

Appcelerator Titanium
Smartphone App
Development Cookbook
Second Edition

Over 100 recipes to help you develop cross-platform,
native applications in JavaScript

Jason Kneen

BIRMINGHAM - MUMBAI

Appcelerator Titanium Smartphone
App Development Cookbook
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1251115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-770-5

www.packtpub.com

www.packtpub.com

Credits

Author
Jason Kneen

Reviewers
Marco Ferreira

Damien Laureaux

Lorenzo Massacci

Commissioning Editor
Joanne Fitzpatrick

Acquisition Editors
Manish Nainani

Greg Wild

Sam Wood

Content Development Editor
Adrian Raposo

Technical Editor
Utkarsha S. Kadam

Copy Editor
Vikrant Phadke

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Jason Kneen is an experienced mobile developer who has created numerous apps for iOS
and Android. He is passionate about mobile development and, in particular, the Appcelerator
Titanium platform. He is a Titanium-certified developer, Titanium-certified trainer, and member
of the "Titans" evangelist group. He is also a contributor to mobile and business publications
and has been interviewed by the media on mobile apps. He speaks regularly at mobile
development conferences worldwide.

Jason has been developing for mobile devices since the 1990s, when he developed highly
successful applications for the Psion Series 5 and Psion Revo organizers. He currently lives
in Wiltshire, UK, and works from home as a freelance mobile developer and consultant as
"BouncingFish" (http://www.bouncingfish.com/) where he builds cross-platform,
native applications for iOS, Android and Windows Phone.

He is married to Hannah and has 4 beautiful children; Leo, Poppy, Ixia and Rosie "Boo".

http://www.bouncingfish.com/

About the Reviewers

Marco Ferreira was born in Lisbon, Portugal, on February 28, 1984. He likes traveling,
biking, beaches, and warm weather. After living in Portugal and the Netherlands, he now
lives in Santa Catarina in southern Brazil.

The first big project for Marco started when he joined one of the biggest ISPs from Portugal
(currently known as NOS). There, he and his project colleague created the backbone of the
ISP's voice service.

Seeking financial freedom and schedule flexibility, on April 20, 2010, Marco started his own
development business as a freelancer. This was when he started exploring Appcelerator
Titanium, as it would give him a big head start in offering mobile development services.

He is one of the four founders of Altitude, a company based in San Francisco that is creating
the next generation of identity. As the CTO of the company, he has architected all the details
of the company platform, written of a lot of source code, and managed development teams.

I would like to thank my beautiful wife for all the support she gives me, and
my company's fellow founders and friends for pushing the boundaries of my
skill set every day.

Damien Laureaux is a French mobile developer based in London.

He has over 16 years of web and mobile experience and has worked on both small-
and large-scale projects in the travel, real estate, communication, entertainment,
and pharmaceutical industries.

More recently, he has been developing with the Mobility Hub team. He works on iPhone,
iPad, and Android apps for the successful and growing TUI Group in the travel industry
(240 brands around the world, such as Thomson, FirstChoice, and so on).

Self-taught, Damien has obtained four Appcelerator certifications ever since he started
working with the Titanium framework in 2011, and he became an Appcelerator Titan in
2012. He lives in London with his wife, Hind, and his son, Ayden. He can be reached via
Twitter at @timoa or LinkedIn at https://www.linkedin.com/in/timoa.

Lorenzo Massacci has been dealing with the development of web software since 1996.
He started developing HTML/PHP apps, using different frameworks such as Zend Framework
and Symfony in the early years.

He spent the latest 5 years specializing on frontend development in JavaScript. At this
moment, he is working on the development of web and multiplatform mobile apps using
JavaScript (through frameworks such as Titanium, Angular JS, and PhoneGap).

Since 2009, Lorenzo has been studying and applying agile methodologies in the projects he is
involved in, both in the organization and in the management of the project (a cross-functional
team, user stories, iterations, and so on), in order to write and manage code (TDD, refactoring,
continuous integration, and so on).

In 2001, he founded the e-xtrategy Internet company, which deals with established firms and
start-ups to help them reach their business targets through the Internet, technology, and a
lean approach.

https://www.linkedin.com/in/timoa

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

This book is dedicated to Brian E P Kneen, my dad

i

Table of Contents
Preface	 v
Chapter 1: Building Apps Using Native UI Components	 1

Introduction	 1
Building with windows and views	 3
Adding a tabgroup to your app	 7
Creating and formatting labels	 11
Creating textfields for user input	 14
Working with keyboards and keyboard toolbars	 16
Enhancing your app with sliders and switches	 20
Passing custom variables between windows	 23
Creating buttons and capturing click events	 25
Informing your users with dialogs and alerts	 28
Creating charts using Raphael JS	 31
Creating an actionbar in Android	 35

Chapter 2: Working with Local and Remote Data Sources	 39
Introduction	 39
Reading data from remote XML via HTTPClient	 40
Displaying data using a TableView	 43
Enhancing your TableViews with custom rows	 46
Filtering the TableView using a SearchBar component	 49
Speeding up your remote data access with Yahoo YQL and JSON	 52
Creating a SQLite database	 56
Saving data locally using a SQLite database	 58
Retrieving data from a SQLite database	 62
Creating a "Pull to Refresh" mechanism in iOS	 64

ii

Table of Contents

Chapter 3: Integrating Maps and GPS	 67
Introduction	 67
Adding a MapView to your application	 68
Getting your current position using GeoLocation	 71
Converting addresses to latitude and longitude locations	 74
Adding annotations to your MapView	 78
Customizing annotations and adding events to your MapView	 80
Drawing routes on your MapView	 82
Monitoring your heading using the device compass	 86

Chapter 4: Enhancing Your Apps with Audio, Video, and Cameras	 89
Introduction	 89
Choosing your capture device using an OptionDialog modal	 90
Capturing photos from the camera	 94
Choosing existing photos from the photo library	 97
Displaying photos using ScrollableView	 100
Saving your captured photo to the device filesystem	 102
Capturing and playing audio via the audio recorder	 105
Capturing video via the video recorder	 112
Playing video files from the filesystem	 115
Safely deleting saved files from the filesystem	 117

Chapter 5: Connecting Your Apps to Social Media and E-mail	 121
Introduction	 121
Composing and sending e-mails	 122
Adding attachments to an e-mail	 128
Setting up a custom Facebook application	 130
Integrating Facebook into your Titanium app	 130
Posting to your Facebook wall	 134
Posting to Twitter in iOS	 137
Posting to Facebook in iOS	 140
Sharing on Android using Intents	 142

Chapter 6: Getting to Grips with Properties and Events	 145
Introduction	 145
When should you use app properties?	 146
Reading and writing app properties	 147
Firing and capturing events	 150
Passing event data between your app and a Webview
using custom events	 154

iii

Table of Contents

Chapter 7: Creating Animations, Transformations and
Implementing Drag and Drop	 159

Introduction	 159
Animating a view using the Animate method	 160
Animating a view using 2D Matrix and 3D Matrix transformations	 168
Dragging an ImageView using touch events	 171
Scaling an ImageView using the slider control	 173
Saving our funny face using the toImage() method	 175

Chapter 8: Interacting with Native Phone Applications and APIs	 177
Introduction	 177
Creating an Android options menu	 178
Accessing the contacts / address book	 181
Storing and retrieving data via the clipboard	 185
Creating a background service on an iPhone	 188
Updating data using background fetch	 190
Displaying local notifications on an iPhone	 192
Displaying Android notifications using intents	 195
Storing your Android app on the device's SD card	 198

Chapter 9: Integrating Your Apps with External Services	 199
Introduction	 199
Connecting to APIs that use basic authentication	 200
Fetching data from the Google places API	 203
Connecting to FourSquare using oAuth	 207
Posting a check-in to FourSquare 	 213
Searching and retrieving data via Yahoo! YQL	 215
Integrating push notifications with Parse.com	 220
Testing push notifications using PHP and HTTP POST	 226

Chapter 10: Extending Your Apps with Custom Modules	 231
Introduction	 231
Integrating an existing module – the PayPal mobile payment library	 232
Preparing your iOS module development environment	 236
Developing a new iPhone module using XCode	 238
Creating a public API method	 239
Packaging and testing your module using the test harness	 244
Packaging your module for distribution and sale!	 246

iv

Table of Contents

Chapter 11: Platform Differences, Device Information, and Quirks	 249
Introduction	 249
Gathering information about your device	 250
Obtaining the device's screen dimensions	 254
Understanding device orientation modes	 257
Coding around the differences between the iOS and Android APIs	 259
Ensuring that your device can make phone calls	 262

Chapter 12: Preparing Your App for Distribution and
Getting It Published	 265

Introduction	 265
Joining the iOS developer program	 266
Installing iOS developer certificates and provisioning profiles	 268
Building your application for iOS using studio	 271
Joining the Google Android developer program	 275
Creating your application's distribution key	 277
Building and submitting your app to the Google Play Store	 278

Chapter 13: Implementing and Using URL Schemes	 281
Introduction	 281
Detecting whether another iOS app is installed	 282
Launching another iOS app	 285
Passing parameters to other apps via a URL	 287
Launching Apple Maps and Google Maps with route directions	 288
Opening URLs in Chrome for iOS	 290
Setting up your own apps to use URL schemes	 292
Receiving URL commands in your own app	 294
Transferring binary data between apps using a URL scheme	 296

Chapter 14: Introduction to Alloy MVC	 299
Introduction	 299
Installing Alloy and creating an Alloy project	 300
Building views and windows	 304
Creating Buttons and Labels using Events	 306
Changing the look of your app with styles	 309
Working with Navigation and TabGroups	 314
Adding an Alloy widget to your application	 318
Creating your own Alloy widget	 321
Integrating data using models and collections	 328

Index	 337

v

Preface
Before Titanium, building native mobile applications for multiple platforms meant learning
Objective-C/Swift, Java, and C#. As a result, many application developers would specialize in
supporting limited platforms, simply because they didn't have the time or skill set to rewrite
application code in multiple languages.

Similarly, anyone looking to build an application on multiple platforms would have to employ
a multi-skilled developer, or hire multiple developers or agencies to complete the task.
This could be expensive, requiring application code to be written multiple times in different
languages and environments, and could easily lead to releasing an application on only one
platform initially, typically iOS.

The introduction of Titanium changed all this, allowing developers to use the JavaScript
language to write cross-platform, native applications for multiple platforms from a single
code base.

Titanium's unique approach means that a single developer can write native applications for
iOS, Android, and now Windows Phone, targeting the unique features of each platform.

In this book, we'll cover all the aspects of building your mobile applications in Titanium,
from visual layout to maps and GPS, all the way through data and social media integration
and accessing your device's input hardware, including the camera and microphone. We'll also
cover Alloy, the new framework from Appcelerator that allows rapid application development
using the MVC (Model, View, Controller) methodology, and intercommunication between apps
using URL schemes.

We'll go through how to extend your applications using custom modules, and how to package
them for distribution and sale in both the iTunes App Store and the Android Play Store.

Preface

vi

What this book covers
Chapter 1, Building Apps Using Native UI Components, begins our journey into Titanium
Mobile by explaining the basics of layout and creating controls, before moving on to tabbed
interfaces, web views, and how to add and open multiple windows.

Chapter 2, Working with Local and Remote Data Sources, helps you build yourself a mini-app
that reads data from the Web using HTTP requests. We also see how to parse and iterate data
in both XML and JSON formats. Then we see how to store and retrieve data locally using a
SQLite database and some basic SQL queries.

Chapter 3, Integrating Google Maps and GPS, is where we add a MapView to our application
and interact with it using annotations, geocoding, and events that track the user's location.
We also go through the basics of adding routes and using the device's inbuilt compass to
track our heading.

Chapter 4, Enhancing Your Apps with Audio, Video, and Camera, shows you how to interact
with your device's media features using Titanium, including the camera, photo gallery, and
audio recorder.

Chapter 5, Connecting Your Apps to Social Media and E-mail, teaches you to leverage
Titanium and integrate it with Facebook, Twitter, and the e-mail capabilities of your mobile
devices. Here, we also go through setting up a Facebook application and cover a brief
introduction of the world of OAuth.

Chapter 6, Getting to Grips with Properties and Events, briefly runs through how properties
work in Titanium and how you can get and set global variables in your app. In this chapter,
you also learn how event listeners and handlers work and how to fire events, both from
your controls and custom events from anywhere in your application.

Chapter 7, Creating Animations, Transformations and Implementing Drag and Drop, shows
you how to create animations, and how to transform your objects using 2D and 3D matrices
in Titanium. We also run through dragging and dropping controls and capturing screenshots
using the inbuilt toImage functionality.

Chapter 8, Interacting with Native Phone Applications and APIs, is where you discover how
to interact with native device APIs, such as the device's contacts and calendar. You also
discover how to use local notifications and background services.

Chapter 9, Integrating Your Apps with External Services, dives deeper into OAuth and HTTP
authentication, and also shows you how to connect to external APIs such as Yahoo! YQL and
Foursquare. We also run through the setup and integration of push notifications into our
Titanium apps.

Preface

vii

Chapter 10, Extending Your Apps with Custom Modules, tells you how you can extend the
native functionality in Titanium and add your own custom native modules using Objective-C
and Xcode. Here, we run through a sample module from start to finish in Xcode to create
short URLs using the Bit.ly service.

Chapter 11, Platform Differences, Device Information, and Quirks, shows you how to use
Titanium to get information about the device, including important features such as making
phone calls, checking the memory, and checking the remaining allocation of the battery.
We also go through screen orientations and how to code differences between the iOS and
Android platforms.

Chapter 12, Preparing Your App for Distribution and Getting It Published, demonstrates how
to prepare and package your applications for distribution and sale on the iTunes App Store
and Android Marketplace, along with a background of setting up and provisioning your apps
correctly with provisioning profiles and development certificates.

Chapter 13, Implementing and Using URL Schemes, we will show how to use URL schemes
to allow inter-app communication, from launching other apps to sending data between your
own applications.

Chapter 14, Introduction to Alloy MVC, we will cover the Alloy MVC (Model, View Controller)
framework, allowing you to build cross-platform applications faster than traditional Titanium
mobile development.

What you need for this book
You will need a Mac running Xcode (the latest version, which is available at https://
developer.apple.com/) and the Appcelerator Studio software (available at http://www.
appcelerator.com/). You must use a Mac, as all instructions are based on it (Unix) because
of the iPhone. Using a PC is not recommended, or supported anyway, for the Apple iPhone.

Who this book is for
This book is essential for any developer who is learning or using JavaScript and wants to
write native UI applications for iOS and Android. No knowledge of Objective-C, Swift, or Java
is required, and you'll be quickly developing native cross-platform apps in JavaScript.

https://developer.apple.com/
https://developer.apple.com/
http://www.appcelerator.com/
http://www.appcelerator.com/

Preface

viii

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

actionBar = win.activity.actionBar;

if (actionBar) {
actionBar.backgroundImage = "/bg.png";
actionBar.title = "New Title";
}

Any command-line input or output is written as follows:

gittio install com.packtpub.bitlymodule-iphone-1.0.0.zip

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "If everything is installed
correctly, you should see a PayPal button appear on the screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

ix

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/7705OT.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/7705OT.pdf
https://www.packtpub.com/sites/default/files/downloads/7705OT.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

x

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

1

1
Building Apps Using

Native UI Components

In this chapter, we'll cover the following recipes:

ff Building with windows and views

ff Adding a tabgroup to your app

ff Creating and formatting labels

ff Creating textfields for user input

ff Working with keyboards and keyboard toolbars

ff Enhancing your app with sliders and switches

ff Passing custom variables between windows

ff Creating buttons and capturing click events

ff Informing your users with dialogs and alerts

ff Creating charts using Raphael JS

ff Building an actionbar in Android

Introduction
The ability to create user-friendly layouts with rich, intuitive controls is an important factor in
successful app designs. With mobile apps and their minimal screen real estate, this becomes
even more important. Titanium leverages a huge amount quantity of native controls found
in both the iOS and Android platforms, allowing a developer to create apps just as rich in
functionality as those created by native language developers.

Building Apps Using Native UI Components

2

How does this compare to the mobile Web? When it comes to HTML/CSS-only mobile apps,
savvy users can definitely tell the difference between them and a platform such as Titanium,
which allows you to use platform-specific conventions and access your iOS or Android device's
latest and greatest features. An application written in Titanium feels and operates like a native
app, because all the UI components are essentially native. This means crisp, responsive UI
components utilizing the full capabilities and power of your device.

Most other books at this point would start off by explaining the fundamental principles of
Titanium and, maybe, give you a rundown of the architecture and expand on the required syntax.

Yawn...!

We're not going to do that, but if you want to find out more about the differences between
Titanium and PhoneGap, check out http://www.appcelerator.com/blog/2012/05/
comparing-titanium-and-phonegap/.

Instead, we'll be jumping straight into the fun stuff: building our user interface and making a
real-world app! In this chapter, you'll learn all of this:

ff How to build an app using windows and views, and understanding the differences
between the two

ff Putting together a UI using all the common components, including TextFields, labels,
and switches

ff Just how similar the Titanium components' properties are to CSS when it comes to
formatting your UI

You can pick and choose techniques, concepts, and code from any recipe in this chapter
to add to your own applications or, if you prefer, you can follow each recipe from beginning
to end to put together a real-world app that calculates loan repayments, which we'll call
LoanCalc from here on.

The complete source code for this chapter can be found in the /Chapter 1/LoanCalc folder.

http://www.appcelerator.com/blog/2012/05/comparing-titanium-and-phonegap/
http://www.appcelerator.com/blog/2012/05/comparing-titanium-and-phonegap/

Chapter 1

3

Building with windows and views
We're going to start off with the very basic building blocks of all Titanium applications:
windows and views. By the end of this recipe, you'll have understood how to implement
a window and add views to it, as well as the fundamental differences between the two,
which are not as obvious as they may seem at first glance.

If you are intending to follow the entire chapter and build the LoanCalc app, then pay careful
attention to the first few steps of this chapter, as you'll need to perform these steps again for
every subsequent app in the book.

Note
We are assuming that you have already downloaded and
installed Appcelerator Studio, along with XCode and iOS
SDK or Google's Android SDK, or both.

Getting ready
To follow along with this recipe, you'll need Titanium installed plus the appropriate SDKs.
All the examples generally work on either platform unless specified explicitly at the start
of a particular recipe.

The quickest way to get started is by using Appcelerator Studio, a full-fledged Integrated
Development Environment (IDE) that you can download from the Appcelerator website.

If you prefer, you can use your favorite IDE, such as TextMate, Sublime Text, Dashcode, Eclipse,
and so on. Combined with the Titanium CLI, you can build, test, deploy, and distribute apps from
the command line or terminal. However, for the purposes of this book, we're assuming that you'll
be using Appcelerator Studio, which you can download from https://my.appcelerator.
com/auth/signup/offer/community.

https://my.appcelerator.com/auth/signup/offer/community
https://my.appcelerator.com/auth/signup/offer/community

Building Apps Using Native UI Components

4

To prepare for this recipe, open Appcelerator Studio and log in if you have not already done
so. If you need to register a new account, you can do so for free from within the application.
Once you are logged in, navigate to File | New | Mobile App Project and select the Classic
category on the left (we'll come back to Alloy later on), then select Default Project and click
on Next. The details window for creating a new project will appear. Enter LoanCalc, the
name of the app, and fill in the rest of the details with your own information, as shown in the
following screenshot. We can also uncheck the iPad and Mobile Web options, as we'll be
building our application for the iPhone and Android platforms only:

Pay attention to the app identifier, which is written normally in backwards
domain notation (for example, com.packtpub.loancalc). This identifier
cannot be changed easily after the project has been created, and you'll need
to match it exactly when creating provisioning profiles to distribute your apps
later on. Don't panic, however: you can change it.

Chapter 1

5

How to do it...
First, open the Resources/app.js file in your Appcelerator Studio. If this is a new project,
the studio creates a sample app by default, containing a couple of Windows inside of a
TabGroup; certainly useful, but we'll cover tabgroups in a later recipe, so we go ahead and
remove all of the generated code. Now, let's create a Window object, to which we'll add a
view object. This view object will hold all our controls, such as textfields and labels.

In addition to creating our base window and view, we'll also create an imageview component
to display our app logo before adding it to our view (you can get the images we have used from
the source code for this chapter; be sure to place them in the Resources folder).

Finally, we'll call the open() method on the window to launch it:

//create a window that will fill the screen
var win1 = Ti.UI.createWindow({
 backgroundColor: '#BBB'
});

//create the view, this will hold all of our UI controls
//note the height of this view is the height of the window //minus 20
points for the status bar and padding
var view = Ti.UI.createView({
 top: 20,
bottom: 10,
 left: 10,
 right: 10,
 backgroundColor: '#fff',
 borderRadius: 2
});

//now let's add our logo to an imageview and add that to our //view
object. By default it'll be centered.
var logo = Ti.UI.createImageView({
 image: 'logo.png',
 width: 253,
 height: 96,
 top: 10
});
view.add(logo);

//add the view to our window
win1.add(view);

Building Apps Using Native UI Components

6

//finally, open the window to launch the app
win1.open();

How it works…
Firstly, it's important to explain the differences between windows and views, as there are
a few fundamental differences that may influence your decision on using one compared to
the other. Unlike views, windows have some additional abilities, including the open() and
close() methods.

If you are coming from a desktop development background, you can imagine a Window as the
equivalent of a form or screen; if you prefer web analogies, then a window is more like a page,
whereas views are more like a Div.

In addition to these methods, windows have display properties such as full screen and
modal; these are not available in views. You'll also notice that while creating a new object, the
create keyword is used, such as Ti.UI.createView() to create a view object. This naming
convention is used consistently throughout the Titanium API, and almost all components are
instantiated in this way.

Chapter 1

7

Windows and views can be thought of as the building blocks of your Titanium application. All
your UI components are added to either a window, or a view (which is the child of a Window).
There are a number of formatting options available for both of these objects, the properties
and syntax of which will be very familiar to anyone who has used CSS in the past. Note that
these aren't exactly like CSS, so the naming conventions will be different. Font, Color,
BorderWidth, BorderRadius, Width, Height, Top, and Left are all properties that
function in exactly the same way as you would expect them to in CSS, and apply to windows
and almost all views.

It's important to note that your app requires at least one window to
function and that window must be called from within your entry point
(the app.js file).
You may have also noticed that we have sometimes instantiated objects or
called methods using Ti.UI.createXXX, and at other times, we have
used Ti.UI.createXXX. Ti. This is simply a shorthand namespace
designed to save time during coding, and it will execute your code in
exactly the same manner as the full Titanium namespace does.

Adding a tabgroup to your app
Tabgroups are one of the most commonly used UI elements and form the basis of the layout
for many iOS and Android apps in the market today. A tabgroup consists of a sectioned set of
tabs, each containing an individual window, which in turn contains a navigation bar and title.
On iOS devices, these tabs appear in a horizontal list at the bottom of screen, whereas they
appear as upside-down tabs at the top of the screen on Android devices by default, as shown
in the following image:

Building Apps Using Native UI Components

8

How to do it...
We are going to create two separate windows. One of these will be defined inline, and the
other will be loaded from an external CommonJS JavaScript module.

Before you write any code, create a new JavaScript file called window2.js and save it in your
Resources directory, the same folder in which your app.js file currently resides.

Now open the window2.js file you just created and add the following code:

//create an instance of a window
module.exports = (function(){
var win = Ti.UI.createWindow({
 backgroundColor: '#BBB',
 title: 'Settings'
});

return win;
})();

If you have been following along with the LoanCalc app so far, then delete the current code
in the app.js file that you created and replace it with the following source. Note that you can
refer to the Titanium SDK as Titanium or Ti; in this book, I'll be using Ti:

//create tab group
var tabGroup = Ti.UI.createTabGroup();

//create the window
var win1 = Ti.UI.createWindow({
 backgroundColor: '#BBB',
 title: 'Loan Calculator'
});

//create the view, this will hold all of our UI controls
var view = Ti.UI.createView({
top: 10,
 bottom: 10,
 left: 10,
 right: 10,
 backgroundColor: '#fff',
 borderRadius: 2,
 layout: 'vertical'
});

Chapter 1

9

//now let's add our logo to an imageview and add that to our //view
object
var logo = Ti.UI.createImageView({
 image: 'logo.png',
 width: 253,
 height: 96,
 top: 10
});

view.add(logo);

//add the view to our window
win1.add(view);

//add the first tab and attach our window object (win1) to it
var tab1 = Ti.UI.createTab({
 icon:'calculator.png',
 title:'Calculate',

 window: win1
});

//create the second window for settings tab
var win2 = require("window2");

//add the second tab and attach our external window object //(win2 /
window2) to it
var tab2 = Ti.UI.createTab({
 icon:'settings.png',
 title:'Settings',
 window: win2
});

//now add the tabs to our tabGroup object
tabGroup.addTab(tab1);
tabGroup.addTab(tab2);

//finally, open the tabgroup to launch the app
tabGroup.open();

Building Apps Using Native UI Components

10

How it works...
Logically, it's important to realize that the tabgroup, when used, is the root of the application
and it cannot be included via any other UI component. Each tab within the tabgroup is
essentially a wrapper for a single window.

Windows should be created and assigned to the window property. At the time of writing this
book, it may be possible to still use the url property (depending on the SDK you are using),
but do not use it as it will be removed in later SDKs. Instead, we'll be creating windows using a
CommonJS pattern, which is considered the proper way of developing modular applications.

The tabs icon is loaded from an image file, generally a PNG file. It's important to note that in
both Android and the iPhone, all icons will be rendered in grayscale with alpha transparency—
any color information will be discarded when you run the application.

You'll also notice in the Resources folder of the project that we have two files for each
image—for example, one named settings.png and one named settings@2x.png.
These represent normal and high-resolution retina images, which some iOS devices support.
It's important to note that while specifying image filenames, we never use the @2x part of
the name; iOS will take care of using the relevant image, if it's available. We also specify all
positional and size properties (width, height, top, bottom, and so on) in non-retina dimensions.

This is also similar to how we interact with images in Android: we always use the normal
filename, so it is settings.png, despite the fact there may be different versions of the file
available for different device densities on Android.

Finally, notice that we're in the view and we're using vertical as a layout. This means that
elements will be laid out down the screen one after another. This is useful in avoiding having
to specify the top values for all elements, and, if you need to change one position, having to
change all the elements. With a vertical layout, as you modify one element's top or height
value, all others shift with it.

There's more...
Apple can be particularly picky when it comes to using icons in your apps; wherever a standard
icon has been defined by Apple (such as the gears icon for settings), you should use the same.

A great set of 200 free tab bar icons is available at http://glyphish.com/.

http://glyphish.com/

Chapter 1

11

Creating and formatting labels
Whether they are for presenting text content on the screen, identifying an input field, or
displaying data within a tablerow, labels are one of the cornerstone UI elements that you'll
find yourself using all the time with Titanium. Through them, you'll display the majority of your
information to the user, so it's important to know how to create and format them properly.

In this recipe, we'll create three different labels, one for each of the input components that
we'll be adding to our app later on. Using these examples, we'll explain how to position your
label, give it a text value, and format it.

How to do it...
Open up your app.js file, and put these two variables at the top of your code file, directly
under the tabgroup creation declaration. These are going to be the default values for our
interest rate and loan length for the app:

//application variables
var numberMonths = 36; //loan length
var interestRate = 6.0; //interest rate

Let's create labels to identify the input fields that we'll be implementing later on. Type the
following source code into your app.js file. If you are following along with the LoanCalc
sample app, this code should go after your imageview logo, added to the view from the
previous recipe:

var amountRow = Ti.UI.createView({
 top: 10,
 left: 0,
 width: Ti.UI.FILL,
 height: Ti.UI.SIZE
});

//create a label to identify the textfield to the user
var labelAmount = Ti.UI.createLabel({
 width : Ti.UI.SIZE,
 height : 30,
 top : 0,
 left : 20,
 font : {
 fontSize : 14,
 fontFamily : 'Helvetica',
 fontWeight : 'bold'
 },

Building Apps Using Native UI Components

12

 text : 'Loan amount: $'
});

amountRow.add(labelAmount);

view.add(amountRow);

var interestRateRow = Ti.UI.createView({
 top: 10,
 left: 0,
 width: Ti.UI.SIZE,
 height: Ti.UI.SIZE
});

//create a label to identify the textfield to the user
var labelInterestRate = Ti.UI.createLabel({
 width : Ti.UI.SIZE,
 height : 30,
 top : 0,
 left : 20,
 font : {
 fontSize : 14,
 fontFamily : 'Helvetica',
 fontWeight : 'bold'
 },
 text : 'Interest Rate: %'
});

interestRateRow.add(labelInterestRate);

view.add(interestRateRow);

var loanLengthRow = Ti.UI.createView({
 top: 10,
 left: 0,
 width: Ti.UI.FILL,
 height: Ti.UI.SIZE
});

Chapter 1

13

//create a label to identify the textfield to the user
var labelLoanLength = Ti.UI.createLabel({
 width : 100,
 height : Ti.UI.SIZE,
 top : 0,
 left : 20,
 font : {
 fontSize : 14,
 fontFamily : 'Helvetica',
 fontWeight : 'bold'
 },
 text : 'Loan length (' + numberMonths + ' months):'
});

loanLengthRow.add(labelLoanLength);

view.add(loanLengthRow);

How it works...
By now, you should notice a trend in the way in which Titanium instantiates objects and adds
them to views/windows, as well as a trend in the way formatting is applied to most basic UI
elements using the JavaScript object properties. Margins and padding are added using the
absolute positioning values of top, left, bottom, and right, while font styling is done
with the standard font properties, which are fontSize, fontFamily, and fontWeight
in the case of our example code.

Here are a couple of important points to note:

ff The width property of our first two labels is set to Ti.UI.SIZE, which means that
Titanium will automatically calculate the width of the Label depending on the content
inside (a string value in this case). This Ti.UI.SIZE property can be used for both
the width and height of many other UI elements as well, as you can see in the third
label that we created, which has a dynamic height for matching the label's text.
When no height or width property is specified, the UI component will expand to fit
the exact dimensions of the parent view or window that encloses it.

ff You'll notice that we're creating views that contain a label each. There's a good
reason for this. To avoid using absolute positioning, we're using a vertical layout
on the main view, and to ensure that our text fields appear next to our labels, we're
creating a row as a view, which is then spaced vertically. Inside the row, we add the
label, and in the next recipes, we will have all the text fields next to the labels.

Building Apps Using Native UI Components

14

ff The textAlign property of the labels works the same way as you'd expect it to in
HTML. However, you'll notice the alignment of the text only if the width of your label
isn't set to Ti.UI.SIZE, unless that label happens to spread over multiple lines.

Creating textfields for user input
TextFields in Titanium are single-line textboxes used to capture user input via the keyboard,
and usually form the most common UI element for user input in any application, along with
labels and buttons. In this section, we'll show you how to create a Textfield, add it to your
application's View, and use it to capture user input. We'll style our textfield component
using a constant value for the first time.

Chapter 1

15

How to do it...
Type the following code after the view has been created but before adding that view to your
window. If you've been following along from the previous recipe, this code should be entered
after your labels have been created:

//creating the textfield for our loan amount input
var tfAmount = Ti.UI.createTextField({
 width: 140,
 height: 30,
 right: 20,
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED,
 returnKeyType:Ti.UI.RETURNKEY_DONE,
 hintText: '1000.00'
});

amountRow.add(tfAmount);

//creating the textfield for our percentage interest
//rate input
var tfInterestRate = Ti.UI.createTextField({
 width: 140,
 height: 30,
 right: 20,
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED,
 returnKeyType:Ti.UI.RETURNKEY_DONE,
 value: interestRate
});

interestRateRow.add(tfInterestRate);

How it works...
In this example, we created a couple of basic textfield with a rounded border style, and
introduced some new property types that don't appear in labels and imageviews, including
hintText. The hintText property displays a value in the textfield, which disappears
when that textfield has focus (for example, when a user taps it to enter some data using
their keyboard).

The user input is available in the textfield property called value; as you must have noted
in the preceding recipe, accessing this value is simply a matter of assigning it to a variable
(for example, var myName = txtFirstName.value), or using the value property directly.

Building Apps Using Native UI Components

16

There's more...
textfield are one of the most common components in any application, and in Titanium there
are a couple of points and options to consider whenever you use them.

Retrieving text
It's important to note that when you want to retrieve the text that a user has typed in a
textfield, you need to reference the value property and not the text, like many of the
other string-based controls!

Experimenting with other textfield border styles
Try experimenting with other textfield border styles to give your app a different appearance.
Other possible values are the following:

Ti.UI.INPUT_BORDERSTYLE_BEZEL
Ti.UI.INPUT_BORDERSTYLE_LINE
Ti.UI.INPUT_BORDERSTYLE_NONE
Ti.UI.INPUT_BORDERSTYLE_ROUNDED

Working with keyboards and keyboard
toolbars

When a textfield or textarea control gains focus in either an iPhone or an Android phone,
the default keyboard is what you see spring up on the screen. There will be times, however,
when you wish to change this behavior; for example, you may only want to have the user input
numeric characters into a textfield when they are providing a numerical amount (such as their
age or a monetary value). Additionally, keyboard toolbars can be created to appear above the
keyboard itself, which will allow you to provide the user with other options, such as removing
the keyboard from the window, or allowing copy and paste operations via a simple button tap.

In the following recipe, we're going to create a toolbar that contains both a system button and
another system component called flexiblespace. These will be added at the top of our numeric
keyboard, which will appear whenever the TextField for amount or interest rate gains focus.
Note that in this example, we have updated the tfAmount and tfInterestRate textfield
objects to contain the keyboardType and returnKeyType properties.

Getting started
Note that toolbars are iOS-specific, and currently they may not be available for Android in the
Titanium SDK.

Chapter 1

17

How to do it...
Open your app.js file and type the following code. If you have been following along from the
previous recipe, this code should replace the previous recipe's code for adding the amount
and interest rate textfields:

//flexible space for button bars
var flexSpace = Ti.UI.createButton({
 systemButton:Ti.UI.iPhone.SystemButton.FLEXIBLE_SPACE
});

//done system button
var buttonDone = Ti.UI.createButton({
 systemButton:Ti.UI.iPhone.SystemButton.DONE,
 bottom: 0
});

//add the event listener 'click' event to our done button
buttonDone.addEventListener('click', function(e){
 tfAmount.blur();
 tfInterestRate.blur();
 interestRate = tfInterestRate.value;
});

//creating the textfield for our loan amount input
var tfAmount = Ti.UI.createTextField({
 width: 140,
 height: 30,
 right: 20,
 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED,
 returnKeyType:Ti.UI.RETURNKEY_DONE,
 hintText: '1000.00',
 keyboardToolbar: [flexSpace,buttonDone],
 keyboardType:Ti.UI.KEYBOARD_PHONE_PAD
});
amountRow.add(tfAmount);

//creating the textfield for our percentage interest rate //input
var tfInterestRate = Ti.UI.createTextField({
 width: 140,
 height: 30,
 right: 20,

Building Apps Using Native UI Components

18

 borderStyle:Ti.UI.INPUT_BORDERSTYLE_ROUNDED,
 returnKeyType:Ti.UI.RETURNKEY_DONE,
 value: interestRate,
 keyboardToolbar: [flexSpace,buttonDone],
 keyboardType:Ti.UI.KEYBOARD_PHONE_PAD
});

interestRateRow.add(tfInterestRate);

How it works...
In this recipe, we created a textfield and added it to our view. You should have noticed by now
how many properties are universal among the different UI components: width, height, top, and
right are just four properties that are used in our textfield called tfAmount and were used in
previous recipes for other components.

Many touchscreen phones do not have physical keyboards; however, we are using a touchscreen
keyboard to gather our input data. Depending on the data you require, you may not need a full
keyboard with all the QWERTY keys, and you may want to just display a numeric keyboard, for
example, if you were using the telephone dialing features on your iPhone or Android device.

Additionally, you may require the QWERTY keys, but in a specific format. A custom keyboard
makes the user input quicker and less frustrating for the user by presenting custom options,
such as keyboards for inputting web addresses and e-mails with all the www and @ symbols
in convenient touch locations.

In this example, we're setting keyboardType to Ti.UI.KEYBOARD_PHONE_PAD, which
means that whenever the user clicks on that field, they see a numeric keypad.

In addition, we are specifying the keyboardToolbar property to be an array of our Done
button as well as the the flexspace button, so we get a toolbar with the Done button. The
event listener added to the Done button ensures that we can pick up the click, capture the
values, and blur the field, essentially hiding the keypad.

Downloading the example code
You can download the example code files from your account
at http://www.packtpub.com for all the Packt Publishing
books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

19

There's more
Try experimenting with other keyboard styles in your Titanium app!

Experimenting with keyboard styles
Other possible values are shown here:

Ti.UI.KEYBOARD_DEFAULT
Ti.UI.KEYBOARD_EMAIL
Ti.UI.KEYBOARD_ASCII
Ti.UI.KEYBOARD_URL
Ti.UI.KEYBOARD_NUMBER_PAD
Ti.UI.KEYBOARD_NUMBERS_PUNCTUATION
Ti.UI.KEYBOARD_PHONE_PAD

Building Apps Using Native UI Components

20

Enhancing your app with sliders
and switches

Sliders and switches are two UI components that are simple to implement and can bring
that extra level of interactivity into your apps. Switches, as the name suggests, have only
two states—on and off—which are represented by boolean values (true and false).

Sliders, on the other hand, take two float values—a minimum value and a maximum
value—and allow the user to select any number between and including these two values.
In addition to its default styling, the slider API also allows you to use images for both sides
of the track and the slider thumb image that runs along it. This allows you to create some
truly customized designs.

We are going to add a switch to indicate an on/off state and a slider to hold the loan length,
with values ranging from a minimum of 6 months to a maximum of 72 months. Also, we'll add
some event handlers to capture the changed value from each component, and in the case of
the slider, we will update an existing label with the new slider value. Don't worry if you aren't
yet 100 percent sure about how event handlers work, as we'll cover them in further detail in
Chapter 6, Getting to Grips With Properties and Events.

How to do it...
If you're following with the LoanCalc app, the next code should replace the code in your
window2.js file. We'll also add a label to identify what the switch component does and
a view component to hold it all together:

//create an instance of a window
module.exports = (function(){
var win = Ti.UI.createWindow({
 backgroundColor: '#BBB',
 title: 'Settings'
});

//create the view, this will hold all of our UI controls
var view = Ti.UI.createView({
 width: 300,
 height: 70,
 left: 10,
 top: 10,
 backgroundColor: '#fff',
 borderRadius: 5
});

Chapter 1

21

//create a label to identify the switch control to the user
var labelSwitch = Ti.UI.createLabel({
 width: Ti.UI.SIZE,
 height: 30,
 top: 20,
 left: 20,
 font: {fontSize: 14, fontFamily: 'Helvetica',
 fontWeight: 'bold'},
 text: 'Auto Show Chart?'
});
view.add(labelSwitch);

//create the switch object
var switchChartOption = Ti.UI.createSwitch({
 right: 20,
 top: 20,
 value: false
});
view.add(switchChartOption);

win.add(view);

return win;
})();

Now let's write the slider code; go back to your app.js file and type the following code
underneath the interestRateRow.add(tfInterestRate); line:

//create the slider to change the loan length
var lengthSlider = Ti.UI.createSlider({
 width: 140,
 top: 200,
 right: 20,
 min: 12,
 max: 60,
 value: numberMonths,
 thumbImage: 'sliderThumb.png',
 highlightedThumbImage: 'sliderThumbSelected.png'
});

lengthSlider.addEventListener('change', function(e){
 //output the value to the console for debug
 console.log(lengthSlider.value);

Building Apps Using Native UI Components

22

 //update our numberMonths variable
 numberMonths = Math.round(lengthSlider.value);
 //update label
 labelLoanLength.text = 'Loan length (' +
 Math.round(numberMonths) + ' months):';
});

loanLengthRow.add(lengthSlider);

How it works...
In this recipe, we added two new components to two separate views within two separate
windows. The first component—a switch—is fairly straightforward, and apart from the standard
layout and positioning properties, it takes one main boolean value to determine its on or off
status. It also has only one event, change, which is executed whenever the switch changes
from the on to off position or vice versa.

On the Android platform, the switch can be altered to appear as a toggle button (default)
or a checkbox. Additionally, Android users can display a text label using the title property,
which can be changed programmatically by using the titleOff and titleOn properties.

The slider component is more interesting and has many more properties than a Switch. sliders
are useful for instances where we want to allow the user to choose between a range of values;
in this case, it is a numeric range of months from 12 to 60. This is a much more effective
method of choosing a number from a range than listing all the possible options in a picker,
and is much safer than letting a user enter possibly invalid values via a textfield or textarea
component.

Pretty much all of the slider can be styled using the default properties available in the
Titanium API, including thumbImage and highlightedThumbImage, as we did in this
recipe. The highlightedThumbImage property allows you to specify the image that is used
when the slider is being selected and used, allowing you to have a default and an active state.

Chapter 1

23

There's more…
Try extending the styling of the slider component using images for the left- and right-hand
sides of the track, which is the element that runs horizontally underneath the moving switch.

Passing custom variables between windows
You'll often find a need to pass variables and objects between different screen objects in
your apps, such as windows, in your apps. One example is between a master and a child view.
If you have a tabular list of data that shows only a small amount of information per row, and
you wish to view the full description, you might pass that description data as a variable to the
child window.

In this recipe, we're going to apply this very principle to a variable on the settings window (in
the second tab of our LoanCalc app), by setting the variable in one window and then passing
it back for use in our main window.

Building Apps Using Native UI Components

24

How to do it...
Under the declaration for your second window, win2 in the app.js file, include the following
additional property called autoShowChart and set it to false. This is a custom property,
that is, a property that is not already defined by the Titanium API. Often, it's handy to include
additional properties in your objects if you require certain parameters that the API doesn't
provide by default:

//set the initial value of win2's custom property
win2.autoShowChart = false;

Now, in the window2.js file, which holds all the subcomponents for your second window,
replace the code that you created earlier to add the switch with the following code. This will
update the window's autoShowChart variable whenever the switch is changed:

//create the switch object
var switchChartOption = Ti.UI.createSwitch({
 right: 20,
 top: 20,
 value: false
});

//add the event listener for the switch when it changes
switchChartOption.addEventListener('change', function(e){
 win.autoShowChart = switchChartOption.value;
});

//add the switch to the view
view.add(switchChartOption);

How it works…
How this code works is actually pretty straightforward. When an object is created in Titanium,
all the standard properties are accessible in a dictionary object of key-value pairs; all that
we're doing here is extending that dictionary object to add a property of our own.

We can do this in two ways. As shown in our recipe's source code, this can be done after the
instantiation of the window object, or it can also be done immediately within the instantiation
code. In the source code of the second window, we are simply referencing the same object,
so all of its properties are already available for us to read from and write to.

Chapter 1

25

There's more...
There are other ways of passing and accessing objects and variables between Windows,
including the use of App Properties and Events. These will be covered in Chapter 6, Getting to
Grips with Properties and Events.

Creating buttons and capturing click events
In any given app, you'll notice that creating buttons and capturing their click events is one of
the most common tasks you do. This recipe will show you how to declare a button control in
Titanium and attach a click event to it. Within that click event, we'll perform a task and log it
to the info window in Appcelerator Studio.

This recipe will also demonstrate how to implement some of the default styling mechanisms
available for you via the API.

How to do it...
Open your app.js file and type the following code. If you're following along with the LoanCalc
app, the following code should go after you created and added the textfield controls:

//calculate the interest for this loan button
var buttonCalculateInterest = Ti.UI.createButton({
 title: 'Calculate Total Interest',
 id: 1,
 top: 10
});

//add the event listener
buttonCalculateInterest.addEventListener('click',
calculateAndDisplayValue);

//add the first button to our view
view.add(buttonCalculateInterest);

//calculate the interest for this loan button
var buttonCalculateRepayments = Ti.UI.createButton({
 title: 'Calculate Total Repayment',
 id: 2,
 top: 10
});

Building Apps Using Native UI Components

26

//add the event listener
buttonCalculateRepayments.addEventListener('click',
 calculateAndDisplayValue);

//add the second and final button to our view
view.add(buttonCalculateRepayments);

Now that we've created our two buttons and added the event listeners, let's create the
calculateAndDisplayValue() function to do some simple fixed interest mathematics
and produce the results, which we'll log to the Appcelerator Studio console:

//add the event handler which will be executed when either of //our
calculation buttons are tapped
function calculateAndDisplayValue(e)
{
 //log the button id so we can debug which button was tapped
 console.log('Button id = ' + e.source.id);

 if (e.source.id == 1)
 {
 //Interest (I) = Principal (P) times Rate Per Period
 //(r) times Number of Periods (n) / 12
 var totalInterest = (tfAmount.value * (interestRate /
 100) * numberMonths) / 12;

 //log result to console
 console.log('Total Interest = ' + totalInterest);
 }
 else
 {
 //Interest (I) = Principal (P) times Rate Per Period (r)
 //times Number of Periods (n) / 12
 var totalInterest = (tfAmount.value * (interestRate /
 100) * numberMonths) / 12;

 var totalRepayments = Math.round(tfAmount.value) +
 totalInterest;

 //log result to console
 console.log('Total repayments' + totalRepayments);
 }

} //end function

Chapter 1

27

How it works...
Most controls in Titanium are capable of firing one or more events, such as focus, onload,
or (as in our recipe) click. The click event is undoubtedly the one you'll use more often
than any other. In the preceding source code, you will notice that, in order to execute code
from this event, we are adding an event listener to our button, which has a signature of click.
This signature is a string and forms the first part of our event listener. The second part is the
executing function for the event.

It's important to note that other component types can also be used in a similar manner;
for example, an imageview can be declared. It can contain a custom button image, and
can have a click event attached to it in exactly the same way as a regular button can.

Building Apps Using Native UI Components

28

Informing your users with dialogs and alerts
There are a number of dialogs available for you to use in the Titanium API, but for the
purposes of this recipe, we'll be concentrating on the two main ones: alert dialog and option
dialog. These two simple components perform two similar roles, but with a key difference. The
alert dialog is normally used only to show the user a message, while the option dialog asks
the user a question and can accept a response in the form of a number of options. Generally,
an alert dialog only allows a maximum of two responses from the user, whereas the option
dialog can contain many more.

There are also key differences in the layout of these two dialog components, which will
become obvious in the following recipe.

How to do it…
First, we'll create an alert dialog that simply notifies the user of an action that can not
be completed due to missing information. In our case, that they have not provided a
value for the loan amount in tfAmount TextField. Add the following code to the
calculateAndDisplayValue() function, just under the initial console.log command:

if (tfAmount.value === '' || tfAmount.value === null)
{
 var errorDialog = Ti.UI.createAlertDialog({
 title: 'Error!',
 message: 'You must provide a loan amount.'
 });
 errorDialog.show();
return;
}

Now let's add the option dialog. This is going to display the result from our calculation
and then give the user the choice of viewing the results as a pie chart (in a new window),
or of canceling and staying on the same screen.

We need to add a couple of lines of code to define the optionsMessage variable that will
be used in the option dialog, so add this code below the line calculating totalRepayments:

console.log('Total repayments = ' + totalRepayments) :
var optionsMessage = "Total repayments on this loan equates to $"
+ totalRepayments;

Then add the following code just below the line of code defining totalInterest:

console.log('Total interest = ' + totalInterest) :
var optionsMessage = "Total interest on this loan equates to $" +
totalInterest;

Chapter 1

29

Finally, at the end of the function, add this code:

//check our win2 autoShowChart boolean value first (coming //from the
switch on window2.js)
if (win2.autoShowChart == true) {
 // openChartWindow();
 }
 else {
 var resultOptionDialog = Ti.UI.createOptionDialog({
 title: optionsMessage + '\n\nDo you want to
 view this in a chart?',
 options: ['Okay', 'No'],
 cancel: 1
 });

 //add the click event listener to the option dialog
 resultOptionDialog.addEventListener('click', function(e){
 console.log('Button index tapped was: ' + e.index);
 if (e.index == 0)
 {
 // openChartWindow();
 }
 });

 resultOptionDialog.show();

} //end if

How it works...
The alert dialog, in particular, is a very simple component that simply presents the user with a
message as a modal, and it has only one possible response, which closes the alert. Note that
you should be careful not to call an alert dialog more than once while a pending alert is still
visible, for example, if you're calling that alert from within a loop.

The option dialog is a much larger modal component that presents a series of buttons with
a message at the bottom of the screen. It is generally used to allow the user to pick more
than one item from a selection. In our code, resultOptionDialog presents the user
with a choice of two options—Okay and No. One interesting property of this dialog is Cancel,
which dismisses the dialog without firing the click event, and also styles the button at the
requested index in a manner that differentiates it from the rest of the group of buttons.

Note that we've commented out the openChartWindow() function because we haven't
created it yet. We'll be doing that in the next recipe.

Building Apps Using Native UI Components

30

Just like the Window object, both of these dialogs are not added to another View, but are
presented by calling the show() method instead. You should call the show() method only
after the dialog has been properly instantiated and any event listeners have been created.

The following images show the difference between the alert dialog and the option dialog:

There's more...
You can also create a predefined alert dialog using basic JavaScript, by using the
alert('Hello world!'); syntax. Be aware, however, that you only have control
over the contents of the messages that use this method, and the title of your alertdialog
will always be set to Alert.

Chapter 1

31

Creating charts using Raphael JS
Let's finish off our calculations visually by displaying charts and graphs. Titanium lacks a
native charting API. However, there are some open source options for implementing charts,
such as Google Charts. While the Google solution is free, it requires your apps to be online
every time you need to generate a chart. This might be okay for some circumstances, but it is
not the best solution for an application that is meant to be usable offline. Plus, Google Charts
returns a generated JPG or PNG file at the requested size and in rasterized format, which is
not great for zooming in when viewing on an iPhone or iPad.

A better solution is to use the open source and MIT-licensed Raphael library, which (luckily
for us) has a charting component! It is not only free but also completely vector-based, which
means any charts that you create will look great in any resolution, and can be zoomed in to
without any loss of quality.

Note that this recipe may not work on all Android devices. This is
because the current version of Raphael isn't supported by non-WebKit
mobile browsers. However, it will work as described here for iOS.

Getting ready
1.	 Download the main Raphael JS library from http://raphaeljs.com. The direct

link is http://github.com/DmitryBaranovskiy/raphael/raw/master/
raphael-min.js.

2.	 Download the main Charting library from http://g.raphaeljs.com (the direct
link is http://github.com/DmitryBaranovskiy/g.raphael/blob/master/
min/g.raphael-min.js?raw=true), and any other charting libraries that you
wish to use.

