

Apache	Oozie	Essentials

Table	of	Contents

Apache	Oozie	Essentials

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Setting	up	Oozie

Configuring	Oozie	in	Hortonworks	distribution

Installing	Oozie	using	tar	ball

Creating	a	test	virtual	machine

Building	Oozie	source	code

Summary	of	the	build	script

Codehaus	Maven	move

Download	dependency	jars

Preparing	to	create	a	WAR	file

Create	a	WAR	file

Configure	Oozie	MySQL	database

Configure	the	shared	library

Start	server	testing	and	verification

Summary

2.	My	First	Oozie	Job

Installing	and	configuring	Hue

Oozie	concepts

Workflows

Coordinator

Bundles

Book	case	study

Running	our	first	Oozie	job

Types	of	nodes

Control	flow	nodes

Action	nodes

Oozie	web	console

The	Oozie	command	line

Summary

3.	Oozie	Fundamentals

Chapter	case	study

The	Decision	node

The	Email	action

Expression	Language	functions

Basic	EL	constants

Basic	EL	functions

Workflow	EL	functions

Hadoop	EL	constants

HDFS	EL	functions

Email	action	configuration

Job	property	file

Submission	from	the	command	line

Workflow	states

Summary

4.	Running	MapReduce	Jobs

Chapter	case	study

Running	MapReduce	jobs	from	Oozie

The	job.properties	file

Running	the	job

Running	Oozie	MapReduce	job

Coordinators

Datasets

Frequency	and	time

Cron	syntax	for	frequency

Timezone

The	<done-flag>	tag

Initial	instance

My	first	Coordinator

Coordinator	v1	definition

job.properties	v1	definition

Coordinator	v2	definition

job.properties	v2	definition

Checking	the	job	log

Running	a	MapReduce	streaming	job

Summary

5.	Running	Pig	Jobs

Chapter	case	study

The	Pig	command	line

The	config-default.xml	file

Pig	action

Pig	Coordinator	job	v2

Parameters	in	the	Dataset’s	input	and	output	events

current(int	n)

hoursInDay(int	n)

daysInMonth(int	n)

latest(int	n)

Coordinator	controls

Pig	Coordinator	job	v3

Summary

6.	Running	Hive	Jobs

Chapter	case	study

Running	a	Hive	job	from	the	command	line

Hive	action

Validating	Oozie	Workflow

Hive	2	action

Parameterization	of	Coordinator	jobs

dateOffset(String	baseDate,	int	instance,	String	timeUnit)

dateTzOffet(String	baseDate,	String	timezone)

formatTime(String	timeStamp,	String	format)

Summary

7.	Running	Sqoop	Jobs

Chapter	case	study

Running	Sqoop	command	line

Sqoop	action

HCatalog

HCatalog	datasets

HCatalog	EL	functions

HCatalog	Coordinator	functions

Pig	script

The	job.properties	file

The	Sqoop	action	Coordinator

Running	the	job

Checking	data	in	the	Hive	table

Summary

8.	Running	Spark	Jobs

Spark	action

Bundles

Data	pipelines

Summary

9.	Running	Oozie	in	Production

Packaging	and	continuous	delivery

Oozie	in	secured	cluster

Rerun

Rerun	Workflow

Rerun	Coordinator

Rerun	Bundle

Summary

Index

Apache	Oozie	Essentials

Apache	Oozie	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1011215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-038-4

www.packtpub.com

http://www.packtpub.com

Credits
Author

Jagat	Jasjit	Singh

Reviewers

Siva	Prakash

Rahul	Tekchandani

Commissioning	Editor

Dipika	Gaonkar

Acquisition	Editor

Tushar	Gupta

Content	Development	Editor

Preeti	Singh

Technical	Editor

Dhiraj	Chandanshive

Copy	Editor

Roshni	Banerjee

Project	Coordinator

Shweta	H	Birwatkar

Proofreader

Safis	Editing

Indexer

Priya	Sane

Production	Coordinator

Melwyn	Dsa

Cover	Work

Melwyn	Dsa

About	the	Author
Jagat	Jasjit	Singh	works	for	one	of	the	largest	telecom	companies	in	Melbourne,
Australia,	as	a	big	data	architect.	He	has	a	total	experience	of	over	10	years	and	has	been
working	with	the	Hadoop	ecosystem	for	more	than	5	years.	He	is	skilled	in	Hadoop,
Spark,	Oozie,	Hive,	Pig,	Scala,	machine	learning,	HBase,	Falcon,	Kakfa,	GraphX,	Flume,
Knox,	Sqoop,	Mesos,	Marathon,	Chronos,	Openstack,	and	Java.	He	has	experience	of	a
variety	of	Australian	and	European	customer	implementations.	He	actively	writes	on	Big
Data	and	IoT	technologies	on	his	personal	blog	(http://jugnu.life).	Jugnu	(a	Punjabi	word)
is	a	firefly	that	glows	at	night	and	illuminates	the	world	with	its	tiny	light.	Jagat	believes
in	this	same	philosophy	of	sharing	knowledge	to	make	the	world	a	better	place.	You	can
connect	with	him	on	LinkedIn	at	https://au.linkedin.com/in/jagatsingh.

All	the	(author	side)	earnings	of	this	book	will	go	towards	charity.	Please	consider
donating,	if	you	have	not	purchased	this	book	directly,	at
http://www.pingalwara.net/donations.html.	You	can	donate	with	your	PayPal	account	or
credit	card.

This	book	is	dedicated	to	Almighty	God,	who	gave	me	everything,	my	parents,	and	the
wonderful	people	from	the	Omnia	project	at	Commonwealth	Bank	of	Australia
(https://github.com/CommBank).	I	would	like	to	acknowledge	the	help	of	Tushar	Gupta,
Dhiraj	Chandanshive,	Roshni	Banerjee,	and	Preeti	Singh	from	Packt	Publishing	in	writing
this	book.

http://jugnu.life
https://au.linkedin.com/in/jagatsingh
http://www.pingalwara.net/donations.html
https://github.com/CommBank

About	the	Reviewers
Siva	Prakash	has	been	working	in	the	field	of	software	development	for	the	last	7	years.
Currently,	he	is	working	with	CISCO,	Bangalore.	He	has	an	extensive	development
experience	in	desktop-,	mobile-,	and	web-based	applications	in	ERP,	telecom,	and	the
digital	media	industry.	He	has	passion	for	learning	new	technologies	and	sharing
knowledge	thus	gained	with	others.	He	has	worked	on	big	data	technologies	for	the	digital
media	industry.	He	loves	trekking,	travelling,	music,	reading	books,	and	blogging.

He	is	available	on	LinkedIn	at	https://www.linkedin.com/in/techsivam.

Rahul	Tekchandani	is	a	Hadoop	software	developer	who	specializes	in	building	and
developing	Hadoop	data	platforms	for	big	financial	institutions.	With	experience	in
software	design,	development,	and	support,	he	has	engineered	strong,	data-driven
applications	using	the	Cloudera’s	Hadoop	Distribution.	Rahul	has	also	worked	as	an
information	architect	to	support	data	sanitization	and	data	governance.

Prior	to	his	career	in	software	development,	he	completed	his	masters	in	Management	of
Information	Systems	at	University	of	Arizona	and	worked	on	academic	projects	for	top
tech	and	banking	companies.

He	currently	lives	in	Charlotte,	North	Carolina.	Visit	his	developer’s	blog	at
www.rahultekchandani.com	to	see	what	he	is	currently	exploring,	and	to	learn	more	about
him.

https://www.linkedin.com/in/techsivam
http://www.rahultekchandani.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
With	the	increasing	popularity	of	Big	Data	in	enterprise,	every	day	more	and	more
workloads	are	being	shifted	to	Hadoop.

To	run	those	regular	processing	jobs	on	Hadoop,	we	need	a	scheduler	that	can	act	as	cron
for	all	data	pipelines.	Oozie	plays	this	role	in	the	Big	Data	world.

This	book	introduces	you	to	the	world	of	Oozie	using	a	step-by-step	case	study-based
approach.

What	this	book	covers
Chapter	1,	Setting	up	Oozie,	covers	how	to	install	and	configure	Oozie	in	Hadoop	cluster.
We	will	also	learn	how	to	install	Oozie	from	the	source	code.

Chapter	2,	My	First	Oozie	Job,	covers	running	a	“Hello	World”	equivalent	first	Oozie	job.
It	also	introduces	the	concept	of	Workflow,	Coordinator,	and	Bundles.

Chapter	3,	Oozie	Fundamentals,	introduces	the	fundamental	concepts	of	control	nodes,
expression	language,	web	console,	and	running	Oozie	jobs	from	Hue.

Chapter	4,	Running	MapReduce	Jobs,	teaches	how	to	run	MapReduce	jobs	from	Oozie
and	explores	the	concepts	of	Coordinators,	Datasets,	and	cron-based	frequency	schedules.

Chapter	5,	Running	Pig	Jobs,	teaches	how	to	run	Pig	jobs	from	Oozie.	We	will	also	cover
the	concept	of	parameterization	of	Datasets	and	Coordinator	controls.

Chapter	6,	Running	Hive	Jobs,	introduces	how	to	run	Hive	jobs	and	discusses	the	concepts
of	parameterization	of	Coordinator	actions.

Chapter	7,	Running	Sqoop	Jobs,	shows	how	to	run	Sqoop	jobs	from	Oozie	and	introduces
the	concept	of	HCatalog	Datasets	and	EL	functions.

Chapter	8,	Running	Spark	Jobs,	shows	how	to	run	Spark	jobs.	It	also	introduces	the
concept	of	Bundles	and	how	they	are	used	to	group	a	set	of	Coordinator	jobs.

Chapter	9,	Running	Oozie	in	Production,	covers	how	to	package	the	code	for	production
deployments	and	how	to	rerun	the	jobs	that	have	failed.

What	you	need	for	this	book
To	follow	the	tutorial	and	code	examples	in	this	book,	you	need	to	have	access	to	Hadoop
cluster	or	you	can	configure	a	single	node	virtual	machine-based	cluster.	You	should	have
a	good	laptop/desktop,	preferably	with	a	Linux	operating	system	or	Windows	with
VirtualBox	installed.

Who	this	book	is	for
This	book	is	for	anyone	who	is	familiar	with	basics	of	Hadoop	and	Hive,	and	now	wants
to	automate	the	data	and	machine	learning	pipelines	using	Apache	Oozie.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Now,
edit	the	torrc	file	placed	at	the	/etc/tor/	directory.”

Most	of	the	code	in	the	book	is	XML.	A	block	of	code	is	set	as	follows:

<workflow-app	name="My_first_Workflow"	xmlns="uri:oozie:workflow:0.5">

		<start	to="fs-2178"/>

		<kill	name="Kill">

				<message>Action	failed	</message>

		</kill>					

		<action	name="fs-2178">

				<fs>

						<delete	path='${nameNode}/user/hue'/>

				</fs>

				<ok	to="End"/>

				<error	to="Kill"/>

		</action>

		<end	name="End"/>

</workflow-app>

Any	command-line	input	or	output	is	written	as	follows:

#	$	hadoop	fs	-ls	/user/hue/learn_oozie

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Go	to	Settings	|
Networking	|	Port	Forwarding	,	Click	on	Add	new	port	forwarding.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Setting	up	Oozie
Oozie	is	a	workflow	scheduler	system	to	run	Apache	Hadoop	jobs.	Oozie	Workflow	jobs
are	Directed	Acyclic	Graphs	(DAGs)	of	actions.	More	information	on	DAG	can	be	found
at	https://en.wikipedia.org/wiki/Directed_acyclic_graph.	Actions	tell	what	to	do	in	the	job.
Oozie	supports	running	jobs	of	various	types	such	as	Java,	Map-reduce,	Pig,	Hive,	Sqoop,
Spark,	and	Distcp.	The	output	of	one	action	can	be	consumed	by	the	next	action	to	create	a
chain	sequence.

Oozie	has	client-server	architecture,	in	which	we	install	the	server	for	storing	the	jobs	and
using	client	we	submit	our	jobs	to	the	server.

In	this	chapter,	we	will	learn	how	to	install	Oozie	for	learning	purpose	and	in	production.
For	learning	purposes,	we	will	build	Oozie	from	the	source	code,	and	for	production	we
will	use	Hadoop	distribution	by	Hortonworks.	Throughout	the	book,	we	will	use
Hortonworks	single	node	virtual	machine.	If	you	are	using	a	different	Hadoop	distribution,
you	should	not	worry	at	all.	All	distribution	packages	are	the	same	for	Oozie	software,
which	is	made	by	the	Apache	community	(http://oozie.apache.org).

After	reading	this	chapter,	we	will	be	able	to:

Configure	Oozie	in	Hortonworks	distribution	using	Ambari
Install	Oozie	using	the	source	code	provided	as	tar	ball	by	the	Apache	Oozie	website

https://en.wikipedia.org/wiki/Directed_acyclic_graph
http://oozie.apache.org

Configuring	Oozie	in	Hortonworks
distribution
In	this	section,	we	will	learn	how	to	configure	Oozie	inside	Hortonworks	Hadoop
distribution	using	Ambari.	We	will	configure	the	Oozie	server	to	use	a	MySQL	database
instead	of	the	default	Derby	database	to	store	all	job	information.

We	will	use	a	virtual	machine	to	learn	how	to	configure	Oozie	in	Hortonworks	Hadoop
distribution.	Most	of	other	distributions,	such	as	Cloudera,	Pivotal,	and	so	on,	have	similar
steps.

Let’s	start	with	the	following	steps:

1.	 If	you	don’t	have	VirtualBox	on	your	machine,	then	download	and	install	VirtualBox
from	https://www.virtualbox.org/wiki/Downloads.

2.	 Download	the	Hortonworks	single	node	virtual	machine	from
http://hortonworks.com/hdp/downloads/.	It	will	take	1-2	hours	depending	upon	your
Internet	connection	speed.

Tip
It	is	always	good	to	store	the	virtual	machine	images	in	a	common	folder.	For
example,	I	have	folder	in	my	machine	such	as	~/dev/vm/.	It	makes	virtual	machine
image	management	easier.

3.	 After	the	download	is	complete,	open	the	VirtualBox	and	click	on	File	|	Import
Appliance:

https://www.virtualbox.org/wiki/Downloads
http://hortonworks.com/hdp/downloads/

Import	appliance

4.	 Click	on	the	Import	Appliance	button,	browse	to	the	place	where	you	downloaded
the	virtual	machine	image,	and	then	click	on	Continue.

5.	 Wait	till	the	VirtualBox	imports	the	new	machine.
6.	 Once	you	can	see	the	machine	is	imported,	click	on	Start	machine	in	the	virtual

machine	console.
7.	 On	completion	of	boot	process	of	the	machine,	you	can	log	in	to	the	Ambari

dashboard	by	opening	the	URL	http://127.0.0.1:8080	in	your	browser.
8.	 Use	the	username	as	well	as	password	as	admin.

It	will	take	some	time	for	all	services	to	start	up	and	report	their	status	to	Ambari.
Once	the	system	has	reported	the	status,	all	services	have	a	glance	at	the	Ambari
console.	It	is	also	a	good	idea	to	stop	the	services	which	we	are	not	using	to	reduce
the	load	on	the	system.

9.	 In	the	Ambari	dashboard,	click	on	the	link	named	Oozie	on	the	left	side.	You	can	see
there	are	two	components	for	Oozie,	Oozie	Server	and	Oozie	Client.	Since	we	are
using	a	single	node	cluster,	we	have	both	the	server	and	client	installed	on	the	same
machine.	In	the	production	environment,	you	will	configure	the	Oozie	server	and
clients	separately	on	different	machines.	Using	the	client,	we	will	submit	the	jobs	to
server.	Before	submitting	the	job,	we	will	tell	where	the	server	is	located	using	the
OOZIE_URL	variable.

Tip
To	save	time	in	manually	specifying	the	Oozie	server	on	the	client	machine	every
time,	you	can	set	the	environment	variable	OOZIE_URL	in	your	bash_profile	or
environment	file	depending	on	the	operating	system	you	use.	You	should	say	export
OOZIE_URL=http://oozieserver:11000/oozie;	in	this	book	oozieserver	will	be
localhost.

10.	 Now	click	on	the	Config	link	at	the	top	and	we	will	configure	the	database	as
MySQL.	The	Oozie	server	will	use	MySQL	to	store	the	job	information:

Ambari	Oozie	configuration

11.	 You	may	notice,	at	this	moment,	the	server	has	been	configured	to	use	a	Derby
database.	Derby	is	good	for	playing	and	testing,	but	not	for	running	the	production
sever.	We	will	configure	it	to	use	a	MySQL-based	database.

12.	 Log	in	to	the	virtual	machine	using	SSH	as	follows:

$	ssh	root@127.0.0.1	-p	2222

The	default	password	is	hadoop.

13.	 After	you	log	in	to	the	SSH	session,	log	in	to	MySQL:

$	mysql	-u	root

14.	 Since	this	is	a	test	virtual	machine,	the	password	is	not	configured.	In	production,	you
will	be	having	password	protection.

15.	 At	the	MySQL	prompt,	execute	the	following	SQL	statements:

CREATE	USER	'oozie'@'%'	IDENTIFIED	BY	'hadoop';

CREATE	DATABASE	oozie;

GRANT	ALL	PRIVILEGES	ON	oozie.*	TO	'oozie'@'%'	WITH	GRANT	OPTION;

The	following	output	will	be	generated:

Oozie	database	creation

16.	 To	make	Oozie	work	with	MySQL,	we	need	to	get	driver	for	it.	Let’s	download	the
MySQL	JDBC	driver	from	the	MySQL	JDBC	jar	download	section.	Extract	the	jar	to
a	folder	such	as	/root/mysql	inside	the	virtual	machine:

$	cd	~/

$	mkdir	mysql

$	cd	mysql

$	#	Download	the	MySQL	JDBC	Driver

$	wget	http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-

java-5.1.36.tar.gz

$	#	Extract	tar

$	tar	-xvf	mysql-connector-java-5.1.36.tar.gz

$	#	Tell	Ambari	that	we	got	new	MYSQL	JDBC	driver	which	it	can	use

$	ambari-server	setup	--jdbc-db=mysql	--jdbc-driver=/root/mysql/mysql-

connector-java-5.1.36/mysql-connector-java-5.1.36-bin.jar

17.	 In	the	Ambari	dashboard,	configure	the	MySQL	database	with	the	following	details:

Field	name Value

Database	Name oozie

Database	Username oozie

Database	Password hadoop

JDBC	Driver	Class com.mysql.jdbc.Driver

JDBC	Database
URL

jdbc:mysql://localhost:3306/${oozie.db.schema.name}?

createDatabaseIfNotExist=true

18.	 In	the	Ambari	dashboard	page,	click	on	Test	Connection.	If	all	is	good,	there	should
be	a	green	tick.	So,	we	have	now	configured	the	Oozie	server	to	use	MySQL
database	instead	of	Derby.

19.	 Finally,	to	confirm	that	Oozie	works	properly,	in	another	browser	tab	open	the	Oozie
dashboard	by	entering	the	URL	http://127.0.0.1:11000/oozie.

This	completes	the	first	section	in	which	we	learned	how	to	configure	Oozie	for
Hortonworks	Ambari	distribution.

Installing	Oozie	using	tar	ball
In	this	section,	we	will	learn	how	to	build	and	install	Oozie	from	the	source	code.	Since
Hortonworks	virtual	machine	had	already	Oozie	installed,	we	did	not	need	to	do	anything.

Just	to	learn	how	to	install	Oozie	from	tar	ball	in	this	section,	we	will	use	a	Vagrant-based
machine	in	which	we	will	configure	and	install	the	Oozie	server.

The	summary	of	the	steps	we	will	perform	is	as	follows:

1.	 Create	a	test	build	machine.
2.	 Download	and	build	the	Oozie	code	to	make	a	WAR	file.
3.	 Download	the	Oozie	third-party	dependency	jars	and	libraries.
4.	 Package	the	Oozie	WAR	file	and	its	dependencies	into	a	WAR	file.
5.	 Configure	the	MySQL	database	for	the	Oozie	server.
6.	 Configure	the	shared	library.
7.	 Start	and	test	the	Oozie	server.

Note
Just	as	a	heads-up,	the	vagrant	machine	needs	lot	of	resources	to	build	the	code.	So,	if	you
do	not	have	a	powerful	machine,	you	can	build	it	directly	on	your	host	operating	system
rather	than	the	virtual	machine.	I	am	working	on	a	MacBook	Pro,	which	has	a	16	GB
RAM.	I	gave	8	GB	to	the	virtual	machine	to	show	how	to	install	Oozie	from	source.

Creating	a	test	virtual	machine
The	following	are	the	steps	to	create	a	test	virtual	machine:

1.	 Download	latest	Oozie	distribution	from	the	Apache	Oozie	website.	Go	to	the
downloads	section	and	download	the	latest	version	(4.2.0	at	time	of	writing)	in
machine	where	you	want	to	install	it.

2.	 Download	and	install	Vagrant	depending	upon	your	operating	system:

The	Vagrant	download

3.	 After	this,	go	to	the	VirtualBox	website.	Depending	on	your	computer	operating
system,	download	and	install	the	VirtualBox.

4.	 If	you	already	have	a	test	machine	that	has	a	Linux-based	operating	system,	then	you
can	skip	the	Vagrant-based	setup	and	follow	the	steps	for	building	Oozie	from	scripts.

5.	 Clone	the	source	code	for	the	book	from
https://github.com/jagatsingh/apache_oozie_essentials.git.

6.	 Create	a	folder	in	your	system	called	dev,	or	any	suitable	location	where	we	can
clone	code.	We	will	call	the	dev/apache_oozie_essentials	location	as
<BOOK_CODE_HOME>	in	this	book.	The	following	are	the	commands	to	do	this:

$	git	clone	https://github.com/jagatsingh/apache_oozie_essentials.git

$	cd	<BOOK_CODE_HOME>

$	cd	learn_oozie/ch01

$	#	Let's	start	the	virtual	machine

$	vagrant	up

7.	 Wait	for	some	time	till	our	new	test	machine	comes	up.

Here	is	what	Vagrant	does	behind	the	scene:

https://github.com/jagatsingh/apache_oozie_essentials.git

Gets	the	image	of	the	Centos	6.5	operating	system
Installs	JDK,	MySQL,	Git,	and	Maven

8.	 All	the	preceding	steps	are	being	done	by	the	provider	script,	which	is	shown	as
follows:

$	sudo	wget	http://repos.fedorapeople.org/repos/dchen/apache-

maven/epel-apache-maven.repo	-O	/etc/yum.repos.d/epel-apache-maven.repo

$	sudo	yum	install	-y	java-1.7.0-openjdk	mysql-server	git	unzip	zip	

apache-maven	telnet

$	cp	/vagrant/files/maven/settings.xml	/etc/maven/

$	sudo	service	mysqld	start

9.	 When	the	machine	starts	off	completely,	you	will	see	something,	as	shown	in	the
following	figure:

Vagrant	up	finish

If	you	need	a	quick	tutorial	on	how	Vagrant	works,	then	read	the	documentation	on
Vagrant	at	https://docs.vagrantup.com/v2/.

10.	 Now	we	can	log	in	to	the	virtual	machine	by	using	the	command	vagrant	ssh.	This
command	should	be	executed	from	the	folder	ch01.

11.	 Inside	the	Vagrant	virtual	machine,	mount/vagrant	is	same	as	the	ch01	folder,	placed
at	<BOOK_CODE_HOME>/learn_oozie/,	from	where	we	started	the	Vagrant.

$	cd	/vagrant

$	ls

https://docs.vagrantup.com/v2/

Building	Oozie	source	code
Let’s	build	Oozie	from	the	source	code.	We	will	download	the	latest	Oozie	distribution
and	build	it.	All	of	these	steps	are	present	in	the	script	build_oozie.sh	placed	at
cat/vagrant/scripts/.

The	contents	of	the	script	which	we	will	run	is	as	follows:

#	Download	and	make	Oozie	distribution

$	cd	~/

$	mkdir	{oozie_build,oozie_install,hadoop_install}

$	cd	oozie_build

$	wget	http://apache.mirror.digitalpacific.com.au/oozie/4.2.0/oozie-

4.2.0.tar.gz

$	tar	-xvf	oozie-4.2.0.tar.gz

$	cd	oozie-4.2.0

$	bin/mkdistro.sh	-DskipTests	-P	hadoop-2

Summary	of	the	build	script
In	the	oozie_build	directory,	we	will	build	Oozie.	In	the	oozie_install	directory,	we
will	install	Oozie.	In	the	hadoop_install	directory,	we	will	download	Hadoop
distribution	and	copy	few	jars	needed	for	Oozie	to	run.	You	can	also	download	the	jars
from	your	own	hadoop	cluster.

Let’s	run	the	command	to	start	the	Oozie	build.	It	will	take	some	time	to	download	all	the
dependencies	and	build	the	source	code:

$	/vagrant/scripts/build_oozie.sh

Tip
If	you	already	have	a	Maven	repository	on	your	host	machine	and	want	to	to	avoid
downloading	maven	artifacts	again,	then	look	at	the	Maven	settings	file.	I	have	configured
(and	commented)	it	to	use	my	MacBook	home	maven	as	I	already	had	all	the	artifacts
there.	You	can	uncomment	that	if	you	want	to	do	something	similar.

Codehaus	Maven	move
Codehaus	no	longer	serves	up	Maven	repositories,	we	need	to	configure	Maven	to
download	those	dependencies	from	a	different	location.	If	you	look	at
/etc/maven/settings.xml,	which	came	with	this	machine,	it	has	already	been	modified.
You	can	see	the	details	about	it	on	the	Codehaus	website	at
http://www.codehaus.org/mechanics/maven/.

On	a	successful	build,	you	should	see	something	like	the	following	screenshot:

http://www.codehaus.org/mechanics/maven/

Oozie	build	success

Download	dependency	jars
To	run	Oozie	properly,	the	Oozie	WAR	file	needs	to	have	some	dependencies	packaged
with	it.	Some	of	them	are	Hadoop,	MySQL	JDBC	driver,	Ext-js,	and	so	on.	The	MySQL
JDBC	driver	is	used	by	the	server	database,	and	Ext-js	is	used	by	the	Oozie	web	console.

We	will	copy	all	of	them	in	to	one	folder,	libext,	and	then	use	the	oozie-setup.sh
command	to	build	the	WAR	file.

Let’s	download	the	Hadoop	jars	from	your	cluster	or	by	executing	the	following	steps:

$	cd	~/hadoop_install

$	wget	https://archive.apache.org/dist/hadoop/common/hadoop-2.4.0/hadoop-

2.4.0.tar.gz

$	tar	-xvf	hadoop-2.4.0.tar.gz

Now	we	should	have	Hadoop	extracted	to	the	folder	~/hadoop_install.

