

ArcGIS	Blueprints

Table	of	Contents

ArcGIS	Blueprints

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Extracting	Real-Time	Wildfire	Data	from	ArcGIS	Server	with	the	ArcGIS	REST	API

Design

Creating	the	ArcGIS	Desktop	Python	Toolbox

Working	with	tool	parameters

Tool	execution

Populating	the	feature	class

Installing	pip	and	the	requests	module

Requesting	data	from	ArcGIS	Server

Inserting	data	in	a	feature	class	with	the	ArcPy	data	access	module

Summary

2.	Tracking	Elk	Migration	Patterns	with	GPS	and	ArcPy

Design

Creating	migration	patterns	for	Python	toolbox

Creating	the	Import	Collar	Data	tool

Reading	data	from	the	CSV	file	and	writing	to	the	feature	class

Making	the	data	frame	and	layer	time-enabled

Coding	the	VisualizeMigration	tool

Summary

3.	Automating	the	Production	of	Map	Books	with	Data	Driven	Pages	and	ArcPy

Design

Setting	up	the	Data	Frame

Creating	the	Grid	Index	Features

Enabling	Data	Driven	Pages

Creating	the	Locator	Map

Adding	dynamic	text	to	the	layout

Exporting	the	map	series	with	ArcPy	mapping

Summary

4.	Analyzing	Crime	Patterns	with	ArcGIS	Desktop,	ArcPy,	and	Plotly(Part	1)

Design

Creating	the	Import	Records	tool

Creating	the	Aggregate	Crimes	tool

Building	the	Create	Map	tool

Performing	Spatial	Statistical	Analysis

Summary

5.	Analyzing	Crime	Patterns	with	ArcGIS	Desktop,	ArcPy,	and	Plotly(Part	2)

Design

Getting	to	know	Plotly

Creating	the	Neighborhood	Bar	Chart	tool

Creating	the	Create	Line	Plot	tool

Creating	the	output

Summary

6.	Viewing	and	Querying	Parcel	Data

Design

Creating	a	user	interface	with	wxPython

Creating	the	ArcGIS	Python	add-in

Summary

7.	Using	Python	with	the	ArcGIS	REST	API	and	the	GeoEnrichment	Service	for	Retail
Site	Selection

Design

Creating	the	Census	Block	Group	selection	tool

Creating	the	Define	Potential	Stores	tool

Creating	the	Enrich	Potential	Stores	tool

Summary

8.	Supporting	Search	and	Rescue	Operations	with	ArcPy,	Python	Add-Ins,	and	simplekml

Design

Creating	the	Last	Known	Position	tool

Creating	the	Search	Area	Buffers	tool

Creating	the	Search	Sector	tool

Creating	the	Convert	to	Google	Earth	tool

Summary

9.	Real-Time	Twitter	Mapping	with	Tweepy,	ArcPy,	and	the	Twitter	API

Design

Extracting	Tweet	geographic	coordinates	with	tweepy

Scheduling	the	script

Creating	the	heatmap

Summary

10.	Integrating	Smartphone	Photos	with	ArcGIS	Desktop	and	ArcGIS	Online

Design

Taking	photos

Converting	iPhone	photos	to	a	feature	class

Creating	a	Web	Map

Summary

A.	Overview	of	Python	Libraries	for	ArcGIS

Overview	of	Arcpy

The	ArcPy	classes

FeatureSets	and	Recordsets

Fields

The	geometry

Graphing

General

The	ArcPy	functions

The	data	store

Describing	the	data

Environment	variables

Fields

General

Geodatabase	administration

Geometry

Getting	and	setting	parameters

Licensing	and	installation

Listing	data

Messaging	and	error	handling

The	progress	dialog

Publishing

Raster

Tools	and	toolboxes

Overview	of	the	ArcPy	mapping	module

ArcPy	mapping	classes

Mapping	documents	and	associating	dataset	classes

The	MapDocument	class

DataFrame

The	Layer	class

The	TableView	object

Data	Driven	Pages	classes

Classes	related	to	managing	time	layers

The	DataFrameTime	class

The	LayerTime	class

Element	classes	associated	with	the	layout	view

The	LegendElement	class

The	GraphicElement	class

MapsurroundElement

PictureElement

TextElement

PDF	document	creation	and	editing

PDFDocument

Symbology

GraduatedColorsSymbology

GraduatedSymbolsSymbology

RasterClassifiedSymbology

UniqueValuesSymbology

Arcpy	mapping	functions

Exporting	and	printing	maps

Managing	map	documents	and	layers

Creating	lists

Managing	layers	and	tables

Working	with	pdf	Files

Working	with	ArcGIS	Server	services

Overview	of	the	Arcpy	data	access	module

ArcPy	data	access	classes

Arcpy	data	access	functions

List	functions

NumPy	Array	conversion	functions

An	overview	of	the	ArcGIS	REST	API

Basics	of	using	the	ArcGIS	REST	API

Esri	services

Your	own	services

Service-related	functionality

Utility	functions

Managing	your	organization

Administering	your	server

Administering	Portal

Administering	ArcGIS	Online	hosted	services

Conclusion

Index

ArcGIS	Blueprints

ArcGIS	Blueprints
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1151215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-622-3

www.packtpub.com

http://www.packtpub.com

Credits
Author

Eric	Pimpler

Reviewers

Chad	Cooper

Eleza	Boban	Kollannur

Prasad	Lingam

Shaik	Shavali

Commissioning	Editor

Akram	Hussain

Acquisition	Editor

Vinay	Argekar

Content	Development	Editor

Siddhesh	Salvi

Technical	Editor

Vishal	Mewada

Copy	Editor

Stuti	Srivastava

Project	Coordinator

Nidhi	Joshi

Proofreader

Safis	Editing

Indexer

Priya	Sane

Graphics

Kirk	D’Penha

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Eric	Pimpler	is	the	founder	and	owner	of	GeoSpatial	Training	Services
(http://geospatialtraining.com/)	and	has	over	20	years	of	experience	implementing	and
teaching	GIS	solutions	using	Esri,	Google	Earth,	Google	Maps,	and	open	source
technologies.	Currently,	he	focuses	on	ArcGIS	application	development	with	Python	and
the	development	of	custom	ArcGIS	Server	web	and	mobile	applications	using	JavaScript.

Eric	is	the	author	of	Programming	ArcGIS	10.1	with	Python	Cookbook,	Programming
ArcGIS	with	Python	Cookbook	-	Second	Edition,	Building	Web	and	Mobile	ArcGIS	Server
Applications	with	JavaScript,	and	the	soon	to	be	published	ArcGIS	Blueprints.

He	has	a	bachelor’s	degree	in	geography	from	Texas	A&M	University	and	a	master	of
applied	geography	degree	with	a	concentration	in	GIS	from	Texas	State	University.

http://geospatialtraining.com/

About	the	Reviewers
Chad	Cooper	has	worked	in	the	geographic	information	systems	realm	for	13	years	in
technician,	analyst,	and	developer	roles.	He	is	currently	a	solutions	engineer	with
Geographic	Information	Services,	Inc.	(http://www.gisinc.com/),	where	he	works	on	a
variety	of	projects	for	the	state	and	local	government	teams.	Chad	has	been	published	in
Esri’s	ArcUser	magazine	and	the	Python	magazine.	He	lives	in	northwest	Arkansas	with
his	beautiful	wife	and	three	children.

Eleza	Boban	Kollannur	is	an	architect	and	environmental	planner	working	as	a	GIS
analyst	in	the	water	and	waste	water	sector	for	more	than	6	years.	She	is	passionate	about
the	development	of	automation	and	programming	solutions	through	model	building	and
Python	scripting.	She	has	been	involved	in	master	planning	and	coastal	and	marine
projects	for	the	preparation	of	a	water	balance	model,	watershed	analysis,	network	model
builds,	and	spatial	analysis.	She	has	worked	with	MWH	Global	and	DHI	India	for	various
projects	in	the	Middle	East,	India,	and	UK.	Eleza	is	interested	in	building	custom	user
interface	(UI)	geoprocessing	tools	for	ArcGIS	desktop	and	server	with	Python.

Prasad	Lingam	has	been	passionately	exploring	geoinformation	technologies	for	almost
10	years.	He	has	gained	knowledge	in	the	application	of	geoinformatics	to	areas	such	as
urban	planning,	transportation,	utilities,	environment,	and	construction	management,	thus
leveraging	his	civil	engineering	background.	He	is	currently	working	at	MWH	(for	more
information,	visit	http://www.mwhglobal.com/)	in	the	water	and	waste	water	domain,
implementing	geospatial	analysis	in	Desktop	GIS	and	promoting	web-	and	mobile-based
GIS	Applications	to	solve	operational	and	planning	issues.	His	work	experience	spans
project	locations	such	as	Perth,	Middle	East,	New	Zealand,	Fiji,	and	India.	He	is	keen
about	studying	the	confluence	of	geospatial	technologies	with	technologies	such	as	big
data,	BIM,	geovisualization,	and	so	on.

Shaik	Shavali	is	a	senior	GIS	developer	at	Dar	Al-Riyadh.	He	has	7	years	of	experience
in	the	field	of	geospatial	technologies	and	projects.	His	areas	of	expertises	are	developing
custom	GIS	web	and	mobile	applications	using	the	latest	ESRI	technologies.	He	was	one
of	the	lead	developers	for	Emergency	Response	Management	Systems	for	the	largest
Islamic	pilgrimage	(Hajj),	gathering	nearly	2	million	people.	Currently,	he	is	actively
taking	part	in	designing	and	developing	GIS	projects	for	the	government	sector	in	Saudi
Arabia.

He	has	received	his	bachelor’s	in	engineering	degree,	and	presently,	he	is	pursuing	his
master’s	in	GIS	through	UNIGIS.

Firstly,	I	would	like	to	thank	Allah	for	his	countless	blessings.	I	would	also	like	to	thank
my	parents	(Akbar	Saheb	and	Fathima),	in-laws	(Ehasanulla	and	Shahnaz),	and	family	for
their	emotional	support,	guidance,	and	prayers.	Finally,	I	would	like	to	thank	my	better-
half,	Farheen	Ehasanulla,	for	her	love	and	support,	which	always	pushed	me	to	do	better.
She	is	my	backbone,	best	critic,	and	most	importantly,	my	best	friend.

http://www.gisinc.com/

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
ArcGIS	Desktop	10.3	is	the	leading	desktop	solution	for	GIS	analysis	and	mapping.	The
ArcPy	site	package,	which	contains	the	ArcPy	mapping	and	Data	Access	modules,	enables
Python	programmers	to	access	all	the	GIS	functionalities	provided	through	ArcGIS
Desktop.	ArcPy	can	be	integrated	with	other	open	source	Python	libraries	to	enhance	GUI
development;	create	stunning	reports,	charts,	and	graphs;	access	REST	web	services;
perform	statistics	analysis;	and	more.	This	book	will	teach	you	how	to	take	your	ArcGIS
Desktop	application	development	skills	to	the	next	level	by	integrating	the	functionality
provided	by	ArcPy	with	open	source	Python	libraries	to	create	advanced	ArcGIS	Desktop
applications.

In	addition	to	working	with	the	ArcPy,	ArcPy	Mapping,	and	ArcPy	Data	Access	modules,
the	book	also	covers	the	ArcGIS	REST	API	and	a	wide	variety	of	open	source	Python
modules,	including	requests,	csv,	plotly,	tweepy,	simplekml,	wxPython,	and	others.

What	this	book	covers
Chapter	1,	Extracting	Real-Time	Wildfire	Data	from	ArcGIS	Server	with	the	ArcGIS	REST
API,	describes	how	to	use	the	ArcGIS	REST	API	with	Python	to	extract	real-time	wildfire
information	from	an	ArcGIS	Server	map	service	and	write	the	data	to	a	local	geodatabase.
A	Python	Toolbox	will	be	created	in	ArcGIS	Desktop	to	hold	the	tools.

Chapter	2,	Tracking	Elk	Migration	Patterns	with	GPS	and	ArcPy,	teaches	you	how	to	read
a	CSV	file	containing	the	GPS	coordinates	of	elk	migration	patterns	and	write	the	data	to	a
local	geodatabase.	The	ArcPy	mapping	module	will	then	be	used	to	visualize	time-enabled
data	and	create	a	series	of	maps	that	show	the	migration	patterns	over	time.

Chapter	3,	Automating	the	Production	of	Map	Books	with	Data	Driven	Pages	and	ArcPy,
shows	you	how	to	use	the	Data	Driven	Pages	functionality	in	ArcGIS	Desktop	along	with
the	ArcPy	mapping	module	to	automate	the	production	of	a	map	book.	The	use	of	Python
add-ins	for	ArcGIS	Desktop	for	user	interface	development	will	also	be	introduced.

Chapter	4,	Analyzing	Crime	Patterns	with	ArcGIS	Desktop,	ArcPy,	and	Plotly	-	Part	1,	is
the	first	of	two	chapters	that	covers	the	creation	of	ArcPy	scripts	for	crime	analysis.	In	this
first	chapter,	you’ll	learn	how	to	use	the	Python	requests	module	to	extract	crime	data
from	the	city	of	Seattle’s	open	database	and	write	to	a	local	geodatabase.	You’ll	then	write
custom	script	tools	to	aggregate	the	crime	data	at	various	geographic	levels	and	create
maps	that	can	be	printed	or	exported	to	a	PDF	format.

Chapter	5,	Analyzing	Crime	Patterns	with	ArcGIS	Desktop,	ArcPy,	and	Plotly	-	Part	2,	is
the	second	of	two	chapters	that	covers	the	creation	of	ArcPy	scripts	for	crime	analysis.	In
this	chapter,	you’ll	learn	how	to	use	the	Plotly	platform	and	the	Python	module	to	create
compelling	graphs	and	charts	of	crime	data	that	can	be	integrated	into	the	ArcGIS	Desktop
layout	view	for	printing	and	export.

Chapter	6,	Viewing	and	Querying	Parcel	Data,	teaches	you	how	to	use	the	wxPython
module	to	create	advanced	graphical	user	interface	(GUI)	applications	for	ArcGIS
Desktop	using	Python	within	the	context	of	an	application	that	queries	and	views	parcel
data.	Python	add-ins	for	ArcGIS	Desktop	will	also	be	used	in	the	creation	of	the
application.

Chapter	7,	Using	Python	with	the	ArcGIS	REST	API	and	GeoEnrichment	Service	for
Retail	Site	Selection,	teaches	you	how	to	use	the	ArcGIS	Online	GeoEnrichment	Service
with	Python	to	retrieve	demographic	and	lifestyle	information	to	support	the	site	selection
process	of	a	new	store	location.	You’ll	also	build	tools	to	interactively	select	the	potential
geographic	location	of	stores	based	on	demographic	factors.

Chapter	8,	Supporting	Search	and	Rescue	Operations	with	ArcPy,	Python	Add-Ins,	and
simplekml,	teaches	you	how	to	build	a	Search	and	Rescue	(SAR)	application	that	identifies
the	last	known	location	of	the	subject,	creates	search	sectors	in	the	support	of	operations,
and	exports	the	data	to	Google	Earth	for	visualization	purposes.

Chapter	9,	Real	Time	Twitter	Mapping	with	Tweepy,	ArcPy,	and	the	Twitter	API,	covers	the

mining	of	a	live	stream	of	tweets	containing	specific	terms	and	hash	tags.	Tweets	that
contain	geographic	coordinates	will	be	written	to	a	local	geodatabase	for	further	analysis.
In	addition,	several	tools	will	be	created	to	enable	the	analysis	of	this	social	media	data.
Finally,	the	results	will	be	shared	with	the	public	through	the	ArcGIS	Online	service.

Chapter	10,	Integrating	Smart	Phone	Photos	with	ArcGIS	Desktop	and	ArcGIS	Online,
covers	the	creation	of	a	real	estate	application	that	reads	photo	metadata,	extracts	the
coordinate	information,	retrieves	the	nearest	address	to	the	photo,	and	writes	this
information	to	a	local	feature	class.	In	addition,	the	photos	will	be	copied	to	a	Dropbox
account	using	the	Python	Dropbox	module	so	that	the	photos	can	be	accessed	through	a
web	application.	Finally,	the	property	feature	class	will	be	uploaded	to	ArcGIS	Online,
integrated	with	the	Dropbox	photos,	and	shared	as	a	web-based	map.

What	you	need	for	this	book
ArcGIS	Blueprints	is	written	for	ArcGIS	Desktop	10.3.	However,	ArcGIS	Desktop	10.2
can	be	used	for	most	of	the	chapters	as	well.	Python	2.7,	along	with	the	IDLE
development	environment,	is	installed	along	with	ArcGIS	Desktop,	so	no	additional
installations	of	Python	should	be	performed.	If	desired,	you	can	use	your	preferred	Python
development	environment.	I	recommend	PyScripter	if	you	don’t	have	a	preference.

Who	this	book	is	for
ArcGIS	Blueprints	is	written	for	intermediate-level	ArcGIS	Desktop	programmers	who
wish	to	take	their	development	skills	to	the	next	level.	This	book	will	cover	intermediate
to	advanced	level	ArcGIS	Desktop	development	topics	with	ArcPy	and	a	variety	of	open
source	Python	libraries	to	create	applications	for	a	wide	array	of	topics.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
ArcPy	data	access	module	that	is	arcpy.da.”

A	block	of	code	is	set	as	follows:

def	getParameterInfo(self):

				"""Define	parameter	definitions"""

				param0	=	arcpy.Parameter(displayName	=	"ArcGIS	Server	Wildfire	URL",	\

																				name="url",	\

																				datatype="GPString",	\

																				parameterType="Required",\

																				direction="Input")

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

																				parameterType="Required",\

																				direction="Input")

				params	=	[param0,	param1]

				return	params

Any	command-line	input	or	output	is	written	as	follows:

#	cp	/usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

				/etc/asterisk/cdr_mysql.conf

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“You	can	create	a
Python	Toolbox	in	a	folder	by	right-clicking	on	the	Folder	and	navigating	to	New	|
Python	Toolbox.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/ArcGISBlueprints_ColoredImages.pdf

https://www.packtpub.com/sites/default/files/downloads/ArcGISBlueprints_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Extracting	Real-Time	Wildfire
Data	from	ArcGIS	Server	with	the
ArcGIS	REST	API
The	ArcGIS	platform,	which	contains	a	number	of	different	products,	including	ArcGIS
Desktop,	ArcGIS	Pro,	ArcGIS	for	Server,	and	ArcGIS	Online,	provides	a	robust
environment	to	perform	geographic	analysis	and	mapping.	The	content	produced	by	this
platform	can	be	integrated	using	the	ArcGIS	REST	API	and	a	programming	language	such
as	Python.	Many	of	the	applications	we’ll	build	in	this	book	use	the	ArcGIS	REST	API	as
the	bridge	to	exchange	information	between	software	products.

We’re	going	to	start	by	developing	a	simple	ArcGIS	Desktop	custom	script	tool	in
ArcToolbox	that	connects	to	an	ArcGIS	Server	map	service	to	retrieve	real-time	wildfire
information.	The	wildfire	information	will	be	retrieved	from	a	USGS	map	service	that
provides	real-time	wildfire	data.	For	this	chapter	and	all	other	chapters	in	this	book,	the
reader	is	expected	to	have	intermediate-level	experience	of	Python	and	ArcPy.	Ideally,	you
should	be	running	version	10.3	or	10.2	of	ArcGIS	Desktop.	Previous	versions	of	ArcGIS
Desktop	have	some	significant	differences	that	may	cause	problems	in	the	development	of
some	applications	in	the	book.

We’ll	use	the	ArcGIS	REST	API	and	the	Python	requests	module	to	connect	to	the	map
service	and	request	the	data.	The	response	from	the	map	service	will	contain	data	that	will
be	written	to	a	feature	class	stored	in	a	local	geodatabase	using	the	ArcPy	data	access
module.

This	will	all	be	accomplished	with	a	custom	script	tool	attached	to	an	ArcGIS	Python
Toolbox.	ArcGIS	Python	toolboxes	are	relatively	new;	they	were	first	introduced	in
version	10.1	of	ArcGIS	Desktop.	They	provide	a	Python-centric	method	to	create	custom
toolboxes	and	tools.	The	older	method	to	create	toolboxes	in	ArcGIS	Desktop,	while	still
relevant,	requires	a	combination	of	Python	and	a	wizard-based	approach	to	create	tools.

In	this	chapter,	we	will	cover	the	following	topics:

ArcGIS	Desktop	Python’s	toolboxes
The	ArcGIS	Server	map	and	feature	services
The	Python	requests	module
The	Python	JSON	module
The	ArcGIS	REST	API
The	ArcPy	data	access	module	that	is	arcpy.da

A	general	overview	of	the	Python	libraries	for	ArcGIS	is	provided	in	the	appendix	of	this
book.	It	is	recommended	that	you	read	this	chapter	before	continuing	with	the	appendix
and	other	chapters.

Design
Before	we	start	building	the	application,	we’ll	spend	some	time	planning	what	we’ll	build.
This	is	a	fairly	simple	application,	but	it	serves	to	illustrate	how	ArcGIS	Desktop	and
ArcGIS	Server	can	be	easily	integrated	using	the	ArcGIS	REST	API.	In	this	application,
we’ll	build	an	ArcGIS	Python	Toolbox	that	serves	as	a	container	for	a	single	tool	called
USGSDownload.	The	USGSDownload	tool	will	use	the	Python	requests,	JavaScript	Object
Notation	(JSON),	and	ArcPy	da	modules	to	request	real-time	wildfire	data	from	a	USGS
map	service.	The	response	from	the	map	service	will	contain	information	including	the
location	of	the	fire,	the	name	of	the	fire,	and	some	additional	information	that	will	then	be
written	to	a	local	geodatabase.

The	communication	between	the	ArcGIS	Desktop	Python	Toolbox	and	the	ArcGIS	Server
map	service	will	be	accomplished	through	the	ArcGIS	REST	API	and	the	Python
language.

Let’s	get	started	and	build	the	application.

Creating	the	ArcGIS	Desktop	Python
Toolbox
There	are	two	ways	to	create	toolboxes	in	ArcGIS:	script	tools	in	custom	toolboxes	and
script	tools	in	Python	toolboxes.	Python	toolboxes	encapsulate	everything	in	one	place:
parameters,	validation	code,	and	source	code.	This	is	not	the	case	with	custom	toolboxes,
which	are	created	using	a	wizard	and	a	separate	script	that	processes	the	business	logic.

A	Python	Toolbox	functions	like	any	other	toolbox	in	ArcToolbox,	but	it	is	created	entirely
in	Python	and	has	a	file	extension	of	.pyt.	It	is	created	programmatically	as	a	class	named
Toolbox.	In	this	section,	you	will	learn	how	to	create	a	Python	Toolbox	and	add	a	tool.
You’ll	only	create	the	basic	structure	of	the	toolbox	and	tool	that	will	ultimately	connect	to
an	ArcGIS	Server	map	service	containing	the	wildfire	data.	In	a	later	section,	you’ll
complete	the	functionality	of	the	tool	by	adding	code	that	connects	to	the	map	service,
downloads	the	current	data,	and	inserts	it	into	a	feature	class.	Take	a	look	at	the
following	steps:

1.	 Open	ArcCatalog:	You	can	create	a	Python	Toolbox	in	a	folder	by	right-clicking	on
the	Folder	and	navigating	to	New	|	Python	Toolbox.	In	ArcCatalog,	there	is	a	folder
called	Toolboxes,	and	inside	it,	there	is	a	My	Toolboxes	folder,	as	shown	in	the
following	screenshot.	Right-click	on	this	folder	and	navigate	to	New	|	Python
Toolbox.

2.	 The	name	of	the	toolbox	is	controlled	by	the	filename.	Name	the	toolbox
InsertWildfires.pyt.

3.	 The	Python	Toolbox	file	(.pyt)	can	be	edited	in	any	text	or	code	editor.	By	default,
the	code	will	open	in	Notepad.	However,	you	will	want	to	use	a	more	advanced
Python	development	environment,	such	as	PyScripter,	IDLE,	and	so	on.	You	can
change	this	by	setting	the	default	editor	for	your	script	by	navigating	to
Geoprocessing	|	Geoprocessing	Options	and	going	to	the	Editor	section.	In	the
following	screenshot,	you’ll	notice	that	I	have	set	my	editor	to	PyScripter,	which	is
my	preferred	environment.	You	may	want	to	change	this	to	IDLE	or	whichever
development	environment	you	are	currently	using.

4.	 For	example,	to	find	the	path	to	the	executable	for	the	IDLE	development
environment,	you	can	navigate	to	Start	|	All	Programs	|	ArcGIS	|	Python	2.7	|
IDLE.	Right-click	on	IDLE	and	select	Properties	to	display	the	properties	window.
Inside	the	Target	textbox,	you	should	see	a	path	to	the	executable,	as	shown	in	the
following	screenshot.	You	will	want	to	copy	and	paste	only	the	actual	path	starting
with	C:\Python27	and	not	the	quotes	that	surround	the	path.

5.	 Copy	and	paste	the	path	into	the	Editor	and	Debugger	sections	inside	the
Geoprocessing	Options	dialog	box.

6.	 Right-click	on	InsertWildfires.pyt	and	select	Edit.	This	will	open	the
development	environment	you	defined	earlier,	as	shown	in	the	following	screenshot.
Your	environment	will	vary	depending	upon	the	editor	that	you	have	defined:

7.	 Remember	that	you	will	not	be	changing	the	name	of	the	class,	which	is	Toolbox.

However,	you	will	have	to	rename	the	Tool	class	to	reflect	the	name	of	the	tool	you
want	to	create.	Each	tool	will	have	various	methods,	including	__init__(),	which	is
the	constructor	for	the	tool	along	with	getParameterInfo(),	isLicensed(),
updateParameters(),	updateMessages(),	and	execute().	You	can	use	the
__init__()	method	to	set	initialization	properties,	such	as	the	tool’s	label	and
description.	Find	the	class	named	Tool	in	your	code,	and	change	the	name	of	this	tool
to	USGSDownload,	and	set	the	label	and	description	properties:

class	USGSDownload(object):

		def	__init__(self):

				"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

				self.label	=	"USGS	Download"

				self.description	=	"Download	from	USGS	ArcGIS	Server	instance"

				self.canRunInBackground	=	False

Tip
Downloading	the	example	code.

You	can	download	the	example	code	files	from	your	account	at
http://www.packtpub.com	for	all	the	Packt	Publishing	books	you	have	purchased.	If
you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support
and	register	to	have	the	files	e-mailed	directly	to	you

You	can	use	the	Tool	class	as	a	template	for	other	tools	that	you’d	like	to	add	to	the
toolbox	by	copying	and	pasting	the	class	and	its	methods.	We’re	not	going	to	do	that
in	this	chapter,	but	I	wanted	you	to	be	aware	of	this.

8.	 You	will	need	to	add	each	tool	to	the	tools	property	(the	Python	list)	in	the	Toolbox
class.	Add	the	USGSDownload	tool,	as	shown	in	the	following	code	snippet:

		def	__init__(self):

				"""Define	the	toolbox	(the	name	of	the	toolbox	is	the	name	of	the	

.pyt	file."""

				self.label	=	"Toolbox"

				self.alias	=	""

				

				#List	of	tool	classes	associated	with	this	toolbox

				self.tools	=	[USGSDownload]

9.	 Save	your	code.
10.	 When	you	close	the	code	editor,	your	toolbox	should	be	automatically	refreshed.	You

can	also	manually	refresh	a	toolbox	by	right-clicking	on	the	InsertWildfires.pyt	and
selecting	Refresh.	If	a	syntax	error	occurs	in	your	code,	the	toolbox	icon	will	change,
as	shown	in	the	following	screenshot.	Note	the	red	X	next	to	the	toolbox.	Your	tool
may	not	visible	inside	the	toolbox	either.	If	you’ve	coded	everything	correctly,	you
will	not	see	this	icon,	as	shown	in	the	following	screenshot:

http://www.packtpub.com
http://www.packtpub.com/support

11.	 To	see	the	error,	right-click	on	InsertWildfires.pyt	and	select	Check	Syntax.

Assuming	that	you	don’t	have	any	syntax	errors,	you	should	see	the	following
screenshot	of	the	Toolbox/Tool	structure:

Working	with	tool	parameters
Almost	all	tools	have	parameters.	The	parameter	values	will	be	set	by	the	end	user	with
the	Tool	dialog	box,	or	they	will	be	hardcoded	within	the	script.	When	the	tool	is
executed,	the	parameter	values	are	sent	to	your	tool’s	source	code.	Your	tool	reads	these
values	and	proceeds	with	its	work.	You	use	the	getParameterInfo()	method	to	define	the
parameters	for	your	tool.	Individual	parameter	objects	are	created	as	part	of	this	process.	If
necessary,	open	InsertWildfires.pyt	in	your	code	editor	and	find	the
getParameterInfo()	function	in	the	USGSDownload	class.	Add	the	following	parameters,
and	then	we’ll	discuss	what	the	code	is	doing:

def	getParameterInfo(self):

								"""Define	parameter	definitions"""

								#	First	parameter

								param0	=	arcpy.Parameter(displayName="ArcGIS	Server	Wildfire	URL",

																								name="url",

																								datatype="GPString",

																								parameterType="Required",

																								direction="Input")

								param0.value	=	

"http://wildfire.cr.usgs.gov/arcgis/rest/services/geomac_dyn/MapServer/0/qu

ery"

								#	Second	parameter

								param1	=	arcpy.Parameter(displayName="Output	Feature	Class",

																								name="out_fc",

																								datatype="DEFeatureClass",

																								parameterType="Required",

																								direction="Input")

Each	parameter	is	created	using	arcpy.Parameter	and	is	passed	a	number	of	arguments
that	define	the	object.	For	the	first	Parameter	object	(param0),	we	are	going	to	capture	a
URL	to	an	ArcGIS	Server	map	service	containing	real-time	wildfire	data.	We	give	it	a
display	name	ArcGIS	Server	Wildfire	URL,	which	will	be	displayed	on	the	dialog	box
for	the	tool.	A	name	for	the	parameter,	a	datatype,	a	parameter	type,	and	a	direction.	In	the
case	of	the	first	parameter	(param0),	we	also	assign	an	initial	value,	which	is	the	URL	to
an	existing	map	service	containing	the	wildfire	data.	For	the	second	parameter,	we’re
going	to	define	an	output	feature	class	where	the	wildfire	data	that	is	read	from	the	map
service	will	be	written.	An	empty	feature	class	to	store	the	data	has	already	been	created
for	you.

Next	we’ll	add	both	the	parameters	to	a	Python	list	called	params	and	return,	to	the	list	to
the	calling	function.	Add	the	following	code:

def	getParameterInfo(self):

								"""Define	parameter	definitions"""

								#	First	parameter

								param0	=	arcpy.Parameter(displayName="ArcGIS	Server	Wildfire	URL",

																								name="url",

																								datatype="GPString",

																								parameterType="Required",

																								direction="Input")

								param0.value	=	

"http://wildfire.cr.usgs.gov/arcgis/rest/services/geomac_dyn/MapServer/0/qu

ery"

								#	Second	parameter

								param1	=	arcpy.Parameter(displayName="Output	Feature	Class",

																								name="out_fc",

																								datatype="DEFeatureClass",

																								parameterType="Required",

																								direction="Input")

								params	=	[param0,	param1]

								return	params

Tool	execution
The	main	work	of	a	tool	is	done	inside	the	execute()	method.	This	is	where	the
geoprocessing	of	your	tool	takes	place.	The	execute()	method,	as	shown	in	the	following
code	snippet,	can	accept	a	number	of	arguments,	including	the	tools	self,	parameters,
and	messages:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								return

To	access	the	parameter	values	that	are	passed	into	the	tool,	you	can	use	the
valueAsText()	method.	The	following	steps	will	guide	you	through	how	to	add	and
execute	the	execute()	method:

1.	 Find	the	execute()	function	in	the	USGSDownload	class	and	add	the	following	code
snippet	to	access	the	parameter	values	that	will	be	passed	into	your	tool.	Remember
from	a	previous	step	that	the	first	parameter	will	contain	a	URL	to	a	map	service
containing	the	wildfire	data	and	the	second	parameter	will	be	the	output	feature	class
where	the	data	will	be	written:

def	execute(self,	parameters,	messages):

								inFeatures	=	parameters[0].valueAsText

								outFeatureClass	=	parameters[1].valueAsText

At	this	point,	you	have	created	a	Python	Toolbox,	added	a	tool,	defined	the
parameters	for	the	tool,	and	created	variables	that	will	hold	the	parameter	values	that
the	end	user	has	defined.	Ultimately,	this	tool	will	use	the	URL	that	is	passed	to	the
tool	to	connect	to	an	ArcGIS	Server	map	service,	download	the	current	wildfire	data,
create	a	feature	class,	and	write	the	wildfire	data	to	the	feature	class.	However,	we’re
going	to	save	the	geoprocessing	tasks	for	later.	For	now,	I	just	want	you	to	print	out
the	values	of	the	parameters	that	have	been	entered	so	that	we	know	that	the	structure
of	the	tool	is	working	correctly.	Print	this	information	using	the	following	code:

def	execute(self,	parameters,	messages):

								inFeatures	=	parameters[0].valueAsText

								arcpy.AddMessage(inFeatures)

								outFeatureClass	=	parameters[1].valueAsText

								arcpy.AddMessage(outFeatureClass)

2.	 Execute	the	tool	by	double-clicking	on	USGS	Download	from	the
InsertWildfires.pyt	toolbox	that	you’ve	created.	You	should	see	the	following	dialog
box:

3.	 Leave	the	default	URL	parameter	as	it	is	and	select	an	output	feature	class.	You’ll
want	to	click	on	the	Browse	button	and	then	navigate	to	the
C:\ArcGIS_Blueprint_Python\Data\WildfireData	folder	and	select	the
WildlandFires	geodatabase.	Inside,	there	is	an	empty	feature	class	called
CurrentFires.	Select	this	feature	class.

4.	 Now	click	on	OK.	The	progress	dialog	box	will	contain	the	parameter	values	that
you	passed	in.	Your	output	feature	class	will	probably	be	different	than	mine,	as
shown	in	the	following	screenshot:

We’ll	complete	the	actual	geoprocessing	of	this	tool	in	the	next	section.

Populating	the	feature	class
In	the	previous	section,	you	learned	how	to	create	a	Python	Toolbox	and	add	tools.	You
created	a	new	toolbox	called	InsertWildfires	and	added	a	tool	called	USGS	Download.
However,	in	that	exercise,	you	didn’t	complete	the	geoprocessing	operations	that	connect
to	an	ArcGIS	Server	map	service,	query	the	service	for	current	wildfires,	and	populate	the
feature	class	from	the	data	pulled	from	the	map	service	query.	You’ll	complete	these	steps
in	the	following	section.

Installing	pip	and	the	requests	module
This	section	of	the	application	uses	the	Python	requests	module.	If	you	don’t	already	have
this	module	installed	on	your	computer,	you	will	need	to	do	this	at	this	time	using	pip.

The	pip	is	a	package	manager	that	serves	as	a	repository	and	installation	manager	for
Python	modules.	It	makes	finding	and	installing	Python	modules	much	easier.	There	are
several	steps	that	you’ll	need	to	follow	in	order	to	install	pip	and	the	requests	module.
Instructions	to	install	pip	and	the	requests	module	are	provided	in	the	first	few	steps:

1.	 Open	the	Environment	Variables	dialog	box	in	Windows.	The	easiest	way	to
display	this	dialog	box	is	to	go	to	Start	and	then	type	Environment	Variables	in	the
search	box.	This	should	display	an	Edit	environment	variables	for	your	account
entry.	Select	this	item.

2.	 If	you	don’t	see	a	variable	called	PATH,	click	on	the	New	button	to	create	one.	If	you
already	have	a	PATH	variable,	you	can	just	add	to	the	existing	content.	Select	the
PATH	variable,	and	click	on	Edit,	and	then	set	the	value	to
C:\Python27\ArcGIS10.3;	C:\Python27\ArcGIS10.3\Scripts.	The	first	path	will
provide	a	reference	to	the	location	of	the	Python	executable	and	the	second	will
reference	the	location	of	pip	when	it	is	installed.	This	makes	it	possible	to	run	Python
and	pip	from	the	Command	Prompt	in	Windows.

3.	 Click	on	OK	and	then	click	on	OK	again	to	save	the	changes.
4.	 Next,	we’ll	install	pip	if	you	haven’t	already	done	so	in	the	past.	You	need	to	install

pip	before	you	can	install	requests.	In	a	web	browser,	go	to
https://pip.pypa.io/en/latest/installing.html	and	scroll	down	to	the	install	pip	section.
Right-click	on	get-pip.py	and	select	Save	Link	As	or	something	similar.	This	will
vary	depending	upon	the	browser	you	are	using.	Save	it	to	your
C:\ArcGIS_Blueprint_Python	folder.

5.	 Open	the	Command	Prompt	in	Windows,	type	python
C:\ArcGIS_Blueprint_Python\get-pip.py,	and	press	Enter	on	your	keyboard.	This
will	install	pip.

6.	 In	the	Command	Prompt,	type	pip	install	requests	and	press	Enter	on	your
keyboard.	This	will	install	the	requests	module.

7.	 Close	the	Command	Prompt.

https://pip.pypa.io/en/latest/installing.html

Requesting	data	from	ArcGIS	Server
In	the	following	steps,	we	will	learn	how	to	request	data	from	ArcGIS	Server:

1.	 Open	ArcCatalog	and	navigate	to	the	location	where	you’ve	created	your	Python
Toolbox,	it	would	look	like	following	screenshot:

2.	 Right-click	on	InsertWildfires.pyt	and	select	Edit	to	display	the	code	for	the
toolbox.

3.	 First,	we’ll	clean	up	a	little	by	removing	the	AddMessage()	functions.	Clean	up	your
execute()	method	so	that	it	appears	as	follows:

def	execute(self,	parameters,	messages):

								inFeatures	=	parameters[0].valueAsText

								outFeatureClass	=	parameters[1].valueAsText

4.	 Next,	add	the	code	that	connects	to	the	wildfire	map	service,	to	perform	a	query.	In
this	step,	you	will	also	define	the	QueryString	parameters	that	will	be	passed	into	the
query	of	the	map	service.	First,	import	the	requests	and	json	modules:

import	arcpy

import	requests,	json

class	Toolbox(object):

				def	__init__(self):

								"""Define	the	toolbox	(the	name	of	the	toolbox	is	the	name	of	

the

								.pyt	file)."""

								self.label	=	"Toolbox"

								self.alias	=	""

								#	List	of	tool	classes	associated	with	this	toolbox

								self.tools	=	[USGSDownload]

5.	 Then,	create	the	agisurl	and	json_payload	variables	that	will	hold	the	QueryString
parameters.	Note	that,	in	this	case,	we	have	defined	a	WHERE	clause	so	that	only
wildfires	where	the	acres	are	greater	than	5	will	be	returned.	The	inFeatures
variable	holds	the	ArcGIS	Server	Wildfire	URL:

				def	execute(self,	parameters,	messages):

								inFeatures	=	parameters[0].valueAsText

								outFeatureClass	=	parameters[1].valueAsText

								agisurl	=	inFeatures

								json_payload	=	{	'where':	'acres	>	5',	'f':	'pjson',

								'outFields':	'latitude,longitude,incidentname,acres'	}

6.	 Submit	the	request	to	the	ArcGIS	Server	instance;	the	response	should	be	stored	in	a
variable	called	r.	Print	a	message	to	the	dialog	box	indicating	the	response	as:

def	execute(self,	parameters,	messages):

								inFeatures	=	parameters[0].valueAsText

								outFeatureClass	=	parameters[1].valueAsText

								agisurl	=	inFeatures

								json_payload	=	{	'where':	'acres	>	5',	'f':	'pjson',	

'outFields':	'latitude,longitude,incidentname,acres'	}

								r	=	requests.get(agisurl,	params=json_payload)

								arcpy.AddMessage("The	response:	"	+	r.text)

7.	 Test	the	code	to	make	sure	that	we’re	on	the	right	track.	Save	the	file	and	refresh
InsertWildfires	in	ArcCatalog.	Execute	the	tool	and	leave	the	default	URL.	If
everything	is	working	as	expected,	you	should	see	a	JSON	object	output	to	the
progress	dialog	box.	Your	output	will	probably	vary	from	the	following	screenshot:

8.	 Return	to	the	execute()	method	and	convert	the	JSON	object	to	a	Python	dictionary
using	the	json.loads()	method:

def	execute(self,	parameters,	messages):

								inFeatures	=	parameters[0].valueAsText

								outFeatureClass	=	parameters[1].valueAsText

								agisurl	=	inFeatures

								json_payload	=	{	'where':	'acres	>	5',	'f':	'pjson',	

'outFields':	'latitude,longitude,incidentname,acres'	}

								r	=	requests.get(inFeatures,	params=json_payload)

								arcpy.AddMessage("The	response:	"	+	r.text)

								decoded	=	json.loads(r.text)

Inserting	data	in	a	feature	class	with	the	ArcPy
data	access	module
The	following	steps	will	guide	you,	to	insert	data	in	a	feature	class	with	the	help	of	the
ArcPy	data	access	module:

1.	 Now,	we’ll	use	the	ArcPy	data	access	module,	that	is	Arcpy.da,	to	create	an
InsertCursor	object	by	passing	the	output	feature	class	defined	in	the	tool	dialog
box	along	with	the	fields	that	will	be	populated:

				def	execute(self,	parameters,	messages):

								inFeatures	=	parameters[0].valueAsText

								outFeatureClass	=	parameters[1].valueAsText

								agisurl	=	inFeatures

								json_payload	=	{	'where':	'acres	>	5',	'f':	'pjson',	

'outFields':	'latitude,longitude,fire_name,acres'	}

								r	=	requests.get(inFeatures,	params=json_payload)

								arcpy.AddMessage("The	response:	"	+	r.text)

								decoded	=	json.loads(r.text)

								cur	=	arcpy.da.InsertCursor(outFeatureClass,	("SHAPE@XY",	

"NAME",	"ACRES"))

2.	 Create	a	For	loop	that	you	can	see	in	the	following	code,	and	then	we’ll	discuss	what
this	section	of	code	accomplishes:

def	execute(self,	parameters,	messages):

								inFeatures	=	parameters[0].valueAsText

								outFeatureClass	=	parameters[1].valueAsText

								agisurl	=	inFeatures

								json_payload	=	{	'where':	'acres	>	5',	'f':	'pjson',	

'outFields':	'latitude,longitude,fire_name,acres'	}

								r	=	requests.get(inFeatures,	params=json_payload)

								arcpy.AddMessage("The	response:	"	+	r.text)

								decoded	=	json.loads(r.text)

								cur	=	arcpy.da.InsertCursor(outFeatureClass,	("SHAPE@XY",	

"NAME",	"ACRES"))

								cntr	=	1

								for	rslt	in	decoded['features']:

												fireName	=	rslt['attributes']['incidentname']

												latitude	=	rslt['attributes']['latitude']

												longitude	=	rslt['attributes']['longitude']

												acres	=	rslt['attributes']['acres']

												cur.insertRow([(longitude,latitude),fireName,	acres])

												arcpy.AddMessage("Record	number:	"	+	str(cntr)	+	"	written	

to	feature	class")

												cntr	=	cntr	+	1

								del	cur

The	first	line	simply	creates	a	counter	that	will	be	used	to	display	the	progress
information	in	the	Progress	Dialog	box.	We	then	start	a	For	loop	that	loops	through
each	of	the	features	(wildfires)	that	have	been	returned.	The	decoded	variable	is	a
Python	dictionary.	Inside	the	For	loop,	we	retrieve	the	wildfire	name,	latitude,
longitude,	and	acres	from	the	attributes	dictionary.	Finally,	we	call	the	insertRow()
method	to	insert	a	new	row	into	the	feature	class	along	with	the	wildfire	name	and
acres	as	attributes.	The	progress	information	is	written	to	the	Progress	Dialog	box
and	the	counter	is	updated.

3.	 Save	the	file	and	refresh	your	Python	Toolbox.
4.	 Double-click	on	the	USGS	Download	tool.
5.	 Leave	the	default	URL	and	select	the	CurrentFires	feature	class	in	the

WildlandFires	geodatabase.	The	CurrentFires	feature	class	is	empty	and	has	fields
for	NAMES	and	ACRES:

6.	 Click	on	OK	to	execute	the	tool.	The	number	of	features	written	to	the	feature	class
will	vary	depending	upon	the	current	wildfire	activity.	Most	of	the	time,	there	is	at
least	a	little	activity,	but	it	is	possible	that	there	wouldn’t	be	any	wildfires	in	the	U.S.
as	shown	in	the	following	screenshot:

7.	 View	the	feature	class	in	ArcMap.	To	view	the	feature	class	in	the	following
screenshot,	I’ve	plotted	the	points	along	with	a	Basemap	topography	layer.	Your	data
will	almost	certainly	be	different	than	mine	as	we	are	pulling	real-time	data:

Summary
Integrating	ArcGIS	Desktop	and	ArcGIS	Server	is	easily	accomplished	using	the	ArcGIS
REST	API	and	the	Python	programming	language.	In	this	chapter,	we	created	an	ArcGIS
Python	Toolbox	containing	a	tool	that	connects	to	an	ArcGIS	Server	map	service
containing	real-time	wildfire	information	and	hosted	by	the	USGS.	The	connection	was
accomplished	through	the	use	of	the	Python	request	module	that	we	used	in	order	to
submit	a	request	and	handle	the	response.	Finally,	we	used	the	ArcPy	data	access	module
to	write	this	information	to	a	local	geodatabase.

In	the	next	chapter,	we’ll	continue	working	with	ArcGIS	Python	toolboxes,	and	you’ll	also
learn	how	to	read	CSV	files	with	the	Python	CSV	module,	insert	data	into	a	feature	class,
and	use	the	arcpy.mapping	module	to	work	with	time-enabled	data.

Chapter	2.	Tracking	Elk	Migration
Patterns	with	GPS	and	ArcPy
In	this	chapter,	we’re	going	to	build	an	application	that	imports	a	CSV	file	containing
Global	Positioning	System	(GPS)	locations	that	depict	elk	migration	patterns	into	a
feature	class	that	will	be	time-enabled	to	display	migration	patterns	over	time	and	space.
We’ll	use	the	ArcPy	data	access	(arcpy.da)	module	and	the	Python	csv	module	to	read	the
file	containing	GPS	locations,	and	write	the	data	to	a	new	feature	class.	Next,	we’ll	use	the
ArcPy	mapping	(archy.mapping)	module	to	make	the	output	feature	class	time-enabled,
and	then	visualize	the	migration	patterns	of	the	elk	over	time	and	space.	The	application
will	be	built	as	an	ArcGIS	Python	Toolbox	in	much	the	same	way	as	what	we	did	in
Chapter	1,	Extracting	Wildfire	Data	from	an	ArcGIS	Server	Map	Service	with	the	ArcGIS
REST	API.

In	this	chapter,	we	will	cover	the	following	topics:

ArcGIS	Desktop	Python	toolboxes
Reading	CSV	files	with	the	Python	csv	module
Inserting	data	in	a	feature	class	using	the	ArcPy	data	access	module
Using	the	ArcPy	mapping	module	to	make	a	layer	time-enabled
Visualizing	time-enabled	data	with	ArcGIS	Desktop

Design
Let’s	spend	a	little	time	going	over	the	design	of	what	we’re	going	to	build	in	this	chapter.
This	application,	like	the	one	we	built	in	the	Chapter	1,	Extracting	Wildfire	Data	from	an
ArcGIS	Server	Map	Service	with	the	ArcGIS	REST	API,	will	include	the	creation	of	an
ArcGIS	Desktop	Python	Toolbox.	The	toolbox,	MigrationPatterns.pyt,	will	include	two
tools:	ImportCollarData	and	VisualizeMigration.	The	ImportCollarData	tool	will
import	GPS	data	from	a	collar	that	was	attached	to	an	elk	in	northern	California.	The	GPS
data	will	have	been	extracted	to	a	comma-delimited	text	file	(csv	format),	that	will	be	read
using	the	Python	csv	module	and	then	imported	into	a	local	feature	class	stored	in	a	file
geodatabase	using	the	arcpy.da	which	is	a	data	access	module.	We’ll	then	need	to	do	a
little	manual	work	inside	ArcMap.	First,	we’ll	make	the	feature	class	that	was	created	as
a	result	of	the	ImportCollarData	tool	time-enabled,	and	then	we’ll	save	the	time-enabled
data	in	a	map	document	file.	The	VisualizeMigration	tool	will	then	enable	the
visualization	of	the	migration	patterns	on	a	daily	basis	between	a	date	range	provided	by
the	end	user.	This	tool	will	also	export	a	map	of	the	layout	view	to	a	PDF	file	for	each	of
the	days.

The	elk	migration	data	provided	by	McCrea	Cobb	of	the	U.S.	Fish	and	Wildlife	Service	is
as	follows:

Let’s	get	started	and	build	the	application.

Creating	migration	patterns	for	Python
toolbox
Just	like	we	did	in	the	first	chapter	of	the	book,	we’ll	build	an	ArcGIS	Python	Toolbox	to
hold	the	code	for	our	application.	I	won’t	walk	you	through	every	single	step	like	I	did	in
the	first	chapter,	but	I	will	provide	some	general	guidelines	instead.	If	needed,	refer	to	the
first	chapter	for	the	specifics	of	how	to	create	an	ArcGIS	Python	Toolbox.

The	Python	toolboxes	encapsulate	everything	in	one	place:	parameters,	validation	code,
and	source	code.	A	Python	Toolbox	functions	like	any	other	toolbox	in	ArcToolbox,	but	it
is	created	entirely	in	Python	and	has	a	file	extension	of	.pyt.	As	you	learned	in	the	last
chapter,	it	is	created	programmatically	as	a	class	named	Toolbox.

The	following	steps	will	help	you	to	create	migration	patterns	for	Python	toolbox:

1.	 Open	ArcCatalog.	You	can	create	a	Python	Toolbox	in	a	folder	by	right-clicking	on
the	folder	and	navigating	to	New	|	Python	Toolbox.	In	ArcCatalog,	there	is	a	folder
called	Toolboxes;	inside	the	folder,	there	is	a	My	Toolboxes	folder,	as	shown	in	the
following	screenshot.	Right-click	on	this	folder	and	navigate	to	New	|	Python
Toolbox:

2.	 The	name	of	the	toolbox	is	controlled	by	the	filename.	Name	the	toolbox
MigrationPatterns.pyt.

Creating	the	Import	Collar	Data	tool
The	following	steps	will	help	you	to	create	Import	Collar	Data	tool:

1.	 Right-click	on	MigrationPatterns.pyt	and	select	Edit.	This	will	open	your
development	environment,	as	shown	in	the	following	screenshot.	Your	environment
will	vary	depending	upon	the	editor	that	you	defined	in	Chapter	1,	Extracting	Real-
Time	Wildfire	Data	from	ArcGIS	Server	with	the	ArcGIS	REST	API:

2.	 Remember	that	you	will	not	be	changing	the	name	of	the	class,	which	is	Toolbox.
However,	you	will	rename	the	Tool	class	to	reflect	the	name	of	the	tool	you	want	to
create.

3.	 Find	the	class	named	Tool	in	your	code	and	change	the	name	of	this	tool	to
ImportCollarData,	and	set	the	label	and	description	properties:

class	ImportCollarData(object):

				def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Import	Collar	Data"

								self.description	=	"Import	Elk	Collar	Data"

								self.canRunInBackground	=	False

You	can	use	the	Tool	class	as	a	template	for	other	tools	you’d	like	to	add	to	the

toolbox	by	copying	and	pasting	the	class	and	its	methods.	We’ll	do	this	in	a	later	step,
when	we	create	the	tool	that	enables	the	display	of	the	elk	migration	patterns	over
time.

4.	 You	will	need	to	add	each	tool	to	the	tools	property	(the	Python	list)	in	the	Toolbox
class.	Add	the	ImportCollarData	tool,	as	shown	in	the	following	code:

def	__init__(self):

								"""Define	the	toolbox	(the	name	of	the	toolbox	is	the	name	of	

the

								.pyt	file)."""

								self.label	=	"Toolbox"

								self.alias	=	""

								#	List	of	tool	classes	associated	with	this	toolbox

								self.tools	=	[ImportCollarData]

5.	 Assuming	that	you	don’t	have	any	syntax	errors,	you	should	see	the	following
Toolbox	or	Tool	structure:

6.	 In	this	step,	we’ll	set	the	parameters	for	the	tool.	The	ImportCollarData	tool	will
need	parameters	that	accept	the	csv	file	to	be	imported	along	with	an	output	feature
class,	where	the	data	will	be	written,	and	an	input	feature	class	to	be	used	for	schema
purposes.	Use	the	getParameterInfo()	method	to	define	the	parameters	for	your
tool.	Individual	parameter	objects	are	created	as	part	of	this	process.	Add	the
following	parameters,	and	then	we’ll	discuss	what	the	code	is	doing:

def	getParameterInfo(self):

								param0	=	arcpy.Parameter(displayName	=	"CSV	File	to		 																	

Import",	\

																								name="fileToImport",	\

																								datatype="DEFile",	\

																								parameterType="Required",\

																								direction="Input")

								param1	=	arcpy.Parameter(displayName	=	"Output	Feature	Class",	

\

																								name="out_fc",	\

																								datatype="DEFeatureClass",\

																								parameterType="Required",\

																								direction="Output")

								param2	=	arcpy.Parameter(displayName	=	"Schema	Feature	Class",	

\

																								name="schema_fc",	\

																								datatype="DEFeatureClass",\

																								parameterType="Required",\

																								direction="Input")

Each	Parameter	object	is	created	using	arcpy.Parameter	and	is	passed	a	number	of
arguments	that	define	the	object.

For	the	first	parameter	object	(param0),	we	are	going	to	capture	a	file	reference	that,
in	this	case,	will	be	a	reference	to	a	csv	file	containing	the	elk	migration	data.	We
give	it	a	display	name	(CSV	File	to	Import),	which	will	be	displayed	on	the	dialog
box	for	the	tool,	a	name	for	the	parameter,	a	datatype,	a	parameter	type	(required),
and	a	direction.

For	the	second	parameter,	we’re	going	to	define	an	output	feature	class,	where	the	elk
migration	data	that	is	read	from	the	file	will	be	written.	Our	tool	will	create	this
feature	class.

The	final	parameter	is	also	a	feature	class	but	has	a	direction	of	input	and	will	be	used
to	specify	an	existing	feature	class	from	which	we’ll	pull	the	schema.

7.	 Next,	we’ll	add	both	the	parameters	to	a	Python	list	called	params	and	return	the	list
to	the	calling	function.	Add	the	following	code:

def	getParameterInfo(self):

								param0	=	arcpy.Parameter(displayName	=	"CSV	File	to	Import",	\

																								name="fileToImport",	\

																								datatype="DEFile",	\

																								parameterType="Required",\

																								direction="Input")

								param1	=	arcpy.Parameter(displayName	=	"Output	Feature	Class",	

\

																								name="out_fc",	\

																								datatype="DEFeatureClass",\

																								parameterType="Required",\

																								direction="Output")

								param2	=	arcpy.Parameter(displayName	=	"Schema	Feature	Class",	

\

																								name="schema_fc",	\

																								datatype="DEFeatureClass",\

																								parameterType="Required",\

																								direction="Input")

								params	=	[param0,	param1,	param2]

								return	params

Reading	data	from	the	CSV	file	and
writing	to	the	feature	class
The	following	steps	will	help	you	to	read	and	write	data	from	CSV	file	to	a	write	to
feature	class:

1.	 The	main	work	of	a	tool	is	done	inside	the	execute()	method.	This	is	where	the
geoprocessing	of	the	tool	takes	place.	The	execute()	method,	as	shown	in	the
following	code,	can	accept	a	number	of	arguments,	including	the	tools	self,
parameters,	and	messages:

def	execute(self,	parameters,	messages):

						"""The	source	code	of	the	tool."""

						return

2.	 To	access	the	parameter	values	that	are	passed	into	the	tool,	you	can	use	the
valueAsText()	method.	Add	the	following	code	to	access	the	parameter	values	that
will	be	passed	into	your	tool.	Remember	from	a	previous	step	that	the	first	parameter
will	contain	a	reference	to	a	CSV	file	that	will	be	imported	and	the	second	parameter
is	the	output	feature	class	where	the	data	will	be	written:

def	execute(self,	parameters,	messages):

				inputCSV	=	parameters[0].valueAsText

				outFeatureClass	=	parameters[1].valueAsText

				schemaFeatureClass	=	parameters[2].valueAsText

3.	 Import	the	csv	and	os	modules	at	the	top	of	the	script:

import	arcpy

import	csv

import	os

4.	 Inside	the	execute()	method,	create	the	try/except	block	that	will	wrap	the	code
into	an	exception-handling	structure:

def	execute(self,	parameters,	messages):

				"""The	source	code	of	the	tool."""

				inputCSV	=	parameters[0].valueAsText

				outFeatureClass	=	parameters[1].valueAsText

				schemaFeatureClass	=	parameters[2].valueAsText

				try:

				except	Exception	as	e:

								arcpy.AddMessage(e.message)

5.	 Create	the	output	feature	class	by	passing	in	the	output	path,	feature	class	name,
geometry	type,	schema	feature	class,	and	spatial	reference:

try:

				#create	the	feature	class

				outCS	=	arcpy.SpatialReference(26910)

				arcpy.CreateFeatureclass_management(os.path.split(outFeatureClass)

[0],	os.path.split(outFeatureClass)[1],	"point",	schemaFeatureClass,	

spatial_reference=outCS)

6.	 Create	the	InsertCursor	object	just	below	the	line	above	where	you	created	a	new
feature	class:

#create	the	insert	cursor

with	arcpy.da.InsertCursor(outFeatureClass,("SHAPE@XY",	"season",	

"date",	"time",	"hour",	"temp",	"bearing",	"slope",	"elevation"))	as	

cursor:

7.	 Open	the	csv	file	and	read	the	data	items	that	we	need.	There	is	a	lot	of	data	in	the
csv	file,	but	we’re	not	going	to	need	everything.	For	our	purposes,	we	are	just	going
to	pull	out	a	handful	of	items,	including	the	season,	date,	time,	hour,	coordinates,
temperature,	bearing,	slope,	and	elevation.	The	following	code	block	should	be
placed	inside	the	WITH	statement.	In	this	block	of	code,	we	open	the	file	in	read	mode,
create	a	CSV	reader	object,	skip	the	header	row,	and	then	loop	through	all	the	records
in	the	file	and	pull	out	the	individual	items	that	we	need:

with	arcpy.da.InsertCursor(outFeatureClass,("SHAPE@XY",	"season",	

"date",	"time",	"hour",	"temp",	"bearing",	"slope",	"elevation"))	as	

cursor:

																#loop	through	the	csv	file	and	import	the	data	into	the	

feature	class

																cntr	=	1

																with	open(inputCSV,	'r')	as	f:

																				reader	=	csv.reader(f)

																				#skip	the	header

																				next(reader,	None)

																				#loop	through	each	of	the	rows	and	write	to	the	

feature	class

																				for	row	in	reader:

																								season	=	row[4]		##	season

																								dt	=	row[6]		##	date

																								tm	=	row[7]		##	time

																								hr	=	row[8]		##	hour

																								lng	=	row[10]

																								lat	=	row[11]

																								temperature	=	row[13]		##	temperature

																								bearing	=	row[17]		##	bearing

																								slope	=	row[23]		##	slope

																								elevation	=	row[28]		##	elevation

8.	 In	the	final	code	block	for	this	tool,	we’ll	add	statements	that	convert	the	coordinates
to	a	float	datatype,	encapsulate	all	the	values	within	a	Python	list	object,	insert	each
row	into	the	feature	class,	and	update	the	progress	dialog:

if	lng	!=	'NA':

				lng	=	float(row[10])

				lat	=	float(row[11])

				row_value	=	

[(lng,lat),season,dt,tm,hr,temperature,bearing,slope,elevation]

				cursor.insertRow(row_value)			#	Inserts	the	row	into	the	feature	

class

				arcpy.AddMessage("Record	number	"	+	str(cntr)	+	"	written	to	

feature	class")	#	Adds	message	to	the	progress	dialog

				cntr	=	cntr	+	1

9.	 Check	your	code	against	the	solution	file	found	at
C:\ArcGIS_Blueprint_Python\solutions\ch2\ImportCollarData.py	to	make	sure
you	have	coded	everything	correctly.