3.	 Download the Pie Chart library, which is at http://github.com/
DmitryBaranovskiy/g.raphael/blob/master/min/g.pie-min.
js?raw=true.

How to do it...
If you're following along with the LoanCalc example app, then open your project directory and
put your downloaded files into a new folder called charts under the Resources directory.
You can put them into the root folder if you wish, but bear in mind that you will have to
ensure that your references in the following steps are correct.

http://raphaeljs.com
http://github.com/DmitryBaranovskiy/raphael/raw/master/raphael-min.js
http://github.com/DmitryBaranovskiy/raphael/raw/master/raphael-min.js
http://g.raphaeljs.com
http://github.com/DmitryBaranovskiy/g.raphael/blob/master/min/g.raphael-min.js?raw=true
http://github.com/DmitryBaranovskiy/g.raphael/blob/master/min/g.raphael-min.js?raw=true
http://github.com/DmitryBaranovskiy/g.raphael/blob/master/min/g.pie-min.js?raw=true
http://github.com/DmitryBaranovskiy/g.raphael/blob/master/min/g.pie-min.js?raw=true
http://github.com/DmitryBaranovskiy/g.raphael/blob/master/min/g.pie-min.js?raw=true

Building Apps Using Native UI Components

32

To use the library, we'll be creating a webview in our app, referencing a variable that holds
the HTML code to display a Raphael chart, which we'll call chartHTML. A webview is a UI
component that allows you to display web pages or HTML in your application. It does not
include any features of a full-fledged browser, such as navigation controls or address bars.

Create a new file called chartwin.js in the Resources directory and add the following
code to it:

//create an instance of a window
module.exports = (function() {

 var chartWin = Ti.UI.createWindow({
 title : 'Loan Pie Chart'
 });

 chartWin.addEventListener("open", function() {

 //create the chart title using the variables we passed in from
 //app.js (our first window)
 var chartTitleInterest = 'Total Interest: $' + chartWin.
totalInterest;
 var chartTitleRepayments = 'Total Repayments: $' + chartWin.
totalRepayments;

 //create the chart using the sample html from the
 //raphaeljs.com website
 var chartHTML = '<html><head> <title>RaphaelJS
 Chart</title><meta name="viewport" content="width=device-
 width, initial-scale=1.0"/> <script
 src="charts/raphael-min.js" type="text/javascript"
 charset="utf-8"></script> <script
 src="charts/g.raphael-min.js" type="text/javascript"
 charset="utf-8"></script> <script
 src="charts/g.pie-min.js" type="text/javascript"
 charset="utf-8"></script> <script
 type="text/javascript" charset="utf-8">
 window.onload = function () {
 var r = Raphael("chartDiv"); r.text.font = "12px
 Verdana, Tahoma, sans-serif"; r.text(150, 10,
 "';

 chartHTML = chartHTML + chartTitleInterest + '").attr({"font-
 size": 14}); r.text(150, 30, "' + chartTitleRepayments +
 '").attr({"font-size": 14});';

Chapter 1

33

 chartHTML = chartHTML + ' r.piechart(150, 180, 130, [' +
 Math.round(chartWin.totalInterest) + ',' +
 Math.round(chartWin.principalRepayments) + ']); };
</script> </head><body> <div id="chartDiv" style="width:320px;
height: 320px; margin: 0"></div> </body></html>';

 //add a webview to contain our chart
 var webview = Ti.UI.createWebView({
 width : Ti.UI.FILL,
 height : Ti.UI.FILL,
 top : 0,
 html : chartHTML
 });

 chartWin.add(webview);

 });

 return chartWin;

})();

Now, back in your app.js file, create a new function at the end of the file, called
openChartWindow(). This function will be executed when the user chooses Okay from the
previous recipe's option dialog. It will create a new window object based on the chartwin.js
file and pass to it the values needed to show the chart:

//we'll call this function if the user opts to view the loan //chart
function openChartWindow() {

 //Interest (I) = Principal (P) times Rate Per Period (r)
 //times Number of Periods (n) / 12
 var totalInterest = (tfAmount.value * (interestRate / 100) *
 numberMonths) / 12;
 var totalRepayments = Math.round(tfAmount.value) +
 totalInterest;

 var chartWindow = require("chartwin");

 chartWindow.numberMonths = numberMonths;
 chartWindow.interestRate = interestRate;
 chartWindow.totalInterest = totalInterest;
 chartWindow.totalRepayments = totalRepayments;

Building Apps Using Native UI Components

34

 chartWindow.principalRepayments = (totalRepayments -
 totalInterest);

 tab1.open(chartWindow);

}

Finally, remember to uncomment the two // openChartWindow() lines that you added in
the previous recipe. Otherwise, you won't see anything!

How it works...
Essentially, what we're doing here is wrapping the Raphael library, something that was originally
built for the desktop browser, into a format that can be consumed and displayed using the
iOS's WebKit browser. You can find out more about Raphael at http://raphaeljs.com and
http://g.raphaeljs.com, and learn how it renders charts via its JavaScript library. We'll
not be explaining this in detail; rather, we will cover the implementation of the library to work
with Titanium.

Our implementation consists of creating a webview component that (in this case) will hold
the HTML data that we constructed in the chartHTML variable. This HTML data contains
all of the code that is necessary to render the charts, including the scripts listed in item #2
of the Getting Ready section of this recipe. If you have a chart with static data, you can also
reference the HTML from a file using the url property of the webview object, instead of
passing all the HTML as a string.

The chart itself is created using some simple JavaScript embedded in the r.piechart(150,
180, 130, n1, n2) HTML data string, where n1 and n2 are the two values we wish to
display as slices in the pie chart. The other values define the center point of the chart from
the top and left, respectively, followed by the chart radius.

All of this is wrapped up in a new module file defined by the chartwin.js file, which
accesses the properties passed from the first tab's window in our LoanCalc app. This data is
passed using exactly the same mechanism as explained in a previous recipe, Passing custom
variables between Windows.

Finally, the chart window is passed back to the app.js file, within the openChartWindow()
function, and from there, we use tab1.open() to open a new window within tab1. This has
the effect of sliding the new window, similar to the way in which many iOS apps work (in Android,
the new window would open normally).

http://raphaeljs.com
http://g.raphaeljs.com

Chapter 1

35

The following screenshot shows the Raphael JS Library being used to show a pie chart based
on our loan data:

Creating an actionbar in Android
In Android 3.0, Google introduced the actionbar, a tab-style interface that sits under the title
bar of an application. The actionbar behaves a lot like the tabgroup, which we're used to in
iOS, and coincidently it can be created in the same way as we created a TabGroup previously,
which makes it very easy to create one! All that we need to do is make some minor visual
tweaks in our application to get it working on Android.

You will be running this recipe on Android 4.x, so make sure you're running an emulator
or device that runs 4.x or higher. I'd recommend using GenyMotion, available at http://
www.genymotion.com, to emulate Android. It's fast and way more flexible than, the built-in
Android SDK emulators. It's also fully supported in Titanium and in Appcelerator Studio.

The complete source code for this chapter can be found in the /Chapter 1/LoanCalc folder.

http://www.genymotion.com
http://www.genymotion.com

Building Apps Using Native UI Components

36

How to do it...
There's not much to do to get the actionbar working, as we've already created a tabgroup for
our main interface. We just need to do just a few tweaks to our app views, buttons, and labels.

First, let's make sure that all our labels are rendering correctly. Add the following attribute to
any label that you've created:

color: '#000'

Now we need to fix our buttons. Let's add a tweak to them after we've created them
(for Android only). Add the following code after your buttons. To do this, we're going to
use .applyProperties, which allows us to make multiple changes to an element
at the same time:

if (Ti.Platform.osname.toLowerCase() === 'android') {
 buttonCalculateRepayments.applyProperties({
 color : '#000',
 height : 45
 });

 buttonCalculateInterest.applyProperties({
 color : '#000',
 height : 45
 });
}

This block checks whether we're running Android and makes some changes to the buttons.
Let's add some more code to the block to adjust the textfield height as well, as follows:

if (Ti.Platform.osname.toLowerCase() === 'android') {
 buttonCalculateRepayments.applyProperties({
 color : '#000',
 height : 45
 });

 buttonCalculateInterest.applyProperties({
 color : '#000',
 height : 45
 });

 tfAmount.applyProperties({
 color : '#000',
 height : 35
 });

 tfInterestRate.applyProperties({
 color : '#000',

Chapter 1

37

 height : 35
 });
}

Finally, we're going to make a tweak to our settings window to make it play nicely on Android
devices with different widths. Edit the window2.js file and remove the width of the view
variable, changing it to the following:

var view = Ti.UI.createView({
 height : 70,
 left : 10,
right: 10,
 top : 10,
 backgroundColor : '#fff',
 borderRadius : 5
});

We'll need to update the labelSwitch variable too, by adding this line:

color: '#000'

Now let's run the app in the Android emulator or on a device, and we should see the following:

Building Apps Using Native UI Components

38

How it works...
We've not done much here to get an actionbar working. That's because Titanium takes care
of the heavy lifting for us. You must have noticed that the only changes we made were visual
tweaks to the other elements on the screen; the actionbar just works!

This is a really nice feature of Titanium, wherein you can create one UI element, a tabgroup,
and have it behave differently for iOS and Android using the same code.

Having said that, there are some additional tweaks that you can do to your actionbar
using the Ti.Android.ActionBar API. This gives specific access to properties and
events associated with the actionbar. More information can be found at http://docs.
appcelerator.com/platform/latest/#!/api/Titanium.Android.ActionBar.

So, for example, you can change the properties of actionBar by accessing it via the
current window:

actionBar = win.activity.actionBar;

if (actionBar) {
actionBar.backgroundImage = "/bg.png";
actionBar.title = "New Title";
}

As you can see, it's really easy to create an actionbar using a tabgroup and alter its properties
in Android.

http://docs.appcelerator.com/platform/latest/#!/api/Titanium.Android.ActionBar
http://docs.appcelerator.com/platform/latest/#!/api/Titanium.Android.ActionBar

39

2
Working with Local and

Remote Data Sources

In this chapter, we'll cover the following topics:

ff Reading data from remote XML via HTTPClient

ff Displaying data using a TableView

ff Enhancing your TableViews with custom rows

ff Filtering your TableView with the SearchBar control

ff Speeding up your remote data access with Yahoo! YQL and JSON

ff Creating a SQLite database

ff Saving data locally using a SQLite database

ff Retrieving data from a SQLite database

ff Creating a "pull to refresh" mechanism in iOS

Introduction
As you are a Titanium developer, fully understanding the methods available for you to read,
parse, and save data is fundamental to the success of the apps you'll build. Titanium provides
you with all the tools you need to make everything from simple XML or JSON calls over HTTP,
to the implementation of local relational SQL databases.

In this chapter, we'll cover not only the fundamental methods of implementing remote data
access over HTTP, but also how to store and present that data effectively using TableViews,
TableRows, and other customized user interfaces.

Working with Local and Remote Data Sources

40

Prerequisites
You should have a basic understanding of both the XML and JSON data formats, which are
widely used and standardized methods of transporting data across the Web. Additionally,
you should understand what Structured Query Language (SQL) is and how to create basic
SQL statements such as Create, Select, Delete, and Insert. There is a great beginners'
introduction to SQL at http://sqlzoo.net if you need to refer to tutorials on how to run
common types of database queries.

Reading data from remote XML via
HTTPClient

The ability to consume and display feed data from the Internet, via RSS feeds or alternate
APIs, is the cornerstone of many mobile applications. More importantly, many services that
you may wish to integrate into your app will probably require you to do this at some point, so
it is vital to understand and be able to implement remote data feeds and XML. Our first recipe
in this chapter introduces some new functionality within Titanium to help facilitate this need.

If you are intending to follow the entire chapter and build the MyRecipes app, then pay
careful attention to the Getting Ready section for this recipe, as it'll guide you through
setting up the project.

Getting ready
To prepare for this recipe, open Appcelerator Studio, log in and create a new mobile project,
just as you did in Chapter 1: Building Apps Using Native UI Components. Select Classic and
Default Project, then enter MyRecipes as the name of the app, and fill in the rest of the
details with your own information, as you've done previously.

The complete source code for this chapter can be found in the /Chapter 2/RecipeFinder
folder.

How to do it...
Now that our project is set up, let's get down to business! First, open your app.js file and
replace its contents with the following:

// this sets the background color of the master View (when there are
no windows/tab groups on it)
Ti.UI.setBackgroundColor('#000');

http://sqlzoo.net

Chapter 2

41

// create tab group
var tabGroup = Ti.UI.createTabGroup();

var tab1 = Ti.UI.createTab({
 icon:'cake.png',
 title:'Recipes',
 window:win1
});

var tab2 = Ti.UI.createTab({
 icon:'heart.png',
 title:'Favorites',
 window:win2
});

//
// add tabs
//
tabGroup.addTab(tab1);
tabGroup.addTab(tab2);

// open tab group
tabGroup.open();

This will get a basic TabGroup in place, but we need two windows, so we create two more
JavaScript files called recipes.js and favorites.js. We'll be creating a Window instance
in each file in the same way that we created the window2.js and chartwin.js files in
Chapter 1: Building Apps Using Native UI Components.

In recipes.js, insert the following code. Do the same with favorites.js, ensuring that
you change the title of the Window to Favorites:

//create an instance of a window
module.exports = (function() {

 var win = Ti.UI.createWindow({
 title : 'Recipes',
backgroundColor : '#fff'
 });

 return win;

})();

Working with Local and Remote Data Sources

42

Next, go back to app.js, and just after the place where the TabGroup is defined, add this code:

var win1 = require("recipes");
var win2 = require("favorites");

Open the recipes.js file. This is the file that'll hold our code for retrieving and displaying
recipes from an RSS feed. Type in the following code at the top of your recipes.js file;
this code will create an HTTPClient and read in the feed XML from the recipe's website:

 //declare the http client object
var xhr = Ti.Network.createHTTPClient();

function refresh() {
 //this method will process the remote data
 xhr.onload = function() {
 console.log(this.responseText);
 };

 //this method will fire if there's an error in accessing the //
remote data
 xhr.onerror = function() {
 //log the error to our Appcelerator Studio console
 console.log(this.status + ' - ' + this.statusText);
 };

 //open up the recipes xml feed
 xhr.open('GET', 'http://rss.allrecipes.com/daily.aspx?hubID=79');

 //finally, execute the call to the remote feed
 xhr.send();
}

refresh();

Try running the emulator now for either Android or iPhone. You should see two tabs appear on
the screen, as shown in the following screenshot. After a few seconds, there should be a stack
of XML data printed to your Appcelerator Studio console log:

Chapter 2

43

How it works…
If you are already familiar with JavaScript for the Web, this should make a lot of sense to you.
Here, we created an HTTPClient using the Ti.Network namespace, and opened a GET
connection to the URL of the feed from the recipe's website using an object called xhr.

By implementing the onload event listener, we can capture the XML data that has been
retrieved by the xhr object. In the source code, you'll notice that we have used console.
log() to output information to the Appcelerator Studio screen, which is a great way of
debugging and following events in our app. If your connection and GET request were
successful, you should see a large XML string output in the Appcelerator Studio console
log. The final part of the recipe is small but very important: calling the xhr object's send()
method. This kicks off the GET request, without which your app would never load any data.
It is important to note that you'll not receive any errors or warnings if you forget to implement
xhr.send(), so if your app is not receiving any data, this is the first place to check.

If you are having trouble parsing your XML, always check whether it is
valid first! Opening the XML feed in your browser will normally provide
you with enough information to determine whether your feed is valid
or has broken elements.

Displaying data using a TableView
TableViews are one of the most commonly used components in Titanium. Almost all of the
native apps on your device utilize tables in some shape or form. They are used to display large
lists of data in an effective manner, allowing for scrolling lists that can be customized visually,
searched through, or drilled down to expose child views. Titanium makes it easy to implement
TableViews in your application, so in this recipe, we'll implement a TableView and use our XML
data feed from the previous recipe to populate it with a list of recipes.

Working with Local and Remote Data Sources

44

How to do it...
Once we have connected our app to a data feed and we're retrieving XML data via the XHR
object, we need to be able to manipulate that data and display it in a TableView component.
Firstly, we will need to create an array object called data at the top of our refresh function
in the recipes.js file; this array will hold all of the information for our TableView in a global
context. Next, we need to disseminate the XML, read in the required elements, and populate
our data array object, before we finally create a TableView and set the data to be our data
array. Replace the refresh function with the following code:

function refresh() {

 var data = []; //empty data array

 //declare the http client object
 var xhr = Ti.Network.createHTTPClient();

 //create the table view
 var tblRecipes = Ti.UI.createTableView();
 win.add(tblRecipes);

 //this method will process the remote data
 xhr.onload = function() {

 var xml = this.responseXML;
 //get the item nodelist from our response xml object
 var items = xml.documentElement.
getElementsByTagName("item");

 //loop each item in the xml
 for (var i = 0; i < items.length; i++) {

 //create a table row
 var row = Ti.UI.createTableViewRow({
 title:
 items.item(i).getElementsByTagName("title").
item(0).text
 });

 //add the table row to our data[] object
 data.push(row);

 } //end for loop

 //finally, set the data property of the tableView to
 our //data[] object

Chapter 2

45

 tblRecipes.data = data;

 };

 //open up the recipes xml feed
 xhr.open('GET',
 'http://rss.allrecipes.com/daily.aspx?hubID=79');

 //finally, execute the call to the remote feed
 xhr.send();

 }

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing
books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

The following screenshot shows the TableView with the titles of our recipes from the XML feed:

http://www.packtpub.com
http://www.packtpub.com/support

Working with Local and Remote Data Sources

46

How it works...
The first thing you'll notice is that we are taking the response data, extracting all the elements
that match the name item, and assigning it to items. This gives us an array that we can use to
loop through and assign each individual item to the data array object that we created earlier.

From there, we create our TableView by implementing the Ti.UI.createTableView()
function. You should notice almost immediately that many of our regular properties are also
used by tables, including width, height, and positioning. In this case, we did not specify these
values, which means that by default, the TableView will occupy the screen. A TableView has an
extra, and important, property: data. The data property accepts an array of data, the values
of which can either be used dynamically (as we have done here with the title property) or be
assigned to the subcomponent children of a TableRow. As you begin to build more complex
applications, you'll fully understand just how flexible table-based layouts can be.

Enhancing your TableViews with
custom rows

So far, we've created a TableView that, though totally usable and showing the names of our
recipes from the XML feed, is a bit bland. To customize our table, we'll need to create and add
custom TableRow objects to an array of rows, which we can then assign to our TableView
object. Each of these TableRow objects is essentially a type of view, to which we can add any
number of components, such as Label, ImageView, and Button.

Next up, we'll create our TableRow objects and add to each one the name of the recipe from
our XML feed, the publication date, and a thumbnail image, which we'll get from the images
folder in our Resources directory. If you do not have an images directory already, create one
now and copy the images from the source code for this chapter.

How to do it...
Open your recipe.js file and replace the refresh function with the following code:

function refresh() {

 var data = []; //empty data array

 //declare the http client object

 //this method will process the remote data
 xhr.onload = function() {
 var xml = this.responseXML;

Chapter 2

47

 console.log(this.responseText);

 //get the item nodelist from our response xml object
 var items = xml.documentElement.
getElementsByTagName("item");

 //loop each item in the xml
 for (var i = 0, j = items.length; i < j; i++) {

 //create a table row
 var row = Ti.UI.createTableViewRow({
 hasChild: true,
 className: 'recipe-row'
 });

 //title label
 var titleLabel = Ti.UI.createLabel({
 text: items.item(i).getElementsByTagName("title").
item(0).text,
 font: {
 fontSize: 14,
 fontWeight: 'bold'
 },
 left: 70,
 top: 5,
 height: 20,
 width: 210
 });
 row.add(titleLabel);

 //pubDate label
 var pubDateLabel = Ti.UI.createLabel({
 text: items.item(i).
getElementsByTagName("pubDate").item(0).text,
 font: {
 fontSize: 10,
 fontWeight: 'normal'
 },
 left: 70,
 top: 25,
 height: 40,
 width: 200
 });

Working with Local and Remote Data Sources

48

 if (pubDateLabel.text == '') {
 pubDateLabel.text = 'No description is
available.';
 }
 row.add(pubDateLabel);

 //add our little icon to the left of the row
 var iconImage = Ti.UI.createImageView({
 image: 'food_icon.png',
 width: 50,
 height: 50,
 left: 10,
 top: 10
 });
 row.add(iconImage);

 //add the table row to our data[] object
 data.push(row);
 }

 //finally, set the data property of the tableView to our
 //data[] object
 tblRecipes.data = data;

 };

 //open up the recipes xml feed
 xhr.open('GET', 'http://rss.allrecipes.com/daily.
aspx?hubID=79');

 //finally, execute the call to the remote feed
 xhr.send();

 }

How it works...
One thing that should be immediately obvious is that a TableRow object can contain any
number of components, which you can define and add in the standard way. This is just as
we did in Chapter 1, Building Apps Using Native UI Components, adding elements to views.

Chapter 2

49

The className property is an important one when it comes to the performance of TableViews
on Android and Blackberry devices. If you have multiple rows that have the same layout, use
className to identify them as the same type. This will improve the performance of your app.
If you have two different row layouts (perhaps one with an image and one without), then use
two different className values. Launch your app in the simulator to see the final TableView
populated with recipes, as shown in the following screenshot:

Filtering the TableView using a SearchBar
component

What happens when your user wants to search for all that data in your TableView? By far the
easiest way is to use the SearchBar component. This is a standard control that consists of
a searchable text field with a cancel button, that sits ontop of your TableView using the table
view's searchBar property.

Working with Local and Remote Data Sources

50

In this next recipe, we'll implement in our MyRecipes app a SearchBar component that
filters our recipes based on the title property.

How to do it...
First of all, create a SearchBar component. Do this before your TableView is defined.
Then we'll create the event listeners for SearchBar:

//define our search bar which will attach
//to our table view
var searchBar = Ti.UI.createSearchBar({
 showCancel:true,
 height:43,
 top:0
});

//print out the searchbar value whenever it changes
searchBar.addEventListener('change', function(e){
 //search the tableview as user types
console.log('user searching for: ' + e.value);
});

//when the return key is hit, remove focus from
//our searchBar
searchBar.addEventListener('return', function(e){
 searchBar.blur();
});

//when the cancel button is tapped, remove focus
//from our searchBar
searchBar.addEventListener('cancel', function(e){
 searchBar.blur();
});

Now we set the search property of our TableView to our SearchBar component, and then
set the filterAttribute property of our TableView to filter. We'll define this custom
property called filter within each of our row objects:

//define our table view
 var tblRecipes = Ti.UI.createTableView({
 rowHeight : 70,
 search : searchBar,
 filterAttribute : 'filter' //here is the search filter which
 appears in TableViewRow
 });

win.add(tblRecipes);

Chapter 2

51

Now, inside each row that you define while looping through your XML data, add a custom
property called filter and set its value to the title text from the XML feed, as follows:

//this method will process the remote data
xhr.onload = function() {
 var xml = this.responseXML;

 //get the item nodelist from our response xml object
 var items = xml.documentElement.getElementsByTagName("item");

 //loop each item in the xml
 for (var i = 0, j=items.length; i < j; i++) {
 //create a table row
 var row = Ti.UI.createTableViewRow({
 hasChild: true,
 className: 'recipe-row',
 filter:
 items.item(i).getElementsByTagName("title").item(0).text
 //this is the data we want to search on (title)
 });

...

That's it! Run your project, and you should now have a SearchBar attached to your table
view, as shown in the following screenshot. Tap it and type any part of a recipe's title to see
the results filtered in your table, like this:

Working with Local and Remote Data Sources

52

How it works...
In the first block of code, we simply defined our SearchBar object like any other UI component,
before attaching it to the searchbar property of our TableView in the second block of code. The
event listeners for SearchBar simply ensure that when the user taps either of the Search or
Cancel buttons, the focus on the text input is lost and the keyboard therefore becomes hidden.

The final block of code defines just what data we are searching on. In this case, our filter
property has been set to the title of the recipe. This property has to be added to each row that
we define before it is bound to our TableView.

Speeding up your remote data access with
Yahoo YQL and JSON

If you are already familiar with using JavaScript heavily for the Web, particularly when using
popular libraries such as jQuery or Prototype, then you may already be aware of the benefits of
using JSON instead of XML. The JSON data format is much less verbose than XML, which means
that file size is smaller and data transfer is much faster. This is particularly important when a
user on a mobile device may be limited in data speed due to network access and bandwidth.

If you have never seen Yahoo!'s YQL console or heard of the YQL language web service, note
that it is essentially a free web service that allows developers and applications to query, filter,
and combine separate data sources from across the Internet.

In this recipe, we are going to use the Yahoo! YQL console and web service to obtain data
from our recipes' data feed, and transform that data into a JSON object, which we'll then
bind to our TableView.

How to do it...
First of all, go to Yahoo!'s YQL console page by opening http://developer.yahoo.
com/yql/console in your browser. Change the show tables text in the SQL statement
field to select * from feed where url='http://rss.allrecipes.com/daily.
aspx?hubID=79'. Select the JSON button and then hit Test. You should see a formatted
set of data returned in the results window, in JSON format!

http://developer.yahoo.com/yql/console
http://developer.yahoo.com/yql/console

Chapter 2

53

To use this data, we need to copy and paste the complete REST query from the YQL console.
This is right at the bottom of the browser and is a single-line textbox. Copy and paste the
entire URL into your xhr.open() method, replacing the existing recipes' feed URL.

Make sure that when you paste the string, it hasn't broken due to any
apostrophes. If it has, you'll need to escape the apostrophe characters
by replacing them with \. Alternatively, you can wrap the string in
instead of, and it will parse correctly. See the next example code.

Now, back in the xhr.onload() function, let's replace the content of the refresh function
with the following, which will parse JSON instead of XML:

var data = []; //empty data array

 //declare the http client object
 var xhr = Ti.Network.createHTTPClient();

 //this method will process the remote data
 xhr.onload = function() {
 //create a json object using the JSON.PARSE function
 var jsonObject = JSON.parse(this.responseText);

Working with Local and Remote Data Sources

54

 //print out how many items we have to the console
 console.log(jsonObject.query.results.item.length);

 //loop each item in the json object
 for (var i = 0, j =
 jsonObject.query.results.item.length; i < j; i++) {
 //create a table row
 var row = Ti.UI.createTableViewRow({
 hasChild: true,
 className: 'recipe-row',
 backgroundColor: '#fff', // for Android
 filter: jsonObject.query.results.item[i].title
 //this is the data we want to search on
 (title)
 });

 //title label
 var titleLabel = Ti.UI.createLabel({
 text: jsonObject.query.results.item[i].title,
 font: {
 fontSize: 14,
 fontWeight: 'bold'
 },
 left: 70,
 top: 5,
 height: 20,
 width: 210,
 color: '#000' // for Android
 });
 row.add(titleLabel);

 //pubDateLabel label
 var pubDateLabel = Ti.UI.createLabel({
 text:
 jsonObject.query.results.item[i].pubDate,
 font: {
 fontSize: 10,
 fontWeight: 'normal'
 },
 left: 70,
 top: 25,
 height: 40,
 width: 200,
 color: '#000'
 });

Chapter 2

55

 if (pubDateLabel.text == '') {
 pubDateLabel.text = 'No description is
 available.';
 }
 row.add(pubDateLabel);

 //add our little icon to the left of the row
 var iconImage = Ti.UI.createImageView({
 image: 'food_icon.png',
 width: 50,
 height: 50,
 left: 10,
 top: 10
 });
 row.add(iconImage);

 // save an instance of the row data against the
 row
 row.data = jsonObject.query.results.item[i];

 //add the table row to our data[] object
 data.push(row);
 }

 //finally, set the data property of the tableView
 //to our data[] object
 tblRecipes.data = data;
 };

 //this method will fire if there's an error in accessing
 //the remote data
 xhr.onerror = function() {
 //log the error to our console
 console.log(this.status + ' - ' + this.statusText);
 };

 //open up the recipes xml feed
 xhr.open('GET',
 "http://query.yahooapis.com/v1/public/yql?q=select%20*%20
from%20feed%20where%20url%3D'http%3A%2F%2Frss.allrecipes.com%2Fdaily.
aspx%3FhubID%3D79'&format=json&diagnostics=true&callback=");

 //finally, execute the call to the remote feed
 xhr.send();

Working with Local and Remote Data Sources

56

How it works...
As you can see in the preceding recipe, accessing the YQL web service is simply a matter
of passing an HTTP GET query to the YQL service URL, using a YQL statement as a URL
parameter. When it processes a query, the Yahoo! YQL service obtains and transforms the
requested data, and returns it in your specified format (JSON in our case).

Accessing the properties of the JSON data object is also different from XML, and arguably
much simpler. In JSON, we use simple dot notation to navigate through the data tree hierarchy
and select the property that we want to use. If you are already familiar with array syntax in
PHP, JavaScript, and a number of other C-Style languages, this should also be pretty familiar
to you!

Creating a SQLite database
There are many reasons SQLite has become the relational database of choice for mobile
handsets. It is scalable, fast, written in native C, and very portable, and has the added
benefit of an exceptionally small footprint.

Storing data locally and caching remote data can help speed up data access times in our
applications. This is particularly important when mobile devices may have limited connectivity
and bandwidth.

There are two ways to create and implement SQLite databases in your application: one is
by creating the database in code using SQL, and the other is by copying and attaching an
existing database to your app via the install method. In this recipe, we'll explain how to
create a database via SQL statements.

How to do it...
Create a new JavaScript file called database.js, and type the following code at the top of
your new file:

//create an instance of a database
module.exports = (function() {
 //create the database object
 var db = Ti.Database.open('mydb');
 db.execute('CREATE TABLE IF NOT EXISTS favorites (ID INTEGER
 PRIMARY KEY AUTOINCREMENT, TITLE TEXT, LINK TEXT, DESCRIPTION
 TEXT)');

 return db;
})();

Chapter 2

57

Now we add this line at the top of each Window from which we need to reference our database
functions. Do this to both your recipes.js and favorites.js files:

var db = require('database');

How it works...
One of the great things about SQLite is the simplicity of its creation. In the preceding example
code, you can see that we are not even performing a create database query anywhere.
Simply attempting to open a database that does not exist (mydb in this case) tells the SQLite
engine to create it automatically!

From here, we can create our SQL table using standard SQL syntax. In our case, we have
created a table with an ID that is an auto-incrementing number, along with a title, link and
description field. The latter three fields match the data being returned from our recipe's data
source, so in the next section we can use this table to locally store our recipe data.

There's more...
Let's take a look at attaching a prepopulated database file.

Attaching a prepopulated database file
Should you wish to create your database separately and attach it to your application at
runtime, there is a method for you called Ti.Database.install(). Implementing this
method is very easy, as it just accepts two parameters: the database file and the database
name. Here is an example:

Var db = Ti.Database.install('data.db', 'packtData');

There are also numerous free SQLite applications for creating and managing SQLite
databases. The open source SQLite DB Browser tool is freely available at http://
sqlitebrowser.org/ and runs on Windows, Linux, and Mac OS X.

http://sqlitebrowser.org/
http://sqlitebrowser.org/

Working with Local and Remote Data Sources

58

Saving data locally using a SQLite database
Saving and updating data to our SQLite database is just a matter of creating a function for
each Create, Read, Update, and Delete (CRUD) operation that we need, and forming the
SQL statement before we execute it against the local database (our db object).

In this recipe, we'll edit the database.js module file to return a db object that contains
two new functions, one for inserting a record into our favorites table and one for deleting
a record. We'll also capture the click events on our table rows to allow the user to view the
record in a detailed subwindow, and add a button for creating and deleting favorites.

How to do it...
Open the JavaScript file called database.js, and replace its contents with the following:

//create an instance of a database
module.exports = (function() {
 //create the database object
 var db = {};

 db.database = Ti.Database.open('mydb');
 db.database.execute('CREATE TABLE IF NOT EXISTS favorites
 (ID INTEGER PRIMARY KEY AUTOINCREMENT, TITLE TEXT, LINK
 TEXT, DESCRIPTION TEXT)');

 db.insertFavorite = function(title, description, link) {
 var sql = "INSERT INTO favorites (title, description, link)
 VALUES (";
 sql = sql + "'" + title.replace("'", "''") + "', ";
 sql = sql + "'" + description.replace("'", "''") + "', ";
 sql = sql + "'" + link.replace("'", "''") + "')";
 db.database.execute(sql);
 return db.database.lastInsertRowId;
 };

 db.deleteFavorite = function(title) {
 var sql = "DELETE FROM favorites WHERE title = '" + title
 + "'";
 db.database.execute(sql);
 };

 return db;
})();

Chapter 2

59

Now, we need to make sure that we have access to the current tab of a Window (in order to be
able to open a detail window later), so we must add a couple of lines of code to the app.js
file, just after the line where we define tab2:

win1.tab = tab1;
win2.tab = tab2;

By assigning each tab to a tab property in the window, we're able to access it directly from the
associated JavaScript file for that window, which will make it easier to access the current tab
in order to open new windows.

Then, back in our recipes.js file, we are going to capture the click event of the tblRecipes
TableView in order to get the tapped row's data and save it in our favorites table in SQLite.
Add the following code after you have defined tblRecipes:

//create a new window and pass through data from the
 //tapped row
 tblRecipes.addEventListener('click', function(e) {
 var data = e.row.data;

 console.log(data)

 //row index clicked
 var detailWindow = Ti.UI.createWindow({
 title: data.title,
 link: data.link,
 backgroundColor: '#fff'
 });

 //add the favorite button
 var favButton = Ti.UI.createButton({
 title: 'Add Favorite',
 color: '#000',
 left: 10,
 top: 10,
 width: Ti.UI.SIZE,
 height: Ti.UI.SIZE
 });

 favButton.addEventListener('click', function(e) {

 var newId = db.insertFavorite(data.title, data.
description, data.link);
 console.log('Newly created favorite id = ' + newId);
 detailWindow.id = newId;
 alert('This recipe has been added as a favorite!');
 });

 detailWindow.add(favButton);

Working with Local and Remote Data Sources

60

 //let's also add a button to remove from favourites
 var deleteButton = Ti.UI.createButton({
 title: 'Remove favourite',
 color: '#000',
 right: 10,
 top: 10,
 width: Ti.UI.SIZE,
 height: Ti.UI.SIZE
 });

 deleteButton.addEventListener('click', function(e) {
 db.deleteFavorite(data.title);
 console.log('Deleted ' + db.database.rowsAffected + '
 favorite records. (id ' + data.id + ')');
 alert('This recipe has been removed from favorites!');

 });

 detailWindow.add(deleteButton);

 //finally, add the full description so we can read the
 //whole recipe

 var lblDescription = Ti.UI.createWebView({
 left: 10,
 top: 60,
 width: 300,
 height: Ti.UI.FILL,
 color: '#000',
 html: data.description
 });

 detailWindow.add(lblDescription);

 //open the detail window
 win.tab.open(detailWindow);
 });

How it works...
Firstly, we create functions that'll accept the parameters to insert a favorite record, create a SQL
statement, and then execute that SQL query statement against our SQLite database. This is
just a basic SQL query. However, take note that, just as you would with a desktop application or
website, any input parameters should be escaped properly to avoid SQL injection! In our recipe,
we used a simple mechanism to do this—replacing any occurrences of the apostrophe character
with a double apostrophe.

Chapter 2

61

The second half of our code defines a new Window and adds to it a couple of buttons and
a label for displaying the full text of our recipe. You should refer to Chapter 1: Building Apps
Using Native UI Components for more details about opening Windows and adding and
customizing UI components in them.

There's more…
Android users can always press the back button on their device to return to the app after
the browser is launched, but it's worth noting that iOS users have to switch back to the
application manually.

The following screenshots show the detail view window for our recipe before and after we
insert a favorite record into the SQLite database table:

Working with Local and Remote Data Sources

62

Retrieving data from a SQLite database
The ability to create a table and insert data into it is not of much use if we don't know how to
retrieve that data and present it in a useful way to the user! We'll now introduce the concept
of resultSet (or recordSet, if you prefer) in SQLite and see how to retrieve data via this
resultSet object, which can be collected and returned in an array format suitable for use
within a TableView.

How to do it...
In your database.js file, add the following function under the db.deleteFavorite function:

db.getFavorites = function() {
 var sql = "SELECT * FROM favorites ORDER BY title ASC";

 var results = [];
 var resultSet = db.database.execute(sql);

 while (resultSet.isValidRow()) {
 results.push({
 id: resultSet.fieldByName('id'),
 title: resultSet.fieldByName('title'),
 data: {
 title: resultSet.fieldByName('title'),
 description: resultSet.fieldByName('description'),
 link: resultSet.fieldByName('link'),
color: "#000", // sets the title color for Android
 height: 40 // sets the row height for Android
 }
 //iterates to the next record
 resultSet.next();
 }

 //you must close the resultset
 resultSet.close();	
 //finally, return our array of records!
 return results;
}

Chapter 2

63

Now, open the favorites.js file for the first time, and replace its contents with the following
code. Much of this code should be pretty familiar to you by now, including defining and adding
TableView to your Window, plus requiring the database.js file as a CommonJS module
called db:

var db = require('database');

//create an instance of a window
module.exports = (function() {

 var win = Ti.UI.createWindow({
 title : 'Favorites',
 backgroundColor : "#fff"
 });

 var tblFavorites = Ti.UI.createTableView();

 win.add(tblFavorites);

 function loadFavorites() {
 data = [];
 //set our data object to empty
 data = db.getFavorites();
 tblFavorites.data = data;
 }

 //the focus event listener will ensure that the list
 //is refreshed whenever the tab is changed
 win.addEventListener('focus', loadFavorites);

 return win;

})();

How it works...
What we are doing in the first block of code is actually just an extension of our previous recipe,
but instead of creating or removing records, we are selecting them in a database recordset
called resultSet. Then we loop through this resultSet object, adding the data that we
require from each record to our results array.

The results array can then be added to our TableView's data property just like any other
data source, such as the one you obtained at the start of this chapter from an external XML
feed. One thing to note is that you must always iterate to the new record in resultSet using
resultSet.next(), and, when finished, always close resultSet using resultSet.
close(). Failure to do either of these actions can cause your application to record invalid
data, leak memory badly, and, in the worst case scenario, fatally crash!

Working with Local and Remote Data Sources

64

An important difference between the favorites screen and the recipe screen is that we do not
explicitly create custom TableViewRow objects as we did before. Instead, we just create an
array and populate the TableView.data property directly, because we've specified a title
property, which is used automatically as the default text in the row. Therefore, it's really easy
to create a simple table!

The preceding screenshot shows the TableView in our Favorites tab, displaying the records
that we have added as favorites into our local SQLite database.

Creating a "Pull to Refresh" mechanism
in iOS

What if you want the user to be able to refresh the feed data in your table? You could create a
regular button, or possibly check for new data after arbitrary time intervals. Alternatively, you
can implement a cool "pull and refresh" mechanism, which has become the de facto standard
refresh method in iOS.

In this recipe for our recipe finder app, we'll implement this very type of refresh mechanism
for our recipes' feed using the built-in, native refresh control.

Chapter 2

65

How to do it...
Open your recipes.js file and type the following under the creation of tblRecipes:

if (Ti.Platform.name === "iPhone OS") {
 var p2r = Ti.UI.createRefreshControl({
 tintColor: '#000'
 });

 tblRecipes.refreshControl = p2r;

 p2r.addEventListener('refreshstart', function(e) {

 refresh(function() {
 p2r.endRefreshing();
 });

 });
} else if (Ti.Platform.name === "android") {
 win.addEventListener("focus", refresh);
 }

Next, we need to modify the refresh function to support a callback that will run when the
refresh is completed. Change the function definition to this:

function refresh(callback) {

Finally, add the following code before the closing of the function and after you set the table data:

if (typeof callback === 'function'){
 callback();
 }

Now launch the app and pull the recipe table down. You'll see the refresh spinner working,
and the table will refresh!

How it works...
What we're doing here is using the built-in iOS refresh control and attach this to a table,
and then telling the control what to do when it's pulled. We made our job easier by creating
a refresh function, which can be passed to a callback function. So, when the refresh
method is called, it refreshes the table and then calls the callback function, which in this
case tells the refresh control to hide.

Working with Local and Remote Data Sources

66

The last part of our code block checks for Android, intercepts the focus event of the window
(which fires whenever the window is shown), and then calls the refresh function.

67

3
Integrating Maps

and GPS

In this chapter, we will cover the following recipes:

ff Adding a MapView to your application

ff Getting your current position using GeoLocation

ff Converting addresses into latitude and longitude locations

ff Adding annotations to your MapView

ff Customizing annotations and adding events to your MapView

ff Drawing routes on your MapView

ff Monitoring your heading using the device compass

Introduction
Applications that utilize maps and location-based technology are second only to games and
entertainment in sheer numbers of users and downloads on the iTunes store. This popularity
with consumers is no surprise, considering the multitude of uses we have found for them so
far. From apps that help us navigate by car and on foot, to being able to find a coffee shop
or a restaurant close by, the uses of this technology are truly only just being explored.

The Titanium Maps module exposes the building blocks of this technology for us through a tight
integration of Apple Maps on iOS and Google Maps on Android, alongside GPS services on both
platforms. Built-in geolocation, reverse geolocation, and point-to-point routing are all accessible
through the Titanium Maps native module. With these tools at your disposal, you can build
anything from a store location finder and location tracking to augmented reality applications.

Integrating Maps and GPS

68

Throughout the course of this chapter, we will introduce all of these core mapping concepts
and use them to put together an exercise tracker app that will identify our location at certain
points and provide us with feedback on how far we have traveled.

You should be familiar with the basics of Titanium, including creating UI objects and using
Appcelerator Studio. Additionally, it would be useful to have a basic understanding of how
latitude and longitude positioning works, which is the standardized method of calculating
the position of a person or an object anywhere on earth.

Adding a MapView to your application
Maps have become ubiquitous across all levels of technology; we now have real-time maps
everywhere, from our computers to our cars, the Web, and of course mobile devices. If you're
working on iOS devices, the built-in mapping component is Apple Maps; for Android, it's
Google Maps. Thankfully, Titanium provides a single native module that works seamlessly
with both platforms. In our first recipe in this chapter, we'll be implementing a MapView using
the Titanium Maps native module, and providing it with regional coordinates in the form of
longitude and latitude values.

Getting ready
To prepare for this recipe, open up Appcelerator Studio and log in if you have not already
done so. If you need to register a new account, you can do so for free, directly from within
the application. Once you are logged in, click on New Project and select Classic. The details
window for creating a new project will appear. Enter Exercise Tracker as the name of
the app, and fill in the rest of the details with your own information.

Pay attention to the app identifier, which is normally written in backwards
domain notation (that is, com.packtpub.exercisetracker). This
identifier cannot be changed easily once the project is created, and you
will need to match it exactly when you will create provisioning profiles to
distribute your apps later on.

The complete source code for this chapter can be found in the /Chapter 3 / Exercise
Tracker folder.

Chapter 3

69

How to do it...
Now that our project has been created using Appcelerator Studio, let's get down to business!

In order to use the Maps module, open the TiApp.xml file in Studio, and on the right, click
on the + sign in the Modules section. Find and click on ti.map. Then, click on OK and save
the changes to the TiApp.xml file.

Open the app.js file in your editor and remove all the existing code. After you have done that,
type the following and then hit Save:

var tiMap = require('ti.map');

//create the window
var win1 = Ti.UI.createWindow({
 title: 'Exercise Tracker',
 backgroundColor: '#000'
});

//create our mapview
var mapview = tiMap.createView({
 height: 350,
 mapType: tiMap.STANDARD_TYPE,
 region: {
 latitude: 51.50015,
 longitude: -0.12623,
 latitudeDelta: 0.5,
 longitudeDelta: 0.5
 },
 animate: true,
 regionFit: true,
 userLocation: true
});

//add the map to the window
win1.add(mapview);

//finally, open the window
win1.open();

Integrating Maps and GPS

70

Try running the emulator now for either Android or iPhone. You should see a map appear
in the middle of the screen, and after a few seconds, it should center on London, England,
as shown in the following screenshot. You may also receive a request at this point from the
simulator/emulator asking whether it can use your location. If this appears on your screen,
simply select Yes.

How it works…
Most of this code should be pretty familiar to you by now; we created a Window object and
added another object of the MapView type to it, before opening it via the win1.open()
method. MapView itself has a number of new properties that are relevant and significant
only for it. These include the following:

ff region: This property accepts an object consisting of properties that contain the
latitude and longitude points that we wish to center the map on, as well as latitude
and longitude delta values. The delta values indicate the zoom level of the map
according to its centered location.

Chapter 3

71

ff userLocation: This boolean value will turn on or off the blue dot indicator (an
arrow on Android devices) that indicates where you are in relation to MapView. It's
important to note that this will probably not function in the simulator due to its
inability to properly ascertain your current position.

ff animate: This boolean value will turn zooming and movement animation on or off
in MapView. It is useful for targeting older devices with low processing power and/or
low bandwidth.

ff regionFit: This is a boolean value that indicates whether to ensure that the
selected region fits the view dimensions given.

There's more...
After adding the MapView to our application, let's look at how we can make changes to the
MapView's style.

Changing your MapView's style
There are actually a number of different MapView types that you can add to your application.
If you defined the map module under the tiMap variable as per the preceding code, your
types will be referenced as follows:

ff tiMap.NORMAL_TYPE

ff tiMap.SATELLITE_TYPE

ff tiMap.HYBRID_TYPE

ff tiMap.TERRAIN_TYPE (Android only)

Getting your current position using
GeoLocation

Our map may be working, but it is currently hardcoded to appear above London, England, and
not all of us live and work in that big city. One of the great things about mapping technology
is that we can determine our location from anywhere in the world via GPS satellites, Wi-Fi
networks, and cellphone towers. This allows you to put maps into context, and lets you issue
data to your user that is targeted to their physical location.

In order to get our current location, we need to use the Ti.Geolocation namespace, which
contains a method called getCurrentPosition. The next recipe will explain how to use this
namespace to adjust the bounds of the MapView to your current location.

The complete source code for this recipe can be found in the /Chapter 3/Recipe 2 folder.

Integrating Maps and GPS

72

How to do it...
Add in the following code after you have added your MapView component to the window:

//apple now requires this parameter so it can inform the user //of why
you are accessing their location data

Ti.Geolocation.getCurrentPosition(function(e)
{
 if (e.error)
 {
 //if mapping location doesn't work, show an alert
 alert('Sorry, but it seems geo location
 is not available on your device!');
 return;
 }

 //get the properties from Ti.GeoLocation
 var longitude = e.coords.longitude;
 var latitude = e.coords.latitude;
 var altitude = e.coords.altitude;
 var heading = e.coords.heading;
 var accuracy = e.coords.accuracy;
 var speed = e.coords.speed;
 var timestamp = e.coords.timestamp;
 var altitudeAccuracy = e.coords.altitudeAccuracy;

 //apply the lat and lon properties to our mapview
 mapview.region = {latitude: latitude,
 longitude: longitude,
 latitudeDelta:0.5,
 longitudeDelta:0.5
 };

});

Run your app in the simulator and you should have a screen appear that looks just like
the following:

Note that on the simulator, unlike a real device, you can change your location
by selecting the Debug | Location menu and setting it to a longitude and
latitude of your choice. You can also select from some predefined location
types, such as Freeway drive and City Run. These are useful for testing code
that tracks a changing location.

Chapter 3

73

How it works…
Getting our current position is simply a matter of calling the getCurrentPosition method
of the Ti.Geolocation namespace and capturing the properties returned when this event
fires. All of the information that we need is then accessible via the coords property of the
event object. In the preceding example source code, we set a number of these properties to
variables, some of which we will use in our Exercise Tracker application later on. Finally, we
took the latitude and longitude properties from the coords object and reset the MapView's
region according to these new values.

Integrating Maps and GPS

74

Here's an important note for iOS applications: as of iOS 8, you need to add the following to
your TiApp.xml file:

<ios>
 <plist>
 <dict>
<key>NSLocationWhenInUseUsageDescription</key>
 <string>To obtain user location for tracking
 distance travelled</string>
 </dict>
 </plist>
 </ios>

This will tell the user why you are using location services, and it is now a requirement.

Converting addresses to latitude and
longitude locations

Getting our location is all well and good when it's done for us, but humans don't think of
places in terms of latitude and longitude values. We use good old addresses to define
points on a map. To convert addresses to decimal latitude and longitude values, we can
again use the Ti.Geolocation namespace, and specifically a method within it called
forwardGeocoder. Titanium has built-in methods for geocoding that utilize and essentially
black box the services provided by the Apple and Google Maps APIs. The Geocoding API
processes the conversion of addresses (such as 1600, Amphitheatre Parkway, Mountain View,
CA) into geographic coordinates (such as latitude 37.423021 and longitude 122.083739),
which you can use to place markers or position the map. This API provides a direct way to
access a geocoder via an HTTP request.

How to do it...
Firstly, we need to create some input fields so that the user can provide us with a starting
and an ending address. Let's create a new View and add it to the top of our Window above
the MapView. We'll also need to add a button to fire the forwardGeocoder conversion.
The background gradient image for the View is available within the images directory of
the source code. Add the following code at the bottom of your app.js file, just above the
win1.open(); line:

//create the search view
var searchView = Ti.UI.createView({
 top: 0,
 left: 0,
 width: 320,
 height: 110,

Chapter 3

75

 backgroundImage: 'images/gradient.png'
});

//style it up a bit
var bottomBorder = Ti.UI.createView({
 height: 1,
 width: 320,
 left: 0,
 bottom: 0,
 backgroundColor: '#000'
});
searchView.add(bottomBorder);

//add a search box for starting location
var txtStartLocation = Ti.UI.createTextField({
 backgroundColor: '#fff',
 left: 10,
 top: 20,
 width: 200,
 height: 30,
 borderColor: '#000',
 borderRadius: 5,
 hintText: 'Current Location',
 paddingLeft: 10
});
searchView.add(txtStartLocation);

//add a search box for starting location
var txtEndLocation = Ti.UI.createTextField({
 backgroundColor: '#fff',
 left: 10,
 top: 60,
 width: 200,
 height: 30,
 borderColor: '#000',
 borderRadius: 5,
 hintText: 'End Location',
 paddingLeft: 10
});
searchView.add(txtEndLocation);

//add the button with an empty click event, this will fire off
//our forwardGeocoder
var btnSearch = Ti.UI.createButton({

Integrating Maps and GPS

76

 width: 80,
 height: 30,
 top: 60,
 right: 10,
 color: '#fff',
 title: 'Search',
 borderRadius: 3
});

//btnsearch event listener fires on button tap
btnSearch.addEventListener('click',function(e){

});
searchView.add(btnSearch);

Now that we have some input fields, let's use the search button to capture those addresses
and convert them into location values that we can use to define the region of our MapView.
Put the next block of code into your button's click event handler:

//btnsearch event listener fires on button tap
btnSearch.addEventListener('click',function(e){

 //check for a start address
 if(txtStartLocation.value !== '')
 {
 //works out the start co-ords
 Ti.Geolocation.forwardGeocoder(txtStartLocation.value, function(e)
{
 //we'll set our map view to this initial region so it
 //appears on screen
 mapview.region = {latitude: e.latitude,
 longitude: e.longitude,
 latitudeDelta:0.5,
 longitudeDelta:0.5
 };

 console.log('Start location co-ordinates are: ' +
 e.latitude + ' lat, ' + e.longitude +
 'lon');
 });
 }
 else
 {
 alert('You must provide a start address!');
 }

Chapter 3

77

 //check for an end address
 if(txtEndLocation.value !== '')
 {

 //do the same and work out the end co-ords
 Ti.Geolocation.forwardGeocoder(txtEndLocation.value,
 function(e){
console.log('End location co-ordinates are: ' + e.latitude + ' lat, '
+ e.longitude + ' lon');
 });
 }
 else
 {
 alert('You must provide an end address!');
 }

});

searchView.add(btnSearch);
win1.add(searchView);

Run your app in the emulator, provide a start address and an end address (for example,
Boston and Cambridge), and hit search. After a few seconds, you should get the geolocation
values of these addresses output to the console, and MapView should reorient itself to the
region surrounding your starting address. The following screenshot shows you the start and
end addresses converted to latitude and longitude coordinates and output to the Appcelerator
Studio console:

How it works…
The first section of code in this recipe is simple. We create a couple of TextFields for the
start and end addresses and capture the click event of a Button component, wherein we
pass those address values to our Ti.Geolocation.forwardGeocoder method.