The	preceding	steps	can	be	executed	in	one	go	using	the	following	command:

/vagrant/scripts/download_hadoop_jars.sh

Preparing	to	create	a	WAR	file
To	create	the	WAR	file,	we	need	to	copy	the	Oozie	distro	built	earlier	and	combine	it	with
the	jars	for	Hadoop,	the	MySQL	JDBC	driver,	and	the	Ext-js	library.

If	you	remember	from	the	previous	Ambari	Oozie	configuration,	we	used	MySQL	as	our
database	and	configured	it	using	the	ambari-setup	command.	We	will	take	a	similar
approach	for	the	MySQL	JDBC	driver	jar,	which	we	are	providing	by	merging	it	with	the
Oozie	WAR	file.

Let’s	prepare	the	Oozie	distro	using	the	following	commands:

#	Prepare	to	make	Oozie	war	file

$	cd	~/oozie_install

$	cp	~/oozie_build/oozie-4.2.0/distro/target/oozie-4.2.0-distro.tar.gz	

~/oozie_install

$	tar	-xvf	oozie-4.2.0-distro.tar.gz

$	cd	oozie-4.2.0

$	#	Removing	hsql	jar	as	they	cause	class	conflict

$	rm	lib/hsqldb-1.8.0.10.jar

Download	the	MySQL	jar	using	the	following	commands:

#	Collect	all	external	jar	files

$	mkdir	libext

$	wget	https://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-

java-5.1.36.tar.gz	--no-check-certificate

$	tar	-xvf	mysql-connector-java-5.1.36.tar.gz

$	#	Copy	MySQL	JDBC	Driver

$	cp	mysql-connector-java-5.1.36/*.jar	libext/

Merge	the	Hadoop	jars	and	the	ext-js	library	using	the	following	commands:

$	cd	libext

$	wget	http://dev.sencha.com/deploy/ext-2.2.zip

$	#	Collect	hadoop	related	jars

$	shopt	-s	globstar

$	/bin/cp	-rf	~/hadoop_install/hadoop-2.4.0/share/**/*.jar	

~/oozie_install/oozie-4.2.0/libext

$	#	Removing	source	jars	to	reduce	size

$	rm	-rf	*sources*

$	rm	-rf	*jasper*

All	of	the	preceding	steps	can	be	executed	in	one	go	using	the	following	command:

/vagrant/scripts/war_file_preparation.sh

After	successful	execution,	go	to	/home/vagrant/oozie_install/oozie-4.2.0/libext
and	see	that	we	now	have	jars	placed	in	the	folder.

Create	a	WAR	file
Now	we	need	to	package	the	oozie-distro	and	jars	that	we	copied	in	to	the	libext	folder
as	a	single	packaged	WAR	file.	This	WAR	file	will	be	deployed	in	tomcat	by	going	to	the
folder	/home/vagrant/oozie_install/oozie-4.2.0	and	executing	the	following
command:

bin/oozie-setup.sh	prepare-war

The	command	completes	with	a	WAR	file	being	created	in	the	folder,	as	shown	in	the
following	screenshot:

Prepare	a	WAR	file

Note
Exercise:	Execute	bin/oozie-setup.sh	help	and	read	all	the	commands	possible	with	the
setup	command.

Configure	Oozie	MySQL	database
If	you	remember,	we	configured	Ambari	Oozie	to	use	MySQL	database	for	Oozie.	We	will
do	the	same	for	this	instance	of	the	Oozie	server.

At	the	Mysql	prompt,	execute	the	following:

$	mysql	-u	root

CREATE	USER	'oozie'@'%'	IDENTIFIED	BY	'hadoop';

CREATE	DATABASE	oozie;

GRANT	ALL	PRIVILEGES	ON	oozie.*	TO	'oozie'@'%'	WITH	GRANT	OPTION;

This	will	create	the	Oozie	database,	which	will	be	used	by	the	server.

Go	to	/home/vagrant/oozie_install/oozie-4.2.0/conf	and	open	the	oozie-site.xml
file.	In	this	file,	all	the	Oozie	settings	are	declared.	All	the	Oozie	configuration	properties
and	their	default	values	are	defined	in	the	oozie-default.xml	file.

Oozie	resolves	configuration	property	values	in	the	following	order.

If	a	Java	System	property	is	defined,	it	uses	its	value,	else	if	the	Oozie	configuration	file
(oozie-site.xml)	contains	the	property,	it	uses	its	value,	else	it	uses	the	default	value
documented	in	the	oozie-default.xml	file.

Note
Oozie	does	not	use	the	oozie-default.xml	file	found	in	the	conf/	directory.	It	is	there	for
reference	purposes	only.

Let’s	edit	the	oozie-site.xml	and	configure	the	database	details.	You	can	use	the	vi
editor	or	copy	the	settings	from	the	already	created	file	using	the	following	command:

$	cp	/vagrant/files/oozie/oozie-site.xml	/home/vagrant/oozie_install/oozie-

4.2.0/conf/

If	you	want	to	edit	it	manually,	then	add	the	following	code:

<property>

		<name>oozie.service.JPAService.jdbc.driver</name>

		<value>com.mysql.jdbc.Driver</value>

		<description>JDBC	driver	class</description>

</property>

<property>

		<name>oozie.service.JPAService.jdbc.url</name>

		<value>jdbc:mysql://localhost:3306/${oozie.db.schema.name}?

createDatabaseIfNotExist=true</value>

		<description>JDBC	URL</description>

</property>

<property>

		<name>oozie.service.JPAService.jdbc.username</name>

		<value>oozie</value>

		<description>DB	user	name</description>

</property>

<property>

		<name>oozie.service.JPAService.jdbc.password</name>

		<value>hadoop</value>

		<description>DB	user	password</description>

</property>

Note
Exercise:	Execute	bin/ooziedb.sh	help	and	read	all	the	commands	possible	with	the
setup	command.

Let’s	create	the	database	tables	in	our	newly	created	database	using	the	following
command:

bin/ooziedb.sh	create	-sqlfile	oozie.sql	-run

The	following	screenshot	shows	the	output	generated:

Database	creation	success

Configure	the	shared	library
We	just	need	to	tell	Oozie	about	the	shared	libraries	before	starting	the	Oozie	server.	The
Oozie	sharelib	.tar.gz	file	bundled	with	the	distribution	contains	the	necessary	files	to
run	Oozie	Map-reduce	streaming,	Pig,	Hive,	Sqoop,	Hcatalog,	and	Distcp	actions.

Let’s	execute	the	following	command:

bin/oozie-setup.sh	sharelib	create	-fs	oozie-sharelib-4.2.0.tar.gz

The	following	screenshot	shows	the	output	generated:

Create	a	shared	library

Start	server	testing	and	verification
The	following	command	is	used	to	start	the	server:

bin/oozied.sh	start

Note
Exercise:	Execute	bin/oozied.sh	help	and	read	all	the	commands	possible	with	the
setup	command.

The	command,	on	successful	completion,	will	not	print	any	error	message.	We	can	check
the	status	of	Oozie	server	using	the	following	command:

bin/oozie	admin	-oozie	http://localhost:11000/oozie	-status

The	output	should	be:

system	mode:	NORMAL

We	can	also	check	the	Oozie	web	console	by	opening	the	URL
http://localhost:11000/oozie.

Summary
We	started	this	chapter	with	the	configuration	of	Oozie	inside	the	Hortonworks	virtual
machine.	We	learned	how	to	configure	the	database	for	Oozie.	Then	we	started	building
Oozie	from	the	source	code.	We	packaged	the	WAR	file	and	also	configured	the	MySQL
database.

This	completes	the	installation	for	the	Oozie	server.

In	the	next	chapter,	we	will	run	our	first	Oozie	job.	We	will	learn	how	to	run	Hadoop
filesystem	commands	in	Oozie.	We	will	also	install	Hue	and	create	our	Workflow	using
the	editor	provided	by	it.

Chapter	2.	My	First	Oozie	Job
In	this	chapter,	we	will	dive	in	the	world	of	Oozie	by	running	our	first	Oozie	job.	We	will
also	set	up	Hue,	which	will	allow	us	to	edit	Oozie	Workflows	from	a	graphical	user
interface.	We	will	be	using	the	Hortonworks	VirtualBox	machine	to	do	all	our	projects
throughout	the	book.

In	this	chapter,	we	will	do	the	following:

Install	and	configure	Hue	Oozie	Workflow	editor
Run	our	first	Oozie	Workflow	job
Understand	the	concept	of	Workflow,	Coordinator,	and	Bundles
Understand	Oozie	Fs	actions
Use	Oozie	console	to	see	the	job	status
Use	the	Oozie	command	line	to	get	the	job	status

Installing	and	configuring	Hue
The	Hortonworks	virtual	machine	already	has	one	version	of	Hue	running,	but	that	is	very
old.	We	will	install	the	latest	version	of	Hue	ourselves	since	it	has	a	better	Oozie	editor.

Start	the	virtual	machine.	Once	the	machine	is	up	and	running,	we	can	log	in	to	that	via
SSH	using	the	following	command:

$	ssh	root@127.0.0.1	-p	2222

The	default	password	is	hadoop.

Let’s	download	and	configure	Hue.	Here	are	the	steps	to	do	so:

1.	 Download	the	latest	release	of	Hue.
2.	 Install	the	dependencies	required	to	build	Hue	via	yum.
3.	 Build	the	Hue	package	using	the	make	command.
4.	 Before	you	execute	the	following	commands,	check	the	Hue	website

(http://gethue.com/category/release/)	and	find	out	the	latest	version	of	Hue.	I	have
used	3.8.1	in	this	book.	But	I	suggest	you	to	download	the	latest	one.	The	only
change	needed	in	the	following	is	to	change	the	version	3.8.1	to	whatever	latest
version	is	present:

$	mkdir	-p	/opt/learn_oozie/hue

$	chmod	777	/opt/learn_oozie/hue

$	chown	hue:hue	/opt/learn_oozie/hue

$	sudo	su	hue

$	cd	/opt/learn_oozie/hue

$	#	Download	Hue

$	wget	

https://dl.dropboxusercontent.com/u/730827/hue/releases/3.8.1/hue-

3.8.1.tgz

$	tar	-xvf	hue-3.8.1.tgz

$	cd	hue-3.8.1

$	Install	dependencies	required	to	build	Hue

$	yum	install	ant	asciidoc	cyrus-sasl-devel	cyrus-sasl-gssapi	gcc	gcc-

c++	krb5-devel	libtidy		libxml2-devel	libxslt-devel	make	mysql	mysql-

devel	openldap-devel	python-devel	sqlite-devel	openssl-devel	gmp-devel

$	Build	Hue

$	make	apps

5.	 Wait	for	some	time	for	Hue	to	get	ready.	You	can	also	run	the	following	scripts	to	do
all	the	steps	in	one	go:

<BOOK_CODE_HOME>/ch02/scripts/install_hue.sh

Once	it	is	successful,	you	will	get	following	message:

Post-processed	'zookeeper/art/line_icons.png'	as	

'zookeeper/art/line_icons.f50a9ca444bf.png'

Post-processed	'zookeeper/art/icon_zookeeper_24.png'	as	

'zookeeper/art/icon_zookeeper_24.e3168d30a559.png'

Post-processed	'zookeeper/help/index.	ml'

Post-processed	'zookeeper/css/zookeehtml'	as	

http://gethue.com/category/release/

'zookeeper/help/index.7570dbb625f3.htper.css'	as	

'zookeeper/css/zookeeper.dab3cbab10bb.css'

Post-processed	'zookeeper/js/base64.js'	as	

'zookeeper/js/base64.ce5e02af31e5.js'

576	static	files	copied	to	'/opt/learn_oozie/hue/hue-

3.8.1/build/static',	576	post-processed.

make[1]:	Leaving	directory	`/opt/learn_oozie/hue/hue-

3.8.1/apps'[hue@sandbox	hue-3.8.1]$

Tip
To	save	time	in	copying	files	from	host	machine	to	guest	and	vice	versa,	I	have
configured	my	host	machine’s	Home	folder	as	shared	folder	with	guest.	You	can	also
do	the	same.

We	need	to	start	Hue	now,	but	before	that	we	need	to	make	few	changes	to	the	Hue
configuration	file,	hue.ini.

Following	are	the	steps	to	make	the	changes	and	start	Hue:

1.	 The	default	port	of	Hue,	8888,	is	already	used	in	this	virtual	machine.	So	we	will
change	the	port	for	Hue	in	our	machine.

2.	 Open	the	file	in	vi	or	your	favorite	editor	and	enter	the	following	command:

$	vi	desktop/conf/hue.in

3.	 Change	the	port	from	8888	to	18888.

There	are	few	other	changes	related	to	hue.ini	in	which	we	need	to	change	the
hostname	to	sandbox.hortonworks.com.	I	have	already	done	those	changes	in	the
hue.ini	file.	So	you	can	just	copy	it	from	following	location:
<BOOK_CODE_HOME>/ch02/files/hue/hue.ini

We	need	to	add	one	port	forwarding	to	see	the	Hue	web	page	in	the	host	machine.

4.	 Open	running	VirtualBox.
5.	 Go	to	Settings	|	Networking	|	Port	Forwarding.	Click	on	Add	new	port

forwarding	rule.
6.	 Add	one	more	entry	to	forward	port	8888	on	guest	to	host	at	18888,	as	shown	in	the

following	screenshot:

Hue	port	forwarding

7.	 Let’s	start	Hue	using	the	following	commands:

$	sudo	su	hue

$	cd	/opt/learn_oozie/hue/hue-3.8.1

$	build/env/bin/supervisor

Once	this	is	successful,	you	will	get	the	following	message:

[hue@sandbox	hue-3.8.1]$	build/env/bin/supervisor

[INFO]	Not	running	as	root,	skipping	privilege	drop

starting	server	with	options	{'ssl_certificate':	None,	'workdir':	None,	

'server_name':	'localhost',	'host':	'0.0.0.0',	'daemonize':	False,	

'threads':	40,	'pidfile':	None,	'ssl_private_key':	None,	

'server_group':	'hue',	

'ssl_cipher_list':'DEFAULT:!aNULL:!eNULL:!LOW:!EXPORT:!SSLv2',	'port':	

18888,	'server_user':	'hue'}

8.	 On	the	host	machine,	use	your	browser	and	open	the	URL
http://127.0.0.1:18888/.

9.	 Pick	up	any	username	and	password	for	first	login.	I	have	chosen	hue	for	both

username	and	password.

Note
Take	some	time	to	browse	the	Hue	interface.	Hue	has	lots	of	functionality	we	can
run,	such	as	Hive,	Pig,	and	Oozie	jobs.

We	are	interested	in	the	Workflow	editor	functionality,	where	we	can	edit	and	watch	the
Oozie	jobs.	Click	on	Workflows	and	take	some	time	to	see	what	Hue	provides.

Note
This	often	happens	with	me!	Learning	new	things	make	me	forget	the	basics.	So,	if	you
need,	have	a	quick	refresher	for	XSD	by	referring	to	the	following	links:

http://www.w3schools.com/schema

http://www.w3schools.com/xml/default.asp

http://www.w3schools.com/schema
http://www.w3schools.com/xml/default.asp

Oozie	concepts
Before	we	move	further,	let’s	look	at	a	few	basic	concepts	of	Oozie.	In	each	chapter,	we
will	take	some	time	to	learn	some	new	concepts	of	Oozie	besides	looking	at	working
examples.

Workflows
Workflow	tells	Oozie	what	to	do.	They	are	the	DAG
(https://en.wikipedia.org/wiki/Directed_acyclic_graph)	representation	of	actions	(tasks).	It
is	a	collection	of	actions	arranged	in	required	dependency	graph.	As	a	part	of	Workflow’s
definition,	we	write	some	actions	and	call	them	in	a	certain	order.

These	are	of	various	types	for	tasks	that	we	can	do	as	a	part	of	the	Workflow,	for	example,
Fs	(Hadoop	filesystem)	action,	Pig	action,	Hive	action,	MapReduce	action,	Spark	action,
and	so	on.	We	will	discuss	Fs	action	in	this	chapter.

https://en.wikipedia.org/wiki/Directed_acyclic_graph

Coordinator
Coordinator	tells	Oozie	when	to	do	a	task,	for	example,	when	is	the	component	in	Oozie
world	decided	by	time	or	when	is	the	given	input	data	set	available.	We	will	discuss	the
Coordinators	later	in	this	book.

Bundles
Bundles	tell	Oozie	what	all	things	to	do	together	as	a	group,	for	example,	a	set	of
Coordinators	that	can	be	run	together	to	satisfy	a	given	business	requirement	can	be
combined	as	Bundle.

Book	case	study
Throughout	this	book,	we	will	try	to	solve	case	study	that	will	revolve	around	various
concepts	of	Oozie.

One	of	the	main	use	cases	of	Hadoop	is	ETL	data	processing.

Suppose	we	work	for	a	large	consulting	company	and	have	won	a	project	to	set	up	a	Big
Data	cluster	inside	the	customer	data	center.	On	a	high	level,	the	requirements	are	to	set	up
an	environment	that	will	satisfy	the	following	flow:

1.	 Get	data	from	various	sources	in	Hadoop	(file-based	loads	and	Sqoop-based	loads).
2.	 Preprocess	them	with	various	scripts	(Pig,	Hive,	and	MapReduce).
3.	 Insert	that	data	into	Hive	tables	for	use	by	analysts	and	data	scientists.
4.	 Data	scientists	then	write	machine	learning	models	(Spark).

We	will	use	Oozie	as	our	processing	scheduling	system	to	do	all	the	preceding	tasks.	Since
writing	actual	Hive,	Sqoop,	MapReduce,	Pig,	and	Spark	code	is	not	in	the	scope	of	this
book,	I	will	not	dive	into	explaining	business	logic	for	those.	So	I	have	kept	them	very
simple.

In	our	architecture,	we	have	one	landing	server	that	sits	outside	as	the	front	door	of	the
cluster.	All	source	systems	send	files	to	us	via	scp	and	we	regularly	(for	example,	nightly
to	keep	it	simple)	push	them	to	HDFS	using	the	hadoop	fs	-copyFromLocal	command.
This	script	is	cron-driven.	It	has	a	very	simple	business	logic:	run	every	night	at	8:00	P.M.
and	move	all	the	files	that	it	sees	on	the	landing	server	into	HDFS.

The	work	of	Oozie	starts	from	this	point:

1.	 Oozie	picks	the	file	and	cleans	it	using	Pig	Script	to	replace	all	the	delimiters,	from
comma	(,)	to	pipes	(|).	We	will	write	the	same	code	using	Pig	and	MapReduce.

2.	 Then,	push	those	processed	files	into	a	Hive	table.
3.	 For	different	source	systems	which	are	database-based	MySQL	tables,	we	do	nightly

Sqoop	when	the	load	of	the	database	is	light.	So,	we	extract	all	the	records	that	have
been	generated	on	the	previous	business	day.

4.	 We	insert	the	output	of	that	too	into	Hive	tables.
5.	 Analyst	and	data	scientists	write	there	magical	Hive	scripts	and	Spark	machine

learning	models	on	those	Hive	tables.
6.	 We	will	use	Oozie	to	schedule	all	of	these	regular	tasks.

Running	our	first	Oozie	job
We	will	start	with	a	very	simple	example.	In	this	chapter,	our	use	case	is	to	delete	a	given
folder	on	HDFS	via	Oozie.	In	our	case	study,	we	get	data	daily	in	one	folder	in	HDFS,	but
we	want	to	delete	the	previous	day’s	data.	We	want	to	keep	just	latest	version	in	our
system.	Let’s	solve	our	business	problem:

1.	 Log	in	to	Hue	and	go	to	Workflows	|	Editor.
2.	 In	the	top	row	of	editor,	there	are	various	types	of	actions.	Select	the	Hadoop	Fs

action.

Tip
Take	some	time	with	your	mouse	over	and	read	the	names	of	various	types	of	actions
that	Oozie	can	run.

3.	 Drag	the	Hadoop	Fs	action	to	the	editor	as	shown	in	the	next	screenshot.
4.	 Give	a	meaningful	name	to	this	action,	for	example,	my_delete_folder_action.
5.	 Give	the	path	of	the	folder	that	you	want	to	delete.	I	have	used

/user/hue/learn_oozie/my_first_oozie_job.	I	have	also	set	the	name	of	the
Workflow	as	My	First	Oozie	Job,	as	shown	in	the	following	screenshot:

Hue	Workflow	editor

6.	 Make	these	changes	and	click	on	Save	for	the	Workflow.
7.	 In	a	separate	SSH	session,	let’s	create	this	directory	in	HDFS	using	the	following

commands:

$	ssh	root@127.0.0.1	-p	2222

$	sudo	su	hue

$	hadoop	fs	-mkdir	–p	/user/hue/learn_oozie/my_first_oozie_job

$	hadoop	fs	-ls	/user/hue/learn_oozie

8.	 In	the	Oozie	editor,	click	on	the	Submit	button	(similar	to	the	play	button	on	a	DVD
player)

9.	 Click	once	more	to	confirm	the	submission	and	wait	for	your	job	to	finish.	From	the
following	screenshot,	we	can	see	that	our	first	job	has	been	completed	successfully:

Hue	workflow	success

10.	 To	confirm	that	the	folder	has	been	really	deleted,	go	to	the	SSH	session	and	enter	the
following	command:

$	hadoop	fs	-ls	/user/hue/learn_oozie

11.	 Come	back	to	the	Hue	editor	where	we	got	confirmation	that	our	job	has	completed
successfully.	Click	on	the	Definition	tab	and	see	the	actual	code	generated	by	the
Hue	editor.	It	should	look	like	the	following	code:

<workflow-app	name="My_first_Workflow"	xmlns="uri:oozie:workflow:0.5">

		<start	to="fs-2178"/>

				<kill	name="Kill">

						<message>Action	failed,	error	

message[${wf:errorMessage(wf:lastErrorNode())}]</message>

				</kill>

				<action	name="fs-2178">

						<fs>

								<delete	

path='${nameNode}/user/hue/learn_oozie/my_first_oozie_job'/>

						</fs>

						<ok	to="End"/>

						<error	to="Kill"/>

				</action>

		<end	name="End"/>

</workflow-app>

Let’s	take	some	time	to	understand	this;	there	are	few	concepts	to	pick	from	here.
The	code	is	composed	of	following:

Top	level	declaration	that	indicates	this	is	Workflow
Start	definition
Kill	definition
Action	definition
End	definition

If	you	remember,	Workflow	tells	Oozie	what	to	do.	The	what	part	comprises	different
Oozie	actions.	We	write	all	our	business	logic	using	actions,	which	can	be	of	various
types,	for	example	Pig,	MapReduce,	Hive,	Fs	action,	and	so	on.	Each	Workflow	has	one
start	node	and	one	end	node.	Composition	in	defined	order	of	nodes	make	the	what	part	of
Oozie	Workflow.

Now,	check	the	XML	code	carefully	to	understand	the	flow	of	the	code.	In	this	example,
our	Workflow	has	the	name	My_first_Oozie_Job.	At	the	start	tag,	we	are	directing
Oozie	to	go	to	the	action	whose	name	is	my_delete_folder_action.	This	action	is	of	type
fs.	This	action	represents	the	Hadoop	filesystem	operations.	In	our	example,	we	are	just
telling	Oozie	to	delete	the	folder	we	created.	We	are	saying	this:	if	this	completes
successfully,	go	to	the	end	(ok	to="End");	otherwise	go	to	kill	on	error	(error
to="Kill").

Note
Take	sometime	to	read	all	the	supported	options	in	Hadoop	Fs	actions	and	try	to	do	the
same	in	Oozie	via	Hue.	You	can	refer	to	details	of	Oozie	Fs	action	documentation	at
http://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html#a3.2.4_Fs_HDFS_action
Try	to	create	Workflow	in	which	you	should	try	to	create	folder	and	folder	change
permissions.

http://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html#a3.2.4_Fs_HDFS_action

Types	of	nodes
Workflow	is	composed	of	nodes;	the	logical	DAG	of	nodes	represents	what	part	of	the
work	is	done	by	Oozie.	Each	node	does	a	specified	work	and	on	success	moves	to	one
node	or	moves	to	another	node	on	failure.	For	example,	on	success	it	goes	to	the	OK	node
and	on	failure	it	goes	to	the	Kill	node.

Nodes	in	the	Oozie	Workflow	are	of	the	following	types:

Control	flow	nodes
Action	nodes

Let’s	discuss	them	in	detail.

Control	flow	nodes
These	nodes	are	responsible	for	defining	start,	end,	and	control	flow	of	what	to	do	inside
the	Workflow.	These	can	be	one	of	following:

Start	node
End	node
Kill	node
Decision	node
Fork	and	Join	node

You	have	already	seen	the	examples	of	the	Start,	End,	and	Kill	nodes.	In	the	context	of
programming,	we	can	say	that	Decision	nodes	represent	the	switch	or	if	else	conditions.
Fork	and	Join	nodes	represent	the	parallel	branches	of	code.

Let’s	see	a	sample	syntax	for	Decision	and	Fork/Join	nodes	next.

Here’s	the	general	syntax	for	a	Decision	node:

<workflow-app	name="[workflow_name]"	xmlns="uri:oozie:workflow:0.5">

		...

		<decision	name="[node_name]">

				<switch>

						<case	to="[node_name1]">[PREDICATE]</case>

								...

						<case	to="[node_name2]">[PREDICATE]</case>

						<default	to="[node_name3]"/>

				</switch>

		</decision>

		...

</workflow-app>

Here’s	the	general	syntax	for	the	Fork	and	Join	nodes:

<workflow-app	name="[workflow_name]"	xmlns="uri:oozie:workflow:0.5">

		...

		<fork	name="[node_name]">

				<path	start="[node_name1]"	/>

				...

				<path	start="[node_name2]"	/>

		</fork>

				...

		<join	name="[join_node_name]"	to="[node_name3"	/>

		...

</workflow-app>

Action	nodes
Action	nodes	represent	the	actual	processing	tasks	that	are	executed	when	called.	These
are	of	various	types,	for	example,	Pig	action,	Hive	action,	and	MapReduce	action.	We	will
learn	how	to	use	them	in	course	of	this	book.

Note
Read	the	XSD	schema	of	the	Workflow	at
http://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html#Oozie_Schema_Version_0.5
to	see	the	XSD	of	the	concepts	that	we	have	covered	so	far.	Note	the	elements	which	are
mandatory	and	which	are	optional	in	these	XML	elements.	Read	about	the	following
complex	types:	complexType	name="FS",	complexType	name="ACTION",	complexType
name="WORKFLOW-APP",	complexType	name="START",	and	complexType	name="END".