10.	 Double-click	on	the	Import	Collar	Data	tool	to	execute	your	work.	Fill	in	the
parameters,	as	shown	in	the	following	screenshot.	The	data	we’re	importing	from	the
csv	file	is	from	a	single	elk,	which	we’ll	call	Betsy:

11.	 Click	on	OK	to	execute	the	tool,	and	if	everything	has	gone	correctly,	your	progress
dialog	should	start	getting	updated	as	the	data	is	read	from	the	file	and	written	to	the
feature	class.

12.	 Close	the	progress	dialog	and	open	ArcMap	with	an	empty	map	document	file.
13.	 In	ArcMap,	click	on	the	Add	Data	from	the	drop-down	list	and	select	Add

Basemap.	Select	the	Topographic	basemap	and	click	on	the	Add	button.
14.	 Click	on	the	Add	Data	button	again,	and	navigate	to	the	Betsy	feature	class	that	you

created	using	the	tool	that	you	just	created.	Add	this	feature	class	to	ArcMap.	The
data	should	be	displayed	in	a	cluster	north-west	of	San	Francisco	in	the	Point	Reyes
National	Seashore	area.	You	will	need	to	zoom	in	on	this	area.	You	should	see
something	similar	to	what	is	shown	in	the	following	screenshot:

15.	 Save	the	map	document	as	C:\ArcGIS_Blueprint_Python\ch2\ElkMigration.mxd.
16.	 In	the	next	section,	we’ll	make	this	data	time-enabled	so	that	we	can	get	a	better

understanding	of	how	this	elk	moves	through	its	environment	over	time.	Right	now,
the	data	just	looks	like	one	big	cluster	but,	by	making	our	data	time-enabled,	we’ll	be
able	to	better	understand	the	data.

Making	the	data	frame	and	layer	time-
enabled
In	this	section,	you	will	learn	how	to	make	a	layer	and	data	frame	time-enabled.	You	will
then	add	a	tool	to	the	Migration	Patterns	toolbox	that	cycles	through	the	time	range	for
the	layer	and	exports	a	PDF	map	showing	the	movement	of	the	elk	over	time	and	space:

1.	 If	necessary,	open	C:\ArcGIS_Blueprint_Python\ch2\ElkMigration.mxd	in
ArcMap.

2.	 First,	we’ll	symbolize	the	features	so	that	we	display	them	differently	for	wet	and	dry
seasons.	Right-click	on	the	Betsy	feature	class	and	select	Properties.

3.	 Click	on	the	Symbology	tab	and	then	define	the	symbology,	as	shown	in	the
following	screenshot:

4.	 Now,	select	the	Time	tab,	as	shown	in	the	following	screenshot:

5.	 Enable	the	time	for	the	layer	by	clicking	on	the	Enable	time	for	this	layer	checkbox.
6.	 Define	Layer	Time	Extent	by	clicking	on	the	Calculate	button.
7.	 Under	Time	properties,	select	Each	feature	has	a	single	time	field	for	Layer	Time.

Select	the	date	field	for	Time	Field.	Define	a	Time	Step	Interval	of	1	Days,	as
shown	in	the	following	screenshot:

8.	 Define	Layer	Time	Extent	by	clicking	on	the	Calculate	button	circled	in	the
following	screenshot:

9.	 Select	Time	Step	Interval.	You	may	need	to	reset	it	to	1	Days.
10.	 Click	on	Apply	and	then	click	on	OK.
11.	 In	the	ArcMap	Tools	toolbar,	select	the	Time	Slider	button	to	display	the	Time

Slider	dialog.

12.	 Click	on	the	Options	button	to	display	the	Time	Slider	Options	dialog.
13.	 In	the	Time	Display	tab	of	the	Time	Slider	Options	dialog,	make	sure	that	Time

step	interval	is	set	to	1	Days.	If	not,	set	it	to	1	Days.	Do	this	for	the	Time	window
option	as	well,	as	shown	in	the	following	screenshot:

14.	 Click	on	OK.
15.	 Switch	to	the	Layout	view	in	ArcMap.
16.	 Add	a	Title	text	element	to	the	layout,	as	shown	in	the	following	screenshot:

17.	 Right-click	on	the	New	text	element	and	select	Properties;	then,	select	the	Size	and
Position	tab,	as	shown	in	the	following	screenshot.	Add	an	Element	Name	called
title.	Adding	Element	Name	is	important	because	we’ll	reference	it	in	the	script
that	we	write,	which	automatically	updates	the	title	to	include	the	current	date:

18.	 Save	your	map	document.	It’s	very	important	that	you	save	the	time-enabled	data
with	your	map	document.	The	code	you	write	next	won’t	work	unless	you	do	this.

Coding	the	VisualizeMigration	tool
In	this	final	section,	you’ll	create	a	new	tool	in	the	Migration	Patterns	toolbox	that	can
be	used	to	visualize	elk	migration	patterns	in	one-week	increments	that	have	beginning
and	end	dates,	as	specified	through	the	tool.	The	tool	will	also	export	maps	in	the	PDF
format	for	each	week:

1.	 Import	the	arcpy.mapping	and	datetime	modules	that	will	be	used	in	this	class:

import	arcpy

import	arcpy.mapping	as	mapping

import	csv

import	os

import	datetime

2.	 Create	a	new	tool	called	VisualizeMigration	by	copying	and	pasting	the	existing
ImportCollarData	code	and	then	renaming	the	class	to	VisualizeMigration.

3.	 In	the	VisualizeMIgration	class,	set	the	label	and	description	properties,	as
shown	in	the	following	code	through	the	__init__	method:

class	VisualizeMigration(object):

				def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Visualize	Elk	Migration"

								self.description	=	"Visualize	Elk	Migration"

								self.canRunInBackground	=	False

4.	 You’ll	need	two	parameters	to	capture	the	start	and	end	dates.	Add	the	Parameter
objects,	as	shown	in	the	following	code	through	the	getParameterInfo()	method:

def	getParameterInfo(self):

								param0	=	arcpy.Parameter(displayName	=	"Begin	Date",	\

																								name="beginDate",	\

																								datatype="GPDate",	\

																								parameterType="Required",\

																								direction="Input")

								param1	=	arcpy.Parameter(displayName	=	"End	Date",	\

																								name="endDate",	\

																								datatype="GPDate",\

																								parameterType="Required",\

																								direction="Input")

								params	=	[param0,	param1]

								return	params

5.	 Capture	the	start	and	end	data	parameter	values	in	the	execute()	method:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								beginDate	=	parameters[0].valueAsText

								endDate	=	parameters[1].valueAsText

6.	 Split	the	day,	month,	and	year	values	for	the	start	and	end	dates:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								beginDate	=	parameters[0].valueAsText

								endDate	=	parameters[1].valueAsText

								#begin	date

								lstBeginDate	=	beginDate.split("/")

								beginMonth	=	int(lstBeginDate[0])

								beginDay	=	int(lstBeginDate[1])

								beginYear	=	int(lstBeginDate[2])

								#end	date

								lstEndDate	=	endDate.split("/")

								endMonth	=	int(lstEndDate[0])

								endDay	=	int(lstEndDate[1])

								endYear	=	int(lstEndDate[2])

7.	 Get	the	current	MapDocument,	DataFrame,	and	DataFrameTime	objects:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								beginDate	=	parameters[0].valueAsText

								endDate	=	parameters[1].valueAsText

								#begin	date

								lstBeginDate	=	beginDate.split("/")

								beginMonth	=	int(lstBeginDate[0])

								beginDay	=	int(lstBeginDate[1])

								beginYear	=	int(lstBeginDate[2])

								#end	date

								lstEndDate	=	endDate.split("/")

								endMonth	=	int(lstEndDate[0])

								endDay	=	int(lstEndDate[1])

								endYear	=	int(lstEndDate[2])

								mxd	=	mapping.MapDocument("current")

								df	=	mapping.ListDataFrames(mxd,	"Layers")[0]

								dft	=	df.time

8.	 Set	the	currentTime	and	endTime	properties	on	the	DataFrameTime	object.	This	will
set	the	boundaries	of	the	visualization	and	map	export:

mxd	=	mapping.MapDocument("current")

df	=	mapping.ListDataFrames(mxd,	"Layers")[0]

dft	=	df.time

dft.currentTime	=	datetime.datetime(beginYear,	beginMonth,	beginDay)

dft.endTime	=	datetime.datetime(endYear,	endMonth,	endDay)

9.	 In	the	last	section	of	this	method,	you	will	create	a	loop	that	accomplishes	several
tasks.	The	loop	will	operate	between	the	start	and	end	dates,	set	the	visible	features
to	the	current	date,	dynamically	set	the	title	to	the	current	date,	export	a	PDF	file,	and
reset	the	currentTime	property	to	the	next	day.	Add	the	WHILE	loop	just	below	the
last	line	of	code	you	wrote	in	the	last	step.	Note	that	you	will	have	to	hardcode	a	path
to	the	output	folder	where	the	PDF	files	will	be	created.	If	you	are	so	inclined,	you

may	want	to	convert	this	into	a	parameter	that	is	provided	as	input	from	the	user:

while	dft.currentTime	<=	dft.endTime:

				for	el	in	mapping.ListLayoutElements(mxd,	"TEXT_ELEMENT",	

"*title*"):

								el.text	=	"Elk	Migration	Pattern:	"	+	

str(dft.currentTime).split()[0]

				fileName	=	str(dft.currentTime).split("	")[0]	+	".pdf"

				

mapping.ExportToPDF(mxd,os.path.join(r"c:\ArcGIS_Blueprint_Python\ch2",	

fileName))

				arcpy.AddMessage("Exported	"	+	fileName)

				dft.currentTime	=	dft.currentTime	+	dft.timeStepInterval

10.	 Check	your	code	against	the	solution	file	found	at
C:\ArcGIS_Blueprint_Python\solutions\ch2\VisualizeMigration.py	to	make
sure	you	have	coded	everything	correctly.

11.	 Close	your	code	editor.
12.	 In	ArcMap,	open	C:\ArcGIS_Blueprint_Python\ch2\ElkMigration.mxd.	Open	the

Catalog	view	and	execute	the	Visualize	Elk	Migration	tool.	You	will	be	prompted
to	enter	the	start	and	end	dates,	as	shown	in	the	following	screenshot.	The	data	for
this	particular	elk	spans	the	period	between	January	17,	2005	to	November	4,	2005.
To	keep	it	simple,	enter	a	fairly	small	time	period,	such	as	1/18/2005	to	2/18/2005.

13.	 Click	on	OK	to	execute	the	tool.	If	everything	has	been	coded	correctly,	the	progress
dialog	should	be	updated	as	each	day	is	visualized	and	exported	to	a	PDF	file.

14.	 After	the	execution,	you	can	check	the	C:\ArcGIS_Blueprint_Python\ch2	folder	to

see	the	output	files.	Each	file	should	appear	similar	to	what	is	shown	in	the	following
screenshot:

Summary
In	this	chapter,	you	created	a	new	ArcGIS	Desktop	Python	toolbox	containing	two	tools
that	are	used	to	support	importing	and	visualizing	of	the	GPS	data	extracted	from	a	collar
attached	to	an	elk	in	northern	California.	The	first	tool	used	the	Python	csv	and	ArcPy	data
access	modules	to	read	the	GPS	data	from	a	csv	file	into	a	local	feature	class.	After	time
enabling	and	creating	the	map	document	and	the	feature	class	which	contains	the	GPS
data	that	creates	a	second	tool,	this	tool	controls	the	visualization	and	mapping	of	the	elk
migration	patterns	for	specific	dates.	This	second	tool	used	the	ArcPy	mapping	module	to
accomplish	these	tasks.

In	the	next	chapter,	you	will	learn	how	to	automate	the	production	of	map	books	using
Data-driven	pages	and	the	ArcPy	mapping	module.	In	addition,	you’ll	be	introduced	to	the
Python	add-ins	for	ArcGIS	Desktop.	Python	add-ins	allow	you	to	customize	the	ArcGIS
Desktop	interface.

Chapter	3.	Automating	the	Production	of
Map	Books	with	Data	Driven	Pages	and
ArcPy
Many	organizations	have	a	need	to	create	map	books	that	contain	a	series	of	individual
maps	that	cover	a	larger	geographic	area.	These	map	books	contain	a	series	of	maps	and
some	optional	additional	pages,	including	title	pages,	an	overview	map,	and	some	other
ancillary	information,	including	reports	and	tables.	For	example,	a	utility	company	might
want	to	generate	a	map	book	detailing	their	assets	across	a	service	area.	A	map	book	for
this	utility	company	could	include	a	series	of	maps,	each	of	a	large	scale,	along	with	a	title
page	and	an	overview	map.	These	resources	would	then	be	joined	in	a	single	document
that	could	be	printed	or	distributed	as	a	PDF	file.

In	this	chapter,	we	will	cover	the	following	topics:

The	preparation	of	a	map	document	to	handle	Data	Driven	Pages
Using	the	data-driven	pages	toolbar	in	ArcGIS	Desktop
Using	the	DataDrivenPages	object	in	the	ArcPy	mapping	module
Exporting	map	books	with	the	ArcPy	mapping	module
Creating	a	Python	add-in	for	ArcGIS	Desktop

Design
From	a	design	perspective,	ArcGIS	Desktop	isn’t	terribly	complex.	We’ll	spend	a	fair
amount	of	time	up	front,	preparing	the	map	document.	We’ll	add	a	floodplain	layer	to
the	map	document	file,	create	a	grid	index	layer,	enable	data-driven	pages,	and	prepare	the
layout	view.	After	the	map	document	has	been	prepared,	we’ll	create	a	new	Python	add-in
containing	a	button	that	will	trigger	the	creation	of	the	book	map.	The	Python	add-in	will
have	a	single	button,	which	will	contain	an	onClick()	method.	The	onClick()	method
will	append	the	individual	map	pages	to	a	single	output	PDF	file	using	the	PDFDocument
class	in	the	arcpy.mapping	module	as	shown	in	the	following	screenshot:

Let’s	get	started	and	build	the	application.

Setting	up	the	Data	Frame
The	ArcGIS	Desktop	provides	the	ability	to	efficiently	create	a	map	book	through	a
combination	of	the	Data	Driven	Pages	functionality	along	with	an	arcpy.mapping	script.
With	a	single	map	document	file,	you	can	use	the	Data	Driven	Pages	toolbar	to	create	a
series	of	maps	using	the	layout	view	along	with	your	operational	data	and	an	index	layer.

The	index	layer	contains	features	that	will	be	used	to	define	the	extent	of	each	map	in	the
series.	It	divides	the	map	into	sections,	with	each	section	representing	a	map	that	will	be
generated.	These	sections	are	sometimes	called	tiles	or	areas	of	interest,	and	they	are	often
rectangular	or	square	shapes.

If	you	need	to	include	additional	pages	in	the	map	book,	including	a	title	page,	an
overview	map,	and	other	ancillary	pages,	you’ll	need	to	combine	the	output	from	the	Data
Driven	Pages	toolbar	with	the	functionality	provided	by	the	arcpy.mapping	module.

In	the	following	steps,	we	will	learn	how	to	use	the	Data	Driven	Pages	toolbar,	to	set	up	a
map	document	file	for	the	Data	Driven	Pages	functionality.	We’ll	create	a	map	book	that
will	display	a	series	of	floodplain	maps	for	a	water-management	district:

1.	 Open	ArcMap	with	a	Blank	Map	document	and	add	the	World_Topo_Map	Basemap
layer	using	the	Add	Basemap	button.

2.	 Add	the	floodplain_100yr_capcog	geodatabase	and	reg_wtr_planning_dist.shp
layers	from	the	C:\ArcGIS_Blueprint_Python\data\Floodplain_100yr_capcog
folder.

3.	 Style	the	layers	as	shown	in	the	following	screenshot:

4.	 Save	the	map	document	as	C:\ArcGIS_Blueprint_Python\ch3\Floodplains.mxd.
5.	 We	need	to	define	the	map	and	page	layout	before	creating	the	series.	Let’s	create	the

reference	series	on	a	letter	page	size	(8.5	by	11	inches)	with	a	portrait	orientation.
The	map	scale	will	be	1:100,000.	In	addition,	the	map	will	have	a	title,	labels	for
adjacent	pages	in	the	series,	and	some	items	in	the	map	margin.

6.	 Double-click	on	the	Layers	data	frame	to	display	Data	Frame	Properties	and	select
the	General	tab,	as	shown	in	the	following	screenshot:

7.	 Rename	the	data	frame	to	Detail	Map.
8.	 Click	on	the	Size	and	Position	tab.	Enter	a	value	of	1	inch	for	X	position	and	2.5

inch.	for	Y	position.
9.	 For	size,	enter	6.25	inch	as	Width	and	7.5	inch	as	Height.
10.	 Click	on	the	Coordinate	System	tab.	The	current	coordinate	system	should	be

defined	as	NAD	1983	StatePlane	Texas	Central	FIPS	4203	(US	Feet).	If	not,
change	it	now.

11.	 Click	on	Apply	and	then	click	on	OK.

12.	 Switch	to	Layout	View	in	ArcMap	and	make	sure	that	you	have	left	enough	space
for	the	title	at	the	top	and	the	footer	area	has	ample	space	for	text,	scale	bar,	north
arrow,	and	other	marginalia,	as	shown	in	the	following	screenshot:

Creating	the	Grid	Index	Features
A	grid	index	feature	class	can	be	used	to	set	the	map	extent	for	each	map	in	the	series.	We
can	use	the	Grid	Index	Features	geoprocessing	tool	to	create	this	layer,	the	following
steps	will	guide	you	through,	how	to	create	Grid	Index	Features:

1.	 Using	the	selection	tools	in	ArcMap,	select	the	Lower	Colorado	region	from	the
Planning	Districts	layer,	as	shown	in	the	following	screenshot.	We’re	going	to	create
an	index	grid	for	this	region.	The	process	will	be	as,	though.	if	you	decide	to	select
other	regions	of	the	map:

2.	 Open	the	Grid	Index	Features	geoprocessing	tool	found	in	the	Data	Driven	Pages
toolset	in	the	Cartography	Tools	toolbox.

3.	 Define	the	parameters	seen	in	the	following	screenshot:

4.	 Click	on	OK	to	generate	the	grid	index	layer.	It	should	look	similar	to	what	is	shown
in	the	following	screenshot.	Note	that	I	have	altered	the	zymology	for	the	layer	to
only	include	an	outline	with	no	fill	for	the	index	polygons	and	have	zoomed	in	on	the
map:

5.	 We	have	some	additional	work	that	needs	to	be	done	on	the	grid	index	layer,
including	the	addition	of	a	field	for	the	labeling	of	adjacent	pages	and	a	field	to
determine	the	correct	UTM	zone	for	each	page.	To	do	this,	we’ll	use	the	Calculate
Adjacent	Fields	and	Calculate	UTM	Zone	geoprocessing	tools.

6.	 Open	the	Calculate	Adjacent	Fields	geoprocessing	tool	from	the	Data	Driven
Pages	toolset	in	the	Cartography	Tools	toolbox.	Define	the	parameters,	as	shown	in
the	following	screenshot,	where	Input	Features	is	the	grid	index	layer	that	you
created	in	the	preceding	steps	and	PageName	is	the	default	field	that	has	already
been	added	to	the	grid	index	layer:

7.	 Click	on	OK	to	execute	the	tool.	Open	the	attribute	table	for	the	GridIndexFeatures
feature	class	to	view	the	attribute	data	that	has	been	created	for	the	PageName_*
fields.	Attributes	that	define	the	adjacent	index	pages	have	been	populated.

8.	 Open	the	Add	Field	geoprocessing	tool	found	in	the	Fields	toolset	in	the	Data
Management	toolbox.

9.	 Add	the	field	parameters	shown	in	the	following	screenshot.	This	will	add	a	field	that
we’ll	then	populate	with	the	Calculate	UTM	Zone	geoprocessing	tool:

10.	 Open	the	Calculate	UTM	Zone	tool	found	in	the	Data	Driven	Pages	toolset	in	the
Cartography	Tools	toolbox.

11.	 Define	the	parameters,	as	shown	in	the	following	screenshot:

12.	 Click	on	OK	to	execute	the	tool.	If	you’d	like,	open	the	attribute	table	and	view	the
contents	of	the	UTM_Zone	field.

Enabling	Data	Driven	Pages
In	this	section,	you’ll	enable	the	Data	Driven	Pages	functionality	for	the	map	document.
The	following	steps	will	guide	you	through,	how	to	enable	Data	Driven	Pages:

1.	 In	ArcMap,	click	on	the	Scale	Control	on	the	Standard	toolbar	and	type	1:100,000
as	the	map	scale.

2.	 Open	the	Data	Driven	Pages	toolbar	by	navigating	to	Customize	|	Toolbars	|	Data
Driven	Pages	from	the	main	ArcMap	menu.

3.	 Click	on	the	Data	Driven	Pages	Setup	button.
4.	 Enable	Data	Driven	Pages	by	clicking	on	the	checkbox	shown	in	the	following

screenshot.	Also,	select	GridIndexFeatures	as	index	Layer	and	PageName	as
Name	Field.	Make	sure	all	the	other	values	are	set,	as	shown	in	the	following
screenshot:

5.	 Click	on	the	Extent	tab,	choose	Center	and	Maintain	Current	Scale,	and	then	click
on	OK,	as	shown	in	the	following	screenshot:

6.	 Save	the	map	document	file.

Creating	the	Locator	Map
The	Locator	Map	provide	an	overview	of	the	spatial	location	of	the	current	map	within
the	context	of	a	large	geographic	area.	They	provide	an	overview	of	the	location	of	the
current	map	in	the	series.	In	this	section,	you’ll	create	a	Locator	Map	for	the	layout	view.
We’ll	use	a	feature	class	copied	from	the	grid	index	layer	and	edited	to	create	a	mask	layer
and	a	current	page	layer.	The	mask	layer	is	used	to	gray	out	the	features	that	are	not	in	the
current	map	while	the	current	page	layer	highlights	the	current	map:

1.	 In	ArcMap,	create	a	new	data	frame	and	name	it	Locator	Map.
2.	 Copy	the	Basemap,	Floodplains,	and	GridIndexFeatures	layers	from	the	Detail

Map	and	paste	them	into	the	Locator	Map.	Rename	the	GridIndexFeatures	layer	to
Page	Labels.

3.	 Right-click	on	the	Page	Labels	feature	class	and	navigate	to	Data	|	Export	Data.
Save	it	to	the	same	location	as	the	grid	index	features	and	name	it	LocatorMask.	Add
the	layer	to	the	map.	Your	ArcMap	table	of	contents	should	now	appear,	as	shown	in
the	following	screenshot:

4.	 Right-click	on	the	Page	Labels	feature	class	and	select	Properties.
5.	 Click	on	the	Labels	tab	and	choose	PageName	for	the	Label	field	and	check	the	box

next	to	Label	features	in	this	layer.	Click	on	OK.

6.	 In	the	Locator	Map	data	frame,	click	on	the	symbol	for	the	LocatorMask	feature
class.

7.	 Using	Symbol	Selector,	change	Fill	Color	to	black,	Outline	Width	to	1,	and
Outline	Color	to	white.

8.	 In	the	Properties	dialog	box	for	the	LocatorMask	feature	class,	click	on	the	Display
tab	and	type	60	for	the	transparency	value.	Click	on	OK.

9.	 Next,	we’ll	create	a	layer	that	will	serve	as	the	highlight	layer.	Right-click	on	the
LocatorMask	feature	class	and	select	Copy.

10.	 Right-click	on	the	Locator	Map	data	frame	and	select	Paste	Layer.
11.	 Rename	the	layer	to	Locator_Mask	Current	Page.
12.	 Click	on	the	symbol	for	Locator_Mask	Current	Page	in	the	Locator	Map	data

frame.	From	Symbol	Selector,	choose	Hollow,	set	Outline	Width	to	1,	and	click	on
OK.

13.	 Now,	we’ll	set	the	page	definition	queries	for	the	LocatorMask	and	Locator_Mask
Current	Page	layers	so	that	they	are	displayed	correctly.

14.	 Double-click	on	the	LocatorMask	layer	and	then	click	on	the	Definition	Query	tab.
15.	 Click	on	the	Page	Definition	Query	button	and	set	the	properties	shown	in	the

following	screenshot.	Click	on	OK	when	you’re	done:

16.	 Click	on	OK	to	exit	the	Layer	Properties	dialog	box.
17.	 Your	view	should	now	appear	as	shown	in	the	following	screenshot.	Any	features

that	do	not	match	the	current	page	are	drawn	so	that	the	area	outside	the	current	page
is	displayed	as	a	gray	mask:

18.	 Open	the	Properties	dialog	box	for	the	Locator_Mask	Current	Page	layer	and
select	the	Definition	Query	tab	and	then	select	the	Page	Definition	Query	button.

19.	 Set	the	properties	shown	in	the	following	screenshot.	Click	on	OK	when	you’re	done
and	then	click	on	OK	again	to	dismiss	the	Layer	Properties	dialog:

20.	 Switch	to	Layout	View	and	resize	the	Locator	Map	data	frame	on	the	layout	so	that
it	appears	just	below	the	main	data	frame,	as	shown	in	the	following	screenshot:

Adding	dynamic	text	to	the	layout
The	last	thing	that	we	need	to	do	before	writing	our	script	to	automate	the	process	of
generating	the	map	book	is	add	dynamic	text	to	the	layout.	Dynamic	text	includes	a	title,	a
page	number,	a	label	for	an	adjacent	page	number,	and	other	items	added	to	the	margins	of
the	map.	Dynamic	text	items	are	necessary	when	we	have	text	items	that	will	change	for
each	map	that	is	created.	We’ll	also	add	a	north	arrow	and	scale	bar:

1.	 First,	we’ll	add	the	north	arrow	and	scale	bar.	In	Layout	View	inside	ArcMap,	add	a
north	arrow	and	scale	bars,	as	shown	in	the	following	screenshot.	You	don’t	have	to
select	the	same	style	as	mine:

2.	 Now,	we’ll	add	the	page	number.	If	necessary,	open	the	Data	Driven	Pages	toolbar
and	navigate	to	Page	Text	|	Data	Driven	Page	Name	from	the	toolbar.

3.	 The	page	number	will	be	placed	directly	in	the	center	of	the	main	data	frame	for	the

map.	Drag	it	just	above	the	first	scale	bar,	as	shown	in	the	following	screenshot.	You
may	want	to	make	the	text	larger	than	the	default	font	size	of	10.	I’ve	changed	mine
to	16	by	right-clicking	on	the	Text,	and	selecting	Properties,	and	then	clicking	on	the
Change	Symbol	button.

4.	 Next,	we’ll	add	the	current	page	number.	In	the	Data	Driven	Pages	toolbar,	navigate
to	Page	Text	|	Data	Driven	Page	Count.	Like	earlier,	it	will	add	a	new	text	element
to	the	center	of	the	main	data	frame.	Drag	this	text	item	to	a	new	location	somewhere
in	the	margin.

5.	 You	can	add	additional	margin	items,	such	as	the	date	the	map	was	saved,	the	author,
the	username,	the	coordinate	system,	and	more	by	navigating	to	Insert	|	Dynamic
Text	from	the	main	ArcMap	menu.	I’ve	added	the	reference	scale	and	date	saved
dynamic	text	items	to	my	layout.

6.	 You’ll	also	want	to	add	a	title	to	the	map	by	navigating	to	Insert	|	Title	in	ArcMap.

Call	it	Floodplain	Map	for	Lower	Colorado	River	Planning	District.
7.	 Your	map	should	look	similar	to	what	is	shown	in	the	following	screenshot,	though

you	may	choose	to	add	or	change	some	of	the	items,	as	you	see	fit:

8.	 Save	your	map	document	file.

Exporting	the	map	series	with	ArcPy
mapping
In	this	final	section,	we’ll	use	the	arcpy.mapping	module	along	with	a	Python	add-in	to
automate	the	process	of	exporting	the	map	series	to	PDF	files.	Python	add-ins	are	an	easy
way	to	add	user	interface	items	to	ArcGIS	Desktop.	The	Python	Add-In	Wizard	is	a
utility	that	greatly	simplifies	the	creation	of	the	user	interface	items.	In	this	section	of	the
chapter,	you’ll	use	the	Python	Add-In	Wizard	to	create	a	toolbar	containing	a	button	that
will	trigger	the	export	of	your	map	book	to	a	PDF	file.	The	following	steps	will	guide	you
through,	how	to	export	map	series	with	ArcPy	mapping:

1.	 If	necessary,	download	and	install	the	Python	Add-In	Wizard	from
http://www.arcgis.com/home/item.html?id=5f3aefe77f6b4f61ad3e4c62f30bff3b#!.

2.	 In	the	folder	where	you	unzipped	the	Python	Add-In	Wizard,	find	and	double-click
on	the	addin_assistant.exe	file	to	start	the	wizard.

3.	 Choose	or	create	a	directory	to	be	used	as	the	add-in	project	root.	Remember	the
name	of	the	folder	because	you’ll	need	it	later.	I’m	going	to	use	C:\MapBook.

4.	 The	Python	Add-In	Wizard	has	two	tabs:	Project	Settings	and	Add-In	Contents.
In	the	Project	Settings	tab,	define	the	parameters,	as	shown	in	the	following
screenshot.	Your	working	folder	may	be	different	than	mine	depending	on	your
action	in	the	last	step,	and	you’ll	obviously	want	to	change	the	author	and	company:

http://www.arcgis.com/home/item.html?id=5f3aefe77f6b4f61ad3e4c62f30bff3b#!

5.	 Select	the	Add-In	Contents	tab.
6.	 Create	a	new	toolbar	by	right-clicking	on	Toolbars	and	selecting	New	Toolbar.

Define	the	caption	as	Create	Map	Book	and	click	on	Save.	The	toolbar	will	serve	as
a	container	for	the	button	that	triggers	the	creation	of	the	map	book.

7.	 Right-click	on	the	new	toolbar	that	you	just	created,	and	click	on	New	button.	Fill	in
the	parameters,	as	shown	in	the	following	screenshot:

8.	 Click	on	Save.
9.	 Click	on	the	Open	Folder	button	to	display	the	folders	and	files	that	the	Python

Add-In	Wizard	has	created.	You	should	see	something	very	similar	to	what	is	shown
in	the	following	screenshot:

10.	 Now,	it’s	time	to	add	the	Python	code	that	will	be	executed	when	the	button	is	clicked
on.	Go	to	the	Install	folder,	as	shown	in	the	preceding	screenshot,	and	you	should

see	a	single	Python	script	called	MapBook_addin.py.	Open	this	file	in	your	Python
development	environment.

11.	 Find	the	onClick(self)	method	shown	in	the	following	code.	This	method	is
executed	when	the	button	is	clicked:

import	arcpy

import	pythonaddins

class	CreateMapBook(object):

				"""Implementation	for	MapBook_addin.button	(Button)"""

				def	__init__(self):

								self.enabled	=	True

								self.checked	=	False

				def	onClick(self):

								pass

12.	 Remove	the	pass	statement	from	the	onClick()	method.
13.	 Add	an	import	statement	for	the	arcpy.mapping	and	os	modules.	In	this	line	of	code,

we’re	importing	the	mapping	module	and	assigning	it	to	a	variable	called	MAP.	It	will
make	referencing	the	functions	in	the	mapping	module	easier	as	we	proceed:

import	arcpy

import	pythonaddins

import	arcpy.mapping	as	MAP

import	os

14.	 The	rest	of	our	code	will	go	inside	the	onClick()	method.	Use	the
pythonaddins.SaveDialog()	function	to	display	a	dialog	box	that	will	allow	the	end
user	to	save	the	map	book	as	a	PDF	file.	Also,	create	an	output	directory	variable:

def	onClick(self):

								

										#	Create	an	output	directory	variable

										finalpdf_filename	=	pythonaddins.SaveDialog("Save	Map	Book",	

"MapBook.pdf",	r"C:\ArcGIS_Blueprint_Python\ch3")

										outDir	=	os.path.split(finalpdf_filename)[0]

15.	 If	you	are	using	ArcGIS	Desktop	10.3,	create	a	new	pythonaddins.ProgressDialog
object	using	a	WITH	statement.	This	will	display	a	progress	dialog	while	the	map	book
is	being	created.	Set	the	title,	description,	and	animation	properties.	If	you	are	using
ArcGIS	Desktop	10.1	or	10.2,	please	skip	this	step	and	proceed	to	step	16:

def	onClick(self):

								

										#	Create	an	output	directory	variable

										finalpdf_filename	=	pythonaddins.SaveDialog("Save	Map	Book",	

"MapBook.pdf",	r"C:\ArcGIS_Blueprint_Python\ch3")

										outDir	=	os.path.split(finalpdf_filename)[0]

												

										with	pythonaddins.ProgressDialog	as	dialog:

														dialog.title	=	"Progress	Dialog"

														dialog.description	=	"Creating	a	map	book….this	will	take	

awhile!"

														dialog.animation	=	"File"

16.	 Create	a	new,	empty	PDF	document	in	the	specified	output	directory	with
pythonaddins.ProgressDialog	as	dialog:

dialog.title	=	"Progress	Dialog"

dialog.description	=	"Creating	a	map	book….this	will	take	awhile!"

dialog.animation	=	"File"

				

#	Create	a	new	pdf	document	in	the	output	directory

if	os.path.exists(finalpdf_filename):

				os.remove(finalpdf_filename)

finalPdf	=	MAP.PDFDocumentCreate(finalpdf_filename)

17.	 To	simplify	the	process,	a	map	title	page	(TitlePage.pdf),	and	overview	map	page
(IndexMap.pdf),	have	also	been	created	for	you.	These	files	are	located	in	your
C:\ArcGIS_Blueprint_Python\ch3	folder.	Add	the	title	and	index	pages:

#	Create	a	new,	empty	pdf	document	in	the	specified	output	directory

if	os.path.exists(finalpdf_filename):

				os.remove(finalpdf_filename)

finalPdf	=	MAP.PDFDocumentCreate(finalpdf_filename)

#	Add	the	title	page	to	the	pdf

finalPdf.appendPages(r"C:\ArcGIS_Blueprint_Python\ch3\TitlePage.pdf")

#	Add	the	index	map	to	the	

pdffinalPdf.appendPages(r"C:\ArcGIS_Blueprint_Python\ch3\IndexMap.pdf")

18.	 Export	the	Data	Driven	Pages	to	a	temporary	PDF	file,	and	then	add	it	to	the	final
PDF:

#	Add	the	title	page	to	the	pdf

finalPdf.appendPages(r"C:\ArcGIS_Blueprint_Python\ch3\TitlePage.pdf")

#	Add	the	index	map	to	the	pdf

finalPdf.appendPages(r"C:\ArcGIS_Blueprint_Python\ch3\IndexMap.pdf")

																

#	Export	the	Data	Driven	Pages	to	a	temporary	pdf	and	then	add	it	#to	

the	final	pdf.

mxd	=	MAP.MapDocument("CURRENT")

ddp	=	mxd.dataDrivenPages

temp_filename	=	outDir	+	r"\tempDDP.pdf"

if	os.path.exists(temp_filename):

			os.remove(temp_filename)

ddp.exportToPDF(temp_filename,	"ALL")

finalPdf.appendPages(temp_filename)

19.	 Update	the	properties	of	the	final	PDF	and	save	it:

if	os.path.exists(temp_filename):

		os.remove(temp_filename)

ddp.exportToPDF(temp_filename,	"ALL")

finalPdf.appendPages(temp_filename)

#	Update	the	properties	of	the	final	pdf.

finalPdf.updateDocProperties(pdf_open_view="USE_THUMBS",	

pdf_layout="SINGLE_PAGE")

				

#	Save	your	result

finalPdf.saveAndClose()

20.	 Remove	the	temporary	Data	Driven	Pages	file:

#	Update	the	properties	of	the	final	pdf.

finalPdf.updateDocProperties(pdf_open_view="USE_THUMBS",	

pdf_layout="SINGLE_PAGE")

				

#	Save	your	result

finalPdf.saveAndClose()

				

#	remove	the	temporary	data	driven	pages	file

if	os.path.exists(temp_filename):

				os.remove(temp_filename)

21.	 Check	your	script	against	the	solution	file	found	in
C:\ArcGIS_Blueprint_Python\ch3\scripts\CreateMapBook.py	for	accuracy.

22.	 Save	your	script	and	close	the	file.
23.	 Now,	it’s	time	to	install	and	test	your	Python	add-in.	Inside	the	main	folder	where

you	created	the	add-in	(C:\MapBook,	in	my	case),	you	will	find	a	Python	script	called
makeaddin.py.	Double-click	on	this	file	to	open.

24.	 A	new	.esriaddin	file	called	MapBook.esriaddin	will	be	created	in	the	same	folder,
as	shown	in	the	following	screenshot:

25.	 To	install	your	new	add-in	using	ArcGIS	Desktop,	double-click	on	the
MapBook.esriaddin	file	to	launch	the	Esri	ArcGIS	Add-In	Installation	Utility
window	seen	in	the	following	screenshot:

26.	 Click	on	Install	Add-In.	If	everything	is	successful,	you	should	see	a	success
message.

27.	 Open	ArcMap	with	the	Floodplains.mxd	file	that	you	created	earlier	in	the	chapter,
to	test	the	add-in.	Navigate	to	Customize	|	Create	Map	Book	from	the	ArcMap
menu.	This	will	display	the	Create	Map	Book	add-in,	as	shown	in	the	following
screenshot:

28.	 Click	on	the	Create	Map	Book	button	to	execute	the	code.

Summary
ArcGIS	Desktop	provides	the	ability	to	efficiently	create	a	map	book	through	a
combination	of	Data	Driven	Pages	along	with	an	arcpy.mapping	script.	With	a	single
map	document	file,	you	can	use	the	Data	Driven	Pages	toolbar	to	create	a	basic	series	of
maps	using	the	layout	view	along	with	your	operational	data	and	an	index	layer.	The	index
layer	contains	features	that	will	be	used	to	define	the	extent	of	each	map	in	the	series.
However,	if	you	need	to	include	additional	pages	in	the	map	book,	including	a	title	page,
an	overview	map,	and	other	ancillary	pages,	you’ll	need	to	combine	the	output	from	the
Data	Driven	Pages	toolbar	with	the	functionality	provided	by	the	arcpy.mapping
module.	With	the	arcpy.mapping	module,	you	can	automate	the	export	of	the	map	series
and	append	the	ancillary	files	into	a	single	map	book	document.	While	it	is	certainly
programmatically	to	generate	the	entire	map	book	using	only	Python	and	the
arcpy.mapping	module,	it	is	more	efficient	to	use	a	combination	of	programming	and	the
Data	Driven	Pages	toolbar.

Chapter	4.	Analyzing	Crime	Patterns	with
ArcGIS	Desktop,	ArcPy,	and	Plotly(Part
1)
This	is	the	first	of	two	chapters	that	will	cover	the	creation	of	crime	analysis	tools,	using	a
combination	of	ArcGIS	Desktop	with	arcpy,	arcpy.mapping,	and	arcpy.da	along	with
the	Python	requests	and	plotly	modules.	Data	for	the	application	will	be	pulled	from	the
Seattle	Open	Data	initiative,	which	contains	crime	data,	among	many	other	datasets.	The
Socrata	API	will	be	used	to	request	the	crime	data	that	will	be	used	in	our	analysis	tools.

Three	tools	will	be	built	in	this	chapter	and	added	to	a	custom	ArcGIS	Python	Toolbox.
The	initial	focus	of	this	chapter	will	be	the	construction	of	a	tool	that	connects	to	the	open
database	using	the	Python	requests	module	with	the	Socrata	API	to	request	and	receive
data.	The	data	will	be	written	to	a	local	geodatabase	feature	class.	A	second	tool	will	take
the	imported	records	and	aggregate	to	boundary	datasets,	such	as	census	block	groups,
police	precincts,	and	neighborhood	boundaries.	Finally,	to	automate	the	process	of
creating,	printing,	and	exporting	maps,	we’ll	create	a	tool	that	makes	this	process	easier.

In	this	chapter,	we	will	cover	the	following	topics:

Creating	ArcGIS	Desktop	Python	toolboxes
Using	the	Python	requests	module
Accessing	an	open	source	database	using	the	Socrata	API
Inserting	data	in	a	feature	class	using	the	ArcPy	data	access	module
Automating	the	process	of	creating,	exporting,	and	printing	maps	using	ArcPy
mapping
Using	Spatial	Statistics	tools

Design
Let’s	spend	a	little	time	going	over	the	design	of	what	we’re	going	to	build	in	this	chapter.
This	application	will	be	contained	within	an	ArcGIS	Python	Toolbox	called
CrimeAnalysis.pyt.	Inside	the	toolbox,	three	tools	will	be	created,	including
ImportRecords,	AggregateCrimes,	and	CreateMap.	The	ImportRecords	tool	will	use	the
Python	requests	module	to	request	crime	data	from	the	Seattle	Police	Department	open
database	using	the	Socrata	API.	Crime	data	will	be	returned	to	the	tool	and	then	written
to	a	local	SeattleCrimes	geodatabase	using	the	arcpy.da	module.	The	AggregateCrimes
tool	will	use	these	imported	point	feature	classes	and	aggregate	them	to	polygon	boundary
layers,	including	census	block	groups,	police	precincts,	and	neighborhood	boundaries.
Finally,	the	CreateMap	tool	will	allow	the	end	user	to	select	one	of	the	boundary	files	that
include	aggregated	crime	data	and	automate	the	process	of	creating,	exporting,	and
printing	maps,	as	shown	in	the	following	screenshot:

Let’s	get	started	and	build	the	application.

Creating	the	Import	Records	tool
In	this	first	section,	we’ll	build	a	Python	Toolbox	for	the	crime	analysis	tools	that	we’ll
create	over	the	course	of	the	next	two	chapters,	and	we’ll	create	the	Import	Records	tool.
By	now,	you	should	be	comfortable	with	the	basic	process	of	creating	an	ArcGIS	Python
Toolbox,	so	I	will	provide	only	a	minimum	set	of	instructions	to	create	the	toolbox.	If
needed,	refer	to	the	first	chapter	for	the	specifics	of	how	to	create	an	ArcGIS	Python
Toolbox.

The	Import	Records	tool,	which	will	be	created	in	this	section,	will	dynamically	Import
Records	from	an	online,	open	records	dataset	provided	by	the	city	of	Seattle,	WA.	This
dataset	will	be	accessed	through	the	Socrata	Open	Data	API	using	the	Python	requests
module.	For	this	tool,	we’ll	include	several	parameters,	including	start	and	end	dates	to
filter	the	records,	a	filter	for	the	crime	type,	an	output	feature	class	where	the	records	will
be	written,	and	an	optional	parameter	to	filter	by	police	district.	The	following	steps	will
guide	you	through	the	creation	of	the	Import	Records	tool:

1.	 We	will	be	using	open	records	that	are	provided	by	the	city	of	Seattle,	WA,	and	are
accessible	through	their	website,	https://data.seattle.gov,	using	the	Socrata	Open
Data	API	shown	in	the	following	screenshot.	Open	a	browser	and	navigate	to	the	city
of	Seattle,	WA:

https://data.seattle.gov

2.	 Before	you	can	access	the	Socrata	Open	Data	API,	you	will	need	to	create	a
developer	account.	Click	on	the	Sign	Up	link	near	the	top-right	of	the	webpage	and
fill	out	the	details,	as	shown	in	the	following	screenshot:

3.	 The	Seattle	Police	Department	Police	Report	Incident	API	will	be	used	to
access	the	data,	and	it	can	be	found	at
http://dev.socrata.com/foundry/#/data.seattle.gov/y7pv-r3kh.

4.	 An	App	Token	will	be	needed	when	you	submit	requests	through	the	API.	A	button
with	the	Sign	up	for	App	Token!	text	is	located	about	halfway	down	the	page.	This
button	will	open	the	page	shown	in	the	following	screenshot.	You’ll	need	to	log	in
with	the	Socrata	ID	you	created	in	the	preceding	few	steps:

http://dev.socrata.com/foundry/#/data.seattle.gov/y7pv-r3kh

5.	 Click	on	Edit	Account	Settings,	as	shown	in	the	following	screenshot:

6.	 Navigate	to	App	Tokens	|	Create	New	Application,	as	shown	in	the	following
screenshot,	and	enter	a	name	and	description	for	the	application.	You	will	need	to
enter	a	unique	application	name	that	has	not	already	been	created	by	someone	else.

For	example,	you	might	want	to	call	the	application	Crime	Analysis	<your	name>:

7.	 Click	on	the	Create	button	to	create	the	application.
8.	 Click	on	App	Tokens	to	see	the	application	token,	as	shown	in	the	following

screenshot.	Note	that	your	App	Token	will	not	be	the	same	as	mine.	We’ll	use	this
App	Token	value	in	a	later	step,	when	we	construct	the	query	that	imports	records.
Your	App	Token	might	look	like	the	following	screenshot:

9.	 Open	ArcMap	and	display	the	ArcCatalog	pane.	In	the	Toolboxes	folder	under	My
Toolboxes,	create	a	new	Python	Toolbox	and	call	it	CrimeAnalysis.pyt,	as	shown
in	the	following	screenshot:

10.	 Open	the	code	for	the	toolbox	in	your	Python	development	environment.
11.	 Rename	the	Tool	class	ImportRecords.	This	tool	will	be	used	to	import	Seattle

Police	Department	records	using	a	REST	API.	Also,	update	the	self.label	and
self.description	properties,	as	shown	in	the	following	code:

class	ImportRecords(object):

				def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Import	Records"

								self.description	=	"Imports	police	records	from	Seattle	PD	REST	

API"

								self.canRunInBackground	=	False

12.	 Add	import	statements	for	the	requests,	json,	datetime,	and	os	modules,	as	shown
in	the	following	code:

import	arcpy

import	requests

import	json

import	datetime

import	os

13.	 Now	it’s	time	to	add	input	and	output	parameters	for	the	tool.	Add	the	following
lines	of	code	to	the	getParameterInfo()	method.	The	first	parameter,	outFC,	defines
the	output	feature	class	that	will	be	created.	The	second	parameter,	schemaFC,	defines
an	input	feature	class	that	can	be	used	to	extract	schema	information,	as	shown	in	the
following	code:

def	getParameterInfo(self):

								"""Define	parameter	definitions"""

								outFC	=	arcpy.Parameter(displayName	=	"Output	Feature	Class",	

												name="outFC",

												datatype="DEFeatureClass",

												parameterType="Required",

												direction="Output")

								schemaFC	=	arcpy.Parameter(displayName	=	"Schema	Feature	

Class",

												name="schemaFC",

												datatype="DEFeatureClass",

												parameterType="Required",

												direction="Input")

14.	 Two	input	parameters	need	to	be	created	in	order	to	define	the	start	and	end	dates
for	the	import	parameter.	Together,	these	two	parameters	will	define	a	data	range	that
can	be	used	as	a	filter	for	the	returned	records.	Add	the	following	lines	of	code	just
below	the	parameters	you	created	in	the	last	step.	The	first	parameter	is	beginDate,
which	captures	the	start	date	to	be	used	for	the	filter;	a	default	value	01/01/2014	is
set.	The	second	parameter	is	endDate,	which	captures	the	end	date	for	the	filter,	and
the	initial	value	for	this	parameter	is	set	to	the	current	date:

								##	begin	date	for	import

								beginDate	=	arcpy.Parameter(

												displayName="Begin	Crime	Date",

												name="beginDate",

												datatype="GPDate",

												parameterType="Required",

												direction="Input")

								beginDate.value	=	"01/01/2014"

								##	end	date	for	import

								endDate	=	arcpy.Parameter(

												displayName="End	Crime	Date",

												name="endDate",

												datatype="GPDate",

												parameterType="Required",

												direction="Input")

								endDate.value	=	str(datetime.date.today())

15.	 The	next	parameter	will	be	used	to	filter	by	crime	type.	To	keep	things	simple,	we’ll
limit	the	list	of	crime	types	to	a	small	subset	of	the	possibilities.	This	will	be	an	input
parameter	presented	as	a	combobox	of	values	that	can	be	selected.	Add	the	following
code	just	below	the	parameters	you	have	already	created.	The	final	line	of	code	for
this	parameter	defines	the	list	of	possible	values	for	the	parameter.	These	values	will
populate	the	combobox:

								##	crime	type

								crimeType	=	arcpy.Parameter(

												displayName="Crime	Type",

												name="crimeType",

												datatype="String",

												multiValue="False",

												parameterType="Required",

												direction="Input")

								crimeType.filter.list	=	["ASSAULT",	"BURGLARY",	"DUI",	

"PROSTITUTION",	"VEHICLE	THEFT"]

16.	 The	final	parameter	will	be	an	optional	parameter	that	will	allow	the	end	user	to	filter
by	police	district.	It	will	be	similar	to	the	parameter	created	in	the	last	step	in	that	it
will	be	a	combobox	of	possible	values.	However,	this	will	be	an	optional	parameter.
Add	the	following	code	just	below	the	parameter	you	created	in	the	previous	step:

district	=	arcpy.Parameter(

				displayName="Filter	by	District",

				name="district",

				datatype="String",

				parameterType="Optional",

				direction="Input",

				multiValue	=	False)

district.filter.list	=	

["B","C","D","E","F","G","J","K","L","M","N","O","Q","R","S","U","W"]

17.	 Finally,	add	each	of	the	parameters	to	the	params	list:

params	=	[outFC,	schemaFC,	beginDate,	endDate,	crimeType,	district]

return	params

18.	 Add	the	tool	to	the	self.tools[]	list	inside	the	Toolbox	class:

self.tools[ImportRecords]

19.	 Find	the	execute()	method	inside	the	ImportRecords()	class.	This	method	will
contain	the	functionality	of	the	tool.

20.	 Add	the	following	lines	of	code	to	capture	the	input	variables	submitted	to	the	tool:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								outFC	=	parameters[0].valueAsText

								schemaFC	=	parameters[1].valueAsText

								beginDate	=	parameters[2].valueAsText

								endDate	=	parameters[3].valueAsText

								crimeType	=	parameters[4].valueAsText

								policeDistrict	=	parameters[5].valueAsText

21.	 Add	the	try/except	exception-handling	structures	just	below	the	code	you	just	added.
The	rest	of	the	code	in	this	section	should	go	inside	the	try	block:

try:

except	Exception	as	e:

				arcpy.AddMessage(e.message)

22.	 Create	a	new	feature	class	that	will	be	the	container	for	the	crime	records.	The	end
user	in	one	of	the	input	parameters	defines	the	feature	class	location	and	name:

try:

				outCS	=	arcpy.SpatialReference(4326)

				arcpy.CreateFeatureclass_management(os.path.split(outFC)[0],	

os.path.split(outFC)[1],	"point",	schemaFC,	spatial_reference=outCS))

23.	 Format	the	start	and	end	dates:

try:

				#format	the	dates

				beginDate	=	datetime.datetime.strptime(beginDate,	'%m/%d/%Y'	

strftime('%Y-%m-%d')

				endDate	=	datetime.datetime.strptime(endDate,	

'%m/%d/%Y').strftime('%Y-%m-%d')

24.	 Following	highlighted	lines	of	code,	add	the	following	line	of	code	that	defines	the
URL	request	that	we’ll	submit	through	the	API:

socrataURL	=	"https://data.seattle.gov/resource/y7pv-r3kh.json?

$$app_token=<your	app	token>&$where=occurred_date_or_date_range_start	

between	'"	+	str(beginDate)	+	"'	and	'"	+	str(endDate)	+	

"'&summarized_offense_description="	+	crimeType	+	"&$limit=10000"

The	URL	can	be	broken	down	into	several	parts	that	make	it	easier	to	understand.
The	first	part	of	the	URL	(https://data.seattle.gov/resource/y7pv-r3kh.json?)	is	the
API	endpoint	for	the	resource	being	accessed	along	with	the	requested	data	format
(json).	In	this	case,	this	is	the	Seattle	Police	Department’s	Police	Report	Incident
database.	What	follows	the	?	character	is	a	sequence	of	parameters,	with	the	first
parameter,	(?$$app_token=<your	app	token>),	being	the	application	token.	This	is
where	you’ll	enter	the	application	token	that	you	created	earlier	in	this	section.	Next
is	the	where	clause	parameter	(&$where=occurred_date_or_date_range_start
between	'"	+	str(beginDate)	+	"'	and	'"	+	str(endDate)	+

"'&summarized_offense_description="	+	crimeType	+),	which	filters	records
between	the	start	and	end	dates	along	with	the	crime	type.	Parameters	in	a	URL	query

https://data.seattle.gov/resource/y7pv-r3kh.json?

string	are	always	separated	by	an	&	character.	The	final	parameter,
("&$limit=10000"),	sets	the	maximum	number	of	records	that	can	be	returned	by	the
query.

25.	 There	is	also	an	optional	input	parameter	that	allows	the	end	user	to	filter	records	by
the	police	beat.	Because	it’s	optional,	we’ll	need	to	conditionally	add	this	as	a
parameter	to	the	URL.	Do	this	by	adding	the	following	lines	of	code	just	below	the
last	line:

if	policeDistrict	is	not	None:

				socrataURL	=	socrataURL	+	"&district_sector="	+	policeDistrict

26.	 Next,	use	the	Python	requests	module	to	submit	the	URL	and	the	json	module	to
convert	the	returned	data	from	json	format	to	a	Python	dictionary.	The	json.loads()
method	performs	the	conversion	to	a	Python	dictionary.	The	crimes	variable	holds
the	returned	records	in	a	dictionary:

r	=	requests.get(socrataURL)

crimes	=	json.loads(r.text)

27.	 The	next	section	of	code	will	process	the	returned	records.	Create	an	InsertCursor
object	to	handle	the	insertion	of	the	returned	records	in	the	feature	class.	The
InsertCursor()	constructor	is	passed	a	reference	to	the	output	feature	class	(outFC),
along	with	a	list	of	fields	to	be	included,	and	is	saved	to	a	variable	called	cursor.	The
object	is	assigned	to	the	cursor	variable	and	contains	the	following:

with	arcpy.da.InsertCursor(outFC,("SHAPE@XY",	"DISTRICT_SECTOR",	

"BEAT",	"DATE_REPORTED",	"MONTH",	"YEAR"))	as	cursor:

28.	 Inside	the	WITH	statement,	create	a	variable	that	will	serve	as	a	counter,	loop	through
each	of	the	records	in	the	Python	dictionary,	and	pull	out	the	geometry	and	attribute
information	that	will	be	written	to	the	feature	class:

with	arcpy.da.InsertCursor(outFC,("SHAPE@XY",	"DISTRICT_SECTOR",	

"BEAT",	"DATE_REPORTED",	"MONTH",	"YEAR"))	as	cursor:

				cntr	=	1

				for	crime	in	crimes:

								if	'latitude'	in	crime:

												latitude	=	float(crime['latitude'])

								else:

												break

								if	'longitude'	in	crime:

												longitude	=	float(crime['longitude'])else:

												break

								if	'district_sector'	in	crime:

												district_sector	=	crime['district_sector']

								else:

												break

								if	'zone_beat'	in	crime:

												zone_beat	=	crime['zone_beat']

								else:

												break

								if	'date_reported'	in	crime:

												date_reported	=	crime['date_reported']

								else:

												break

								if	'month'	in	crime:

												month	=	crime['month']

								else:

												break

								if	'year'	in	crime:

												year	=	crime['year']

								else:

												break

29.	 Define	a	new	row_value	variable	that	holds	the	geometry	and	attribute	information
for	the	new	row.	Insert	the	row	into	the	cursor	variable	using	the	insertRow()
method,	add	a	message	indicator	to	the	progress	dialog	box,	and	update	the	counter.
These	lines	should	go	just	below	the	last	if-else	statement	and	line	up	exactly	with
those	statements:

row_value	=	[(longitude,latitude),district_sector,	zone_beat,	

date_reported,	month,	year]

cursor.insertRow(row_value)	

arcpy.AddMessage("Record	number	"	+	str(cntr)	+	"	written	to	feature	

class")																					

cntr	=	cntr	+	1

30.	 The	entire	code	for	the	execute()	method	should	appear	as	follows:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								outFC	=	parameters[0].valueAsText

								schemaFC	=	parameters[1].valueAsText

								beginDate	=	parameters[2].valueAsText

								endDate	=	parameters[3].valueAsText

								crimeType	=	parameters[4].valueAsText

								policeDistrict	=	parameters[5].valueAsText

								try:

												outCS	=	arcpy.SpatialReference(4326)

												arcpy.CreateFeatureclass_management(os.path.split(outFC)

[0],	os.path.split(outFC)[1],	"point",	schemaFC,	

spatial_reference=outCS)

												#format	the	dates

												beginDate	=	datetime.datetime.strptime(beginDate,	

'%m/%d/%Y').strftime('%Y-%m-%d')

												endDate	=	datetime.datetime.strptime(endDate,	

'%m/%d/%Y').strftime('%Y-%m-%d')

												#arcpy.AddMessage("https://data.seattle.gov/resource/y7pv-

r3kh.json?$where=occurred_date_or_date_range_start	between	'"	+	

str(beginDate)	+	"'	and	'"	+	str(endDate)	+	

"'&summarized_offense_description="	+	crimeType	+	"&district_sector="	+	

policeDistrict)

												socrataURL	=	"https://data.seattle.gov/resource/y7pv-

r3kh.json?

$$app_token=qxbAu9fftrtVjVaQ1yfKiUleD&$where=occurred_date_or_date_rang

e_start	between	'"	+	str(beginDate)	+	"'	and	'"	+	str(endDate)	+	

"'&summarized_offense_description="	+	crimeType	+	"&$limit=10000"

												if	policeDistrict	is	not	None:

																socrataURL	=	socrataURL	+	"&district_sector="	+	

policeDistrict

												r	=	requests.get(socrataURL)

												crimes	=	json.loads(r.text)

												with	arcpy.da.InsertCursor(outFC,("SHAPE@XY",	

"DISTRICT_SECTOR",	"BEAT",	"DATE_REPORTED",	"MONTH",	"YEAR"))	as	

cursor:

																cntr	=	1

																for	crime	in	crimes:

																				if	'latitude'	in	crime:

																								latitude	=	float(crime['latitude'])

																				else:

																								break

																				if	'longitude'	in	crime:

																								longitude	=	float(crime['longitude'])

																				else:

																								break

																				if	'district_sector'	in	crime:

																								district_sector	=	crime['district_sector']

																				else:

																								break

																				if	'zone_beat'	in	crime:

																								zone_beat	=	crime['zone_beat']

																				else:

																								break

																				if	'date_reported'	in	crime:

																								date_reported	=	crime['date_reported']

																				else:

																								break

																				if	'month'	in	crime:

																								month	=	crime['month']

																				else:

																								break

																				if	'year'	in	crime:

																								year	=	crime['year']

																				else:

																								break

																				row_value	=	[(longitude,latitude),district_sector,	

zone_beat,	date_reported,	month,	year]

																				cursor.insertRow(row_value)			#	Inserts	the	row	

into	the	feature	class

																				arcpy.AddMessage("Record	number	"	+	str(cntr)	+	"	

written	to	feature	class")	#	Adds	message	to	the	progress	dialog

																				cntr	=	cntr	+	1

								except	Exception	as	e:

												arcpy.AddMessage(e.message)

31.	 You	can	check	your	work	by	examining	the
C:\ArcGIS_Blueprint_Python\solutions\ch4\CrimeAnalysis.py	solution	file.
Refer	to	the	getParameterInfo()	and	execute()	methods.

