one	producer	instance	will	be	created.
--num.streams:	This	specifies	the	number	of	consumption	streams’	threads.	By
default,	only	one	thread	will	be	started.
--producer.config:	This	specifies	the	path	to	the	embedded	producer	configuration
file.
--queue.size:	This	specifies	the	queue	size	in	the	number	of	messages	that	are
buffered	terms	between	the	consumer	and	producer.	The	default	value	for	it	is	10000.
--whitelist:	This	specifies	the	whitelist	of	topics	to	be	mirrored.



See	also
More	details	on	Kafka	Mirroring	are	detailed	at
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=27846330

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=27846330




Replay	Log	Producer
If	you	want	to	move	data	from	one	topic	to	another,	Replay	Log	Producer	is	the	ideal	tool
for	you.



Getting	ready
Get	your	Kafka	up	and	running	with	data	on	some	topic.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.ReplayLogProducer	--sync	--broker-

list	localhost:9092	--inputtopic	mytesttopic	--outputtopic	mytesttopic2	

--zookeeper	localhost:2181



How	it	works…
The	preceding	command	takes	the	following	arguments:

--sync:	If	this	is	specified,	the	messages	are	sent	synchronously;	else	they	are	sent
asynchronously.
--broker-list:	This	specifies	the	broker	list.	This	is	a	mandatory	field.
--inputtopic:	This	specifies	the	topic	to	consume	from.
--messages:	This	specifies	the	number	of	messages	to	be	sent.	Its	default	value	is	-1
that	means	infinite.
--outputtopic:	This	specifies	the	topic	to	produce	to.
--reporting-interval:	This	specifies	the	interval	in	milliseconds	to	print	the
progress	information.	Its	default	value	is	5000.
--threads:	This	specifies	the	number	of	sending	threads.	By	default,	only	one	thread
is	used.
--zookeeper:	This	specifies	the	connection	string	for	the	zookeeper	connection	in	the
host:port	form.	Multiple	URLs	can	be	given	to	allow	fail	over.





Simple	Consumer	Shell
Often,	while	debugging	your	code,	you	would	want	to	know	the	details	of	what	is	the
input	to	your	program	from	Kafka.



Getting	ready
Your	Kafka	is	up	and	running.	You	should	also	produce	some	data	to	a	Kafka	topic.	Now
you	are	good	to	go.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.SimpleConsumerShell	--broker-list	

localhost:9092	--max-messages	10	--offset	-2	--partition	0	--print-

offsets	--topic	mytesttopic



How	it	works…
The	preceding	command	takes	the	following	arguments:

--broker-list:	This	specifies	the	list	of	server	ports	to	connect	to.	This	can	be	a	list
of	servers	in	the	host:port	format.	You	can	specify	more	than	one	by	comma-
separating	them.
--clientId:	This	specifies	the	ID	of	the	client.	By	default,	it	is
SimpleConsumerShell.
--fetchsize:	This	specifies	the	size	of	each	fetch	request.	The	default	value	for	this
is	1048576.
--formatter:	Using	this,	you	can	specify	the	name	of	the	class	to	be	used	to	format
Kafka	messages	using	something	other	than	kafka.consumer,
DefaultMessageFormatter.
--property:	This	specifies	the	arguments	for	the	formatter.
--max-messages:	This	specifies	the	number	of	messages	to	be	consumed.	By	default,
it	consumes	2147483647	messages.
--max-wait-ms:	This	specifies	the	maximum	amount	of	time	each	fetch	request	will
wait	in	milliseconds.	By	default,	it	will	wait	for	1	second.
--no-wait-at-logend:	If	this	is	specified,	then	the	consumer	will	stop	on	reaching
the	end	of	the	log	and	not	wait	for	new	messages.
--offset:	This	specifies	the	ID	to	consume	from.	The	default	value	for	this	is	-2,
which	means	from	the	beginning.	If	-1	is	specified,	it	means	the	end.
--partition:	This	specifies	the	partition	to	read	from.	If	it	is	not	specified,	it	will
read	from	partition	0.
--print-offsets:	If	this	is	specified,	the	offset	needs	to	be	printed	as	well.
--replica:	This	specifies	the	replica	ID	to	consume	from.	Its	default	value	is	-1,
which	means	read	from	the	lead	broker.
--skip-message-on-error:	If	this	is	specified,	then	it	will	skip	the	message	in	case
of	an	error	instead	of	halting.
--topic:	This	specifies	the	topic	to	consume	from.





State	Change	Log	Merger
This	is	a	utility	that	merges	the	state	change	logs	from	different	brokers	for	easy	analysis
later	on.



Getting	ready
Get	Kafka	up	and	running	and	obtain	the	state	change	logs	from	different	brokers	over	a
period	of	few	days.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.StateChangeLogMerger	--log-regex	

/tmp/state-change.log*	--partitions	0,1,2	--topic	statelog



How	it	works…
The	preceding	command	takes	the	following	arguments:

--end-time:	This	specifies	the	latest	timestamp	of	state	change	entries	to	be	merged
in	the	java.text.SimpleDateFormat	format.	If	it	is	not	specified,	the	default	value
will	be	9999-12-31	23:59:59,999.
--logs:	This	is	used	to	specify	a	comma-separated	list	of	state	change	logs	or	regex
for	the	log	file	names.	Either	this	or	the	logs-regex	parameter	can	be	used	at	one
time.
--logs-regex:	This	is	used	to	specify	a	regex	to	match	the	state	change	log	files	to
be	merged.	Either	this	or	the	logs	parameter	can	be	used	at	one	time.
--partitions:	This	specifies	a	comma-separated	list	of	partition	IDs	whose	state
change	logs	should	be	merged.
--start-time:	This	specifies	the	earliest	timestamp	of	state	change	entries	to	be
merged	in	the	java.text.SimpleDateFormat	format.	If	it	is	not	specified,	the	default
value	will	be	0000-00-00	00:00:00,000.
--topic:	This	specifies	the	topic	whose	state	change	logs	should	be	merged.





Updating	offsets	in	Zookeeper
This	tool	is	perfect	when	you	want	to	reset	the	offset	of	a	consumer	in	ZooKeeper.



Getting	ready
Your	Kafka	is	up	and	running.	You	have	some	messages	in	your	Kafka	logs.	You	have	also
set	a	consumer	configuration	file	that	is	used	to	consume.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.UpdateOffsetsInZK	earliest	

config/consumer.properties	mytopic



How	it	works…
The	preceding	command	takes	the	following	arguments:

The	first	parameter	is	either	earliest	or	latest.	This	specifies	the	offset	to	be	taken:	the
earliest	or	the	latest.
The	second	parameter	is	the	consumer	configuration	file	path	for	which	the	offset
needs	to	be	updated.
The	third	parameter	is	the	topic	for	which	the	offset	needs	to	be	updated.





Verifying	consumer	rebalance
After	the	rebalancing	operation,	each	partition	must	have	selected	an	owner.	One	way	to
verify	that	is	by	reading	the	data	from	ZooKeeper	at
/consumers/[consumer_group]/owners/[topic]/[broker_id-partition_id]	and
finding	an	entry	for	each	of	/brokers/topics/[topic]/[broker-id].	This	tool	will	make
your	life	easier	to	make	sure	there	is	an	owner	for	every	partition.



Getting	ready
You	have	a	number	of	nodes	in	your	Kafka	node	up	and	running.	You	also	have	a
consumer	group	created	and	running.



How	to	do	it…
1.	 From	the	Kafka	folder,	run	the	following	command:

$	bin/kafka-run-class.sh	kafka.tools.VerifyConsumerRebalance	--

zookeeper.connect	localhost:2181	--group	mytestconsumer



How	it	works…
The	preceding	command	takes	the	following	arguments:

--group:	This	is	used	to	specify	the	consumer	group.
--help:	This	prints	the	help	message.
--zookeeper.connect:	This	is	used	to	specify	the	ZooKeeper	connect	string.





Chapter	5.	Integrating	Kafka	with	Java
In	this	chapter	we	will	cover:

Writing	a	simple	producer
Writing	a	simple	consumer
Writing	a	high-level	consumer
Writing	a	producer	with	message	partitioning
Multithreading	in	Kafka



Introduction
This	chapter	will	cover	some	simple	Kafka	routines.	These	include	various	operations
such	as	producing,	consuming	messages,	and	managing	offsets	in	Java.	We	will	be	using
Kafka	0.8.2.1	for	all	of	the	following	examples.





Writing	a	simple	producer
The	first	thing	that	you	need	to	do	to	is	input	data	into	Kafka.	In	Kafka	terms	this	is	called
producing	data.	So	let’s	start	with	creating	a	simple	producer	in	Java	that	will	enable	you
to	get	messages	in	the	Kafka	queue.	We	will	start	with	writing	a	Maven	project.



Getting	ready
When	you	create	a	project,	you	should	have	written	a	POM	file	with	the	following	as
dependencies	so	that	the	right	libraries	are	available	for	you:

<dependency>

			<groupId>org.apache.kafka</groupId>

			<artifactId>kafka_2.9.2</artifactId>

			<version>0.8.2.1</version>

			<scope>compile</scope>

			<exclusions>

									<exclusion>

															<artifactId>jmxri</artifactId>

															<groupId>com.sun.jmx</groupId>

									</exclusion>

									<exclusion>

															<artifactId>jms</artifactId>

															<groupId>javax.jms</groupId>

									</exclusion>

									<exclusion>

															<artifactId>jmxtools</artifactId>

															<groupId>com.sun.jdmk</groupId>

									</exclusion>

			</exclusions>

</dependency>



How	to	do	it…
Use	the	following	steps	to	write	a	simple	producer:

1.	 First	you	need	to	create	the	producer	config	object	with	the	properties	that	you	read
about	in	Chapter	3,	Configuring	a	Producer	and	Consumer.	You	can	create	these	as
follows:

Properties	properties	=	new	Properties();

properties.put("metadata.broker.list",	"127.0.0.1:9092");

properties.put("serializer.class",	"kafka.serializer.StringEncoder");

properties.put("request.required.acks",	"1");

2.	 Next,	we	create	the	producer	object	with	the	settings	we	just	provided:

KafkaProducer<Integer,	String>	producer	=	new	KafkaProducer<Integer,	

String>(properties);

3.	 Once	we	have	the	producer	object	ready,	we	can	start	preparing	a	message	to	be
pushed	to	the	Kafka	topic.

ProducerRecord<Integer,	String>	record	=	new	ProducerRecord<Integer,	

String>("mytesttopic",	message);

4.	 After	you	have	the	message	ready	to	be	sent,	you	have	to	call	the	send	method	on
producer	and	pass	the	message	as	a	parameter:

producer.send(record);

5.	 After	you	have	sent	all	the	messages,	remember	to	close	producer	by	calling	the
close	method:

producer.close();



How	it	works…
First	you	set	the	properties	for	the	producer.	This	includes	the	address	of	the	broker	to	get
the	metadata	information.	You	should	also	set	the	serializer	class	and	your
acknowledgement	settings	for	the	requests.	Here	we	are	using	the	StringEncoder	class	as
the	serializer	class	and	1	for	the	acknowledgement	setting,	which	means	that	the	producer
will	wait	till	the	leader	replica	has	received	the	message.	The	next	step	is	to	create	a
message	and	send	it	to	the	producer.	Once	the	call	is	successfully	made,	you	can	as	the
final	step	close	the	connection	to	the	producer.



See	also
Please	refer	to	Chapter	3,	Configuring	a	Producer	and	Consumer,	for	the	various
producer	configurations





Writing	a	simple	consumer
Once	you	have	produced	the	message	to	the	Kafka	broker,	the	next	logical	step	is	to
consume	it.	Let’s	go	through	the	steps	to	write	a	simple	consumer.



Getting	ready
The	first	step	in	writing	a	simple	consumer	is	to	create	a	Maven	project.	For	the	Maven
project	you	have	to	write	a	POM	file	with	the	following	as	dependencies	so	that	the	right
libraries	are	available	for	you;

<dependency>

			<groupId>org.apache.kafka</groupId>

			<artifactId>kafka_2.9.2</artifactId>

			<version>0.8.2.1</version>

			<scope>compile</scope>

			<exclusions>

									<exclusion>

															<artifactId>jmxri</artifactId>

															<groupId>com.sun.jmx</groupId>

									</exclusion>

									<exclusion>

															<artifactId>jms</artifactId>

															<groupId>javax.jms</groupId>

									</exclusion>

									<exclusion>

															<artifactId>jmxtools</artifactId>

															<groupId>com.sun.jdmk</groupId>

									</exclusion>

			</exclusions>

</dependency>



How	to	do	it…
Use	the	following	steps	to	write	a	simple	consumer:

1.	 First	find	the	partition	information	for	the	topic	from	the	seed	broker	address	that	you
have:

SimpleConsumer	consumer	=	new	SimpleConsumer(seed,	port,	100000,	64	*	

1024,	"leaderLookup");

List<String>	topics	=	Collections.singletonList(topic);

TopicMetadataRequest	req	=	new	TopicMetadataRequest(topics);

TopicMetadataResponse	resp	=	consumer.send(req);

List<TopicMetadata>	metaData	=	resp.topicsMetadata();

for	(TopicMetadata	item	:	metaData)	{

			for	(PartitionMetadata	part	:	item.partitionsMetadata())	{

									if	(part.partitionId()	==	partition)	{

															returnMetaData	=	part;

									}

			}

}

2.	 Once	you	have	the	metadata	for	the	partition,	next	you	have	to	create	the
SimpleConsumer	class	object.	You	need	to	pass	the	lead	broker	host,	its	port	number,
timeout,	buffer	size,	and	client	name	as	parameters	from	which	you	create	the
SimpleConsumer	object:

SimpleConsumer	consumer	=	new	SimpleConsumer(leadBroker,	port,	100000,	

64	*	1024,	clientName);

3.	 Next	with	this	simple	consumer	you	have	to	get	the	offset	for	the	topic.	Depending
on	your	need,	you	can	start	with	the	earliest	or	the	latest	offset.	If	you	already	have	a
saved	offset,	you	can	skip	this	step:

TopicAndPartition	topicAndPartition	=	new	TopicAndPartition(topic,	

partition);

Map<TopicAndPartition,	PartitionOffsetRequestInfo>	requestInfo	=	new	

HashMap<TopicAndPartition,	PartitionOffsetRequestInfo>();

requestInfo.put(topicAndPartition,	new	

PartitionOffsetRequestInfo(whichTime,	1));

kafka.javaapi.OffsetRequest	request	=	new	kafka.javaapi.OffsetRequest(

									requestInfo,	kafka.api.OffsetRequest.CurrentVersion(),	

clientName);

OffsetResponse	response	=	consumer.getOffsetsBefore(request);

if	(response.hasError())	{

			System.out.println("Error	fetching	data	Offset	Data	the	Broker.	

