
Beginning
Jakarta EE

Enterprise Edition for Java: From
Novice to Professional
—
Peter Späth

www.allitebooks.com

http://www.allitebooks.org

Beginning Jakarta EE
Enterprise Edition for Java: From

Novice to Professional

Peter Späth

www.allitebooks.com

http://www.allitebooks.org

Beginning Jakarta EE: Enterprise Edition for Java: From Novice to Professional

ISBN-13 (pbk): 978-1-4842-5078-5 ISBN-13 (electronic): 978-1-4842-5079-2
https://doi.org/10.1007/978-1-4842-5079-2

Copyright © 2019 by Peter Späth

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by RawPixel

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please email editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484250785. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Peter Späth
Leipzig, Sachsen, Germany

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5079-2
http://www.allitebooks.org

To Salome

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: Java Development, Enterprise Needs �� 1

Standardized Specifications ��� 2

Multi-tiered Applications ��� 6

Why Jakarta EE? ��� 8

Exercise 1 �� 8

Jakarta EE Servers and Licensing �� 8

Excursion to Microservices ��� 9

Jakarta EE Applications and the Cloud ��� 10

Exercise 2 �� 11

The Java Standard Edition JSE 8 �� 12

The Java 8 Language �� 13

Exercise 3 �� 13

Chapter 2: Getting a Jakarta EE Server to Work ��� 15

Getting and Installing Glassfish��� 16

Glassfish Shell Administration �� 18

Multi-mode Sessions ��� 19

General Options ��� 19

Administering the Built-In Database�� 21

Glassfish GUI Administration ��� 22

Glassfish REST Interface Administration ��� 23

Table of Contents

About the Author ��� xiii

About the Technical Reviewer ���xv

Introduction ���xvii

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 3: Setting Up an IDE �� 27

Installing Eclipse for Jakarta EE Development�� 27

Using Eclipse ��� 32

Your First Jakarta EE Application �� 32

The Julian Calendar Back End ��� 33

The Julian Calendar Front End �� 40

Summing Up: The Julian Day Calendar�� 50

Chapter 4: Building Page-Flow Web Applications with JSF������������������������������������ 53

Servlets and JSF Pages �� 53

A Sample JSF Application ��� 55

Preparing the JSF Application ��� 55

The Household Accounting JSF Application �� 58

About JavaBean Classes ��� 64

Expression Language in JSF Pages �� 66

Value and Method Expressions �� 67

Accessing Objects from JSF Pages ��� 69

Implicit Objects �� 73

Literals ��� 75

Operators in Expressions ��� 76

Using Collections Inside Expressions �� 77

Exercise 1 �� 78

Lambda Expressions ��� 78

Localized Resources ��� 79

Exercise 2 �� 82

JSF Tag Libraries ��� 82

Standard HTML RenderKit Tags��� 83

HTML Top-Level Tags ��� 85

HTML Header Elements ��� 85

HTML Forms �� 86

HTML Text Input and Output �� 86

Table of ConTenTs

vii

HTML Selectables �� 88

Exercise 3 �� 91

Exercise 4 �� 91

HTML Images ��� 92

HTML Buttons and Links �� 92

Exercise 5 �� 94

HTML File Upload ��� 94

HTML Grouping �� 95

HTML Tables �� 96

Repetition and Conditional Branching ��� 98

JSF Core Tags�� 99

General Purpose Core Tags �� 99

Validator Core Tags �� 101

Converter Core Tags �� 106

Exercise 6 �� 110

Selection Items Core Tags ��� 110

Listener Core Tags ��� 114

AJAX Core Tags �� 117

Other Core Tags ��� 123

The Pass-Through Namespace ��� 124

Navigation Between Pages ��� 125

Exercise 7 �� 127

More Injection ��� 127

Overview of the JSF Page Flow �� 129

Exercise 8 �� 132

Chapter 5: Building Single-Page Web Applications with REST and JSON ������������� 133

A RESTful Server Inside Jakarta EE �� 133

Single-Page Web Applications �� 137

About REST ��� 140

Table of ConTenTs

viii

About JSON ��� 142

Exercise 1 �� 143

Including Page Assets ��� 144

Input, Output, and Action Components �� 145

Adding Input to the REST Controller �� 145

Adding Front-end Logic ��� 148

Data-centric Operations with SPAs ��� 150

Exercise 2 �� 163

Chapter 6: Adding a Database with JPA ��� 165

Abstracting Away Database Access with JPA ��� 165

Setting Up a SQL Database ��� 166

Adding EclipseLink as ORM �� 169

Adding Data Access Objects ��� 171

Exercise 1 �� 176

Adding Entities �� 176

Exercise 2 �� 179

Adding Relations ��� 179

Exercise 3 �� 182

Chapter 7: Modularization with EJBs ��� 185

Types of Session EJBs �� 185

Defining EJBs �� 186

Accessing EJBs ��� 190

Exercise 1 �� 194

EJB Projects �� 194

EJBs with Dependencies��� 196

Adding Dependencies to the Server �� 196

Creating EARs �� 197

Exercise 2 �� 198

Asynchronous EJB Invocation ��� 198

Timer EJBs �� 200

Table of ConTenTs

ix

Chapter 8: Dealing with XML Data �� 203

SOAP Web Services ��� 203

Exercise 1 �� 210

Exercise 2 �� 214

Application Startup Activities �� 214

XML Processing �� 216

DOM: In-Memory Representation of a Complete XML Document �� 217

StAX: Streaming Pull Parsing ��� 220

SAX: Event-Based Push Parsing �� 224

Chapter 9: Messaging with JMS ��� 227

Messaging Paradigms ��� 227

Setting Up a Messaging Provider �� 228

Creating Queues and Topics �� 229

Submitting and Receiving Messages �� 230

Exercise 1 �� 234

Managing the Messaging Provider ��� 234

Chapter 10: Maintaining State Consistency with JTA Transactions ��������������������� 239

Modularization in Time: Transaction Demarcation �� 240

Local and Distributed Transactions ��� 240

The ACID Paradigm ��� 241

Transaction Managers ��� 242

Container-Managed Transactions�� 245

Bean-Managed Transactions��� 248

Observing Transaction for Stateful EJBs ��� 250

Transaction Monitoring ��� 251

Chapter 11: Securing Jakarta EE Applications ��� 257

Securing Administrative Access �� 257

Securing the ASADMIN Tool ��� 257

Securing the Web Administrator Console �� 260

Table of ConTenTs

x

Securing the Administrative REST Service �� 261

Securing the Database Access �� 262

Securing the JMS Messaging �� 263

Exercise 1 �� 265

Securing Web Applications�� 265

Rendering Dependent on Security Conditions �� 279

Importing SSL Certificates for Web Applications ��� 279

Preparing EJB Security ��� 285

Exercise 2 �� 286

Declarative EJB Security ��� 290

Exercise 3 �� 292

Programmatic EJB Security �� 293

Role Mimic: Propagating Roles ��� 293

Chapter 12: Deployment Artifacts �� 295

The Eclipse Plugin’s Deployment Process �� 295

Using Deployment Archives �� 297

Web Application Archives �� 298

Creating WARs with Maven ��� 302

Exercise 1 �� 305

Enterprise Application Archives ��� 305

Creating EARs with Maven �� 309

Deploying Applications from Directories ��� 313

Chapter 13: Logging Jakarta EE Applications �� 317

System Streams �� 317

JDK Logging in Glassfish �� 318

Glassfish Log Files ��� 319

Adding Logging Output to the Console �� 319

Using the Standard Logging API for Your Own Projects ��� 320

Table of ConTenTs

xi

Exercise 1 �� 321

Logging Levels ��� 321

The Logger Hierarchy and Thresholds ��� 322

The Logging Configuration �� 323

The Logging Format �� 325

Using JDK Standard Logging for Other Servers �� 325

Adding Log4j Logging to Your Application ��� 326

Adding Log4j Server-Wide ��� 327

Changing the Logging Format ��� 330

Adding Log4j to Jakarta EE Web Applications ��� 332

Adding Log4j to Jakarta EE EAR Applications �� 334

Using Log4j in the Coding �� 337

Exercise 2 �� 338

Chapter 14: Monitoring Jakarta EE Applications �� 339

Monitoring over the Admin Console �� 339

Advanced Monitoring �� 342

Using REST to Access Monitoring Data ��� 344

Exercise 1 �� 346

JMX Monitoring ��� 347

Glassfish’s JMX Interface �� 347

A JMX GUI Client �� 349

Adding Glassfish Monitoring to JMX �� 352

Implementing Custom JMX Modules ��� 353

Exercise 2 �� 357

Appendix ��� 359

Standard HTML RenderKit Tags��� 359

HTML Tag Attribute Classes ��� 359

HTML Top-Level Tags ��� 364

HTML Header Elements ��� 365

Table of ConTenTs

xii

HTML Form �� 367

HTML Text Input and Output �� 369

HTML Selectables �� 375

HTML Images ��� 383

HTML Buttons and Links �� 384

HTML File Upload ��� 391

HTML Grouping �� 392

HTML Tables �� 393

Solutions to the Exercises ��� 399

Chapter 1 ��� 399

Chapter 4 ��� 399

Chapter 5 ��� 407

Chapter 6 ��� 408

Chapter 7 ��� 416

Chapter 8 ��� 423

Chapter 9 ��� 424

Chapter 11 ��� 430

Chapter 12 ��� 431

Chapter 13 ��� 432

Chapter 14 ��� 434

Index ��� 437

Table of ConTenTs

xiii

About the Author

Peter Späth graduated in 2002 as a physicist and soon afterward became an IT

consultant, mainly for Java-related projects. In 2016, he decided to concentrate on

writing books on various topics, but with the main focus set on software development.

With two books about graphics and sound processing and two books on Android app

development, the author continues his effort in writing software development–related

literature.

xv

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic developer and

researcher who enjoys learning new technologies for his

own experiments and creating new integrations. Manuel

won the Springy Award—Community Champion and Spring

Champion 2013. In his little free time, he reads the Bible

and composes music on his guitar. Manuel is known as dr_

pompeii. He has tech reviewed numerous books for Apress,

including Pro Spring, 4th Edition (2014), Practical Spring

LDAP (2013), Pro JPA 2, Second Edition (2013), and Pro Spring

Security (2013). Read his thirteen detailed tutorials about many

Spring technologies or contact him through his blog at http://www.manueljordanelera.

blogspot.com, and follow him on his Twitter account, @dr_pompeii.

http://www.manueljordanelera.blogspot.com
http://www.manueljordanelera.blogspot.com

xvii

Introduction

Software development is about telling computers what has to happen if some kind

of input arrives. This is the most salient quality of computer programs, from the very

beginning of computer history up to today. Other and more detailed qualities emerged

as computer programs more and more showed their ability to handle everyday

tasks. While the practical applicability of computer programs increased, two early

discriminations for different kinds of computer programs showed up: the first is the

place where data live, and the second is the place where programs get stored and run.

With the rise of networks and personal computers (PCs), developers had two options

concerning the program storage place:

• programs could be stored and run locally on PCs,

• or they could be stored and run at some central place on a network,

with the PCs serving as mere input-gathering and presentation-

offering units at software operators’ desks.

The data soon was handled by specialized programs called databases, which could

be tailored to store huge amounts of data and which offered fast access to data by virtue

of specialized data-access languages.

The delegation of computer programs away from the users’ desks so as to favor

central program storage at some network node led to a really powerful software

development paradigm: the client-server architecture. Here, clients basically are units

accessing services offered by servers running at central network nodes. In this context,

we use the term ”service” in a very general manner; in modern architectures,

services often show up in combinations like web services or service-oriented

architecture, which often means specialized-access technologies. See Figure 0-1 for a

bird-view plot.

The advantage of such a client-server architecture is clear: new software versions

with updated or new service program features need to be installed at just one place.

The presumably many client program installations need to be updated only if the input

xviii

or presentation logic changes. In addition, the installation programs for different client

software versions could be provisioned by the server too, such that other than the client

software installation procedure, the complete program logic concerning services and

client software installers could be managed at just one place—the server node in the

network. In one way or another, this client-server paradigm prevailed over all other

evolutionary steps in the history of IT.

Note that clients are not restricted to input and presentation units like terminals

or browsers. Clients can also be other servers that, in their functioning, need to access

services from a server. This frequently happens in a corporate environment, where

different servers are responsible for different aspects of a business. Think of a factory,

where one server could hold process instructions, another one could handle human

resources, a third one would deal with invoices, a fourth one could serve the company’s

website, and so on.

Figure 0-1. Java client-server architecture

InTroduCTIon

xix

In this book, we will be talking about such server programs. We will capitalize on

Java®1 as a programming language and the set of Java enterprise edition specifications

known by Jakarta EE (formerly JEE or J2EE). The services in question include the

following:

 – Web access

This comprises various formats and protocols used for browser

access to resources.

 – Web services

These are for a standardized access to resources. They get primarily

used by other servers, so web services are for machine-to-machine

communication purposes.

 – Messaging services

These handle asynchronous processing of messages. Messaging

plays an important role in large architectures where message

producers can send messages to message brokers and after that can

immediately resume their work, while message receivers can fetch

messages after some delay.

Under the hood, several other technologies play a role. This includes access to

databases, transaction control, special objects for remote access, and more.

Java enterprise server technologies are closely coupled with a specific version of the

underlying constituent technologies. The target Java enterprise server version addressed

in this book is Jakarta EE 8, exemplified by the open source edition of the Glassfish

reference implementation (version 5.1). During the course of this book, we’ll talk more

about the details of Jakarta EE sub-technologies at use.

For development, an integrated development environment (IDE) comes in handy

and helps with everyday development tasks. It is a program run on a developer’s desktop

machine (or laptop, of course), and it can be used to build Jakarta EE programs, which

can be run both locally on the developer’s machine or be transported to a real server

somewhere in the network. We will be using the Eclipse IDE, which is freely available and

free to use for any development stage, including production.

1 Both Java and Oracle are trademarks or registered trademarks of Oracle Inc. The author is
independent of Oracle Inc.

InTroduCTIon

xx

Note The Java programming language, the underlying Java runtime engine, and
its enterprise variant form just one option for a computer language and technology
capable of running servers. There are many more. The reason we talk about Java
is that it is modern and quite versatile, can be freely used, has oracle as a big
supporting company, and is widely adopted by a huge community of developers.

 The Book’s Targeted Audience
This book is for beginning enterprise software developers with knowledge of Java

standard edition version 8 or later programming. Profound Java programming is

surely helpful, but the author tries to explain advanced language constructs wherever

necessary. Also, online Java documentation is available, including tutorials, which can

help to fill in knowledge deficiencies.

As a development platform, the Linux operating system gets used, although

Windows instructions will be presented as well, and Java can run on several platforms,

which can be used interchangeably without major adaptions. This book does not talk

about hardware issues, except for maybe some cases where hardware performance has a

noticeable impact on the software.

The readers will in the end be able to develop and run Jakarta EE 8 programs of

beginning to mid-level complexity.

 Source Code
This book’s source code can be accessed by clicking the Download Source Code link

located at www.apress.com/9781484250785.

 How to Read This Book
Reading this book sequentially from the beginning to the end gives you the maximum

benefit. If you already have some basic enterprise Java development knowledge, you

can skip sections and chapters at will, and you can of course always take a step back and

reread sections and chapters while you are advancing inside the book.

InTroduCTIon

http://www.apress.com/9781484250785

1
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_1

CHAPTER 1

Java Development,
Enterprise Needs
In a corporate environment, a programming language and software platform like Java

has to fulfill a couple of needs that are important to running a business. It has to be

able to connect to one or more databases, reliably establish communication with other

IT- based systems in the same company or connected businesses, and be powerful

enough to consistently handle input and perform calculations based on both input and

database data, as well as present the appropriate output to clients. As a cross-concern,

security also plays an important role: an authentication process needs to be established

that forces users to identify themselves, and an authorization needs to be achieved to

limit the amount of resources a particular user is allowed to access. In addition, activities

need to be logged for technical maintenance and audit purposes, and the platform

should be able to present monitoring data for technical sanity checks and performance-

related investigations.

For all of these elements to work in a desired way, a language and platform must

be stable with respect to future changes and enhancements. This has to happen such

that new language and platform versions can be appropriately handled by the IT staff.

Jakarta EE follows this trail and by that largely augments its usefulness for corporate

environments.

In this chapter, we will talk about standardization issues that help Jakarta EE to

achieve its goals. And we will deal with licensing and the relationship of Jakarta EE

to other technology stacks. The chapter closes with a short survey about Java 8 as a

platform and as a programming language.

2

 Standardized Specifications
Specifications are important—they tell us what a software can do and how it does it, and

they keep track of new versions. The main specification we use in this book reads Jakarta

EE 8, and it includes sub-technologies also closely described by exact version numbers.

We give a list here and a short description of what each technology does. If you don’t

understand it yet, don’t worry. We will give thorough introductions to most of them in

the course of this book. Note that the list is not exhaustive—it does not include some

more advanced APIs, which we won’t cover in this beginning Jakarta EE book.

 – Enterprise Java Beans (EJB)—Version 3.2

EJBs represent entry points for business logic. Each EJB plays

the role of a component in an overall Jakarta EE architecture

and signs itself responsible for a dedicated business task. EJBs

allow one to add security, transactional features, JPA features for

communication with databases, and web services functionality,

and they can also be entry points for messaging (JMS; see later

bullet item).

 – Java Server Faces (JSF)—Version 2.3

JSF is the dedicated web front-end technology to be used for

browser access. It superseded JSPs (Java Server Pages), although

the latter is still part of the Jakarta EE specification. In this book,

we will concentrate on JSF for front-end work. JSFs usually

communicate over EJBs with the business logic.

 – Unified Expression Language (EL)—Version 3.0

An important means for JSF pages to communicate with the

application logic.

 – RESTful Web Services (JAX-RS)—Version 2.1

REST (REpresentational State Transfer) is about the original HTTP

protocol, which defines reading and writing resources. It recently

gained increased attention for single-page web applications,

where the front-end page flow gets completely handled by

JavaScript running in the browser.

Chapter 1 Java Development, enterprise neeDs

3

 – JSON Processing (JSON-P)—Version 1.1

JSON (JavaScript Object Notation) is a lean data format that is

particularly useful if a considerable amount of the presentation

logic gets handled by JavaScript running in the browser.

 – JSON Binding (JSON-B)—Version 1.0

This technology simplifies the mapping between JSON data and

Java classes.

 – Web Sockets—Version 1.1

Provides a full-duplex communication between web clients

(browsers) and the Jakarta EE server. Other than “normal” access

via HTTP, web sockets allow the server to send messages to a

browser client as well!

 – JPA—Version 2.2

The Java Persistence API. Provides high-level access to databases.

 – Java EE Security API—Version 1.0

A new security API that didn’t exist prior to Jakarta EE 8. It

includes an HTTP authentication mechanism and an identity

store abstraction for validating user credentials and group

memberships, and also provides a security-context API to

programmatically handle security.

 – Java Messaging Service (JMS)—Version 2.0

This is about messaging, which means messages can be produced

and consumed asynchronously. A message sender produces and

issues a message and can instantaneously continue its work even

when the message gets consumed later.

 – Java Transaction API (JTA)—Version 1.2

JTA makes sure that processes that combine several worksteps

acting as a unit can be committed or rolled back as a whole. This

can become tricky if distributed partners are involved. JTA helps

a lot here to ensure transactionality, even for more complex

systems.

Chapter 1 Java Development, enterprise neeDs

4

 – Servlets—Version 4.0

Servlets are the underlying technology for server–browser

communication. You usually configure them only once at the

beginning of a project. We describe servlets where necessary to

get other technologies to run.

 – Context and Dependency Injection (CDI)—Version 2.0

CDI allows one to bind contexts to elements that are governed

by a dedicated lifecycle. In addition, it injects dependencies into

objects, which simplifies class associations. We will use CDI to

connect JSF elements to the application logic.

 – JavaMail—Version 1.6

This provides facilities for reading and sending email. This is

just an API; for an implementation, you can, for example, use

Oracle’s reference implementation: https://javaee.github.io/

javamail/.

 – Bean Validation—Version 2.0

This allows for restricting method call parameters to comply with

certain value predicates.

 – Interceptors—Version 1.2

Interceptors allow you to wrap method calls into invocations

of interceptor classes. While this can be done by programmatic

method calls as well, interceptors allow you to do that in a

declarative way. You usually use interceptors for crosscutting

concerns, like logging, security issues, monitoring, and the like.

 – Batch Processing—Version 1.0

This handles jobs that need to be started based on some

scheduling.

 – Java Server Pages (JSP)—Version 2.3

JSPs can be used to establish a page flow in a server–browser

communication. JSP is an older technology, but you still can use

Chapter 1 Java Development, enterprise neeDs

https://javaee.github.io/javamail/
https://javaee.github.io/javamail/

5

it if you like. You should, however, favor JSFs over JSPs, and in this

book we don’t handle JSPs.

 – JSP Standard Tag Library (JSTL)—Version 1.2

This is used in conjunction with JSPs for page elements. You could

use it for JSFs as well, but you should avoid it, since confusing side

effects are likely to show up if you combine them. In this book, we

won’t talk a lot about JSTL.

Jakarta EE runs on top of the Java Standard Edition (SE), so you can always use

any classes and interfaces of the Java SE if you program for Jakarta EE. A couple of

technologies included within the Java SE, however, play a prominent role in Jakarta EE,

as follows:

 – JDBC—Version 4.0

An access API for databases. All major database vendors provide

JDBC drivers for their product. You could use it, but you shouldn’t.

Use the higher-level JPA technology instead. You’ll get in contact

once in a while, because JPA uses JDBC under the hood.

 – Java Naming and Directory Interface (JNDI)

In a Jakarta EE 8 environment, objects will be accessed by other

objects in a rather loose way. In modern enterprise edition

applications, this usually happens via CDI, more precisely via

dependency injection. Under the hood, however, a lookup service

plays a role, governed by JNDI. In former times, you’d have to

directly use JNDI interfaces to programmatically fetch dependent

objects. You could use JNDI also for Jakarta EE 8, but you normally

don’t have to.

 – Java API for XML Processing (JAXP)—Version 1.6

This is a general-purpose XML processing API. You can access

XML data either via DOM (complete XML tree in memory), SAX

(event-based XML parsing), or StAX (see the following bulleted

item). This is just an API; normally you’d have to also add an

implementation, but the Jakarta EE server does this automatically

for you.

Chapter 1 Java Development, enterprise neeDs

6

 – Streaming API for XML (StAX)—Version 1.0

This is used for streaming access to XML data. Streaming here

means you serially access XML elements on explicit demand (pull

parsing).

 – Java XML Binding (JAXB)—Version 2.2

JAXB is for connecting XML elements to Java classes.

 – XML Web Services (JAX-WS)—Version 2.2

Web services are for remotely connecting components using XML

as a messaging format.

 – JMX—Version 2.0

JMX is a communication technology you can use to monitor

components of a running Jakarta EE application. It is up to the

server implementation as to which information gets available for

JMX monitoring, but you can add monitoring capabilities to your

own components.

The specifications get handled by a community process, and there will be tests that

have to be passed if a vendor wants to be allowed to say its server product conforms to a

certain version of Jakarta EE (or one of its predecessors, JEE or J2EE). It is not necessary

to study this process if you want to understand Jakarta EE to the level we cover in this

book, but if you are interested, the corresponding online resources give you much

information about it. As a start, enter “java community process jcp” or “java eclipse

ee.next working group” in your favorite search engine.

 Multi-tiered Applications
In a corporate environment especially, it is common practice to modularize applications.

On a higher level, the modules usually get called layers, and if there is more than one layer

the application architecture is referred to as multi-layered or multi-tiered architecture.

So far, we’ve been talking about the client–server model, which is the most common

example of a two-tiered architecture. For web applications and applications with

dedicated client applications instead of browsers, it is, however, more appropriate to

consider a three-tier architecture, which consists of the following elements:

Chapter 1 Java Development, enterprise neeDs

7

 – Client applications

Browsers or specialized programs running on client machines and

containing only input and presentation logic.

 – Application server

A server like Jakarta EE responsible for calculating and delivering

data to the presentation layer.

 – Data source

A layer that holds the data. Most probably this is a database.

In a multi-tiered or multi-layered model, each layer depends only on the layer

underneath it. So, in a three-tiered model the application tier depends on the data tier,

and the presentation tier depends on the application tier. See Figure 1-1.

Figure 1-1. Three-tiered model

There are other models with a different tier demarcation, or even four and more

tiers. For our aim, it is best to think of a three-tiered model as just stated.

Chapter 1 Java Development, enterprise neeDs

8

 Why Jakarta EE?
The Java enterprise edition was initially developed by Sun Microsystems and had the

name J2EE. In 2006, the naming and versioning schema was changed to JEE, and after

J2EE version 1.4 came JEE version 5. Since then, major updates have happened, and

versions JEE 6, JEE 7, and JEE 8 were released. In 2010, Sun Microsystems was acquired

by Oracle Corp. Under Oracle Corp., the versions JEE 7 and JEE 8 were released. In 2017,

Oracle Corp. submitted Java EE to the Eclipse Foundation, and there the name of JEE 8

was changed to Jakarta EE 8.

In the beginning of 2019, the transition from JEE 8 to Jakarta EE 8 was still ongoing.

So, depending on when you read this book, it could be that for online research on Jakarta

EE 8 you have to consult pages about both JEE 8 and Jakarta EE 8. This is something

you should keep in mind. To not complicate things in this book, we will only talk about

Jakarta EE.

 Exercise 1
Which of the following is/are true?

 1. Jakarta EE 8 gets maintained exclusively by a single company.

 2. Jakarta EE 8 does not depend on the Java standard edition (JSE).

 3. Jakarta EE 8 is a successor of Jakarta EE7.

 4. A multi-tiered model describes a modularization using

independent modules.

 5. The access to a database could be handled exclusively by a

dedicated single tier.

 Jakarta EE Servers and Licensing
When this book was written, there were not many Jakarta EE 8 servers released. There

are basically the following:

• Glassfish Server, Open Source Edition, from Oracle Corp.

• WildFly Server, from Red Hat

Chapter 1 Java Development, enterprise neeDs

9

• JBoss Enterprise Application Platform, from Red Hat

• Websphere Application Server Liberty, from IBM

• Open Liberty, from IBM

These servers have different licensing models. Glassfish, WildFly, and Open Liberty

are free. This means you can use them without charge both for development purposes

and production. To run the JBoss Enterprise Application Platform a subscription is

required, although the sources are open. Websphere Application Server Liberty is

proprietary.

In this book, we will talk about the Glassfish server, open source edition, version

5.1. Due to the nature of Jakarta EE 8, a transition to other servers is always possible,

although you would have to spend a considerable amount of time changing the

administration workflow.

Note if you target a proprietary server, it is generally not recommended to start
development with a different product from a different vendor. You should at least
try to develop with a free variant of the same server, or try to get a developer
license. to learn Jakarta ee 8, using Glassfish first and only later switching to a
different product or vendor is a reasonable approach.

 Excursion to Microservices
Microservices are currently en vogue. They describe an architecture model where each

module is responsible for just a single fine-grained task. While it is not this book’s goal to

introduce microservices, nothing prevents us from following microservice architecture

paradigms, as follows:

• Each microservice handles just one identifiable and easy-to-grasp

business task.

• Microservices are loosely coupled. Each microservice may easily be

replaced by a new version.

• When releasing a new version of a microservice, the old version

should be made available for some time to allow for transition.

Chapter 1 Java Development, enterprise neeDs

10

• Microservices must be well isolated from other microservices. That

means each microservice should be functional as independently

from other microservices as possible.

• Each microservice may provide its own user interface. This could be

a web front end, for example.

• Communication between different microservices should happen in a

lean message format, like, for example, JSON.

• Microservices should be stateless to avoid complex state handling.

• If combined with Jakarta EE, each microservice gets deployed using

its own deployment artifact. Under certain circumstances, a single

microservice might be running in its own server instance. It could be

possible, for example, to run microservices all in one server instance,

or to scatter them over many different servers running on different

network nodes.

• Microservices often use lean REST interfaces for communicating with

other microservices.

We won’t describe microservices explicitly in this book, but if it fits your purpose you

can tailor your Jakarta EE application to adhere to these microservices paradigms.

 Jakarta EE Applications and the Cloud
There is an ongoing discussion about whether enterprise applications should be

running on something that is considered a monolithic Jakarta EE server, or in a cloud

environment, which basically means following a microservices architecture and having

the infrastructure for running applications get outsourced to a cloud. If you consider

them opposite poles, there are good reasons to favor one over the other. Some of

the reasons are technical, some stem from marketing perspectives, and some target

licensing and maintenance issues. Instead of contributing to this almost religious

discussion, I leave the final decision to the reader. A couple of points that could be taken

into account are as follows:

Chapter 1 Java Development, enterprise neeDs

11

• A cloud is not utterly new from a technical perspective; the services

infrastructure gets handled by a cloud product, which could be run

by a third-party company. It still follows the venerable client–server

paradigm.

• Jakarta EE servers are nowadays more lightweight than they used

to be a single instance has an infrastructure overhead of less than

100 MB of memory. This is small compared to what modern servers

can provide. A RAM of 64 GB capacity, common today, allows for

hundreds of Jakarta EE instances to run on one computer, and it is

even possible to switch off certain unneeded parts of a Jakarta EE

server to further reduce the memory footprint.

• Cloud applications presumably are better scalable compared to

monolithic Jakarta EE applications.

• If you rely on cloud infrastructures provided by other companies,

you have to be aware that your business data get handled by foreign

companies. This requires a big amount of trust, and in the worst case

you lose control over valuable business resources.

• If you use clouds provided by other companies, you outsource

technical know-how. This is an advantage since you don’t have to

provide appropriate human resources yourself, but you also give

away control and risk a vendor lock-in.

If control over your own applications and your own data is important, having your

own Jakarta EE infrastructure might be the way to go. You could even consider running

your own company cloud either with or without the participation of Jakarta EE. In this

book, we won’t cover cloud issues, but you are free to tailor your applications to mimic

cloud-like behavior from an infrastructure perspective.

 Exercise 2
True or false?