32.	 Save	the	file	and	exit	your	Python	development	environment.
33.	 Now	it’s	time	to	test	the	tool.	In	ArcMap,	add	a	basemap	by	selecting	the	Add

Basemap	tool	and	selecting	the	Streets	layer,	as	shown	in	the	following	screenshot:

34.	 Zoom	in	to	Seattle,	WA.
35.	 In	your	C:\ArcGIS_Blueprint_Python\data\crime	folder	is	a	shape	file	called

Seattle_BG.	This	layer	contains	census	block	groups.	Add	this	dataset	to	the	map

document.	Symbolize	the	layer	if	you’d	like.
36.	 Double-click	on	the	Import	Records	tool	from	the	CrimeAnalysis.pyt	toolbox	to

display	the	tool,	as	shown	in	the	following	screenshot:

37.	 For	this	test,	the	tool	will	be	used	to	import	Burglary	records	for	the	first	few	months
of	2015.	In	the	C:\ArcGIS_Blueprint_Python\data\crime	folder,	there	is	a
geodatabase	file	called	SeattleCrimeAnalysis.	Add	a	feature	class	called
Burglary_2015	to	this	geodatabase.	There	is	a	pre-created	feature	class	called
CrimeSchema	in	the	same	geodatabase.	Use	this	for	Schema	Feature	Class.	Define	a
start	date	of	1/1/2014	and	an	end	date	of	6/9/2015.	Finally,	select	Burglary	as	the
Crime	Type.	Don’t	define	the	optional	filter	Filter	by	District	(optional)	parameter
for	this	test.

38.	 Your	tool	should	now	appear	as	follows:

39.	 Click	on	OK.
40.	 If	everything	goes	as	expected,	the	data	should	be	imported	into	the	feature	class	and

added	to	the	table	of	contents,	as	shown	in	the	following	screenshot:

41.	 Save	your	map	document	as
C:\ArcGIS_Blueprint_Python\ch4\SeattleCrimes.mxd.

In	the	next	section,	we’ll	create	a	tool	that	aggregates	these	points.

Creating	the	Aggregate	Crimes	tool
The	Aggregate	Crimes	tool	will	aggregate	the	crimes	to	a	polygon	layer,	such	as	census
block	groups	or	police	precinct	boundaries.	This	tool	will	use	the	existing	SpatialJoin
tool	found	in	the	Analysis	Tools	toolbox	to	summarize	the	total	number	of	crimes	in	each
polygon.	Two	polygon	feature	classes	have	been	provided	for	you:	Seattle_BG	and
Seattle_Merge_Precincts.	The	former	contains	census	block	groups	for	Seattle,	while
the	later	contains	police	precincts	for	Seattle.	Both	datasets	are	in	the
C:\ArcGIS_Blueprint_Python\data\crime	folder.	The	Aggregate	Crimes	tool	will
prompt	the	user	to	select	a	polygon	layer,	crime	dataset,	and	output	feature	class;	it	will
then	perform	a	spatial	join:

1.	 Open	C:\ArcGIS_Blueprint_Python\ch4\SeattleCrimes.mxd	in	ArcMap.
2.	 Duplicate	the	code	that	you	have	already	created	for	the	ImportRecords	class	by

copying	and	pasting	this	class	into	the	same	CrimeAnalysis.pyt	file.
3.	 Rename	the	duplicated	ImportRecords	class	as	AggregateCrimes.
4.	 Remove	the	code	inside	the	getParameterInfo()	and	execute()	methods	for	the

new	AggregateCrimes	class.
5.	 Alter	the	self.label	and	self.description	properties	in	the	__init__	method,	as

shown	in	the	following	code:

def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Aggregate	Crimes"

								self.description	=	"Aggregates	crime	points	to	a	polygon	layer"

								self.canRunInBackground	=	False

6.	 This	tool	will	include	three	parameters.	The	first	two	will	be	input	parameters	that
allow	the	end	user	to	select	the	polygon	feature	class	where	the	crimes	will	be
aggregated,	as	well	as	the	point	feature	class	containing	the	crime	information.	The
final	parameter	will	be	the	output	feature	class	where	the	aggregated	records
containing	the	summarized	information	will	be	written.	Add	the	following	code	block
to	the	getParameterInfo()	method.	By	now,	you	should	have	a	good	understanding
of	how	to	create	the	parameters.	One	thing	that	may	be	new,	though,	is	the	use	of	the
filter.list	property	that	was	used	in	this	case	to	filter	the	feature	classes	so	that
only	specific	feature	types	are	displayed	for	a	particular	parameter:

def	getParameterInfo(self):

								"""Define	parameter	definitions"""

								aggregateFC	=	arcpy.Parameter(displayName	=	"Boundary	Layer",	

												name="aggregateFC",

												datatype="DEFeatureClass",

												parameterType="Required",

												direction="Input")

								aggregateFC.filter.list	=	['Polygon']

								crimeFC	=	arcpy.Parameter(displayName	=	"Crime	Point	

Locations",	

												name="crimeFC",	

												datatype="DEFeatureClass",

												parameterType="Required",

												direction="Input")

								crimeFC.filter.list	=	['Point']

								outputFC	=	arcpy.Parameter(displayName	=	"Output	Feature	

Class",	

												name="outputFC",	

												datatype="DEFeatureClass",

												parameterType="Required",

												direction="Output")

								outputFC.filter.list	=	['Polygon']

								params	=	[aggregateFC,	crimeFC,	outputFC]

								return	params

7.	 In	the	execute()	method,	add	the	following	lines	of	code	to	accept	the	parameter
information	submitted	by	the	user:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								polygonFC	=	parameters[0].valueAsText

								pointFC	=	parameters[1].valueAsText

								outputFC	=	parameters[2].valueAsText

8.	 Add	the	following	code	block	to	call	the	SpatialJoin	tool:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								polygonFC	=	parameters[0].valueAsText

								pointFC	=	parameters[1].valueAsText

								outputFC	=	parameters[2].valueAsText

								try:

												arcpy.SpatialJoin_analysis	(polygonFC,	pointFC,	outputFC)

								except	Exception	as	e:

												arcpy.AddMessage(e.message)

9.	 In	the	Toolbox	class,	add	the	AggregateCrimes	tool	to	the	self.tools	list,	as	shown
in	the	following	code:

self.tools	=	[ImportRecords,	AggregateCrimes]

10.	 You	can	check	your	work	by	examining	the
C:\ArcGIS_Blueprint_Python\solutions\ch4\AggregateCrimes.py	solution	file.
Refer	to	the	AggregateCrimes	class.

11.	 Save	the	file	and	exit	your	Python	development	environment.
12.	 Now,	it’s	time	to	test	the	tool.	If	necessary,	open	ArcMap	and	display	the	contents	of

the	CrimeAnalysis	toolbox.	You	should	now	see	the	Aggregate	Crimes	tool,	as
shown	in	the	following	screenshot:

13.	 Double-click	on	the	tool	to	display	the	tool	dialog,	which	is	shown	as	follows:

14.	 Add	the	references	to	the	layers	shown	in	the	following	screenshot.	Boundary	Layer
(Seattle_BG.shp)	contains	block	groups	for	the	city	of	Seattle.	The	Crime	Point

Locations	feature	class	(Burglary_2015)	was	created	in	the	previous	section,	and	the
Output	Feature	Class	(Seattle_BG_Burglary_2015)	will	be	the	new	polygon
feature	class	that	will	contain	a	count	of	the	number	of	burglaries	within	each
polygon.

15.	 Click	on	OK	to	execute	the	tool.	The	new	feature	class
(Seattle_BG_Burglary_2015)	will	be	added	to	the	table	of	contents.	If	you	open	the
attribute	table,	you	should	see	a	new	column	called	Join_Count.	This	is	the	count	of
the	number	of	burglaries	that	are	within	each	block	group.

16.	 Symbolize	the	Seattle_BG_Burglary_2015	layer	by	double-clicking	on	the	layer	and
selecting	the	Symbology	tab.	Select	Graduated	Colors	from	the	Quantities	item
and	then	select	Join_Count	as	the	Value	field	and	Shape_Area	as	the	Normalization
field.	Normalization	is	the	process	of	dividing	one	numeric	attribute	value	by	another
to	minimize	the	differences	in	values	based	on	the	size	of	areas	or	the	number	of
features	in	each	area.	In	our	case,	normalizing	(dividing)	total	crimes	by	the	total
polygon	area	yields	crimes	per	unit	area	or	density.	The	following	screenshot
illustrates	how	the	symbolization	should	be	applied:

17.	 The	resulting	graduated	color	map	should	appear	as	shown	in	the	following
screenshot.	Save	your	map	document	file.

We’ll	use	this	dataset	in	the	upcoming	sections	of	the	chapter,	when	we	create	a	tool	to
automate	the	creation	of	maps	and	more	advanced	spatial	statistical	analysis.

Building	the	Create	Map	tool
This	section	details	the	construction	of	a	Create	Map	tool,	which	will	allow	the	end	user
to	generate	and	export	a	map	using	a	predefined	layer	file	containing	the	symbology	and	a
selected	polygon	feature	class,	which	in	turn	will	contain	a	count	field	(Join_Count)	that
was	created	with	the	Aggregate	Crimes	tool:

1.	 If	necessary,	open	C:\ArcGIS_Blueprint_Python\ch4\SeattleCrimes.mxd	in
ArcMap.

2.	 Switch	to	the	Layout	view	so	that	we	can	build	the	structure	of	the	map	that	will	be
exported.

3.	 Build	the	layout	so	that	it	appears	similar	to	what	is	shown	in	the	following
screenshot:

4.	 Double-click	on	the	Title	text	element	to	display	the	properties.
5.	 Click	on	the	Size	and	Position	tab	and	set	Element	Name	to	CrimeTitle,	as	shown

in	the	following	screenshot.	Setting	Element	Name	will	enable	us	to	access	this
element	through	a	Python	script	that	will	dynamically	set	the	name	based	on	the	user
input.

6.	 Save	the	map	document.
7.	 From	the	Catalog	window,	open	the	Python	development	environment	for	the

CrimeAnalysis.pyt	toolbox.
8.	 Create	a	new	tool	by	copying	and	pasting	one	of	the	existing	tools.	Rename	the	tool

CreateMap	and	remove	any	existing	code	from	the	getParameterInfo()	and
execute()	methods.

9.	 Update	the	__init__	method,	as	shown	in	the	following	code:

class	CreateMap(object):

				def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Create	Map"

								self.description	=	"Creates	a	map	in	layout	view	and	exports"

								self.canRunInBackground	=	False

10.	 This	tool	will	have	four	parameters,	which	are	used	to	capture	the	input	polygon
crime	layer,	the	map	type	to	be	created,	the	export/print	type,	and	the	map	title.	Add
the	parameters	to	capture	the	input	polygon,	as	shown	in	the	following	code:

def	getParameterInfo(self):

								"""Define	parameter	definitions"""

				crimeFC	=	arcpy.Parameter(displayName	=	"Input	Crimes	to	Map",

								name="crimeFC",

								datatype="GPFeatureLayer",

								parameterType="Required",

								direction="Input")

				crimeFC.filter.list	=	['Polygon']

Setting	datatype	to	GPFeatureLayer	will	allow	the	end	user	to	either	select	a	layer

from	a	drop-down	box	containing	the	polygon	feature	classes	already	in	the	table	of
contents,	or	click	on	a	button	to	navigate	to	a	polygon	feature	class	on	the	computer
but	not	in	the	map	document.	This	feature	class	will	be	the	class	that	was	created
using	the	Aggregate	Crimes	tool.

11.	 Next,	add	the	map	type	parameter	to	allow	the	end	user	to	select	either	a	graduated
color	or	a	graduated	symbol	map	type.	Two	layer	files	containing	the	symbology	for
both	the	types	have	already	been	created	for	you.	They	are	located	in	your
C:\ArcGIS_Blueprint_Python\data\crime	folder	and	are	called
SeattleCrimeGraduatedColor.lyr	and	SeattleCrimeGraduatedSymbol.lyr:

								##	map	type

								mapType	=	arcpy.Parameter(

												displayName="Map	Type",

												name="mapType",

												datatype="String",

												multiValue="False",

												parameterType="Required",

												direction="Input")

								mapType.filter.list	=	["GRADUATED	COLOR",	"GRADUATED	SYMBOL"]

12.	 Add	a	parameter	that	will	allow	the	user	to	select	the	type	of	export	or	print.	The
options	will	be	PDF,	JPEG,	or	Print.	If	the	user	selects	Print,	the	geoprocessing	script
will	send	the	layout	view	to	the	default	printer	associated	with	the	computer	in	which
the	map	document	file	resides:

								##	export	type

								exportType	=	arcpy.Parameter(

												displayName="Export	Type",

												name="exportType",

												datatype="String",

												multiValue="False",

												parameterType="Required",

												direction="Input")

								exportType.filter.list	=	["PDF",	"JPEG",	"PRINT"]

13.	 Finally,	add	a	parameter	that	will	allow	the	end	user	to	create	a	title	for	the	map:

								##	map	title

								mapTitle	=	arcpy.Parameter(

												displayName="Map	Title",

												name="mapTitle",

												datatype="String",

												multiValue="False",

												parameterType="Required",

												direction="Input")

14.	 Add	each	of	the	parameters	to	the	params	variable:

params	=	[crimeFC,	mapType,	exportType,	mapTitle]

15.	 Find	the	execute()	method	inside	the	CreateMap	class.
16.	 Add	the	following	code	block	to	accept	the	input	parameters:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								crimeFC	=	parameters[0].valueAsText

								mapType	=	parameters[1].valueAsText

								exportType	=	parameters[2].valueAsText

								mapTitle	=	parameters[3].valueAsText

17.	 Add	a	try/except	block,	as	we’ve	done	with	the	other	tools.
18.	 Inside	the	try	block,	set	the	workspace	environment	variable	and	path	to	the	layer

files:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								crimeFC	=	parameters[0].valueAsText

								mapType	=	parameters[1].valueAsText

								exportType	=	parameters[2].valueAsText

								mapTitle	=	parameters[3].valueAsText

								try:

												arcpy.env.workspace	=	'C:/ArcGIS_Blueprint_Python/ch4'

												#path	to	the	layer	file

												if	mapType	==	"GRADUATED	COLOR":

																lyrFile	=	

r"C:\ArcGIS_Blueprint_Python\data\crime\SeattleCrimeGraduatedColor.lyr"

												else:

																lyrFile	=	

r"C:\ArcGIS_Blueprint_Python\data\crime\SeattleCrimeGraduatedSymbol.lyr"

19.	 Get	a	reference	to	the	map	document	file	and	data	frame:

if	mapType	==	"GRADUATED	COLOR":

				lyrFile	=	

r"C:\ArcGIS_Blueprint_Python\data\crime\SeattleCrimeGraduatedColor.lyr"

else:

				lyrFile	=	

r"C:\ArcGIS_Blueprint_Python\data\crime\SeattleCrimeGraduatedSymbol.lyr

"

mxd	=	arcpy.mapping.MapDocument("CURRENT")

df	=	arcpy.mapping.ListDataFrames(mxd)[0]

20.	 The	first	parameter	of	the	tool	allows	the	end	user	to	either	select	a	polygon	feature
class	from	the	table	of	contents	or	click	on	a	button	and	navigate	to	the	feature	class
to	be	selected.	The	block	of	code	that	you	add	in	this	step	will	handle	situations
where	the	user	elects	to	click	on	the	button,	navigate	to	the	feature	class	somewhere
on	the	computer	or	network,	and	add	that	feature	class	as	a	layer	to	the	map
document.	Add	the	code	block	just	below	the	lines	of	code	that	you	added	in	the
previous	step:

layerList	=	[]

for	lyr	in	arcpy.mapping.ListLayers(mxd,	"",	df):

			layerList.append(lyr.name)

if	not	crimeFC	in	layerList:

				arcpy.AddMessage("Adding	the	layer	to	the	map	document")

				addLayer	=	arcpy.mapping.Layer(crimeFC)

				arcpy.mapping.AddLayer(df,	addLayer,	"TOP")

				crimeFC	=	os.path.split(crimeFC)[1]

21.	 Execute	some	checks	to	make	sure	that	the	feature	class	selected	by	the	user	has	a
Join_Count	field:

#make	sure	the	feature	class	has	a	join_count	field

fldList	=	[]

for	fld	in	arcpy.ListFields(crimeFC):

				fldList.append(fld.name)

if	"Join_Count"	in	fldList:

else:

	arcpy.AddMessage("Feature	class	does	not	contain	Join_Count	field…

can't	create	map")

22.	 The	rest	of	the	code	for	this	method	will	go	inside	the	IF	block	that	you	just	created.
We	have	verified	that	the	Join_Count	field	exists	in	the	selected	feature	class.	Use
the	arcpy.mapping	UpdateLayer()	function	to	update	the	symbology	of	the	map	to
the	appropriate	layer	file:

updateLayer	=	arcpy.mapping.ListLayers(mxd,	crimeFC,	df)[0]

sourceLayer	=	arcpy.mapping.Layer(lyrFile)

arcpy.AddMessage("Updating	the	symbology")

arcpy.mapping.UpdateLayer(df,	updateLayer,	sourceLayer,	True)

23.	 Set	the	title	in	the	layout	view	to	the	value	input	by	the	user:

#set	the	layout	map	title

for	elm	in	arcpy.mapping.ListLayoutElements(mxd,	"TEXT_ELEMENT",	

"CrimeTitle"):

				elm.text	=	mapTitle

24.	 Add	the	code	that	will	export	or	print	the	map	based	on	the	user	input:

#export	or	print	the	map

arcpy.AddMessage("Exporting/Printing	the	map")

if	exportType	==	"PDF":

				arcpy.mapping.ExportToPDF(mxd,	mapTitle	+	".pdf")

elif	exportType	==	"JPEG":

				arcpy.mapping.ExportToJPEG(mxd,	mapTitle	+	".jpg")

else:

				arcpy.mapping.PrintMap(mxd)

25.	 Add	a	message	to	the	progress	dialog	box	and	make	sure	the	except	block	is
complete:

				arcpy.AddMessage("Processing	complete")

except	Exception	as	e:

				arcpy.AddMessage(e.message)

26.	 Add	the	tool	to	the	self.tools	property	of	the	Toolbox	class:

class	Toolbox(object):

				def	__init__(self):

								"""Define	the	toolbox	(the	name	of	the	toolbox	is	the	name	of	

the

								.pyt	file)."""

								self.label	=	"Crime	Analysis"

								self.alias	=	"crimeanalysis"

								#	List	of	tool	classes	associated	with	this	toolbox

								self.tools	=	[ImportRecords,	AggregateCrimes,	CreateMap]

27.	 The	entire	execute()	method	should	appear	as	follows:

				def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								crimeFC	=	parameters[0].valueAsText

								mapType	=	parameters[1].valueAsText

								exportType	=	parameters[2].valueAsText

								mapTitle	=	parameters[3].valueAsText

								try:

												arcpy.env.workspace	=	'C:/ArcGIS_Blueprint_Python/ch4'

												#path	to	the	layer	file

												if	mapType	==	"GRADUATED	COLOR":

																lyrFile	=	

r"C:\ArcGIS_Blueprint_Python\data\crime\SeattleCrimeGraduatedColor.lyr"

												else:

																lyrFile	=	

r"C:\ArcGIS_Blueprint_Python\data\crime\SeattleCrimeGraduatedSymbol.lyr

"

												mxd	=	arcpy.mapping.MapDocument("CURRENT")

												df	=	arcpy.mapping.ListDataFrames(mxd)[0]

												layerList	=	[]

												for	lyr	in	arcpy.mapping.ListLayers(mxd,	"",	df):

															layerList.append(lyr.name)

												if	not	crimeFC	in	layerList:

																arcpy.AddMessage("Adding	the	layer	to	the	map	

document")

																addLayer	=	arcpy.mapping.Layer(crimeFC)

																arcpy.mapping.AddLayer(df,	addLayer,	"TOP")

																crimeFC	=	os.path.split(crimeFC)[1]

												#make	sure	the	feature	class	has	a	join_count	field

												fldList	=	[]

												for	fld	in	arcpy.ListFields(crimeFC):

																fldList.append(fld.name)

												if	"Join_Count"	in	fldList:

																updateLayer	=	arcpy.mapping.ListLayers(mxd,	crimeFC,	

df)[0]

																sourceLayer	=	arcpy.mapping.Layer(lyrFile)

																arcpy.AddMessage("Updating	the	symbology")

																arcpy.mapping.UpdateLayer(df,	updateLayer,	sourceLayer,	

True)

																#set	the	layout	map	title

																for	elm	in	arcpy.mapping.ListLayoutElements(mxd,	

"TEXT_ELEMENT",	"CrimeTitle"):

																				elm.text	=	mapTitle

																#export	or	print	the	map

																arcpy.AddMessage("Exporting/Printing	the	map")

																if	exportType	==	"PDF":

																				arcpy.mapping.ExportToPDF(mxd,	mapTitle	+	".pdf")

																elif	exportType	==	"JPEG":

																				arcpy.mapping.ExportToJPEG(mxd,	mapTitle	+	".jpg")

																else:

																				arcpy.mapping.PrintMap(mxd)

																arcpy.AddMessage("Processing	complete")

												else:

																arcpy.AddMessage("Feature	class	does	not	contain	

Join_Count	field…can't	create	map")

								except	Exception	as	e:

												arcpy.AddMessage(e.message)

28.	 You	can	check	your	work	by	examining	the
C:\ArcGIS_Blueprint_Python\solutions\ch4\CreateMap.py	solution	file.	Refer	to
the	CreateMap	class.

29.	 Save	the	file	and	exit	your	Python	development	environment.
30.	 Now,	it’s	time	to	test	the	tool.	If	necessary,	open	ArcMap	and	display	the	contents	of

the	CrimeAnalysis	toolbox.	You	should	now	see	the	Create	Map	tool.
31.	 For	this	test,	we’re	going	to	aggregate	crimes	to	a	polygon	feature	class	containing

neighborhood	boundaries	before	creating	the	map.	Double-click	on	the	Aggregate
Crimes	tool.

32.	 Select	Seattle_Neighborhoods.shp	from	the
C:\ArcGIS_Blueprint_Python\data\crime	folder	as	Boundary	Layer.

33.	 Select	Burglary_2015	from	the
C:\ArcGIS_Blueprint_Python\data\crime\SeattleCrimeAnalysis	geodatabase	as
the	crime	point	locations	parameter.

34.	 Define	Seattle_Neighborhood_Burglary_2015	inside	the	SeattleCrimeAnalysis
geodatabase	as	output	feature	class.

35.	 Click	on	OK	to	execute	the	tool	and	generate	the	feature	class.	The	feature	class
should	be	added	to	the	table	of	contents.	Open	the	attribute	table	and	make	sure	a
Join_Count	field	has	been	created.

36.	 Double-click	on	the	Create	Map	tool	to	display	the	parameters	shown	in	the
following	screenshot:

37.	 The	Seattle_Neighborhood_Burglary_2015	layer	should	already	be	present	in	your
table	of	contents,	so	click	on	the	drop-down	arrow	and	select	the	layer.

38.	 Select	Graduated	Color	for	Map	Type.
39.	 Select	PDF	as	Export	Type.
40.	 Set	Map	Title	to	something	like	Seattle	Burglaries	by	Neighborhood	in	2015.
41.	 If	all	goes	as	expected,	a	file	called	Seattle	Burglaries	by	Neighborhood	in

2015.pdf	should	be	created	in	the	C:\ArcGIS_Blueprint_Python\ch4	folder	and
should	look	like	what	is	shown	in	the	following	screenshot:

Feel	free	to	experiment	with	the	other	parameters	of	this	tool	to	print	and	export	maps.

Performing	Spatial	Statistical	Analysis
This	section	will	cover	the	use	of	several	spatial	statistical	tools	in	the	analysis	of	crime
data.	Specifically,	the	Median	Center,	Directional	Distribution,	and	Optimized	Hot	Spot
Analysis	Tools	from	the	Spatial	Statistics	Tools	toolbox	will	be	used	to	create	various
analysis	layers.	Each	of	these	tools	is	a	Python	Script	tool,	which	means	that	you	can
view	the	code	for	the	tool	and	even	make	changes	if	required.	You	can	use	the	knowledge
you	gain	in	this	section	in	the	next	chapter	of	the	book	as	we	continue	to	create	ArcGIS
tools	for	crime	analysis.

In	an	earlier	section,	the	Aggregate	Crimes	tool	was	used	to	aggregate	burglaries	by
census	block	groups	for	Seattle,	WA.	A	graduated	color	map	was	created	from	the
resulting	output.	This	provides	some	descriptive	information	about	crimes	and	where	they
occur.	In	this	section,	we’ll	dig	deeper	to	get	a	better	understanding	of	the	spatial
characteristics	of	the	data:

1.	 If	necessary,	open	C:\ArcGIS_Blueprint_Python\ch4\SeattleCrimes.mxd	in
ArcMap.

2.	 The	first	Spatial	Statistics	tool	that	we’ll	run	is	the	Median	Center	tool	found	in	the
Measuring	Geographic	Distributions	toolset	in	the	Spatial	Statistics	Tools
toolbox.	The	Median	Center	tool	identifies	the	median	geographic	location	of	a
dataset	and	can	include	an	optional	Weight	field	that	we’ll	use	to	find	the	geographic
center	of	our	burglary	data.	Find	the	tool	and	double-click	on	it	to	display	the
parameters.

3.	 Select	Seattle_BG_Burglary_2015	as	Input	Feature	Class.
4.	 Define	Output	Feature	Class	as	Seattle_BG_Burglary_2015_MeanCenter.
5.	 Select	Join_Count	as	the	Weighted	field.
6.	 Click	on	OK	to	execute	the	tool.	The	Median	Center	should	be	located	as	shown	in

the	following	screenshot:

7.	 Next,	the	Directional	Distribution	tool	will	be	used	to	create	a	standard	deviational
ellipse	to	summarize	the	spatial	characteristics	of	the	burglary	data,	including	the
central	tendency,	dispersion,	and	directional	trends.

8.	 Find	the	Directional	Distribution	tool	and	double-click	on	it	to	display	the
parameters.

9.	 For	Input	Feature	Class,	select	Seattle_BG_Burglary_2015.
10.	 Define	Seattle_BG_Burglary_2015_Directional	as	Output	Ellipse	Feature	Class.
11.	 Ellipse	Size	should	be	set	to	1	standard	deviation.
12.	 Select	Join_Count	as	the	Weight	field.
13.	 Click	on	OK	to	execute	the	tool.	The	ellipse	should	be	displayed	as	shown	in	the

following	screenshot.	Note	the	north-south	direction	of	the	ellipse	and	how	it	follows
Interstate	5.

14.	 The	final	tool	to	be	executed	in	this	section	is	the	Optimized	Hot	Spot	Analysis	tool
found	in	the	Mapping	Clusters	toolbox.	Using	weighted	features,	this	tool	will
create	a	map	of	statistically	significant	hot	and	cold	spots	using	the	Getis-Ord	Gi*
statistic.

15.	 Find	the	tool	and	double-click	on	it	to	display	the	parameters.
16.	 For	Input	Feature	Class,	select	Seattle_BG_Burglary_2015.
17.	 Define	Seattle_BG_Burglary_2015_Hotspot	as	Output	Feature	Class.
18.	 Select	Join_Count	as	the	Weight	field.
19.	 Click	on	OK	to	execute	the	tool.	The	progress	dialog	will	indicate	statistical

processing	information	during	processing,	as	shown	in	the	following	screenshot:

20.	 The	output	feature	class	will	contain	features	that	are	found	to	be	hotspots,	cold
spots,	or	not	significant.	Hot	and	cold	spots	will	be	generated	at	90%,	95%,	and	99%
confidence	levels.	Hotspots	are	indicated	by	a	red	shade,	as	shown	in	the	following
screenshot.	This	corresponds	to	the	output	from	the	other	tools	that	were	executed	in
this	section.

21.	 Save	the	map	document	file.

Summary
This	chapter,	which	covered	crime	analysis	with	ArcGIS	and	Python,	concentrated	on	the
development	of	geoprocessing	tools	that	can	be	used	to	import	crimes	and	aggregate	them
to	polygon	boundary	layers.	In	addition,	a	tool	to	automate	the	process	of	creating,
exporting,	and	printing	maps	was	implemented.	The	next	chapter	will	concentrate	on	the
development	of	tools	that	can	be	used	for	reporting	and	analysis	using	ArcPy	and	Plotly.

In	the	next	chapter,	we’ll	build	on	our	efforts	in	this	chapter	by	creating	Plotly	charts	and
graphs	that	can	be	added	to	the	ArcMap	layout	view.

Chapter	5.	Analyzing	Crime	Patterns	with
ArcGIS	Desktop,	ArcPy,	and	Plotly(Part
2)
In	this,	the	second	of	two	chapters	that	cover	the	creation	of	crime	analysis	tools	in
ArcGIS,	we	will	concentrate	primarily	on	the	development	of	charts	and	graphs	using	a
combination	of	ArcGIS	Desktop	and	ArcPy	along	with	Plotly	at	https://plot.ly.	Plotly	is
an	online	analytics	and	data	visualization	tool	for	graphs,	analytics,	and	statistics.	It
includes	a	Python	library	that	can	be	integrated	with	GIS	data	to	supplement	maps	and
analysis	generated	with	ArcGIS	Desktop.

The	Crime	Analysis	toolbox	created	in	the	last	chapter	will	be	the	focus	as	we	add	several
new	tools.	The	first	tool,	Create	Neighborhood	Bar	Chart,	will	create	a	bar	chart	of
crimes	by	Seattle	neighborhood.	Next,	the	Create	Line	Plot	tool	will	graph	the	number	of
crimes	over	time	on	a	line	plot.	This	tool	can	be	used	to	find	seasonal	patterns	of	crime.
Finally,	we’ll	enhance	both	tools	to	write	their	output	to	the	ArcMap	layout	view	and
update	the	Create	Map	tool	to	export	the	product.

In	this	chapter,	we	will	cover	the	following	topics:

Creating	ArcGIS	Desktop	Python	toolboxes
Using	Plotly	to	create	bar	charts	and	line	plots
Automating	the	process	of	creating,	exporting,	and	printing	maps	using	ArcPy
mapping

https://plot.ly

Design
This	is	the	second	of	two	chapters	that	cover	the	development	of	tools	for	crime	analysis,
so	we’ll	be	building	on	what	we	developed	in	the	first	chapter.	In	the	CrimeAnalysis.pyt
toolbox,	two	new	tools	will	be	created:	NeighborhoodBarChart	and	LinePlot.	Both	tools
will	use	the	Plotly	Python	library	to	create	graphs	based	on	crime	data	stored	in	a	file
geodatabase.	The	NeighborhoodBarChart	tool	will	create	a	bar	chart	depicting	the	crime
data	by	neighborhood,	while	the	LinePlot	tool	will	create	a	line	plot	graph	showing	the
crime	data	over	time.	The	charts	will	be	exported	to	PNG	format	image	files	and	displayed
in	an	ArcMap	layout.	Finally,	the	Create	Map	tool	will	be	updated	to	export	the	maps
and	charts	stored	in	the	layout	view.	The	following	diagram	shows	the	whole	process:

Let’s	get	started	and	build	the	application.

Getting	to	know	Plotly
Plotly	(plot.ly)	will	be	used	to	build	the	graphs	and	charts	that	are	part	of	the	tools	built
in	this	chapter.	It’s	important	to	understand	some	fundamental	concepts	of	how	Plotly
works	before	getting	started.

Plotly	is	a	cloud	service	specializing	in	data	visualization	and	statistical	analysis.	Using
Plotly’s	web-based	interface,	it	is	possible	to	upload	data	in	various	formats,	including
Microsoft	Excel	and	Access,	CSV,	TSV,	Matlab,	and	spreadsheets	from	Google	Drive.
Once	imported,	the	web	interface	can	then	be	used	to	create	various	types	of	visualization,
including	bar	and	pie	charts,	line	graphs,	scatter	plots,	area	charts,	histograms,	box	plots,
heat	maps	(not	GIS-based	heat	maps),	and	others.	These	visualizations	can	then	be	shared
with	others.	The	following	screenshot	depicts	the	web	interface	for	Plotly:

In	addition	to	the	web-based	interface,	there	are	several	programming	languages	that	can
be	used	to	dynamically	create	visualizations	without	first	uploading	data.	These	include
Python,	Matlab,	R,	Arduino,	Julia,	Perl,	and	a	basic	REST	API.	Python,	combined	with
ArcPy	and	Plotly,	provides	a	lot	of	data	visualization	flexibility.

Other	features	of	Plotly	include	visualization	interactivity,	which	means	that	end	users	can
hover	the	mouse	over	graphs	to	obtain	attribute	information,	along	with	zooming	and
panning	the	visualization.	Also,	there	is	a	lot	of	flexibility	in	the	layout	formatting,
including	the	ability	to	customize	fonts,	colors,	annotation,	and	other	graphing	options.

Creating	the	Neighborhood	Bar	Chart
tool
The	Neighborhood	Bar	Chart	tool	will	visualize	the	number	of	crimes	for	each	major
neighborhood	in	Seattle	in	the	form	of	a	bar	chart.	This	tool	will	be	added	to	the	existing
Crime	Analysis	toolbox	created	in	the	previous	chapter.	It	will	use	a	combination	of
ArcPy	and	Plotly	to	create	the	graph.

Note
The	Plotly	Python	library	will	need	to	be	installed	before	any	of	the	tools	in	this	chapter
can	be	created.	Use	pip	to	install	the	Plotly	Python	library	using	the	following	command.
If	you	haven’t	installed	pip	yet,	refer	to	Chapter	1,	Extracting	Real-Time	Wildfire	Data
from	ArcGIS	Server	with	the	ArcGIS	REST	API,	for	detailed	instructions	on	installing	pip.
Here’s	the	command:

pip	install	plotly

The	Create	Neighborhood	Bar	Chart	tool	will	accept	several	parameters,	including	an
input	feature	class	and	fields	that	provide	a	reference	to	a	polygon	layer	containing
neighborhood	boundaries	with	the	aggregated	crime	data,	chart	title,	and	output	file	name
and	location.	The	following	steps	will	guide	you	to	create	a	Neighborhood	Bar	Chart
tool:

1.	 The	use	of	the	Plotly	Python	library	requires	an	account	along	with	an	API	key.	Go	to
https://plot.ly/	and	click	on	the	SIGN	UP	button	to	create	a	new	account,	as	shown	in
the	following	screenshot:

https://plot.ly/

2.	 After	creating	an	account,	you	can	select	your	Username	from	the	Plotly	interface
and	then	select	Settings	to	display	the	API	settings	that	will	be	used	when	creating
charts	and	graphs.	My	credentials	have	been	displayed	as	follows.	Note,	though,	that
the	actual	API	key	number	for	my	account	has	been	changed:

3.	 In	your	Python	development	environment,	you	will	want	to	set	up	the	credentials	file
on	your	computer.	The	credentials	file	is	used	to	supply	the	account	authentication
information	required	to	create	charts.	Rather	than	embedding	this	information
directly	into	a	script,	a	credentials	file	can	be	created	and	referenced	each	time.	From
the	Python	shell	window	of	your	development	environment,	enter	the	following	two

lines	of	code.	This	step	only	needs	to	be	done	once.	The	credentials	file	is	then
referenced	each	time	a	script	accesses	the	Plotly	library:

import	plotly.tools	as	tls

tls.set_credentials_file(username="your	username",	api_key="your	api	

key")

4.	 Open	ArcMap	with	a	blank	map	document	file	and	add	the	Streets	base	map.	Zoom
in	to	the	Seattle,	WA,	area.	Save	the	file	as
C:\ArcGIS_Blueprint_Python\ch5\SeattleCrimes.mxd.

5.	 Locate	the	CrimeAnalysis.pyt	toolbox	created	in	the	previous	chapter.
6.	 Open	the	code	for	the	toolbox	in	your	Python	development	environment.
7.	 Copy	and	paste	one	of	the	existing	tools	to	the	bottom	of	the	CrimeAnalysis.pyt

file.	Remove	the	existing	content	from	the	execute()	and	getParameterInfo()
methods	for	the	new	class.

8.	 Rename	the	class	CreateNeighborhoodBarChart.	Update	the	self.label	and
self.description	properties,	as	shown	in	the	following	code:

class	CreateNeighborhoodBarChart(object):

				def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

							self.label	=	"Create	Neighborhood	Bar	Chart"

							self.description	=	"Creates	a	bar	chart	of	crime	data"

							self.canRunInBackground	=	False

9.	 Add	import	statements	for	the	plotly	modules:

import	arcpy

import	requests

import	json

import	datetime

import	os

import	time

import	plotly.plotly	as	py

from	plotly.graph_objs	import	*

10.	 Now	it’s	time	to	add	the	Input	and	Output	parameters	for	the	tool.	Add	the	following
lines	of	code	to	the	getParameterInfo()	method	for	the
CreateNeighborhoodBarChart	class:

def	getParameterInfo(self):

								"""Define	parameter	definitions"""

								crimeFC	=	arcpy.Parameter(displayName	=	"Input	Crimes	to	

Graph",

												name="crimeFC",

												datatype="GPFeatureLayer",

												parameterType="Required",

												direction="Input")

								crimeFC.filter.list	=	['Polygon']

								crimeField	=	arcpy.Parameter(displayName	=	"Input	Field	to	

Graph",

												name="crimeField",

												datatype="String",

												parameterType="Required",

												direction="Input")

								neighborhoodField	=	arcpy.Parameter(displayName	=	"Neighborhood	

Field	to	Group	By",

												name="neighborhoodField",

												datatype="String",

												parameterType="Required",

												direction="Input")

								##	chart	title

								chartTitle	=	arcpy.Parameter(

												displayName="Chart	Title",

												name="chartTitle",

												datatype="String",

												multiValue="False",

												parameterType="Required",

												direction="Input")

								##	chart	title

								fileLocation	=	arcpy.Parameter(

												displayName="Save	Chart",

												name="fileLocation",

												datatype="DEFile",

												multiValue="False",

												parameterType="Required",

												direction="Output")

								params	=	[crimeFC,	crimeField,	neighborhoodField,	chartTitle,	

fileLocation]

								return	params

11.	 The	first	three	parameters	are	related	to	the	neighborhood	feature	class	that	will	be
used	to	create	the	chart.	The	crimeFC	parameter	references	the	feature	class,	while
the	crimeField	parameter	defines	the	field	used	to	chart	the	data	along	the	y	axis	(the
Join_Count	field	if	the	Aggregate	Crimes	tool	is	used),	and	the	neighborhoodField
parameter	defines	the	field	containing	the	neighborhood	names	used	for	the	x	axis.

The	final	two	parameters	include	a	textbox	that	will	capture	the	title	of	the	chart	and
a	parameter	used	to	define	the	output	location	and	filename	for	the	chart	that	will	be
exported.	Finally,	all	the	parameters	will	be	added	to	the	params	list.

12.	 Find	the	UpdateParameters()	method	inside	the	CreateNeighborhoodBaChart	class.
This	method	is	executed	any	time	one	of	the	parameters	in	the	input	dialog	changes.
In	this	particular	case,	there	are	two	input	parameters	(crimeField	and
neighborhoodField)	that	need	to	be	updated	with	the	fields	in	the	feature	class
selected	by	the	user	for	the	crimeFC	input	parameter.	In	other	words,	we	want	to
populate	the	list	of	fields	based	on	the	feature	class	the	user	selects	for	Input	Crimes
to	Graph.	Add	the	following	code	block	to	accomplish	this:

def	updateParameters(self,	parameters):

				"""Modify	the	values	and	properties	of	parameters	before	internal	

validation	is	performed.	This	method	is	called	whenever	a	parameter	has	

been	changed."""

				if	parameters[0].value:

						desc	=	arcpy.Describe(parameters[0].value)

						fields	=	desc.fields

						listNumeric	=	[]

						listString	=	[]

						for	f	in	fields:

										if	f.type	in	['Double',	'Integer',	'Single']:

													listNumeric.append(f.name)

										elif	f.type	==	'String':

													listString.append(f.name)

							parameters[1].filter.list	=	listNumeric

							parameters[2].filter.list	=	listString

				return

This	code	block	executes	the	arcpy.Describe()	function	against	the	feature	class
selected	by	the	user	and	obtains	a	list	of	fields	in	the	feature	class.	The	crimeField
parameter	needs	to	contain	numeric	attribute	fields,	while	neighborhoodField
should	contain	attribute	fields	with	a	text	data	type.	The	field	types	are	tested	and
then	placed	in	a	list	variable	corresponding	to	a	type.	Finally,	the	lists	are	assigned
as	filters	to	each	of	the	parameters.

13.	 Add	the	tool	to	the	self.tools[]	list	inside	the	Toolbox	class	as	shown	in	the
following	code:

self.tools	=	[ImportRecords,	AggregateCrimes,	CreateMap,	

CreateNeighborhoodBarChart]

14.	 Find	the	execute()	method	inside	the	CreateNeighborhoodBarChart	class.	This
method	will	contain	the	functionality	of	the	tool.

15.	 Add	the	following	lines	of	code	to	capture	the	input	variables	submitted	to	the	tool:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								crimeFC	=	parameters[0].valueAsText

								crimeField	=	parameters[1].valueAsText

								neighborhoodField	=	parameters[2].valueAsText

								chartTitle	=	parameters[3].valueAsText

								fileLocation	=	parameters[4].valueAsText

16.	 Add	the	try/except	exception-handling	structures	just	below	the	code	you	just
added.	The	rest	of	the	code	in	this	section	should	go	inside	the	try	block:

try:

except	Exception	as	e:

				arcpy.AddMessage(e.message)

17.	 The	first	code	block	added	to	this	tool	will	require	a	little	explanation	before	coding.
This	tool	is	to	be	used	with	a	polygon	feature	class	that	contains	neighborhood
boundaries.	Each	neighborhood	boundaries	has	attribute	fields	that	define	the
neighborhood	name	(S_HOOD),	along	with	a	secondary	attribute	field	that	defines	a
larger	neighborhood	(L_HOOD).	This	can	be	seen	in	the	following	screenshot,	where
the	Ballard	neighborhood	is	seen	as	a	group	of	several	small	neighborhoods:

Ultimately,	the	chart	created	by	this	tool	will	group	records	based	on	the
neighborhood	with	a	larger	geographic	extent,	as	shown	in	the	following	figure:

The	tool	will,	therefore,	loop	through	all	the	records	in	the	neighborhood	feature	class
and	sum	the	number	of	crimes	for	each	neighborhood.

18.	 With	this	background,	it	is	time	to	code	the	block	that	will	populate	a	Python
dictionary	containing	a	unique	set	of	neighborhood	names	(keys)	along	with	the	total
number	of	crimes	in	each	neighborhood	(values).	Each	neighborhood	polygon	in	the
feature	class	is	assigned	to	a	larger	neighborhood	defined	in	the	L_HOOD	attribute
field.	Add	the	following	code	to	the	try	statement:

try:

				#aggregate	by	the	larger	neighborhood	area	L_HOOD

				dictHoods	=	{}

				with	arcpy.da.SearchCursor(crimeFC,	(crimeField,	

neighborhoodField))	as	cursor:

							for	row	in	cursor:

									if	row[1]	in	dictHoods:

																currentCount	=	dictHoods[row[1]]

																dictHoods[row[1]]	=	currentCount	+	row[0]

									else:

																dictHoods[row[1]]	=	row[0]

19.	 The	Plotly	Bar	object	that	creates	the	bar	chart	will	accept	two	list	variables	as
parameters:	one	for	the	x	axis	and	the	other	for	the	y	axis.	In	this	next	code	block,
we’ll	pull	out	the	keys	and	values	from	the	dictionary	created	in	the	last	step	and
divide	it	into	two	list	variables.	Some	neighborhoods	were	not	assigned	to	a	larger

neighborhood;	thus,	their	values	have	been	coded	as	No	Broader	Term.	We’ll	exclude
these	values	for	this	chart.	Add	the	code	block	highlighted	in	the	following	code:

try:

				#aggregate	by	the	larger	neighborhood	area	L_HOOD

				dictHoods	=	{}

				with	arcpy.da.SearchCursor(crimeFC,	(crimeField,	

neighborhoodField))	as	cursor:

								for	row	in	cursor:

												if	row[1]	in	dictHoods:

																currentCount	=	dictHoods[row[1]]

																dictHoods[row[1]]	=	currentCount	+	row[0]

												else:

																dictHoods[row[1]]	=	row[0]

				x	=	[]

				y	=	[]

				for	hood	in	dictHoods:

								#exclude	if	not	part	of	a	larger	neighborhood	group

								if	hood	!=	"NO	BROADER	TERM":

												x.append(hood)

												y.append(dictHoods[hood])

20.	 Assign	the	lists	to	a	Plotly	data	object:

x	=	[]

y	=	[]

for	hood	in	dictHoods:

				#exclude	if	not	part	of	a	larger	neighborhood	group

				if	hood	!=	"NO	BROADER	TERM":

								x.append(hood)

								y.append(dictHoods[hood])

#assign	the	data

data	=	Data([Bar(x=x,y=y)])

21.	 Create	the	Plotly	layout	object	for	the	graph.	This	block	of	code	should	go	just
below	the	last	line	you	added:

#layout	of	the	graph

layout	=	Layout(

				title	=	chartTitle,

				xaxis	=	XAxis(

								title='Neighborhood'

),

				yaxis	=	YAxis(

								title='Crimes'

)

)

22.	 Create	the	Figure	object	that	contains	the	data	and	layout	objects.	This	line	of	code
should	be	placed	just	below	the	last	line	you	added:

fig	=	Figure(data=data,layout=layout)

23.	 Save	the	graph:

fileToSave	=	fileLocation		+	".png"

py.image.save_as(fig,	filename=fileToSave)

arcpy.AddMessage("Created	and	saved	chart	to:	"	+	fileLocation)

24.	 You	can	check	your	work	by	examining	the
C:\ArcGIS_Blueprint_Python\solutions\ch5\CreateBarChart.py	solution	file.
Refer	to	the	CreateBarChart	class.

25.	 Save	the	file	and	exit	your	Python	development	environment.
26.	 Now	it’s	time	to	test	the	tool.	If	required,	open	ArcMap	with	the	SeattleCrimes.mxd

file	and	the	Crime	Analyst	toolbox.
27.	 Run	the	Import	Records	tool	to	create	a	new	feature	class	called

VehicleThefts_2014	with	the	Begin	Crime	Date	1/1/2014	and	the	End	Crime
Date	12/31/2014.	The	Crime	Type	should	be	VEHICLE	THEFT.	You	can	see	the
parameters	in	the	following	screenshot.	This	will	import	all	vehicle	theft	crimes	for
Seattle	in	the	year	2014.

28.	 Click	on	OK	to	run	the	tool.	This	should	import	approximately	3,300	records,	and
the	feature	class	will	be	added	to	the	ArcMap	table	of	contents.

29.	 These	records	can	be	aggregated	to	neighborhood	boundaries	for	Seattle	by	running
the	Aggregate	Crimes	tool	in	the	Crime	Analysis	toolbox.	Double-click	on	the	tool
and	fill	out	the	parameters,	as	shown	in	the	following	screenshot:

30.	 Click	on	OK	to	run	the	tool.	Now,	the	Create	Neighborhood	Bar	Chart	tool	can	be
run	against	the	Seattle_Neighborhood_VehicleTheft_2014	feature	class.	The
feature	class	will	be	added	to	the	ArcMap	table	of	contents.

31.	 Double-click	on	the	Create	Neighborhood	Bar	Chart	tool	in	the	Crime	Analysis
toolbox	and	fill	out	the	parameters,	as	shown	in	the	following	screenshot:

32.	 Click	on	OK	to	run	the	tool.	This	should	create	an	image	file	called
VehicleThefts2014Neighborhood.png.	This	is	depicted	in	the	following	screenshot:

Creating	the	Create	Line	Plot	tool
The	Create	Line	Plot	tool	will	create	a	line	plot	that	depicts	the	number	of	crimes	over
time.	This	tool	will	be	added	to	the	Crime	Analysis	toolbox	created	in	the	previous
chapter.	It	will	use	a	combination	of	ArcPy	and	Plotly	to	create	the	graph.

This	tool	will	use	an	existing	point	feature	class	layer	imported	with	the	Import	Records
tool.	It	will	aggregate	the	total	number	of	crimes	by	the	month	and	plot	the	results	to	a	line
plot	graph.	Input	parameters	will	include	the	feature	class	and	field	to	be	charted,	along
with	a	chart	title,	location,	and	filename	for	the	output	chart:

1.	 If	required,	open	C:\ArcGIS_Blueprint_Python\ch5\SeattleCrimes.mxd	in
ArcMap.

2.	 Locate	the	CrimeAnalysis.pyt	toolbox	that	was	created	in	the	last	chapter.
3.	 Open	the	code	for	the	toolbox	in	your	Python	development	environment.
4.	 Copy	and	paste	one	of	the	existing	tools	at	the	bottom	of	the	CrimeAnalysis.pyt	file.
5.	 Rename	the	class	CreateLinePlot.
6.	 Remove	the	code	inside	the	getParameterInfo(),	getUpdateParameters(),	and

execute()	methods	for	the	new	CreateLinePlot	class.
7.	 Update	the	self.label	and	self.description	properties	of	the	CreateLinePlot

class,	as	shown	in	the	following	code:

class	CreateLinePlot(object):

				def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

							self.label	=	"Create	Line	Plot"

							self.description	=	"Creates	a	line	plot

	of	crime	data"

							self.canRunInBackground	=	False

8.	 Add	the	following	code	block	to	the	getParameterInfo()	method	to	define	the
parameters	to	capture	the	input	feature	class	and	the	field	to	be	graphed	along	with
the	chart	title,	output	location,	and	filename:

def	getParameterInfo(self):

								"""Define	parameter	definitions"""

								crimeFC	=	arcpy.Parameter(displayName	=	"Input	Crimes	to	

Graph",

												name="crimeFC",

												datatype="GPFeatureLayer",

												parameterType="Required",

												direction="Input")

								crimeFC.filter.list	=	['Point']

								crimeField	=	arcpy.Parameter(displayName	=	"Input	Field	

(Month)",

												name="crimeField",

												datatype="String",

												parameterType="Required",

												direction="Input")

									##	chart	title

								chartTitle	=	arcpy.Parameter(

												displayName="Chart	Title",

												name="chartTitle",

												datatype="String",

												multiValue="False",

												parameterType="Required",

												direction="Input")

								##	file	location

								fileLocation	=	arcpy.Parameter(

												displayName="Save	Chart",

												name="fileLocation",

												datatype="DEFile",

												multiValue="False",

												parameterType="Required",

												direction="Output")

								params	=	[crimeFC,	crimeField,	chartTitle,	fileLocation]

								return	params

9.	 In	the	Toolbox	class,	add	the	CreateLinePlot	tool	to	the	self.tools	list,	as	shown
in	the	following	code:

self.tools	=	[ImportRecords,	AggregateCrimes,	CreateMap,	

CreateNeighborhoodBarChart,	CreateLinePlot]

10.	 Find	the	UpdateParameters()	method	and	add	the	following	code	block,	which	will
update	the	values	in	the	crimeField	parameter	based	on	the	feature	class	selected
by	the	layer	for	the	crimeFC	parameter:

def	updateMessages(self,	parameters):

				"""Modify	the	messages	created	by	internal	validation	for	each	tool

				parameter.		This	method	is	called	after	internal	validation."""

								if	parameters[0].value:

												desc	=	arcpy.Describe(parameters[0].value)

												fields	=	desc.fields

												listFields	=	[]

												for	f	in	fields:

																if	f.type	==	'String':

																				listFields.append(f.name)

												parameters[1].filter.list	=	listFields

								return

11.	 Find	the	execute()	method	and	add	the	following	lines	of	code	to	accept	the
parameter	information	submitted	by	the	user:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								crimeFC	=	parameters[0].valueAsText

								crimeField	=	parameters[1].valueAsText

								chartTitle	=	parameters[2].valueAsText

								fileLocation	=	parameters[3].valueAsText

12.	 Next,	set	the	workspace	variable,	as	shown	in	the	following	code:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								crimeFC	=	parameters[0].valueAsText

								crimeField	=	parameters[1].valueAsText

								chartTitle	=	parameters[2].valueAsText

								fileLocation	=	parameters[3].valueAsText

								arcpy.env.workspace	=	"C:/ArcGIS_Blueprint_Python/ch5"

13.	 Add	the	try/except	exception-handling	structures	right	below	the	code	you	just
added.	The	rest	of	the	code	in	this	section	should	go	inside	the	try	block:

try:

except	Exception	as	e:

				arcpy.AddMessage(e.message)

14.	 The	next	block	of	code	will	use	an	arcpy.da.SearchCursor	object	to	loop	though	all
the	records	in	the	crime	feature	class	selected	by	the	user.	As	it	loops	through	the
records,	it	will	obtain	a	unique	list	of	values	in	the	Input	Field	selected	by	the	user
(this	should	be	the	MONTH	field).	A	second	loop	will	loop	through	each	month,
create	a	feature	layer	containing	the	records	that	match	the	month,	count	the	number
of	records,	and	add	them	to	a	list	containing	the	total	number	of	crimes.	Add	the
following	code	block:

try:

				#aggregate	the	crimes	by	month

				listCrimes	=	[]

				listMonths	=	[]

				with	arcpy.da.SearchCursor(crimeFC,	(crimeField))	as	cursor:

								for	row	in	cursor:

												listMonths.append(row[0])

								listMonths	=	list(sorted(set(listMonths),	key=int))

								for	m	in	listMonths:

												arcpy.MakeFeatureLayer_management(crimeFC,	"EachMonth.lyr",	

crimeField	+	"	=	"	+	"\'"	+		m	+	"\'")

												result	=	arcpy.GetCount_management("EachMonth.lyr")

												numCrimes	=	int(result.getOutput(0))

												listCrimes.append(int(numCrimes))

15.	 Create	a	Scatter	object,	passing	in	the	list	of	months	and	the	list	of	crimes:

for	m	in	listMonths:

				arcpy.MakeFeatureLayer_management(crimeFC,	"EachMonth.lyr",	

crimeField	+	"	=	"	+	"\'"	+		m	+	"\'")

				result	=	arcpy.GetCount_management("EachMonth.lyr")

				numCrimes	=	int(result.getOutput(0))

				listCrimes.append(int(numCrimes))

trace	=	Scatter(x=listMonths,	y=listCrimes)

16.	 Create	a	Data	object	by	passing	in	the	trace	variable:

trace	=	Scatter(x=listMonths,	y=listCrimes)

data	=	Data([trace])

17.	 Create	the	layout	for	the	graph:

trace	=	Scatter(x=listMonths,	y=listCrimes)

data	=	Data([trace])

#layout	of	the	graphfor	m	in	listMonths:

layout	=	Layout(

				title	=	chartTitle,

				xaxis	=	XAxis(

								title='Month'

),

				yaxis	=	YAxis(

							title='Crimes'

)

)

18.	 Create	a	Figure	object	that	will	contain	the	data	as	well	as	the	layout.	This	line
should	be	placed	just	below	the	code	block	you	added	in	the	previous	step:

fig	=	Figure(data=data,layout=layout)

19.	 Save	the	chart	to	a	PNG	image	file:

fig	=	Figure(data=data,layout=layout)

fileToSave	=	fileLocation		+	".png"

py.image.save_as(fig,	filename=fileToSave)

arcpy.AddMessage("Created	and	saved	chart	to:	"	+	fileLocation)

20.	 Save	the	file	and	close	your	development	environment.
21.	 Now	it’s	time	to	test	the	tool.	If	required,	open	ArcMap	and	the	SeattleCrimes.mxd

file	in	the	C:\ArcGIS_Blueprint_Python\ch	5	folder	and	the	Crime	Analyst
toolbox.