Reason:	"	+	response.errorCode(topic,	partition));

			return	0;

}

long[]	offsets	=	response.offsets(topic,	partition);

4.	 Next,	we	create	a	fetch	request	object	with	the	topic,	partition,	offset,	and	the	number
of	bytes	to	be	fetched	in	one	request:



FetchRequest	req	=	new	FetchRequestBuilder()

									.clientId(clientName)

									.addFetch(topic,	partition,	readOffset,	100000)

									.build();

5.	 Now	we	fetch	the	request	from	the	broker	using	the	following	code:

FetchResponse	fetchResponse	=	consumer.fetch(req);

6.	 With	the	preceding	code,	the	fetchResponse	object	is	populated	with	the	messages
from	Kafka.	We	should	now	iterate	through	it	to	get	the	messages	based	on	topic	and
partition	ID.	Also	update	the	read	offset.

for	(MessageAndOffset	messageAndOffset	:	

fetchResponse.messageSet(topic,	partition))	{

			long	currentOffset	=	messageAndOffset.offset();

			if	(currentOffset	<	readOffset)	{

									System.out.println("Found	an	old	offset:	"	+	currentOffset	+	"	

Expecting:	"	+	readOffset);

									continue;

			}

			readOffset	=	messageAndOffset.nextOffset();

			ByteBuffer	payload	=	messageAndOffset.message().payload();

			byte[]	bytes	=	new	byte[payload.limit()];

			payload.get(bytes);

			System.out.println(String.valueOf(messageAndOffset.offset())	+	":	"	

+	new	String(bytes,	"UTF-8"));

			numRead++;

}

7.	 The	final	step	is	to	close	the	connection	by	calling	close	on	the	consumer	object.

consumer.close();



How	it	works…
The	first	step	is	to	find	the	partition	metadata	for	the	topic.	This	is	done	by	connecting	to
the	broker	whose	host	and	port	are	available	to	you.	Once	that	is	done,	you	have	the
partition	metadata	for	the	topic.	You	also	get	to	know	the	lead	broker	information	as	well.
Now	you	can	create	the	SimpleConsumer	object.	If	you	don’t	have	the	offset	information
with	you,	you	can	get	it	by	using	the	consumer	object.	With	this	offset,	you	have	to	create
the	fetch	request.	When	you	fire	the	fetch	request	with	this	information	on	the	consumer,
you	get	the	messages	from	the	Kafka	broker.	You	need	to	iterate	through	this	fetch
response	object	to	retrieve	the	messages	from	the	broker.	You	also	need	to	update	the
offset	value	to	fetch	the	next	set	of	messages	from	the	broker.



See	also
Please	refer	to	Chapter	3,	Configuring	a	Producer	and	Consumer,	for	detailed
information	on	the	various	consumer	configurations.





Writing	a	high-level	consumer
A	simple	consumer	is	too	much	work	for	a	lot	of	situations.	For	most	purposes,	a	high-
level	consumer	comes	in	handy,	especially	when	you	want	to	deal	with	a	multithreaded
system.



Getting	ready
Get	the	POM	file	ready,	as	we	did	for	the	previous	topic.



How	to	do	it…
1.	 First	create	the	consumer	configuration	object	with	the	right	properties:

Properties	props	=	new	Properties();

props.put("zookeeper.connect",	zookeeper);

props.put("group.id",	groupId);

props.put("zookeeper.session.timeout.ms",	"400");

props.put("zookeeper.sync.time.ms",	"200");

props.put("auto.commit.interval.ms",	"1000");

ConsumerConfig	consumerConfig	=	new	ConsumerConfig(props);

2.	 Now	with	this	consumer	configuration	you	need	to	create	the	consumer	connector:

ConsumerConnector	consumer	=	

kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);

3.	 Next	get	the	KafkaStream	object	from	the	consumer	for	the	desired	topic:

Map<String,	Integer>	topicCountMap	=	new	HashMap<String,	Integer>();

topicCountMap.put(topic,	new	Integer(numThreads));

Map<String,	List<KafkaStream<byte[],	byte[]>>>	consumerMap	=	

consumer.createMessageStreams(topicCountMap);

List<KafkaStream<byte[],	byte[]>>	streams	=	consumerMap.get(topic);

4.	 Now	you	can	consume	data	from	this	stream	without	worrying	about	the	offset	and
so	on:

ConsumerIterator<byte[],	byte[]>	it	=	stream.iterator();

while	(it.hasNext())

			System.out.println("Thread	"	+	threadNumber	+	":	"	+	new	

String(it.next().message()));



How	it	works…
You	set	the	various	properties	that	you	want	for	the	consumer	connection.	Once	that	is
done,	you	create	the	consumer	object.	This	object	is	then	used	to	get	the	stream	of
messages	from	the	broker.	Unlike	the	simple	consumer,	you	need	not	do	the	repetitive
work	of	connecting	and	getting	the	partition	metadata.	This	high-level	consumer	class	will
do	that	for	you.	Once	you	have	the	streams	ready,	you	can	start	consuming	data	from	the
different	streams	created	using	the	ConsumerIterator	class.



See	also
Please	refer	to	Chapter	3,	Configuring	a	Producer	and	Consumer,	for	details	of	the
various	consumer	configurations





Writing	a	producer	with	message
partitioning
Often	you	would	like	some	control	over	the	partitioning	logic	for	the	producer.	It	might	be
that	you	would	want	a	particular	kind	of	message	to	be	stored	in	a	particular	partition,	so
that	your	consumers	can	be	optimized	for	quick	reads.	In	cases	like	these,	the	message
partitioning	feature	of	Kafka	comes	in	handy.	Using	this	you	can	choose	to	send	a
particular	message	based	on	some	key	to	a	specific	partition.



Getting	ready
As	with	all	the	projects,	you	need	to	get	the	POM	file	ready	with	its	Kafka	dependencies.



How	to	do	it…
1.	 We	first	create	a	properties	object	for	the	Kafka	producer:

Properties	properties	=	new	Properties();

properties.put("metadata.broker.list",	"127.0.0.1:9092");

properties.put("serializer.class",	"kafka.serializer.StringEncoder");

properties.put("partitioner.class",	

"com.kafkacookbook.SimplePartitioner");

properties.put("request.required.acks",	"1");

Note
Note	we	have	specified	the	name	of	the	partitioner	class	property.

2.	 Next,	we	create	the	producer	object	with	the	settings	we	just	provided:

KafkaProducer<Integer,	String>	producer	=	new	KafkaProducer<Integer,	

String>(properties);

Once	we	have	the	producer	object	ready,	we	can	start	preparing	message	to	be
pushed	to	the	Kafka	topic

3.	 Say	we	want	to	produce	100	different	messages,	we	can	do	so	as	follows:

for(int	iCount	=	0;	iCount	<	100;	iCount++){

												int	partition	=	iCount	%	

producer.partitionsFor("mytesttopic").size();

												String	message	=	"My	Test	Message	No	"+iCount;

												ProducerRecord<Integer,String>	record	=	new	

ProducerRecord<Integer,	String>("mytesttopic",

																				partition,	iCount,	message);

												producer.send(record);

								}

4.	 Finally,	once	we	have	sent	all	the	message	that	we	need	to,	we	should	close	the
producer	connection	by	calling	the	close	method	in	producer:

producer.close();



How	it	works…
We	start	with	a	general	KafkaProducer	class	object,	with	the	same	properties	we	used	for
a	simple	producer.	All	the	steps	are	pretty	much	a	standard	routine.	When	creating	a
ProducerRecord	for	the	message,	we	need	to	pass	the	following	parameters:	topic	name,
partition	number,	message	key,	and	the	actual	message.	The	partition	number	is	the
partition	to	which	you	want	to	send	the	data.	You	should	be	careful	while	selecting	the
partition	number	because,	if	chosen	incorrectly,	it	might	slow	down	your	data	ingestion
and	affect	the	performance	of	your	system.	It	is	highly	recommended	that	you	distribute
the	load	evenly	across	partitions.	You	can,	after	creating	this	record,	call	the	method	send
on	the	producer	object	and	pass	this	record	as	a	parameter.	After	you	a	have	sent	all	the
messages	it	is	important	that	you	call	close	on	the	producer	object.



There’s	more…
In	the	Kafka	producer,	a	partition	key	can	be	specified	to	indicate	the	destination	partition
of	the	message.	By	default,	a	hashing-based	partitioner	is	used	to	determine	the	partition
ID	given	the	key,	and	people	can	use	customized	partitioners	also.	In	Kafka	0.8	onwards,
if	no	key	is	specified,	Kafka	will	send	it	to	a	random	partition.	It	will	then	keep	on	sending
it	to	that	particular	topic	unless	the	metadata	for	the	topic	is	refreshed,	which	by	default	is
every	10	minutes.	This	might	lead	to	issues	where	a	large	number	of	partitions	are	unused
when	there	are	fewer	producers	than	partitions.	So	it	is	recommended	that	you	use	a
message	key	and	a	custom	random	partitioner	or	reduce	the	metadata	refresh	interval.





Multithreaded	consumers	in	Kafka
Often	we	have	a	single	consumer-side	application	processing	data	in	multiple	threads,	to
do	this	in	an	efficient	way	in	Kafka.



Getting	ready
As	with	all	projects,	you	need	to	get	the	POM	file	ready	with	Kafka	dependencies.



How	to	do	it…
1.	 First	we	write	the	class	that	implements	the	runnable	that	takes	KafkaStream	and

threadNumber	for	us	to	identify	which	thread	is	taking	it.	We	save	these	as	field
variables	for	use	later:

public	ConsumerThread(KafkaStream	stream,	int	threadNumber)	{

			this.stream	=	stream;

			this.threadNumber	=	threadNumber;

}

2.	 Next	we	can	implement	the	run	function	for	the	ConsumerThread	class	we	created:

public	void	run()	{

			ConsumerIterator<byte[],	byte[]>	it	=	stream.iterator();

			while	(it.hasNext())	{

									System.out.println("Message	from	thread	"	+	threadNumber	+	":	

"	+	new	String(it.next().message()));

			}

			System.out.println("Shutting	down	thread:	"	+	threadNumber);

}

3.	 We	can	now	write	the	code	for	getting	the	consumer	stream.	Before	we	get	there	we
need	to	create	ConsumerConnection	with	a	properties	object:

Properties	properties	=	new	Properties();

properties.put("zookeeper.connect",	"localhost:2181");

properties.put("group.id",	"mygroup");

properties.put("zookeeper.session.timeout.ms",	"500");

properties.put("zookeeper.sync.time.ms",	"250");

properties.put("auto.commit.interval.ms",	"1000");

ConsumerConnector	consumer	=	Consumer.createJavaConsumerConnector(new	

ConsumerConfig(properties));

4.	 Next	we	create	a	map	for	the	topic	and	the	number	of	streams	for	each	topic-
partition	pair:

Map<String,	Integer>	topicCount	=	new	HashMap<String,	Integer>();

topicCount.put("mytesttopic",	4);

5.	 Now	we	can	get	the	stream	from	the	message	settings:

Map<String,	List<KafkaStream<byte[],	byte[]>>>	consumerStreams	=	

consumer.createMessageStreams(topicCount);

List<KafkaStream<byte[],	byte[]>>	streams	=	

consumerStreams.get("mytesttopic");

6.	 Once	we	have	the	streams,	we	can	iterate	though	them	and	start	a	thread	to	start
reading	from	the	streams:

ExecutorService	executor	=	Executors.newFixedThreadPool(4);

int	threadNumber	=	0;

for	(final	KafkaStream	stream	:	streams)	{

			executor.submit(new	ConsumerThread(stream,	threadNumber));

			threadNumber++;

}





How	it	works…
You	set	the	various	properties	that	you	want	for	the	consumer	connection.	Once	that	is
done,	you	create	the	consumer	object.	This	object	is	then	used	to	get	the	stream	of
messages	from	the	broker.	Unlike	the	simple	consumer,	you	need	not	do	the	repetitive
work	of	connecting	and	getting	the	partition	metadata.	This	high-level	consumer	class	will
do	that	for	you.	Once	you	have	the	streams	ready,	you	can	start	the	threads	to	consume
data	from	the	different	streams	created	using	the	ConsumerIterator	class.





Chapter	6.	Operating	Kafka
In	this	chapter,	we	will	cover:

Adding	and	removing	topics
Modifying	topics
Implementing	a	graceful	shutdown
Balancing	leadership
Mirroring	data	between	Kafka	clusters
Expanding	clusters
Increasing	the	replication	factor
Checking	the	consumer	position
Decommissioning	brokers



Introduction
This	chapter	explains	the	different	operations	you	need	to	perform	on	your	Kafka	cluster.
These	tools	are	not	required	to	be	used	on	a	daily	basis	but	once	in	a	while	they	help	you
manage	your	Kafka	clusters	more	effectively.





Adding	and	removing	topics
Adding	or	removing	a	topic	is	one	of	the	basic	operations	you	will	need	to	perform.	You
can	add	a	Kafka	topic	either	manually	or	enable	the	option	in	Kafka	to	automatically	add
topics.	But	it	is	suggested	that	you	disable	automatic	topic	creation	in	your	production
setup.	This	will	help	eliminate	errors	in	code	where	your	data	might	accidentally	be
pushed	to	a	different	topic	that	you	did	not	mean	to	create	in	the	first	place.



Getting	ready
You	need	to	have	a	Kafka	cluster	up-and-running.	Once	that	is	done,	you	are	all	set	to
create	topics	on	it.



How	to	do	it…
1.	 Go	to	the	folder	where	you	have	installed	Kafka	in	your	terminal.
2.	 Once	there,	enter	the	following	command	to	create	a	topic	called	testtopic:

>	bin/kafka-topics.sh	--zookeeper	localhost:2181	--create	--topic	

testtopic	--partitions	10		--replication-factor	2	--config	

max.message.bytes=64000

3.	 If	you	want	to	delete	the	topic,	you	need	to	run	the	following	command:

>	bin/kafka-topics.sh	--zookeeper	localhost:2181	--delete	--topic	

testtoopic



How	it	works…
Some	of	the	parameters	are	explained	next:

--zookeeper:	This	specifies	the	ZooKeeper	connect	string;	it	can	be	comma-
separated	in	the	format	host:port.
--create:	This	keyword	specifies	that	a	topic	needs	to	be	created.
--delete:	This	keyword	specifies	that	the	topic	needs	to	be	deleted.	The	server
configuration	has	to	be	delete.topic.enable=true.	By	default	this	is	set	as	false.
If	it	is	false,	the	topic	will	never	be	deleted.
--topic:	This	is	used	to	specify	the	topic	name.	The	topic	name	must	follow	this
keyword.
--partitions:	This	is	used	to	specify	the	number	of	partitions	to	be	created	for	the
topic.	The	number	of	partitions	to	be	created	must	follow	this	keyword.
--replication-factor:	This	specifies	the	number	of	replicas	to	be	created	for	the
topic.	This	number	must	be	less	than	the	number	of	nodes	in	the	cluster.

Other	configurations	needed	for	the	topic	can	be	specified	by	using	the	following	format:
--config	x=y,	where	x	is	config	name	and	y	is	the	value	for	the	configuration.	These	are
used	to	override	the	default	property	set	on	the	server.

Details	of	the	various	configurations	are	as	follows:

cleanup.policy:	This	keyword	can	take	either	of	two	values:	delete	or	compaction.
The	default	value	is	delete,	which	will	delete	the	logs	once	the	logs	reach	the	time	or
size	limits.
delete.retention.ms:	This	is	used	to	change	the	length	of	time	you	want	the	logs	to
be	retained	in	Kafka.



There’s	more…
Many	more	configuration	options	are	available.	These	have	been	detailed	at
http://kafka.apache.org/documentation.html#topic-config.

http://kafka.apache.org/documentation.html#topic-config


See	also
Also	check	broker	configuration	in	Chapter	2,	Configuring	Brokers,	for	how	to	set
topic	defaults	at	the	broker	level





Modifying	topics
Once	you	have	created	a	topic,	you	may	want	to	modify	it	at	some	time—for	example,
when	you	have	an	extra	node	added	for	replication	or	you	want	to	increase	the	parallelism
in	the	system.	This	tool	comes	in	handy	again	as	an	alternative	to	deleting	the	topic	and
starting	from	scratch.