The forward geolocation task is actually performed against the Maps servers. Titanium has
wrapped this into one simple method for you to call, instead of having to manually carry out
a properly formatted GET post against the Maps servers and parse the returned CSV, JSON,
or XML data.

If you prefer to use Google to perform geocoding, you can still use Google Maps geocoding
service by using an HttpClient and reading the instructions on Google's own website at
https://developers.google.com/maps/documentation/geocoding/intro.

https://developers.google.com/maps/documentation/geocoding/intro

Integrating Maps and GPS

78

Adding annotations to your MapView
The ability to find locations on a map is extremely useful, but what the user needs is some
kind of visual representation of that location on the screen. This is where annotations come
in. In this recipe, we will create annotation pins for both the start and end addresses, using
the latitude and longitude values created by forwardGeocoder.

As usual, the complete source code for this recipe can be found in the /Chapter 3/Recipe
4 folder.

How to do it...
Within the search button function method that we called in the previous recipe, we replace
the forwardGeocoder method with the following code to create an annotation for the
start location:

//works out the start co-ords
Ti.Geolocation.forwardGeocoder(txtStartLocation.value, function(e)
{
 //we'll set our map view to this initial region so it appears
 //on screen
 mapview.region = {latitude: e.latitude,
 longitude: e.longitude,
 latitudeDelta: 0.5,
 longitudeDelta: 0.5
 };

 console.log('Start location co-ordinates are: ' +
 e.latitude + ' lat, ' + e.longitude + ' lon');

 //add an annotation to the mapview for the start location
 var annotation = tiMap.createAnnotation({
 latitude: e.latitude,
 longitude: e.longitude,
 title: 'Start location',
 subtitle: txtStartLocation.value,
 animate:true,
 id: 1,
 pincolor: tiMap.ANNOTATION_GREEN
 });
 //add the annotation pin to the mapview
 mapview.addAnnotation(annotation);

});

Chapter 3

79

Once you have added this code to the forwardGeocoder method for the start location,
do exactly the same thing for your end location, except giving the end location a 'myid'
property value of 2. Also change the title to End Location and the subtitle to use
txtEndLocation.value. We will use these custom ID values later on while capturing
events from our annotations; they will allow us to determine which annotation pin was tapped.
Also, for your second annotation, give it a pincolor property of tiMap.ANNOTATION_RED, as
this well help distinguish the two pins on the map.

Load up your application in the simulator and give it start and end locations. Then tap Search.
You should end up with a couple of pins on your MapView, as shown in this example:

Integrating Maps and GPS

80

How it works...
Within our search button function and the forwardGeocoder method that we called in
the previous recipe is the instantiation of a new object type of annotation, using tiMap.
createAnnotation(). This object represents a pin icon that is dropped onto the map
to identify a specific location, and has a number of interesting properties. Apart from the
standard longitude and latitude values, it can also accept a title and a secondary title, with
the title being displayed more prominently at the top of the annotation and the secondary
title below it. You should also give your annotations an ID property (we have used Id in this
example) to make it easier to identify them when you are adding events to your MapView.
This is further explained in the next recipe.

Customizing annotations and adding events
to your MapView

Annotations can also be customized to give the user a better indication of what your location
symbolizes. For example, if you are mapping the restaurants in a particular area, you may
provide each annotation with an icon that symbolizes the type of restaurant it is—it can be a
pizza slice for Italian food, a pint for pub food, or a hamburger for a fast food chain.

In this recipe, we will add a start button to the first pin and a stop button to the second,
which we will use to control our exercise timer later on.

How to do it...
After your annotation is declared but before it is added to your mapView object, type in the
following code to create a custom leftButton and a custom rightButton. You should
do the same for both the start location pin and the end location pin:

//add an image to the left of the annotation
annotation.leftButton = 'images/location.png';

//add the start button
annotation.rightButton = 'images/start.png';

mapview.addAnnotation(annotation);

Now let's create the event listener for the mapview object. This function will execute when a
user taps on any annotation on the map. You should place this code near the bottom of your
JavaScript, just before you add the mapView to your Window:

//create the event listener for when annotations
//are tapped on the map
mapview.addEventListener('click', function(e){

Chapter 3

81

 console.log('Annotation id that was tapped: ' + e.annotation.id);
 console.log('Annotation button source that was tapped: ' +
e.clicksource);
});

How it works...
In this recipe, all that we do first is point some new properties at each annotation. Our
leftButton button is populated by an image representing a location, and the right is an icon
representing a start/stop command.

The event listener for mapview works slightly differently from other event listeners, in the sense
that you have to capture an annotation click from the mapview parent object and then work out
which annotation was tapped by means of a custom ID. In this case, we used the id property
to determine which annotation was the start location and which was the end location; the start
location was set to an ID of 1, while the end location was simply set to an ID of 2.

Additionally, you may wish to perform different actions based on whether the right or the left
button on the annotation pin was tapped. We can determine this using the event property's
e.source property. A comparison with a string of either 'leftButton'leftButton' or
'rightButton'rightButton' will let you know which button was tapped, and you can
program some functions in your app accordingly. Here is what an annotation looks like in the
simulator, showing a left and right button:

Integrating Maps and GPS

82

Drawing routes on your MapView
In order to track our movements and draw a route on the map, we need to create an array
of points, each with its own latitude and longitude values. The MapView will take in this
array of points as a property called route, and draw a series of lines to provide a visual
representation of the route for the user.

In this recipe, we will create a timer that records our location every minute and adds it to the
points array. When each new point is recorded, we will access the Google Directions API to
determine the distance and add it to our overall tally of how far we have traveled.

Note that this recipe has been designed to work on iOS devices and has not
been tested on Android. To use this code on Android, you will need to obtain a
Google Maps key and configure it in the TiApp.xml file.

How to do it...
Add the following code after the mapView is defined:

//create the event listener for when annotations
//are tapped on the map
mapview.addEventListener('click', function(e){
 console.log('Annotation id that was tapped: ' + e.annotation.id);
 console.log('Annotation button source that was tapped: ' +
e.clicksource);
 console.log('Annotation button title that was tapped: ' +
e.title);

 if(timerStarted === false && (e.clicksource === 'rightButton' &&
e.title === 'Start location'))
 {
 console.log('Timer will start...');
 points = [];

 //set our first point
 Ti.Geolocation.forwardGeocoder(txtStartLocation.value,
 function(e){
 points.push({latitude: e.latitude,
 longitude: e.longitude
 });
 //add route to our mapview object
 mapview.addRoute(tiMap.createRoute({
 points: points,

Chapter 3

83

 color: "blue",
 width: 2
 }));

 timerStarted = true;

 //start our timer and refresh it every minute
 //1 minute = 60,000 milliseconds
 intTimer = setInterval(recordCurrentLocation,
 60000);
 });

 }
 else
 {
 //stop any running timer
 if(timerStarted === true &&

 (e.clicksource === 'rightButton'

 && e.title === 'End location'))
 {
 clearInterval(intTimer);
 timerStarted = false;
 alert('You travelled ' + distanceTraveled

 + ' meters!');
 }
 }
});

Now we need to create some variables that have to be globally accessible by this JavaScript
file. Add the following code at the very top of your app.js file:

//create the variables
var timerStarted = false;
var intTimer = 0;

//this array will hold all the latitude and
//longitude points in our route
var points = [];

var route = {};

//this will hold the distance traveled
var distanceTraveled = 0;

Integrating Maps and GPS

84

Next, we need to create the function for obtaining the user's new current location and
determining how far it is from the previous location. Create this new function above the
click event for the mapView component:

//this function records the current location and
//calculates distance between it and the last location,
//adding that to our overall distance count
function recordCurrentLocation()
{
 console.log('getting next position...');

 //get the current position
 Ti.Geolocation.getCurrentPosition(function(e) {
 var currLongitude = e.coords.longitude;
 var currLatitude = e.coords.latitude;
 points.push({latitude: currLatitude, longitude:
currLongitude});

 //add route to our mapview object
 mapview.addRoute(tiMap.createRoute({
 points: points,
 color: "blue",
 width: 2
 }));
 });

 if (points.length > 1) {
 //ask google for the distance between this point
 //and the previous point in the points[] array
 var url = 'http://maps.googleapis.com/maps/api/directions/
json?travelMode=Wa
lking&origin=' + points[points.length-2].latitude + ',' +
points[points.length-2].longitude + '&destination=' +
points[points.length-1].latitude + ',' + points[points.length-
1].longitude + '&sensor=false';
 var req = Ti.Network.createHTTPClient();
 req.open('GET', url);
 req.setRequestHeader('Content-Type', 'application/json;
 charset=utf-8');
 req.onreadystate = function(){};
 req.onload = function()
 {

Chapter 3

85

 //record the distance values
 console.log(req.responseText);
 var data = JSON.parse(req.responseText);
 console.log("distance.text " +
 data.routes[0].legs[0].distance.text);
 console.log("distance.value " +
 data.routes[0].legs[0].distance.value);
 distanceTraveled = distanceTraveled +
 data.routes[0].legs[0].distance.value;
 };
 req.send();
}
}

How it works...
There are a number of things happening in this recipe, so let's break them down logically
into separate parts. Firstly, we obtain the user's current location again on the start button's
click event, and add it as the first point in our points array. In order for our mapview
component to use the array of point locations, we have to create a route object. This route
object contains the array of points plus visual information such as the route's line color and
thickness.

From here on, we create a timer using setInterval(). This timer will start only when both
the timerStarted variable is set to false, and when we are able to determine that the
button tapped was indeed the right start button on one of our annotations.

Our timer is set to execute every 60 seconds, or (as written in the format required by
the code) 60,000 milliseconds. This means that every minute, the function called
recordCurrentLocation() is going to execute. This function does all the processing to
determine our current location again, adds it to our points array as the next item, and then
performs an HTTP call to the Google APIs to ask for a distance calculation between our newest
point and the point location we were previously at. This new distance is added to our total
distance variable, called distanceTraveled.

Integrating Maps and GPS

86

Finally, whenever the user taps the stop button on the end annotation, the timer is stopped,
and the user is presented with an alertDialog showing the total value of how far they
have traveled in meters. The following two screenshots show the route being drawn from our
start location to our end location, and then the alert with the distance traveled when the stop
button is tapped:

Monitoring your heading using the device
compass

This time , in our last recipe for this chapter on Maps and GPS, we will be using the inbuilt
device compass to determine the heading. We'll present this heading using an image of an
arrow to represent the direction visually.

Note that this recipe will not work on older iPhone devices, such as iPhone
3G; they lack the compass. You will need to use an actual device to test this
recipe, as the emulator will not be able to get your current heading either.

The complete source code for this recipe can be found in the /Chapter 3/Recipe 7 folder.

Chapter 3

87

How to do it...
Add the following code to your app.js file, just before you perform the win1.open()
method call at the end of the file:

//this image will appear over the map and indicate our
//current compass heading
var imageCompassArrow = Ti.UI.createImageView({
 image: 'arrow.png',
 width: 50,
 height: 50,
 right: 25,
 top: 5
});
win1.add(imageCompassArrow);

//how to monitor your heading using the compass
if(Ti.Geolocation.hasCompass)
{
 //this is the degree of angle change our heading
 //events don't fire unless this value changes
 Ti.Geolocation.headingFilter = 90;

 //this event fires only once to get our initial
 //heading and to set our compass "arrow" on screen
 Ti.Geolocation.getCurrentHeading(function(e) {
 if (e.error) {
 return;
 }
 var x = e.heading.x;
 var y = e.heading.y;
 var z = e.heading.z;
 var magneticHeading = e.heading.magneticHeading;
 accuracy = e.heading.accuracy;
 var trueHeading = e.heading.trueHeading;
 timestamp = e.heading.timestamp;

 var rotateArrow = Ti.UI.create2DMatrix();
 var angle = 360 - magneticHeading;
 rotateArrow = rotateArrow.rotate(angle);
 imageCompassArrow.transform = rotateArrow;
 });

Integrating Maps and GPS

88

 //this event will fire repeatedly depending on the change
 //in angle of our heading filter
 Ti.Geolocation.addEventListener('heading',function(e) {
 if (e.error) {
 return;
 }
 var x = e.heading.x;
 var y = e.heading.y;
 var z = e.heading.z;
 var magneticHeading = e.heading.magneticHeading;
 accuracy = e.heading.accuracy;
 var trueHeading = e.heading.trueHeading;
 timestamp = e.heading.timestamp;

 var rotateArrow = Ti.UI.create2DMatrix();
 var angle = 360 - magneticHeading;
 rotateArrow = rotateArrow.rotate(angle);
 imageCompassArrow.transform = rotateArrow;
 });
 }
else
{
 //you can uncomment this to test rotation when using the
 emulator
 //var rotateArrow = Ti.UI.create2DMatrix();
 //var angle = 45;
 //rotateArrow = rotateArrow.rotate(angle);
 //imageCompassArrow.transform = rotateArrow;
}

How it works...
Firstly, we use a simple arrow image that initially faces upwards (north) and add it to an
imageview, which in turn is added to our Window. The heading source code for this recipe
performs two similar tasks; one gets our initial heading and the second fires on set intervals
to get our current heading. When the heading is obtained for either the current position or the
new position, we use the magneticHeading property to determine the angle (direction) that
we are facing, and use a simple transformation to rotate the arrow in that direction.

Don't worry if you don't understand what a 2D matrix is or how the
transformation performs the rotation of our image! We have covered
transformations, rotations, and animations in Chapter 7, Creating
Animations and Transformations and Understanding Drag and Drop.

89

4
Enhancing Your Apps

with Audio, Video,
and Cameras

In this chapter, we will cover these recipes:

ff Choosing your capture device using an OptionDialog modal

ff Capturing photos from the camera

ff Choosing existing photos from the photo library

ff Displaying photos using ScrollableView

ff Saving your captured photo in the device filesystem

ff Capturing and playing audio via the audio recorder

ff Capturing video via the video recorder

ff Playing video files from the filesystem

ff Safely deleting saved files from the filesystem

Introduction
While it may be hard to believe, snapping photographs and sharing them wirelessly using
a phone first happened only in 1997, and it didn't become popular until around 2004.
By 2010, almost all phones contained a digital camera and many mid-range to high-end
devices also sported audio and video camcorder capabilities. Most iPhone and Android
models now have these capabilities and more, and they have opened new pathways for
entrepreneurial developers.

Enhancing Your Apps with Audio, Video, and Cameras

90

Titanium contains APIs that let you access all the phone interfaces required to take photos or
videos with a built-in camera, record audio, and scroll through the device's saved image and
video galleries.

Throughout this chapter, we will introduce all of these concepts and use them to put together
a basic Holiday Memories app that will allow our users to capture photographs, videos, and
audio from their device. We save those files to the local file storage and read them back.

You should already be familiar with the basics of Titanium, including creating UI objects and
using Appcelerator Studio. Additionally, to test the camera functionality, you are going to
require either an iPhone or an Android device capable of recording both photographs and
videos. An iPhone 4 model or later will suffice, and all Android phones running 4.0 or higher
should be okay.

Choosing your capture device using an
OptionDialog modal
OptionDialog is a modal-only component that allows you to show one or more options to
a user, usually along with a Cancel option, which closes the dialog. We are going to create
this component and use it to present the user with the option of choosing an image from
the camera or the device's photo library.

If you are intending to follow the entire chapter and build the Holiday Memories app, then
pay careful attention to the Getting Ready section for this recipe, as it will guide you through
setting up the project.

Getting ready
To prepare for this recipe, open Appcelerator Studio and log in if you have not already
done so. If you need to register a new account, you can do it for free directly from within
the application. Once you are logged in, click on New Project, and the details window for
creating a new project will appear. Enter Holiday Memories as the name of the app, and
fill in the rest of the details with your own information.

Pay attention to the app identifier, which is written normally in backwards domain notation
(that is, com.packtpub.holidaymemories). This identifier cannot be changed easily after
the project is created, and you will need to match it exactly while creating provisioning profiles
to distribute your apps later on. You can obtain all the images used in this recipe, and indeed
the entire chapter. The complete source code for this chapter can be found in the /Chapter
4/Holiday Memories folder.

Chapter 4

91

How to do it...
Now that our project has been created using Appcelerator Studio, let's get down to business!
Open the app.js file and remove all the existing code. After you have done that, type the
following and then click on Save:

//this sets the background color of the master UIView (when there are
no
// windows/tab groups on it)
Ti.UI.setBackgroundColor('#fff');

//create tab group
var tabGroup = Ti.UI.createTabGroup();

//
//create base UI tab and root window
//
var win1 = Ti.UI.createWindow({
 title : 'Photos'

});
var tab1 = Ti.UI.createTab({
 icon : 'images/photos.png',
 title : 'Photos',
 window : win1
});

//our dialog with the options of where to get an
//image from
var dialog = Ti.UI.createOptionDialog({
 title : 'Choose an image source...',
 options : ['Camera', 'Photo Gallery', 'Cancel'],
 cancel : 2
});

//add event listener
dialog.addEventListener('click', function(e) {
 Console.log('You selected ' + e.index);
});

//choose a photo button
var btnGetPhoto = Ti.UI.createButton({
 title : 'Choose'
});

Enhancing Your Apps with Audio, Video, and Cameras

92

btnGetPhoto.addEventListener('click', function(e) {
 dialog.show();
});

//set the right nav button to our btnGetPhoto object
//note that we're checking the osname and changing the
//button location depending on if it's iphone/android
//this is explained further on in the "Platform Differences"
chapter
if (Ti.Platform.osname == 'iphone') {
 win1.rightNavButton = btnGetPhoto;
} else {
 //add it to the main window because android does
 //not have 'right nav button'
 btnGetPhoto.right = 20;
 btnGetPhoto.top = 20;
 win1.add(btnGetPhoto);
}

//
//create tab and root window
//
var win2 = Ti.UI.createWindow({
 title : 'Video'
});
var tab2 = Ti.UI.createTab({
 icon : 'images/movies.png',
 title : 'Video',
 window : win2
});

//
// create tab and root window
//
var win3 = Ti.UI.createWindow({
 title : 'Audio'

Chapter 4

93

});
var tab3 = Ti.UI.createTab({
 icon : 'images/audio.png',
 title : 'Audio',
 window : win3
});

//
// add tabs
//
tabGroup.addTab(tab1);
tabGroup.addTab(tab2);
tabGroup.addTab(tab3);

// open tab group
tabGroup.open();

How it works…
The code creates our navigation view with tabs and windows, all of which have been covered
in Chapter 1, Building Apps Using Native UI Components and Chapter 2, Working with Local
and Remote Data Sources. We' also add to win1 by adding some navigation buttons and
functionality to display an OptionDialog for the photo source.

OptionDialog itself is created using the Ti.UI.createOptionDialog() method and
only requires a few simple parameters. The title parameter, in this case, appears at the
top of your button options and is there just to give your user a brief message about what
their chosen option will be used for. In our case, we're simply notifying them that we'll be
using their chosen option to launch the appropriate image capture application.

The options array is an important property here, and it contains all the button selections
that you wish to present to the user. Note that we have also included a cancel item in
our array, and there is a corresponding cancel property with the same index as part of
createOptionDialog(), which will draw the button style for cancel slightly differently
when our OptionDialog is presented on the screen.

Enhancing Your Apps with Audio, Video, and Cameras

94

Finally, we added an event listener to OptionDialog and output the chosen button
index to the Appcelerator Studio console, using the e.index property. We will use this
flag in our next recipe to launch either the camera or the photo gallery depending on the
user's selection. OptionDialog is shown in the following screenshot, providing the user
with two image source options:

Capturing photos from the camera
To use the device camera, we need to access the Ti.Media namespace, and specifically
the showCamera method. This will display the native operating system interface for taking
photographs, and expose the three events that we need to decide what to do with the capture
image. We will also check whether the user's device is capable of taking camera shots before
we attempt to do all this, as some devices (including iPod Touch and simulators) don't have
this capability.

Note that if you're testing on iOS, this recipe will work only if you use a
physical device! For Android, you should use the Genymotion simulator
(https://www.genymotion.com/) and not the stock Android
emulator. Genymotion is faster, integrates with Appcelerator Studio,
and supports camera emulation.

https://www.genymotion.com/

Chapter 4

95

The complete source code for this recipe can be found in the /Chapter 4/Recipe 2 folder.

How to do it...
We are going to extend the event listener of our OptionDialog using the following code:

//add event listener
dialog.addEventListener('click',function(e)
{
 Console.log('You selected ' + e.index);
 if(e.index == 0)
 {
 //from the camera
 Ti.Media.showCamera({
 success:function(event)
 {
 var image = event.media;

 if(event.mediaType == Ti.Media.MEDIA_TYPE_PHOTO)
 {
 // set image view
 var imgView =
 Ti.UI.createImageView({
 top: 20,
 left: 20,
 width: 280,
 height: 320
 });
 imgView.image = image;
 win1.add(imgView);
 }
 },
 cancel:function()
 {
 //getting image from camera was cancelled
 },
 error:function(error)
 {
 // create alert
 var a = Ti.UI.createAlertDialog({title:'Camera'});

 // set message
 if (error.code == Ti.Media.NO_CAMERA)
 {
 a.setMessage('Device does not have image
 recording capabilities');
 }
 else

Enhancing Your Apps with Audio, Video, and Cameras

96

 {
 a.setMessage('Unexpected error: ' +
 error.code);
 }

 // show alert
 a.show();
 },
 allowImageEditing:true,
 saveToPhotoGallery:false
 });
 }
 else
 {
 //cancel was tapped
 //user opted not to choose a photo
 }
});

Run your app on a physical device, and you should be able to select the camera button from
OptionDialog and take a photograph with your device. This image should then appear in
your temporary ImageView, as shown in the following screenshot:

Chapter 4

97

How it works…
Getting an image from the camera is actually pretty straightforward. Firstly, you'll notice that
we've extended OptionDialog with an if statement, and that if the index property of
our dialog is 0 (the first button), then we launch the camera. We do this via the Ti.Media.
showCamera() method. This fires three events, which we capture here, called success,
error, and cancel. We ignore the cancel event, as there is no processing required if the
user decides to cancel the image capture. In the error event, we are going to display an
AlertDialog that explains that the camera cannot be initiated. This is the dialog that you
will see if you happen to run this code using an emulator.

The majority of our processing takes place in the success event. Firstly, we save the captured
photograph in a new variable called image. Then, we check whether the chosen media is
actually a photograph by comparing its mediaType property. It is at this point that the chosen
media could actually be a video, so we must double-check what it is before we use it, as we
don't know whether the user has taken a photo or a video shot until after it has happened.
Finally, to show that we have actually captured an image with our camera to the user, we
create an ImageView and set its image property to the captured image file, before adding
it to our window.

Choosing existing photos from the photo
library

The process of choosing an image from the photo library on the device is very similar to that
for the camera. We will still be using the Ti.Media namespace. However, this time, we are
going to execute a method called openPhotoLibrary(), which does exactly what its name
suggests. As with the previous recipe, once we have retrieved an image from the photo gallery,
we will display it on the screen for the user using a simple ImageView control.

The complete source code for this recipe can be found in the /Chapter 4/Recipe 3 folder.

How to do it...
We are going to further extend our OptionDialog to now choose an image from the photo
library if the index property of 1 (the second button) is selected. Add the following code into
your dialog's event listener, after the block of code that you just added:

console.log('You selected ' + e.index);
 if(e.index == 1)
 {
 //obtain an image from the gallery
 Ti.Media.openPhotoGallery({

Enhancing Your Apps with Audio, Video, and Cameras

98

 success:function(event)
 {
 var image = event.media;

 // set image view
 Ti.API.debug('Our type was: '+event.mediaType);
 if(event.mediaType == Ti.Media.MEDIA_TYPE_PHOTO)
 {
 var imgView = Ti.UI.createImageView({
 top: 20,
 left: 20,
 width: 280,
 height: 320
 });

 imgView.image = image;
 win1.add(imgView);
 }
 },
 cancel:function()
 {
 //user cancelled the action from within
 //the photo gallery
 }
 });
 }
 else
 {
 //cancel was tapped
 //user opted not to choose a photo
 }

Run your app in the emulator or device, and choose the second option from your dialog.
You may be asked to give permission for Holiday Memories to access the photo library;
say OK. Then, the photo library should appear and allow you to select an image.

How it works…
This recipe follows more or less the same pattern as when we used the camera to obtain
our image. First, we extended the OptionDialog event listener to perform an action when
the button index selected equals 1, which in this case is our Photo Gallery button. Our
openPhotoGallery() method also fires three events: success, error, and cancel.

Chapter 4

99

Just like the previous recipe, the majority of our processing takes place in the success event.
We check whether the chosen media is actually a photograph by comparing its mediaType
property. Finally, we create an ImageView and set its image property to the captured image
file, before adding it to our window.

There's more
Now, let's explore media types and saving images.

Understanding media types
There are two main media types available for you via the mediaType enumeration if you are
capturing photographs or videos via the in-built camera. These are:

ff MEDIA_TYPE_PHOTO

ff MEDIA_TYPE_VIDEO

In addition, there are numerous other sets of more specific mediaTypes in the enumeration,
which include the following. These types are generally only applicable when utilizing the
mediaType property from within the VideoPlayer or AudioPlayer component:

ff MUSIC_MEDIA_TYPE_ALL

ff MUSIC_MEDIA_TYPE_ANY_AUDIO

ff MUSIC_MEDIA_TYPE_AUDIOBOOK

ff MUSIC_MEDIA_TYPE_MUSIC

ff MUSIC_MEDIA_TYPE_PODCAST

ff VIDEO_MEDIA_TYPE_AUDIO

ff VIDEO_MEDIA_TYPE_NONE

ff VIDEO_MEDIA_TYPE_VIDEO

Save to photos
You can run this code in the emulator, but you'll probably notice that there are no images
in the library and there is no obvious way to get them there! Thankfully, this is fairly easy to
overcome. Simply open the web browser and find an image that you want to test by using
Google Images or a similar service. Click and hold on an image in the browser, and you
should see an option called Save to photos. You can then use these images to test your
code in the emulator.

It's also possible to drag an image from your desktop to the simulator or emulator window
in order to add it to the device.

Enhancing Your Apps with Audio, Video, and Cameras

100

Displaying photos using ScrollableView
One of the most common methods of displaying multiple photographs and images in mobile
devices is ScrollableView. This view type allows pictures to be swiped to the left and right,
and is common among many applications, including Facebook mobile. The method of showing
images in this way is reminiscent of flipping through a book or an album, and is very popular
due to the natural feel and simple implementation.

In this recipe, we will implement a ScrollableView object. It will contain any number of
images, which can be chosen from the camera or photo gallery. The complete source code
for this recipe can be found in the /Chapter 4/Recipe 4 folder.

How to do it...
Firstly, let's create our ScrollableView object, which we will call scrollingView, and add
it to our app.js file and the win1 window:

//this is the scroll view the user will use to swipe
//through the selected photos
var scrollingView = Ti.UI.createScrollableView({
 left: 17,
 top: 15,
 width: win1.width - 14,
 height: win1.height - 25,
 views: [],
 currentPage: 0,
 zIndex: 1
});

scrollingView.addEventListener('scroll',function(e){
 Console.log('Current scrollableView page = ' +
 e.source.currentPage);
});

win1.add(scrollingView);

Chapter 4

101

Now we are going to alter the dialog event listener to assign our selected photos to
ScrollableView, instead of the temporary ImageView that we created earlier. Replace all
of the code within and include your if(event.mediaType == Ti.Media.MEDIA_TYPE_
PHOTO) with the following code. Note that you need to do this for both images gathered from
the photo library and those from the device camera:

//output the mediaType to the console log for debugging
Ti.API.debug('Our type was: '+event.mediaType);

if(event.mediaType == Ti.Media.MEDIA_TYPE_PHOTO)
{
 // set image view
 var imgView = Ti.UI.createImageView({
 top: 0,
 left: 0,
 width: 286,
 height: 337,
 image: image
 });

 //add the imageView to our scrollableView object
 scrollingView.addView(imgView);

}

Now, run your app in either the emulator or your device, and select a couple of images one
after the other. You can use a combination of images from the camera or the photo gallery.
Once you have selected at least two images, you should be able to swipe between them
using left-right or right-left motion.

How it works…
ScrollableView is actually just a collection of views that has a number of special events and
properties built into it, as you can probably tell by the empty array value that we have given to
the property called views in the createScrollableView() method. It is necessary to set
this property upon instantiating the ScrollableView object, and it's a good idea to set the
currentPage index property to 0; the index of our first view. We still created an ImageView
as per the previous recipes. This time, however, we did not add that view to our window, but to
our ScrollableView component. We did this by adding a view using the addView() method.
Finally, we also created an event that attaches to ScrollableView, called scroll, and we
output the currentPage property to the Titanium console for debugging and testing.

Enhancing Your Apps with Audio, Video, and Cameras

102

As you can see, ScrollableView is a simple component, but is very useful for photo gallery
applications or any other apps in which you want to display a series of similar views. You could
extend this by adding a blank View object and putting any number of text fields, labels, or
image views you want in each of those blank views—the only limit here is your imagination!
Launch the project in the simulator to see the final ScrollableView in action:

Saving your captured photo to the
device filesystem

Taking pictures is all well and good, but what if we wish to save an image to the filesystem
so that we can retrieve it later? In this recipe, we will do exactly that, and also introduce the
toImage() method, which many of the Titanium controls have built in. This method takes
a flattened image of the entire view that it is called upon and is extremely useful for taking
screenshots or grabbing images of many controls lumped together in a single view. For
example, you can use toImage() to take a screenshot of an ImageView's image property.
This would store that single image in a blob object, which we can save in the filesystem or
perhaps send to a web server using POST. Alternatively, you can use toImage() to create a
new image blob object in exactly the same manner but on a View control that contains many
other controls. This means that you can have a View object containing any number of images,
buttons, and other views, and your toImage()method would simply return you a single, flat
image file representation of the screen—much like taking a screenshot on your desktop.

Chapter 4

103

In this recipe, we are going to use the former technique to save the currently selected image
in the scrolling view to the filesystem.

The complete source code for this recipe can be found in the /Chapter 4/Recipe 5 folder.

How to do it...
Type the following code after your btnGetPhoto object is created. You can replace the
existing code to add the btnGetPhoto object to the navigation bar, as this code repeats
and extends it:

//save a photo to file system button
var btnSaveCurrentPhoto = Ti.UI.createButton({
 title: 'Save Photo',
 zIndex: 2 //this appears over top of other components
});
btnSaveCurrentPhoto.addEventListener('click', function(e){
 var media = scrollingView.toImage();

 //if it doesn't exist, create it create a directory called
 //"photos"
 //and it will hold our saved images
 var newDir = Ti.Filesystem.getFile(Ti.Filesystem.applicationDataDi
rectory,'photos');
 if(!newDir.exists()){
 newDir.createDirectory();
 }

 var fileName = 'photo-' + scrollingView.currentPage.toString()
 + '.png';
 writeFile = Ti.Filesystem.getFile(newDir.nativePath,
 fileName);
 writeFile.write(media);

 alert('You saved a file called ' + fileName + ' to the
 directory ' + newDir.nativePath);

 var _imageFile = Ti.Filesystem.getFile(newDir.nativePath,
 fileName);
 if (!_imageFile.exists()) {
 Console.log('ERROR: The file ' + fileName + ' in the directory
 ' + newDir.nativePath + ' does not exist!');
 }
 else {

Enhancing Your Apps with Audio, Video, and Cameras

104

 Console.log('OKAY!: The file ' + fileName + ' in the directory
 ' + newDir.nativePath + ' does exist!');
 }
});

//set the right nav button to our photo get button
if(Ti.Platform.osname == 'iphone') {
 win1.leftNavButton = btnSaveCurrentPhoto;
 win1.rightNavButton = btnGetPhoto;
}
else
{
 //add it to the main window because android does
 //not have 'right nav button'
 btnGetPhoto.right = 20;
 btnGetPhoto.top = 20;
 win1.add(btnGetPhoto);

 //add it to the main window because android does
 //not have 'left nav button'
 btnSaveCurrentPhoto.left = 20;
 btnSaveCurrentPhoto.top = 20;
 win1.add(btnSaveCurrentPhoto);
}

How it works…
The Ti.FileSystem namespace opens up a range of file manipulation capabilities,
but most importantly, it gives us the basic tools needed to read and write a file to the
application's storage space on the device. In this recipe, we will use the toImage()
method of scrollingView to return a blob of the view's image representation.

We can then get a reference to the directory we wish to store the image file data in. As you
can see in the code, we get a reference to that directory by creating a new variable, like this:
var newDir = Ti.Filesystem.getFile(Ti.Filesystem.applicationDataDirec
tory,'photos');. Then we ensure that the directory exists. If it doesn't exist, we can create
it by calling the createDirectory() method on our newDir object.

Finally, our image data is saved in pretty much the same way. First, we create a variable,
called writeFile in this case, that references our filename within the newDir object
directory we have already created. We can then output the file to the filesystem using the
writeFile's write() method, passing in the image media variable as the file data to save.

Chapter 4

105

Note that if you download the SimPholders tool from http://
simpholders.com/, it will allow you to access the iOS simulator's
application folders, and you can access photos that have been saved.

Capturing and playing audio via the audio
recorder

Another handy feature of iPhones and most Android handsets is the ability to record audio
data—perfect for taking audible notes during meetings or those long, boring lectures! In this
recipe, we are going to capture some audio using the Ti.Media.AudioRecorder class,
and then allow the user to play back the recorded sound file.

As usual, the complete source code for this recipe can be found in the /Chapter 4/Recipe
6 folder.

Note that this recipe is designed to work on iPhones, so you will
also require a physical device. In addition, iPhone 3G models may
not be capable of recording in some of the compression formats
particularly high-fidelity formats, such as AAC. When in doubt, you
should try using the MP4A or WAV format.

How to do it...
Type the following code in your app.js file just after the definition of win3 and save.

This will set up the interface with a set of buttons and labels so that we can start, stop,
and play back our recorded audio:

var file;
var timer;
var sound;
var duration = 0;

var label = Ti.UI.createLabel({
 text:'',
 top:150,
 color:'#999',
 textAlign:'center',
 width: 250,
 height: Ti.UI.SIZE
});

http://simpholders.com/
http://simpholders.com/

Enhancing Your Apps with Audio, Video, and Cameras

106

win3.add(label);

var linetype = Ti.UI.createLabel({
 //text: "audio line type: "+lineTypeToStr(),
 bottom: 15,
 color:'#999',
 textAlign:'center',
 width: 250,
 height: Ti.UI.SIZE
});

win3.add(linetype);

var volume = Ti.UI.createLabel({
 text: "volume: "+Ti.Media.volume,
 bottom:30,
 color:'#999',
 textAlign:'center',
 width: 250,
 height: Ti.UI.SIZE
});

win3.add(volume);

var switchLabel = Ti.UI.createLabel({
 text:'Hi-fidelity:',
 width: 250,
 height: Ti.UI.SIZE,
 textAlign:'center',
 color:'#999',
 bottom:95
});

var switcher = Ti.UI.createSwitch({
 value:false,
 bottom:60
});

win3.add(switchLabel);
win3.add(switcher);

Chapter 4

107

var b2 = Ti.UI.createButton({
 title:'Playback Recording',
 width:200,
 height:40,
 top:80
});

win3.add(b2);

var b1 = Ti.UI.createButton({
 title:'Start Recording',
 width:200,
 height:40,
 top:20
});
win3.add(b1);

Run your application in the simulator now, and switch to the Audio tab. You should see a
screen that looks just like this:

Enhancing Your Apps with Audio, Video, and Cameras

108

Now we're going to create an object instance of the AudioRecorder method, called recording,
and give it a compression value and a format value. We will also add all the event listeners and
handlers required to capture when the volume changes, the audio line, and recording event
changes. Type this code directly after the code that you created recently:

var recording = Ti.Media.createAudioRecorder();

// default compression is Ti.Media.AUDIO_FORMAT_LINEAR_PCM
// default format is Ti.Media.AUDIO_FILEFORMAT_CAF

// this will give us a wave file with µLaw compression which
// is a generally small size and suitable for telephony //recording
for high end quality, you'll want LINEAR PCM –
//however, that will result in uncompressed audio and will be
//very large in size
recording.compression = Ti.Media.AUDIO_FORMAT_LINEAR_PCM;
recording.format = Ti.Media.AUDIO_FILEFORMAT_CAF;

Ti.Media.audioSessionMode = Ti.Media.AUDIO_SESSION_MODE_PLAY_AND_
RECORD;

Ti.Media.addEventListener('recordinginput', function(e) {
 Console.log('Input availability changed: '+e.available);
 if (!e.available && recording.recording) {
 b1.fireEvent('click', {});
 }
});

Ti.Media.addEventListener('linechange',function(e)
{
 linetype.text = "audio line type: "+lineTypeToStr();
});

Ti.Media.addEventListener('volume',function(e)
{
 volume.text = "volume: "+e.volume;
});

Finally, add the following section of code after your Ti.Media event listeners, which
you previously created. This code will handle all the events for the audio input controls
(the stop and start buttons and our high-fidelity switch):

function lineTypeToStr()
{
 var type = Ti.Media.audioLineType;

Chapter 4

109

 switch(type)
 {
 case Ti.Media.AUDIO_HEADSET_INOUT:
 return "headset";
 case Ti.Media.AUDIO_RECEIVER_AND_MIC:
 return "receiver/mic";
 case Ti.Media.AUDIO_HEADPHONES_AND_MIC:
 return "headphones/mic";
 case Ti.Media.AUDIO_HEADPHONES:
 return "headphones";
 case Ti.Media.AUDIO_LINEOUT:
 return "lineout";
 case Ti.Media.AUDIO_SPEAKER:
 return "speaker";
 case Ti.Media.AUDIO_MICROPHONE:
 return "microphone";
 case Ti.Media.AUDIO_MUTED:
 return "silence switch on";
 case Ti.Media.AUDIO_UNAVAILABLE:
 return "unavailable";
 case Ti.Media.AUDIO_UNKNOWN:
 return "unknown";
 }
}

function showLevels()
{
 var peak = Ti.Media.peakMicrophonePower;
 var avg = Ti.Media.averageMicrophonePower;
 duration++;
 label.text = 'Duration: '+duration+' seconds\npeak power:\
 ' + peak +'\navg power: ' +avg;
}

b1.addEventListener('click', function()
{
 if (b1.title == "Stop Recording")
 {
 file = recording.stop();
 b1.title = "Start Recording";
 b2.show();
 clearInterval(timer);
 Ti.Media.stopMicrophoneMonitor();

Enhancing Your Apps with Audio, Video, and Cameras

110

 }
 else
 {
 if (!Ti.Media.canRecord) {
 Ti.UI.createAlertDialog({
 title:'Error!',
 message:'No audio recording hardware is currently \
 connected.'
 }).show();
 return;
 }
 b1.title = "Stop Recording";
 recording.start();
 b2.hide();
 Ti.Media.startMicrophoneMonitor();
 duration = 0;
 timer = setInterval(showLevels,1000);
 }
});

b2.addEventListener('click', function()
{
 if (sound && sound.playing)
 {
 sound.stop();
 sound.release();
 sound = null;
 b2.title = 'Playback Recording';
 }
 else
 {
 Console.log("recording file size: "+file.size);
 sound = Ti.Media.createSound({url:file});
 sound.addEventListener('complete', function()
 {
 b2.title = 'Playback Recording';
 });
 sound.play();
 b2.title = 'Stop Playback';
 }
});

Chapter 4

111

switcher.addEventListener('change',function(e)
{
 if (!switcher.value)
 {
 recording.compression = Ti.Media.AUDIO_FORMAT_ULAW;
 }
 else
 {
 recording.compression = Ti.Media.AUDIO_FORMAT_LINEAR_PCM;
 }
});

Now run your application on a device (the simulator may not be capable of recording audio),
and you should be able to start, stop, and then play back your audio recording, while the
high-fidelity switch will change the audio compression to a higher fidelity format.

How it works…
In this recipe, we created an instance of the AudioRecorder object, and we called this
new object recording. We gave it a compression and audio format; for now we have set
these to default (PCM compression and standard CAF format). Listeners from the Ti.Media
namespace were then added, which when fired would change the line type or volume labels.

The main processing for this recipe happens within the event handlers for the Start/Stop
and Playback buttons, called b1 and b2, respectively. Our first button, b1, first checks its
title to determine whether to stop or start recording via a simple if statement. If recording
has not started, then we kick off the process by calling the start method of our recording
object. To do so, we also have to start the microphone monitor, which is done by executing
the Ti.Media.startMicrophoneMonitor() line. Our device will then begin recording.
Tapping the b1 button again will execute the stop code and simultaneously set our file
object (the resulting sound/audio file) as the output from our recording object.

The b2 button event handler checks whether we have a valid sound file and whether it is
already playing. If we have a valid file and it's playing, then the playback will stop. Otherwise,
if there is a valid sound file and it has not already been played back through the speaker,
we will create a new object called sound, using the Ti.Media.createSound method. This
method requires a sound parameter—we pass to it the file object that was created during our
recording session. Executing the sound object's play method then kicks off the playback,
while the event listener/handler for the playback completion resets our b2 button title when
the playback completes.

Finally, the switch (called switcher in this example) simply changes the recording format from
high-fidelity compression to a low one. The lower the quality and compression, the smaller the
resulting audio file.

Enhancing Your Apps with Audio, Video, and Cameras

112

Capturing video via the video recorder
You can also use the inbuilt camera of your iPhone (3GS and above) or Android device to
record video. The quality and length of video that you can record is dependent on both
your device's memory capabilities and the type of camera that is included in the hardware.
However, you should at least be able to capture short video clips in VGA resolution.

In this recipe, we will create a basic interface for our Video tab consisting of a record button,
which will launch the camera and record video on our device. We'll also perform this in two
separate ways: using standard Titanium code for iPhone and using intents for Android.

Note that this recipe will require a physical device for testing. In
addition, iPhone 3G models are not be capable of recording video,
but all models from the 3GS and upwards should be fine.

The complete source code for this recipe can be found in the /Chapter 4/Recipe 7 folder.

How to do it...
First of all, let's set up the basic interface to have a record button (in the navigation bar
section for the iPhone and as a normal button for Android), along with the videoFile
variable. This will hold the path to our recorded video as a string. Add the following to
app.js after you have defined win2:

var videoFile = 'video/video-test.mp4';

var btnGetVideo = Ti.UI.createButton({
 title: 'Record Video'
});

//set the right nav button to our get button
if(Ti.Platform.osname == 'iphone') {
 win2.rightNavButton = btnGetVideo;
}
else {
 //add it to the main window because android does
 //not have 'right nav button'
 btnGetVideo.right = 20;
 btnGetVideo.top = 20;
 win2.add(btnGetVideo);
}

Chapter 4

113

Now let's create the event listener and handler code for the Record button. This will check
on our current platform (either iPhone or Android) and execute the record video code for the
correct platform:

//get video from the device
btnGetVideo.addEventListener('click', function()
{
 if(Ti.Platform.osname == 'iphone') {
 //record for iphone
 Ti.Media.showCamera({
 success:function(event)
 {
 var video = event.media;
 movieFile = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory,
 'mymovie.mov');

 movieFile.write(video);
 videoFile = movieFile.nativePath;
 btnGetVideo.title = 'Play Video';
 },
 cancel:function()
 {
 },
 error:function(error)
 {
 // create alert
 var a =
 Ti.UI.createAlertDialog({title:'Video'});

 // set message
 if (error.code == Ti.Media.NO_VIDEO)
 {
 a.setMessage('Device does not have video recording
 capabilities');
 }
 else
 {
 a.setMessage('Unexpected error: ' + error.code);
 }

 // show alert
 a.show();
 },
 mediaTypes: Ti.Media.MEDIA_TYPE_VIDEO,
 videoMaximumDuration:10000,

Enhancing Your Apps with Audio, Video, and Cameras

114

 videoQuality:Ti.Media.QUALITY_HIGH
 });
 }
 else
 {
 //record for android using intents
 var intent = Ti.Android.createIntent({
 action: 'android.media.action.VIDEO_CAPTURE'
 });

 Ti.Android.currentActivity.startActivityForResult(
 intent, function(e) {

 if (e.error) {
 Ti.UI.createNotification({
 duration: Ti.UI.NOTIFICATION_DURATION_LONG,
 message: 'Error: ' + e.error
 }).show();
 }
 else {

 if (e.resultCode === Ti.Android.RESULT_OK) {
 videoFile = e.intent.data;
 var source = Ti.Filesystem.getFile(videoFile);
 movieFile =
 Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory,
 'mymovie.3gp');

 source.copy(movieFile.nativePath);
 videoFile = movieFile.nativePath;
 btnGetVideo.title = 'Play Video';
 }
 else {
 Ti.UI.createNotification({
 duration: Ti.UI.NOTIFICATION_DURATION_LONG,
 message: 'Canceled/Error? Result code: ' +
 e.resultCode
 }).show();
 }
 }
 });

 }
});

Chapter 4

115

How it works…
Let's work through the code for recording on iPhone devices first, which is encapsulated within
the if(Ti.Plaform.osname == 'iphone') part of the if statement code. Here, we are
executing the camera in the same way as we would to capture plain photos. However, we're
passing additional parameters. The first of these is called mediaType, and it tells the device
that we want to capture a mediaType of MEDIA_TYPE_VIDEO.

The other two parameters define how long and in what quality to capture the video. The
videoMaximumDuration float parameter defines the duration—how long in milliseconds to
allow the capture before completing. The videoQuality constant indicates the video quality
during the capture. We set these to 10 seconds (10,000 milliseconds) and the video quality
to high.

Upon a successful video capture, we save event.media (our video in its raw format) to
the filesystem, using pretty much the same method as we did when saving a photograph.
The final step is to set the videoFile path to the location of our newly saved video file in
the filesystem.

For Android, we capture videos in a different way—using an intent (in this case, using the video
capture intent called android.media.action.VIDEO_CAPTURE. Objects of the android.
content.Intent type are used to send asynchronous messages within your application or
between applications. Intents allow the application to send or receive data from and to other
activities or services. They also allow it to broadcast that a certain event has occurred. In our
recipe's code, in the Android section of the if statement, we execute our intent and then
capture the result. If resultCode equals Ti.Android.RESULT_OK, then we know that
we've managed to record a video clip. We can then move this file from its temporary storage
location to a new destination of our choosing. Note that we are capturing video in 3GP format
for Android, while it was in MP4/MOV format on iPhone.

Playing video files from the filesystem
Now that we have recorded a video, how about playing it back? Titanium has an inbuilt video
player component that can play both local files and remote video URLs. In this recipe, we'll
show you how to create the video player control and pass it the local file URL of the video
that we recorded in the previous recipe.

How to do it...
In our app.js file, underneath the declaration of the videoFile object, we create the
following function:

function playMovie(){
 //create the video player and add it to our window

Enhancing Your Apps with Audio, Video, and Cameras

116

 //note the url property can be a remote url or a local file
 var my_movie = Ti.Media.createVideoPlayer({
 url: videoFile,
 width: 280,
 height: 200,
 top:20,
 left:20,
 backgroundColor:'#000'
 });

 win2.add(my_movie);
 my_movie.play();
}

Then, in your event listener for btnGetVideo, extend the code so that it checks the button
title and plays the recorded video when it has been saved:

//get video from the device
btnGetVideo.addEventListener('click', function()
{
 if(btnGetVideo.title == 'Record Video') {
 //our record video code from the previous recipe
 //….
 }
 else
 {
 playMovie();
 }
});

How it works…
Creating a video player object is no different from creating labels or buttons; many of the
same properties are utilized for positioning and layout. The player can be embedded in any
other view as you would do with a normal control, which means that you can have video
thumbnails playing directly from within the rows of TableView if you want. Additionally, the
video player can play both local and remote videos (using the video URL property). In this
recipe, we will load from the filesystem a saved video that was captured by the camcorder
on our device.

You can just as easily load a video from a URL or directly from within your Resources folder.
Note that some web video formats, such as FLV, are not supported.

Chapter 4

117

There's more…
If you want your video to play using the full screen dimensions and not just within a view,
then you can set its fullscreen property to true. This will automatically load the video
in full screen mode when it starts playing. Launch the project in the simulator to see the
final app in action:

Safely deleting saved files from the
filesystem

We can create these files and write them to our local phone storage, but what about
deleting them? In this recipe, we'll explain how to safely check for and delete files using
the Ti.Filesystem.File namespace.