 1. Jakarta EE 8 follows a microservices architecture.

 2. To run Jakarta EE 8 you need cloud access.

Chapter 1 Java Development, enterprise neeDs

12

 The Java Standard Edition JSE 8
In this book, we talk about the Jakarta EE 8 server, which entirely runs on and depends

on Java. Java was invented in 1991 but was first publicly released under version 1.0 by

Sun Microsystems in the year 1996. Over the twenty-three years since then, Java has

played an important role as both a language and a runtime environment or platform.

There are several reasons why Java became so successful, as follows:

• The same Java program can run on different operating systems.

• Java runs in a sandboxed environment. This improves execution

security.

• Java can be easily extended by custom libraries.

• The Java language was extended only slowly. While a slow evolution

means new and helpful language constructs are often missing from

the most current language version, it helps developers to easily keep

track of new features and thoroughly perform transitions to new Java

versions in longer-running projects. Furthermore, with only a small

number of exceptions, Java versions were backward-compatible.

• Java includes a garbage collector, which automatically cleans up

unused memory.

Since 1998 and the major rebranding as Java2, the platform was made available in

different configurations, as follows:

• The standard edition J2SE for running on a desktop. Further

separated into JRE (Java runtime environment) for just running Java,

and JDK (Java development kit) for compiling and running Java.

• The micro edition J2ME for mobile and embedded devices

• The enterprise edition J2EE with enterprise features added to

J2SE. Each J2EE configuration includes a complete J2SE installation.

For marketing purposes, the “2” was removed in 2006, and the configurations

since then got named JSE (or JDK, which is JSE plus development tools), JME, and JEE,

respectively. In 2018, JEE was moved to the Eclipse Foundation and renamed Jakarta

EE. The Java language substantially changed in the transition from Java 7 to Java 8. We

will be using all modern features of Java 8 for our explanations and code examples.

Chapter 1 Java Development, enterprise neeDs

13

So, if we talk about Jakarta EE, a complete set of the standard edition is included.

Knowledge of the SE is a requirement for this book; the author, however, tries to explain

complicated constructs.

Java, of course, gets developed further. While the latest version of Jakarta EE was 8

while writing this book, and the underlying Java standard edition version was 8 as well,

the latest Java SE (JSE) version you could download was 11. We won’t be talking about

Java SE versions 9 or higher in this book.

 The Java 8 Language
While knowledge of the Java standard edition (JSE) version 8 is considered a prerequisite

for this book, for readers who are only partly familiar with Java 8, the following new

features are worth investigating before moving on to the next chapters:

• Functional interfaces

• Lambda calculus (unnamed functions)

• The streams API for working with collections and maps

• The new date and time API

We will be using these where appropriate for the examples we are going to describe

in this book.

 Exercise 3
True or false?

 1. Jakarta EE 8 can be run with Java exchanged by C++.

 2. Java is a language, and it is a platform.

 3. Jakarta EE 8 applications can be developed with a programming

language other than Java.

Chapter 1 Java Development, enterprise neeDs

15
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_2

CHAPTER 2

Getting a Jakarta EE
Server to Work
This chapter is about getting a Glassfish Jakarta EE 8 open source edition server to work.

For the operating system, you can choose either Linux or Windows, as I will describe

running the server on each of them.

First, we need to have a Java SE8 SDK. Download and install it from Oracle’s home

page. Let us abbreviate the installation path as SDK_INST. You can choose any path you like.

Note Sometimes paths with spaces in them lead to problems. So if you get an
error, such as some component XYZ cannot be found, try to move the JDK to a
folder with no spaces in the path.

To check whether Java starts up correctly, open a CMD interpreter for Windows or a

shell terminal for Linux, and enter the following:

 REM Windows:

 JDK_INST\bin\java -version

 # Linux:

 JDK_INST/bin/java -version

where for JDK_INST you substitute the path of your JDK installation. The output should

look like this:

 java version "1.8.0_60"

 Java(TM) SE Runtime Environment (build 1.8.0_60-b27)

 Java HotSpot(TM) 64-Bit Server VM (build 25.60-b23, mixed mode)

16

Of course, the version numbers may differ if you choose a later build of the

JDK. What’s important is the “1.8” in the version number.

 Getting and Installing Glassfish
Now it is time to download the Glassfish server, version 5.1. As of early 2019, you can

get it at: https://projects.eclipse.org/projects/ee4j.glassfish/downloads (one

line). If the link is broken, enter “glassfish 5.1 download eclipse” in your favorite search

engine. Choose the standard (full) version, not the “web profile” version.

Note By the time this book is published and you are reading it, there will
probably be more current versions of Glassfish available. You might try versions
greater than 5.1, and maybe you won’t have any problems installing and using
it for this book, but to avoid issues it will always be possible to get an archived
Glassfish 5.1 installer.

Extract the archive to any place in your file system. Again, it might not be an issue,

but to avoid problems it is best to choose a file system path without spaces in it. We will

abbreviate the Glassfish server installation directory as GLASSFISH_INST.

Next, we tell the Glassfish server where to find the Java JDK. The server scripts try to

find the JDK folder themselves, but to be on the safe side it is better to explicitly configure

the server to use the JDK we recently installed. To do so, open the following file:

 REM Windows:

 GLASSFISH_INST\glassfish\config\asenv.bat

 # Linux:

 GLASSFISH_INST/glassfish/config/asenv.conf

and add the following line:

 REM Windows:

 REM Note, if the JDK_INST contains spaces, wrap it

 REM inside "..."

 set AS_JAVA=JDK_INST

Chapter 2 GettinG a JaKarta ee Server to WorK

https://projects.eclipse.org/projects/ee4j.glassfish/downloads

17

 # Linux:

 AS_JAVA="JDK_INST"

where for JDK_INST you substitute the installation folder path of your JDK installation.

To see whether the Glassfish server starts up correctly, use the bin/asadmin (Linux)

or bin\asadmin.bat script and write the following:

 cd GLASSFISH_INST

 REM Windows:

 bin\asadmin start-domain

 # Linux:

 bin/asadmin start-domain

where for GLASSFISH_INST you substitute the path of your Glassfish server installation

directory. The output should read as follows:

 Waiting for domain1 to start

 Successfully started the domain : domain1

 domain Location: [...]

 Log File: [...]

 Admin Port: 4848

 Command start-domain executed successfully.

Once you see that the server started up correctly, you can stop it if you like. To do so,

enter the following:

 REM Windows:

 bin\asadmin stop-domain

 # Linux:

 bin/asadmin stop-domain

Note For the rest of this chapter, we will assume that you entered cd
GLASSFISH_INST to change to the Glassfish installation directory. i will also stop
distinguishing between Windows and Linux and write bin/asadmin, which on
Windows always transcribes to bin\asadmin.bat.

Chapter 2 GettinG a JaKarta ee Server to WorK

18

The Glassfish server has three administrative front ends:

• a shell (or Windows command prompt) front end,

• a GUI front end for browser access, and a

• a REST HTTP front end.

We will talk about these three front ends in the subsequent sections.

 Glassfish Shell Administration
The shell front end works via the bin/asadmin script, which you can call from a shell (or

a Windows command prompt). This command is extremely powerful, as it comprises

hundreds of options and sub-commands. We do not list them all here; for complete

online documentation, enter “oracle glassfish server administration guide” in your

favorite search engine.

As a starting point, the asadmin command also provides a “help” functionality. To see

it, enter one of the following:

 bin/asadmin help

 bin/asadmin -?

where the first variant opens a MORE page. To list all sub-commands, enter the

following:

 # Note: server must be running!

 bin/asadmin list-commands

And to see the help for a particular sub-command, you can write one of the

following:

 bin/asadmin help <SUB-COMMAND>

 bin/asadmin -? <SUB-COMMAND>

where for <SUB-COMMAND> you substitute the name of the sub-command.

Note For many sub-commands to run properly, the server must be running as
well. in the following, we assume that the server has started before you issue sub-
commands.

Chapter 2 GettinG a JaKarta ee Server to WorK

19

 Multi-mode Sessions
There is also a multi-mode session, where a special sub-shell gets opened. In this sub-

shell you can enter sub-commands directly without prepending bin/asadmin. To start a

multi-mode session, enter

 bin/asadmin

without arguments. You can also use the sub-command multimode to start a multi- mode

session:

 bin/asadmin multimode

The sub-command allows for an optional --file <FILE_NAME> as argument,

which causes the specified file to be read in as a list of sub-commands to be executed

sequentially, as follows:

 bin/asadmin multimode --file commands_file.txt

where the file path is relative to the current working directory.

In the following paragraphs, we show a non-exhaustive list of the most useful options

and sub-commands.

 General Options
The most useful general options are shown in Table 2-1. You add them as in bin/asadmin

--host 192.168.1.37 list-applications.

Table 2-1. General Options

Option Description

--host <HOST> Specifies the host where the server is running. if you don’t specify it,

localhost will be taken.

--port <PORT> the administration port. Default is 4848.

--user

<USER_NAME>

Use the specified user for authenticating to the server. Use this if you

restricted access to the asadmin utility. the default is the admin user.

--passwordfile

<FILE_NAME>

if you restricted access to the asadmin utility, and you want to prevent a

user password from being prompted, you can specify a file with password

information instead. For details, see the output of bin/asadmin -?.

Chapter 2 GettinG a JaKarta ee Server to WorK

20

For a complete list of the options you can add to the asadmin command, see the

output of bin/asadmin -?.

 Inquiring After Information

Sub-commands to inquire after various information data from the server are shown in

Table 2-2. You enter them as in bin/asadmin list-applications.

Table 2-2. Inquiring After Information

Sub-command Description

version outputs the Glassfish server version.

list- applications Use this to list all applications deployed and running on the server.

list- containers Containers embrace components (modules, if you like) of a certain type.

Use this sub-command to list all the containers running in the server.

list- modules Use this to list all oSGi (open Services Gateway initiative) modules

running in the server. We won’t be talking about oSGi in this beginner’s

book, but in case you are interested: Glassfish incorporates an Apache
Felix oSGi module management system. You can administer Glassfish

components also via an oSGi shell named “Gogo,” which needs more

configuration work in order to run.

list- commands List all sub-commands. if you add --localonly the server need not

be running, and only those sub-commands will show that can be issued

without the server running.

list-timers Use this to show all timers. We don’t talk about timers in this book.

list- domains List all domains. in this book, we will be using the pre-installed default

domain “domain1,” so this will be the only entry showing up here.

 Setting and Changing the Admin-Password

After you perform the installation of the Glassfish server, there will be one administration

user named “admin” without a password. Not having a password makes administrative

tasks easy, but it will also leave your server insecure. To remedy that and give the admin

user a password, enter the following:

 bin/asadmin change-admin-password

Chapter 2 GettinG a JaKarta ee Server to WorK

21

You will then be asked for the actual password, which is empty, so just press ENTER,

and type in the new password twice.

Once the admin user has a password, you will have to enter the password for most

asadmin sub-commands.

 Domain Administration

To start a domain means to start the Glassfish server. We could have several domains in

one Glassfish server, but a multi-domain setup is best left for a more advanced Jakarta

EE book. We will go with the single “domain1” domain, which gets installed by default.

To start, stop, or restart the Glassfish server, enter one of the following commands:

 bin/asadmin start-domain

 bin/asadmin stop-domain

 bin/asadmin restart-domain

All three sub-commands take an optional domain name as a parameter (for example,

“domain1” or “domain2”), but since we have only one default domain, it can be

left off here.

To see the uptime of the server, which more precisely is the time that has elapsed

since the default domain started, enter the following:

 bin/asadmin uptime

 Administering the Built-In Database
The Jakarta EE Glassfish server comes with a built-in database. This comes in handy for

development purposes, although you probably won’t use this database for production

setups.

This database is a JavaDB (or Derby, which is the same but just an older name)

database. It does not run by default when the Glassfish server gets started; instead, to

start and stop the database, enter the following:

 bin/asadmin start-database

 bin/asadmin stop-database

where the database port by default reads 1527.

Chapter 2 GettinG a JaKarta ee Server to WorK

22

 Glassfish GUI Administration
After you start the Glassfish server, a GUI console is provided and can be accessed by

opening the following URL in a browser:

 http://localhost:4848

The GUI will then show up, as seen in Figure 2-1.

We won’t talk about details of the GUI administration at this time. We will, however,

use and describe it once in a while, and the help button at the top-right corner is a good

starting point for your own experiments and investigations.

Note Many asadmin operations that you can enter in a terminal have their
counterparts in the admin GUi.

Figure 2-1. Browser GUI administration

Chapter 2 GettinG a JaKarta ee Server to WorK

23

 Glassfish REST Interface Administration
The Glassfish Jakarta EE 8 server provides a REST interface that you can use to

investigate and control the server. You can issue, for example, the following:

 curl -X GET -H "Accept: application/json" \

 http://localhost:4848/monitoring/domain/view-log/details

to see the domain logs via REST.

Note For this to work, the curl utility must be installed on your system.
alternatively, you can use any other reSt client (Firefox reSt-client add-on, reSt
Client for eclipse, and others).

We will investigate a couple of examples. To find more in-depth information about

this interface, enter “rest interface administer glassfish” in your favorite search engine.

Also, we will use the jq tool to provide nicely formatted output of the generated JSON

data. For jq there are installers available for both Linux and Windows.

The administrative REST interface is sub-divided into two parts for configuration

and monitoring:

 http://host:port/management/domain/[path]

 http://host:port/monitoring/domain/[path]

where for a vanilla Glassfish installation host = “localhost” and port = “4848.” For [path]

you must substitute a resource identifier. For example, to see the log entries you enter

the following:

 curl -X GET -H "Accept: application/json" \

 http://localhost:4848/management/domain/view-log

(remove the backslash if you enter this in one line).

The REST interface is very extensive. You can query a lot of properties using REST’s

GET verb, and you can alter resources using POST or PUT. As a starting point, you can

investigate the verbose output of REST capabilities you get once you enter the following:

 curl -X GET -H "Accept: application/json" \

 http://localhost:4848/management/domain

Chapter 2 GettinG a JaKarta ee Server to WorK

24

The output will, for example, include the following:

 "commands": [

 ...

 {

 "path": "list-commands",

 "method": "GET",

 "command": "list-commands"

 },

 {

 "path": "restart-domain",

 "method": "POST",

 "command": "restart-domain"

 },

 {

 "path": "uptime",

 "method": "GET",

 "command": "uptime"

 },

 {

 "path": "version",

 "method": "GET",

 "command": "version"

 }

 ...

]

and lots of others. So, to see version and uptime you enter the following:

 curl -X GET -H "Accept: application/json" \

 http://localhost:4848/management/domain/version | jq .

 curl -X GET -H "Accept: application/json" \

 http://localhost:4848/management/domain/uptime | jq .

If you use a browser and enter REST URLs there, you can get more information about

REST resources. If you open a browser and enter http://localhost:4848/management/

domain/version as the URL, you will get an HTML variant of the preceding CURL

output. Both also tell us about child resources.

Chapter 2 GettinG a JaKarta ee Server to WorK

25

So, for example,

 curl -X GET -H "Accept: application/json" \

 http://localhost:4848/management/domain/applications | jq .

shows us about commands that refer to an installed application. It tells us that for the

actual list we have to enter the following:

 curl -X GET -H "Accept: application/json" \

 http://localhost:4848/management/domain/applications/

 list-applications | jq .

(no line break after applications/). And it tells us about attributes. To get a more

verbose output, we can add a ?long=true, as in the following:

 curl -X GET -H "Accept: application/json" \

 http://localhost:4848/management/domain/applications/

 list-applications?long=true | jq .

Chapter 2 GettinG a JaKarta ee Server to WorK

27
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_3

CHAPTER 3

Setting Up an IDE
Integrated Development Environments or IDEs are graphical desktop applications that

help to both develop and test Jakarta EE applications. Several IDE products exist; in

this book, we will be using the Eclipse IDE, which is free to install and use, even for

commercial purposes. Installers exist for Linux, Windows, and MacOS.

In this chapter, we will discover how to get and install Eclipse, and we will develop a

first simple Jakarta EE application.

 Installing Eclipse for Jakarta EE Development
Eclipse comes in several variants. Go to the download page at https://www.eclipse.

org/downloads/packages/ and download “Eclipse IDE for Enterprise Java Developers”

for your operating system. If the link is broken, enter “eclipse download packages” in

your favorite search engine.

Note In this book, we will use Eclipse version “2019-03.” Later versions might
be OK, but you should not use an earlier version. Downloading the exact version
“2019-03” will always be possible using an archived installer.

Perform the basic installation as described on the Eclipse installation site. For

everything to work correctly, you must make sure Eclipse gets started using a Java JDK8

installation. To find out which Java gets used by the IDE, start Eclipse, then navigate to

Help ➤ About Eclipse IDE ➤ Installation Details ➤ “Configuration” tab.

https://www.eclipse.org/downloads/packages/
https://www.eclipse.org/downloads/packages/

28

Note When you start Eclipse, it asks you for a workspace. This is a folder that
can hold several distinct or interrelated projects. It is up to you if you want to
choose an existing workspace or use a fresh new folder for an empty workspace.

In the pane, find the line that starts with java.runtime.version=.... The version

behind the “=” sign should show at least 1.8.0. If this is not the case, close Eclipse,

navigate to the

 ECLIPSE_INST_DIR/eclipse.ini

file, open it in an editor, and add

 -vm PATH_TO_YOUR_JDK8_JAVA

directly underneath the line with openFile. Replace PATH_TO_YOUR_JDK8_JAVA with the

path to the Java executable inside your JDK8 installation directory. The executable reads

java for Linux and javaw.exe for Windows, and you can find it inside the bin folder

of the JDK installation. If, inside the file eclipse.ini, there are two lines starting with

openFile, you can use either of them.

Note The folder structure on MacOS is slightly different, but the file name is the
same, so it is easy to find.

So, for Linux you would have something like the following:

 ...

 openFile

 -vm

 /path/to/jdk8/bin/java

 ...

And for Windows:

 ...

 openFile

 -vm

 C:\path\to\jdk8\bin\javaw.exe

 ...

ChapTEr 3 SETTIng Up an IDE

29

Figure 3-1. JRE setting in Eclipse

Restart Eclipse and check again for the correct version.

As a next preparatory step, we need to make sure Eclipse also uses a Java JDK8 for

new projects. To do so, go to Window ➤ Preferences (or the corresponding place on

MacOS). In the dialog, navigate to Java ➤ Installed JREs and make sure that the JDK8 is

the checked default Java in the list. If it is missing, click the “Add...” button and register

your JDK8. See Figure 3-1.

ChapTEr 3 SETTIng Up an IDE

30

The Eclipse IDE for enterprise Java developers already contains a toolset for Jakarta

EE 8 development. But one thing is missing—we need to add a plugin that provides

the capabilities to handle a Glassfish version 5 or 5.1 server. To install that plugin, go

to Help ➤ Install New Software.... Click on the “Add...” button at the top of the dialog

window that then appears. Enter “Oracle Enterprise Pack” in the “Name” field and

“http://download.oracle.com/otn_software/oepe/12.2.1.9/photon/repository/

dependencies/” in the “Location” field. See Figure 3-2.

Figure 3-2. Oracle Enterprise Pack

ChapTEr 3 SETTIng Up an IDE

http://download.oracle.com/otn_software/oepe/12.2.1.9/photon/repository/dependencies/
http://download.oracle.com/otn_software/oepe/12.2.1.9/photon/repository/dependencies/

31

Note There might be a more recent version available for the Oracle Enterprise
pack. go to https://www.oracle.com/technetwork/developer-tools/
eclipse/downloads/index.html and check for new versions.

Figure 3-3. Glassfish Tools installation

ChapTEr 3 SETTIng Up an IDE

https://www.oracle.com/technetwork/developer-tools/eclipse/downloads/index.html
https://www.oracle.com/technetwork/developer-tools/eclipse/downloads/index.html

32

Check the “Eclipse GlassFish Tools” ➤ GlassFish Tools item in the list, then proceed

with the dialog by clicking on the “Next>” button. See Figure 3-3.

We can now register the Glassfish Jakarta EE 8 server we installed in the preceding

chapter. To do so, go to Window ➤ Show View ➤ Servers. In the “Servers” tab that

appears at the bottom of the Eclipse window, right-click, then select New ➤ Server.

Select the Glassfish server from the list and enter its installation location on your

machine.

The contents of the “Server” tab—Eclipse also calls this a “View,” so you can control

its visibility via Windows ➤ Show View—will then look as shown in Figure 3-4.

 Using Eclipse
With the Eclipse IDE for Enterprise Java Developers installed, the Java JDK8 registered,

and the Glassfish plugin added, we are now ready to use Eclipse for our purposes.

Eclipse actually is a very powerful IDE with lots of options and hundreds of plugins

available to be installed. You will find user manuals in the documentation that gets

shipped with Eclipse, and many tutorials and other documentation are available on the

internet. I will describe one or two features and usage workflows in this book where it

makes sense.

 Your First Jakarta EE Application
As a first Jakarta EE 8 project, we will build an application that calculates the Julian day

given date and time of our ordinary (Gregorian) calendar. The Julian day is the number

of days since noon UTC 4317 years before Christ.

The application consists of two layers: a front-end part for communication with the

user for acquiring the input date and returning the Julian day, and a back-end part for

the calculation. For this simple application, we don’t need a database layer.

Figure 3-4. Eclipse Servers view

ChapTEr 3 SETTIng Up an IDE

33

We separate the two layers into two Eclipse projects. For the front end we’ll use

JSF pages, and for the back end a RESTful service for the calculation. The purpose of

this chapter is not to give you a detailed introduction to Java enterprise application

development; instead, we want to build a first, non-trivial Jakarta EE 8 project so as to get

acquainted with the Java enterprise features and to start learning how to use Eclipse.

 The Julian Calendar Back End
To start the back-end project, open Eclipse with the workspace of your choice.

Then, in the Project Explorer pane on the left side of the Eclipse window, right-click

and select New ➤ Project... and then select Maven ➤ Maven Project. Press the “Next>”

button twice, then choose “maven-archetype-quickstart” from the archetypes catalog

and enter the following project data:

 Group-Id: book.jakarta8

 Artifact-Id: julian

 Version: 0.0.1-SNAPSHOT

With the wizard finished, the new project “julian” will appear in the Project Explorer.

Note Because of the way Eclipse handles the Maven “quickstart” archetype, it will
create a first Java package, “book.jakarta8.julian.” This is just for convenience; for
our Java classes we can use any package name we like. We will deviate from this
auto-suggestion from time to time, but for the current project the suggestion is fine.

For the project to work in a Jakarta EE 8 environment, we must add a special

library to it. To this aim, open the pom.xml file and in the dependencies section add the

following:

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-api</artifactId>

 <version>8.0</version>

 </dependency>

ChapTEr 3 SETTIng Up an IDE

34

In the same file, change the packaging to <packaging>war</packaging>. Right-click

on the project name in the Project Explorer and select Maven ➤ Update Project.... Make

sure “Update project configuration from pom.xml” is checked and press “OK.”

Ensure version 8 of the Java JDK gets used. To do so, right-click on the project in the

Project Explorer, then select “Properties.” Navigate to “Java Build Path” ➤ “Libraries” tab.

Make sure the correct JRE system library is shown. If not, remove it, then click on the

“Add Library...” button, select “JRE System Library,” make sure “Workspace default JRE”

is checked, and then press “Finish”. Press “Apply and Close.”

To make sure the Maven build tool uses the correct Java version, open pom.xml.

Check that it contains the following, or add it:

 <project ...>

 ...

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

 </project>

The <build> element can, for example, be placed underneath the closing

</dependencies> in that file. If you changed something in the pom.xml file, right-click

on the project, then invoke Maven ➤ Update Project....

Caution Under some circumstances the project might use the wrong compiler
level. To check that, right-click on the project in the project Explorer, then select
“properties.” at “Java Compiler” make sure the “Enable project specific settings”
checkbox is not checked.

ChapTEr 3 SETTIng Up an IDE

35

Next, we must convert the project to a faceted project, which allows us to later add

Jakarta EE 8 capabilities. To do so, right-click on the project in the Project Explorer, then

select Configure ➤ Convert to Faceted Form.... If this menu entry does not exist, the

project is already faceted. In the facets dialog, which you can see after you click “Convert

to Faceted Form...” or by right-clicking on the project name ➤ Properties ➤ Project

Facets, check and enter the following:

 Dynamic Web Module 4.0

 Java 1.8

 JavaScript 1.0

 JAX-RS (REST Web Services) 2.1

If it is not possible to change the version, remove the check, click “Apply and Close,”

and open the dialog again. Then you can recheck and select the desired version.

In the Project Explorer, if there exists a new “WebContent” folder, move it to the “src/

main” folder and rename it “webapp.” The “WebContent” folder gets created by the

facets wizard, but in a Maven project it is better to have it inside the “src/main” folder.

Make sure the following files exist in the “src/main/webapp/WEB-INF” folder (if the

folder doesn’t exist, create it): beans.xml, web.xml, and glassfishweb.xml.

If it does not yet exist, create the file src/main/webapp/WEB-INF/glassfish-web.xml.

Let its contents read as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE glassfish-web-app PUBLIC

 "-//GlassFish.org//DTD GlassFish Application Server

 3.1 Servlet 3.0//EN"

 "http://glassfish.org/dtds/glassfish-web-app_3_0-1.dtd">

<glassfish-web-app error-url="">

 <class-loader delegate="true"/>

</glassfish-web-app>

(The DOCTYPE element in one line, one space after PUBLIC, just one space in front

of “3.1”, and one space before the “http...”.) This file is a Glassfish-specific addition. It is

not part of the Jakarta EE 8 specification, but the server uses it for some configuration

settings.

The file src/main/webapp/WEB-INF/beans.xml can be empty for now (but do not

delete it!).

ChapTEr 3 SETTIng Up an IDE

36

The file src/main/webapp/WEB-INF/web.xml must contain the following lines:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

 id="WebApp_ID" version="4.0">

 <display-name>julian</display-name>

 <servlet>

 <servlet-name>

 javax.ws.rs.core.Application

 </servlet-name>

 </servlet>

 <servlet-mapping>

 <servlet-name>

 javax.ws.rs.core.Application

 </servlet-name>

 <url-pattern>/webapi/*</url-pattern>

 </servlet-mapping>

</web-app>

This file is responsible for mapping URL requests starting with “/webapi/” to a REST

processing engine.

So much for the preparation. Later, in your everyday work, you will realize that in

a Jakarta EE environment you will spend a lot of time preparing a fluent development

workflow. There is nothing wrong with that, and always keep in mind that a thorough

preparation helps to speed up the actual implementation and get it stable.

For the implementation in this back end, all that is left to do is create a class that

handles REST requests. Let us call it Julian, and let us put it into the package book.

jakarta8.julian. After you create the class, replace its contents with the following:

ChapTEr 3 SETTIng Up an IDE

37

package book.jakarta8.julian;

import java.util.function.Function;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

/**
 * REST Web Service

 */

@Path("/")

public class Julian {

 @GET

 @Produces("text/plain")

 @Path("convert/{inDate : .*}")

 public String convert(

 @PathParam("inDate") String inDate) {

 Function<Double,Integer> trunc = (d) ->

 d.intValue();

 // yyyy-MM-dd-HH-mm-ss

 int inYear = Integer.parseInt(

 inDate.substring(0, 4));

 int inMonth = Integer.parseInt(

 inDate.substring(5, 7));

 int inDay = Integer.parseInt(

 inDate.substring(8, 10));

 int inHour = Integer.parseInt(

 inDate.substring(11, 13));

 int inMinute = Integer.parseInt(

 inDate.substring(14, 16));

 double jd = 367 * inYear

 - trunc.apply(7.0 * (

 inYear + trunc.apply((inMonth+9.0)/12)

ChapTEr 3 SETTIng Up an IDE

38

) / 4)

 + trunc.apply(275.0 * inMonth / 9)

 + inDay

 + 1721013.5

 + 1.0 * (inHour + inMinute / 60.0) / 24

 - 0.5*Math.signum(100*inYear + inMonth -190002.5)

 + 0.5;

 return "" + jd;

 }

}

This class installs a REST interface by virtue of the @Path and @GET annotations.

After you save the file, we want to tell Eclipse to start the server and deploy the

calculation back end. For this aim, right-click on the project in the Project Explorer and

select Run As ➤ Run on Server. Select the Glassfish server and click the “Finish” button.

See Figure 3-5.

Eclipse then starts the server, unless it is already running, and builds and deploys

the application. When this is done, Eclipse by default tries to load a web page, which,

however, leads to an error. Ignore this—we don’t have a user interface for the back-end

application.

ChapTEr 3 SETTIng Up an IDE

39

Figure 3-5. Deploy the back-end application

To see whether the back end works as expected, we need a program that can emit

REST requests. There are several options—try to find a REST client on the internet (there

are, for example, several REST add-ons for the Firefox web browser). Or you can use the

curl command (you might first have to install it on your operating system) as follows:

 curl -X GET

 http://localhost:8080/julian/webapi/convert/2000-01-01-12-00-00

(write it on one line, with no spaces after 8080/). The output should read 2451545.0.

ChapTEr 3 SETTIng Up an IDE

40

An overview of all the files that participate in the back-end application is shown in

Figure 3-6. You can see it when you unfold all directories in the Project Explorer.

Figure 3-6. Back-end files

 The Julian Calendar Front End
The front-end application, whose responsibility is to provide browser-based access to

the Julian day-conversion REST service, exists in its own Eclipse project. First, open

Eclipse using the same workspace you chose for the back-end project. In the Project

Explorer pane, right-click and select New ➤ Project.... Choose Maven ➤ Maven project,

ChapTEr 3 SETTIng Up an IDE

41

select “maven-archetype-quickstart” from the archetypes catalog after two “Next>”

clicks, and enter the following project data after another “Next>” click:

 Group-Id: book.jakarta8

 Artifact-Id: julian-gui

 Version: 0.0.1-SNAPSHOT

 Package: book.jakarta8.juliangui

Click on the “Finish” button. In the Project Explorer pane, the new project “julian-

gui” appears.