22.	 Double-click	on	the	Create	Line	Plot	tool.	Add	the	following	parameters	and	click
on	OK	to	execute	the	tool.	The	Input	Crimes	to	Graph	feature	class	is	a	point
feature	class	that	contains	the	imported	vehicle	thefts	from	2014
(VehicleThefts_2014).	This	feature	class	was	created	in	the	last	section	of	the
chapter,	when	we	imported	records	for	the	Neighborhood	Bar	Chart	tool.	MONTH
should	be	chosen	as	the	Input	Field	(Month)	to	be	mapped.	The	tool	will	sum	all
vehicle	thefts	by	month:

23.	 The	output	line	chart	should	appear	as	shown	in	the	following	screenshot:

Creating	the	output
The	final	section	of	this	chapter	will	focus	on	the	creation	of	a	visualization	product	that
combines	the	maps	and	charts	that	can	be	created	with	the	tools	built	in	the	previous	two
chapters.	The	ArcMap	layout	view	will	be	used	in	combination	with	coding	in	order	to
automate	the	process	of	creating	our	final	visualization	product.	The	following	steps	will
guide	you	through	the	creation	of	the	final	visualization	product:

1.	 If	required,	open	C:\ArcGIS_Blueprint_Python\ch5\SeattleCrimes.mxd	in
ArcMap.

2.	 The	final	product	will	have	three	data	frames:	Charts	and	Graphs,	Maps,	and
Spatial	Statistics	Maps.	Rename	the	default	Layers	data	frame	Charts	and	Graphs
and	leave	the	VehicleThefts_2014,	Seattle_Neighborhood_VehicleTheft_2014,
and	World_Street_Map	layers	in	the	data	frame.

3.	 Create	the	Maps	and	Spatial	Statistics	Maps	data	frames	by	navigating	to	Insert	|
Data	Frame	from	the	main	ArcMap	menu.	Rename	them	accordingly.

4.	 Copy	and	paste	the	World_Street_Map	and
Seattle_Neighborhood_VehicleTheft_2014	layers	to	the	new	Maps	data	frame	that
you	created.	Do	this	for	the	Spatial	Statistics	Maps	data	frame	as	well.

5.	 Activate	the	Spatial	Statistics	Maps	data	frame.
6.	 Open	ArcToolbox	and	find	the	Mean	Center	tool	in	the	Spatial	Statistics	toolbox.	It

is	in	the	Measuring	Geographic	Distributions	toolset.
7.	 Double-click	on	the	Mean	Center	tool	and	define

Seattle_Neighborhood_VehicleTheft_2014	as	Input	Feature	Class	and	Output
Feature	Class	of	Seattle_Neighborhood_VehicleTheft_2014_MeanCenter	inside
the	SeattleCrimeAnaysis	geodatabase.	Select	Join_Count	as	Weight	Field.	Click
on	OK	to	execute	the	tool.

8.	 In	the	Measuring	Geographic	Distributions	toolset,	double-click	on	the
Directional	Distribution	tool	and	define
Seattle_Neighborhood_VehicleTheft_2014	as	Input	Feature	Class	and	Output
Feature	Class	of	Seattle_Neighborhood_VehicleTheft_2014_Directional	inside
the	SeattleCrimeAnaysis	geodatabase.	Leave	one	standard	deviation	as	Ellipse	Size
and	select	Join_Count	as	Weight	Field.	Click	on	OK	to	execute	the	tool.

9.	 In	the	Mapping	Clusters	toolset,	click	on	the	Hot	Spot	Analysis	tool.	Select
Seattle_Neighborhoold_VehicleTheft_2014	as	Input	Feature	Class	and
Join_Count	as	Input	Field.	Define	Output	Feature	Class	of
Seattle_Neighborhood_VehicleTheft_2014_Hotspot.	Select	Zone	of	Indifference
as	Conceptualization	of	Spatial	Relationships	and	leave	the	rest	of	the	parameters
to	the	defaults.	Click	on	OK	to	run	the	tool.	Your	view	should	now	appear	as	shown
in	the	following	screenshot:

10.	 Switch	to	the	Layout	view	and	select	the	LandscapeModernInset	template	by
clicking	on	the	Change	Layout	button	in	Layout	Toolbar.

11.	 Arrange	the	Layout	view	so	that	the	main	map	is	pulled	from	the	Maps	data	frame
while	the	secondary	map	is	retrieved	from	the	Spatial	Statistics	Maps	data	frame.
This	can	be	seen	in	the	following	screenshot:

12.	 Add	two	Picture	elements	by	navigating	to	Insert	|	Picture	and	arranging	them	as
shown	in	the	following	screenshot.	You	can	use	the
C:\ArcGIS_Blueprint_Python\ch5\ChartPlaceholder.png	file	for	both.	This	will
serve	as	a	temporary	placeholder	for	the	charts	we	create	with	the	tools:

13.	 Right-click	on	the	upper	Picture	element	and	select	Properties.	Under	the	Size	and
Position	tab,	give	it	the	Element	Name	BarChart,	as	shown	in	the	following
screenshot:

14.	 Right-click	on	the	lower	Picture	element	and	select	Properties.	Under	the	Size	and
Position	tab,	give	it	the	Element	Name	Line	Chart.

15.	 Right-click	on	the	Title	element	and	select	Properties.	Under	the	Size	and	Position
tab,	give	it	the	Element	Name	CrimeTitle.

16.	 Save	the	map	document	file.
17.	 In	the	next	few	steps,	we’ll	update	the	code	of	our	tools	to	automatically	place	the

generated	charts	into	the	layout	view.	Open	the	Python	development	environment
with	the	loaded	CrimeAnalysis.pyt	code.

18.	 Locate	the	CreateNeighborhoodBarChart	class	and	the	execute()	method	inside
this	class.

19.	 At	the	bottom	of	the	execute()	method,	add	the	following	code	block.	This	will
insert	the	bar	chart	directly	into	the	layout	view:

				fig	=	Figure(data=data,layout=layout)

				fileToSave	=	fileLocation		+	".png"

				py.image.save_as(fig,	filename=fileToSave)

				mxd	=	arcpy.mapping.MapDocument("CURRENT")

				for	elm	in	arcpy.mapping.ListLayoutElements(mxd,	

"PICTURE_ELEMENT"):

								if	elm.name	==	"BarChart":

												elm.sourceImage	=	fileToSave

				mxd.save()

				arcpy.AddMessage("Created	and	saved	chart	to:	"	+	fileLocation)

except	Exception	as	e:

				arcpy.AddMessage(e.message)

20.	 Locate	the	CreateLinePlot	class	and	the	execute()	method	inside	this	class.
21.	 At	the	bottom	of	the	execute()	method,	add	the	following	code	block.	This	will

insert	the	line	chart	directly	into	the	layout	view:

fig	=	Figure(data=data,layout=layout)

fileToSave	=	fileLocation	+	".png"

py.image.save_as(fig,	filename=fileToSave)

mxd	=	arcpy.mapping.MapDocument("CURRENT")

for	elm	in	arcpy.mapping.ListLayoutElements(mxd,	"PICTURE_ELEMENT"):

				if	elm.name	==	"LineChart":

								elm.sourceImage	=	fileToSave

mxd.save()

arcpy.AddMessage("Created	and	saved	chart	to:	"	+	fileLocation)

22.	 Locate	the	CreateMap	class	and	the	execute()	method	inside	this	class.
23.	 Update	the	line	of	code	that	retrieves	the	data	frame,	which	is	shown	as	follows:

df	=	arcpy.mapping.ListDataFrames(mxd,	"Maps")[0]

24.	 Save	the	code.
25.	 Now,	it’s	time	to	test.	Activate	the	Charts	and	Graphs	data	frame	and	run	the

Create	Neighborhood	Bar	Chart	tool	with	the	parameters	specified	in	the	following
screenshot.	The	execution	of	the	tool	should	result	in	the	graph	being	created	as	a
.png	image	file	and	being	placed	into	the	Layout	view.

26.	 Run	the	Create	Line	Plot	tool	with	the	parameters	specified	in	the	following
screenshot.	The	execution	of	the	tool	should	result	in	the	graph	being	created	as	a
.png	image	file	and	being	placed	into	the	Layout	view.

27.	 Activate	the	Maps	data	frame	and	run	the	Create	Map	tool.	Fill	in	the	parameters	as
follows:

28.	 A	new	PDF	file	called	Seattle	Vehicle	Theft	in	2014.pdf	should	now	be	in	your
C:\ArcGIS_Blueprint_Python\ch5	folder.	It	should	appear	as	shown	in	the
following	screenshot:

Summary
In	this	chapter,	two	tools	were	added	to	the	Crime	Analysis	toolbox	to	provide	crime	data
visualization	products	that	supplement	and	enhance	the	mapping	products	created	in	the
previous	chapter.	Using	the	crime	data	imported	and	aggregated	from	the	open	data	Seattle
police	department,	the	Plotly	graphing	and	charting	Python	library	was	used	to	create	bar
charts	and	line	plots.	The	Plotly	library	can	be	used	to	create	a	wide	variety	of	data
visualization	products	in	addition	to	the	simple	graphs	created	in	this	chapter.	Take	some
time	to	explore	the	variety	of	additional	data	visualization	products	available	through	the
Plotly	library.

In	the	next	chapter,	we’ll	explore	the	use	of	wxPython	to	create	advanced,	engaging	user
interfaces	for	ArcGIS	Desktop.

Chapter	6.	Viewing	and	Querying	Parcel
Data
One	of	the	primary	limitations	of	working	with	Python	in	ArcGIS	Desktop	has	been	the
lack	of	tools	for	the	development	of	Graphical	User	Interfaces	(GUI).	Previous	chapters	in
this	book	covered	the	use	of	custom	ArcGIS	script	tools	as	well	as	Python	add-ins	to
capture	user	input,	but	both	of	these	options	are	limited.	The	core	Python	library	includes
Tkinter	for	user	interface	development,	but	it	doesn’t	provide	a	modern	look	and	can	be
difficult	to	work	with.	This	chapter	will	cover	the	use	of	wxPython	to	build	advanced	user
interfaces	for	ArcGIS	Desktop.

wxPython	is	a	GUI	toolkit	for	Python	that	enables	the	creation	of	advanced	user	interfaces.
This	library	is	a	Python	extension	module	(native	code),	that	wraps	the	wxWidgets	cross-
platform	GUI	library	written	in	C++.	This	chapter	uses	the	wxPython	library	in
combination	with	an	ArcGIS	Desktop	add-in	written	in	Python	to	capture	the	user	input	to
query	and	view	parcel	data.

In	this	chapter,	we	will	cover	the	following	topics:

GUI	development	with	wxPython
Creating	an	ArcGIS	Desktop	add-in	with	Python
Using	the	ArcPy	data	access	module	to	search	for	parcel	data
Using	the	webbrowser	module	to	open	a	web	browser

Design
Conceptually,	building	the	ArcGIS	application	in	this	chapter	is	pretty	simple.	However,	it
is	going	to	require	a	lot	of	code.	We’re	going	to	build	an	application	that	will	query	and
view	parcel	data	for	Kendall	County,	TX.	The	graphical	user	interface	(GUI)	for	the
application	will	be	built	using	wxPython.	The	interface	will	be	created	in	a	Python	script
file	called	Interface.py.	wxPython	is	an	excellent	choice	for	GUI	development	and	will
improve	your	ability	to	develop	user	interfaces	that	have	only	been	possible	with	a
combination	of	ArcObjects	and	.NET	in	the	past.	To	display	the	user	interface,	we	will
build	an	ArcGIS	Desktop	add-in	that	will	consist	of	an	extension	along	with	a	button	in	a
toolbar.	When	the	user	clicks	on	the	button,	it	will	trigger	the	display	of	the	user	interface
built	in	wxPython.	The	interface	will	provide	multiple	options	to	query	the	parcel	feature
class.	Records	returned	by	a	query	will	be	displayed	in	a	grid-type	structure.	Users	can
then	select	a	record	from	the	grid	to	have	the	application	zoom	in	to	the	parcel	and	open
the	web-based	Kendall	County	Appraisal	District	search	results	for	the	selected
property.	The	following	diagram	shows	the	structure	and	functions	of	Parcel	Feature
Class:

Let’s	get	started	and	build	the	application.

Creating	a	user	interface	with	wxPython
In	this	step,	you	will	learn	how	to	use	wxPython	to	create	a	user	interface	that	captures
information	that	will	be	used	to	perform	various	types	of	queries	against	a	parcel	layer.
After	completing	this	section,	you	will	have	a	user	interface	that	allows	the	end	user	to
search	for	parcels	by	the	owner	name,	address,	unique	identifier,	and	an	advanced	search
that	allows	for	a	combination	of	search	terms.	The	final	user	interface	will	appear	as
shown	in	the	following	screenshot:

The	interface	consists	of	four	tabs:	Search	by	Owner,	Search	by	Address,	Search	by	ID,
and	Advanced	Search.	The	preceding	screenshot	displays	the	Search	by	Owner	interface
that	is	used	to	search	by	the	owner	name	or	a	portion	of	the	owner	name.	All	four	tabs	also
include	a	grid	control	that	displays	the	results	of	the	search.	When	a	record	is	selected
from	the	grid,	ArcGIS	Desktop	will	zoom	in	to	the	extent	of	that	feature	and	also	open	the
Kendall	County	Appraisal	District	parcel	search	website	for	the	selected	record,	as
shown	in	the	following	screenshot:

The	Search	by	ID	interface	is	similar	to	the	Search	by	Owner	interface	with	the
exception	that	it	searches	by	a	unique	property	identifier	rather	than	an	owner	name.
Otherwise,	it	works	the	same	as	the	Search	by	Owner	interface.

The	Search	by	Address	tab	includes	user	interface	controls	required	to	capture	a	street
name	(or	a	portion	of	a	street	name),	and/or	a	subdivision.	The	subdivision	control	is	a
ComboBox	filled	with	predefined	values	that	can	be	selected	by	the	user.

Finally,	the	Advanced	Search	tab	contains	user	interface	controls	required	to	capture	any
combination	of	an	owner	name,	street	name,	subdivision,	and	the	minimum	and	maximum
property	values.	This	can	be	seen	in	the	following	screenshot:

Note
The	wxPython	library	will	need	to	be	installed	before	continuing	with	this	section.

If	you	haven’t	already	installed	wxPython,	you	can	download	and	install	the	library	using
an	installer	found	at	the	mentioned	URL.	Versions	10.1	and	higher	of	ArcGIS	Desktop	use
Python	2.7,	so	you	will	want	to	install	wxPython	3.0	for	this	version.	The	URL	is
http://www.wxpython.org/download.php#msw.

The	following	steps	will	guide	you	to	create	the	user	interface	with	wxPython:

1.	 Open	your	Python	development	environment	and	create	a	new	script.	Save	it	as
C:\ArcGIS_Blueprint_Python\ch6\Interface.py.

2.	 Import	the	wx,	arcpy,	pythonaddins,	and	webbrowser	modules:

import	wx

import	arcpy

import	pythonaddins

import	webbrowser

3.	 Create	a	class	called	MainFrame	that	accepts	wx.Frame	as	the	only	parameter	and
defines	the	initialization	method:

class	MainFrame(wx.Frame):

				def	__init__(self):

4.	 Inside	the__init__	function,	define	the	initialization	for	wx.Frame.	A	Frame	widget
in	wxPython	acts	as	a	top-level	widget	that	essentially	defines	the	window	for	the	user
interface.	The	parameters	passed	into	the	initialization	function	will	define	the	title
for	Frame	along	with	the	size	and	style:

http://www.wxpython.org/download.php#msw

class	MainFrame(wx.Frame):

				def	__init__(self):

								wx.Frame.__init__(self,	None,	title="Search	Parcels",

											size=(600,400),style=wx.DEFAULT_FRAME_STYLE	&

										~wx.MAXIMIZE_BOX	^	wx.RESIZE_BORDER)

5.	 Create	a	Panel	inside	Frame.	The	Panel	will	serve	as	a	container	for	the	widgets	in
the	user	interface:

class	MainFrame(wx.Frame):

				def	__init__(self):

								wx.Frame.__init__(self,	None,	title="Search	Parcels",

											size=(600,400),style=wx.DEFAULT_FRAME_STYLE	&

										~wx.MAXIMIZE_BOX	^	wx.RESIZE_BORDER)

														

								self.Bind(wx.EVT_CLOSE,	self.OnClose)

								#	Here	we	create	a	panel	and	a	notebook	on	the	panel

								panel	=	wx.Panel(self)

6.	 We’ll	return	to	the	MainFrame	class	shortly,	but	now	you	need	to	create	a	second	class
called	NotebookParcel,	as	shown	in	the	following	code.	This	class	accepts	a	single
wx.Notebook	object	in	the	constructor.	A	Notebook	widget	in	wxPython	acts	like	a
tabbed	widget	that	has	multiple	panes:

class	NotebookParcel(wx.Notebook):

				def	__init__(self,	parent):

								wx.Notebook.__init__(self,	parent,	id=wx.ID_ANY,	

style=wx.BK_DEFAULT)

7.	 Now,	return	to	the	MainFrame	class	and	create	a	new	object	instance	of
NotebookParcel:

class	MainFrame(wx.Frame):

				def	__init__(self):

								wx.Frame.__init__(self,	None,	title="Search	Parcels",size=

(600,400),style=wx.DEFAULT_FRAME_STYLE	&	~wx.MAXIMIZE_BOX	^	

wx.RESIZE_BORDER)

																

								#	Here	we	create	a	panel	and	a	notebook	on	the	panel

								panel	=	wx.Panel(self)

	

								notebook	=	NotebookParcel(panel)

8.	 Create	a	vertical	BoxSizer	object	and	add	the	new	instance	of	NotebookParcel.	The
BoxSizer	object	is	used	for	layout	management	in	the	placement	of	widgets	on	the
user	interface.	Rather	than	using	absolute	positioning	when	adding	widgets	to	the
interface,	we	use	Sizer	objects.	These	Sizer	objects	give	a	lot	of	flexibility	in	that
the	widgets	inside	the	Sizer	resize	and	reposition	themselves	if	the	user	expands	or
contracts	the	container	window:

class	MainFrame(wx.Frame):

				def	__init__(self):

								wx.Frame.__init__(self,	None,	title="Search	Parcels",size=

(600,400),style=wx.DEFAULT_FRAME_STYLE	&	~wx.MAXIMIZE_BOX	^	

wx.RESIZE_BORDER)

														

								self.Bind(wx.EVT_CLOSE,	self.OnClose)

								#	Here	we	create	a	panel	and	a	notebook	on	the	panel

								panel	=	wx.Panel(self)

								arcpy.env.workspace	=	

r"C:\ArcGIS_Blueprint_Python\data\Kendall"

	

								notebook	=	NotebookParcel(panel)

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								sizer.Add(notebook,	1,	wx.ALL|wx.EXPAND,	5)

				

								panel.SetSizer(sizer)

								self.Layout()

9.	 Over	the	next	few	steps,	we’ll	create	several	classes,	each	of	which	will	define	one	of
the	tabs	on	the	user	interface.	Let’s	start	with	the	PageOwner	class,	which	will	define
the	tab	used	to	capture	the	input	to	perform	a	parcel	search	by	the	owner.	Add	the
following	code,	and	then	we’ll	discuss	how	it	works:

class	PageOwner(wx.Panel):

				def	__init__(self,parent):

								wx.Panel.__init__(self,	parent)

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								staticTxtOwner	=	wx.StaticText(self,	-1,	"Owner	Name")

								self.txtOwner	=	wx.TextCtrl(self,	wx.ID_ANY,	"")

								btnOK	=	wx.Button(self,	1,	'Search')

								btnOK.Bind(wx.EVT_BUTTON,	self.OnOk,	id=1)

								self.lc	=	wx.ListCtrl(self,	-1,	style=wx.LC_REPORT)

								self.lc.Bind(wx.EVT_LIST_ITEM_SELECTED,	self.OnClick,	self.lc)

								self.lc.InsertColumn(0,	'Property	ID')

								self.lc.InsertColumn(1,	'Owner')

								self.lc.InsertColumn(2,	'Address')

								self.lc.InsertColumn(3,	'City')

								self.lc.InsertColumn(4,	'Land	Value')

								self.lc.InsertColumn(5,	'Improvement	Value')

								self.lc.InsertColumn(6,	'Total	Value')

								sizer.AddSpacer(10)	

								sizer.Add(staticTxtOwner)

								sizer.Add(self.txtOwner)

								sizer.AddSpacer(10)	

								sizer.Add(btnOK)

								sizer.AddSpacer(25)

								sizer.Add(self.lc)

								

								self.SetSizer(sizer)

The	PageOwner	class	accepts	a	single	parameter	in	the	constructor.	This	parameter	is
an	instance	of	wx.Panel,	which	acts	as	a	container	for	other	widgets.	Inside	the
__init__	function,	we	create	the	panel	and	BoxSizer	objects	for	the	layout
management	of	Panel.	This	tab	will	contain	four	widgets:	StaticText,	TextCtrl,
Button,	and	ListCtrl.	A	StaticText	widget	simply	holds	text	that	normally

functions	as	descriptive	information	about	another	widget.	The	TextCtrl	widget	is
used	to	capture	an	owner	name	or	a	portion	of	an	owner	name.	Finally,	the	ListCtrl
widget	acts	like	a	grid	control	to	display	the	results	of	the	query.

The	two	lines	of	the	following	code	that	you	added	create	a	StaticText	object	with
the	Owner	Name	text	and	a	TextCtrl	object	that	will	capture	an	owner	name	from
the	user:

staticTxtOwner	=	wx.StaticText(self,	-1,	"Owner	Name")

self.txtOwner	=	wx.TextCtrl(self,	wx.ID_ANY,	"")

The	next	two	lines	of	code	create	the	Button	object	and	bind	an	event	to	this	object.
An	event	is	an	action	that	takes	place	within	the	application.	In	this	case,	the	event	is
simply	a	button	click	with	which	we	want	to	initiate	the	search.	When	the	event	takes
place,	we	want	the	code	to	run	in	response	to	that	event.	We’ll	define	the	contents	of
the	event	handler	in	a	later	step:

btnOK	=	wx.Button(self,	1,	'Search')

btnOK.Bind(wx.EVT_BUTTON,	self.OnOk,	id=1)

The	ListCtrl	object	is	created	with	the	code	block	you	see	in	the	following	code.
When	created	in	Report	mode,	as	is	the	case	with	our	example,	ListCtrl	is	made	to
appear	like	a	grid.	In	addition	to	defining	various	columns	to	hold	the	results	of	the
query,	an	event	handler	is	also	created	to	respond	to	a	row	that	has	been	selected	from
the	object.	The	event-handling	code	will	be	defined	in	a	later	step:

self.lc	=	wx.ListCtrl(self,	-1,	style=wx.LC_REPORT)

self.lc.Bind(wx.EVT_LIST_ITEM_SELECTED,	self.OnClick,	self.lc)

self.lc.InsertColumn(0,	'Property	ID')

self.lc.InsertColumn(1,	'Owner')

self.lc.InsertColumn(2,	'Address')

self.lc.InsertColumn(3,	'City')

self.lc.InsertColumn(4,	'Land	Value')

self.lc.InsertColumn(5,	'Improvement	Value')

self.lc.InsertColumn(6,	'Total	Value')

Finally,	the	widgets	are	added	to	BoxSizer,	and	BoxSizer	is	applied	to	Panel.

10.	 Add	a	new	class	called	PageAddress.	This	class	will	define	the	content	for	the	tab
that	is	used	to	search	for	parcels	by	the	address.	Add	the	following	code:

class	PageAddress(wx.Panel):

				def	__init__(self,	parent):

								wx.Panel.__init__(self,	parent)

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								staticTxtStreetName	=	wx.StaticText(self,	-1,	"Street	Name")

								self.txtStreetName	=	wx.TextCtrl(self,	wx.ID_ANY,	"")

								staticTxtSubdivision	=	wx.StaticText(self,	-1,	"Subdivision")

								subdivisions	=	['Stone	Creek	Ranch',	'Cordillera',	

'Waterstone',	'Coveney	Ranch']

								self.comboBoxSub	=	wx.ComboBox(self,	-1,	size=(150,	-1),	

choices=subdivisions,	style=wx.CB_READONLY)

								btnOK	=	wx.Button(self,	1,	'Search')

								btnOK.Bind(wx.EVT_BUTTON,	self.OnOk,	id=1)

								self.lc	=	wx.ListCtrl(self,	-1,	style=wx.LC_REPORT)

								self.lc.Bind(wx.EVT_LIST_ITEM_SELECTED,	self.OnClick,	self.lc)

								self.lc.InsertColumn(0,	'Property	ID')

								self.lc.InsertColumn(1,	'Owner')

								self.lc.InsertColumn(2,	'Address')

								self.lc.InsertColumn(3,	'City')

								self.lc.InsertColumn(4,	'Land	Value')

								self.lc.InsertColumn(5,	'Improvement	Value')

								self.lc.InsertColumn(6,	'Total	Value')

								sizer.AddSpacer(10)	

								sizer.Add(staticTxtStreetName)

								sizer.Add(self.txtStreetName)

								sizer.AddSpacer(10)	

								sizer.Add(staticTxtSubdivision)

								sizer.Add(self.comboBoxSub)

								sizer.AddSpacer(10)	

								sizer.Add(btnOK)

								sizer.AddSpacer(25)

								sizer.Add(self.lc)

								self.SetSizer(sizer)

There	are	quite	a	few	similarities	between	the	PageAddress	class	and	the	PageOwner
class,	so	I	won’t	go	into	as	much	detail	in	the	code.	In	this	class,	we	created
StaticText	objects	for	the	street	number	and	street	name	along	with	the	subdivision.
Two	TextCtrl	objects	were	defined	to	capture	the	street	number	and	street	name
information	from	the	user.	A	ComboBox	object	was	also	created	and	populated	with
a	list	of	values.	The	following	code	illustrates	how	this	was	accomplished.	There	are
many	more	subdivisions	in	Kendall	County,	TX,	than	the	four	that	were	defined	in
this	list,	but	this	will	keep	things	simple	for	our	example	application.	The	rest	of	the
code	should	be	very	familiar	to	you	from	the	PageOwner	class.	It	simply	involves	the
creation	of	the	ListCtrl	widget	and	the	addition	of	all	the	widgets	to	BoxSizer:

subdivisions	=	['Stone	Creek	Ranch',	'Cordillera',	'Waterstone',	

'Coveney	Ranch']

comboBoxSub	=	wx.ComboBox(self,	-1,	size=(150,	-1),	

choices=subdivisions,	style=wx.CB_READONLY)

11.	 Next,	we’ll	create	the	PageID	class	that	is	essentially	the	same	as	the	PageOwner
class,	so	we	won’t	spend	much	time	discussing	this	code	block.	Add	the	following
code:

class	PageID(wx.Panel):

				def	__init__(self,	parent):

								wx.Panel.__init__(self,	parent)

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								staticTxtID	=	wx.StaticText(self,	-1,	"Unique	Identifier")

								self.txtID	=	wx.TextCtrl(self,	wx.ID_ANY,	"")

								btnOK	=	wx.Button(self,	1,	'Search')

								btnOK.Bind(wx.EVT_BUTTON,	self.OnOk,	id=1)

								self.lc	=	wx.ListCtrl(self,	-1,	style=wx.LC_REPORT)

								self.lc.Bind(wx.EVT_LIST_ITEM_SELECTED,	self.OnClick,	self.lc)

								self.lc.InsertColumn(0,	'Property	ID')

								self.lc.InsertColumn(1,	'Owner')

								self.lc.InsertColumn(2,	'Address')

								self.lc.InsertColumn(3,	'City')

								self.lc.InsertColumn(4,	'Land	Value')

								self.lc.InsertColumn(5,	'Improvement	Value')

								self.lc.InsertColumn(6,	'Total	Value')

						

								sizer.AddSpacer(10)	

								sizer.Add(staticTxtID)

								sizer.Add(self.txtID)

								sizer.AddSpacer(10)	

								sizer.Add(btnOK)

								sizer.AddSpacer(25)

								sizer.Add(self.lc)

								self.SetSizer(sizer)

The	only	difference	between	the	PageID	and	PageOwner	class	is	that,	in	the	PageID
class,	we	are	capturing	a	unique	property	identifier	rather	than	an	owner	name.

12.	 The	last	class	that	we’ll	create	is	the	PageAdvanced	class.	While	there	is	more	code	in
this	class	than	the	others,	there	shouldn’t	be	any	new	widgets.	Add	the	following
code	block:

class	PageAdvanced(wx.Panel):

					def	__init__(self,	parent):

								wx.Panel.__init__(self,	parent)

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								sizer.AddSpacer(10)	

								inputOneSizer			=	wx.BoxSizer(wx.HORIZONTAL)

								inputTwoSizer			=	wx.BoxSizer(wx.HORIZONTAL)

								inputThreeSizer	=	wx.BoxSizer(wx.HORIZONTAL)

								inputFourSizer	=	wx.BoxSizer(wx.HORIZONTAL)

								btnSizer								=	wx.BoxSizer(wx.HORIZONTAL)

								staticTxtOwner	=	wx.StaticText(self,	-1,	"Owner	Name")

								self.txtOwner	=	wx.TextCtrl(self,	wx.ID_ANY,	"")

								staticTxtStreetName	=	wx.StaticText(self,	-1,	"Street	Name")

								self.txtStreetName	=	wx.TextCtrl(self,	wx.ID_ANY,	"")

								inputOneSizer.Add(staticTxtOwner)

								inputOneSizer.Add(self.txtOwner)

								inputOneSizer.AddSpacer(10)	

								inputOneSizer.Add(staticTxtStreetName)

								inputOneSizer.Add(self.txtStreetName)

								staticTxtSubdivision	=	wx.StaticText(self,	-1,	"Subdivision")

								subdivisions	=	['Stone	Creek	Ranch',	'Cordillera',	

'Waterstone',	'Coveney	Ranch']

								self.comboBoxSub	=	wx.ComboBox(self,	-1,	size=(150,	-1),	

choices=subdivisions,	style=wx.CB_READONLY)

								inputTwoSizer.Add(staticTxtSubdivision)

								inputTwoSizer.Add(self.comboBoxSub)

								staticTxtMinVal	=	wx.StaticText(self,	-1,	"Minimum	Value")

								self.txtMinVal	=	wx.TextCtrl(self,	wx.ID_ANY,	"")

								staticTxtMaxVal	=	wx.StaticText(self,	-1,	"Maximum	Value")

								self.txtMaxVal	=	wx.TextCtrl(self,	wx.ID_ANY,	"")

								inputThreeSizer.Add(staticTxtMinVal)

								inputThreeSizer.Add(self.txtMinVal)

								inputThreeSizer.AddSpacer(10)	

								inputThreeSizer.Add(staticTxtMaxVal)

								inputThreeSizer.Add(self.txtMaxVal)

								btnOK	=	wx.Button(self,	1,	'Search')

								btnOK.Bind(wx.EVT_BUTTON,	self.OnOk,	id=1)

								btnSizer.Add(btnOK)

								self.lc	=	wx.ListCtrl(self,	-1,	style=wx.LC_REPORT)

								self.lc.Bind(wx.EVT_LIST_ITEM_SELECTED,	self.OnClick,	self.lc)

								self.lc.InsertColumn(0,	'Property	ID')

								self.lc.InsertColumn(1,	'Owner')

								self.lc.InsertColumn(2,	'Address')

								self.lc.InsertColumn(3,	'City')

								self.lc.InsertColumn(4,	'Land	Value')

								self.lc.InsertColumn(5,	'Improvement	Value')

								self.lc.InsertColumn(6,	'Total	Value')

								inputFourSizer.Add(self.lc)

								sizer.Add(inputOneSizer)

								sizer.AddSpacer(25)

								sizer.Add(inputTwoSizer)

								sizer.AddSpacer(25)

								sizer.Add(inputThreeSizer)

								sizer.AddSpacer(25)

								sizer.Add(btnSizer)

								sizer.AddSpacer(25)

								sizer.Add(inputFourSizer)

								self.SetSizer(sizer)

13.	 Return	to	the	NotebookParcel	class.	Add	the	following	code	block.	This	code	block
creates	new	instances	of	the	PageOwner,	PageAddress,	PageID,	and	PageAdvanced
classes	and	adds	them	to	NotebookParcel.	Remember	that	NotebookParcel	is	a
tabbed	structure,	and	each	of	the	Page	classes	is	an	individual	tab	in	the	container.
The	second	parameter	passed	into	the	AddPage()	function	defines	the	text	that	should
be	displayed	in	the	tab:

class	NotebookParcel(wx.Notebook):

				def	__init__(self,	parent):

								wx.Notebook.__init__(self,	parent,	id=wx.ID_ANY,	

style=wx.BK_DEFAULT)

				

								tabOwner	=	PageOwner(self)

								self.AddPage(tabOwner,	"Search	By	Owner")

								tabAddress	=	PageAddress(self)

								self.AddPage(tabAddress,	"Search	by	Address")

								tabID	=	PageID(self)

							self.AddPage(tabID,	"Search	by	ID")

							tabAdvanced	=	PageAdvanced(self)

							self.AddPage(tabAdvanced,	"Advanced	Search")

14.	 At	this	point,	we	have	defined	the	basic	look	of	the	interface.	Now,	we	need	to	return
to	each	of	the	Page	classes	and	add	the	code	that	responds	to	the	events	that	we	have
bound.	Find	the	PageOwner	class,	then	the	lines	of	code	that	you	see	here:

btnOK	=	wx.Button(self,	1,	'Search')

btnOK.Bind(wx.EVT_BUTTON,	self.OnOk,	id=1)

self.lc	=	wx.ListCtrl(self,	-1,	style=wx.LC_REPORT)

self.lc.Bind(wx.EVT_LIST_ITEM_SELECTED,	self.OnClick,	self.lc)

In	the	first	highlighted	line	of	code,	we	bind	the	EVT_BUTTON	event	to	a	method	called
OnOk.	This	basically	means	that,	when	the	button	is	clicked	on	in	the	interface,	a
method	called	OnOK	will	be	executed.	The	second	highlighted	line	of	code	binds	the
EVT_LIST_ITEM_SELECTED	event	to	a	method	called	OnClick.	This	means	that,	when
the	user	clicks	on	or	selects	a	row	in	the	ListCtrl	widget,	the	OnClick	method	will
be	executed.	The	OnOk	and	OnClick	methods	both	need	to	be	written.

15.	 Add	a	new	method	called	OnOK()	to	the	PageOwner	class.	It	should	line	up	exactly
with	the	__init__	method:

def	OnOk(self,	event):

16.	 Add	the	following	code	block	to	the	OnOk	method,	and	then	we’ll	discuss	what	the
code	accomplishes:

def	OnOk(self,	event):

								if	self.txtOwner.GetValue():

												owner	=	self.txtOwner.GetValue().upper()

												queryString	=		"file_as_na	LIKE	\'%"	+	owner	+	"%\'"

												self.lc.DeleteAllItems()

								

												with	arcpy.da.SearchCursor("Kendall_Parcels.shp",	

("PROP_ID","file_as_na",	"situs_num"	,	"situs_st_1",	"situs_st_2",	

"situs_city",	"land_val",	"imprv_val",	"market"),	queryString)	as	

cursor:

																flag	=	False

																for	row	in	cursor:

																				flag	=	True

																				pos	=	self.lc.InsertStringItem(0,	str(row[0]))

																				self.lc.SetStringItem(pos,1,row[1])

																				self.lc.SetStringItem(pos,2,row[2]	+	"	"	+	row[3]	+	

"	"	+	row[4])

																				self.lc.SetStringItem(pos,3,row[5])

																				self.lc.SetStringItem(pos,4,str(row[6]))

																				self.lc.SetStringItem(pos,5,str(row[7]))

																				self.lc.SetStringItem(pos,6,str(row[8]))

								

																if	not	flag:

																				pythonaddins.MessageBox("No	records	found",	"Query	

Error",	0)

								else:

												pythonaddins.MessageBox("Enter	an	owner	name	or	portion	of	

a	name",	"Query	Error",	0)

This	code	block	will	execute	any	time	a	user	clicks	on	the	Search	button	in	the
Search	by	Owner	tab.	The	code	first	retrieves	the	input	from	the	txtOwner	widget
and	converts	the	string	to	uppercase.	The	data	in	the	Kendall_Parcels	shapefile	for
Kendall	County	is	stored	in	uppercase	for	text	data	fields.	In	the	second	line	of	the
following	code,	note	that	the	Kendall_Parcels	shapefile	uses	the	LIKE	clause	along
with	wildcard	(&)	characters	to	define	the	WHERE	clause	that	will	be	used	to	search	for
parcels:

owner	=	self.txtOwner.GetValue().upper()

queryString	=		"file_as_na	LIKE	\'%"	+	owner	+	"%\'"

The	DeleteAllItems()	function	is	then	called	on	the	ListCtrl	object	to	remove	any
existing	records	for	past	searches.

Next,	a	SearchCursor	object	is	created	against	the	Kendall_Parcels	shapefile.	In
creating	the	SearchCursor	object,	the	SearchCursor()	function	is	called,	with	the
Kendall_Parcels.shp	shapefile	passed	in	as	the	first	parameter,	and	a	tuple
containing	the	list	of	fields	to	be	returned	is	passed	as	the	second	parameter.	A	for
loop	is	then	used	to	loop	through	the	contents	of	the	cursor,	and	the	ListCtrl	widget
is	populated:

with	arcpy.da.SearchCursor("Kendall_Parcels.shp",	

("PROP_ID","file_as_na",	"situs_num"	,	"situs_st_1",	"situs_st_2",	

"situs_city",	"land_val",	"imprv_val",	"market"),	queryString)	as	

cursor:

																flag	=	False

																for	row	in	cursor:

																				flag	=	True

																				pos	=	self.lc.InsertStringItem(0,	str(row[0]))

																				self.lc.SetStringItem(pos,1,row[1])

																				self.lc.SetStringItem(pos,2,row[2]	+	"	"	+	row[3]	+	

"	"	+	row[4])

																				self.lc.SetStringItem(pos,3,row[5])

																				self.lc.SetStringItem(pos,4,str(row[6]))

																				self.lc.SetStringItem(pos,5,str(row[7]))

																				self.lc.SetStringItem(pos,6,str(row[8]))

								

																if	not	flag:

																				pythonaddins.MessageBox("No	records	found",	"Query	

Error",	0)

17.	 Add	a	new	method	to	the	PageOwner	class	called	OnClick.	The	OnClick	method	will
execute	any	time	a	use	clicks	on	a	populated	row	in	the	ListCtrl	widget.	Add	the
following	code	block,	and	then	we’ll	discuss	how	it	works:

def	OnClick(self,event):

								prop_id	=	event.GetText()

								try:

												mxd	=	arcpy.mapping.MapDocument("CURRENT")

												

												

arcpy.MakeFeatureLayer_management("Kendall_Parcels.shp","parcels_lyr")

												arcpy.SelectLayerByAttribute_management("parcels_lyr",	

"NEW_SELECTION",	"PROP_ID	=	"	+	prop_id)

												result	=	arcpy.GetCount_management("parcels_lyr")

												count	=	int(result.getOutput(0))

												df	=	arcpy.mapping.ListDataFrames(mxd)[0]

												layer	=	arcpy.mapping.ListLayers(mxd,	"parcels_lyr",	df)[0]

												df.extent	=	layer.getSelectedExtent()

												

webbrowser.open_new('http://esearch.kendallad.org/Property/View/'	+	

prop_id)

												

								except	Exception	as	e:

												pythonaddins.MessageBox(e.message,	"Query	Error",	0)

The	prop_id	=	event.GetText()	line	of	code	retrieves	the	property	ID	from	the
selected	record	in	ListCtrl.	Inside	the	try	statement,	an	instance	of	the	current	map
document	is	retrieved,	and	a	feature	layer	is	created	with	the	lines	of	code	you	see
here:

mxd	=	arcpy.mapping.MapDocument("CURRENT")

arcpy.MakeFeatureLayer_management("Kendall_Parcels.shp","parcels_lyr")

The	SelectLayerByAttribute	tool	is	then	executed	against	the	feature	layer	with	a
WHERE	clause	set	to	the	property	ID	retrieved	from	ListCtrl.	This	will	select	a	feature
from	the	parcels_lyr	feature	layer:

arcpy.SelectLayerByAttribute_management("parcels_lyr",	"NEW_SELECTION",	

"PROP_ID	=	"	+	prop_id)

If	a	matching	record	is	found,	zoom	in	to	the	extent	of	the	selected	feature:

df	=	arcpy.mapping.ListDataFrames(mxd)[0]

layer	=	arcpy.mapping.ListLayers(mxd,	"parcels_lyr",	df)[0]

df.extent	=	layer.getSelectedExtent()

Finally,	open	a	web	browser	and	the	Kendall	County	Appraisal	District	web	page
that	contains	information	about	this	particular	property	at
webbrowser.open_new('http://esearch.kendallad.org/Property/View/'	+

prop_id).

18.	 The	OnClick	and	OnOk	methods	for	the	PageID	class	are	very	similar	to	the
PageOwner	class.	The	only	difference	is	that	we’re	now	querying	by	the	property	ID

instead	of	the	owner	name.	Add	the	following	code	blocks	to	the	PageID	class	to
implement	these	event	handlers:

def	OnClick(self,event):

				prop_id	=	event.GetText()

				try:

								mxd	=	arcpy.mapping.MapDocument("CURRENT")

								

arcpy.MakeFeatureLayer_management("Kendall_Parcels.shp","parcels_lyr")

								arcpy.SelectLayerByAttribute_management("parcels_lyr",	

"NEW_SELECTION",	"PROP_ID	=	"	+	prop_id)

								result	=	arcpy.GetCount_management("parcels_lyr")

								count	=	int(result.getOutput(0))

								df	=	arcpy.mapping.ListDataFrames(mxd)[0]

								layer	=	arcpy.mapping.ListLayers(mxd,	"parcels_lyr",	df)[0]

								df.extent	=	layer.getSelectedExtent()

								

webbrowser.open_new('http://esearch.kendallad.org/Property/View/'	+	

prop_id)

				except	Exception	as	e:

								pythonaddins.MessageBox(e.message,	"Query	Error",	0

def	OnOk(self,	event):

				if	self.txtID.GetValue():

								id	=	self.txtID.GetValue()

								queryString	=		"PROP_ID	=	"	+	id

								self.lc.DeleteAllItems()

								with	arcpy.da.SearchCursor("Kendall_Parcels.shp",	

("PROP_ID","file_as_na",	"situs_num"	,	"situs_st_1",	"situs_st_2",	

"situs_city",	"land_val",	"imprv_val",	"market"),	queryString)	as	

cursor:

												flag	=	False

												for	row	in	cursor:

																flag	=	True

																pos	=	self.lc.InsertStringItem(0,	str(row[0]))

																self.lc.SetStringItem(pos,1,row[1])

																self.lc.SetStringItem(pos,2,row[2]	+	"	"	+	row[3]	+	"	"	

+	row[4])

																self.lc.SetStringItem(pos,3,row[5])

																self.lc.SetStringItem(pos,4,str(row[6]))

																self.lc.SetStringItem(pos,5,str(row[7]))

																self.lc.SetStringItem(pos,6,str(row[8]))

												if	not	flag:

																pythonaddins.MessageBox("No	records	found",	"Query	

Error",	0)

				else:

								pythonaddins.MessageBox("Enter	an	ID",	"Query	Error",	0)

19.	 It’s	time	to	implement	the	event	handlers	for	the	PageAddress	class.	Find	the

PageAddress	class	in	your	code.	First,	we’ll	implement	the	OnOk()	method.	Add	the
following	code	block,	and	then	we’ll	discuss	how	it	works:

def	OnOk(self,	event):

								strStreetName	=	self.txtStreetName.GetValue().upper()

								strSubdivision	=	self.comboBoxSub.GetValue().upper()

								if	strStreetName	or	strSubdivision:

												if	strStreetName	and	not	strSubdivision:

																queryString	=		"situs_st_1	LIKE	\'%"	+	strStreetName	+	

"%\'"

												elif	strSubdivision	and	not	strStreetName:

																queryString	=		"DESC_	LIKE	\'%"	+	strSubdivision	+	

"%\'"

												elif	strSubdivision	and	strStreetName:

																queryString	=		"DESC_	LIKE	\'%"	+	strSubdivision	+	"%\'	

and	situs_st_1	LIKE	\'%"	+	strStreetName	+	"%\'"

																

												self.lc.DeleteAllItems()

												with	arcpy.da.SearchCursor("Kendall_Parcels.shp",	

("PROP_ID","file_as_na",	"situs_num"	,	"situs_st_1",	"situs_st_2",	

"situs_city",	"land_val",	"imprv_val",	"market"),	queryString)	as	

cursor:

																flag	=	False

																for	row	in	cursor:

																				flag	=	True

																				pos	=	self.lc.InsertStringItem(0,	str(row[0]))

																				self.lc.SetStringItem(pos,1,row[1])

																				self.lc.SetStringItem(pos,2,row[2]	+	"	"	+	row[3]	+	

"	"	+	row[4])

																				self.lc.SetStringItem(pos,3,row[5])

																				self.lc.SetStringItem(pos,4,str(row[6]))

																				self.lc.SetStringItem(pos,5,str(row[7]))

																				self.lc.SetStringItem(pos,6,str(row[8]))

								

																if	not	flag:

																				pythonaddins.MessageBox("No	records	found",	"Query	

Error",	0)

								else:

												pythonaddins.MessageBox("Enter	a	street	name	or	

subdivision",	"Query	Error",	0)

The	first	two	lines	in	the	following	code	capture	the	values	(if	any)	entered	by	the
user:

strStreetName	=	self.txtStreetName.GetValue().upper()

strSubdivision	=	self.comboBoxSub.GetValue().upper()

The	next	code	block,	seen	as	follows,	defines	the	SQL	query	that	will	be	used	when
creating	the	SearchCursor	object	against	the	Kendall_Parcels	shapefile:

if	strStreetName	or	strSubdivision:

												if	strStreetName	and	not	strSubdivision:

																queryString	=		"situs_st_1	LIKE	\'%"	+	strStreetName	+	

"%\'"

												elif	strSubdivision	and	not	strStreetName:

																queryString	=		"DESC_	LIKE	\'%"	+	strSubdivision	+	

"%\'"

												elif	strSubdivision	and	strStreetName:

																queryString	=		"DESC_	LIKE	\'%"	+	strSubdivision	+	"%\'	

and	situs_st_1	LIKE	\'%"	+	strStreetName	+	"%\'"

The	query	will	be	created	based	on	the	input	provided	by	the	user.	It	is	not	required
that	both	the	street	name	and	subdivision	be	defined.	The	user	can	provide	the	input
for	the	street	name	or	the	subdivision,	or	they	can	provide	both.

The	last	block	of	code	should	look	familiar	because	it’s	essentially	the	same	code
block	created	in	the	OnOk()	method	for	the	PageOwner	and	PageID	classes:

with	arcpy.da.SearchCursor("Kendall_Parcels.shp",	

("PROP_ID","file_as_na",	"situs_num"	,	"situs_st_1",	"situs_st_2",	

"situs_city",	"land_val",	"imprv_val",	"market"),	queryString)	as	

cursor:

																flag	=	False

																for	row	in	cursor:

																				flag	=	True

																				pos	=	self.lc.InsertStringItem(0,	str(row[0]))

																				self.lc.SetStringItem(pos,1,row[1])

																				self.lc.SetStringItem(pos,2,row[2]	+	"	"	+	row[3]	+	

"	"	+	row[4])

																				self.lc.SetStringItem(pos,3,row[5])

																				self.lc.SetStringItem(pos,4,str(row[6]))

																				self.lc.SetStringItem(pos,5,str(row[7]))

																				self.lc.SetStringItem(pos,6,str(row[8]))

								

																if	not	flag:

																				pythonaddins.MessageBox("No	records	found",	"Query	

Error",	0)

20.	 Finally,	add	the	OnClick()	method	to	PageAddress.	The	code	should	be	exactly	the
same	as	the	OnClick()	event	for	the	PageOwner	and	PageID	classes.	Refer	to	the
previous	steps,	if	you	are	unsure	about	the	code.

21.	 Finally,	we’ll	add	the	OnOk()	and	OnClick()	event	handlers	to	the	PageAdvanced
class.	Find	the	class	now	and	add	the	OnOk()	code	block	seen	here:

def	OnOk(self,	event):

								queryString	=	""

								flagOwner	=	False

								if	self.txtOwner.GetValue():

												flagOwner	=	True

												owner	=	self.txtOwner.GetValue().upper()

												queryString	=		"file_as_na	LIKE	\'%"	+	owner	+	"%\'"

								flagStreet	=	False

								if	self.txtStreetName.GetValue():

												flagStreet	=	True

												strStreetName	=	self.txtStreetName.GetValue().upper()

												if	flagOwner:

																queryString	=	queryString	+	"	AND	"	+	"situs_st_1	LIKE	

\'%"	+	strStreetName	+	"%\'"

												else:

																queryString	=	"situs_st_1	LIKE	\'%"	+	strStreetName	+	

"%\'"

								if	self.comboBoxSub.GetValue():

												strSubdivision	=	self.comboBoxSub.GetValue().upper()

												if	flagOwner	or	flagStreet:

																queryString	=	queryString	+	"	AND	"	+	"DESC_	LIKE	\'%"	

+	strSubdivision	+	"%\'"

												else:

																queryString	=	"DESC_	LIKE	\'%"	+	strSubdivision	+	"%\'"

								if	self.txtMinVal.GetValue():

												numMinVal	=	long(self.txtMinVal.GetValue())

												queryString	=	queryString	+	"	AND	market	>	"	+	

str(numMinVal)

								if	self.txtMaxVal.GetValue():

												numMaxVal	=	long(self.txtMaxVal.GetValue())

												queryString	=	queryString	+	"	AND	market	<	"	+	

str(numMaxVal)

								if	not	queryString:

												pythonaddins.MessageBox("Enter	one	or	more	search	

parameters",	"Query	Error",	0)

								else:

												self.lc.DeleteAllItems()

								

												with	arcpy.da.SearchCursor("Kendall_Parcels.shp",	

("PROP_ID","file_as_na",	"situs_num"	,	"situs_st_1",	"situs_st_2",	

"situs_city",	"land_val",	"imprv_val",	"market"),	queryString)	as	

cursor:

																flag	=	False

																for	row	in	cursor:

																				flag	=	True

																				pos	=	self.lc.InsertStringItem(0,	str(row[0]))

																				self.lc.SetStringItem(pos,1,row[1])

																				self.lc.SetStringItem(pos,2,row[2]	+	"	"	+	row[3]	+	

"	"	+	row[4])

																				self.lc.SetStringItem(pos,3,row[5])

																				self.lc.SetStringItem(pos,4,str(row[6]))

																				self.lc.SetStringItem(pos,5,str(row[7]))

																				self.lc.SetStringItem(pos,6,str(row[8]))

																if	not	flag:

																				pythonaddins.MessageBox("No	records	found",	"Query	

Error",	0)

This	is	the	largest	of	the	OnOk()	methods,	primarily	due	to	the	complexity	of	the
query.	The	following	block	of	code	builds	the	query	based	on	the	input	provided	or
not	provided	in	the	input	widgets.	The	code	starts	with	an	empty	string	assigned	to
the	queryString	variable.	Next,	if	the	user	has	provided	input	in	the	txtOwner
widget,	it	adds	a	SQL	statement	to	the	queryString	variable.	The	code	continues	to

build	the	SQL	statement	in	this	fashion	by	examining	the	content	of	each	user
interface	widget	and	adding	a	SQL	if	the	user	has	provided	an	input	value:

								queryString	=	""

								flagOwner	=	False

								if	self.txtOwner.GetValue():

												flagOwner	=	True

												owner	=	self.txtOwner.GetValue().upper()

												queryString	=		"file_as_na	LIKE	\'%"	+	owner	+	"%\'"

								flagStreet	=	False

								if	self.txtStreetName.GetValue():

												flagStreet	=	True

												strStreetName	=	self.txtStreetName.GetValue().upper()

												if	flagOwner:

																queryString	=	queryString	+	"	AND	"	+	"situs_st_1	LIKE	

\'%"	+	strStreetName	+	"%\'"

												else:

																queryString	=	"situs_st_1	LIKE	\'%"	+	strStreetName	+	

"%\'"

								if	self.comboBoxSub.GetValue():

												strSubdivision	=	self.comboBoxSub.GetValue().upper()

												if	flagOwner	or	flagStreet:

																queryString	=	queryString	+	"	AND	"	+	"DESC_	LIKE	\'%"	

+	strSubdivision	+	"%\'"

												else:

																queryString	=	"DESC_	LIKE	\'%"	+	strSubdivision	+	"%\'"

								if	self.txtMinVal.GetValue():

												numMinVal	=	long(self.txtMinVal.GetValue())

												queryString	=	queryString	+	"	AND	market	>	"	+	

str(numMinVal)

								if	self.txtMaxVal.GetValue():

												numMaxVal	=	long(self.txtMaxVal.GetValue())

												queryString	=	queryString	+	"	AND	market	<	"	+	

str(numMaxVal)

22.	 The	rest	of	the	code	in	the	OnOk()	method	is	exactly	the	same	as	the	other	classes.
23.	 Add	an	OnClick()	event	to	the	PageAdvanced	class,	which	is	the	same	as	the	other

classes.	Refer	to	the	previous	steps,	if	you	need	assistance.
24.	 Save	Interface.py.	We’ll	return	to	it	later	to	add	a	few	lines	of	code.

Creating	the	ArcGIS	Python	add-in
With	the	user	interface	complete	for	Parcel	Viewer,	we	need	a	way	to	display	the	dialog
box	for	the	user	input.	The	easiest	way	to	accomplish	this	in	ArcGIS	Desktop	is	to	tie	the
interface	to	an	ArcGIS	Python	Add-In	Wizard.	In	this	step,	we’ll	create	a	Button	add-in
that	will	display	the	user	interface	when	clicked	on:

1.	 In	Chapter	3,	Automating	the	Production	of	Map	Books	with	Data-Driven	Pages	and
ArcPy,	you	learned	how	to	use	the	ArcGIS	Python	Add-In	Wizard	to	create	add-
ins.	If	you	need	to	refresh	your	memory	on	this	topic,	refer	to	the	Exporting	the	map
series	with	ArcPy	Mapping	and	Automating	the	Production	of	Map	Books	with	Data-
Driven	Pages	and	the	ArcPy	section	in	the	same	chapter.

2.	 Create	a	folder	in	C:\ArcGIS_Blueprint_Python\ch6	called	ParcelViewer.	This	will
be	the	container	folder	for	the	Python	add-in.

3.	 Start	the	ArcGIS	Python	Add-In	Wizard	and	add	the	settings	shown	under	the
Project	Settings	tab	in	the	following	screenshot:

4.	 Click	on	the	Add-In	Contents	tab	and	create	a	new	Extension	with	the	properties
seen	in	the	following	screenshot.	Make	sure	you	click	on	the	startup	method:

5.	 Click	on	the	Save	button.
6.	 Create	a	new	Toolbar	with	the	properties	shown	in	the	following	screenshot:

7.	 Right-click	on	the	Parcel	Viewer	toolbar	and	create	a	new	Button	add-in	with	the
properties	shown	in	the	following	screenshot:

8.	 Click	on	the	Save	button.
9.	 Click	on	the	Open	Folder	button	to	display	the	contents	of	the	Add-In	Contents.
10.	 Inside	the	Install	folder	is	a	file	called	ParcelViewer_addin.py.	Open	this	file	in

your	Python	development	environment.	We’re	going	to	make	some	additions	and
changes	that	will	support	the	display	of	our	wxPython	user	interface.

11.	 The	code	in	this	file	should	appear	as	seen	in	the	following	code:

import	arcpy

import	pythonaddins

class	ParcelViewer(object):

				"""Implementation	for	ParcelViewerNew_addin.extension2	

(Extension)"""

				def	__init__(self):

								#	For	performance	considerations,	please	remove	all	unused	

methods	in	this	class.

								self.enabled	=	True

				def	startup(self):

								pass

class	ParcelViewerButton(object):

				"""Implementation	for	ParcelViewerNew_addin.button	(Button)"""

				def	__init__(self):

								self.enabled	=	True

								self.checked	=	False

				def	onClick(self):

								pass

12.	 Add	the	following	import	statements.	The	sys.path.append()	method	is	related	to
displaying	the	extension	on	startup:

import	os

import	sys

sys.path.append(os.path.dirname(__file__))

import	arcpy

import	pythonaddins

13.	 Make	the	following	changes	in	the	__init__	method	of	the	ParcelViewer	class:

class	ParcelViewer(object):

				"""Implementation	for	ParcelViewer_addin.extension	(Extension)"""

				def	__init__(self):

								#	For	performance	considerations,	please	remove	all	unused	

methods	in	this	class.

								self._wxApp	=	None

								self._enabled	=	None

				def	startup(self):

								try:

												from	wx	import	PySimpleApp

												self._wxApp	=	PySimpleApp()

												self._wxApp.MainLoop()

								except:

												pythonaddins.MessageBox("Error	starting	Parcel	Viewer	

extension.",	"Extension	Error",	0)

The	first	two	lines	of	code	in	the	__init__	function,	seen	as	follows,	set	a	couple	of
global	variables	that	we’ll	use	in	the	startup()	method:

self._wxApp	=	None

self._enabled	=	None

The	startup()	method	is	called	when	the	extension	is	first	loaded.	Inside	the
startup()	method	are	three	statements	that	are	important	to	loading	the	wxPython
user	interface	for	the	application:

from	wx	import	PySimpleApp

self._wxApp	=	PySimpleApp()

self._wxApp.MainLoop()

The	first	statement	imports	the	PySimpleApp	class.	The	second	statement	calls	the
constructor	for	PySimpleApp()	and	assigns	the	object	to	the	self._wxApp	variable.
PySimpleApp	is	the	main	application	class	for	a	wxPython	application.