How to do it...
In your app.js file, before you create tab2, add the following button code with an event
listener. This will be our trash button and will call the delete function on the currently
selected image:

//create trash button
var buttonTrash = Ti.UI.createButton({
 width: Ti.UI.SIZE,

Enhancing Your Apps with Audio, Video, and Cameras

118

 height: Ti.UI.SIZE,
 right: 25,
 bottom: 25,
 title: 'Delete',
 zIndex: 2,
 visible: false
});
//create event listener for trash button
buttonTrash.addEventListener('click', function(e){

});

We add an extra line to our existing btnSaveCurrentPhoto click event to make our trash
button visible only after a photo has actually been saved to the disk:

btnSaveCurrentPhoto.addEventListener('click', function(e){
 ….

 buttonTrash.visible = true;
});

Finally, extend your button's event listener to delete the file, but only after verifying that it
already exists. Then add your button to the window:

buttonTrash.addEventListener('click', function(e){
var photosDir = Ti.Filesystem.getFile(Ti.Filesystem.applicationDataDir
ectory,'photos');

var fileName = 'photo-' + scrollingView.currentPage.toString() +
'.png';

var imageFile = Ti.Filesystem.getFile(photosDir.nativePath,
fileName);

 if (imageFile.exists()) {
 //then we can delete it because it exists
 imageFile.deleteFile();
 alert('Your file ' + fileName + ' was deleted!');
 }
});

win1.add(buttonTrash);

Chapter 4

119

How it works…
File manipulation is done using methods on the file object, unlike many other languages
in which a delete function normally means passing the file object to the said function to
be deleted. In our recipe, you can see that we're simply creating the file object as we did
previously in the recipe about saving photos to the filesystem. But instead of writing the object
to the disk, we're checking its existence and then calling [file-object].deleteFile().
All file manipulation in Titanium is done in this manner. For example, if you want to rename
the file, you simply create the object and call the rename() method on it, passing the new
value as a string parameter.

You may have also noticed that we gave the trash button a parameter called zIndex, which
we set to 2. The zIndex parameter defines the stack order of a component. Components
with a higher zIncdex value always appear above those with a lower zIndex value. In this
case, we've given the trash button an index of 2 so that it appears over other elements,
whose default zIndex value is 0.

The following screenshot shows the Trash button visible in our newly saved file and the
message alert that appears, confirming its deletion from the file system:

Enhancing Your Apps with Audio, Video, and Cameras

120

There's more
A complete list of the Ti.Filesystem.File methods is available on Appcelerator's website,
under the current API documentation, at http://docs.appcelerator.com/platform/
latest/#!/api/Titanium.Filesystem.File.

http://docs.appcelerator.com/platform/latest/#!/api/Titanium.Filesystem.File
http://docs.appcelerator.com/platform/latest/#!/api/Titanium.Filesystem.File

121

5
Connecting Your Apps

to Social Media
and E-mail

In this chapter, we will cover the following topics:

ff Composing and sending e-mails

ff Adding attachments to an e-mail

ff Setting up a custom Facebook application

ff Integrating Facebook into your Titanium app

ff Posting to your Facebook wall

ff Posting to Twitter in iOS

ff Posting to Facebook in iOS

ff Sharing on Android using Intents

Introduction
Once thought to be the domain of the geeky GEN-Y, social media has grown exponentially over
the past few years into the hottest area of the web. Facebook now has over 1.2 billion users
worldwide, many times more than the population of the United States! Twitter was once the
place where you'd hear about what someone had just eaten for breakfast; now it's the first
place many people go to for breaking news.

Connecting Your Apps to Social Media and E-mail

122

The rise of smartphones and mobile applications has hastened the growth of these social
networking services; online socializing is no longer confined to the desktop. People can be
seen using Facebook and Twitter, among other services, whilst on the train, in their cars,
and pretty much anywhere else too.

It's because these services are so ubiquitous that many people now expect them to be a
standard service from within an application. A simple app, such as one that lists news, is
made that much more useful when the user can tweet, post, or e-mail articles at the touch
of a button. In this chapter, we will begin with e-mail, the original social communication
medium, before moving on to see how to integrate the world's largest social networking
services, Facebook and Twitter, into your application.

You should already be familiar with Titanium basics, including creating UI objects and using
Appcelerator Studio. Additionally, to test functionality, you are going to require an account on
Twitter and an account on Facebook. You will also need to have an e-mail account set up on
your iPhone or Android device.

You can sign up for Facebook free of charge at http://www.facebook.com.

You can sign up for Twitter free of charge at http://twitter.com.

Google provides free e-mail services that are easily set up on both iPhone and Android.
You can sign up at http://www.google.com/mail.

The complete source code for this entire chapter can be found in the
/Chapter 5 / PhotoShare folder.

Composing and sending e-mails
We're going to start this chapter with the simplest form of social communication, both in terms
of use and in terms of development—e-mail.

If you intend to follow the entire chapter and build the PhotoShare app, then pay careful
attention to the Getting Ready section of this recipe, as it will guide you through setting
up the project.

Getting ready
To prepare for this recipe, open up Appcelerator Studio and log in if you have not already
done so. If you need to register a new account, you can do so for free directly from within
the application. Once you are logged in, click on New Project and create a classic project;
the Details window to create a new project will appear. Enter PhotoShare as the name of
the app, and fill in the rest of the details with your own information.

http://www.facebook.com
http://twitter.com
http://www.google.com/mail

Chapter 5

123

How to do it...
Now the project has been created using Appcelerator Studio. Let's get down to business! Open
up the app.js file in your in editor and remove all existing code. After you have done that,
type in the following and then hit Save:

// this sets the background color of the master UIView (when there are
no
// windows/tab groups on it)
Ti.UI.setBackgroundColor('#000');

//this variable will hold our image data blob from the device's
gallery
var selectedImage = null;

var win1 = Ti.UI.createWindow({
 title : 'Tab 1',
 backgroundColor : "#fff"
});

var label = Ti.UI.createLabel({
 width : 280,
 height : Ti.UI.SIZE,
 top : 40,
 left : 20,
 color : '#000',
 font : {
 fontSize : 18,
 fontFamily : 'HelveticaNeue'
 },
 text : 'Photo Share: \nEmail, Facebook & Twitter'
});
win1.add(label);

var imageThumbnail = Ti.UI.createImageView({
 width : 100,
 height : 120,
 left : 20,
 top : 100,
 backgroundColor : '#000',
 borderRadius : 5
});
win1.add(imageThumbnail);

Connecting Your Apps to Social Media and E-mail

124

var buttonSelectImage = Ti.UI.createButton({
 width : 100,
 height : 40,
 top : 220,
 left : 20,
 title : 'Choose'
});
buttonSelectImage.addEventListener('click', function(e) {
 //obtain an image from the gallery
 Ti.Media.openPhotoGallery({

 success : function(event) {
 selectedImage = event.media;

 // set image view
 Ti.API.debug('Our type was: ' + event.mediaType);
 if (event.mediaType == Ti.Media.MEDIA_TYPE_PHOTO) {
 imageThumbnail.image = selectedImage;
 }
 },
 cancel : function() {
 //user cancelled the action from within
 //the photo gallery
 }
 });
});
win1.add(buttonSelectImage);

var txtTitle = Ti.UI.createTextField({
 width : 160,
 height : 35,
 left : 140,
 top : 100,
 hintText : 'Message title...',
 borderRadius : 5,
 backgroundColor : '#eee',
 paddingLeft : 5
});
win1.add(txtTitle);

var txtMessage = Ti.UI.createTextArea({
 width : 160,
 height : 120,
 left : 140,

Chapter 5

125

 top : 140,
 value : 'Message text...',
 color: '#333',
 font : {
 fontSize : 17
 },
 borderRadius : 5,
 backgroundColor : '#eee',

});

win1.add(txtMessage);

win1.open();

The preceding code lays out our basic application and integrates a simple Photo Gallery
selector, similar to what we did in Chapter 4, Enhancing Your Apps with Audio, Video, and the
Camera. Now we will create a new button that, when tapped, will call a function to create and
display the e-mail dialog:

//create your email
function postToEmail() {
 var emailDialog = Titanium.UI.createEmailDialog();
 emailDialog.subject = txtTitle.value;
 emailDialog.toRecipients = ['email@yourcompany.com'];
 emailDialog.messageBody = txtMessage.value;
 emailDialog.open();
}

var buttonEmail = Titanium.UI.createButton({
 width: 280,
 height: 35,
 top: 280,
 left: 20,
 title: 'Send Via Email'
});

buttonEmail.addEventListener('click', function(e){
 if(selectedImage != null) {
 postToEmail();
 } else {
 alert('You must select an image first!');
 }
});

win1.add(buttonEmail);

Connecting Your Apps to Social Media and E-mail

126

Once you have completed typing in your source code, run your app on your device (you can't
send e-mail through the simulator). You should be able to select an image from the Photo
Gallery (you'll be asked for permission, make sure you say OK), and then type in a title and
message for your e-mail using the text fields, before tapping the buttonEmail object to
launch the e-mail dialog window with your message and title attached.

Note that if you are using the simulator and you don't have any photos in the gallery already,
the best way to obtain some is by visiting https://images.google.com/?gws_rd=ssl in
mobile Safari and searching for images. You can then save them to the Photo Gallery on the
simulator by tapping and holding the image until the Save Image popup appears.

How it works…
The code in the first block of code creates our layout view with a single window and a number
of basic components, all of which has been covered in Chapter 1, Building Apps Using Native
UI Components through Chapter 4, Enhancing Your Apps with Audio, Video, and the Cameras.

https://images.google.com/?gws_rd=ssl

Chapter 5

127

The Ti.UI.EmailDialog itself is created using the Ti.UI.createEmailDialog()
method and only requires a few simple parameters in order to be able to send a basic e-mail
message. The subject, messageBody, and toRecipients parameters are standard e-mail
fields. While it is not necessary to provide these fields in order to launch an e-mail dialog, you
will normally provide at least one or two of these as a matter of course. While the subject and
messageBody fields are both simple strings, it should be noted that the toRecipients
parameter is actually a basic array. You can add multiple recipients by simply adding another
array parameter. For example, if you chose to send your e-mail to two different users, you
could write the following:

 emailDialog.toRecipients = [email@yourcompany.com',
 'another@yourcompany.com'];

You can also add CC or BCC recipients in the same manner, using the ccRecipients
and bccRecipients methods of the e-mail dialog respectively. Finally the e-mail dialog
is launched using the open() method, at which point in your application you should see
something like the following standard e-mail dialog appear:

Connecting Your Apps to Social Media and E-mail

128

There's more
You can use the e-mail dialog's event listener, complete, in order to tell when an e-mail has
been successfully sent or not. The result property in your event handler will provide you
with the status of your e-mail, which will be one of the following strings:

ff CANCELLED (iOS only)
ff FAILED

ff SENT

ff SAVED (iOS only)

Adding attachments to an e-mail
Now we have a basic e-mail dialog up and running, but ideally what we want to do is attach
the photo that we selected from our Photo Gallery to our new e-mail message. Luckily for us,
Titanium makes this easy by exposing the Ti.UI.createEmailDialog()method, which
accepts the local path of the file we want to attach.

How to do it...
Adding an attachment is usually as simple as passing the location of the file or blob you wish
to attach to the addAttachment() method of emailDialog. For example:

//add an image from the Resource/images directory
 emailDialog.addAttachment(Ti.Filesystem.getFile('/images/my_test_
photo.jpg'));

Our case is a bit trickier than this, though. In order to successfully attach our chosen image,
we have to first save it temporarily to the file system and then pass the file system path to
addAttachment(). Alter the postToEmail function to match the following code:

//create your email
function postToEmail() {
 var newDir = Ti.Filesystem.getFile(
 Ti.Filesystem.applicationDataDirectory,

 'attachments');

 if(!newDir.exists()) { newDir.createDirectory(); }

 //write out the image file to the attachments directory
 writeFile = Ti.Filesystem.getFile(newDir.nativePath,

 'temp-image.jpg');

Chapter 5

129

 writeFile.write(selectedImage);

 var emailDialog = Ti.UI.createEmailDialog();
 emailDialog.subject = txtTitle.value;
 emailDialog.toRecipients = ['info@packtpub.com'];
 emailDialog.messageBody = txtMessage.value;

 //add an image via attaching the saved file
 emailDialog.addAttachment(writeFile);

 emailDialog.open();
}

How it works...
As you can see from the code, an attachment can be added to your e-mail dialog either as a
blob object or a file, or from a file path. In this example, you save the image from the Photo
Gallery to a temporary file first, before adding it to the email dialog, in order to have it displayed
as a proper image attachment. You can also call the addAttachment method multiple times.
However, be aware that multiple attachments are currently only supported on the iPhone.

More information on the Titanium file object can be found at http://docs.
appcelerator.com/platform/latest/#!/api/Titanium.Filesystem.File.

http://docs.appcelerator.com/platform/latest/#!/api/Titanium.Filesystem.File
http://docs.appcelerator.com/platform/latest/#!/api/Titanium.Filesystem.File

Connecting Your Apps to Social Media and E-mail

130

Setting up a custom Facebook application
Integrating Facebook into your Titanium application may at first seem like a daunting
prospect, but once you understand the steps that are necessary to do so, you will see it's
not really too hard at all! However, before you can allow users to post or retrieve Facebook
content from your mobile app, you will first need to set up an application in Facebook itself.
This application will provide you with the necessary API keys you need before the user can
authorize your mobile application to post and get content on their behalf.

How to do it...
First, you will need to log in to Facebook using the e-mail address and password you signed
up with. If you do not have a Facebook account, then you will need to create one for the first
time—don't worry though, as it is completely free! Once you've signed up, you'll need to visit
the Facebook Developer portal at https://developers.facebook.com/.

Follow the instructions on that site to register as a new developer. This will use your existing
Facebook account but give you developer privileges!

Once your developer account is set up, select the My Apps menu at the top of the screen
and select Add New App. The Add a new app dialog will then appear, allowing you to select
the type of app (for example, iOS), give your application a name, and select a category—we're
going to use Communications. We have called our app PhotoShare Titanium. However, you
may use whatever name you wish.

Once your app is created, skip the quick start (or select the app from the My Apps menu).
You'll be taken to the App Dashboard, showing the basic details, default icon, and some stats.
There are two important values here you are going to need in the next recipe, so be sure to
note them down somewhere safe! These fields are:

ff App ID

ff App Secret (to see this, click show and you may have to enter your Facebook
password again)

Integrating Facebook into your Titanium app
Now that we have a Facebook application set up, we can get down to connecting our Titanium
application to it. Luckily for us, Titanium has a Facebook module that is installed along with
Titanium and is accessible by adding it to the application settings. With this module, Facebook
integration is easy!

https://developers.facebook.com/

Chapter 5

131

To add the Facebook module, go to your tiapp.xml file, and just like we did with the maps
module in Chapter 3, Integrating Maps and GPS, click to add a module, select the Facebook
module, and save your changes. You'll need to rebuild the app to include the changes.

Note that we're actually going to be trying two methods of integrating with Facebook using
the native module: first, we'll use the traditional method using web-based authentication;
second, we'll use the iOS Facebook integration that was added in iOS6.

How to do it...
The first thing we need to do is add a reference to the Facebook module in our code so that
we can use this in the current and future recipes. Add the following code at the beginning
of app.js:

var fb = require('facebook');
fb.forceDialogAuth = true;
fb.appid = '1442445079362095';

This creates a reference to the module as fb and sets the appid property. Next, we need to
create a new button that will authorize our Titanium app to publish data on our user's behalf.

Enter the following code in your app.js file to create a new button below the existing e-mail
user button:

//create your facebook session and post to fb
function loginToFacebook() {

 // check if we've logged in already
 if (!fb.loggedIn) {
 // Permissions your app needs
 fb.permissions = ['publish_stream'];

 fb.addEventListener('login', function(e) {
 if (e.success) {
 buttonFacebook.title = "Logged into Facebook";
 buttonFacebook.enabled = false;
 } else if (e.error) {
 alert(e.error);
 } else if (e.cancelled) {
 alert("Cancelled");
 }
 });

 fb.authorize();

Connecting Your Apps to Social Media and E-mail

132

 } else {
 // already logged in

 buttonFacebook.title = "Logged into Facebook";
 buttonFacebook.enabled = false;
 }

}

var buttonFacebook = Ti.UI.createButton({
 width: 280,
 height: 40,
 top: 330,
 left: 20,
 title: 'Login to Facebook'
});

buttonFacebook.addEventListener('click', function(e){
 loginToFacebook();
});

win1.add(buttonFacebook);

Now select the new Login to Facebook button, and you'll see a popup dialog appear going to
the Facebook login page. Log in with your Facebook details, approve the permission screen
(which is used for the login) and once successfully, the window will close, you'll be returned
to the app, and the Login to Facebook button should change to say Logged into Facebook
and disable.

At this point, we have successfully authenticated with Facebook, we have a token that the
module will remember, and we can start posting to Facebook.

Also note that we're checking the fb.loggedIn property to work out if we're already logged
in—this would happen if we say, first launched the app, logged in to Facebook, and then
attempted to log in again.

You will notice that some code that enables the buttonFacebook and changes its title has
been repeated. You could rework this to be in a function, and then call this function from the
two places it's needed to make the code less repetitive.

Chapter 5

133

The forceDialogAuth property in the previous code is very important as it ensures that the
Facebook authorization is carried out inside our application using a dialog box. If we set this
to false, or don't set it at all, the user is redirected to the browser and leaves the application,
which does not provide the kind of integrated user experience that users expect.

How it works...
What we're doing here is using a native Facebook module, which is installed automatically
with Titanium, in order to add Facebook functionality to our app. This module consists of a
number of different methods that allow us to instantiate and then authenticate against the
Facebook API. To make this more user friendly, we have set the forceDialogAuth to true,
ensuring that the authentication is carried out within the app.

This authorization, when successful, allows the user to log in and agree to your request to
use certain permissions against their Facebook account.

Connecting Your Apps to Social Media and E-mail

134

A successful authorization will return and save a Facebook Token—essentially a random
string that contains the user ID and permission data we will need to execute Facebook
graph requests against the authorized user's account.

The great part about using the Facebook module is that we don't need to worry too much
about this, as the module takes care of the authorization and Facebook remembers for
future authorization requests.

In the next recipe, we will use this token as part of a request to post our chosen photo to our
Facebook wall.

Posting to your Facebook wall
Now that you are able to authenticate against Facebook, it's time to post a photo from the
gallery to your wall! To achieve this, you have to use Facebook's graph API, making a call
to the correct graph function with the correct permissions.

How to do it...
We're going to extend our existing code to add a new button and function that will take some
parameters and execute a graph request against the Facebook API.

Next, we need to create another button to post to Facebook. Add the following code after the
code that adds the Facebook button to the window.

To start, let's add a new button that will sit under the login button but remain invisible until
the login is successful. To do this, add the following code under the previous recipe's code:

//create your facebook session and post to fb
function postToFacebookWall() {

 function postPhoto() {
 var data = {
 message : 'This is a photo9',
 picture : imageThumbnail.image
 };

 fb.requestWithGraphPath('me/photos', data, 'POST', function(e)
 {
 if (e.success) {
 alert("Success! From FB: " + e.result);
 } else {
 if (e.error) {
 alert(e.error);
 } else {
 alert("Unknown result");

Chapter 5

135

 }
 }
 });
 }

 if (Ti.Platform.name === "iPhone") {
 fb.reauthorize(['publish_actions'], 'me', function(e) {
 if (e.success) {
 postPhoto();
 } else {
 alert("Error authorising with Facebook");
 }
 });
 } else {
 postPhoto();
 }

}
var postToFacebook = Ti.UI.createButton({
 width : 280,
 height : 40,
 top : 380,
 left : 20,
 title : 'Post to Facebook',
 visible: false
});

postToFacebook.addEventListener('click', function(e) {
 if (selectedImage != null) {
 postToFacebookWall();
 } else {
 alert('You must select an image first!');
 }
});

win1.add(postToFacebook);

Add to make sure the button appears, fine the block of code below, from the previous recipe:

buttonFacebook.title = "Logged into Facebook";
buttonFacebook.enabled = false;

Then add a new line, which will make sure the new button is made visible once we're
successfully logged in:

buttonFacebook.title = "Logged into Facebook";
buttonFacebook.enabled = false;
postToFacebook.visible = true;

Connecting Your Apps to Social Media and E-mail

136

Now, run the app and notice that initially you can't see the Post to Facebook button. Select the
Login to Facebook button, go through authentication, and if successful, you will notice that the
Post to Facebook button now appears.

Next, select an image and click the Post to Facebook button. You will notice that you are
redirected to Facebook again for authorization; this is a required part of using the Graph API
where write access needs to be requested. But like the login process, it's only required once
in this session.

Once you've accepted the permissions you should see an alert pop up showing a success
message, as shown here:

How it works…
In this recipe, we've extended the authentication functionality we added in the previous recipe
and used it to request permission to run additional Open Graph requests.

Chapter 5

137

We have created a new function that uses Facebook's Graph API to execute our request,
passing it the Graph method we want to call (me/photos) and the data properties that
method requires. In the case of the me/photos method, these two properties are as follows:

ff Caption: This is a string value that will accompany our image file

ff Picture: This is a blob/image containing our image data

Using the authentication and Graph API functionality, it is possible to execute any kind of
graph request in your app that Facebook (and your user permissions) will allow!

Posting to Twitter in iOS
Up until iOS5, the process of sharing to Facebook was a long-winded one, just like we've
done in the last few recipes: setting up Facebook apps, writing code to implement login
and authorization, and finally posting to a wall.

Thankfully, in iOS support for Facebook and Twitter is now baked into the OS via the Settings
app. A user can connect to Twitter and Facebook once, and applications can then ask to
access their social accounts. Once granted, an app can access the social accounts to post
content on behalf of the user. If you've ever clicked a share button in iOS and seen something
like this, you're using the built-in Twitter/Facebook support.

Connecting Your Apps to Social Media and E-mail

138

This means we can replace most of—not all—the code in the previous recipes with a few lines
that can achieve the same thing, allowing us to post to a Facebook wall or send a tweet
with a photo attached.

How to do it...
There are a few modules out there that provide access to iOS5 Twitter sharing integration.
We're going to be using https://github.com/rubenfonseca/titanium-twitter.

There are also other modules available, including free-to-use ones, such as
https://github.com/viezel/TiSocial.Framework.

Once you've added the module to the project, add the following code to the bottom
of app.js:

function postToTwitter() {
 var Twitter = require('com.0x82.twitter');

 var composer = Twitter.createTweetComposerView();

 composer.addEventListener('complete', function(e) {
 if (e.result == Twitter.DONE) {
 alert("Posted!"); }
 });

 composer.setInitialText(txtMessage.value);

if (imageThumbnail.image) {
 composer.addImage(imageThumbnail.image);
 }
 composer.open();
}

Next, we're going to add a new button, which we'll use to test this out.

Add the following to the bottom of the app.js file:

var postToTwitterButton = Ti.UI.createButton({
 width : 280,
 height : 40,
 top : 380,
 left : 20,

https://github.com/rubenfonseca/titanium-twitter
https://github.com/viezel/TiSocial.Framework

Chapter 5

139

 title : 'Post to Twitter',
});

postToTwitterButton.addEventListener("click", postToTwitter);

win1.add(postToTwitterButton);

Now run the app and select an image. Type some text into the second textbox and click the
Share to Twitter button. If all goes well, you'll see the Twitter composer appear as shown in
the following screenshot, and you'll be able to edit the text and change or add your location
and post.

Connecting Your Apps to Social Media and E-mail

140

How it works...
We access the built-in iOS Twitter support and pass some text and an image blob, and iOS
takes care of the rest—showing us the composer view and allowing us to select some other
options and post. We get a notification to say the user posted it and so can display a success
message or run some other code.

Posting to Facebook in iOS
Along with Twitter, iOS also supports adding a Facebook account via the settings, which allows
applications, once they have permission, to gain access to your account without going through
the full Facebook login.

How to do it...
First, you need to ensure you're set up on Facebook in the iOS settings. Launch the settings
app, then go into Facebook and log in with your credentials. Once you've given permission to
access your Facebook account, applications can make requests to use your credentials.

Once you're set up with Facebook, add the following code to the bottom of app.js:

var postToFacebookFromiOS = Ti.UI.createButton({
 width : 280,
 height : 40,
 top : 430,
 left : 20,
 title : 'Post to Facebook from iOS',
});

postToFacebookFromiOS.addEventListener("click", function() {

 // create a function we can call later
 function postToFacebook() {
 fb.reauthorize(['publish_stream'], 'me', function(e) {
 if (e.success) {
 var data = {
 message : 'This is a photo9',
 picture : imageThumbnail.image
 };

 fb.requestWithGraphPath('me/photos', data, 'POST', function(e)
{

Chapter 5

141

 if (e.success) {
 alert("Success! From FB: " + e.result);
 } else {
 if (e.error) {
 alert(e.error);
 } else {
 alert("Unknown result");
 }
 }
 });
 } else {
 alert("Error authorising with Facebook");
 }
 });
 }

 if (!fb.loggedIn) {
 fb.addEventListener('login', function(e) {
 postToFacebook();
 });

 fb.permissions = ['read_stream'];
 fb.authorize();

 } else {
 postToFacebook();
 }

});

win1.add(postToFacebookFromiOS);

Launch the app, and you'll see a new button called Post to Facebook from iOS. Make
sure you select an image, and then click the new button; you may be asked to give permission
to access Facebook, so make sure you accept that.

You'll then be redirected to confirm permissions for the app if you've not done so already, and
then the image will be posted to your Facebook feed.

Note that there's no need to log in to Facebook manually here—we're logging in automatically
using the built-in Facebook settings on the device/simulator.

Connecting Your Apps to Social Media and E-mail

142

How it works…
In this recipe, we're using the built-in iOS Facebook settings to log in automatically. The
fb.isLoggedIn property lets us know if the user has configured their Facebook account
and has logged in successfully. From there, and with the user's permission, we can post
to their feed.

Sharing on Android using Intents
For our final recipe of this chapter, we're going to use Android Intents to share an image to the
native Twitter app.

How to do it…
Firstly, you'll need to make sure you have the Twitter application installed on your Android
simulator or device. Once you have the Twitter app installed, launch it and log in so that you
can see your feed.

Next, find the postToTwitter function in the app.js file and replace it with the following:

try {

 var intent = Ti.Android.createIntent({
 action : Ti.Android.ACTION_SEND,
 packageName : "com.twitter.android"
 });

 intent.setType('image/*');

 intent.putExtraUri(Ti.Android.EXTRA_STREAM,
 imageThumbnail.image.nativePath);

 intent.putExtra(Ti.Android.EXTRA_TEXT, txtTitle.value || 'Type
 your message here');

 var shareActivity = Ti.Android.createIntentChooser(intent,
 "Share with");

 Ti.Android.currentActivity.startActivity(shareActivity);

 } catch (e) {
 alert("Make sure you have Twitter installed");
 }

Chapter 5

143

Now, launch the app, select an image, enter a title (or it'll show a default), and then click the
Share to Twitter button. If you have the Android Twitter app installed, you should see it pop up
as a new Tweet with your image and text!

How it works…
This recipe is very simple. We're using Android Intents – a method of communicating and
sharing functionality between applications, to invoke the Twitter share dialog, including our
selected image and message. At this point, Twitter takes over, completes the function, and
returns to our application (and we could pick up some events about whether the post was
successful or not).

Most of this code is generic for most applications that support the Ti.Android.ACTION_
SEND action, and, if you make one simple change, you can see this in action. Comment out
or delete the line:

packageName : "com.twitter.android"

Run the app again. This time when you click on the Share to Twitter button, you'll be
shown a generic sharing dialog containing any and all apps that support the ACTION_SEND
functionality. This could include Google+, Facebook, or other apps. Simply click the application
to send the image and message to the application via Intents!

145

6
Getting to Grips with

Properties and Events

In this chapter, we will cover the following recipes:

ff Reading and writing app properties

ff Firing and capturing events

ff Passing event data between your app and a WebView using custom events

Introduction
This chapter describes the processes of two fundamentally important, yet deceptively simple,
parts of the Titanium framework. In it, we'll explain how to go about creating and reading app
properties so that you can store data that is accessible from any part of your application,
much as session data or cookies would be if you were building a web-based app.

We'll also go into further detail on events, including a selection of those fired by the various
components of Titanium and custom events, which you can define yourself.

Application properties are used to store data in key/value pairs. These properties can persist
between your app's windows, and even beyond single application sessions, much like a
website cookie. You can use any combination of uppercase or lowercase letters and numbers
in a property name, but mix them with care, as JavaScript is case-sensitive in this regard.
Myname, myname, and MYNAME would be three very different properties!

Getting to Grips with Properties and Events

146

When should you use app properties?
Application properties should be used when one or more of the following are true:

ff The data consists of simple key/value pairs

ff The data is related to the application rather than the user

ff The data does not require other data in order to be meaningful or useful

ff There needs to be only one version of the data stored at any one time

For example, storing a string/string key pair of api_url and http://www.1and1.com/
website-builder would be a valid way of using app properties. This URL could be reused
across all your application screens or windows and would be related to your application, rather
than your data.

If your data is complex and needs to be joined, ordered, or queried while you are retrieving it,
then you are better off using a local database built with SQLite. If your data is a file or a large
blob object (for example, an image), then it is better stored on the filesystem.

What object types can be stored as app properties?
There are currently six distinct types of objects that can be stored in the app properties
module. These include:

ff Booleans

ff Doubles (float values)

ff Integers

ff Strings

ff Lists (arrays)

ff Objects (or JSON data)

In the following recipe, we will create and save a number of app properties, and then load
them back and print them to the console.

The complete source code for this chapter can be found at /Chapter 6/
EventsAndProperties folder.

http://www.1and1.com/website-builder
http://www.1and1.com/website-builder

Chapter 6

147

Reading and writing app properties
Whether you are reading or writing values, all app properties are accessed from the Ti.App.
Properties namespace. In this recipe, we are going to create a number of properties, all
with different types, under the first window of our app. Then, we will read them and output
their values to the console using a button in the second tab window. We'll also show you how
to check the existence of a property using the hasProperty method.

Getting ready
To prepare for this recipe, open Appcelerator Studio and log in if you have not already done so.
If you need to register a new account, you can do it for free directly from within the application.
Once you are logged in, click on New Project and the details window for creating a new project
will appear. Enter EventsAndProperties as the name of the app, and fill in the rest of the details
with your own information.

Pay attention to the app identifier, which is normally written in backwards domain notation
(that is, com.packtpub.eventsandproperties). This identifier cannot be changed
easily once the project has been created, and you will need to match it exactly when creating
provisioning profiles to distribute your apps later on.

How to do it…
1.	 Open the app.js file in your editor and leave the existing code, except for the

declaration of the two labels and the lines where those labels are added to your
tab windows. Change the layout of the win2 object to vertical, and after the
declaration of the win1 object, type in the following code:
//
//create a button that will define some app properties
//
var buttonSetProperties = Ti.UI.createButton({
 title: 'Set Properties!',
 top: 50,
 left: 20,
 width: 280,
 height: 40
 });

//create event listener
buttonSetProperties.addEventListener('click',function(e){

 Ti.App.Properties.setString('myString', 'Hello world!');

Getting to Grips with Properties and Events

148

 Ti.App.Properties.setBool('myBool', true);
 Ti.App.Properties.setDouble('myDouble', 345.12);
 Ti.App.Properties.setInt('myInteger', 11);

 Ti.App.Properties.setList('myList', ['The first value',
 'The second value','The third value']);

 alert('Your app properties have been set!');

}); //end event listener

win1.add(buttonSetProperties);

2.	 Now, while still in your app.js file, add the following code. It should be placed after
the declaration of the win2 object:
//
//create a button that will check for some properties
//
var buttonCheckForProperty = Ti.UI.createButton({
 title: 'Check Property?',
 top: 50,
 left: 20,
 width: 280,
 height: 40
});

//create event listener
buttonCheckForProperty.addEventListener('click',function(e){
 if(Ti.App.Properties.hasProperty('myString')){
 console.log('The myString property exists!');
 }

 if(!Ti.App.Properties.hasProperty('someOtherString')){
 console.log('The someOtherString property does not
 exist.');
 }
}); //end event listener

win2.add(buttonCheckForProperty);

//
//create a button that will read and output some app
//properties to the console
//

Chapter 6

149

var buttonGetProperties = Ti.UI.createButton({
 title: 'Get Properties!',
 top: 80,
 left: 20,
 width: 280,
 height: 40
});

//create event listener
buttonGetProperties.addEventListener('click',function(e){

console.log('myString property = ' +
Ti.App.Properties.getString('myString'));

console.log('myBool property = ' +
Ti.App.Properties.getBool('myBool'));

console.log('myDouble property = ' +
Ti.App.Properties.getDouble('myDouble'));

console.log('myInteger property = ' +
Ti.App.Properties.getInt('myInteger'));

console.log('myList property = ' +
Ti.App.Properties.getList('myList'));

}); //end event listener

win2.add(buttonGetProperties);

3.	 Next, launch the project in the iOS simulator from Appcelerator Studio, and you should
see the standard two-tab navigation view, with a button in each view. Tapping the Set
button under the first tab will set your app properties. After you have done so, you can
use the buttons on the second tab view to read individual properties and check the
existence of a property. The results will appear in your Appcelerator Studio console
like this:

Getting to Grips with Properties and Events

150

How it works…
In this recipe, we set a number of app properties using our Set Properties! button. Each
property consists of a key/value pair, and therefore requires a property name (also called
the key) and a property value. To set a property, we use the set method, which looks like
this: Ti.App.Properties.set<type>(key,value). Conversely, we then retrieve our
app properties using the get method, which looks like the following: Ti.App.Properties.
get<type>(key).

Application properties are loaded into the memory as the app launches, and they exist in the
global scope of the app until either it is closed, or the property is removed from the memory
using the Ti.App.Properties.remove() method. While there is a memory overhead in
using properties in this manner, it also means that you can efficiently and quickly access
them from any part of your application, as they are effectively global in scope.

You can also access the entire list of properties stored at any given time using the Ti.App.
Properties.listProperties method.

Firing and capturing events
Much of Titanium is built around the concept of event-driven programming. If you have ever
written code in Visual Basic, C#, Java or any other event-driven, object-orientated language,
this concept will be familiar to you.

Each time a user interacts with a part of your application's interface or types something in
a TextField, an event occurs. An event is simply an action that the user took (for example,
a tap, scroll, or key press on the keyboard) and the object in which it took place (for example,
on a button, or in a particular TextField). Additionally, some events can indirectly cause
some other events to fire. For example, when the user selects a menu item that opens a
window, it causes another event—the opening of the window.

There are two fundamental types of events in Titanium: those that you define yourself (a custom
event) and those already defined by the Titanium API (a button click event is a good example
of this).

In the following recipes, we will explore a number of Titanium-defined events before showing
you how to create custom events that can pass data between your app and a Webview.

As mentioned in the previous recipe, the user can also indirectly cause events to occur.
Buttons, for example, have an event called click, which occurs when the user taps the
particular button on the screen. The code that handles the response to an event is called
an event handler.

Chapter 6

151

There are many events that can occur with each object in your Titanium application. The good
news is that you don't have to learn about all of them, and those that are already defined are
listed in the Titanium API. You simply need to know how they work and how the event data is
accessed so that you can find out whether the object is able to respond to that event.

In this recipe, we will explore the events that occur from a number of common components,
using OptionDialog as an example, and explain how to access the properties of those
events. We'll also explain how to create a function that passes the resulting event back to
our executing code.

How to do it…
1.	 Open the app.js file in your editor, and below your declaration of the win1 object,

type the following code:
//create a button that will launch the optiondialog via
//its click event
var buttonLaunchDialog = Ti.UI.createButton({
 title: 'Launch OptionDialog',
 top: 110,
 left: 20,
 width: 280,
 height: 40
});

//create the event listener for the button
buttonLaunchDialog.addEventListener('click',function(e){
 console.log(e.source + ' was tapped, it has a title of:
 ');
 console.log(e.source.title);
});

//add the launch dialog button to our window
win1.add(buttonLaunchDialog);

2.	 Try launching the app now and checking out the console.

3.	 Now, after we have created the preceding code, we are going to create an
OptionDialog with an event listener that uses an external function as its event
handler. We'll do this in the event handler function for buttonLaunchDialog:
//create the event listener for the button
buttonLaunchDialog.addEventListener('click',function(e){
 console.log(e.source + ' was tapped, it has a title of: ');
 console.log(e.source.title);

Getting to Grips with Properties and Events

152

 var dialog = Ti.UI.createOptionDialog({
 options:['More than words can say!',
 'Lots!',
 'It is okay...',
 'I hate ice cream', 'Cancel'],
 cancel: 4,
 title: 'How much do you like ice cream?'
 });

 //add the event listener for the option dialog
 dialog.addEventListener('click', optionDialogEventHandler);

 //show the option dialog
 dialog.show();
});

4.	 All that is left to do now is to create the final event handler function
for our OptionDialog. Add the following function to your code before the
buttonLaunchDialog event listeners. You can really put this function anywhere.
However, if it isn't defined before your call to it is, the JSLint validator in Titanium
will throw a warning:
//this is the event handler function for our option dialog
function optionDialogEventHandler(e) {
 alert(e.source + ' index pressed was ' + e.index);
}

Try launching your code now, in either the iPhone simulator or the Android emulator.
Just as is shown in the following example screenshot, you should be able to tap the
button and execute the launch of OptionDialog through the button's event handler,
which in turn can show an alert executed via the OptionDialog event handlers.

Chapter 6

153

How it works…
Firstly, it's important to reiterate the difference between the event handler and the event
listener. The code that listens for a particular event, such as a click, and then attaches
a particular function in response, is called the event listener. The code that handles the
response to an event is called an event handler. In this recipe, we showed that event listeners
can be launched directly via user interaction (as in a button click), and that the event handler
can be executed in one of two ways.

Getting to Grips with Properties and Events

154

Our first method is inline; that is, the event handler function is declared directly within
the event listener, such as buttonLaunchDialog.addEventListener('click',
function(e){});. This is great for quick execution of code that is used perhaps once
for a simple task and does not have a great deal of code reuse. The second method, and
a much preferred way of using an event handler, is to write it as a separate, self-contained
function, like this:

function dialogClicked(e) {
 //e.source will tell you what object was clicked
}

//create the event listener for the button
buttonLaunchDialog.addEventListener('click', dialogClicked);

This method allows you to get much more code reuse and is generally considered a much
neater way of organizing your source code.

Passing event data between your app and a
Webview using custom events

So, while we can use the events built into the Titanium API and these will suit 90% of our
general purposes, what happens when we want to launch an event that's not covered by
one of the standard Titanium components? Luckily for us, Titanium already has it covered
with the fireEvent method in our Ti.App namespace!

The fireEvent allows you to execute an arbitrary event with an event listener name that
you determine, and then listen for that event in your code. In this recipe, we are going to get
a little tricky and write code that copies an input field's data and displays it on a label back
in our app. We will do this by firing a custom event from within a Webview, which we'll then
listen for and respond to in our Titanium window!

How to do it…
To get started, open the app.js file in your editor and make the following changes:

1.	 Below your declaration of the win2 object, type the following code to create
the Webview:
//create a webview and then add that to our
//second window (win2) at the bottom
var webview = Ti.UI.createWebView({
 url: 'webevent.html',
 width: Ti.UI.FILL,
 height: 50,

Chapter 6

155

 top: 10
});

2.	 Now, create a new HTML file and call it webevent.html, with the content in
the following code block. When you are done, save the HTML file in your project
Resources directory:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
<head>
 <title>EventHandler Test</title>
</head>
<body>
 <input name="myInputField" id="myInputField" value=""
 size="40" />
</body>

<script>
 //capture the keypress event in javascript and fire
 //an event passing through our textBox's value as a
 //property called 'text'
 var textBox = document.getElementById("myInputField");
 textBox.onkeypress = function () {
 // passing object back with event
 Ti.App.fireEvent('webviewEvent',
 { text: this.value });
 };
</script>
</html>

3.	 All that is left to do now is to create in our app.js file the event handler that will copy
the input field data from our HTML file as we type in it, and then add our webview to
the Window. Write the following code below your initial webview object declaration in
the app.js file:
//create a label and add to the window
var labelCopiedText = Ti.UI.createLabel({
 width: Ti.UI.SIZE,
 height: Ti.UI.SIZE
});
win2.add(labelCopiedText);

//create our custom event listener
Ti.App.addEventListener('webviewEvent', function(e)
{
 labelCopiedText.text = e.text;
});
win2.add(webview);

Getting to Grips with Properties and Events

156

Run your app in the simulator now. You should be able to type in the input field that is within
your Webview to see the results mirrored on the label that you positioned above the field!
You should see a screen just like the one pictured here:

How it works…
Basically, our event fired from the Ti.App.fireEvent method creates a cross-context
application event that any JavaScript file can listen to. There are two caveats to this, however;
firstly, the event can be handled only if the same event name is used in both your fireEvent
call and your listener. As with app properties, this event name is case sensitive, so make sure
that it is spelled exactly the same in all parts of your application code.

Chapter 6

157

Secondly, you must pass an object back even if it is empty, and that object must be in
a JSON-serialized format. This standardization ensures that your data payload is always
transportable between contexts.

There's more
It's also possible (and necessary in order to avoid memory leaks) to remove an event
listener from your code when you no longer need it. You can do this by calling Ti.App.
removeEventListener and passing to it the name of your event and the callback
function that handles it; note that this is still case sensitive, so your event name must
match exactly! An example for our application of removing webviewEvent would be this:

Ti.App.removeEventListener('webviewEvent', myhandler);

Remember that to properly remove an event, you must pass the name and the handler.
So it's best to refactor our preceding code as the following:

//create a label and add to the window
var labelCopiedText = Ti.UI.createLabel({
 left: 20,
 right: 20,
 width: Ti.UI.FILL,
 height: Ti.UI.SIZE
});

win2.add(labelCopiedText);

function updateLabel(e){
labelCopiedText.text = e.text;
}

//create our custom event listener
Ti.App.addEventListener('webviewEvent', updateLabel);

win2.add(webview);

Note that we've moved our handler for updating the label into a function called updateLabel,
and we're referencing that in our event listener code. So now we can easily remove the event
handler using this code:

Ti.App.removeEventListener('webviewEvent', updateLabel);

Doing this when we no longer need the event (for example, when this window is closed)
means that we're no longer listening for the event.

Getting to Grips with Properties and Events

158

It is considered best practice to avoid using global variables, and specifically global event
handlers, unless absolutely necessary. In the case of the preceding example, and with using
a WebView, it's okay, but you must ensure that you are removing any event handlers on
completion and when the window is closed.

If you don't do this, event handlers can remain in place, and any associated UI elements
remain alive. Even though you close a window and assume that its resources have been
released, they won't be in this case. Then, every time you open the window, a new copied
instance will be created, eventually leading to memory leaks and app crashes.

159

7
Creating Animations,

Transformations
and Implementing

Drag and Drop

In this chapter, we will cover the following recipes:

ff Animating a view using the Animate method

ff Animating a view using 2D Matrix and 3D Matrix transforms

ff Dragging an ImageView using touch events

ff Scaling an ImageView using the slider control

ff Saving our funny face image using the toImage() method

Introduction
Almost any control or element in Titanium can have an animation or transform applied to it.
This allows you to really enhance your applications by adding a level of interactivity and bling
that your apps would otherwise perhaps not have.

In this chapter, we will create a small application that allows the user to choose a funny face
image, which we are going to position over the top of a photograph of ourselves. We'll use
transitions and animations in order to display the funny face pictures and to also allow the
user to adjust the size of their photograph and its position so that it fits neatly within the
funny face cut-out section.

Creating Animations, Transformations and Implementing Drag and Drop

160

Finally, we'll combine both our photograph and the funny face into one complete image using
the Window's toImage() method, letting the user e-mail the resulting image to their friends!

The complete source code for this entire chapter can be found in the Chapter 7/
FunnyFaces folder.

Animating a view using the Animate method
Any window, view, or component in Titanium can be animated using the Animate method. This
allows you to quickly and confidently create animated objects that give your applications the
wow factor. Additionally, you can use animations as a way of holding information or elements
off the screen until they are actually required. A good example of this would be if you had
three different TableViews but only wanted one of those views visible at any one time. Using
animations, you could slide those tables in and out of the screen space whenever it suited
you, without the complication of creating additional windows.

In the following recipe, we will create the basic structure of our application by laying out a
number of different components and then get down to animating four different ImageViews;
these will each contain a different image to use as our funny face character.

Getting ready
To prepare for this recipe, open up Appcelerator Studio and log in if you have not already
done so. If you need to register a new account, you can do so for free directly from within
the application. Once you are logged in, click on New Project | Classic template, and the
details window for creating a new project will appear. Enter FunnyFaces as the name of
the app, and fill in the rest of the details with your own information.

Pay attention to the app identifier, which is written normally in backwards domain notation
(that is, com.packtpub.funnyfaces). This identifier cannot be easily changed after the
project is created and you will need to match it exactly when creating provisioning profiles
for distributing your apps later on.

The first thing to do is copy all the required images into an images folder under your project's
Resources directory. Then open the app.js file in Appcelerator Studio and replace its contents
with the following code; this code will form the basis of our FunnyFaces application layout:

// this sets the background color of the master UIView
// Ti.UI.setBackgroundColor('#fff');

//
// create root window
//

Chapter 7

161

var win1 = Ti.UI.createWindow({
 title : 'Funny Faces',
 backgroundColor : '#fff'
});

//this will determine whether we load the 4 funny face
//images or whether one is selected already
var imageSelected = false;

//the 4 image face objects, and their parent view yet to be created
var images;
var image1;
var image2;
var image3;
var image4;

var imageViewMe = Ti.UI.createImageView-({
 image : '/images/me.png',
 zIndex : -1,
 visible : false,
 center : {
 x : 150,
 y : 240
 }
});
win1.add(imageViewMe);

var chooseLabel = Ti.UI.createLabel({
 backgroundColor : "#70F",
 width : Ti.UI.FILL,
 textAlign : "center",
 height : Ti.UI.FILL,
 text : "TAP TO CHOOSE AN IMAGE",
 color : "#fff",
 shadowColor : "#000",
 shadowOffset : {
 x : 2,
 y : 2
 },
 font : {

 fontFamily : "AmericanTypewriter-Bold", // iOS font
 fontSize : 36

Creating Animations, Transformations and Implementing Drag and Drop

162

 },
});

chooseLabel.addEventListener('click', function(e) {

});

win1.add(chooseLabel);

var imageViewFace = Ti.UI.createImageView({
 visible : false,
 width : Ti.UI.FILL,
 bottom : 40,
 zIndex : 5
});

imageViewFace.addEventListener('touchstart', function(e) {

});

imageViewFace.addEventListener('touchmove', function(e) {

});

win1.add(imageViewFace);

//this footer will hold our save button and zoom slider objects
var footer = Ti.UI.createView({
 height : 40,
 backgroundColor : '#000',
 bottom : 0,
 left : 0,
 zIndex : 2
});
var btnSave = Ti.UI.createButton({
 title : 'Send Photo',
 color : "#fff",
 width : 100,
 left : 10,
 height : 34,
 top : 3
});

Chapter 7

163

footer.add(btnSave);

var zoomSlider = Ti.UI.createSlider({
 left : 125,
 top : 8,
 height : 30,
 width : 180
});

//create the sliders event listener/handler
zoomSlider.addEventListener('change', function(e) {

});

footer.add(zoomSlider);

win1.add(footer);

//open root window
win1.open();

function setChosenImage() {

}

Build and run your application in the emulator for the first time, and you should end up seeing
a screen that looks just like the following example:

Creating Animations, Transformations and Implementing Drag and Drop

164

How to do it…
Now, back in the app.js file, we will animate the four ImageViews, which will each provide
an option for our funny face image. Inside the declaration of the chooseLabel object's event
handler, type in the following code:

chooseLabel.addEventListener('click', function(e) {
 chooseLabel.hide();

 images = Ti.UI.createView({
 width : Ti.UI.FILL,
 height : 440,
 zIndex : 5
 });

 win1.add(images);

 if (imageSelected == false) {
 //transform our 4 image views onto screen so
 //the user can choose one!
 image1 = Ti.UI.createImageView({
 backgroundImage : '/images/clown.png',
 left : -160,
 top : -140,
 width : 160,
 height : 220,
 zIndex : 2
 });
 image1.addEventListener('click', setChosenImage);
 images.add(image1);

 image2 = Ti.UI.createImageView({
 backgroundImage : '/images/policewoman.png',
 left : 321,
 top : -140,
 width : 160,
 height : 220,
 zIndex : 2
 });
 image2.addEventListener('click', setChosenImage);
 images.add(image2);

 image3 = Ti.UI.createImageView({
 backgroundImage : '/images/dracula.png',

Chapter 7

165

 left : -160,
 bottom : -220,
 width : 160,
 height : 220,
 zIndex : 2
 });
 image3.addEventListener('click', setChosenImage);
 images.add(image3);

 image4 = Ti.UI.createImageView({
 backgroundImage : '/images/monk.png',
 left : 321,
 bottom : -220,
 width : 160,
 height : 220,
 zIndex : 2
 });
 image4.addEventListener('click', setChosenImage);
 images.add(image4);

 image1.animate({
 left : 0,
 top : 0,
 duration : 500,
 curve : Ti.UI.ANIMATION_CURVE_EASE_IN
 });

 image2.animate({
 left : 160,
 top : 0,
 duration : 500,
 curve : Ti.UI.ANIMATION_CURVE_EASE_OUT
 });

 image3.animate({
 left : 0,
 bottom : 20,
 duration : 500,
 curve : Ti.UI.ANIMATION_CURVE_EASE_IN_OUT
 });

 image4.animate({
 left : 160,
 bottom : 20,

Creating Animations, Transformations and Implementing Drag and Drop

166

 duration : 500,
 curve : Ti.UI.ANIMATION_CURVE_LINEAR
 });
 }

});

Now launch the emulator from Appcelerator Studio and you should see the initial layout
with our Tap To Choose An Image view visible. Tapping the choosen ImageView should
now animate our four funny face options onto the screen!

How it works…
The first block of code is creating the basic layout for our application, which consists of
a couple of ImageViews, and a footer view holding our Save button and the Slider control
we'll use later on to increase the zoom scale of our own photograph. Our second block
of code is where it gets interesting. Here, we're doing a simple check that the user hasn't
already selected an image using the imageSelected Boolean, before getting into our
animated ImageViews, named image1 through to image4.