Let’s	finish	off	this	chapter	with	two	more	topics	that	are	very	useful	for	checking	the
progress	of	the	job	submitted.

http://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html#Oozie_Schema_Version_0.5

Oozie	web	console
Oozie	web	console	is	a	web-based	tool	that	gives	a	read-only	view	about	the	jobs.

In	your	web	browser,	open	the	URL	http://127.0.0.1:11000/oozie,	as	shown	in	the
following	screenshot:

Oozie	web	console

At	the	top	of	the	screen,	we	have	following	tabs:

Workflows
Coordinators
Bundles
System	Info
Instrumentation
Settings

Click	on	our	job	ID	My	First	Oozie	Job;	you	can	see	we	have	many	other	jobs	also	run.
You	will	have	a	different	view.	Click	on	your	job	and	see	that	Oozie	has	divided	the	jobs
as	per	tasks	in	the	Workflow.	Start	the	Fs	action	and	end	were	the	steps	for	the	Workflow,
so	each	of	them	is	represented	in	the	log.

Click	on	the	last	tab	that	says	Job	DAG.	This	shows	the	flow	of	the	job.	Since	our	job	was
simple,	DAG	is	just	a	linear	flow.	In	future	jobs,	we	will	see	more	complex	DAG.

The	important	use	of	the	console	is	when	our	job	fails.	Let’s	see	an	example	of	a	job	that
has	not	completed	successfully.	We	can	click	on	the	required	action	to	see	the	logs	and

detailed	error	messages	as	shown	in	the	following	screenshot:

Oozie	failed	job	web	console

Note
If	the	job	is	not	showing	time	as	per	your	time	zone,	use	the	Oozie	web	console’s	Settings
tab	and	change	the	time	zone	settings	as	per	your	time	zone.

The	Oozie	command	line
In	the	last	section	of	this	chapter,	we	will	see	how	to	view	the	status	of	our	job	via	the
command	line.	We	have	already	seen	one	way	of	checking	job	status	via	the	Oozie	web
console.

Start	a	SSH	session	to	the	virtual	machine	and	use	the	following	command:

$	oozie	job	-info	0000007-150727083427440-oozie-oozi-W	--oozie	

http://sandbox.hortonworks.com:11000/oozie

The	general	syntax	is	as	follows:

$	oozie	job	-info	<job_id>	--oozie	<oozie_server_url>

The	following	screenshot	shows	the	output	of	the	preceding	command:

Oozie	job	info

Note
Explore	the	output	of	the	Oozie	help	job.	Note	the	various	options	and	commands	that	we
can	execute	on	a	given	job.

Summary
In	this	chapter,	we	saw	how	to	run	a	simple	Oozie	job	from	Hue	console.	We	discussed
concepts	of	Workflow	in	detail	and	saw	how	to	use	Fs	action.	We	also	checked	the	job
logs	using	web	console	and	submitted	the	job	using	the	command	line.

In	the	next	chapter,	we	will	see	how	to	submit	a	job	without	using	Hue.	We	will	discuss
how	to	use	the	Oozie	command-line	tool	to	submit	a	job	and	get	an	idea	about	the
job.properties	file.	We	will	also	look	at	Control	nodes,	Fork,	and	Join	in	detail.

Chapter	3.	Oozie	Fundamentals
In	this	chapter,	we	will	see	how	to	create	Oozie	Workflow	to	solve	a	given	business
problem.	Remember	we	are	learning	the	what	part	of	the	data	pipeline	solution	using
Workflow	in	this	part	of	book.	We	will	eventually	move	to	the	when	(time)	part	using
Coordinators	in	the	coming	chapters.

In	this	chapter,	we	will	do	the	following:

Create	an	Oozie	Workflow	using	Hue	and	by	manual	XML	writing
Run	Oozie	applications	with	and	without	Hue
Submit	Oozie	jobs	from	command	line
Understand	the	concept	of	Control	nodes
Understand	Workflow	states
Use	expression	language	functions
Use	the	Oozie	Email	action

Chapter	case	study
We	will	start	this	chapter	with	a	case	study	example.	In	the	previous	chapter,	we	created
our	first	Oozie	Workflow	to	delete	a	given	directory;	we	will	build	on	top	of	that.

In	this	chapter,	our	use	case	is	as	follows.

On	a	daily	basis	we	get	incoming	data	in	a	HDFS	directory.	Our	Workflow	comes	into
action	to	process	it	via	a	simple	Pig	script.	If	we	find	the	directory	empty,	we	send	a	mail
to	the	support	team	stating	we	did	not	get	any	data	today.	This	is	a	very	common	data
ingestion	pattern	in	Hadoop	for	file-based	loads.

There	are	many	concepts,	which	will	be	introduced	by	use	of	this	example;	I	thought	to	do
it	this	way	rather	than	sharing	the	concept	first	and	sharing	the	example	later.	Using	this
example,	we	will	cover	the	following	concepts:

Decision	nodes
Expression	language
Oozie	command-line	execution

Let’s	get	started.	The	data	ingestion	pipeline	for	our	use	case	can	be	represented	as
follows:

Pig	Preprocess	Decision	node

Open	Hue	and	go	to	Editor	|	Workflows	to	create	a	new	Workflow	in	the	Workflow
editor.	The	Start	and	End	nodes	are	already	created	by	Hue.	So,	we	just	need	to	add	three

more	nodes:

Decision	node
Email	node
Pig	Processing	node

Tip
If	you	are	not	using	Hue,	then	you	can	move	on.	Later,	when	we	do	the	same	without	Hue,
you	can	pick	up	and	get	into	action.	There	is	nothing	which	you	cannot	do	without	Hue;
it’s	just	that	you	have	to	write	XML	yourself,	which	is	pretty	easy.	If	you	want	to	see	the
XML,	then	you	can	open	the	ch03	code	folder.

We	will	discuss	each	of	these	nodes	later	after	creating	the	Workflow	in	Hue.	We	can	see
in	the	flow	chart	that	we	have	a	Decision	node	that	branches	depending	upon	whether	the
case	evaluates	to	true	or	false.

Before	we	even	start	creating	the	Workflow,	let’s	see	what	is	inside	the	Pig	script	using	the
following	command:

cat	<BOOK_CODE_LOCATION>/learn_oozie/ch03/pig/replace_delimiters.pig

The	Pig	script	is	pretty	simple:

inputData	=	load	'$inputPath'	using	PigStorage(',');

store	inputData	into	'$outputPath'	using	PigStorage('|');

It	reads	the	input	data,	which	is	comma-separated	data,	and	stores	it	as	pipe-separated
data.	Perform	the	following	steps:

1.	 Drag	the	Pig	action	in	the	Hue	Workflow	editor.
2.	 Enter	the	following	details:

Field Value

Script	Location /user/hue/learn_oozie/ch03/pig/replace_delimiters.pig

Parameters inputPath=/user/hue/learn_oozie/ch03/input/

Parameters outputPath=/user/hue/learn_oozie/ch03/output

3.	 Click	on	the	gear	icon	on	the	top-right	corner	of	the	Pig	action.
4.	 In	the	Prepare	step,	add	the	path	to	delete:

/user/hue/learn_oozie/ch03/output

5.	 This	job	fails	if	the	output	path	already	exists.	So	we	are	just	deleting	the	Pig	output
path	before	starting	the	Pig	action.

6.	 Drag	the	Email	action	to	left	of	the	Pig	action	in	the	Hue	Workflow	editor.
7.	 Enter	the	following	details:

Field Value

To	addresses bigdata@mysupport.com.fake

Subject No	data	today

Body No	data	please	check

Note
Note	that	when	you	drag	two	actions	side	by	side,	one	additional	action	is
automatically	inserted	by	Hue.	It	says	Fork	action.	Click	on	Convert	to	Decision
node,	as	we	need	it	as	Decision	node.

8.	 In	the	Decision	node,	we	can	see	the	if	statements,	which	are	case	statements	of	the
Decision	node.	Fill	them	as	shown	in	following	table:

Condition Transition	node

${	fs:dirSize("/user/hue/learn_oozie/ch03/input")	gt	0	} Pig	action

default Email	action

The	condition	check	is	syntax	and	is	known	as	EL	functions.	It	will	be	discussed	in
detail	shortly.

In	simple	language,	we	are	saying	that	if	the	size	of	directory	data	is	greater	than
zero,	then	call	the	Pig	action	or	else	call	the	Email	action.

Note
Currently,	the	Decision	nodes	cannot	be	deleted	in	Hue.	If	you	end	up	having	two,
then	you	have	to	start	over	again.	So	be	careful	of	what	you	do.	It’s	expected	that	this
will	be	fixed	in	Hue	3.9.0.	You	can	read	the	details	at	JIRA	available	at
https://issues.cloudera.org/browse/HUE-2550.	Of	course,	you	can	always	edit	the
XML	file	manually	outside	Hue.

9.	 Click	on	the	Save	button.

The	Workflow	should	look	something	like	this:

https://issues.cloudera.org/browse/HUE-2550

Pig	pre-process	Workflow	editor

10.	 We	are	now	ready	to	run	our	Workflow.	But	before	that,	we	need	to	copy	the	Pig
script	and	create	input	data	for	testing.	We	are	copying	the	book’s	source	code	using
the	following	command:

hadoop	fs	-copyFromLocal	<BOOK_CODE_LOCATION>/learn_oozie	/user/hue/

11.	 Click	on	the	Run	button	and	watch	your	Workflow	running.
12.	 If	the	Workflow	fails	for	any	reason,	click	on	Log	to	find	the	error.
13.	 After	the	Workflow	finishes,	click	on	the	Definition	tab	on	Hue	and	check	the

workflow.xml	file	generated	by	Hue.	I	have	saved	this	XML	file	inside	the	code
folder	at	the	following	location:

<BOOK_CODE_LOCATION>/learn_oozie/ch03/hue/workflow.xml

Note
Try	to	delete	the	input	data	folder	/user/hue/learn_oozie/ch03/input	and	check
whether	the	Email	action	is	executed	or	not.	You	might	not	get	actual	e-mail	yet,	read
the	Email	action	configuration	section	on	how	to	configure	SMTP	server	discussed
later	in	this	chapter.

14.	 The	workflow.xml	file,	which	represents	our	use	case,	is	shown	in	the	following
screenshot.	Take	some	time	to	read	it	carefully	and	compare	it	with	the	flowchart	we
saw	earlier:

Workflow	XML

Our	Workflow	starts	with	decision-74b2	(line	2).	Then,	Decision	node	decides
where	to	go,	pig-82df	(line	17	and	23)	or	emal-0941	(line	6	and	20).	After	that,	it
chooses	to	End	or	Kill	depending	on	whether	it	is	successful	or	fails.	You	might
notice	the	names	generated	by	Hue	for	nodes	are	not	human	friendly.	You	can	create
your	own	names	when	you	write	workflow.xml	yourself.

Let’s	take	some	time	to	see	each	of	the	sections	of	Workflow	in	detail.

The	Decision	node
The	general	syntax	for	the	Decision	node	is	as	follows:

<workflow-app	name="[WF-DEF-NAME]"	xmlns="uri:oozie:workflow:0.1">

		...

		<decision	name="[NODE-NAME]">

				<switch>

						<case	to="[NODE_NAME]">[PREDICATE]</case>

								...

						<case	to="[NODE_NAME]">[PREDICATE]</case>

						<default	to="[NODE_NAME]"/>

				</switch>

		</decision>

		...

</workflow-app>

The	preceding	syntax	is	the	equivalent	of	switch	case	statements	in	Java	or	other
languages.	There	is	no	fall	through	of	switch	statements.	Depending	upon	which	case
statement	evaluates	to	true,	the	corresponding	node	will	be	executed.	The	default	case	is
mandatory	for	the	Decision	node.

In	our	use	case,	the	condition	is	as	follows:	if	we	have	any	data,	then	process	it,	or	else
drop	a	mail	to	the	support	team.

The	default	case	is	to	mail	the	support	team.

The	Email	action
The	Email	action	sends	an	e-mail	to	bigdata@mysupport.com.fake	with	subject	as	No
data	and	body	as	No	data	please	check.

In	a	real	production	job	notification,	our	mail	will	be	more	detailed	and	have	context	about
the	failed	job,	for	example,	job	ID,	time,	and	so	on.	We	will	get	back	to	this	in	a	while.

You	can	also	include	attachment	messages	in	the	mail	sent.	For	details	about	the	Oozie
Email	action,	check	the	schema	on	website	at
https://oozie.apache.org/docs/4.2.0/DG_EmailActionExtension.html.

https://oozie.apache.org/docs/4.2.0/DG_EmailActionExtension.html

Expression	Language	functions
Look	at	line	18	in	workflow.xml,	which	says	${
fs:dirSize("/user/hue/learn_oozie/ch03/input")	gt	0	}.	This	line	gives	us	the	size
of	the	HDFS	directory.	This	is	an	example	of	the	HDFS	EL	functions.

EL	functions	allow	us	to	build	complex	parameterization	of	the	Workflow	by	providing	a
predefined	set	of	functions	and	properties.

There	are	many	types	of	Expression	Language	functions:

Basic	EL	constants
Basic	EL	functions
Workflow	EL	functions
Hadoop	EL	constants
Hadoop	EL	functions
Hadoop	Jobs	EL	function
HDFS	EL	functions
HCatalog	EL	functions

We	will	discuss	a	few	of	them	in	brief.

Basic	EL	constants
Basic	EL	constants	are	representative	of	the	size:

KB:	1	kilobyte
MB:	1	megabyte
GB:	1	gigabyte
TB:	1	terabyte
PB:	1	petabyte

Example	usage	can	be	checked	if	the	size	of	HDFS	directory	is	greater	than	5	*	GB.

Basic	EL	functions
Some	of	the	basic	EL	functions	are	as	follows:

String	timestamp():	This	gives	the	current	date	and	time	in	ISO8601	format
String	trim(String	s):	This	gives	the	trimmed	value	of	the	given	string

Workflow	EL	functions
These	are	very	interesting	EL	functions.	Some	of	them	are:

String	wf:id():	Gives	the	Workflow	job	ID	for	the	executing	Workflow	job
String	wf:name():	Gives	the	Workflow	application	name	for	the	executing
Workflow	job
String	wf:lastErrorNode():	Gives	the	name	of	the	last	Workflow	action	node	that
exits	with	an	ERROR	exit	state
String	wf:errorMessage(String	message):	Gives	the	error	message	for	the
specified	action	node.

As	an	example	usage,	the	preceding	functions	will	be	calculated	by	Oozie	depending	upon
the	name	of	the	Workflow	(In	the	current	example,	String	wf:name()	=>
Pig_Replace_Delimiter_Ch03)	and	time	stamp.

Change	the	body	message	of	the	e-mail	message,	which	we	wrote	earlier.	“We	did	not	get
any	data	for	wf:name()	which	executed	at	timestamp()“.	Try	to	execute	it	with	no	input
data	now.	Notice	the	change	in	the	e-mail	content.

Hadoop	EL	constants
Following	are	the	EL	constants:

RECORDS:	This	records	the	counters	group	name	for	Hadoop
MAP_IN:	This	maps	the	input	records	counter	name
MAP_OUT:	This	maps	the	output	records	counter	name
REDUCE_IN:	This	reduces	the	input	records	counter	name
REDUCE_OUT:	This	reduces	the	output	records	counter	name
GROUPS:	1024	*	Hadoop	mapper	and	reducer	record	groups	counter	name

HDFS	EL	functions
We	will	discuss	HDFS	EL	functions	and	then	move	on	to	a	different	topic.	You	can	read
more	about	EL	functions	on	Oozie	documentation	website.

HDFS	EL	functions	are	related	to	the	HDFS	filesystem.	We	have	already	seen	one	when
we	checked	the	size	of	directory.	Some	of	other	functions	are	as	follows:

boolean	fs:exists(String	path):	Returns	true	or	false	depending	on	whether
the	specified	path	URI	exists	or	not
boolean	fs:isDir(String	path):	This	returns	true	if	the	specified	path	URI	exists
and	it	is	a	directory;	otherwise,	it	returns	false
long	fs:dirSize(String	path):	This	returns	the	size	in	bytes	of	all	the	files	in	the
specified	path
long	fs:fileSize(String	path):	This	returns	the	size	in	bytes	of	a	specified	file

For	all	the	functions,	the	path	must	include	the	HDFS	URI,	for	example,
hdfs://mycluster:8020/user/hue.

We	will	wrap	up	the	section	of	EL	functions	here.	You	can	read	about	all	the	available	EL
functions	in	the	online	documentation	at
https://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html#a4.2_Expression_Langu

https://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html#a4.2_Expression_Langu

Email	action	configuration
To	send	e-mails	from	the	Oozie	server,	we	need	to	configure	Oozie	with	SMTP	server
details.	These	settings	need	to	be	configured	in	the	oozie-site.xml	file	for	the	server.
The	details	are	as	follows:

Parameter Sample	Value

oozie.email.smtp.host localhost

oozie.email.smtp.port 25

oozie.email.from.address oozie@localhost

oozie.email.smtp.auth false

oozie.email.smtp.username Not	needed	if	auth	is	false

oozie.email.smtp.password Not	needed	if	auth	is	false

Note
Think	of	some	Workflow	in	which	you	will	do	parallel	execution	of	two	actions.	Try	to	do
the	same	using	Fork	and	Join	action	in	Hue.	In	the	current	example,	you	can	add	one	more
action	in	which	you	say	you	create	a	flag	(Fs	touchz)	indicating	data	is	received.	So	add
the	Fork	node	before	the	Pig	action	and	run	both	Pig	and	Fs	actions	together.	To	do	so,
you	need	to	drag	the	Fs	action	to	left	of	the	Pig	action.

So	far,	we	have	used	Hue	to	do	all	our	work.	But	there	is	no	need	to	use	Hue	to	work	with
Oozie.	In	this	section,	we	will	write	workflow.xml	and	learn	how	to	run	Oozie	jobs	from
the	command	line.	But	before	that,	we	need	to	learn	the	following	concepts:

Job	property	file
Command-line	execution

Job	property	file
I	have	written	the	Workflow	with	my	own	convention	as	per	the	flowchart	we	saw	at	the
start.	Take	some	time	and	compare	it	with	the	flowchart.	Also,	note	the	use	of	EL
functions,	which	we	saw	earlier	(replacing	hue	with	wf:user	and	e-mail	template	body
section).	Check	the	body	message	of	the	Kill	section	in	the	following	screenshot,	which	is
an	EL	function:

Workflow	XML	command	line

Save	the	preceding	content	as	workflow.xml.	In	the	book	source	code,	it	is	present	in	the
<BOOK_CODE_LOCATION>/learn_oozie/ch03/commandline	folder.

If	you	look	at	the	Workflow	carefully,	it	has	the	following	variables:

${jobTracker}

${nameNode}

When	we	run	a	job	from	the	command	line,	we	abstract	and	provide	all	these	variables	in
the	form	of	the	job.properties	file	as	parameters.	The	job.properties	file	looks	like
this:

#	The	resource	manager	RPC	port

jobTracker=sandbox.hortonworks.com:8050

#	Namenode

nameNode=hdfs://sandbox.hortonworks.com:8020

#	Use	the	Oozie	Shared	library

oozie.use.system.libpath=True

#	Default	shared	lib	path	is	/user/oozie/share/lib

oozie.libpath=hdfs://sandbox.hortonworks.com:8020/user/oozie/share/lib

#	Read	the	workflow	definition	from	this	path

oozie.wf.application.path=hdfs://sandbox.hortonworks.com:8020/user/hue/lear

n_oozie/ch03/commandline

The	job.properties	file	is	a	typical	Java	property	file	in	which	you	define	key=value
definitions.	The	values	of	variables	that	we	used	in	workflow.xml	are	defined	in	this
property	file.	Comments	in	the	property	file	start	with	a	hash	(#).

Since	we	are	on	the	topic	of	parameters	and	configuration,	we	should	also	discuss	a	few
methods	in	which	we	can	do	the	same	in	Workflows.	We	will	discuss	these	in	detail	in
future	chapters:

Parameters	(inline	and	command	line)
Global	tag	<global>
Configurations	tag	<configuration>
config-default.xml

The	idea	of	all	of	the	preceding	methods	is	to	avoid	code	duplication.

Note
Read	the	XSD	schema	of	Workflow	at
http://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html#Oozie_Schema_Version_0.5
and	see	the	XSD	of	following	concepts	which	we	have	covered	till	now.	Note	the	elements
that	are	mandatory	and	the	ones	that	are	optional	in	these	XML	elements.	Read	about	the
following	complex	types:	complexType	name="WORKFLOW-APP",	complexType
name="PARAMETERS",	and	complexType	name="GLOBAL".

To	see	the	schema	graphically,	open	the	SVG	diagram	present	in
<BOOK_CODE_HOME>/xsd_svg/workflow_0.5.svg	using	some	modern	browser	like
Chrome.	Once	opened,	click	on	Collapse	All	and	then	navigate	to	the	right	leaf.	Open
only	the	path	that	you	want	to	check.	For	example,	click	on	Collapse	All	and	then	click	on
the	+	sign	near	Schema.	Then,	click	on	the	+	sign	near	Workflow-app.	You	will	see
something	like	the	following	diagram.	The	goal	is	to	note	how	the	given	Workflow
element	is	composed	and	which	of	those	elements	are	mandatory	or	optional:

http://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html#Oozie_Schema_Version_0.5

Workflow	SVG	diagram

Submission	from	the	command	line
Following	are	the	steps	to	submit	the	job	from	the	command	line:

1.	 Copy	the	book	source	code	to	HDFS	if	not	done	at	the	beginning	of	this	chapter.
2.	 From	the	command	line,	run	the	job	with	the	following	command:

cd	<BOOK_CODE_LOCATION>/learn_oozie/ch03oozie	job	-run	-oozie	

http://localhost:11000/oozie	-config	commandline/job.properties

3.	 On	successful	submission,	the	command	returns	the	Oozie	job	ID	with	which	the	job
was	started.	We	can	also	monitor	the	job	from	Oozie	web	console	with	that	job	ID.

4.	 Note	the	job	ID	returned	by	the	Oozie	server	and	we	can	use	that	to	check	the	status
of	the	job	from	the	command	line	using	the	following	command:

oozie	job	–info	<id>

5.	 Wait	for	the	job	to	finish	and	then	check	the	output	generated	in	HDFS.
6.	 Go	to	Oozie	web	console	at	http://127.0.0.1:11000/oozie/	and	see	the	Job	DAG.

Does	it	match	with	the	flowchart	which	we	saw	earlier?

Note
Use	the	Oozie	help	job	to	find	the	command,	which	you	can	use	to	see	the	log	of	the
preceding	launched	job.

Tip
We	had	one	complex	job	in	which	Workflow	had	various	Decision	nodes,	Forks,	and
Joins.	After	long	tests	and	trial	runs	to	get	the	Workflow	working,	we	deployed	the	code	in
production.	One	good	thing	about	using	a	flowchart	is	that	you	can	see	your	data	flow	and
then	code.	During	those	days,	the	Hue	editor	was	not	there	to	see	the	Workflow	visually.
The	production	team	deployed	the	change	over	late	Friday	evening	and	we	called	the
week	off.	The	first	thing	we	did	when	we	came	back	next	week	was	to	check	our	output.
To	our	surprise,	the	Workflow	never	ran.	It	just	was	hanging	in	the	PREP	state.	After
checking	the	code	deployment	again,	we	were	running	out	of	ideas	as	to	why	the	job	was
not	running.	To	our	surprise,	we	found	that	we	never	used	the	flag	-run	to	start	the	job;	we
gave	the	wrong	instructions	to	the	production	team	to	just	submit	the	job.	One	of	the	tools
that	comes	in	handy	when	troubleshooting	a	job	that	is	not	running	(or	not	running	as
expected)	is	the	oozie	job	log	command.

Workflow	states
In	this	section,	we	will	see	all	states	the	Oozie	Workflow	job	goes	through	when	we
submit	a	job.	The	possible	states	and	transitions	are	shown	in	the	following	figure.	The
outgoing	arrow	shows	that	the	job	can	go	from	source	to	destination	state:

Job	states

A	Workflow	job	can	be	in	any	of	the	following	states:

PREP:	When	we	initially	submit	the	Workflow	to	the	Oozie	server	and	it’s	not
running,	the	job	is	in	PREP	state
RUNNING:	When	job	starts	execution,	it	goes	to	this	state
SUSPENDED:	A	running	job,	which	is	suspended,	will	be	in	this	state	unless	the
Workflow	is	resumed
SUCCEEDED:	When	a	RUNNING	Workflow	job	completes	successfully	to	the
End	node,	it	is	said	to	be	SUCCEEDED
KILLED:	When	an	administrator	kills	a	CREATED,	RUNNING,	or	SUSPENDED
Workflow	job	or	the	owner	via	a	request	to	Oozie,	the	Workflow	job	ends	and
reaches	the	KILLED	state
FAILED:	When	a	RUNNING	Workflow	job	fails	due	to	an	error,	it	ends	and	reaches
the	FAILED	final	state

Summary
In	this	chapter,	we	covered	a	lot	of	ground.	We	saw	how	to	write	Oozie	workflow.xml	and
run	it	via	the	Oozie	command	line.	We	also	discussed	how	to	check	the	status	of	the	same
using	command	line.	Besides	this,	we	covered	the	concepts	of	Decision	and	Fork	nodes,
EL	functions,	and	Workflow	states.

In	the	next	chapter,	we	will	discuss	Coordinators	that	decide	the	when	component	of	data
processing	pipeline	scheduling	via	Oozie.	We	will	also	see	how	to	run	MapReduce	jobs
using	Oozie.

Chapter	4.	Running	MapReduce	Jobs
In	this	chapter,	we	will	learn	how	to	run	MapReduce	jobs	using	Oozie.	MapReduce	jobs
are	of	two	types:	Java	MapReduce	jobs	and	Streaming	jobs.	Streaming	jobs	are	written	in
languages	other	than	Java.	We	will	also	enter	in	to	the	world	of	when	part	of	Workflow
execution	using	Coordinators	to	schedule	our	jobs.

In	this	chapter,	we	will	do	the	following:

Run	Java	MapReduce	jobs	from	Oozie
Run	Streaming	jobs	from	Oozie
Run	Coordinator	jobs

From	the	concept	point	of	view,	we	will:

Understand	the	concept	of	Coordinators
Understand	the	concept	of	cron-based	frequency	schedules
Understand	the	importance	of	timezone	in	Oozie
Understand	the	concept	of	Datasets

Chapter	case	study
The	customer	for	whom	we	work	also	keeps	track	of	what	its	competitors	are	doing.	They
keep	a	close	eye	on	all	the	press	releases,	job	postings,	and	public	interactions	of
competitors.	Information	about	competitors	from	various	sources	is	captured	in	text
format	and	fed	to	the	Hadoop	system.	Every	weekend,	analysis	is	done	to	see	trending
topics	and	words,	which	are	used	by	competitors	to	guess	about	the	areas	they	are	working
or	investing	in.