14.	 Next,	add	the	following	code.	This	code	enables	or	disables	the	button	associated
with	the	add-in	when	the	extension	is	turned	on	or	off:

@property

def	enabled(self):

								"""Enable	or	disable	the		button	when	the	extension	is	turned	

on	or	off."""

								if	self._enabled	==	False:

												wxpybutton.enabled	=	False

								else:

												wxpybutton.enabled	=	True

								return	self._enabled

@enabled.setter

def	enabled(self,	value):

								"""Set	the	enabled	property	of	this	extension	when	the	

extension	is	turned	on	or	off	in	the	Extension	Dialog	of	ArcMap."""

								self._enabled	=	value

15.	 Now,	it’s	time	to	turn	our	attention	to	the	ParcelViewerButton	class.	Add	the
following	code	block:

class	ParcelViewerButton(object):

				"""Implementation	for	ParcelViewer_addin.button	(Button)"""

				_dlg	=	None

				@property

				def	dlg(self):

								"""Return	the	MainFrame	dialog."""

								if	self._dlg	is	None:

												from	Interface	import	MainFrame

												self._dlg	=	MainFrame()

								return	self._dlg

				

				def	__init__(self):

								self.enabled	=	True

								self.checked	=	False

This	code	block	creates	a	global	variable	called	_dlg	and	creates	a	property	called
dlg	that	will	be	used	to	display	the	user	interface	of	the	application	when	the	Add-In
button	is	clicked	on.	If	the	_dlg	variable	has	not	been	set,	the	property	will	import	the
MainFrame	class	created	in	the	Interface.py	file;	call	the	constructor	for	this	class,
and	assign	it	to	the	_dlg	variable.	Essentially,	this	is	what	triggers	the	display	of	the
user	interface.

16.	 Alter	the	onClick()	method	in	the	ParcelViewerButton	class,	as	shown	in	the
following	code:

def	onClick(self):

								try:

												self.dlg.Show(True)

								except	Exception	as	e:

												pythonaddins.MessageBox(e.message,	"Error",	0)

17.	 The	self.dlg.Show(True)	method	sets	the	dlg	property	and	calls	the	Show()	method
on	the	MainFrame	class.

18.	 Save	the	ParcelViewer_addin.py	file.

19.	 If	required,	open	Interface.py	in	your	Python	editor.
20.	 Find	the	MainFrame	class	and	add	the	following	code:

class	MainFrame(wx.Frame):

				def	__init__(self):

								wx.Frame.__init__(self,	None,	title="Search	Parcels",size=

(600,400),style=wx.DEFAULT_FRAME_STYLE	&	~wx.MAXIMIZE_BOX	^	

wx.RESIZE_BORDER)

								self.Bind(wx.EVT_CLOSE,	self.OnClose)

								#	Here	we	create	a	panel	and	a	notebook	on	the	panel

								panel	=	wx.Panel(self)

								arcpy.env.workspace	=	

r"C:\ArcGIS_Blueprint_Python\data\Kendall"

	

								notebook	=	NotebookParcel(panel)

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								sizer.Add(notebook,	1,	wx.ALL|wx.EXPAND,	5)

				

								panel.SetSizer(sizer)

								self.Layout()

				def	OnClose(self,	event):

								"""Close	the	frame.	Do	not	use	destroy."""

								self.Show(False)

21.	 The	highlighted	code	creates	a	new	event	handler	for	the	EVT_CLOSE	event.	This
event	is	triggered	when	the	application	is	closed.	The	handler	for	this	event	is	the
OnClose()	method.	This	method	simply	closes	the	user	interface.	Also,	there	is	a	line
of	code	that	sets	the	workspace	environment	variable	to	the	folder	that	contains	the
Kendall_Parcels	shapefile	used	in	the	application.

22.	 Save	Interface.py,	and	you	can	also	close	the	editor.
23.	 In	Windows	Explorer,	copy	the	Interface.py	file	found	in	the

C:\ArcGIS_Blueprint_Python\ch6	folder	to	the
C:\ArcGIS_Blueprint_Python\ch6\ParcelViewer\Install	folder,	which	contains
the	ParcelViewer_addin.py	file.

24.	 You	can	check	your	work	against	the	solution	file	by	going	to
C:\ArcGIS_Blueprint_Python\solutions\ch6	and	examining	the	Interface.py
and	ParcelViewer_addin.py	files.

25.	 In	the	C:\ArcGIS_Blueprint_Python\ch6\ParcelViewer	folder,	double-click	on	the
makeaddin.py	file	to	create	the	ParcelViewer.esriaddin	file.	This	file	will	be
created	in	the	same	directory.

26.	 Double-click	on	ParcelViewer.esriaddin	to	install	the	add-in.
27.	 Now,	it’s	time	to	test	the	application.	Open	ArcMap	and	load	the	ParcelViewer.mxd

file	found	in	the	C:\ArcGIS_Blueprint_Python\ch6	folder.	You	should	see	a	single
layer	called	Kendall_Parcels.	If	required,	navigate	to	Customize	|	Toolbars	|	Parcel
Viewer	to	display	the	add-in,	as	shown	in	the	following	screenshot:

28.	 Click	on	Parcel	Viewer	to	display	the	user	interface.	The	interface	will	look	like	the
following	screenshot:

29.	 In	the	Search	by	Owner	tab,	enter	Owner	Name	of	Cibolo	and	click	on	the	Search
button.	You	should	see	the	result	shown	in	the	following	screenshot:

30.	 Next,	click	on	one	of	the	returned	records	to	see	the	information	returned	in	a	web
browser	with	the	map	zoomed	to	the	parcel,	as	shown	in	the	following	screenshot:

31.	 The	same	basic	functionality	will	be	present	in	the	others	tabs.	The	following	are
some	screenshots	to	help	you	test	the	application	across	each	of	the	tabs.	Search	by
Address	is	seen	in	the	following	screenshot:

32.	 The	Search	by	ID	tab	is	seen	in	the	next	screenshot:

33.	 Finally,	the	Advanced	Search	functionality	is	seen	in	this	screenshot:

Summary
In	this	chapter,	you	learned	how	to	use	the	wxPython	library	to	build	a	graphical	user
interface	(GUI)	and	attach	it	to	an	ArcGIS	Desktop	add-in.	Now	that	you	know	the	basics
of	the	wxPython	library,	you	should	be	able	to	build	complex	user	interfaces	that	can
handle	any	sort	of	input	needs.	Without	a	library	such	as	wxPython,	your	options	to	create
user	interfaces	for	Python	applications	are	severely	limited.	Libraries	such	as	wxPython	go
a	long	way	toward	replacing	the	user	interface	functionality	traditionally	limited	to	the	use
of	ArcObjects	with	.NET.

In	the	next	chapter,	you	will	learn	how	to	create	demographic	reports	using	the	ArcGIS
REST	API,	ArcPy,	and	GeoEnrichment	Service	for	retail	site	selection.

Chapter	7.	Using	Python	with	the	ArcGIS
REST	API	and	the	GeoEnrichment
Service	for	Retail	Site	Selection
The	ArcGIS	REST	API	provides	access	to	a	wide	variety	of	web	services,	including
ready-to-use	ArcGIS	Online	services	hosted	by	Esri,	and	services	you	or	other
organizations	have	published.	Hosted	ArcGIS	Online	services	include	basemaps,
geocoding	and	place	search,	directions	and	routing,	demographic	and	lifestyle	attributes,
spatial	analysis,	and	elevation	analysis.	In	this	chapter,	the	GeoEnrichment	service	that
provides	demographic	and	lifestyle	information	will	be	queried	with	the	ArcGIS	REST
API	through	the	Python	requests	module	in	support	of	a	site-selection	application.

The	application	built	in	this	chapter	will	support	the	site-selection	process	for	a	new	coffee
store	in	Denver,	CO.	Specifically,	the	application	will	include	a	tool	to	identify	census
block	groups	that	meet	general	age	and	income-related	variables	and	that	are	outside	the
trade	area	of	competing	stores.	A	second	tool	will	allow	the	analyst	to	identify	specific
locations	within	these	selected	census	block	groups	as	sites	for	potential	new	coffee	stores.
Finally,	the	last	tool	we’ll	build	in	this	chapter	will	attach	lifestyle	expenditure	information
to	each	of	the	potential	stores	by	querying	the	GeoEnrichment	service.

In	this	chapter,	we	will	cover	the	following	topics:

Accessing	the	GeoEnrichment	service	for	demographic	and	lifestyle	information
Using	the	ArcGIS	REST	API	with	the	Python	requests	module
Creating	a	custom	tool	that	allows	the	end	user	to	interactively	define	new	point
locations
Attaching	demographic	information	to	features	using	the	ArcPy	data	access	module

Design
The	design	of	this	application	will	include	the	creation	of	three	custom	tools	inside	an
ArcGIS	Desktop	Python	toolbox.	The	first	tool,	Census	Block	Group	Selection,	will
query	an	existing	census	block	group	layer	to	find	suitable	areas	that	meet	the	income	and
population	characteristics	defined	by	the	tool.	It	will	also	remove	any	census	block	groups
from	consideration	if	they	are	within	the	boundaries	of	the	trade	area	of	an	existing,
competing	coffee	shop.	The	second	tool,	Potential	Stores,	will	be	an	interactive	tool	that
will	allow	the	end	user	to	define	point	locations	for	potential	new	coffee	stores	within	the
boundaries	identified	with	the	Census	Block	Group	Selection	tool.	The	final	tool,	Enrich
Potential	Stores,	will	take	the	stores	defined	by	the	Potential	Stores	tool,	pass	them	to
the	GeoEnrichment	service,	and	take	the	lifestyle	information	returned	by	the	service	and
write	it	back	to	the	potential	store	location	layer.	The	following	figure	shows	how	these
tools	work	with	ArcGIS	Desktop:

Let’s	get	started	and	build	the	application.

Creating	the	Census	Block	Group
selection	tool
In	this	step,	you’ll	create	the	GeoEnrichment	Python	toolbar	and	Census	Block	Group
Initial	Selection	tool.	The	GeoEnrichment	toolbar	will	serve	as	the	container	for	all	the
three	tools	that	will	be	built	in	this	chapter.	The	tool	that	will	be	created	in	this	section	is
the	Census	Block	Group	Initial	Selection	tool.	This	tool	is	designed	to	create	an	initial
selection	set	of	census	block	groups	that	meet	the	average	household	income	and	the
percentage	of	the	population	between	the	ages	of	20-50,	which	is	the	criteria	defined	by
the	user.

The	user	interface	for	the	tool	will	appear	as	shown	in	the	following	screenshot:

After	creating	the	initial	selection	set	of	census	block	groups	that	match	these	criteria,	the
tool	will	then	remove	any	census	block	groups	that	intersect	the	half-mile	buffer	zone	of
an	existing	coffee	shop.	Finally,	the	tool	will	copy	the	remaining	census	block	group
features	to	an	output	feature	class.	These	census	block	groups	form	the	initial	geographic
boundaries	that	have	been	determined	to	meet	our	criteria	for	a	new	coffee	establishment.

Follow	these	steps	to	create	the	Census	Block	Group	Initial	Selection	tool:

1.	 Open	ArcMap	and	display	the	ArcCatalog	pane.	In	the	Toolboxes	folder,	under	My
Toolboxes,	create	a	new	Python	Toolbox	and	call	it	GeoEnrichment.pyt.

2.	 Open	the	GeoEnrichment.mxd	file	in	ArcMap	and	spend	some	time	examining	the
data.	In	addition	to	a	basemap,	the	map	document	includes	a	layer	called	American
Community	Survey	(ACS)	that	contains	demographic	and	socio-economic	data	by
the	census	block	group.	Also	included	are	layers	for	competing	coffee	shops	in	the
Denver	area,	along	with	a	layer	containing	half-mile	buffers	for	each	store,	street,	and
city	boundary	as	well	as	a	layer	that	will	contain	the	results	of	this	tool,	called
CensusBlockGroupResults.

3.	 Open	the	code	for	the	toolbox	in	your	Python	development	environment.
4.	 Rename	the	Tool	class	CensusBlockGroupSelection.	Also,	update	the	self.label

and	self.description	properties,	as	shown	in	the	following	code:

class	CensusBlockGroupSelection(object):

				def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Census	Block	Group	Initial	Selection"

								self.description	=	"Performs	the	initial	selection	of	

candidates"

5.	 Add	the	tool	to	the	self.tools	list	in	the	Toolbox	class:

self.tools	=	[CensusBlockGroupSelection]

6.	 Add	import	statements	at	the	top	of	your	script	for	the	requests,	arcpy,
arcpy.mapping,	and	json	modules.	You	should	already	have	the	requests	module
installed	from	a	previous	chapter,	but	if	not,	you’ll	want	to	install	this	module	before
continuing:

import	arcpy

import	arcpy.mapping	as	mapping

import	requests

import	json

7.	 Next,	add	the	input	parameters	for	the	tool.	This	tool	will	include	two	parameters.
Both	parameters	will	be	numeric	values.	The	socio-economics	of	high-end	retail
coffee	establishments	indicate	that	we	need	to	target	individuals	with	high	incomes
and	people	between	the	ages	of	20-50.	The	first	parameter	will	capture	a	value
indicating	the	average	household	income,	and	the	second	will	capture	the	percentage
of	the	population	that	should	be	between	the	ages	we	are	targeting.	Define	the	default
values	for	each	using	the	Parameter.value	property.	In	the	getParameterInfo()
method,	add	the	following	code:

def	getParameterInfo(self):

				param0	=	arcpy.Parameter(displayName	=	"Average	Household	Income	

Greater	Than",	\

																				name="avgHHInc",	\

																				datatype="GPLong",	\

																				parameterType="Required",\

																				direction="Input")

				param0.value	=	75000

				param1	=	arcpy.Parameter(displayName	=	"20-50	Year	Old	Population	

Percentage	Greater	Than",	\

																				name="percPop",	\

																				datatype="GPLong",\

																				parameterType="Required",\

																				direction="Input")

				param1.value	=	50

				params	=	[param0,	param1]

				return	params

8.	 Next,	find	the	execute()	method	and	capture	the	input	parameters	that	will	be	passed
into	the	tool,	as	shown	in	the	following	code:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								avgHHInc	=	parameters[0].valueAsText

								percPop	=	parameters[1].valueAsText

9.	 Set	the	following	environment	variable,	which	will	set	the	current	workspace	and
allow	the	script	to	overwrite	an	existing	file:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								avgHHInc	=	parameters[0].valueAsText

							percPop	=	parameters[1].valueAsText

							arcpy.env.overwriteOutput	=	True

							arcpy.env.workspace	=	r"C:\ArcGIS_Blueprint_Python\data\Denver"

10.	 Create	the	try/except	block:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								avgHHInc	=	parameters[0].valueAsText

								percPop	=	parameters[1].valueAsText

								arcpy.env.overwriteOutput	=	True

								arcpy.env.workspace	=	r"C:\ArcGIS_Blueprint_Python\data\Denver"

								try:

					

								except	Exception	as	e:

												arcpy.AddMessage(e.message)

11.	 Find	the	ACS	layer	that	contains	the	census	block	group	boundaries	containing	the
demographic	and	socio-economic	data:

try:

				mxd	=	mapping.MapDocument("CURRENT")

				for	lyr	in	mapping.ListLayers(mxd):

								if	lyr.name	==	"ACS":

except	Exception	as	e:

				arcpy.AddMessage(e.message)

12.	 Select	all	census	block	groups	where	the	population	in	an	age	range	of	20-50	is
greater	than	the	value	indicated	by	the	user.	Save	the	selection	set	to	a	FeatureLayer
object	called	acs_layer:

mxd	=	mapping.MapDocument("CURRENT")

for	lyr	in	mapping.ListLayers(mxd):

				if	lyr.name	==	"ACS":

								arcpy.MakeFeatureLayer_management(lyr,"acs_lyr")

								#select	features	where	20-50	population	percentage	is	greater	

than

								arcpy.SelectLayerByAttribute_management("acs_lyr",	

"NEW_SELECTION",	"Pop20_50_P	>	"	+	percPop)

13.	 Create	a	subset	selection	(a	selection	from	the	existing	selection),	where	the	average
household	income	is	greater	than	the	value	indicated	by	the	user:

mxd	=	mapping.MapDocument("CURRENT")

for	lyr	in	mapping.ListLayers(mxd):

				if	lyr.name	==	"ACS":

								arcpy.MakeFeatureLayer_management(lyr,"acs_lyr")

								#select	features	where	20-50	population	percentage	is	greater	

than

								arcpy.SelectLayerByAttribute_management("acs_lyr",	

"NEW_SELECTION",	"Pop20_50_P	>	"	+	percPop)

								#select	features	where	avg	household	income	is	greater	than

								arcpy.SelectLayerByAttribute_management("acs_lyr",	

"SUBSET_SELECTION",	"AVG_HH_INC	>	"	+	avgHHInc)					

14.	 Finally,	remove	any	selected	census	block	groups	that	intersect	a	half-mile	buffer	of
an	existing	coffee	shop	and	copy	the	results	to	an	output	shapefile:

mxd	=	mapping.MapDocument("CURRENT")

for	lyr	in	mapping.ListLayers(mxd):

				if	lyr.name	==	"ACS":

								arcpy.MakeFeatureLayer_management(lyr,"acs_lyr")

								#select	features	where	20-50	population	percentage	is	greater	

than

								arcpy.SelectLayerByAttribute_management("acs_lyr",	

"NEW_SELECTION",	"Pop20_50_P	>	"	+	percPop)

								#select	features	where	avg	household	income	is	greater	than

								arcpy.SelectLayerByAttribute_management("acs_lyr",	

"SUBSET_SELECTION",	"AVG_HH_INC	>	"	+	avgHHInc)					

								#deselect	features	within	the	buffer

								arcpy.SelectLayerByLocation_management("acs_lyr",	"INTERSECT",	

"DenverCoffeeStoreBuffer",	selection_type="REMOVE_FROM_SELECTION")

								arcpy.CopyFeatures_management("acs_lyr",	

"CensusBlockGroupResults.shp")

15.	 Refresh	the	active	view,	as	shown	in	the	highlighted	code	here.	You	can	also	review
the	entire	try/except	block	that	you’ve	created	for	accuracy:

try:

				mxd	=	mapping.MapDocument("CURRENT")

				for	lyr	in	mapping.ListLayers(mxd):

								if	lyr.name	==	"ACS":

												arcpy.MakeFeatureLayer_management(lyr,"acs_lyr")

												#select	features	where	20-50	population	percentage	is	

greater	than

												arcpy.MakeFeatureLayer_management(lyr,"acs_lyr")

												#select	features	where	20-50	population	percentage	is	

greater	than

												arcpy.SelectLayerByAttribute_management("acs_lyr",	

"NEW_SELECTION",	"Pop20_50_P	>	"	+	percPop)

												#select	features	where	avg	household	income	is	greater	than

												arcpy.SelectLayerByAttribute_management("acs_lyr",	

"SUBSET_SELECTION",	"AVG_HH_INC	>	"	+	avgHHInc)					

												#deselect	features	within	the	buffer

												arcpy.SelectLayerByLocation_management("acs_lyr",	

"INTERSECT",	"DenverCoffeeStoreBuffer",	

selection_type="REMOVE_FROM_SELECTION")

												arcpy.CopyFeatures_management("acs_lyr",	

"CensusBlockGroupResults.shp")					

				arcpy.RefreshActiveView()

except	Exception	as	e:

				arcpy.AddMessage(e.message)					

16.	 You	can	check	your	work	by	examining	the
C:\ArcGIS_Blueprint_Python\solutions\ch7\CensusBlockGroupInitialSelection.py

solution	file.	Refer	to	the	getParameterInfo()	and	execute()	methods.
17.	 Save	the	file	and	exit	your	Python	development	environment.
18.	 In	the	Catalog	view	of	ArcMap,	double-click	on	the	tool	to	test	your	code.
19.	 Set	the	Average	Household	Income	Greater	Than	parameter	to	65000	and	the	20-

50	Year	Old	Population	Percentage	Greater	Than	parameter	to	45,	as	shown	in	the
following	screenshot:

20.	 Click	on	OK	to	execute	the	tool.	Upon	completion,	the	CensusBlockGroupResults
layer	will	be	updated	as	shown	in	the	following	screenshot.	This	layer	is	symbolized
with	a	transparent	fill	and	a	thick,	red	outline.	These	are	the	census	block	groups	that
match	the	initial	criteria.	The	tool	that	we	create	in	the	next	section	will	be	used	to
define	individual	locations	within	one	or	more	of	these	identified	census	block
groups:

Creating	the	Define	Potential	Stores	tool
Now	that	a	tool	that	defines	some	initial	areas	that	would	be	suitable	for	the	development
of	a	new	coffee	shop	has	been	created,	we	want	to	turn	our	attention	to	refining	individual
locations	for	further	analysis.	The	next	step	will	be	to	create	the	Define	Potential	Stores
tool.	This	tool	will	allow	the	end	user	to	create	new	point	locations	representing	potential
coffee	store	locations.	Socio-economic	information	will	then	be	attached	to	each	of	these
point	locations	along	with	the	final	tool	that	will	be	created	in	the	last	section	of	this
chapter:

1.	 Open	the	Python	development	environment	for	the	GeoEnrichment.pyt	toolbar.
2.	 Duplicate	the	code	that	you	have	already	created	for	the

CensusBlockGroupSelection	class	by	copying	and	pasting	this	class	into	the	same
GeoEnrichment.pyt	file.

3.	 Rename	the	duplicated	CensusBlockGroupSelection	class	PotentialStores.
4.	 Remove	the	code	inside	the	getParameterInfo()	and	execute()	methods	for	the

new	PotentialStores	class.
5.	 Alter	the	self.label	and	self.description	properties	in	the	__init__	method,	as

shown	here:

def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Define	Potential	Stores"

								self.description	=	"Define	Potential	Stores"

								self.canRunInBackground	=	False

6.	 Set	the	workspace	environment	variable:

def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Define	Potential	Stores"

								self.description	=	"Define	Potential	Stores"

								arcpy.env.workspace	=	

r"C:\ArcGIS_Blueprint_Python\data\Denver\NewStoreLocations.gdb"

7.	 Find	the	getParameterInfo()	method	and	add	the	following	parameter.	The
datatype	parameter	should	be	set	to	GPFeatureRecordSetLayer.	This	is	a	data	type
we	haven’t	worked	with	so	far.	The	GPFeatureRecordSetLayer	object	will	enable	the
end	user	to	interactively	add	features	to	a	feature	class.	This	tool	will	use	the
PotentialStores	layer	that	is	defined	as	the	default	value	as	the	layer	to	be	used	for
the	default	symbology:

def	getParameterInfo(self):

				param0	=	arcpy.Parameter(displayName	=	"Create	Potential	Stores",	\

																				name="potentialStores",	\

																				datatype="GPFeatureRecordSetLayer",	\

																				parameterType="Required",	\

																				direction="Input")

				param0.value	=	"PotentialStores"

8.	 Add	a	second	parameter	that	captures	an	output	feature	class	where	the	new	points
will	be	stored,	and	add	both	parameters	to	the	list	of	parameters	that	will	be	returned:

def	getParameterInfo(self):

				param0	=	arcpy.Parameter(displayName	=	"Create	Potential	Stores",	\

																				name="potentialStores",	\

																				datatype="GPFeatureRecordSetLayer",	\

																				parameterType="Required",	\

																				direction="Input")

				param0.value	=	"PotentialStores"

				param1	=	arcpy.Parameter(displayName	=	"Output	Feature	Class	Name",	

\

																				name="name",	\

																				datatype="GPString",	\

																				parameterType="Required",	\

																				direction="Input")

				params	=	[param0,	param1]

				return	params

9.	 Find	the	execute()	method	and	add	the	following	two	lines	of	code	that	capture	the
user	input	parameters:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								in_featureset	=	parameters[0].valueAsText

								name	=	parameters[1].valueAsText

10.	 Create	the	try/except	blocks:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								in_featureset	=	parameters[0].valueAsText

								name	=	parameters[1].valueAsText

								try:

								except	Exception	as	e:

												arcpy.AddMessage(e.message)

11.	 Inside	the	try	block,	create	a	new	feature	class	based	on	the	input	supplied	by	the
user.	It	should	be	a	point	feature	class,	and	it	should	inherit	the	schema	from	the
PotentialStores	feature	class.	Also,	define	a	new	FeatureSet	object	and	save	the
content	of	the	input	feature	class	to	this	FeatureSet.	The	FeatureSet	object	is	a
lightweight	representation	of	a	feature	class	that	contains	data	as	well	as	a	schema.
This	object	is	used	when	interactively	capturing	input	features	from	a	geoprocessing
tool:

try:

				feature_class	=	arcpy.CreateFeatureclass_management(arcpy.env.

	workspace,	name,	"POINT",	"PotentialStores")

				feature_set	=	arcpy.FeatureSet(in_featureset)

				feature_set.save(feature_class)

except	Exception	as	e:

				arcpy.AddMessage(e.message)

12.	 Next,	create	a	new	FeatureLayer	object	from	this	FeatureSet	method	and	add	it	to
the	data	frame:

try:

				feature_class	=	

arcpy.CreateFeatureclass_management(arcpy.env.workspace,	name,	"POINT",	

"PotentialStores")

				feature_set	=	arcpy.FeatureSet(in_featureset)

				feature_set.save(feature_class)

				mxd	=	mapping.MapDocument('current')

				df	=	mapping.ListDataFrames(mxd)[0]

				arcpy.MakeFeatureLayer_management(feature_set,	name)

				addLayer	=	mapping.Layer(name)

				mapping.AddLayer(df,	addLayer,	"TOP")

except	Exception	as	e:

				arcpy.AddMessage(e.message)

13.	 Finally,	create	a	reference	to	a	predefined	layer	file	that	contains	the	symbology	to	be
applied	to	the	newly	created	feature	class,	and	apply	this	symbology	using	the
UpdateLayer()	function:

try:

				feature_class	=	

arcpy.CreateFeatureclass_management(arcpy.env.workspace,	name,	"POINT",	

"PotentialStores")

				feature_set	=	arcpy.FeatureSet(in_featureset)

				feature_set.save(feature_class)

				mxd	=	mapping.MapDocument('current')

				df	=	mapping.ListDataFrames(mxd)[0]

				arcpy.MakeFeatureLayer_management(feature_set,	name)

				addLayer	=	mapping.Layer(name)

				mapping.AddLayer(df,	addLayer,	"TOP")

	

				srcLayer	=	

mapping.Layer(r"C:\ArcGIS_Blueprint_Python\data\Denver\PotentialStores.

lyr")

				mapping.UpdateLayer(df,	mapping.ListLayers(mxd,	name,	df)[0],	

srcLayer,	True)

except	Exception	as	e:

				arcpy.AddMessage(e.message)

14.	 You	can	check	your	work	by	examining	the
C:\ArcGIS_Blueprint_Python\solutions\ch7\PotentialStores.py	solution	file.
Refer	to	the	getParameterInfo()	and	execute()	methods.

15.	 Save	the	file	and	exit	your	Python	development	environment.
16.	 In	ArcMap,	zoom	in	to	a	cluster	of	census	block	groups	that	were	identified	as	good

candidates.	These	will	be	the	census	block	groups	outlined	in	red	from	running	the
Census	Block	Group	Initial	Selection	tool,	as	shown	in	the	following	screenshot:

17.	 Turn	on	the	Denver	Streets	layer.
18.	 In	the	Catalog	view	of	ArcMap,	double-click	on	the	Define	Potential	Stores	tool	to

test	your	code.	Make	sure	the	Attributes	window	is	displayed	as	well,	as	seen	in	the
following	screenshot.	This	will	allow	you	to	add	names	and	descriptions	to	each	of
the	potential	sites:

19.	 On	the	map,	add	three	or	four	points	by	clicking	on	individual	street	locations,	as
shown	in	the	following	screenshot.	You’ll	also	want	to	add	a	name	and,	optionally,	a
description	for	each	point	using	the	Attributes	window.	However,	don’t	add	any
attributes	for	the	AvgStar6	and	TotBfSpend	attributes.	These	attributes	will	be
populated	with	the	final	tool	that	we	create	in	this	chapter:

20.	 Define	a	name	for	the	output	feature	class.	Call	it	PotentialCoffeeStores.	It	will	be

saved	to	the	NewStoreLocations.gdb	geodatabase	in	the
C:\ArcGIS_Blueprint_Python\data\Denver	folder.

21.	 Click	on	OK	to	execute	the	tool.

Creating	the	Enrich	Potential	Stores	tool
The	final	tool	that	we’ll	create	in	this	chapter	is	the	Enrich	Potential	Stores	tool.	It	will
assign	socio-economic	attributes	pulled	from	the	ArcGIS	Online	GeoEnrichment	service
to	the	features	created	with	the	Define	Potential	Stores	tool.	Using	the	Python	requests
module,	it	will	pass	a	list	of	features	and	a	drive	time	value	to	the	GeoEnrichment	service.
The	GeoEnrichment	service	will	create	a	drive	time	polygon	around	each	potential	store
and	calculate	socio-economic	variables	for	the	total	Starbucks	expenditures	and	the	total
fast	food	breakfast	expenditures	in	that	area.	This	information	will	then	be	written	to	the
potential	stores’	feature	class.	The	following	steps	will	help	you	to	create	the	Enrich
Potential	Stores	tool:

1.	 Before	coding	this	tool,	some	background	information	on	the	GeoEnrichment	service
and	the	ArcGIS	REST	API	needs	to	be	introduced.	In	your	web	browser,	go	to
http://resources.arcgis.com/en/help/arcgis-rest-api/index.html	to	visit	the	main	page
for	the	ArcGIS	REST	API.

2.	 Select	Services	by	navigating	to	Esri	|	Demographic	and	Lifestyle	attributes	|The
GeoEnrichment	service	|	Accessing	the	service.

3.	 To	access	the	GeoEnrichment	service,	you	will	need	to	provide	authentication
credentials.	This	can	be	done	by	prompting	the	user	for	login	information	or	by
storing	credentials	with	your	application.	We’ll	keep	it	simple	in	this	exercise	and
simply	pass	in	a	token	as	part	of	the	URL	query	string.	Keep	in	mind	that	this	is	not	a
best	practice.	In	this	case,	we’re	simply	using	this	method	to	simplify	things	so	that
we	can	focus	on	other	topics.

4.	 Authentication	requires	that	you	have	an	ArcGIS	Online	subscription	through	either
an	Organization	plan	or	a	Developer	plan.	Also,	the	use	of	the	GeoEnrichment
service	requires	the	use	of	credits	through	your	ArcGIS	Online	subscription.

5.	 Information	on	the	URL	request	query	string	to	generate	a	token	is	provided	when
accessing	the	service	page.	Again,	to	keep	things	simple,	I’ll	just	have	you	submit	the
request	for	a	token	by	manually	submitting	the	request.	In	a	web	browser,	add	the
following	query	string	to	the	address	bar	and	press	the	Enter	key.	You’ll	need	to
insert	your	ArcGIS	Online	username	and	password	information	as	well	as	a	website
for	the	referrer.	If	you	don’t	know	this	information,	contact	your	ArcGIS	Online
administrator	at	https://www.arcgis.com/sharing/generateToken?
username=yourUserName&password=yourPassword&referer=http://myserver/mywebapp&expiration=15&f=json

6.	 The	return	should	appear	similar	to	what	is	shown	in	the	following	code.	Save	the
token	information	and	keep	in	mind	that	you’ll	need	to	regenerate	this	token
periodically:

{

								"token":	"Zc07Ivtpoo-AWjVj4u-

Is5NiwNQRXHs_2uI17IkTkLxFk5FcBnBr5jiYwko2cyMU",

								"expires":	1354427210436,

								"ssl":	false

}

http://resources.arcgis.com/en/help/arcgis-rest-api/index.html

Spend	some	time	reading	the	documentation	for	the	GeoEnrichment	service	so	that
you’ll	have	a	better	understanding	of	how	this	service	works	and	what	parameters	can
be	passed	to	the	service.

7.	 You	can	also	get	information	on	the	available	data	variables	for	the	service	by	going
to	Services	from	Esri	|	Demographic	and	Lifestyle	attributes	|	Get	variables	and
then	selecting	the	data	browser	link	on	the	help	page.	Click	on	any	of	the	links	in	the
data	browser	to	start	drilling	down	into	the	available	variables,	as	shown	in	the
following	screenshot:

8.	 Open	the	Python	development	environment	for	the	GeoEnrichment.pyt	toolbar.
9.	 Duplicate	the	code	that	you	have	already	created	for	the

CensusBlockGroupSelection	class	by	copying	and	pasting	this	class	into	the	same
GeoEnrichment.pyt	file.

10.	 Rename	the	duplicated	CensusBlockGroupSelection	class	EnrichPotentialStores.
11.	 Remove	the	code	inside	the	getParameterInfo()	and	execute()	methods	for	the

new	EnrichPotentialStores	class.
12.	 Alter	the	self.label	and	self.description	properties	in	the	__init__	method,	as

shown	here:

def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Enrich	Potential	Stores"

								self.description	=	"Enrich	Potential	Stores"

								self.canRunInBackground	=	False

13.	 Find	the	getParameterInfo()	method	and	add	the	two	parameters	shown	here.	The
parameters	will	capture	a	feature	class	to	enrich	(this	will	be	the	point	feature	class
you	created	with	the	last	tool),	and	a	drive	time	distance.	Set	a	default	value	of	5

minutes	for	the	drive	time	distance:

def	getParameterInfo(self):

				param0	=	arcpy.Parameter(displayName	=	"Layer	to	Enrich",	\

																				name="layerToEnrich",	\

																				datatype="DEFeatureClass",	\

																				parameterType="Required",	\

																				direction="Input")

				param1	=	arcpy.Parameter(displayName	=	"Drive	Time",	\

																				name="driveTime",	\

																				datatype="GPString",	\

																				parameterType="Required",	\

																				direction="Input")

				param1.value	=	5

				params	=	[param0,	param1]

				return	params

14.	 Find	the	execute()	method.	This	method	will	submit	the	list	of	features	identified	as
potential	stores	to	the	ArcGIS	Online	GeoEnrichment	service	along	with	a	drive	time
distance.	The	GeoEnrichment	service	will	retrieve	socio-economic	information
related	to	coffee	establishments	within	the	defined	drive	time	for	each	store.	This
information	will	be	returned	to	the	script	and	written	back	to	the	potential	store
locations	using	the	ArcPy	data	access	module.

15.	 Retrieve	the	input	parameters	into	new	variables:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								in_features	=	parameters[0].valueAsText

								driveTime	=	parameters[1].valueAsText

16.	 The	URL	query	string	that	will	be	submitted	to	the	GeoEnrichment	service	will
ultimately	be	quite	long,	so	it	will	be	easier	to	break	this	string	into	several	parts,
represented	by	individual	variables.	Add	the	following	variables.	The	url	variable
will	hold	the	first	part	of	the	URL	string	that	points	to	the	service,	while	the
studyAreaURL	variable	will	hold	information	related	to	the	points	that	will	be
submitted	for	enrichment:

url	=	

"http://geoenrich.arcgis.com/arcgis/rest/services/World/geoenrichmentse

rver/GeoEnrichment/enrich?studyAreas=["

studyareaURL	=	""

17.	 Add	a	try/except	block.

def	execute(self,	parameters,	messages):

				"""The	source	code	of	the	tool."""

				in_features	=	parameters[0].valueAsText

				driveTime	=	parameters[1].valueAsText

				url	=	

"http://geoenrich.arcgis.com/arcgis/rest/services/World/geoenrichmentse

rver/GeoEnrichment/enrich?studyAreas=["

				studyareaURL	=	""

				try:

				except	Exception	as	e:

								arcpy.AddMessage(e.message)

18.	 Inside	the	try	block,	add	the	following	block	of	code.	This	code	block	creates	a
SearchCursor	object	that	will	loop	through	the	input	feature	class	containing	the
points	to	be	enriched	and	will	extract	the	coordinates	of	the	point	in	addition	to	the
attributes	of	the	Name	field.	This	information	will	be	appended	to	the	studyareaURL
variable:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								in_features	=	parameters[0].valueAsText

								driveTime	=	parameters[1].valueAsText

								url	=	

"http://geoenrich.arcgis.com/arcgis/rest/services/World/geoenrichmentse

rver/GeoEnrichment/enrich?studyAreas=["

								studyareaURL	=	""

								try:

											with	arcpy.da.SearchCursor(in_features,("SHAPE@XY",	"NAME"))	

as	cursor:

															for	row	in	cursor:

																			listCoords	=	row[0]

																			id	=	row[1]

																			studyareaURL	=	studyareaURL	+	"{\"geometry\":

{\"x\":"	+	str(listCoords[0])	+	",\"y\":"	+	str(listCoords[1])	+	

"},\"attributes\":{\"myID\":\""	+	id	+	"\"}},"

															studyareaURL	=	studyareaURL[:-1]	+	"]"

												

								except	Exception	as	e:

												arcpy.AddMessage(e.message)

19.	 Create	the	three	variables	highlighted	in	the	following	code.	The	first	variable,
studyAreaOptions,	defines	the	part	of	the	URL	query	string	that	controls	the	size	of
the	drive	time	buffer.	Next,	the	analysisVariables	variable	defines	the	socio-
economic	variables	to	be	pulled	from	the	GeoEnrichment	service.

To	keep	things	simple,	the	code	will	pull	only	two	variables:	the	amount	spent	in	the
last	6	months	at	Starbucks	and	the	amount	spent	on	eating	out	for	breakfast	(the	most
common	time	to	buy	coffee).	A	more	detailed	analysis	would	most	likely	pull	many
other	variables,	but	we’ll	keep	things	simple	here	in	order	to	cut	down	on	the	amount
of	credits	needed	through	ArcGIS	Online	to	fulfill	the	request.	The	variable	for	the
amount	spent	at	Starbucks	in	the	last	6	months	is	represented	by

restaurants.MP29083_a_B,	and	the	variable	that	represents	the	total	amount	spent	in
the	previous	year	eating	out	for	breakfast	is	represented	by	food.X1147_X.	You	can
find	out	more	information	on	these	and	other	demographic	and	lifestyle	variables	by
visiting	the	data	browser	in	the	ArcGIS	REST	API	help	that	we	reviewed	earlier.

20.	 Finally,	the	urlSuffix	variable	contains	the	output	format	and	token.	You	will	need
to	insert	the	token	generated	in	a	previous	step.	Finally,	combine	all	the	URL	query
strings:

try:

				with	arcpy.da.SearchCursor(in_features,("SHAPE@XY",	"NAME"))	as	

cursor:

								for	row	in	cursor:

												listCoords	=	row[0]

												id	=	row[1]

																				studyareaURL	=	studyareaURL	+	"{\"geometry\":

{\"x\":"	+	str(listCoords[0])	+	",\"y\":"	+	str(listCoords[1])	+	

"},\"attributes\":{\"myID\":\""	+	id	+	"\"}},"

																studyareaURL	=	studyareaURL[:-1]	+	"]"

										studyareaOptions	=	"&studyAreasOptions=

{\"areaType\":\"DriveTimeBuffer\",\"bufferUnits\":\"esriDriveTimeUnitsM

inutes\",\"bufferRadii\":["	+	driveTime	+	"]}"

										analysisVariables	=	"&analysisVariables=

[\"restaurants.MP29083a_B\",\"food.X1147_X\"]"

										urlSuffix	=	"&f=json&token=<your	token	here>"

										url	=	url	+	studyareaURL	+	studyareaOptions	+	

analysisVariables	+	urlSuffix

21.	 Submit	the	URL	query	string	using	the	Python	requests	module	and	print	out	the
response	that	is	returned	in	the	JSON	format:

studyareaOptions	=	"&studyAreasOptions=

{\"areaType\":\"DriveTimeBuffer\",\"bufferUnits\":\"esriDriveTimeUnitsM

inutes\",\"bufferRadii\":["	+	driveTime	+	"]}"

analysisVariables	=	"&analysisVariables=

[\"restaurants.MP29083a_B\",\"food.X1147_X\"]"

urlSuffix	=	"&f=json&token=<your	token	here"

url	=	url	+	studyareaURL	+	studyareaOptions	+	analysisVariables	+	

urlSuffix

r	=	requests.post(url)

arcpy.AddMessage(r.text)

22.	 Save	your	work	and	close	the	Python	development	environment.
23.	 In	the	Catalog	view	of	ArcMap,	double-click	on	the	Enrich	Potential	Stores	tool	to

test	your	code.	Select	the	PotentialCoffeeStores	feature	class	created	in	the
previous	step	as	Layer	to	Enrich,	and	leave	the	default	Drive	Time	of	5	minutes.
Click	on	OK	to	execute	the	tool.	An	example	of	the	output	can	be	seen	in	the
following	screenshot.	Your	output	may	differ	slightly.	If	you	get	an	error	message	or
something	that	doesn’t	closely	resemble	the	following	output,	you’ll	want	to	check

the	characters	in	the	URL	query	strings.	It’s	easy	to	make	a	typo	with	all	these
characters.	You	may	also	want	to	check	the	solution	file	against	your	file	at
C:\ArcGIS_Blueprint_Python\solutions\ch7\EnrichPotentialStores.py:

24.	 At	the	bottom	of	the	output	is	a	section	that	contains	the	feature	information.	There
should	be	one	feature	with	the	corresponding	attribute	information	for	each	potential

store	location,	as	shown	in	the	following	screenshot.	In	the	next	step,	we	will	pull	out
the	myID,	MP29083a_B	(Starbucks	expenditures),	and	X1147_X	(breakfast	expenditures
at	fast	food	locations)	attributes.

25.	 Reopen	the	Python	development	environment	for	this	toolbox.
26.	 Convert	the	response	from	the	JSON	format	to	a	Python	dictionary	and	comment	out

the	line	of	code	you	just	added:

#	arcpy.AddMessage(r.text)

decoded	=	json.loads(r.text)

27.	 The	Python	dictionary	created	from	the	JSON	response	returned	by	the
GeoEnrichment	service	is	quite	complex.	The	next	block	of	code	will	drill	down	into
the	Python	dictionary	and	pull	out	the	socio-economic	information	discussed	earlier
as	well	as	the	unique	identifier	associated	with	each	record.	Add	the	code	highlighted
here:

try:

				with	arcpy.da.SearchCursor(in_features,("SHAPE@XY",	"NAME"))	as	

cursor:

								for	row	in	cursor:

												listCoords	=	row[0]

												id	=	row[1]

												studyareaURL	=	studyareaURL	+	"{\"geometry\":{\"x\":"	+	

str(listCoords[0])	+	",\"y\":"	+	str(listCoords[1])	+	

"},\"attributes\":{\"myID\":\""	+	id	+	"\"}},"

												studyareaURL	=	studyareaURL[:-1]	+	"]"

				studyareaOptions	=	"&studyAreasOptions=

{\"areaType\":\"DriveTimeBuffer\",\"bufferUnits\":\"esriDriveTimeUnitsM

inutes\",\"bufferRadii\":["	+	driveTime	+	"]}"

				analysisVariables	=	"&analysisVariables=

[\"restaurants.MP29083a_B\",\"food.X1147_X\"]"

				urlSuffix	=	"&f=json&token=<your	token	here>

				url	=	url	+	studyareaURL	+	studyareaOptions	+	analysisVariables	+	

urlSuffix

				r	=	requests.post(url)

								decoded	=	json.loads(r.text)

								cntr	=	1

								for	rslt	in	decoded['results']:

												lstFeatures	=	rslt['value']['FeatureSet'][0]['features']

												for	ftr	in	lstFeatures:

																sixStar	=	(ftr['attributes']['MP29083a_B'])

																yrOutBreakfast	=	(ftr['attributes']['X1147_X'])

																siteID	=	(ftr['attributes']['myID'])

28.	 Finally,	create	an	UpdateCursor	object	against	the	point	feature	class	that	stores	the
potential	store	locations,	and	update	the	applicable	fields	with	the	enrichment
information:

cntr	=	1

for	rslt	in	decoded['results']:

				lstFeatures	=	rslt['value']['FeatureSet'][0]['features']

				for	ftr	in	lstFeatures:

								sixStar	=	(ftr['attributes']['MP29083a_B'])

								yrOutBreakfast	=	(ftr['attributes']['X1147_X'])

								siteID	=	(ftr['attributes']['myID'])

							whereClause	=	'NAME	=	'	+	"\'"	+	siteID	+	"\'"

							with	arcpy.da.UpdateCursor(in_features,	("NAME",	"AvgStar6",	

"TotBfSpend"),	whereClause)	as	cursor:

												for	row	in	cursor:

															row[1]	=	sixStar

															row[2]	=	yrOutBreakfast

															cursor.updateRow(row)

															arcpy.AddMessage("Record	number:	"	+	str(cntr)	+	"	

written	to	feature	class")

															cntr	=	cntr	+	1

29.	 You	can	check	your	work	by	examining	the
C:\ArcGIS_Blueprint_Python\solutions\ch7\EnrichPotentialStores.py

solution	file.	Refer	to	the	getParameterInfo()	and	execute()	methods.
30.	 Save	the	file	and	exit	your	Python	development	environment.
31.	 In	the	Catalog	view	of	ArcMap,	double-click	on	the	Enrich	Potential	Stores	tool	to

test	your	code.	The	tool	dialog	box	shown	in	the	following	screenshot	should	appear.
Select	the	PotentialCoffeeStores	feature	class	created	in	the	previous	step	as	Layer
to	Enrich	and	leave	the	default	Drive	Time	of	5	minutes	as	shown	in	the	following
screenshot:

32.	 Click	on	OK	to	execute	the	tool.	If	there	aren’t	any	errors	in	your	tool,	you	should
see	progress	information	indicating	that	the	features	have	been	updated.

33.	 If	necessary,	open	the	PotentialCoffeeStores	feature	class	and	then	open	the
attribute	table.	Note	that	the	AvgStar6	and	TotBfSpend	fields	have	been	updated	as
shown	in	the	following	screenshot.	Note	that	the	values	in	your	table	will	probably
differ	from	mine	unless	you	have	created	the	exact	same	potential	coffee	store
locations.

Summary
This	chapter	covered	several	new	concepts	in	addition	to	reinforcing	several	skills	that	we
covered	in	past	chapters.	One	new	concept	that	was	introduced	in	this	chapter	is	the	use	of
the	ArcGIS	Online	GeoEnrichment	service	that	we	accessed	through	the	ArcGIS	REST
API.	In	addition,	you	also	learned	how	to	build	an	interactive	tool	that	allows	the	end	user
to	create	new	point	locations	as	part	of	a	custom	tool.

We’ve	now	seen	several	examples	of	creating	custom	Python	toolboxes	in	ArcGIS
Desktop,	so	you	should	be	familiar	with	these	by	now	and	have	a	good	understanding	of
how	they	work.	You	should	also	be	familiar	with	the	Python	requests	module	that	is	used
to	make	requests	to	external	web	services	as	we’ve	seen	this	in	action	on	several	occasions
as	well.	Finally,	we	used	the	ArcPy	mapping	and	data	access	modules	in	this	chapter	once
again	in	order	to	support	several	operations,	including	applying	symbology	to	a	layer	and
using	cursor	objects	to	query	and	update	the	data	in	a	feature	class.

In	the	next	chapter,	you	will	build	a	set	of	tools	to	support	search	and	rescue	operations.
This	will	include	tools	that	are	used	to	define	the	last	known	location	of	a	subject	and	the
search	area	definition	boundaries	as	well	as	a	tool	that	will	enable	the	data	to	be	visualized
in	Google	Earth.

Chapter	8.	Supporting	Search	and	Rescue
Operations	with	ArcPy,	Python	Add-Ins,
and	simplekml
Search	and	Rescue	(SAR)	operations	are	inherently	geographic	in	nature	and	can	benefit
from	GIS	tools	designed	to	support	search	efforts.	The	identification	of	the	Last	Known
Position	(LKP)	is	an	essential	first	step	in	the	process.	Based	on	this	LKP,	additional	tools
can	support	SAR	operations	through	the	identification	of	potential	search	areas	and	the
definition	of	search	sectors	for	the	assignment	of	search	teams.	The	visualization	of	these
datasets	through	a	tool	such	as	Google	Earth	is	extremely	helpful	in	order	to	understand
how	terrain	can	affect	the	likely	movement	patterns	of	lost	individuals.	For	example,
people	are	much	more	likely	to	follow	well-defined	trails	and	move	toward	areas	of	lower
elevation	as	opposed	to	areas	of	higher	elevation.

The	application	built	in	this	chapter	will	support	SAR	operations	through	the	inclusion	of
several	custom	tools	in	an	ArcGIS	Python	Toolbox	as	well	as	Python	add-ins.	The
Python	add-in	for	ArcMap	will	include	a	tool	to	define	the	last	known	position	(LKP)	and
a	tool	to	define	polygon	search	sectors.	In	addition,	a	custom	ArcGIS	Python	Toolbox
will	contain	a	tool	to	define	buffer	distances	around	the	LKP,	a	tool	to	extract	datasets	to
the	Google	Earth	format,	and	a	tool	to	assign	attribute	data	to	the	LKP.

In	this	chapter,	we	will	cover	the	following	topics:

Creating	tools	for	Python	add-ins
Combining	add-ins	with	custom	tools
Converting	data	to	the	Google	Earth	Keyhole	Markup	Language	(KML)	format
with	simplekml
Using	the	arcpy.mapping	module

Design
The	design	of	this	application	will	include	the	creation	of	three	custom	tools	inside	an
ArcGIS	Desktop	Python	Toolbox	as	well	as	a	Python	add-in	for	ArcGIS	Desktop	that
includes	two	tools.

The	two	tools,	that	are	part	of	the	Python	add-in,	include	a	tool	that	can	be	used	to	define	a
point	location	that	indicates	the	last	known	position	of	the	lost	individual,	and	a	tool	that
can	be	used	to	sketch	search	sectors.

For	the	ArcGIS	Desktop	Python	Toolbox,	there	is	a	tool	that	will	be	used	to	assign
attributes	to	the	LKP,	a	tool	to	define	buffer	polygons	representing	distances	around	the
LKP,	and	a	tool	to	export	data	to	the	Google	Earth	KML	format.	The	following	diagram
shows	how	it	works:

Let’s	get	started	and	build	the	application.

Creating	the	Last	Known	Position	tool
In	this	step,	you’ll	create	an	ArcGIS	Python	Add-In	for	the	purpose	of	allowing	an
analyst	to	define	the	LKP	of	the	individual	in	the	need	of	rescue.	This	LKP	tool	will	be
created	inside	a	toolbar	container	that	will	eventually	house	a	second	tool	that	will	be	used
to	create	polygon	search	sectors.	A	screenshot	of	the	final	toolbar	is	shown	as	follows:

The	LKP	tool	will	enable	the	selection	of	a	point	location	on	the	map.	After	selecting	the
LKP,	the	tool	will	then	display	a	dialog	that	collects	attribute	information	about	the
location,	including	the	subject	name,	incident	date,	gender,	weight,	hair	color,	and	other
attributes.	This	information	will	be	collected	via	a	custom	tool	inside	an	ArcGIS	Python
Toolbox,	which	will	be	created	in	this	section	as	well.

The	user	interface	for	the	attribute	tool	will	appear	as	seen	in	the	following	screenshot:

Follow	these	to	create	the	ArcGIS	Python	Add-In	and	the	custom	ArcGIS	tool	to	capture
the	location	and	attributes	of	the	LKP	of	the	subject.	You	should	already	be	familiar	with
the	process	of	using	the	ArcGIS	Python	Add-In	Wizard	to	create	the	structure	of	an
ArcGIS	Desktop	add-in,	so	I	won’t	go	into	much	detail	on	this	subject.	If	you	need	a
refresher,	refer	to	previous	chapters:

1.	 Open	ArcMap	with	the	C:\ArcGIS_Blueprint_Python\ch8\SAR.mxd	file	and
examine	the	contents	to	get	a	better	knowledge	of	the	database,	that	will	be	used	in
this	application.

2.	 Open	the	ArcGIS	Python	Add-In	Wizard	and	go	to
C:\ArcGIS_Blueprint_Python\ch8	folder.

3.	 Click	on	the	Make	New	Folder	button	with	ch8	folder	selected	and	name	the	folder
add-in.

4.	 Click	on	OK.
5.	 In	the	ArcGIS	Python	Add-In	Wizard	on	the	Project	Settings	tab,	give	the	project

a	name	of	Search	and	Rescue	Addin.	You	can	leave	the	version	as	0.1.
6.	 Click	on	the	Add-In	Contents	tab.
7.	 Create	a	new	toolbar	by	right-clicking	on	TOOLBARS	and	selecting	New	Toolbar.
8.	 Type	Search	and	Rescue	toolbar	in	the	Caption	textbox.
9.	 Right-click	on	the	New	Toolbar	and	select	New	Tool.
10.	 Enter	LKP	for	Caption	and	LKPClass	for	Class	Name.
11.	 Right-click	on	Search	and	Rescue	toolbar	and	select	New	Tool.
12.	 Give	the	tool	a	Caption	of	Search	Sector,	a	Class	Name	of	SearchSectorClass,

and	an	ID	of	addin_addin.tool_1.
13.	 Click	on	the	Save	button.
14.	 Click	on	the	Open	Folder	button.
15.	 Open	the	Install	folder	and	open	the	addin_addin.py	script	in	your	Python

development	environment.
16.	 This	tool	will	use	only	the	onMouseDownMap()	method,	so	remove	all	methods	in	the

LKP	class	with	the	exception	of	__init__	and	onMouseDownMap().
17.	 Import	the	pythonaddins	and	os	modules:

import	arcpy

import	pythonaddins

import	os

18.	 Inside	the	__init__	method,	make	sure	that	self.shape	is	set	to	NONE,	as	shown	in
the	following	code,	and	self.cursor	is	set	to	a	value	of	4:

def	__init__(self):

				self.enabled	=	True

				self.cursor	=	4

				self.shape	=	"NONE"

19.	 Find	the	onMouseDown()	method	and	inside	it,	use	the	SaveDialog()	method	to
capture	the	path	and	the	filename,	the	feature	class	name	of	the	layer	that	will	store
the	geometry	and	attributes	of	the	LKP:

def	onMouseDownMap(self,	x,	y,	button,	shift):

				#path	to	the	output	feature	class

				fullPath	=	pythonaddins.SaveDialog("Save	LKP")

				path	=	os.path.split(fullPath)[0]

				layerName	=	os.path.split(fullPath)[1]

20.	 Use	the	OpenDialog()	method	to	capture	the	feature	class	that	will	contain	the
attribute	schema	of	the	input	feature	class:

def	onMouseDownMap(self,	x,	y,	button,	shift):

				#path	to	the	output	feature	class

				fullPath	=	pythonaddins.SaveDialog("Save	LKP")

				path	=	os.path.split(fullPath)[0]

				layerName	=	os.path.split(fullPath)[1]

	

	

				#schema	feature	class

				schemaFC	=	pythonaddins.OpenDialog("Feature	Class	Template")

21.	 Define	the	output	spatial	reference:

def	onMouseDownMap(self,	x,	y,	button,	shift):

				#path	to	the	output	feature	class

				fullPath	=	pythonaddins.SaveDialog("Save	LKP")

				path	=	os.path.split(fullPath)[0]

				layerName	=	os.path.split(fullPath)[1]

	

	

				#schema	feature	class

				schemaFC	=	pythonaddins.OpenDialog("Feature	Class	Template")

	

				sr	=	arcpy.SpatialReference(26911)

22.	 Create	a	new	feature	class	using	the	information	collected	from	the	user:

def	onMouseDownMap(self,	x,	y,	button,	shift):

				#path	to	the	output	feature	class

				fullPath	=	pythonaddins.SaveDialog("Save	LKP")

				path	=	os.path.split(fullPath)[0]

				layerName	=	os.path.split(fullPath)[1]

	

	

				#schema	feature	class

				schemaFC	=	pythonaddins.OpenDialog("Feature	Class	Template")

				sr	=	arcpy.SpatialReference(26911)

				#create	a	new	feature	class

				arcpy.CreateFeatureclass_management(path,	layerName,	"POINT",	

schemaFC,	spatial_reference=sr)

23.	 Use	the	InsertCursor	method	to	insert	the	point	location	of	the	LKP:

def	onMouseDownMap(self,	x,	y,	button,	shift):

				#path	to	the	output	feature	class

				fullPath	=	pythonaddins.SaveDialog("Save	LKP")

				path	=	os.path.split(fullPath)[0]

				layerName	=	os.path.split(fullPath)[1]

	

	

				#schema	feature	class

				schemaFC	=	pythonaddins.OpenDialog("Feature	Class	Template")

	

				sr	=	arcpy.SpatialReference(26911)

				#create	a	new	feture	class

				arcpy.CreateFeatureclass_management(path,	layerName,	"POINT",	

schemaFC)

				#insert	the	record

				row_value	=	[(x,y)]

				with	arcpy.da.InsertCursor(fullPath,	["SHAPE@XY"])	as	cursor:

								cursor.insertRow(row_value)

24.	 Use	the	GPToolDialog()	method	to	execute	the	AssignLKPAttributes	custom	tool.

We	are	yet	to	create	the	AssignLKPAttributes	tool,	but	we	will	do	this	in	the	next
few	steps.	This	tool	will	be	used	to	capture	attribute	information	about	the	LKP.	For
now,	just	put	a	placeholder	for	the	path	to	the	tool.	Later,	we’ll	return	to	this	line	of
code	and	insert	the	actual	path:

def	onMouseDownMap(self,	x,	y,	button,	shift):

				#path	to	the	output	feature	class

				fullPath	=	pythonaddins.SaveDialog("Save	LKP")

				path	=	os.path.split(fullPath)[0]

				layerName	=	os.path.split(fullPath)[1]

	

	

				#schema	feature	class

def	onMouseDownMap(self,	x,	y,	button,	shift):

				#path	to	the	output	feature	class

				fullPath	=	pythonaddins.SaveDialog("Save	LKP")

				path	=	os.path.split(fullPath)[0]

				layerName	=	os.path.split(fullPath)[1]

	

	

				#schema	feature	class

				schemaFC	=	pythonaddins.OpenDialog("Feature	Class	Template")

	

				sr	=	arcpy.SpatialReference(26911)

				#create	a	new	feture	class

				arcpy.CreateFeatureclass_management(path,	layerName,	"POINT",	

schemaFC)

				#insert	the	record

				row_value	=	[(x,y)]

				with	arcpy.da.InsertCursor(fullPath,	["SHAPE@XY"])	as	cursor:

								cursor.insertRow(row_value)

		

				pythonaddins.GPToolDialog("C:\Users\Eric	

Pimpler\AppData\Roaming\ESRI\Desktop10.3\ArcToolbox\My	

Toolboxes\SAR.pyt",	"AssignLKPAttributes")

25.	 Save	the	Python	script	and	close	the	development	environment.
26.	 Open	ArcMap	and	display	the	ArcCatalog	pane.	In	the	Toolboxes	folder	under	My

Toolboxes,	create	a	new	Python	Toolbox	and	call	it	SAR.pyt.
27.	 Open	the	code	for	the	SAR	toolbox	in	your	Python	development	environment	by

right-clicking	on	the	toolbox	and	selecting	Edit.
28.	 Rename	the	Tool	class	to	AssignLKPAttributes.	Also,	update	the	self.label	and

self.description	properties,	as	shown	in	the	following	code:

class	AssignLKPAttributes(object):

				def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Assign	Last	Known	Point	Attributes"

								self.description	=	"Assign	Last	Known	Point	Attributes"

29.	 Add	the	tool	to	the	self.tools	list	in	the	Toolbox	class:

self.tools	=	[AssignLKPAttributes]

30.	 Find	the	getParameterInfo()	method	and	add	the	following	parameters	to	capture
the	input	feature	class,	incident	date,	description,	name,	and	other	attributes	of	the
LKP	and	add	them	to	the	parameter	list:

def	getParameterInfo(self):

								"""Define	parameter	definitions"""

								outFC	=	arcpy.Parameter(displayName	=	"Output	Feature	Class",	\

																							name="outFC",	\

																							datatype="DEFeatureClass",\

																							parameterType="Required",\

																							direction="Input")

								##	begin	date	for	import

								incidentDate	=	arcpy.Parameter(

												displayName="Incident	Date",

												name="incidentDate",

												datatype="GPDate",

												parameterType="Optional",

												direction="Input")

								incidentDate.value	=	"01/01/2015"

								description	=	arcpy.Parameter(

												displayName="Description",

												name="description",

												datatype="GPString",

												multiValue="False",

												parameterType="Optional",

												direction="Input")

								incidentName	=	arcpy.Parameter(

												displayName="Incident	Name",

												name="incidentName",

												datatype="GPString",

												multiValue="False",

												parameterType="Optional",

												direction="Input")

								subjectName	=	arcpy.Parameter(

												displayName="Name",

												name="subjectName",

												datatype="GPString",

												parameterType="Optional",

												direction="Input",

												multiValue	=	False)

								gender	=	arcpy.Parameter(

												displayName="Gender",

												name="gender",

												datatype="GPString",

												parameterType="Optional",

												direction="Input",

												multiValue	=	False)

								gender.filter.list	=	["MALE",	"FEMALE"]

								weight	=	arcpy.Parameter(

												displayName="Weight",

												name="weight",

												datatype="GPString",

												parameterType="Optional",

												direction="Input",

												multiValue	=	False)

								hairColor	=	arcpy.Parameter(

												displayName="Hair	Color",

												name="hairColor",

												datatype="GPString",

												parameterType="Optional",

												direction="Input",

												multiValue	=	False)

								other	=	arcpy.Parameter(

												displayName="Other",

												name="other",

												datatype="GPString",

												parameterType="Optional",

												direction="Input",

												multiValue	=	False)

								height	=	arcpy.Parameter(

												displayName="Height",

												name="height",

												datatype="GPString",

												parameterType="Optional",

												direction="Input",

												multiValue	=	False)

								clothing	=	arcpy.Parameter(

												displayName="Clothing",

												name="clothing",

												datatype="GPString",

												parameterType="Optional",

												direction="Input",

												multiValue	=	False)

								age	=	arcpy.Parameter(

												displayName="Age",

												name="age",

												datatype="GPString",

												parameterType="Optional",

												direction="Input",

												multiValue	=	False)

								params	=	[outFC,	incidentDate,	description,	incidentName,	

subjectName,	gender,	weight,	hairColor,	other,	height,	clothing,	age]

31.	 Find	the	execute()	method	and	add	the	following	code	to	capture	the	input
parameters	supplied	by	the	end	user:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								outFC	=	parameters[0].valueAsText

								incidentDate	=	parameters[1].valueAsText

								description	=	parameters[2].valueAsText

								incidentName	=	parameters[3].valueAsText

								subjectName	=	parameters[4].valueAsText

								gender	=	parameters[5].valueAsText

								weight	=	parameters[6].valueAsText

								hairColor	=	parameters[7].valueAsText

								other	=	parameters[8].valueAsText

								height	=	parameters[9].valueAsText

								clothing	=	parameters[10].valueAsText

								age	=	parameters[11].valueAsText

32.	 Use	UpdateCursor	to	update	the	attributes:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								outFC	=	parameters[0].valueAsText

								incidentDate	=	parameters[1].valueAsText

								description	=	parameters[2].valueAsText

								incidentName	=	parameters[3].valueAsText

								subjectName	=	parameters[4].valueAsText

								gender	=	parameters[5].valueAsText

								weight	=	parameters[6].valueAsText

								hairColor	=	parameters[7].valueAsText

								other	=	parameters[8].valueAsText

								height	=	parameters[9].valueAsText

								clothing	=	parameters[10].valueAsText

								age	=	parameters[11].valueAsText

								with	arcpy.da.UpdateCursor(outFC,	("Date",	"Description",	

"Incident_Name",	"Name",	"Gender",	"Weight",	"Hair_Color",	"Other",	

"Height",	"Clothing",	"Age"))	as	cursor:

												for	row	in	cursor:

															row[0]	=	incidentDate

															row[1]	=	description

															row[2]	=	incidentName

															row[3]	=	subjectName

															row[4]	=	gender

															row[5]	=	weight

															row[6]	=	hairColor

															row[7]	=	other

															row[8]	=	height

															row[9]	=	clothing

															row[10]	=	age

															cursor.updateRow(row)

33.	 Save	your	code	and	exit	the	development	environment.
34.	 In	ArcMap,	go	to	the	Catalog	window	and	right-click	on	the	SAR.pyt	toolbox	to

display	the	SAR	Properties	dialog	box,	as	shown	in	the	following	screenshot:

35.	 Highlight	and	copy	the	path	in	the	Location	textbox.
36.	 Return	to	the	addin_addin.py	file	in	the	Install	folder	of	the	Python	add-in	and

open	it	in	your	Python	development	environment.
37.	 Find	the	line	of	code	that	sets	GPToolDialog	and	paste	the	path	as	the	first	parameter.