Chapter 7

167

The concept behind the animation of these four ImageViews is pretty simple: essentially all
we are doing is changing the properties of our control over a period of time, defined by us
in milliseconds. Here we are changing the top and left properties of all of our images over
a period of half a second, so that we get an effect of them sliding into place on our screen.
You can further enhance these animations by adding more properties to animate. For example,
if we wanted to change the opacity of image1 from 50% to 100% as it slides into place, we
could change the code to look something like this:

image1 = Ti.UI.createImageView({
 backgroundImage: 'images/clown.png',
 left: -160,
 top: -140,
 width: 160,
 height: 220,
 zIndex: 2,
 opacity: 0.5
 });
 image1.addEventListener('click', setChosenImage);
 win1.add(image1);

image1.animate({
 left: 0,
 top: 0,
 duration: 500,
 curve: Ti.UI.ANIMATION_CURVE_EASE_IN,
 opacity: 1.0
 });

Finally, the curve property of animate() allows you to adjust the easing of your animated
component. Here we have used all four animation-curve constants on each of our ImageViews.
They are as follows:

ff Ti.UI.ANIMATION_CURVE_EASE_IN: This accelerates the animation slowly

ff Ti.UI.ANIMATION_CURVE_EASE_OUT: This decelerates the animation slowly

ff Ti.UI.ANIMATION_CURVE_EASE_IN_OUT: This accelerates and decelerates
the animation slowly

ff Ti.UI.ANIMATION_CURVE_LINEAR: This makes the animation speed constant
throughout the animation cycle

Creating Animations, Transformations and Implementing Drag and Drop

168

Animating a view using 2D Matrix and 3D
Matrix transformations

You may have noticed that each of our ImageViews in the previous recipe had a click event
listener attached to them, calling an event handler named setChosenImage.

This doesn't exist, so you get an error if you click an image. Let's fix that. This event handler
will handle setting our chosen funny face image to the imageViewFace component, before
animating the four funny face ImageView selectors out of screen using a number of 2D and
3D Matrix transforms.

How to do it…
Replace the empty setChosenImage function at the bottom of the app.js file with the
following code:

//this function sets the chosen image and removes the 4
//funny faces from the screen

function setChosenImage(e) {
 imageViewFace.image = e.source.backgroundImage;
 imageViewFace.visible = true;
 imageViewMe.visible = true;

 //create the first transform
 var transform1 = Ti.UI.create2DMatrix();
 transform1 = transform1.rotate(-180);
 transform1 = transform1.scale(0);

 var animation1 = Ti.UI.createAnimation({
 transform : transform1,
 duration : 500,
 curve : Ti.UI.ANIMATION_CURVE_EASE_IN_OUT
 });
 image1.animate(animation1);
 animation1.addEventListener('complete', function(e) {
 //remove our image selection from win1
 images.remove(image1);
 });

 //create the second transform
 var transform2 = Ti.UI.create2DMatrix();
 transform2 = transform2.scale(0);

Chapter 7

169

 var animation2 = Ti.UI.createAnimation({
 transform : transform2,
 duration : 500,
 curve : Ti.UI.ANIMATION_CURVE_EASE_IN_OUT
 });
 image2.animate(animation2);
 animation2.addEventListener('complete', function(e) {
 //remove our image selection from win1
 images.remove(image2);
 });

 //create the third transform
 var transform3 = Ti.UI.create2DMatrix();
 transform3 = transform3.rotate(180);
 transform3 = transform3.scale(0);

 var animation3 = Ti.UI.createAnimation({
 transform : transform3,
 duration : 1000,
 curve : Ti.UI.ANIMATION_CURVE_EASE_IN_OUT
 });
 image3.animate(animation3);
 animation3.addEventListener('complete', function(e) {
 //remove our image selection from win1
 images.remove(image3);
 });

 var transform4 = Ti.UI.create3DMatrix();
 transform4 = transform4.rotate(200, 0, 1, 1);
 transform4 = transform4.scale(2);
 transform4 = transform4.translate(20, 50, 170);
 //the m34 property controls the perspective of the 3D view
 transform4.m34 = 1.0 / -3000;
 //m34 is the position at [3,4]
 //in the matrix

 var animation4 = Ti.UI.createAnimation({
 transform : transform4,
 duration : 1000,
 curve : Ti.UI.ANIMATION_CURVE_EASE_IN_OUT
 });
 image4.animate(animation4);
 animation4.addEventListener('complete', function(e) {
 //remove our image selection from win1

Creating Animations, Transformations and Implementing Drag and Drop

170

 images.remove(image4);
 win1.remove(images);

 });

 //change the status of the imageSelected variable
 imageSelected = true;
}

How it works…
Again, we are creating animations for each of the four ImageViews, but this time, in a
slightly different way. Instead of using the built-in animate method, we will create a separate
animation object for each ImageView, before calling the animate method of ImageView and
passing this animation object through to it. This method of creating animations allows you to
have finer control over them, including the use of transforms.

Transforms have a couple of shortcuts to help you perform some of the most common
animation types quickly and easily. The image1 and image2 transforms are shown here
using the rotate and scale methods respectively. Scale and rotate in this case are 2D
Matrix transforms, meaning they only transform the object in custom in two-dimensional
space along its x and y axes. Each of these transformation types takes a single integer
parameter; in the case of scale, this is 0-100 (%), and for rotate, it is the number of degrees
from -360 through to 360 degrees.

Another advantage of using the transforms for your animations is that you can easily chain
them together to perform a more complex animation style. In the preceding code, you can
see that both a scale and a rotate transform are transforming the image3 component. When
you run the application in the emulator or on your device, you should notice that both of these
transform animations are applied to the image3 control.

Finally, the image4 control also has a transform animation applied to it, but this time we are
using a 3D Matrix (iOS only) transform instead of the 2D Matrix transforms used for the other
three ImageViews. These work the same way as regular 2D Matrix transforms except that you
can also animate your control in 3D space, along the z axis.

It's important to note that animations have two event listeners, called start and complete
respectively. These event handlers allow you to perform actions based on the beginning or
end of your animation's life cycle. As an example, you could chain animations together by
using the complete event to add a new animation or transform to an object after the previous
animation has finished. In our preceding example, we are using this complete event to remove
our ImageView from the window once its animation has finished.

Chapter 7

171

Dragging an ImageView using touch events
Now that we have allowed the user to select a funny face image from our four animated
ImageView controls, we need to allow them to adjust the position of their own photo so it
fits within the transparent hole that makes up the face portion of our funny face. We will do
this using the touch events available to us in the ImageView control.

How to do it…
The simplest way to perform this task is by capturing the x and y touch points and moving the
ImageView to that location. The code for this is simple; just add the following code after your
declaration of the imageViewFace control, but before you add this control to your window:

imageViewFace.addEventListener('touchmove', function(e){
 imageViewMe.left = e.x;
 imageViewMe.top = e.y;
});

Now run your app in the emulator and, after selecting a funny face image, attempt to touch
and drag your photograph around the screen. You should notice that it works but it doesn't
seem quite right, does it? This is because we are moving the image based on the top corner
position, instead of the center of the object. Let's change our code to instead work on the
center point of the imageViewMe control, by replacing the preceding code that we just wrote
with the following new source code:

imageViewFace.addEventListener('touchstart', function(e) {
 imageViewMe.ox = e.x - imageViewMe.center.x;
 imageViewMe.oy = e.y - imageViewMe.center.y;
});

imageViewFace.addEventListener('touchmove', function(e) {
 imageViewMe.center = {
 x : (e.x - imageViewMe.ox),
 y : (e.y - imageViewMe.oy)
 };
});

Creating Animations, Transformations and Implementing Drag and Drop

172

Run your app in the emulator again and, after selecting a funny face image, attempt to touch
and drag your photograph around the screen. This time you should notice a much smoother,
more natural-feeling drag and drop effect! Try positioning your photograph into the center of
one of your funny faces, and you should be able to replicate the following screenshot:

How it works…
Here we are using two separate touch events to transform the left and top positioning properties
of our imageViewMe control. Firstly, we need to find the center point. We do this in our
touchstart event using the center.x and center.y properties of our ImageView control
and assigning these to a couple of custom variables, which we have called ox and oy. Doing
this within the touchstart event ensures that these variables are immediately available to us
when the touchmove event occurs. Then, within our touchmove event, instead of changing
the top and left properties of imageViewMe, we pass its center property our new x and y co-
ordinates based on the touch x and y minus the center point, which we saved as our object's
ox and oy variables. This ensures that the movement of the image is nice and smooth!

Chapter 7

173

Scaling an ImageView using the slider
control

Now we have created code to select an animated funny face and we have the ability to move
our photograph image around by dragging and dropping, we need to be able to scale our
photograph using a slider control and a new transformation.

In this recipe, we will hook up the event listener of our slider control and use another 2D
Matrix transformation to change the scale of our imageViewMe control, based on the user
input this time.

How to do it…
At the bottom of your current source code, you should have created a slider control called
zoomSlider. We are going to replace that code with a slightly updated version and then
capture the slider's change event in order to scale our imageViewMe component based
on the value selected. Replace your declaration of the zoomSlider component with the
following code:

var zoomSlider = Ti.UI.createSlider({
 left: 125,
 top: 8,
 height: 30,
 width: 180,
 minValue: 1,
 maxValue: 100,
 value: 50
});

//create the sliders event listener/handler
zoomSlider.addEventListener('change', function(e) {
 //create the scaling transform
 var transform = Ti.UI.create2DMatrix();
 transform = transform.scale(zoomSlider.value);
 var animation = Ti.UI.createAnimation({
 transform : transform,
 duration : 100,
 curve : Ti.UI.ANIMATION_CURVE_EASE_IN_OUT
 });
 imageViewMe.animate(animation);
});

//finally, add our slider to the footer view
footer.add(zoomSlider);

Creating Animations, Transformations and Implementing Drag and Drop

174

Try running your application in the emulator now. After selecting a funny face image, you
should be able to scale the me photograph using the slider control. Try using it in conjunction
with the touch and drag from the previous recipe to fit your face inside the funny picture area!

How it works…
Here we are performing a very similar action to what we did back in the second recipe of this
chapter. Within the change event handler of our slider control, we are applying a 2D Matrix
transform to the imageViewMe control, using the scale method. Our slider has been given
a minimum value of 0 and a maximum of 100; these values are the relative percentages
that we are going to scale our image. Using a very short duration, 100 milliseconds, on our
animation, we can make the movement of the slider almost instantaneously relate to the
scale of the me photograph!

Chapter 7

175

Saving our funny face using the toImage()
method

For our very last part of this application, we want to combine the two images together
(being our me photograph and the funny face image we have chosen) and save them to the
filesystem as one complete image. To do this, we will hook up the event listener of our save
button control and use another common method found on almost all views and control types,
toImage. Once we've combined both our images together and saved the resulting image off
to the local filesystem, we'll then create a quick e-mail dialog and attach our funny face to it,
allowing the user to send the complete image off to their friends!

How to do it…
Underneath the instantiation of your btnSave object, add the following event listener and
handler code:

btnSave.addEventListener("click", function(e) {
 //hide the footer
 footer.visible = false;

 //do a slight delay before capturing the image
 //so we are certain the footer is hidden!
 setTimeout(function(e) {
 //get the merged blob -- note on android you
 //might want to use toBlob() instead of toImage()
 var mergedImage = win1.toImage();

 writeFile = Ti.Filesystem.getFile(Ti.Filesystem.
applicationDataDirectory, 'funnyface.jpg');
 writeFile.write(mergedImage);

 //now email our merged image file!
 var emailDialog = Ti.UI.createEmailDialog();
 emailDialog.setSubject("Check out funny face!");
 emailDialog.addAttachment(writeFile);

 emailDialog.addEventListener('complete', function(e) {
 //reset variables so we can do another funny face
 footer.visible = true;
 imageViewFace.image = null;
 imageViewFace.hide();
 imageViewMe.hide();
 chooseLabel.show();
 imageSelected = false;
 });

Creating Animations, Transformations and Implementing Drag and Drop

176

 emailDialog.open();

 }, 250);
});

Now launch your application in the emulator or on your device, again going through all
the steps until you have chosen a funny face and adjusted the layout of your photograph
accordingly. When done, hit the Save button and you should see an e-mail dialog appear
with your combined image visible as an attachment.

How it works…
The toImage method simply takes a combined screenshot of the element in question; in our
case, we are performing the command on win1, our root Window object. To do this, we are
simply hiding our footer control and then setting a short timeout, which, when elapsed, uses
toImage to take a combined screenshot of both our imageViewMe and imageViewFace
controls. We can then save this to the filesystem.

The toImage method creates a blob, a representation of an image that can be used to
upload to a webservice, save to a local filesystem, or upload via an API to a web server.

The following screenshot shows our final combined image, which has been saved to the
filesystem and attached to a new e-mail dialog ready to be shared among the user's friends
and family:

177

8
Interacting with Native

Phone Applications
and APIs

In this chapter, we will cover the following recipes:

ff Creating an Android options menu

ff Accessing the contacts / address book

ff Storing and retrieving data via the clipboard

ff Creating a background service on an iPhone

ff Updating data using background fetch

ff Displaying local notifications on an iPhone

ff Displaying Android notifications using intents

ff Storing your Android app on the device's SD card

Introduction
While Titanium allows you to create native apps that are almost entirely cross-platform, it is
inevitable that some devices will inherently have operating system and hardware differences
that are specific to them (particularly between Android and iOS). Anyone who has used both
Android and iPhone devices will immediately recognize the very different way in which the
notification systems are set up, for example. However, there are also other platform-specific
limitations that are very specific to the Titanium API.

Interacting with Native Phone Applications and APIs

178

In this chapter, we'll show you how to create and use some of these device-specific components
and APIs in your applications. Unlike most chapters in this book, this one does not follow a
singular, coherent application, so feel free to read each recipe in whatever order you wish.

Creating an Android options menu
Options menu are an important part of the Android user interface—they are the primary
collections of menu items for a screen and appear when the user taps the Menu button
in their device. In this recipe, we are going to create an Android options menu and add it
to our screen, giving each option its own click event with an action.

Getting ready
To prepare for this recipe, and all the recipes in this chapter, open up Titanium Developer
and log in if you have not already done so. You can either use the same application for each
of the recipes in this chapter, or create a new one; the choice is up to you.

The code for this application is available in the Chapter 8/Recipe 1 folder.

How to do it…
Open the app.js file and enter the following code:

//create the root window
var win1 = Ti.UI.createWindow({
 title : 'Android Options Menu',
 backgroundColor : '#ccc'
});

if (Ti.Platform.osname == 'android') {
 //references the current android activity
 var activity = win1.activity;

 //create our menu
 activity.onCreateOptionsMenu = function(e) {
 var menu = e.menu;

 //menu button 1
 var menuItem1 = menu.add({
 title : "Item 1",
 });

 menuItem1.addEventListener("click", function(e) {

Chapter 8

179

 alert("Menu item #1 was clicked");
 });

 var menuItem2 = menu.add({
 title : "Show Item #4",
 itemId : 2
 });

 menuItem2.addEventListener("click", function(e) {
 menu.findItem(4).setVisible(true);
 });

 //menu button 3
 var menuItem3 = menu.add({
 title : "Item 3",
 itemId: 3
 });

 menuItem3.addEventListener("click", function(e) {
 alert("Menu item #3 was clicked");
 });

 //menu button 4 (will be hidden)
 var menuItem4 = menu.add({
 title : "Hide Item #4",
 itemId : 4
 });

 menu.findItem(4).setVisible(false);
 menuItem4.addEventListener("click", function(e) {
 menu.findItem(4).setVisible(false);
 });

 };

 //turn off the item #4 by default
 activity.onPrepareOptionsMenu = function(e) {

 var menu = e.menu;

 };
}

win1.open();

Interacting with Native Phone Applications and APIs

180

Build and run your application in the Android emulator for the first time, and tap the Menu
button on your device/emulator. You should end up seeing a screen that looks just like what
is shown in the following example. Tapping on the first menu item should execute its click
event and show you an alert dialog, as follows:

How it works…
Firstly, it is important to note that the code in this recipe is applicable to Android only. iOS
platforms don't have a physical menu button like Android devices, and therefore they don't
have an option menu. On Android, these menus help facilitate user actions. We can see this
occurring in the click event of the first menu item, where we used an event handler to capture
this event and show a simple alert dialog.

Notice that we're hiding Item 4 by default by setting its visible property to false. If you click
on Item 2 and then select the menu, you'll notice that Item 4 appears. You can click on
Item 4 and again click on the menu… and it will be gone.

Chapter 8

181

Accessing the contacts / address book
There will be times when you want the user to access existing data from their device to
populate some fields or a database within your own application. Possibly the best example
of this is the utilization of the address book and contact details.

If you have built, for example, an application that was primarily meant for sharing data over
e-mail, using the address book in the device would allow the user to select contacts that
they already have from a selection list, as opposed to having to remember or re-enter the
data separately.

In this recipe, we'll create a basic interface that accesses our address book and pulls a
contact's details, filling in our interface components—including some text fields and an
image view—as we do so. Before you start, make sure that your device or emulator has
some contacts available in it by choosing the Contacts icon on iPhone or the People
icon on Android and adding at least one entry.

How to do it…
1.	 Open the TiApp.xml file and find this tag:

<android
xmlns:android="http://schemas.android.com/apk/res/android"/>

2.	 Replace it with the following:
<android xmlns:android="http://schemas.android.com/apk/res/
android">
 <manifest>
 <uses-permission android:name="android.permission.READ_
CONTACTS"/>
 </manifest>
</android>

3.	 Next, open the app.js file and replace its contents with the following code:

//create the root window
var win1 = Ti.UI.createWindow({
 title : 'Android Options Menu',
 backgroundColor : '#ccc'
});

//add the textfields
var txtName = Ti.UI.createTextField({
 color : "#000",
 top : 170,

Interacting with Native Phone Applications and APIs

182

 left : 25,
 right : 25,
 height : 40,
 backgroundColor : '#fff',
 borderRadius : 3,
 hintText : 'Friend\'s name...',
 paddingLeft : 3
});
win1.add(txtName);

var txtEmail = Ti.UI.createTextField({
 color : "#000",
 top : 220,
 left : 25,
 right : 25,
 height : 40,
 backgroundColor : '#fff',
 borderRadius : 3,
 hintText : 'Contact\'s email address...',
 paddingLeft : 3,
 keyboardType : Ti.UI.KEYBOARD_EMAIL
});
win1.add(txtEmail);

//this is the user image
var imgView = Ti.UI.createImageView({
 width : 80,
 left : 25,
 height : 80,
 top : 70,
 backgroundColor : "#BBB"

});
win1.add(imgView);

var contactButton = Ti.UI.createButton({
 title : 'Select a contact...',
 left : 20,
 top : 10,
 right : 20
});
contactButton.addEventListener('click', function(e) {
 //

Chapter 8

183

 //if array of details is specified, the detail view will
 be
 //shown
 //when the contact is selected. this will also trigger
 //e.key, and e.index in the success callback
 //

 function selectContact() {
 Ti.Contacts.showContacts({
 selectedProperty : function(e) {
 Ti.API.info(e.type + ' - ' + e.value);
 txtEmail.value = e.email;
 },
 selectedPerson : function(e) {
 console.log(JSON.stringify(e));
 var person = e.person;
 txtEmail.value = person.email.home[0];
 if (person.image != null) {
 imgView.image = person.image;
 }

 txtName.value = person.fullName;
 }
 });
 }

 if (Ti.Platform.osname = "iphone") {
 if (Ti.Contacts.contactsAuthorization ==
 Ti.Contacts.AUTHORIZATION_AUTHORIZED) {
 selectContact();
 } else if (Ti.Contacts.contactsAuthorization ==
 Ti.Contacts.AUTHORIZATION_UNKNOWN) {
 Ti.Contacts.requestAuthorization(function(e) {
 if (e.success) {
 selectContact();
 } else {
 alert("Contact access not allowed");
 }
 });
 } else {
 alert("Contact access not allowed");
 }
 } else {

Interacting with Native Phone Applications and APIs

184

 selectContact();
 }

});

win1.add(contactButton);

win1.open();

How it works…
Access to the address book differs depending on the platform. In the case of iOS, the user has
to give explicit permission to allow the app to access the address book / contacts when it's
first requested in the application. For Android, the permission is integrated into the app, and
the user typically sees what permission the app needs while installing from the Play Store
(the installation may stop if they don't agree).

In the first part, we updated the TiApp.xml file, replacing the default Android tag with
an updated version that allows the app to read the address book. Note that write access
requires an additional android.permission.WRITE_CONTACTS.

For iOS, we add some code to perform contact authorization. The user is asked to grant
permission and if they agree, the code is able to read the contact records.

All access to the device's contacts is available through the Ti.Contacts namespace. In this
recipe, we built a basic screen with some text fields and an image view, which we populated
by loading the contacts API and choosing an entry from the device's contacts list. To do this,
we executed the showContacts() method, which has two distinct callback functions:

ff SelectedProperty: This callback is executed when the user chooses a person's
property rather than a single contact entry

ff SelectedPerson: This callback is executed when the user chooses a personal entry

In our example recipe, we utilized the SelectedPerson function and assigned the (e)
callback property to a new object named person. From here, we can access the field
properties of the contact that was chosen from the device's contact list, such as phone,
e-mail, name, and photograph, and then assign these variables to the relevant fields in
our own application. The following screenshots show the contact screen empty and filled
in after we have chosen a contact from the device's list:

Chapter 8

185

Storing and retrieving data via the clipboard
The clipboard is used to store textual and object data so that it can be utilized between
different screens and applications on your device. While both iOS and Android have a built-in
clipboard capability, Titanium extends this by letting you programmatically access and write
data to the clipboard. In this recipe, we will create a screen with two text fields and a series of
buttons that allow us to programmatically copy data from one text field and paste it to another.

How to do it…
1.	 Open your project's app.js file and enter the following text (deleting any existing

code). Once you are done, run your application on the simulator to test it:
var win1 = Ti.UI.createWindow({
 backgroundColor : '#fff',
 title : 'Copy and Paste'
});

var txtData1 = Ti.UI.createTextField({
 left : 20,
 width : 280,

Interacting with Native Phone Applications and APIs

186

 height : 40,
 top : 40,
 borderStyle : Ti.UI.INPUT_BORDERSTYLE_ROUNDED
});

var txtData2 = Ti.UI.createTextField({
 left : 20,
 width : 280,
 height : 40,
 top : 100,
 borderStyle : Ti.UI.INPUT_BORDERSTYLE_ROUNDED
});

var copyButton = Ti.UI.createButton({
 title : 'Copy',
 width : 80,
 height : 30,
 left : 20,
 top : 150
});

var pasteButton = Ti.UI.createButton({
 title : 'Paste',
 width : 80,
 height : 30,
 left : 120,
 top : 150,
 visible : false
});

var clearButton = Ti.UI.createButton({
 title : 'Clear',
 width : 80,
 height : 30,
 right : 20,
 top : 150
});

Chapter 8

187

function copyTextToClipboard() {
 Ti.UI.Clipboard.setText(txtData1.value);
 copyButton.visible = false;
 pasteButton.visible = true;
}

function pasteTextFromClipboard() {
 txtData2.value = Ti.UI.Clipboard.getText();
 txtData1.value = '';
 copyButton.visible = true;
 pasteButton.visible = false;
}

function clearTextFromClipboard() {
 Ti.UI.Clipboard.clearText();
}

copyButton.addEventListener('click', copyTextToClipboard);
pasteButton.addEventListener('click',
pasteTextFromClipboard);
clearButton.addEventListener('click',
clearTextFromClipboard);

win1.add(txtData1);
win1.add(txtData2);
win1.add(copyButton);
win1.add(pasteButton);
win1.add(clearButton);
win1.open();

How it works…
In this recipe, we copied simple strings to and from the clipboard. However, it is important to
note that you can also copy objects using the Ti.UI.Clipboard.setObject() method.

There are two methods that we utilized to copy data to and from the clipboard, called
setText() and getText(). They do exactly the functions that their names describe. We
set the text in the clipboard from our first text field using the Copy button, and then paste
that same text programmatically in the second text field using the Paste button. Using the
clipboard has many benefits, but the most profound is the ability to let users share data
provided by your application with other applications on their devices.

Interacting with Native Phone Applications and APIs

188

As an example, you may provide a Copy button for an e-mail address, which can then be
copied and pasted by the user to their local e-mail client, such as Mobile Mail or Google's
Gmail. Run the code and you'll see the following steps, allowing you to copy the text from
one text field, paste it into another, and clear it:

Creating a background service on an iPhone
Since iOS 4, Apple has supported background services, which means your apps can now run
code in the background, much like Android apps (however, there are some limitations as well
as workarounds). In this recipe, we are going to create a background service that will execute
a set piece of code from a separate file called bg.js. We will also log each stage of the
background service cycle to the console. Thus, you will understand each part of the process.

How to do it…
Open your project's app.js file and enter the following text (deleting any code that exists):

//create root window
var win1 = Ti.UI.createWindow({
 backgroundColor : '#fff',

Chapter 8

189

 title : 'Background Services'
});

//register a background service.
//this JS will run when the app is backgrounded
var service = Ti.App.iOS.registerBackgroundService({
 url : 'bg.js'
});

Ti.API.info("registered background service = " + service);

//fired when an app is resuming for suspension
Ti.App.addEventListener('resume', function(e) {
 Ti.API.info("App is resuming from the background");
});

//fired when an app has resumed
Ti.App.addEventListener('resumed', function(e) {
 Ti.API.info("App has resumed from the background");
});

//fired when an app is paused
Ti.App.addEventListener('pause', function(e) {
 Ti.API.info("App was paused from the foreground");
});

//finally, open the window
win1.open();

Background services were added in iOS 4, but we're not worried
about checking which iOS version is being run. That's because the
latest version of the iOS SDK supports only iOS6+ (at the time of
writing this book) , all of which support background services.

Next, create a new file called bg.js, save it in your project's Resources directory, and type in
the following code. This is the code that we are going to execute via our background service.
Once you're done, run your application in the emulator to test it:

Ti.API.info("This line was executed from a background service!");

setInterval(function() {
 Ti.API.info(new Date().toGMTString() + " - timer fired!");
}, 1000);

Interacting with Native Phone Applications and APIs

190

When you run the app, you'll get a blank screen. Tap the Home button, and you'll notice some
console logging. It tells you that the app has been sent to the background, and a second later,
you'll see an event firing and logging to the console despite your app being in the background!

How it works…
In this example, we started by registering our background service using the bg.js file as the
code we wish to execute when the application becomes "backgrounded." In this situation, the
code in our background service file will fire and log an information message to the console.
Each of the other event listeners have also been handled in this example, so you can run the
application in the emulator, send it to the background, and then click on the app icon again
to reopen it. As you do this, you'll see events being logged to the console, as follows:

Apple does impose some limitations on background services implemented like this. Despite
it looking as if your application is running in the background, it'll only do so for a short span
of time—around 10 minutes. This time can be even lesser if iOS decides to kill your app due
to limited resources/memory and other reasons. This makes this method useful for handling
quick actions based on the app being "backgrounded," but it doesn't make it useful for doing
things such as checking for updates, polling an API, fetching data, and so on.

Updating data using background fetch
The release of iOS 7 added a new background service called background fetch, which allows
an app to poll for new data, updates, or changes at regular intervals. For example, a weather
app can update itself during the day, or a news app can fetch new articles throughout the day.

The interval for background fetch can be set. However, this is not recommended as setting
an interval that is too short will cause iOS to ignore it in order to save battery life. So, in this
example, we will be using Apple's default settings. Typically, background fetch runs by default,
in the morning, evening, and periodically in between.

Chapter 8

191

Note
Background fetch will also run a few minutes after a device is restarted,
due to any of these reasons:

ff A crash causing a reboot
ff A restart because of low battery
ff The user has turned the device off and on

In these instances, background fetch will run soon after the device is
restarted. However, if the application is killed by the user and the device
is restarted, background fetch will not run.

How to do it…
1.	 In order to tell iOS that we wish to use the background fetch service, we need

to register this within the TiApp.xml file. Open this file and replace the <ios>
section with the following code:
<ios>
 <plist>
 <dict>
 <key>UISupportedInterfaceOrientations~iphone</key>
 <array>
 <string>UIInterfaceOrientationPortrait</
string>
 </array>
 <key>UISupportedInterfaceOrientations~ipad</key>
 <array>

<string>UIInterfaceOrientationPortrait</string>

<string>UIInterfaceOrientationPortraitUpsideDown</string>

<string>UIInterfaceOrientationLandscapeLeft</string>

<string>UIInterfaceOrientationLandscapeRight</string>
 </array>
 <key>UIRequiresPersistentWiFi</key>
 <false/>
 <key>UIPrerenderedIcon</key>
 <false/>
 <key>UIStatusBarHidden</key>
 <true/>
 <key>UIStatusBarStyle</key>
 <string>UIStatusBarStyleDefault</string>

Interacting with Native Phone Applications and APIs

192

 <key>UIBackgroundModes</key>
 <array>
 <string>fetch</string>
 </array>
 </dict>
 </plist>
 </ios>

Next, we need to add the event to the app.js file. So, add these lines at the end of the file,
just above the code that opens the window:

// Monitor this event for a signal from iOS to fetch data
Ti.App.iOS.addEventListener('backgroundfetch', function(e) {
 Ti.API.info("Background fetch was started");
});

Now, perform a clean in the project. In Studio, select the Project menu, then Clean, then the
project, and finally OK. After this, restart the app.

Note that it's not possible to test background fetch in the simulator using
Titanium. So install the app on your device to see background fetch in
action. You can monitor the console on your device by launching Xcode
organizer and selecting the console for the attached device.

Displaying local notifications on an iPhone
Along with push notifications (which come from a remote server), iOS also supports local
notifications, which allow developers to create simple, basic notification alerts that look and
act similar to push notifications without the hassle of creating all the certificates and server-
side code necessary for push to work. In this recipe, we are going to extend the previous code
that we wrote for our background service, and create a local notification when the app is
pushed to the background of the system.

How to do it…
Open your project's bg.js file from the previous recipe, and extend it by adding the
following code:

var notification = Ti.App.iOS.scheduleLocalNotification({
 alertBody: 'Hey, this is a local notification!',
 alertAction: "Answer it!",

Chapter 8

193

 userInfo: {
 "Hello": "world"
 },
 date: new Date(new Date().getTime() + 5000)
});

Now, in your app.js file, add the following code at the bottom:

Ti.App.iOS.addEventListener('usernotificationsettings', function() {
 alert("Registered for local notifications successfully");
});

// Check if the device is running iOS 8 or later, before registering
for local notifications
if (Ti.Platform.name == "iPhone OS" && parseInt(Ti.Platform.version.
split(".")[0]) >= 8) {

 Ti.App.iOS.registerUserNotificationSettings({
 types: [
 Ti.App.iOS.USER_NOTIFICATION_TYPE_ALERT,
 Ti.App.iOS.USER_NOTIFICATION_TYPE_SOUND,
 Ti.App.iOS.USER_NOTIFICATION_TYPE_BADGE
]
 });
}

//listen for a local notification event
Ti.App.iOS.addEventListener('notification', function(e)
{
 Ti.API.info("Local notification received: "+ JSON.stringify(e));
 alert('Your local notification caused this event to fire!');
});

Interacting with Native Phone Applications and APIs

194

When you are done, run your application in the simulator to test it. You should be able to send
the application to the background after it starts running (by pressing the home button on your
iPhone), and receive a local notification. Tapping on the notification will reload your app and
cause your notification event listener to fire!

How it works…
A local notification consists of a number of parameters, including these:

ff alertBody: The message that appears in your alert dialog

ff alertAction: The right-hand-side button that executes your application

ff userInfo: The data that you wish to pass back to your app

ff date: The time and date to execute the notification

Chapter 8

195

Our example uses the current date and time, which means that the notification appears
momentarily after the application has become backgrounded. When the notification appears,
the user can either cancel it or use our custom action button to relaunch the app and execute
our notification event handler.

Displaying Android notifications using
intents

Intent is the Android term for an operation that is to be performed on the system. Most
significantly, it is used to launch activities. The primary parameters of an intent are the following:

ff Action: A general action to be performed, such as ACTION_VIEW

ff Data: This is the data to operate the action on, such as a database record or
contact data

In this recipe, we are going to use intents in conjunction with Android's Notification Manager
to create a local notification that will appear in our user's Android notification bar.

How to do it…
You will need the package identifier (in the format of com.yourcompany.yourapp; you
can find it under the Edit tab in Titanium developer) and the class name of your Android app.
You can find the class name by opening the Build/Android folder in your project and then
opening the AndroidManifest.xml file contained within. Inside the application node, you
will find a section that looks like this:

<application android:icon="@drawable/appicon"
android:label="chapter8" android:name="Chapter8Application"
android:debuggable="false" android:theme="@style/Theme.AppCompat">
 <activity android:name=".Chapter8Activity"
android:label="@string/app_name"
android:theme="@style/Theme.Titanium"
android:configChanges="keyboardHidden|orientation|screenSize">

Your className property is a combination of your application identifier and the
android:name attribute in the preceding XML. In our case, this className property
is com.packtpublishing.chapter8.Chapter8Actvitity.

With these two values noted down, open your project's app.js file and enter the following
lines (deleting any existing code):

//create root window
var win1 = Ti.UI.createWindow();

Interacting with Native Phone Applications and APIs

196

if (Ti.Platform.osname == 'android') {
 var intent = Ti.Android.createIntent({
 flags : Ti.Android.FLAG_ACTIVITY_CLEAR_TOP | Ti.Android.FLAG_
ACTIVITY_NEW_TASK,
 className : 'com.packtpublishing.chapter8.Chapter8Activity',
 });

 intent.addCategory(Ti.Android.CATEGORY_LAUNCHER);

 var pending = Ti.Android.createPendingIntent({
 intent : intent,
 flags : Ti.Android.FLAG_UPDATE_CURRENT
 });

 var notification = Ti.Android.createNotification({
 contentIntent : pending,

 contentTitle : 'New Notification',
 contentText : 'Hey there Titanium Developer!!',
 tickerText : 'You have a new Titanium message...',
 ledARGB : 1,
 number : 1,
 when : new Date().getTime()
 });

 Ti.Android.NotificationManager.notify(1, notification);
}

//finally, open the window
win1.open();

Once this is done, run your application on the Android emulator to test it. After your application
has launched, you should be able to exit and pull down the Android notification bar to see
the results.

How it works…
In this recipe, we used intents and activities in conjunction with a notification message.
The notification object itself is relatively simple; it takes in a number of parameters including
the title and message of the notification, along with a badge number and the when parameter
(the datetime that the notification will show, which we have as default to now). The ledARGB
parameter is the color to flash from the device's LED, which we have set to the device default.

Chapter 8

197

You'll notice that we also added a category to our intent using the addCategory method,
like this: intent.addCategory (Titanium.Android.CATEGORY_LAUNCHER). In our
example, we have used CATEGORY_LAUNCHER, which means that our intent should appear
in the launcher as a top-level application.

Coupled with our notification is an object called pending. This is our intent, and it has
been written to launch an activity. In our case, the activity is to launch our application again.
You can also add URL properties to intents so that your application can launch specific code
on re-entry.

The following screenshot shows an example of our notification message in action:

Interacting with Native Phone Applications and APIs

198

Storing your Android app on the device's
SD card

Because of the way Titanium compiles code, it can result in application file sizes that are
larger than traditional native apps. Even a simple hello world app could be several
megabytes in size.

In this recipe, we will show you how to configure your Android application in order for it to be
run on the device's external storage (using a plugin storage card, if available).

How to do it…
Open the tiapp.xml file under your project's root directory and find the <android> node
in the XML; it will be located near the bottom of the file. Alter the <android> node so that it
looks like the following code:

<android xmlns:android="http://schemas.android.com/apk/res/android">
 <tool-api-level>10</tool-api-level>
 <manifest android:installLocation="preferExternal">
 <uses-sdk android:minSdkVersion="10" />
 </manifest>
</android>

Now build and run your application on your Android device. Note that this may not work on
the emulator.

How it works…
There are a few important parts to understand in this XML configuration. The first is that the
<tool-api-level> node value actually refers to the minimum versions of the Android tools
required. Version 8 is the minimum needed to enable the external storage functionality, and
version 10 is the minimum that is supported by Titanium, so we'll default to 10.

The <android:installLocation> attribute refers to the initial storage of the application
upon installation. Here, we tell the Android OS that we prefer it to be stored on an external
card. However, if no card is available, the app will be stored directly in the phone memory.
You can also use a value of internalOnly that would prevent the app from being installed
on an external storage card.

Finally, the <uses-sdk> node refers to the version of Android required. Version 10, in this
case, refers to Android 3.1 and later.

199

9
Integrating Your Apps

with External Services

In this chapter, we will cover these recipes:

ff Connecting to APIs that use basic authentication

ff Fetching data from the Google places API

ff Connecting to FourSquare using oAuth

ff Posting a check-in to FourSquare

ff Searching and retrieving data via Yahoo! YQL

ff Integrating push notifications with parse.com

ff Testing push notifications using PHP and HTTP POST

Introduction
Many mobile applications are self-contained programs (such as a calculator app) and have
no need to interact with other services or systems. You will realize, however, that as you
build more and more, it will start becoming necessary to integrate your apps with external
vendors and systems in order to keep your users happy. The recent trend towards integrating
Facebook's Like buttons and the ability to tweet from within an app are good examples of this.

In this chapter, we are going to concentrate on talking to a variety of different service
providers in a number of common ways, including basic authorization, open authorization,
and using a service provider such as Parse, coupled with some PHP code, to make push
notifications work on our iOS device.

Integrating Your Apps with External Services

200

Connecting to APIs that use basic
authentication

Basic authentication is a method of gaining access to a system by way of sending a username
and password over HTTPS. While this is not the most secure authentication scheme, it is still
used by some API developers and is very easy to implement.

In this example, I will show you how to write code to access an API that may have been created
using basic authentication.

Getting ready
Typically, an API developer will provide you with a series of endpoints that represent
commands such as log in, get user details, save details, and so on. These API calls will use
either GET or POST/PUT commands, sent over HTTPS, to retrieve and send data to the server,
for example http://myapi.com/users/login.

Typically, these will be accessed using GET or POST/PUT and will take parameters. In this
case, they might be a username and password.

How to do it…
Create a new project in Appcelerator Studio and open the app.js file, removing all of the
existing code. First, we'll create a few variables that will hold some basic information for the
API, such as the username and password. Some API developers provide you with a request
header authorization key that needs to be used for all requests, so in this example, we'll add
a request header with the authorization key:

var win = Ti.UI.createWindow();
var authKey = "AUTHKEYFROMAPIDEVELOPER";
var loginName = 'b****@gmail.com';
var loginPasswd = '******';
var apiUrl = 'https://myapi.com/';

Now, to perform basic authentication, we need to create a request header. This information
is sent after your xhr httpClient object is declared but before you execute the send
method:

var xhr = Ti.Network.createHTTPClient();
xhr.open('POST', apiUrl + "login");
xhr.setRequestHeader('Authorization', authKey);

Chapter 9

201

Next, we would usually create a JSON object that holds our parameters, and pass it to the API.
In this case, we're passing our username and password variables to perform a login request.
Attach the params object to your xhr.send() method, like this:

var params = {
 'username': loginName,
 'password': loginPasswd
};

xhr.send(params);

Finally, in the xhr.onload() method, read in responseText and assign it to a JSON
object. We can then read in the returned data. In most cases, this will be a sort of response
object that contains a success message and a token. This token is what's used for all future
requests. Typically, this would be a session-only token (a token that expires on logout) or one
that works for a certain period of time (which could be 24 hours, a few days, or a few weeks).
In our example here, we'll display it just for reference purposes:

//create and add the label to the window
var lblsession = Ti.UI.createLabel({
 width: 280,
 height: Ti.UI.SIZE,
 textAlign: 'center'
});

win.add(lblsession);

// create a variable to hold our token
var token;

//execute our onload function and assign the result to
//our lblsession control
xhr.onload = function() {
 Ti.API.info(' Text: ' + this.responseText);
 var json = JSON.parse(this.responseText);
 lblsession.text = "Token: \n" + json.token;
 token = json.token;
};

//finally open the window
win.open();

Integrating Your Apps with External Services

202

Once we've authorized our credentials with the API, we will have a token that we can save and
reuse for future requests. So, if we want to call a function that retrieves a list of draft invoices
from our fictional API, we might use the following example:

 function callAPI(command, params, callback)
 {
 var xhr = Ti.Network.createHTTPClient();
 Ti.API.info('Token = ' + token);

 xhr.onload = function() {

 //this is the response data to our question
 Ti.API.info(' Text: ' + this.responseText);

 var json = JSON.parse(this.responseText);

 if (callback){
 callback(json);
 }
 };

 xhr.open('POST', apiUrl + command);

 xhr.setRequestHeader('Authorization', authKey);

 xhr.send(params);
 }

 var params = {
 'token': token,
 'invoiceType': 'draft'
 };

 //call the api with your session_id and question_id

callAPI('invoices', params, function(result){
// result contains the data
 Ti.API.info(result);
});

Chapter 9

203

How it works…
The basic authentication system works on the principle of authenticating and receiving a
token that can then be used in every following API call as a means of identifying you to the
server. This session variable is passed in as a parameter for every call to the system that you
make, as can be seen in our preceding code, where we get a list of invoices.

The basic authentication method is still widely in use on the Internet today.
However, it is being replaced with oAuth in many cases. We will look at
integrating with oAuth in one of the upcoming recipes in this chapter.

Fetching data from the Google places API
The Google places API is part of Google Maps and returns information about places, for
example, banks, cash machines, services, airports, and more. It marks an attempt by Google
to connect users directly to shops or items of interest near their location, and is heavily geared
towards mobile usage. In this recipe, we will create a new module that will contain all of the
code required to connect to and return data from the Google places API.

Getting ready
You will require an API key (key for browser applications) from Google in order to perform
requests against the places API. You can obtain a key from Google's developer website at
https://code.google.com/apis/console.

How to do it…
Create a new project in Appcelerator Studio, to which you can give any name you want. Then,
create a new file called placesapi.js, and save it in your project's Resources directory.

Type the following code in this new JavaScript file:

exports.getData = function(lat, lon, radius, types, name, sensor,
success, error) {

 var xhr = Ti.Network.createHTTPClient();

 var url =
 "https://maps.googleapis.com/maps/api/place/search/json?";
 url = url + "location=" + lat + ',' + lon;
 url = url + "&radius=" + radius;
 url = url + "&types=" + types;

https://code.google.com/apis/console

Integrating Your Apps with External Services

204

 url = url + "&name=" + name;
 url = url + "&sensor=" + sensor;
 url = url + "&key=" + Ti.App.Properties.getString("googlePlacesAPIK
ey");

 Ti.API.info(url);

 xhr.setRequestHeader('Content-Type', 'application/json;
 charset=utf-8');

 xhr.open('GET', url);

 xhr.onerror = function(e) {
 Ti.API.error("API ERROR " + e.error);
 if (error) {
 error(e);
 }
 };

 xhr.onload = function() {
 if (success) {
 var jsonResponse = JSON.parse(this.responseText);
 success(jsonResponse);
 }
 };

 xhr.send();
};

exports.getPlaceDetails = function(reference, sensor, success,
error) {

 var xhr = Ti.Network.createHTTPClient();

 var url = "https://maps.googleapis.com/maps/api/place/details/
json?";

 url = url + "reference=" + reference;
 url = url + "&sensor=" + sensor;
 url = url + "&key=" + Ti.App.Properties.getString("googlePlacesAPIK
ey");

 //for debugging should you wish to check the URL
 //Ti.API.info(url);

Chapter 9

205

 xhr.open('GET', url);
 xhr.setRequestHeader('Content-Type',
 'application/json;charset=utf-8');

 xhr.onerror = function(e) {

 Ti.API.error("API ERROR " + e.error);

 if (error) {
 error(e);
 }
 };

 xhr.onload = function() {
 Console.log("API response: " + this.responseText);
 if (success) {
 var jsonResponse = JSON.parse(this.responseText);
 success(jsonResponse);
 }
 };

 xhr.send();
};

We've just created a CommonJS library file with two methods exported, allowing us to call it
from another part of our app.

Now, open your app.js file (or wherever you intend to call the places module from),
removing all of the existing code. Type in the following sample code in order to require the new
module and be able to call the two public methods. Note that you can return XML data from
this API in this example using JSON only, which should really be your de facto standard for any
mobile development.

You will also have to replace the XXXXXXXXXXXXXXXXXXX API key with your own valid API key
from the Google API console:

//include our placesapi.js module we created earlier
var places = require('placesapi');

//Types array
var types = ['airport', 'atm', 'bank', 'bar', 'parking',
'pet_store', 'pharmacy', 'police', 'post_office',
'shopping_mall'];

Ti.App.Properties.setString("googlePlacesAPIKey", "
XXXXXXXXXXXXXXXXXXX");

Integrating Your Apps with External Services

206

//fetch banks and atm's
//note the types list is a very short sample of all the types of
//places available to you in the Places API
places.getData(-33.8670522, 151.1957362, 500, types[1] + "|" +
types[2], '', 'false', function(response) {

 Ti.API.info(response);

}, function(e) {
 Ti.UI.createAlertDialog({
 title : "API call failed",
 message : e,
 buttonNames : ['OK']
 }).show();
});

Run the sample application in the emulator, and you should have a JSON-formatted list
returned. Also, the first item in that list should be logged to the console. Try extending this
sample to integrate with Google Maps using real-time location data! You can also get more
detailed place information by calling the getPlaceDetails() method of the API, like this
for example:

places.getPlaceDetails(response.results[1].reference, 'false',
function(response) {
 //log the json response to the console
 Ti.API.info(response);
 }, function(e) {
 //something went wrong
 //log any errors etc…
 });

How it works…
The Places API is probably the simplest kind of service integration available. With it, there is
no authentication method except for requiring an API key, and all parameters are passed via
the query string using an HTTP GET request.

The request header is one important feature of this method. Note that we
have to set the content type to application/JSON before performing our
send() call on the xhr object. Without setting the content type, you run
the risk of the data being returned to you in HTML or some other format
that won't be 100 percent JSON compatible and therefore would probably
not load into a JSON object.

Chapter 9

207

When the places service returns JSON results from a search, it places them within a results
array. Even if the service returns no results, it still returns an empty results array. Each
element of the response contains a single place result from the area that you specify by the
latitude and longitude input, ordered by prominence. Many things, including the number of
check-ins, can affect the prominence of the results and therefore their popularity. The Google
documentation provides the following information on the data returned for each place result
(refer to http://code.google.com/apis/maps/documentation/places/):

ff name: This contains the human-readable name for the returned result. For
establishment results, this is usually the business name.

ff vicinity: This contains a feature name of a nearby location. Often, this feature
refers to a street or a neighborhood within the given results.

ff types[]: This contains an array of feature types describing the given result.

ff geometry: This contains geometry information about the result, generally including
the location (geocode) of the place and (optionally) the viewport identifying its
general area of coverage.

ff icon: This contains the URL of a recommended icon that may be displayed to the
user when indicating this result.

ff reference: This contains a unique token that you can use to retrieve additional
information about this place. You can store this token and use it at any time in the
future to refresh cached data about this place, but the same token is not guaranteed
to be returned for a given place across different searches.

ff id: This contains a unique stable identifier denoting this place.

There are many other features within the Places API, including the ability to check in to a
place and more. Additionally, you should also note that when including this recipe in a live
application, part of Google's terms is that you must show the powered by Google logo in your
application, unless the results you're displaying are already on a Google-branded map.

Connecting to FourSquare using oAuth
Open authorization (known normally by its shortened name, oAuth) is an open standard
developed for authorization that allows a user to share private data stored on one site or
device (for example, a mobile phone) with another site. Instead of using credentials such as
a username and password, oAuth relies on tokens. Each token has within it a series of details
encoded for a specific site (for example, FourSquare or Twitter), using specific resources or
permissions (that is, photos or your personal information) for a specific duration of time
(for example, 2 hours).

http://code.google.com/apis/maps/documentation/places/

Integrating Your Apps with External Services

208

FourSquare is a popular location-based social networking site specifically made for GPS-
enabled mobile devices. It allows you to check in to various locations and, in doing so, earn
points and rewards in the form of badges. In this recipe, we will use oAuth to connect to
FourSquare and retrieve an access token that we can use later on to enable our application
to check-in to various locations within the FourSquare community.

Getting ready
You will require a client ID key from FourSquare in order to perform requests against
the FourSquare API. You can obtain a key from the developer website for free at
http://developer.foursquare.com.

How to do it…
Create a new project in Appcelerator Studio, to which you can give any name you want. Then,
create a new file called fsq_module.js and save it in your project's Resources directory.
This file will contain all of the source code needed to create a module that we can include
anywhere in our Titanium app. Open your new fsq_module.js file in your editor and type
the following:

var FOURSQModule = {};

FOURSQModule.init = function(clientId, redirectUri) {
 FOURSQModule.clientId = clientId;
 FOURSQModule.redirectUri = redirectUri;
 FOURSQModule.ACCESS_TOKEN = null;
 FOURSQModule.xhr = null;
 FOURSQModule.API_URL = "https://api.foursquare.com/v2/";
};

FOURSQModule.logout = function() {
 showAuthorizeUI(String.format('https://foursquare.com/oauth2/
authorize?response_type=token&client_id=%s&redirect_uri=%s',
FOURSQModule.clientId, FOURSQModule.redirectUri));
 return;
};

/**
 * displays the familiar web login dialog
 *
 */
FOURSQModule.login = function(authSuccess_callback) {

http://developer.foursquare.com

Chapter 9

209

 if (authSuccess_callback != undefined) {
 FOURSQModule.success_callback = authSuccess_callback;
 }

 showAuthorizeUI(String.format('https://foursquare.com/oauth2/
authenticate?response_type=token&client_id=%s&redirect_uri=%s',
FOURSQModule.clientId, FOURSQModule.redirectUri));

 return;
};

FOURSQModule.closeFSQWindow = function() {
 destroyAuthorizeUI();
};

/*
 * display the familiar web login dialog
 */
function showAuthorizeUI(pUrl) {
 window = Ti.UI.createWindow({
 modal : true,
 fullscreen : true,
 width : '100%'
 });
 var transform = Ti.UI.create2DMatrix().scale(0);
 view = Ti.UI.createView({
 top : 0,
 width : '100%',
 height : Ti.UI.FILL,
 border : 10,
 backgroundColor : '#999',
 borderColor : '#555',
 borderRadius : 5,
 borderWidth : 2,
 transform : transform
 });
 closeLabel = Ti.UI.createLabel({
 textAlign : 'right',
 font : {
 fontSize : 15,
 fontFamily : 'helveticaneue'
 },
 text : 'Close',
 top : 6,
 right : 12,

Integrating Your Apps with External Services

210

 height : 14
 });

 window.open();

 webView = Ti.UI.createWebView({
 top : 30,
 width : '100%',
 url : pUrl,
 autoDetect : [Ti.UI.AUTODETECT_NONE]
 });

 Console.log('Setting:[' + Ti.UI.AUTODETECT_NONE + ']');

 webView.addEventListener('beforeload', function(e) {
 if (e.url.indexOf('http://www.foursquare.com/') != -1) {
 console.log(e);
 authorizeUICallback(e);
 webView.stopLoading = true;
 }
 });

 webView.addEventListener('load', authorizeUICallback);
 view.add(webView);

 closeLabel.addEventListener('click', destroyAuthorizeUI);
 view.add(closeLabel);

 window.add(view);

 var animation = Ti.UI.createAnimation();
 animation.transform = Ti.UI.create2DMatrix();
 animation.duration = 500;
 view.animate(animation);
};

/*
 * unloads the UI used to have the user authorize the application
 */
function destroyAuthorizeUI() {
 Console.log('destroyAuthorizeUI');
 // if the window doesn't exist, exit
 if (window == null) {
 return;
 }

Chapter 9

211

 // remove the UI
 try {
 Console.log('destroyAuthorizeUI:webView.removeEventListener');
 webView.removeEventListener('load', authorizeUICallback);
 Console.log('destroyAuthorizeUI:window.close()');
 window.hide();
 } catch(ex) {
 Console.log('Cannot destroy the authorize UI. Ignoring.');
 }
};

/*
 * fires and event when login fails
 */
function authorizeUICallback(e) {
 Console.log('authorizeUILoaded ' + e.url);
console.log(e);

 if (e.url.indexOf('#access_token') != -1) {
 var token = e.url.split("=")[1];
 FOURSQModule.ACCESS_TOKEN = token;
 Ti.App.fireEvent('app:4square_token', {
 data : token
 });

 if (FOURSQModule.success_callback != undefined) {
 FOURSQModule.success_callback({
 access_token : token,
 });
 }

 destroyAuthorizeUI();

 } else if ('http://foursquare.com/' == e.url) {
 Ti.App.fireEvent('app:4square_logout', {});
 destroyAuthorizeUI();
 } else if (e.url.indexOf('#error=access_denied') != -1) {
 Ti.App.fireEvent('app:4square_access_denied', {});
 destroyAuthorizeUI();
 }

};

module.exports = FOURSQModule;

Integrating Your Apps with External Services

212

Now, back in your app.js file, type this code to include the new FourSquare module and
execute the sign-in function:

//include our placesapi.js module we created earlier
var FOURSQModule = require('fsq_module');

function loginSuccess(e) {
 alert('You have successfully logged into 4SQ!');
};

FOURSQModule.init('YOURCLIENTKEY', 'http://YOURDIRECTURL');

FOURSQModule.login(loginSuccess, function(e) {
 Ti.UI.createAlertDialog({
 title : "LOGIN FAILED",
 message : e,
 buttonNames : ['OK']
 }).show();
});

Try running your application in either the Android or iPhone simulator, and you should have a
login screen appear on startup. It should look similar to the one shown in this screenshot:

Chapter 9

213

How it works…
The module we built in this recipe follows a pattern and style that is very similar to others
found on the Web, including modules that have been built for Titanium against Facebook,
Twitter, and others. It consists of creating a modal view that pops up on top of the existing
window, and contains a web view for the mobile version of the FourSquare login page. Once
the user has logged in to the system, we can grab the access token from the response in
the authorizeCallBack() method, and save the resulting token in our module's
ACCESS_TOKEN property.