In the Maven build file pom.xml, change the packaging to war and add the same

dependencies and build configuration as were used for the back-end project:

 <project ...>

 ...

 <dependencies>

 ...

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-api</artifactId>

 <version>8.0</version>

 </dependency>

 </dependencies>

 <build>

 ...

 <plugins>

 ...

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

 </project>

ChapTEr 3 SETTIng Up an IDE

42

Make sure the project uses Java JDK version 8; use the same procedure as described

for the back-end project (project JRE library and compiler level). Also, convert the

project to a faceted project and add the same features as for the back end, plus

 Java Server Faces 2.3

but with “JAX-RS (REST Web Service)” unchecked. If the dialog tells you that further

configuration is required (see Figure 3-7), click on the message text (blue in the

figure) and in the dialogs that appear check the checkbox for “Generate web.xml

deployment descriptor.” Also make sure that in the appropriate places “Disable Library

Configuration” is selected. Click “Apply and Close.”

Figure 3-7. Front-end project facets

If a new folder “WebContent” appears, move it to “src/main” and rename it “webapp.”

If it does not exist yet, create a folder “src/main/webapp/WEB-INF.” Copy the files

beans.xml, web.xml, and glassfish-web.xml from the back-end project to this folder.

This is not supposed to tell you they are related, but the copying might save some

keyboard work.

ChapTEr 3 SETTIng Up an IDE

43

If it does not exist yet, create a file called src/main/webapp/WEB-INF/facesconfig.

xml. Let it read as follows:

<?xml version="1.0" encoding="UTF-8"?>

<faces-config

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/

 web-facesconfig_2_3.xsd"

 version="2.3">

 <application>

 <resource-bundle>

 <base-name>

 julian.web.WebMessages

 </base-name>

 <var>bundle</var>

 </resource-bundle>

 <locale-config>

 <default-locale>en</default-locale>

 <!-- <supported-locale>es</supported-locale> -->

 </locale-config>

 </application>

</faces-config>

(Remove the line break after javaee/ and leave no space after it).

Replace the contents of src/main/webapp/WEB-INF/web.xml with the following lines:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

 id="WebApp_ID" version="4.0">

ChapTEr 3 SETTIng Up an IDE

44

 <display-name>julian-gui</display-name>

 <welcome-file-list>

 <welcome-file>greeting.xhtml</welcome-file>

 </welcome-file-list>

 <servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>

 javax.faces.webapp.FacesServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.xhtml</url-pattern>

 </servlet-mapping>

</web-app>

We now must create two JSF pages for the front end. The first goes to src/main/

webapp/greeting.xhtml and is the entry point for the web app. Create the file and let it

read as follows:

<!DOCTYPE html>

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

<h:head><title>Julian Converter</title></h:head>

<h:body>

 <h:form id="form">

 <h2>

 <h:outputText value="#{bundle.welcome}"/>

 </h2>

 <h:outputText value="#{bundle.instructions}"/>

 <p/>

 <h:outputText

 value="#{bundle.label_gregorianDate} "/>

 <h:inputText id="getdate"

 value="#{julian.dateIn}">

ChapTEr 3 SETTIng Up an IDE

45

 <f:convertDateTime

 pattern="yyyy-MM-dd HH:mm:ss" />

 </h:inputText>

 <h:message for="getdate" style="color:red" />

 <p/>

 <h:commandButton value="#{bundle.submit}"

 action="#{julian.convert}"/>

 </h:form>

</h:body>

</html>

Note The file is not XhTML in a strict sense—actually, it is an hTML 5 page with
non-standard namespaces. We use the .xhtml ending so Eclipse will provide a
suitable editor for such files. In the rest of this chapter we use the term template file.

This template file uses a resource bundle; you can see this from the #{bundle.

WHATSOEVER} expressions. This refers to strings from a localized resource we must now

create. To do so, create a file called src/main/resources/julian/web/WebMessages.

properties and as its contents write the following:

 welcome=This is a Gregorian date to Julian day converter.

 instructions=Enter a Gregorian UTC date in the form \

 yyyy-mm-dd hh:mm:ss (use 24hr format), then submit.

 label_gregorianDate=Gregorian Date:

 label_response=The Julian Day Reads:

 submit=Submit

 back=Back

We must tell JSF to use this bundle. This happens in the file src/main/webapp/WEB-

INF/faces-config.xml, which we added earlier. Type the following:

<?xml version="1.0" encoding="UTF-8"?>

<faces-config ...>

 <application>

 <resource-bundle>

ChapTEr 3 SETTIng Up an IDE

46

 <base-name>julian.web.WebMessages</base-name>

 <var>bundle</var>

 </resource-bundle>

 <locale-config>

 <default-locale>en</default-locale>

 <!-- <supported-locale>es</supported-locale> -->

 </locale-config>

 </application>

</faces-config>

For our simple example, we only use the default resource. If we, for example, wanted

to add Spanish text, we’d provide the translation in the WebMessages_es.properties file

in the same folder, and we’d uncomment the <supportedlocale> element from faces-

config.xml.

We must now tell the web app to use this greetings page as a landing page. This

happens inside src/main/webapp/WEB-INF/web.xml, where we write the following:

 ...

 <welcome-file-list>

 <welcome-file>greeting.xhtml</welcome-file>

 </welcome-file-list>

 ...

You can remove any other elements inside <welcome-file-list>, as we don’t need

them.

We then create a second template file for the response, src/main/webapp/response.

xhtml, with the following contents:

<!DOCTYPE html>

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

 <h:head>

 <title>Julian Response Page</title>

 </h:head>

 <h:body>

 <h:form>

 <h:outputText

ChapTEr 3 SETTIng Up an IDE

47

 value="#{bundle.label_response}"/>

 <p/>

 <h:outputText

 value="#{julian.gd} -> "/>

 <h:outputText

 value="#{julian.jd}"/>

 <p/>

 <h:commandButton id="back"

 value="#{bundle.back}"

 action="greeting"/>

 </h:form>

 </h:body>

</html>

This represents the response page after a submission from the greetings page. JSF

knows to navigate to this page because of the string the class Julian returns when its

convert() method gets called (see following code section for the class code).

We still need to write a Java class for holding variables that we can access from the

JSF pages, and for reacting to button presses and performing the calculation. We call this

class Julian, and it goes to package book.jakarta8.juliangui. Create this class and

replace its contents with the following:

package book.jakarta8.juliangui;

import java.io.Serializable;

import java.time.LocalDateTime;

import java.time.ZoneId;

import java.time.format.DateTimeFormatter;

import java.util.Date;

import javax.enterprise.context.SessionScoped;

import javax.faces.application.FacesMessage;

import javax.faces.context.FacesContext;

import javax.inject.Named;

import javax.ws.rs.client.Client;

import javax.ws.rs.client.ClientBuilder;

import javax.ws.rs.client.WebTarget;

ChapTEr 3 SETTIng Up an IDE

48

/**
 * A CDI managed bean.

 */

@Named

@SessionScoped

public class Julian implements Serializable {

 private static final long serialVersionUID =

 -1110733631543658209L;

 private Date dateIn;

 private String jd;

 public String convert() {

 try {

 Client client = ClientBuilder.newClient();

 String gdStr = getGd().replace(" ", "-").

 replace(":", "-");

 String q =

 "http://localhost:8080/julian/webapi/convert/" +

 gdStr;

 WebTarget target = client.target(q);

 jd = target.request().get(String.class);

 } catch (Exception e) {

 FacesContext.getCurrentInstance().

 addMessage("myform:getdate",

 new FacesMessage("Exception " + e,

 "Exception " + e));

 jd = "0.0";

 return null;

 }

 return "/response.xhtml";

 }

 public Date getDateIn() {

 return dateIn;

 }

ChapTEr 3 SETTIng Up an IDE

49

 public void setDateIn(Date dateIn) {

 this.dateIn = dateIn;

 }

 public String getGd() {

 LocalDateTime ldt = LocalDateTime.ofInstant(

 dateIn.toInstant(), ZoneId.of("UTC"));

 return ldt.format(DateTimeFormatter.ofPattern(

 "yyyy-MM-dd HH:mm:ss"));

 }

 public String getJd() {

 return jd;

 }

}

The front-end project is now ready for deployment. In the Project Explorer, right-

click on the project and select Run As ➤ Run on Server. Choose the Glassfish server.

Once running, in a browser, open the following URL:

 http://localhost:8080/julian-gui

You will then see the greetings page (see Figure 3-8).

Figure 3-8. Greetings page

ChapTEr 3 SETTIng Up an IDE

50

Enter a date like “2019-01-02 11:23:45,” then click the “Submit” button. The output

should look like that shown in Figure 3-9.

Figure 3-9. Response page

 Summing Up: The Julian Day Calendar
With both projects “julian” and “julian-gui” running, we now have our first little “Hello

World”–style Jakarta EE 8 application. Don’t worry if you don’t fully understand it

yet; we will talk about the details later in the book. However, you should be aware of a

few characteristics of the sample application so as to get you started improving your

knowledge about Java enterprise applications. Let us investigate what happens:

 1. Once the browser sends the http://localhost:8080/julian-gui

request, the Jakarta EE 8 server, with an HTTP connector running

under port 8080 (this is the default, and we didn’t change it in the

Glassfish configuration) receives the request and checks whether

a “julian-gui” application is running. This is the case, because our

front-end application has this name.

 2. Because there is no detailed path specification behind the

http://localhost:8080/julian-gui, the server looks for the

welcome page. This page is specified in the web.xml file as a

<welcome-file> element. In our case, it reads greeting.xhtml.

 3. Because the greeting.xhtml ends with an “.xhtml” and inside

web.xml we specified a servlet mapping with such an ending to

initiate a JSF request, the file greeting.xhtml gets transformed by

the JSF template handler.

ChapTEr 3 SETTIng Up an IDE

51

 4. Because of the “julian.web.WebMessages” specified as a resource

bundle in file faces-config.xml, the files src/resources/

julian/web/WebMessages.properties and src/resources/

julian/web/WebMessages_{LANG}.properties get used as

localized front-end element text files. Because of the <var>

element in faces- config.xml the localized text is available to the

JSF files via expressions #{bundle.SOMETHING}.

 5. Because of the @Named annotation of the Julian class, JSF provides

an instance of this class to its pages under #{julian.SOMETHING}

(the first letter of the class name just lowercased).

 6. The “Submit” button gets connected to the method convert() of

the Julian class via action="#{julian.convert}". Because this

method returns /response.xhtml, JSF forwards the page flow to

the response.xhtml page.

 7. The convert method accesses the back-end component to

perform the calculation.

 8. The response page uses the same approach to access the Julian

object as the greeting.xhtml page did.

 9. Because of the action="greeting" attribute for the “Back” button

in the response, upon pressing the “Back” button JSF forwards you

to the greeting page (it just adds “.xhtml” to “greeting”).

An overview of all the files that make up the front-end application is shown in

Figure 3-10. You can see these when you unfold all directories in the Project Explorer.

In case something goes wrong, you’ll find the server logs inside the Glassfish

installation folder under the following:

 GLASSFISH_INST/glassfish/domains/domain1/logs/server.log

ChapTEr 3 SETTIng Up an IDE

52

Figure 3-10. Front-end files

ChapTEr 3 SETTIng Up an IDE

53
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_4

CHAPTER 4

Building Page-Flow Web
Applications with JSF
Java Server Faces (JSF) is the dedicated front-end technology for establishing page-flow

web applications running in a Jakarta EE 8 environment. By page flow we mean several

interrelated web pages, including a user-initiated navigation.

Note If you instead want to create a single-page web application with the page
control and data flow performed by JavaScript and REST, you should use RESTful
web applications with JAX-RS. We’ll talk about JAX-RS in a later chapter.

 Servlets and JSF Pages
On a lower technical level, the communication between browsers and a Jakarta EE

server gets controlled by servlets. A servlet is an instance of the javax.servlet.Servlet

interface. The generation of servlet instances and the mapping from URL patterns to

appropriate servlets gets controlled by the src/main/webapp/WEB-INF/web.xml file.

The detailed structure of a web.xml file for Jakarta EE 8 gets described in the “Servlet

4.0” specification. For JSF to work, at a bare minimum we use a web.xml file with the

following contents:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

54

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

 id="WebApp_ID" version="4.0">

 <display-name>Name of my App</display-name>

 <welcome-file-list>

 <welcome-file>greeting.xhtml</welcome-file>

 </welcome-file-list>

 <servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>

 javax.faces.webapp.FacesServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.xhtml</url-pattern>

 </servlet-mapping>

</web-app>

This file specifies a welcome file, greeting.xhtml, which gets used if in the URL the

path ends with the context root and no specific page gets specified. And it also registers

the JSF servlet and a mapping that identifies any file ending with “.xhtml” as a JSF page.

Note The specification says that the web.xml file is optional and an automatic
mapping of some URL patterns will occur instead. It is, however, recommended to
explicitly provide a web.xml file to keep such magic automatisms at this place at
a minimum. After all, not specifying a web.xml makes the URL mapping, hidden
somewhere in the depths of the Jakarta EE server, appear kind of random.

There could be several <url-pattern> elements inside the mapping, and patterns

also could use paths instead of file-name endings. In this book, we will always let .xhtml

files designate JSF pages, so apart from the welcome page and maybe a <display-name>

element, and unless otherwise noted, the web.xml files will all look the same.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

55

 A Sample JSF Application
As a sample JSF application, we will create a simple household accounting web

application. We will start with a page where the user can enter her or his name, a date,

and per-day expenses. At the beginning, there will only be a single page; we will add

more features as we advance through the book.

 Preparing the JSF Application
To start the JSF application development, open Eclipse and select File ➤ New ➤

Project.... From the list, select Maven ➤ Maven Project, make sure “Create a simple

project (skip archetype selection)” is not checked, and choose “maven-archetype-

quickstart.” As Maven project coordinates, enter the following:

 Group-Id: book.jakarta8

 Artifact-Id: hacc-jsfgui

 Version: 0.0.1-SNAPSHOT

As the package name, use “book.jakarta8.hacc.jsfgui.” Eclipse will automatically

name the project according to the artifact-id. In this case, it will be hacc-jsfgui.

Make sure the process uses the Java JRE 8 libraries and compiler level 1.8. You’ll

find the settings in the project properties at Java Build Path ➤ Libraries and at

“Java Compiler.” Open the file pom.xml, change <packaging>jar</packaging> to

<packaging>war</packaging>, and add the following:

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-api</artifactId>

 <version>8.0</version>

 </dependency>

inside the dependencies section. Then, add the following:

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

56

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

after </dependencies>. Press CTRL+SHIFT-F to reformat the file, then right-click (on

project) and select Maven ➤ Update Project....

If the project is not already faceted, right-click (on project) and select Configure ➤

Convert to Faceted Form.... Then, or inside Properties ➤ Project Facets, check and enter

the following:

 Dynamic Web Module 4.0

 Java 1.8

 JavaScript 1.0

 Java Server Faces 2.3

If it is not possible to change a version, remove the check, click “Apply and Close,”

and open the dialog again. Then you can recheck and select the desired version.

Make sure folder “src/main/webapp/WEB-INF” exists, and if necessary add a file

web.xml to this folder. Let it read as follows:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

 id="WebApp_ID" version="4.0">

 <display-name>Household Accounting JSF-GUI</display-name>

 <welcome-file-list>

 <welcome-file>main.xhtml</welcome-file>

 </welcome-file-list>

 <servlet>

 <servlet-name>Faces Servlet</servlet-name>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

57

 <servlet-class>

 javax.faces.webapp.FacesServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.xhtml</url-pattern>

 </servlet-mapping>

</web-app>

Make an empty file called src/main/webapp/WEB-INF/beans.xml. Make a file called

src/main/webapp/WEB-INF/glassfish-web.xml and let it read as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE glassfish-web-app PUBLIC

 "-//GlassFish.org//DTD GlassFish Application Server

 3.1 Servlet 3.0//EN"

 "http://glassfish.org/dtds/glassfish-web-app_3_0-1.dtd">

<glassfish-web-app error-url="">

 <class-loader delegate="true"/>

</glassfish-web-app>

If it does not already exist, make a file called src/main/webapp/WEB-INF/faces-

config.xml and let it read as follows:

<?xml version="1.0" encoding="UTF-8"?>

<faces-config

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_3.xsd"

version="2.3">

 <application>

 <resource-bundle>

 <base-name>

 hacc.web.WebMessages</base-name>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

58

 <var>bundle</var>

 </resource-bundle>

 <locale-config>

 <default-locale>en</default-locale>

 <!-- <supported-locale>es</supported-locale> -->

 </locale-config>

 </application>

</faces-config>

Add a folder called “src/main/resources” and a file named src/main/resources/

hacc/web/WebMessages.properties, including sub-folders, and leave it empty for now.

 The Household Accounting JSF Application
Once the preparational steps from the previous section are complete, we can create the

first template file. Right-click on “src/main/webapp” and select New ➤ File create main.

xhtml, and let it read as follows:

<!DOCTYPE html>

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:ui = "http://java.sun.com/jsf/facelets"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

<h:head>

 <title>Household Accounting</title>

 <h:outputStylesheet library="css" name="style.css"/>

</h:head>

<h:body>

 <h:form id="form">

 <h:outputText styleClass="formLabel"

 value="#{bundle.label_enterYourName}"/>

 <h:inputText id="name"

 value="#{accounting.name}"/>

 <div class="clearfloat"/>

 <h:outputText styleClass="formLabel"

 value="#{bundle.label_enterTheDate}"/>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

59

 <h:inputText id="date"

 value="#{accounting.date}">

 <f:convertDateTime

 type="localDate"

 pattern="yyyy-MM-dd" />

 </h:inputText>

 <div class="clearfloat"/>

 <h:commandButton value="#{bundle.submit}"

 action="#{accounting.register}"/>

 </h:form>

 <h:messages/>

</h:body>

</html>

This file starts with a <!DOCTYPE html>, which seems to identify it as an HTML 5 file.

But there are differences in the HTML 5 specification, as follows:

• We have the namespaces “http://xmlns.jcp.org/jsf/html,”

“http://xmlns.jcp.org/jsf/core,” “http://java.sun.com/

jsf/facelets,” and “http://xmlns.jcp.org/jsf/passthrough,”

identified by h:, f:, ui:, and pt:. These namespaces tell JSF that it has

to replace the corresponding elements with something it calculates.

• We have a couple of elements without namespaces, like <title> and

<div>. JSF will just return them unchanged.

• In some attributes we have strings of the form #{ ... }. Those

belong to expression language or EL expressions. JSF will replace

them with calculated strings. But some of them will also handle user

inputs from inside forms and make the entered data available to the

application.

JSF will use this file to generate an HTML 5 document, which it then sends to the

browser. But hold on—if it translates to an HTML 5 file and starts with an HTML 5

DOCTYPE declaration, why does it have a .xhtml ending? There are two reasons: first,

JSF just doesn’t care. It is happy with any DOCTYPE and just looks at those elements with

namespaces belonging to JSF tag libraries. Second, it simplifies editing in Eclipse if it has

a .xhtml ending. So, despite the .xhtml ending, consider them HTML 5 template files.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/core
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/facelets
http://xmlns.jcp.org/jsf/passthrough

60

From the <h:outputStylesheet ... /> in the listing we can see that we need a

stylesheet. To this aim, create a file called src/main/webapp/resources/css/style.css

and inside it write the following:

 .clearfloat { clear: both; }

From the #{bundle.SOMETHING} expressions in some attributes and the entry in

faces-config.xml—

 <resource-bundle>

 <base-name>

 hacc.web.WebMessages</base-name>

 <var>bundle</var>

 </resource-bundle>

—we can see that the page accesses text resources from the file src/main/resources/

hacc/web/WebMessages.properties. We add all the entries we need, which leads to the

file’s containing the following:

 label_enterYourName = Enter your name:

 label_enterTheDate = Enter the date (yyyy-MM-dd):

 submit = Submit

Likewise, in the attributes of some of the elements you can find the three

#{accounting.SOMETHING} expressions, as follows:

 <h:inputText id="name" value="#{accounting.name}"/>

 <h:inputText id="date" value="#{accounting.date}">

 ...

 </h:inputText>

 <h:commandButton ...

 action="#{accounting.register}"/>

This is where the binding of the JSF template page to a Java class happens. We

capitalize the first letter of “accounting” and create a class, book.jakarta8.hacc.

jsfgui.Accounting. We add two getters and two setters, getName(), getDate(),

setName(), and setDate(), which by virtue of their names, have “Name” and “Date”

directly correspond to #{accounting.name} and #{accounting.date} as follows:

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

61

 #{accounting.name} -> Accounting.getName() and

 Accounting.setName()

 #{accounting.date} -> Accounting.getDate() and

 Accounting.setDate()

This is why this kind of expression—(#{accounting.name} and #{accounting.

date})—also gets called a value expression.

Note It is the attribute’s responsibility to prescribe whether the #{something}
belongs to a value expression. Because the #{accounting.something} shows
up in a value="..." attribute, we do have value expressions here.

The action="#{accounting.register}" expression is different. It corresponds to a

method, as follows:

 #{accounting.register} -> Accounting.register()

and the #{accounting.register} therefore gets called a method expression.

With these getters, setters, and methods added, the Accounting class reads as

follows:

 package book.jakarta8.hacc.jsfgui;

 import java.io.Serializable;

 import java.time.LocalDate;

 import javax.enterprise.context.SessionScoped;

 import javax.inject.Named;

 @Named

 @SessionScoped

 public class Accounting implements Serializable {

 private static final long serialVersionUID =

 -1110733631123456L;

 private LocalDate date;

 private String name;

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

62

 public String register() {

 return null;

 }

 public LocalDate getDate() {

 return date;

 }

 public void setDate(LocalDate date) {

 this.date = date;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 }

This class does not do anything interesting yet, so we let method register() return

a null, which means it will return to the same page. What is interesting is the @Named

annotation—this is where the mapping from class Accounting to the “accounting” in

expressions #{accounting.SOMETHING} happens! The other annotation, SessionScoped,

will keep the instance of this class valid as long as the browser sessions holds.

You can now run the JSF application. Right-click on the project, then select Run As

➤ Run on Server. Open http://localhost:8080/hacc-jsfgui/main.xhtml in your

browser, and the form should show up (see Figure 4-1).

Figure 4-1. Household accounting

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

63

The output that gets generated by JSF and is then sent to the browser for rendering

the page will be similar to the following:

<!DOCTYPE html>

<html><head id="j_idt2">

 <title>Household Accounting</title>

 <link rel="stylesheet" type="text/css"

 href="/hacc-jsfgui/javax.faces.resource/

 style.css.xhtml?ln=css"/>

</head>

<body>

<form id="form" name="form" method="post"

 action="/hacc-jsfgui/main.xhtml;

 jsessionid=cba85228d2b781870d3c7643f805"

 enctype="application/x-www-form-urlencoded">

 <input type="hidden" name="form" value="form" />

 Enter your name:

 <input id="form:name" type="text" name="form:name" />

 <div class="clearfloat"></div>

 Enter the date (yyyy-MM-dd):

 <input id="form:date" type="text" name="form:date" />

 <div class="clearfloat"></div>

 <input type="submit" name="form:j_idt9"

 value="Submit" />

 <input type="hidden" name="javax.faces.ViewState"

 id="j_id1:javax.faces.ViewState:0"

 value="4202037120618133945:-331235588411554674"

 autocomplete="off" />

</form>

</body>

</html>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

64

You can see that the <h:form id="form"> from the template file gets translated to

the following:

<form id="form" name="form" method="post"

 action="/hacc-jsfgui/main.xhtml;

 jsessionid=cba85228d2b781870d3c7643f805"

 enctype="application/x-www-form-urlencoded">

The jsessionid value here is important: because HTTP by design is stateless but

our application needs to maintain a state (the instance of the Accounting class), the

form must specify to which session it belongs. And this happens by transmitting the

jsessionid. Because in JSF state holding is not limited to the session ID, but also

includes a view ID, the form also has this special hidden input added at the end. The

other input elements belong to <h:inputText> template page elements. In the case of

the date input, we need to specify a converter, <f:convertDateTime>, so JSF knows that

the text needs to be translated to a LocalDate typed class field. The <h:commandButton>

corresponds to <input type="submit"> for submitting the form. Upon the user’s

clicking on the “Submit” button, JSF takes care of translating and possibly validating

the input fields, performing any activities that are important for the application, and

possibly forwarding to other pages. We will talk about this lifecycle in more detail in a

later section.

 About JavaBean Classes
In an enterprise Java environment, and especially for JSF, often Java classes of a special

kind get used: JavaBean classes. These are classes that serve as simple components with

the main purpose of providing standardized access to its properties. This sounds much

more complicated than it actually is. Consider the following Person class:

 public class Person {

 private String lastName;

 private String firstName;

 private int age;

 private boolean smoker;

 }

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

65

What is missing is access to the properties. For the Person class to become a

JavaBean, all we need is to provide getters and setters. To this aim, we provide methods

starting with “get” (“is” for Boolean properties) for getters and “set” for setters, and then

we append the property name with the first letter capitalized, as follows:

 public class Person {

 private String lastName;

 private String firstName;

 private boolean smoker;

 private int age;

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

 public int getAge() {

 return age;

 }

 public void setAge(int age) {

 this.age = age;

 }

 public boolean isSmoker() {

 return smoker;

 }

 public void setSmoker(boolean smoker) {

 this.smoker = smoker;

 }

 }

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

66

That is it! Because this way of providing getters and setters is so standardized and

is actually easy to understand, in this book we often will omit the getters and setters for

class properties and just write a hint like “+ getters/setters,” like in the following example:

 public class Person {

 private String lastName; // + getter/setter

 private String firstName; // + getter/setter

 private int age; // + getter/setter

 private boolean smoker; // + getter/setter

 }

 Expression Language in JSF Pages
In our household accounting application from the previous example, we used constructs

like #{something} to draw a connection between the template file and an injected Java

class, as follows:

 ...

 <h:inputText id="name" value="#{accounting.name}"/>

 ...

In JSF such #{...} constructs are called expressions, or, more precisely, expression

language (EL) constructs, and they are of central importance to the templating’s

working. Not only that, but they also build an interface between the template files and

the business logic of your application by connecting template files to Java methods and

fields (via getters and setters); they also allow you to write expressions in your pages.

Note There exists another variant of expressions that use a slightly different
syntax ${ ... }. Such expressions using curly braces are called immediate
evaluation syntax expressions, while #{ ... } expressions get named deferred
evaluation syntax expressions. While the use of immediate evaluation is allowed in
JSF pages, this somewhat shortcuts JSF functionalities and leads to unexpected
behavior. In this book we therefore only use the deferred syntax.

In the following paragraphs we will talk more about things we can achieve using

expression language constructs.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

67

 Value and Method Expressions
A vital distinction we need to understand first in order to get acquainted with EL is

the one between expressions that are used as values and expressions that denote class

methods, as follows:

 – Value Expressions

Value expressions can show up everywhere in the template file,

although in the majority of cases you will use them inside XML

element attributes, as in <h:inputText value = "#{accounting.

name}"/>. They can use fields of injected classes, and they can

perform calculations. The outcome of a value expression gets used

at the discretion of the component where the value expression

describes an attribute, or its toString() representation gets

printed at the place of their declaration if used outside component

attributes. Wherever a component expects a value expression, you

can use a literal string, which then gets handled as if it were the

outcome of the expression evaluation.

 – Method Expressions

Method expressions directly point to method names of injected

classes. You will use method expressions only inside component

attributes, and you will exclusively do that only for such

component attributes where the component explicitly demands a

method expression. A prominent example we already used for the

household accounting application is the “action” attribute inside

component <h:commandButton>, where we wrote #{accounting.

register} to designate the public String register() method

from the Accounting class. It is also possible to pass arguments

to the method invocations, but we will talk about that a little later.

If a component expects a method expression for an attribute

you can instead provide a literal string, as in <h:commandButton

value="Go" action="handle"/>.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

http://accounting.name
http://accounting.name

68

Note Whether a method expression points to a method that returns something
or not (the public String register() versus a public void
register()) depends on what the method gets used for by JSF. In this case,
the button click possibly navigates to a new page, so we need the method to return
a string indicating where to go. The null returned so far just leads to reloading the
actual page.

For both method and value expressions, for attributes that demand an expression

you can always also write literal strings, as in <h:commandButton value="Go"

action="handle"/>. The "Go" here will be treated as if it were the outcome of the value

expression expected, and for the "handle" the method execution gets bypassed and

the provided value gets treated as if it were the outcome of the method invocation. For

<h:commandButton value="Go" action="handle"/> the string "Go" will get used as the

button text, and a forwarding to page handle.xhtml will happen.

We said that we can use value expressions inside attributes and at any other place

on the page. If they get used for attributes, it lies at the discretion of the component what

to do with them. If found anywhere else on the page, they will be output as-is. With the

component <h:outputText>, which writes the expression evaluation outcome value

of its “value” attribute to the page, at first sight it seems that we could use either of the

following:

 <h:outputText styleClass="formLabel"

 value="#{bundle.label_enterYourName}"/>

. . . or . . .

 #{bundle.label_enterYourName}

to write something on the page. It seems tempting to use the latter one because it is

shorter. There is an important difference though: the first one creates a component in the

document tree, while the latter one represents just flat text. This difference reveals itself

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

69

if we include presentation logic on the page. Consider, for example, the <h:panelGroup>

component, which just draws a bracket around its children. If we include a decision as to

whether to output it or not, this could read as follows:

 <h:panelGroup rendered="#{accounting.renderName}">

 <h:outputText styleClass="formLabel"

 value="#{bundle.label_enterYourName}"/>

 ...

 </h:panelGrid>

Everything will work as expected: both the panel group and all children only get

rendered if the isRenderName() method of Accounting returns true. But if we instead

use the following:

 <h:panelGrid rendered="#{accounting.renderName}">

 #{bundle.label_enterYourName}

 </h:panelGrid>

the label will be written, no matter what the outcome of isRenderName() is. So, as a bit

of advice, in most cases you can avoid trouble if you never use the direct syntax and use

expressions only in component attributes.

 Accessing Objects from JSF Pages
In the household accounting sample application, we’ve already seen how to connect

Java classes for handling the application logic with the template pages. The procedure

is part of the context and dependency injection (CDI), which is why we used the term

injection already a couple of times.