An	example	is	shown	here.	Your	path	will	differ	from	mine:

pythonaddins.GPToolDialog("C:\Users\Eric	

Pimpler\AppData\Roaming\ESRI\Desktop10.3\ArcToolbox\My	

Toolboxes\SAR.pyt",	"AssignLKPAttributes")

38.	 You	can	check	your	work	by	examining	the	solution	files	in	the
C:\ArcGIS_Blueprint_Python\solutions\ch8	folder.	Open	addin_addin.py	and
review	the	LKP	class.	Open	the	ConvertToGoogleEarth.py	file	and	examine	the
AssignLKPAttributes	class.

39.	 Save	the	file	and	exit	the	development	environment.
40.	 In	the	working	directory	of	this	add-in,	double-click	on	the	makeaddin.py	script	to

create	a	new	Esri	Addin	file	called	addin.esriaddin.
41.	 Double-click	on	the	Esri	Addin	file	to	install	the	add-in.
42.	 Test	the	work	by	opening	ArcMap	and	SAR.mxd	and	adding	SAR	toolbar.
43.	 If	required,	open	the	Search	and	Rescue	toolbar	by	going	to	Customize	|	Toolbars	|

Search	and	Rescue	toolbar.
44.	 Click	on	the	LKP	tool	and	then	click	on	a	location	on	the	map	to	define	a	new	point

location	that	represents	a	missing	person.	This	will	display	the	Save	LKP	dialog	box,
as	shown	in	the	following	screenshot.	The	layers	that	appear	in	your	dialog	box	may

differ	from	what	you	see	in	this	screenshot:

45.	 Navigate	to	the	C:\ArcGIS_Blueprint_Python\data\SAR\Incident_Data.gdb
geodatabase	and	name	your	feature	class	LostMale10YearsOld.	You	can	apply
whatever	name	you’d	like.	Click	on	the	Save	button.

46.	 The	Feature	Class	Template	dialog	box	will	then	be	displayed.	Select
C:\ArcGIS_Blueprint_Python\data\SAR\Incident_Data.gdb\LKP,	as	shown	in	the
following	screenshot.	This	defines	the	feature	class	schema	to	be	used	for	the
creation	of	the	new	feature	class.	Click	on	the	Add	button:

47.	 This	will	create	the	new	feature	class	and	display	the	Assign	Last	Known	Point
Attributes	dialog	box	seen	here.	For	Output	Feature	Class,	select	the	feature	class

that	you	just	created	(LostMale10YearsOld)	with	the	LKP	tool,	fill	in	as	many	of	the
other	attributes	as	you’d	like,	and	click	on	OK,	as	shown	in	the	following	screenshot:

48.	 Close	the	progress	dialog	box	when	the	processing	is	done.

Creating	the	Search	Area	Buffers	tool
The	search	and	rescue	operations	team	can	benefit	from	the	knowledge	of	the	potential
search	radius	in	which	they’ll	need	to	operate.	To	assist	with	this	task,	the	next	tool	that
will	be	added	to	the	SAR	toolbox	will	be	a	Search	Area	Buffers	tool	that	calculates
multiple	buffers	based	on	the	LKP	template	created	in	the	previous	step.	This	tool	will	be
a	variant	of	the	existing	Multi-Ring	Buffer	tool	provided	by	ArcGIS	Desktop.	The	tool
will	be	simplified	to	include	only	distances	in	miles.

The	following	steps	will	help	you	to	create	the	Search	Area	Buffers	tool:

1.	 In	ArcMap,	right-click	on	the	SAR.pyt	custom	toolbox	in	the	Catalog	view	and
select	Edit	to	open	the	code	in	the	Python	development	environment.

2.	 Copy	and	paste	the	existing	AssignLKPAttributes	class	inside	the	SAR.pyt	file.
3.	 Rename	the	newly	pasted	AssignLKPAttributes	class	to	SearchAreaBuffers	class.
4.	 Update	the	self.label	and	self.description	properties,	as	shown	in	the	following

code:

class	SearchAreaBuffers(object):

				def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Search	Area	Buffers"

								self.description	=	"Search	Area	Buffers"

5.	 Add	the	tool	to	the	self.tools	list	in	the	Toolbox	class:

self.tools	=	[AssignLKPAttributes,	SearchAreaBuffers]

6.	 Find	the	getParameterInfo()	method	and	remove	the	existing	parameters	that	were
copied.	Next,	add	the	following	parameters	so	that	your	code	appears	as	follows:

def	getParameterInfo(self):

								"""Define	parameter	definitions"""

								inFC	=	arcpy.Parameter(displayName	=	"Input	Feature	Class",	\

																						name="inFC",	\

																						datatype="GPFeatureLayer",\

																						parameterType="Required",\

																						direction="Input")

								outFC	=	arcpy.Parameter(displayName	=	"Output	Feature	Class",	\

																							name="outFC",	\

																							datatype="DEFeatureClass",\

																							parameterType="Required",\

																							direction="Output")

								distanceVals	=	arcpy.Parameter(displayName	=	"Distances	in	

Miles",	\

																														name="distanceVals",	\

																														datatype="GPDouble",\

																														parameterType="Required",\

																														multiValue="True",\

																														direction="Input")

								params	=	[inFC,	outFC,	distanceVals]

								return	params

7.	 Find	the	execute()	method	and	remove	the	existing	code.	Add	the	following	code	to
capture	the	input	parameters	and	call	the	MultiRingBuffer	tool:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								inFC	=	parameters[0].valueAsText

								outFC	=	parameters[1].valueAsText

								distanceVals	=	parameters[2].valueAsText

								arcpy.MultipleRingBuffer_analysis(inFC,	outFC,	distanceVals)

8.	 You	can	check	your	work	by	examining	the	solution	file	in	the
C:\ArcGIS_Blueprint_Python\solutions\ch8	folder.	Open	the
ConvertToGoogleEarth.py	file	and	examine	the	SearchAreaBuffers	class.

9.	 Save	the	Python	script	and	exit	the	development	environment.
10.	 Double-click	on	the	new	Search	Area	Buffers	tool	from	the	SAR	toolbox.	This	will

display	the	dialog	box	as	shown	in	the	following	screenshot.	Navigate	to
LostMale10YearsOld	as	the	input	feature	class	along	with	an	output	feature	class
called	SearchAreaBuffers,	which	should	be	saved	in	the	Incident_Data
geodatabase	as	well	as	various	output	distances:

11.	 Click	on	OK.
12.	 After	processing,	you	may	want	to	symbolize	the	output	features	so	that	each	of	the

buffer	distances	is	represented	by	a	different	color.	As	shown	in	the	following
screenshot:

In	the	next	section	of	the	chapter,	we’ll	create	a	Search	Sector	tool	that	will	enable	Search
and	Rescue	personnel	to	draw	search	sector	polygons.

Creating	the	Search	Sector	tool
Efficient	search	and	rescue	operations	will	require	that	groups	of	personnel	be	assigned	to
specific	areas.	In	this	section,	we’ll	create	a	tool	that	will	allow	Search	and	Rescue
analysts	to	sketch	polygon	features	that	represent	specific	areas	that	will	then	be	assigned
to	search	groups.	The	following	steps	will	help	you	to	create	Search	Sector	tool:

1.	 Close	ArcMap	if	required.
2.	 In	Windows	Explorer,	return	to	the	working	directory	that	stores	the	Python	add-in

for	this	project	and	open	the	addin_addin.py	file	from	the	Install	folder	in	your
Python	development	environment.

3.	 Find	the	SearchSector	class	and	remove	all	the	methods	with	the	exception	of	the
__init__	and	onLine()	methods.

4.	 In	the	__init__	method,	set	the	self.shape	property	to	LINE,	as	shown	here,	along
with	a	cursor	type:

self.shape	=	"LINE"

self.cursor	=	3

5.	 In	the	onLine()	method,	set	the	workspace	environment	variable:

def	onLine(self,	line_geometry):

						arcpy.env.workspace	=	

"C:\ArcGIS_Blueprint_Python\data\SAR\Incident_Data.gdb"

6.	 In	the	next	code	block	that	you’ll	add	to	the	onLine()	method,	create	an	arcpy	Array
object,	retrieve	the	line	geometry	that	is	sketched	on	the	map,	add	the	vertices	of	the
line	to	Array,	add	the	first	vertices	as	the	last	point	in	the	array,	and	create	a	new
Polygon	object	from	Array.	The	creation	of	the	last	vertices	using	the	first	point	is
necessary	in	order	to	close	the	polygon:

def	onLine(self,	line_geometry):

				arcpy.env.workspace	=	

"C:\ArcGIS_Blueprint_Python\data\SAR\Incident_Data.gdb"

				array	=	arcpy.Array()

				part	=	line_geometry.getPart(0)

				for	pt	in	part:

								array.add(pt)

				array.add(line_geometry.firstPoint)

				polygon	=	arcpy.Polygon(array)

7.	 Create	an	InsertCursor	object	that	references	the	SearchSectors	feature	class	that
is	provided	for	you	in	the	Incident_Data	geodatabase.	Insert	the	new	polygon	and
refresh	the	view:

def	onLine(self,	line_geometry):

				arcpy.env.workspace	=	

"C:\ArcGIS_Blueprint_Python\data\SAR\Incident_Data.gdb"

				array	=	arcpy.Array()

				part	=	line_geometry.getPart(0)

				for	pt	in	part:

								array.add(pt)

				array.add(line_geometry.firstPoint)

				polygon	=	arcpy.Polygon(array)

				with	arcpy.da.InsertCursor("SearchSectors",	("SHAPE@"))	as	cursor:

								cursor.insertRow((polygon,))

								arcpy.RefreshActiveView()

8.	 You	can	check	your	work	by	examining	the	solution	files	in	the
C:\ArcGIS_Blueprint_Python\solutions\ch8	folder.	Open	addin_addin.py	and
review	the	SearchSector	class.

9.	 Save	the	script	and	exit	the	Python	development	environment.
10.	 In	Windows	Explorer,	go	to	the	C:\ArcGIS_Blueprint_Python\ch8\addin	folder

and	delete	the	existing	addin.esriaddin	file.
11.	 Double-click	on	makeaddin.py	to	recreate	this	file	with	the	changes	you	just	made.
12.	 Double-click	on	the	addin.esriaddin	file	and	reinstall	the	add-in.
13.	 Open	the	SAR.mxd	file	found	in	C:\ArcGIS_Blueprint_Python\ch8.
14.	 If	required,	add	the	SearchSectors	feature	class	from	the	Incident_Data

geodatabase.
15.	 If	required,	display	the	SAR	toolbar	by	going	to	Customize	|	Toolbars	|	SAR

toolbar.
16.	 Click	on	the	Search	Sector	tool	on	the	toolbar	and	start	drawing	a	polygon	using

your	mouse.	When	you’re	done	drawing,	double-click	with	the	mouse	to	create	and
store	the	polygon.	The	following	screenshot	displays	a	completed	polygon:

In	the	next	section,	a	tool	will	be	created	to	generate	Google	Earth	format	files	from	these
newly	created	datasets.

Creating	the	Convert	to	Google	Earth	tool
Because	visualization	is	very	important	to	Search	and	Rescue	personnel,	the	ability	to	see
these	datasets	in	a	3D	environment	is	helpful.	In	this	section,	we’ll	create	a	custom	tool
that	can	be	used	to	export	these	datasets	to	Google	Earth’s	Keyhole	Markup	Language
(KML)	format.

To	complete	this	section,	you	will	need	to	install	the	simplekml	Python	module.	You	can
use	pip	to	install	this	module	by	using	the	following	command	from	the	command
prompt:

pip	install	simplekml

The	following	steps	will	help	you	to	create	Convert	to	Google	Earth	tool:

1.	 In	ArcMap,	open	Catalog	view,	right-click	on	the	SAR.pyt	custom	toolbox,	and
select	Edit	to	open	the	code	in	the	Python	development	environment.

2.	 Copy	and	paste	the	existing	AssignLKPAttributes	class	inside	the	SAR.pyt	file.
3.	 Rename	the	newly	pasted	AssignLKPAttributes	class	to	ConvertToGoogleEarth

class.
4.	 Import	the	simplekml	module:

import	arcpy

import	simplekml

5.	 Update	the	self.label	and	self.description	properties,	as	shown	in	the	following
code:

class	ConvertToGoogleEarth(object):

				def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Convert	to	Google	Earth"

								self.description	=	"Convert	to	Google	Earth"

6.	 Add	the	tool	to	the	self.tools	list	in	the	Toolbox	class:

self.tools	=	[AssignLKPAttributes,	SearchAreaBuffers,	

ConvertToGoogleEarth]

7.	 Find	the	getParameterInfo()	method	and	remove	the	existing	parameters	that	were
copied.	Next,	add	the	following	parameters.	These	parameters	will	be	used	to	capture
the	input	feature	class	to	be	converted	to	the	KML	format	along	with	an	output
filename.	Your	code	should	appear	as	follows:

def	getParameterInfo(self):

				"""Define	parameter	definitions"""

				in_fc	=	arcpy.Parameter(

																			name='in_features',

																			displayName='Input	Features',

																			datatype='GPFeatureLayer',

																			direction='Input',

																			parameterType='Required')

				out_file	=	arcpy.Parameter(

																						name='out_file',

																						displayName='Output	KML	File',

																						datatype='DEFile',

																						direction='Output',

																						parameterType='Required')

				out_file.filter.list	=	['kml']

				params	=	[in_fc,	out_file]

				return	params

8.	 Find	the	execute()	method	and	remove	the	existing	parameters	that	were	copied.
9.	 In	the	execute()	method,	add	code	to	capture	the	input	parameters:

def	execute(self,	parameters,	messages):

				"""The	source	code	of	the	tool."""

				in_fc	=	parameters[0].valueAsText

				out_file	=	parameters[1].valueAsText

10.	 Create	a	new	KML	file:

def	execute(self,	parameters,	messages):

				"""The	source	code	of	the	tool."""

				in_fc	=	parameters[0].valueAsText

				out_file	=	parameters[1].valueAsText

				kml	=	simplekml.Kml()

				kml.document.name	=	out_file

11.	 Create	a	new	SpatialReference	object	that	will	be	used	to	define	the	output
parameters	in	a	WGS84	coordinate	system:

def	execute(self,	parameters,	messages):

				"""The	source	code	of	the	tool."""

				in_fc	=	parameters[0].valueAsText

				out_file	=	parameters[1].valueAsText

				kml	=	simplekml.Kml()

				kml.document.name	=	out_file

				sr	=	arcpy.SpatialReference(4326)

12.	 Using	the	Describe()	function,	add	the	code	that	will	determine	the	shape	type	of
the	input	feature	class.	For	this	particular	tool,	we	will	only	convert	points	and
polygons,	but	you	can	easily	add	another	code	block	to	process	polylines:

def	execute(self,	parameters,	messages):

				"""The	source	code	of	the	tool."""

				in_fc	=	parameters[0].valueAsText

				out_file	=	parameters[1].valueAsText

				kml	=	simplekml.Kml()

				kml.document.name	=	out_file

				sr	=	arcpy.SpatialReference(4326)

				desc	=	arcpy.Describe(in_fc)

				shapeType	=	desc.shapeType

				if	shapeType	==	'Point':

13.	 In	the	code	block	for	point	feature	classes,	create	a	SearchCursor	class	that	will
return	the	geometry	of	the	point	along	with	the	contents	of	the	incident_name	and
name	fields	for	the	input	layer:

def	execute(self,	parameters,	messages):

				"""The	source	code	of	the	tool."""

				in_fc	=	parameters[0].valueAsText

				out_file	=	parameters[1].valueAsText

				kml	=	simplekml.Kml()

				kml.document.name	=	out_file

				sr	=	arcpy.SpatialReference(4326)

				desc	=	arcpy.Describe(in_fc)

				shapeType	=	desc.shapeType

				if	shapeType	==	'Point':

								with	arcpy.da.SearchCursor(in_fc,

('SHAPE@','Incident_Name','Name'),spatial_reference=sr)	as	cursor:

14.	 Loop	through	the	SearchCursor	object	and	retrieve	the	x	and	y	coordinates	along
with	the	Incidentname	and	Name	fields:

def	execute(self,	parameters,	messages):

				"""The	source	code	of	the	tool."""

				in_fc	=	parameters[0].valueAsText

				out_file	=	parameters[1].valueAsText

				kml	=	simplekml.Kml()

				kml.document.name	=	out_file

				sr	=	arcpy.SpatialReference(4326)

				desc	=	arcpy.Describe(in_fc)

				shapeType	=	desc.shapeType

				if	shapeType	==	'Point':

								with	arcpy.da.SearchCursor(in_fc,

('SHAPE@','Incident_Name','Name'),spatial_reference=sr)	as	cursor:

												for	row	in	cursor:

																x	=	row[0].firstPoint.X

																y	=	row[0].firstPoint.Y

																incidentName	=	row[1]

																name	=	row[2]

15.	 Create	a	new	kml	point	object	using	the	simplekml	library	and	assign	the	name,
description,	and	coordinates	properties:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								in_fc	=	parameters[0].valueAsText

								out_file	=	parameters[1].valueAsText

								kml	=	simplekml.Kml()

								kml.document.name	=	out_file

								sr	=	arcpy.SpatialReference(4326)

								desc	=	arcpy.Describe(in_fc)

								shapeType	=	desc.shapeType

								if	shapeType	==	'Point':

												with	arcpy.da.SearchCursor(in_fc,

('SHAPE@','Incident_Name','Name'),spatial_reference=sr)	as	cursor:

																for	row	in	cursor:

																				x	=	row[0].firstPoint.X

																				y	=	row[0].firstPoint.Y

																				incidentName	=	row[1]

																				name	=	row[2]

																				pnt	=	kml.newpoint()

																				pnt.name	=	name

																				pnt.description	=	incidentName

																				pnt.coords	=	[(x,y)]

16.	 Next,	we’ll	turn	our	attention	to	coding	the	KML	for	polygon	layers.	Inside	the	elif
statement,	create	SearchCursor	method:

elif	shapeType	==	'Polygon':

					with	arcpy.da.SearchCursor(in_fc,	

('OID@','SHAPE@'),spatial_reference=sr)	as	cursor:

17.	 Loop	through	the	rows	and	retrieve	the	vertices	for	each	polygon:

elif	shapeType	==	'Polygon':

				with	arcpy.da.SearchCursor(in_fc,	

('OID@','SHAPE@'),spatial_reference=sr)	as	cursor:

								for	row	in	cursor:

												listVertices	=	[]

												#	Step	through	each	part	of	the	feature

												for	part	in	row[1]:

																#	Step	through	each	vertex	in	the	feature

																for	pnt	in	part:

																				if	pnt:

																								#	get	x,y	coordinates	of	current	point

																								newVertex	=	pnt.X,	pnt.Y

																								listVertices.append(newVertex)

18.	 Create	a	new	kml	polygon	object	and	assign	the	outerboundaryis	property:

elif	shapeType	==	'Polygon':

				with	arcpy.da.SearchCursor(in_fc,	

('OID@','SHAPE@'),spatial_reference=sr)	as	cursor:

								for	row	in	cursor:

												listVertices	=	[]

												#	Step	through	each	part	of	the	feature

												for	part	in	row[1]:

																#	Step	through	each	vertex	in	the	feature

																for	pnt	in	part:

																				if	pnt:

																								#	get	x,y	coordinates	of	current	point

																								newVertex	=	pnt.X,	pnt.Y

																								listVertices.append(newVertex)

																								poly	=	kml.newpolygon()

																								poly.outerboundaryis	=	listVertices

19.	 Save	the	output	KML	file:

def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								in_fc	=	parameters[0].valueAsText

								out_file	=	parameters[1].valueAsText

								kml	=	simplekml.Kml()

								kml.document.name	=	out_file

								

								sr	=	arcpy.SpatialReference(4326)

								desc	=	arcpy.Describe(in_fc)

								shapeType	=	desc.shapeType

								if	shapeType	==	'Point':

												with	arcpy.da.SearchCursor(in_fc,

('SHAPE@','Incident_Name','Name'),spatial_reference=sr)	as	cursor:

																for	row	in	cursor:

																				x	=	row[0].firstPoint.X

																				y	=	row[0].firstPoint.Y

																				incidentName	=	row[1]

																				name	=	row[2]

																				pnt	=	kml.newpoint()

																				pnt.name	=	name

																				pnt.description	=	incidentName

																				pnt.coords	=	[(x,y)]

								elif	shapeType	==	'Polygon':

												with	arcpy.da.SearchCursor(in_fc,	('OID@','SHAPE@'),	

spatial_reference=sr)	as	cursor:

																for	row	in	cursor:

																				listVertices	=	[]

																				#	Step	through	each	part	of	the	feature

																				for	part	in	row[1]:

																								#	Step	through	each	vertex	in	the	feature

																								for	pnt	in	part:

																												if	pnt:

																																#	get	x,y	coordinates	of	current	point

																																newVertex	=	pnt.X,	pnt.Y

																																listVertices.append(newVertex)

																																poly	=	kml.newpolygon()

																																poly.outerboundaryis	=	listVertices

								kml.save(out_file)

20.	 You	can	check	your	work	by	examining	the	solution	files	in	the
C:\ArcGIS_Blueprint_Python\solutions\ch8	folder.	Open	the
ConvertToGoogleEarth.py	file	and	examine	the	ConvertToGoogleEarth	class.

21.	 Save	your	script	and	exit	the	Python	development	environment.
22.	 Double-click	on	the	Convert	to	Google	Earth	tool	in	the	SAR	toolbox	to	display	the

tool,	as	shown	in	the	following	screenshot:

23.	 To	test	the	tool,	select	the	LostMale10YearsOld	feature	class	and	define	the	output	as
C:\ArcGIS_Blueprint_Python\ch8\LostMale10YearsOld.kml.	Click	on	the	OK
button.

24.	 For	this	next	step,	you’ll	need	to	install	Google	Earth	Pro	application	on	your
computer.	Google	Earth	Pro	is	a	free	product	that	you	can	install	by	downloading	the
software	from	http://www.google.com/earth/download/gep/agree.html.	The	license
key	is	GEPFREE.

25.	 Open	Google	Earth	Pro	and	navigate	to	File	|	Open.	Then,	go	to
C:\ArcGIS_Blueprint_Python\ch8	and	open	LostMale10YearsOld.kml.

26.	 Your	location	will	most	likely	vary,	but	you	should	see	a	point	location	similar	to
what	is	shown	in	the	following	screenshot:

http://www.google.com/earth/download/gep/agree.html

27.	 Repeat	the	process	with	the	SearchSectors	layer	to	see	something	similar	to	what	is
shown	in	the	following	screenshot:

Summary
This	chapter	covered	several	topics	that	we’ve	seen	in	other	chapters,	including	the
creation	of	Python	add-ins	as	well	as	custom	Python	toolboxes	and	tools.	However,	we
introduced	several	new	topics,	including	the	inclusion	of	the	shapekml	module	to	convert
ArcGIS	data	to	the	Google	Earth	format,	the	use	of	ArcGIS	Python	Add-In	tool	to	draw
polygons,	and	the	integration	of	Python	add-ins	with	custom	Python	toolboxes	through	the
pythonaddins	module.

In	the	next	chapter,	you	will	learn	how	to	use	Python	to	create	a	real-time	social	media
application	using	the	tweepy	Python	module.

Chapter	9.	Real-Time	Twitter	Mapping
with	Tweepy,	ArcPy,	and	the	Twitter	API
Events	and	news	stories	generate	a	massive	amount	of	social	media	attention.	Whether	it’s
something	as	important	as	a	natural	disaster	or	there	is	social	strife	or	something	purely	for
entertainment,	there	is	a	large	volume	of	information	that	needs	to	be	mined.	As	GIS
practitioners,	we	are	primarily	interested	in	geographic	analysis,	and	some	social	media
channels	provide	geographic	context	related	to	their	information	streams.	For	example,
Twitter	users	can	make	their	tweets	location-enabled.	Location-enabled	Twitter	accounts
will	ensure	that	each	tweet	will	be	tagged	with	the	current	geographic	coordinates	of	the
user.	Many	Twitter	users	have	not	made	their	accounts	location-enabled	due	to	security
reasons	or	because	they	are	unaware	of	this	feature	or	are	simply	not	interested.	In	fact,
only	about	2%	of	tweets	contain	location	information.

The	application	built	in	this	chapter	will	mine	a	live	stream	of	tweets	containing	specific
terms	and	hash	tags.	Tweets	that	contain	geographic	coordinates	will	be	written	to	a	local
geodatabase	for	further	analysis.	In	addition,	several	tools	will	be	created	to	enable	the
analysis	of	this	social	media	data.	Finally,	the	results	will	be	shared	with	the	public
through	ArcGIS	Online.

In	this	chapter,	we	will	cover	the	following	topics:

Creating	a	Python	script	that	uses	the	tweepy	library	to	mine	a	live	stream	of	Twitter
data
The	analysis	of	social	media	data	through	geostatistical	analysis	tools
Scheduling	Python	scripts	with	Windows	Task	Scheduler

Design
The	design	of	this	application	is	quite	simple	and	involves	only	the	creation	of	a	single
Python	script	that	uses	the	tweepy	module	and	arcpy	to	mine	a	live	stream	of	tweets	and
write	the	information	to	a	local	feature	class.	The	script	will	also	be	scheduled	using
Windows	Task	Scheduler:

Let’s	get	started	and	build	the	application.

Extracting	Tweet	geographic	coordinates
with	tweepy
In	this	step,	you’ll	create	a	Python	script	that	uses	the	Python	tweepy	module	to	extract
tweets	containing	geographic	coordinates	and	write	this	information	to	a	local	feature
class.	The	tweepy	module	is	designed	to	provide	access	to	all	the	Twitter	REST	API
methods.	This	will	be	a	standalone	script	that	can	be	run	from	the	command	line	or	the
Python	development	environment.	It	will	create	a	listener	style	environment	that	will
continue	to	be	executed,	looking	for	live	tweets	until	you	kill	the	process.

Follow	these	steps	to	create	the	script:

1.	 Before	completing	this	section	of	the	chapter,	you	will	need	to	download	and	install
the	tweepy	Python	module	using	pip.	Issue	the	following	command	from	Command
Prompt.	The	instruction	to	install	pip	can	be	found	in	previous	chapter:

pip	install	tweepy	

2.	 Tweepy	supports	the	OAuth	authentication	required	to	connect	with	Twitter.	The	first
step	is	to	register	your	client	application	with	Twitter.	In	this	case,	the	client
application	is	simply	a	desktop	Python	script,	but	this	one-time	step	is	necessary.

3.	 Log	in	to	your	Twitter	account.
4.	 Go	to	https://apps.twitter.com.
5.	 Click	on	the	Create	New	App	button	shown	in	the	following	screenshot:

6.	 Add	the	application	details.	In	this	chapter,	we’ll	create	a	geographic	analysis	of
tweets	about	Southeastern	Conference	(SEC)	football	during	a	one-weekend	time
period.	However,	if	you’d	like	to	explore	a	different	topic,	you	are	certainly	welcome
to	do	that.	You’ll	need	to	provide	a	URL	to	a	website	that	is	publicly	accessible:

https://apps.twitter.com

7.	 Click	on	the	Create	your	Twitter	application	button	at	the	bottom	of	this	form.
8.	 This	will	return	a	new	page	with	the	application	details.	Click	on	the	Keys	and

Access	Tokens	tab.	Make	a	note	of	the	Consumer	Key	(API	Key)	and	Consumer
Secret	(Secret	Key)	seen	here.	Mine	have	been	obscured,	but	you	should	see	a	long
sequence	of	characters	in	both	the	cases.	Keep	these	handy	because	you’ll	need	these
details	in	a	later	step:

9.	 Open	your	Python	development	environment.	A	shell	window	will	work	fine	in	this
particular	case.

10.	 Import	the	tweepy	objects	from	the	tweepy	module:

import	tweepy

11.	 Create	an	instance	of	OAuthHandler	by	passing	in	the	consumer	key	which	is
consumer_key	and	consumer	secret	which	is	consumer_secret	as	strings:

auth	=	tweepy.OAuthHandler("<consumer_key>",	"<consumer_secret>")

12.	 Get	the	redirected	URL	by	issuing	the	following	command:

redirect_url	=	auth.get_authorization_url()

13.	 Print	the	redirected	URL:

print(redirect_url)

You	should	see	something	similar	to	what	is	shown	in	here,	but	keep	in	mind	that
your	token	will	not	be	the	same	as	mine,	so	if	you	go	to	the	following	URL,	you	will
see	request	token	invalid	message	on	the	webpage:
https://api.twitter.com/oauth/authorize?

oauth_token=LAfKfgAAAAAAh8FgAAABUELLojA.

14.	 Open	a	web	browser	and	copy	and	paste	your	URL.	Hit	the	Enter	key,	and	you
should	see	something	similar	to	what	is	shown	in	the	following	screenshot.	You	may
be	required	to	log	in	to	your	Twitter	account:

15.	 Click	on	the	Authorize	app	button,	and	you	should	see	something	similar	to	what	is
shown	in	the	following	screenshot.	Keep	in	mind	that	the	number	you	see	will	not	be
the	same:

16.	 Return	to	the	Python	shell	environment,	type	the	following	line	of	code,	and	hit
Enter:

verifier	=	raw_input('Verifier:')

17.	 Type	in	the	verification	code	you	just	generated,	as	shown	here,	and	click	on	Enter,
but	make	sure	you	enter	the	number	you	generated	and	not	the	example:

Verifier:	6319182

18.	 In	the	Python	shell,	type	the	following:

print(auth.get_access_token(verifier))

19.	 You	will	see	something	similar	to	the	following,	but	keep	in	mind	that	your	values
will,	again,	not	be	the	same	as	mine.	The	first	value	is	the	token	key	and	the	second	is
the	token	secret.	Write	this	information	down	or	save	it	somewhere	because	you	will
need	it	when	you	write	the	script:

(u'20646590-fUYjN8BuSqLjfOp0Dxye799rG2WF6wBMAsUddyIwC',	

u'GVAJTe0SklHmnG0dDsy5kpPBk8yBXuQWRSqrFIWJAFlQy')

20.	 In	your	Python	development	environment,	create	a	new	script.
21.	 Save	the	script	as	C:\ArcGIS_Blueprint_Python\ch9\tweepy_stream.py.
22.	 Import	the	StreamListener,	OAuthHandler,	and	Stream	objects	from	the	tweepy

library:

from	tweepy.streaming	import	StreamListener

from	tweepy	import	OAuthHandler

from	tweepy	import	Stream

23.	 Also,	import	the	arcpy,	sys,	and	time	modules:

import	arcpy

import	sys

import	time

24.	 Create	global	variables	to	hold	the	consumer	key	and	secret	(the	Twitter	application
information),	as	well	as	the	Twitter	token	key	and	secret.	These	should	be	the	values
you	gathered	up	until	this	point:

#global	variables

consumer_key	=	'<consumer_key>'

consumer_secret	=	'<consumer_secret>'

token_key	=	'<token_key>'

token_secret	=	'<token_secret>'

25.	 Create	global	variables	to	hold	the	start	time	of	the	script	as	well	as	the	current
workspace:

#global	variables

consumer_key	=	'<consumer_key>'

consumer_secret	=	'<consumer_secret>'

token_key	=	'<token_key>'

token_secret	=	'<token_secret>'

start_time	=	time.time()

arcpy.env.workspace	=	

r'c:\ArcGIS_Blueprint_Python\data\Twitter\TweetInformation.gdb'

26.	 Create	the	main()	function:

def	main():

				

				

if	__name__	==	'__main__':

				main()

27.	 Inside	the	main()	function,	create	a	try/except	block	and	create	variables	to	hold	the
input	feature	class	and	time	for	the	monitoring	of	tweets.	The	sys.argv[]	list	is	used
to	capture	the	command-line	input	of	the	script	when	executed	from	Command
Prompt.	The	featureClass	variable	will	hold	the	input	feature	class	name,	and	the
monitorTime	variable	will	hold	the	amount	of	time	for	which	the	script	will	monitor
tweets.	This	value	is	in	seconds;	the	input	value	will	be	input	in	hours	and	then
converted	to	seconds:

def	main():

				try:		#new

								featureClass	=	sys.argv[1]

								monitorTime	=	sys.argv[2]

								monitorTime	=	monitorTime	*	3600

				except	Exception	as	e:

								print(e.message)

28.	 Create	the	spatial	reference	for	the	output	feature	class,	enable	the	script	to	overwrite
an	existing	feature	class,	and	call	the	CreateFeatureClass	tool:

try:		#new

				featureClass	=	sys.argv[1]

				monitorTime	=	sys.argv[2]

				monitorTime	=	monitorTime	*	3600

				sr	=	arcpy.SpatialReference(4326)

				arcpy.env.overwriteOutput	=	True

				arcpy.CreateFeatureclass_management(arcpy.env.workspace,	

featureClass,	"POINT",	spatial_reference=sr)

29.	 Inside	the	main()	function,	create	a	new	instance	of	OAuthHandler	by	passing	in	the
consumer	key	and	consumer	token,	and	set	the	Twitter	access	token	by	passing	in	the
token	key	and	token	secret:

try:		#new

				featureClass	=	sys.argv[1]

				monitorTime	=	sys.argv[2]

				monitorTime	=	monitorTime	*	3600

				sr	=	arcpy.SpatialReference(4326)

				arcpy.env.overwriteOutput	=	True

				arcpy.CreateFeatureclass_management(arcpy.env.workspace,	

featureClass,	"POINT",	spatial_reference=sr)

				auth	=	OAuthHandler(consumer_key,	consumer_secret)

				auth.set_access_token(token_key,	token_secret)

30.	 Create	a	new	Stream	object	by	passing	in	instances	of	OAuthHandler	and
StdOutListener:

try:		#new

				featureClass	=	sys.argv[1]

				monitorTime	=	sys.argv[2]

				monitorTime	=	monitorTime	*	3600

				sr	=	arcpy.SpatialReference(4326)

				arcpy.env.overwriteOutput	=	True

				arcpy.CreateFeatureclass_management(arcpy.env.workspace,	

featureClass,	"POINT",	spatial_reference=sr)

				auth	=	OAuthHandler(consumer_key,	consumer_secret)

				auth.set_access_token(token_key,	token_secret)

				

				stream	=	Stream(auth,	StdOutListener(start_time,	featureClass,	

time_limit=monitorTime))

31.	 Set	the	filter	for	the	Stream	object.	The	filter	includes	terms	that	will	be	used	in	the
search	for	tweets.	I’ve	included	a	number	of	terms	related	to	searching	tweets	of	SEC
conference	football	teams,	including	Alabama,	Texas	A&M,	Auburn,	LSU,	and
Georgia.	However,	you	can	feel	free	to	include	search	terms	that	are	relevant	to	any
topic	that	you’d	like	to	monitor	and	map.	I’ve	commented	out	a	second	filter	that	can
be	used	to	monitor	the	wildfire	information	to	give	you	another	option:

try:		#new

				featureClass	=	sys.argv[1]

				monitorTime	=	sys.argv[2]

				monitorTime	=	monitorTime	*	3600

				sr	=	arcpy.SpatialReference(4326)

				arcpy.env.overwriteOutput	=	True

				arcpy.CreateFeatureclass_management(arcpy.env.workspace,	

featureClass,	"POINT",	spatial_reference=sr)

				auth	=	OAuthHandler(consumer_key,	consumer_secret)

				auth.set_access_token(token_key,	token_secret)

				stream	=	Stream(auth,	StdOutListener(start_time,	featureClass,	

time_limit=monitorTime))		#172800

				stream.filter(track=['#SEC',	'#SECFootball',	'#RollTide',	'#GigEm',	

'#Bama',	'#UGABulldogs','#Dawgs',	'#GeorgiaBulldogs',	'##A&MFootball',	

'#KyleField',	'#Aggies',	'#gigem','#LSUFootball','#LSUFB',	

'#WarEagle','#AuburnFootball'])

32.	 Above	the	main()	function	and	below	the	global	variable,	create	a	new	class	called
StdOutListener.	Objects	created	from	this	class	will	listen	for	tweets	on	the	Stream
object	and	are	filtered	based	on	the	terms	that	are	provided:

#global	variables

consumer_key	=	'x9jRE3KQm1LlEFcHsL6bP4TRa'

consumer_secret	=	'8VVzPzY0DJbbgbBk5bgWCrBADzLEqdnATNbw1z0LUWF5MWuu4g'

token_key	=	'2997753385-nCFmNPAo2LOt7LLF311Kw0JdsAhcNSq8yQThxtO'

token_secret	=	'0Dck37JE7HV56Rs5t5GUkbW3C61qepG4fi070RiP4SNdm'

class	StdOutListener(StreamListener):

33.	 Create	an	__init__	method,	as	shown	in	the	following	code.	The	__init__	method
is	a	constructor	for	the	class	and	will	be	used	to	set	various	properties:

class	StdOutListener(StreamListener):

				def	__init__(self,	start_time,	featureClass,	time_limit):

								super(StdOutListener,	self).__init__()

												self.time	=	start_time

												self.limit	=	time_limit

												self.featureClass	=	featureClass

34.	 Create	methods	called	on_status,	on_error,	and	on_timeout	inside	the
StdOutListener	class:

class	StdOutListener(StreamListener):

				def	on_status(self,	status):

				def	on_error(self,	status):

				def	on_timeout(self):

35.	 Inside	the	on_status	method,	add	a	while	loop	that	will	execute	as	long	as	the	time
has	not	exceeded	the	amount	of	time	to	monitor	the	script	execution.	You’ll	recall
that	the	amount	to	be	monitored	is	input	from	the	command	line	when	the	script	is
initiated:

def	on_status(self,	status):

				while	(time.time()	-	self.time)	<	self.limit:

36.	 Inside	the	on_status	method,	add	an	if-else	statement	that	tests	to	see	whether	the
status.geo	property	has	been	set.	Keep	in	mind	that	most	people	do	not	enable	the
location	status	on	their	Twitter	profile,	so	the	majority	of	tweets	will	not	contain
coordinate	information.	Therefore,	we	need	an	if-else	statement	that	will	branch	the
code	depending	upon	whether	or	not	the	coordinate	information	is	available:

def	on_status(self,	status):

				while	(time.time()	-	self.time)	<	self.limit:

								if	status.geo	is	not	None:

								else:

												print	"No	coordinates	found"

												return	True

37.	 Inside	the	if	statement,	get	the	status.geo	property,	which	is	returned	as	a	Python
dictionary	object,	and	pull	out	the	value	associated	with	the	coordinates	key.	This	will
be	a	Python	list	containing	the	latitude	and	longitude	coordinates:

if	status.geo	is	not	None:

				dictCoords	=	status.geo

				listCoords	=	dictCoords['coordinates']

				latitude	=	listCoords[0]

				longitude	=	listCoords[1]

else:

				print	"No	coordinates	found"

				return	True

38.	 Create	an	InsertCursor	object	and	insert	a	new	row:

if	status.geo	is	not	None:

				dictCoords	=	status.geo

				listCoords	=	dictCoords['coordinates']

				latitude	=	listCoords[0]

				longitude	=	listCoords[1]

				cursor	=	arcpy.da.InsertCursor(self.featureClass,("SHAPE@XY"))

				cursor.insertRow([(longitude,latitude)])

				print(str(listCoords[0])	+	","	+	str(listCoords[1]))

				return	True

39.	 In	the	on_error	method,	add	the	code	block	shown	here	to	print	out	any	error
messages	that	may	occur	while	the	script	is	executing:

def	on_error(self,	status):

				print('Error…')

				print	status

				return	True

40.	 In	the	on_timeout	method,	access	the	following	code	block	to	print	out	any	messages
related	to	a	timeout	condition:

def	on_timeout(self):

				print('Timeout…')

				return	True

41.	 Save	your	script.
42.	 You	can	check	your	work	by	examining	the	solution	script	found	at

C:\ArcGIS_Blueprint_Python\solutions\ch9\tweepy_stream.py.

Scheduling	the	script
In	this	section,	you’ll	learn	how	to	schedule	the	script	using	the	Windows	Task	Scheduler.
Scheduling	the	script	will	require	the	creation	of	a	batch	file.	Batch	files	can	contain
scripts	and	operating	system	commands.	The	batch	file	will	then	be	added	to	the	Windows
Task	Scheduler	to	run	at	a	specific	time	interval.	To	do	this	follow	these	steps:

1.	 Open	Notepad.
2.	 Add	the	following	lines	of	text	to	the	file.	These	lines	of	code	will	switch	the

directory	where	the	Python	script	is	stored	and	execute	the	script,	passing	in	a	name
for	the	output	feature	class	and	the	number	of	hours	to	be	monitored	for	tweets.	You
can	change	this	value	if	you’d	like:

cd	c:\ArcGIS_Blueprint_Python\ch9

python	tweepy_stream.py	Tweets	48

3.	 Save	the	file	to	your	desktop	as	MonitorTweets.bat.	Make	sure	you	change	the	Save
As	Type	drop-down	list	to	All	Files;	otherwise,	you’ll	end	up	with	a	file	called
MonitorTweets.bat.txt.

4.	 Open	the	Windows	Task	Scheduler	by	navigating	to	Start	|	All	Programs	|
Accessories	|	System	Tools	|	Control	Panel	|	Administrative	Tools.	Select	Task
Scheduler.	The	scheduler	should	appear	as	shown	in	the	following	screenshot:

5.	 Select	the	Action	menu	item	and	then	select	Create	a	Basic	Task	to	display	the	Create
Basic	Task	Wizard	dialog	box,	as	shown	in	the	following	screenshot:

6.	 Give	you	task	a	name.	In	this	case,	we	will	call	it	Monitor	Tweets.	Then,	click	on
Next:

7.	 Select	a	trigger	for	when	the	task	should	be	executed.	Select	Weekly	as	the	trigger
and	click	on	Next:

8.	 Select	a	Start	date	and	time	along	with	a	recurrence	interval.	In	this	exercise,	we’re
monitoring	tweets	from	SEC	football	games,	so	the	day	on	this	date	would	be
Saturday	morning.	Click	on	Next:

9.	 Select	Start	a	Program	as	the	action	on	the	next	dialog.
10.	 Go	to	the	script	and	click	on	Next:

11.	 Click	on	Finish.
12.	 The	task	should	be	displayed	in	the	list	of	active	tasks.

Creating	the	heatmap
In	this	section,	you’ll	create	a	heatmap	of	the	Twitter	feed	using	the	Optimized	Hot	Spot
Analysis	tool	found	in	the	Spatial	Statistics	Tools	toolbox:

1.	 If	required,	open	ArcMap	and	create	a	new	map	document	file.
2.	 Add	a	basemap	like	Dark	Gray	Canvas	or	Light	Gray	Canvas	work	well	to	display

a	heatmap.	The	Light	Gray	Canvas	basemap	is	displayed	in	the	following
screenshot:

3.	 Add	the	Tweets	feature	class	as	a	layer	to	the	display.	The	distribution	of	your	tweet

points	will	not	be	the	same	as	what	is	displayed	in	the	following	screenshot:

4.	 If	you	zoom	in	to	a	specific	area,	you	should	see	some	clustering	of	the	points,	as
shown	in	the	following	screenshot:

Over	the	next	few	steps,	you’ll	create	a	bounding	box	polygon	to	confine	the
distribution	of	the	points.	For	this	particular	exercise,	the	tweet	activity	for	SEC
football	games	examined.	The	geographic	distribution	of	the	tweet	activity	is
relatively	confined	to	the	south	and	south-eastern	parts	of	the	United	States.
However,	there	will	certainly	be	outliers.	The	bounding	box	will	limit	the	geographic
area	that’s	used	to	define	the	hotspot	analysis.

5.	 Add	the	BoundingPolygon	feature	class	as	a	layer	to	the	display.	It	should	be	empty.
6.	 Display	the	Editor	toolbar	in	ArcMap.
7.	 Navigate	to	Editor	|	Start	Editing	and	click	on	the	Create	Features	button	shown	in

the	following	screenshot:

8.	 In	the	Create	Features	dialog,	select	Organize	Templates.
9.	 Select	New	Template	and	then	select	the	BoundingPolygon	layer.
10.	 Click	on	Finish	and	then	click	on	Close.
11.	 Click	on	BoundingPolygon	from	the	Create	Features	dialog,	and	the	Construction

Tools	will	be	displayed	at	the	bottom	of	the	dialog	as	shown	in	the	following
screenshot:

12.	 Use	either	the	Polygon	or	Rectangle	tool	to	draw	a	bounding	polygonal	area	similar

to	what	is	shown	in	the	following	screenshot.	Your	bounding	polygon	may	be	totally
different	than	mine	depending	upon	the	distribution	of	your	data.	However,	you’d
want	to	limit	the	geographic	area	that	will	be	analyzed	in	the	hotspot	analysis.

13.	 Navigate	to	Editor	|	Save	Edits	and	then	go	to	Editor	|	Stop	Editing	from	the
Editor	toolbar.

14.	 Close	the	Editor	toolbar.
15.	 Open	ArcToolbox	and	find	the	Optimized	Hot	Spot	Analysis	tool	in	the	Spatial

Statistics	Tools	toolbox.	It	should	be	inside	the	Mapping	Clusters	toolset.
16.	 Double-click	on	Optimized	Hot	Spot	Analysis	to	display	the	dialog	shown	here:

17.	 Select	Tweets	as	Input	Features,	HeatMap	as	Output	Features,	and
BoundingPolygon	as	Bounding	Polygons	Defining	Where	Incidents	are	Possible.
The	remainder	of	the	parameters	can	be	left	as	the	defaults,	or	they	can	remain
undefined.	Take	a	look	at	the	following	screenshot	to	verify	your	parameters:

18.	 Click	on	OK	to	execute	the	tool.	The	progress	dialog	should	display	information	as	it
proceeds,	as	shown	in	the	following	screenshot,	and	will	ultimately	create	an	output
feature	class:

19.	 The	output	feature	class	will	be	symbolized	to	show	cold	spots,	hotspots,	and	areas
that	are	not	significant.	An	example	can	be	seen	in	the	following	screenshot.	Note
that	the	output	is	clipped	to	the	bounding	polygon:

20.	 In	the	data	frame	containing	your	output	HeatMap	feature	class,	click	on	the	symbol
used	to	represent	Not	Significant.

21.	 In	the	Symbol	Selector	dialog,	change	the	current	symbol	to	Hollow	and	set	Outline
Width	to	0.	Click	on	OK.

22.	 The	result	should	be	something	similar	to	what	is	shown	in	the	following	screenshot.
Keep	in	mind	that	your	data	will	differ:

Summary
This	chapter	introduced	several	new	topics,	including	the	tweepy	module	used	to	monitor
live	Twitter	data	feeds	and	the	use	of	the	Windows	Task	Scheduler	to	automate	the	process
of	monitoring	Twitter	activity.	Although	only	about	2%	of	tweets	include	location
information,	we	can	still	get	a	good	understanding	of	the	spatial	patterns	of	social	media
when	monitoring	large	events	over	an	extended	period	of	time.	In	this	chapter,	the	live
tweets	were	written	to	a	local	feature	class	and	then	mapped	to	the	Hot	Spot	Analysis	tool
found	in	the	Spatial	Statistics	Tools	toolbox.

In	the	next	chapter,	you’ll	learn	how	to	use	Python	to	extract	the	geographic	coordinates
from	smartphone	photos,	reverse	geocode	the	coordinates	to	retrieve	the	nearest	address,
and	create	an	ArcGIS	Online	application	to	display	the	results.

Chapter	10.	Integrating	Smartphone
Photos	with	ArcGIS	Desktop	and	ArcGIS
Online
Today,	almost	everyone	uses	a	smartphone.	These	phones	have	many	capabilities,
including	the	ability	to	take	photos	and	videos.	Because	they	also	include	a	GPS,	photos
can	be	location	enabled	so	that	the	geographic	coordinates	of	each	photo	are	captured	and
stored	with	the	metadata	that	accompanies	the	photos.	Photo	metadata	is	stored	in	an
Exchangeable	Image	File	Format	(EXIF).	The	Python’s	Python	Imaging	Library
(PIL)	module	can	be	used	to	extract	this	information,	including	latitude	and	longitude
coordinates.	Using	this	extracted	coordinate	information,	a	reverse	geocoding	process	can
then	be	applied	to	each	coordinate	to	determine	the	nearest	address	of	the	photo.	This	can
be	extremely	useful	for	organizations,	such	as	property	managers,	real	estate	agents,	local
government	organizations,	and	more.	Employees	can	be	sent	into	the	field	with	a
smartphone	to	capture	photos	of	properties	or	other	assets	without	having	to	be	concerned
about	capturing	address	and	GPS	information.

In	this	chapter,	we	will	create	a	real	estate	application	that	reads	photo	metadata,	extracts
the	coordinate	information,	retrieves	the	nearest	address	to	the	photo,	and	writes	this
information	to	a	local	feature	class.	In	addition,	the	photos	will	be	copied	to	a	Dropbox
account	using	the	Python	dropbox	module	so	that	the	photos	can	be	accessed	through	a
web	application.	Finally,	the	property	feature	class	will	be	uploaded	to	ArcGIS	Online,
integrated	with	the	Dropbox	photos,	and	shared	as	a	web-based	map.

In	this	chapter	we	will	cover	the	following	topics:

Extracting	geographic	coordinates	from	smartphone	photos	with	the	Python	PIL
module
Writing	extracted	coordinate	information	to	a	feature	class	with	ArcPy
Reverse	geocoding	smartphone	photos	to	obtain	nearest	address
Copying	smartphone	photos	to	Dropbox	with	the	Python	dropbox	module

Design
The	design	of	this	application	involves	quite	a	few	moving	parts.	Photo	metadata
information	will	be	extracted	using	the	Python	PIL	module.	The	extracted	information	will
include	geographic	coordinates.	The	coordinate	information	can	then	be	passed	to	the	Esri
World	Geocoding	service	as	a	reverse	geocoding	operation	to	obtain	the	nearest	address	to
the	photo.	The	coordinate	and	address	information	can	then	be	written	to	a	local	point
feature	class	using	the	ArcPy	Data	Access	module.	The	photos	will	also	be	copied	to
Dropbox	so	that	they	can	be	accessed	through	a	web-based	application.	The	final	step	in
this	chapter	will	be	to	upload	the	local	file	geodatabase	to	ArcGIS	Online	where	it	will	be
configured	alongside	the	Dropbox	photos	to	display	property	locations	and	photos	that	can
be	shared	in	a	web	application:

Let’s	get	started	building	the	application.

Taking	photos
For	this	exercise,	a	number	of	photos	have	been	provided	for	you	to	use.	They	are	located
in	the	C:\ArcGIS_Blueprint_Python\ch10\photos	folder.	However,	you	can	use	your
own	photos	if	you’d	prefer.	The	code	for	this	application	does	require	that	you	use	an
iPhone	or	iPad	device	to	take	the	photos.	If	you	have	an	Android	or	other	device,	the
metadata	created	with	the	photos	will	be	different	and	require	that	your	code	be	altered	to
account	for	the	differences.

Photos	taken	with	the	camera	application	on	an	iPhone	can	store	geographic	coordinates	in
the	metadata	associated	with	each	photo.	However,	you	will	need	to	turn	on	Location
Services.	The	steps	to	do	so	are	provided	as	follows:

1.	 Open	the	Settings	app	on	your	iPhone.
2.	 Select	Privacy.
3.	 You	should	see	Location	Services	at	the	top	of	the	Privacy	dialog	as	seen	in	the

screenshot	here:

4.	 Click	Location	Services,	find	the	Camera	app,	and	select	While	Using,	as	shown	in
the	following	image:

This	will	ensure	that	any	photos	taken	with	the	Camera	app	will	include	geographic
coordinates.

Converting	iPhone	photos	to	a	feature
class
In	this	step,	you’ll	write	a	tool	that	processes	a	series	of	photos	taken	with	an	Apple
iPhone.	The	tool	will	extract	the	latitude	and	longitude	coordinates	of	each	photo	and
write	the	information	as	individual	point	features	in	a	feature	class	stored	in	a	file
geodatabase.	Coordinate	information	for	the	photos	can	be	extracted	using	the	Python	PIL
module.	In	a	later	step,	we’ll	update	the	script	to	also	copy	the	photos	to	Dropbox.