Posting a check-in to FourSquare
Now that we have created the basic module in order to authenticate against FourSquare, we
are going to extend it to let the user check-in to a particular location. This works by sending
the details of your current place (such as a bar, cinema, park, or museum) along with its
latitude and longitude values to the FourSquare servers. From here on, you can tell which
of your friends are nearby or make your location and activities public for everyone to see.

How to do it…
Open your fsq_module.js file and extend the existing module so that it has the extra
method given here:

FOURSQModule.callMethod = function(method, GETorPOST, params,
success, error) {
 //get the login information
 try {

 if (FOURSQModule.xhr == null) {
 FOURSQModule.xhr = Ti.Network.createHTTPClient();
 }

 FOURSQModule.xhr.open(GETorPOST, FOURSQModule.API_URL +
method + "?oauth_token=" + FOURSQModule.ACCESS_TOKEN);

 FOURSQModule.xhr.onerror = function(e) {
 Ti.API.error("FOURSQModule ERROR " + e.error);
 Ti.API.error("FOURSQModule ERROR " + FOURSQModule.xhr.
location);
 if (error) {
 error(e);

Integrating Your Apps with External Services

214

 }
 };

 FOURSQModule.xhr.onload = function(_xhr) {
 Console.log("FOURSQModule response: " + FOURSQModule.
xhr.responseText);
 if (success) {
 success(FOURSQModule.xhr.responseText);
 }
 };

 FOURSQModule.xhr.send(params);
 } catch(err) {
 Ti.UI.createAlertDialog({
 title: "Error",
 message: String(err),
 buttonNames: ['OK']
 }).show();
 }
};

Now, back in the app.js file, we are going to extend the login call that we wrote in the
previous recipe, this time to post a FourSquare check-in after a successful authorization,
as follows:

FOURSQModule.init('yourclientid',
'http://www.yourcallbackurl.com');

FOURSQModule.login(function(e){

 //checkin to a lat/lon location... you can get
 //this from a google map or your GPS co-ordinates
 var params = {
 shout: 'This is my check-in message!',
 broadcast: 'public',
 m: 'swarm',
 v: '20140806',
 ll: '51.5072,0.1275'
 };

 FOURSQModule.callMethod("checkins/add", 'POST', params,

 onSuccess_self, function(e) {
 Ti.UI.createAlertDialog({
 title: "checkins/add: METHOD FAILED",
 message: e,

Chapter 9

215

 buttonNames: ['OK']
 }).show();
 });

 //now close the foursquare modal window
 FOURSQModule.closeFSQWindow();

 },
 function(event) {
 Ti.UI.createAlertDialog({
 title: "LOGIN FAILED",
 message: event,
 buttonNames: ['OK']
 }).show();

});

Finally, try running your app in the simulator. After logging in to the FourSquare system, you
should automatically have posted a test check-in titled This is my check-in message!, and the
FourSquare system should send you a successful response message and log it to the console.

How it works…
The callMethod() function of our FourSquare module does all the work here. Essentially,
it takes in the method name to call, along with information on whether it is a GET or a POST
call and the parameters required to make that method work. Our example code calls the
checkins/add method, which is a POST method, and passes it through the parameters of
shout, broadcast, and ll, which mean our message, privacy setting, and current location,
respectively. All of the authorization work, including saving our access token, is done via the
previous recipe.

Searching and retrieving data via Yahoo!
YQL

YQL is a SQL-like language that allows you to query, filter, and combine data from multiple
sources across both the Yahoo! network and other open data sources. Normally, developer
access to data from multiple resources is disparate and requires calls to multiple APIs from
different providers, often with varying feed formats. YQL eliminates this problem by providing
a single endpoint to query and shape the data that you request. You may remember that we
briefly touched on the usage of YQL via standard HTTP request calls in Chapter 2, Working
with Local and Remote Data Sources, However, in this chapter, we will be utilizing the built-in
Titanium YQL methods.

Integrating Your Apps with External Services

216

Titanium has built-in support for YQL, and in this recipe, we will create a simple application
that searches for stock data on the YQL network and then displays that data in a simple label.

Note that, when using YQL in an unauthenticated manner (such as what we
are doing here), there is a usage limit imposed of 100,000 calls per day. For
most applications, this is a more-than-generous limit. However, if you do wish
to have it increased, you will need to authenticate your calls via oAuth. You
can do this by signing up with Yahoo! and registering your application.

How to do it…
Create a new project and then open the app.js file, removing any existing content. Type in
the following code:

// create base UI tab and root window
//
var win1 = Ti.UI.createWindow({
 backgroundColor : '#fff'
});

// This is the input textfield for our stock code
var txtStockCode = Ti.UI.createTextField({
 hintText : 'Stock code, e.g. AAPL',
 textAlign : 'center',
 width : 200,
 left : 10,
 height : 30,
 font : {
 fontSize : 14,
 fontColor : '#262626'
 },
 autoCorrect : false,
 autocapitalization : Ti.UI.TEXT_AUTOCAPITALIZATION_ALL,
 borderWidth : 1,
 borderColor : '#CCC',
 top : 27
});

//add the text field to the window
win1.add(txtStockCode);

Chapter 9

217

// Create the search button from our search.png image
var btnSearch = Ti.UI.createButton({
 title : 'Search',
 width : 80,
 height : 30,
 right : 10,
 top : 27
});

var lblStockInfo = Ti.UI.createLabel({
 top : 60,
 left : 10,
 width : 280,
 height : Ti.UI.SIZE,
 text : '',
 font : {
 fontFamily : 'helveticaneue',
 fontSize: 16
 }
});

win1.add(lblStockInfo);

//add the button to the window
win1.add(btnSearch);

//This function is called on search button tap
//it will query YQL for our stock data
function searchYQL() {

 // Do some basic validation to ensure the user
 //has entered a stock code value
 if (txtStockCode.value != '') {
 txtStockCode.blur();
 //hides the keyboard

 // Create the query string using a combination of
 //YQL syntax and the value of the txtStockCode field
 var query = 'select * from yahoo.finance.quotes where symbol =
 "' + txtStockCode.value + '"';

Integrating Your Apps with External Services

218

 // Execute the query and get the results
 Ti.Yahoo.yql(query, function(e) {
 var data = e.data;
 //Iff ErrorIndicationreturnedforsymbolchangedinvalid
 //is null then we found a valid stock

 if
 (data.quote.ErrorIndicationreturnedforsymbolchangedinvalid
 == null) {
 //show our results in the console
 Ti.API.info(data);

 //create a label to show some of our info
 lblStockInfo.text = 'Company name: ' + data.quote.Name;
 lblStockInfo.text = lblStockInfo.text + '\nDays Low: ' +
 data.quote.DaysLow;
 lblStockInfo.text = lblStockInfo.text + '\nDays High: ' +
 data.quote.DaysHigh;
 lblStockInfo.text = lblStockInfo.text + '\nLast Open: ' +
 data.quote.Open;
 lblStockInfo.text = lblStockInfo.text + '\nLast Close: ' +
 data.quote.PreviousClose;
 lblStockInfo.text = lblStockInfo.text + '\nVolume: ' +
 data.quote.Volume;

 } else {
 //show an alert dialog saying nothing could be found
 alert('No stock information could be found for ' +
 txtStockCode.value);
 }
 });

 } //end if
}

// Add the event listener for this button
btnSearch.addEventListener('click', searchYQL);

//open the window
win1.open();

Chapter 9

219

Now you should be able to run the app in your emulator and search for a stock symbol
(such as AAPL for Apple). You should also be able to have some of the results listed in a label
on the screen. Build the project in the simulator and search for AAPL to see the following:

How it works…
So, what is actually going on here within the searchYQL() function? First, we're doing a very
basic validation on the text field to ensure that the user has entered a stock symbol before
tapping search. If a stock symbol is found, we use the blur() method of the text field to
ensure that the keyboard becomes hidden. The meat of the code revolves around creating
a Yahoo! YQL query using the correct syntax and providing the text field value as the symbol
parameter. This YQL query is simply a string joined together using the + symbol, much like
you would do with any other string manipulation in JavaScript.

Integrating Your Apps with External Services

220

We then execute our query using the Ti.Yahoo.yql() method, which returns the results
within the e object of the inline response function. We can then manipulate and use this JSON
data in any way we wish. In this case, we assign a subsection of it to a label on the screen so
that the user can view the daily opening and closing figures of the stock in question.

Integrating push notifications with Parse.
com

A push notification is a constantly open IP connection used to forward notifications from
servers of third-party applications to your iOS device. It is used as an alternative to always
running applications, and allows your device to receive notifications from a specific app even
when it is not running. If you have ever received an SMS on your iPhone, then you'll already
know what Push Notifications look like. They are essentially notifications that typically appear
at the top of the screen (although you can configure them to appear differently). The banner
usually appears with an icon, message, and so on. Clicking on the banner notification will
open the corresponding app, and in iOS 8, swiping down the banner will sometimes give
additional options, such as an Action button. The Action button can be defined by your code,
so your app can respond to the button when it is clicked on.

Getting ready
You will need to register for an account with Parse at http://parse.com. Once you have
created and verified your account, you will need to add a new app, and if you haven't already
done so, create and download a new Apple Push Certificate from your Apple developer
account. You can do this by creating a new app ID under Provisioning in your iOS developer
account. Then, in the list of apps, find the one you just created and click on the Configure link.
A new page should then show up and allow you to select the Push Notification option, like the
one shown here:

http://parse.com

Chapter 9

221

You will have to create an application-specific client SSL certificate, which can be done
through a keychain. Click on the Configure button next to the Development SSL Certificate
option, and work through the step-by-step wizard. When this is done, you should be able to
download a new Apple Push Notification certificate.

Save this certificate in your computer's hard drive and then double-click on the saved file
to open it in Keychain Access. In Keychain Access, click on My Certificates and then find
the new Apple Push Notification certificate that you just created. Right-click on it and select
Export. You will need to give your new P12 certificate a name and, after clicking on Save,
you'll also be asked to provide a password. This can be anything you like, such as packt.

Now go back to Parse and your main application page. Select the Settings option from
the top-menu, and then Push Notifications from the left-hand side menu. This is where you
can select to receive push notifications and upload the new p12 certificate, providing the
password in the box as requested. Once uploaded, your settings are saved, and you're ready
to send and receive push notifications!

Integrating Your Apps with External Services

222

How to do it…
Create a new development provisioning profile for your application in the provisioning section
of the Developer website, and download it on your computer. Then create a new Titanium
project, ensuring that the app identifier you use matches the identifier you just used to
create the provisioning certificate in the Developer Portal.

Now, open the app.js file, removing any existing content. Then type the following code in it:

var registerForPushNotifications = function() {

 var onSuccess = function(e) {
 console.log("TOKEN : " + e.deviceToken);

 var request = Ti.Network.createHTTPClient({
 onload : function(e) {
 if (request.status != 200 && request.status != 201) {
 request.onerror(e);
 return;
 }
 },
 onerror : function(e) {
 Ti.API.info("Push Notifications registration with Parse
 failed. Error: " + e.error);
 }
 });

 var params = {
 'deviceType' : 'ios',
 'deviceToken' : e.deviceToken,
 'channels' : ['']
 };

 // Register device token with Parse
 request.open('POST', 'https://api.parse.com/1/installations',
 true);
 request.setRequestHeader('X-Parse-Application-Id',
 'YOURAPPID');
 request.setRequestHeader('X-Parse-REST-API-Key',
 'YOURRESTAPIKEY');
 request.setRequestHeader('Content-Type', 'application/json');
 request.send(JSON.stringify(params));
 };

 var receivePush = function(e) {
 var push = JSON.parse(e);

Chapter 9

223

 alert(push);

 };

 // Save the device token for subsequent API calls

 var deviceTokenError = function(e) {
 console.log('Failed to register for push notifications! ' +
 e.error);
 };

 if (parseInt(Ti.Platform.version) >= 8) {
 console.log("==== iOS8 detected ====");

 Ti.App.iOS.addEventListener('usernotificationsettings', e =
 function() {
 Ti.App.iOS.removeEventListener('usernotificationsettings',
 e);
 Ti.Network.registerForPushNotifications({
 success : onSuccess,
 error : deviceTokenError,
 callback : receivePush
 });
 });

 Ti.App.iOS.registerUserNotificationSettings({
 types : [Ti.App.iOS.USER_NOTIFICATION_TYPE_ALERT,
 Ti.App.iOS.USER_NOTIFICATION_TYPE_SOUND,
 Ti.App.iOS.USER_NOTIFICATION_TYPE_BADGE]
 });

 } else {
 console.log("==== iOS7 detected ====");

 Ti.Network.registerForPushNotifications({
 types : [Ti.App.iOS.USER_NOTIFICATION_TYPE_ALERT,
 Ti.App.iOS.USER_NOTIFICATION_TYPE_SOUND,
 Ti.App.iOS.USER_NOTIFICATION_TYPE_BADGE],
 success : onSuccess,
 error : deviceTokenError,
 callback : receivePush
 });
 }

};

registerForPushNotifications();

Integrating Your Apps with External Services

224

Now, in order to test this code, you must run the application on a device—the simulator
simply does not have the push capability, and so it will not work for this recipe. Launch the
application on the device, ensuring that you select the relevant provisioning profile that you
created earlier in the recipe.

Once your application is installed, launch it on the device, and you'll be prompted for the first
time to accept push notifications, as shown here:

Select OK to accept push notifications, and once you've done that, launch https://parse.
com/ in a browser. Go to your app landing page and select Core from the top menu. You should
see something like this:

If everything has worked as planned, you should see an entry in the list that represents
the device that was registered for push notifications. Notice that each device has a device
token that uniquely identifies it, and this is essential for sending the push notifications to
the correct devices.

https://parse.com/
https://parse.com/

Chapter 9

225

Note that push only works from the device, so while the simulator will show
the push notifications permission dialog, it won't register the device token
and can't receive push messages.

Now let's test a push notification. Hit the home button so that you go back to your home
screen. Then go to https://parse.com/, select Push from the top menu, and select Send
Push from the top-right corner. You'll have the options to send to everyone (we have only one
device anyway), or you can segment your messages to send to, say, Android or iOS specifically.

Scroll further down to see the options for when to send, either now or at a specific time, and
finally there is a section to write your message in. For this example, it could be as simple as
selecting Plain Text (the default) and writing test where it says your message here.

Now, scroll down and click on Send now. If everything works as planned, you should see
something like this on your device:

https://parse.com/

Integrating Your Apps with External Services

226

How it works…
There are a number of key factors for ensuring that you are successful in getting Push
Notifications to work with your Titanium application. Keep these points in mind:

ff Remember that each application you create needs its own Push Certificate.
You cannot use wildcard certificates when integrating Push.

ff Always create the Push Certificate under your Application settings in the developer
console first, and then create your provisioning profiles. Doing it the other way around
will mean that your profile will be invalid and your app will not accept any push
notification requests.

ff Push notifications can only be tested on actual devices. They will not work under the
iOS simulator.

ff Since iOS 8, you need to include additional code that asks the user to accept local
notifications as well as push notifications. If you use code designed specifically for
iOS 7, push notifications will not work correctly on iOS 8.

You need to create separate profiles and certificates for push notifications in both the Apple
iOS Developer console and Parse. You cannot use a development profile in production and
vice versa.

Testing push notifications using PHP and
HTTP POST

In order for our server application to programmatically push notifications to a user or a group of
users, you have to create a script that can push the notifications to the https://parse.com/
servers. This can be done by a variety of methods (via a desktop app, a .NET application, a web
application, and so on), but for the purpose of this recipe, we will use PHP, which is simple, fast,
and freely available.

How to do it…
First of all, we need to create the PHP script that will communicate with the Parse servers
to send a push notification. There are plenty of free PHP/Apache hosting accounts available
online for running the script, but if you don't have access to any, go to phpfiddle.org and
use it to enter and run the code. Use the following code, and remember to have your Parse
app ID and REST API key ready:

<?php

$APPLICATION_ID = "YOURPARSEAPPID";
$REST_API_KEY = "YOURPARSEAPIKEY";

https://parse.com/

Chapter 9

227

$MESSAGE = "HELLO!";

if (!empty($_POST)) {

 $errors = array();
 foreach (array('app' => 'APPLICATION_ID', 'api' => 'REST_API_KEY',
'body' => 'MESSAGE') as $key => $var) {
 if (empty($_POST[$key])) {
 $errors[$var] = true;
 } else {
 $$var = $_POST[$key];
 }
 }

 if (!$errors) {
 $url = 'https://api.parse.com/1/push';
 $data = array(
 'channel' => '',
 'type' => 'ios',
 'expiry' => 1451606400,
 'data' => array(
 'alert' => $MESSAGE,
),
);
 $_data = json_encode($data);
 $headers = array(
 'X-Parse-Application-Id: ' . $APPLICATION_ID,
 'X-Parse-REST-API-Key: ' . $REST_API_KEY,
 'Content-Type: application/json',
 'Content-Length: ' . strlen($_data),
);

 $curl = curl_init($url);
 curl_setopt($curl, CURLOPT_POST, 1);
 curl_setopt($curl, CURLOPT_POSTFIELDS, $_data);
 curl_setopt($curl, CURLOPT_HTTPHEADER, $headers);
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);
 $response = curl_exec($curl);
 }
}
?><!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="de" lang="de">
<head>
 <meta charset="utf-8" />

Integrating Your Apps with External Services

228

 <meta http-equiv="content-type" content="text/html; charset=utf-8"
/>
 <title>Parse API</title>
</head>
<body>
 <?php if (isset($response)) {
 echo '<h2>Response from Parse API</h2>';
 echo '<pre>' . htmlspecialchars($response) . '</pre>';
 echo '<hr>';
 } elseif ($_POST) {
 echo '<h2>Error!</h2>';
 echo '<pre>';
 var_dump($APPLICATION_ID, $REST_API_KEY, $MESSAGE);
 echo '</pre>';
 } ?>

 <h2>Send Message to Parse API</h2>
 <form id="parse" action="" method="post" accept-encoding="UTF-8">
 <p>
 <label for="app">APPLICATION_ID</label>
 <input type="text" name="app" id="app" value="<?php echo
htmlspecialchars($APPLICATION_ID); ?>">
 </p>
 <p>
 <label for="api">REST_API_KEY</label>
 <input type="text" name="api" id="api" value="<?php echo
htmlspecialchars($REST_API_KEY); ?>">
 </p>
 <p>
 <label for="api">MESSAGE</label>
 <textarea name="body" id="body"><?php echo
htmlspecialchars($MESSAGE); ?></textarea>
 </p>
 <p>
 <input type="submit" value="send">
 </p>
 </form>
</body>
</html>

Chapter 9

229

Once you have entered the code, run it and you'll see something like this:

Go to https://parse.com/ and your app dashboard. Go to Settings | Keys and get your
application ID and REST API key. Enter these in the fields shown in the preceding screenshot
and also enter your message. Then hit Send. You should get a push notification on your phone!

How it works…
The PHP script in this recipe does mostly the same job as the actual Parse website does when
you perform tests via their web interface. Here, we are using PHP to build a CURL request in
JSON and post it to the Parse server. This request is in turn received and then pushed to our
device, or devices, as a Push Notification by the Parse system.

In a production environment, you would want to extend your PHP script to either receive
the badge and message variables as POST variables, or perhaps hook up the script directly
with a database with whatever business logic your app requires. You should also note that
https://parse.com/ provides samples for languages other than PHP, so if your system is
built in .NET or another platform, the same principles of sending out broadcasts still apply.

https://parse.com/
https://parse.com/

231

10
Extending Your Apps

with Custom Modules

In this chapter, we will cover the following recipes:

ff Integrating an existing module – the PayPal mobile payment library

ff Preparing your iOS module development environment

ff Developing a new iPhone module using XCode

ff Creating a public API method

ff Packaging and testing your module using the test harness

ff Packaging your module for distribution and sale!

Introduction
While Titanium allows you to create apps that are almost cross-platform, it is inevitable that
some devices inherently have operating system and hardware differences that are specific
to them (particularly between Android and iOS). Anyone who has used both Android and
iOS devices would immediately recognize the very different ways in which the notification
systems are set up, for example. However, there are other platform-specific limitations to
the Titanium API.

In this chapter, we will be discussing both building and integrating modules into our Titanium
applications, using the iOS platform as an example. The methods for developing Android
modules using Java are very similar. However, for our purposes, we will concentrate only
on developing modules for iOS using Objective-C and XCode.

Extending Your Apps with Custom Modules

232

Integrating an existing module – the PayPal
mobile payment library

There are already a number of modules written for Titanium, both by Appcelerator themselves
and by the community at large. The Appcelerator Open Mobile Marketplace is where you can
buy (and sell) modules to extend the platform to even newer and greater heights! You can also
download and use many open source modules available (typically) on https://github.
com/. To make this process of finding and installing modules easier, a service called gitTio
(http://gitt.io/) automatically stores the stores the module settings and links to Titanium
modules on GitHub. It provides a powerful Command-Line Interface (CLI) for installing modules
easily in your projects. It even takes care of configuring the project for you and can also create a
sample app so that you can test it!

Getting ready
Let's use gitTio to get hold of the Appcelerator PayPal module. The first thing is to make
sure that you have the gitTio CLI installed. If you have NPM installed (if you don't, go to
https://nodejs.org/en/ and download node/NPM from there), open a terminal window
and type the following (you may be asked to log in with your administrator password):

sudo npm install –g gittio

Once this is installed, you can install the paypal module by following the instructions at
http://gitt.io/component/ti.paypal, but there are a couple of other things to do first.

First, make sure you register your application with PayPal, and on doing so, you will be
provided with an application ID, which you must reference inside your Titanium project. You
can register for an application ID from the developer links at http://www.paypal.com/.
Note that registering an application ID also requires you to be a PayPal member, so you may
be required to sign up first if you have not already done so in the past.

You only need to register an application once you want to go
live or test with your own systems; until then, you can use the
Sandbox account for free.

How to do it…
Once you have a project created for hosting the module, open a terminal window, go to the
root of your project, and type this:

gittio install ti.paypal

https://github.com/
https://github.com/
http://gitt.io/
https://nodejs.org/en/
http://gitt.io/component/ti.paypal
http://www.paypal.com/

Chapter 10

233

The gitTio CLI will start and download the module, automatically putting it into the correct folder
in your project, and it should update your project's tiapp.xml file automatically for you.

Alternatively, you can download the module ZIP file from https://github.com/
appcelerator-modules/ti.paypal and install the module manually, but I'd recommend
using the automated route.

If you want to install the module for access within any project,
use the –g parameter while installing it, and it'll go into the
global Titanium modules library.

Next, open the project and enter the following code in an empty app.js file:

var paypal = require('ti.paypal');

We can now use the new variable, paypal, to create a paypal payment button object and
add it into our window. The paypal library also includes a number of event listeners to handle
payment success, error, and cancellation events. Here is a sample of how you can use the
paypal library to take a payment donation for the Red Cross, taken from the Appcelerator
KitchenSink sample:

var ppButton = paypal.createPaypalButton({
 width: 294,
 height: 50,
 bottom: 50,
 // leave out for testing appId: "YOUR_PAYPAL_APP_ID",
 buttonStyle: paypal.BUTTON_294x43,
 paypalEnvironment: paypal.PAYPAL_ENV_SANDBOX,
 feePaidByReceiver: false,
 transactionType: paypal.PAYMENT_TYPE_DONATION,
 enableShipping: false,
 payment: {
 subtotal: 10.00,
 tax: 0.00,
 shipping: 0.00,
 currency: "USD",
 recipient: "osama@x.com",
 itemDescription: "Donation",
 merchantName: "American Red Cross"
 }
});

ppButton.addEventListener("paymentCanceled", function(e){
console.log("Payment Canceled");
});

https://github.com/appcelerator-modules/ti.paypal
https://github.com/appcelerator-modules/ti.paypal

Extending Your Apps with Custom Modules

234

ppButton.addEventListener("paymentSuccess", function(e){
console.log("Success");
 win.fireEvent("completeEvent", {data: win.data, transid:
e.transactionID});
});

ppButton.addEventListener("paymentError", function(e){
 console.log("Payment Error");
});

If everything is installed correctly, you should see a PayPal button appear on the screen.
After a few moments it will show enable. You can now click on it and see the payment screen.

Note that in this example, we're using the Sandbox account, which is for testing. The AppId
is commented out of the code as it's not required for testing, but ensure that you have a
recipient defined or else the button will not be enabled for use. Run the project to see the
PayPal button, click that to see the payment screen:

Chapter 10

235

How it works…
Once your module has been installed in the Modules directory and referenced in Tiapp.Xml,
you can use it just like any other piece of native Titanium JavaScript. All of the module's public
methods and properties have been made available to you by the module's developer.

More specifically, for our PayPal module, once the buyer clicks on the PayPal purchase button
in our app, the payment checkout process is shown. Whenever an important event occurs
(payment success for example), these events are thrown and caught by Titanium using the
following event handlers. Your application has to incorporate these three handlers:

ppButton.addEventListener("paymentCanceled", function(e){
 Titanium.API.info("Payment Canceled");
});

ppButton.addEventListener("paymentSuccess", function(e){
 console.log("Payment Success. TransactionID: " +
 e.transactionID);
});

ppButton.addEventListener("paymentError", function(e){
 console.log("Payment Error");
 console.log("errorCode: " + e.errorCode);
 console.log("errorMessage: " + e.errorMessage);
});

When a payment has been successfully transmitted, a transaction ID will be returned to
your paymentSuccess event listener. It should be noted that in this example, we are using
the PayPal Sandbox (Testing) environment and, for a live app, you will need to change the
paypalEnvironment variable to payPal.PAYPAL_ENV_LIVE. In the sandbox environment,
no actual money is transferred.

There's more…
Try experimenting with different properties that are made available to you in the PayPal
module. Here's a list of the most useful properties and their constant values. Remember
to swap out the prefix in each case for your own variable name if it's not PayPal.

ff buttonStyle: The size and appearance of the PayPal button. The available values
are as follows:

�� paypal.BUTTON_68x24

�� paypal.BUTTON_118x24

�� paypal.BUTTON_152x33

Extending Your Apps with Custom Modules

236

�� paypal.BUTTON_194x37

�� paypal.BUTTON_278x43

�� paypal.BUTTON_294x43

ff paypalEnvironment: The following are the available values:
�� paypal.PAYPAL_ENV_LIVE

�� paypal.PAYPAL_ENV_SANDBOX

�� paypal.PAYPAL_ENV_NONE

ff feePaidByReceiver: This will be applicable only when the transaction type is
Personal. These are the available values:

�� true

�� false

ff transactionType: The type of payment being made (what the payment is for).
The following are the available values:

�� paypal.PAYMENT_TYPE_HARD_GOODS

�� paypal.PAYMENT_TYPE_DONATION

�� paypal.PAYMENT_TYPE_PERSONAL

�� paypal.PAYMENT_TYPE_SERVICE

ff enableShipping: Whether or not to select/send shipping information. The
available values are as follows:

�� true

�� false

Preparing your iOS module development
environment

To start developing your own iOS modules, you can use the Studio IDE or the Titanium CLI.
We'll be using the latter to build our module.

How to do it...
The following instructions are for Mac OS X only. It is possible to develop Android modules in
Linux, and Windows as well as OS X; however, for this recipe, we will be concentrating on iOS
module development, which requires an Apple Mac running OS X 10.5 or above.

Chapter 10

237

Make sure you have the latest versions of the Titanium CLI and SDK installed. Then, simply
type the following in a terminal window:

appc ti create

You'll be asked to input a series of values related to your new project. The first is to enter 1 for
an app and 2 for a module; enter 2.

Next, you'll need to select a platform. We're going for iOS, so type iOS and then give the project
a name, say testmodule.

For the app ID, use reverse domain notation, that is com.packtpublishing.testmodule.

You can hit Enter for the URL question, and again hit Enter for the target directory question,
as shown here:

If all goes as planned, you should have a testmodule folder, and it should contain subfolders
such as iPhone, documentation, and example.

You've successfully created a blank module project!

How it works…
Essentially, all that we are doing here is using the Titanium CLI to create a blank module
project, which we then customize with native Objective-C code (we can also do the same
within the Studio IDE). You can find out more about the Titanium CLI at http://docs.
appcelerator.com/titanium/latest/#!/guide/Titanium_Command-Line_
Interface_Reference.

http://docs.appcelerator.com/titanium/latest/#!/guide/Titanium_Command-Line_Interface_Reference
http://docs.appcelerator.com/titanium/latest/#!/guide/Titanium_Command-Line_Interface_Reference
http://docs.appcelerator.com/titanium/latest/#!/guide/Titanium_Command-Line_Interface_Reference

Extending Your Apps with Custom Modules

238

Developing a new iPhone module using
XCode

Developing our own custom modules for Titanium allows us to leverage native code and make
Titanium do things that it otherwise can't, or at least doesn't currently do. In this recipe, we
are going to develop a small module that uses Bit.Ly to shorten a long URL. You can use
this module in any of your iOS apps whenever you need to create a short URL (such as when
posting a link to Twitter).

Getting ready
You will first need to set up your Mac using the steps described in the previous recipe. Make
sure that you follow the steps and that your system is set up correctly, as this recipe relies
heavily on those scripts working. You also need some knowledge of Objective-C for this recipe.
This book doesn't try to teach Objective-C in any way; there are plenty of weighty tomes for
that already. You should, however, be able to follow along with the code in this recipe to get
your sample module working.

How to do it…
Firstly, let's create the basic module using the CLI as we did in the last recipe. This time,
however, we'll use some parameters to specify everything in a single command:

titanium create -p ios -t module -d . --n BitlyModule --id com.packtpub.
BitlyModule

Now, open the BitlyModule folder in Finder, and what you will see is a list of mostly
standard-looking XCode project files. Double-click on the BitlyModule.xcodeproj file
to open it up in XCode for editing.

How it works…
The following information comes straight from the Appcelerator guide (available at https://
wiki.appcelerator.org/display/guides2/iOS+Module+Development+Guide),
and is a good introduction to understanding the architecture of a Titanium module.

The module architecture contains these key interface components:

ff Proxy: A base class that represents the native binding between your JavaScript code
and native code

ff ViewProxy: A specialized proxy that knows how to render views
ff View: The visual representation of a UI component that Titanium can render
ff Module: A special type of proxy that describes a specific API set or namespace

https://wiki.appcelerator.org/display/guides2/iOS+Module+Development+Guide
https://wiki.appcelerator.org/display/guides2/iOS+Module+Development+Guide

Chapter 10

239

When building a module, you can have only one module class, but you can have zero or more
Proxies, Views, and ViewProxies.

For each View, you will need a ViewProxy. The ViewProxy represents the model data (which
is kept inside the proxy itself in case the View needs to be released) and is responsible for
exposing the APIs and events that the View supports.

You create a Proxy when you want to return non-visual data between JavaScript and native.
The Proxy knows how to handle any method, property and event.

Creating a public API method
The sample module code that Titanium creates as part of its module creation process
provides us with a sample of a public method. We are going to create our own method,
however. It will accept a single string input value (the long URL) and then process the
short URL via the Bit.ly API before returning it to our Titanium app.

Getting ready…
Before you can use the module, you'll need to sign up for a Bit.ly API key, which you can do
for free at https://bitly.com/a/your_api_key.

How to do it…
Open up ComPacktpubBitlyModuleModule.h and ensure that it looks like the following
(ignoring the header comments at the top of the file):

#import "TiModule.h"

@interface ComPacktpubBitlyModuleModule : TiModule
{
}

@end

Now, open the ComPacktpubBitlyModuleModule.m file and ensure that it looks like the
following source code (ignoring the header comments at the top of the file):

/**
 * BitlyModule
 *
 * Created by Jason Kneen
 * Copyright (c) 2015 Your Company. All rights reserved.
 */

https://bitly.com/a/your_api_key

Extending Your Apps with Custom Modules

240

#import "ComPacktpubBitlyModuleModule.h"
#import "TiBase.h"
#import "TiHost.h"
#import "TiUtils.h"

@implementation ComPacktpubBitlyModuleModule

#pragma mark Internal

// this is generated for your module, please do not change it
-(id)moduleGUID
{
 return @"11fee8d4-d9ee-48b6-b72b-49d06388ba03";
}

// this is generated for your module, please do not change it
-(NSString*)moduleId
{
 return @"com.packtpub.BitlyModule ";
}

#pragma mark Lifecycle

-(void)startup
{
 // this method is called when the module is first loaded
 // you *must* call the superclass
 [super startup];

 NSLog(@"[INFO] %@ loaded",self);
}

-(void)shutdown:(id)sender
{
 // this method is called when the module is being unloaded
 // typically this is during shutdown. make sure you don't do
 too
 // much processing here or the app will be quit forcibly

 // you *must* call the superclass
 [super shutdown:sender];
}

Chapter 10

241

#pragma mark Cleanup

-(void)dealloc
{
 // release any resources that have been retained by the module
 [super dealloc];
}

#pragma mark Internal Memory Management

-(void)didReceiveMemoryWarning:(NSNotification*)notification
{
 // optionally release any resources that can be dynamically
 // reloaded once memory is available - such as caches
 [super didReceiveMemoryWarning:notification];
}

#pragma mark Listener Notifications

-(void)_listenerAdded:(NSString *)type count:(int)count
{
 if (count == 1 && [type isEqualToString:@"my_event"])
 {
 // the first (of potentially many) listener is being added
 // for event named 'my_event'
 }
}

-(void)_listenerRemoved:(NSString *)type count:(int)count
{
 if (count == 0 && [type isEqualToString:@"my_event"])
 {
 // the last listener called for event named 'my_event' has
 // been removed, we can optionally clean up any resources
 // since no body is listening at this point for that event
 }
}

#pragma Public APIs

NSString *YOUR_API_KEY;
NSString *YOUR_USERNAME;

Extending Your Apps with Custom Modules

242

-(id)APIKey
{
 return YOUR_API_KEY;
}

-(id)username
{
 return YOUR_USERNAME;
}

-(void)setAPIKey:(id)value
{
 ENSURE_SINGLE_ARG(value, NSString);
 YOUR_API_KEY = value;
}

-(void)setUsername:(id)value
{
 ENSURE_SINGLE_ARG(value, NSString);
 YOUR_USERNAME = value;
}

-(id)getShortUrl:(id)value

{
 ENSURE_SINGLE_ARG(value, NSString);

 NSString *YOUR_URL = [TiUtils stringValue:value];

 NSString *shortenedURL = [NSString
 stringWithContentsOfURL:[NSURL URLWithString:[NSString
 stringWithFormat:@"http://api.bit.ly/v3/
shorten?login=%@&apikey=%@
&longUrl=%@&format=txt", YOUR_USERNAME, YOUR_API_KEY, YOUR_URL]]
encoding:NSUTF8StringEncoding error:nil];

 return [TiUtils stringValue:shortenedURL] ;

}

@end

Chapter 10

243

How it works…
The main function here is the one we created, called getShortUrl. All other methods and
properties for the module have been autogenerated for us by the Titanium module creation
scripts. This method, in short, executes a request against the Bit.Ly API using our key and
username and, when a response is received, we pass the shortenedUrl value back to
Titanium.

What we want to concentrate on here is the integration of the Titanium public method, and
how the value argument is translated. Here, we're using the (id) declaration, which allows
us to easily typecast the incoming value to a parameter type that Objective-C understands.
In this case, we are typecasting the value parameter to a type of NSString, as we know
that the incoming parameter is going to be a string value in the form of a web address. This
conversion process is thanks to the TiUtils, which we imported at the top of our file using
the #import "TiUtils.h" command.

Some of the most common conversion examples are as follows:

CGFloat f = [TiUtils floatValue:arg];

NSInteger f = [TiUtils intValue:arg];

NSString *value = [TiUtils stringValue:arg];

NSString *value = [TiUtils stringValue:@"key" properties:dict
def:@"default"];

TiColor *bgcolor = [TiUtils colorValue:arg];

We also return a string value—either an error message (if the Bit.Ly conversion process
fails) or, hopefully, the new short URL that Bit.Ly has kindly given us. As we are returning a
string, we don't need to perform a conversion before returning the parameter.

The following types can be returned without the need for typecasting:

ff NSString

ff NSDictionary

ff NSArray

ff NSNumber

ff NSDate

ff NSNull

Extending Your Apps with Custom Modules

244

Packaging and testing your module using
the test harness

Now it's time to build, package, and test our new module! Before you go ahead with this
recipe, make sure that you've built the XCode project and it has been successful. If not,
you will need to fix any errors before continuing.

How to do it…
Firstly, we need to compile and build our module. In the iPhone folder (where the XCode
project is located), you need to run the build script, so from the terminal, type ./build.py
(or python ./build.py).

XCode should start compiling the module within the terminal, and you'll hopefully see a
** BUILD SUCCEEDED ** message if everything goes as planned. At this point, there
should be a .zip file in the current folder, called com.packtpub.bitlymodule-iphone-
1.0.0.zip for this project.

Your module is built and packaged!

To test it, we need to install the module in a project. Go to your test project (or create a new
one) and copy the .zip file to the root of the project. Next, type the following in the terminal:

gittio install com.packtpub.bitlymodule-iphone-1.0.0.zip

gitTio will now unzip the module to the correct location and update TiApp.xml for you.
Next, all you have to do is copy the example code, from the app.js file in the example
folder, to your project.

Change the YOURBITLYAPIKEY and YOURBITLYUSERNAME values with your Bit.ly
details and URLTOSHORTEN with the URL that you want to shorten, for example,
http://www.appcelerator.com/:

var win = Ti.UI.createWindow({
 backgroundColor : 'white'
});

win.open();

// TODO: write your module tests here
var bitly = require('com.packtpub.bitlymodule');

console.log("module is => " + bitly);

http://www.appcelerator.com/

Chapter 10

245

//label.text = bitly.example();

console.log("module exampleProp is => " + bitly.exampleProp);

// bitly.exampleProp = "This is a test value";

bitly.APIKey = "YOURBITLYAPIKEY";
bitly.username = "YOURBITLYUSERNAME";

console.log(bitly.APIKey);
console.log(bitly.username);

alert(bitly.getShortUrl("http://URLTOSHORTEN"));

You're now ready to build the project. Build it in the iOS simulator, and if it is successful,
you should see an alert message with the shortened URL!

Extending Your Apps with Custom Modules

246

How it works…
Let's concentrate on the Titanium code used to build and launch our module via the example
project. As you can see, one of the very first lines in our sample JavaScript is the following:

var bitly= require('com.packtpub.BitlyModule');

This code instantiates our module and defines it as a new variable called bitly. We can then
use our module just like any other regular Titanium control, by calling our own custom method
and returning the result before displaying it in the shortURL text field:

var result = bitly.getShortUrl(txtLongUrl.value);

txtShortUrl.value = result;

Packaging your module for distribution
and sale!

Titanium modules are created in a way that allows easy distribution and reuse, both in
your own apps and in the Titanium Marketplace. In this recipe, we will go through the steps
required to package our module and then distribute it in the marketplace.

The complete source code for this chapter can be found in the /Chapter 10 folder, along
with the compiled version of the Bit.Ly module.

How to do it…
The first requirement is to edit the manifest file that is automatically generated when you
created your module. Here is an example taken from our BitlyModule:

#
this is your module manifest and used by Titanium
during compilation, packaging, distribution, etc.
#
version: 1.0.0
apiversion: 2
architectures: armv7 arm64 i386 x86_64
description: BitlyModule
author: Jason Kneen
license: Specify your license
copyright: Copyright (c) 2015 by Your Company

these should not be edited
name: BitlyModule

Chapter 10

247

moduleid: com.packtpub.BitlyModule
guid: c87eb59c-81ed-46cb-8d75-6b000e753c54
platform: iphone
minsdk: 3.5.0.GA

Anything below the # should not be edited and should be left as it is, but go ahead and
replace all the other key/value pairs with your own name, description, license, version, and
copyright text. Remember that if you change the manifest file, you'll need to rebuild your
module by typing ./build.py in the terminal, and press Enter to execute the command.

Once your module is packaged as a ZIP file, you can install it in your own projects, share it
with other Titanium developers, or submit it to the Appcelerator Open Mobile Marketplace.
However, there are several prerequisites that you'll need to fulfill before you can distribute it:

ff You must have a valid Titanium developer account

ff You must have completed filling in your manifest values

ff Then, you must have a valid license text in the LICENSE file in your project

ff You must have a valid documentation file in the index.md file in the
Documentation directory of your project

ff You must specify some additional metadata upon upload, such as the price
(which can be free)

ff If you are charging for your module, you must establish a payment setup with
Appcelerator so that you can be paid

ff You must accept the Open Mobile Marketplace's terms of service agreement

Once you have uploaded your module and completed the necessary submission steps, your
module will be made available in the Marketplace directory. Note that the first time you
submit a module, Appcelerator will review it for the aforementioned basic requirements.

How it works…
The new Appcelerator marketplace makes it easy for developers to build, sell, and distribute
their own custom Titanium modules for both iOS and Android. All you need to do is set up a
profile for your product and provide your PayPal account details in order to be paid for each
sale you make.

Developers make money on all products that they sell through the Open Mobile Marketplace,
and there are a number of tools available for keeping track of your customers, invoices, and
feedback. You can sign up today at https://marketplace.appcelerator.com/cms/
landing.

https://marketplace.appcelerator.com/cms/landing
https://marketplace.appcelerator.com/cms/landing

249

11
Platform Differences,

Device Information,
and Quirks

In this chapter, we will cover these recipes:

ff Gathering information about your device

ff Obtaining the device's screen dimensions

ff Understanding device orientation modes

ff Coding around the differences between the iOS and Android APIs

ff Ensuring that your device can make phone calls

Introduction
In this chapter, we are going to go through a number of platform differences between iOS and
Android, as well as show you how to code around these differences. We'll also highlight how to
gather information about the device on which your application is running, including its screen
dimensions and capabilities, such as the ability to make a phone call.

The complete source code for this chapter can be found in the /Chapter 11 /
PlatformDiffs folder.

Platform Differences, Device Information, and Quirks

250

Gathering information about your device
The majority of information about the current device is available through the Ti.Platform
namespace. It is here that we can determine a host of device-specific data, including the
battery level, device OS and version, current device language, screen resolution, and more.
Knowing this information is important, as it will give you a series of clues about what is
happening in the physical device. One example is that you may wish to back up a user's
application data if the battery dips below a certain percentage, lest the device shuts down
and the data is lost. More commonly, you will use device properties such as Ti.Platform.
osname to determine what operating system your app is currently running on, such as iPhone,
iPad, Android, or the Mobile web.

Getting ready
To prepare for this recipe, open up Studio and log in if you have not already done so. If you
need to register a new account, you can do so for free directly from within the application.
Once you are logged in, click on New Project, and the details window for creating a new
project will appear. Enter PlatformDiffs as the name of the app, and fill in the rest of the
details with your own information. Open the app.js file, and remove everything apart from
the instantiation of the root window and the win1 object's open method so that it looks like
the following:

//
// create root window
//
var win1 = Ti.UI.createWindow({
 title:'Tab 1',
 backgroundColor:'#fff'
});

//open root window
win1.open();

How to do it…
Now, back in the app.js file, we are going to simply create a number of labels and request
the values for each from the properties available for us in the Ti.Platform namespace.
These values will be displayed as on-screen text. Add the following code before the win.
open() statement:

var view = Ti.UI.createView({
 top: 20,
 width: Ti.UI.FILL,

Chapter 11

251

 height: Ti.UI.FILL
});

var labelOS = Ti.UI.createLabel({
 width: Ti.UI.SIZE,
 height: 30,
 top: 0,
 left: 10,
 font: {
 fontSize: 14,
 fontFamily: 'Helvetica'
 },
 color: '#000',
 text: 'OS Details: ' + Ti.Platform.osname + ' (version ' +
Ti.Platform.version + ')'
});

var labelBattery = Ti.UI.createLabel({
 width: Ti.UI.SIZE,
 height: 30,
 top: 40,
 left: 10,
 font: {
 fontSize: 14,
 fontFamily: 'Helvetica'
 },
 color: '#000',
 text: 'Battery level: ' + Ti.Platform.batteryLevel
});

var labelMemory = Ti.UI.createLabel({
 width: Ti.UI.SIZE,
 height: 30,
 top: 80,
 left: 10,
 font: {
 fontSize: 14,
 fontFamily: 'Helvetica'
 },
 color: '#000',
 text: 'Available memory: ' + Ti.Platform.availableMemory + 'MB'
});

Platform Differences, Device Information, and Quirks

252

var labelArchitecture = Ti.UI.createLabel({
 width: Ti.UI.SIZE,
 height: 30,
 top: 120,
 left: 10,
 font: {
 fontSize: 14,
 fontFamily: 'Helvetica'
 },
 color: '#000',
 text: 'Architecture: ' + Ti.Platform.architecture
});

var labelLocale = Ti.UI.createLabel({
 width: Ti.UI.SIZE,
 height: 30,
 top: 160,
 left: 10,
 font: {
 fontSize: 14,
 fontFamily: 'Helvetica'
 },
 color: '#000',
 text: 'Locale: ' + Ti.Platform.locale
});

var labelModel = Ti.UI.createLabel({
 width: Ti.UI.SIZE,
 height: 30,
 top: 200,
 left: 10,
 font: {
 fontSize: 14,
 fontFamily: 'Helvetica'
 },
 color: '#000',
 text: 'Model: ' + Ti.Platform.model
});

view.add(labelOS);
view.add(labelBattery);
view.add(labelMemory);
view.add(labelArchitecture);

Chapter 11

253

view.add(labelLocale);
view.add(labelModel);

win1.add(view);

How it works…
Each of the labels in this code sample represents a different piece of information about your
device and its capabilities. There is nothing particularly complicated about the code here,
but it's the methods themselves that are important.

Most of these are pretty self-explanatory; the methods for the battery, memory, architecture,
and model all provide you with information about the device and its specific capabilities. You
may use these at certain times during your application's life cycle, for instance, to auto-save
data on a form when the battery reaches a certain critical level.

The most useful of these methods is Ti.Platform.osname. It is this method that you will
use regularly throughout the development of Titanium cross-platform apps, as you will use it
to check whether you're on Android or the iPhone platform, and run certain code depending
on the result.

Platform Differences, Device Information, and Quirks

254

Obtaining the device's screen dimensions
Before iPhone 4, developers were lucky to have to work with just one resolution—320 x 480
pixels. When iPhone 4 arrived, it came with a retina screen. This effectively doubled the
resolution, while allowing developers to lay out apps with non-retina dimensions.

So, for example, if you wanted to position something in the middle the screen, you would
usually specify 160 pixels. On an iPhone 4, this would actually be 320 pixels. iOS would take
care of the positioning based on whether you were using a retina or non-retina device.

When iPhone 5 was released, the effective non-retina resolution changed to 320 x 568 pixels.
Again, this was manageable because of the way iOS handled the screen densities, but also
because it effectively made the screen taller.

All this changed yet again with the release of iPhone 6 and 6 Plus. Apple introduced new
non-retina resolutions of 375 x 667 pixels for iPhone 6 and 540 x 960 pixels for iPhone 6
Plus. Suddenly, iPhone developers were in the same position as Android developers—trying
to cope with multiple screen sizes!

iOS takes care of the management of retina and non-retina images through
the use of what we call 2x and 3x images. Essentially, you create your
images in the highest resolution and resize them down to the multiple sizes
required for mobile devices. So, if you had an image called header.png
designed for non-retina devices, you would also have another image of twice
the resolution, named header@2x.png, and this would automatically be
picked up by all iOS retina displays. With the introduction of the iPhone 6
Plus, a new format of 3x was added to cope with its retina HD display.

In this recipe, we will generate three views—one that takes up the bottom half of the
screen and two others that take up the top—and we'll do this using the Ti.Platform.
displayCaps functions.

The complete source code for this recipe can be found in the /Chapter 11/Recipe 2 folder.