Note In earlier JSF versions, the connection of JSF pages to the application
logic was handled by something called managed beans. This implied additional
configuration steps, like registering classes in appropriate XML configuration
files. In the JSF version 2.3 we use, CdI gets used for that purpose, and the
use of managed beans is deprecated. You’ll still find managed beans in many
introductions and tutorials on the web, but we consider them outdated, and for that
reason we don’t use managed beans in this book.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

70

The procedure for connecting application logic to JSF template pages via CDI goes as

follows:

• For Java classes that serve as interfaces for accessing the application

logic, you add the @Named annotation (javax.inject.Named) to

the class. If you don’t add a parameter to the annotation, a @Named

public class TheClass { ... } will lead to an object theClass

(the first letter lowercase) being made available to EL. If you,

however, add a parameter to the annotation, as in @Named("foo")

public class TheClass { ... }, the parameter will get used as the

name for the injected object.

• Let the same class implement the java.io.Serializable interface.

JSF needs it for class state handling.

• The @Named annotation will lead to an instance of the class being

injected into the JSF pages. However, the lifecycle of this instance

is still unclear. For this reason, we add another annotation for the

lifecycle characterization. We have several options here, as follows:

 – @SessionScoped

From package javax.enterprise.context. This scope

probably gets used most often. The injected object will be

valid as long as the browser session lives. Fields of the instance

will have their states maintained for the whole lifetime of the

session, and the instantiation of the Java class will happen at

most once per session.

 – @RequestScoped

From package javax.enterprise.context. The instance

of the injected class will be made void once the request has

finished. Using this scope makes sense if state is unimportant.

Also, if you use request-scoped injections the risk of unused

objects hanging around in the memory is minimized.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

71

 – @ViewScoped

From package javax.faces.view. The injected instance will

be valid as long as the JSF page is not left. If action methods

return null or return to the same page, the same page

gets reloaded, the view gets maintained, and view-scoped

beans will be reused. You use this scope if state needs to be

maintained only as long as the same page is not left.

 – @ApplicationScoped

From package javax.enterprise.context. The injected

instance will be valid as long as the application lives. Use with

care to avoid memory leaks.

 – @FlowScoped

From package javax.faces.flow. The injected instance will

be valid as long as the current flow is not left. We don’t handle

flows in this beginner’s book.

• If you need fields of the injected class for output value expressions

(so-called rvalues), you must provide a getter. For some field

fieldName the getter must read getFieldName() (or isFieldName()

for Boolean values). You then access the field in value expressions

via className.fieldName. In fact, the field need not even exist in the

Java class; if there is a getter method getFieldName(), you can use

className.fieldName in rvalue expressions.

• If you need fields of the injected class for input value expressions

(so-called lvalues), you must provide a getter and a setter. For

some field fieldName the getter must read getFieldName() (or

isFieldName() for Boolean values), and for the setter you must write

setFieldName(...). You then access the field in lvalue expressions

via className.fieldName. As for rvalues, the field need not actually

exist in the Java class; if there are methods getFieldName() and

setFieldName(...), you can use className.fieldName in lvalue

expressions.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

72

• To access a method methodName of an injected class instance, you

write #{className.methodName} for no parameters, or className.

methodName(par1, par2, ...) if the method invocation requires

parameters (for string parameters you can use single quotation marks).

For example, someAttr = "#{className.methodName(37, 'Hello')}".

The following example shows some constructs for object access from inside JSF

template pages:

 <h:outputText

 styleClass="formLabel" <!-- literal rvalue -->

 value="#{xyz.abc}"/> <!-- rvalue getter -->

 <h:commandButton

 value="#{'Go ' + xyz.submit}" <!-- rvalue -->

 action="#{xyz.go}"/> <!-- go() method -->

 <h:inputText

 value="#{xyz.name}" />

 <!-- rvalue + lvalue, getter + setter -->

A corresponding injected class would read as follows:

 @Named

 @SessionScoped

 public class Xyz implements Serializable {

 private static final long serialVersionUID =

 -1110733631123456L;

 private String abc = "Hello";

 private String submit = "Submit";

 private String name;

 public String getName() { return name; }

 public void setName(String name) {

 this.name = name; }

 public String getAbc() { return abc; }

 public void setAbc(String abc) {

 this.abc = abc; }

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

73

 public String getSubmit() { return submit; }

 public void setSubmit(String submit) {

 this.submit = submit; }

 public String go() {

 ...

 return null;

 }

 }

 Implicit Objects
JSF by default injects a couple of objects into the page that you can use without further

action. The list is as follows:

 – facesContext

The FacesContext object from package javax.faces.context

contains detailed information about the currently active HTTP

request and allows you to fetch messages related to validation.

 – application

The ServletContext object from package javax.servlet

allows you to access the web application as a whole, including

configuration information.

 – initParam

A map containing initialization parameters. Includes values you

wrote inside <context-param> elements in file web.xml.

 – session

The HttpSession from package javax.servlet.http. It contains

the session information for the current servlet context. Here you

can, for example, query the session creation time or last accessed

time, as follows:

#{ session.creationTime } and #{ session.lastAccessedTime }.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

74

 – view

The current UIViewRoot (package javax.faces.component) for

this view. Represents the root of the component tree.

 – component

The currently processed component. This allows you to access

fields and functions of the component that are not directly

accessible otherwise; for example, the client ID: <h:outputText

value = "Client-ID: #{component.clientId} " /> (you could

use it from JavaScript code).

 – cc

The currently processed top-level composite component (only if it

exists).

 – request

The HttpServletRequest from package javax.servlet.http.

Allows for accessing interesting properties like cookies, HTTP

headers, the context path, the URL, HTTP request parameters,

querying user roles, and more.

 – Scoped attributes

Use applicationScope, sessionScope, viewScope, requestScope,

or flowScope for attribute maps from the various scopes.

 – flash

A map that allows you to access flash-scope objects. The flash-

scope variables survive a redirect you need for the post/redirect/

get design pattern (you add ?faces-redirect = true to URLs

returned from action methods).

 – param

A map of HTTP request parameters. Because URLs

allow you to define parameters several times, like in

...?name=Peter&name=Paul, a request parameter actually is an

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

75

array. Practically, arrays don’t get used often, so it is common

practice to just return the first value for each parameter. This

param object only takes the first value for each name.

 – paramValues

A map of HTTP request parameters—a String[] per name.

 – header

A map of HTTP header parameters. Similar to the param object,

HTTP header parameters can show up several times, and this

header object takes only the first value for each name (which

normally suffices).

 – headerValues

A map of HTTP header parameters—a String[] per name.

 – cookie

A map of cookie name ➤ cookie value.

 – pageContext

The PageContext from package javax.servlet.jsp contains

useful page-related context information.

These objects come in handy for development purposes or for advanced expression

use cases.

 Literals
Inside EL expressions, you can enter literals as follows:

 – Strings

To write strings, you can use single or double quotation marks: #{

'Hi' + "there" } (watch out for XML attribute syntax—in most

cases you’ll end up writing single quotation marks, as in value =

"#{ 'Hi' + 'there' }"). Use a backslash to escape: "\"", '\",

and use \\for a backslash.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

76

 – Numbers

Enter numbers as usual: -37, 123.45.

 – Booleans

Write true and false.

 – Null

Use null for the null value.

 Operators in Expressions
For the unary minus operator, use the conventional minus sign in front of the number:

-234. The arithmetic operators + - * / % do the usual things (plus, minus, times,

divided by, modulus); for / you can also write div, and instead of % you can use mod if

you like. The ternary operator A ? B : C does the usual thing: if A is true, evaluate to B,

otherwise to C.

To concatenate two strings, write += (no, this is not an assignment operator as in

other languages!). For example, 'Hello' += ' ' += 'World' (gives 'Hello World').

The relational operators < > <= >= == != do the usual things. You can also write

(surrounded by spaces) lt gt le ge eq ne respectively instead.

For logical operations you can use && ||, or and or, for AND and OR. For a negation

you prepend an exclamation mark ! or a not.

To check whether a value is null or if a collection or array is empty, write empty X.

The semicolon operator A;B acts as follows: evaluate A, then discard the evaluation

result. Then evaluate B and return its result.

Unless you use round brackets for grouping, the operator precedence is: (highest to

lowest, left to right)

• [] . (indexed access, dereferencing)

• • ()

• - (unary) not ! empty

• ∗ / div % mod

• • + –

• • +=

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

77

 Using Collections Inside Expressions
The EL allows you to create and use sets, lists, and maps. It can also handle arrays, but

there is no way to construct arrays from inside EL. This is not a real disadvantage, since

with constructed lists you can do the same thing. To construct a set, list, or map you

write the following:

 {1,2,3} (a set)

 [1, 27, ['Hi', 7]] (a list)

 {1:'Mark', 2:'Linda'} (a map)

As an example, we use a special looping tag, <ui:repeat>, which we are going to

describe in detail later. An example is written as follows:

<!DOCTYPE html>

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

<h:head>

 <title>Title</title>

</h:head>

<h:body>

 <ui:repeat value="#{['Banana','Apple','Orange']}"

 var="v">

 <h:outputText escape="false" value="#{v} <p/>"/>

 </ui:repeat>

</h:body>

</html>

The output will be a list of the three fruits. Note that we had to add escape =

"false" and write <p/> instead of <p/> to output the paragraph delimiter so as to

avoid clashes with some tag-related HTML security restrictions—the “<” with a special

meaning in HTML gets some increased attention with respect to security.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

78

For an indexed access to lists and arrays you use the usual [] operator. For map

access, the same operator gets used, as follows:

 #{['Mark','Linda'][1]} -> 'Linda'

 #{{7:'Banana',2:'Apple',3:'Orange'}[7]} -> 'Banana'

For operations on collections, the EL provides a set of built-in functions for

filtering, transformation, and aggregation. We don’t describe them all here; for a

complete description have a look at the EL specification (enter “jsf expression language

specification 3.0” or “jsr 341” in your favorite search engine). As an example, we extract

items of lengths greater than four from a list as follows:

 <ui:repeat value="#{['Linda', 'Ted', 'John', 'Marcus']

 .stream().filter(itm->itm.length()>4).toList()}"

 var="v">

 <h:outputText escape="false" value="#{v} <p/>"/>

</ui:repeat>

This generates a stream from a list, applies a filter using a lambda function (we’ll talk

about lambda functions next), converts a list from the resulting stream, and then iterates

over the new list.

 Exercise 1
Given an injected bean b and a collection b.list, write an <h:outputText> that

produces one of the following strings: “The list contains 1 item” or “The list contains N

items,” where N gets replaced by the size, depending on the list size. Use literal strings,

not resource bundle keys.

 Lambda Expressions
The EL allows the use of lambda functions, which are function literals without a name,

similar to the lambda function in Java SE8. The syntax variants are as follows:

 x -> [some expression with x]

 x -> x*x - 7 (an example)

 () -> [some expression]

 () -> 'Hello World' (an example)

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

79

 (x,y) -> [some expr. with x and y]

 (x,y) -> x + y (an example)

where x and y are just formal parameters—you can use any names you like for them.

Lambda functions can be passed as parameters to functions that support lambdas.

The collection functions for filtering, transforming, and aggregating sets, lists, or maps

often support lambda functions. To apply them directly you can write the following:

 x -> x*x - 7 (the lambda)

 (x -> x*x - 7)(3) (applying it, gives 2)

 Localized Resources
Text on web pages could, on the template side, be written literally, as follows:

 Please enter your name:

 <h:inputText ... />

or you could utilize attributes, as in the following:

 <h:outputText value="Please enter your name:" />

 <h:inputText ... />

In both cases, we have the issue that users from other countries might prefer to read

the page in their own language. For this reason, JSF introduces language bundles. There

is a procedure to internationalize your text.

First, we tell JSF that we want to use language bundles. You do this inside the src/

main/webapp/WEB-INF/faces-config.xml file, where you add a <resource-bundle> and

a <locale-config> element, as follows:

<?xml version="1.0" encoding="UTF-8"?>

<faces-config

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_3.xsd"

version="2.3">

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

80

 <application>

 <resource-bundle>

 <base-name>

 hacc.web.WebMessages</base-name>

 <var>bundle</var>

 </resource-bundle>

 <locale-config>

 <default-locale>en</default-locale>

 <supported-locale>es</supported-locale>

 ...more of them...

 </locale-config>

 </application>

</faces-config>

In this example, inside the element <base-name> we specify that the language

resource bundles can be found in the folder called “src/main/resources/hacc/web.”

Instead of “hacc/web” you can write any path that best suits your needs—just update

the string in <base-name> accordingly, replacing the file path separators with dots.

The “bundle” inside the <var> element specifies the variable name under which the

language bundle can be addressed from JSF template files. Again, you can use anything

you like here, but if you change it later you will have to update all template files! In this

book, we always use “bundle” as the bundle variable name.

Inside the element locale-config you list all locales you want to support. We wrote

two locales here: “en,” which stands for English and is marked as the default locale, and

another locale, “es,” for Spanish. You can add any number of supported locales, but

obviously there can be only one default locale. It is also possible to distinguish between

different countries using variants of the same language. So you can have

 <locale-config>

 <default-locale>en</default-locale>

 <supported-locale>en_GB</supported-locale>

 <supported-locale>es</supported-locale>

 </locale-config>

to express English’s being the default language, but also have language files for British

English in case this is the language–country pair the user agent (browser) asks for. Or you

can even write

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

81

 <locale-config>

 <default-locale>en</default-locale>

 <supported-locale>en_US</supported-locale>

 <supported-locale>en_GB</supported-locale>

 <supported-locale>es</supported-locale>

 </locale-config>

to use a standard English language file as the default locale, and add two files for

language texts different in US and British English. Which languages and countries

are supported is defined by the Java SDK—a list can be obtained if you enter “java 8

supported locales” in your favorite search engine.

Now, for the localized texts themselves, you add a file, WebMessages.properties,

inside the “src/main/resources/hacc/web/” folder (or whatever you specified in

faces-config.xml as file name and path). This will be the default locale file, and it will

correspond to the <default-locale> setting. Inside the file, you write key–value pairs as

follows:

 label_enterYourName = Enter your name:

 label_enterTheDate = Enter the date (yyyy-MM-dd):

 submit = Submit

 label_noExpenses = No expenses

Each key will then be usable from inside JSF template files, and it will be replaced by

the value, for which the matching locale file will be determined automatically. For the

other supported locale files, you have to use file names like WebMessages_xx.properties

or WebMessages_xx_XX.properties for each of the supported locales. The “xx” is then

language code and the “XX” the optional country code. Inside the files, you use the same

keys but add translated values, as follows:

 label_enterYourName = Inserte su nombre:

 label_enterTheDate = Inserte el día (yyyy-MM-dd):

 submit = Transmitir

 label_noExpenses = No expensas

for a locale file WebMessages_es.properties.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

82

With the configuration adapted and the locale files added, we can now use the

localized text inside the JSF template files, as follows:

 #{bundle.label_enterYourName}

 <h:inputText ... />

 ...or...

 <h:outputText value="#{label_enterYourName}" />

 <h:inputText ... />

Here, it is important to realize that in template files you never specify any language

or country. That gets handled by JSF automatically!

Note In such properties files, you frequently will see keys like label.name with
dots as separators. You can do that, but it is then not possible to write #{bundle.
label.name} inside your template file, because the dot there signifies a property
accessor, not an integral part of a key name. You still can use this different
notation, but then you have to write bundle['label.name'] in the template
files. It is up to you. In this book, however, dots in property keys are avoided for
resource bundles.

 Exercise 2
Add a Spanish translation to the household accounting application. The translations

read: label_enterYourName ➤ “Inserte su nombre:”, label_enterTheDate ➤ “Inserte el

día (yyyy-MM-dd):”, submit ➤ “Transmitir”, label_noExpenses ➤ ”No expensas.”

 JSF Tag Libraries
The three tag library namespaces are as follows:

 xmlns:h = "http://xmlns.jcp.org/jsf/html"

 xmlns:f = "http://xmlns.jcp.org/jsf/core"

 xmlns:ui = "http://java.sun.com/jsf/facelets"

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

83

They correspond to the Standard HTML RenderKit tag library, the Core tag library,

and the Facelets templating tag library, respectively. In our household accounting

example, we used the following:

 <h:head>

 <h:outputStylesheet>

 <h:body>

 <h:form>

 <h:outputText>

 <h:inputText>

 <h:commandButton>

 <f:convertDateTime>

However, there are more. In the following paragraphs we will talk about the HTML

RenderKit tags. Subsequent sections will handle the presentation language independent

core tags for JSF 2.3 that you can use.

 Standard HTML RenderKit Tags
The Standard HTML RenderKit tags directly correspond to elements in the generated

HTML pages. We have tags for generating top-level elements, like <head> and <body>;

tags for including script files and stylesheets; tags for forms and form elements, like text

input, checkboxes, option lists, menus, and buttons; and tags for text output, images, and

data tables.

As tag attributes, you can write literal strings—as, for example, for the styleClass

attribute in the following text output tag:

 <h:outputText ...

 styleClass="output-name" />

However, as we have seen, in many cases you can connect the attributes to injected

classes via value expressions. We already did that for the household accounting example

earlier in this chapter. Depending on the attribute type and if it is allowed for the

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

84

attribute in question, this can be applied either for just output or for both output and

input. The styleClass attribute is such an output-only attribute, and here we can also

write

 <h:outputText ...

 styleClass="#{person.nameStyle}" />

which means that the connected class, probably named Person, needs a public String

getNameStyle() method. If the attribute allows for input, we also need a setter, as in the

following text-input component:

 <h:inputText ...

 value="#{person.name}" />

This requires getters and setters for the value attribute, as follows:

 @Named

 @SessionScoped

 public class Person {

 ...

 public String getName() {

 return ...

 }

 public void setName(String name) {

 ...

 }

 ...

 }

Because of the Named annotation the expression language knows that it needs person

(the “P” from the class name lowercased) to address the injected instance.

In the following paragraphs of this section we will give an overview of the tags and

show some examples. All the tags and their attributes are listed in the appendix in the

“Standard HTML RenderKit Tags” section.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

85

 HTML Top-Level Tags
Top-level tags are for the <!DOCTYPE> declaration at the top of an HTML file, and for the

head and the body tags. There seems to be a bug if you try to use the <h:doctype> tag for

generating a DOCTYPE, but you usually write it literally on top of an XHTML file, so the

tag is not needed anyway. Just don’t use it. For the two others, write the following:

<!DOCTYPE html>

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:ui = "http://java.sun.com/jsf/facelets"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

<h:head>

 <title>The Title</title>

 [... import scripts and styles]

</h:head>

<h:body>

 [...]

</h:body>

</html>

For details and all possible attributes, see the “Standard HTML RenderKit Tags”

section of the appendix.

 HTML Header Elements
Inside the <head> element of the target HTML output, you usually want to have

stylesheet files and JavaScript files included. The HTML RenderKit tag library allows us

to use tags for it, so you can write the following:

...

<h:head>

<title>Household Accounting</title>

 <h:outputStylesheet library = "css" name = "style.css" />

 [... more like that ...]

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

86

 <h:outputScript library = "js" name = "myScript.js" />

 [... more like that ...]

</h:head>

...

to read scripts and stylesheets from “src/main/webapp/resources/js” and “src/main/

webapp/resources/css,” respectively.

For details and all possible attributes, see the “Standard HTML RenderKit Tags”

section of the appendix.

 HTML Forms
Forms get used to transmit user data from the front end (browser) to the server. As is

usually the case for input elements in the target HTML, for JSF too all input elements

must be placed somewhere inside a <h:form> element. You write the following:

...

<h:form>

 [... form elements ...]

</h:form>

...

to render a form. You must use this instead of <form>, because otherwise JSF wouldn’t be

able to recognize the input elements on your page.

For details and all possible attributes, see the “Standard HTML RenderKit Tags”

section of the appendix.

 HTML Text Input and Output
As is usually the case for input elements in HTML, for JSF too text-input elements must

be placed somewhere inside a <h:form> element, as follows:

<!DOCTYPE html>

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

87

<h:head>

 <title>Page Title</title>

</h:head>

<h:body>

 <h:form id="form">

 <h:inputText id="name" value="#{accounting.name}"/>

 <!-- <- connects to getName() and setName()

 in an injected Java bean class

 'Accounting' -->

 </h:form>

</h:body>

</html>

On the other hand, the text-output tags can be placed anywhere on the page—they

don’t need a surrounding <h:form>. See the following:

<!DOCTYPE html>

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

<h:head>

 <title>Page Title</title>

</h:head>

<h:body>

 <h:outputText value="Hello World!"/>

 <h:form id="form">

 [...]

 </h:form>

</h:body>

</html>

For details and all possible attributes, see the “Standard HTML RenderKit Tags”

section of the appendix.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

88

 HTML Selectables
Selectables include checkboxes, radio buttons, option lists, and menus with selectable

entries. The HTML RenderKit provides quite a few tags for selectables, as follows:

 ...

 <h:form id="form">

 <!-- A boolean checkbox. 'chk' must point to a -->

 <!-- getter and setter in class 'SomeClass': -->

 <!-- public boolean isChk() { return ...; } -->

 <!-- public void setChk(boolean chk) { ... } -->

 <h:selectBooleanCheckbox value="#{someClass.chk}"/>

 <p/>

 <!-- A bunch of related checkboxes. 'checks1' -->

 <!-- refers to a String[] or Collection<String> -->

 <!-- value -->

 <h:selectManyCheckbox value="#{someClass.checks1}">

 <f:selectItem itemValue="v1" itemLabel="Item 1" />

 <f:selectItem itemValue="v2" itemLabel="Item 2" />

 <f:selectItem itemValue="v3" itemLabel="Item 3" />

 </h:selectManyCheckbox>

 <p/>

 <!-- The same, but more dynamic. This time we -->

 <!-- provide a Map<String, String> for all -->

 <!-- possible items. -->

 <h:selectManyCheckbox value="#{someClass.checks1}">

 <f:selectItems value="#{someClass.smcbItems}" />

 </h:selectManyCheckbox>

 <p/>

 <!-- A list with multiply selectable items -->

 <h:selectManyListbox value="#{someClass.checks1}">

 <f:selectItems value="#{someClass.smcbItems}" />

 </h:selectManyListbox>

 <p/>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

89

 <!-- A list where only one item can be selected -->

 <h:selectOneListbox value="#{someClass.checks1}">

 <f:selectItems value="#{someClass.smcbItems}" />

 </h:selectOneListbox>

 <p/>

 <!-- Similar to selectManyListbox, but -->

 <!-- menu-style -->

 <h:selectManyMenu value="#{someClass.checks1}">

 <f:selectItems value="#{someClass.smcbItems}" />

 </h:selectManyMenu>

 <p/>

 <!-- Similar, but at most one item can be -->

 <!-- selected -->

 <h:selectOneMenu value="#{someClass.checks1}">

 <f:selectItems value="#{someClass.smcbItems}" />

 </h:selectOneMenu>

 <p/>

 <!-- A radio button list -->

 <h:selectOneRadio value="#{someClass.checks1}">

 <f:selectItems value="#{someClass.smcbItems}" />

 </h:selectOneRadio>

 </h:form>

 ...

A corresponding injected Java class in principle looks like the following:

@Named

@SessionScoped

public class SomeClass implements Serializable {

 private static final long serialVersionUID = -1110734999167266L;

 private boolean check = true;

 private List<String> checks1 = new ArrayList<>();

 private Map<String,String> smcbItems = new HashMap<>();

 // ... getters and setters for these ...

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

90

 public SomeClass() {

 smcbItems.put("Label1", "v1");

 smcbItems.put("Label2", "v2");

 smcbItems.put("Label3", "v3");

 smcbItems.put("Label4", "v4");

 smcbItems.put("Label5", "v5");

 }

}

Instead of mapping Label ➤ Value, the value to be used for all possible select options

can be an array of SelectItem, with SelectItem coming from the package javax.faces.

model.

As an example, we add a “No expenses” checkbox in our household accounting

example. Inside the main.xhtml file, as a new child of the <h:form> tag, we add a

<h:selectBooleanCheckbox> before the command button, as follows:

 ...

 <h:form id="form">

 ...

 <div class="clearfloat"/>

 <h:selectBooleanCheckbox id="noExpenses"

 value="#{accounting.noExpenses}"/>

 <h:outputLabel for="noExpenses"

 value="#{bundle.label_noExpenses}" />

 <div class="clearfloat" />

 <h:commandButton value="#{bundle.submit}"

 action="#{accounting.register}"/>

 </h:form>

 ...

Next, inside the WebMessages.properties file we add the text for the new label:

label_noExpenses = No expenses. Since we want to get hold of the checkbox in the

Accounting class, we add a corresponding field there as follows:

 ...

 public class Accounting {

 ...

 private boolean noExpenses;

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

91

 ...

 public boolean isNoExpenses() {

 return noExpenses;

 }

 public void setNoExpenses(boolean noExpenses) {

 this.noExpenses = noExpenses;

 }

 ...

 }

Republish the application on the server to see the new page with the checkbox

added.

Note To republish inside the Eclipse IdE, open the “Servers” view, click on
the server, and choose “publish” from the context menu (right-click), or press
CTRL+ALT+p.

For details and all possible attributes, see the “Standard HTML RenderKit Tags”

section of the appendix.

 Exercise 3
Implement the household accounting application if you haven’t done so already. Add

a <h:selectManyListbox> with the following item labels: Food, Clothing, Car, Fun,

Other. Add five <f:selectItem> children and let the item values equal the labels. In

the Accounting class add a corresponding field expenseTypes of Java type java.util.

ArrayList and connect it to the value attribute.

 Exercise 4
From the previous exercise, replace the five <f:selectItem> children with one

<f:selectItems>. Inside <f:selectItems>, let the value attribute point to a field

SelectItem[] expenseTypeOptions inside class Accounting. Fill the array inside the

constructor.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

92

 HTML Images
To include an image file img.jpg, you can put it into the “src/main/webapp/resources/

images” folder and then write the following:

 ...

 <h:graphicImage library="images" name="img.jpg" />

 ...

Images can, of course, have other formats, like .png or .gif.

For details and all possible attributes, see the “Standard HTML RenderKit Tags”

section of the appendix.

 HTML Buttons and Links
Buttons and links are things a user can click on to submit a form or initiate other actions,

like reloading a page or advancing to another page. It is also possible to just invoke a

JavaScript function if a button gets pressed, as follows:

<!-- Just a link -->

<h:outputLink value="http://www.amnesty.org"

 target="_blank">

 This is an arbitrary link

 <!-- There could also be an image here -->

</h:outputLink>

<!-- Just some JavaScript -->

<h:button value="Go" onclick="window.alert('Hi')" />

<h:form>

 <!-- A link with a navigation case. The value -->

 <!-- expression maybe returns something like 'xyz' -->

 <!-- and there is a page 'xyz.xhtml' -->

 <h:link value="Link text" outcome="#{accounting.nav1}" />

 <!-- Similar - points to page 'main2.xhtml' -->

 <h:link value="Link text" outcome="main2" />

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

93

 [... input elements...]

 <!-- A submit button. Click submits the form and -->

 <!-- calls action method Accounting.register(). This -->

 <!-- method must return a navigation case, for -->

 <!-- example 'xyz' and there exists a page 'xyz.html' -->

 <!-- Or 'null' which points to the current page -->

 <h:commandButton value="#{bundle.submit}"

 action="#{accounting.register}" />

 <!-- The same, but a link instead of a button -->

 <h:commandLink value="#{bundle.submit}"

 action="#{accounting.register}" />

 <!-- Shortcuts the action method - instead forwards -->

 <!-- to page 'main2.xhtml' -->

 <h:commandButton value="Button"

 action="main2" />

</h:form>

</h:body>

</html>

To add URL parameters to any of those, add <f:param> children, as in the following:

 <h:link value="Link text" outcome="main2">

 <f:param name="param1" value="42" />

 <f:param name="param2" value="Hello" />

 </h:link>

This will add ¶m1=42¶m2=Hello parameters to the link.

For details and all possible attributes, see the “Standard HTML RenderKit Tags”

section of the appendix.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

94

 Exercise 5
In the household accounting application, replace <h:commandButton> with

<h:commandLink> and test it. Which of the following is true? (A) The button gets replaced

by a link, which has exactly the same functionality. (B) The attributes and/or the injected

class have to be changed first, then the link will behave like the button did. (C) The link

cannot be used to submit forms.

 HTML File Upload
The <h:inputFile> tag can be used to let the user upload a file from the browser to

the server. In order to read the file data, for the value attribute you will use a value

expression pointing to a Part typed field in the class injected. In the submit method of

this class, remember you specify such a method in the action attribute of a command

button, and you save the file data via the following:

 import javax.servlet.http.Part;

 ...

 private Part upload; // + getter/setter

 ...

 public void theSubmit() {

 try (InputStream input = upload.getInputStream()) {

 String n = upload.getSubmittedFileName();

 String path = "..."; // where to put the file

 String name = "..."; // file name

 Files.copy(input, new File(path + File.separator +

 name).toPath());

 }catch(Exception e) {

 // Handle exception...

 // Quick and dirty, don't use in production:

 e.printStackTrace(System.err);

 }

 ...

 }

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

95

This presumes you use the following value attribute for <h:inputFile> in your

template file:

 <h:inputFile value="#{injectedClass.upload}" ... />

Note For the file upload to work, you need to have a form with <h:form
enctype = "multipart/form-data">. This is not a real restriction, because
you can have several forms in your document, so for the upload you can use a
dedicated upload form.

For details and all possible attributes, see the “Standard HTML RenderKit Tags”

section of the appendix.

 HTML Grouping
In case you need a component that just draws a bracket around its children, you can use

the <h:panelGroup> tag. This comes in handy if you use a component that allows for

only one child, but you need more complex contents. A <f:facet> is such a case (we will

talk about facets later). Another use case is a grouping you need for styling purposes.