The	preceding	paragraph	is	an	example	of	first-level	text	analytics	problem	in	Big	Data
space.	To	solve	this	problem,	we	will	run	classic	word	count	using	MapReduce.	We	will
use	it	for	word	count	each	time	a	given	word	appears	in	all	of	the	documents.

Running	MapReduce	jobs	from	Oozie
We	will	see	how	to	write	a	simple	MapReduce	job	for	word	count	and	schedule	it	via
Oozie.	Later,	we	will	wrap	this	in	our	first	Coordinator	job.	Along	this	journey,	we	will
learn	some	concepts	and	apply	them	in	examples.

I	have	already	saved	one	word	count	Java	MapReduce	code,	which	we	will	try	to	run	over
our	input	data.	Let’s	dive	into	the	code.	You	can	check	out	the	mapreduce	folder	in
Book_Code_Folder/learn_oozie/ch04/.

Note
Check	the	workflow_0.5.xsd	file	in	the	xsd_svg	folder	and	note	the	inputs	needed	for	the
MapReduce	action	to	run.

The	Workflow	is	shown	in	the	following	code	and	we	can	see	the	arguments	are	the	same
as	the	one	we	need	in	the	Hadoop	jar	command	for	running	a	MapReduce	job.	At	the
start	of	the	job,	we	delete	the	output	folder	as	Hadoop	fails	the	job	if	the	output	folder
already	exists.

The	mapper	that	we	need	is	life.jugnu.learnoozie.ch04.WordCountMapper	and	the
reducer	is	life.jugnu.learnoozie.ch04.WordCountReducer.	Both	of	them	are	present	in
jar	from	the	lib	folder	in	directory	where	this	workflow.xml	is.	Oozie	includes	all	the
files	in	the	lib	folder	to	the	classpath	of	a	job	when	it	is	running	over	the	cluster:

<workflow-app	name="Mapreduce_Job"	xmlns="uri:oozie:workflow:0.5">

		<start	to="wordcount"/>

				<kill	name="Kill">

						<message>Action	failed,	error	

message[${wf:errorMessage(wf:lastErrorode())}]</message>

				</kill>

				<action	name="wordcount">

						<map-reduce>

								<job-tracker>${jobTracker}</job-tracker>

								<name-node>${nameNode}</name-node>

										<prepare>

												<delete	

path="${nameNode}/user/hue/learn_oozie/ch04/mapreduce/output"/>

										</prepare>

												<configuration>

														<property>

																<name>mapreduce.input.fileinputformat.inputdir</name>

																<value>${input}</value>

														</property>

														<property>

																<name>mapreduce.output.fileoutputformat.outputdir</name>

																<value>${output}</value>

														</property>

														<property>

																<name>mapreduce.job.map.class</name>

																<value>life.jugnu.learnoozie.ch04.WordCountMapper</value>

														</property>

														<property>

																<name>mapreduce.job.reduce.class</name>

																<value>life.jugnu.learnoozie.ch04.WordCountReducer</value>

														</property>

														<property>

																<name>mapred.mapper.new-api</name>

																<value>true</value>

														</property>

														<property>

																<name>mapred.reducer.new-api</name>

																<value>true</value>

														</property>

														<property>

																<name>mapreduce.map.output.key.class</name>

																<value>org.apache.hadoop.io.Text</value>

														</property>

														<property>

																<name>mapreduce.map.output.value.class</name>

																<value>org.apache.hadoop.io.LongWritable</value>

														</property>

												</configuration>

										</map-reduce>

								<ok	to="End"/>

						<error	to="Kill"/>

				</action>

		<end	name="End"/>

</workflow-app>Job	properties

The	job.properties	file
The	variable	values	for	input	and	output	are	being	passed	from	the	job.properties	file.
When	we	discuss	the	concept	of	Datasets,	we	will	see	how	to	calculate	the	input	path
dynamically	from	Datasets.	In	the	current	example,	we	are	going	to	use	static	paths.	The
job.properties	file	provides	all	the	values	for	variables	declared	in	Workflow.	The
corresponding	job.properties	file	is	shown	here:

jobTracker=sandbox.hortonworks.com:8050

nameNode=hdfs://sandbox.hortonworks.com:8020

oozie.use.system.libpath=True

oozie.wf.application.path=hdfs://sandbox.hortonworks.com:8020/user/hue/lear

n_oozie/ch04/mapreduce

oozie.libpath=hdfs://sandbox.hortonworks.com:8020/user/oozie/share/lib

input=/user/hue/learn_oozie/ch04/mapreduce/input/

output=/user/hue/learn_oozie/ch04/mapreduce/output

Running	the	job
Let’s	run	this	job	using	the	following	steps:

1.	 Open	an	SSH	session	to	the	virtual	machine	running	our	cluster.
2.	 Copy	the	full	code	of	the	chapter	if	not	yet	done	into	HDFS.
3.	 Submit	and	run	the	job.
4.	 Go	to	the	folder	where	code	is	present	and	run	the	Oozie	job	using	the	following

command:

cd	<BOOK_CODE_FOLDER>/learn_oozie/ch04/mapreduce

oozie	job	-run	-oozie	http://localhost:11000/oozie	-config	

job.properties

It	will	return	the	job	ID	and	then	you	can	check	the	status	of	the	running	job	in	Oozie
web	console.

5.	 Once	the	job	is	complete,	you	can	check	the	output	folder	placed	at
/user/hue/learn_oozie/ch04/mapreduce.

Running	Oozie	MapReduce	job
Oozie	has	a	command-line	functionality	to	submit	a	job,	which	has	just	a	MapReduce
action.	The	command-line	option	that	we	saw	in	the	previous	action	can	be	used	anywhere
when	we	have	a	Workflow	or	Coordinator	with	complex	DAG.

To	run	Oozie	job,	which	is	just	a	simple	MapReduce,	we	can	use	the	command	options
shown	in	the	following	screenshot:

Oozie	MapReduce	command	line

Here’s	an	example:

oozie	mapreduce	-config	job.properties	-oozie	http://localhost:11000/oozie

Tip
We	can	also	choose	to	pass	on	variables	such	as	input	and	output	from	the	command
line.

In	this	section,	we	made	our	Workflow	using	the	MapReduce	action	and	used	the
command-line	Oozie	job	option	with	the	job.properties	file	to	run	the	same.

Let’s	move	on	to	the	next	topic	of	Coordinators.

Coordinators
Coordinators	allow	us	to	run	interdependent	Workflows	as	data	pipelines	based	on	some
starting	criteria.	They	decide	the	when	part	of	execution	of	Oozie	job.	Most	of	the	Oozie
jobs	are	triggered	at	a	given	scheduled	time	interval	or	when	input	Dataset	is	present	for
triggering	the	job.	Here	are	a	few	important	definitions	related	to	Coordinators:

Nominal	time:	This	the	scheduled	time	at	which	job	should	execute.	For	example,
we	process	press	release	every	day	at	8:00	P.M.
Actual	time:	This	is	the	real	time	when	the	job	runs.	In	some	cases,	if	the	input	data
does	not	arrive,	the	job	might	start	late.	This	type	of	data-dependent	job	triggering	is
indicated	by	the	<done-flag>	tag	(more	on	this	later).	The	done-flag	gives	a	signal
to	start	the	job	execution.

The	general	skeleton	template	of	Coordinator	is	shown	in	the	following	figure	named
Coordinator	template	XML:

Coordinator	template	XML

The	<parameters>	tag	on	line	2	in	the	preceding	screenshot	are	any	variables	defined	in
the	Coordinator.	Next,	let’s	talk	about	Datasets.

Datasets
File-based	ingestion	is	a	common	pattern	in	Hadoop.	Take	a	simple	case	of	daily	input	of
press	release	data,	which	are	documented	in	text	format	and	we	store	them	over	night	in
Hadoop.

Let	the	sample	file	be	MyCompetitorPR_2014-08-10.txt.

It	is	just	a	simple	file,	which	is	in	the	FileName_YYYY-MM-DD.txt	format.	Instead	of	taking
input	from	a	simple	path	like	/user/hue/learn_oozie/ch04/mapreduce/input/	(same
path	everyday),	we	would	want	to	take	it	from	path	which	is	dependent	on	date.	For
example,	each	day	we	consume	from	the	corresponding	date	folder.

Coming	back	to	our	problem	space,	we	are	going	to	push	data	to	a	new	folder	everyday.
We	will	push	them	to	HDFS	using	the	hadoop	fs	-copyFromLocal	command.

The	file	MyCompetitorPR_2014-08-10.txt	will	be	pushed	to
${nameNode}/learn_oozie/ch04/input/pressrelease/2014/08/10.

Note
Lambda	architecture	recommends	the	immutable	data	states.	Therefore,	we	prefer	keeping
all	the	input	in	the	Hadoop	platform	untouched	in	its	original	state.	This	is	also	called	the
Golden	copy.	This	gives	us	an	advantage	as	we	can	choose	to	replay	some	other	business
logic	in	case	we	find	any	mistake	in	the	old	processing	logic	or	it	strikes	us	later	down	the
timeline	when	we	started.	You	can	read	more	about	Lambda	architecture	at	http://lambda-
architecture.net/.

In	terms	of	Dataset,	the	press	release	can	be	defined	as	follows:

<dataset	name="pressrelease"	frequency="${coord:days(1)}"	initial-

instance="2015-08-15T00:00Z"	timezone="Australia/Sydney">

		<uri-template>

				{nameNode}/learn_oozie/ch04/input/pressrelease/${YEAR}/${MONTH}/${DAY}

		</uri-template>

		<done-flag>_SUCCESS</done-flag>

</dataset>

A	Dataset	is	a	collection	of	data,	which	is	identified	by	some	logical	name.	In	case	of	the
preceding	example,	the	logical	name	is	resolved	by	filling	the	values	of	the	YEAR,	MONTH,
and	DAY	variables.	The	data	in	Dataset	is	immutable	and	produced	at	regular	intervals	with
defined	frequency;	in	the	preceding	example,	it	is	one	day	(coord:days(1)).	We	will	see	it
in	detail	in	the	Frequency	and	time	section.

Datasets	(note	plural)	is	a	group	of	individual	datasets.	They	are	defined	once	in	the
Hadoop	platform	and	those	definitions	can	be	reused	among	any	number	of	coordinator
jobs.	For	example,	we	define	the	Dataset	pressrelease,	specify	that	it	comes	once	a	day,
and	tell	that	it	can	be	found	with	a	path	represented	by	<uri-template>.	In	the	same	way,
we	can	define	other	Datasets	like	job	postings,	public	interactions,	and	so	on.

Since	the	Datasets	is	a	collection	of	datasets	(as	shown	in	the	following	figure),	they	can
be	represented	by	a	collection	of	individual	Datasets	and	include	file	representation.	We

http://lambda-architecture.net/

can	include	something	similar	to	#include	iostream.h	from	the	C++	world.	It	is	like
reusing	something	that	has	been	already	defined	somewhere.

As	best	practice	for	organizing	data	inside	a	cluster,	you	will	represent	them	as	Dataset
and	store	all	the	logical	datasets.xml	files	in	one	place	on	HDFS	so	that	all	Coordinator
jobs	can	reuse	them.	Take	a	look	at	the	following	diagram	that	represents	svg	(present	in
the	xsd_svg	and	coordinator_0.4.xsd	folders):

Dataset	representation

Dataset	definition	needs	the	following	details:

Field Definition Example

name Dataset	name pressrelease

frequency

Indicates	time	in	minutes	at
which	data	is	created	and
uses	EL	expressions	to
represent	time

${coord:days(1)

initial-

instance

The	UTC	date	and	time	of
the	initial	instance	of	the
Dataset

2015-08-15T00:00Z

timezone The	timezone	of	the	Dataset Australia/Sydney

url-

template

The	URI	template	that
identifies	the	Dataset	is	made
up	of	constants	(YEAR)	and
variables

namenode/learn_oozie/ch04/input/pressrelase/{YEAR}/{MONTH}/{DAY}

Indicates	when	a	Dataset

done-flag instance	is	ready	to	be
consumed

_SUCCESS	file

Frequency	and	time
Frequency	represents	how	regular	the	given	event	is	going	to	happen.	It	is	always
represented	in	minutes.	So,	we	can	also	say	that	minimum	granularity	of	Oozie	is	minutes.
The	following	are	prebuilt	functions	that	represent	the	frequency:

Frequency Value Example

coord:minutes(int	n) n	minutes coord:minutes(30)	is	30	minutes

coord:hours(int	n) n*60	minutes coord:hours(2)	is	120	minutes

coord:days(int	n)

Variable	minutes
depending	on
timezone

coord:days(3)	is	the	number	of	minutes	in	three	days	of	defined
timezone,	starting	with	day	of	nominal	time

coord:endOfDays(int

n)

Variable	minutes
depending	on
timezone

Same	as	the	coord:days()	function,	but	it	shifts	the	first	occurrence	to
the	end	of	day	for	the	given	timezone	before	calculating	the	interval	in
minutes

coord:months(int	n)

Variable	minutes
depending	on
timezone

coord:months(2)	is	the	number	of	minutes	in	two	months	of	timezone	at
the	time	of	calculation,	starting	with	nominal	time

coord:endOfMonths(int

n)

Variable	minutes
depending	on
timezone

Same	as	the	coord:months()	function,	but	it	shifts	the	first	occurrence	to
the	end	of	the	month	for	the	given	timezone	before	calculating	the
interval	in	minutes

Note
You	can	refer	to	some	of	the	frequency	and	time	examples	given	in	the	Oozie
documentation	at
https://oozie.apache.org/docs/4.2.0/CoordinatorFunctionalSpec.html#a4.4._Frequency_and_Time-
Period_Representation.

Cron	syntax	for	frequency
Oozie	has	a	cron-type	syntax	for	declaring	frequency.	It	is	inspired	by	the	Quartz
scheduler	that	can	be	found	at	http://quartz-
scheduler.org/api/2.2.1/org/quartz/CronExpression.html.

Oozie	cron	description	does	not	allow	granularity	up	to	seconds.	The	general	format	is	as
follows:
|Minute	|	Hour	|	Day	of	Month	|	Month	|	Day	of	Week|

The	following	table	shows	the	fields	and	values:

Field	Name Allowed	Values Allowed	Special	Characters

Minutes 0-59 ,	-	*	/

https://oozie.apache.org/docs/4.2.0/CoordinatorFunctionalSpec.html#a4.4._Frequency_and_Time-Period_Representation
http://quartz-scheduler.org/api/2.2.1/org/quartz/CronExpression.html

Hours 0-23 ,	-	*	/

Day-of-Month 1-31 ,	-	*	?	/	L	W

Month 1-12	or	JAN-DEC ,	-	*	/

Day-of-Week 1-7	or	SUN-SAT ,	-	*	?	/	L	#

Year	(Optional) empty,	1970-2199 ,	-	*	/

Let’s	take	some	time	to	read	about	these	special	characters:

The	asterisk	(*)	specifies	all	values.	For	example,	*	in	the	hour	field	means	every
hour.
The	question	mark	(?)	is	allowed	for	the	Day-of-Month	and	Day-of-Week	fields.	It
specifies	no	specific	value.
The	hyphen	(-)	is	used	to	depict	range	of	values.	Let’s	say	we	want	to	run	a	job	from
9:00	A.M.	to	12:00	P.M.,	we	can	specify	it	as	9-12	in	the	Hours	field.
The	comma	(,)	is	used	to	indicate	list	of	values.	When	we	want	to	run	a	job	for	the
month	of	January,	February,	and	March,	we	can	specify	it	as	JAN,FEB,MAR	in	the
Month	field.
The	/	character	is	used	to	specify	initial	value	and	increments.	For	example,	when	we
want	to	start	at	5	minutes	and	do	something	with	an	interval	of	15	minutes,	we	can
specify	something	like	0/15	in	the	Minutes	field.
The	letter	L	is	allowed	for	the	Day-of-Month	and	Day-of-Week	fields.	This	says	that
we	want	last	value	for	day	of	month	or	day	of	week	where	it	is	used.	For	example,	L
in	the	month	field	means	31	for	January,	28	for	February,	and	so	on.	L	in	the	Day	of
Week	field	means	7	or	Saturday.	It	can	also	used	in	conjugation	with	another	value	in
the	Day-of-Week	field,	for	example	6L	means	the	last	Friday	of	the	month.
The	letter	W	can	be	used	in	the	Day-of-Month	field.	It	indicates	the	weekday	(Monday
to	Friday)	nearest	to	given	day.	For	example,	we	want	to	run	a	job	on	some	working
weekday	nearest	to	15th,	so	we	specify	15W	as	the	value	for	the	Day-of-Month	field.
If	15th	is	a	Saturday,	the	trigger	will	fire	on	Friday	(14).	If	15th	is	a	Sunday,	the
trigger	will	fire	on	Monday	(16).	If	15th	is	a	Tuesday,	then	it	will	fire	on	Tuesday	the
15th.
The	letters	L	and	W	can	also	be	used	together	for	the	Day-of-Month	field	to	give	LW,
which	means	that	this	job	will	run	on	last	weekday	of	the	month.
The	#	character	can	be	used	for	the	Day-of-Week	field.	For	example,	when	we	want
to	run	some	job	on	third	Friday	of	the	month,	we	can	specify	it	as	6#3.

The	legal	characters	and	the	names	of	months	and	days	of	the	week	are	not	case	sensitive.

The	following	table	shows	the	examples	of	these	characters:

Cron	Expression Meaning

10	9	*	*	* Runs	every	day	at	9:10	A.M.,	*	means	every

10,30,45	10	*	* Runs	every	day	at	10:10	A.M.,	10:30	A.M.,	and	10:45	A.M.	(comma	means	combination)

1	2	L-3	*	* Runs	every	third-to-last	day	of	the	month	at	2:01	A.M.

1	2	6W	3	? Runs	on	the	nearest	weekday	to	March	6	every	year	at	2:01	A.M.

10	3	*	4	4#2 Runs	every	second	Wednesday	of	April	at	3:10	A.M.	every	year

0	12,13	*	*	MON-FRI Runs	every	weekday	at	12	P.M.	and	1	P.M.

Timezone
The	timezone	indicates	the	timezone	in	which	the	calculation	of	nominal	time	should	be
carried	out.	The	default	Oozie	processing	timezone	is	UTC.	If	you	remember,	the
frequency	calculations	are	based	on	minutes.	So	depending	upon	the	timezone	you	are	in,
the	minutes	of	the	day	can	be	different	when	daylight	saving	is	effective.	As	a	golden	rule,
if	you	are	in	an	area	where	daylight	savings	are	used,	then	just	see	the	timezone	and	use	it
in	the	value	for	timezone.	A	good	reference	is	to	see	the	TZ	reference	that	can	be	found	at
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.

Cron	frequency	expression	uses	the	Oozie	server	processing	timezone.	Since	the	default
Oozie	processing	timezone	is	UTC,	we	need	to	change	our	cron	expression	with	the
correct	time	as	per	UTC.	For	example,	the	time	04:45	A.M.	in	UTC	is	same	as	2:45	P.M.
in	the	Australia/Sydney	timezone.	So	the	cron	expression	would	be	45	4	*	*	*.	See	the
example	of	Coordinator	v1	in	the	upcoming	section.

Tip
I	came	from	India	to	work	in	Australia.	India	is	vast	in	size	but	compared	to	Australia,	it	is
very	small.	In	India,	we	have	one	timezone	for	the	entire	nation.	However,	in	Australia	we
have	different	timezone	and	few	places	change	there	time	during	daylight	savings
(https://en.wikipedia.org/wiki/Daylight_saving_time).	It	was	my	first	daylight	saving
experience	and	watching	the	clock	go	back	one	hour	is	a	different	experience	(at	least	for
first	timers	like	me).	It	also	gives	one	hour	extra	sleep!

In	Oozie,	we	had	coded	our	jobs	with	static	time	and	after	the	time	shifted,	we	had	issues
to	keep	the	jobs	run	at	required	timings.	For	example,	the	job	was	coded	to	run	at	4:00
P.M.	everyday	(by	default,	all	timezone	in	Oozie	are	UTC)	but	our	jobs	were	off	by	one
hour	with	the	change	in	time.	We	had	to	change	our	jobs	and	submit	with	the	correct
timezone.	This	made	our	job	conform	to	both	forward	and	reverse	time	flow.	It	is
important	to	choose	the	correct	timezone	if	your	place	has	daylight	savings.	You	can
configure	timezone	in	the	Oozie	by	setting	the	timezone	for	Oozie	jobs.	See	the	list	of
timezone	by	using	the	command	oozie	info	-time	zones	and	pick	the	one	that	matches
yours.

The	<done-flag>	tag
The	<done	flag>	tag	indicates	when	a	dataset	instance	is	ready	to	be	processed.	Here	are
the	various	options	for	<done	flag>:

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/Daylight_saving_time

If	the	<done-flag>	tag	is	not	present,	the	Coordinator	will	not	start	till	the	file	named
_SUCCESS	is	present	in	the	directory.	In	our	file-based	load	use	case	the	process	that	is
copying	the	files	to	HDFS	will	also	create	the	_SUCCESS	flag	using	the	hadoop	fs	-
touchz	command.
If	the	<done-flag>	tag	is	there	but	the	tag	is	empty	as	<done-flag></done-flag>,
then	the	directory	(if	present)	gives	a	signal	to	the	Coordinator	that	the	Dataset	is
ready.
If	the	<done-flag>	tag	is	there	but	has	some	filename,	Oozie	will	check	for	the
presence	of	the	file	with	given	name	in	the	tag	in	the	directory,	for	example,	if	the
filename	is	<done-flag>_DATA_LOAD_DONE</done-flag>,	Oozie	will	check	the
existence	of	the	file	_DATA_LOAD_DONE.

Initial	instance
Initial	instance	gives	the	first	value	of	the	Dataset,	which	can	be	found	in	HDFS.

My	first	Coordinator
In	this	section,	we	will	write	the	scheduled	job	for	running	out	the	MapReduce	Workflow.
Let’s	start	with	a	simple	Coordinator	declaration.	The	code	for	the	following	example	is
present	in	the	folder	BOOK_CODE_HOME/learn_oozie/ch04/mapreduce_coordinat	or/v1.

Coordinator	v1	definition
The	Coordinator	definition	present	in	the	coordinator.xml	is	as	follows:

<coordinator-app	name="My_First_Coordinator"	frequency="${frequency}"	

start="${start_date}"	end="${end_date}"	timezone="Australia/Sydney"	

xmlns="uri:oozie:coordinator:0.4">

		<action>

				<workflow>

						<app-path>${wf_application_path}</app-path>

			</workflow>

		</action>

</coordinator-app>

The	Coordinator	definition	is	simple.	It	says,	“Run	the	Workflow	wf_application_path
with	the	given	arguments	start_date,	end_date,	and	fre	quency.”

job.properties	v1	definition
Look	at	the	values	for	variables	declared	in	workflow.xml.	We	will	define	them	in	the
job.properties	file:

#	Time	and	schedule	details

start_date=2015-08-14T22:58Z

end_date=2015-08-25T22:58Z

frequency=48	4	*	*	*

#	Cluster	and	Oozie	setup	details

jobTracker=sandbox.hortonworks.com:8050

nameNode=hdfs://sandbox.hortonworks.com:8020

oozie.use.system.libpath=True

oozie.libpath=hdfs://sandbox.hortonworks.com:8020/user/oozie/share/lib

#	Workflow	to	run

wf_application_path=hdfs://sandbox.hortonworks.com:8020/user/hue/learn_oozi

e/ch04/mapreduce

#	Coordinator	to	run

oozie.coord.application.path=hdfs://sandbox.hortonworks.com:8020/user/hue/l

earn_oozie/ch04/mapreduce_coordinator/v1

#	Parameters	for	workflow

input=/user/hue/learn_oozie/ch04/mapreduce/input/

output=/user/hue/learn_oozie/ch04/mapreduce/output

Go	to	the	v1	folder	using	the	following	command:

cd	BOOK_CODE_HOME/learn_oozie/ch04/mapreduce_coordinator/v1

Copy	the	following	code	to	HDFS	if	not	already	done	at	start	of	the	book:

hadoop	fs	-copyFromLocal	BOOK_CODE_HOME/learn_oozie/ch04	

/user/hue/learn_oozie

#	Run	the	coordinator

oozie	job	-run	-config	job.properties	-oozie	http://localhost:11000/oozie

Let’s	understand	the	job.properties	file.

We	are	running	the	same	MapReduce	word	count	Workflow	which	we	wrote	earlier.	We
are	saying	that	the	Coordinator	has	start_date=2015-08-14T22:58Z,	end_date=2015-08-

25T22:58Z,	and	frequency=48	4	*	*	*.	frequency	says	the	Workflow	should	run	every
day	at	04:48	A.M.	GMT.	Remember	that	cron	frequency	expression	uses	the	Oozie	server
processing	timezone	by	default	which	is	UTC.

In	the	property	file,	we	are	also	saying	that	the	Workflow	is	present	at
wf_application_path	and	the	Coordinator	is	present	at	oozie.coord.application.path.

To	see	it	in	action	yourself,	you	need	to	edit	start_date	end_date	and	frequency	to	run
it	as	per	time	when	you	are	reading	the	book.

If	you	note	the	input	and	output	paths	in	the	property	file,	they	are	hardcoded	to	static
values.	But	our	pressrelease	use	case	says	we	will	have	new	data	daily	added	to	the
cluster	and	the	input	path	will	change.	For	example,	the	input	path
${nameNode}/learn_oozie/ch04/input/pressrelease/2014/08/10	will	change	to	the
output	path	${nameNode}/learn_oozie/ch04/output/pressrelease/2014/08/10.

So,	we	will	revise	our	code	to	use	the	concept	of	Datasets.

Coordinator	v2	definition
In	the	following	definition,	I	have	defined	the	Datasets	in	an	XML	file	placed	at
BOOK_CODE_HOME/learn_oozie/ch04/datasets/datasets.xml.

We	defined	the	two	Datasets	here,	pressrelease	and	wordcount.	We	will	use
pressrelease	as	the	input	Dataset	and	wordcount	as	the	output	Dataset.	Note	that	Dataset
definition	is	similar	for	both	and	does	not	change	if	it	is	used	as	input	source	or	output
sink.

In	the	frequency	definition,	we	are	saying	coord:days(1),	which	means	the	Dataset	will
be	generated	each	day.	As	per	our	use	case	condition,	we	are	getting	the	pressrelease
input	daily.	Further,	we	have	also	declared	<done-flag>	as	_SUCCESS.	So	the	script	that	is
going	to	copy	data	to	HDFS	will	also	create	<done	flag>	using	the	hadoop	fs	-touchz
command.