Perform	the	following	steps	given,	to	create	a	custom	ArcGIS	Python	Toolbox	and	tool
to	process	the	photos:

1.	 Before	completing	the	steps	in	this	section,	you	will	need	to	download	and	install	the
Python	PIL	module.	Open	a	Command	Prompt,	type	the	following	command,	and
press	Enter.	This	assumes	that	you	have	already	installed	pip	from	the	previous
chapter.	Windows	installers	can	also	be	found	at	the	project	downloads	page	at
http://www.pythonware.com/products/pil/.	We	have	the	following	code:

pip	install	PIL

2.	 Open	Catalog	view	in	ArcMap	and	create	a	new	Python	Toolbox	inside	Toolboxes	|
My	Toolboxes.	Rename	the	default	Toolbox	to	ProcessingPhotos.pyt.

3.	 Open	your	Python	development	environment	by	right-clicking	the	new	toolbox	you
created	and	selecting	Edit.

4.	 Import	the	shutil,	os,	sys,	and	arcpy	modules	along	with	several	objects	from	the
PIL	module	as	follows:

import	shutil,	os,	sys,	arcpy

from	PIL	import	Image			#PIL:	http://www.pythonware.com/products/pil/

from	PIL.ExifTags	import	TAGS,	GPSTAGS

5.	 Change	the	Tool	class	to	ConvertPhotosToGeodatabase	and	set	the	label	and
description	properties	as	follows:

class	ConvertPhotosToGeodatabase(object):

				def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Convert	Photos	to	Geodatabase"

								self.description	=	"Convert	Photos	to	Geodatabase"

								self.canRunInBackground	=	False

6.	 Add	the	ConvertPhotosToGeodatabase	tool	to	the	tools	list	inside	the	toolbox:

self.tools	=	[ConvertPhotosToGeodatabase]

7.	 Define	a	label	and	description	for	the	tool	as	follows:

class	ConvertPhotosToGeodatabase(object):

				def	__init__(self):

								"""Define	the	tool	(tool	name	is	the	name	of	the	class)."""

								self.label	=	"Convert	Photos	to	Geodatabase"

http://www.pythonware.com/products/pil/

								self.description	=	"Convert	Photos	to	Geodatabase"

								self.canRunInBackground	=	False

8.	 This	tool	will	require	four	input	parameters.	The	first	will	provide	a	path	to	the	folder
containing	the	photos.	The	second	and	third	parameters	will	provide	the	path	and
name	of	the	output	file	geodatabase	to	be	created,	and	the	final	parameter	will	be	the
output	feature	class	name.	Add	the	following	code	block	to	the	getParameterInfo()
method:

def	getParameterInfo(self):

				"""Define	parameter	definitions"""

				param0	=	arcpy.Parameter(displayName	=	"Path	to	Pictures",	\

																				name="folderToImport",	\

																				datatype="DEFolder",	\

																				parameterType="Required",\

																				direction="Input")

				param1	=	arcpy.Parameter(displayName	=	"Path	to	File	Geodatabase",	

\

																				name="pathToFGDB",	\

																				datatype="DEFolder",	\

																				parameterType="Required",\

																				direction="Input")

				param2	=	arcpy.Parameter(displayName	=	"File	Geodatabase	Name",	\

																				name="fgdbName",	\

																				datatype="GPString",	\

																				parameterType="Required",\

																				direction="Input")

				param3	=	arcpy.Parameter(displayName	=	"Output	Feature	Class	Name",	

\

																				name="output_fc",	\

																				datatype="GPString",\

																				parameterType="Required",\

																				direction="Input")

				params	=	[param0,	param1,	param2,	param3]

				return	params

9.	 In	the	execute()	method,	capture	the	input	parameters	as	follows:

def	execute(self,	parameters,	messages):

				"""The	source	code	of	the	tool."""

				inPicFolder	=	parameters[0].valueAsText

				path	=	parameters[1].valueAsText

				fgdb	=	parameters[2].valueAsText

				fc	=	parameters[3].valueAsText

10.	 Next,	call	the	makeGISpointsFromPics()	function	as	seen	here.	We	haven’t	created
this	method	yet,	but	we	will	do	so	in	the	next	step:

def	execute(self,	parameters,	messages):

				"""The	source	code	of	the	tool."""

				inPicFolder	=	parameters[0].valueAsText

				path	=	parameters[1].valueAsText

				fgdb	=	parameters[2].valueAsText

				fc	=	parameters[3].valueAsText

				makeGISpointsFromPics(inPicFolder,	path,	fgdb,	fc)

11.	 Create	a	new	function	named	makeGISpointsFromPics(),	as	seen	here.	Make	sure
that	you	unindent	the	definition	of	this	method	so	that	it	is	completely	left	justified	as
follows:

				def	execute(self,	parameters,	messages):

								"""The	source	code	of	the	tool."""

								inPicFolder	=	parameters[0].valueAsText

								path	=	parameters[1].valueAsText

								fgdb	=	parameters[2].valueAsText

								fc	=	parameters[3].valueAsText

								makeGISpointsFromPics(inPicFolder,	path,	fgdb,	fc)

def	makeGISpointsFromPics(inPicFolder,	path,	fgdb,	fc):

12.	 The	makeGISpointsFromPics()	function	will	control	the	extraction	of	the	geographic
coordinates	from	each	photo	and	will	also	copy	each	of	the	photos	into	the	file
geodatabase.	Add	a	start	message	and	call	a	function	named	_createFGDB().	This
function	hasn’t	been	created	yet.	We	have	the	following	code:

def	makeGISpointsFromPics(inPicFolder,	path,	fgdb,	fc):

				'''Top	level	function…	'''

				arcpy.AddMessage("----Beginning	to	build	a	GIS	Point	data	for	

geotagged	photos----")

				#build	the	geodatabase

				_createFGDB(path,fgdb,	fc)

13.	 Create	a	new	function	named	_createFGDB(),	as	seen	here.	This	function	will	create
the	new	file	geodatabase	and	feature	class.	Also,	the	function	should	be	completely
left	justified:

def	_createFGDB(path,	fgdbName,	fcName):

14.	 Inside	the	_createFGDB()	function,	create	a	new	file	geodatabase:

def	_createFGDB(path,	fgdbName,	fcName):

				'''create	a	fgdb	and	a	fc	with	a	field	to	contain	the	path	to	a	

picture'''

				if	arcpy.Exists(path	+	"\\"	+	fgdbName):

								arcpy.AddMessage("...the	file	gdb	already	exists")

								pass

				else:

								arcpy.CreateFileGDB_management(path,	fgdbName)

								arcpy.AddMessage("...created	the	file	gdb")

15.	 Next,	add	a	code	block	that	creates	a	new	feature	class	as	follows:

def	_createFGDB(path,	fgdbName,	fcName):

				'''create	a	fgdb	and	a	fc	with	a	field	to	contain	the	path	to	a	

picture'''

				if	arcpy.Exists(path	+	"\\"	+	fgdbName):

								arcpy.AddMessage("...the	file	gdb	already	exists")

								pass

				else:

								arcpy.CreateFileGDB_management(path,	fgdbName)

								arcpy.AddMessage("...created	the	file	gdb")

				if	arcpy.Exists(path	+	"\\"	+	fgdbName	+	"\\"	+	fcName):

								arcpy.AddMessage("...the	fc	already	exists")

								pass

				else:

								spRef	=	r"Coordinate	Systems\Geographic	Coordinate	

Systems\World\WGS	1984.prj"

								arcpy.AddMessage(path	+	"\\"	+	fgdbName)

								arcpy.AddMessage(fcName)

								arcpy.CreateFeatureclass_management(path	+	"\\"	+	fgdbName	+	

".gdb",	fcName,	"POINT",	"#",	"#",	"#",	spRef)

								arcpy.AddMessage("...made	fc")

								arcpy.AddField_management(path	+	"\\"	+	fgdbName	+	".gdb"	+	

"\\"	+	fcName,	"name",	"TEXT",	"#",	"#",	"255","#",	"#",	"#",	"#")

							arcpy.AddField_management(path	+	"\\"	+	fgdbName	+	".gdb"	+	"\\"	

+	fcName,	"pic_url",	"TEXT",	"#",	"#",	"255","#",	"#",	"#",	"#")

								arcpy.AddField_management(path	+	"\\"	+	fgdbName	+	".gdb"	+	

"\\"	+	fcName,	"PicName",	"TEXT",	"#",	"#",	"100","#",	"#",	"#",	"#")

								arcpy.AddMessage("...added	fields")								

16.	 Return	to	the	makeGISpointsFromPIcs()	function	and	execute	the	Describe()
function	on	the	new	feature	class	as	follows:

def	makeGISpointsFromPics(inPicFolder,	path,	fgdb,	fc):

				'''Top	level	function…	'''

				arcpy.AddMessage("----Beginning	to	build	a	GIS	Point	data	for	

geotagged	photos----")

				#build	the	geodatabase

				_createFGDB(path,fgdb,	fc)

				dsc	=	arcpy.Describe(path	+		"\\"	+	fgdb	+	".gdb"	+	"\\"	+	fc)

				shpFld	=	dsc.ShapeFieldName

17.	 Get	a	list	of	.jpg	photos	in	the	specified	folder:

def	makeGISpointsFromPics(inPicFolder,	path,	fgdb,	fc):

				'''Top	level	function…	'''

				arcpy.AddMessage("----Beginning	to	build	a	GIS	Point	data	for	

geotagged	photos----")

				#build	the	geodatabase

				_createFGDB(path,fgdb,	fc)

				dsc	=	arcpy.Describe(path	+		"\\"	+	fgdb	+	".gdb"	+	"\\"	+	fc)

				shpFld	=	dsc.ShapeFieldName

				pics	=	os.listdir(inPicFolder)

				pics	=	[p	for	p	in	pics	if	p.endswith(".JPG")	or	

p.endswith(".jpg")]

18.	 Set	up	a	looping	structure	for	each	of	the	photos:

def	makeGISpointsFromPics(inPicFolder,	path,	fgdb,	fc):

				'''Top	level	function…	'''

				arcpy.AddMessage("----Beginning	to	build	a	GIS	Point	data	for	

geotagged	photos----")

				#build	the	geodatabase

				_createFGDB(path,fgdb,	fc)

				dsc	=	arcpy.Describe(path	+		"\\"	+	fgdb	+	".gdb"	+	"\\"	+	fc)

				shpFld	=	dsc.ShapeFieldName

				pics	=	os.listdir(inPicFolder)

				pics	=	[p	for	p	in	pics	if	p.endswith(".JPG")	or	

p.endswith(".jpg")]

				i	=	len(pics)

				for	pic	in	pics:

								try:

								except	Exception	as	e:

												arcpy.AddMessage(e.message)

19.	 Inside	the	try	block,	add	a	call	to	the	get_exif_data()	function.	We’ll	create	this
function	in	the	next	step:

try:

				exif_data	=	get_exif_data(inPicFolder	+	"\\"	+	pic)

				except	Exception	as	e:

				arcpy.AddMessage(e.message)

20.	 Create	a	new	function	named	get_exif_data().	This	function	will	extract	the
metadata	from	a	photo.	Exchangeable	Image	File	Format	(EXIF),	is	a	standard	that
specifies	the	formats	for	images,	sounds,	and	other	tags	used	by	digital	cameras:

def	get_exif_data(fn):

				"""Returns	a	dictionary	from	the	exif	data	of	an	PIL	Image	item.	

Also	converts	the	GPS	Tags"""

				image	=	Image.open(fn)

				exif_data	=	{}

				info	=	image._getexif()

				if	info:

								for	tag,	value	in	info.items():

												decoded	=	TAGS.get(tag,	tag)

												if	decoded	==	"GPSInfo":

																gps_data	=	{}

																for	t	in	value:

																				sub_decoded	=	GPSTAGS.get(t,	t)

																				gps_data[sub_decoded]	=	value[t]

																exif_data[decoded]	=	gps_data

												else:

																exif_data[decoded]	=	value

				return	exif_data

21.	 Return	to	the	try	block	in	the	makeGISpointsFromPics()	function	and	add	some
messaging	information	about	the	photo	to	the	ArcGIS	progress	dialog:

try:

				exif_data	=	get_exif_data(inPicFolder	+	"\\"	+	pic)

				arcpy.AddMessage("\n")

				arcpy.AddMessage(pic)

				arcpy.AddMessage(exif_data.get("GPSInfo"))

22.	 Call	the	get_lat_lon()	function	and	pass	in	the	exif_data	variable.	We’ll	create	the
get_lat_lon()	function	in	the	next	step:

try:

				exif_data	=	get_exif_data(inPicFolder	+	"\\"	+	pic)

				arcpy.AddMessage("\n")

arcpy.AddMessage(pic)

arcpy.AddMessage(exif_data.get("GPSInfo"))

coordinates	=	get_lat_lon(exif_data)

23.	 Create	the	get_lat_lon()	function.	Inside	the	function,	create	an	if	statement	that
tests	the	exif_data	dictionary	variable	for	the	presence	of	the	GPSInfo	key	as
follows:

def	get_lat_lon(exif_data):

				"""Returns	the	latitude	and	longitude,	if	available,	from	the	

provided	exif_data	(obtained	through	get_exif_data	above)"""

				lat	=	None

				lon	=	None

				if	"GPSInfo"	in	exif_data:

24.	 Inside	the	if	statement,	pull	out	the	information	related	to	the	latitude,	longitude,	and
reference:

if	"GPSInfo"	in	exif_data:

				gps_info	=	exif_data["GPSInfo"]

				gps_latitude	=	_get_if_exist(gps_info,	"GPSLatitude")

				gps_latitude_ref	=	_get_if_exist(gps_info,	'GPSLatitudeRef')

				gps_longitude	=	_get_if_exist(gps_info,	'GPSLongitude')

				gps_longitude_ref	=	_get_if_exist(gps_info,	'GPSLongitudeRef')

25.	 Note	that	we	called	a	function	named	_get_if_exist().	This	function	doesn’t	exist
yet,	but	we’ll	create	it	in	the	coming	steps	along	with	a	function	named
_convert_to_degrees.	Convert	the	metadata	to	latitude	and	longitude	coordinates:

def	get_lat_lon(exif_data):

				"""Returns	the	latitude	and	longitude,	if	available,	from	the	

provided	exif_data	(obtained	through	get_exif_data	above)"""

				lat	=	None

				lon	=	None

				if	"GPSInfo"	in	exif_data:

								gps_info	=	exif_data["GPSInfo"]

								gps_latitude	=	_get_if_exist(gps_info,	"GPSLatitude")

								gps_latitude_ref	=	_get_if_exist(gps_info,	'GPSLatitudeRef')

								gps_longitude	=	_get_if_exist(gps_info,	'GPSLongitude')

								gps_longitude_ref	=	_get_if_exist(gps_info,	'GPSLongitudeRef')

								if	gps_latitude	and	gps_latitude_ref	and	gps_longitude	and	

gps_longitude_ref:

												lat	=	_convert_to_degrees(gps_latitude)

												if	gps_latitude_ref	!=	"N":

																lat	=	0	-	lat

												lon	=	_convert_to_degrees(gps_longitude)

												if	gps_longitude_ref	!=	"E":

																lon	=	0	-	lon

				return	lat,	lon

26.	 Create	a	function	named	_get_if_exists()	as	follows	and	this	simply	retrieves	a
value	associated	with	a	key,	if	the	key	exists	in	the	dictionary:

def	_get_if_exist(data,	key):

				if	key	in	data:

								return	data[key]

				return	None

27.	 Create	the	_convert_to_degrees()	function	seen	as	follows:

def	_convert_to_degrees(value):

				"""Helper	function	to	convert	the	GPS	coordinates	stored	in	the	

EXIF	to	degrees	in	float	format"""

				d0	=	value[0][0]

				d1	=	value[0][1]

				d	=	float(d0)	/	float(d1)

				m0	=	value[1][0]

				m1	=	value[1][1]

				m	=	float(m0)	/	float(m1)

				s0	=	value[2][0]

				s1	=	value[2][1]

				s	=	float(s0)	/	float(s1)

				return	d	+	(m	/	60.0)	+	(s	/	3600.0)

28.	 Return	to	the	makeGISpointsFromPics()	function.	Inside	the	try	block,	get	the
latitude	and	longitude	coordinates	as	follows:

try:

				exif_data	=	get_exif_data(inPicFolder	+	"\\"	+	pic)

				arcpy.AddMessage("\n")

				arcpy.AddMessage(pic)

				arcpy.AddMessage(exif_data.get("GPSInfo"))

				coordinates	=	get_lat_lon(exif_data)

				latitude	=	coordinates[0]

				longitude	=	coordinates[1]

29.	 We	want	to	automatically	derive	the	address	where	each	picture	was	taken.	This	can
be	accomplished	through	the	use	of	reverse	geocoding.	Reverse	geocoding	is	used	to
find	the	nearest	address	to	a	given	point.	Because	we	have	the	latitude	and	longitude
coordinates	for	each	photo,	we	should	be	able	to	obtain	the	nearest	address	by	calling
a	reverse	geocoding	service.	First,	add	references	to	the	json	and	requests	modules:

import	shutil,	os,	sys,	arcpy

from	PIL	import	Image			#PIL:	http://www.pythonware.com/products/pil/

from	PIL.ExifTags	import	TAGS,	GPSTAGS

import	json,	requests

30.	 Create	a	new	function	named	getAddress(),	as	seen	here	and	create	a	variable	that
references	the	Esri	World	Geocoding	service.	The	Esri	World	Geocoding	service	can
perform	reverse	geocoding	operations.	For	more	information	on	this	service	please
refer	to	https://developers.arcgis.com/rest/geocode/api-reference/overview-world-
geocoding-service.htm:

def	getAddress(latitude,	longitude):

				agisurl	=	

"http://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/rev

erseGeocode?"

31.	 Append	the	latitude	and	longitude	coordinates	passed	to	the	getAddress()	function
along	with	the	desired	output	format	and	a	distance	value	(in	meters).	The	nearest
address	within	this	distance	will	be	returned.	If	no	address	is	found	within	this
distance,	an	address	will	not	be	assigned:

def	getAddress(latitude,	longitude):

				agisurl	=	

"http://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/rev

erseGeocode?"

https://developers.arcgis.com/rest/geocode/api-reference/overview-world-geocoding-service.htm

				agisurl	=	agisurl	+	"location="	+	str(longitude)	+	","	+	

str(latitude)	+	"&f=pjson&distance=5000"

32.	 Pass	the	agisurl	to	the	requests.get()	method	and	return	a	response.	Convert	the
returned	json	format	to	a	Python	dictionary:

def	getAddress(latitude,	longitude):

				agisurl	=	

"http://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/rev

erseGeocode?"

				agisurl	=	agisurl	+	"location="	+	str(longitude)	+	","	+	

str(latitude)	+	"&f=pjson&distance=5000"

				r	=	requests.get(agisurl)

				decoded	=	json.loads(r.text)

33.	 The	json	response	that	is	returned	will	be	formatted	similar	to	the	code	you	see	later.
Note	that	we	want	to	retrieve	the	value	associated	with	the	Address	key,	so	we’ll
need	to	first	retrieve	the	address	key	and	then	the	Address	key.	When	this	json
format	data	is	converted	to	a	Python	dictionary,	the	keys	will	include	address	and
location.	Both	of	these	keys	contain	values	that	are	also	Python	dictionaries.	So	to
retrieve	the	Address	key,	we’ll	need	to	drill	down	to	the	value	of	the	Address	key,
which	is	itself	a	value	of	the	address	key.	I	know	that	it’s	a	little	confusing:

{

	"address":	{

		"Address":	"6	Avenue	Gustave	Eiffel",

		"Neighborhood":	"7e	Arrondissement",

		"City":	"Paris",

		"Subregion":	"Paris",

		"Region":	"Île-de-France",

		"Postal":	"75007",

		"PostalExt":	null,

		"CountryCode":	"FRA",

		"Loc_name":	"FRA.PointAddress"

	},

	"location":	{

		"x":	2.2946500041892821,

		"y":	48.857489996304814,

		"spatialReference":	{

			"wkid":	4326,

			"latestWkid":	4326

		}

	}

}

34.	 Retrieve	the	address	information	and	return	this	value	to	the	calling	function:

def	getAddress(latitude,	longitude):

				agisurl	=	

"http://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/rev

erseGeocode?"

				agisurl	=	agisurl	+	"location="	+	str(longitude)	+	","	+	

str(latitude)	+	"&f=pjson&distance=5000"

				r	=	requests.get(agisurl)

				decoded	=	json.loads(r.text)

				address	=	decoded["address"]["Address"]

				return	address

35.	 Return	to	the	makeGISpointsFromPics()	method	and	call	the	getAddress()	function
as	follows:

try:

				exif_data	=	get_exif_data(inPicFolder	+	"\\"	+	pic)

				arcpy.AddMessage("\n")

				arcpy.AddMessage(pic)

				arcpy.AddMessage(exif_data.get("GPSInfo"))

				coordinates	=	get_lat_lon(exif_data)

				latitude	=	coordinates[0]

				longitude	=	coordinates[1]

				address	=	getAddress(latitude,	longitude)

36.	 Create	a	new	arcpy.Point	object	from	the	latitude	and	longitude	as	follows:

try:

				exif_data	=	get_exif_data(inPicFolder	+	"\\"	+	pic)

				arcpy.AddMessage("\n")

				arcpy.AddMessage(pic)

				arcpy.AddMessage(exif_data.get("GPSInfo"))

				coordinates	=	get_lat_lon(exif_data)

				latitude	=	coordinates[0]

				longitude	=	coordinates[1]

				address	=	getAddress(latitude,	longitude)

				pnt	=	arcpy.Point(longitude,latitude)	#pnt	is	now	an	"object"	that	

arcmap	recognizes

37.	 Create	InsertCursor	and	Row	objects	for	the	new	record	as	follows:

pnt	=	arcpy.Point(longitude,latitude)	#pnt	is	now	an	"object"	that	

arcmap	recognizes

rows	=	arcpy.InsertCursor(path	+	"\\"	+	fgdb	+	".gdb"	+	"\\"	+	fc)

row	=	rows.newRow()

38.	 Set	the	values	for	the	new	row,	including	the	geometry	and	attributes.	Insert	the
row	into	the	feature	class:

pnt	=	arcpy.Point(longitude,latitude)	#pnt	is	now	an	"object"	that	

arcmap	recognizes

rows	=	arcpy.InsertCursor(path	+	"\\"	+	fgdb	+	".gdb"	+	"\\"	+	fc)

row	=	rows.newRow()

row.setValue(shpFld,	pnt)

row.name	=	address

row.PicName	=	pic

rows.insertRow(row)

39.	 Update	the	progress	dialog	as	follows:

try:

				exif_data	=	get_exif_data(inPicFolder	+	"\\"	+	pic)

				arcpy.AddMessage("\n")

				arcpy.AddMessage(pic)

				arcpy.AddMessage(exif_data.get("GPSInfo"))

				coordinates	=	get_lat_lon(exif_data)

				latitude	=	coordinates[0]

				longitude	=	coordinates[1]

				address	=	getAddress(latitude,	longitude)

				pnt	=	arcpy.Point(longitude,latitude)	#pnt	is	now	an	"object"	that	

arcmap	recognizes

				rows	=	arcpy.InsertCursor(path	+	"\\"	+	fgdb	+	".gdb"	+	"\\"	+	fc)

				row	=	rows.newRow()

				row.setValue(shpFld,	pnt)

				row.name	=	address

				row.PicName	=	pic

				rows.insertRow(row)

				arcpy.AddMessage("...added	a	point,	"	+	str(i	-	1)	+	"	to	go.")

				i	-=	1

40.	 You	can	review	your	code	by	examining	the	solution	code	in	the
C:\ArcGIS_Blueprint_Python\solutions\ch10\ProcessingPhotos.py	file.

41.	 Save	your	work	and	close	the	Python	development	environment.
42.	 In	ArcMap,	open	Ch10.mxd	found	in	C:\ArcGIS_Blueprint_Python\Ch10.
43.	 In	the	Catalog	window,	go	to	Toolboxes	|	My	Toolboxes	|	ProcessingPhotos.pyt

and	double-click	on	the	Convert	Photos	to	Geodatabase	tool	to	display	the	dialog
shown	in	the	following	screenshot.	Add	the	parameter	information	as	seen:

44.	 Click	on	OK	to	execute	the	tool.
45.	 Add	the	Residential	feature	class	to	the	display.	You	should	see	a	handful	of	point

locations,	as	seen	in	the	following	screenshot:

46.	 Identify	one	of	the	point	locations	to	see	the	attribute	information	stored	with	each
feature,	as	seen	in	the	screenshot.	Note	that	your	attributes	may	differ	from	mine,	but
you	should	have	some	attribute	information	for	the	name	and	PicName	fields:

47.	 Copying	the	photos	to	Dropbox.
48.	 In	this	step,	we	will	add	code	to	copy	the	photos	from	the	local	computer	to	a

Dropbox	account	so	that	the	photos	can	be	accessed	from	a	web	application.	You	will
need	a	Dropbox	account	to	complete	this	step.	For	more	information	and	to	create	an
account,	you	can	visit	http://dropbox.com.

Follow	the	steps	here	to	add	code	that	will	copy	the	photos	to	Dropbox:

1.	 Use	pip	to	install	the	Python	dropbox	module.	You	can	get	more	information	on	the
Python	SDK	for	Dropbox	at	https://www.dropbox.com/developers-
v1/core/sdks/python:

pip	install	dropbox

2.	 Before	writing	the	code	to	store	the	photos	in	Dropbox,	you	will	need	to	create	an
App	inside	Dropbox.	This	will	allow	you	to	read	and	write	files	in	Dropbox.	Open	a
web	browser	and	navigate	to	http://www.dropbox.com/developers-v1.

3.	 Log	in	to	your	Dropbox	account.
4.	 The	Dropbox	API	contains	a	core	API	that	allows	you	to	read	and	write	files	in

Dropbox.	This	Core	API	is	based	on	HTTP	and	OAuth	to	provide	low-level	calls	and
access	a	user’s	Dropbox	account.	You’ll	first	need	to	register	a	new	app	using	the

http://dropbox.com
https://www.dropbox.com/developers-v1/core/sdks/python
http://www.dropbox.com/developers-v1

App	Console.	In	your	browser	navigate	to	http://www.dropbox.com/developers-
v1/apps.

5.	 You	should	see	something	similar	to	the	screenshot	here.	Click	on	the	Create	App
button	to	get	started	as	follows:

6.	 Select	Dropbox	API	app	and	enter	the	parameters,	as	seen	in	the	screenshot	here.
Please	note	that	the	Dropbox	interface	changes	periodically,	so	your	view	may	differ
somewhat	from	the	screenshot:

http://www.dropbox.com/developers-v1/apps

7.	 Click	on	the	Create	app	button,	and	you	should	see	a	detailed	screen	similar	to	that
shown	in	the	screenshot	here.	You	will	want	to	note	the	App	key	and	App	secret.
You’ll	use	these	values	in	just	a	few	moments:

8.	 Open	a	Python	shell	window.	The	IDLE	shell	window	will	work	fine	for	this.
9.	 Import	the	dropbox	module	and	set	variable	for	the	app	key	and	app	secret.	These	are

the	values	generated	in	the	previous	screenshot:

import	dropbox

app_key	=	"<your	app	key	here>"

app_secret	=	<your	app	secret	here>

10.	 Create	an	instance	of	the	DropboxOAuth2FlowNoRedirect	object	by	passing	in	the
app	key	and	secret	as	follows:

flow	=	dropbox.client.DropboxOAuth2FlowNoRedirect(app_key,	app_secret)

11.	 Start	the	flow	object.

authorize_url	=	flow.start()

12.	 Have	the	user	sign	in	and	authorize	the	token	by	using	the	URL	you	get	like
https://www.dropbox.com/1/oauth2/authorize?
response_type=code&client_id=a62sar870yn7dsa.	this	might	show	you	error,
because	this	is	specific	to	each	user:

print	'1.	Go	to:	'	+	authorize_url

https://www.dropbox.com/1/oauth2/authorize?response_type=code&client_id=a62sar870yn7dsa

13.	 Open	a	web	browser	and	copy	and	paste	the	URL	printed	in	step	12	into	the	address
bar	and	press	Enter.	You	should	see	something	similar	to	the	following	screenshot:

14.	 Click	on	Allow,	sometimes	you	might	have	to	log	in	first.
15.	 After	clicking,	you	should	be	presented	with	a	screen	similar	to	what	is	displayed	in

the	following	screenshot,	and	your	code	will	not	be	the	same:

16.	 Copy	the	authorization	code.’

code	=	raw_input("Enter	the	authorization	code	here:	").strip()

17.	 Enter	the	authorization	code,	your	code	might	be	different:

sajDaiGFB0sAAAAAAAACqQLD4TjTc-qnk6rUHwJmGyM

18.	 Generate	the	token	by	entering	the	following	line	of	code:

#	This	will	fail	if	the	user	enters	an	invalid	authorization	code

access_token,	user_id	=	flow.finish(code)

19.	 Print	out	the	access	token	and	user_id.	You’ll	want	to	save	the	access	token	and	user
ID.	This	series	of	steps	only	has	to	be	done	once	if	you	save	the	token:

print	access_token

<The	access	token	will	be	printed	out.	Save	the	token	so	you	can	use	it	

for	your	requests>

print	user_id

<The	user	id	will	be	printed	out>

20.	 You	can	test	the	access	token	by	entering	the	following	lines	of	code.	You	should	get
some	sort	of	response	similar	to	that	shown	as	follows:

client	=	dropbox.client.DropboxClient(access_token)

print	'linked	account:	',	client.account_info()

linked	account:		{u'referral_link':	u'https://db.tt/PIgQ4g9F',	

u'display_name':	u'Eric	Pimpler',	u'uid':	37354582,	u'locale':	u'en',	

u'email_verified':	True,	u'email':	u'eric@geospatialtraining.com',	

u'is_paired':	False,	u'team':	None,	u'name_details':	{u'familiar_name':	

u'Eric',	u'surname':	u'Pimpler',	u'given_name':	u'Eric'},	u'country':	

u'US',	u'quota_info':	{u'datastores':	0,	u'shared':	567215708,	

u'quota':	1101927546880L,	u'normal':	2872036212L}}

21.	 The	entire	section	of	code	should	look	something	like	the	screenshot	here,	and	you
can	ignore	the	warning	message:

22.	 Now	return	to	the	Python	development	environment	for	the	ProcessingPhotos.pyt
Python	toolbox.

23.	 Import	the	dropbox	module.

import	shutil,	os,	sys,	arcpy

from	PIL	import	Image			#PIL:	http://www.pythonware.com/products/pil/

from	PIL.ExifTags	import	TAGS,	GPSTAGS

import	json,	requests

import	dropbox

24.	 Create	a	new	function	named	sendPhotoDropbox()	and	create	a	new	instance	of
DropboxClient	by	passing	in	the	access	token	you	generated	in	the	previous	step.
The	sendPhotoDropbox()	function	should	accept	two	parameters	including	the	full
path	to	the	image	file	that	will	be	uploaded	to	Dropbox	as	well	as	the	filename	that
will	be	created.	Use	the	following	code:

def	sendPhotoDropbox(fullPath,fn):

				client	=	dropbox.client.DropboxClient('<your	access	token.')

25.	 Copy	the	file	to	Dropbox	as	follows:

def	sendPhotoDropbox(fullPath,fn):

				client	=	dropbox.client.DropboxClient('sajDaiGFB0sAAAAAAAACqpvO-

oHvp3R33aNNPFIeOhaYH3o8qECbYUSyZs0MUU-S')

				f	=	open(fullPath,	'rb')

				response	=	client.put_file('/'	+	fn,	f)

26.	 Create	a	shared	link	for	the	photo	that	we’ll	write	to	the	output	feature	class	and
return	this	value	to	the	calling	function.	By	default,	the	end	of	the	URL	contains
some	extraneous	characters	that	we	chop	off	using	[:-5]:

def	sendPhotoDropbox(fullPath,fn):

				client	=	dropbox.client.DropboxClient('sajDaiGFB0sAAAAAAAACqpvO-

oHvp3R33aNNPFIeOhaYH3o8qECbYUSyZs0MUU-S')

				f	=	open(fullPath,	'rb')

				response	=	client.put_file('/'	+	fn,	f)

				shared_img	=	client.share('/'	+	fn,	short_url=False)

				return	shared	img["url"][:-5]

27.	 Return	to	the	makeGISpointsFromPics()	method,	and	inside	the	try	statement,	add
the	following	line	of	code:

try:

				exif_data	=	get_exif_data(inPicFolder	+	"\\"	+	pic)

				arcpy.AddMessage("\n")

				arcpy.AddMessage(pic)

				arcpy.AddMessage(exif_data.get("GPSInfo"))

				coordinates	=	get_lat_lon(exif_data)

				latitude	=	coordinates[0]

				longitude	=	coordinates[1]

				address	=	getAddress(latitude,	longitude)

				url	=	sendPhotoDropbox(inPicFolder	+	"\\"	+		pic,	pic)

28.	 Add	a	new	line	that	inserts	the	URL	into	the	feature	class.

row.name	=	address

row.pic_url	=	url

row.PicName	=	pic

29.	 Save	your	work.
30.	 You	can	review	your	code	by	examining	the	solution	code	in	the

C:\ArcGIS_Blueprint_Python\solutions\ch10\ProcessingPhotos.py	file.
31.	 Open	ArcMap	with	the	Ch10.mxd	file.	Run	the	tool	again,	creating	a	new	file

geodatabase	and	feature	class.
32.	 Add	the	output	Residential	feature	class	to	the	map	and	identify	a	point	feature	to	see

the	output.	It	should	look	similar	to	the	screenshot	here.	Note	the	content	of	the
pic_url	field:

33.	 Check	your	Dropbox	account	inside	the	RealEstatePhotos	folder,	and	you	should
see	images	similar	to	the	following	screenshot:

Creating	a	Web	Map
In	the	final	step	in	this	chapter,	the	content	that	was	created	with	the
ProcessingPhotos.pyt	Python	toolbox	will	be	imported	to	ArcGIS	Online	and	a
shareable	map	created.	This	section	requires	an	ArcGIS	Online	organizational	account.
The	steps	are	as	follows:

1.	 Open	Windows	Explorer	and	go	to
C:\ArcGIS_Blueprint_Python\data\Photos\StoneCreekRanch.gdb.	Create	a	zip
file	containing	this	file	geodatabase.

2.	 Open	a	web	browser	and	navigate	to	http://www.arcgis.com/features/.
3.	 Log	in	to	your	ArcGIS	Online	organizational	account.
4.	 Select	My	Content.
5.	 Select	Add	Item	|	From	my	Computer,	as	shown	in	the	following	image:

6.	 Select	the	zip	file	that	you	just	created	which	is	StoneCreekRanch.gdb.zip,	change
Contents	to	File	Geodatabase,	and	give	it	a	Title	of	StoneCreekRanch.	Examine	the
following	screenshot	for	the	details:

http://www.arcgis.com/features/

7.	 Click	on	the	ADD	ITEM	button.	This	will	create	a	FeatureLayer	and
FeatureService.	Click	on	the	Share	button	on	the	dialog	that	is	displayed	after	this
process	is	complete.	Share	it	publicly:

8.	 Select	Open	|	Add	layer	to	new	map.
9.	 Change	the	symbology	to	Single	symbol	so	that	your	map	appears,	as	seen	in	the

following	screenshot:

10.	 Click	on	Done.
11.	 Select	the	…	(which	is	a	More	Options)	icon	to	the	right	of	the	StoneCreekRanch

layer	and	select	Configure	Pop-up.
12.	 Configure	the	popup	as	seen	in	the	following	screenshot	and	select	SAVE	POP-UP.

13.	 Click	on	of	the	points	to	see	the	result	of	the	pop-up	configuration.	Dropbox	photos
can’t	be	displayed	directly	in	pop-up	windows	as	of	this	writing.

14.	 Clicking	on	the	More	Info	link	will	display	the	photo	in	a	separate	window	as	seen
in	the	following	screenshot:

15.	 Click	on	the	Save	button	on	the	map	viewer	toolbar	and	add	the	following	attributes:

16.	 Click	on	Save	Map.
17.	 Click	on	the	Share	button	on	the	map	viewer	toolbar.
18.	 Share	the	map	with	Everyone	(public)	and	then	select	Embed	in	Website.	You	can

select	various	options,	including	the	size	of	the	map,	map	options,	and	symbols.	The
HTML	code	can	then	be	copied	and	pasted	into	a	website	so	that	the	map	displays
embedded	in	a	web	page.	For	a	realtor,	the	map	would	supplement	other	property
details	as	follows:

Summary
Because	smartphones	are	nearly	ubiquitous,	they	provide	some	unique	capabilities	for
GIS.	Photos	captured	with	these	devices	include	metadata	that	includes	geographic
coordinate	information	for	each	photo.	This	information	can	be	read	using	Python	and
stored	in	a	local	feature	class	with	the	ArcPy	Data	Access	module.	Using	a	reverse
geocoding	process,	it	is	also	possible	to	determine	the	nearest	address	where	the	photo	was
taken.	Finally,	to	enable	this	data	on	the	web	for	sharing,	the	Python	dropbox	module	can
be	used	to	upload	these	photos	to	a	file-sharing	platform	and	then	integrated	with	the
uploaded	feature	class	data	using	ArcGIS	Online.

Appendix	A.	Overview	of	Python
Libraries	for	ArcGIS
The	initial	stage	of	any	programming	task	requires	some	research	into	the	most
appropriate	software	libraries	to	use	for	the	job.	A	developer	must	also	have	a	good
understanding	of	the	classes	that	are	included	in	the	libraries	along	with	the	properties	and
methods	that	are	available	for	these	objects.	Unless	you	have	been	working	with	a
particular	programming	library	for	some	time,	this	information	will	not	be	readily
apparent	and	documentation	is	not	always	presented	in	a	manner	that	makes	it	easy	to
understand.	The	goal	of	this	chapter	is	to	introduce	you	to	the	ArcGIS	programming
libraries	that	are	available	to	ArcGIS	Desktop	Python	programmers.	We’ll	give	you	a
high-level	overview	of	the	core	ArcPy	library	along	with	the	ArcPy	mapping	and	data
access	modules	as	well	as	the	ArcGIS	REST	API.

Overview	of	Arcpy
The	ArcPy	website	package	provides	basic	functionality	that	enables	the	creation	of
ArcGIS	geoprocessing	scripts	with	Python.	The	core	functionality	of	this	package	includes
many	capabilities	including	the	following:

Execution	of	ArcToolbox	geoprocessing	tools	as	dynamic	methods
Adding,	listing,	removing,	and	validating	data	stores
Describing	data
Getting	and	setting	environment	variables
General	utilities
Graphing
Working	with	fields
Working	with	data	stores
Administration	of	geodatabases
Geometry	operations
Getting	and	setting	parameters
Licensing	and	installation
Listing	data
Log	history
Messaging	and	error	handling
Progress	dialog	manipulation
Publishing
Working	with	rasters	and	NumPy	arrays
Working	with	spatial	references	and	transformations
Tools	and	toolboxes
Workspaces

In	this	section,	we’ll	examine	the	most	commonly	used	classes	and	functions	in	the	ArcPy
site	package.

The	ArcPy	classes
Most	of	the	ArcPy	classes	are	somewhat	generic,	but	can	be	divided	into	groups,	including
FeatureSets	and	RecordSets,	Fields,	General,	Geometry,	Graphing,	and	Parameters.

FeatureSets	and	Recordsets
The	FeatureSet	and	RecordSet	objects	are	lightweight	representations	of	feature	classes
and	tables,	respectively.	These	in-memory	objects	contain	fields	as	well	as	data.	They	also
serve	as	interchange	objects	with	a	server.	The	constructor	for	both	objects	accepts	a	string
that	references	a	feature	class	or	table.	Both	contain	a	property	that	returns	a	JSON
representation	of	the	data	as	well	as	methods	to	import	and	export	the	data	from	the	object.

Fields
There	are	four	classes	related	to	attribute	fields,	including	Field,	FieldInfo,	FieldMap,
and	FieldMappings.	The	Field	object	represents	a	column	in	a	table	or	feature	class.
This	object	can	be	retrieved	using	the	ListFields()	and	Describe()	functions	which
we’ll	cover	later.	Read-write	properties	on	this	object	provide	access	to	the	field	name,
alias	name,	domain,	the	editable	state,	if	the	field	can	contain	null	values,	and	length.
Fields	must	contain	a	value,	and	type.

The	FieldInfo	object	provides	properties	and	methods	about	the	fields	in	a	layer	or	table
view.	Using	this	object,	you	can	add	and	remove	fields,	control	field	visibility,	set	the	split
rule,	set	the	field	name,	and	others.

There	are	two	objects	related	to	field	mapping:	FieldMap	and	FieldMappings.	The
FieldMappings	object	serves	as	a	container	object	for	one	or	more	FieldMap	objects.	Each
FieldMap	object	defines	a	field	definition	and	a	list	of	input	fields	pulled	from	a	table	or
feature	class.	FieldMap	objects	are	added	to	the	FieldMappings	object.

The	geometry
There	is	a	set	of	generic	geometry	objects	used	to	define	the	geometric	definition	of
points,	lines,	polygons,	and	other	geometry	representations.	These	objects	include	Point,
Polyline,	Polygon,	MultiPoint,	PointGeometry,	and	the	generic	Geometry	class.	Point,
MultiPoint,	Polyline,	and	Polygon	are	self-explanatory,	but	the	PointGeometry	class
requires	some	further	explanation.	Although	being	similar	to	the	Point	object,	it	does	have
some	important	differences.	Point	objects	are	used	with	cursor	objects	when	creating	or
returning	features	from	a	feature	class.	The	PointGeometry	class	is	used	in	geometry
operations,	but	not	for	the	creation	of	geometry	objects	used	in	cursors.

Graphing
There	are	only	two	classes	related	to	graphing	in	ArcPy:	Graph	and	GraphTemplate.	The
GraphTemplate	class	uses	a	.tee	file	to	construct	a	graph	template	that	can	then	be	used	to
create	graphs	from	different	datasets	that	have	the	same	basic	structure.	The	.tee	file
contains	everything	needed	to	create	the	graph	except	for	the	data.	ArcToolbox	contains	a
MakeGraph	tool	that	you	can	use	to	actually	create	the	graph	using	the	template.	Similarly,

the	Graph	class	also	helps	create	graphs	of	different	types	and	contains	properties	to	define
the	graph	title,	axes,	and	legend	information.

General
There	are	a	number	of	generic	classes	that	don’t	really	fall	into	a	specific	group.	The
Extent	class	represents	a	rectangle	that	defines	the	geographic	boundaries	of	an	objects.
This	object	contains	spatial	relationship	operators	that	allow	you	to	compare	the	Extent
object	to	other	geographies	as	well	as	properties	that	define	the	object.

The	Array	class	is	an	object	that	can	contain	Point	objects	and	is	used	to	construct
geometry	object.	The	env	object	represents	environment	variables	that	can	be	retrieved	or
set.	Each	of	the	properties	on	this	object	represents	an	environment	variable.	The
SpatialReference	class	has	a	number	of	properties	that	define	what	map	projection
options	are	used	to	define	horizontal	coordinates.	ValueTable	is	an	object	that	allows	the
creation	of	a	multivalue	parameter.	The	Result	object	simulates	the	Result	window	in
ArcGIS	Desktop	and	provides	the	ability	to	maintain	information	about	the	execution	of
tools,	including	messages,	parameters,	and	output.	The	Raster	object	can	be	used	to
define	map	algebra	expressions.	There	are	some	additional	classes	that	fall	into	the	general
category,	including	ArcSDE,	SQLExecute,	Index,	NetCDFFileProperties,	and
RandomNumberGenerator.

The	ArcPy	functions
There	is	a	long	list	of	ArcPy	functions	that	provide	a	wide	array	of	functionality.	Perhaps
the	most	important	functions	are	the	dynamic	methods	that	enable	you	to	call
geoprocessing	tools	in	ArcToolbox	like	you	would	any	other	method	or	function.	Beyond
these	dynamic	methods,	the	functions	that	are	part	of	the	ArcPy	core	library	can	be
grouped	by	data	store,	describing	data,	environment	variables,	fields,	general,	geodatabase
administration,	geometry,	getting	and	setting	parameters,	licensing	and	installation,	listing
data,	messaging	and	error	handling,	progress	dialog,	publishing,	raster,	and	tools	and
toolboxes.

The	data	store
Data	for	services	can	be	registered	with	ArcGIS	Server	and	can	include	folders	or
databases.	Functions	related	to	data	stores	include	AddDataStoreItem(),
ListDataStoreItem(),	RemoveDataStoreItem(),	and	ValidateDataStoreItem().	As
their	names	suggest,	these	functions	allow	you	to	add,	remove,	list,	and	validate	these	data
stores.

Describing	the	data
The	Describe()	function	can	be	used	to	obtain	descriptive	information	about	GIS
datasets.	This	function	accepts	a	single	parameter	that	references	a	geographic	dataset.
The	information	returned	by	this	function	includes	a	variable	set	of	properties	that
describe	that	data.	The	set	of	properties	returned	by	this	functions	are	correlated	to	the
type	of	data	being	described.

Environment	variables
There	are	a	handful	of	functions	related	to	managing	environment	variables.	The
ClearEnvironment()	function	resets	a	specific	environment	variable	to	it’s	default	value.
GetSystemEnvironment()	gets	the	value	of	a	specific	environment	value.
ListEnvironments()	returns	a	list	of	environment	names.	LoadSettings()	and
SaveSettings()	enable	you	to	either	read	environment	variable	settings	from	an	XML	file
or	write	the	settings	to	an	XML	file.	Finally,	ResetEnvironments()	resets	all	the
environment	variables	to	the	default	settings.

Fields
The	AddFieldDelimiters()	function	is	an	important	function	when	creating	SQL
expressions	for	attribute	queries.	The	delimiters	used	around	the	fields	being	queried	are
different	depending	on	whether	you’re	querying	shapefiles,	geodatabase	files,	ArcSDE
geodatabases,	or	personal	geodatabases.	For	example,	with	geodatabase	files,	the	field
being	queried	needs	to	be	surrounded	by	quotes	whereas	braces	should	surround	personal
geodatabase	fields.	The	AddFieldDelimiters()	function	handles	the	guess	work	of
ensuring	that	you	have	the	proper	delimiter.	Other	functions	that	are	part	of	this	category
include	ParseFieldName()	and	ValidateFieldName().	ParseFieldName()	parses	a	fully
qualified	field	name	into	separate	components,	including	database,	owner	name,	table

name,	and	field	name.	Finally,	the	ValidateFieldName()	functions	takes	a	string	that
represents	a	field	name	and	a	workspace	path	and	returns	a	valid	field	name	based	on	the
naming	restrictions	of	the	output	geodatabase.

General
There	are	a	number	of	useful	general	functions,	including	RefreshActiveView(),
RefreshCatalog(),	and	RefreshTOC(),	which	force	a	refresh	of	these	objects	in	ArcMap.
In	some	cases,	it’s	important	to	refresh	these	objects	when	the	data	has	changed	in	some
way.	Other	commonly	used	general	functions	include	ListPrinterNames(),	which	returns
a	list	of	printers	to	the	computer	where	the	script	is	running,	and
CreateRandomValueGenerator().

The	Exists()	function	can	be	used	to	perform	a	test,	to	see	if	a	dataset	exists	before
continuing	with	a	geoprocessing	operation.	ValidateTableName(),	accepts	a	table	name
as	a	parameter	as	well	as	a	workspace	path	and	returns	a	valid	table	name	for	the
workspace.	Similarly,	ParseTableName()	parses	a	table	name	into	its	components,
including	database	owner	and	table.

Geodatabase	administration
There	are	a	small	number	of	geodatabase	administration	functions:	AcceptConnections(),
DisconnectUser(),	and	ListUsers().	The	AcceptConnections()	function	allows	a	script
to	enable	or	disable	the	ability	to	connect	to	a	geodatabase.	DisconnectUser()	can	be
used	to	disconnect	a	user,	and	ListUsers()	generates	a	list	of	the	users	connected	to	a
geodatabase.

Geometry
There	are	a	small	number	of	ArcPy	functions	related	to	converting	geometry	data.	The
AsShape()	function	converts	either	an	Esri	JSON	or	GeoJSON	object	to	an	ArcPy	Geometry
object.	The	FromWKB()	and	FromWKT()	functions	create	Geometry	objects	from	well-known
binary	and	well-known	text	formats.

Getting	and	setting	parameters
There	are	a	number	of	get	and	set	functions	related	to	parameters.	Perhaps,	the	most	well-
known	function	in	this	category	is	GetParameterAsText(),	which	is	used	to	retrieve	a
specified	parameter	as	a	text	string	through	the	use	of	an	index	position	from	the	list	of
parameters.	GetParameterValue()	returns	the	default	value	of	a	desired	parameter.
GetParameterCount()	returns	a	count	of	the	number	of	parameters	values	for	a	specified
tool.	GetParameter()	returns	a	Parameter	object	for	the	specified	parameter.
GetParameterInfo()	returns	a	list	of	parameter	objects	for	a	given	tool.	There	are	a
couple	set	functions	including	SetParameter()	and	SetParameterAsText().	The
SetParameter()	function	sets	a	specified	parameter	by	index	using	an	object	and	is	used
when	passing	objects	from	a	script	to	a	script	tool.	SetParameterAsText()	sets	a	specified
parameter	property	by	index	using	a	string	value.

Licensing	and	installation

The	functions	in	this	category	allow	you	to	work	with	products	and	extensions.
ProductInfo()	returns	the	current	product	license.	SetProduct()	can	be	used	to	set	the
ArcGIS	Desktop	license.	CheckProduct()	checks	to	see	whether	a	license	is	available.
There	are	three	functions	related	to	extensions:	CheckExtension(),	CheckInExtension(),
and	CheckOutExtension().	You	can	get	a	list	of	installation	types	including	server,
desktop,	and	engine	with	the	ListInstallations()	function.

Listing	data
There	are	many	list	functions	that	return	a	Python	list	containing	data	of	some	sort.	These
functions	are	most	often	used	as	the	first	step	in	a	multistep	process	where	the	first	step	is
simply	to	generate	a	list	of	data	that	will	then	be	used	in	a	geoprocessing	operation.	These
include	ListDatasets(),	ListFeatureClasses(),	ListFields(),	ListFiles(),
ListIndexes(),	ListRasters(),	ListTables(),	ListVersions(),	ListWorkspaces(),
ListSpatialReferences(),	and	ListTransformations().

Messaging	and	error	handling
All	tools	produce	messages	as	they	are	executing.	Most	messages	are	informational	in
nature,	but	warnings	and	errors	can	occur	as	well.	Messages	are	divided	into	severity
levels	that	indicate	whether	a	message	is	informational	only,	a	warning,	or	an	error.	In
addition	to	the	messages	that	are	generated	by	a	tool,	you	can	also	add	your	own	messages
to	the	stack.	There	are	a	number	of	get	functions	such	as:	GetMaxSeverity(),
GetMessage(),	GetMessageCount(),	GetMessages(),	GetReturnCode(),	GetSeverity(),
and	GetSeverityLevel().	Most	of	these	functions	either	retrieve	messages	or	the	severity
level	associated	with	the	message.

There	are	also	three	add	functions	such	as:	AddMessage(),	AddWarning(),	and
AddError().	These	three	functions	correspond	to	the	different	severity	levels	and	enable
you	to	add	your	messages	to	the	stack	also	being	generated	by	the	tool	itself.

The	progress	dialog
The	progress	dialog	can	be	controlled	through	a	set	of	functions,	including
SetProgressor(),	SetProgressorLabel(),	SetProgressorPosition(),	and
ResetProgressor().	The	SetProgressor()	function	creates	a	progressor	object.	Using
this	object,	you	can	then	pass	information	to	the	progress	dialog	box.	In	addition,	you	can
control	the	appearance	of	the	progress	dialog	by	choosing	either	the	default	progressor	or
the	step	progressor.	The	label	and	position	of	the	status	bar	can	be	set	through	the
SetProgressorLabel()	and	SetProgressorPosition()	functions.	Finally,	there	is	a
ResetProgressor()	function	that	resets	the	progressor	back	to	its	initial	state.

Publishing
There	are	three	ArcPy	functions	related	to	creating	Service	Definition	Draft	(SDDraft)
files	for	various	types	of	ArcGIS	Server	services.	The	Service	Definition	Draft	file	is	a	file
type	used	as	an	interchange	file	between	ArcGIS	Desktop	and	ArcGIS	Server.	These
include	CreateGeocodeSDDraft(),	CreateGPSDraft(),	and	CreateImageSDDraft().
These	functions	correspond	to	the	types	of	services	being	created.

Raster
There	are	two	functions	related	to	converting	rasters	and	NumPy	arrays.	The
NumPyArrayToRaster()	functions	converts	a	NumPy	array	to	a	raster,	whereas
RasterToNumPyArray()	convert	a	raster	to	a	NumPyArray.

Tools	and	toolboxes
Toolboxes	can	be	added	and	removed	using	various	functions,	such	as	AddToolbox(),
ImportToolbox(),	and	RemoveToolbox().	Any	custom	or	third-party	toolboxes	must	be
imported	before	you	can	use	them	in	your	scripts.	Server	tools	can	also	be	imported.	The
AddToolbox()	and	ImportToolbox()	functions	are	equivalent,	so	you	can	use	either	for
this	purpose.	The	ImportToolbox()	functions	accepts	an	input	that	references	the	custom
toolbox	to	be	imported	along	with	an	optional	module	name.	If	you	need	to	remove	a
toolbox,	you	can	use	the	RemoveToolbox()	function.	A	related	function	that	is	part	of	this
category	is	the	IsSynchronous()	function	which	is	used	to	determine	if	a	tool	is	running
synchronously	or	asynchronously.	All	non-server	tools	will	be	synchronous.	This	simply
means	that	results	are	automatically	returned.	Any	asynchronous	functions	will	be	related
to	ArcGIS	Server	tools	where	the	data	may	not	be	returned	immediately.	In	the	case	of	an
asynchronous,	tool	you	must	set	your	script	up	to	wait	for	the	results	to	be	returned	before
continuing.	This	can	be	accomplished	with	the	Python	time.sleep()	method.

Overview	of	the	ArcPy	mapping	module
The	ArcPy	mapping	module,	part	of	the	ArcPy	site	package,	provides	some	really	exciting
features	for	map	automation,	including	the	ability	to	manage	map	document	and	layer	files
as	well	as	the	data	within	these	files.	Support	is	also	provided	to	automate	map	export	and
printing	as	well	as	the	creation	of	map	books	and	publication	of	map	documents	to
ArcGIS	Server	map	services.

The	capabilities	of	the	module	include	the	following:

Managing	map	document	and	layer	files
Managing	the	data	within	map	document	and	layer	files
Changing	layer	symbology	and	properties
Inserting	layers	into	a	data	frame	or	group	layer
Moving	layers	in	a	data	frame	or	group	layer
Zooming	to	selected	features
Working	with	time-enabled	layers	in	a	data	frame
Creating	reports
Changing	the	map	extent
Finding	and	fixing	broken	data	links
Printing	maps
Exporting	maps	to	PDF	files
Exporting	maps	to	image	files
Updating	the	layout	view
Building	a	map	book	with	Data	Driven	Pages
Publishing	a	map	document	to	an	ArcGIS	Server	service

In	this	section,	I’ll	present	an	overview	of	the	available	functionality	provided	by	the
classes	and	functions	in	the	ArcPy	mapping	module.

ArcPy	mapping	classes
The	classes	available	in	the	ArcPy	mapping	module	can	loosely	be	grouped	into	several
categories,	including	map	documents	and	associated	datasets,	Data	Driven	Pages,
managing	time-related	layers,	element	classes	related	to	a	layout	view,	PDF	document
creation	and	editing,	and	symbology.

Mapping	documents	and	associating	dataset	classes
There	are	four	classes	in	the	ArcPy	mapping	module	related	to	map	documents	and	their
associated	data:	MapDocument,	DataFrame,	Layer,	and	TableView.	These	four	classes	are
probably	the	most	essential	and	often	used	objects	in	the	module.

The	MapDocument	class

The	MapDocument	class	is	probably	the	most	essential	object	in	the	ArcPy	mapping	module
and	is	required	to	some	degree	in	most	of	the	scripts	you	write	using	this	module.	A
reference	to	this	object	is	required	for	most	scripts,	so	it’s	usually	one	of	the	first	lines	of
code	in	a	geoprocessing	script.	The	constructor	for	this	object	accepts	either	a	string	that
contains	the	keyword	CURRENT	or	a	path	to	a	map	document	file.

There	are	a	number	of	properties	on	this	object	that	expose	a	variety	of	functionality,
including	getting	the	active	data	frame	or	active	view,	to	the	author	of	the	document,	the
last	date	when	the	document	was	exported,	printed,	or	saved,	a	description,	path	to	the	file,
title,	and	a	few	others.	You	can	also	determine	if	the	map	document	is	Data	Driven	Pages
enabled,	and,	if	so,	a	DataDrivenPages	object	can	be	returned	with	the	dataDrivenPages
property.

In	addition,	there	are	a	number	of	methods	on	this	object	that	allow	you	to	perform	various
operations,	such	as	fixing	broken	data	links,	saving	the	map	document,	and	working	with
thumbnails.	Two	methods,	findAndReplaceWorkspacePaths()	and
replaceWorkspaces(),	can	be	used	to	fix	broken	data	links.	The
findAndReplaceWorkspacePaths()	method	replaces	an	old	workspace	path	with	a	new
workspace	path	for	all	layers	and	tables	in	the	map	document.	The	replaceWorkspaces()
method	is	used	to	change	the	workspace	type	of	all	layers	and	tables	in	the	map	document.
The	save()	and	saveACopy()	methods	are	used	to	save	the	map	document,	and
makeThumbnail()	and	deleteThumbnail()	are	used	when	working	with	thumbnail	images
of	a	map	document.