Getting	ready
You	should	have	the	Kafka	cluster	up-and-running.	You	must	have	also	created	a	topic
already,	as	mentioned	in	the	previous	topic.



How	to	do	it…
1.	 From	the	command	line,	run	the	following	command:

bin/kafka-topics.sh	--zookeeper	localhost:2181/chroot	--alter	--topic	

my_topic_name	--partitions	40	--config	delete.retention.ms=10000	--

deleteConfig	retention.ms



How	it	works…
The	delete.topic.enable	command	has	the	keyword	--alter	in	it,	which	tells	it	to
modify	the	topic.

--zookeeper:	This	keyword	is	used	to	mention	the	ZooKeeper	host	and	port	number
for	the	cluster	along	with	the	optional	path	to	be	used	in	ZooKeeper.	This	is	useful	if
you	have	more	than	one	Kafka	cluster	using	the	same	ZooKeeper	cluster.
--topic:	This	keyword	is	followed	by	the	name	of	the	topic	that	needs	to	be
modified.
--partitions:	This	keyword	is	followed	by	the	number	of	partitions	to	be	set	for	the
topic	specified.
--config:	This	keyword,	if	followed	by	a	config	in	the	format	configname=value,
sets	the	new	value	given.
--deleteConfig:	This	keyword	followed	by	a	config	name	removes	the	config	from
the	topic.



There’s	more…
Many	more	configuration	options	are	available.	These	have	been	detailed	at:
http://kafka.apache.org/documentation.html#topic-config.

http://kafka.apache.org/documentation.html#topic-config




Implementing	a	graceful	shutdown
An	abrupt	shutdown	happens	sometimes	due	to	unavoidable	circumstances	such	as	a
sudden	reboot	or	power	outage.	But	often	we	want	to	upgrade	a	machine	or	change	a
configuration	with	a	planned	shutdown.	Under	these	circumstances,	we	can	shut	down	a
node	in	the	cluster	while	keeping	the	entire	cluster	up-and-running	without	causing	any
kind	of	data	loss.



Getting	ready
Kafka	must	be	installed	on	your	system.



How	to	do	it…
1.	 In	the	Kafka	configuration	file	(which	in	a	standard	setup	is

config/server.properties),	enter	the	following	configurations:

controlled.shutdown.enable=true

2.	 Now	start	all	the	different	nodes	for	Kafka.
3.	 Once	all	the	nodes	in	your	Kafka	cluster	are	running,	from	the	Kafka	folder	run	the

following	command	in	the	broker	which	you	want	to	shut	down.

>bin/kafka-server-stop.sh



How	it	works…
If	the	setting	for	controlled	shutdown	is	enabled,	it	ensures	that	server	shutdown	happens
properly.	To	do	this,	first	it	writes	all	the	logs	to	disk	so	that	there	are	no	issues	with	logs
when	you	restart	the	broker.	As	the	next	step	it	makes	sure	that	another	node	becomes	the
leader	for	a	partition	that	was	the	leader	earlier.	This	makes	sure	that	the	downtime	for
each	partition	is	reduced	considerably.





Balancing	leadership
When	the	lead	broker	of	a	topic	partition	crashes	or	is	stopped,	its	leadership	is	transferred
to	other	replicas.	This	might	lead	to	an	imbalance	in	the	lead	Kafka	brokers.	To	restore	this
balance	you	might	have	to	run	the	following	command.



Getting	ready
You	should	have	a	multinode	Kafka	cluster	set	up.	One	of	your	Kafka	nodes	has	gone
down,	and	subsequently	it	has	been	restored.



How	to	do	it…
1.	 Run	the	following	command	from	the	Kafka	folder.

>	bin/kafka-preferred-replica-election.sh	--zookeeper	

localhost:2181/chroot



How	it	works…
If	any	Kafka	nodes	joined	the	cluster	later	on,	this	might	lead	to	them	being	run	as	slaves
without	any	direct	operations	such	as	reads	or	writes	occurring.	To	redistribute	the	load
among	the	available	nodes,	the	preceding	command	is	used.

--zookeeper:	This	keyword	is	used	to	mention	the	ZooKeeper	host	and	port	number
for	the	clusters	along	with	the	optional	path	to	be	used	in	ZooKeeper.	This	is	useful	is
if	you	have	more	than	one	Kafka	cluster	using	the	same	ZooKeeper	cluster.



There’s	more…
Performing	this	rebalance	time	and	again	can	be	very	tedious.	You	can	enable	the
auto.leader.rebalance	option	in	the	Kafka	nodes	by	setting	the	following	configuration
in	the	config	file:

auto.leader.rebalance.enable=true





Mirroring	data	between	Kafka	clusters
Often,	you	want	to	copy	data	from	multiple	Kafka	clusters	to	a	single	one.	This	tool	comes
in	handy	for	this.	Both	clusters	have	a	different	identity,	which	makes	them	different	from
replica	sets.



Getting	ready
You	should	have	at	least	two	Kafka	clusters	up-and-running.	One	receives	the	data	and	the
other	is	where	you	want	to	mirror	the	data.	You	have	the	consumer	config	for	the	cluster	to
be	mirrored	to	hand.



How	to	do	it…
1.	 From	the	command	line,	run	the	following	command:

>bin/kafka-run-class.sh	kafka.tools.MirrorMaker	--consumer.config	

consumer.properties	--producer.config	producer.properties	--whitelist	

testtopic



How	it	works…
When	you	run	the	preceding	command,	it	basically	creates	a	consumer	that	consumes
messages	from	one	Kafka	cluster	and	produces	in	another	one.

--consumer.config:	This	keyword	is	followed	by	the	consumer	properties	file	for
the	cluster	being	mirrored.	You	can	provide	more	than	one	consumer	config	to	mirror
topics	from	different	clusters	in	one	go.
--producer.config:	This	keyword	is	followed	by	the	producer	properties	file	for	the
cluster	being	mirrored	to.
--whitelist:	This	follows	the	regular	expression	for	the	topics	that	need	to	be
copied	from	the	cluster	mentioned.	Giving	this	as	*	will	move	all	topics	in	the	cluster
being	mirrored	to	the	destination	cluster.
--blacklist:	This	follows	the	regular	expression	for	the	topics	that	need	not	be
mirrored	from	the	cluster	to	be	mirrored.

Please	note,	either	whitelist	or	blacklist	can	be	used	at	any	given	time;	both	cannot	be
applied	simultaneously.



There’s	more…
It	is	often	a	good	idea	to	have	the	mirrored	cluster	configured	to	automatically	create
topics	so	that	this	cluster	will	have	messages	for	all	the	newly	created	topics	as	well.





Expanding	clusters
Once	the	Kafka	cluster	has	been	created,	sometimes	you	want	to	expand	it.	It	is	simple	to
add	more	nodes	to	Kafka	by	assigning	them	unique	broker	IDs.	But	this	does	not	mean
that	they	will	start	getting	data	automatically.	You	need	to	reconfigure	your	cluster	to	tell	it
which	partition	replicas	should	be	sent	where.	It	will	then	move	those	partitions	to	the
newly	added	node.	In	this	topic	we	will	cover	how	to	do	that.



Getting	ready
You	should	have	already	set	up	Kafka.	You	must	have	some	topics	with	replicas	running.



How	to	do	it…
1.	 Say	you	want	to	modify	these	topics:	topic1	and	topic2.	Generate	a	JSON	file	in	the

following	format.

>cat	topics-to-move.json

{"topics":	[{"topic":	"foo1"},

{"topic":	"foo2"}],

"version":1

}

2.	 Run	the	following	command	from	the	command	prompt	in	the	Kafka	setup.

>	bin/kafka-reassign-partitions.sh	--zookeeper	localhost:2181	--topics-

to-move-json-file	topics-to-move.json	--broker-list	"5,6"	--generate	

Current	partition	replica	assignment

{"version":1,

"partitions":[{"topic":"foo1","partition":2,"replicas":[1,2]},

{"topic":"foo1","partition":0,"replicas":[3,4]},

{"topic":"foo2","partition":2,"replicas":[1,2]},

{"topic":"foo2","partition":0,"replicas":[3,4]},

{"topic":"foo1","partition":1,"replicas":[2,3]},

{"topic":"foo2","partition":1,"replicas":[2,3]}]

}

Proposed	partition	reassignment	configuration

{"version":1,

"partitions":[{"topic":"foo1","partition":2,"replicas":[5,6]},

{"topic":"foo1","partition":0,"replicas":[5,6]},

{"topic":"foo2","partition":2,"replicas":[5,6]},

{"topic":"foo2","partition":0,"replicas":[5,6]},

{"topic":"foo1","partition":1,"replicas":[5,6]},

{"topic":"foo2","partition":1,"replicas":[5,6]}]

}

3.	 Write	a	JSON	file	(custom-reassignment.json)	to	move	the	particular	partition	to	a
specific	node,	as	needed.

{"version":1,

"partitions":[{"topic":"foo1","partition":2,"replicas":[3,6]},

{"topic":"foo1","partition":0,"replicas":[4,6]},

{"topic":"foo2","partition":2,"replicas":[5,6]},

{"topic":"foo2","partition":0,"replicas":[3,6]},

{"topic":"foo1","partition":1,"replicas":[4,6]},

{"topic":"foo2","partition":1,"replicas":[5,6]}]

}

4.	 Run	the	following	command	from	the	command	prompt	at	the	Kafka	folder

>bin/kafka-reassign-partitions.sh	--zookeeper	localhost:2181	--

reassignment-json-file	custom-reassignment.json	--execute

5.	 Run	the	following	command	from	the	command	prompt	in	the	Kafka	folder.



bin/kafka-reassign-partitions.sh	--zookeeper	localhost:2181	--

reassignment-json-file	custom-reassignment.json	--verify



How	it	works…
In	the	first	step	we	create	a	JSON	file	with	all	the	topics	that	we	want	to	modify.	These
topics	are	entered	as	an	array	in	the	JSON	file	under	the	key	topics.

In	the	next	step	we	automatically	generate	the	new	candidate	configuration	for	the	Kafka
topics	using	the	reassignment	tool.	It	takes	in	the	following	arguments:

--zookeeper:	This	specifies	the	ZooKeeper	connect	string;	it	can	be	comma-
separated	in	the	format	host:port.
--topics-to-move-json-file:	This	specifies	the	path	to	the	JSON	file	that	we
created	in	the	previous	step.
--broker-list:	This	takes	in	the	list	of	brokers	to	assign	the	new	replicas	to.	The
broker	IDs	are	given	in	a	comma-separated	format	as	1,2,3.	This	is	required	if	the
topic-to-move-json-file	parameter	is	mentioned.
--generate:	This	argument	tells	the	tools	to	generate	a	new	candidate	configuration
for	the	topics.	This	will	not	actually	start	the	migration	of	replicas.

Once	we	have	a	new	candidate	configuration	generated,	we	might	want	to	make	some
changes	from	the	default	settings.	You	can	create	a	new	JSON	file	based	on	the	output	of
the	previous	step.	You	can	modify	the	destinations	of	the	different	partitions.	Once	you
have	done	that,	you	can	now	run	the	next	command	to	start	moving	partitions	according	to
the	new	data.

This	step	will	actually	start	moving	data	from	the	original	replica	to	the	new	ones.	It	will
take	some	time	based	on	how	much	data	is	being	moved.	To	check	the	status	of	the	move,
you	can	run	the	next	verify	command.	It	will	display	the	status	of	the	different	partitions.



There’s	more…
If	you	would	like	to	rollback	the	configuration	just	applied,	it	is	recommended	that	you
save	the	current	configuration	generated	in	step	2	for	future	reference.	You	can	apply	the
saved	JSON	directly	to	change	the	Kafka	configurations.





Increasing	the	replication	factor
Often,	after	we	have	started	a	cluster,	we	need	to	add	more	machines	to	it	to	increase	the
number	of	replicas	for	a	topic.	We	now	want	certain	replicas	to	be	moved	to	these
machines.



Getting	ready
You	should	have	a	Kafka	cluster	up-and-running.	Start	a	few	more	nodes	and	add	them	to
this	cluster.



How	to	do	it…
1.	 Create	a	JSON	file	named	increase-replication-factor.json	with	the	following

code:

{"version":1,

"partitions":[{"topic":"mytesttopic","partition":0,"replicas":

[5,6,7]}]}

2.	 Run	the	following	command:

>	bin/kafka-reassign-partitions.sh	--zookeeper	localhost:2181	--

reassignment-json-file	increase-replication-factor.json	--execute



How	it	works…
Let’s	say	we	have	a	Kafka	topic	mytesttopic	created	with	a	replication	factor	of	1.	Your
cluster	has	the	brokers	with	ID	1	to	3.	Now	you	have	added	three	more	nodes:	ID	4	to	6.
The	JSON	file	created	mentions	the	partitions	to	be	modified.	You	need	to	mention	the
topic,	partition	ID,	and	the	list	of	replica	brokers	in	the	format	mentioned	in	the	file.	Once
this	is	done,	the	new	Kafka	brokers	start	replicating	the	topic.



There’s	more…
To	verify	the	status	of	partition	reassignment,	you	need	to	run	the	following	command.

>	bin/kafka-reassign-partitions.sh	--zookeeper	localhost:2181	--

reassignment-json-file	increase-replication-factor.json	--verify





Checking	the	consumer	position
Sometimes	we	want	to	check	the	offset	position	of	the	consumers.	This	tool	enables	you	to
know	how	much	the	consumers	are	lagging	from	the	produced	messages.



Getting	ready
You	should	have	a	Kafka	cluster	up-and-running.	You	must	have	created	a	Kafka	topic
with	messages	being	produced	to	that	topic.	Also	a	consumer	must	be	running	to	read
from	it.



How	to	do	it…
1.	 Run	the	following	command	from	the	Kafka	directory.

>	bin/kafka-run-class.sh	kafka.tools.ConsumerOffsetChecker	--zkconnect	

localhost:2181	--group	my-test-group

Group											Topic																										Pid	Offset	logSize									

Lag													Owner

my-test-group								mytesttopic																							0			0	0															

0															test_sminni-er-1638490550254-85375431-0

my-test-group								mytesttopic																							1			0	0															

0															test_sminni-er-1638490550254-34523456-0



How	it	works…
The	ConsumerOffsetChecker	command	takes	the	following	parameters:

--zkconnect:	This	is	followed	by	the	host	and	port	number	in	the	format	host:port
for	the	ZooKeeper	for	the	Kafka	cluster
--group:	This	is	the	consumer	group	ID	you	want	to	check	the	offsets	for





Decommissioning	brokers
With	expanding	the	Kafka	cluster	also	comes	the	scenario	under	which	you	might	have	to
remove	some	nodes.	The	decommissioning	of	brokers	is	not	automatic	and	you	need	to
generate	and	apply	the	reassignment	settings	so	that	the	replicas	are	moved	to	the	other
remaining	brokers.



Getting	ready
You	should	have	a	Kafka	cluster	up-and-running	with	at	least	three	nodes.	You	can	now
create	a	topic	with	a	replication	factor	of	3.