For	example,	the	filename	MyCompetitorPR_2014-08-10.txt	will	be	pushed	to
${nameNode}/user/hue/learn_oozie/ch04/input/pressrelease/2014/08/10	folder
and	<done-flag>	will	also	be	created	using	the	command	hadoop	fs	-
touchz${nameNode}/user/hue/learn_oozie/ch04/input/pressrelease/2014/08/10/_SUCCESS.

The	initial	instance	says	that	data	history	will	be	present	from	this	day.

Similarly,	we	have	defined	the	output	Dataset	as	wordcount,	where	output	will	be	stored
by	the	Workflow.	The	complete	datasets.xml	file	is	as	follows:

<datasets>

		<dataset	name="pressrelease"	frequency="${coord:days(1)}"	initial-

instance="2015-08-15T00:00Z"	timezone="Australia/Sydney">

				<uri-

template>${nameNode}/user/hue/learn_oozie/ch04/input/pressrelease/${YEAR}/$

{MONTH}/${DAY}</uri-template>

				<done-flag>_SUCCESS</done-flag>

		</dataset>

		<dataset	name="wordcount"	frequency="${coord:days(1)}"	initial-

instance="2015-08-15T00:00Z"	timezone="Australia/Sydney">

				<uri-template>${nameNode}/user/hue/learn_oozie/ch04/

					output/wordcount/${YEAR}/${MONTH}/${DAY}</uri-template>

				<done-flag>_SUCCESS</done-flag>

		</dataset>

</datasets>

Let’s	revise	the	coordinator.xml	file	to	use	the	Dataset	definition.	See	the	following	code
snippet	for	the	Coordinator	named	Coordinator	v2:

Coordinator	v2

Here’s	the	explanation	of	the	code	in	the	preceding	screenshot:

In	line	4,	we	are	telling	it	to	use	the	datasets.xml	file	that	we	created	earlier.
In	line	7,	we	are	asking	it	to	use	pressrelease	as	input	Dataset	for	Workflow,	by
linking	it	at	line	22	with	the	input	variable.
In	lines	9	and	14,	we	are	using	the	EL	functions	to	calculate	which	instance	of
datasets	to	use	as	input	for	the	Workflow.	We	will	discuss	this	in	detail	in	the	next
chapter.	In	short,	this	will	calculate	the	current	instance	and	give	it	as	input	for	the
Workflow.
In	line	13,	we	are	saying	it	to	store	output	in	the	wordcount	Dataset	by	linking	it	at
line	26	with	output	variable	of	Workflow.

The	current	input	resolves	to
${nameNode}/user/hue/learn_oozie/ch04/input/pressrelease/2015/08/15	and
output	resolves	to
${nameNode}/user/hue/learn_oozie/ch04/output/wordcount/2015/08/15.	Do	not

worry	if	the	function	coord:current()	is	not	clear	to	you;	we	will	cover	all	of	them	in	the
next	chapter.

To	use	the	updated	Coordinator,	let’s	revise	the	job.properties	file.

job.properties	v2	definition
The	job.properties	file	is	shown	in	the	following	example.	There	is	one	change	from	the
previous	one.	We	have	removed	the	input	and	output	variables	and	defined	the
datasets.xml	path	as	variables.	From	this	path,	the	XML	file	is	picked	and	all	the
variables	are	automatically	calculated	inside	coordinator.xml	based	on	the	definitions	we
gave	in	datasets.xml:

#	Time	and	schedule	details

start_date=2015-08-14T22:58Z

end_date=2015-08-25T22:58Z

frequency=5	6	*	*	*

#	Cluster	and	Oozie	setup	details

jobTracker=sandbox.hortonworks.com:8050

nameNode=hdfs://sandbox.hortonworks.com:8020

oozie.use.system.libpath=True

oozie.libpath=hdfs://sandbox.hortonworks.com:8020/user/oozie/share/lib

#	Workflow	to	run

wf_application_path=hdfs://sandbox.hortonworks.com:8020/user/hue/learn_oozi

e/ch04/mapreduce

#	Coordinator	to	run

oozie.coord.application.path=hdfs://sandbox.hortonworks.com:8020/user/hue/l

earn_oozie/ch04/mapreduce_coordinator/v2

#	Datasets

data_definitions=hdfs://sandbox.hortonworks.com:8020/user/hue/learn_oozie/c

h04/datasets/datasets.xml

Submit	the	Oozie	job	using	the	oozie	job	–run	command	and	check	the	Oozie	web
console	to	see	the	status	of	your	job.

Checking	the	job	log
To	check	Oozie	job	logs,	you	can	use	the	following	command:

oozie	job	-log	0000005-150815030033629-oozie-oozi-C	–oozie	

http://localhost:11000/oozie

A	sample	output	of	this	command	is	as	follows:

2015-08-15	06:05:51,193		INFO	CoordActionInputCheckXCommand:520	-	

SERVER[sandbox.hortonworks.com]	USER[-]	GROUP[-]	TOKEN[-]	APP[-]	

JOB[0000005-150815030033629-oozie-oozi-C]	ACTION[0000005-150815030033629-

oozie-oozi-C@1]	[0000005-150815030033629-oozie-oozi-

C@1]::ActionInputCheck::	In	checkListOfPaths:	

hdfs://sandbox.hortonworks.com:8020/learn_oozie/ch04/input/pressrelease/201

5/08/15/_SUCCESS	is	Missing.

Running	a	MapReduce	streaming	job
In	this	section	we	will	learn	how	to	run	Hadoop	Streaming	jobs	using	Oozie.	Hadoop
Streaming	gives	the	functionality	to	use	different	languages	such	as	Python,	C++,	and
Ruby	to	write	MapReduce	code.

Note
Read	the	Oozie	documentation	at
https://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html#a3.2.2_Map-
Reduce_Action	and	write	a	Workflow	to	run	a	Streaming	job.	Schedule	the	same	using
Coordinator.	You	can	refer	to	the	sample	Python	mapper	and	reducer	code	available	at
http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/.

Save	the	Python	code	from	the	preceding	web	links	as	mapper.py	and	reducer.py	in	the
streaming	folder.

The	<mapper>	tag	makes	our	mapper	and	reducer	file	available	to	Oozie.

The	Workflow	looks	like	this:

<workflow-app	name="Mapreduce_Streaming_example"	

xmlns="uri:oozie:workflow:0.5">

		<start	to="streaming-c097"/>

				<kill	name="Kill">

						<message>Action	failed,	error	

message[${wf:errorMessage(wf:lastErrorNode())}]</message>

				</kill>

				<action	name="streaming-c097">

						<map-reduce>

								<job-tracker>${jobTracker}</job-tracker>

								<name-node>${nameNode}</name-node>

										<streaming>

												<mapper>mapper.py</mapper>

												<reducer>reducer.py</reducer>

										</streaming>

										<configuration>

												<property>

														<name>mapreduce.input.fileinputformat.inputdir</name>

														<value>/user/hue/learn_oozie/ch04/mapreduce/input/</value>

												</property>

												<property>

														<name>mapreduce.output.fileoutputformat.outputdir</name>

														<value>/user/hue/learn_oozie/ch04/streaming/output</value>

												</property>

										</configuration>

										

<file>/user/hue/learn_oozie/ch04/streaming/mapper.py#mapper.py</file>

										

<file>/user/hue/learn_oozie/ch04/streaming/reducer.py#reducer.py</file>

								</map-reduce>

						<ok	to="End"/>

						<error	to="Kill"/>

				</action>

https://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html#a3.2.2_Map-Reduce_Action
http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/

		<end	name="End"/>

</workflow-app>

Summary
In	this	chapter,	we	saw	how	to	run	Java	MapReduce	jobs	as	part	of	the	Oozie	Workflow.
We	discussed	the	concept	of	Coordinators	and	scheduled	the	job	using	the	same.	We	also
covered	datasets,	frequency	specification,	and	cron-based	schedules.

In	the	next	chapter,	we	will	see	how	to	run	Hive	jobs	from	Oozie.	We	will	continue	to
build	our	Coordinator	concepts.

Chapter	5.	Running	Pig	Jobs
In	this	chapter,	we	will	see	how	to	run	Pig	jobs	from	Oozie.	Pig	is	a	general-purpose	data
flow	language,	which	makes	running	and	doing	ETL	on	Hadoop	very	easy.	If	you	are	new
to	Pig,	then	I	suggest	you	to	check	out	the	tutorial	on	the	Pig	website
(http://pig.apache.org/docs).

In	this	chapter,	we	will:

Create	Oozie	Workflows	for	Pig	actions
Run	Pig	jobs	from	Coordinators

From	the	concept	point	of	view,	we	will:

Understand	the	concept	of	parameterization	of	Dataset	instances
Understand	the	concept	of	Coordinator	controls
Understand	the	concept	of	config-defaut.xml

http://pig.apache.org/docs

Chapter	case	study
We	are	working	on	a	project	related	to	climate	as	part	of	research.	So	we	want	to	know	the
rainfall	pattern	near	the	Melbourne	airport.	We	want	to	find	out	the	maximum	rainfall	that
was	received	in	each	month.	To	do	this,	we	will	write	some	Pig	code	to	help	analyze	the
rainfall	data	for	us.	We	will	download	the	data	from	http://www.bom.gov.au/.

We	have	already	seen	how	to	run	Pig	action	in	Chapter	3,	Oozie	Fundamentals,	when	we
replaced	delimiters	using	that.	We	will	continue	from	those	skill	levels.	We	will	also
discuss	the	Oozie	Pig	command-line	option	to	run	our	job.

http://www.bom.gov.au/

The	Pig	command	line
The	Pig	command	for	running	command-line	options	is	shown	in	the	following
screenshot:

Oozie	Pig	command	line

To	run	the	same	Pig	Oozie	script	that	we	used	in	Chapter	3,	Oozie	Fundamentals,	use	the
following	command:

oozie	pig	-file	

<BOOK_CODE_HOME>/learn_oozie/ch03/pig/replace_delimiters.pig	-oozie	

http://localhost:11000/oozie	-P

inputPath=/user/hue/learn_oozie/ch03/input/	-P

outputPath=/user/hue/learn_oozie/ch05/pig_commandline/output	-config	

job.properties

The	path	for	-file	is	a	local	path	from	where	the	command	is	being	submitted,	not	HDFS.
The	job	we	submit	runs	as	soon	as	it	is	submitted.

All	the	JAR	files	and	other	files	needed	by	the	Pig	job	needs	to	be	uploaded	onto	HDFS
under	libpath	beforehand.

The	job.properties	file	has	following	definitions:

#	job.properties	file

jobTracker=sandbox.hortonworks.com:8050

nameNode=hdfs://sandbox.hortonworks.com:8020

oozie.use.system.libpath=True

oozie.libpath=hdfs://sandbox.hortonworks.com:8020/user/oozie/share/lib

To	see	the	XML	Workflow	file	that	is	generated	by	Oozie,	we	can	use	the	following
command	with	the	job	ID	shown	at	start	of	the	command.	The	job	ID	reported	to	you	will
be	different	from	the	one	which	I	got,	so	please	change	it:

oozie	job	-definition		0000003-150816053813068-oozie-oozi-W

Here’s	the	output:

Pig	job	definition

The	config-default.xml	file
So	far,	we	have	done	lots	of	code	duplication.	We	copied	the	same	properties	again	and
again	in	the	property	files.	Oozie	has	a	concept	of	config-default.xml,	which	can	be
used	to	store	such	properties.	This	file	is	present	in	the	folder	where	workflow.xml	is
present,	and	it	is	automatically	parsed	for	properties.	From	now	onwards,	we	will	use	the
config-default.xml	file	for	all	the	properties	that	are	common.	This	file	is	optional	but
highly	recommended	to	avoid	code	duplication.	Anything	that	is	common	to	all
Workflows,	for	example,	cluster	details,	should	be	added	to	config-default.xml:

#	default-config.xml

<configuration>

		<property>

				<name>oozie.use.system.libpath</name>

				<value>True</value>

		</property>

		<property>

				<name>oozie.libpath</name>

				<value>hdfs://sandbox.hortonworks.com:8020/user/oozie/share/lib</value>

		</property>

		<property>

				<name>fs.defaultFS</name>

				<value>hdfs://sandbox.hortonworks.com:8020</value>

		</property>

		<property>

				<name>nameNode</name>

				<value>hdfs://sandbox.hortonworks.com:8020</value>

		</property>

		<property>

				<name>jobTracker</name>

				<value>sandbox.hortonworks.com:8050</value>

		</property>

		<property>

				<name>mapreduce.jobtracker.address</name>

				<value>sandbox.hortonworks.com:8050</value>

		</property>

</configuration>

Pig	action
Let’s	see	the	Pig	script	that	will	help	us	calculate	the	maximum	rainfall	in	each	month.

I	have	saved	the	input	data	for	this	chapter	in	the	input	folder	placed	at
BOOK_CODE_HOME/learn_oozie/ch05.

If	you	have	already	copied	the	source	code	for	this	folder	on	HDFS	at	the	start	of	chapter,
then	it	will	automatically	go	to	the	right	place	inside	HDFS.	If	not,	you	can	copy	the	code
to	HDFS	now.

The	input	data	is	comma	separated	and	the	columns	in	the	data	are	as	follows:

Product	code
Bureau	of	Meteorology	station	number
Year,	Month,	Day
Rainfall	amount	(millimeter’s)
Period	over	which	rainfall	was	measured	(days)
Quality

We	will	write	the	Pig	script	and	load	the	raw	input	data,	which	is	grouped	by	year	and
month.	Then,	we	will	calculate	maximum	rainfall	for	each	month.

The	following	Pig	script	is	present	at	the	path
BOOK_CODE_HOME/learn_oozie/ch05/rainfall/pig:

#	Pig	Script	to	find	Max	rain	in	given	month

A	=	load	'${pig_input}'	using	PigStorage(',')	as	

(product_code:chararray,station_number:long,year:int,month:int,day:int,rain

fall_in_mm:float,period_in_days:int,quality:chararray);

B	=	GROUP	A	BY	(year,month);

C	=	foreach	B	generate	flatten(group),MAX(A.rainfall_in_mm);

STORE	C	into	'${pig_output}'	using	PigStorage(',');

To	see	the	Pig	action	XSD	specification,	go	to	the	xsd_svg	folder,	open	the
workflow_0.5.svg	file,	and	browse	to	the	Pig	action.	Similar	to	the	MapReduce	action
and	Streaming	job,	we	have	file	and	archive	elements	that	allow	us	to	pass	external	jars	or
file’s	information	to	Pig	action,	as	shown	in	the	following	screenshot:

Pig	action	XSD	specification

Tip
In	our	Pig	script,	we	are	not	using	external	jars	or	UDFs.	However,	if	you	need	them,	you
can	add	that	as	external	jars	(more	on	this	in	the	next	chapter).

Now,	let’s	look	at	the	Workflow	shown	in	the	following	screenshot	to	know	the	maximum
rainfall	in	each	month.

We	are	showing	the	script	that	should	run	in	line	12,	and	specifying	the	input	and	output
parameters	in	lines	13	and	14:

Pig	Workflow	v1

The	code	for	this	section	is	available	at
BOOK_CODE_HOME/learn_oozie/ch05/rainfall/v1.

Take	some	time	and	compare	it	with	the	XSD	diagram	for	Pig	action.

In	our	Pig	script	we	do	not	need	any	third-party	jar	or	library.	If	it’s	needed,	we	have
following	choices	to	pass	it	on:

Store	it	in	oozie.libpath
Store	it	in	the	lib	folder	at	the	same	place	where	the	Workflow	is	present
Pass	the	archive	information	as	a	part	of	the	Workflow

The	job.properties	file	is	needed	for	the	last	part	of	running	the	job:

#	Job	Properties	file

#	Workflow	to	run

oozie.wf.application.path=hdfs://sandbox.hortonworks.com:8020/user/hue/lear

n_oozie/ch05/rainfall/v1

#	Parameters	for	workflow

input=/user/hue/learn_oozie/ch05/input/

output=/user/hue/learn_oozie/ch05/output/rainfall_pig_workflow

Note	that	we	have	removed	all	the	repeated	properties	from	the	job.properties	file.	All
of	them	have	been	moved	to	config-default.xml	to	avoid	code	duplication.	As	part	of
build	and	packaging,	the	best	practice	would	be	to	keep	it	at	one	place	and	then	provide
them	to	individual	applications	of	Oozie.	We	will	cover	packaging	of	Oozie	code	later	in
this	book.

Now,	we	are	ready	to	execute	our	job.	This	will	start	the	processing	and	find	maximum
temperature	for	each	month.

Run	the	Workflow	by	using	the	-run	command	of	the	Oozie	job:

oozie	job	-run	-config	job.properties

After	the	completion	of	the	job,	you	can	see	the	output	using	the	following	command:

hadoop	fs	-cat	

/user/hue/learn_oozie/ch05/output/rainfall_pig_workflow/part-r-00000

The	following	screenshot	shows	the	output:

Pig	output	Workflow	v1

This	concludes	our	first	section,	in	which	we	ran	a	Pig	action	using	Workflow.	We	also
discussed	the	concept	of	config-default.xml	to	avoid	code	duplication	and	reusing	the
property	values.

In	the	next	section,	we	will	look	to	schedule	our	workflow	using	a	Coordinator	to	produce
maximum	rainfall	collections	at	end	of	each	month.

Pig	Coordinator	job	v2
We	will	improve	our	Coordinator	using	the	concept	of	Datasets.	The	code	for	this	section
is	available	at	BOOK_CODE_HOME/learn_oozie/ch05/rainfall/v2.

The	goal	of	this	section	is	very	simple.	We	need	to	learn	which	dataset	instance	should	be
used	for	processing	using	the	Coordinator	dataset	parameterization	function.	We	will	see
them	shortly.

The	Coordinator	for	our	problem	statement	is	shown	in	the	upcoming	screenshot.	We	are
using	the	Dataset	by	declaring	the	definition	in	line	5	of	the	screenshot.	The	corresponding
Dataset	is	defined	in	the	datasets.xml	file,	as	shown	in	the	following	code:

<datasets>

		<dataset	name="rainfall"	frequency="${coord:months(1)}"	initial-

instance="2015-01-01T00:00Z"	timezone="Australia/Sydney">

				<uri-

template>${nameNode}/user/hue/learn_oozie/ch05/input/rainfall/${YEAR}/${MON

TH}/

				</uri-template>

				<done-flag>_SUCCESS</done-flag>

		</dataset>

		<dataset	name="max_rainfall"	frequency="${coord:months(1)}"	initial-

instance="2015-01-01T00:00Z"	timezone="Australia/Sydney">

				<uri-

template>${nameNode}/user/hue/learn_oozie/ch05/processed/max_rainfall/

						${YEAR}/${MONTH}/

				</uri-template>

				<done-flag>_SUCCESS</done-flag>

		</dataset>

</datasets>

Since	we	have	a	monthly	frequency,	the	first	instance	for	rainfall	will	resolve	to	path
/user/hue/learn_oozie/ch05/input/rainfall/2015/01,	the	second	one	to
/user/hue/learn_oozie/ch05/input/rainfall/2015/02,	and	so	on.	It	is	same	for	the
max_rainfall	Dataset	as	well.

Let’s	come	back	to	coordinator.xml,	which	is	shown	in	the	following	screenshot.	In
input-events	on	line	8,	we	are	saying	take	rainfall	as	input.	In	output-events	on	line
13,	we	are	saying	give	max_rainfall	as	output.

Note	the	element	in	both	input	and	output	events.	We	have	defined	the	EL	function,	which
says	current(0):

Coordinator	v1	rainfall

Take	some	time	to	read	coordinator.xml	again;	it	is	very	important	to	understand	all	the
concepts	used	in	the	example.

The	property	file	for	this	Coordinator	is	defined	as	follows.	Note	the	backdated	start	date
and	frequency.	We	are	saying	it	to	repeat	the	job	on	the	last	day	of	each	month	(L)	at	23:55
hours:

#	Time	and	schedule	details

start_date=2015-01-01T00:00Z

end_date=2015-12-31T00:00Z

frequency=55	23	L	*	?

nameNode=hdfs://sandbox.hortonworks.com:8020

#	Workflow	to	run

wf_application_path=hdfs://sandbox.hortonworks.com:8020/user/hue/learn_oozi

e/ch05/rainfall/v2

#	Coordinator	to	run

oozie.coord.application.path=hdfs://sandbox.hortonworks.com:8020/user/hue/l

earn_oozie/ch05/rainfall/v2

#	Datasets

data_definitions=hdfs://sandbox.hortonworks.com:8020/user/hue/learn_oozie/c

h05/rainfall/datasets/datasets.xml

If	not	done	yet,	then	let’s	copy	the	code	from	the	book	to	HDFS.

Trigger	the	job	using	the	following	command:

oozie	job	-run	job.properties

Wait	for	some	time	for	the	job	to	start.	The	job	starts	its	first	instance	of	execution	from
the	last	day	of	the	month	of	January,	that	is,	31	January,	and	then	28	February.	See	the
Nominal	Time	column	in	the	web	console.	If	you	remember,	nominal	time	is	the	exact
scheduled	time	for	the	job	to	run.	Actual	time	is	the	time	at	which	the	job	ran	in	reality.
Since	we	started	backdated	job,	all	the	old	instances	are	running	slowly	now:

Oozie	web	console	Coordinator	v1

We	can	verify	the	output	for	the	execution	by	browsing	the	path	hadoop	fs	-cat
/user/hue/learn_oozie/ch05/processed/max_rainfall/.

This	is	same	as	output	path	defined	in	our	Coordinator	and	dataset.xml.

The	Coordinator	dynamically	calculates	the	inputs	and	output	paths	for	each	instance	of
execution	of	the	Workflow.	Each	month,	one	path	is	calculated	and	passed	onto	the
Workflow	for	execution,	as	shown	in	the	following	screenshot:

Rainfall	output	Coordinator	v1

In	this	section,	we	created	our	Coordinator	and	used	Datasets	to	dynamically	calculate	the
input	and	output	data	paths.

Parameters	in	the	Dataset’s	input	and
output	events
The	Coordinator	application	runs	many	times	during	the	span	of	start	time	and	end	time.	A
Coordinator	action	uses	creation	(materialization)	time	to	find	the	specific	Dataset
instances	that	are	required	for	its	input	and	output	events.

The	following	EL	functions	are	used	to	relate	the	Coordinator	action	creation	time	to	the
Dataset	instances	of	its	input	and	output	events.

current(int	n)
The	current(int	n)	function	gives	us	the	nth	Dataset	instance	for	a	synchronous	Dataset,
relative	to	the	Coordinator	action	creation	time.

For	example,	current(1)	represents	the	instance,	which	is	calculated	after	adding	the	start
time	with	the	frequency.

In	our	case,	current(1)	of	rainfall	is	resolved	to
/user/hue/learn_oozie/ch05/input/rainfall/2015/01.	This	was	resolved	at	the	end
of	month	of	January.

<data-in	name="wf_input"	dataset="rainfall">

		<instance>${coord:current(0)}</instance>

</data-in>

We	can	also	use	negative	n,	for	example:

<data-in	name="inputraindata"	dataset="rainlogs">

		<start-instance>${coord:current(-23)}</start-instance>

		<end-instance>${coord:current(0)}</end-instance>

</data-in>

In	the	preceding	example,	it	would	be	all	the	instances	of	last	24	hours	(assume	rainlogs
has	a	frequency	of	hours).

hoursInDay(int	n)
The	hoursInDay(int	n)	function	returns	the	number	of	hours	for	the	specified	day,	taking
into	consideration	timezone/daylight	savings.

daysInMonth(int	n)
The	daysInMonth(int	n)	function	returns	the	number	of	days	for	the	month	of	the
specified	day.

latest(int	n)
The	latest(int	n)	function	represents	the	nth	latest	currently	available	instance	of	a
synchronous	Dataset.

Note
Read	more	about	EL	functions	for	datasets	at
https://oozie.apache.org/docs/4.2.0/CoordinatorFunctionalSpec.html#a6.6._Parameterization_of_Dataset_Instances_in_Input_and_Output_Events

Change	the	Coordinator	used	here	to	have	the	calculation	done	for	last	two	months	in	one
go,	instead	of	one	month	at	a	time.

If	you	noticed,	when	we	started	the	Coordinator	that	was	backdated,	Oozie	spawned
multiple	executions.	Many	times,	you	do	not	want	that	to	happen.	For	example,	if	the	job
is	fetching	full	snapshot	of	the	database	from	Oracle	via	Sqoop	and	you	have	a	delay	in
Oozie	jobs,	you	might	not	want	to	refresh	the	full	snapshot	multiple	times	when	you	know
that	you	are	not	getting	additional	benefit	with	running	additional	jobs.	This	reminds	me
of	one	project	story.

Tip
At	regular	intervals,	we	had	to	plan	out	the	downtime	of	the	Hadoop	cluster.	There	were
many	reasons,	for	example,	firmware	upgrade,	Hadoop	distribution	upgrade,	disk
replacement,	and	so	on.	On	all	these	occasions,	we	used	our	script	to	pause	and	restart	the
jobs.	Often	when	an	Oozie	Coordinator	job	runs,	it	calculates	the	possible	runnable
instances	of	the	Workflow.	When	we	restarted	jobs	after	cluster	downtime,	all	of	those
instances	that	were	eligible	to	run	used	to	bombard	the	cluster	with	jobs.	For	example,	if
the	cluster	was	down	for	one	day,	the	hourly	job	would	have	a	queue	of	each	hour	eligible.
Waiting	for	jobs	to	clear	up	the	production	platform	queue	for	humans	to	use	was	a	much
awaited	activity	after	each	downtime.	This	is	the	story	of	the	older	Oozie	version	when	we
did	not	have	option	to	decide	the	Coordinator	action	execution	policy,	which	we	are	going
to	discuss	next.

https://oozie.apache.org/docs/4.2.0/CoordinatorFunctionalSpec.html#a6.6._Parameterization_of_Dataset_Instances_in_Input_and_Output_Events

Coordinator	controls
The	execution	policies	for	the	actions	of	a	Coordinator	job	can	be	defined	in	the
Coordinator	application.	There	are	different	types	of	Coordinator	controls,	as	shown	in	the
following	figure:

Coordinator	controls

Here’s	a	brief	explanation	of	the	Coordinator	controls	present	in	the	preceding	figure:

timeout:	The	timeout	control	allows	us	to	say	how	long	the	Coordinator	action	will
be	in	the	waiting	or	ready	state	before	timing	out	on	its	execution,	for	example,	five
minutes.
concurrency:	Using	this	control,	we	can	specify	the	concurrency	for	the	Coordinator
actions.	It	specifies	how	many	Coordinator	actions	are	allowed	to	run	concurrently
(the	running	status).
execution:	If	there	is	a	backlog	of	Coordinators,	this	control	helps	to	decide	which
one	should	be	executed.	The	different	choices	are	oldest	first	(FIFO),	newest	first
(LIFO),	none	(NONE),	and	last	one	only	(LAST_ONLY).
throttle:	The	throttle	control	specifies	the	maximum	number	of	Coordinator	actions
that	are	allowed	to	be	in	the	waiting	state	at	the	same	time.