An example of a grouping that is required in order to add an element for styling

purposes would look like the following:

 <h:panelGroup style="color:red">

 <h:outputText value=

 "This is an error: " />

 <h:outputText value=

 "The value for input field e-mail is malformed" />

 </h:panelGroup>

This wraps the two texts into a element. If you want a <div> group instead,

write the following:

 <h:panelGroup layout="block" style="color:red">

 <h:outputText value=

 "This is an error: " />

 <h:outputText value=

 "The value for input field e-mail is malformed" />

 </h:panelGroup>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

96

For details and all possible attributes, see the “Standard HTML RenderKit Tags”

section of the appendix.

 HTML Tables
Especially for enterprise web applications, the rendering of data tables given a list of

items is an important task. In addition, tables sometimes get used for the laying out of a

fixed number of elements.

An example of a data table without special styling options (we will talk about styling

in the Attributes table in the appendix) reads as follows:

 @Named @SessionScoped

 public class SomeClass implements Serializable {

 public static class Datum implements Serializable {

 private String lastName;

 private String firstName;

 public Datum(String ln, String fn) {

 this.lastName = ln;

 this.firstName = fn;

 }

 public String getLastName() {

 return lastName;

 }

 public String getFirstName() {

 return firstName;

 }

 }

 public List<Datum> getData() {

 return Arrays.asList(new Datum("Smith","John"),

 new Datum("Karmikel","Linda"),

 new Datum("Smear","Patrick"));

 }

 }

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

97

<!DOCTYPE html>

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:ui = "http://java.sun.com/jsf/facelets"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

<h:head>

 <title>Table</title>

</h:head>

<h:body>

<h:dataTable value="#{someClass.data}" var="v">

 <h:column>

 <f:facet name="header">First Name</f:facet>

 #{v.firstName}

 </h:column>

 <h:column>

 <f:facet name="header">Last Name</f:facet>

 #{v.lastName}

 </h:column>

</h:dataTable>

</h:body>

</html>

The output of this example will look as shown in Figure 4-2.

Figure 4-2. Data table example

For details and all possible attributes, see the “Standard HTML RenderKit Tags”

section of the appendix.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

98

 Repetition and Conditional Branching
So far we haven’t seen dedicated tags for conditional rendering or repetitions—

something like the following:

<forEach value="#{inj.someCollection}" var="i">

 <h:outputText value="Hi #{i}" />

 <if value="#{i < 10}">

 <h:outputText value="Less than 10" />

 <else/>

 <h:outputText value="10 or more" />

 </if>

</forEach}

The reason for this is that JSF by design tries to build a static component tree

representing a page, and therefore repetitions and conditional branching are not first-

class citizens in the JSF world. Most people tend to mix in JSTL for conditional branching

and repetitions, which introduces another templating technology. You’ll often find

corresponding solutions if you look on the internet. But do yourself a favor—Try to

avoid mixing them. JSF and JSTL do not work well together. You will be able to use both,

but mixed constructs show strange side effects quite often, and the internet is full of

questions like: “If I use x from JSF and y from JSTL, why does z not work then?”

The method you should use instead for conditional branching is applying the

“rendered” attribute of HTML components to render or not render them, as follows:

 <h:outputText rendered="#{inj.renderName}" value="Name: #{inj.name}" />

This example will render the text output only if the method public boolean

isRenderName() of the injected bean class returns true.

For loops, use the <h:dataTable> tag where possible. If this is not an option, there

is a dedicated looping tag from the Facelets tag library and the associated namespace

xmlns:ui = "http://java.sun.com/jsf/facelets." Facelets is a templating technology

for orchestrating and mixing page sections using several template files. We won’t talk

about facelets templating in this beginning Jakarta EE book, but we can borrow its

<ui:repeat> tag for repetitions, as follows:

 <ui:repeat value="#{inj.someCollection}" var="x">

 [...do something with x...]

 </ui:repeat>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

http://java.sun.com/jsf/facelets

99

Using this <ui:repeat> tag makes sure everything fits well with JSF’s component

layout methodology.

 JSF Core Tags
The core tags are presentation-format independent tags, which means they could serve

output formats other than HTML. They often get used as auxiliary elements added to

HTML RenderKit tags, be it optional or obligatory to add them. We already used a couple

of them; for example, to specify the options in a select list box, as follows:

...

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:ui = "http://java.sun.com/jsf/facelets"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

...

 <h:selectManyListbox value="#{someClass.checks1}">

 <f:selectItems value="#{someClass.smcbItems}" />

 </h:selectManyListbox>

...

In the following paragraphs we will review all the core tags.

 General Purpose Core Tags
The following core tags get used by various components from the RenderKit:

 – <f:attribute>

This is a way to specify an attribute as a child element instead of

directly adding it to a component as an XML attribute. So instead of

 <h:inputText id="lastName" ... />

you can also write

 <h:inputText ... >

 <f:attribute name="id" value="lastName" />

 </h:inputText>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

100

Its own attributes are as follows:

• name: The name of the attribute. A value expression of type

String.

• value: The value of the attribute. A value expression of type

Object.

 – <f:param>

In case a component needs parameters to function, you add one

or more <f:param> tags as children. It is up to the component

whether it needs parameters and what to do with them. Its

attributes are as follows:

• id: An ID. A value of type String. Not a value expression!

• name: The name of the parameter. A value expression of type

String.

• value: The value of the parameter. A value expression of type

Object.

• disable: Whether or not to disable this parameter. A value

expression of type Boolean.

• binding: A UIParameter to bind to this component. Advanced

applications only. A value expression of type UIComponent.

A prominent example is URL parameters to be added to links, as

follows:

 <h:link value="Link label" outcome="page2">

 <f:param name="urlParam1" value="someValue" />

 <!-- There could be more... -->

 </h:link>

The parameter will go as &urlParam1=someValue to the href

attribute of the generated <a>.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

101

 – <f:facet>

If specified as a child of a component, registers a sub-tree of

components to the component. It is up to the component whether

it needs a facet and what to do with it. Its attributes are as follows:

• name: The name of the facet. A value of type String. Not a value

expression! Names are not free to choose—the component you

add a facet to decides what name the facet must carry.

 Validator Core Tags
We saw that for form input tags like <h:inputText> it is possible to supply a “validator”

attribute that forwards to a method where a validation of the input can happen. During

the method invocation the input can be checked as to whether the format complies with

field input restrictions, whether a number entered lies in a certain range, and more. It is,

however, also possible to perform validations via appropriate core tags you can add as

children to the input component.

The following list shows the validation components you can add as depicted in

 <h:inputText> <!-- or other input component -->

 <f:validateLongRange ... /> <!-- or other -->

 </h:inputText>

Don’t forget to add a <h:message> and/or <h:messages> tag on the page; otherwise,

you won’t see the validator messages if the validation fails:

 ...

 <h:messages globalOnly="true"/>

 <h:form id="form">

 ...

 <h:inputText id="name" value="...">

 <f:validateLongRange ... />

 </h:inputText>

 <h:message for="name"/>

 ...

 </h:form>

 ...

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

102

 – <f:validator>

Installs a custom validator on the surrounding component. To

write such a validator, you create a class extending javax.faces.

validator.Validator, add a @FacesValidator annotation

(package javax.faces.validator) to the class, add the validator

ID to this annotation as in @FacesValidator("com.example.

MyValidator"), and use the very same ID as a validatorId

attribute in a <f:validator> tag that you add as a child to the

component. The tag’s attributes are as follows:

• disabled: Whether or not this validator is disabled. A value

expression of type Boolean.

• validatorId: The validator ID. A value expression of type String.

• for: You can use this to explicitly specify a component (add its

ID here) for which the validator acts. A value expression of type

String.

• binding: A javax.faces.validator.Validator to bind to this

component. Advanced applications only; normally you don’t

have to use it. A value expression of type Validator.

 – <f:validateBean>

Enable bean validation (version 2.0, jsr 380) on the input

component this tag has been added to as a child. Bean validation

means the injected class contains bean validation annotations like

@NotBlank in the following:

 import javax.validation.constraints.NotBlank;

 ...

 public class TheClass {

 @NotBlank(message =

 "Last name must not be empty")

 private String lastName;

 ...

 }

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

103

If the message is enclosed in curly brackets like in {some.msg.

key}, the some.msg.key will be used as a property key from

file src/main/resources/ValidationMessages.properties

or localized variants like .../ValidationMessages_xx_

XX.properties, where xx_XX specifies a language like en or en_US.

The bean validation framework specifies quite a few validation

annotations—see the jsr 380 specification for details (the used

bean validation version reads 2.0). The tag’s attributes are as

follows:

• disabled: Whether or not this validator is disabled. A value

expression of type Boolean.

• validationGroups: A comma-separated list of validation groups.

A validation group is a fully qualified class name. A value

expression of type String.

• for: You can use this to explicitly specify a component (add its

ID here) for which the validator acts. A value expression of type

String.

• binding: A javax.faces.validator.BeanValidator to bind to

this component. Advanced applications only; normally you don’t

have to use it. A value expression of type BeanValidator.

 – <f:validateRequired>

Checks whether a value was entered at all. Same as setting the

required="true" attribute. The tag’s attributes are as follows:

• disabled: Whether or not this validator is disabled. A value

expression of type Boolean.

• for: You can use this to explicitly specify a component (add its

ID here) for which the validator acts. A value expression of type

String.

• binding: A javax.faces.validator.RequiredValidator

to bind to this component. Advanced applications only;

normally you don’t have to use it. A value expression of type

RequiredValidator.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

104

 – <f:validateLongRange>

Checks whether an integer number entered lies in a certain range

specified by this tag. The tag’s attributes are as follows:

• disabled: Whether or not this validator is disabled. A value

expression of type Boolean.

• minimum: The minimum value. A value expression of type long.

• maximum: The maximum value. A value expression of type long.

• for: You can use this to explicitly specify a component (add its

ID here) for which the validator acts. A value expression of type

String.

• binding: A javax.faces.validator.LongRangeValidator

to bind to this component. Advanced applications only;

normally you don’t have to use it. A value expression of type

LongRangeValidator.

 – <f:validateDoubleRange>

Checks whether a floating point number entered lies in a certain

range specified by this tag. The tag’s attributes are as follows:

• disabled: Whether or not this validator is disabled. A value

expression of type Boolean.

• minimum: The minimum value. A value expression of type

double.

• maximum: The maximum value. A value expression of type

double.

• for: You can use this to explicitly specify a component (add its

ID here) for which the validator acts. A value expression of type

String.

• binding: A javax.faces.validator.DoubleRangeValidator

to bind to this component. Advanced applications only;

normally you don’t have to use it. A value expression of type

DoubleRangeValidator.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

105

 – <f:validateLength>

Checks whether an input’s length lies in a certain range. The tag’s

attributes are as follows:

• disabled: Whether or not this validator is disabled. A value

expression of type Boolean.

• minimum: The minimum length. A value expression of type int.

• maximum: The maximum length. A value expression of type int.

• for: You can use this to explicitly specify a component (add its

ID here) for which the validator acts. A value expression of type

String.

• binding: A javax.faces.validator.LengthValidator to bind to

this component. Advanced applications only; normally you don’t

have to use it. A value expression of type LengthValidator.

 – <f:validateRegex>

A quite powerful validator via which you can use regular

expressions to validate the input. The tag’s attributes are as

follows:

• disabled: Whether or not this validator is disabled. A value

expression of type Boolean.

• pattern: The regular expression pattern to check against. A value

expression of type String.

• for: You can use this to explicitly specify a component (add its

ID here) for which the validator acts. A value expression of type

String.

• binding: A javax.faces.validator.RegexValidator to bind to

this component. Advanced applications only; normally you don’t

have to use it. A value expression of type RegexValidator.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

106

As an example, consider a text-input component that we want to make sure is both

required and evaluates to an integer between 1000 and 9999. We use the long-range

check and write the following:

 <h:inputText vale="...">

 <f:validateRequired />

 <f:validateLongRange minimum="#{1000}" maximum="#{9999}" />

 </h:inputText>

We wrote #{1000} and #{9999} to make sure the attributes get numerical values

instead of strings.

To achieve the same result, we can also use a regular expression validator, as follows:

 <h:inputText vale="...">

 <f:validateRegex pattern="[1-9]\d{3}" />

 </h:inputText>

 Converter Core Tags
For the conversion from string objects to any other Java type, converters get used. We

need such conversions because text input and output fields present or serve string

values, but the value expressions connected to the fields via value expressions may

represent other types. Consider, for example, the following injected class:

 @SessionScoped

 @Named

 public class TheClass implements Serializable {

 private LocalDateTime date; // + getter/setter

 }

and the following JSF template snippet:

 <h:inputText value="#{theClass.date}" />

This won’t work, because even though the value attribute of <h:inputText>

connects to a java.lang.Object, in the end it needs a String value for rendering, and it

needs a way to convert back from string input to the target LocalDateTime object.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

107

One way of specifying such a converter is by using the converter attribute of the

input component, but it is also possible to use nested converter child elements, as in the

following:

 <h:inputText value="#{theClass.date}">

 <f:convertDateTime pattern="yyyy-MM-dd HH:mm:ss"

 type="both"/>

 <h:inputText>

The following is a list of converter tags you can nest inside input components:

 – <f:converter>

Registers a named Converter instance to its closest parent

component. To create a named converter, build a class

implementing Converter (package javax.faces.convert)

and add a @FacesConverter (package javax.faces.convert)

annotation to the class, specifying a converter name as the

annotation parameter, as follows:

 import javax.faces.convert.∗;
 ...

 @FacesConverter("com.example.MyConverter")

 public class TheConverter implements Converter {

 [...implement methods...]

 }

You then use the converter ID inside the <f:converter> tag,

attribute converterId. The following is the full list of possible

attributes:

• converterId: The converter ID. A value expression of type String.

• for: You can use this to explicitly specify a component (add its

ID here) for which the converter acts. A value expression of type

String.

• binding: A javax.faces.convert.Converter to bind to this

component. Advanced applications only; normally you don’t

have to use it. A value expression of type Converter.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

108

 – <f:convertNumber>

A specialized converter for numbers. This converter is able to

handle integers, floating point numbers, percentages, and money

amounts. Its attributes are the following:

• currencyCode: ISO 4217 currency code for formatting

currencies. A value expression of type String.

• currencySymbol: Currency symbol used for formatting

currencies. A value expression of type String.

• groupingUsed: Whether grouping gets used for numbers. A value

expression of type Boolean.

• integerOnly: Only the integer part of a number gets rendered and

parsed. A value expression of type Boolean.

• locale: The locale to use for formatting numbers. Either a value

expression evaluating to java.util.Locale or a string value

expression usable as the first argument to the Locale class

constructor (the second constructor parameter is set to the empty

string “”). A value expression of type Object.

• maxFractionDigits: Maximum number of fraction digits. A value

expression of type int.

• minFractionDigits: Minimum number of fraction digits. A value

expression of type int.

• maxIntegerDigits: Maximum number of integer digits. A value

expression of type int.

• minIntegerDigits: Minimum number of integer digits. A value

expression of type int.

• pattern: A custom pattern; see API documentation of java.text.

DecimalFormat. A value expression of type String.

• type: The number type, one of: “number” (default), “currency,”

“percent.” A value expression of type String.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

109

• for: You can use this to explicitly specify a component (add its

ID here) for which the converter acts. A value expression of type

String.

• binding: A javax.faces.convert.NumberConverter to bind to

this component. Advanced applications only; normally you don’t

have to use it. A value expression of type NumberConverter.

 – <f:convertDateTime>

A specialized converter for dates and times. It is able to handle

both the older java.util.Date class and the classes from java.

time (since Java 8). Its attributes are as follows:

• type: The date/time type, one of: “date,” “time,” or “both.” Default

is “date”. A value expression of type String.

• dateStyle: Predefined formatting style—only if type is “date” or

“both.” One of: “default” (default), “short,” “medium,” “long,”

“full.” A value expression of type String.

• timeStyle: Predefined formatting style—only if type is “time” or

“both.” One of: “default” (default), “short,” “medium,” “long,” or

“full.” A value expression of type String.

• pattern: A custom pattern; see online API documentation of

java.time.format.DateTimeFormatter. A value expression of

type String.

• locale: The locale to use for formatting dates and times. Either

a value expression evaluating to java.util.Locale or a string

value expression usable as the first argument to the Locale class

constructor (the second constructor parameter is set to “”). A

value expression of type Object.

• timeZone: A java.util.TimeZone typed value expression, or a

string value expression usable as timezone ID as described in

java.util.TimeZone.getTimeZone(). A value expression of type

Object.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

110

• for: You can use this to explicitly specify a component (add its

ID here) for which the converter acts. A value expression of type

String.

• binding: A javax.faces.convert.DateTimeConverter to bind to

this component. Advanced applications only; normally you don’t

have to use it. A value expression of type DateTimeConverter.

 Exercise 6
To the household accounting application, add a new property value of type double, and

add a new text-input component with label Value (#.##): to the JSF template page.

Add a converter tag to make sure the user enters correct numbers. Add a validator to

make sure no negative numbers can be entered.

 Selection Items Core Tags
For the various <select* > components designating selectables like checkboxes,

checkbox lists, menu lists, and radio buttons we need to specify the selectable items.

This can be done by several <f:selectItem> children or one <f:selectItems> child, as

follows:

 <h:selectManyCheckbox value="#{theClass.checks1}">

 <f:selectItem itemValue="v1" itemLabel="Item 1" />

 <f:selectItem itemValue="v2" itemLabel="Item 2" />

 <f:selectItem itemValue="v3" itemLabel="Item 3" />

 ...

 </h:selectManyCheckbox>

 <h:selectManyCheckbox value="#{theClass.checks2}">

 <f:selectItems value = "#{theClass.smcbItems}" />

 </h:selectManyCheckbox>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

111

In detail:

 – <f:selectItem>

A single checkbox, checkbox list item, selectable list item,

selectable menu item, or radio button. The possible attributes are

as follows:

• id: The ID. A String. Not a value expression!

• itemLabel: The label to be displayed. A value expression of type

String.

• escape: A Boolean flag indicating whether characters in the label

that are sensitive to HTML and XML are to be escaped. A value

expression of type Boolean. Defaults to true.

• itemValue: The value of this item. A value expression of type

String.

• itemDisabled: Whether or not this item is to be disabled. A value

expression of type Boolean.

• value: The value describing the selected state of this item. An

input/output value expression of type javax.faces.model.

SelectItem.

• noSelectionOption: Whether the option created by this item

represents the special “not selected” option. A value expression of

type Boolean. Default is false.

• binding: A javax.faces.component.UIComponent to bind to this

component. Advanced applications only; normally you don’t

have to use it. A value expression of type UIComponent.

• itemDescription: The description. Will not be used for

rendering, but serves as a hint for development tools. A value

expression of type String.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

112

 – <f:selectItems>

All items from a checkbox list, selectable list, selectable menu, or

radio button set. The possible attributes are as follows:

• id: The ID. A String. Not a value expression!

• value: Represents the list of all selectable items. This is a value

expression pointing to a collection (java.util.List or java.

util.Set), an array, or a map. If you use a collection or an array,

as element type use javax.faces.model.SelectItem or a plain

Java object (bean). If you use a Java object, you must use the var

attribute to expose the item object and refer to it from various

other attributes. Underneath this list an example gets worked out.

If the value points to a map, each map member key gets used as

the label and the corresponding map member value gets used as

the item value.

• var: The name of a formal variable each item gets assigned to. A

String. Not a value expression!

• itemLabel: The label to be displayed. Use the variable you named

at val to refer to the item. A value expression of type String.

• itemValue: The value of this item. Use the variable you named at

val to refer to the item. A value expression of type String.

• itemDisabled: Whether or not this item is to be disabled. Use the

variable you named at val to refer to the item. A value expression

of type Boolean.

• itemLabelEscaped: A Boolean flag indicating whether characters

in the label that are sensitive to HTML and XML are to be

escaped. Use the variable you named at val to refer to the item. A

value expression of type Boolean. Defaults to true.

• itemDescription: The description. Will not be used for

rendering, but serves as a hint for development tools. Use the

variable you named at val to refer to the item. A value expression

of type String.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

113

• noSelectionValue: The element from the “value” collection, or

its exact toString() representation, for the option created by

that item to represent the special “not selected” option. A value

expression of type Object.

• binding: A javax.faces.component.UIComponent to bind to this

component. Advanced applications only; normally you don’t

have to use it. A value expression of type UIComponent.

If you use <f:selectItems> and use a “value” pointing to a collection or an array

of javax.faces.model.SelectItem objects, what will be used for the label and value

of each item is determined by the SelectItem class. In this case, you don’t have to

specify any of var, itemLabel, itemValue, itemDisabled, itemLabelEscaped, or

itemDescription. See the following:

 <h:selectManyCheckbox value="#{theClass.sel}">

 <f:selectItems value="#{theClass.items}" />

 </h:selectManyCheckbox>

The class reads as follows:

 @Named

 @SessionScoped

 public class TheClass implements Serializable {

 ...

 public List<SelectItem> getItems() {

 return ...

 }

 }

If, however, the collection or array contains plain Java objects, you must manually

extract the item members, as follows:

 <h:selectManyCheckbox value="#{theClass.sel}">

 <f:selectItems

 value="#{theClass.items}"

 var="itm"

 itemLabel="#{itm.lab}"

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

114

 itemValue="#{itm.val}"

 />

 </h:selectManyCheckbox>

where each item has a String getLab() and String getVal() method, as follows:

 @Named

 @SessionScoped

 public class TheClass implements Serializable {

 public static class Itm {

 ...

 public String getLab() { return ... }

 public String getVal() { return ... }

 }

 ...

 public List<Itm> getItems() {

 return ...

 }

 }

 Listener Core Tags
Listeners are for crosscutting activities on your page. Say, for example, you have an

action button that finishes a registration step a user accomplishes on some of your

pages. At some later stage of the project, the stakeholders introduce statistical audits as

an additional requirement, so you want to count the final registration step in both the

back-end logic and the page flow. For the latter to be implemented you can add an action

listener to the registration button. You don’t have to change the existing front-end logic

at all; the listener is just an additional step that does not interfere with what was already

developed.

To add the listener you can add the actionListener attribute to <h:commandButton>.

We described that in the HTML RenderKit description earlier in this chapter. But there

are also dedicated core tags that let us write the following:

 <h:commandButton value="#{bundle.register}"

 action="#{user.register}">

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

115

 <f:actionListener

 type="com.example.listeners.RegisterListener"

 />

 </h:commandButton>

where com.example.listeners.RegisterListener points to a suitable listener class

(of course, use a decent package and class name that fit your application), as follows:

 package com.example.listeners;

 import javax.faces.event.*;

 public class RegisterListener

 implements ActionListener {

 @Override

 public void processAction(ActionEvent event)

 throws AbortProcessingException {

 System.err.println("!!! ACTION !!!");

 }

 }

There are also listeners for value changes, phase propagation (we’ll talk about JSF phases

later in this chapter at “Overview of the JSF Page Flow”), and a special action listener that

directly sets properties of injected bean classes. The complete list reads as follows:

 – <f:actionListener>

Adds an ActionListener implementation to the surrounding

action input component. The attributes are as follows:

• type: The fully qualified class name of an implementation of

javax.faces.event.ActionListener. A value expression of type

String.

• for: You can use this to explicitly specify a component (add its

ID here) for which the action listener is responsible. A value

expression of type String.

• binding: A javax.faces.event.ActionListener to bind to this

component. Advanced applications only; normally you don’t

have to use it. A value expression of type ActionListener.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

116

 – <f:valueChangeListener>

Adds a ValueChangeListener implementation to the surrounding

action input component. Fires if an input has its value changed

and loses focus. The attributes are as follows:

• type: The fully qualified class name of an implementation of

javax.faces.event.ValueChangeListener. A value expression

of type String.

• for: You can use this to explicitly specify a component (add its ID

here) for which the value change listener is responsible. A value

expression of type String.

• binding: A javax.faces.event.ValueChangeListener to bind to

this component. Advanced applications only; normally you don’t

have to use it. A value expression of type ValueChangeListener.

 – <f:phaseListener>

Adds a PhaseListener implementation to the document. The

attributes are as follows:

• type: Fully qualified class name of an implementation of javax.

faces.event.PhaseListener. A value expression of type String.

• binding: A javax.faces.event.PhaseListener to bind to this

component. Advanced applications only; normally you don’t

have to use it. A value expression of type PhaseListener.

 – <f:setPropertyActionListener>

Adds a special action listener that updates an injected Java

object’s field upon execution. The attributes are as follows:

• value: The value to set. A value expression of type Object.

• target: (required) The target field that receives the value once the

listener fires. An input value expression of type Object.

• for: You can use this to explicitly specify a component (add its

ID here) for which the action listener is responsible. A value

expression of type String.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

117

 AJAX Core Tags
AJAX is about asynchronous processing of user interactions without reloading the

complete page or advancing to a completely new page. The idea of using AJAX for JSF is as

follows: without reloading the whole page or advancing to a new page, take a certain set

of input components, send the associated values to the server, perform some processing

there, and from the outcome re-render a certain set of components on the page.

Consider, for example, a form with two inputs for a first name and a last name of the

user, another input for her birthday, and an output for the combined name, as follows:

<h:form id="form1">

 <h:inputText id="firstName"

 value="#{ajaxBean.firstName}">

 </h:inputText>

 <h:inputText id="lastName"

 value="#{ajaxBean.lastName}">

 </h:inputText>

 <h:inputText id="birthday"

 value="#{ajaxBean.birthday}">

 <f:convertDateTime pattern="yyyy-MM-dd"

 type="date"/>

 </h:inputText>

 <h:outputText id="combinedName"

 value="#{ajaxBean.combinedName}">

 </h:outputText>

 <h:commandButton value="#{bundle.submit}"

 action="#{ajaxBean.submit}">

 </h:commandButton>

</h:form>

The corresponding injected Java class reads:

 import java.io.Serializable;

 import java.time.LocalDate;

 import javax.enterprise.context.SessionScoped;

 import javax.inject.Named;

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

118

 @SessionScoped

 @Named

 public class AjaxBean implements Serializable {

 private String firstName = ""; // + getter/setter

 private String lastName = ""; // + getter/setter

 private LocalDate birthday; // + getter/setter

 public String submit() {

 System.err.println("submit: " + firstName +

 " " + lastName);

 return null;

 }

 public String getCombinedName() {

 return firstName + " " + lastName;

 }

}

This page is fully functional—once you enter values for the name inputs and press

the “Submit” button, the method submit() gets called, the same page gets loaded again,

and the combined name gets written to the text-output component. No miracle so far.

What we want to change to streamline the communication with the server is to send first

and last name to the server and only update the combined name, with no reloading of

the complete page. This is where the core tag <f:ajax> can help us, as in the following:

 ...

 <h:commandButton value="#{bundle.submit}"

 action="#{ajaxBean.submit}">

 <f:ajax event="action"

 execute="firstName lastName"

 render="combinedName"/>

 </h:commandButton>

 ...

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

119

The rest of the template file stays unchanged. A click on the “Submit” button now

changes its behavior as follows:

• Because of the event="action" in the AJAX tag, AJAX now will take

care of the submit action. Since “action” is the default event for

submit buttons, this attribute could also have been left away here.

• The firstName lastName in the execute attribute tells which data

need to be sent to the server. We want to update the combined name,

so here we add the IDs of the corresponding input fields.

• The combinedName in the render attribute tells which fields to update

as a result of the AJAX call. This could also be a space-delimited list of

IDs.

To make it a little bit easier to gather the components you need as input for the AJAX

call, you can create a container for them using <h:panelGroup>, as follows:

 <h:panelGroup id="ajaxGroup">

 <h:inputText id="firstName"

 value="#{ajaxBean.firstName}">

 </h:inputText>

 <h:inputText id="lastName"

 value="#{ajaxBean.lastName}">

 </h:inputText>

 </h:panelGroup>

 ...

 <h:commandButton value="#{bundle.submit}"

 action="#{ajaxBean.submit}">

 <f:ajax event="action"

 execute="ajaxGroup"

 render="combinedName"/>

 </h:commandButton>

</h:form>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

120

But AJAX can do more than just interfere with button clicks. Consider the following code:

<h:form id="form1">

 <h:panelGroup id="ajaxGroup">

 <h:inputText id="firstName"

 value="#{ajaxBean.firstName}">

 <f:ajax execute="ajaxGroup" render="combinedName"/>

 </h:inputText>

 <h:inputText id="lastName"

 value="#{ajaxBean.lastName}">

 <f:ajax execute="ajaxGroup" render="combinedName"/>

 </h:inputText>

 </h:panelGroup>

 <h:inputText id="birthday" value="#{ajaxBean.birthday}">

 <f:convertDateTime pattern="yyyy-MM-dd" type="date"/>

 </h:inputText>

 <h:outputText id="combinedName"

 value="#{ajaxBean.combinedName}">

 </h:outputText>

 <h:commandButton value="#{bundle.submit}"

 action="#{ajaxBean.submit}" />

</h:form>

Here, I removed the AJAX tag from the button and instead added two AJAX tags

to the two name input components. First of all, you’ll notice that these two AJAX

tags don’t have an event attribute. This means we revert to the default events for the

input components, which happen to be valueChange for all text input components. A

valueChange gets fired when the component’s value is altered and it loses the focus. Now

if you enter something in one of the input fields and exit the focus (press TAB or click

somewhere else), AJAX will start working, and the combined name will be updated.

The same thing happens if we shorten this a little bit and let the AJAX tag surround

the two input components, as follows:

 <h:form id="form1">

 <f:ajax render="combinedName">

 <h:inputText id="firstName" value="#{ajaxBean.firstName}">

 </h:inputText>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

121

 <h:inputText id="lastName" value="#{ajaxBean.lastName}">

 </h:inputText>

 </f:ajax>

 <h:inputText id="birthday" value="#{ajaxBean.birthday}">

 <f:convertDateTime pattern="yyyy-MM-dd" type="date"/>

 </h:inputText>

 <h:outputText id="combinedName" value="#{ajaxBean.combinedName}">

 </h:outputText>

 <h:commandButton value="#{bundle.submit}"

 action="#{ajaxBean.submit}">

 </h:commandButton>

</h:form>

Because the panel group’s sole purpose was to gather input components and the

container spanned up by the AJAX tag now does this job, the panel group could also be

removed. A surrounding <f:ajax> tag without an event specification always acts this

way: it adds an AJAX handler to all AJAX-capable components from the complete sub-

tree contained, using each component’s default event.