How	to	do	it…
You	can	gracefully	shutdown	one	of	the	broker	nodes	that	you	want	to	decommission.
Once	that	broker	node	has	shut	down	gracefully,	perform	the	following	steps:

1.	 Create	a	JSON	file	named	change-replication-factor.json	with	the	following
code:

{"version":1,

"partitions":[{"topic":"mytesttopic","partition":0,"replicas":[1,2]}]}

2.	 Run	the	following	command:

>	bin/kafka-reassign-partitions.sh	--zookeeper	localhost:2181	--

reassignment-json-file	change-replication-factor.json	--execute



How	it	works…
After	you	have	gracefully	shut	down	the	node	you	are	going	to	decommission,	the	logs	for
all	the	lead	partitions	on	that	node	are	flushed	to	disk.	After	that	the	transfer	of	the	lead
replica	for	the	partitions	happens	and	the	node	is	finally	shut	down.	Once	that	happens,	as
the	first	step	you	are	creating	a	new	JSON	file	in	which	you	specify	which	partition	should
be	part	of	which	replicas.	You	remove	reference	to	the	decommissioned	node	from	this
JSON	file.	Now	you	give	this	JSON	file	to	the	command	for	reassigning	partitions	so	that
it	will	update	the	partition	replication	info	in	the	Kafka	cluster.	Once	that	is	done,	the
nodes	are	reassigned	in	line	with	the	instructions	in	your	JSON	file.





Chapter	7.	Integrating	Kafka	with	Third-
Party	Platforms
In	this	chapter	we	will	cover:

Using	Flume
Using	Gobblin
Using	Logstash
Configuring	Kafka	for	real-time
Integrating	Spark	with	Kafka
Integrating	Storm	with	Kafka
Integrating	Elasticsearch	with	Kafka
Integrating	SolrCloud	with	Kafka



Introduction
In	this	chapter,	we	talk	about	real-time	data	processing	tools	and	how	to	get	Kafka
integrated	with	them.	Tools	such	as	Flume,	Camus,	and	Logstash	make	is	really	easy	to
read	data	from	Kafka	and	push	it	to	other	systems.	Storm,	Spark,	Elasticsearch,	and
SolrCloud	are	some	popular,	real-time	processing	systems	and	we	will	talk	about	how	to
enable	these	systems	to	read	data	from	Kafka	in	real-time.





Using	Flume
Flume	is	a	reliable,	highly	available,	distributed	service	for	collecting,	aggregating,	and
moving	large	amounts	of	log	data	into	any	data	storage	solution	that	you	might	use.	Your
,data	destination	might	be	any	of	HDFS,	Kafka,	Hive,	or	any	of	the	various	sinks	that
Flume	supports.	You	can	also	use	Flume	to	transfer	your	data	from	one	Kafka	node	to
another	Kafka	node.	In	the	following	example	we	will	see	how	to	do	that.



Getting	ready
To	use	Kafka	with	Flume	you	have	to	set	up	a	Kafka	broker.	Once	you	have	the	Kafka
broker	up-and-running,	it’s	time	to	create	a	topic	for	your	data.	You	also	have	to	set	up
another	Kafka	broker	to	receive	data,	and	a	topic	for	that.

After	this,	you	have	to	set	up	Flume	as	well,	which	can	be	downloaded	from:
https://flume.apache.org/download.html.

https://flume.apache.org/download.html


How	to	do	it…
1.	 Create	a	config	file	as	follows:

flume1.sources	=	kafka-source-1

flume1.channels	=	mem-channel-1

flume1.sinks	=	kafka-sink-1

flume1.sources.kafka-source-1.type	=	

org.apache.flume.source.kafka.KafkaSource

flume1.sources.kafka-source-1.zookeeperConnect	=	localhost:2181

flume1.sources.kafka-source-1.topic	=	srctopic

flume1.sources.kafka-source-1.batchSize	=	100

flume1.sources.kafka-source-1.channels	=	mem-channel-1

flume1.channels.mem-channel-1.type	=	memory

flume1.sinks.kafka-sink-1.channel	=	mem-channel-1

flume1.sinks.kafka-sink-1.type	=	org.apache.flume.sink.kafka.KafkaSink

flume1.sinks.kafka-sink-1.batchSize	=	50

flume1.sinks.kafka-sink-1.brokerList	=	localhost:9092

flume1.sinks.kafka-sink-1.topic	=	desttopic

2.	 Next	you	can	start	Flume	to	start	consume	data	from	one	Kafka	node	and	push	it	to
the	other	one:

>	flume-ng	agent	--conf-file	flume.conf	--name	flume1



How	it	works…
What	Flume	has	is	a	source	(where	the	data	is	being	read	from),	a	channel	(through	which
data	passes	between	the	source	and	sink),	and	a	sink	(where	the	data	is	pushed	to).

As	the	first	step,	we	declare	that	flume1	is	our	Flume	instance.	After	this,	we	declare	the
names	of	the	source,	channel,	and	sink.	As	earlier,	we	declare	that	flume1.source	is
kafka-source-1.	We	also	declare	flume1.channel	and	flume1.sink	as	mem-channel-1
and	kafka-sink-1	respectively.

The	next	step	is	to	declare	the	source	configuration.	We	should	first	declare	the	source
type.	If	we	are	using	Kafka	as	the	source,	the	source	type	should	be
org.apache.flume.source.kafka.KafkaSource.

Other	configurations	for	the	source	are	as	follows:

zookeeperConnect:	This	specifies	the	ZooKeeper	connect	string;	it	can	be	a	comma-
separated	one	in	the	format	host:port.
topic:	This	specifies	the	topic	from	which	the	source	should	read.	Right	now	Flume
supports	only	one	topic	per	source.
batchSize:	This	specifies	the	maximum	number	of	messages	at	a	time	that	might	be
fetched	from	Kafka	to	be	written	into	a	channel.	The	default	value	for	this	is	1000.
This	size	must	be	determined	by	the	amount	of	data	the	channel	can	process	in	one
go.
batchDurationMillis:	This	specifies	the	maximum	time	in	milliseconds	that	the
system	will	wait	before	writing	the	batch	onto	the	channel.	If	batchSize	is	exceeded
before	the	time	mentioned,	it	will	write	the	batch	to	the	channel.	The	default	value	for
this	is	1000.

Please	note	that,	if	you	want	to	set	any	of	the	Kafka	consumer	properties	mentioned	in
Chapter	3,	Configuring	a	Producer	and	Consumer,	to	be	used	by	Flume,	then	you	can
declare	them	with	the	kafka.	prefix.

The	next	step	is	to	define	the	channel	through	which	messages	will	be	passed	from	the
source	to	sink.	In	our	example,	we	are	using	memory	to	hold	the	data	and	hence	the
memory	channel.	We	define	the	following	values	to	configure	the	channel:

type:	This	value	is	set	as	memory	to	indicate	the	use	of	the	memory	channel.
capacity:	This	value	sets	the	maximum	number	of	messages	that	can	be	stored	in
memory.	This	should	be	carefully	declared	based	on	the	memory	capacity	and
message	size.	Its	default	value	is	100.
transactionCapacity:	This	value	sets	the	maximum	number	of	messages	that	will
be	taken	from	source	or	sink	in	a	single	transaction.

The	next	step	is	to	declare	the	sink	settings.

First,	we	should	declare	the	type	for	the	sink.	For	Kafka	we	set	the	type	as
org.apache.flume.sink.kafka.KafkaSink.	Next	we	should	declare	the	name	of	the
channel	from	which	the	sink	should	collect	data.



Other	configurations	that	need	to	be	set	for	Kafka	are	as	follows:

brokerList:	This	specifies	the	list	of	brokers	of	the	Kafka	cluster	to	which	the
messages	will	be	written	to.	The	broker	addresses	need	to	be	comma-separated	in	the
format	host:port.
topic:	This	specifies	the	Kafka	topic	to	which	the	sink	must	write	the	messages.
batchSize:	This	specifies	the	number	of	messages	to	be	written	at	one	time	as	a
batch.

You	can	set	other	Kafka	producer	properties	to	the	sink	by	prefixing	the	property	name
with	Kafka.



See	also
You	can	find	more	information	on	using	Flume	(other	than	with	Kafka)	in	the	Flume
Users	Guide	at	https://flume.apache.org/FlumeUserGuide.html.

https://flume.apache.org/FlumeUserGuide.html




Using	Gobblin
Gobblin	is	a	universal	data	ingestion	framework	for	extracting,	transforming,	and	loading
large	volumes	of	data	from	a	variety	of	data	sources	such	as	files,	databases,	and	Kafka
onto	Hadoop.	It	can	also	perform	regular	data	ingestion-related	ETLs	such	as	job/task
scheduling,	task	partitioning,	error	handling,	state	management,	data	quality	checking,	and
data	publishing.	Added	features	that	make	Gobblin	very	attractive	to	use	are	auto
scalability,	fault	tolerance,	data	quality	assurance,	extensibility,	and	the	ability	to	handle
data	model	evolution.



Getting	ready
You	need	to	have	your	Kafka	cluster	up	and	data	inserted	into	a	topic	there.	You	also	need
to	have	the	HDFS	cluster,	to	which	you	will	write	the	data,	up-and-running.



How	to	do	it…
1.	 You	need	to	write	the	configuration	file	for	Gobblin	to	read	from	Kafka	and	write	to

HDFS.

job.name=MyKafkaTest

job.group=MyTest

job.description=My	sample	Kafka	Gobblin	setup

job.lock.enabled=false

source.class=gobblin.source.extractor.extract.kafka.KafkaAvroSource

extract.namespace=gobblin.extract.kafka

writer.destination.type=HDFS

writer.output.format=AVRO

writer.fs.uri=file://localhost/

data.publisher.type=gobblin.publisher.TimePartitionedDataPublisher

topic.whitelist=mytesttopic

bootstrap.with.offset=earliest

kafka.brokers=localhost:2181

writer.partition.level=hourly

writer.partition.pattern=YYYY/MM/dd/HH

writer.builder.class=gobblin.writer.AvroTimePartitionedWriterBuilder

writer.file.path.type=tablename

writer.partition.column.name=header.time

mr.job.max.mappers=20

extract.limit.enabled=true

extract.limit.type=time

extract.limit.time.limit=15

extract.limit.time.limit.timeunit=minutes

2.	 Next	you	can	start	Gobblin	as	follows:

>	gobblin-standalone.sh	start	--workdir	gobblinworking	--conf	

mygobblin.conf



How	it	works…
The	configuration	file	gives	directions	to	Gobblin	to	create	the	job.	As	the	first	step	in	the
configuration	we	first	declare	the	job	metadata.

job.name:	This	specifies	the	name	for	the	job.
job.group:	This	specifies	the	name	for	the	job	group.
job.description:	This	is	used	to	give	the	description	for	the	job.
source.class:	This	specifies	the	class	to	use	as	the	source	of	your	data.	If	you	are
using	the	AVRO	file	format	and	Kafka,	you	need	to	set	it	to
gobblin.source.extractor.extract.Kafka.KafkaAvroSource	.	You	can	also	make
use	of	gobblin.source.extractor.extract.Kafka.KafkaSimpleSources	if	you	are
not	using	the	AVRO	file	format.	There	are	a	bunch	of	other	Source	classes	which	you
can	use.	They	can	be	found	in	the	github	repo	at
https://github.com/linkedin/gobblin/tree/master/gobblin-
core/src/main/java/gobblin/source/extractor/extract.
extract.namespace:	This	specifies	the	namespace	for	the	extracted	data.	This
namespace	will	be	a	part	of	default	filename	of	the	data	written	out.
writer.destination.type:	This	specifies	the	destination	type	for	the	writer	task.
Currently	only	HDFS	is	supported.
writer.output.format:	This	specifies	the	output	format.	At	the	time	of	writing,	only
the	AVRO	format	is	supported	by	Gobblin.
writer.fs.uri:	This	specifies	the	URI	for	the	filesystem	to	write	to.
data.publisher.type:	This	specifies	the	fully	qualified	name	of	the	DataPublisher
class	that	will	publish	the	task	data	once	everything	has	been	completed.
topic.whitelist:	This	specifies	a	whitelist	of	topics	from	which	data	needs	to	be
read.
bootstrap.with.offset:	This	tells	Gobblin	the	offset	from	where	it	should	start
reading	data	from	Kafka.
Kafka.brokers:	This	specifies	the	comma-separated	Kafka	brokers	to	ingest	data
from.
writer.partition.level:	This	specifies	the	partitioning	level	for	the	writer.	The
default	value	for	this	is	daily.
writer.partition.pattern:	This	specifies	the	pattern	in	which	the	data	written
should	be	partitioned.
writer.builder.class:	This	is	used	to	specify	the	class	name	of	the	writer	builder.
writer.file.path.type:	This	is	used	to	specify	the	file	path	type.
writer.partition.column.name:	This	specifies	the	column	name	of	the	partition.
mr.job.max.mappers:	This	is	used	to	specify	the	number	of	tasks	to	launch.	In	MR
mode,	this	will	be	the	number	of	mappers	launched.	If	the	number	of	topic	partitions
to	be	pulled	is	larger	than	the	number	of	tasks,	the	Kafka	consumer	will	assign
partitions	to	tasks	in	a	balanced	manner.
extract.limit.enabled:	If	this	is	set	as	true,	then	the	task	specifies	a	time	limit.
extract.limit.type:	This	is	used	to	specify	the	type	of	limit	you	want	to	set	the
task	with.	Its	possible	values	are	time,	rate,	count,	and	pool.

https://github.com/linkedin/gobblin/tree/master/gobblin-core/src/main/java/gobblin/source/extractor/extract


extract.limit.time.limit:	This	specifies	the	time	limit	on	the	tasks.
extract.limit.time.limit.timeunit:	This	is	used	to	specify	the	unit	of	time	to	be
used	for	the	time	limit.



See	also
More	info	on	Gobblin	is	available	at	https://github.com/linkedin/gobblin/wiki

https://github.com/linkedin/gobblin/wiki




Using	Logstash
Logstash	is	a	tool	from	the	makers	of	Elasticsearch.	It	makes	it	really	easy	to	get	logs	from
any	source	that	you	have	to	Elasticsearch.	It	allows	us	to	centralize	data	processing	and
normalize	the	varying	schemas	and	formats	for	all	types	of	data.	Reading	from	Kafka	and
pushing	that	data	to	Elasticsearch	is	a	very	useful	feature	of	this	tool.



Getting	ready
You	need	to	get	the	Kafka	cluster	up-and-running.	Set	up	Elasticsearch	on	a	machine.	You
also	need	to	download	and	set	up	Logstash	on	one	of	the	machines.



How	to	do	it…
1.	 You	need	to	write	the	Logstash	config	file	(here	named	logstash.conf)	for	reading

data	from	Kafka	and	pushing	to	Elasticsearch:

input	{

kafka	{

zk_connect	=>"localhost:2181"

			topic_id	=>"mytesttopic"

			consumer_id	=>"myconsumerid"

			group_id	=>"mylogstash"

			fetch_message_max_bytes	=>	1048576

}

}

output	{

	elasticsearch	{

					host	=>	localhost

	}

}

2.	 Now	you	need	to	start	running	Logstash	using	the	following	command.

>	bin/logstash	-f	logstash.conf



How	it	works…
What	we	do	with	the	Logstash	config	file	is	define	the	input	and	output	configuration
settings.	For	input	we	are	using	Kafka,	which	has	the	log	messages	that	need	to	be	pushed
to	Elasticsearch.	Elasticsearch	is	used	as	the	output	endpoint	of	Logstash.	So	as	a	first	step
we	define	the	input.

In	the	input	we	declare	Kafka	as	the	input	plugin.	This	tells	Logstash	that	it	needs	to	use
the	Kafka	input	plugin	to	read	log	data.	Inside	that	we	declare	the	various	properties	to	use
with	the	Kafka	consumer	used	by	Logstash.	Some	of	the	properties	are	explained	next.

zk_connect:	This	specifies	the	ZooKeeper	connect	string;	it	can	be	comma-separated
in	the	format	host:port.
topic_id:	This	specifies	the	topic	from	which	the	source	should	read.
consumer_id:	This	specifies	the	consumer	ID	to	be	used	while	reading	data	from
Kafka.	It	is	automatically	generated	if	not	specified.
group_id:	This	specifies	the	group	ID	to	be	used	by	the	Kafka	consumer	in	Logstash.
If	not	specified,	its	value	by	default	is	set	to	logstash.
fetch_message_max_bytes:	This	specifies	the	maximum	number	of	bytes	that	might
be	fetched	from	Kafka	for	each	topic-partition	in	each	fetch	request.	This	helps
control	the	memory	used	by	Logstash	to	store	the	message.