We	will	revise	our	Coordinator	with	the	controls	that	we	discussed	to	have	timeout,
concurrency,	execution	strategy,	and	throttle	value.

Pig	Coordinator	job	v3
The	code	for	this	section	is	available	at
BOOK_CODE_HOME/learn_oozie/ch05/rainfall/v3.

We	have	defined	all	the	controls,	as	shown	in	lines	4-9	in	the	following	screenshot.	The
corresponding	property	file	is	passing	the	updated	values:

Pig	Coordinator	v3

The	updated	job.properties	file	is	as	follows:

#	Time	and	schedule	details

start_date=2015-01-01T00:00Z

end_date=2015-12-31T00:00Z

frequency=55	23	L	*	?

nameNode=hdfs://sandbox.hortonworks.com:8020

#	Workflow	to	run

wf_application_path=hdfs://sandbox.hortonworks.com:8020/user/hue/learn_oozi

e/ch05/rainfall/v3

#	Coordinator	to	run

oozie.coord.application.path=hdfs://sandbox.hortonworks.com:8020/user/hue/l

earn_oozie/ch05/rainfall/v3

#	Datasets

data_definitions=hdfs://sandbox.hortonworks.com:8020/user/hue/learn_oozie/c

h05/rainfall/datasets/datasets.xml

#	Controls

timeout=10

concurrency_level=1

execution_order=LAST_ONLY

materialization_throttle=1

Trigger	the	job	using	the	following	command:

oozie	job	-run	job.properties

Not	that	the	execution	order	has	been	set	to	LAST_ONLY.	Let’s	check	the	web	console	to
note	how	our	jobs	are	running:

Oozie	web	console	skipped

Since	we	were	running	the	job	in	back	date,	Oozie	skipped	all	the	instances	as	we	have
instructed	it	to	run	only	the	last	needed	jobs.

Summary
We	covered	lot	of	ground	in	this	chapter.	We	started	with	creation	of	Pig	action	Workflow
and	simple	Pig	command-line	execution.	Then,	we	started	creating	a	Coordinator	for	our
Pig	job	and	discussed	the	concepts	of	EL	functions	in	data	input	and	output	instances
along	with	control	options.

In	the	next	chapter,	we	will	discuss	the	concept	of	parameterization	of	Coordinator
application	by	using	another	case	study	and	examples.	We	will	also	see	how	to	run	Hive
jobs	from	Oozie.

Chapter	6.	Running	Hive	Jobs
In	this	chapter,	we	will	see	how	to	run	Hive	jobs	from	Oozie.	As	part	of	concept	building,
we	will	talk	about	parameterization	of	Coordinator	application	actions.

In	this	chapter,	we	will:

Run	Hive	action	from	Oozie
Run	Hive	2	action	jobs	from	Oozie

From	the	concept	point	of	view,	we	will:

Understand	the	concept	parameterization	of	Coordinator	application	actions

Chapter	case	study
We	will	continue	to	build	on	the	previous	chapter’s	case	study,	in	which	we	calculated	the
maximum	rainfall	in	each	month.	We	will	insert	the	output	of	Pig	script	in	Hive	table,
which	will	allow	people	to	query	it	as	and	when	needed.

We	will	start	off	by	running	Oozie	Hive	job	via	the	command-line	option	and	later	see	the
Hive	action	in	Workflow.

Running	a	Hive	job	from	the	command
line
We	can	submit	the	Oozie	Hive	job	from	the	command	line.	To	see	the	Oozie	help	menu,
we	need	to	pass	the	arguments	shown	in	the	following	screenshot:

Hive	command-line	options

The	code	for	this	section	of	chapter	is	present	in	the	hive_commandline	file	placed	at
<BOOK_CODE_HOME>/learn_oozie/ch06/.

The	Hive	script	used	is	pretty	simple.	It	is	just	loading	data	into	the	Hive	table	using	the
LOAD	command	as	follows:

LOAD	DATA	INPATH	'/user/hue/learn_oozie/ch06/hive_commandline/input'	INTO	

TABLE	CH06_RAINFALL_TREND;

To	run	the	job,	we	can	use	the	following	command:

oozie	hive	-config	job.properties	-file	Insert.hql	-oozie	

http://localhost:11000/oozie

Check	the	status	of	the	job	in	the	Oozie	web	console.	The	job	should	finish	successfully.

In	the	next	section,	we	will	see	the	Hive	action	of	Oozie.

Hive	action
The	general	schema	for	Hive	action	is	as	follows:

<action>

		<job-tracker>								//	Job	tracker	details

		<name-node>										//	Name	node	details

		<prepare>												//	Create	or	Delete	directory

		<job-xml>												//	Any	job	xml	properties

		<configuration>						//	Hadoop	job	configuration

		<script>													//	Hive	script	to	run

		<param>														//	Parameters	to	hive	script

		<argument>											//	Arguments

		<file>															//	Any	files	needed	to	run	job

		<archive>												//	Any	job	dependencies	(jar	etc)

</action>

Check	out	the	location	BOOK_CODE_FOLDER/xsd_svg/hive-action-0.5.svg	to	see	the
visual	representation.

Note
In	the	Oozie	versions	above	v4.2,	Hive	action	also	supports	running	the	Hive	query
instead	of	file-based	script	arguments.

We	will	start	off	from	where	we	left	in	the	previous	chapter.	We	will	persist	the	maximum
rainfall,	which	we	calculated	in	each	month	in	the	Hive	table.	So,	our	data	flow	would	be
to	process	files	by	Pig	action	and	save	results	to	the	Hive	table.

Let’s	create	the	Workflow.

As	per	our	use	case,	we	have	two	actions:	max_rainfall,	which	is	a	Pig	action,	and	a	Hive
action	named	hive.	The	code	for	this	section	of	book	is	present	in	the	folder
<BOOK_CODE_HOME>/learn_oozie/ch06/v1/workflow.xml.	The	following	screenshot
shows	the	code	present	in	workflow.xml:

hive_workflow_v1

See	the	use	of	the	<global>	tag	in	lines	3	to	6.	We	are	passing	the	Hive	script	name,	input
Hive	data	path,	and	output	Hive	table	name	as	parameters	from	the	property	file.

We	are	using	the	following	Hive	script:

LOAD	DATA	INPATH	'${hivevar:inputHive}'	INTO	TABLE	

${hivevar:outputHiveTable};

The	property	file	for	the	previous	Workflow	is	shown	as	follows:

#	Workflow	to	run

oozie.wf.application.path=hdfs://sandbox.hortonworks.com:8020/user/hue/lear

n_oozie/ch06/v1

#	Parameters	for	Pig

input=/user/hue/learn_oozie/ch05/input/

output=/user/hue/learn_oozie/ch05/output/rainfall_pig_workflow

#	Hive	action

hivescript=/user/hue/learn_oozie/ch06/v1/hive/insert.hql

inputHive=/user/hue/learn_oozie/ch05/output/rainfall_pig_workflow

outputHiveTable=CH06_RAINFALL_TREND

Copy	the	preceding	code	to	HDFS	if	not	done	at	the	start	of	book.

Let	us	run	the	Oozie	Workflow	using	the	following	command:

cd	<BOOK_CODE_HOME/learn_oozie/ch06/v1>

oozie	job	-config	job.properties	-config	http://localhost:11000/oozie

On	the	web	console,	check	the	status	of	the	job	once	it	gets	submitted.	After	completing
the	job	successfully,	log	in	to	Hive	and	check	that	the	data	has	been	inserted	to	your	Hive
table.	Open	the	SSH	terminal	to	your	virtual	machine	and	open	the	Hive	shell	using	the
following	commands:

#	Start	Hive

hive

#	Show	the	data

hive>select	*	from	CH06_RAINFALL_TREND;

You	can	see	the	output	in	the	following	screenshot:

hive_workflow_output_v1

Note
Exercise:	Create	a	new	Workflow	in	which	you	select	all	the	records	from	the
CH06_RAINFALL_TREND	table	and	store	it	in	the	HDFS	directory	of	your	choice.

The	role	of	other	elements	like	prepare,	archive,	file,	and	configuration	is	same	as	we
discussed	previously.	We	can	delete	or	create	directories	in	prepare	steps,	provide	any
external	jars	needed	to	run	the	Oozie	action	(for	example,	UDFs)	in	the	archive	element,
and	so	on.

This	completes	our	first	interaction	with	Hive	action	execution	using	Oozie.	We	executed
the	Hive	action	to	insert	data	in	the	Hive	table.

Validating	Oozie	Workflow
Oozie	also	provides	the	command	to	validate	the	Workflow	before	submitting.	If	there	is
some	schema	error	in	the	XML,	Oozie	will	say	that	Workflow	is	not	valid.	Just	execute	the
oozie	validate	command	in	the	directory	where	you	have	your	workflow.xml	or
coordinator.xml	files.	In	the	example	shown	in	the	following	screenshot,	there	was	XML
syntax	issue.	Due	to	change	in	order	of	the	job-tracker	declaration	in	the	global	element
Oozie,	we	get	a	message	saying	that	there	is	issue	in	validation:

oozie_validate_workflow

Note
Exercise:	Log	in	to	HUE	and	create	the	same	Workflow	using	Hue	Workflow	editor.

Hive	2	action
Oozie	also	has	Hive	2	action,	where	we	can	use	Hive	Server	2	and	execute	our	Hive
queries.	Hive	2	action	uses	Beeline	to	execute	queries	via	the	Hive	Server	2.

Here’s	the	general	command	to	talk	to	the	Beeline	server:

beeline>	!connect	jdbc:hive2://localhost:10000	username	password	

org.apache.hive.jdbc.HiveDriver

Tip
To	know	more	about	how	Beeline	and	Hive	Server	2	work,	check	out	the	Cloudera
website	blog	post	at	http://blog.cloudera.com/blog/2014/02/migrating-from-hive-cli-to-
beeline-a-primer/.

The	general	schema	for	Hive	action	is	as	follows:

<action>

		<job-tracker>								//	Job	tracker	details

		<name-node>										//	Name	node	details

		<prepare>												//	Create	or	Delete	directory

		<job-xml>												//	Any	job	xml	properties

		<configuration>						//	Hadoop	job	configuration

		<jdbc-url>											//	HiveServer2	JDBC	URL

		<password>											//	Password	(if	any	for	Hiveserver2)

		<script>													//	Hive	script	to	run

		<param>														//	Parameters	to	hive	script

		<argument>											//	Arguments

		<file>															//	Any	files	needed	to	run	job

		<archive>												//	Any	job	dependencies	(jar	etc)

</action>

Note
If	you	are	using	Hive	versions	older	than	0.13,	then	using	more	than	one	--hivevar	flag
does	not	work.	For	more	information,	visit	https://issues.apache.org/jira/browse/HIVE-
6045.

The	code	for	this	section	of	the	chapter	is	present	in	the	folder
<BOOK_CODE_HOME>/learn_oozie/ch06/v2.

The	revised	Workflow	to	use	Hive	2	action	is	as	follows:

<workflow-app	name="max_rainfall_ch06_v2"	xmlns="uri:oozie:workflow:0.5">

		<global>

				<job-tracker>${jobTracker}</job-tracker>

				<name-node>${nameNode}</name-node>

		</global>

		<start	to="max_rainfall"/>

				<action	name="max_rainfall">

						<pig>

								<prepare>

										<delete	path="${output}"/>

								</prepare>

http://blog.cloudera.com/blog/2014/02/migrating-from-hive-cli-to-beeline-a-primer/
https://issues.apache.org/jira/browse/HIVE-6045

								

<script>/user/hue/learn_oozie/ch05/rainfall/pig/max_rain.pig</script>

								<param>pig_input=${input}</param>

								<param>pig_output=${output}</param>

						</pig>

						<ok	to="hive2"/>

						<error	to="Kill"/>

				</action>

				<action	name="hive2">

						<hive2	xmlns="uri:oozie:hive2-action:0.1">

								<jdbc-url>${hivejdbcurl}/${outputHiveDatabase}</jdbc-url>

								<script>${hivescript}</script>

								<param>outputHive=${outputHive}</param>

						</hive2>

						<ok	to="End"/>

						<error	to="Kill"/>

				</action>

				<kill	name="Kill">

				<message>Action	failed,	error	

message[${wf:errorMessage(wf:lastErrorNode())}]</message>

		</kill>

		<end	name="End"/>

</workflow-app>

Note
I	have	skipped	the	password	as	my	test	virtual	machine	is	configured	not	to	have	a
password	for	running	Hive	queries.	However,	if	your	cluster	has	a	password	authentication
(for	example,	LDAP),	then	you	can	enter	the	password	as	well.

The	property	file	provides	the	location	of	Hive	script	as	follows:

#	Job.properties	file

#	Workflow	to	run

oozie.wf.application.path=hdfs://sandbox.hortonworks.com:8020/user/hue/lear

n_oozie/ch06/v2

#	Parameters	for	Pig

input=/user/hue/learn_oozie/ch05/input/

output=/user/hue/learn_oozie/ch05/output/rainfall_pig_workflow

#	Hive2	action

hivescript=/user/hue/learn_oozie/ch06/v2/hive/insert.hql

outputHive=/user/hue/learn_oozie/ch06/v2/output/rainfall_hive2action_workfl

ow

outputHiveDatabase=default

Submit	and	run	the	job	by	using	the	following	command:

oozie	job	-config	job.properties	-oozie	http://localhost:11000/oozie

Check	the	status	of	the	Oozie	job	in	the	web	console	and	after	it	completes,	check	for	data
in	the	output	location.

We	will	shift	gear	now	and	learn	about	parameterization	of	Coordinator	jobs.

Parameterization	of	Coordinator	jobs
These	functions	are	used	to	control	Datasets,	which	are	used	for	processing	or	produced	as
part	of	Coordinator	processing.

dateOffset(String	baseDate,	int	instance,	String
timeUnit)
This	function	calculates	the	datestamp	based	on	the	following	calculation:

newDateStamp	=	baseDateStamp	+	(instance*timeUnit)

It	offsets	the	baseDateStamp	value	by	the	amount	given	by	instance	and	timeUnit.

The	timeUnit	value	can	be	one	of	the	following:

YEAR
MONTH
DAY
HOUR
MINUTE

Consider	the	following	example:

${coord:dateOffset(coord:nominalTime(),	2,	'DAY')}

If	nominal	time	is	2015-08-22T23:00Z,	then	after	the	new	calculation	the	output	will	be
2015-	08-24T23:00Z.

dateTzOffet(String	baseDate,	String	timezone)
This	function	calculates	the	datestamp	based	on	the	following	calculation:

newDateStamp	=	baseDateStamp	+	(Oozie	Processing	Timezone	-	Given	Timezone)

It	offsets	the	baseDateStamp	value	by	the	difference	from	Oozie	processing	timezone	to
the	timezone	passed	as	argument.

You	can	see	the	list	of	supported	timezones	that	can	be	passed	as	argument	using	the
following	command:

oozie	info	-timezones

Consider	the	following	example:

${coord:dateTzOffset(coord:nominalTime(),	"Australia/Sydney")

formatTime(String	timeStamp,	String	format)
This	function	converts	the	timeStamp	string	in	one	format	to	another	format.	One	of	the
use	cases	is	to	convert	the	ISO8601	timeStamp	into	other	desired	formats.

The	argument	of	format	should	be	written	as	per	convention	of	SimpleDateFormat.	You
can	check	out	the	standard	timestamp	formats	from	the	Java	API	at
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html.

For	example,	if	timeStamp	is	2015-08-22T00:00Z	and	argument	of	the	format	is	yyyy,	the
output	will	be	2015.

The	formatTime()	function	is	used	extensively	in	calculating	the	where	clause	of	Sqoop
imports	or	Hive	queries.

Consider	the	following	example:

Select	*	from	table	where	account_date=${coord:formatTime(String	timeStamp,	

String	yyyyMMdd)}

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Summary
In	this	chapter,	we	saw	how	to	run	Hive	queries	from	Oozie	along	with	the	new	Hive	2
action,	which	allows	us	to	run	Hive	Server	2	JDBC	queries.	After	that,	we	also	covered
Coordinator	parameterization	functions	for	datasets.

In	the	next	chapter,	we	will	see	how	to	import	data	into	Hadoop	using	Sqoop	and	schedule
those	jobs	via	Oozie.

Chapter	7.	Running	Sqoop	Jobs
In	this	chapter,	we	will	see	how	to	run	the	Sqoop	jobs	from	Oozie.	Sqoop	(SQL	to
Hadoop)	is	used	to	import	and	export	data	from	different	database	systems	on	to	the
Hadoop	platform.

In	this	chapter,	we	will:

Run	Sqoop	jobs	from	the	command	line
Create	Oozie	Workflow	for	Sqoop	actions
Run	Sqoop	jobs	from	Coordinators

From	the	concept	point	of	view,	we	will:

Understand	the	concept	of	HCatalog	Datasets
Understand	HCatalog	Coordinator	and	EL	functions

Chapter	case	study
Let’s	have	a	twist	in	the	rainfall	use	case	we	solved	in	the	previous	chapter.	Instead	of
getting	CSV	files	for	rainfall	data,	we	need	to	import	the	rainfall	data	from	MySQL
database	and	then	move	on	to	processing.

As	the	first	step	of	the	analysis,	we	need	to	bring	data	inside	Hadoop	using	Sqoop.	To	do
this,	we	will	use	Sqoop	import	at	end	of	each	day	to	get	data	on	Hadoop,	and	then	we	will
run	our	Pig	script	for	processing	and	saving	results	to	Hive.

Just	like	previous	chapters,	we	will	start	with	the	command-line	option	to	trigger	jobs,	and
we	will	learn	about	Sqoop	action	and	scheduling	it	via	Coordinator.	Lastly,	we	will	cover
the	concept	of	HCatalog	Datasets.	Let’s	get	started.

Running	Sqoop	command	line
The	syntax	for	the	Oozie	Sqoop	command-line	execution	is	shown	in	the	following
screenshot:

Sqoop	command	line

Let’s	import	all	records	for	the	table	to	HDFS.

Note
For	sample	MySQL	database	preparation,	I	have	created	one	script	in	the	folder
<BOOK_CODE_HOME>/ch07/sqoop_commandline/loadToMySQL.sh,	using	which	you	can
create	one	database	to	test	the	Sqoop	import.

The	database	name	is	rainfall	and	table	is	rainfall_data.	We	can	import	all	the	records
from	this	table	using	the	Sqoop	command-line	import	option.	To	create	the	test	Dataset,
execute	the	steps	written	in	loadToMySQL.sh.

We	are	ready	to	run	the	job.	I	have	saved	the	following	command	in	the	script
<BOOK_CODE_HOME>/ch07/sqoop_commandline/import_all_records.sh:

oozie	sqoop	-oozie	http://localhost:11000/oozie	-command	import—connect	

jdbc:mysql://localhost:3306/rainfall	--username	root—password	""	--table	

rainfall_data	--target-dir	

'/user/hue/learn_oozie/ch07/sqoop_commandline/rainfall/output'	-m	1	-config	

job.properties

Sqoop	needs	the	JDBC	driver	libraries	to	do	the	import.	So	any	third-party	JAR	files	that
are	needed	(for	example,	Teradata,	Netezza,	Greenplum,	and	so	on)	should	be	copied	in
the	oozie.libpath	variable	declared	in	the	property	file.	As	a	best	practice,	we	should
have	single	libpath	for	all	Workflows.

The	corresponding	job.properties	file	is	shown	here:

jobTracker=sandbox.hortonworks.com:8050

mapreduce.jobtracker.address=sandbox.hortonworks.com:8050

fs.defaultFS=hdfs://sandbox.hortonworks.com:8020

nameNode=hdfs://sandbox.hortonworks.com:8020

oozie.use.system.libpath=True

oozie.libpath=hdfs://sandbox.hortonworks.com:8020/user/hue/learn_oozie/ch07

/sqoop_commandline/lib

Note	the	libpath	variable	declared	here	and	also	note	that	I	have	already	copied	the

MySQL	JDBC	JAR	in	the	path	/user/hue/learn_oozie/ch07/sqoop_commandline/lib.
Depending	on	the	database	from	where	you	are	going	to	import	you	should	add	the
required	JAR	in	libpath.

Let’s	run	the	preceding	job	using	the	following	command	and	wait	for	it	to	complete:

cd	<BOOK_CODE_HOME>/ch07/sqoop_commandline/import_all_records.sh

Note	the	job	ID	generated	by	Oozie	and	see	the	corresponding	Workflow	generated	by
Oozie	using	the	following	command:

oozie	job	-definition	0000034-150905021502101-oozie-oozi-W

Replace	the	preceding	ID	with	the	ID	that	was	shown	to	you.

The	job	starts	immediately	on	submission	and	once	it	is	finished,	we	can	see	the	data
inside	HDFS.	Check	out	the	following	screenshot:

Sqoop	job	to	import	all	records

Using	the	Sqoop	command-line	option,	we	can	import	data	from	databases	when	we	have
to	do	it	as	a	one-time	job.	To	schedule	such	kind	of	jobs	regularly	using	Coordinator,	we
have	to	use	Sqoop	action,	which	we	will	see	in	the	next	section.

Note
Exercise:	Import	selected	records	using	Sqoop	freeform	import	from	the	command-line
option	using	the	where	clause.	Check	out	the	example	in
<BOOK_CODE_HOME>/ch07/sqoop_commandline/sqoop_freeform.sh.

Sqoop	action
Sqoop	action	allows	us	to	include	the	Sqoop	commands	as	part	of	the	broader	Workflow,
which	can	be	part	of	data	pipeline.	All	the	parameters	that	Sqoop	needs	can	be	configured
via	XML	arguments.

Open	the	Sqoop	SVG	diagram	at	<BOOK_CODE_HOME>/xsd_svg/sqoop-action-0.4	and	see
the	different	properties	and	elements	required	for	Sqoop	action	to	work.

Check	out	the	following	SVG:

Sqoop	action	SVG

Most	of	the	elements	required	for	Sqoop	action	are	similar	to	the	ones	we	have	already
seen.	The	main	definition	of	Sqoop	action	can	be	done	with	one	of	the	two	options:

command

arg

An	example	of	the	command	option	is	as	follows:

<command>import	--connect	jdbc:mysql://localhost/database	--username	sqoop	

--password	sqoop	--table	tablenameinDB	--hive-import	--hive-table	

tablnameinHive</command>

Here’s	an	example	of	an	arg	option:

<arg>import</arg>

<arg>--connect</arg>

<arg>jdbc:mysql://localhost</arg>

<arg>--username</arg

<arg>root</arg>

<arg>--password</arg>

<arg>""</arg>

<arg>--query</arg>

<arg>"select	*	from	tableName"</arg>

<arg>--target-dir</arg>

<arg>hdfsFolder</arg>

<arg>-m</arg>

<arg>4</arg>

<arg>--direct</arg>

You	can	change	the	preceding	arguments,	for	example,	tableName,	password,
hdfsFolder,	and	mappers,	as	per	your	requirements.

To	see	a	practical	example,	we	will	modify	our	previous	chapter	Workflow,	add	the	Sqoop
action	as	starting	point,	and	then	call	the	Pig	action.	Further,	we	will	also	push	this	data	to
Hive.	To	send	data	to	Hive	table,	we	will	not	use	Hive	action.	We	will	use	the	HCatalog-
based	Datasets	approach	to	make	it	interesting.

The	general	data	flow	of	our	problem	will	be	as	follows:

Sqoop,	Pig	processing,	and	Hive	insertion	Workflow

Before	we	start	the	actual	example,	let’s	discuss	some	concepts	related	to	HCatalog	and
HCatalog-backed	datasets.	This	is	a	new	feature	added	to	Oozie	4.x	release.

HCatalog
HCatalog	provides	the	table	and	storage	management	layer	for	Hadoop.	It	brings	various
tools	in	the	Hadoop	ecosystem	together.	Using	HCatalog	interface,	different	tools	like
Hive,	Pig,	and	MapReduce	can	read	and	write	data	on	Hadoop.	All	of	them	can	use	the
shared	schema	and	datatypes	provided	by	HCatalog.	Having	shared	the	mechanism	of
reading	and	writing	makes	it	easy	to	consume	the	output	of	one	tool	in	the	other	one.

So	how	does	HCatalog	come	in	section	of	Datasets?	So	far,	we	have	seen	the	HDFS
folder-based	Datasets	in	which	based	on	some	success	flag,	we	come	to	know	that	data	is
available.	Using	HCatalog-based	Datasets,	we	can	trigger	Oozie	jobs	based	on	time	when
data	in	a	given	Hive	partition	becomes	available	for	consumption.	This	takes	Oozie	to	the
next	level	of	job	dependency,	where	we	can	consume	data	as	and	when	it	is	available	in
Hive.

To	quickly	see	an	example	of	interoperability,	let’s	see	how	Pig	can	use	Hive	tables	and
how	HCatalog	brings	all	tools	together.	Read	the	comments	(lines	with	#)	as	you	read	the
code:

#	Start	Pig	and	add	Hcatalog	jars	to	Pig	classpath

$	pig	-useHCatalog

#	Load	Our	Hive	table	in	Pig

grunt>	A	=	LOAD	'ch06_rainfall_trend'	using	

org.apache.hive.hcatalog.pig.HCatLoader();

#	Describe	Table

grunt>	describe	A;

A:	{year:	int,month:	int,rainfall:	float}

#	Now	data	of	Hive	table	can	be	accessed	and	used	by	relation	A	inside	Pig

grunt>

You	can	find	more	information	on	HCatalog	on	Wikipedia	at
https://cwiki.apache.org/confluence/display/Hive/HCatalog+UsingHCat.

Let’s	see	how	HCatalog-based	Datasets	are	defined	and	later	we	will	see	various	options
on	how	to	use	them	in	Coordinator	applications.

https://cwiki.apache.org/confluence/display/Hive/HCatalog+UsingHCat

HCatalog	datasets
HCatalog	uses	Hive	metastore	to	provide	table-layer	abstraction	to	different	tools	such	as
Pig,	MapReduce,	and	so	on,	and	it	allows	access	to	data	stored	in	Hive.	The	Datasets	can
be	defined	as	HCatalog	by	using	the	following	general	syntax:

hcat://HiveMetastoreURL/hiveDatabaseName/hiveTableName/HiveTablePArtitionIn

formation

To	see	one	concrete	example,	see	the	following	Dataset	declaration	for	table	named
rainfall_partitioned:

<datasets>

		<dataset	name="rainfall_partitioned"	frequency="${coord:months(1)}"	

initial-instance="2015-01-01T00:00Z"	timezone="Australia/Sydney"><uri-

template>hcat://${hcaturl}/default/ch07_v1_max_rainfall_trend/yearmonth=${Y

EAR}${MONTH}</uri-template>

				<done-flag></done-flag>

		</dataset>

</datasets>

The	code	for	this	section	of	book	is	present	at
<BOOK_CODE_HOME>/learn_oozie/ch07/datasets.