Note The command buttons and command links have action (pressed) as the
default AJAX event, while all text-input components (texts, text areas, passwords)
and all select components have valueChange (value changed and focus lost) as
their default AJAX event.

The details of the AJAX tag read as follows:

 – <f:ajax>

Enables AJAX for the parent component, or recursively for all

children components. The attributes are as follows:

• disabled: Whether or not the AJAX tag is disabled. A value

expression of type Boolean.

• event: Tells which event triggers the AJAX communication. One

of: action (for command buttons and links), valueChange (value

changed and focus lost), or xyz if onxyz is a valid JavaScript

event for the component. If unspecified, the default event for the

component gets chosen. A value expression of type String.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

122

• execute: A value expression of type Collection<String>, or a

literal space-delimited list of IDs. The expression is supposed

to evaluate to the IDs of the components that participate as

input components for executing the AJAX request, or that

serve as containers for such input components (for example,

<h:panelGroup> containers). Inside the list, you may add

elements @this (current component), @form (all of the current

form), @all, and @none. If unspecified, @this is assumed.

• render: A value expression of type Collection<String>, or a

literal space-delimited list of IDs. The expression is supposed to

evaluate to the IDs of the components that should be updated as

a result of the AJAX request, or that serve as containers for such

components (for example, <h:panelGroup> containers). Inside

the list, you may add elements @this (current component), @form

(all of the current form), @all, and @none. If unspecified, @none is

assumed.

• immediate: If true, events are broadcast during the “Apply

Request Values” phase. Otherwise, the standard “Invoke

Applications” phase will be responsible for the AJAX events to

happen. Default is false. A value expression of type Boolean.

• listener: A method expression. Must point to a method public

void theName(javax.faces.event.AjaxBehaviorEvent)

throws javax.faces.event.AbortProcessingException. This is

a method that gets invoked after the AJAX event has fired.

• onevent: The name of a JavaScript function for handling AJAX-

related status changes. The function will get a parameter object

with the following properties: responseXML (the response to

the AJAX call, in XML format), responseText (the same in text

format), responseCode (some numeric response code), source

(the DOM source of the event), status (one of begin, complete,

and success), type (the type of the AJAX call: “event”).

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

123

• onerror: The name of a JavaScript function for handling AJAX-

related errors. The function will get a parameter object with the

following properties: description, errorName, errorMessage,

plus the properties described earlier for the onevent handler

(type will be error, status will be one of emptyResponse,

httpError, malformedXML, or serverError).

 Other Core Tags
There are a couple more, less often used core tags. I just list them here briefly, so you will

have heard about them. For details about using them, consult the online documentation.

 – <f:verbatim>

Create and register a child UIOutput component associated with

the closest parent UIComponent custom action, which renders

nested body content. The contents of this tag output as-is, without

any processing by JSF. This tag is deprecated, so do not use it! With

the current JSF version you can write HTML code anywhere, or

you can use the <h:outputText> tag.

 – <f:event>

Allow JSF page authors to install ComponentSystemEventListener

instances on a component in a page.

 – <f:loadBundle>

Load a resource bundle localized for the locale of the current view,

and expose it as a java.util.Map in the request attributes of the

current request under the key specified by the value of the var

attribute of this tag.

 – <f:view>

Container for all JSF core and custom component actions used on

a page. Only needed if you want to override page locale, encoding,

or content type. Normally you don’t need it.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

124

 – <f:subview>

Container action for all Java Server Faces core and custom

component actions used on a nested page via jsp:include

or any custom action that dynamically includes another page

from the same web application, such as JSTL’s c:import. Using

<f:subview>, you introduce a new naming context, which under

certain circumstances can help to avoid ID name clashes.

 – <f:metadata>

Declares the metadata facet for this view.

 – <f:viewParam>

Used inside of the metadata facet of a view, this tag causes a

UIViewParameter to be attached as metadata for the current view.

You can use this to read parameters that were passed over while

navigating to this page.

 – <f:viewAction>

Used inside of the metadata facet of a view. Specifies custom

actions to be executed during JSF lifecycle events.

 The Pass-Through Namespace
If you look at the examples for JSF template files we have introduced so far, you’ll notice

that we included a namespace xmlns:pt = "http://xmlns.jcp.org/jsf/passthrough."

This namespace does not belong to any tag library, so the question is, what is it good for?

Consider the following HTML 5 example snippet:

 <input type="text" data-category="food" />

This is a text-input field with an additional non-standard attribute, data-category,

which might be used, for example, by some JavaScript included with the page. HTML 5

allows the use of such data-* custom attributes. The thing is, JSF doesn’t know about

such custom attributes, and if we use the standard HTML <h:inputText> tag, there is of

course no such data-* field allowed.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

http://xmlns.jcp.org/jsf/passthrough

125

But there is a tricky way to circumvent this restriction, and here comes the pass-

through namespace into the game: JSF can handle attributes with the pass-through

namespace, and for such attributes no restrictions apply; they will just be passed through

unaltered. So if we write the following:

 <h:inputText id="item" value="#{whatever.whatever}" pt:data-

category="food" />

JSF won’t complain about this unknown attribute, and the rendered HTML will

include exactly this custom attribute:

 <input id="form1:item"

 type="text"

 name="form1:item"

 value=""

 data-category="food" />

The same procedure holds for cases where HTML 5 tags use some standard

attributes that JSF for some reason does not yet know about. You can at least add such

unknown attributes using the pass-through namespace, even though JSF will not use

them for templating or tag processing.

 Navigation Between Pages
To advance from one page to another you typically use one of the submit action

components, <h:commandButton> or <h:commandLink>. Inside the action attribute of

either of them you specify a method expression, as follows:

 <h:commandButton ... action="#{injected.someAction}" />

 <!-- or -->

 <h:commandLink ... action="#{injected.someAction}" />

And inside the method you return a string initiating a navigation case, as follows:

 @Named @SessionScoped

 public class Injected implements Serializable {

 ...

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

126

 public String someAction() {

 ... do whatever ...

 return "page2";

 }

 }

If you don’t need anything done inside the injected bean and just want to advance to

a certain page, you can also circumvent the method call and directly write the following:

 <h:commandButton ... action="page2" />

 <!-- or -->

 <h:commandLink ... action="page2" />

In all these cases, a click on the button or link will advance to page page2.xhtml.

More precisely, you have the following options to advance to a new page or reload

the current page:

• If the method returns null or you omit the action attribute

altogether, the form gets processed and the current page gets

reloaded.

• If the method returns some string “xyz” and the file faces-config.

xml does not define a navigation rule for the processed method and

the returned outcome, a so-called auto-navigation happens: JSF

tries to process and load a page template file xyz.xhtml. In all the

examples we have presented so far, this auto-navigation procedure

was used.

• If the file faces-config.xml contains an entry like the following:

 <navigation-rule>

 <from-view-id>main.xhtml</from-view-id>

 <navigation-case>

 <from-action>#{injected.someAction}

 </from-action>

 <from-outcome>xyz</from-outcome>

 <to-view-id>/someOtherPage.xhtml</to-view-id>

 </navigation-case>

 </navigation-rule>

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

127

(remove the line break and the spaces before </from-action>),

a matching specified rule and navigation case will take effect

instead of auto-navigation. In this case, if we are on page

main.xhtml, and method someAction() was invoked, and its

outcome was “xyz”, the form will be processed and then the page

someOtherPage.xhtml will be processed and rendered.

 Exercise 7
In the household accounting application, create a page response.xml summarizing the

data entered in the form, and let the “Submit” button from the main entry page advance

to the response page. On the response page, add a <h:button> returning to the main

entry page.

 More Injection
We know that for value and method expressions we refer to injected classes. Inside

these classes, we can have properties injected that help us to further build up various

functionalities. As an example consider the following class:

import javax.enterprise.context.SessionScoped;

import javax.faces.context.ExternalContext;

import javax.faces.context.FacesContext;

import javax.inject.Inject;

import javax.inject.Named;

import javax.servlet.ServletContext;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpSession;

@Named

@SessionScoped

public class Accounting implements Serializable {

 @Inject private FacesContext facesContext;

 @Inject private HttpServletRequest servletRequest;

 @Inject private ExternalContext externalContext;

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

128

 @Inject private ServletContext servletContext;

 @Inject private HttpSession httpSession;

 ...

}

For these properties you don’t even have to provide getters and setters, as the CDI

(context and dependency injection) engine takes care of initializing these properties

properly. You can use them for parameter queries, context parameters, session and

request characteristics, and more.

Caution For JSF 2.3, some kind of compatibility mode gets used and so the
faces context cannot be injected by default. To be able to use it, add class import
javax.faces.annotation.FacesConfig; @FacesConfig(version =
FacesConfig.Version.JSF_2_3) public class ConfigurationBean
{ } (yes, it is empty) anywhere in your package hierarchy.

It is also possible to hook in the instance creation and destruction procedure by

annotating methods (arbitrary names) with the @PostConstruct and @PreDestroy

annotations (both from package javax.annotation), as follows:

@Named

@SessionScoped

public class Accounting implements Serializable {

 ...

 @PostConstruct public void constr() {

 ...

 }

 @PreDestroy public void destr() {

 ...

 }

}

You can use this for preparing or cleaning up, and for monitoring and logging

purposes.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

129

 Overview of the JSF Page Flow
A JSF application is wired to an instance of the FacesContext class. You don’t often have

to deal with that class explicitly, but it is important to know that each page, once built

up, corresponds with a data structure called a view, and that this view gets stored in the

FacesContext.

When a page gets called the first time, a view gets created that later will contain

all the data elements for all the JSF elements defined in the page. This view then gets

populated given the JSF elements from the template file (the XHTML file in our case).

The view will be directly translated to the data stream sent to the browser.

When a page that already exists gets called as the result of posting a form, the

standard JSF lifecycle gets traversed: Restore view ➤ Apply requests values ➤ Process

validations ➤ Update model values ➤ Invoke application ➤ Render response. In detail:

 1. Restore View

The view gets restored, meaning it will be pulled from the

FacesContext given the name of the page.

 2. Apply Request Values

The values sent with the form posting will be received, assigned

to their corresponding view elements, and saved for future

processing. The assignment builds a relationship, but does not yet

overwrite old values!

 3. Process Validations

The validations associated with the view elements will be

processed. Validation get explicitly specified in the template file

(XHTML in our case). If all validations on a page succeed, the next

phase in the lifecycle gets called. If at least one validation fails, an

error message gets generated, the chain gets shortcutted, and the

“Render Response” phase will be next instead.

 4. Update Model Values

The new values from the “Apply Request Values” as a result of a

form post now overwrite the old view values.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

130

 5. Invoke Application

This is for preparing the navigation to other pages. It includes

calling submit action methods which can perform any suitable

application activities like invoking back-end components.

 6. Render Response

The data stream to be sent to the browser gets built, and the view

will be stored in the FacesContext

See Figure 4-3.

Figure 4-3. JSF lifecycle and example input field

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

131

This process chain can be altered by adding an XML attribute immediate="true" to

one or more components. Consider the following example:

 <h:inputSecret id="password" autocomplete="off"

 value="#{auth.passwd}"

 required="true"

 requiredMessage="Password is Required" />

 <p:commandLink action="#{auth.forgotPassword}"

 immediate="true">

 <h:outputText value="#{bundle.link_forgotpasswd']}" />

 </p:commandLink>

Here the immediate="true" for the “forgot password” link leads to the validation of

the password field’s getting skipped. Which makes sense, since for cases when this link

gets pressed the password entry no longer is needed. More precisely, what immediate

does is the following: if added to input components like input fields (subclasses of

UIInput), their validation gets brought forward to the “Apply Request Values” phase.

This means that if their validation fails, components not marked with immediate="true"

will just be ignored as far as concerns the “Process Validations” phase, so they won’t get

validated. If a command field (button or link, subclass of UICommand) gets marked with

immediate="true," invoking it leads to the skipping of the three phases “Apply Request

Values,” “Process Validations,” and “Update Model Values” for all fields except for those

also marked with immediate="true."

If during the “Process Validations” phase a component validation fails, the FacesContext

gets an error message added for this component and the chain fast- forwards to the “Render

Response” phase, skipping “Update Model Values” and “Invoke application.”

If at any stage a programmatic renderResponse() gets called on FacesContext, the

current phase gets completed but immediately afterward the “Render Response” phase

will be called, skipping the other phases which have not been invoked yet. By calling

responseComplete() even the ”Render Response” phase can be skipped - you’d use this

if you want to leave JSF processing and establish non-JSF means to generate a HTTP

response data stream.

For any phase except the “Restore View” phase, event listeners can be registered,

which you can use for additional processing steps. This is also the place where you

can call renderResponse() to fast-forward to the “Render Response” phase, or

responseComplete() to quit JSF processing altogether.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

132

 Exercise 8
Add a phase listener tag to your page, and let it output diagnostic info. Hint: Use event.

getPhaseId().getName() for the diagnostic output. Hint: In the listener class, let

method getPhaseId() return PhaseId.ANY_PHASE. Load and reload any page to see the

listener in action.

ChApTER 4 BUILdIng pAgE-FLoW WEB AppLICATIonS WITh JSF

133
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_5

CHAPTER 5

Building Single-Page
Web Applications
with REST and JSON
In Chapter 4 we talked about creating multi-page web applications via Java server faces

(JSF). The central paradigm of JSF is the communication between the user (browser)

and the server via forms, although using the <f:ajax> tag makes a more fine-grained

communication possible because only the form part needs to be transmitted to the server.

A totally different paradigm operates under the name single-page application or

SPA. Here, only one page gets loaded for the whole application, the user interaction or

front-end logic gets handled by JavaScript, and the communication between the page on

the browser and the server happens via AJAX using data snippets formatted as JSON.

To this aim, different JavaScript frameworks exist that help to streamline the front-

end logic. There, you will also find ways to handle menus for structuring the application,

as well as techniques to handle user interaction in an elegant if not beautiful manner. In

this chapter, we will talk about SPAs, but we will keep the front-end logic at a minimum

and leave the discussion about JavaScript frameworks for a follow-up book. For our

purposes, it is enough to include the jQuery library, which is not a full-fledged SPA

framework but helps a lot for demonstrating SPA techniques.

 A RESTful Server Inside Jakarta EE
A Jakarta EE 8 server by default comes with all that we need for a single-page application.

Consider a very simple application that just provides a REST interface for reading the

current date and time. Let us call it “rest-date.” To create it, in the Project Explorer pane

134

on the left side of the Eclipse window, right-click and select New ➤ Project... and select

Maven ➤ Maven Project. Choose “maven-archetype-quickstart” from the archetypes

catalog, and then enter the following project data:

 Group-Id: book.jakarta8

 Artifact-Id: restdate

 Version: 0.0.1-SNAPSHOT

Rename the package to “book.jakarta8.restdate.”

Next, we add the Jakarta EE API library to the project. To do so, open the pom.xml file

and, in the dependencies section, add the following:

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-api</artifactId>

 <version>8.0</version>

 </dependency>

In the same file, change the packaging to <packaging>war</packaging>.

Make sure the Java JDK gets used in version 8. To check that, right-click on the

project in the Project Explorer, then go to Properties. Navigate to “Java Build Path” ➤

“Libraries” tab. Make sure the correct JRE system library is shown.

To also make sure the build tool Maven uses the correct Java version, open pom.xml.

Check that it contains or add the following:

 <project ...>

 ...

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

 </project>

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

135

If you changed something in the pom.xml file, right-click on the project, and then

invoke Maven ➤ Update Project....

Next, we convert the project to a faceted project. To do so, right-click on the project

in the Project Explorer, then select Configure ➤ Convert to Faceted Form.... If this menu

entry does not exist, the project is already faceted. In the Facets dialog, which you see

after you click “Convert to Faceted Form...” or via right-clicking on the project name ➤

Properties ➤ Project Facets, check and enter the following:

 Dynamic Web Module 4.0

 Java 1.8

 JavaScript 1.0

 JAX-RS 2.1

If it is not possible to change a version, remove the check, click “Apply and Close,”

and open the dialog again. Then you can recheck and select the desired version.

Make sure the following folder exists: “src/main/webapp/WEB-INF”—if the folder

doesn’t exist, create it.

If it does not yet exist, create the file src/main/webapp/WEB-INF/glassfish-web.xml.

Let its contents read as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE glassfish-web-app PUBLIC

 "-//GlassFish.org//DTD GlassFish Application Server

 3.1 Servlet 3.0//EN"

 "http://glassfish.org/dtds/glassfish-web-app_3_0-1.dtd">

<glassfish-web-app error-url="">

 <class-loader delegate="true"/>

</glassfish-web-app>

(the DOCTYPE element in one line, one space after PUBLIC, just one space in front of 3.1,

and one space before the http...).

Create an empty file, src/main/webapp/WEB-INF/beans.xml. If the file exists, make

sure it is empty, but do not delete the file.

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

136

If it does not exist yet, create the file src/main/webapp/WEB-INF/web.xml. It must

contain the following lines:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

 id="WebApp_ID" version="4.0">

 <display-name>julian</display-name>

 <servlet>

 <servlet-name>

 javax.ws.rs.core.Application

 </servlet-name>

 </servlet>

 <servlet-mapping>

 <servlet-name>

 javax.ws.rs.core.Application

 </servlet-name>

 <url-pattern>/webapi/*</url-pattern>

 </servlet-mapping>

</web-app>

This file is responsible for mapping URL requests starting with /webapi/ to a REST

processing engine.

Create a class, book.jakarta8.restdate.RestDate, and let it read as follows:

package book.jakarta8.restdate;

import java.time.ZonedDateTime;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

137

/**

 * REST Web Service

 */

@Path("/d")

public class RestDate {

 @GET

 @Produces("text/plain")

 public String stdDate() {

 return ZonedDateTime.now().toString();

 }

}

Make sure you have the CURL application installed on your system. You can use any

other RESTful client software as well, but for the rest of this chapter we will use CURL

because it is both straightforward and powerful. Start the server, install the rest-date

application on it (for example, via the menu Run As ➤ Run on Server), and inside a

terminal enter the following:

 curl -X GET http://localhost:8080/restdate/webapi/d

The output should be something like 2019-03-31T16:13:25.083+02:00[Europe/

Berlin].

Even with this small class and just a few lines in the file web.xml, and by adding a

couple of annotations, we already have a fully functional RESTful server running.

 Single-Page Web Applications
In a single-page web application we have two kinds of data: static content comprising

HTML pages, style sheets, images, and script files, and dynamic content for the dynamic

data in JSON format. It is important to know that for a real SPA everything gets handled

over a REST interface, even the static content. If you enter a URL in your browser, a

command GET/some/url/path gets sent to the server, and the same GET command with

different paths gets sent for the style sheets, scripts, and images the page wants to load.

If you submit a form, a POST/some/url/path gets sent with the posted data as a message

body. In a JSF environment, all those GETs and POSTs and the page navigation can be

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

138

handled by JSF, but for a REST interface we go one step back and explicitly take care of

GETs and POSTs, and we circumvent the page navigation by loading just one static HTML

page. The dynamic content of the page then gets handled by JavaScript.

This is what we begin with for our first steps in the SPA world: static content. To

elaborate more features for the date output application we started at the beginning of

the chapter and to serve as a blueprint for your own SPAs, we create a folder called “src/

main/webapp/static.” First, we put a main.html file there, as follows:

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>RESTful Dates</title>

</head>

<body>

Content of the document......

</body>

</html>

Next, we write a controller whose sole purpose is to serve static content. This is a Java

class, book.jakarta8.restdate.StaticContent:

package book.jakarta8.restdate;

import java.io.InputStream;

import javax.ejb.Stateless;

import javax.inject.Inject;

import javax.servlet.ServletContext;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.core.Response;

@Path("")

@Stateless

public class StaticContent {

 @Inject ServletContext context;

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

139

 @GET

 @Path("{path: ^static\\/.*}")

 public Response staticResources(

 @PathParam("path") final String path) {

 final InputStream resource = context.

 getResourceAsStream(

 String.format("/static/%s", path));

 return null == resource

 ? Response.status(Response.Status.NOT_FOUND).build()

 : Response.ok().entity(resource).build();

 }

}

The @Path annotation makes this a class that responds to REST requests, and it tells

which URLs are necessary in order for clients to use the REST interface. The @Inject uses

CDI (context and dependency injection, which we already used in the JSF chapter) to

get hold of the servlet context. We need the context in order to address application files

deployed as resources. The @GET tells which REST verb is needed in order for a method to

be responsible for the REST service method; the name of the method is arbitrary.

Do you see that we have two places where we use the @Path annotation? The class-

level @Path in front of the class serves as a basis URL path, but the methods declare

their own path parts using their own @Path annotations. The effective path used for

matching an incoming URL path is the concatenation of the class-level @Path and

each method’s @Path. In the example, we use an empty string for the class-level @Path,

meaning that the methods describe the full path pattern.

We can now load our first static HTML page. Deploy the application by pressing

CTRL+ALT+P on the server in the “Servers” view, then in a browser window enter the

following:

 http://localhost:8080/restdate/static/main.html

Note We don’t pay particular attention to things like caching and expiry for static
content. For production-level applications, such things should be taken into account.

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

140

 About REST
REST is an acronym for representational state transfer. It is an architectural style for

web-related operations. Clients use a predefined set of operations or HTTP methods on

data—GET, POST, PUT, DELETE (and a few more)—to communicate with servers, and as

concerns the communication no state is involved. This means the client communicates

using one of the verbs GET, DELETE, POST, PUT, and so on, and immediately after the

server has performed the operation and/or returned data, the server forgets about the

communication step. The name “representational state transfer” stems from the fact

that, from the client’s point of view, the representation of data queried from the server

changes between communication steps (or might change).

The communication verbs have been part of the HTTP specification from the early

infancy of the web. In more detail, we have the following:

 – GET

Used to retrieve a resource. Resources are identified by URIs, so

the communication might be described by something like GET

http://some.server.com/myclub/member/37. A GET operation is

not allowed to change any data (except for access statistics and the

like), and it must be idempotent. That means a second GET using

the same URI with no intermediate operations between those two

GETs must return exactly the same data. Note that GET operations

were commonly widely abused for any kind of operations,

including changing data. With REST we return to the roots, and

data must not be changed.

 – DELETE

Used to delete a datum. Again, the resource in question gets

addressed by an URI, so you write DELETE http://some.server.

com/myclub/member/37. A DELETE must be idempotent, which

means deleting again using the same URI must not change the

data. In this case, the second DELETE is of course superfluous—

deleting what was already deleted is not supposed to do anything.

As a characteristic of REST, concerning a second DELETE, the

server must not return an error message, but should just ignore

the request instead.

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

http://some.server.com/myclub/member/37
http://some.server.com/myclub/member/37
http://some.server.com/myclub/member/37

141

 – POST

Used to post a new datum. POSTs commonly happen if the

user submits a form. POSTs are not idempotent—a second POST

using the same data will lead to a second data set on the server

side. A POST might be described by POST http://some.server.

com/myclub/member/37 [data], where [data] stands for the

transmitted data, usually in the form of XML or JSON, passed over

in the transmitted message body.

 – PUT

Used to store data. If the resource described by the data already

exists, the resource will be altered according to the data. If it

does not exist yet, the server might decide to act as if a POST were

specified. A PUT is idempotent—PUTting again using the same

input data will not change the data on the server.

The other verbs less frequently get used in real-world applications. HEAD is for

retrieving metadata about a resource (information about it, but not the resource itself).

Using a TRACE, you can see what happens to the data on the way to the server. This is

more a technical operation and does not pay particular attention to the data payload.

A PATCH is like a PUT with partial data. Usually a PUT with the complete datum gets used

instead of a PATCH. The OPTIONS verb is a facility to request the server’s capability for a

dedicated resource (like telling what can be done with the resource). CONNECT gets used

for establishing transparent tunnels on the server side. Again, this is more a technical

facility and does not tell about the transmitted data.

Note the part of Jakarta ee that handles reSt is called JaX-rS. You will find
more information online, including the official specification, if you enter “jax-rs” in
your favorite search engine.

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

http://some.server.com/myclub/member/37
http://some.server.com/myclub/member/37

142

 About JSON
REST does not make an explicit assumption as to what format data are sent in to the

server or received in from it. For the page to be rendered by the browser, we take HTML,

and for the static page assets like style sheets, script files, images, and so on the format

gets dictated by the assets themselves—REST just passes them over to the client. For

dynamic data you are free to choose whatever you like, but as a simple lightweight

format, JSON, which is an acronym for JavaScript object notation, is a very good

candidate that often gets used nowadays. The syntax is simple, as seen here:

• For objects, which are data holders and contain key–value pairs, you

use { [object property1], [object property2], ... }.

• An object property writes "propertyName" : [property value],

where a property value might be a string like "Hello," a number like

7 or -3.4, a Boolean like true or false, null for the NULL value, or

any other object or array.

• For arrays, which are just collections of elements (any type, including

changing types inside one array), you write [item1, item2, ...],

where array members can have the same value types as object

property values.

An example showing all possible JSON constructs is as follows:

 {

 "ID" : 5616,

 "name" : "John Doe"

 "children" : [

 { "name": "Sue Ann Doe" },

 { "name": "Patt Doe" }

],

 "weight": 145.5,

 "spouse": true,

 "cars": null,

 "record": [12734, "QBA", true]

 }

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

143

 Exercise 1
Provide a JSON representation of the following object:

 class MusicRecord {

 static class Composer {

 String firstName;

 String lastName;

 Composer(String firstName, String lastName) {

 ...

 }

 }

 String title;

 Composer[] composers;

 String performer;

 int makeYear;

 MusicRecord(String title, Composer[] composers,

 String performer, int makeYear) {

 ...

 }

 }

 MusicRecord rec = new MusicRecord(

 "Somewhere over the Rainbow",

 new MusicRecord.Composer[] {

 new MusicRecord.Composer("Harold", "Arlen"),

 new MusicRecord.Composer("E. Y.", "Harburg")

 },

 "Judy Garland",

 1939

);

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

144

 Including Page Assets
HTML pages need to load style sheets for design and layout, JavaScript files from

JavaScript libraries, or custom script files, images, and other resources. Those files are

static by nature, and we use GET operations to retrieve them and load them from the

same “static/” folder where the main HTML file was loaded from.

For the date output application, we define a simple CSS file that just changes the font

color. You can freely extend it and adapt it for your other single-page applications. Create

a folder “src/main/webapp/static/css” and put the following styles.css file there:

 body { color: #000044; }

 div.clearfloat { clear: both; }

 .err { color: red; };

Inside the main.html file, we add a link to refer to this style file, as follows:

 ...

 <head>

 <meta charset="UTF-8">

 <title>RESTful Dates</title>

 <link rel="stylesheet" type="text/css"

 href="css/styles.css" />

 </head>

 ...

Next, we include the jQuery library. Download it from the jQuery home page and

save it inside a folder “src/main/webapp/static/js.” Inside the main.html file, add a link

to this jQuery file as follows:

 ...

 <head>

 <meta charset="UTF-8">

 <title>RESTful Dates</title>

 <link rel="stylesheet" type="text/css"

 href="css/styles.css" />

 <script src="js/jquery-3.3.1.min.js"></script>

 </head>

 ...

(or whatever version you downloaded).

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

145

 Input, Output, and Action Components
For input, you can use any HTML input field you like. This is one of the strengths of

single-page applications—with the power of JavaScript, the source for user input is

totally up to you. As an example, we will continue with the date output application and

allow the user to specify the date output format in a text-input field. To this aim, we add

an input and an output field into the body of the HTML page, together with a button to

submit the request, as follows:

 ...

 <body>

 Date format: <input id="dateFormat" type="text" />

 <div class="clearfloat"></div>

 <button id="submitButton">Get date!</button>

 <div class="clearfloat"></div>

 <div id="errOutput" class="err"></div>

 <div class="clearfloat"></div>

 <div id="dateOutput"></div>

 </body>

 ...

Note We are not going to use form-based communication with the server—that is
why we don’t need to have the <input> elements enclosed inside a <form> tag.

 Adding Input to the REST Controller
Until now our date output application has not had any functionality. It is fully laid out

though—we don’t have to add more output and input fields. This is another strength

of single-page applications: you can produce the HTML file without any logic or

communication functionality going to the server or the outside world, and nevertheless

hand it over to the designers to graphically beautify the application and improve

usability.

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

146

Before we add the front-end logic we must first improve the REST controller.

Remember that it is able to output the date, but the format cannot be passed over as an

input parameter. Open the Java class RestDate and change it to the following:

package book.jakarta8.restdate;

import java.time.ZonedDateTime;

import java.time.format.DateTimeFormatter;

import javax.ws.rs.DefaultValue;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.QueryParam;

import javax.ws.rs.core.Response;

/**

 * REST Web Service

 */

@Path("/")

public class RestDate {

 @GET

 @Path("date")

 @Produces("application/json")

 public Response date(

 @QueryParam("dateFormat") @DefaultValue("")

 String dateFormat) {

 ZonedDateTime zdt = ZonedDateTime.now();

 String outStr = "";

 String errMsg = "";

 try {

 outStr = ("".equals(dateFormat) ?

 zdt.toString() :

 zdt.format(DateTimeFormatter.

 ofPattern(dateFormat)));

 errMsg = "";

 } catch(Exception e) {

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

147

 errMsg = e.getMessage();

 }

 return Response.ok().entity(

 "{" +

 "\"date\":\"" + outStr + "\"," +

 "\"errMsg\":\"" + errMsg + "\"" +

 "}"

).build();

 }

}

Observe the following changes:

• The date calculation response type was changed from String to

javax.ws.rs.core.Response. The latter allows for more options with

which to tailor the method invocation result.

• Another @Path annotation was added to the method—this makes

for two path definitions, from the method added. The final URL

to address the method thus will read http://localhost:8080/

restdate/webapi/date.

• The @Produces was changed to application/json as a resulting

content type. Using JSON simplifies the processing for the browser,

and we can hand over more complex data.