There’s	more…
Logstash	has	more	settings	that	can	be	used	for	reading	from	Kakfa.	These	can	be	found	at
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html.

https://www.elastic.co/guide/en/logstash/current/plugins-inputs-kafka.html


See	also
Logstash	also	has	a	Kafka	output	plugin	that	can	be	used	to	write	data	back	to	Kafka.
Details	can	be	found	at	https://www.elastic.co/guide/en/logstash/current/plugins-
outputs-kafka.html.

https://www.elastic.co/guide/en/logstash/current/plugins-outputs-kafka.html




Configuring	Kafka	for	real-time
Kafka	is	highly	configurable,	as	you	might	have	realized	from	the	previous	chapter.	In	this
topic	we	will	discuss	how	we	can	get	the	best	real-time	performance	for	our	applications.	I
think	it	is	apt	to	point	that	performance	for	different	applications	and	data	types
necessitates	adjusting	different	parameters.



Getting	ready
Get	Kafka	installed	on	your	system	and	you	are	all	set	to	configure	it	for	the	best
performance	in	terms	of	throughput	and	latency.



How	to	do	it…
To	get	better	throughput	and	latency	it	is	important	that	you	have	enough	partitioning	with
the	appropriate	number	of	replicas.	There	is	no	right	number	for	this	value	as	each	use-
case	and	machine	configuration	might	yield	different	results.	So	it	is	critical	that	you	test
out	the	configuration	before	settling	on	any	one	value	for	these	configurations.

1.	 In	your	Kafka	producer	code,	as	mentioned	in	Chapter	5,	Integrating	Kafka	with
Java,	add	the	following	code	to	properties	for	the	Kafka	Producer.

properties.put("request.required.acks",	"1");

properties.put("linger.ms",	"5");

properties.put("batch.size",	"10");

On	the	consumer	side	of	things,	it	is	also	important	that	we	configure	that	to	read	very
quickly.	This	can	be	done	by	reducing	the	request	timeout	latency	in	Kafka	Consumers.
As	mentioned	in	Chapter	5,	Integrating	Kafka	with	Java,	for	high-level	Consumers	you
can	change	this	value	by	adding	the	following	code:

props.put("consumer.request.timeout.ms",	100);



How	it	works…
If	the	number	of	replicas	is	too	low,	you	risk	loss	of	data	in	the	event	of	failure.	So	it	is
important	to	have	multiple	replicas.	But	it	is	also	noteworthy	that	the	number	of	replicas
that	you	wait	for	messages	to	be	properly	synced	to	will	increase	your	latencies.	So,	when
you	set	property	request.required.acks	with	a	value	of	1,	this	makes	sure	that	the	data
is	persisted	in	at	least	the	local	log	before	returning	an	acknowledgement.

The	producer	groups	together	any	records	that	arrive	in	between	request	transmissions	into
a	single	batched	request.	Normally	this	occurs	only	under	a	load	when	records	arrive	faster
than	they	can	be	sent	out.	However	in	some	circumstances	the	client	may	want	to	reduce
the	number	of	requests	even	under	a	moderate	load.	This	setting	accomplishes	this	by
adding	a	small	amount	of	artificial	delay—that	is,	rather	than	immediately	sending	out	a
record	the	producer	will	wait,	up	to	the	given	delay,	to	allow	other	records	to	be	sent	so
that	the	sends	can	be	batched	together.	This	can	be	thought	of	as	analogous	to	Nagle’s
algorithm	in	TCP.	This	setting	gives	the	upper	bound	on	the	delay	for	batching:	once	we
get	a	batch.size	worth	of	records	for	a	partition	they	will	be	sent	immediately	regardless
of	this	setting;	however,	if	we	have	fewer	than	the	number	of	bytes	accumulated	for	this
partition	we	will	linger	for	the	specified	time	waiting	for	more	records	to	show	up.	This
setting	defaults	to	0	(no	delay).	Setting	linger.ms=5,	for	example,	would	have	the	effect
of	reducing	the	number	of	requests	sent	but	would	add	up	to	5ms	of	latency	to	records	sent
in	the	absence	of	load.

The	producer	will	attempt	to	batch	records	together	into	fewer	requests	whenever	multiple
records	are	being	sent	to	the	same	partition.	This	helps	performance	on	both	the	client	and
the	server.	This	configuration	controls	the	default	batch	size	in	bytes.	No	attempt	will	be
made	to	batch	records	larger	than	this	size.	Requests	sent	to	brokers	will	contain	multiple
batches,	one	for	each	partition	with	data	available	to	be	sent.	A	small	batch	size	will	make
batching	less	common	and	may	reduce	throughput	(a	batch	size	of	zero	will	disable
batching	entirely).	A	very	large	batch	size	may	use	memory	a	bit	more	wastefully	as	we
will	always	allocate	a	buffer	of	the	specified	batch	size	in	anticipation	of	additional
records.

The	lower	the	request	timeout,	the	better	it	will	be	for	the	consumer’s	read	latencies.	If
you	make	the	latencies	very	low	it	might	affect	the	performance	of	the	system.	It	is
extremely	critical	that	you	choose	the	right	amount	of	time	for	timeouts.	It	is	useful	to	run
a	few	experiments	with	your	live	data	to	evaluate	the	performance	of	your	systems,	which
might	vary	based	on	the	message	size	and	the	system	configurations	as	well.





Integrating	Spark	with	Kafka
Apache	Spark	is	an	open	source	cluster	computing	framework.	Spark’s	in-memory
primitives	provide	performance	up	to	100	times	faster	for	certain	applications.	For
distributed	real	time	data	analytics,	Apache	Spark	is	the	tool	to	use.	It	has	a	very	good
Kafka	integration,	which	enables	it	to	read	data	to	be	processed	from	Kafka.



Getting	ready
You	need	to	have	a	Kafka	cluster	up-and-running.	Also,	you	should	have	Apache	Spark
installed	on	your	machine	and	ready	to	be	deployed.



How	to	do	it…
Apache	Spark	has	a	very	simple	utility	class	that	can	be	used	to	create	the	data	stream	to
be	read	from	Kafka.	But,	as	with	any	Spark	project,	we	first	need	to	create	SparkConf	and
the	Spark	Streaming	context.

SparkConf	sparkConf	=	new	SparkConf().setAppName("MySparkTest");

JavaStreamingContext	jssc	=	new	JavaStreamingContext(sparkConf,	

Durations.seconds(10));

Next	we	create	the	Hashset	for	the	topic	and	Kafka	consumer	parameters.

HashSet<String>	topicsSet	=	new	HashSet<String>();

topicsSet.add("mytesttopic");

HashMap<String,	String>	kafkaParams	=	new	HashMap<String,	String>();

kafkaParams.put("metadata.broker.list",	"localhost:9092");

Now	we	can	create	a	direct	Kafka	stream	with	brokers	and	topics

JavaPairInputDStream<String,	String>	messages	=	

KafkaUtils.createDirectStream(

	jssc,

	String.class,

	String.class,

	StringDecoder.class,

	StringDecoder.class,

	kafkaParams,

	topicsSet

);

Now	with	this	stream	you	can	run	your	regular	data	processing	algorithms.



How	it	works…
1.	 You	create	a	Spark	streaming	context	that	sets	up	the	entry	point	for	all	stream

functionality.	Then	we	set	up	the	stream	processing	batch	interval	as	10	seconds.
2.	 Next	we	create	the	HashSet	for	the	topics	to	read	from.
3.	 We	also	set	the	parameters	for	the	Kafka	producer	using	a	HashMap.	This	Map	has	to

have	a	value	for	metadata.broker.list,	which	is	the	comma-separated	list	of	host
and	port	numbers.

4.	 Next	we	create	the	input	DStream	using	the	KafkaUtils	class.

Once	you	have	the	DStream	ready,	you	can	apply	your	algorithms	to	it.	How	to	do	that	is
beyond	the	scope	of	this	book.



There’s	more…
Spark	Streaming	and	its	algorithms	are	explained	in	detail	at
http://spark.apache.org/docs/latest/streaming-programming-guide.html.

http://spark.apache.org/docs/latest/streaming-programming-guide.html




Integrating	Storm	with	Kafka
Storm	is	a	real-time	distributed	stream	processing	system.	Storm	makes	it	easy	to	reliably
process	a	stream	of	data	in	real-time.	Kafka	is	one	of	the	important	sources	for	streaming
data	to	it.



Getting	ready
You	need	to	have	a	Kafka	cluster	up-and-running.	Also	you	should	have	Apache	Storm
installed	on	your	machine	and	ready	to	be	deployed.



How	to	do	it…
Storm	has	a	built	in	KafkaSpout	that	can	be	used	to	easily	ingest	data	from	Kafka	to	the
Storm	topology.

1.	 First	we	have	to	create	the	ZkHosts	object	with	the	ZooKeeper	address	in	host:port
format.

BrokerHosts	hosts	=	new	ZkHosts("127.0.0.1:2181");

2.	 Next	we	need	to	create	the	SpoutConfig	object	that	will	contain	the	parameters
needed	for	KafkaSpout.	We	also	declare	the	scheme	for	the	KafkaSpout	config.

SpoutConfig	kafkaConf	=	new	SpoutConfig(hosts,	"mytesttopic",	

"/brokers",	"mytest");

kafkaConf.scheme	=	new	SchemeAsMultiScheme(new	StringScheme());

3.	 Using	this	info	we	create	a	KafkaSpout	object.

KafkaSpout	kafkaSpout	=	new	KafkaSpout(kafkaConf);

4.	 Now	we	can	build	that	topology	with	this	spout	and	get	it	up-and-running.

TopologyBuilder	builder	=	new	TopologyBuilder();

builder.setSpout("spout",	kafkaSpout,	10);

After	this,	you	can	connect	any	number	of	Storm	bolts	to	do	the	required	data	processing
for	you.



How	it	works…
First	we	need	to	create	the	ZkHosts	object,	initialized	with	the	Zookeeper	address	in	the
format	host:port.	You	can	give	multiple	Zookeeper	addresses	by	comma-separating
them.

Next	you	need	to	initialize	the	object	for	SpoutConfig.	This	is	the	configuration	object
which	takes	in	the	ZkHosts	object,	the	Kafka	topic	to	pull	data	from,	the	root	directory	in
ZooKeeper	where	all	topics	and	partition	information	are	stored	and	a	unique	identifier	of
the	Spout.

Once	you	have	done	this,	you	can	create	the	KafkaSpout	object.	This	is	what	your	Storm
topology	needs	to	be	initialized	with.

To	build	a	Storm	topology,	first	you	need	to	instantiate	a	TopologyBuilder	class	object.
You	can	set	the	spout	for	this	using	the	function	setSpout.	This	function	takes	as	input	the
spout	name,	the	spout	object,	and	the	parallelism	hint.	The	parallelism	hint	is	the	number
of	threads	created	for	this	spout.	This	should	be	a	multiple	of	the	Kafka	partitions	that	you
have.



There’s	more…
Please	refer	to	Javadoc	at	http://storm.apache.org/javadoc/apidocs/index.html	for	different
configurations	that	can	be	set	for	the	Kafka	consumer.

http://storm.apache.org/javadoc/apidocs/index.html


See	also
For	more	information	on	Storm,	and	how	to	develop	for	it,	see:
http://storm.apache.org/documentation/Home.html

http://storm.apache.org/documentation/Home.html




Integrating	Elasticsearch	with	Kafka
Elasticsearch	is	a	distributed,	full-text	search	engine	with	a	RESTful	Web	interface	and
schema-free	JSON	documents.	It	is	actually	a	wrapper	over	Lucene,	but	was	built	from	the
Web	ground	up	with	distributed	searches	in	mind.	There	are	multiple	ways	to	push	data
into	Elasticsearch,	but	here	we	will	look	into	the	plugin	that	enables	us	to	easily	push	data
from	Kafka	to	Elasticsearch.



Getting	ready
You	need	to	have	a	Kafka	cluster	up-and-running.	Also	you	need	to	have	Elasticsearch
installed	and	running	on	your	machine.



How	to	do	it…
1.	 First	you	need	to	install	the	Kafka	River	Plugin	for	Elasticsearch.	To	do	this,	run	the

following	command	from	the	Elasticsearch	home	directory.

>	bin/plugin	-install	kafka-river	-url	

https://github.com/mariamhakobyan/elasticsearch-river-

kafka/releases/download/v1.2.1/elasticsearch-river-kafka-1.2.1-

plugin.zip

2.	 Next	run	the	following	curl	command:

>	curl	-XPUT	'localhost:9200/_river/kafka-river/_meta'	-d	'

{

"type"	:	"kafka",

"kafka"	:	{

"zookeeper.connect"	:	"localhost:2181",

"zookeeper.connection.timeout.ms"	:	10000,

"topic"	:	"mytesttopic",

"message.type"	:	"string"

},

"index"	:	{

"index"	:	"kafka-index",

"type"	:	"status",

"bulk.size"	:	100,

"concurrent.requests"	:	1,

"action.type"	:	"index",

"flush.interval"	:	"12h"

},

"statsd":	{

"host"	:	"localhost",

"prefix"	:	"kafka.river",

"port"	:	8125,

"log.interval"	:	10

}

}'

You	now	have	data	from	a	Kafka	topic	being	pushed	into	Elasticsearch.



How	it	works…
The	first	step	you	need	to	take	is	to	install	the	Kafka	River	plugin	for	Elasticsearch.	You
need	to	call	the	executable,	named	plugin	present	in	Elasticsearch’s	bin	directory.	It	takes
two	parameters	to	install	the	plugin.	The	first	is	the	name	of	the	plugin	preceded	by	the	-
install	keyword.	The	second	parameter	is	the	URL	from	where	the	ZIP	file	for	the
plugin	is	to	be	installed.

Once	that	is	done,	you	need	to	insert	a	record	in	Elasticsearch	so	that	the	plugin	can	be
configured	to	start	reading	from	Kafka.	The	URL	of	the	API’s	should	be	as	follows:
http://urlofelasticsearch:port/_river/nameOfTheRiver/_meta.

The	name	of	the	river	should	be	same	as	the	one	given	while	installing	the	plugin.