DataFrame

A	DataFrame	in	a	map	document	serves	as	a	working	area	and	container	for	datasets,
including	layers	and	standalone	tables.	Most	of	the	properties	on	the	DataFrame	object	are
read/write	and	include	the	ability	to	work	with	the	geographic	extent,	change	the	size	and
position	of	the	element	in	layout	view,	get	or	set	the	name,	scale,	spatial	reference,
description,	and	a	few	others.	If	you	have	time-enabled	layers	in	the	data	frame,	the	read-
only	property	time	provides	access	to	the	DataFrameTime	object	that	we’ll	discuss	next.

There	are	two	methods	on	the	DataFrame	class:	panToExtent()	and

zoomToSelectedFeatures().	The	panToExtent()	object	accepts	an	Extent	object	as	a
parameter	and	pans	the	map	to	the	geographic	extent	provided.	The
zoomToSelectedFeatures()	method	zooms	the	map	to	the	extent	of	the	selected	set	of
features.

The	Layer	class

The	Layer	class	provides	a	reference	to	layers	in	a	map	document	or	layer	file,	and
provides	many	properties	and	methods	to	work	with	the	object.	I’ll	examine	the	most
commonly	used	in	this	section.

There	are	a	number	of	ways	that	you	can	create	an	instance	of	the	Layer	object	including	a
Layer(lyr_file_path)	constructor	that	creates	instance	of	this	object	by	passing	a	path	to
the	.lyr	file	as	a	parameter	to	the	constructor.

Some	of	the	properties	on	this	object	provide	access	to	common	properties	found	in	the
Layer	Properties	dialog	in	ArcMap	that	is	displayed	by	right-clicking	on	a	layer	and
selecting	Properties.	However,	many	of	these	properties	are	not	exposed	to	scripting
through	the	Layer	object.	The	properties	that	are	exposed	allow	you	to	get	and	set	the
definition	query,	description,	label	classes,	minimum	and	maximum	scale,	name,	turning
labels	on	and	off,	transparency,	and	the	visibility	of	the	layer.

There	are	a	number	of	is	properties	that	allow	you	to	test	the	layer	type.	These	include
isFeatureLayer,	isGroupLayer,	isNetworkAnalystLayer,	isRasterLayer,	and
isServiceLayer.

A	set	of	properties	dealing	with	the	source	dataset	of	the	layer	is	also	present,	such	as
datasetName,	dataSource,	and	workspacePath.	datasetName	returns	the	name	of	the
layer’s	dataset	the	way	it	appears	in	the	workspace,	not	the	table	of	contents.	The
dataSource	property	returns	the	complete	path	for	the	layer’s	data	source	including	the
workspace	path	and	dataset	name	combined.	workspacePath	returns	a	path	to	the
workspace	for	the	layer	or	ArcSDE	connection	file.

The	Layer	class	also	includes	a	number	of	methods	that	allow	you	to	work	with	the	extent
of	the	layer	or	selected	features	from	a	layer,	fix	a	layer	that	becomes	broken	due	to	a	new
workspace	path	or	type,	and	save	the	layer	file	or	save	it	to	a	new	copy.

The	TableView	object

The	TableView	object	allows	you	to	manage	standalone	tables	in	a	map	document	file.
The	constructor	for	this	object	accepts	a	parameter	that	includes	a	full	path	to	the
workspace	where	the	table	exists	and	should	also	include	the	name	of	the	table.

There	are	only	a	handful	of	properties	on	this	object,	most	of	which	relate	to	dataset	path
and	naming.	The	workspacePath	property	returns	a	path	to	the	table’s	workspace	or
connection	file.	The	datasetName	returns	the	name	of	the	table	in	the	workspace,	and
dataSource	returns	the	table’s	source	path.	One	helpful	property	is	definitionQuery.
This	property	provides	the	ability	to	limit	the	displayed	records	to	only	records	that	match
a	specific	query.

There	are	also	a	couple	of	methods	on	this	object	that	allow	you	to	fix	a	broken	data

source,	including	findAndReplaceWorkspacePath()	and	replaceDataSource().	These
are	the	same	methods	that	are	available	on	the	Layer	object	and	also	perform	the	same
functionality.

Data	Driven	Pages	classes
The	Data	Driven	Pages	functionality	is	handled	through	the	DataDrivenPages	class.	The
Data	Driven	Pages	functionality	in	ArcGIS	enables	you	to	create	a	series	of	maps	for	a
geographic	area	for	the	purpose	of	creating	a	map	book.	ArcMap	includes	a	Data	Driven
Pages	toolbar	that	you	can	use	to	create	this	series	of	maps	without	having	to	write	any
code.	You	could	also	elect	to	automate	the	entire	process	through	a	Python	script	without
using	the	toolbar.	However,	the	creation	of	a	map	book	is	best	accomplished	through	a
combination	of	the	Data	Driven	Pages	toolbar	and	scripting	with	ArcPy	mapping	using	the
DataDrivenPages	class.	The	toolbar	could	be	used	to	author	the	Data	Driven	Pages
functionality	in	the	map	document,	and	the	scripting	would	handle	any	custom
requirements,	such	as	changing	titles	for	each	map	in	the	series	as	well	as	exporting	the
maps	to	pdf	files.	The	methods	and	properties	on	the	DataDrivenPages	class	enable	you	to
work	with	the	individual	pages	in	a	map	document	that	already	has	Data	Driven	Pages
enabled.

Classes	related	to	managing	time	layers
There	are	two	classes	in	the	ArcPy	mapping	module	related	to	time-enabled	layers:
DataFrameTime	and	LayerTime.

The	DataFrameTime	class

Time-enabled	layers	in	a	data	frame	can	be	controlled	through	the	DataFrameTime	object.
This	object	can	be	used	in	scenarios	where	map	documents	have	already	been	published
with	time-aware	layers,	including	the	use	of	the	Time	Slider	Options	dialog	to	set	various
properties.	It	can	also	be	used	in	situations	where	map	documents	don’t	already	have	time-
enabled	layers,	but	the	intent	is	to	add	them	through	a	script.

Properties	of	the	DataFrameTime	object	allow	you	to	get	and	set	the	start	time,	current
time,	end	time,	time	window,	and	time	window	units.	It	also	includes	a	read-only	property
to	obtain	the	time	step	interval.	The	only	method	on	the	DataFrameTime	object	is
resetTimeExtent(),	which	resets	the	time	extent	of	the	data	frame.

The	LayerTime	class

This	class	provides	the	ability	to	manage	time-enabled	layers.	It	provides	information
about	how	time	is	stored	and	configured.	The	properties	on	the	class	are	read-only	and
allow	you	to	retrieve	information	about	the	start	and	end	times	for	the	layer,	the	fields
being	used	to	store	the	start	and	end	times,	the	time	format,	time	zone,	whether	the	time
information	is	observing	daylight	saving	time,	and	the	time	step	interval.	There	are	no
methods	associated	with	the	LayerTime	class.

Element	classes	associated	with	the	layout	view
Element	classes	in	ArcPy	mapping	represent	everything	that	you	add	to	the	layout	view	in

ArcMap.	Using	these	element	classes,	you	can	make	changes	to	the	layout	view	through
your	scripts	including	changing	the	size	and	position	of	elements	and	altering	the	data
associated	with	an	element.	In	addition	to	the	classes	discussed	here,	the	previously
discussed	DataFrame	element	can	also	be	included	with	these.

The	LegendElement	class

The	LegendElement	class	provides	properties	for	the	positioning	of	the	legend	on	the	page
layout	and	modifying	of	the	legend	title,	and	also	provides	access	to	the	legend	items	and
the	parent	data	frame.	A	LegendElement	class	can	be	associated	with	only	a	single	data
frame.	The	methods	available	on	this	class	enable	you	to	update	or	remove	legend	items,
adjust	the	column	count,	and	obtain	a	list	of	the	legend	items.

The	GraphicElement	class

The	GraphicElement	class	is	a	generic	object	for	various	graphics	that	can	be	added	to	the
page	layout,	including	tables,	graphs,	Neatlines,	markers,	lines,	and	area	shapes.	This
object	provides	a	limited	set	of	properties	that	allow	you	to	reposition	and	resize	the
elements	on	the	layout	as	well	as	set	the	name.	In	addition,	there	are	two	methods	on	this
class:	clone()	and	delete().	The	clone()	method	creates	a	copy	of	the	element,	whereas
delete()	is	used	to	remove	the	element	from	the	layout.

MapsurroundElement

The	MapsurroundElement	can	refer	to	north	arrows,	scale	bars,	and	scale	text	and	like
LegendElement,	is	associated	with	a	single	data	frame.	Properties	on	this	object	enable
repositioning	and	resizing	on	the	page.

PictureElement

PictureElement	represents	a	raster	or	image	on	the	page	layout.	The	most	useful	property
on	this	object	allows	you	to	get	and	set	the	data	source	that	can	be	extremely	helpful	when
you	need	to	change	a	picture	such	as	a	logo	in	multiple	map	documents.	For	example,	you
could	write	a	script	that	iterates	through	all	your	map	document	files	and	replaces	the
current	logo	with	a	new	logo.	You	can	also	reposition	the	object.

TextElement

TextElement	represents	text	on	a	page	layout,	including	inserted	text,	callouts,	rectangle
text	and	titles,	but	does	not	include	legend	titles	or	text	that	is	part	of	a	table	or	chart.
Properties	enable	modifying	the	text	string,	which	can	be	extremely	useful	in	situations
where	you	need	to	make	the	same	text	string	change	in	multiple	places	in	the	page	layout
or	over	multiple	map	documents,	and	of	course	repositioning	of	the	object	is	also
available.

PDF	document	creation	and	editing
Although	there	is	only	one	class	related	to	creating	pdf	documents	in	the	ArcPy	mapping
module,	we’ll	explore	a	second	way	that	you	can	create	pdf	documents	when	we	discuss
the	ExportToPDF()	function	in	the	next	section.

PDFDocument

You	can	manipulate	existing	PDF	documents	or	create	new	PDF	documents	using	the
PDFDocument	class.	You	can	merge	pages,	set	document	open	behavior,	add	file
attachments,	and	create	or	change	document	security	settings.	The	PDFDocumentOpen()
function	is	used	to	open	an	existing	PDF	file	for	manipulation.	The	PDFDocumentCreate()
function	creates	a	new	PDF	document.	These	functions	are	often	used	in	the	creation	of
map	books.

You’ll	need	to	use	PDFDocumentCreate()	to	create	a	new	PDF	document	by	providing	a
path	and	filename	for	the	document.	The	PDF	is	not	actually	created	on	disk	until	you
insert	or	append	pages	and	then	call	PDFDocument.saveAndClose().	The	appendPages()
and	insertPages()	functions	are	used	to	insert	and	append	pages.

PDFDocumentOpen()	accepts	a	parameter	that	specifies	the	path	to	a	PDF	file	and	returns
an	instance	of	the	PDFDocument	class.	Once	you	can	make	modifications	to	PDF	file
properties,	you	can	add	or	insert	files	and	can	attach	documents.	Make	sure	that	you	call
PDFDocument.saveAndClose()	after	all	operations	to	save	the	changes	to	disk.

A	number	of	properties	can	be	set	on	a	PDF	document	through	the	PDFDocument	object,
including	getting	a	page	count,	attaching	files,	updating	the	title,	author,	subject,
keywords,	open	behavior,	and	the	layout.	You	can	also	update	the	document	security	by
calling	PDFDocument.updateDocSecurity()	to	set	a	password,	encryption,	and	security
restrictions.

Symbology
There	are	a	number	of	classes	in	the	ArcPy	mapping	module	that	provides	a	limited	ability
to	make	changes	to	the	symbology	of	an	application	including
GraduatedColorsSymbology,	GraduatedSymbolsSymbology,
RasterClassifiedSymbology,	and	UniqueValuesSymbology	classes.

GraduatedColorsSymbology

This	class	provides	a	limited	ability	to	change	the	appearance	of	a	layer’s	graduated	color
symbology.	Layer	symbology	can	be	applied	to	layers	in	a	map	document	or	layer	file.
Properties	on	this	object	enable	you	to	get	and	set	the	class	break	values,	labels,	number	of
classes,	field	used	to	create	the	symbology,	description,	and	normalization.	The	only
method	on	this	object	is	reclassify(),	which	resets	the	layer’s	symbology.	For	access	to
a	more	complete	set	of	symbology	properties	and	settings,	you	would	need	to	make	the
changes	in	ArcMap,	save	the	changes	to	a	layer	file,	and	then	use	the	UpdateLayer()
function	in	ArcPy	mapping.

GraduatedSymbolsSymbology

The	GraduatedSymbolsSymbology	class	is	similar	to	GraduatedColorSymbology	but	deals
with	graduated	symbols	instead	of	graduated	colors.	Like	GraduatedColorSymbology,	this
object	also	provides	access	to	a	limited	set	of	properties	that	you	can	use	to	change	how
graduated	symbols	are	symbolized.	The	properties	and	methods	are	the	same	as	described
on	the	GraduatedColorsSymbology	class.

RasterClassifiedSymbology

RasterClassifiedSymbology	allows	limited	access	to	properties	that	can	be	used	to
change	the	symbology	of	a	raster	layer.	This	object	is	similar	to	the
GraduatedColorsSymbology	and	GraduatedSymbolsSymbology	objects	we	discussed
earlier,	in	which	it	provides	access	to	only	a	limited	set	of	properties	such	as	the	class
break	values,	labels,	descriptions,	number	of	classes,	the	value	field,	and	others.

UniqueValuesSymbology

This	class	provides	access	to	properties	that	can	be	used	to	control	a	layer’s	unique	value
symbology.	This	class	is	similar	to	the	other	symbology	objects	we	have	already
discussed,	in	which	it	exposes	a	limited	number	of	properties	for	controlling	things	such	as
the	field	used	for	the	values,	labels,	descriptions,	and	others.

Arcpy	mapping	functions
The	ArcPy	mapping	functions	can	be	divided	into	sections	that	control	the	export	and
printing	of	maps	and	managing	map	documents	and	layers.

Exporting	and	printing	maps
There	are	a	handful	of	functions	related	to	exporting	maps	to	various	image	file	formats.
These	include	ExportToAI(),	ExportToBMP(),	ExportToEMF(),	ExportToEPS(),
ExportToGIF(),	ExportToJPEG(),	ExportToPNG(),	ExportToSVG(),	and	ExportToTIFF().
Each	of	the	functions	accepts	somewhat	different	parameters,	but	all	will	by	default	export
the	layout	view	in	ArcMap	to	an	image	file.	Instead	of	exporting	the	layout	view,	you	can
also	elect	to	export	a	specific	data	frame	by	passing	a	reference	as	a	parameter	to	the
function.

Yet	another	export	function	is	the	ExportToPDF()	function	that	can	be	used	to	export
either	the	layout	view	or	a	data	frame	to	a	PDF	file.	As	we’ll	discuss	later	in	this	section,
there	are	also	two	additional	functions	that	can	be	used	to	work	with	pdf	files.

There	are	two	functions	related	to	printing	the	layout	view	or	a	specific	data	frame.	The
ListPrinterNames()	function	gathers	a	list	of	the	available	printers	to	the	computer
where	the	script	is	running.	Using	the	list	returned,	you	can	then	pass	a	specific	printer	to
the	PrintMap()	function	to	print	either	the	layout	view	or	a	specific	data	frame	to	a
printer.	If	you	don’t	pass	a	printer	name	to	the	PrintMap()	function,	it	will	attempt	to	find
a	printer	saved	with	the	map	document	or	the	default	system	printer	if	a	printer	hasn’t	been
saved	with	the	map	document.

There	is	one	additional	function	in	this	category	that	is	used	to	export	reports.	This	is	the
ExportReport()	function,	which	exports	a	formatted,	tabular	report	using	data	in	the	map
document	file.	It	uses	a	report	template	file	that	has	been	previously	created.

Managing	map	documents	and	layers
There	is	a	wide	range	of	functions	to	manage	map	documents	and	layers.	Various	function
types,	including	managing	layers	and	tables,	working	with	pdf	files,	working	with	ArcGIS
Server	services,	generating	lists,	and	working	with	ArcGIS	Server	are	available.

Creating	lists

A	handful	of	list	functions	can	be	used	to	generate	lists	of	bookmarks,	data	frames,	broken
data	sources,	layers,	layout	elements,	map	services,	style	items,	and	table	views.	These
functions	each	return	a	Python	list	of	data	that	can	also	be	filtered	in	various	ways.	For
example,	the	ListLayers()	function	accepts	two	optional	parameters	including	a	wildcard
and	data	frame	that	can	be	used	to	restrict	the	list	of	layers	that	is	returned.	By	default,	all
layers	in	the	map	document	or	layer	file	are	returned,	but	it	is	often	necessary	to	limit	the
returned	objects.	All	the	list	functions	contain	similar	optional	parameters	that	can	be	used
to	limit	the	returned	list.

Managing	layers	and	tables

Layers	and	tables	can	be	added,	removed,	and	updated.	You	can	add	layers	to	a	map
document	or	group	layer	using	either	AddLayer()	or	AddLayerToGroup().	In	addition,	the
InsertLayer()	function	can	be	used	to	add	a	layer	to	a	map	document	or	group	layer	with
more	precision.	It	uses	a	reference	layer	to	precisely	define	the	location	of	the	layer	to	be
added.	The	MoveLayer()	function,	which	is	used	to	move	a	layer	to	a	new	location	within
a	specific	data	frame	,	also	uses	a	reference	layer.	Standalone	tables	can	be	added	or
removed	from	a	map	document	using	AddTableView()	or	RemoveTableView().	The
symbology	and	properties	of	a	layer	can	be	updated	through	the	UpdateLayer()	method.
There	is	also	an	UpdateLayerTime()	function	that	can	be	used	to	update	the	properties	of
a	time-enabled	layer.

Working	with	pdf	Files

In	the	previous	section,	the	ExportToPDF()	function	was	introduced.	There	are	two
additional	functions	related	to	working	with	pdf	files	including	PDFDocumentCreate()	and
PDFDocumentOpen().	Both	are	commonly	used	in	the	creation	of	map	books.
PDFDocumentCreate(),	as	its	name	suggests,	is	used	to	create	new	pdf	files,	whereas
PDFDocumentOpen()	can	be	used	to	open	an	existing	pdf	file.	Both	return	an	instance	of
the	PDFDocument	class.

Working	with	ArcGIS	Server	services

Map	documents	can	be	published	to	ArcGIS	Server	as	services.	The	ArcPy	mapping
module	provides	several	functions	related	to	this	conversion	and	publication	process.
Before	a	map	document	can	be	published	as	a	service,	it	must	go	through	a	conversion
process.	The	first	step	in	the	process	is	to	create	a	Service	Definition	Draft	file	(SDDraft).
This	can	be	accomplished	with	the	CreateMapSDDraft()	function.	This	function	also
returns	a	Python	dictionary	containing	errors,	warnings,	and	information	messages.	Any
errors	must	be	resolved	before	publication.	This	can	also	be	accomplished	with	the
AnalyzeForSD()	function.	After	any	errors	have	been	resolved,	there	are	two
geoprocessing	tools	that	you	can	use	to	publish	the	file	as	a	service.

Other	functions	related	to	working	with	ArcGIS	Server	include
ConvertWebMapToMapDocument(),	which	can	be	used	to	convert	a	web	map	in	JSON	format
to	a	map	document.	In	addition,	the	CreateGISServerConnectionFile()	function	creates
a	connection	file	for	accessing	ArcGIS	Server.

There	are	also	some	deprecated	functions	that	you	shouldn’t	use	but	that	are	still
technically	part	of	the	module	including	AnalyzeForMSD(),	ConvertToMSD(),
DeleteMapService(),	ListMapServices(),	and	PublishMSDToServer().	These	functions
have	either	been	replaced	by	new	functions	or	tools,	or	are	now	provided	through	the
ArcGIS	REST	API.

Overview	of	the	Arcpy	data	access	module
The	ArcPy	data	access	module,	known	as	arcpy.da,	provides	capabilities	for	working	with
tables	and	feature	classes.	Through	the	use	of	various	cursor	objects,	you	can	select,	insert,
update,	and	delete	records	from	tables	and	feature	classes.	The	data	is	held	as	an	in-
memory	copy	of	the	data.	This	module	also	supports	edit	sessions,	NumPy	array
conversions,	and	support	for	versions,	domains,	and	subtypes.

ArcPy	data	access	classes
The	primary	classes	in	this	module	deal	with	the	various	types	of	cursors	that	can	be
created.	Cursor	objects	are	the	in-memory	copy	of	data	pulled	from	a	table	or	feature
class.	The	data	access	module	includes	three	types	of	cursor	objects	including
SearchCursor,	InsertCursor,	and	UpdateCursor.	Each	has	a	corresponding	constructor
function	that	is	used	to	create	the	object.	There	are	some	additional	classes	that	support
edit	sessions,	domains,	versions,	and	replicas.

The	SearchCursor	class	is	used	to	create	read-only	access	to	tables	and	feature	classes.
The	constructor	function	for	this	class	provides	parameters	for	defining	the	feature	class	or
table	associated	with	the	object,	a	list	of	fields	to	return,	and	an	optional	WHERE	clause	to
limit	the	records	returned	in	this	object.

The	InsertCursor	class	is	used	for	situations	where	new	records	need	to	be	added	to	a
table	or	feature	class.	The	constructor	function	for	this	class	provides	parameters	for
defining	the	feature	class	or	table	associated	with	the	object	along	with	a	list	of	field
names	to	be	returned.	The	only	method	on	this	class	is	insertRow().	This	method	inserts	a
new	row	into	a	table	or	feature	class.

The	UpdateCursor	class	is	used	to	edit	or	delete	records	in	a	table	or	feature	class.	The
constructor	function	for	this	class	provides	parameters	to	define	the	feature	class	or	table
associated	with	the	object	along	with	a	list	of	field	names	to	be	returned	and	an	optional
where	clause	that	can	be	used	to	limit	the	records	returned.	There	are	two	primary
methods	on	this	class:	deleteRow()	and	updateRow().

All	cursors	support	the	concept	of	geometry	tokens	that	allow	you	to	return	a	portion	of
the	geometry	for	a	feature	class	rather	than	the	default	of	returning	all	geometry.	In
situations	where	you	have	highly	detailed	polygon	or	polyline	datasets,	this	can	increase
the	performance	of	cursors	by	limiting	the	amount	of	data	returned	when	the	object	is
created.

Another	important	object	in	the	data	access	module	is	the	Editor	class.	Through	this
class,	you	can	enable	edit	sessions	against	tables	and	feature	classes.	The	functionality
provided	through	this	class	is	the	same	as	that	provided	through	the	Edit	toolbar	in
ArcMap.

Several	additional	classes	including	Domain,	Version,	and	Replica	provide	a	limited	set
of	read-only	properties	for	these	objects.	For	example,	the	Domain	class	has	read-only
properties	that	will	return	the	coded	values	or	range	for	a	domain,	name,	split	policy,
merge	policy,	domain	type,	and	description.	There	are	read-only,	so	you	can’t	make	any
changes	to	the	Domain,	Version,	or	Replica	objects.

Arcpy	data	access	functions
The	data	access	functions	can	be	grouped	into	categories	that	provide	lists	of	data,	NumPy
array	conversion	capabilities,	and	a	utility	function	to	generate	data	names	in	a	Catalog
tree.

List	functions
There	are	a	handful	of	list	functions	that	return	a	list	of	data.	These	include
ListDomains(),	ListFieldConflictFilters(),	ListReplicas(),	ListSubtypes(),	and
ListVersions().	Most	are	self-explanatory,	but	the	ListFieldConflictFilters()
requires	some	explanation.	This	function	lists	the	fields	in	a	versioned	feature	class	or
table	that	have	field	conflict	filters	applied.

NumPy	Array	conversion	functions
Tables	and	feature	classes	can	be	converted	to	NumPy	arrays	through	the
TableToNumPyArray()	and	FeatureClassToNumPyArray()	functions.	Existing	NumPy
arrays	can	also	be	converted	to	tables	and	feature	classes	through	the
NumPyArrayToTable()	and	NumPyArrayToFeatureClass()	functions.	There	is	also	an
ExtendTable()	function	to	join	a	NumPy	array	to	another	table	based	on	a	common
attribute	field.

The	Walk()	function	generates	data	names	in	a	Catalog	tree	and	can	navigate	top-down	or
bottom-up.	Each	folder	or	workspace	in	the	tree	contains	a	Python	tuple	object	consisting
of	the	directory	path,	directory	names,	and	filenames.	This	function	is	similar	to	the
Python	os.walk()	function,	but	with	the	added	capability	of	being	able	to	investigate	the
contents	of	a	geodatabase	structure.	The	os.walk()	function	doesn’t	have	this	ability.

An	overview	of	the	ArcGIS	REST	API
The	ArcGIS	REST	API	provides	access	to	ArcGIS	Server	and	ArcGIS	Online	services	to
any	language	that	can	make	requests	and	handles	the	returned	responses.	Python	is	one
such	language	along	with	many	others.	To	make	use	of	this	API,	you	must	understand
what	requests	can	be	made,	how	to	structure	those	requests,	and	how	to	process	the
responses.

The	operations	provided	through	the	API	include	the	following:

Consume	ArcGIS	Server	and	ArcGIS	Online	services
Publish	and	manage	services
Create	and	share	ArcGIS	Online	or	portal	services
ArcGIS	Server	and	ArcGIS	Online	administration

The	REST	API	can	be	categorized	into	sections	including	using	Esri-provided	services,
using	your	own	services	and	services	published	by	others,	managing	services,	and
administering	services	and	portals.

Basics	of	using	the	ArcGIS	REST	API
All	resources	and	operations	exposed	by	the	REST	API	are	accessible	through	a	hierarchy
of	endpoints	or	Uniform	Resource	Locators	(URLs)	for	each	GIS	service	published	with
the	ArcGIS	Server.	When	using	the	ArcGIS	services	portion	of	the	REST	API,	you
typically	start	from	a	well-known	endpoint,	which	represents	the	server	catalog.

You	need	to	understand	some	basic	concepts	of	the	ArcGIS	REST	API	before	putting	it	to
use	through	Python.	Specifically,	you	need	to	know	how	to	construct	a	URL	and	how	to
interpret	the	response	that	is	returned.	All	resources	and	operations	in	the	ArcGIS	REST
API	are	exposed	through	a	hierarchy	of	endpoints.	For	now,	let’s	examine	the	specific
steps	you	need	to	understand	to	submit	requests	to	the	API	through	Python.	The	services
directory	can	be	used	to	generate	a	URL	that	can	be	used	in	your	requests.

The	first	step	is	to	determine	the	well-known	endpoint.	This	represents	a	server	catalog
that	is	a	set	of	operations	that	ArcGIS	Server	can	perform	along	with	specific	services.
The	default	endpoint	for	ArcGIS	Server	takes	the	form:	http://<server>/arcgis/res
t/serviceshttp://<server>/arcgis/rest/services.

The	next	step	is	to	go	to	the	/rest/services	endpoint	to	see	the	content	of	the	ArcGIS	Server
instance.	For	example,	open	a	browser	and	navigate	to
http://sampleserver1.arcgisonline.com/arcgis/rest/services	and	you	will	be	presented	with
a	list	of	folders	displayed	as	links,	as	seen	in	the	screenshot:

http://sampleserver1.arcgisonline.com/arcgis/rest/services

An	ArcGIS	Server	instance	does	not	have	to	have	folders,	but	it	is	a	good	way	of	grouping
services.	You	can	click	on	a	specific	folder	to	see	the	services	that	are	contained	within.

Each	service	will	have	a	name	such	as	ESRI_Census_USA	along	with	a	type	such	as
MapServer.	The	service	type	is	listed	in	parentheses	to	the	right	hand	side	of	the	service
name.	In	your	browser	with	the	sampleserver1	instance	up,	click	through	the	various
folders	and	services	and	note	how	the	URL	changes.

As	you	click	on	through	the	various	links	for	a	services	directory,	note	how	the	URL	in	the
address	bar	changes.	This	URL	is	very	important	because	it	provides	you	with	the	content
that	will	be	submitted	through	a	Python	request.

Now	it’s	time	to	understand	the	documentation	for	the	ArcGIS	REST	API.	However,	don’t
spend	a	lot	of	time	on	the	documentation	right	now	because	we’ll	be	going	through	many
of	the	capabilities	of	the	API	as	we	move	through	the	book.

Now	properly	construct	the	URL	for	the	request.	This	is	a	very	important	step.	The	syntax
for	the	request	includes	the	path	to	the	resource	along	with	an	operation	name	followed	by
a	list	of	parameters.	The	operation	name	is	what	operation	will	be	performed	against	the
resource.	For	example,	you	might	want	to	export	a	map	to	an	image	file.	The	question
mark	begins	the	list	of	parameters.	Each	parameter	is	then	provided	as	a	set	of	key	or
value	pairs	separated	by	an	ampersand.	All	of	this	information	is	combined	into	a	single
URL	string.	A	syntax	example	is	provided	as	follows:

http://<resource-url>/<operation>?<parameter1=value1>&<parameter2=value2>.

As	we’ll	see	later	in	the	book,	you	can	use	the	Python	requests	module	to	simplify	this.
The	requests	module	allows	you	to	define	the	list	of	parameters	as	a	Python	dictionary	and
then	it	handles	the	creation	of	the	URL	query	string	including	URL	encoding.

The	response	that	is	returned	can	be	in	various	formats	including	.html,	.json,	.amf,	an
image,	and	many	others.	To	define	how	the	response	should	be	structured,	you’ll	need	to
use	the	f	parameter.	JSON	is	a	very	popular	output	format	and	can	easily	be	handled	in

your	Python	code.

The	Services	Directory	contains	dialog	boxes	that	you	can	use	to	generate	parameter
values.	You	can	find	links	to	these	dialog	boxes	at	the	bottom	of	the	services	page.	Click
on	one	of	the	links	to	see	the	dialog	box.	This	is	illustrated	in	the	following	screenshot:

This	is	the	preferred	and	most	common	way	of	making	a	URL	request	to	ArcGIS	Server.
In	this	case	the	entire	request	is	encoded	in	the	URL.	However,	it	does	have	a	limitation	of
1024	characters.	Therefore,	if	you	have	a	request	that	will	exceed	this	number	of
characters	you’ll	need	to	use	the	Post	method.

Now	that	you	have	at	least	a	basic	idea	of	how	to	construct	a	REST	API	query,	let’s
discuss	the	capabilities	provided	by	various	sections	of	the	API.

Esri	services
The	REST	API	provides	access	to	Esri	provided	services	including	those	provided	by
ArcGIS	Online.	Service	types	include	ready-made	maps	and	basemaps,	geocoding,
directions	and	routing,	demographic	and	lifestyle	attributes,	and	spatial	analysis.	Some	of
these	services	do	require	credits.	When	using	services	that	require	the	use	of	pre-
purchased	credits	you’ll	need	to	pass	a	token	as	part	of	the	request	for	information	from	a
service.

Mapping	services	include	basemaps	of	different	varieties	and	sources	including	street
maps,	topographic	maps,	and	hybrid	maps.	Esri	also	provides	a	World	Geocoding	service
that	can	be	used	for	address	matching	and	reverse	geocoding.	A	number	of	network
analysis	services,	including	routing,	closest	facility,	service	area,	and	others,	can	be	used
to	accomplish	network	tasks.	The	GeoEnrichment	services	provides	access	to
demographic	and	lifestyle	attributes.	Other	services	include	spatial	analysis	and	elevation
analysis.

Your	own	services
Services	that	you	have	published	as	part	of	your	own	ArcGIS	Server	instance	can	be
accessed	through	the	REST	API,	as	can	services	that	others	have	provided	and	made
available.	There	are	many	capabilities	exposed	by	the	REST	API,	so	we’ll	just	cover	them
at	a	high	level	for	now.	Generally,	we	can	divide	the	capabilities	into	service-related
functionality	and	functions	that	are	more	utilitarian	in	nature.

Service-related	functionality

The	REST	API	enables	you	to	work	with	features,	maps,	geocode,	geodata,	geometry,
geoprocessing,	globe,	image,	network,	schematic,	and	stream	services.	A	wide	array	of
operations	is	possible	with	each	of	these	services.	We’ll	discuss	some	of	the	capabilities
provided.

For	map	and	feature	services,	you	can	add	attachments,	export	maps	and	tiles,	retrieve
features,	find	features,	generate	KML,	render	symbology,	define	HTML	popups,	identify
features,	retrieve	a	legend,	perform	queries,	and	more.	You	will	find	an	example	of	a	URL
string	used	to	perform	a	query	against	a	layer	as	follows:

http://sampleserver1.arcgisonline.com/ArcGIS/rest/services/Specialty/ESRI_StateCityHighway_USA/MapServer/1/query?
where=STATE_NAME=‘Florida’&f=json.

Feature	services	have	the	added	capability	of	being	able	to	perform	edits,	including	adding
and	removing	features,	updating	features,	and	deleting	features.	Here,	you	will	find	an
example	of	a	URL	string	used	to	delete	a	feature	in	a	feature	service:

http://services.myserver.com/ERmEceOGq5cHrItq/ArcGIS/rest/services/SanFrancisco/311Incidents/FeatureServer/0/deleteFeatures

http://services.myserver.com/ERmEceOGq5cHrItq/ArcGIS/rest/services/SanFrancisco/311Incidents/FeatureServer/0/deleteFeatures

Geocoding	services	provide	the	ability	to	geocode	and	reverse	geocode	addresses.
Geocoding	functionality	provides	the	ability	to	map	a	single	address	or	batch	geocode	a

http://sampleserver1.arcgisonline.com/ArcGIS/rest/services/Specialty/ESRI_StateCityHighway_USA/MapServer/1/query?where=STATE_NAME='Florida'&f=json

set	of	addresses.	Reverse	geocoding	accepts	a	point	and	returns	a	set	of	address
candidates.	There	is	also	a	suggest	operation	that	will	provide	a	list	of	suggested	addresses
based	on	typed	input	from	the	user.

A	geometry	service	is	included	with	every	ArcGIS	Server	instance	and	provides
operations	for	many	geometric	operations	including	buffering,	calculation	of	areas	and
lengths,	generalization,	intersection,	projection,	union,	and	many	others.	These	operations
work	with	individual	geometry	objects	typically	defined	in	a	JSON	format.	An	example	of
using	the	buffer	operation	is	provided	here:

http://sampleserver6.arcgisonline.com/ArcGIS/rest/services/Utilities/Geometry/GeometryServer/buffer?
geometries=-117,34&inSR=4326&outSR=4326&bufferSR=3857&distances=1000.

Geoprocessing	services	represent	geoprocessing	tasks	that	have	been	created	in	ArcGIS
Server.	Operations	provided	through	the	API	related	to	geoprocessing	services	include	the
ability	to	execute	a	task,	cancel	a	job,	retrieve	the	result	of	the	task,	and	others.

Globe	services	published	with	ArcGIS	Server	provide	information	about	the	service
including	the	service	description	as	well	as	the	layers	published	with	the	service.	This
includes	individual	layers	as	well	as	tiles.

Raster	data	can	be	accessed	through	an	image	service.	This	can	include	a	single	raster	or
multiple	raster	served	as	a	single	image	through	mosaicking.	An	image	service	supports
accessing	the	mosaicked	image,	its	catalog,	and	also	the	individual	rasters	in	the	catalog.
Operations	provided	include	export	image,	query,	identify,	download,	measure,	computer
histograms,	add,	update,	delete,	upload,	get	samples,	computer	class	statistics,	and
compute	tie	points.

Network	service	operations	include	solving	closest	facility	tasks,	routes,	and	a	service	area
problem.	You	can	also	access	network	service	information	including	the	service
description	and	the	network	layers	associated	with	the	service.

Schematic	services	support	working	with	diagrams.	Using	this	service,	you	can	create,
edit,	delete,	and	save	diagrams.	Additional	operations	include	loading,	locking,	querying,
exporting,	and	updating	diagrams,	among	others.

Stream	services	enable	real-time	applications	where	the	datasets	are	frequently	changing.
This	does	require	the	ArcGIS	GeoEvent	extension	for	ArcGIS	Server	that	must	be	licensed
and	installed.	The	stream	service	resource	provides	basic	information	about	the	service,
including	event	attribute	fields,	geometry,	type,	and	WebSocket	resources.	Operations
include	broadcast	and	subscribe.	The	broadcast	operation	serves	as	an	endpoint	for	a
stream	service,	and	the	subscribe	operation	serves	as	a	connection	point	to	a	stream
service.

Utility	functions

The	REST	API	includes	a	small	number	of	utility	functions	to	manage	ArcGIS	Server.
The	Catalog	resource	is	the	root	note	of	an	ArcGIS	Server	instance	and	can	be	used	to
retrieve	the	folders	and	services	published.	ServerInfo	is	a	resource	that	provides
information	about	the	server	including	version	information,	whether	the	server	is	using

http://sampleserver6.arcgisonline.com/ArcGIS/rest/services/Utilities/Geometry/GeometryServer/buffer?geometries=-117,34&inSR=4326&outSR=4326&bufferSR=3857&distances=1000

token-based	authentication	and	the	token	services	URL.	The	generateToken	resource
generates	an	access	token	to	access	services	that	are	token	secured.	The	info	resource
provides	information,	metadata,	and	a	thumbnail	about	services.	Other	operations	include
the	export	web	map	task,	a	refresh	service,	and	a	set	of	upload	operations	to	upload	data.

Managing	your	organization
Using	the	REST	API,	you	can	manage	your	organization’s	ArcGIS	Online	account	as	well
as	the	Portal	for	ArcGIS.	Operations	enable	you	to	work	with	users,	groups,	and	content.
User	operations	include	basic	user	information	gathering,	adding	and	removing	users,
sending	a	user	invitation,	searching	for	users,	updating	user	information,	getting	and
setting	user	tags,	and	enabling	and	disabling	login	access.	Group	operations	including
creating	and	deleting	a	group,	joining	a	group,	reassigning	a	group,	updating	a	group,
adding	and	removing	users	from	a	group,	leaving	a	group,	obtaining	group	information,
and	more.	There	are	many	content-related	operations	including	creating	services	and
folders,	adding	and	deleting	items,	sharing	and	unsharing	items,	analysis	of	files	before
publication,	the	generation	of	output	files,	and	much	more.

Administering	your	server
You	can	programmatically	administer	your	ArcGIS	Server	instance	or	Portal	using	the
REST	API.	Using	operations	provided	by	the	API,	you	can	work	with	the	site,	clusters,
services,	security,	system,	data,	uploads,	logs,	KML,	info,	and	reports.

Site	operations	allow	you	to	create,	join,	export,	import,	and	delete	a	site.	In	addition,	you
can	generate	tokens,	register,	unregister,	rename	machines,	work	with	SSL,	start	and	stop
machines,	and	edit	machines.

Cluster	operations	include	starting	and	stopping	a	cluster,	editing	the	protocol	for	a	cluster,
deleting	a	cluster,	retrieving	the	services	in	a	cluster,	and	adding	and	removing	machines
from	a	cluster.

There	are	many	service	operations	including	starting,	stopping,	editing,	and	deleting
services,	retrieving	service	statistics	and	service	types,	and	adding	and	cleaning
permissions.	The	items	associated	with	a	service	also	have	operations	including	editing
item	information,	uploading	item	information,	deleting	item	information,	and	working
with	the	service	manifest.	You	can	also	federate	and	un-federate	a	service.

Security	operations	associated	with	the	API	including	working	with	users,	roles,	security
configuration,	tokens,	and	working	with	the	primary	site	administrator.	You	can	add	and
remove	users,	update	users,	get	a	list	of	users,	assign	and	remove	roles,	and	get	privileges.
Role	operations	include	adding,	removing,	and	updating	roles,	searching	for	roles,	getting
roles	for	specific	users,	getting	a	list	of	users	within	a	role,	adding	and	removing	users	in	a
role,	and	assigning	privileges	to	a	role.

System	operations	allow	you	to	update	server	properties,	register,	edit,	clean,	and
unregister	directories,	edit	configuration	stores,	work	with	web	adaptors,	retrieve	job
information,	clear	the	cache,	and	edit	the	services	directory.

Data	operations	include	registering	and	unregistering	a	data	item,	finding	data	items,

validating	data	items,	starting,	stopping,	removing,	and	validating	a	data	store,	and
updating	the	datastore	configuration.

Upload	operations	including	uploading	an	item,	registering	an	item,	and	working	with
individual	items.	For	individual	items	you	can	upload	a	part,	commit	an	item,	delete	an
item,	or	retrieve	item	parts.

Log	operations	including	editing	log	settings,	querying	logs,	counting	error	reports,	and
cleaning	logs.

There	is	a	single	operation	related	to	KML	files.	This	is	the	Create	KMZ	operation	which	will
create	a	KMZ	file	on	the	server	from	an	input	KML	file.

Finally,	there	is	a	set	of	operations	related	to	usage	reports.	These	include	editing	usage
report	settings,	creating	a	usage	report,	editing	or	deleting	a	usage	report,	and	querying
report	data.

Administering	Portal
The	REST	API	includes	operations	that	can	be	performed	programmatically	and	that	can’t
be	performed	using	the	Portal	for	ArcGIS	website.	Operations	for	Portal	for	ArcGIS
include	system	and	security	operations.

System	operations	for	Portal	for	ArcGIS	include	creating	a	site,	working	with	licenses,
working	with	web	adaptors,	directory	operations,	database	operations,	and	system
properties.	License	operations	include	updating	the	license	manager,	releasing	a	license,
and	working	with	entitlements	including	getting	entitlements,	importing	entitlements,	and
removing	entitlements.	Web	adaptor	operations	include	unregistering	a	web	adaptor	and
updating	a	web	adaptor’s	configuration.

Security	operations	include	working	with	users	and	groups,	updating	token	configuration,
setting	up	OAuth,	configuration	operations,	and	working	with	SSL	certifications.	User
operations	include	creating	users,	searching	for	users,	and	refreshing	user	membership.
Group	operations	include	searching	groups,	refreshing	group	membership,	getting	users
within	a	group,	and	getting	a	list	of	groups	for	a	particular	user.	You	can	also	update	the
token	configuration.	OAuth	operations	provided	by	the	REST	API	include	changing	the
application	id,	getting	the	application	information,	and	updating	the	app	information.
Configuration	operations	include	updating	the	security	configuration,	updating	the	identity
store,	and	testing	the	identity	store.	Using	SSL	operations,	you	can	update	the	web	server
certificate,	generate	a	certificate,	import	an	existing	certificate,	and	export	or	delete	a
certificate.

Administering	ArcGIS	Online	hosted	services
The	administration	of	ArcGIS	Online	hosted	services	using	the	REST	API	falls	into	two
administrative	categories:	map	services	and	feature	services.	Map	services	can	be
administered	through	operations	including	editing	a	service,	checking	the	status	of	a
service,	refreshing	a	service,	updating	tiles,	and	getting	tile	creation	information.	For
feature	services,	you	can	check	the	status	of	the	service,	refresh	a	service,	add,	update,	or
delete	the	definition,	and	work	with	the	individual	feature	layers	in	the	service.

Conclusion
ArcGIS	includes	a	number	of	programming	libraries	that	can	be	used	to	automate	your
geoprocessing	scripts	or	develop	functional	applications.	In	addition,	you	can	also
integrate	other	non-GIS	libraries	into	your	projects	to	support	ancillary	tasks.	While	the
primary	focus	of	most	ArcGIS	Desktop	development	efforts	with	Python	in	the	past	has
been	centered	on	the	ArcPy	site	package	and	its	supporting	mapping	and	data	access
modules,	an	increasing	amount	of	functionality	is	now	being	delivered	through	the
ArcGIS	REST	API,	which	can	be	called	from	Python.	In	this	book,	we’ll	use	ArcPy,	its
supporting	modules,	the	ArcGIS	REST	API,	and	some	supporting	libraries	to	build
domain-specific	applications	using	Python.

Index
A

Aggregate	Crimes	tool
creating	/	Creating	the	Aggregate	Crimes	tool

American	Community	Survey	(ACS)
about	/	Creating	the	Census	Block	Group	selection	tool

App	Console,	Dropbox
reference	/	Converting	iPhone	photos	to	a	feature	class

ArcGIS
design	/	Design

ArcGIS	application
design,	defining	/	Design

ArcGIS	Desktop
design	/	Design,	Design,	Design
Data	Frame,	setting	up	/	Setting	up	the	Data	Frame

ArcGIS	Desktop	Python	Toolbox
creating	/	Creating	the	ArcGIS	Desktop	Python	Toolbox
parameters,	working	with	/	Working	with	tool	parameters
executing	/	Tool	execution

ArcGIS	Python	add-in
creating	/	Creating	the	ArcGIS	Python	add-in

ArcGIS	REST	API
URL	/	Creating	the	Enrich	Potential	Stores	tool
defining	/	An	overview	of	the	ArcGIS	REST	API,	Basics	of	using	the	ArcGIS
REST	API
Esri	services	/	Esri	services

ArcGIS	Server	instance
URL	/	Basics	of	using	the	ArcGIS	REST	API

ArcGIS	Server	services
working	with	/	Working	with	ArcGIS	Server	services

Arcpy
about	/	Overview	of	Arcpy
ArcPy	classes	/	The	ArcPy	classes
ArcPy	functions	/	The	ArcPy	functions

ArcPy	classes
about	/	The	ArcPy	classes
FeatureSets	and	Recordsets	/	FeatureSets	and	Recordsets
attribute	fields	/	Fields
geometry	/	The	geometry
graphing	/	Graphing
generic	classes	/	General

ArcPy	data	access	classes	/	ArcPy	data	access	classes

Arcpy	data	access	functions
about	/	Arcpy	data	access	functions
list	functions	/	List	functions
NumPy	Array	conversion	functions	/	NumPy	Array	conversion	functions

Arcpy	data	access	module
about	/	Overview	of	the	Arcpy	data	access	module
ArcPy	data	access	classes	/	ArcPy	data	access	classes
Arcpy	data	access	functions	/	Arcpy	data	access	functions

ArcPy	functions
about	/	The	ArcPy	functions
data	store	/	The	data	store
data,	describing	/	Describing	the	data
environment	variables	/	Environment	variables
fields	/	Fields
general	functions	/	General
geodatabase	administration	/	Geodatabase	administration
geometry	/	Geometry
parameters,	getting	/	Getting	and	setting	parameters
parameters,	setting	/	Getting	and	setting	parameters
licensing	/	Licensing	and	installation
installation	/	Licensing	and	installation
Data,	listing	/	Listing	data
messaging	/	Messaging	and	error	handling
error	handling	/	Messaging	and	error	handling
progress	dialog	/	The	progress	dialog
publishing	/	Publishing
raster	/	Raster
tools	/	Tools	and	toolboxes
toolboxes	/	Tools	and	toolboxes

ArcPy	mapping
map	series,	exporting	with	/	Exporting	the	map	series	with	ArcPy	mapping

ArcPy	mapping	classes
about	/	ArcPy	mapping	classes
documents,	mapping	/	Mapping	documents	and	associating	dataset	classes
dataset	classes,	associating	/	Mapping	documents	and	associating	dataset	classes
Data	Driven	Pages	classes	/	Data	Driven	Pages	classes
classes,	related	to	managing	time	layers	/	Classes	related	to	managing	time
layers
with	layout	view	/	Element	classes	associated	with	the	layout	view
PDF	document	/	PDF	document	creation	and	editing
symbology	/	Symbology

Arcpy	mapping	functions
about	/	Arcpy	mapping	functions
maps,	exporting	/	Exporting	and	printing	maps

maps,	printing	/	Exporting	and	printing	maps
ArcPy	mapping	module

about	/	Overview	of	the	ArcPy	mapping	module
capabilities	/	Overview	of	the	ArcPy	mapping	module
ArcPy	mapping	classes	/	ArcPy	mapping	classes
Arcpy	mapping	functions	/	Arcpy	mapping	functions

B
buffer	operation	example

URL	/	Service-related	functionality

C
Census	Block	Group	selection	tool

creating	/	Creating	the	Census	Block	Group	selection	tool
convert	to	Google	Earth	tool

creating	/	Creating	the	Convert	to	Google	Earth	tool
Create	Line	Plot	tool

creating	/	Creating	the	Create	Line	Plot	tool
Create	Map	Tool

building	/	Building	the	Create	Map	tool
CrimeAnalysis.pyt

designing	/	Design
CrimeAnalysis.pyt	toolbox

designing	/	Design
CSV	file

data,	reading	from	/	Reading	data	from	the	CSV	file	and	writing	to	the	feature
class
writing,	to	feature	class	/	Reading	data	from	the	CSV	file	and	writing	to	the
feature	class

D
Data	Driven	Pages

enabling	/	Enabling	Data	Driven	Pages
Data	Driven	Pages	classes

about	/	Data	Driven	Pages	classes
dataset	classes

MapDocument	class	/	The	MapDocument	class
DataFrame	/	DataFrame
Layer	class	/	The	Layer	class
TableView	object	/	The	TableView	object

Define	Potential	Stores	tool
creating	/	Creating	the	Define	Potential	Stores	tool

design,	application
defining	/	Design

Dropbox
URL	/	Converting	iPhone	photos	to	a	feature	class
references	/	Converting	iPhone	photos	to	a	feature	class

dynamic	text
adding,	to	layout	/	Adding	dynamic	text	to	the	layout

E
element	classes,	with	layout	view

LegendElement	class	/	The	LegendElement	class
GraphicElement	class	/	The	GraphicElement	class
MapsurroundElement	/	MapsurroundElement
PictureElement	/	PictureElement
TextElement	/	TextElement

Enrich	Potential	Stores	tool
creating	/	Creating	the	Enrich	Potential	Stores	tool

Esri	services
about	/	Esri	services
defining	/	Your	own	services
service-related	functionality	/	Service-related	functionality
Utility	functions	/	Utility	functions
organization,	managing	/	Managing	your	organization
server,	administering	/	Administering	your	server
portal,	administering	/	Administering	Portal
ArcGIS	Online	hosted	services,	administering	/	Administering	ArcGIS	Online
hosted	services

Esri	World	Geocoding	service
URL	/	Converting	iPhone	photos	to	a	feature	class

F
feature	class

populating	/	Populating	the	feature	class
pip,	installing	/	Installing	pip	and	the	requests	module
requests	module,	installing	/	Installing	pip	and	the	requests	module
data,	requesting	from	ArcGIS	Server	/	Requesting	data	from	ArcGIS	Server
data,	inserting	with	ArcPy	data	access	module	/	Inserting	data	in	a	feature	class
with	the	ArcPy	data	access	module
iPhone	photos,	converting	to	/	Converting	iPhone	photos	to	a	feature	class

G
Global	Positioning	System	(GPS)

design,	defining	/	Design
Google	Earth	Pro

URL	/	Creating	the	Convert	to	Google	Earth	tool
grid	index	feature

creating	/	Creating	the	Grid	Index	Features

H
heatmap

creating	/	Creating	the	heatmap

I
Import	Collar	Data	tool

creating	/	Creating	the	Import	Collar	Data	tool
Import	Records	tool

creating	/	Creating	the	Import	Records	tool
iPhone	photos

converting,	to	feature	class	/	Converting	iPhone	photos	to	a	feature	class

L
Last	Known	Position	(LKP)	tool

creating	/	Creating	the	Last	Known	Position	tool
layers

managing	/	Managing	map	documents	and	layers
layers	and	tables

managing	/	Managing	layers	and	tables
lists

creating	/	Creating	lists
Locator	Map

creating	/	Creating	the	Locator	Map

M
map	documents

managing	/	Managing	map	documents	and	layers
map	series

exporting,	with	ArcPy	mapping	/	Exporting	the	map	series	with	ArcPy	mapping
migration	patterns

creating,	for	Python	toolbox	/	Creating	migration	patterns	for	Python	toolbox

N
Neighborhood	Bar	Chart	tool

creating	/	Creating	the	Neighborhood	Bar	Chart	tool

O
onClick()	method	/	Design

P
PDFDocument

about	/	PDFDocument
pdf	files

working	with	/	Working	with	pdf	Files
photos,	smartphone

taking	/	Taking	photos
Plotly

about	/	Getting	to	know	Plotly
URL	/	Creating	the	Neighborhood	Bar	Chart	tool

Python	Add-In	Wizard
download	link	/	Exporting	the	map	series	with	ArcPy	mapping

Python	SDK	for	Dropbox
URL	/	Converting	iPhone	photos	to	a	feature	class

Python	toolbox
migration	patterns,	creating	for	/	Creating	migration	patterns	for	Python	toolbox

S
script

scheduling	/	Scheduling	the	script
Search	Area	Buffers	tool

creating	/	Creating	the	Search	Area	Buffers	tool
Search	Sector	tool

creating	/	Creating	the	Search	Sector	tool
service-related	functionality

URL	/	Service-related	functionality
Service	Definition	Draft	(SDDraft)

about	/	Publishing
Southeastern	Conference	(SEC)

about	/	Extracting	Tweet	geographic	coordinates	with	tweepy
spatial	statistical	analysis

performing	/	Performing	Spatial	Statistical	Analysis
symbology

about	/	Symbology
GraduatedColorsSymbology	/	GraduatedColorsSymbology
GraduatedSymbolsSymbology	/	GraduatedSymbolsSymbology
RasterClassifiedSymbology	/	RasterClassifiedSymbology
UniqueValuesSymbology	/	UniqueValuesSymbology

T
time-enabled	data	frame

creating	/	Making	the	data	frame	and	layer	time-enabled
time-enabled	data	layer

creating	/	Making	the	data	frame	and	layer	time-enabled
time	layers

DataFrameTime	class	/	The	DataFrameTime	class
LayerTime	class	/	The	LayerTime	class

tweepy
Tweet	geographic	coordinates,	extracting	with	/	Extracting	Tweet	geographic
coordinates	with	tweepy

Tweet	geographic	coordinates
extracting,	with	tweepy	/	Extracting	Tweet	geographic	coordinates	with	tweepy

Twitter	account
URL	/	Extracting	Tweet	geographic	coordinates	with	tweepy

U
user	interface

creating,	with	wxPython	/	Creating	a	user	interface	with	wxPython

V
visualization	product

creating	/	Creating	the	output
VisualizeMigration	tool

coding	/	Coding	the	VisualizeMigration	tool

W
Web	Map

creating	/	Creating	a	Web	Map
Windows	Task	Scheduler	application

design,	defining	/	Design
wxPython

about	/	Design
user	interface,	creating	with	/	Creating	a	user	interface	with	wxPython
URL	/	Creating	a	user	interface	with	wxPython

	ArcGIS Blueprints
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Extracting Real-Time Wildfire Data from ArcGIS Server with the ArcGIS REST API
	Design
	Creating the ArcGIS Desktop Python Toolbox
	Working with tool parameters
	Tool execution
	Populating the feature class
	Installing pip and the requests module
	Requesting data from ArcGIS Server
	Inserting data in a feature class with the ArcPy data access module
	Summary
	2. Tracking Elk Migration Patterns with GPS and ArcPy
	Design
	Creating migration patterns for Python toolbox
	Creating the Import Collar Data tool
	Reading data from the CSV file and writing to the feature class
	Making the data frame and layer time-enabled
	Coding the VisualizeMigration tool
	Summary
	3. Automating the Production of Map Books with Data Driven Pages and ArcPy
	Design
	Setting up the Data Frame
	Creating the Grid Index Features
	Enabling Data Driven Pages
	Creating the Locator Map
	Adding dynamic text to the layout
	Exporting the map series with ArcPy mapping
	Summary
	4. Analyzing Crime Patterns with ArcGIS Desktop, ArcPy, and Plotly(Part 1)
	Design
	Creating the Import Records tool
	Creating the Aggregate Crimes tool
	Building the Create Map tool
	Performing Spatial Statistical Analysis
	Summary
	5. Analyzing Crime Patterns with ArcGIS Desktop, ArcPy, and Plotly(Part 2)
	Design
	Getting to know Plotly
	Creating the Neighborhood Bar Chart tool
	Creating the Create Line Plot tool
	Creating the output
	Summary
	6. Viewing and Querying Parcel Data
	Design
	Creating a user interface with wxPython
	Creating the ArcGIS Python add-in
	Summary
	7. Using Python with the ArcGIS REST API and the GeoEnrichment Service for Retail Site Selection
	Design
	Creating the Census Block Group selection tool
	Creating the Define Potential Stores tool
	Creating the Enrich Potential Stores tool
	Summary
	8. Supporting Search and Rescue Operations with ArcPy, Python Add-Ins, and simplekml
	Design
	Creating the Last Known Position tool
	Creating the Search Area Buffers tool
	Creating the Search Sector tool
	Creating the Convert to Google Earth tool
	Summary
	9. Real-Time Twitter Mapping with Tweepy, ArcPy, and the Twitter API
	Design
	Extracting Tweet geographic coordinates with tweepy
	Scheduling the script
	Creating the heatmap
	Summary
	10. Integrating Smartphone Photos with ArcGIS Desktop and ArcGIS Online
	Design
	Taking photos
	Converting iPhone photos to a feature class
	Creating a Web Map
	Summary
	A. Overview of Python Libraries for ArcGIS
	Overview of Arcpy
	The ArcPy classes
	FeatureSets and Recordsets
	Fields
	The geometry
	Graphing
	General
	The ArcPy functions
	The data store
	Describing the data
	Environment variables
	Fields
	General
	Geodatabase administration
	Geometry
	Getting and setting parameters
	Licensing and installation
	Listing data
	Messaging and error handling
	The progress dialog
	Publishing
	Raster
	Tools and toolboxes
	Overview of the ArcPy mapping module
	ArcPy mapping classes
	Mapping documents and associating dataset classes
	The MapDocument class
	DataFrame
	The Layer class
	The TableView object
	Data Driven Pages classes
	Classes related to managing time layers
	The DataFrameTime class
	The LayerTime class
	Element classes associated with the layout view
	The LegendElement class
	The GraphicElement class
	MapsurroundElement
	PictureElement
	TextElement
	PDF document creation and editing
	PDFDocument
	Symbology
	GraduatedColorsSymbology
	GraduatedSymbolsSymbology
	RasterClassifiedSymbology
	UniqueValuesSymbology
	Arcpy mapping functions
	Exporting and printing maps
	Managing map documents and layers
	Creating lists
	Managing layers and tables
	Working with pdf Files
	Working with ArcGIS Server services
	Overview of the Arcpy data access module
	ArcPy data access classes
	Arcpy data access functions
	List functions
	NumPy Array conversion functions
	An overview of the ArcGIS REST API
	Basics of using the ArcGIS REST API
	Esri services
	Your own services
	Service-related functionality
	Utility functions
	Managing your organization
	Administering your server
	Administering Portal
	Administering ArcGIS Online hosted services
	Conclusion
	Index