• The JAX-RS method returns a JSON object {"date": "[RETURNED_

DATE]", "errMsg": "[SOME_ERR]"}

• Because of the @QueryParam the JAX-RS method is able to receive

and handle a query parameter dateFormat. Because of the

@DefaultValue the empty string will be used if the query parameter

is not part of the request.

Once you deploy this you can test the new functionality by entering the following in a

terminal (one line and no spaces in front of the dateFormat=):

 curl -X GET http://localhost:8080/restdate/webapi/date? dateFormat=yyyy-

MM- dd%20HH:mm:ss

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

148

Its output should be similar to the following:

 {"date":"2019-04-02 09:49:38","errMsg":""}

Note We used GET to retrieve time and date. You maybe remember that earlier
we stated that a second GET must return exactly the same data. So is this a
violation of reSt rules? not really. it exactly returns the current date and time,
although what “current” means obviously changes between subsequent retrievals.

 Adding Front-end Logic
For the front-end logic, we create a JavaScript file src/main/webapp/static/js/script.js.

As its contents write the following:

$(function() {

 $('#dateFormat').val("yyyy-MM-dd HH:mm:ss.SSSXXX");

 $('#submitButton').click(function(){

 var fmt = $('#dateFormat').val();

 var url = "../webapi/date";

 $.ajax({

 method: "GET",

 url: url,

 data: { dateFormat: fmt }

 })

 .done(function(msg) {

 $('#errOutput').html(msg.errMsg);

 $('#dateOutput').html("Current date/time: " +

 msg.date);

 })

 .fail(function(jqXHR, textStatus, errorThrown) {

 $('#errOutput').html("AJAX error: " +

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

149

 errorThrown);

 });

 });

})

The characteristics of this JavaScript code are as follows:

 1. Any $(something) addresses a jQuery object.

 2. The surrounding #(function(){ ... }) makes sure the code gets

executed only after the page is fully loaded.

 3. The $('#dateFormat') addresses the field with ID dateFormat.

The .val(...) enters data into the text-input field.

 4. The $.ajax(...) performs an asynchronous AJAX call. The

function inside done() gets called when the AJAX call returns

successfully. The function inside fail() gets called on errors.

 5. Because the REST call returns a JSON code, the msg inside done()

contains a JavaScript object that directly corresponds to the JSON

data. So, we can access the date and a possible error message via

property accessors .date and .errMsg, respectively.

What finally needs to be done is to load this JavaScript code from inside main.html.

To this aim, write the following in main.html:

 ...

 <head>

 <meta charset="UTF-8">

 <title>RESTful Dates</title>

 <link rel="stylesheet" type="text/css"

 href="css/styles.css" />

 <script src="js/jquery-3.3.1.min.js"></script>

 <script src="js/script.js"></script>

 </head>

 ...

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

150

The date application is now fully functional at http://localhost:8080/restdate/

static/main.html (see Figure 5-1). Try different formats (see the DateTimeFormatter

API documentation for patterns), and also check out what happens if you enter an

invalid format.

Figure 5-1. The date single-page application at work

 Data-centric Operations with SPAs
From a data communication point of view, the date/time example application we have

developed so far is very simple. It used a GET operation to query the current date and

time. That is it.

If we have a data-centric application or part of an application, the story gets a little

bit more complex. We want to be able to retrieve records and lists of records, register or

update records, and delete records. Fortunately, we can still use REST operations for all

we might think of—we can create, query, alter, and delete entities using POST, GET, PUT,

and DELETE operations.

As an example, we pretend that we own a club named “Calypso” and need a web

application to administer club members. Start a new REST application exactly as you

did for the date/time–retrieval application from earlier in this chapter (including the

configuration files under WEB-INF), but use Maven coordinates as follows:

 Group-Id: book.jakarta8

 Artifact-Id: calypso

 Version: 0.0.1-SNAPSHOT

As a package name, use “book.jakarta8.calypso.”

As a main.html file inside “src/main/webapp/static,” use the following:

<!DOCTYPE html>

<html>

<head>

 <meta charset="UTF-8">

 <title>Calypso</title>

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

151

 <link rel="stylesheet" type="text/css"

 href="css/styles.css" />

 <script src="js/jquery-3.3.1.min.js"></script>

 <script src="js/script.js"></script>

</head>

<body>

 <div id="memberEntry">

 </div>

 <div id="errMsg">

 </div>

 <div id="memberList">

 </div>

</body>

</html>

You can see that it is very simplistic and contains only container divs. The rendering

of the contents and the user interactions will be handled by JavaScript functions we are

going to add later.

Next, copy the static content controller StaticContent from earlier in this chapter

into the package “book.jakarta8.calypso.” Also, provide a copy of the jQuery JavaScript

library in the folder “src/main/webapp/static/js.” Make sure the file name matches the

file name specified in the corresponding <script> tag in main.html.

Create a stylesheet file src/main/webapp/static/css/styles.css and let it read as

follows:

.clearfloat {

 clear: both;

}

#errMsg {

 width: 85%;

 margin-left: 7.5%;

 color: red;

}

#memberEntry {

 display:block;

 width: 85%;

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

152

 margin-left: 7.5%;

 background-color: #DDDDFF;

}

#memberList {

 display:block;

 width: 85%;

 margin-left: 7.5%;

 margin-top: 1em;

 background-color: #FFFFDD;

 height: 10em;

 overflow: scroll;

#idView {

 float:right;

 margin-right: 2em;

 margin-top:0.3em;

 color:#888888;

}

#submitButton {

 float: right;

}

.listTable td {

 padding-right: 1em;

}

These styles add some margins to make the output appear more pleasant, apply a

red foreground (text) color to the error message area, and otherwise color the different

parts (entry area, members list). The height and overflow declarations inside the

member list part make sure the list will get a vertical scroll bar if it becomes too big.

Now, let us continue with the JavaScript front-end logic. It goes into the src/main/

webapp/static/js/script.js file, and we start with the following functions to handle

the “form” area inside <div id="memberEntry"> (we don’t need a <form> tag, because

the communication with the server gets handled solely by AJAX):

function showEntry(entity) {

 $('#lastName').val(entity.lastName);

 $('#firstName').val(entity.firstName);

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

153

 $('#birthday').val(entity.birthday);

 $('#idView').html((entity.id && entity.id !="")?

 'ID: ' + entity.id : “);

}

function clearEntry() {

 $('#lastName').val("");

 $('#firstName').val("");

 $('#birthday').val("");

 $('#idView').html("");

}

function makeForm() {

 function formLine(label, id) {

 return '<tr>' +

 '<td>' + label + ':</td><td><input id="' + id

 + '" type="text"/></td>' +

 '</tr>';

 }

 $('#memberEntry').html(

 '<table><tbody> \

 ' + formLine("Last name", "lastName") + '\

 ' + formLine("First name", "firstName") + '\

 ' + formLine("Birthday", "birthday") + '\

 </tbody></table>'

)

 .append(

 '' +

 '<button id="clearButton"' +

 ' onclick="clearEntry()">Clear</button>' +

 '<button id="submitButton"' +

 ' onclick="submit()">Submit</button> \

 '

)

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

154

 .append(

 ' \

 <div class="clearfloat"></div>'

);

}

The function makeForm() needs to be called just once to build the form contents

without the values. The function showEntry() reads in the object passed as a parameter

and fills the form from it, and the function clearEntry() clears the form. For all these

functions, and also the functions we describe in the following paragraphs, we heavily use

jQuery functionalities and techniques.

Note the “\” at the end of the line disregards the following line break, so we can
distribute longer string literals over several lines. Just make sure in your JavaScript
files there are no spaces behind the backslashes.

The printing of error messages gets handled by two functions, showErr(msg) and

clearErr(), which just enter data into the error message area or clear it, as follows:

 function showErr(msg) {

 $('#errMsg').html(msg);

 }

 function clearErr() {

 $('#errMsg').html("");

 }

Another set of functions is responsible for the members list area, as follows:

 function clearList() {

 $('#memberList').html("");

 }

 function makeList(data) {

 clearList();

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

155

 function tableRow(lastName, firstName, birthday, id) {

 return '<tr id="tab-'+id+'"> \

 <td>'+lastName+'</td> \

 <td>'+firstName+'</td> \

 <td>'+birthday+'</td> \

 <td><button onclick="edit('+id+')">

 EDIT</button></td> \

 <td><button onclick="del('+id+')">

 DEL</button></td> \

 </tr>';

 }

 var tab = $('<table class="listTable"></table>');

 tab.html('<tbody>');

 $.each(data, function(ind,val) {

 tab.append(tableRow(val.lastName, val.firstName,

 val.birthday, val.id));

 });

 tab.append('</tbody>');

 $('#memberList').append(tab);

 }

 function removeEntry(id) {

 $('#tab-' + id).remove();

 }

The clearList() function clears the list area. The function makeList() enters the

given data into the list area. The data passed to this function must be an array of objects,

with each object having the following properties: lastName, firstName, birthdayName,

and id. The function removeEntry() removes a row from the rendered list.

The remaining function handles all the AJAX calls we need to get, post, delete, and

update entities, as follows:

 function submit() {

 var id = $('#idView').html();

 if(id.length > 4) id = id.substring(4);

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

156

 var lastName = $('#lastName').val();

 var firstName = $('#firstName').val();

 var birthday = $('#birthday').val();

 var url = (id == "") ?

 "../webapi/member" : "../webapi/member/" + id;

 var meth = (id == "") ?

 "POST" : "PUT";

 $.ajax({

 method: meth,

 url: url,

 data: { lastName:lastName,

 firstName:firstName,

 birthday:birthday }

 })

 .done(function(msg) {

 clearErr();

 loadList();

 })

 .fail(function(jqXHR, textStatus, errorThrown) {

 showErr("AJAX: " + errorThrown);

 });

 }

 function loadList() {

 var url = "../webapi/member";

 $.ajax({

 method: "GET",

 url: url

 })

 .done(function(msg) {

 clearErr();

 makeList(msg);

 })

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

157

 .fail(function(jqXHR, textStatus, errorThrown) {

 showErr("AJAX: " + errorThrown);

 });

 }

 function edit(id) {

 var url = "../webapi/member/" + id;

 $.ajax({

 method: "GET",

 url: url

 })

 .done(function(msg) {

 clearErr();

 showEntry(msg);

 })

 .fail(function(jqXHR, textStatus, errorThrown) {

 showErr("AJAX: " + errorThrown);

 });

 }

 function del(id) {

 clearEntry();

 var url = "../webapi/member/" + id;

 $.ajax({

 method: "DELETE",

 url: url

 })

 .done(function(msg) {

 clearErr();

 removeEntry(id);

 })

 .fail(function(jqXHR, textStatus, errorThrown) {

 showErr("AJAX: " + errorThrown);

 });

 }

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

158

The submit() function collects the user entries from the form (and an ID, if it exists)

and issues a POST call if the entries belong to a new member, or a PUT if a member gets

updated. On a successful AJAX call, the whole list gets reloaded. The corresponding API

call reads POST/webapi/member/[data] or PUT/webapi/member/{ID} [data], where

[data] gets passed to the message body before the message is sent to the server. The

function loadList() loads the complete list using GET/webapi/member and then renders

it. The function edit() loads a single member from the REST API (GET/webapi/member/

{ID}) and fills the form with the data retrieved. Function del() deletes a member and

then reloads and rebuilds the members list.

The final JavaScript parts wait until the HTML page is fully loaded (the surrounding

$(function(){ ... }, you remember), makes (prepares) the form, and then loads the

list as follows:

 $(function() {

 makeForm();

 loadList();

 })

For the REST interface, create a class book.jakarta8.calypso.Calypso and let it

read as follows:

package book.jakarta8.calypso;

import java.util.ArrayList;

import java.util.List;

import java.util.Optional;

import java.util.stream.Collectors;

import javax.ws.rs.*;

import javax.ws.rs.core.Response;

/**

 * REST Web Service

 */

@Path("/member")

public class Calypso {

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

159

We provide an inner Member class for members. Since the API communicates

using JSON (by virtue of the @Produces("application/json")) and not a direct

representation of the class, this member class can be declared private, as follows.

 ... (inside the Calypso class!)

 private static class Member

 implements Comparable<Member>{

 public String firstName;

 public String lastName;

 public String birthday;

 public int id;

 public static Member UNKNOWN =

 new Member("","","",0);

 public Member(String firstName,

 String lastName, String birthday, int id) {

 this.firstName = firstName;

 this.lastName = lastName;

 this.birthday = birthday;

 this.id = id;

 }

 @Override

 public int compareTo(Member o) {

 if(o.birthday.compareTo(birthday) != 0)

 return o.birthday.compareTo(birthday);

 if(o.lastName.compareTo(lastName) != 0)

 return -o.lastName.compareTo(lastName);

 return -o.firstName.compareTo(firstName);

 }

 }

 ...

The member listing itself is maintained as a static class field, as follows; for

production-level applications this should go into a database layer!

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

160

 ...

 private static List<Member> members =

 new ArrayList<>();

 static {

 members.add(new Member("John","Smith",

 "2001-03-24", 1));

 members.add(new Member("Linda","Green",

 "1997-04-01", 2));

 members.add(new Member("Alice","Cloud",

 "1997-04-01", 3));

 }

 ...

Here, we also populated the list with a few members for demonstration purposes.

The following are the REST interface methods:

 ...

 @GET

 @Path("/")

 @Produces("application/json")

 public Response list() {

 StringBuilder outStr = new StringBuilder();

 outStr.append("[");

 outStr.append(

 members.stream().sorted().

 map(itm ->

 "{\"firstName\":\"" + itm.firstName + "\"," +

 "\"lastName\":\"" + itm.lastName + "\"," +

 "\"birthday\":\"" + itm.birthday + "\"," +

 "\"id\":" + itm.id + "}"

).collect(Collectors.joining(","))

);

 outStr.append("]");

 return Response.ok().entity(

 outStr.toString()

).build();

 }

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

161

 @GET

 @Path("/{id}")

 @Produces("application/json")

 public Response entity(@PathParam("id") int id) {

 Member m = members.stream().

 filter(itm -> itm.id == id).

 findFirst().orElse(Member.UNKNOWN);

 return Response.ok().entity(

 "{\"lastName\":\"" + m.lastName + "\", " +

 "\"firstName\":\"" + m.firstName + "\", " +

 "\"birthday\":\"" + m.birthday + "\", " +

 "\"id\":" + m.id + "}"

).build();

 }

 @POST

 @Path("/")

 @Produces("application/json")

 public Response post(

 @FormParam("lastName") String lastName,

 @FormParam("firstName") String firstName,

 @FormParam("birthday") String birthday) {

 int maxId = members.stream().mapToInt(m -> m.id).

 max().orElse(0);

 int newId = maxId + 1;

 Member m = new Member(firstName, lastName,

 birthday, newId);

 members.add(m);

 return Response.ok().entity("{\"id\":"+ newId +"}").

 build();

 }

 @PUT

 @Path("/{id}")

 @Produces("application/json")

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

162

 public Response put(

 @FormParam("lastName") String lastName,

 @FormParam("firstName") String firstName,

 @FormParam("birthday") String birthday,

 @PathParam("id") int id) {

 Optional<Member> m = members.stream().

 filter(itm -> itm.id == id).findFirst();

 if(m.isPresent()) {

 members.remove(m.get());

 Member m2 = new Member(firstName, lastName,

 birthday, id);

 members.add(m2);

 }

 return Response.ok().entity("{}").build();

 }

 @DELETE

 @Path("/{id}")

 @Produces("application/json")

 public Response del(@PathParam("id") int id) {

 Member m = members.stream().

 filter(itm -> itm.id == id).

 findFirst().orElse(Member.UNKNOWN);

 members.remove(m);

 return Response.ok().entity("{}").build();

 }

 }

The method list() returns the complete members list and reacts to GET/webapi/

member/ (remember the /webapi comes from a configuration entry in the web.xml file).

The method retrieves the members list data, sorts it, and converts it to JSON before

returning it. The method entity() returns a single member as a JSON object. It listens to

GET/webapi/member/{ID}. The method post() reacts to POST /webapi/member/ [data]

and registers new members. The method put() is similar, but it listens to PUT/webapi/

member/{ID} and updates a member. The last method, del(), reacts to DELETE/webapi/

member/{ID} and deletes an entry.

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

163

Observe that we used {id} as a placeholder to fetch dynamic URL path parts. This is

a common resource-coordinate definition pattern for RESTful applications. The JAX-RS

API takes such dynamic path parts and passes them over to appropriately annotated

method parameters (see the @PathParam annotation).

The application is now fully functional. Deploy it on the server, and in the browser

navigate to

 http://localhost:8080/calypso/static/main.html

to see it working. The output will look like that shown in Figure 5-2.

Figure 5-2. Calypso member registration application

 Exercise 2
From the internet, fetch appropriate icons of your choice for editing and deleting, put

them into an “images” folder, and replace the text buttons inside the list with buttons

that use the new images.

Chapter 5 Building Single-page WeB appliCationS With reSt and JSon

165
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_6

CHAPTER 6

Adding a Database
with JPA
JPA (Java Persistence API) is the dedicated technology for accessing relational databases

from inside Jakarta EE. Its aim is to provide a bridge between SQL tables and Java

objects. This is a task that is far from simple for other than the most basic data schemes.

The reason for this is that in relational database schemes there are associations between

different tables: one row from one table may refer to one or many rows from another

table or the other way around, and there could be references spanning three or more

tables. And think of column-type conversions—a database may have different ideas

about numbers, Boolean indicators, dates, and times compared to Java, and also null

values in database tables require increased attention if used in table references and

while converting to Java values.

In this chapter, we will talk about basic issues when using JPA, and we will extend

the Calypso bar example application we started in Chapter 5. For a complete and deep

overview of JPA that covers more-complex issues than we will in this chapter, please

consult the online documentation and specifications you can find about JPA on the web.

 Abstracting Away Database Access with JPA
One of the primary purposes of JPA is to abstract away database access and map

database objects to Java classes. In the end, we want to be able to query the database

and get Java objects, or to put Java objects into the database. JPA helps to hide away

the details of how this is done, including connection properties like username and

password, and also including handling connection lifecycles.

The central class with which JPA performs these tasks is the EntityManager class,

which uses a single configuration file, persistence.xml, and some settings inside the

166

Jakarta EE application server. On the Java side, the classes that correspond to table rows

get called entity classes. See Figure 6-1 for an overview of JPA.

 Setting Up a SQL Database
The Jakarta EE 8 Glassfish server includes a Derby (or JavaDB) database we can use for

development purposes. To start it, open a terminal, then enter the following:

 cd [GLASSFISH_INST]

 cd bin

 ./asadmin start-database

(or just asadmin start-database for Windows) where [GLASSFISH_INST] is the

installation folder of your Glassfish server.

Note The Derby database runs independently of the application server. You can
start it even if the Glassfish application server is not running, and stopping the
application server will not stop the database.

Figure 6-1. JPA inside Jakarta EE at work

ChapTer 6 aDDinG a DaTabase wiTh Jpa

167

Since we want to extend the Calypso bar example application we started in Chapter 5,

we must create a new database for Calypso and appropriately name it “calypso.” To do so,

in the same terminal we used to start the database, enter the following:

 cd [GLASSFISH_INST]

 cd javadb/bin

 # start the DB client

 ./ij

(or ij for windows). We are now inside the ij database client, which you can see since

the ij> prompt appears in the terminal. Enter the following:

 ij> connect 'jdbc:derby://localhost:1527/calypso;

 create=true;user=user0';

(enter this in one line without spaces in front of "create="). The database now is created

with an owner named “user0,” but we must also add a password for the user, as follows:

 ij> call SYSCS_UTIL.SYSCS_CREATE_USER('user0','pw715');

Note JavaDb by default does not enable authentication for new databases. This
normally does not cause problems if using the database just for development,
because network access is restricted to local users only. Many Java applications
and database tools, however, behave strangely if trying to access the database
without authentication, so we add a password.

Next, restart the database for the authentication to start working, as follows:

 cd [GLASSFISH_INST]

 cd bin

 ./asadmin stop-database

 ./asadmin start-database

ChapTer 6 aDDinG a DaTabase wiTh Jpa

168

This needs to be done only once. Quit and reopen the connection inside the ij tool

(or quit ij altogether by pressing CTRL+D, then restart ij and connect again), as follows:

 ij> disconnect;

 ij> connect 'jdbc:derby://localhost:1527/calypso;

 user=user0;password=pw715';

(enter the last ij command in one line). You can check the authentication mechanism: if

you omit user or password or both, you’ll get an appropriate error message.

For a transparent and simple connection to the database, we create two resources in

the Glassfish server configuration, as follows:

 cd [GLASSFISH_INST]

 cd bin

 ./asadmin create-jdbc-connection-pool \

 --datasourceclassname \

 org.apache.derby.jdbc.ClientDataSource \

 --restype javax.sql.DataSource \

 --property \

 portNumber=1527:password=pw715:user=user0:

 serverName=localhost:databaseName=calypso:

 securityMechanism=3 \

 Calypso

 ./asadmin create-jdbc-resource \

 --connectionpoolid Calypso jdbc/Calypso

(no line break and no spaces after user=user0: and databaseName = calypso). This

creates a connection pool and a JDBC resource connecting to it. We will later use the

jdbc/Calypso identifier to let JPA connect to the database.

For the rest of the chapter, we will assume you know how to enter database

commands. Either use the ij tool (don’t forget to connect once you start it) or use any

other database client, like the open source tool Squirrel.

ChapTer 6 aDDinG a DaTabase wiTh Jpa

169

For the Calypso application, the SQL commands to create the table and a sequence

generator for the unique ID generation read as follows:

CREATE TABLE MEMBER (

 ID INT NOT NULL,

 LAST_NAME VARCHAR(128) NOT NULL,

 FIRST_NAME VARCHAR(128) NOT NULL,

 BIRTHDAY CHAR(10) NOT NULL,

 PRIMARY KEY (ID));

INSERT INTO MEMBER (ID, LAST_NAME, FIRST_NAME, BIRTHDAY)

 VALUES (-3, 'Smith', 'John', '1997-11-05'),

 (-2, 'Tender', 'Linda', '1997-11-05'),

 (-1, 'Quast', 'Pat', '2003-04-13');

CREATE SEQUENCE MEMBER_SEQ start with 1 increment by 50;

where we also added a couple of example entries.

 Adding EclipseLink as ORM
For JPA to work, we need to add an object relational mapping (ORM) library to the

project. You have several options here, but we choose EclipseLink as the ORM library,

since EclipseLink is the reference implementation of JPA 2.2.

To add EclipseLink to the project, download the EclipseLink installer ZIP (for

example, version 2.7.4) and extract the archive somewhere on your computer.

Next, create a new project, “calypso-jpa,” with all the characteristics of the non-JPA

Calypso from Chapter 5. The only thing to change apart from the project name is the

Maven coordinate set, as follows:

 Group-Id: book.jakarta8

 Artifact-Id: calypso-jpa

 Version: 0.0.1-SNAPSHOT

Also rename the package to be used to “book.jakarta8.calypsojpa.” Copy all the files

from the original Calypso project to the new project, and then check that it runs on the

server just as well as the original Calypso application did. The URL to check the browser

access reads: http://localhost:8080/calypsojpa/static/main.html.

ChapTer 6 aDDinG a DaTabase wiTh Jpa

170

Next, create a folder, “src/main/webapp/WEB-INF/lib,” and copy the library files as

follows:

 eclipselink.jar

 jakarta.persistence_x.y.z.jar

 org.eclipse.persistence.jpa.modelgen_*.jar

 org.eclipse.persistence.jpars_*.jar

from the EclipseLink distribution into the “WEB-INF/lib” folder. Add those JARs to

the “Libraries” tab of the project properties (section: “Java Build Path”).

Create a file, src/main/resources/META-INF/persistence.xml, and let it read as

follows:

<persistence

 xmlns=

 "http://java.sun.com/xml/ns/persistence"

 xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/persistence

 persistence_1_0.xsd"

 version="1.0">

<persistence-unit name="default"

 transaction-type="JTA">

 <jta-data-source>jdbc/Calypso</jta-data-source>

 <exclude-unlisted-classes>

 false

 </exclude-unlisted-classes>

 <properties />

</persistence-unit>

</persistence>

This is the central configuration file for JPA. Here, we tell how the database gets

connected to from the application. You can see we refer to resources we created earlier

in this chapter.

ChapTer 6 aDDinG a DaTabase wiTh Jpa

171

Note The eclipse iDe has a few helper wizards for Jpa-related development, and
also has a Jpa facet you can add to projects. i decided against using these for this
introductory-level book so as to avoid vendor lock-in and show the basics needed
to follow the Jpa specification. You are free to later also try the Jpa facet of eclipse
(you will have to remove the eclipseLink Jars from the “web-inF/lib” folder).

 Adding Data Access Objects
A data access object or DAO is a Java class that encapsulates database operations like

CRUD (create, read, update, delete). A client of the DAO then doesn’t have to know how

the DAO does its work and only needs to take care of the business functionality. For this

reason, we first change the REST controller class Calypso to the following:

package book.jakarta8.calypsojpa;

import java.util.List;

import java.util.stream.Collectors;

import javax.ejb.EJB;

import javax.ws.rs.*;

import javax.ws.rs.core.Response;

import book.jakarta8.calypsojpa.ejb.MemberDAO;

import book.jakarta8.calypsojpa.jpa.Member;

/**
 * REST Web Service

 * http://localhost:8080/calypso-jpa/static/main.html

 */

@Path("/member")

public class Calypso {

 @EJB private MemberDAO members;

 @GET

 @Path("/")

 @Produces("application/json")

 public Response list() {

ChapTer 6 aDDinG a DaTabase wiTh Jpa

172

 List<Member> memberList = members.allMembers();

 StringBuilder outStr = new StringBuilder();

 outStr.append("[");

 outStr.append(

 memberList.stream().sorted().

 map((Member itm) ->

 "{\"firstName\":\"" +

 itm.getFirstName() + "\"," +

 "\"lastName\":\"" +

 itm.getLastName() + "\"," +

 "\"birthday\":\"" +

 itm.getBirthday() + "\"," +

 "\"id\":" + itm.getId() + "}"

).collect(Collectors.joining(","))

);

 outStr.append("]");

 return Response.ok().entity(

 outStr.toString()

).build();

 }

 @GET

 @Path("/{id}")

 @Produces("application/json")

 public Response entity(@PathParam("id") int id) {

 Member m = members.getMember(id);

 return Response.ok().entity(

 "{\"lastName\":\"" +

 m.getLastName() + "\", " +

 "\"firstName\":\"" +

 m.getFirstName() + "\", " +

 "\"birthday\":\"" +

 m.getBirthday() + "\", " +

 "\"id\":" + m.getId() + "}"

).build();

 }

ChapTer 6 aDDinG a DaTabase wiTh Jpa

173

 @POST

 @Path("/")

 @Produces("application/json")

 public Response post(

 @FormParam("lastName") String lastName,

 @FormParam("firstName") String firstName,

 @FormParam("birthday") String birthday) {

 int newId = members.newMember(lastName, firstName,

 birthday);

 return Response.ok().entity("{\"id\":"+ newId +"}").

 build();

 }

 @PUT

 @Path("/{id}")

 @Produces("application/json")

 public Response put(

 @FormParam("lastName") String lastName,

 @FormParam("firstName") String firstName,

 @FormParam("birthday") String birthday,

 @PathParam("id") int id) {

 members.updateMember(lastName, firstName, birthday,

 id);

 return Response.ok().entity("{}").build();

 }

 @DELETE

 @Path("/{id}")

 @Produces("application/json")

 public Response del(@PathParam("id") int id) {

 members.deleteMember(id);

 return Response.ok().entity("{}").build();

 }

}

ChapTer 6 aDDinG a DaTabase wiTh Jpa

174

Concerning the REST interface, that is the way the class gets addressed from outside;

nothing changed. The most noticeable changes of how the code works are as follows:

• A DAO class MemberDAO gets injected via the @EJB annotation. We will

talk about EJBs in a later chapter; for now it is enough to know that

EJBs are objects that get controlled by the server. This includes when

and the way instances get created, how many of them will be created,

how long they live, access restrictions, and more. We will implement

the DAO class (or DAO EJB) later.

• We introduce a so-called entity class Member. As far as class Calypso

is concerned, this just represents a member with properties of last

name, first name, birthday, and ID. It is something JPA returns if we

look for a particular record from the database, or that gets sent to

the database for insert or update operations. We will implement the

entity class in a later section.

The DAO class MemberDAO itself goes to the package book.jakarta8.calypsojpa.

ejb. Create the package and the class, and as the class code write the following:

package book.jakarta8.calypsojpa.ejb;

import java.util.List;

import javax.ejb.Singleton;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.persistence.TypedQuery;

import book.jakarta8.calypsojpa.jpa.Member;

@Singleton

public class MemberDAO {

 @PersistenceContext

 private EntityManager em;

 public List<Member> allMembers() {

 TypedQuery<Member> q = em.createQuery(

 "SELECT m FROM Member m", Member.class);

 List<Member> l = q.getResultList();

ChapTer 6 aDDinG a DaTabase wiTh Jpa

175

 return l;

 }

 public Member getMember(int id) {

 return em.find(Member.class, id);

 }

 public int newMember(String lastName,

 String firstName, String birthday) {

 Member m = new Member();

 m.setFirstName(firstName);

 m.setLastName(lastName);

 m.setBirthday(birthday) ;

 em.persist(m);

 em.flush(); // needed to get the ID

 return m.getId();

 }

 public void updateMember(String lastName,

 String firstName, String birthday, int id) {

 Member m = em.find(Member.class, id);

 m.setLastName(lastName);

 m.setFirstName(firstName);

 m.setBirthday(birthday);

 em.persist(m);

 }

 public void deleteMember(int id) {

 Member m = em.find(Member.class, id);

 em.remove(m);

 }

}

You can see that database operations exclusively get handled by an EntityManager that

gets injected by the @PersistenceContext annotation. By the configuration file persistence.

xml JPA knows which database needs to be accessed by the entity manager. For most

operations we can use the methods from class EntityManager—the only exception is the

complete list, for which we use a JPA query language expression SELECT m FROM Member m.