The	configuration	settings	sent	with	the	JSON	object	PUT	using	Elasticsearch’s	REST
API’s	are	explained	next.

type:	This	has	the	value	kafka.	This	is	required	and	should	not	be	changed	for	this
plugin.
Kafka:	This	is	a	JSON	object	containing	the	Kafka	settings.
zookeeper.connect:	This	specifies	the	ZooKeeper	host	address.
zookeeper.connection.timeout.ms:	This	specifies	the	ZooKeeper	timeout	in
milliseconds.	Its	default	value	is	1000	(1	second).
topic:	This	specifies	the	name	of	the	topic	from	which	the	plugin	will	read	data	to
push	to	Elasticsearch.
message.type:	This	specifies	the	Kafka	message	type	for	the	plugin	to	insert.	It	can
take	two	values:	json	and	string.	If	the	message	from	Kafka	is	a	JSON	string	then
each	JSON	property	will	be	inserted	in	the	Elasticsearch	as	an	individual	document
property.	If	it	is	a	string,	it	will	be	inserted	into	the	Elasticsearch	document	as	a	value.
index:	This	contains	the	JSON	object	for	index	properties.
(index	->	)index:	This	specifies	the	name	of	the	Elasticsearch	index	that	the
messages	be	will	inserted	into.
type:	This	specifies	the	type	of	the	Elasticsearch	index	that	the	messages	will	be
inserted	into.
bulk.size:	This	specifies	the	number	of	messages	that	will	be	bulk-inserted	into
Elasticsearch.	Its	default	value	is	100.
concurrent.requests:	This	specifies	the	number	of	concurrent	requests	that	will	be
allowed	for	indexing.	A	value	of	0	means	no	concurrent	requests	and	a	value	of	1
means	one	concurrent	request	will	be	allowed.
action.type:	This	specifies	how	the	messages	coming	in	should	be	processed.	Its
default	value	is	index,	which	means	that	it	creates	a	document	with	the	value	field	set
based	on	the	message.	If	the	value	for	this	is	set	to	delete,	then	the	document	with
the	ID	field	set	in	the	message	is	deleted.	The	value	raw.execute	means	that	the
message	is	executed	as	a	raw	query.
flush.interval:	This	specifies	the	amount	of	time	the	plugin	should	wait	before
pushing	any	remaining	messages	in	Elasticsearch,	even	though	the	bulk.size	has	not



been	reached.	This	value	can	be	defined	as	10h	for	10	hours,	10m	for	10	minutes,	or
10s	for	10	seconds.	Its	default	value	is	12	hours.
statsd:	This	is	the	object	used	to	set	the	statsd	configuration	for	statistics	reporting.
host:	This	specifies	the	hostname	for	the	statsd	server.
port:	This	specifies	the	port	number	for	the	statsd	server.
prefix:	This	specifies	the	prefix	to	be	used	for	all	statsd	metric	keys.
log.interval:	This	specifies	the	interval	of	time	in	seconds	after	which	metrics
should	be	reported	to	the	statsd	server.	Its	default	value	is	10	seconds.



There’s	more…
The	Kafka	river	plugin	can	pull	in	data	from	multiple	Kafka	brokers	and	partitions.	You
just	need	to	put	a	different	configuration	in	Elasticsearch	using	its	REST	APIs.



See	also
More	details	on	the	Kafka	River	plugin	and	its	code	are	available	at
https://github.com/mariamhakobyan/elasticsearch-river-kafka
You	can	also	use	Flume	or	Logstash,	mentioned	in	previous	topics,	to	push	data	into
Elasticsearch	from	Kafka

https://github.com/mariamhakobyan/elasticsearch-river-kafka




Integrating	SolrCloud	with	Kafka
SolrCloud	is	a	highly	available,	fault-tolerant	environment	for	distributing	indexed	content
and	query	requests	across	multiple	servers.	We	cannot	insert	data	into	Solr	directly;	we
have	to	use	a	tool	such	as	Flume	to	do	the	task.



Getting	ready
You	must	have	Kafka	up-and-running.	You	also	need	to	get	SolrCloud	set	up-and-running,
and	you	have	to	install	Flume	on	your	machine.



How	to	do	it…
1.	 First,	write	a	Flume	configuration	file	as	follows:

flume1.sources	=	kafka-source-1

flume1.channels	=	mem-channel-1

flume1.sinks	=	solr-sink-1

flume1.sources.kafka-source-1.type	=	

org.apache.flume.source.kafka.KafkaSource

flume1.sources.kafka-source-1.zookeeperConnect	=	localhost:2181

flume1.sources.kafka-source-1.topic	=	srctopic

flume1.sources.kafka-source-1.batchSize	=	100

flume1.sources.kafka-source-1.channels	=	mem-channel-1

flume1.channels.mem-channel-1.type	=	memory

flume1.sinks.solr-sink-1.channel	=	mem-channel-1

flume1.sinks.solr-sink-1.type	=	

org.apache.flume.sink.solr.morphline.MorphlineSolrSink

flume1.sinks.solr-sink-1.batchSize	=	100

flume1.sinks.solr-sink-1.batchDurationMillis	=	1000

flume1.sinks.solr-sink-1.morphlineFile	=	/etc/flume-

ng/conf/morphline.conf

flume1.sinks.solr-sink-1.morphlineId	=	morphline1

2.	 Next	you	need	to	run	Flume	using	the	configuration	file	created	earlier.

>	flume-ng	agent	--conf-file	flume.conf	--name	flume1



How	it	works…
The	Kafka	configurations	are	the	same	as	those	used	in	the	first	topic	of	this	chapter.	Let’s
start	with	the	sink	configuration,	which	we	need	to	modify	when	compared	to	that	in	the
first	topic.	A	description	of	the	configuration	settings	for	the	solr	sink	is	as	follows.

type	:	For	solr,	the	type	is	defined	as
org.apache.flume.sink.solr.morphline.MorphlineSolrSink

batchSize:	This	specifies	the	number	of	messages	to	processed	in	one	go
batchDurationMillis:	This	specifies	the	time	to	wait	till	the	messages	are	processed
in	a	batch,	if	the	number	of	messages	to	be	processed	crosses	the	batch	size	number
morphlineFile:	This	specifies	the	path	to	the	morphline	configuration	file
morphlineId:	This	specifies	the	identifier	for	the	morphline	configuration	file	if	the
configuration	file	has	multiple	ones



See	also
For	more	on	using	Flume,	refer	to	the	Flume	Users	Guide	at:
https://flume.apache.org/FlumeUserGuide.html

https://flume.apache.org/FlumeUserGuide.html




Chapter	8.	Monitoring	Kafka
In	this	chapter,	we	will	cover:

Monitoring	server	stats
Monitoring	producer	stats
Monitoring	consumer	stats
Connecting	to	Graphite
Monitoring	with	Ganglia



Introduction
In	this	chapter,	we	cover	the	very	important	topic	of	monitoring	Kafka.	When	you	deploy
Kafka	in	your	production	setup,	it	is	very	critical	that	you	know	if	the	cluster	is	working
correctly.	Just	knowing	that	the	cluster	is	up	is	often	not	enough.	Checking	for	throughput
and	latencies	also	becomes	important.	Thankfully,	Kafka	provides	a	very	easy	way	to
monitor	the	cluster	by	exposing	the	most	important	statistics	for	monitoring	purposes.	We
will	learn	about	various	stats	that	are	exposed	and	also	how	to	monitor	them	via	widely
used	tools	such	as	Graphite	and	Ganglia.





Monitoring	server	stats
Kafka	exposes	various	stats	for	monitoring	using	Yammer	Metrics.	We	will	explore	this
topic:	how	to	monitor	the	various	metrics	exposed	by	Kafka	from	the	server	side.	We	will
cover	producer-	and	consumer-related	metrics	in	the	following	topics.



Getting	ready
You	need	to	have	the	Kafka	server	up-and-running	with	the	JMX	port.	To	set	the	JMX
port,	you	need	to	run	Kafka	using	the	following	command.

>	JMX_PORT=10101	./bin/kafka-server-start.sh	config/server.properties

Next	you	need	to	have	jconsole	installed	to	monitor	Kafka.



How	to	do	it…
1.	 From	your	command	prompt,	you	need	to	run	jconsole	using	the	following

command.

>	jconsole	127.0.0.1:10101

2.	 Now	you	can	see	all	the	different	parameters	plotted	over	time.

JConsole	showing	details	of	the	application

3.	 Switch	to	the	MBeans	tab	to	get	details	of	the	various	Kafka	metrics.



The	MBeans	tab	showing	the	Kafka	server	metrics

The	values	of	all	Kafka	metrics	are	available	here	for	you	to	analyze.



How	it	works…
JConsole	is	the	application	that	connects	to	the	JMX	port	exposed	by	Kafka.	You	can	read
all	the	metrics	from	Kafka	using	JConsole.	The	details	of	the	metrics	with	the	MBean
object	name	as	exposed	by	Kafka	are	as	follows:

kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec:	This	give	the
number	of	messages	being	inserted	in	Kafka	per	second.	This	has	the	attribute	values
given	out	as	counts;	one	minute	rate,	five	minute	rate,	fifteen	minute	rate,	and	mean
rate.
kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions:	This
specifies	the	number	of	partitions	for	which	the	number	of	replicas	criterion	is	not
met.	If	this	value	is	anything	more	than	zero,	it	means	your	cluster	has	issues
replicating	the	partitions	as	desired	by	you.
kafka.controller:type=KafkaController,name=ActiveControllerCount:	This
MBean	gives	the	number	of	active	controllers	for	Kafka	for	re-election.
kafka.controller:type=ControllerStats,name=LeaderElectionRateAndTimeMs:
This	MBean	give	values	of	the	rate	at	which	leader	election	takes	place	as	well	as	the
latencies	involved	in	that	process.	It	gives	latencies	as	mean	50th,	75th,	95th,	98th,
99th,	and	99.9th	latency	percentiles.	It	also	gives	the	time	taken	for	leader	election	as
a	mean;	one	minute	rate,	five	minute	rate,	and	fifteen	minute	rate.	It	gives	the	count
as	well.
kafka.controller:type=ControllerStats,name=UncleanLeaderElectionsPerSec:
This	gives	unclean	leader	election	statistics.	It	can	give	these	values	as	a	mean,	one
minute	rate,	five	minute	rate,	and	fifteen	minute	rate.	It	gives	the	count	as	well.
kafka.server:type=ReplicaManager,name=PartitionCount:	This	MBean	gives	the
total	number	of	partitions	present	in	that	particular	Kafka	node.
kafka.server:type=ReplicaManager,name=LeaderCount:	This	MBean	gives	the
total	number	of	leader	partitions	present	in	this	Kafka	node.
kafka.server:type=ReplicaManager,name=IsrShrinksPerSec:	This	MBean
specifies	the	rate	at	which	in-sync	replicas	shrink.	It	can	give	these	values	as	a	mean,
one	minute	rate,	five	minute	rate,	and	fifteen	minute	rate.	It	gives	the	count	of	events
as	well.
kafka.server:type=ReplicaManager,name=IsrExpandsPerSec:	This	MBean
specifies	the	rate	at	which	In-Sync	replicas	expand.	It	can	give	these	values	as	a
mean,	one	minute	rate,	five	minute	rate,	and	fifteen	minute	rate.	It	gives	the	count	of
events	as	well.
kafka.server:type=ReplicaFetcherManager,name=MaxLag,clientId=Replica:
This	MBean	specifies	the	maximum	lag	between	the	master	and	the	replicas.



See	also
Under	the	MBean	tab	in	the	JConsole,	you	can	see	all	the	different	Kafka	MBeans
available	for	monitoring





Monitoring	producer	stats
As	we	have	Kafka	server	metrics,	similarly	there	are	metrics	for	the	producer	so	that	we
can	track	what’s	happening	with	it.



Getting	ready
Get	the	Kafka	cluster	up-and-running.	You	are	now	all	set	to	start	producing	data	to	it.



How	to	do	it…
1.	 Start	the	console	producer	with	the	JMX	parameters	enabled.	You	can	do	this	as

follows:

>JMX_PORT=10102	bin/kafka-console-producer.sh	--broker-list	

localhost:9092	--topic	mytesttopic

2.	 Now	you	can	connect	to	JMX	at	port	number	10102	on	your	machine	using	the
jconsole	application	as	mentioned	in	the	previous	topic.	You	can	see	all	the	metrics	in
the	following	screenshot.

MBeans	tab	showing	the	Kafka	producer	metrics

How	it	works…
If	you	switch	to	the	MBeans	tab	in	the	jconsole	app	you	are	can	read	various	producer
metrics,	some	of	which	are	explained	next.	The	clientId	parameter	is	the	producer	client
ID	for	which	you	want	the	statistics.

kafka.producer:type=ProducerRequestMetrics,name=ProducerRequestRateAndTimeMs,clientId=console-

producer:	This	MBean	give	values	for	the	rate	of	producer	requests	taking	place	as
well	as	latencies	involved	in	that	process.	It	gives	latencies	as	a	mean,	the	50th,	75th,
95th,	98th,	99th,	and	99.9th	latency	percentiles.	It	also	gives	the	time	taken	to
produce	the	data	as	a	mean,	one	minute	average,	five	minute	average,	and	fifteen
minute	average.	It	gives	the	count	as	well.
kafka.producer:type=ProducerRequestMetrics,name=ProducerRequestSize,clientId=console-

producer:	This	MBean	gives	the	request	size	for	the	producer.	It	gives	the	count,



mean,	max,	min,	standard	deviation,	and	the	50th,	75th,	95th,	98th,	99th,	and	99.9th
percentile	of	request	sizes.
kafka.producer:type=ProducerStats,name=FailedSendsPerSec,clientId=console-

producer:	This	gives	the	number	of	failed	sends	per	second.	It	gives	this	value	of
counts,	the	mean	rate,	one	minute	average,	five	minute	average,	and	fifteen	minute
average	value	for	the	failed	requests	per	second.
kafka.producer:type=ProducerStats,name=SerializationErrorsPerSec,clientId=console-

producer:	This	gives	the	number	of	serialization	errors	per	second.	It	gives	this	value
of	counts,	mean	rate,	one	minute	average,	five	minute	average,	and	fifteen	minute
average	value	for	the	serialization	errors	per	second.
kafka.producer:type=ProducerTopicMetrics,name=MessagesPerSec,clientId=console-

producer:	This	gives	the	number	of	messages	produced	per	second.	It	gives	this
value	of	counts,	mean	rate,	one	minute	average,	five	minute	average,	and	fifteen
minute	average	for	the	messages	produced	per	second.

See	also
More	details	of	producer	metrics	are	available	at:
https://kafka.apache.org/documentation.html#monitoring

https://kafka.apache.org/documentation.html#monitoring


Monitoring	consumer	stats
As	we	have	Kafka	server	metrics,	similarly	there	are	metrics	so	that	we	can	track	what’s
happening	with	the	consumer.

Getting	ready
Install	the	Kafka	cluster	and	start	sending	data	to	it	from	the	producer.	You	should	be
ready	to	start	consuming	the	data.

How	to	do	it…
1.	 Start	the	console	producer	with	the	JMX	parameters	enabled.

>JMX_PORT=10103	bin/kafka-console-producer.sh	--broker-list	

localhost:9092	--topic	mytesttopic

2.	 Now	you	can	connect	to	JMX	at	port	number	10103	on	your	machine	using	the
jconsole	app	as	mentioned	in	the	previous	topic.	You	can	see	all	the	metrics	in	the
following	screenshot.