How to do it…
In our app.js file, we are going to create three different views, each taking up a separate
portion of the screen. Remove any existing code and type the following:

//
// create root window
//
var win1 = Ti.UI.createWindow({
 title: 'Tab 1',
 backgroundColor: '#fff'

Chapter 11

255

});

var windowWidth = Ti.Platform.displayCaps.platformWidth ;
var windowHeight = Ti.Platform.displayCaps.platformHeight;

if (Ti.Platform.osname === "android"){
 windowWidth = windowWidth / (Ti.Platform.displayCaps.dpi / 160);
 windowHeight = windowHeight / (Ti.Platform.displayCaps.dpi / 160);
}

var viewBottom = Ti.UI.createView({
 width: windowWidth,
 height: windowHeight / 2,
 bottom: 0,
 left: 0,
 backgroundColor: 'Red'
});

win1.add(viewBottom);

var lblDeviceDPI = Ti.UI.createLabel({
 text: 'The device DPI = ' +
 Ti.Platform.displayCaps.dpi,
 width: windowWidth,
 height: windowHeight / 2,
 textAlign: 'center',
 bottom: 0,
 color: '#fff'
});

viewBottom.add(lblDeviceDPI);

var viewTop1 = Ti.UI.createView({
 width: windowWidth / 2,
 height: windowHeight / 2,
 top: 0,
 left: 0,
 backgroundColor: 'Green'
});

win1.add(viewTop1);

var viewTop2 = Ti.UI.createView({
 width: windowWidth / 2,
 height: windowHeight / 2,
 top: 0,
 left: windowWidth / 2,
 backgroundColor: 'Blue'
});

Platform Differences, Device Information, and Quirks

256

win1.add(viewTop2);

//open root window
win1.open();

How it works…
The code here is pretty straightforward. Simply put, we are assigning the width and height
values of the device to two variables, called windowWidth and windowHeight. To do
this, we use two of the properties available for us in the Ti.Platform.displayCaps
namespace, namely platformWidth and platformHeight.

We're doing a quick calculation for Android, because we need to convert the raw device
resolution into density-independent pixels. For this, we work out the DPI and do a quick
calculation. That'll give us the depth, width, and height.

Once we have these values, it's easy to create our views and lay them out using some very
simple calculations.

The following is an example of the same screen being rendered in two very different
resolutions on both iPhone and Android:

Chapter 11

257

Understanding device orientation modes
One of the great benefits for users with current smartphones is the ability to hold the device in
any way possible and have the screen rotate to suit its orientation. Titanium allows you to fire
event handlers based on orientation changes in your application.

In this recipe, we will create an event handler that fires whenever the orientation on the device
is changed, and we will rearrange some UI components on our screen accordingly.

The complete source code for this recipe can be found in the /Chapter 11/Recipe 3 folder.

How to do it…
Open your app.js file, remove any existing code, and type the following:

//
// create root window
//
var win1 = Ti.UI.createWindow({
 title:'Tab 1',
 backgroundColor:'#fff'
});

//set the allowed orientation modes for win1
//in this example, we'll say ALL modes are allowed
win1.orientationModes = [
 Ti.UI.LANDSCAPE_LEFT,
 Ti.UI.LANDSCAPE_RIGHT,
 Ti.UI.PORTRAIT,
 Ti.UI.UPSIDE_PORTRAIT
];

var view1 = Ti.UI.createView({
 width: Ti.Platform.displayCaps.platformWidth,
 height: Ti.Platform.displayCaps.platformHeight,
 backgroundColor: 'Blue'
});

var labelOrientation = Ti.UI.createLabel({
 text: 'Currently in ? mode',
 width: Ti.UI.FILL,
 textAlign: 'center',
 height: 30,
 color: '#000'
});
view1.add(labelOrientation);
win1.add(view1);

Platform Differences, Device Information, and Quirks

258

Ti.Gesture.addEventListener('orientationchange', function(e) {
 //check for landscape modes
 if (e.orientation == Ti.UI.LANDSCAPE_LEFT ||
 e.orientation == Ti.UI.LANDSCAPE_RIGHT) {
 view1.width =
 Ti.Platform.displayCaps.platformWidth;
 view1.height =
 Ti.Platform.displayCaps.platformHeight;
 labelOrientation.text = 'Currently in LANDSCAPE mode';
 view1.backgroundColor = 'Blue';
 }
 else {
 //we must be in portrait mode!
 view1.width =
 Ti.Platform.displayCaps.platformWidth;
 view1.height =
 Ti.Platform.displayCaps.platformHeight;
 labelOrientation.text = 'Currently in PORTRAIT mode';
 view1.backgroundColor = 'yellow';
 }
});

//open root window
win1.open();

Run the project and switch the device or simulator to portrait or landscape mode:

Chapter 11

259

Try running your app now in the emulator or on your device, and orientating the screen
between portrait and landscape modes. You should see changes like those shown in the
preceding screenshot!

How it works…
We attached an event listener to Ti.Gesture, and when the orientation of the device
changes, this event handler is fired and we can rearrange the components on the screen as
we see fit. Technically, we can really do anything we want within this handler. A great example
might be having a TableView while in portrait mode and opening a new window containing a
MapView when the user orientates the screen into landscape mode. Here, we simply change
both the color of our main view object and the text property of the label contained within it
in order to highlight the changes in device orientation.

Coding around the differences between the
iOS and Android APIs

Although Appcelerator Titanium makes much of the hard work of integrating numerous
operating systems and devices invisible to you, the developer, there are going to be times
when you simply have to write some code that is platform-specific. The most common way
of doing this is by checking the osname property from the Ti.Platform namespace.

In this recipe, we will create a simple screen that shows a custom activity indicator when the
device is an iPhone, and a standard indicator when the user is using an Android device.

Again, the complete source code for this recipe can be found in the /Chapter 11/Recipe 4
folder.

How to do it…
Open your app.js file, remove any existing code, and type the following:

// create root window
var win1 = Ti.UI.createWindow({
 title: 'Tab 1',
 backgroundColor: '#fff'
});

///this next bit is a custom activity indicator for iphone
///due to too many diffs between android and ios ones
var actIndIphone = Ti.UI.createView({
 width: Ti.UI.FILL,
 height: Ti.UI.FILL,

Platform Differences, Device Information, and Quirks

260

 backgroundColor: '#000',
 opacity: 0.75,
 visible: false
});

var actIndBg = Ti.UI.createView({
 width: 280,
 height: 50,
 backgroundColor: '#000',
 opacity: 1,
 borderRadius: 5
});

var indicatorIphone = Ti.UI.createActivityIndicator({
 width: 30,
 height: 30,
 left: 10,
 top: 10,
 color: '#fff',
 style: 1
});

actIndBg.add(indicatorIphone);

var actIndLabel = Ti.UI.createLabel({
 left: 50,
 width: 220,
 height: Ti.UI.SIZE,
 textAlign: 'left',
 text: 'Please wait, loading iPhone...',
 color: '#fff',
 font: {
 fontSize: 12,
 fontFamily: 'Helvetica'
 }
});

actIndBg.add(actIndLabel);
actIndIphone.add(actIndBg);
win1.add(actIndIphone);

//the important bit!
//check if platform is android and if so, show a normal dialog
//else show our custom iPhone one
if (Ti.Platform.osname == 'android') {

 var indicatorAndroid = Ti.UI.createActivityIndicator({
 title: 'Loading',
 message: 'Please wait, loading Android...'

Chapter 11

261

 });
 win1.add(indicatorAndroid);
 indicatorAndroid.show();
} else {
 actIndIphone.visible = true;
 indicatorIphone.show();
}

//open root window
win1.open();

Now run your application in both the Android and iPhone simulators. You should be able to tell
that the code you wrote has recognized which platform you're running and displays an activity
indicator differently on each.

How it works…
This simple recipe shows you how to code around the differences in the two platforms using
the simplest of if statements, that is, by checking the osname of the current device using the
Ti.Platform.osname property.

You can use this property to check the platform whenever you have to display a separate UI
component or integrate with a platform-independent API. An example of this recipe running
on each device is shown here:

Platform Differences, Device Information, and Quirks

262

Ensuring that your device can make
phone calls

With all of the technical wizardry and touchscreen goodness that are now packed into modern
smartphones, it's easy to forget that their primary function is still that of a telephone—being
capable of making and receiving voice calls. There may be times, however, when the user's
device is not capable of performing a call for whatever reason (poor network service; lack of
call functionality, that is, an iPod touch user; and so on).

In this recipe, we will attempt to make a phone call, first checking the device's capabilities,
and throwing an error message when a phone call is not possible.

The complete source code for this recipe can be found in the /Chapter 11/Recipe 5 folder.

How to do it…
Open your app.js file, remove any existing code, and add the following:

// create root window
var win1 = Ti.UI.createWindow({
 title: 'Tab 1',
 backgroundColor: '#fff'
});

//create the textfield number entry to dial
var txtNumber = Ti.UI.createTextField({
 top: 20,
 left: 20,
 height: 40,
 width: 280,
 hintText: '+44 1234 321 231',
 borderStyle: 1
});
win1.add(txtNumber);

//create our call button
var btnCall = Ti.UI.createButton({
 top: 90,
 left: 20,
 width: 280,

Chapter 11

263

 height: 40,
 title: 'Call Now!'
});

//attempt a phone call
btnCall.addEventListener('click', function(e) {
 if (txtNumber.value != '') {
 if (Ti.Platform.osname != 'ipad' && Ti.Platform.model !=
 'iPod Touch' && Ti.Platform.model != 'google_sdk' &&
 Ti.Platform.model != 'Simulator') {
 Ti.Platform.openURL('tel:' + txtNumber.value);
 } else {
 alert("Sorry, your device is not capable of making
 calls.");
 }
 } else {
 alert("You must provide a valid phone number!");
 }
});
win1.add(btnCall);

//open root window
win1.open();

Run your application now, either in the simulator or on a device that is not capable of making
calls, such as an iPod touch. You should see an alert appear. It states that the device cannot
action the requested phone call.

How it works…
Here, we are simply using the Titanium Platform namespace to determine what kind of device
the user is currently using, and providing an error message if that device is of the iPod, iPad, or
simulator type. If the device in question is capable of making phone calls, such as the iPhone or
an Android smartphone, then the device's phone API is called via a special URL request:

//must be a valid number, e.g. 'tel:07427555122'
Ti.Platform.openURL('tel:' + txtNumber.value);

Platform Differences, Device Information, and Quirks

264

As long as the phone number being passed is valid, the device will launch the calling screen
and attempt to place the call on the user's behalf.

265

12
Preparing Your App for

Distribution and Getting
It Published

In this chapter, we will cover these recipes:

ff Joining the iOS developer program

ff Installing iOS developer certificates and provisioning profiles

ff Building your app for iOS using Studio

ff Submitting your app to the iTunes store

ff Joining the Google Android developer program

ff Creating your application's distribution key

ff Building and submitting your app to the Google Play Store

Introduction
The final piece of our development puzzle is: how do we package and distribute our mobile
applications on the App Store and Google Play Store in order for our potential customers to
download and enjoy all our hard work? Each of these stores has its own separate processes,
certifications and membership programs.

In this chapter, we'll show you how to set up your system in preparation for distribution, register
for each site, as well as package and submit your apps to the App Store and Google Play Store.

Preparing Your App for Distribution and Getting It Published

266

Joining the iOS developer program
In order to submit applications to the iTunes store, you must first pay to become a member of
Apple's iOS Developer Program. Membership is paid and starts from $99 USD (or equivalent),
recurring annually. Even if you intend to develop and distribute your apps for free, you will still
need to be a paid member of the iOS Developer Program. It is worth noting upfront that only
OS X users can follow and implement the steps for the iOS recipes—building and distribution
of iOS apps is available only to those who run the OS X operating system.

How to do it…
To register for Apple's iOS program, first open a web browser and navigate to http://
developer.apple.com/programs/register. Click on the Get Started link. The page
that loads next will ask you whether you want to create a new Apple ID or use an existing one.
Unless you have registered for some of Apple's developer services earlier, you should choose
the Create New Profile link.

Once you are on the Create Profile page, follow these steps:

1.	 Provide your contact information, including your country of residence. This is
important; you'll need to provide some evidence of your residence when you
want to start selling paid applications.

2.	 On the next page, provide the information required in the professional profile.

3.	 Finally, read carefully and agree to the Terms and Conditions set by Apple. Confirm
that you agree and are at least 18 years old (or the legal equivalent in your country).
Click on the I Agree button to complete your account creation.

4.	 Apple will then send you an e-mail with a confirmation code/link. Clicking on this link
in your e-mail will open your browser, confirm your e-mail address, and complete your
account setup.

You should now be able to see the following page on your browser. It is from here that
we will register for the Developer Program and pay the $99 (or equivalent) annual fee.

http://developer.apple.com/programs/register
http://developer.apple.com/programs/register

Chapter 12

267

Click on the Programs & Add-ons tab in the top-left corner of the page's menu,
which will take you to a page showing the list of memberships that you are currently
subscribed to. Presuming that you have a new account, a list of three developer
programs should appear, each with a Join Today button on the right.

5.	 Click on the iOS Developer Program's Join Today button, which should appear at the
top of the list.

6.	 On the next page that loads, click on Enroll Now and continue until you get to the
step-by-step wizard.

7.	 Choose to either continue with your current Apple ID or create a new one.

8.	 From here, you need to provide all the information asked of you in order to complete
your account setup. You should choose whether to register as a business or an
individual. Beware, however; whichever method of registration you choose, you need
to ensure that you have all of the relevant documentation. You will be asked to submit
this documentation for verification by Apple, and you'll not be able to submit paid
applications until it is received and approved. Some of this information cannot be
changed, and once you have entered it and completed the application, it is, for all
intents and purposes, set in stone!

9.	 Finally, agree to the final set of terms and conditions and make your payment online.
You will require a credit card or debit card to make this purchase.

Preparing Your App for Distribution and Getting It Published

268

You should now be able to log in to your new Apple developer account by navigating from your
browser to http://developer.apple.com/devcenter/ios. Once logged in, you should
get some new menu options on your account's home page, including Provisioning and iTunes
Connect. Any information that you are missing for your account can be found under the iTunes
Connect option, under the Contracts, Tax and Banking section. It is likely that you will have to
upload some documentation and agree to new terms and conditions from time to time within
this section of the website. The following screenshot shows the main developer console menu:

Installing iOS developer certificates and
provisioning profiles

There are two types of certificates required to build your applications, both for debugging on a
device and for App Store distribution. The first is your development certificate. This certificate
is installed on your Mac within the keychain and is used for every single application you will
develop. It identifies you, the developer, when you are distributing an app.

The second type is the application's provisioning profile. This profile certificate is both
application-specific and release-specific. This means that you need to create a separate
profile for each state of the application that you wish to release (the most common being
development and distribution).

In this recipe, we will go through the process of creating and installing our developer
certificate, and then creating and using an application-specific provisioning profile in Studio.

http://developer.apple.com/devcenter/ios

Chapter 12

269

How to do it...
We will now start off with the steps required to install iOS developer certificates and
provisioning profiles.

Setting up your iOS developer certificate
You need to create and install certificates. These are required for signing your applications
for both development use (when installing on a device) and publication on the App Store:

ff Log in to your Apple developer account if you have not done so already, at http://
developer.apple.com/ios, and click on the Certificates, Identifiers & profiles
link. The page that loads will have a number of options on the left-hand-side menu.
Click on the Certificates option. Then, a page will load with a series of steps entitled
How to create a Development Certificate. You need to follow these steps exactly
as described, and when you have gone through them from start to finish, you should
have a Certificate Signing Request (CSR) file saved on your Mac. For this recipe,
we'll assume that you have followed these steps closely and have saved a CSR on
your desktop.

ff Click on the Choose File button at the bottom of the screen to select the CSR file
from your computer and upload it to the web page. Once it has finished uploading,
select the Submit button in the bottom-right corner of the page.

When the screen reloads, you should see Your certificate is ready and some details of your
certificate appear on the screen. A download link should also be available. If the account that
you are using belongs to another party, you will need to wait for them to confirm this action
before you receive an issued certificate. Download the certificate now, and double-click on
the resulting saved file when it has completed downloading. It will then automatically open in
Keychain Access and show you that it has been installed. If you have a message at the bottom
of the page about the WWDR certificate needing to be installed, you may also choose to
download and run that at this point.

Setting up your device
If you have an iPhone, iPad, or iPod touch and wish to test using it, then you first have to register
that device against your iTunes account. Click on the Devices menu link on the left-hand side
of the page and then on add device. The screen that appears will ask you for information about
who owns the device and, more specifically, what that device's unique identifier is. You can find
this identifier by plugging your device into your Mac, launching XCode, and then selecting the
Window menu and Devices. You should see your device appear on the left-hand side. Select it
and, in the main window, look for Identifier.

http://developer.apple.com/ios
http://developer.apple.com/ios

Preparing Your App for Distribution and Getting It Published

270

An example of a unique identifier is shown in the following screenshot:

Creating your application provisioning profile
Now that our Developer Certificate is set up, it's time to create the provisioning profiles for
an application that we have built. We're going to use the details of the LoanCalc app built
in Chapter 1, Building Apps Using Native UI Components, for this example. However, you can
use any application that you have already created:

1.	 Click on the App IDs link from the left-hand-side menu, and when the screen loads,
select the + button at the top of the screen.

2.	 Give your app a description.

3.	 Ensure that Explicit App ID is selected and enter the Bundle Identifier. This is the
all-important identifier that you give to your application upon its creation in Studio.
Since the first edition of this book took the name com.packtpub.loancalc and App
IDs are unique, we'll need to select a new ID, so I'm going to use com.jasonkneen.
loancalc. You can do something similar using your own name or company name.

4.	 Press Continue and then Submit to complete the process and generate your app ID.

5.	 Now, click on Provisioning and select + after the screen loads. Select iOS App
Development and then hit Continue.

6.	 Select an app ID from the dropdown that appears and click on Continue. Then, on
the next screen, select your developer certificate. Hit Continue again, and on the
final screen, you'll be shown a list of devices. Select your device from the list and
select Continue.

7.	 Choose a name for your profile. We'll keep it simple and call this one LoanCalc
Development. You can now click on the Generate button.

8.	 After a few seconds, you should see the Your provisioning profile is ready screen
and a Download button. Click on this button to download the provisioning profile on
your computer.

Chapter 12

271

9.	 Repeat steps 5-8, but instead of choosing the Development tab options, choose
App Store from the Distribution section.

If you're not the account owner but have been given membership status
to someone else's Apple Developer account (for example, if you are an
employee of a large company), then you need to ensure that you've been
given admin access in order to set up your certificates and profiles.

Finally, locate the provisioning files that you've downloaded (if you're using Safari, they'll be in
your Downloads folder), right-click on each one, and select to open in XCode.

It's worth associating all provisioning profiles with XCode, as in this way, you can simply
download, launch, and then use them with the mobile SDK.

If you don't see the device option, it means either you haven't got it plugged in or you might
not have XCode installed. You can download XCode from the Mac App Store.

Building your application for iOS using
studio

In this recipe, we will continue the process started in the two previous recipes and build our
application for both development and distribution to the iTunes store.

Remember that if all else fails, you can always build your application
manually in XCode by navigating to the build/iphone folder of your
project and opening the XCode project file.

How to do it...
Let's cover how to build your application for development and distribution.

Building your application for development
Open your project in Appcelerator Studio; we are using the LoanCalc app from Chapter 1,
Building Apps Using Native UI Components, as an example. However, you may use any project
that you like. Ensure that the application ID in the TiApp.xml file matches the ID you used
while creating your provisioning profiles. In my case, this ID is com.jasonkneen.loancalc,
but you will have to use your own unique ID here.

Preparing Your App for Distribution and Getting It Published

272

Click on the Device drop-down at the top of the Studio window—the one next to the
Run dropdown. It should have a device listed, as shown in the following screenshot:

You can choose to build directly to the device or via iTunes (for distribution to testers). In this
case, we'll select a device name—Oz.

A dialog should appear, with some default settings. Ensure that you have your developer
certificate selected (by default, it should be), and then select from the provisioning profile you
just created and imported via XCode. You should now see a screen similar to this screenshot:

Chapter 12

273

Click on the Finish button to make Studio kick off the build process. Depending on the
choice you made, your app will be either added to your iTunes Library or installed directly
on your device. Once it is installed (or synced via iTunes), launch it like any other from your
iOS device's home screen.

Building your applications for distribution
In order to distribute an application to the App Store, you first have to create your new
application in iTunes Connect, on the Apple Developer website. Navigate to the iTunes
Connect section on the Apple Developer website from your browser and click on Manage
Applications (you can also simply navigate to http://itunesconnect.apple.com).

Log in with your Apple developer account details and select My Apps. Next, click on the +
button at the top of the screen, and select New iOS App to create a new app.

A dialog will appear. Enter the name of your app (as you'd like it to appear in the App Store),
the version number (usually in the 1.0.0 format), a language, and the SKU code (your own
reference, for example, MYAPPS01).

Finally, specify the Bundle ID field by selecting your app from the list, and you should end up
with a screen like this:

Select Create and your app will be created. You'll be taken to a more detailed information
screen. In this screen, you'll need to go through the process of uploading/adding screenshots
from various devices (you can do this from the simulator) and entering a description, keywords,
support URLs, and other metadata. You'll also have to upload an icon, select categories, and
add your details.

Finally, you can add some app review notes (usually instructions or login details for the
individual reviewing your app). Make sure you give the reviewer everything they need—apps
have been rejected because of reviewers being unable to properly test them!

http://itunesconnect.apple.com

Preparing Your App for Distribution and Getting It Published

274

At any point, you can save your changes and come back to the app information screen to
resume where you left off.

The final stage is the generation of a binary file to upload and associate with the app record.
To do this, go back to Studio and make sure that your project is selected. This time, select the
distribute icon (to the left of the gears icon).

You will see the following options:

Select Distribute - Apple iTunes Store, and in the dialog that comes up, the current iOS
SDK should be selected. Hit the Next button, select your distribution certificate, and click
on Next again.

Finally, you will be asked to select your distribution provisioning profile (which you should
have created earlier and opened in XCode to import it into your system).

Once you've selected your profile (you can import it here if you've forgotten to open it in
XCode previously), select Publish.

If everything goes well, your app will be built and packaged and XCode will open the Archive
screen showing your app, like this:

Chapter 12

275

If this doesn't happen automatically, you can get to this screen by launching XCode, selecting
the Window menu, then Organizer, and then the Archive tab.

From here, you can validate your application. This will check with the iTunes Connect portal
and validate the app against the submission you've created, ensuring that it has the required
assets for different devices, among other things.

Once validated, you can submit your app by clicking on Submit and selecting your app. XCode
will upload it to iTunes Connect.

Finally, log in to iTunes Connect, and go back to your app's information screen. Under Build,
select the + sign and select the build you just uploaded (this can take a few minutes to
appear, so keep refreshing or give it a few minutes before you try it out).

Once the build is selected, you can complete any other fields (remember that you can save and
come back later), and finally select Submit for Review. You'll be asked a couple of security and
permission questions around third-party content, so answer them and complete the process.
Your app is NOW submitted!

You can check the progress of your submission at any time via the
iTunes Connect section of the developer program website. Approval
usually takes between 7 and 14 working days for the first submission.
Subsequent updates can take anywhere up to 5 days. However, all of
these times tend to fluctuate depending on the number of submissions
and whether your app is rejected or requires changes before approval
is granted. Apple will send you e-mails at each stage of the submission
cycle, including when you first submit the app, when they start reviewing
it, and when they approve or reject it.

Joining the Google Android developer
program

In order to submit applications to the Google Play Store, you must first register a Google
account and then register an Android Developer account. Both of these accounts utilize
the same username-password combination, and the process is quite straightforward.
Membership is paid and starts from $25 (or equivalent). It is a one-time payment.

Preparing Your App for Distribution and Getting It Published

276

How to do it…
To register, first open a web browser and navigate to https://play.google.com/apps/
publish/signup/. You'll be asked to log in to your Google account. If you don't have one,
then this is the stage at which you need to create it. After you sign in you'll be presented with
the developer agreement which you need to agree to in order to continue:

Once you've completed the sign-in or registration process, you'll be asked to provide your
developer/publisher details, and after that, you'll be required to pay the US $25 registration
fee. That's it—simple and straightforward! You can now create and upload applications to the
Google Play Store.

https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/

Chapter 12

277

Creating your application's distribution key
In order to build applications made for the Google Play Store, you need to create a distribution
key on your local computer. This key is used to digitally sign your app.

How to do it…
1.	 Open the terminal if you are using Mac or Linux, or alternatively Command Prompt

if you're a Windows user. Change the current directory to the following using the
cd command:
cd /<path to your android sdk>/tools

//e.g. cd /Users/<yourusername>/android-sdk/tools

2.	 To create the key, we need to use the Java key tool located in this directory.
In Command Prompt or the terminal, type the following, replacing my-release-
key.keystore and alias_name with the key and alias of your application:

Windows Command Prompt:
$ keytool -genkey -v -keystore my-release-key.keystore -alias
alias_name -keyalg RSA -validity 10000

Mac terminal:
$ keytool -genkey -v -keystore my-release-key.keystore -alias
alias_name -keyalg RSA -validity 10000

For example, our LoanCalc application key command will look something like this:
$ keytool -genkey -v -keystore jasonkneen.loancalc -alias loancalc
-keyalg RSA -validity 10000

3.	 Press Enter and execute the command. You'll be asked a series of questions. You'll
have to provide a password for the keystore—write this down and remember it!

4.	 You will need this to package your app later. We'll use packtpub as the password.
When you are prompted for the secondary key password, simply press Enter to use
the same one.

5.	 Now your key will be exported and saved in the directory you are currently in.
In our case, it's the tools directory under our Android SDK folder. You will
need to remember the file location in order to build your Android app using
Studio in the next recipe.

Preparing Your App for Distribution and Getting It Published

278

Building and submitting your app to the
Google Play Store

In this recipe, we will continue the process started in the previous two recipes and build our
application for distribution on the Google Play Store.

How to do it…
Open your project in Studio; we are using the LoanCalc app from Chapter 1, Building Apps
Using Native UI Components, as an example. However, as usual, you can use any project you
like. Make sure that your project is selected in the Project Explorer page, and then select the
same distribute icon that you selected for iOS, but select Distribute - Android App Store this
time, as shown here:

You will need to enter the distribution location (where you want the packaged APK file to be
saved) and the location of the keystore file you created in the previous recipe, along with the
password and alias you provided earlier.

Chapter 12

279

After you have entered this information, you should see something like what is shown in the
following screenshot:

Preparing Your App for Distribution and Getting It Published

280

If all of the information is correct, click on Publish. After a few minutes, the APK file will be
written to the distribution location that you provided. Go back to the Google Play Developer
Console, and on the home screen, click on Add New Application. Give your app a title and
select the Upload APK button. On the following screen, choose to upload the APK you created
earlier (LoanCalc.apk in our case) and upload it to the server. If everything is successful,
you should see something like this:

All that is left to do now is going through the options on the left (Store Listing, Pricing and
Distribution, and so on.) and filling in the required information. This will include more details
on the app, its price, regions, and screenshots. Once that is done and you've accepted any
terms and conditions that may be required, all that is left to do is selecting the Publish App
button, which will become active when all the required sections are completed.

The app approval process is faster in this case than for the Apple App Store, so once you have
submitted your app, you should see it appear in the Play Store within 24 to 48 hours.

You should now be able to build and submit applications to both the Apple App Store and the
Google Play Store.

281

13
Implementing and

Using URL Schemes

In this chapter, we will cover these recipes:

ff Detecting whether another iOS app is installed

ff Launching another iOS app

ff Passing parameters to other apps via a URL

ff Launching Apple Maps and Google Maps with route directions

ff Opening URLs in Chrome for iOS

ff Setting up your own apps to use URL schemes

ff Receiving URL commands in your own app

ff Transferring binary data between apps using a URL scheme

Introduction
A URL scheme is a definition of how to handle and process particular kinds of URLs (or URIs)
passed to it. The most common is http://, which we use every day, but there are also
others, such as mailto:// and ftp://.

In native mobile apps, URL schemes can be used to allow one app to launch another app and
pass data to it. This is incredibly useful if you want to share certain information between apps,
such as a login token, or if you want to automate an app to do something such as posting a
tweet for you.

Implementing and Using URL Schemes

282

Typically, a URL scheme will consist of a unique definition that, in most cases, reflects the
name of the application. For example, on iOS and OS X, the tweetbot:// scheme will launch
the Tweetbot client. Passing additional parameters to it will allow you to jump to a different
view and even post a tweet.

A common way for developers to use URL schemes is by detecting whether a particular native
app is installed and then launch it, instead of showing a web app. Google uses this for apps
such as YouTube and Google Maps to open a route or link in the native app if it's installed.

Another use of URL schemes is to detect whether an app is installed and alter the behavior
of your own app accordingly. For example, the Google Gmail app on iOS will detect whether
Google Maps or Chrome is installed, and offer the ability to open links and routes in these
apps directly from Gmail. The action is fairly seamless. Clicking on a link will open Chrome,
which will even show a Back button. When clicked, this will take you back to Gmail!

In this chapter, we'll show you how to use URL schemes on iOS to check whether particular
apps are installed, launch and send data to them, and even have an app return to your own
application when it's finished executing a function. We'll also show you how to set up your own
iOS apps to support URL schemes so that another developer can interact with the features of
your own app.

Detecting whether another iOS app is
installed

In order to work with other apps, they must support a URL scheme. In its simplest form,
this will allow you to detect and launch the app. More preferable is if the app supports URL
scheme commands, allowing you to send instructions or data to it. There are a plenty of
resources out there for doing this, including http://handleopenurl.com. On this site,
you can look up particular apps and find out whether they support URL schemes.

As a general rule of thumb, most modern-day iOS apps support URL schemes by default,
allowing you to launch them either with the app name (appname://) or by their full bundle
identifier (com.mycompany.appname://).

In this recipe, we're going to use a very simple bit of code to detect whether another app is
installed using the URL scheme. Ideally, you would want to do this on a device, but you can
test it with the stock simulator apps along with your own apps.

Getting ready
To prepare for this recipe, open Appcelerator Studio and log in if you have not already done
so. Once you are logged in, click on New Project, and the details window for creating a new
project will appear. Enter URLSchemes as the name of the app, and fill in the rest of the
details with your own information.

http://handleopenurl.com

Chapter 13

283

In iOS9, Apple made some changes around the security of URLSchemes. You are now
required to register the URLSchemes that you want to query for and launch. So, you need
to make some changes to your TiApp.xml file in order for this to work.

Find this line within the TiApp.xml file:

<string>UIStatusBarStyleDefault</string>

Under it, add the following:

<key>LSApplicationQueriesSchemes</key>
<array>
 <string>maps</string>
 <string>tweetbot</string>
 <string>googlemaps</string>
 <string>googlechrome</string>
</array>

How to do it...
Open the app.js file in Studio and replace its contents with the following code. This code will
form the basis of our URLSchemes application:

Ti.UI.setBackgroundColor('#FFF');

var win = Ti.UI.createWindow({
 title: 'URL Schemes',
 backgroundColor: '#fff'
});

var label1 = Ti.UI.createLabel({
 left: 30,
 top: 100,
 text: "Maps:"
});

var label2 = Ti.UI.createLabel({
 left: 30,
 top: 150,
 text: "Tweetbot:"
});

if (Ti.Platform.canOpenURL("maps:")) {
 label1.text = label1.text + " Installed";
} else {

Implementing and Using URL Schemes

284

 label1.text = label1.text + " Not installed";
}

if (Ti.Platform.canOpenURL("tweetbot:")) {
 label2.text = label2.text + " Installed";
} else {
 label2.text = label2.text + " Not installed";
}

win.add(label1);
win.add(label2);

win.open();

Now launch the simulator from Studio. You should see two labels, with one saying that
Maps is installed and the other saying that Tweetbot isn't installed, as shown in the following
screenshot. If you did run this on a device and had Tweetbot installed, the second label would
show that.

Chapter 13

285

How it works…
The code here is really simple. We're calling the Ti.Platform.canOpenUrl method and
passing to it a URL scheme. If the app that can open the scheme exists, it returns true,
and if not, it returns false. This is a simple bit of code but is incredibly powerful, because
by combining this with the examples in the next chapter, we can make our app behave
differently based on which other apps are installed!

Launching another iOS app
So, in the first recipe, we detected whether another app is installed on the simulator/device.
Now, we can do something with this information and launch another app.

How to do it...
Go back to the app.js file in Studio. Let's replace the checking code with an updated version
that adds some event listeners to the labels:

if (Ti.Platform.canOpenURL("maps:")) {
 label1.text = label1.text + " Installed";

 label1.addEventListener("click", function() {
 Ti.Platform.openURL("maps:");
 });

} else {
 label1.text = label1.text + " Not installed";
}

if (Ti.Platform.canOpenURL("tweetbot:")) {
 label2.text = label2.text + " Installed";

 label2.addEventListener("click", function() {
 Ti.Platform.openURL("tweetbot:");
 });

} else {
 label2.text = label2.text + " Not installed";
}

Implementing and Using URL Schemes

286

Save and relaunch the app. This time, if you click on the labels that say Installed, the apps
will open!

How it works…
The Ti.Platform.openURL method is normally used to open web pages in a built-in mobile
browser, such as Safari and Chrome. In this case, we're using it to open the URL scheme of
the target app, and this means that instead of a web browser being opened, the app is. So
now, you can check for an installed app and open it within your own app. In the next chapter,
you'll find out how powerful this is!

Chapter 13

287

Passing parameters to other apps via a URL
So far, we've detected apps and launched them, but it would be cool if we could also pass
data to an app when launching it. With URL schemes, this is possible as easily as passing a
URL that you might pass to a web page. Depending on the app, it'll have specific commands
that are used to pass data to it.

In the case of Apple Maps on iOS, its URL scheme is defined at http://apple.
co/1EqnbnV.

How to do it...
Let's go back to the app.js file in Studio and replace the line of code that opens the Maps
app with the following:

Ti.Platform.openURL("maps://?q=1 infinite loop, cupertino");

Save and relaunch the app. Click on the label and you should see maps open and the spinner
working in the top-left corner. After some time, the following screen will appear:

http://apple.co/1EqnbnV
http://apple.co/1EqnbnV

Implementing and Using URL Schemes

288

How it works…
Ti.Platform.openURL can accept a full URL containing querystring parameters, much
like a web page. The app being called has to parse and respond accordingly. In the case of
Apple Maps, it reads the q parameter as a query and runs it, performing a search for that
string and displaying the results.

Launching Apple Maps and Google Maps
with route directions

In previous recipes, we looked at detecting apps, launching them, and passing data to them
in the form of a search query in Apple Maps. Now, let's look at passing something more
sophisticated, say a route query. In this recipe, we're going to launch some popular mapping
applications via a URL.

How to do it...
Let's go back to the app.js file in Studio and add some more code. First, we need to add a
new label, so add this under your label2 definition:

var label3 = Ti.UI.createLabel({
 left: 30,
 top: 200,
 text: "Navigate from London to Edinburgh"
});

Next, we need to add the label to the window. So, add the next line of code under the code
that adds the first two labels:

win.add(label3);

Now, we need to add the code that will launch the route directions. According to the Apple
Maps URL scheme, it accepts the saddr and daddr parameters to define a start address
and an end address. So let's add the following event handler:

label3.addEventListener("click", function() {
 Ti.Platform.openURL("maps://?saddr=london&daddr=edinburgh");
});

Chapter 13

289

Restart the application; you should see the new label. Click on it and Maps will open and show
a route from London to Edinburgh!

To do the same thing from Google Maps, we can actually use the same format of URL,
as Google Maps uses the same saddr and daddr format (considering the fact that Google
Maps was the original mapping app of iOS, and that the Apple Maps app took over any map
links when it was launched, this makes sense). You can find the full URL scheme format for
Google Maps at http://bit.ly/1lq3R7J. So, just replace the code in the URL string with
the following:

label3.addEventListener("click", function() {
 Ti.Platform.openURL("googlemaps://?saddr=london&daddr=edinburgh");
});

http://bit.ly/1lq3R7J

Implementing and Using URL Schemes

290

Relaunch the app and try again. This time, the route will be opened in Google Maps (if you
have it installed).

Opening URLs in Chrome for iOS
For iOS users, the default browser is still Safari. iOS 8 added some new features called
extensions, which allowed developers to be able to add commands to Open with menus so
that their apps could handle certain types of data. But the default for clicking on a link will
always be Safari.

In your own apps, however, you can override this by opening links with a specific URL scheme
that relates to Chrome for iOS. When you do this, the link that you specify will be opened in
Chrome if it's installed on the user's device.

Chapter 13

291

How to do it
1.	 Go back to the app.js file in Studio and add some more code. First, we need to add

a new label, so we add this under our label3 definition:
var label4 = Ti.UI.createLabel({
 left: 30,
 top: 250,
 text: "Open a link in Chrome"
});

2.	 Next, we need to add the label to the window. So, add the next line of code under the
code that adds the three existing labels:
win.add(label4);

3.	 Now we need to add the code that will launch the URL in Chrome, so let's add the
following event handler:
label4.addEventListener("click", function() {
 Ti.Platform.openURL("googlechrome:www.appcelerator.com");
});

4.	 Restart the application, and when you click the label you just added, it should open
the web link with Chrome for iOS (if it's installed). To open a link in a secure way using
https, just use googlechromes instead.

Implementing and Using URL Schemes

292

Setting up your own apps to use URL
schemes

Now that we've played with existing apps that accept URL commands, let's add some of this
capability to our own application.

How to do it...
There are two stages in enabling URL schemes: establishing the scheme name and
configuring the app, and then writing the code to accept the URL commands.

Let's do the first step and configure our app to accept a URL Scheme. We'll use the same
project that we've been working with, so add the following code to the tiapp.xml file,
replacing any existing ios tag:

<ios>
 <plist>
 <dict>
 <key>UISupportedInterfaceOrientations~iphone</key>
 <array>
 <string>UIInterfaceOrientationPortrait</string>
 </array>
 <key>UISupportedInterfaceOrientations~ipad</key>
 <array>
 <string>UIInterfaceOrientationPortrait</string>
 <string>UIInterfaceOrientationPortraitUpsideDown</
string>
 <string>UIInterfaceOrientationLandscapeLeft</
string>
 <string>UIInterfaceOrientationLandscapeRight</
string>
 </array>
 <key>UIRequiresPersistentWiFi</key>
 <false/>
 <key>UIPrerenderedIcon</key>
 <false/>
 <key>UIStatusBarHidden</key>
 <false/>
 <key>UIStatusBarStyle</key>
 <string>UIStatusBarStyleDefault</string>
 <key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleTypeRole</key>
 <string>Editor</string>
 <key>CFBundleURLName</key>

Chapter 13

293

 <string>com.packtpublishing.urlschemes</
string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>urlschemes</string>
 </array>
 </dict>
 </array>
 </dict>
 </plist>
 </ios>

Next, clean the project and then rebuild it on the simulator. Once it launches in the simulator,
navigate to the hardware | home option to go back to the home screen. Then launch Safari.

Type the following URL in Safari and hit Enter:

urlschemes://

You may see a dialog asking you whether you want to open the app. Select OK and your app
will reload. You've successfully opened your app with a URL!

Implementing and Using URL Schemes

294

How it works…
The settings that we added to the tiapp.xml file tell the app to register a particular
URL scheme. Once the project is cleaned and built, entering the URL scheme in Safari
(or using it from another application) will launch your app.

Receiving URL commands in your own app
Now that we've configured our application with a URL scheme, it's time to add some code that
can detect the app being launched from the URL and parse the commands so that we can act
and execute commands issued via the URL.

How to do it…
If you're using Alloy, the following code examples can go into the alloy.js file. Otherwise,
add them to your app.js file.

The way we can find out the arguments passed to the app upon launch from a URL is by
using the Ti.App.getArguments method. This returns an object that has two properties
we're interested in, source and url. These respectively tell us the identifier of the app that
invoked the URL and the URL itself, including any parameters.

Firstly, we need to add some code to handle the detection of the URL when the app is launched
or resumed, so add the following lines at the bottom of your app.js or alloy.js file:

var checkURLArgs = function() {
 var args = Ti.App.getArguments();

 if (args.url) {
 alert(args.url);
 }
};

Ti.App.addEventListener('resumed', function(e) {
 checkURLArgs();
});

checkURLArgs();

Run the app, go to Safari in the simulator, and then enter urlschemes://works! as the
URL. Your app will launch, and you should see the following screen:

Chapter 13

295

How it works…
The checkURLArgs function does most of the work here. It checks the arguments passed to
the app and grabs the url property, which contains the entire URL sent to the app.

In order for this to work properly, however, we need to cater to both the app being launched
and it being resumed from the background. So, we utilize the resumed event, which tells the
app when it has resumed from the background.

By putting the code into the checkURLArgs function, we're able to simply call this when the
app is resumed and when it is launched.

Implementing and Using URL Schemes

296

Once you have the url property, you can parse it to remove the URL scheme and check the
command. From here on, you can open a particular screen or process a particular function.
By providing the ability for the calling app to send a callback / success command, you can
automatically call a callback once your processing is complete.

Alternatively, you can call the source URL scheme passed through, along with a URL consisting
of values that you wish to return.

Finally, there's one more thing to implement if you want to use URL schemes in your apps and
launch them from an e-mail or some other web-based link.

The problem with, for example, sending an e-mail to someone with a URL-scheme-based
link such as urlschemes://openArticle?id=100 is that this will work only if the app
is installed. If it's not, the link will generate an error, and this isn't good user experience.

One way in which developers work around this is by using a redirect link. This is a simple
HTML page that sits on a server that can take care of the redirection of the link by detecting
whether the app is installed.

For example, you could have a link in an e-mail that, when clicked on, can check whether the
app is installed, and if it is, open the link in the app. If it's not, the user can be redirected to a
web page version, a download page, or any other web link.

There's a great example of this code posted at https://gist.github.com/
FokkeZB/6635236. It can take care of all of this for you and will allow you to implement a
redirect link. Plus, it will insert an iOS smart banner on your page. This allows you to let users
know that the app is installed and give them the choice to open it.

Transferring binary data between apps using
a URL scheme

One of the limitations of iOS has always been the isolation of apps and the ability to share
data between them. Typically, this has been achieved by developing native extensions or
using app groups, but the latter work only between your own apps.

So far, we have sent text data between apps, so let's look at how we can use the same
techniques to transfer binary data: images, documents, or any file.

How to do it…
In order to transfer a file via a URL, you have to turn it into text. To do this, you need to
base64 encode the binary data into a string:

var fileAsText = Ti.Utils.base64encode(binaryData);

https://gist.github.com/FokkeZB/6635236
https://gist.github.com/FokkeZB/6635236

Chapter 13

297

The binaryData in this case could be a blob, the result of a .toImage()method of a view,
or a binary file loaded from the filesystem:

var binaryData = Ti.Filesystem.getFile('photo.png');

Once you have the file converted into a string, it needs to be encoded so that it can be sent via
a URL:

var encodedText = encodeURI(fileAsText);

We can use a method that we used earlier this chapter to transfer it to another app:

Ti.Platform.openURL("myapp://photo/" + encodedText);

That's it! Using this method, it's possible to load a file, convert it to a format that can be
transferred via a URL, and pass this URL to another application. However, the receiving app
has to be configured to accept URLs and has to reverse the process we just covered.

So, the getArguments function, which we used previously, needs to be used to get the URL.
The text needs to be extracted by removing the URL scheme and any command text, and then
the preceding process is reversed. This is done firstly using decodeURI, and then using the
base64decode method to convert the string back into a blog / binary object. This can then
be used, saved in a file, or manipulated.

Once the target application has manipulated the file, it can be sent back to the original app
using the same techniques mentioned before.

With these techniques, it's possible to transfer binary files between apps, make changes to
them, and send them back.

299

14
Introduction to

Alloy MVC

In this chapter, we will cover the following recipes:

ff Installing Alloy and creating an Alloy project

ff Building views and windows

ff Creating Buttons and Labels using Events

ff Changing the look of your app with styles

ff Working with Navigation and TabGroups

ff Adding an Alloy widget to your application

ff Creating your own Alloy widget

ff Integrating data using models and collections

Introduction
So far, everything you've built with the Appcelerator platform has been in pure JavaScript.
This means that all user interface and application logic has been combined into (typically)
the same .js files.

In this chapter, we will refer to this method of working as the classic method of writing apps
with the Appcelerator platform. Typically, this will involve building an app that has the top-level
Resources folder and the app.js file.

Since the first edition of this book, Appcelerator released Alloy MVC, an add-on framework that
allows you to create applications using a Model, View, Controller (MVC) approach, separating
the user interface from the application data and code.

Introduction to Alloy MVC

300

By using Alloy, you can build applications faster using less JavaScript, and you can easily
manage the differences between the form-factor (phone and tablet) and platform
(iOS, Android, and so on).

Since its release, Alloy has become the standard way of creating mobile projects. In this
chapter, we'll go through the basics of Alloy, and show you how it can help you build mobile
applications faster.

Installing Alloy and creating an Alloy project
If you're running the latest version of Appcelerator Studio, then Alloy should be installed for
you when you run Studio for the first time. However, if you want to install it manually, or if
you're running Titanium as open source with your own IDE, then you can install Alloy from
the terminal.

These chapters are going to assume that you're using OS X. However, you can do all of this
using Windows too.

How to do it...
Typically, when you install Appcelerator Studio, it will install the mobile SDK and any add-ons,
including Alloy. You can check whether Alloy is installed by typing the following in a terminal
window:

$ alloy -v

This will return the version that is currently installed. If you don't have Alloy installed, you
can install it by performing a check for updates in Appcelerator Studio or as follows from
the terminal:

$ sudo npm install –g alloy

Chapter 14

301

Once it is installed, launch Appcelerator Studio and go to File | New | Mobile App Project.
You should see the following dialog:

At this point, you can select from two Alloy project templates: a blank template and one
with a two-tabbed interface or a Classic project. Selecting Classic will create a normal
non-Alloy project. We'll come back to tabbed project later, so for now, let's create a new
default Alloy project.

Click on Next and fill in the name and app Id. Then, hit Next. Your project will thus be created.

Introduction to Alloy MVC

302

The first thing you'll notice when you look at your project is that it doesn't look like a normal
project—there's no Resources folder and no app.js file! Here's how you project looks
in Studio:

Looking at the project structure, you can see that the normal app.js file and the Resources
folder have disappeared, and instead there is an app folder. This is where the Alloy
code resides.

Remember that Alloy sits on top of a classic project—there is no Alloy without it—so when you
build the app and you look at the Project folder, you'll actually see a Resources folder,
app.js, and so on. This is because the code that you write with Alloy is turned into a normal
classic project behind the scenes. So it's there, just hidden, and you definitely don't want to
mess with it. That's because every time you build an Alloy project, the Resources folder is
deleted and rebuilt. So basically, if you're developing with Alloy, just ignore it.

Before we move on to coding, let's take a quick look at the project structure that has
been created:

Folder Description
/app This folder is where your Alloy application is stored. The code here is

converted into a classic mobile project when you build it.
/platform This is a platform-specific folder that can be used for platform

resources, such as special assets and themes for Android.
/plugins This is where specific compile time plugins can go. You'll notice that

ti.alloy is in here. Typically, you don't need to mess with this folder.

Chapter 14

303

If you look into the app folder, you'll see more folders:

/assets This is where all application assets are stored. These include
images, application icons, and any XML, HTML, or JSON files
that your application might access. Any resource that you want
accessible to the app should go here. Inside assets, you'll notice
folders for each platform that you add to the project. We'll talk
about platform-specific folders in more detail later in this chapter.

/controllers Controllers are the C of MVC and represent the code that is
associated with views in your application. Each View can be
combined with a controller, which can then access it and execute
code. Inside this folder will be a file representing each view in the
application.

/models Models are the M of MVC and are used to associate data with
your application. Models, combined with collections, allow you
to take data from local data sources, remote HTTP requests, and
bind these data sources to tables, views, and listviews in your
application. We'll cover these later in the chapter.

/styles This is where we define the properties for the UI elements in our
app. Inside this folder is a file for each view in the application, and
typically you will define properties such as color, size, and so on in
these files.

/views Views are the V of MVC and the layouts of your application. This
folder consists of XML files for each view. These, when combined
with a controller and a style, allow you to develop a rich, cross-
platform UI.

alloy.js This is a global file that can be used to store global objects,
variables, or functions; these can be used throughout the app.
Anything that you put in alloy.js is accessible throughout the
app, so care needs to be taken while using it.

config.json This file is a global configuration file for an Alloy project. It's JSON-
based and comes with various sections that allow you to create
a global setting and then have it overridden based on the type
of application being built. For example, a development build of an
app could use a different API server to talk to than a production or
test version.

In the next recipe, we will be going through how to use these folders and files to create a
simple Alloy project.

Introduction to Alloy MVC

304

Building views and windows
Now that we've created a base Alloy project, we're going to take a look at some of the
differences between classic mobile development and using Alloy. Typically, in a classic project,
you might put the following code into the app.js file:

var win = Ti.UI.createWindow({backgroundColor:"white"});

var view1 = Ti.UI.createView({width: 100, height: 100,
backgroundColor:"red"});

var view2 = Ti.UI.createView({width: 50, height: 50,
backgroundColor:"blue"});

view1.add(view2);

win.add(view1);

win.open();

How to do it...
Run the app in the simulator and you'll see the following:

Chapter 14

305

This is a very simple example, but even with the few lines of code that you have written, you
can see how complex the JavaScript could become. Imagine writing an app with many more
visual elements—there would be a lot of JavaScript code!

In addition, any changes you may want to make to the visual look of the app, such as colors
or layouts, would mean changing the JavaScript, and this could introduce errors into your
application.

The other big issue with writing classic code is dealing with any cross-platform-specific
conditions. For example, hiding or changing a specific control for iOS or Android means adding
if...then conditions around code. This again leads to possible duplication of code and,
more importantly, errors.

Now, compare the preceding code with the following Alloy view definition, and replace the XML
code in the views/index.xml file with the following:

<Alloy>
 <Window backgroundColor="white">
 <View width="100" height="100" backgroundColor="red">
 <View platform="android" width="50" height="50"
 backgroundColor="green"/>
 <View platform="ios" width="50" height="50"
 backgroundColor="blue"/>
 </View>
 </Window>
</Alloy>

Immediately, two things are apparent. Firstly, you haven't written any JavaScript, and secondly,
it's immediately possible to see the relationships between the UI elements being created. You
can see that the View is inside the Window and the Label is inside the View. It's immediately
readable, and anyone familiar with the HTML/XML structure will be able to understand this
visual layout easily and at a quick glance.

How it works…
In Alloy, when you build the application, all the Alloy files are turned into JavaScript code and
then combined into a Classic project, which then builds your application. Alloy essentially
preprocesses your profile files, parsing them for any errors and flagging these errors before the
app even launches. If no errors are found, the app is rebuilt from the Alloy files and launched
like a normal classic application.