It	is	similar	to	file-based	Datasets	with	a	change	in	<uri-template>.	The	DDL	for	the
table	ch07_v1_max_rainfall_trend	is	shown	here	to	make	it	clear.	Note	the	relation
between	database	name,	tablename,	partition	information	in	Dataset,	and	DDL.

After	Pig	has	done	the	processing,	we	will	store	our	results	in	a	Hive	table	named
ch07_v1_max_rainfall_trend.	This	table	can	be	directly	accessed	from	Pig	using	the
following	commands:

--	Code	<BOOK_CODE_HOME>/learn_oozie/ch07/v1/hive/Create_table.hql

CREATE	TABLE	default.ch07_v1_max_rainfall_trend	(RAINFALL	FLOAT)

PARTITIONED	BY	(YEARMONTH	INT)

ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	','

LOCATION	'/user/hue/learn_oozie/ch07/v1/max_rainfall_trend/output';

The	partition	pattern	matches	with	what	we	have	declared	in	Dataset.	There	is	only	one
column	in	the	table,	but	that	does	not	influence	our	learning	of	Oozie.

HCatalog	EL	functions
There	is	one	HCatalog	EL	function	that	can	be	used	to	check	if	a	given	HCatalog	partition
(Hive	partition)	exists	or	not:

boolean	hcat:exists(String	uri)

Here’s	an	example:

hcat:exists("hcat://${hcaturl}/default/ch07_v1_max_rainfall_trend/yearmonth

=${YEAR}${MONTH}")

This	example,	at	runtime,	might	resolve	to:

hcat:exists("hcat://localhost:10000/default/ch07_v1_max_rainfall_trend/year

month=201501")

HCatalog	Coordinator	functions
There	are	many	HCatalog	Coordinator	functions.	A	brief	summary	of	each	of	them	is
given	in	the	following	table:

Function Use

databaseIn(String	name) Returns	input	database	name	for	the	HCatalog	Dataset

databaseOut(String	name) Returns	output	database	name	for	the	HCatalog	Dataset

tableIn(String	name) Returns	input	table	name	for	the	HCatalog	Dataset

tableOut(String	name) Returns	output	database	name	for	the	HCatalog	Dataset

dataInPartitionFilter(String	name,

String	type)

Filters	the	Hive	partitions	and	returns	the	required	Dataset	to	be
consumed	by	Pig,	Hive,	or	Java	actions

dataOutPartitions(String	name) Comma-separated	list	of	output	partitions

dataInPartitionMin(String	name,

String	partition)
Minimum	value	for	partition	in	given	input	event	instances

dataInPartitionMax(String	name,

String	partition)
Maximum	value	for	partition	in	given	input	event	instances

dataOutPartitionValue(String	name,

String	partition)
Returns	the	value	of	partition	for	output	event

dataInPartitions(String	name,	String

type)
List	of	key-value	pairs	for	the	input	event	Dataset

We	will	see	the	example	of	a	few	of	them	as	we	move	along	in	this	chapter.

Note
Exercise:	Take	a	short	break	from	reading	this	book	and	look	at	the	official
documentation.	Read	about	all	the	HCatalog	functions	at
http://oozie.apache.org/docs/4.2.0/CoordinatorFunctionalSpec.html#a6.8_Using_HCatalog_data_instances_in_Coordinator_Applications_since_Oozie_4.x
Each	of	them	is	very	well	explained	with	example.

Let’s	get	back	to	the	case	study	for	our	chapter.	We	decided	that	the	flow	of	data	will	be
from	Sqoop	import	to	Pig	processing	to	Hive	table.

To	insert	the	data	from	Pig	to	Hive,	we	will	use	the	newly	learned	concept	of	HCatalog
and	Pig	integration.

A	section	of	the	Workflow	is	shown	in	the	following	screenshot:

http://oozie.apache.org/docs/4.2.0/CoordinatorFunctionalSpec.html#a6.8_Using_HCatalog_data_instances_in_Coordinator_Applications_since_Oozie_4.x

Sqoop	Workflow

The	code	for	this	section	of	chapter	is	present	at
<BOOK_CODE_HOME>/learn_oozie/ch07/v1/workflow.xml.

In	the	Sqoop	action,	we	use	the	arg	method.	In	line	15	of	the	preceding	Workflow,	we
declare	that	it	is	a	Sqoop	import	job	and	then	we	declare	various	arguments	needed	by
Sqoop	import,	one	in	each	line.	If	you	try	to	pass	multiple	arguments	in	a	single	line,	the
Workflow	will	throw	an	error.	Try	to	do	that	and	see	the	results.

Note
Exercise:	Convert	the	preceding	Sqoop	action	to	a	command	type	of	Sqoop	action.

Pig	script
The	Pig	script,	which	is	calculating	the	maximum	rainfall	each	month,	is	shown	in	the
following	screenshot:

Pig	processing

Note	the	input	variables	needed	by	the	Pig	script.	It	needs	pig_input	(line	1).	It	also	needs
database,	tablename,	and	partition	(line	4)	information	for	storing	output.

The	job.properties	file
As	best	practice,	we	have	moved	all	the	parameters	in	external	property	file.	Check	out	the
property	file	given	here.	One	of	the	important	properties	is	oozie.libpath.	Sqoop	needs
external	JDBC	JAR	to	work.	To	add	it	to	the	classpath	of	the	job,	we	can	either	drop	in	the
lib	folder	inside	or	keep	it	in	oozie.libpath.	We	have	used	both	of	these	approaches	in
the	examples	given	in	the	following	screenshot:

The	job.properties	file

Check	out	the	JAR	files	present	at	<BOOK_CODE_HOME>/learn_oozie/ch07/v1/lib.

The	query	for	Sqoop	is	defined	in	line	3.	Note	the	presence	of	two	variables,	${year}	and
${month};	both	of	them	will	be	passed	on	by	Coordinator	depending	on	the	year	and
month	for	which	the	job	is	being	run.

The	path	where	Sqoop	will	import	data	has	been	defined	in	line	4.	This	path	will	be
combined	with	the	year	and	month	to	calculate	the	fully	qualified	unique	path	of	each
month.	Again,	the	Coordinator	will	pass	on	this	dynamic	information	to	Workflow.

For	example,	see	line	25	of	the	Sqoop	Workflow:

${pig_base_input}/${year}/${month}

This	will	resolve	to	/user/hue/learn_oozie/ch07/input/rainfall/2015/01	for	the
month	of	January	and	so	on.

Another	important	property	to	note	is	hcaturl,	which	is	same	as	the	Hive	metastore	URL.
This	has	been	defined	in	line	15	in	the	properties	file,	shown	in	the	preceding	screenshot.

The	Sqoop	action	Coordinator
Let’s	see	the	Coordinator	that	will	run	our	Workflow	regularly	to	import	data	from
database	using	Sqoop.	The	code	for	this	section	is	available	at
<BOOK_CODE_HOME>/learn_oozie/ch07/v1/coordinator.xml.

I	would	like	to	repeat	our	problem	statement	and	what	we	are	trying	to	do.	Every	day,	the
rainfall	records	are	stored	in	the	MySQL.	At	the	end	of	each	month,	we	import	those
records	to	HDFS	using	Sqoop.	Then,	we	run	Pig	code	to	find	highest	rainfall	in	that	month
and	store	the	results	in	a	Hive	table.

You	can	see	that	we	defined	the	Coordinator	frequency	as	monthly	(this	is	not	shown	in
the	screenshot;	please	see	the	code	folder).	We	defined	the	output	Hive	table	as	a
HCatalog	Dataset	and	that	Dataset	is	being	declared	in	the	Coordinator	which	is	at	line	12
of	the	following	screenshot:

Coordinator

As	an	example,	please	see	how	the	different	EL	functions	resolve	on	first	run	at	the	end	of
the	month	of	January	2015.	Note	the	line	numbers	in	column	1,	code	in	column	2,	and
what	output	that	code	will	generate	in	column	3:

Line
no Code Output

17 current(0) hcat://localhost:10000/default/ch07_v1_max_rainfall_trend/yearmonth=201501"

27 formatTime(coord:nominalTime(),"yyyy") 2015

31 formatTime(coord:nominalTime(),"MM") 01

35 databaseOut('wf_output') default

39 tableOut('wf_output') ch07_v1_max_rainfall_trend

43 dataOutPartitionValue('wf_output','yearmonth') yearmonth='201501'

The	Coordinator	passes	all	of	them	as	arguments	to	the	Workflow.	Take	some	time	and
relate	it	to	Workflow.	You	should	start	at	config-default.xml,	then	job.properties,	and
then	move	to	coordinator.xml,	dataset.xml,	and	workflow.xml.

Running	the	job
I	am	assuming	that	you	have	already	copied	all	the	source	code	of	the	book	to	HDFS	at
the	start	of	this	book.	If	not,	please	do	so	now.

Let’s	run	the	job	using	the	following	commands:

$	cd	<BOOK_CODE_HOME>/learn_oozie/ch07/v1/

$	oozie	job	-run	-config	job.properties

After	some	time,	Oozie	will	start	executing	the	first	instance	of	the	job	for	the	month	of
January	2015.	Note	that	all	of	them	are	backlog	jobs	and	in	our	Coordinator	properties,	we
have	defined	the	execution	policy	as	FIFO.	As	a	result,	all	backlog	jobs	will	be	run	by	the
Coordinator	one	by	one.

To	check	the	progress	of	the	job,	we	can	go	to	the	web	console	to	verify	the	job	status,	as
shown	in	the	following	screenshot:

Oozie	web	console	success

Checking	data	in	the	Hive	table
To	verify	that	data	is	being	inserted	properly	in	Hive	tables,	we	can	use	the	Hive	select
count	query	as	shown	in	the	following	screenshot:

Hive	table	import	check

Summary
This	completes	our	chapter.	We	discussed	the	new	concept	of	HCatalog	and	Oozie
integration,	which	has	been	recently	released.	We	also	covered	Sqoop	action	and	used	the
concepts	that	we	discussed	in	the	previous	chapters	to	make	a	Coordinator.

In	the	next	chapter,	we	will	see	how	to	run	Spark	jobs	from	Oozie.

Chapter	8.	Running	Spark	Jobs
In	this	chapter,	we	will	see	how	to	run	Spark	jobs	from	Oozie.	Spark	has	changed	the
whole	ecosystem	of	Hadoop	and	the	Big	Data	world.	It	can	be	used	as	ETL	tool	or
machine	learning	tool,	and	it	can	be	used	where	traditionally	we	use	Pig,	Hive,	or	Sqoop.

In	this	chapter,	we	will:

Create	Oozie	Workflow	for	Spark	actions

From	the	concept	point	of	view,	we	will:

Understand	the	concept	of	Bundles

We	will	start	off	with	a	simple	Workflow	in	which	we	will	rewrite	the	same	Pig	logic	of
finding	maximum	rainfall	in	a	given	month	in	Spark	and	then	we	will	schedule	that	using
Oozie	Workflow	and	Coordinators.	The	idea	is	to	show	the	beauty	of	Spark—how
seamlessly	it	replaces	various	tools	such	as	Pig	or	Hive,	and	how	it	has	become	the	default
execution	engine	of	the	Big	Data	platform.	If	you	are	a	very	keen	follower	of	Hadoop
news,	recently	Cloudera	announced	that	they	are	declaring	phase	out	of	MapReduce	and
are	going	to	keep	all	their	eggs	in	the	Spark	bucket.	The	vast	number	of	open-pull	requests
(https://github.com/apache/spark/pulls)	shows	how	everyone	is	excited	about	this	tool.	We
cannot	discuss	the	details	about	Spark,	its	architecture,	and	why	it	is	gaining	so	much
popularity	in	this	book.	However,	I	would	recommend	you	to	go	to	the	Spark	website
(https://spark.apache.org)	and	read	about	it.

https://github.com/apache/spark/pulls
https://spark.apache.org

Spark	action
The	Spark	action	has	been	recently	added	in	Oozie	and	the	general	XSD	is	shown	in	the
following	figure:

Spark	SVG	action

The	general	schema	is	as	follows:

<action>

		<job-tracker>								//	Job	tracker	details

		<name-node>										//	Name	node	details

		<prepare>												//	Create	or	Delete	directory

		<job-xml>												//	Any	job	xml	properties

		<configuration>						//	Hadoop	job	configuration

		<master>													//	Spark	master	details

		<mode>															//	Spark	driver	mode

		<name>															//	Spark	Job	name

		<class>														//	Spark	main	class

		<spark-opts>									//	Spark	Job	options

		<arg>																//	Arguments	for	the	job

</action>

The	<master>	element	tells	about	the	URL	of	Spark	master.	Spark	can	run	in	different
cluster	configurations,	namely	Spark	standalone,	Mesos,	and	Yarn.	Depending	on	which
cluster	manager	you	are	using,	the	master	URL	will	change.	For	example,
spark://host:port	for	Spark	standalone,	mesos://host:port	when	the	cluster	manager
is	Mesos,	yarn-cluster://host:port	or	yarn-master://host:port	when	the	cluster
manager	is	Yarn,	or	local://host:port	when	you	are	testing	jobs	on	a	local	machine.

The	<mode>	element	tells	about	the	mode	of	spark	driver	execution.	The	Spark	driver	can
run	inside	the	cluster	(mode	as	cluster)	and	on	the	client	machine	where	the	job	has	been
submitted	(mode	as	client).

The	<spark-opts>	element	is	optional.	If	present,	it	can	have	a	list	of	spark	options	that
will	be	passed	to	the	Spark	driver.	The	configuration	can	be	specified	in	the	format	--conf
key=value	in	this	element	or	it	can	also	be	configured	in	oozie-site.xml	under
oozie.service.SparkConfigurationService.spark.configurations.	However,	the
spark-opts	configs	have	priority	over	the	oozie-site.xml	settings.

In	Hortonworks	virtual	machine,	we	have	Spark	running	on	top	of	Yarn.	Based	on	that,	we
will	use	the	settings	for	the	Yarn-managed	Spark	cluster.

I	have	already	written	some	Spark	code	to	simulate	what	was	done	by	the	Pig	script	to
convert	the	raw	data	of	rainfall	to	a	processed	form.	The	code	for	this	section	is	available
at	<BOOK_CODE_HOME>/learn_oozie/ch08.

The	Spark	code	is	in	the	rainbow	folder,	which	we	will	package	as	JAR	and	use	in	our
Oozie	Workflow.	Start	the	Spark	service	in	Ambari	console	if	it’s	not	running.	You	can
also	follow	along	if	you	are	running	the	Cloudera	or	other	Hadoop	distribution.	I	have
used	Spark	1.3.1	in	the	following	code	example,	but	this	does	not	change	how	we	use
Oozie	to	schedule	our	Spark	jobs:

cd	/learn_oozie/ch08/rainbow

mvn	clean	compile	package	assembly:single

Wait	for	Maven	to	download	all	the	dependencies	and	build	uber	JAR	for	us.

Once	the	process	is	complete,	we	can	see	JAR	under	the	folder
<BOOK_CODE_HOME>/learn_oozie/ch08/rainbow/target/rainbow-1.0.0-jar-with-

dependencies.jar.

We	will	test	it	quickly	via	the	command	line	to	see	how	it	works	(I	assume	you	have
already	copied	the	code	to	HDFS	at	the	start	of	this	book):

spark-submit	\

--master	"yarn-cluster"	\

--class	"life.jugnu.learnoozie.ch08.MaxRainfall"	\

<BOOK_CODE_HOME>/learn_oozie/ch08/rainbow/target/rainbow-1.0.0-jar-with-

dependencies.jar	\

/user/hue/learn_oozie/ch05/input/rainfall/2015/01/Rainfall-2015-01.txt	

/tmp/ch08/rainbow

There	are	two	arguments	for	the	Scala	class	life.jugnu.learnoozie.ch08.MaxRainfall;
one	is	input	path	/user/hue/learn_oozie/ch05/input/rainfall/2015/01/Rainfall-
2015-01.txt	and	other	is	output	path	/tmp/ch08/rainbow.

Wait	for	the	job	to	finish	and	then	see	the	output	in	HDFS	by	running	the	following
command:

hadoop	fs	-cat	/tmp/ch08/rainbow/part-00000

The	output	should	be	as	follows:

2015,1,11.0

Let’s	create	the	Oozie	Workflow	for	running	this	regularly.

The	Spark	action	for	the	command	line	we	executed	earlier	is	shown	here:

<spark	xmlns="uri:oozie:spark-action:0.1">

		<job-tracker>${jobTracker}</job-tracker>

		<name-node>${nameNode}</name-node>

		<master>yarn-cluster</master>

		<mode>cluster</mode>

		<name>Spark	Ch08	Max	Rain	Calculator</name>

		<class>life.jugnu.learnoozie.ch08.MaxRainfall</class>

		<jar>/user/hue/learn_oozie/ch08/rainbow/target/rainbow-1.0.0-jar-with-

dependencies.jar</jar>

		<arg>${input}</arg>

		<arg>${output}</arg>

</spark>

The	code	for	this	section	is	available	in	the	folder
<BOOK_CODE_HOME>/learn_oozie/ch08/spark_rainfall.

Submit	the	Workflow	for	execution	using	the	Oozie	job	submit	command	as	follows:

oozie	job	-run	-config	job.properties

The	job	will	start	running	as	soon	as	it	is	submitted.	Wait	for	the	job	to	complete	and
check	the	final	output	under	/user/hue/learn_oozie/ch08/processed/max_rainfall.

There	are	a	few	important	things	to	keep	in	mind	here:

Oozie	needs	to	be	built	with	the	same	version	of	Spark	which	you	are	using	in	your
code
If	your	job	fails	with	a	class	not	found	exception,	then	check	the	version	of	Spark
used	in	your	code	and	what	libraries	are	present	in	the	Oozie	shared	library
By	default,	Oozie	comes	with	Spark	1.1
Check	out	the	Hadoop	distribution	documentation	to	know	more	about	the	versions
and	compatibility

You	can	also	override	the	action	shared	library	if	there	is	a	version	conflict.	For	more
information,	check	out	the	Oozie	documentation	at
https://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html#a17.1_Action_Share_Library_Override_since_Oozie_3.3

Note
Exercise:	Schedule	Spark	Workflow	to	use	the	Python	script.

https://oozie.apache.org/docs/4.2.0/WorkflowFunctionalSpec.html#a17.1_Action_Share_Library_Override_since_Oozie_3.3

Bundles
So	far,	you’ve	learned	about	Workflows	(what	to	do)	and	Coordinators	(when	to	do)	in
Oozie.

Now	we	will	cover	Bundles.	Bundles	are	a	group	of	Coordinators	that	are	grouped
together	and	managed	all	as	one	bundle.	This	makes	it	easy	to	operate	set	of	Coordinators
to	start,	stop,	and	resume	the	jobs.

The	basic	SVG	diagram	for	the	Bundles	is	shown	here:

Bundles	specification

Bundle	needs	to	have	information	about	the	set	of	Coordinators	for	which	it	is	responsible
and	the	kick-off	time.	Kick-off	time	is	the	time	at	which	Bundle	should	start	and	submit
all	the	applications	to	the	Oozie	server.	The	Coordinators	which	are	a	part	of	a	Bundle
may	or	may	not	have	a	relationship	between	them.	They	can	be	part	of	the	same	or
different	data	pipelines.	Generally,	the	best	practice	is	to	bundle	all	tables	that	are	coming
from	the	same	database,	or	bundle	all	Coordinators	that	are	part	of	same	data	pipeline.

You	might	want	to	check	out	the	pictorial	representation	of	Bundle’s	job	flow	on	this	blog:

http://hadooped.blogspot.com.au/2013/07/apache-oozie-part-10-bundle-jobs.html

The	general	schema	of	Bundle	is	as	follows:

<bundle-app>										//	Start	of	Bundle	app

		<parameters>								//	Parameters

http://hadooped.blogspot.com.au/2013/07/apache-oozie-part-10-bundle-jobs.html

		<controls>										//	Controls	as	Kick-off-time

		<kick-off-time>

		<coordinator>							//	Coordinators	definitions	(one	or	more)

		<app-path>

		<configuration>

</bundle-app>

For	example,	we	will	just	use	the	Coordinators	made	in	the	previous	chapter	and	run	them
together	as	part	of	a	Bundle.

Note	the	kick-off	time	at	which	we	defined	that	this	Bundle	should	start	and	submit	both
of	the	Coordinators	for	execution.	The	code	is	as	follows:

<bundle-app	name="Sample	Bundle	Example"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="uri:oozie:bundle:0.2">

		<parameters>

				<property>

						<name>oozie.use.system.libpath</name>

						<value>true</value>

				</property>

		</parameters>

		<controls>

			<kick-off-time>2015-03-11T15:22Z</kick-off-time>

		</controls>

		<coordinator	name="Coordinator_Ch05_rainfall_v3">

				<app-path>${nameNode}/user/hue/learn_oozie/ch05/rainfall/v3</app-path>

				<configuration>

						<property>

								<name>wf_application_path</name>

								<value>${nameNode}/user/hue/learn_oozie/ch05/rainfall/v3</

								value>

						</property>

						<property>

								<name>data_definitions</name>

								<value>${nameNode}/user/hue/learn_oozie/ch05/rainfall/

								datasets/datasets.xml</value>

						</property>

						<property>

								<name>frequency</name>

								<value>55	23	L	*	?</value>

						</property>

						<property>

								<name>execution_order</name>

								<value>LAST_ONLY</value>

						</property>

						<property>

								<name>start_date</name>

								<value>${start_date_1}</value>

						</property>

						<property>

								<name>end_date</name>

								<value>${end_date_1}</value>

					</property>

				</configuration>

		</coordinator>

		<coordinator	name="Coordinator_Ch05_rainfall_v2">

				<app-path>${nameNode}/user/hue/learn_oozie/ch05/rainfall/v2</app-

				path>

				<configuration>

						<property>

								<name>wf_application_path</name>

								<value>${nameNode}/user/hue/learn_oozie/ch05/rainfall/v2</

								value>

						</property>

						<property>

								<name>frequency</name>

								<value>55	23	L	*	?</value>

						</property>

						<property>

								<name>start_date</name>

								<value>${start_date_2}</value>

						</property>

						<property>

								<name>end_date</name>

								<value>${end_date_2}</value>

					</property>

				</configuration>

		</coordinator>

</bundle-app>

Like	Workflow	and	Coordinator,	Bundle	too	has	a	job.properties	file	that	defines	the
properties.	The	only	new	property	in	the	following	property	file	is
oozie.bundle.application.path,	which	defines	the	location	of	bundle.xml	in	the
HDFS:

#	Time	and	schedule	details

frequency=55	23	L	*	?

nameNode=hdfs://sandbox.hortonworks.com:8020

#	Datasets

data_definitions=hdfs://sandbox.hortonworks.com:8020/user/hue/learn_oozie/c

h05/rainfall/datasets/datasets.xml

#	Controls

timeout=10

concurrency_level=1

materialization_throttle=1

#	This	defines	location	on	HDFS	where	bundle	is	stored

oozie.bundle.application.path=hdfs://sandbox.hortonworks.com:8020/user/hue/

learn_oozie/ch08/bundles/

start_date_1=2015-01-01T00:00Z

end_date_1=2015-12-31T00:00Z

start_date_2=2015-01-01T00:00Z

end_date_2=2015-12-31T00:00Z

Let’s	submit	and	run	this	job	using	the	following	commands:

cd	<BOOK_CODE_HOME>/learn_oozie/ch08/bundles

oozie	job	-run	-config	job.properties

The	job	will	start	immediately	and	we	can	see	its	progress	in	the	Oozie	web	console:

Bundle	Oozie	web	console

Click	on	any	Coordinator	to	see	the	execution	of	the	Workflow.

Data	pipelines
In	real	Big	Data	projects,	the	Coordinators	are	scheduled	tasks	that	are	part	of	the	data
pipeline.	For	example,	get	data	from	some	system	and	process	it	(this	forms	one
Coordinator),	and	then	another	sub	process	can	send	the	processed	data	to	a	database	(this
forms	another	Coordinator).	Finally,	both	of	them	are	abstracted	to	form	Bundle.	To	think
in	terms	of	how	to	solve	your	job	using	Oozie,	start	by	drawing	the	job	Workflow	on	a
whiteboard/paper.	Then	discuss	with	your	team	how	you	can	create	unit	abstractions	to
run	individually	and	in	isolation.

Check	out	the	following	example.

The	database	has	a	record	of	daily	rainfall	in	Melbourne.	We	import	that	data	to	Hadoop
using	a	regular	Coordinator	job	(Coordinator	1).	Using	another	scheduled	job,	we	send	the
results	back	to	the	database	as	shown	in	the	following	figure:

Data	pipelines

Note
Exercise:	Take	the	preceding	example	and	make	one	Bundle	that	processes	our	rainfall
data	in	the	first	Coordinator	(using	Pig	script)	and	sends	the	data	as	part	of	Sqoop	export
in	the	second	Coordinator.

Summary
In	this	chapter,	we	saw	how	to	run	Apache	Spark	jobs	from	Oozie.	Then,	we	discussed
how	to	think	in	terms	of	data	pipelines	and	finally	discussed	Bundles.

In	the	next	chapter,	we	will	talk	about	various	production-related	concepts	and	day-to-day
tasks	that	are	helpful	while	running	Oozie.

Chapter	9.	Running	Oozie	in	Production
In	this	chapter,	we	will	see	how	to	deploy	Oozie	code	in	production	using	best	practices	of
continuous	integration	and	deployment.	We	will	also	see	how	to	make	Oozie	work	in	a
secured	Hadoop	cluster.	Besides	this,	we	will	discuss	how	to	restart	the	Oozie	jobs	that
have	failed	in	between.

In	this	chapter,	we	will:

Create	production-ready	code	for	Oozie

From	the	concept	point	of	view,	we	will:

Understand	the	concept	of	rerun

Packaging	and	continuous	delivery
In	this	section,	we	will	see	how	to	package	the	Oozie	code	and	deploy	it	in	production.

The	code	for	this	section	is	available	in	the	folder
<BOOK_CODE_HOME>/learn_oozie/ch09/packaging.

Import	the	project	in	to	your	favorite	editor	(Eclipse/Intellij)	as	a	Maven	project.