How	it	works…
If	you	switch	to	the	MBeans	tab	in	the	jconsole	app	you	are	can	read	various	producer
metrics,	some	of	which	are	explained	next.	The	parameter	clientId	is	the	consumer	client
id	for	which	you	want	the	statistics.

kafka.consumer:type=ConsumerFetcherManager,name=MaxLag,clientId=test-

consumer-group:	This	gives	the	number	of	messages	that	the	consumer	is	behind	by
in	consuming	the	messages	pushed	in	by	the	producer.



kafka.consumer:type=ConsumerFetcherManager,name=MinFetchRate,clientId=test-

consumer-group:	This	gives	the	minimum	rate	at	which	the	consumer	sends	fetch
requests	to	the	broker.	If	a	consumer	is	dead,	this	value	becomes	close	to	0.
kafka.consumer:type=ConsumerTopicMetrics,name=BytesPerSec,clientId=test-

consumer-group:	This	gives	the	number	of	bytes	consumed	per	second.	It	gives	this
value	of	count,	mean	rate,	one	minute	average,	five	minute	average,	and	fifteen
minute	average	for	the	bytes	consumed	per	second.
kafka.consumer:type=ConsumerTopicMetrics,name=MessagesPerSec,clientId=test-

consumer-group:	This	gives	the	number	of	messages	consumed	per	second.	It	gives
this	value	of	counts,	mean	rate,	one	minute	average,	five	minute	average,	and	fifteen
minute	average	for	the	messages	consumed	per	second.
kafka.consumer:type=FetchRequestAndResponseMetrics,name=FetchRequestRateAndTimeMs,clientId=test-

consumer-group:	This	MBean	give	values	for	the	rate	at	which	the	consumer	fetches
the	requests	as	well	as	the	latencies	involved	in	that	process.	It	gives	latencies	as	a
mean,	the	50th,	75th,	95th,	98th,	99th,	and	99.9th	latency	percentiles.	It	also	gives	the
time	taken	to	consume	the	data	as	a	mean,	one	minute	rate,	five	minute	rate,	and
fifteen	minute	rate.	It	gives	the	count	as	well.
kafka.consumer:type=FetchRequestAndResponseMetrics,name=FetchResponseSize,clientId=test-

consumer-group:	This	MBean	gives	the	fetch	size	for	the	consumer.	It	gives	the
count,	mean,	max,	min,	standard	deviation,	50th,	75th,	95th,	98th,	99th,	and	99.9th
percentile	of	request	sizes.
kafka.consumer:type=ZookeeperConsumerConnector,name=FetchQueueSize,clientId=test-

consumer-group,topic=mytesttopic,threadId=0:	This	MBean	gives	the	queue
size	for	the	fetch	request	for	the	clientID,	threaded,	and	topic	mentioned.
kafka.consumer:type=ZookeeperConsumerConnector,name=KafkaCommitsPerSec,clientId=test-

consumer-group:	This	MBean	gives	the	fetch	size	for	the	Kafka	commits	per	second.
It	gives	the	count,	mean,	one	minute	average,	five	minute	average,	and	fifteen
average	rate	of	Kafka	commits	per	second.
kafka.consumer:type=ZookeeperConsumerConnector,name=RebalanceRateAndTime,clientId=test-

consumer-group:	This	MBean	gives	the	latency	and	rate	of	rebalance	for	the
consumer.	It	gives	latencies	as	a	mean,	the	50th,	75th,	95th,	98th,	99th,	and	99.9th
latency	percentiles.	It	also	gives	the	time	taken	to	rebalance	as	a	mean,	one	minute
rate,	five	minute	rate,	and	fifteen	minute	average.	It	also	gives	the	count.
kafka.consumer:type=ZookeeperConsumerConnector,name=ZooKeeperCommitsPerSec,clientId=test-

consumer-group:	This	MBean	gives	the	fetch	size	for	the	ZooKeeper	commits	per
second.	It	gives	the	count,	mean,	one	minute	average,	five	minute	average,	and
fifteen	minute	average	rate	of	ZooKeeper	commits	per	second.

See	also
More	details	of	producer	metrics	are	available	at:
https://kafka.apache.org/documentation.html#monitoring

https://kafka.apache.org/documentation.html#monitoring


Connecting	to	Graphite
The	ability	to	connect	to	Graphite	and	get	graphs	of	how	the	system	has	performed	over	a
period	of	time	can	be	a	lifesaver	when	diagnosing	real-time	Big	Data	systems	in
production.	Let’s	look	into	how	to	get	system	performance	data	from	Kafka	to	Graphite.

Getting	ready
You	should	have	the	Kafka	cluster	installed	on	your	system.	You	should	have	the	Graphite
server	set	up	and	running.

How	to	do	it…
1.	 Download	the	code	for	Kafka	Graphite	Metrics	Reporter	from	its	master	branch

using	the	following	link:	https://github.com/damienclaveau/kafka-
Graphite/archive/master.zip.

2.	 You	can	unzip	this	code	using	the	following	command:

>	unzip	master.zip

3.	 Next	you	need	to	run	the	following	command	from	the	folder	where	you	have
unzipped	the	code.

>mvn	clean	package

4.	 Add	kafka-Graphite-1.0.0.jar	(located	in	the	./target	directory)	and	metrics-
Graphite-2.2.0.jar	(it	should	have	been	downloaded	to
/home/username/.m2/repository/com/yammer/metrics/metrics-Graphite/2.2.0

directory)	to	the	libs/	directory	of	your	Kafka	broker	installation.
5.	 Add	the	following	lines	of	code	to	your	server.properties	file:

kafka.metrics.reporters=com.criteo.kafka.KafkaGraphiteMetricsReporter

kafka.graphite.metrics.reporter.enabled=true

kafka.graphite.metrics.host=localhost

kafka.graphite.metrics.port=8649

kafka.graphite.metrics.group=kafka

6.	 Next	you	have	to	start	the	Kafka	node	in	that	machine.	Now	you	are	all	set	to	receive
metrics	from	Kafka	to	your	Graphite	system.	You	can	create	various	graphs	in
Graphite	to	monitor	various	Kafka	parameters	as	mentioned	in	the	previous	topics.

How	it	works…
As	a	first	step	you	have	to	download	the	code	for	Kafka	Graphite	Metrics	Reporter.	Next
with	the	Maven	command	you	build	the	package	file	for	it.

By	moving	the	JAR	files	(kafka-Graphite-1.0.0.jar	and	metrics-Graphite-
2.2.0.jar)	to	the	lib	folder,	you	make	it	possible	for	Kafka	to	load	them	when	it	starts.

The	entries	in	the	server.properties	file	are	explained	as	follows:

kafka.metrics.reporters:	This	tells	Kafka	the	classes	to	load	as	Metrics	Reporter.

https://github.com/damienclaveau/kafka-Graphite/archive/master.zip


As	mentioned	in	the	first	topic	of	this	chapter,	Kafka	makes	use	of	Yammer	Metrics.
You	can	have	multiple	metrics	reports	mentioned	by	comma-separating	their
classnames	here.	For	Kafka	Graphite	Metrics	Reporter,	you	need	to	mention	it	as
com.criteo.kafka.KafkaGraphiteMetricsReporter.
kafka.Graphite.metrics.reporter.enabled:	This	tells	Kafka	whether	to	enable
Graphite	Metrics.	If	the	value	for	this	is	set	as	true,	then	metrics	are	reported.	If	it	is
set	as	false,	metrics	are	not	reported	in	Graphite.
kafka.Graphite.metrics.host:	This	specifies	the	hostname	for	the	Graphite
system.
kafka.Graphite.metrics.port:	This	specifies	the	port	number	of	the	Graphite
system.
kafka.Graphite.metrics.group:	This	specifies	the	group	name	that	must	be	used	to
report	metrics	from	this	Kafka	instance	in	Graphite.

See	also
Check	the	source	code	and	get	more	details	on	Kafka	Graphite	Metrics	Reporter	at
https://github.com/damienclaveau/kafka-graphite

https://github.com/damienclaveau/kafka-graphite


Monitoring	with	Ganglia
Another	important	monitoring	framework	that	can	be	used	to	monitor	Kafka	is	Ganglia.	In
this	topic	we	will	look	into	how	to	configure	Kafka	to	report	statistics	in	Ganglia.

Getting	ready
Install	Kafka	on	your	machine.

How	to	do	it…
1.	 Download	the	code	for	Kafka	Ganglia	Metrics	Reporter	from	its	master	branch	at:

https://github.com/criteo/kafka-ganglia/archive/master.zip.
2.	 You	can	unzip	this	code	using	the	following	command:

>	unzip	master.zip

3.	 Next	you	need	to	run	the	following	command	from	the	folder	where	you	unzipped
the	code.

>	mvn	clean	package

4.	 Add	kafka-ganglia-1.0.0.jar	(located	in	the	./target	directory)	and	metrics-
ganglia-2.2.0.jar	(it	should	have	been	downloaded	to	the
/home/username/.m2/repository/com/yammer/metrics/metrics-ganglia/2.2.0

directory)	to	the	libs/	directory	of	your	Kafka	broker	installation.
5.	 Add	the	following	lines	of	code	to	your	server.properties	file:

kafka.metrics.reporters=com.criteo.kafka.KafkaGangliaMetricsReporter

kafka.ganglia.metrics.reporter.enabled=true

kafka.ganglia.metrics.host=localhost

kafka.ganglia.metrics.port=8649

kafka.ganglia.metrics.group=kafka

6.	 Next	you	have	to	start	the	Kafka	node	in	that	machine.	Now	you	are	all	set	to	receive
metrics	from	Kafka	to	your	Ganglia	Reporter	system.	You	should	be	able	to	see	the
various	Kafka	metrics	in	the	Ganglia	dashboard.

How	it	works…
As	a	first	step	you	have	to	download	the	code	for	Kafka	Ganglia	Metrics	Reporter.	Next
with	the	Maven	command	you	build	the	package	file	for	it.

By	moving	the	JAR	files	(kafka-ganglia-1.0.0.jar	and	metrics-Graphite-2.2.0.jar)
to	the	lib	folder,	you	make	it	possible	for	Kafka	to	load	them	when	it	starts.

The	entries	in	the	server.properties	file	are	as	explained	next:

kafka.metrics.reporters:	This	tells	Kafka	the	classes	to	load	as	Metrics	Reporter.
As	mentioned	in	the	first	topic	of	this	chapter,	Kafka	makes	use	of	Yammer	Metrics.
You	can	have	multiple	metrics	reports	mentioned	by	comma-separating	their
classnames	here.	For	Kafka	Graphite	Metrics	Reporter,	you	need	to	mention	it	as

https://github.com/criteo/kafka-ganglia/archive/master.zip


com.criteo.kafka.KafkaGangliaMetricsReporter.
kafka.ganglia.metrics.reporter.enabled:	This	tells	Kafka	whether	to	enable
Ganglia	Metrics.	If	the	value	for	this	is	set	as	true,	then	metrics	are	reported.	If	it	is
set	as	false,	metrics	are	not	reported	in	Ganglia.
kafka.ganglia.metrics.host:	This	specifies	the	hostname	for	the	Ganglia	system.
kafka.ganglia.metrics.port:	This	specifies	the	port	number	of	the	Ganglia
system.
kafka.ganglia.metrics.group:	This	specifies	the	group	name	that	must	be	used	to
report	metrics	from	this	Kafka	instance	in	Ganglia.

See	also
Check	the	source	code	and	get	more	details	on	Kafka	Graphite	Metrics	Reporter	at
https://github.com/criteo/kafka-ganglia.	Several	other	reporters	are	available	for
Kafka.	These	are	mentioned	at:
https://cwiki.apache.org/confluence/display/KAFKA/JMX+Reporters.

https://github.com/criteo/kafka-ganglia
https://cwiki.apache.org/confluence/display/KAFKA/JMX+Reporters


Index
B

basic	configuration	parameters,	for	produce
metadata.broker.list	/	How	it	works…
request.required.acks	/	How	it	works…
request.timeout.ms	/	How	it	works…

basic	settings
configuring	/	Configuring	the	basic	settings,	How	it	works…

basic	settings,	for	consumer
configuring	/	Configuring	the	basic	settings	for	consumer,	How	it	works…
group.id	/	How	it	works…
zookeeper.connect	/	How	it	works…
consumer.id	/	How	it	works…

basic	settings,	for	producer
configuring	/	Configuring	the	basic	settings	for	producer,	How	to	do	it…

brokers
decommissioning	/	Decommissioning	brokers,	How	to	do	it…



C
configuration	parameters

broker.id	/	How	it	works…
host.name	/	How	it	works…
port	/	How	it	works…
log.dirs	/	How	it	works…
advertised.host.name	/	There’s	more…
advertised.port	/	There’s	more…

configurations,	for	consumer
about	/	Getting	ready,	How	it	works…
offsets.storage	/	How	it	works…
offsets.channel.backoff.ms	/	How	it	works…
offsets.channel.socket.timeout.ms	/	How	it	works…
offsets.commit.max.retries	/	How	it	works…
dual.commit.enabled	/	How	it	works…
client.id	/	How	it	works…

console
consuming	from	/	Consuming	from	the	console

consumer
writing	/	Writing	a	simple	consumer,	How	to	do	it…,	How	it	works…
position,	checking	/	Checking	the	consumer	position
stats,	monitoring	/	Monitoring	consumer	stats,	How	it	works…
metrics,	URL	/	See	also

consumer	offset	checker
about	/	Consumer	offset	checker,	Getting	ready
group	/	How	it	works…
zookeeper	/	How	it	works…
topic	/	How	it	works…
broker-info	/	How	it	works…
help	/	How	it	works…

consumer	rebalance
verifying	/	Verifying	consumer	rebalance,	How	it	works…



D
data

mirroring,	between	Kafka	clusters	/	Mirroring	data	between	Kafka	clusters,
There’s	more…

dump	log	segments
about	/	Understanding	dump	log	segments
—deep-iteration	/	How	it	works…
—files	/	How	it	works…
—max-message-size	/	How	it	works…
—print-data-log	/	How	it	works…
—verify-index-only	/	How	it	works…



E
ElasticSearch

integrating,	with	Kafka	/	Integrating	Elasticsearch	with	Kafka,	How	to	do	it…,
How	it	works…,	There’s	more…



F
Flume

about	/	Using	Flume
using	/	Using	Flume,	Getting	ready,	How	it	works…
URL	/	Getting	ready,	See	also,	See	also



G
Ganglia

monitoring	with	/	Monitoring	with	Ganglia,	How	to	do	it…,	How	it	works…
GetOffsetShell

using	/	Using	GetOffsetShell,	How	to	do	it…
—broker-list	command	/	How	it	works…
—max-wait-ms	command	/	How	it	works…
—offsets	command	/	How	it	works…
—partitions	command	/	How	it	works…
—topic	command	/	How	it	works…

Gobblin
about	/	Using	Gobblin
using	/	Using	Gobblin,	How	to	do	it…
configuration	/	How	it	works…
Source	classes,	URL	/	How	it	works…
URL	/	See	also

Graphite
connecting	to	/	Connecting	to	Graphite,	How	it	works…



H
high-level	consumer

writing	/	Writing	a	high-level	consumer,	How	to	do	it…



I
ISR	/	There’s	more…



J
JMX	tool

using	/	Using	the	JMX	tool,	How	to	do	it…
—attributes	command	/	How	it	works…
—date-format	command	/	How	it	works…
—help	command	/	How	it	works…
—jmx-url	command	/	How	it	works…
—object-name	command	/	How	it	works…
—reporting-interval	command	/	How	it	works…



K
Kafka

configuring,	for	real-time	/	Configuring	Kafka	for	real-time,	How	it	works…
Spark,	integrating	with	/	Integrating	Spark	with	Kafka,	Getting	ready,	How	it
works…
Storm,	integrating	/	Integrating	Storm	with	Kafka,	How	to	do	it…,	See	also
ElasticSearch,	integrating	/	Integrating	Elasticsearch	with	Kafka,	How	to	do
it…,	How	it	works…,	There’s	more…
SolrCloud,	integrating	/	Integrating	SolrCloud	with	Kafka,	How	it	works…

Kafka	clusters
data,	mirroring	/	Mirroring	data	between	Kafka	clusters,	There’s	more…
expanding	/	Expanding	clusters,	How	to	do	it…,	How	it	works…,	There’s
more…