Introduction to Alloy MVC

306

Did you notice the two separate View tags in the code that had two different
platform attributes and different colors?
When you add a platform attribute to a tag, you are telling Alloy that this
element should be created for that platform only. You can include one
platform, as ios, or multiple platforms, as ios, android.
Alloy looks for any platform-specific tags and automatically ignores them in
the build process. This means that any Android-specific elements that you
may have defined are ignored, and no JavaScript code is created. Only code
relevant to the platform is included in the finished application!
This is an incredibly important part of how Alloy works. Imagine having assets
for Android and iOS in a classic project. These files would be included in both
iOS and Android builds. Your Android application would contain iOS images,
which it would never display!

Creating Buttons and Labels using Events
So far, we've looked at a basic project and creating Windows and Views. Now, let's look at
creating some Labels and Buttons and adding some click events.

How to do it...
Keep the index.xml that you created for the last recipe. Let's modify it a little to add some
labels and buttons. Change the code to the following:

<Alloy>
 <Window backgroundColor="white" layout="vertical">
 <Label id="myLabel" borderRadius="2" top="40"
 borderColor="#CCC" height="35" width="200"/>
 <Button id="myButton" borderRadius="2" backgroundColor="#35e"
 color="#fff" top="10" height="35" width="100">Click
 me!</Button>
 </Window>
</Alloy>

Chapter 14

307

Build the app in the simulator to see the following:

Notice that we're using a vertical layout to make things easier, and we've created a simple
label and button. Try clicking on the button… nothing happens. So, we need to add an event.

Typically, in classic code, we'd use the addEventListener method to add a click or some
other event to an element. In Alloy, it's much easier.

First, let's add the event to the XML. Edit the Button tag to look like this:

<Button id="myButton" onClick="doClick" borderRadius="2"
backgroundColor="#35e" color="#fff" top="10" height="35"
width="100">Click me!</Button>

The key attribute that we've added here is onClick. You can use any compatible event with
an element that you might use in classic code: click, focus, scroll, and so on. To use
them, simply add an attribute in the format of on[Event] and assign it to a function that
will handle the event. In this case, we've created a function called doClick.

Introduction to Alloy MVC

308

Next, we have to create the event handler. Open /controllers/index.js and replace all
of its contents with the following:

function doClick(e) {
 $.myLabel.text = "Clicked!";
}

$.getView().open();

Now run the app. When the view appears, click on the button and the label should update
with Clicked!.

How it works…
When you add the event property to a tag, you associate it with a function in the controller file,
and this file is used to handle the event. The e parameter, which is passed to the function, can
be used to extract details about the event, just as it was in classic code.

In this case, when the event fires, you're updating a label. Notice how the label element is
referenced. Because you've created an ID against the label in the XML, you can reference it
using the $.myLabel reference. The $ sign is a representation of the controller (and, with it,
any elements that have been defined in the corresponding view), so in this case, you can also
reference $.myButton by ID.

Because the underlying objects being created are classic mobile API objects, you have access
to all properties, methods, and events of these objects, as described in the Appcelerator API
documentation.

In Alloy, you can create almost any element that you can
normally create with classic code. It follows a simple principle
of the Pascal case. In other words, suppose you want to create
a Ti.UI.TextField. Where you'd normally use the Ti.UI.
createTextField method, in Alloy, you would just use a tag
called TextField.
The $.getView() will always return the top-level object in an Alloy
View, which in this case is a window object (in the case of, say, the
index controller, you can also use $.index, which does the same
as $.getView()). The .open() method is then used to open the
window—without that, the index.xml view would not open!

Chapter 14

309

Changing the look of your app with styles
One of the cool features of Alloy is the ability to separate the visual elements of your app from
your code. This can be done via XML files, as we've already done, or you can use Alloy TSS
styles to apply properties to elements in a view. In this recipe, we'll be updating the code
from the last recipe and moving our styling into a separate file.

Looking back at the previous recipe, we have a view containing the following XML:

<Alloy>
 <Window backgroundColor="white" layout="vertical">
 <Label id="myLabel" borderRadius="2" top="40"
 borderColor="#CCC" height="35" width="200"/>
 <Button id="myButton" borderRadius="2" backgroundColor="#35e"
 color="#fff" top="10" height="35" width="100">Click
 me!</Button>
 </Window>
</Alloy>

In this example, we defined the visual properties of all the elements in the XML file, much like
you might do when creating HTML content. Ideally, it would be useful to separate the visual
properties of our elements into a separate file, perhaps to simplify the code or reuse them
elsewhere. In a similar (but not exactly the same) way as CSS separates styles from HTML,
we can separate properties from XML using TSS files.

This reduces the amount of code we write, can avoid duplication, and can make changing
(say) the size of controls across the entire application much easier.

How to do it…
Update the XML as follows. Note that you will be removing all the inline styles:

<Alloy>
 <Window >
 <Label id="myLabel"/>
 <Button id="myButton" onClick="doClick" >Click me!</Button>
 </Window>
</Alloy>

If you run the app, you'll notice that the designs of the buttons and labels revert to the default
settings—your styles are gone.

Introduction to Alloy MVC

310

Now open the /app/styles/index.tss file, and replace its contents with the following
code:

"Window" : {
 backgroundColor: "white",
 layout: "vertical"
}

"Label" : {
 borderRadius: 2,
 top: 40,
 borderColor:"#CCC",
 height: 35,
 width: 200
}

"Button" : {
 borderRadius: 2,
 backgroundColor: "#35E",
 color: "white",
 top: 10,
 height: 35,
 width: 100
}

Run the app and you'll see that the styles are back. You have removed the inline styles, but
the TSS styles that you defined have been applied automatically. You've now separated the
elements in the view from their styling.

Now, if you want to change the height, color, width, or position of any element, you can do this
within the TSS file without changing any XML or writing any JavaScript code!

There may be a time when you want to specify a property in the XML file. This might be
because you want to override an existing and applied style, or you don't want to create an
entire style definition just to specify, say, a height property.

In these instances, you can do so by just adding the property to the XML file. For example,
if you want the label to be 100 points from the top of the screen instead of 40 (which is
defined in the TSS), update the XML as follows:

<Label id="myLabel" top="100"/>

Chapter 14

311

TSS is very powerful, but you can do much more than just define styles for Tags such as
Window, Label, Button, and so on. You can target a specific element in a view by using
its ID, as follows:

"#myLabel" : {
 borderRadius: 2,
 top: 40,
 borderColor:"#CCC",
 height: 35,
 width: 200
}

By changing the definition to be the ID of the label, we're now targeting that specific label and
no others.

Similarly, we can create a class of definition that can be used for various elements by
specifying a class attribute in the XML and setting it to a class attribute:

Index.tss:

".label" : {
 borderRadius: 2,
 top: 40,
 borderColor:"#CCC",
 height: 35,
 width: 200
}

index.xml:

<Label id="myLabel" class="label"/>

Two more features of TSS styling are platform and form-factor overrides. With these, you
can override or target specific styling to a specific device type (handheld or tablet) and/or
a specific platform (iOS, Android, and so on).

For example, if you want to define a global style for a Label tag in the app.tss file, you can
write the following:

"Label" : {
 height: Ti.UI.SIZE,
 width: Ti.UI.SIZE
}

Introduction to Alloy MVC

312

On iOS, labels will default to having black text. On Android, they are typically defined using grey
text by default. Of course, you could just include the color: "#000" attribute in the Label
definition, but if you want to, say, change the color of the Android labels specifically, you can
use this code:

"Label" : {
 height: Ti.UI.SIZE,
 width: Ti.UI.SIZE
}

"Label[platform=android]" : {
 color: "#444"
}

In this example, Alloy will apply the properties to the label in the order of the label definition
and then any platform overrides. So, for Android, the additional property of color will be
applied to the existing label definition. Similarly, you can use [platform=ios] and even
[platform=os,android] for multiple platforms.

The result of the preceding definition on Android would be the same as if you wrote the
following in classic code:

myLabel.applyProperties({
 height: Ti.UI.SIZE,
 width: Ti.UI.SIZE,
 color: "#444"
}

Similarly, in Alloy, there is support for the form-factor of the device. So, the following styles
apply properties differently for handheld devices (phones) and tablets:

"#myButton[formFactor=handheld]": {
 top: 50
}

"#myButton[formFactor=tablet]": {
 top: 100
}

You can, of course, combine different overrides with different styles, allowing you to create
very powerful targeted styling for your application, such as this example taken from the
Appcelerator docs at http://docs.appcelerator.com/platform/latest/#!/
guide/Alloy_Styles_and_Themes-section-35621526_AlloyStylesandThemes-
Platform-SpecificStyles:

// Default label
"Label": {
 backgroundColor: "#000",

http://docs.appcelerator.com/platform/latest/#!/guide/Alloy_Styles_and_Themes-section-35621526_AlloyStylesandThemes-Platform-SpecificStyles
http://docs.appcelerator.com/platform/latest/#!/guide/Alloy_Styles_and_Themes-section-35621526_AlloyStylesandThemes-Platform-SpecificStyles
http://docs.appcelerator.com/platform/latest/#!/guide/Alloy_Styles_and_Themes-section-35621526_AlloyStylesandThemes-Platform-SpecificStyles

Chapter 14

313

 text: 'Another platform'
},
// iPhone
"Label[platform=ios formFactor=handheld]": {
 backgroundColor: "#f00",
 text: 'iPhone'
},
// iPad and iPad mini
"Label[platform=ios formFactor=tablet]": {
 backgroundColor: "#0f0",
 text: 'iPad'
},
// Android handheld and tablet devices
"Label[platform=android]": {
 backgroundColor: "#00f",
 text: 'Android'
},
// Any Mobile Web platform
"Label[platform=mobileweb]": {
 backgroundColor: "#f0f",
 text: 'Mobile Web'
}

Experiment with the TSS and XML to change the properties of the
elements that you've created. You can define a Tag-based definition
(Label), a class (.label), and an ID-based definition (#myLabel),
and use all of them within a view, allowing you to have very precise
control over the elements in your app. Remember that you can define
a global style in the app.tss file and then override it on a view-by-
view basis.

How it works…
When Alloy builds your application, it checks for any TSS definitions that have been created
for a particular view and applies those properties to the relevant tags. Properties are merged
or overwritten, so Alloy will apply them by applying any tag-based definitions first, then any
classes, then any ID-based definitions, and finally any XML-based properties. It also takes
platform-specific overrides into account.

Introduction to Alloy MVC

314

If you want to create application-wide styles that can be used in every view
in the app, you can do this by creating the /app/styles/app.tss file.
Anything you put in this file will be applied throughout the app, allowing
you to, for example, create a standard style for Labels, TextFields,
and Buttons in one place.

Working with Navigation and TabGroups
In iOS, we are used to seeing two classic methods of navigation: TabGroups and Navigation
Windows. Both are very similar in the sense that they maintain a stack of windows that
allow you to navigate between them, automatically creating a "back" link for you in iOS. But
TabGroups differ; they provide Tabs that appear along the bottom of a window in iOS, and at
the top in Android. With a TabGroup, you can switch between your main primary tab windows,
and then subnavigate into those windows if required.

A Navigation Window, on the other hand, is just a single window. Think of it as a single tab
from a TabGroup. You can open subwindows within it, but there are no tabs—also this is for
iOS only.

In this recipe, we'll create an app that demonstrates a cross-platform TabGroup that will run
on iOS and Android. We'll also create a variation of this app that uses a Navigation Window,
and we'll deal with handling this in Android.

How to do it…
Launch Studio and create a new Alloy Project, as you have done previously. Select Two-tabbed
application from the New Project dialog and give it a name, an Application ID, and so on.

Once you've created the project, navigate to the apps/views folder and open the index.xml
file to see the following code:

<Alloy>
 <TabGroup>
 <Tab title="Tab 1" icon="KS_nav_ui.png">
 <Window title="Tab 1">
 <Label>I am Window 1</Label>
 </Window>
 </Tab>
 <Tab title="Tab 2" icon="KS_nav_views.png">
 <Window title="Tab 2">
 <Label>I am Window 2</Label>

Chapter 14

315

 </Window>
 </Tab>
 </TabGroup>
</Alloy>

One of the benefits of Alloy is the ability to instantly see the structure of a view. In this case,
we can see our top-level Alloy element (necessary in any view), followed by the TabGroup
element. Inside that, we have two Tab items, and inside each of them, a Window and a Label.

You can immediately notice that, while running this app, you'll see two tabs and selecting each
one will show the relevant window.

Go ahead and build the project on the simulator. You'll see this:

Now you have a TabGroup created. You can add more tabs/windows to the TabGroup as you
need. These windows are all loaded when the TabGroup is opened, so any code that runs
within each of the controllers is executed when you open the root TabGroup.

A key part of TabGroup navigation is opening subviews. These are views, or rather windows,
that open within each tab. To do this, you use the .openWindow method of the active tab.

316

Alloy MVC

To do the same with Alloy, create a new controller by right-clicking on the app folder and
navigating to New | Alloy Controller. Then call it subWindow. You'll notice that this will create
a new file called subWindow.js in the controllers folder, one called subWindow.xml in
the Views folder, and one called subWindow.tss in the tss folder.

Replace the code in the new subWindow.xml file with the following:

<Alloy>
 <Window backgroundColor="red" title="Sub Window"></Window>
</Alloy>

So, now we've created the subwindow that we're going to open. Next, we need to add the
JavaScript code to actually open the window. Open the index.xml file and replace it with
this code (adding the onClick event):

<Alloy>
 <TabGroup>
 <Tab title="Tab 1" icon="KS_nav_ui.png">
 <Window title="Tab 1">
 <Label onClick="openSubWindow">I am Window 1</Label>
 </Window>
 </Tab>
 <Tab title="Tab 2" icon="KS_nav_views.png">
 <Window title="Tab 2">
 <Label>I am Window 2</Label>
 </Window>
 </Tab>
 </TabGroup>
</Alloy>

Next, update the index.js file to add the following function:

function openSubWindow(){
 $.getView().activeTab.openWindow(Alloy.
createController("subWindow").getView());
}

Rebuild the application and run it. Click on the I am Window 1 label and your new window will
open as a subwindow of tab 1, complete with its own back button, which is created for you!

How it works…
When you create a TabGroup, you are creating a ready-made navigation system that
allows you to create multiple root tabs for your application, each with the ability to open
subwindows and allow you to drill down the navigation in your application. What's great
about the TabGroup object is that this functionality is built in automatically for you.

Chapter 14

317

In the preceding example, you created the basic tabs and, with the onClick event and
JavaScript code, you accessed the activeTab property. Also, you used the .openWindow
method to open the new subwindow. This is done by using the Alloy.createController
method, passing the name of the controller/view to open. The .getView() method is used
to access the view that is created, in this case a Ti.UI.Window object.

Doing the same thing with a NavigationWindow object is just as simple. In this case, your
index.xml file will look like this:

<Alloy>
 <NavigationWindow>
 <Window title="Tab 1">
 <Label onClick="openSubWindow">I am Window 1</Label>
 </Window>
 </NavigationWindow>
</Alloy>

The index.js function will look like this:

function openSubWindow(){
 $.getView().openWindow(Alloy.createController("subWindow").
getView());
}

Note a couple of things about using NavigationWindow objects. The first is that they don't
have tabs. The first Window is the root of the app. Also, any .openWindow methods are
called from the NavigationWindow object, and they will open any subwindow specified.

Remember that, with Alloy, you can mix both Alloy and classic code. This
means that if you need to open a simple Window (maybe one that contains a
WebView), and you don't want to create a controller, view, and TSS file, you
can use the normal Ti.UI.createWindow command, add any views, and
then pass this to the .openWindow method to open it. Simple!

It's perfectly possible to mix TabGroup and NavigationWindow objects. For
example, a registration/login process (with various subscreens for the forgot ten
password or registration process) could use a NavigationWindow. Once you
are logged in or registered, the application can use a TabGroup to handle any
further navigation.

Introduction to Alloy MVC

318

Adding an Alloy widget to your application
So far, we've looked at some great features of Alloy—XML-based views, styles, and writing less
JavaScript code. Another great feature of Alloy is the ability to use Widgets—these are small,
packaged components that can be added to any Alloy application, allowing you to reuse them
across applications. They have a simple view, controller, and styling structure, just like an Alloy
project, and can easily be customized to fit your needs.

You've already seen how to perform navigation-based on TabGroup with Appcelerator, but one
of the limitations of a TabGroup on iOS is that you can't change the font used for the tabs.
So let's change this using a widget that allows us to specify a font face and size to use.

How to do it…
Create a new Alloy project (or use your existing project from the previous recipe), and go to the
terminal within the Project folder. We're going to use gitt.io to install the widget, as we
have done in previous chapters. Type the following code:

$ gittio install com.jasonkneen.tabfonts

gitt.io will download and install the widget for you. It downloads and unzips the widget files
in the /app/widgets folder, and adds a dependency to the config.json file. It does all of
this for you, and does so automatically. So it's highly recommended that you use it to install
modules and widgets.

Once it is installed, navigate to the /app/widgets folder and you will notice a new folder
containing the widget. You will also notice if you look at the app/config.json file that it
has been updated to include the dependencies of the widgets you are going to use:

{
 "global": {},
 "env:development": {},
 "env:test": {},
 "env:production": {},
 "os:android": {},
 "os:ios": {},
 "os:mobileweb": {},
 "os:windows": {},
 "dependencies": {
 "com.jasonkneen.tabfonts": "1.0"
 }
}

Chapter 14

319

Now, open the app/views/index.xml file and change its contents to the following code:

<Alloy>
 <TabGroup>
 <Tab title="Home" icon="KS_nav_ui.png">
 <Window>
 <TitleControl platform="ios">
 <Label color="#fff" id="title">Home</Label>
 </TitleControl>
 <Label id="label">Window 1</Label>
 <Widget id="tabFonts"
 src="com.jasonkneen.tabfonts" />
 </Window>
 </Tab>
 <Tab title="New" icon="KS_nav_views.png">
 <Window class="container" title="New">
 <Label id="label2">Window 2</Label>
 </Window>
 </Tab>
 </TabGroup>
</Alloy>

Note the Widget tag and the attributes of name, title, and classes.

Update the app/styles/app.tss file (if you don't have one, just create it) and replace its
contents with this code:

"TabGroup" : {
 barColor: "#000",
 tabsBackgroundColor: "#000",
}

"Window" : {
 backgroundColor: "white"
}

Finally, for this particular widget, you need to initialize it, so go to app/controllers/
index.js and update it by adding these lines:

$.tabFonts.init({
 tabGroup : $.index,
 font : "MarkerFelt-Wide",
 color: "#aaa",
 selectedColor: "white",
 fontSize: 12
});

Introduction to Alloy MVC

320

Build the application in the simulator, and you should see a TabGroup with two tabs and
windows. The fonts of the tabs will also appear customized, as shown in the following
screenshot:

Notice that when you switch tabs, the colors that you choose in the index.js file are used
to change the color of the new Tab text.

How it works…
When you build the application, Alloy checks for any Widgets that have been defined
and automatically includes them in your application. Just like an Alloy project, the views,
controllers, and styles of the widget are preprocessed, turned into JavaScript, and seamlessly
combined with your application code.

Because Widgets are like mini-Alloy applications, they allow you to do all of the styling, layouts,
and platform-specific targeting that you've done previously in a normal Alloy project.

This means you can create a single Widget that can behave and look differently for iOS,
Android, and others.

Chapter 14

321

While some widgets can work just by being dropped into the view XML,
in this case, there is a small initialization function to call to get things
going.
This is useful if you want to pass to the widget some arguments, say a
reference to the controller or another element in the view that it can
interact with.

Creating your own Alloy widget
In the previous recipe, you added an existing widget to your application, but sometimes
you might notice that part of the application you are creating could be made reusable. For
example, you might have a calendar component, or a picker, or an interface that would be
useful to make into a widget, so you can reuse it in other applications.

It's important, however, to understand that a widget should be self-contained. It shouldn't rely
on any other part of your application to function. It shouldn't need other widgets to function
correctly. You should be able to drop it into another project and it should just work. This is
the fundamental test of whether a widget is fully reusable or not. If it relies on having styles,
assets, or any other modules or libraries of your application to work, then it shouldn't
be a widget.

That being said, it doesn't mean that a widget has to look the same in all your applications.
In this recipe, we will create an Avatar widget, one that allows you to show an image that
has been loaded/selected. You can change the image by clicking on an icon on the widget,
much as you see on social apps such as Facebook, Twitter, and so on.

You could, of course, write all of this directly in your application, but this might be a useful
feature you'd like to reuse in another application, so it might be useful to write this as a
widget so that it can be reused easily.

Introduction to Alloy MVC

322

How to do it…
Firstly, create a new project, or reuse the project that you've been using so far in this chapter.
Right-click on the app folder and go to New | Alloy Widget, as shown in this screenshot:

1.	 Give the widget a name. In this case, it is com.packtpublishing.avatar

2.	 Click on OK, and Alloy will create a Widget with the name specified in the app/
widgets folder, like this:

Note that by creating the widget in Studio, Alloy will update the app/config.json file
to the following:

{
 "global": {},
 "env:development": {},
 "env:test": {},

Chapter 14

323

 "env:production": {},
 "os:android": {},
 "os:ios": {},
 "os:mobileweb": {},
 "os:windows": {},
 "dependencies": {
 "com.packtpublishing.avatar": "1.0"
 }
}

This updates the application configuration to include a new Widget a new widget dependency
for the widget you just created. This is an important step for adding a widget to an application.
gitt.io does it for you, but if you ever add a widget manually, you must update the config.
json file accordingly.

Now, open the app/widgets/com.packtpublishing.avatar/views/widget.xml file
in Studio. It should look like this:

<Alloy>
 <Label>I'm the default widget</Label>
</Alloy>

This is the default widget content. Replace it with the following:

<Alloy>
 <ImageView id="avatar" onClick="changeImage"/>
</Alloy>

Remember that a widget is just like an Alloy view, so you can add any Alloy components to it
and they'll be used when the widget is rendered. In this case, we just want an ImageView
component.

Now let's add some simple styling so that we can see our avatar widget when we have no
image selected. Open app/widgets/com.packtpublishing.avatar/styles/widget.
tss and replace its contents with this code:

"#avatar": {
 width: 150,
 height: 150,
 borderWidth: 1,
 borderColor: "#000",
 borderRadius: 75
}

Introduction to Alloy MVC

324

Next, we need to add some code to make this widget work. Add the following code to the app/
widgets/com.packtpublishing.avatar/controllers/widget.js file:

var args = arguments[0] || {};

$.avatar.applyProperties(args);

function changeImage() {
 var mediaTypes = [Ti.Media.MEDIA_TYPE_PHOTO];

 var options = {
 cancel : 2,
 options : ['Use Camera', 'Open Gallery', 'Cancel'],
 destructive : 2,
 };

 var dialog = Ti.UI.createOptionDialog(options);

 dialog.show();

 dialog.addEventListener('click', function(e) {
 if (e.index == 0) {
 Ti.Media.showCamera({
 success : function(event) {
 var image = event.media;
 $.avatar.image = image;
 },
 cancel : function() {
 console.log("user cancelled");
 },
 error : function(error) {
 var a = Ti.UI.createAlertDialog({
 title : 'Camera'
 });

 a.setMessage('It does not seem that you have a
 camera...');
 a.show();
 },
 saveToPhotoGallery : true,
 allowEditing : false,
 mediaTypes : mediaTypes
 });

Chapter 14

325

 }

 if (e.index == 1) {
 Ti.Media.openPhotoGallery({
 success : function(event) {
 var image = event.media;
 $.avatar.image = image;

 },
 cancel : function() {
 console.log("user cancelled");
 },
 error : function(error) {

 console.log("error " + error);
 },
 allowEditing : false,
 mediaTypes : mediaTypes
 });
 }
 });
}

Finally, we need to add the widget to the application. Open the app/views/index.xml file
and replace its content with these lines:

<Alloy>
 <Window title="Widget Demo">
 <Widget top="50" src="com.packtpublishing.avatar"/>
 </Window>
</Alloy>

Introduction to Alloy MVC

326

Run the application in the simulator, and you should see the following:

Click on the circle. You should see the dialog shown in the next screenshot (you may be asked
to give permission to access photos first, so accept):

Chapter 14

327

Select Open Gallery (on a device, you can select Camera), and your photo library should
appear (you may be asked for permission to access it, so say OK). Select a photo and once
done, you should be shown like the following screenshot:

You've just created a widget that allows you to click on an avatar and change the image to
another from the library or camera.

Finally, you'll notice that the widget has an id avatar. This allows you to access the widget
as a control in your index.js file, so you can set the initial image or find out which image
was selected.

If you open the widget.js file, you'll see the following line:

$.avatar.applyProperties(args);

This applies any properties set in the Widget XML definition to the ImageView control inside
the widget itself. This means that if you specify any positional elements, styles, or attributes,
they will be applied automatically to ImageView—very handy for overriding any style without
writing too much code.

The second line is this one within the main function in widget.js:

$.trigger("change", image);

Introduction to Alloy MVC

328

This is a trigger and allows the widget to communicate back to the host view by firing an event,
in this case a change event, in which it passes back the selected image.

Add the following code to the index.js file:

$.avatar.on("change", function(image){
 alert(image);
});

The index.js file listens for a trigger from the widget that, when fired, will pass to the
index controller the image that was selected. This allows the index controller to access the
image, save it, upload it, and so on. It can also set the image by setting the $.avatar.image
property to the file path of the preset image.

How it works…
When you run the application, Alloy merges the avatar widget with the main code, displaying
it based on the properties set in the XML. When the user clicks on the image, the code in
widget.js is run. This allows the user to select from the camera or library, updates the
image with the selected one, and fires an event back to the host controller/view so that
it can pick up the image change.

Note how there is nothing in the widget that interacts with any application properties, APIs, or
databases—everything is data independent, which is what a widget should be so that it can be
added seamlessly to an application.

You can experiment with the widget; add conditional platform XML code
or TSS to style it differently for iOS and Android, or adapt it to be bigger
on a tablet.

Integrating data using models and
collections

A key part of many applications that you might create is data. For a contact app, this could
be a list of contact details; for a newsreader, it could be a list of articles; and for a task app,
it could be a list of tasks.

In Alloy, data can be integrated into your application using Collections and Models. If you're
familiar with backbone.js, you may well have used Collections and Models already. If you
haven't, note that a Model is a data object. In this case, it could be a single task item, so it
could consist of a description and a status (complete or not). A collection is a list of models,
in this case a list of tasks.

Chapter 14

329

Because models and collections are event-driven, they respond to changes as they happen.
This means that as you change a model, say its status being changed to completed, the
change is instantly reflected in the model and any collection that contains it.

How to do it…
The first thing you need to do is create a simple user interface for a Todo application.
Create a new project and update index.xml to look like the following:

<Alloy>
 <NavigationWindow>
 <Window title="Todo List" layout="vertical">
 <TableView rowHeight="60">
 <TableViewRow hasCheck="true">
 <Label left="20">Item</Label>
 </TableViewRow>
 </TableView>
 </Window>
 </NavigationWindow>
</Alloy>

Run the app. You should see a simple Ti.UI.TableView, with a single Ti.UI.
TableViewRow that has a title and a tick box, as shown in the following screenshot.
This is the template that will form the basis of the todo app.

Introduction to Alloy MVC

330

The next step is to create some Todo items to populate the table. To do this, you need to
create a new Model in Alloy. Doing this will create the definitions for the model and the
collection, and allow you to easily bind the data to the TableView.

In Appcelerator Studio, right-click on the app folder and navigate to New | Alloy Model. Call it
task and set Adapter to properties, as shown in the next screenshot. Here, we're just going to
use a simple example that will save the model data to the app properties for us.

Now that we have created the template TableView and TableViewRow, let's bind this to the
data model we created. Firstly, we need to write some JavaScript code, so we open index.js
and replace its contents with this code:

$.index.open();

Alloy.Collections.task.fetch();

This is going to tell our app to get the latest list of tasks as a collection of model objects.
Of course, there's nothing in the collection currently, so it'll return an empty collection.

Chapter 14

331

Next, let's bind the data to our view. Replace the contents of the index.xml file with
the following:

<Alloy>
 <Collection src="task" />
 <NavigationWindow>
 <Window title="Todo List" layout="vertical">
 <TableView rowHeight="60" dataCollection="task">
 <TableViewRow hasCheck="{status}">
 <Label left="20" text="{description}" />
 </TableViewRow>
 </TableView>
 </Window>
 </NavigationWindow>
</Alloy>

Notice that we're creating inline styles in the XML here. This is okay for the purposes of this
demonstration, and you can refactor it later to move these into the TSS file if you prefer.

Save the file and rebuild your app (or just save it if you're using LiveView). Everything should
look as it did, just with no records showing in the table.

The key XML tags and properties here are as follows: the first is the Collection tag. This
tells the view and controller that a collection is being used. Secondly, the dataCollection
attribute of the TableView indicates that the task collection is being used to populate
the TableView.

Finally, values such as {description} and {status} are variables that will be swapped
out per row with the attributes of the model. In this case, these are the description and
status properties.

Currently, we don't have any data, so let's fix this by adding two buttons that will add some
content into the list. Modify the index.xml file as follows:

<Alloy>
 <Collection src="task" />
 <NavigationWindow>
 <Window title="Todo List" layout="vertical">
 <LeftNavButton>
 <Button onClick="clearTasks">Clear All</Button>
 </LeftNavButton>
 <RightNavButton>
 <Button onClick="addTask">Add</Button>
 </RightNavButton>

Introduction to Alloy MVC

332

 <TableView rowHeight="60" dataCollection="task">
 <TableViewRow hasCheck="{status}">
 <Label left="20" text="{description}" />
 </TableViewRow>
 </TableView>
 </Window>
 </NavigationWindow>
</Alloy>

Then replace the content of the index.js file with the following:

$.index.open();

Alloy.Collections.task.fetch();

function clearTasks() {
 while (Alloy.Collections.task.length) {
 Alloy.Collections.task.at(0).destroy();
 }
}

function addTask() {
 var task = Alloy.createModel('tasks', {
 description: "Do Stuff!",
 status: false
 });

 task.save();

 Alloy.Collections.task.add(task);

}

Chapter 14

333

Build the app and click on the Add button. You'll see that a new item appears on the list
immediately, like this:

Notice the Clear all button. Clicking on it will clear the list completely and remove the data.

We're nearly there. The final part is to add an add dialog to insert a new item so that we
don't see the same one each time, and to add some functionality to complete an item
(or un-complete it) by clicking on it.

So let's wrap up adding these features. Replace the addTask function with the following
code:

function addTask() {

 var dialog = Ti.UI.createAlertDialog({
 title: 'Enter task',
 style: Ti.UI.iPhone.AlertDialogStyle.PLAIN_TEXT_INPUT,
 buttonNames: ['OK', 'cancel']
 });

Introduction to Alloy MVC

334

 dialog.addEventListener('click', function(e) {
 var task = Alloy.createModel('tasks', {
 description: e.text,
 status: false
 });

 task.save();

 Alloy.Collections.task.add(task);
 });

 dialog.show();

}

Also, add a new function:

function toggleStatus(e) {
 Alloy.Collections.task.at(e.index).set("status", !Alloy.
Collections.task.at(e.index).get("status"));
}

Finally, update the index.xml file to add an onClick event to the TableView and assign
it to the toggleStatus function:

<TableView onClick="toggleStatus" rowHeight="60"
dataCollection="task">

Build the application. Now, when you click on the Add button, you'll be presented with a
dialog. Enter a task name, click on OK, and notice how it will be added to the list. Click
on the task and a tick will appear. Click again and it'll disappear.

Chapter 14

335

How it works…
Alloy uses backbone.js to create models and collections, and these can be bound to
controls with Alloy, including Views, TableViews, and many others.

The controller uses the Alloy.Collections.task.fetch() function to get the latest
data that has been saved, and because we've bound the task collection to the TableView,
it's automatically populated with the data.

When we add a task, we're using the Alloy.createModel method to create a new Task
model, and populating it with a status and description. It's then saved and added to the
collection, which updates the TableView instantly.

When you click on a row, the onClick event calls the toggleStatus method and passes
to it an event object e. In this object is the index of the row that was clicked on. We use this
to access the model by using Alloy.Collections.task.at(e.index), and this gives
us access to the exact model that was selected.

Introduction to Alloy MVC

336

Finally, consider this line:

 Alloy.Collections.task.at(e.index).set("status",
!Alloy.Collections.task.at(e.index).get("status"));

Basically, it sets the status property of the model to the opposite of what it is set to
currently. You could just set it to true, but then you wouldn't be able to un-complete it.
In this way, you can click once and click again to change its status.

Models and collections are extremely powerful and allow you to write event-driven, data-
enabled applications with Alloy much faster than you would with classic code. You can find
out more about Models and Collections by checking out the Appcelerator and Backbone
documentation at these links:

ff http://docs.appcelerator.com/titanium/3.0/#!/guide/Alloy_
Collection_and_Model_Objects

ff http://backbonejs.org/

http://docs.appcelerator.com/titanium/3.0/#!/guide/Alloy_Collection_and_Model_Objects
http://docs.appcelerator.com/titanium/3.0/#!/guide/Alloy_Collection_and_Model_Objects

337

Index
Symbols
2D Matrix transformations

used, for animating view 168-170
3D Matrix transformations

used, for animating view 168-170

A
ActionBar

creating, in Android 35-38
URL 38

address book
accessing 181-184

addresses
converting, to latitude locations 74-77
converting, to longitude locations 74-77

AlertDialog 28
alerts

users, informing with 28-30
Alloy

installing 300-303
Alloy project

creating 300-303
Alloy widget

adding, to application 318-328
Android

ActionBar, creating in 35-38
Android API

versus iOS API 259-261
Android app

storing, on device's SD card 198
Android notifications

displaying, intents used 195-197
Android options menu

creating 178-180

Animate method
used, for animating view 160-167

animation-curve constants
Ti.UI.ANIMATION_CURVE_EASE_IN 167
Ti.UI.ANIMATION_CURVE_EASE_IN_OUT 167
Ti.UI.ANIMATION_CURVE_EASE_OUT 167
Ti.UI.ANIMATION_CURVE_LINEAR 167

annotations
adding, to MapView 78-80
customizing 80, 81

APIs, basic authentication
connecting to 200-203

app
binary data, transferring between 296, 297
building 278-280
parameters, passing to 287, 288
setting up, for URL schemes usage 292-294
submitting, to Play Store 278-280
URL commands, receiving in 294-296

Appcelerator
URL 244

Appcelerator guide
URL 238

Appcelerator Studio
URL 3

Apple developer account
URL 268

Apple Maps
launching, with route directions 288-290

Apple Maps, on iOS
URL 287

Apple's iOS program
reference link 266

application
Alloy widget, adding to 318-321
building, for distribution 273-275

338

building, for iOS 271, 272
MapView, adding to 68-71

application provisioning profile
creating 270, 271
installing 268

application's distribution key
creating 277

app look
modifying, with styles 309-313

app properties
object types, storing as 146
reading 147-150
reference link 146
using 146
writing 147-150

attachments
adding, to e-mail 128, 129

audio
capturing, via audio recorder 105-111
playing, via audio recorder 105-111

B
Backbone

reference link 336
background fetch

used, for updating data 190-192
background service

creating, on iPhone 188-190
basic authentication 200
binary data

transferring, between apps 296, 297
Bitly API key

URL 239
black box 74
buttons

creating 25-27
creating, Events used 306-308

C
camera

photos, capturing from 94-97
capture device

selecting, OptionDialog modal used 90-93
captured photo

saving, to device filesystem 102-104

Certificate Signing Request (CSR) 269
Charting library

URL, for downloading 31
charts

creating, Raphael JS used 31-35
check-in

posting, to FourSquare 213-215
Chrome, for iOS

URLs, opening in 290
click events

capturing 25-27
clipboard

data, retrieving via 185-187
collections

reference link 336
used, for integrating data 328-336

Command-Line Interface (CLI) 232
contacts book

accessing 181-184
Create, Read, Update, and Delete (CRUD) 58
current position

obtaining, GeoLocation used 71-74
custom events

used, for passing event data between app
and WebView 154-158

custom Facebook application
setting up 130

custom rows
TableView, enhancing with 46-48

custom variables
passing, between windows 23-25

D
data

displaying, TableView used 43-46
fetching, from Google places API 203-207
integrating, collections used 328-336
integrating, models used 328-336
reading, from remote XML 40-43
retrieving, from SQLite database 62-64
retrieving, via clipboard 185-187
retrieving, via Yahoo! YQL 215-219
saving, SQLite database used 58-60
searching 215-219
storing 185-187
updating, background fetch used 190-192

339

device
capability, ensuring 262, 263
information, gathering of 250-253
screen dimensions, obtaining of 254-256
used, for monitoring heading 86-88

device filesystem
captured photo, saving to 102-104

device orientation modes 257-259
device's SD card

Android app, storing on 198
dialogs

users, informing with 28-30
distribution

application, building for 273-275
distribution and sale!

module, packaging for 246, 247

E
e-mails

attachments, adding to 128, 129
composing 122-127
sending 122-127

events
adding, to MapView 80, 81
capturing 150-154
firing 150-154
used, for creating Buttons 306-308
used, for creating Labels 306-308

Exercise Tracker application 73
existing module

integrating 232-236
extensions 290

F
Facebook

integrating, into Titanium app 130-134
URL 122

Facebook Developer portal
reference link 130

Facebook, in iOS
posting to 140, 141

Facebook wall
posting to 134-137

filesystem
saved files, deleting from 117-120
video files, playing from 115-117

FlexibleSpace 16
FourSquare

check-in, posting to 213-215
oAuth, used for connecting to 207-213
URL 208

G
GeoLocation

used, for obtaining current position 71-74
gitTio

URL 232
Glyphish

URL 10
Google

URL 122
Google Android developer program

joining 275, 276
Google Maps

launching, with route directions 288-290
Google places API

about 203
data, fetching from 203-207

Google's developer website
URL 203

H
heading

monitoring, device compass used 86-88
Holiday Memories app 90, 98
HTTPClient

data, reading from remote XML 40-43
HTTP POST

used, for testing push notifications 226-229

I
ImageView

dragging, touch events used 171, 172
scaling, slider control used 173, 174

information
gathering, about device 250-253

installation, Alloy 300-303
Integrated Development Environment (IDE) 3
intents

about 195
parameters 195

340

used, for displaying Android
notifications 195-197

used, for sharing images on
Android 142, 143

iOS
application, building for 271, 272
Pull to Refresh mechanism, creating in 64-66

iOS API
versus Android API 259-261

iOS app
installation, verifying 282-285
launching 285, 286

iOS developer certificate
installing 268
setting up 269

iOS developer program
joining 266-268

iOS device
setting up 269

iOS module development environment
preparing 236, 237

iPhone
background service, creating on 188-190
local notifications, displaying on 192-194

iPhone module
developing, XCode used 238

item 46

J
JSON

remote data access, speeding up with 52-56

K
keyboards

working with 16-18
keyboard styles

experimenting with 19
keyboard toolbars

working with 16-18

L
labels

creating 11-14
formatting 11-14

latitude locations
addresses, converting to 74,-77

LoanCalc app
about 3
enhancing, with sliders 20-23
enhancing, with switches 20-23
tabgroup, adding to 7-10

local notifications
displaying, on iPhone 192-194

longitude locations
addresses, converting to 74-77

M
MapView

adding, to application 68-71
annotations, adding to 78-80
events, adding to 80, 81
routes, drawing on 82-85
style, modifying 71

media types 99
models

reference link 336
used, for integrating data 328-336

Model, View, Controller (MVC) 299
module

packaging 244-246
packaging, for distribution and sale! 246, 247
testing, test harness used 244-246

Module component 238
MyRecipes app 50

N
Navigation

working with 314-317
NPM

URL, for downloading 232

O
oAuth

about 207
used, for connecting to FourSquare 207-213

object types
storing, as app properties 146

OptionDialog modal
about 90

341

used, for selecting capture device 90-93
OS5 Twitter sharing integration

reference link, for modules 138

P
parameters

passing, to apps 287, 288
parameters, intents

action 195
data 195

Parse
URL 220

Parse.com
push notifications, integrating with 220-226

PayPal
URL 232

PayPal mobile payment library 232-236
photo library

photos, selecting from 97, 98
photos

capturing, from camera 94-97
displaying, ScrollableView used 100, 101
selecting, from photo library 97, 98

PhotoShare app 122
PHP

used, for testing push notifications 226-229
Pie Chart library

URL, for downloading 31
Platform-Specific Styles, Appcelerator

reference link 312
Play Store

app, submitting to 278-280
prepopulated database file

attaching 57
properties, photos method

Caption 137
Picture 137

Proxy class 238
public API method

creating 239-243
Pull to Refresh mechanism

creating, in iOS 64-66
push notifications

about 220
integrating, with Parse.com 220-226
testing, HTTP POST used 226-229

testing, PHP used 226-229

R
Raphael JS

URL 34
used, for creating charts 32-35

recipe finder app 64
recording 108
remote data access

speeding, up with JSON 52-56
speeding, up with Yahoo! YQL 52-56

remote XML
data, reading from 40-43

route directions
Apple Maps, launching with 288-290
Google Maps, launching with 288-290

routes
drawing, on MapView 82-85

S
Sandbox 232
saved files

deleting, from filesystem 117-120
Save to photos option 99
screen dimensions

obtaining, of device 254-256
ScrollableView

used, for displaying photos 100, 101
working 101

SearchBar component
used, for filtering TableView 49-52

SimPholders tool
URL 105

slider control
used, for scaling ImageView 173, 174

sliders
LoanCalc app, enhancing with 20-23

slider thumb image 20
sound 111
SQL

about 40
URL 40

SQLite database
creating 56, 57
data, retrieving from 62-64

342

used, for saving data 58-60
SQLite DB Browser tool

URL 57
Structured Query Language. See SQL
Studio

application, building for iOS 271, 272
styles

app look, modifying with 309-313
switcher 111
switches

LoanCalc app, enhancing with 20-23

T
tabgroup

adding, to LoanCalc app 7-10
TabGroups

working with 314-317
TableView

enhancing, with custom rows 46-48
filtering, SearchBar component

used 49-52
used, for displaying data 43-46

test harness
used, for testing module 244-246

text
retrieving 16

TextField border styles 16
TextFields

creating, for user input 14, 15
Ti.Filesystem.File methods

reference link 120
Titanium 90
Titanium app

Facebook, integrating into 130-134
Titanium CLI

URL 237
Titanium file object

reference link 129
Titanium, versus PhoneGap

reference link 2
toImage() method

used, for saving funny face 175, 176
touch events

used, for dragging ImageView 171, 172

track 20
Twitter

URL 122
Twitter, in iOS

posting to 137-140

U
URL

opening, in Chrome for iOS 290
parameters, passing to apps 287, 288

URL commands
receiving, in app 294-296

URL scheme
about 281, 282
binary data, transferring between

apps 296, 297
URL scheme format, Google Maps

reference link 289
user input

TextFields, creating for 14, 15
users

informing, with alerts 28-30
informing, with dialogs 28-30

V
video

capturing, via video recorder 112-115
video files

playing, from filesystem 115-117
video recorder

video, capturing via 112-115
view

animating, 2D Matrix transformations
used 168-170

animating, 3D Matrix transformations
used 168-170

animating, Animate method used 160-167
View component 238
ViewProxy component 238
views

building 304-306
implementing 3-6

343

W
windows

building 304-306
custom variables, passing between 23-25

Windows
implementing 3-6

X
XCode

used, for developing iPhone module 238

Y
Yahoo! YQL

data, retrieving via 215-219
remote data access, speeding up with 52-56
URL, for console page 52

Thank you for buying
Appcelerator Titanium Smartphone
App Development Cookbook
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Creating Mobile Apps with
Appcelerator Titanium
ISBN: 978-1-84951-926-7 Paperback: 298 pages

Develop fully-featured mobile applications using
a hands-on approach, and get inspired to develop more

1.	 Walk through the development of ten different
mobile applications by leveraging your existing
knowledge of JavaScript.

2.	 Allows anyone familiar with some Object-oriented
Programming (OOP), reusable components,
AJAX closures take their ideas and heighten
their knowledge of mobile development.

3.	 Full of examples, illustrations, and tips with
an easy-to-follow and fun style to make app
development fun and easy.

Mastering Object-oriented
Python
ISBN: 978-1-78328-097-1 Paperback: 634 pages

Grasp the intricacies of object-oriented programming
in Python in order to efficiently build powerful
real-world applications

1.	 Create applications with flexible logging, powerful
configuration and command-line options,
automated unit tests, and good documentation.

2.	 Use the Python special methods to integrate
seamlessly with built-in features and the
standard library.

3.	 Design classes to support object persistence in
JSON, YAML, Pickle, CSV, XML, Shelve, and SQL.

Please check www.PacktPub.com for information on our titles

Swift by Example 6
ISBN: 978-1-78528-470-0 Paperback: 284 pages

Create funky, impressive applications using Swift

1.	 Learn Swift language features quickly, with
playgrounds and in-depth examples.

2.	 Implement real iOS apps using Swift and
Cocoapods.

3.	 Create professional video games with SpriteKit,
SceneKit, and Swift.

OpenGL ES 3.0 Cookbook
ISBN: 978-1-84969-552-7 Paperback: 514 pages

Over 90 ready-to-serve, real-time rendering recipes
on Android and iOS platforms using OpenGL ES 3.0 and
GL shading language 3.0 to solve day-to-day modern
3D graphics challenges

1.	 Explore exciting new features of OpenGL ES 3.0
on textures, geometry, shaders, buffer objects,
frame buffers and a lot more using GLSL 3.0.

2.	 Master intermediate and advance cutting edge
rendering techniques, including procedural
shading, screen space technique and shadows
with scene graphs.

3.	 A practical approach to build the font engine
with multilingual support and learn exciting
imaging processing and post process
techniques.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building Apps Using Native UI Components
	Introduction
	Building with windows and views
	Adding a tabgroup to your app
	Creating and formatting labels
	Creating textfields for user input
	Working with keyboards and keyboard toolbars
	Enhancing your app with sliders
and switches
	Passing custom variables between windows
	Creating buttons and capturing click events
	Informing your users with dialogs and alerts
	Creating charts using Raphael JS
	Creating an actionbar in Android

	Chapter 2: Working With Local and Remote Data Sources
	Introduction
	Reading data from remote XML via HTTPClient
	Displaying data using a TableView
	Enhancing your TableViews with
custom rows
	Filtering the TableView using a SearchBar component
	Speeding up your remote data access with Yahoo YQL and JSON
	Creating a SQLite database
	Saving data locally using a SQLite database
	Retrieving data from a SQLite database
	Creating a "Pull to Refresh" mechanism
in iOS

	Chapter 3: Integrating Maps
and GPS
	Introduction
	Adding a MapView to your application
	Getting your current position using GeoLocation
	Converting addresses to latitude and longitude locations
	Adding annotations to your MapView
	Customizing annotations and adding events to your MapView
	Drawing routes on your MapView
	Monitoring your heading using the device compass

	Chapter 4: Enhancing Your Apps with Audio, Video,
and Cameras
	Introduction
	Choosing your capture device using an OptionDialog modal
	Capturing photos from the camera
	Choosing existing photos from the photo library
	Displaying photos using ScrollableView
	Saving your captured photo to the
device filesystem
	Capturing and playing audio via the audio recorder
	Capturing video via the video recorder
	Playing video files from the filesystem
	Safely deleting saved files from the filesystem

	Chapter 5: Connecting your Apps to Social Media
and E-mail
	Introduction
	Composing and sending e-mails
	Adding attachments to an e-mail
	Setting up a custom Facebook application
	Integrating Facebook into your Titanium app
	Posting to your Facebook wall
	Posting to Twitter in iOS
	Posting to Facebook in iOS
	Sharing on Android using Intents

	Chapter 6: Getting To Grips with Properties and Events
	Introduction
	When should you use app properties?
	Reading and writing app properties
	Firing and capturing events
	Passing event data between your app and a Webview using custom events

	Chapter 7: Creating Animations, Transformations
and implementing
Drag and Drop
	Introduction
	Animating a view using the Animate method
	Animating a view using 2D Matrix and 3D Matrix transformations
	Dragging an ImageView using touch events
	Scaling an ImageView using the slider control
	Saving our funny face using the toImage() method

	Chapter 8: Interacting with Native Phone Applications
and APIs
	Introduction
	Creating an Android options menu
	Accessing the contacts / address book
	Storing and retrieving data via the clipboard
	Creating a background service on an iPhone
	Updating data using background fetch
	Displaying local notifications on an iPhone
	Displaying Android notifications using intents
	Storing your Android app on the device's
SD card

	Chapter 9: Integrating Your Apps with External Services
	Introduction
	Connecting to APIs that use basic authentication
	Fetching data from the Google places API
	Connecting to FourSquare using oAuth
	Posting a check-in to FourSquare
	Searching and retrieving data via Yahoo! YQL
	Integrating push notifications with Parse.com
	Testing push notifications using PHP and HTTP POST

	Chapter 10: Extending your Apps with Custom Modules
	Introduction
	Integrating an existing module – the PayPal mobile payment library
	Preparing your iOS module development environment
	Developing a new iPhone module using XCode
	Creating a public API method
	Packaging and testing your module using the test harness
	Packaging your module for distribution
and sale!

	Chapter 11: Platform Differences, Device Information
and Quirks
	Introduction
	Gathering information about your device
	Obtaining the device's screen dimensions
	Understanding device orientation modes
	Coding around the differences between the iOS and Android APIs
	Ensuring that your device can make
phone calls

	Chapter 12: Preparing Your App for Distribution and Getting It Published
	Introduction
	Joining the iOS developer program
	Installing iOS developer certificates and provisioning profiles
	Building your application for iOS using studio
	Joining the Google Android developer program
	Creating your application's distribution key
	Building and submitting your app to the
Google Play Store

	Chapter 13: Implementing and Using URL Schemes
	Introduction
	Detecting whether another iOS app is installed
	Launching another iOS app
	Passing parameters to other apps via a URL
	Launching Apple Maps and Google Maps with route directions
	Opening URLs in Chrome for iOS
	Setting up your own apps to use URL schemes
	Receiving URL commands in your own app
	Transferring binary data between apps using a URL scheme

	Chapter 14: Introduction to
Alloy MVC
	Introduction
	Installing Alloy and creating an Alloy project
	Building views and windows
	Creating Buttons and Labels using Events
	Changing the look of your app with styles
	Working with Navigation and TabGroups
	Adding an Alloy widget to your application
	Creating your own Alloy widget
	Integrating data using models and collections

	Index