The	source	code	of	Oozie	gets	deployed	at	two	places:

On	HDFS,	where	we	copy	all	the	Workflows,	Coordinators,	and	so	on.
On	the	local	client	machine	from	where	we	submit	the	jobs	using	the	command	line.
All	the	job.properties	files	reside	here.

If	you	see	the	code	folder,	we	have	a	simple	Maven	project	in	which	we	have	the
following	folder	structure:

Maven	project	structure

We	can	see	that	the	code	that	goes	to	HDFS	has	been	written	in	the	hdfs	folder,	and	the
code	that	has	to	be	on	the	local	client	machine	has	been	written	in	the	client	folder.
Under	both	of	them,	we	have	a	folder	called	apps.	Under	apps,	we	have	different	apps
representing	Oozie	Workflows.	I	have	copied	one	of	the	applications	named	rainfall,
which	we	made	previously.	You	can	have	more	apps	under	this	folder	as	you	add	various
production	Oozie	implementations.	I	have	shared	an	example	here.

The	config-default	file	is	a	common	file	that	is	needed	by	each	app.

There	is	a	folder	named	assembly	that	has	Maven	assemblies	that	package	the	code	for
client	and	HDFS	deployments.

For	example,	check	out	the	following	oozie-hdfs.xml	assembly:

<assembly>

		<id>hdfs</id>

		<formats>

				<format>dir</format>

				<format>zip</format>

		</formats>

		<includeBaseDirectory>false</includeBaseDirectory>

		<fileSets>

				<fileSet>

						<directory>${basedir}/src/main/hdfs</directory>

						<outputDirectory>hdfs/hdfs-${project.version}</outputDirectory>

		</fileSet>

		</fileSets>

		<files>

				<file>

							<source>src/main/common/config-default.xml</source>

							<outputDirectory>hdfs/hdfs-

${project.version}/apps/rainfall</outputDirectory>

				</file>

				<file>

						<source>target/classes/VERSION.txt</source>

						<outputDirectory>hdfs/hdfs-${project.version}</outputDirectory>

				</file>

		</files>

</assembly>

The	preceding	assembly	packages	the	code	in	the	hdfs	folder	in	to	the	output	folder	called
hdfs.	The	config-default.xml	file	is	copied	to	the	app	rainfall.	The	VERSION.txt	file
is	also	copied,	which	gives	us	a	handy	way	to	find	the	current	version	of	code	installed	in
production.

If	you	have	Maven	installed	on	your	machine,	then	you	can	build	the	project	by	using	the
following	command:

mvn	clean	package	assembly:single

After	the	build	is	complete,	go	to	the	folder	named	target.	The	following	packages	are
built:

ch09-1.0.0-client.zip

ch09-1.0.0-deploy.zip

ch09-1.0.0-hdfs.zip

The	client	package	can	be	extracted	to	the	client	machine.	The	hdfs	package	can	be
copied	to	hdfs.

To	do	both	of	the	preceding	deployments,	we	have	to	deploy	the	zip	package.	Extract	and
see	the	contents	of	deploy.zip.	It	is	a	simple	shell	script.

To	do	real	production	implementation	conforming	to	continuous	integration	and
deployment	principles,	we	have	the	following	Workflow:

Continuous	deployment

The	following	is	an	explanation	of	the	preceding	figure:

1.	 First,	the	developer	commits	the	code	to	the	git	repo	(or	svn).
2.	 The	build	server	(Jenkins)	builds	the	code	and	packages	it	into	the	ZIP/RPM	files.
3.	 The	ZIP/RPM	files	are	copied	to	Artifactory/Nexus.
4.	 On	the	client	machine,	we	use	the	deploy	script	to	manually	install	the	code	on	client

and	HDFS.
5.	 Use	the	simple	yum	install	oozie-essentials	command	to	automatically	install

the	latest	version	of	the	code,	picking	the	required	RPMs	from	Artifactory/Nexus.

To	build	the	RPM	artifacts	that	can	be	deployed,	the	build	server	needs	to	have	the	rpm-
build	package	installed.	On	Redhat/CentOS,	we	can	install	this	using	following
command:

yum	install	rpm-build

The	code	can	be	packaged	using	the	following	Maven	command:

mvn	package	assembly:single	rpm:attached-rpm

You	can	see	the	generated	RPM	at
BOOK_CODE_HOME/learn_oozie/ch09/packaging/target/rpm/oozie-

essentials/RPMS/noarch/.

To	install	RPM,	we	can	use	the	yum	localinstall	rpm_name	command.	If	the	repository
is	added	as	yum	repo	to	the	client	machine,	we	can	also	use	the	yum	install	oozie-
essentials	command.	The	following	screenshot	shows	confirmation	of	installation:

RPM	installation

After	the	installation	is	complete,	check	the	status	of	the	files	copied	to	HDFS.	I	have
configured	the	code	deployment	location	to	/tmp/dev/applications,	but	you	can
configure	any	path.	Following	screenshot	shows	the	status	of	the	files	copied:

HDFS	installation	status	check

To	check	the	currently	running	version	of	code,	we	can	always	cat	the	VERSION.txt	file
using	the	following	command:

hadoop	fs	-cat	/tmp/dev/applications/oozie/code/latest/VERSION.txt.

This	gives	the	latest	version	installed	in	HDFS.	Check	the	last	line	in	the	preceding
screenshot	to	confirm	the	version:

Client	installation	check

Similarly,	we	can	check	the	version	of	the	client	installed	using	the	following	command:

cat	/tmp/dev/install/oozie/client/latest/VERSION.txt

To	submit	this	job,	let’s	go	to	the	folder	where	client	has	the	job.properties	files
installed	using	the	following	command:

cd	/tmp/$OOZIE_CODE_ENV/install/oozie/client/latest/apps/rainfalloozie	job	

-run	-config	job.properties		-Denv=$OOZIE_CODE_ENV

Note	how	we	are	passing	the	environment	variable	using	$OOZIE_CODE_ENV	to	the
execution.	You	can	also	set	this	in	the	environment	variable,	for	example,	bash_profile
for	a	user	who	is	executing	the	Oozie	command.

You	do	not	need	$OOZIE_CODE_ENV	if	you	have	physically	separate	test,	development,	and

production	environments.	But	many	times	we	only	have	logical	environments	and	one
physical	environment.	In	such	situations,	this	helps	to	test	the	code	before	moving	to
production.

Oozie	in	secured	cluster
A	Hadoop	cluster,	which	has	been	secured,	needs	some	additional	configuration	for	Oozie
to	work	properly.	The	standard	actions	like	Pig	or	MapReduce	do	not	need	any	additional
configuration	from	the	Oozie	side	to	run.	However,	when	Oozie	needs	to	talk	to	external
services	such	as	HBase,	HCatalog,	and	Hive2	Server,	we	need	to	know	how	to
authenticate	them.

This	is	done	by	providing	information	about	credentials	for	the	security.	Oozie	has
provided	implementation	for	authentication	for	different	external	tools	like	Hive,	HBase,
and	HCat.

In	oozie-site.xml,	we	need	to	add	the	following	code:

<property>

		<name>oozie.credentials.credentialclasses</name>

		<value>

				hcat=org.apache.oozie.action.hadoop.HCatCredentials,

				hbase=org.apache.oozie.action.hadoop.HbaseCredentials,

				hive2=org.apache.oozie.action.hadoop.Hive2Credentials

		</value>

</property>

In	workflow.xml,	we	need	to	state	that	we	want	to	use	the	declared	credentials	and	pass
additional	details	about	where	the	external	service	is.	The	following	table	shows	the
details	of	various	services:

Service Details

hcat hcat.metastore.principal	and	hcat.metastore.uri

hbase hbase-site.xml

hive2 hive2.server.principal	and	hive2.jdbc.url

For	example,	the	revised	Workflow	for
<BOOK_CODE_HOME>/learn_oozie/ch06/v3/workflow.xml	for	running	in	a	secured	cluster
will	be	as	follows:

HCat	crendentials	Kerberos

In	the	lines	3	to	14	in	the	preceding	screenshot,	we	declared	the	hcat-creds	(you	can	use
any	name)	and	stated	that	it	is	of	type	hcat.	This	maps	to	the	type	we	defined	in	oozie-
site.xml	earlier.	To	use	it,	we	passed	it	to	our	Pig	action	(line	18),	since	the	Pig	script	is
using	the	HCat	access	to	push	data	to	Hive.

In	case	of	Hive,	we	will	need	to	pass	on	hive2.server.principal	and	hive2.jdbc	url.

To	learn	about	the	Kerberos	principle,	visit	http://web.mit.edu/kerberos/krb5-1.5/krb5-
1.5.4/doc/krb5-user/What-is-a-Kerberos-Principal_003f.html.

Ask	your	Hadoop	cluster	administrator	about	the	principle	details	for	HCat,	HBase,	and
Hive2.	Generally,	it	is	of	the	form	Service/fully.qualified.domain.name@YOUR-
REALM.COM.

An	example	with	Oozie	interacting	with	HBase	cluster	is	given	as	follows.

In	Workflow	credentials,	we	declare	the	following	code:

http://web.mit.edu/kerberos/krb5-1.5/krb5-1.5.4/doc/krb5-user/What-is-a-Kerberos-Principal_003f.html

<credentials>

		<credential	name='hbaseauth'	type='hbase'>

		</credential>

</credentials>

In	the	action,	which	is	talking	to	HBase,	we	just	pass	the	credentials:

<action	name="process"	cred="hbaseauth">

We	also	need	to	add	details	about	hbase-site.xml:

<job-xml>${hbaseSite}</job-xml>

<file>${hbaseSite}#hbase-site.xml</file>

A	complete	example	is	shown	here:

<action	name="hbaseprocess"	cred="hbaseauth">

		<java>

				<job-tracker>${jobTracker}</job-tracker>

				<name-node>${nameNode}</name-node>

				<job-xml>${hbaseSite}</job-xml>

				<configuration>

						<property>

								<name>mapred.job.queue.name</name>

								<value>${queueName}</value>

						</property>

				</configuration>

				<main-class>${process_classname}</main-class>

				<file>${hbaseSite}#hbase-site.xml</file>

				<capture-output/>

		</java>

		<ok	to="success"/>

		<error	to="failed"/>

</action>

This	completes	the	section	on	running	Oozie	in	a	secured	Hadoop	environment.	Before
moving	on	to	next	section	of	reruns,	it	is	time	for	a	story.

Tip
Our	machine	learning	scoring	job	was	very	long	running	(I	don’t	know	what	the	data
scientist	had	coded,	that’s	why	they	earn	a	lot).	Due	to	having	a	large	customer	base	of	30
million	and	a	large	number	of	features,	the	scoring	on	average	used	to	take	6	hours	to
finish.	One	fine	Thursday,	we	had	planned	a	production	change	for	the	scoring	algorithm.
The	change	was	done	in	the	early	morning	so	that	we	could	monitor	progress	throughout
the	day.	When	the	scoring	was	about	to	finish,	the	Oozie	job	failed	after	5	hours	of	work.
We	checked	all	the	logs	to	find	why	the	processing	had	failed.	After	our	analysis,	we
found	the	root	cause	was	a	mismatch	in	JAR	in	our	development	and	production
environments	(sounds	like	you	heard	of	this	problem?).	This	was	for	processing	which
happens	after	scoring	action.	We	did	not	want	to	rerun	the	full	Oozie	job	starting	from	the
initial	phase	and	sit	in	office	for	another	6	hours	(making	it	a	long	day	of	14	hours).	We
used	Oozie’s	ability	to	trigger	jobs	from	failed	actions:	the	Oozie	rerun.	The	general
syntax	is	oozie	job	-rerun	<jobid>	-Doozie.wf.rerun.failnodes=true.	We	will
cover	the	Oozie	rerun	in	the	next	section.

Rerun
Life	is	not	perfect!	Every	day	we	have	to	face	failures	and	same	is	with	Oozie	running	in
production.	Jobs	fail	and	we	need	to	rerun	them.

Oozie	provides	a	functionality	to	restart	the	jobs	from	intermediate	states	to	save	time:

To	rerun	a	Coordinator,	we	need	to	tell	about	the	action	which	has	failed	or	the	date
for	which	we	need	to	rerun
To	rerun	a	Bundle,	we	need	to	tell	about	Coordinator	which	has	failed

Rerun	Workflow
To	rerun	a	Workflow	that	has	failed,	we	have	two	nodes:

oozie.wf.rerun.skip.nodes

oozie.wf.rerun.failnodes

oozie.wf.rerun.skip.nodes	is	the	list	of	nodes	to	skip,	while
oozie.wf.rerun.failnodes	is	a	Boolean	value	that	tells	if	Oozie	should	run	only	the
failed	nodes.

Here’s	an	example	of	Workflow	rerun:

oozie	job	-rerun	0000003-150921003038748-oozie-oozi-W	-

Doozie.wf.rerun.failnodes=true

In	the	preceding	example,	we	passed	on	the	ID	of	Workflow	to	rerun.

Rerun	Coordinator
To	rerun	a	Coordinator	that	has	failed,	we	need	to	tell	about	the	actions	to	rerun	or	tell
about	the	date	(in	UTC)	for	which	we	need	to	rerun	the	Coordinator.

The	general	command	is	as	follows:

oozie	job	-rerun	<coord_Job_id>	[-nocleanup]	[-refresh]	[-failed]	[-config	

<arg>]

Here’s	a	sample	execution:

oozie	job	-rerun	0000002-150920023900085-oozie-oozi-C	-action	1-3

The	following	screenshot	shows	the	output	of	the	preceding	command:

Coordinator	rerun

Rerun	Bundle
To	rerun	the	Bundle	job	that	failed,	we	need	to	tell	about	Coordinator	to	rerun	date	(in
UTC).

The	general	command	is	as	follows:

oozie	job	-rerun	<bundle_Job_id>	[-coordinator	<list	of	coordinator	name	

separate	by	comma>

Here’s	a	sample	execution:

oozie	job	-rerun	0000006-150919003838576-oozie-oozi-B	-coordinator	0000007-

150919003838576-oozie-oozi-C

Note
For	more	information,	visit	the	following	links:

Workflow	rerun–https://oozie.apache.org/docs/4.2.0/DG_WorkflowReRun.html

Coordinator
rerun–https://oozie.apache.org/docs/4.2.0/CoordinatorFunctionalSpec.html#a14._Coordinator_Rerun

Bundle	rerun–https://oozie.apache.org/docs/4.2.0/BundleFunctionalSpec.html#a8._Bu

https://oozie.apache.org/docs/4.2.0/DG_WorkflowReRun.html
https://oozie.apache.org/docs/4.2.0/CoordinatorFunctionalSpec.html#a14._Coordinator_Rerun
https://oozie.apache.org/docs/4.2.0/BundleFunctionalSpec.html#a8._Bu

Summary
In	this	chapter,	we	saw	how	to	package	and	deploy	the	Oozie	code	in	production.	Then	we
discussed	how	to	configure	Oozie	code	to	run	in	a	secured	cluster.	You	also	learned	about
the	concept	of	rerun.	I	am	sure	you	will	be	a	pro	with	Oozie.

Index
A

action	nodes	/	Action	nodes

B
Beeline	and	Hive	Server	2

working,	URL	/	Hive	2	action
Bundle	rerun

URL	/	Rerun	Bundle
bundles

defining	/	Bundles

C
case	study,	Hive	Jobs

defining	/	Chapter	case	study
case	study,	MapReduce	Jobs

defining	/	Chapter	case	study
case	study,	Oozie

defining	/	Book	case	study,	Chapter	case	study
case	study,	Pig	Jobs

defining	/	Chapter	case	study
case	study,	Sqoop	Jobs

defining	/	Chapter	case	study
command	line

job,	submitting	from	/	Submission	from	the	command	line
Hive	job,	running	from	/	Running	a	Hive	job	from	the	command	line

config-default.xml	file
defining	/	The	config-default.xml	file

continuous	delivery
defining	/	Packaging	and	continuous	delivery

control	flow	nodes	/	Control	flow	nodes
Coordinator

declaring	/	My	first	Coordinator
v1	definition	/	Coordinator	v1	definition
v2	definition	/	Coordinator	v2	definition

Coordinator	controls
defining	/	Coordinator	controls
timeout	/	Coordinator	controls
concurrency	/	Coordinator	controls
execution	/	Coordinator	controls
throttle	/	Coordinator	controls

Coordinator	jobs
parameterization	/	Parameterization	of	Coordinator	jobs
dateOffset(String	baseDate,	int	instance,	String	timeUnit)	/	dateOffset(String
baseDate,	int	instance,	String	timeUnit)
dateTzOffet(String	baseDate,	String	timezone)	/	dateTzOffet(String	baseDate,
String	timezone)
formatTime(String	timeStamp,	String	format)	/	formatTime(String	timeStamp,
String	format)

Coordinator	rerun
URL	/	Rerun	Bundle

coordinators
about	/	Coordinators
nominal	time	/	Coordinators
actual	time	/	Coordinators

datasets	/	Datasets
initial	instance	/	Initial	instance

Coordinator	v1	definition
defining	/	Coordinator	v1	definition
job.properties	v1	definition	/	job.properties	v1	definition

Coordinator	v2	definition
defining	/	Coordinator	v2	definition
job.properties	v2	definition	/	job.properties	v2	definition
job	log,	checking	/	Checking	the	job	log

D
DAG

URL	/	Workflows
data	pipelines

defining	/	Data	pipelines
datasets

defining	/	Datasets
frequency	and	time	/	Frequency	and	time
cron	syntax,	for	frequency	/	Cron	syntax	for	frequency
timezone	/	Timezone
<done-flag>	tag	/	The	<done-flag>	tag

daylight	savings
URL	/	Timezone

Decision	node
defining	/	The	Decision	node

E
EL	functions

URL	/	HDFS	EL	functions
EL	functions,	for	datasets

URL	/	latest(int	n)
Email	action

defining	/	The	Email	action
URL	/	The	Email	action

email	action	configuration
defining	/	Email	action	configuration

Expression	Language	functions
defining	/	Expression	Language	functions
types	/	Expression	Language	functions
basic	EL	constants	/	Basic	EL	constants,	Basic	EL	functions
workflow	EL	functions	/	Workflow	EL	functions
Hadoop	EL	constants	/	Hadoop	EL	constants
HDFS	EL	functions	/	HDFS	EL	functions

H
—hivevar	flag

URL	/	Hive	2	action
Hadoop

use	cases	/	Book	case	study
HCatalog

defining	/	HCatalog
datasets	/	HCatalog	datasets
EL	functions	/	HCatalog	EL	functions
Coordinator	functions	/	HCatalog	Coordinator	functions
Pig	script	/	Pig	script
job.properties	file	/	The	job.properties	file
Sqoop	action	Coordinator	/	The	Sqoop	action	Coordinator

HCatalog	Coordinator	functions
defining	/	HCatalog	Coordinator	functions

HCatalog	datasets	/	HCatalog	datasets
HCatalog	EL	functions	/	HCatalog	EL	functions
Hive	2	action

defining	/	Hive	2	action
Hive	action

about	/	Hive	action
Hive	job

running,	from	command	line	/	Running	a	Hive	job	from	the	command	line
Hortonworks	distribution

Oozie,	configuring	in	/	Configuring	Oozie	in	Hortonworks	distribution
Hue

installing	/	Installing	and	configuring	Hue
configuring	/	Installing	and	configuring	Hue
URL	/	Installing	and	configuring	Hue

Hue	3.9.0
URL	/	Chapter	case	study

I
input	and	output	events,	Dataset

parameters	/	Parameters	in	the	Dataset’s	input	and	output	events
current(int	n)	/	current(int	n)
hoursInDay(int	n)	/	hoursInDay(int	n)
daysInMonth(int	n)	/	daysInMonth(int	n)
latest(int	n)	/	latest(int	n)

J
job.properties	file	/	The	job.properties	file
job	property	file

defining	/	Job	property	file

K
Kerberos	principle

URL	/	Oozie	in	secured	cluster

L
Lambda	architecture

URL	/	Datasets

M
<master>	element

about	/	Spark	action
<mode>	element

about	/	Spark	action
MapReduce	jobs

running,	from	Oozie	/	Running	MapReduce	jobs	from	Oozie
job.properties	file	/	The	job.properties	file
running	/	Running	the	job

MapReduce	streaming	job
running	/	Running	a	MapReduce	streaming	job

N
node	types

defining	/	Types	of	nodes
control	flow	nodes	/	Control	flow	nodes
action	nodes	/	Action	nodes
decision	node	/	Chapter	case	study
email	node	/	Chapter	case	study
Pig	Processing	node	/	Chapter	case	study

O
Oozie

configuring,	in	Hortonworks	distribution	/	Configuring	Oozie	in	Hortonworks
distribution
defining	/	Oozie	concepts
workflows	/	Workflows
coordinator	/	Coordinator
bundles	/	Bundles
running	/	Running	our	first	Oozie	job
web	console	/	Oozie	web	console
command	line	/	The	Oozie	command	line
MapReduce	jobs,	running	from	/	Running	MapReduce	jobs	from	Oozie
defining,	in	secured	cluster	/	Oozie	in	secured	cluster

Oozie	documentation
URL	/	Frequency	and	time,	Running	a	MapReduce	streaming	job,	Spark	action

Oozie	Fs	Action	documentation
URL	/	Running	our	first	Oozie	job

Oozie	installation,	with	tar	ball
performing	/	Installing	Oozie	using	tar	ball
test	virtual	machine,	creating	/	Creating	a	test	virtual	machine
source	code,	building	/	Building	Oozie	source	code
build	script	/	Summary	of	the	build	script
Codehaus	Maven	move	/	Codehaus	Maven	move
dependency	jars,	downloading	/	Download	dependency	jars
preparing,	for	creating	war	file	/	Preparing	to	create	a	WAR	file
war	file,	creating	/	Create	a	WAR	file
Oozie	MySQL	database,	configuring	/	Configure	Oozie	MySQL	database
shared	library,	configuring	/	Configure	the	shared	library
server	test,	starting	/	Start	server	testing	and	verification

Oozie	MapReduce	job
running	/	Running	Oozie	MapReduce	job

Oozie	Workflow
validating	/	Validating	Oozie	Workflow

P
packaging

defining	/	Packaging	and	continuous	delivery
pictorial	representation,	of	Bundles	job	flow

URL	/	Bundles
Pig	action

defining	/	Pig	action
Pig	code

URL	/	Chapter	case	study
Pig	command	line

defining	/	The	Pig	command	line
Pig	Coordinator	job	v2

defining	/	Pig	Coordinator	job	v2
Pig	Coordinator	job	v3

defining	/	Pig	Coordinator	job	v3
Pig	script	/	Pig	script
Python	mapper	and	reducer	code

URL	/	Running	a	MapReduce	streaming	job

Q
Quartz	scheduler

URL	/	Cron	syntax	for	frequency

R
rerun

defining	/	Rerun
Workflow,	rerunning	/	Rerun	Workflow
Coordinator,	rerunning	/	Rerun	Coordinator
Bundle,	rerunning	/	Rerun	Bundle

S
<spark-opts>	element

about	/	Spark	action
SimpleDateFormat

URL	/	formatTime(String	timeStamp,	String	format)
Spark	action

defining	/	Spark	action
Sqoop	action

defining	/	Sqoop	action
Sqoop	action	Coordinator

job,	running	/	Running	the	job
data,	checking	in	Hive	table	/	Checking	data	in	the	Hive	table

Sqoop	command	line
running	/	Running	Sqoop	command	line

states,	workflow	job
PREP	/	Workflow	states
RUNNING	/	Workflow	states
SUSPENDED	/	Workflow	states
SUCCEEDED	/	Workflow	states
KILLED	/	Workflow	states
FAILED	/	Workflow	states

T
TZ	reference

URL	/	Timezone

W
Workflow	rerun

URL	/	Rerun	Bundle
workflow	states

defining	/	Workflow	states

X
XSD

references	/	Installing	and	configuring	Hue
XSD	schema

URL	/	Action	nodes,	Job	property	file

	Apache Oozie Essentials
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Setting up Oozie
	Configuring Oozie in Hortonworks distribution
	Installing Oozie using tar ball
	Creating a test virtual machine
	Building Oozie source code
	Summary of the build script
	Codehaus Maven move
	Download dependency jars
	Preparing to create a WAR file
	Create a WAR file
	Configure Oozie MySQL database
	Configure the shared library
	Start server testing and verification
	Summary
	2. My First Oozie Job
	Installing and configuring Hue
	Oozie concepts
	Workflows
	Coordinator
	Bundles
	Book case study
	Running our first Oozie job
	Types of nodes
	Control flow nodes
	Action nodes
	Oozie web console
	The Oozie command line
	Summary
	3. Oozie Fundamentals
	Chapter case study
	The Decision node
	The Email action
	Expression Language functions
	Basic EL constants
	Basic EL functions
	Workflow EL functions
	Hadoop EL constants
	HDFS EL functions
	Email action configuration
	Job property file
	Submission from the command line
	Workflow states
	Summary
	4. Running MapReduce Jobs
	Chapter case study
	Running MapReduce jobs from Oozie
	The job.properties file
	Running the job
	Running Oozie MapReduce job
	Coordinators
	Datasets
	Frequency and time
	Cron syntax for frequency
	Timezone
	The <done-flag> tag
	Initial instance
	My first Coordinator
	Coordinator v1 definition
	job.properties v1 definition
	Coordinator v2 definition
	job.properties v2 definition
	Checking the job log
	Running a MapReduce streaming job
	Summary
	5. Running Pig Jobs
	Chapter case study
	The Pig command line
	The config-default.xml file
	Pig action
	Pig Coordinator job v2
	Parameters in the Dataset's input and output events
	current(int n)
	hoursInDay(int n)
	daysInMonth(int n)
	latest(int n)
	Coordinator controls
	Pig Coordinator job v3
	Summary
	6. Running Hive Jobs
	Chapter case study
	Running a Hive job from the command line
	Hive action
	Validating Oozie Workflow
	Hive 2 action
	Parameterization of Coordinator jobs
	dateOffset(String baseDate, int instance, String timeUnit)
	dateTzOffet(String baseDate, String timezone)
	formatTime(String timeStamp, String format)
	Summary
	7. Running Sqoop Jobs
	Chapter case study
	Running Sqoop command line
	Sqoop action
	HCatalog
	HCatalog datasets
	HCatalog EL functions
	HCatalog Coordinator functions
	Pig script
	The job.properties file
	The Sqoop action Coordinator
	Running the job
	Checking data in the Hive table
	Summary
	8. Running Spark Jobs
	Spark action
	Bundles
	Data pipelines
	Summary
	9. Running Oozie in Production
	Packaging and continuous delivery
	Oozie in secured cluster
	Rerun
	Rerun Workflow
	Rerun Coordinator
	Rerun Bundle
	Summary
	Index