Kafka	Ganglia	Metrics	Reporter
URL	/	How	to	do	it…,	See	also

Kafka	Graphite	Metrics	Reporter
URL	/	How	to	do	it…,	See	also

Kafka	migration	tool
using	/	Using	the	Kafka	migration	tool,	How	to	do	it…
—blacklist	command	/	How	it	works…
—consumer.config	command	/	How	it	works…
—help	command	/	How	it	works…
—kafka.07.jar	command	/	How	it	works…
—num.producers	command	/	How	it	works…
—num.streams	command	/	How	it	works…
—producer.config	command	/	How	it	works…
—queue.size	command	/	How	it	works…
—whitelist	command	/	How	it	works…
—zkclient.01.jar	command	/	How	it	works…

Kafka	River	plugin
URL	/	See	also



L
Leader	/	There’s	more…
leadership

balancing	/	Balancing	leadership,	There’s	more…
log	settings

configuring	/	Configuring	the	log	settings,	How	it	works…,	There’s	more…
about	/	Configuring	the	log	settings
log.segment.bytes	/	How	it	works…
log.roll.{ms,hours}	/	How	it	works…
log.cleanup.policy	/	How	it	works…
log.retention.{ms,minutes,hours}	/	How	it	works…
log.retention.bytes	/	How	it	works…
log.retention.check.interval.ms	/	How	it	works…
log.cleaner.enable	/	How	it	works…
log.cleaner.threads	/	How	it	works…
log.cleaner.backoff.ms	/	How	it	works…
log.index.size.max.bytes	/	How	it	works…
log.index.interval.bytes	/	How	it	works…
log.flush.interval.messages	/	How	it	works…
log.flush.interval.ms	/	How	it	works…

log	settings,	for	consumer
configuring	/	Configuring	the	log	settings	for	consumer,	How	it	works…
auto.commit.enable	/	How	it	works…
auto.commit.interval.ms	/	How	it	works…
rebalance.max.retries	/	How	it	works…
rebalance.backoff.ms	/	How	it	works…
refresh.leader.backoff.ms	/	How	it	works…
auto.offset.reset	/	How	it	works…
partition.assignment.strategy	/	How	it	works…

logstash
about	/	Using	Logstash
using	/	Using	Logstash,	How	it	works…
Kafka	input	plugin,	URL	/	There’s	more…
Kafka	output	plugin,	URL	/	See	also



M
message	partitioning

producer,	writing	with	/	Writing	a	producer	with	message	partitioning,	How	it
works…

messages
sending,	from	console	/	Sending	some	messages	from	the	console,	How	it
works…

MirrorMaker	tool
about	/	The	MirrorMaker	tool
—blacklist	command	/	How	it	works…
—consumer.config	command	/	How	it	works…
—help	command	/	How	it	works…
—num.producers	command	/	How	it	works…
—num.streams	command	/	How	it	works…
—producer.config	command	/	How	it	works…
—queue.size	command	/	How	it	works…
—whitelist	command	/	How	it	works…

miscellaneous	parameters
configuring	/	Configuring	other	miscellaneous	parameters,	How	it	works…,	See
also
auto.create.topics.enable	/	How	it	works…
controlled.shutdown.enable	/	How	it	works…
controlled.shutdown.max.retries	/	How	it	works…
controlled.shutdown.retry.backoff.ms	/	How	it	works…
auto.leader.rebalance.enable	/	How	it	works…
leader.imbalance.per.broker.percentage	/	How	it	works…
leader.imbalance.check.interval.seconds	/	How	it	works…
offset.metadata.max.bytes	/	How	it	works…
max.connections.per.ip	/	How	it	works…
connections.max.idle.ms	/	How	it	works…
unclean.leader.election.enable	/	How	it	works…
offsets.topic.num.partitions	/	How	it	works…
offsets.topic.retention.minutes	/	How	it	works…
offsets.retention.check.interval.ms	/	How	it	works…
offsets.topic.replication.factor	/	How	it	works…
offsets.topic.segment.bytes	/	How	it	works…
offsets.load.buffer.size	/	How	it	works…
offsets.commit.required.acks	/	How	it	works…
offsets.commit.timeout.ms	/	How	it	works…

multiple	Kafka	brokers
setting	up	/	Setting	up	multiple	Kafka	brokers,	Getting	ready,	How	it	works…

multithreaded	consumers
handling	/	Multithreaded	consumers	in	Kafka,	How	to	do	it…,	How	it	works…



N
network	and	performance	configurations

message.max.bytes	/	How	it	works…
num.network.threads	/	How	it	works…
num.io.threads	/	How	it	works…
background.threads	/	How	it	works…
queued.max.requests	/	How	it	works…
socket.send.buffer.bytes	/	How	it	works…
socket.receive.buffer.bytes	/	How	it	works…
socket.request.max.bytes	/	How	it	works…
num.partitions	/	How	it	works…



P
parameters,	console	producer	program

—broker-list	/	There’s	more…
—topic	/	There’s	more…
—sync	/	There’s	more…
—compression-codec	/	There’s	more…
—batch-size	/	There’s	more…
—message-send-max-retries	/	There’s	more…
—retry-backoff-ms	/	There’s	more…

PartitionCount	/	There’s	more…
performance

configuring	/	How	it	works…
producer

writing	/	Writing	a	simple	producer,	How	to	do	it…,	How	it	works…
writing,	with	message	partitioning	/	Writing	a	producer	with	message
partitioning,	How	it	works…
stats,	monitoring	/	Monitoring	producer	stats,	How	it	works…
metrics,	URL	/	See	also



R
Replay	Log	Producer

about	/	Replay	Log	Producer
—sync	command	/	How	it	works…
—broker-list	command	/	How	it	works…
—inputtopic	command	/	How	it	works…
—messages	command	/	How	it	works…
—outputtopic	command	/	How	it	works…
—reporting-interval	command	/	How	it	works…
—threads	command	/	How	it	works…
—zookeeper	command	/	How	it	works…

Replicas	/	There’s	more…
replica	settings

configuring	/	Configuring	the	replica	settings,	How	it	works…
default.replication.factor	/	How	it	works…
replica.lag.time.max.ms	/	How	it	works…
replica.lag.max.messages	/	How	it	works…
replica.fetch.max.bytes	/	How	it	works…
replica.fetch.wait.max.ms	/	How	it	works…
num.replica.fetchers	/	How	it	works…
replica.high.watermark.checkpoint.interval.ms	/	How	it	works…
fetch.purgatory.purge.interval.requests	/	How	it	works…
producer.purgatory.purge.interval.requests	/	How	it	works…

replication	factor
increasing	/	Increasing	the	replication	factor

ReplicationFactor	/	There’s	more…



S
server	stats

monitoring	/	Monitoring	server	stats,	How	to	do	it…,	How	it	works…,	See	also
shutdown

implementing	/	Implementing	a	graceful	shutdown,	How	it	works…
Simple	Consumer	Shell

about	/	Simple	Consumer	Shell
—broker-list	command	/	How	it	works…
—clientId	command	/	How	it	works…
—fetchsize	command	/	How	it	works…
—formatter	command	/	How	it	works…
—property	command	/	How	it	works…
—max-messages	command	/	How	it	works…
—max-wait-ms	command	/	How	it	works…
—no-wait-at-logend	command	/	How	it	works…
—offset	command	/	How	it	works…
—partition	command	/	How	it	works…
—print-offsets	command	/	How	it	works…
—replica	command	/	How	it	works…
—skip-message-on-error	command	/	How	it	works…
—topic	command	/	How	it	works…

SolrCloud
integrating,	with	Kafka	/	Integrating	SolrCloud	with	Kafka,	How	it	works…

Spark
integrating,	with	Kafka	/	Integrating	Spark	with	Kafka,	Getting	ready,	How	it
works…
reference	link	/	There’s	more…

State	Change	Log	Merger
about	/	State	Change	Log	Merger
—end-time	command	/	How	it	works…
—logs	command	/	How	it	works…
—logs-regex	command	/	How	it	works…
—partitions	command	/	How	it	works…
—start-time	command	/	How	it	works…
—topic	command	/	How	it	works…

Storm
integrating,	with	Kafka	/	Integrating	Storm	with	Kafka,	How	to	do	it…,	See	also
reference	link	/	There’s	more…



T
thread	and	performance,	for	consumer

configuring	/	Configuring	the	thread	and	performance	for	consumer,	How	it
works…
socket.timeout.ms	/	How	it	works…
socket.receive.buffer.bytes	/	How	it	works…
fetch.message.max.bytes	/	How	it	works…
num.consumer.fetchers	/	How	it	works…
queued.max.message.chunks	/	How	it	works…
fetch.min.bytes	/	How	it	works…
fetch.wait.max.ms	/	How	it	works…
consumer.timeout.ms	/	How	it	works…

thread	and	performance,	for	producer
configuring	/	Configuring	the	thread	and	performance	for	producer,	How	it
works…
producer.type	/	How	it	works…
serializer.class	/	How	it	works…
key.serializer.class	/	How	it	works…
partitioner.class	/	How	it	works…
compression.codec	/	How	it	works…
compressed.topics	/	How	it	works…
message.send.max.retries	/	How	it	works…
retry.backoff.ms	/	How	it	works…
topic.metadata.refresh.interval.ms	/	How	it	works…
queue.buffering.max.ms	/	How	it	works…
queue.buffering.max.messages	/	How	it	works…
queue.enqueue.timeout.ms	/	How	it	works…
send.buffer.bytes	/	How	it	works…
client.id	/	How	it	works…

threads
configuring	/	Configuring	threads	and	performance

topics
creating	/	Creating	topics,	How	it	works…,	There’s	more…
adding	/	Adding	and	removing	topics,	How	to	do	it…,	There’s	more…
removing	/	Adding	and	removing	topics,	How	to	do	it…,	There’s	more…
configuration	options,	URL	/	There’s	more…,	There’s	more…
modifying	/	Getting	ready,	How	it	works…



Z
ZooKeeper	offsets

exporting	/	Exporting	the	ZooKeeper	offsets
—zkconnect	command	/	How	it	works…
—group	groupname	command	/	How	it	works…
—help	command	/	How	it	works…
—output-file	command	/	How	it	works…
importing	/	Importing	the	ZooKeeper	offsets
updating	/	Updating	offsets	in	Zookeeper

ZooKeeper	settings
configuring	/	Configuring	the	ZooKeeper	settings,	How	it	works…
zookeeper.connect	/	How	it	works…
zookeeper.session.timeout.ms	/	How	it	works…
zookeeper.connection.timeout.ms	/	How	it	works…
zookeeper.sync.time.ms	/	How	it	works…

ZooKeeper	settings,	for	consumer
configuring	/	Configuring	the	ZooKeeper	settings	for	consumer,	How	it	works…
zookeeper.session.timeout.ms	/	How	it	works…
zookeeper.connection.timeout.ms	/	How	it	works…
zookeeper.sync.time.ms	/	How	it	works…


	Apache Kafka Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Initiating Kafka
	Introduction
	Setting up multiple Kafka brokers
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Creating topics
	Getting ready
	How to do it...
	How it works...
	There's more…
	Sending some messages from the console
	Getting ready
	How to do it...
	How it works...
	There's more…
	Consuming from the console
	Getting ready
	How to do it...
	How it works...
	There's more...
	2. Configuring Brokers
	Introduction
	Configuring the basic settings
	Getting ready
	How to do it...
	How it works…
	There's more…
	Configuring threads and performance
	Getting ready
	How to do it...
	How it works…
	There's more...
	Configuring the log settings
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Configuring the replica settings
	Getting ready
	How to do it...
	How it works…
	There's more...
	Configuring the ZooKeeper settings
	Getting ready
	How to do it…
	How it works…
	See also
	Configuring other miscellaneous parameters
	Getting ready
	How to do it...
	How it works…
	See also
	3. Configuring a Producer and Consumer
	Introduction
	Configuring the basic settings for producer
	Getting ready
	How to do it...
	How it works…
	Configuring the thread and performance for producer
	Getting ready
	How to do it...
	How it works…
	See also
	Configuring the basic settings for consumer
	Getting ready
	How to do it...
	How it works…
	Configuring the thread and performance for consumer
	Getting ready
	How to do it...
	How it works…
	Configuring the log settings for consumer
	Getting ready
	How to do it...
	How it works…
	Configuring the ZooKeeper settings for consumer
	Getting ready
	How to do it...
	How it works…
	Other configurations for consumer
	Getting ready
	How to do it...
	How it works…
	See also
	4. Managing Kafka
	Introduction
	Consumer offset checker
	Getting ready
	How to do it...
	How it works…
	Understanding dump log segments
	Getting ready
	How to do it…
	How it works…
	Exporting the ZooKeeper offsets
	Getting ready
	How to do it...
	How it works…
	Importing the ZooKeeper offsets
	Getting ready
	How to do it...
	How it works…
	Using GetOffsetShell
	Getting ready
	How to do it…
	How it works…
	Using the JMX tool
	Getting ready
	How to do it...
	How it works…
	There's more…
	Using the Kafka migration tool
	Getting ready
	How to do it...
	How it works…
	The MirrorMaker tool
	Getting ready
	How to do it...
	How it works…
	See also
	Replay Log Producer
	Getting ready
	How to do it...
	How it works…
	Simple Consumer Shell
	Getting ready
	How to do it...
	How it works…
	State Change Log Merger
	Getting ready
	How to do it...
	How it works…
	Updating offsets in Zookeeper
	Getting ready
	How to do it...
	How it works…
	Verifying consumer rebalance
	Getting ready
	How to do it...
	How it works…
	5. Integrating Kafka with Java
	Introduction
	Writing a simple producer
	Getting ready
	How to do it...
	How it works…
	See also
	Writing a simple consumer
	Getting ready
	How to do it...
	How it works…
	See also
	Writing a high-level consumer
	Getting ready
	How to do it...
	How it works…
	See also
	Writing a producer with message partitioning
	Getting ready
	How to do it...
	How it works…
	There's more…
	Multithreaded consumers in Kafka
	Getting ready
	How to do it...
	How it works…
	6. Operating Kafka
	Introduction
	Adding and removing topics
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Modifying topics
	Getting ready
	How to do it...
	How it works…
	There's more…
	Implementing a graceful shutdown
	Getting ready
	How to do it...
	How it works…
	Balancing leadership
	Getting ready
	How to do it...
	How it works…
	There's more…
	Mirroring data between Kafka clusters
	Getting ready
	How to do it...
	How it works…
	There's more…
	Expanding clusters
	Getting ready
	How to do it...
	How it works…
	There's more…
	Increasing the replication factor
	Getting ready
	How to do it...
	How it works…
	There's more…
	Checking the consumer position
	Getting ready
	How to do it...
	How it works…
	Decommissioning brokers
	Getting ready
	How to do it...
	How it works…
	7. Integrating Kafka with Third-Party Platforms
	Introduction
	Using Flume
	Getting ready
	How to do it...
	How it works…
	See also
	Using Gobblin
	Getting ready
	How to do it...
	How it works…
	See also
	Using Logstash
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Configuring Kafka for real-time
	Getting ready
	How to do it...
	How it works…
	Integrating Spark with Kafka
	Getting ready
	How to do it...
	How it works…
	There's more…
	Integrating Storm with Kafka
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Integrating Elasticsearch with Kafka
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Integrating SolrCloud with Kafka
	Getting ready
	How to do it...
	How it works…
	See also
	8. Monitoring Kafka
	Introduction
	Monitoring server stats
	Getting ready
	How to do it…
	How it works…
	See also
	Monitoring producer stats
	Getting ready
	How to do it...
	How it works…
	See also
	Monitoring consumer stats
	Getting ready
	How to do it...
	How it works…
	See also
	Connecting to Graphite
	Getting ready
	How to do it...
	How it works…
	See also
	Monitoring with Ganglia
	Getting ready
	How to do it...
	How it works…
	See also
	Index