ChapTer 6 aDDinG a DaTabase wiTh Jpa

176

The application knows that this DAO is an EJB by the @Singleton class annotation.

Thus, the container (the part of the server that handles EJB objects) knows that for all

threads we only ever need one single instance of this class. This can be done because

instances of this class don’t have a state, and for simplicity we don’t pay particular

attention to concurrency.

Note For production-level applications, concurrency needs to be taken into
account on both the Java language level and the database level (transactionality).

 Exercise 1
Which of the following are true?

 1. DAOs are needed to connect to databases via JPA.

 2. DAOs are needed to provide database user and password.

 3. In DAOs, database column names have to be specified.

 4. DAOs are used to avoid using database table details in JPA client

classes.

 5. To use DAOs, they must be injected as EJBs.

 Adding Entities
An entity is a representation of a table row as an object. If we think of the MEMBER table

from the Calypso application, an entity is something that has a single first name, a single

last name, a single birthday, and a single ID. Obviously, this corresponds to a Java class

with fields firstName, lastName, birthday, and id. So, we create such a class and put it

into the package book.jakarta8.calypsojpa.jpa, as follows:

 public class Member {

 private int id; // + getter/setter

 private String lastName; // + getter/setter

 private String firstName; // + getter/setter

 private String birthday; // + getter/setter

 }

ChapTer 6 aDDinG a DaTabase wiTh Jpa

177

To complete the interfacing to the database, we need to add meta-information: the

information that this is an entity class, the table name, column names, a dedicated ID

column name, a unique ID generator specification, and database field-value constraints.

As is usually the case for Java, we use annotations for such meta-information. Our class

with all those amendments reads as follows:

package book.jakarta8.calypsojpa.jpa;

import javax.persistence.*;

import javax.validation.constraints.*;

@Entity

@Table(name="MEMBER")

@SequenceGenerator(name="MEMBER_SEQ",

 initialValue=1, allocationSize = 50)

public class Member implements Comparable<Member> {

 @Id

 @GeneratedValue(strategy = GenerationType.SEQUENCE,

 generator="MEMBER_SEQ")

 @Column(name = "ID")

 private int id;

 @NotNull

 @Column(name = "LAST_NAME")

 private String lastName;

 @NotNull

 @Column(name = "FIRST_NAME")

 private String firstName;

 @NotNull

 @Column(name = "BIRTHDAY", length = 10)

 @Pattern(regexp = "\\d{4}-\\d{2}-\\d{2}",

 message="Birthday format: yyyy-MM-dd.")

 private String birthday;

 @Override

 public int compareTo(Member o) {

 if(o.birthday.compareTo(birthday) != 0)

ChapTer 6 aDDinG a DaTabase wiTh Jpa

178

 return o.birthday.compareTo(birthday);

 if(o.lastName.compareTo(lastName) != 0)

 return -o.lastName.compareTo(lastName);

 return -o.firstName.compareTo(firstName);

 }

 // + getters and setters for all properties

}

where I also added the Comparator interface; this has nothing to do with JPA, but helps

to construct a sorted list of members. In detail, the annotations added are as follows:

• @Entity

Marks this as an entity so JPA knows this is an entity class.

• @Table

Used to specify the table name. If omitted, the class name

(without package) will be used as a table name.

• @SequenceGenerator

Used to specify a sequence generator for unique IDs.

• @Id

Relays that the corresponding field refers to the unique ID of the entity.

• @GeneratedValue

Relays that new entities will auto-generate values for this field.

• @Column

Used to specify the column name corresponding to this field. If

unspecified, the field name will be used as a column name instead.

• @NotNull

A constraint relaying that neither the field nor the database field

can be null.

• @Pattern

Another constraint for text fields, relaying that the field must

match the pattern specified.

ChapTer 6 aDDinG a DaTabase wiTh Jpa

179

Given the entity classes, JPA now knows how to map database entry fields to Java

classes. With the REST interface adapted and the DAO and entity classes added, the

application has a fully functional JPA support engaged, and you can deploy and try it

at http://localhost:8080/calypso-jpa/static/main.html. Also try restarting the

server and check that the entries were persisted and survive a server restart. You can also

directly check the database using a database client tool and investigate the table rows

that were added there.

 Exercise 2
Which of the following are true?

 1. One entity class corresponds to one database table.

 2. An entity class must have the same name as the database table.

 3. Properties (fields) of entity classes must have the same names as

the columns in the database table.

 4. Properties of entity classes can have restrictions added.

In the following section, we will learn how to map table relations to several

interconnected entities.

 Adding Relations
Relational data is about relations, like one table entry referring to entries from other

tables. JPA provides a solution to such relations, again by special annotations you can

add to entity classes.

Consider the following example: in our Calypso application we add another table,

STATUS, which contains membership status entries like “Gold,” “Platinum,” “Senior,” or

whatever you might think of. Each member may have zero to N status entries added, so

we talk about a “one-to-many” relationship between members and status entries.

ChapTer 6 aDDinG a DaTabase wiTh Jpa

180

To achieve this, we first create the STATUS table and a sequence STATUS_SEQ for it, as

follows:

CREATE TABLE STATUS (

 ID INT NOT NULL,

 MEMBER_ID INT NOT NULL,

 NAME VARCHAR(128) NOT NULL,

 PRIMARY KEY (ID));

CREATE SEQUENCE STATUS_SEQ start with 1 increment by 50;

Next, we create a new entity class, Status, inside the package book.jakarta8.

calypsojpa.jpa and let it read as follows:

package book.jakarta8.calypsojpa.jpa;

import javax.persistence.*;

import javax.validation.constraints.*;

@Entity

@Table(name="STATUS")

@SequenceGenerator(name="STATUS_SEQ",

 initialValue=1, allocationSize = 50)

public class Status implements Comparable<Status> {

 @Id

 @GeneratedValue(strategy = GenerationType.SEQUENCE,

 generator="STATUS_SEQ")

 @Column(name = "ID")

 private int id;

 @NotNull

 @Column(name = "MEMBER_ID")

 private int memberId;

 @NotNull

 @Column(name = "NAME")

 private String name;

ChapTer 6 aDDinG a DaTabase wiTh Jpa

181

 public Status() {

 }

 public Status(String name) {

 this.name = name;

 }

 @Override

 public int compareTo(Status o) {

 return -o.name.compareTo(name);

 }

 // + getters and setters

}

We added a constructor for easy construction using the name. It is important to

know that the JPA specification requires that there is a public no-argument constructor,

so in this case we have to add it as well.

Inside the entity class Member, we add a field that corresponds to the actual

relationship between member and status, as follows:

 ...

 @JoinColumn(name = "MEMBER_ID")

 @OneToMany(cascade = CascadeType.ALL, orphanRemoval=true)

 private Set<Status> status; // + getter / setters

 ...

Everything else stays untouched. The @JoinColumn refers to a member in the

associated class or table, so we don’t have to update the member table for this new field.

Because of the two entity classes and their relationship announced via @OneToMany,

any entity-manager operations will automatically take care of correctly cascading

database operations to related entities. For example, to create a new member inside the

Calypso application, you can write the following:

 ...

 Member m = new Member();

 m.setFirstName(firstName);

 m.setLastName(lastName);

 m.setBirthday(birthday);

ChapTer 6 aDDinG a DaTabase wiTh Jpa

182

 Set<Status> status = new HashSet<>();

 status.add(new Status("Platinum"));

 status.add(new Status("Priority"));

 m.setStatus(status);

 em.persist(m);

 ...

Thus, you don’t have to explicitly tell the entity manager to persist the related

Status entity.

In the front-end code, you can add a text field with a comma-separated list of status

values, or a select listbox or select menu to reflect the relationship. The same holds for

update and delete operations—because of the cascade = CascadeType.ALL inside

the @OneToMany annotation, JPA will even delete related Status entries from the STATUS

table if members get deleted.

 Exercise 3
Update the Calypso front-end code and add the status to members. For simplicity, use a

text field where a comma-separated list of status values can be entered.

There are other association types in a relational data model. The list of possible

association types you can declare for entities in JPA is as follows:

 – @OneToMany

For entities of entity class A zero-to-many related entries of entity

class B exist. Inside class A you define a field of type Set with

annotation OneToMany. Inside entity B’s table you then have a

foreign key ID_A (or whatever name you like), and inside the entity

class B a field aId (or whatever name you like) pointing to A IDs. To

tell A how it is related to B you then add another annotation

@JoinColumn as in

 @OneToMany

 @JoinColumn(name="ID_A") // In table B!

 private Set b;

ChapTer 6 aDDinG a DaTabase wiTh Jpa

183

or add an attribute to @OneToMany as in

 @OneToMany(mappedBy = "aId") // Field in class B!

 private Set b;

 – @ManyToOne

For zero or many entities of entity class A one related entry of

entity class B exists. Inside class A you add a field of type B with

annotations @ManyToOne and @JoinColumn, where for the latter

you provide a column name (inside A’s table) for the join, as

follows:

 @ManyToOne

 @JoinColumn(name="ID_B") // In table A

 private B b;

 – @OneToOne

For one entity of entity class A one related entry of entity class B

exists. Inside class A you add a field of type B with annotations @

OneToOne and @JoinColumn, where for the latter you provide a

column name (inside A’s table) for the join, as follows:

 @OneToOne

 @JoinColumn(name="ID_B") // In table A

 private B b;

 – @ManyToMany

For zero or many entities of entity class A zero or many related

entries of entity class B exist. Here, we need a third table serving

as an intermediate join table; for example, MTM_A_B, with columns

ID_A and ID_B. The annotations in entity class A (with ID column

“ID”) then read as follows:

 @ManyToMany

 @JoinTable(

 name = "MTM_A_B",

ChapTer 6 aDDinG a DaTabase wiTh Jpa

184

 joinColumns = @JoinColumn(

 name = "ID_A",

 referencedColumnName="ID"),

 inverseJoinColumns = @JoinColumn(

 name = "ID_B",

 referencedColumnName="ID"))

 private Set b;

ChapTer 6 aDDinG a DaTabase wiTh Jpa

185
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_7

CHAPTER 7

Modularization with EJBs
Enterprise Java Beans (EJBs) are classes that encapsulate business functionality, each

of a certain kind. Thus far this is the same characterization as we have for normal Java

classes. EJBs, however, run in a container environment, which means the server adds

system-level services to them, which includes lifecycle management (instantiate and

destroy when and how), transactionality (building logical, atomic, rollback-enabled

units of work), and security (which user can invoke which methods).

The EJB technology comprises session beans and message-driven beans. However,

the latter will get handled in their own chapter, so here we will talk about session EJBs.

 Types of Session EJBs
Session EJBs can be accessed locally (the same application), remotely (over the network,

method invocation), or via a web-service interface (distributed applications across

heterogeneous networks; HTML, XML, or JSON data formats).

Concerning the instance creation and destruction of session EJBs, there exist the

following three types:

 – Singleton

For a singleton session EJB the container instantiates only one

instance, and all clients share this single instance. You can do this

if the EJB does not have a state that discriminates between clients,

and if concurrent access does not impose problems.

 – Stateless

EJBs of the “stateless” kind do not maintain a state, so a particular

client can for subsequent EJB invocations have different instances

assigned to it (the container handles this; the client doesn’t know

about this assignment).

186

 – Stateful

Stateful EJBs maintain a state, and a client can be sure it will for

subsequent usage of the same EJB receive the same session EJB

instance from the container. You will often hear that stateful

EJB clients maintain a conversational state concerning their use

of stateful EJBs. Stateful session EJBs cannot implement web

services, because web services are not allowed to have state, and

no session information gets communicated.

 Defining EJBs
To define a singleton EJB, a stateless EJB, or a stateful EJB, you add one of the

annotations @Singleton, @Stateless, or @Stateful, respectively, to the EJB

implementation.

Consider three examples: an EJB Configuration for encapsulated access to

application-wide configuration settings, another EJB Invoice that handles invoice

registration and inquiries given some invoice ID, and a third EJB TicTacToe for a simple

tic-tac-toe game implementation. Obviously, for the configuration EJB we can use a

singleton EJB, since neither local state nor concurrency matter. Similarly, for the invoice

EJB we can use a stateless EJB, since the state is mediated by the ID, which does not access

an EJB state but rather a database state. The last one, the tic-tac-toe EJB, needs to maintain

the game board per client, and we thus use a stateful EJB for it. See the following:

 import javax.ejb.Singleton;

 import javax.ejb.Stateless;

 import javax.ejb.Stateful;

 ...

 @Singleton

 public class Configuration {

 ... configuration access methods

 }

 @Stateless

 public class Invoice {

 ... invoice access methods

 }

Chapter 7 Modularization with eJBs

187

 @Stateful

 public class TicTacToe {

 ... tic-tac-toe methods

 }

Of course, all those classes must go into different files. We put them together for

illustration purposes only.

Concerning their accessibility from client code, session EJBs can use one or a

combination of three methods (all annotations shown are from package javax.ejb), as

follows:

 – No-interface

You use this method if you don’t want to describe the EJB access

via an interface. This is only possible for local clients running

inside the same application. While the separation into interfaces

(describing what gets done in interfaces) and implementation

(the how, implemented in non-abstract classes) is generally a

good idea for clean code, a no-interface view can make sense

for simple EJBs. For no-interface EJBs you just declare the

implementation, as in the following:

 @Stateless public class Invoice {

 ... implementation

 }

The EJB clients can then only access the implementation class

directly, without mediating interfaces.

 – Local

If you want to define local access to session EJBs (EJBs and EJB

clients running in the same application) and use an interface view

for that, you can either mark the interface with @Local and let the

EJB implementation class implement the interface, as follows:

 @Local public interface InvoiceInterface {

 ... abstract interface methods

 }

Chapter 7 Modularization with eJBs

188

 @Stateless public class Invoice

 implements InvoiceInterface {

 ... implementation

 }

Or you can use the @Local annotation in the implementation

class, as follows:

 public interface InvoiceInterface {

 ... abstract interface methods

 }

 @Stateless

 @Local(InvoiceInterface.class)

 public class Invoice implements InvoiceInterface {

 ... implementation

 }

You can even omit the implementation as in the following:

 public interface InvoiceInterface {

 ... abstract interface methods

 }

 @Stateless

 @Local(InvoiceInterface.class)

 public class Invoice {

 ... implementation

 }

to further reduce the coupling of the interface, although this is, in

general, not recommended.

 – @Remote

Use the @Remote annotation to make a session EJB accessible from

outside the application. You can just replace @Local with

@Remote, and everything that was just said for the local access and

concerning the interfaces can be transcribed unaltered for remote

access. So, you would write, for example:

Chapter 7 Modularization with eJBs

189

 public interface InvoiceInterface {

 ... abstract interface methods

 }

 @Stateless

 @Remote(InvoiceInterface.class)

 public Invoice

 implements InvoiceInterface {

 ... implementation

 }

EJBs can have a local and a remote interface—just use both

annotations together, as follows:

 public interface InvoiceLocal {

 ... abstract interface methods

 }

 public interface InvoiceRemote {

 ... abstract interface methods

 }

 @Stateless

 @Local(InvoiceLocal.class)

 @Remote(InvoiceRemote.class)

 public Invoice

 implements InvoiceLocal,

 InvoiceRemote {

 ... implementation

 }

Also, nobody will stop us from using the same interface for both

local and remote access, as follows:

 public interface InvoiceInterface {

 ... abstract interface methods

 }

 @Stateless

 @Local(InvoiceInterface.class)

Chapter 7 Modularization with eJBs

190

 @Remote(InvoiceInterface.class)

 public Invoice implements InvoiceInterface {

 ... implementation

 }

Caution remote access means parameters in method calls get passed by value,
not by reference! passing by value means that if you change the parameters, changes
won’t be reflected on the caller side. so, although local and remote interfaces get
declared connatural to each other, concerning method parameters you must be careful
under all under some circumstances.

 Accessing EJBs
Accessing local EJBs from a client is easy: you just use the @EJB injection to let CDI

(context and dependency injection) assign an instance access to an EJB, as follows:

 public class SomeCdiManagedClass {

 ...

 @EJB

 private SomeEjbInterface theEjb;

 // or, for no-interface EJBs

 @EJB

 private SomeEjbClass theEjb;

 ...

 }

The SomeCdiManagedClass is just any class eligible for CDI management. This could be

a class annotated with @Named, as is often the case for classes used with JSF or other EJBs.

Addressing remote EJBs is considerably more complicated than local access to EJBs.

What you have to do is set up a JNDI context and then use it to do a lookup of a remote

instance, as follows:

 ...

 String remoteServerHost = "localhost";

 // or "192.168.1.111" or something

 String remoteServerPort = "3700";

 // Port 3700 is part of the Glassfish conf

Chapter 7 Modularization with eJBs

191

 Properties props = new Properties();

 props.setProperty("java.naming.factory.initial",

 "com.sun.enterprise.naming."+

 "SerialInitContextFactory");

 props.setProperty("java.naming.factory.url.pkgs",

 "com.sun.enterprise.naming");

 props.setProperty("java.naming.factory.state",

 "com.sun.corba.ee.impl.presentation.rmi."+

 "JNDIStateFactoryImpl");

 props.setProperty("org.omg.CORBA.ORBInitialHost",

 remoteServerHost);

 props.setProperty("org.omg.CORBA.ORBInitialPort",

 remoteServerPort);

 try {

 InitialContext ic = new InitialContext(props);

 // Use this to see what EJBs are available

 // and how to name them

 //NamingEnumeration<NameClassPair> list =

 // ic.list("");

 //while (list.hasMore()) {

 // System.out.println(list.next().getName());

 //}

 // Looking up a remote EJB

 SomeEjbRemote testEJB = (SomeEjbRemote)

 ic.lookup(

 "book.jakarta8.testEjbServer.SomeEjbRemote");

 // Invoking some EJB method

 System.out.println(testEJB.tellMe());

 }catch(Exception e) {

 e.printStackTrace(System.err);

 }

Chapter 7 Modularization with eJBs

192

This example assumes that on the remote server side you created a session EJB with

a remote interface, as follows:

package book.jakarta8.testEjbServer;

public interface SomeEjbRemote {

 String tellMe();

}

And an implementation like the following:

package book.jakarta8.testEjbServer;

import javax.ejb.Remote;

import javax.ejb.Stateless;

@Stateless()

@Remote(SomeEjbRemote.class)

public class SomeEjb implements SomeEjbRemote {

 @Override

 public String tellMe() {

 return "Hello World";

 }

}

Obviously, for this to work the client must have access to the compiled remote

interfaces. That means you must have somehow included a step in the EJB server build

to extract the interfaces from the generated classes.

Note For testing and a proof of concept it is enough to build a Jar in the
“remote” eJB project by, for example, running run as ➤ Maven build... with goal
“package.” You can then extract the Jar you find in the “target” folder (it is just
a zip file), remove everything but the remote interfaces, repackage it, and put the
result into the weB-inF/lib of the client project.

Chapter 7 Modularization with eJBs

193

If the remote EJB server is a Glassfish server, you can also use its asadmin command

to see which EJBs are eligible for remote access and how they are named, as follows:

 cd [GLASSFISH_INST]

 cd bin

 ./asadmin list-jndi-entries

 # output for example:

 # UserTransaction: com.sun.enterprise.transaction...

 # startup.TransactionLifecycleService$2

 # ejb: com.sun.enterprise.naming.impl.TransientContext

 # book.jakarta8.testEjbServer.SomeEjbRemote__3_x_

 # Internal_RemoteBusinessHome__: javax.naming.Reference

 # java:global: com.sun.enterprise.naming.impl.

 # TransientContext

 # book.jakarta8.testEjbServer.SomeEjbRemote:

 # javax.naming.Reference

 # book.jakarta8.testEjbServer.SomeEjbRemote#book.

 # jakarta8.testEjbServer.SomeEjbRemote:

 # javax.naming.Reference

 # jdbc: com.sun.enterprise.naming.impl.TransientContext

 # concurrent: com.sun.enterprise.naming.impl.

 # TransientContext

 # com.sun.enterprise.container.common.spi.util.

 # InjectionManager:

 # com.sun.enterprise.container.common.impl.util.

 # InjectionManagerImpl

 # jms: com.sun.enterprise.naming.impl.TransientContext

The fifth entry from the example output shows the remote EJB JNDI name “book.

jakarta8.testEjbServer.SomeEjbRemote” used in the EJB client lookup code just listed.

Other Java Enterprise Edition (JEE or Jakarta EE) application servers probably

apply other naming schemes for remotely accessible EJBs. You must consult their

documentation and/or get the remotely visible JNDI entry listing. For the latter, you

can try a programmatic access (commented out in the preceding listing) or use some

administration features implemented for the remote EJB server.

Chapter 7 Modularization with eJBs

194

 Exercise 1
Which of the following is/are true?

 1. EJBs must have a local and a remote interface.

 2. Not providing interfaces means EJBs automatically get assigned

to local and remote interfaces by the EJB container (the part of the

Jakarta EE server that handles EJBs).

 3. A remote EJB means the EJB can be accessed from other

applications on the same server. Access from other Jakarta EE

servers is not possible.

 4. EJBs cannot have a state.

 5. If a client accesses an EJB, a new instance of the EJB gets created

on the server side.

 6. To access any EJB from a client, you must do a lookup in a JNDI

context.

 7. To use an EJB from a client, the EJB’s interfaces and its

implementation must be imported into the client project.

 EJB Projects
Jakarta EE projects don’t have to be web projects—they can also just expose services to

clients accessing their remote EJB interfaces. Web interfaces like REST or web-service

interfaces are your first choice for interoperability with web browsers and non–Jakarta EE

servers, but for faster communication among Jakarta EE participants in a larger system

comprising different network nodes, using component-to-EJB communication might be

a better choice.

Web projects also can expose remote EJBs to appropriate clients. In case you want

to have a streamlined project without web capabilities, the procedure to do that inside

Eclipse gets described in the following paragraphs.

Start a new Maven project, similar to the web projects we have created so far, but

change the packaging declaration inside pom.xml to <packaging> ejb </packaging>.

For example:

Chapter 7 Modularization with eJBs

195

 <groupId>book.jakarta8</groupId>

 <artifactId>testEjbServer</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>ejb</packaging>

For the project facets, uncheck all facets other than “EJB Module,” “Java,” and

“JavaScript.” Change the EJB Module version to 3.2.

Note eclipse version 2018-12 (and maybe later versions) under certain
circumstances disallows unchecking the “dynamic web Module” facet. if this is the
case for you, quit eclipse, go to the “.settings/” folder, open file org.eclipse.wst.
common.project.facet.core.xml, and remove the unwanted facets there.

From there, create the EJBs and their remote interfaces as described previously, with the

following additional constraint: move the EJB interfaces to their own package. For example:

 book.jakarta8.ejbproj.ejb <- Implementation

 book.jakarta8.ejbproj.ejb.interfaces <- Interfaces

We know that for an EJB client we only need the EJB interfaces, not the EJB

implementations. Maven can help us here: go inside the pom.xml file and add the

following within the <build><plugins> section:

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-ejb-plugin</artifactId>

 <version>3.0.1</version>

 <configuration>

 <generateClient>true</generateClient>

 <ejbVersion>3.2</ejbVersion>

 <clientExcludes>

 <clientExclude>

 book/jakarta8/ejbproj/ejb/*
 </clientExclude>

 </clientExcludes>

 </configuration>

 </plugin>

Chapter 7 Modularization with eJBs

196

The <clientExclude> tag will make sure only the interfaces will be exported to a

client-specific JAR archive.

If you now invoke Run As ➤ Maven build... ➤ goals=“package” you’ll find a client

JAR with the compiled EJB interface in the “target” folder. Maybe you have to press

F5 first on that folder to update the view. Look for the JAR with ending “-client.jar.”

Any client wishing to communicate with the EJBs must include this client JAR as a

dependency. Of course, the EJB project itself must be deployed on the server for the EJBs

to work.

 EJBs with Dependencies
Until now we have developed only very simple EJBs without the need to use library JARs.

Once you need to add libraries to an EJB, you’ll run into trouble. This is because there is

no standard way to add dependencies to isolated EJB modules. If you need to add library

JARs, there are basically two ways to achieve this: either you add the libraries globally to

your Jakarta EE server, or you pack the EJB module into an enterprise archive (EAR). We

will talk about both possibilities.

 Adding Dependencies to the Server
You can add dependencies in the form of library JARs globally to your server. While this

is a quick and easy solution in many cases, there are three big disadvantages with this

approach, as follows:

• You cannot deploy and undeploy such dependencies while the server

is running. So you would have to stop the server, add the library JARs

to some special folder, start the server again, and then deploy your

EJB.

• Such solutions are global to the complete server. If one application

needs a version x.y.z of the library and another application needs

version p.q.r, a conflict appears that cannot be solved.

• Such solutions are not portable. One Jakarta EE 8 server product

requires that such a global library JAR be put into some folder “BASE-

DIR/libs/ext,” while another server needs it inside “BASE-DIR/

server/domain1/lib” and so on.

Chapter 7 Modularization with eJBs

197

If you still think this is the solution for your EJBs, the procedure for Glassfish 5.1 is as

follows:

 1. Stop the server.

 2. Put the library JARs into folder “[INST-DIR]/glassfish/modules”

or put it into “[INST- DIR]/glassfish/domains/domain1/lib/ext.”

In the former case, the library applies to really all applications,

while in the latter case the library is restricted to a domain. We

don’t talk about different domains in this beginner’s book, so for

our purposes there is practically no difference between those two

options.

 3. Start the server.

 4. Deploy the EJBs.

 Creating EARs
EARs are archives that bundle EJBs, web applications (WARs), and library JARs. Dealing

with EARs instead of isolated EJBs somewhat increases the complexity of administration

activities. But adding library JARs to EARs is a standard way of including dependencies

with applications and is thus preferable over the global approach we just described.

To add EAR functionality to an application inside Eclipse, you basically have to do

the following:

 1. Build a new EAR project: Go to New ➤ Project... ➤ JavaEE ➤

Enterprise Application Project.

 2. Choose any name you like and add the EJB module project as a

dependency (you are being asked for dependencies in a dialog).

 3. Create a folder “EarContent/lib.”

 4. Copy the library JARs into “EarContent/lib.”

 5. Stop deploying the isolated EJB module projects on the server.

Instead, deploy the EAR project onto the server by clicking Run As

➤ Run on Server on the EAR project.

If you change the EJB’s source code, just redeploy the EAR project—Eclipse will

correctly take care of updating the EAR’s EJB modules.

Chapter 7 Modularization with eJBs

198

 Exercise 2
Create the following four projects:

• A JRE project (no Jakarta EE capabilities) with a single class

MyDateTime and a method date(String format) that returns

the LocalDateTime according to the format string specified as a

parameter. Make it a Maven project with “jar” packaging. Hint: Enter

Run As ➤ Maven build... ➤ Goals “package install” to create a JAR

file that can be used by other projects, as well as to install the JAR in

the local Maven repository. You’ll find the JAR in the “target” folder

(press F5 to update the folder view in Eclipse after the generation).

• An EJB project with a single EJB, MyDateTimeEjb, and local and remote

interfaces. Let it use the JAR file generated from the preceding JRE

project. Hint: Even without using a remote repository, the JAR from the

preceding project can be referred to like any other Maven artifact.

• An EAR project that contains the EJB project and adds the JAR

dependency needed.

• A simple no-Jakarta-EE EJB client project that tests the remote

interface from the MyDateTimeEjb EJB. Hint: Include the gf-client.

jar file from Glassfish’s “lib” folder as a library dependency.

 Asynchronous EJB Invocation
EJB methods can be called asynchronously by an EJB client. This means the client

invokes an EJB method that was marked eligible for asynchronous invocation,

immediately regains control of the program execution, and handles the result from the

EJB invocation later when it is available.

To mark an EJB method for asynchronous invocation, you add the annotation

@Asynchronous from package javax.ejb to the method, as follows:

import java.util.concurrent.Future;

import javax.ejb.AsyncResult;

import javax.ejb.Asynchronous;

import javax.ejb.Singleton;

Chapter 7 Modularization with eJBs

199

@Singleton // Example only, all EJB types work!

public class SomeEjb {

 @Asynchronous

 public Future<String> tellMeLater() {

 // Simulate some long-running calculation

 try {

 Thread.sleep(2000);

 } catch (InterruptedException e) {

 }

 return new AsyncResult<String>(

 "Hi from tellMeLater()");

 }

}

This example EJB uses the no-interface method, but asynchronous invocation

works for local and remote interfaces as well. The AsyncResult is a convenience class

that allows for the easy creation of a Future object. This Future object will not really

be exposed to the client; its main purpose is to obey the method signature. The Future

returned to the client will instead be transparently created by the EJB container.

On the EJB client side you invoke the EJB as usual and handle the Future you received

from the EJB invocation as you are used to from the JRE concurrency API, as follows:

 ...

 @EJB

 private SomeEjb someEjb;

 ...

 Future<String> f = someEjb.tellMeLater();

 try {

 // Example only: block until the result

 // is available:

 String s = f.get();

 System.err.println(s);

 } catch (Exception e) {

 e.printStackTrace(System.err);

 }

Chapter 7 Modularization with eJBs

200

 Timer EJBs
EJBs can be equipped with timer facilities, like delayed execution of some task or

reoccurring automatic method invocations. You have two options: automatic timers and

programmatic timers.

For automatic timers, you add a @Schedule or @Schedules annotation (from

the javax.ejb package) to any void method (the visibility doesn’t matter) without

parameters, or with a javax.ejb.Timer parameter. The parameters of the @Schedule

annotation describe the frequency, as in the following:

@Stateless

public class SomeEjb {

 @Schedule(minute="*", hour="0", persistent=false)

 // every minute during the hour between 00:00 and 01:00

 public void timeout1() {

 System.err.println("Timeout-1 from " + getClass());

 }

}

A delayed execution like “Do something once 10 seconds after the server has started”

is not possible for automatic timers.

The following is a listing of some example schedules you can use inside automatic timers:

 @Schedule(second="10", minute="0", hour="0")

 // <- at 00:00:10 every day

 @Schedule(minute="30", hour="0",

 dayOfWeek="Tue")

 // <- at 00:30:00 on Tuesdays (second defaults to 00)

 @Schedule(minute="11", hour="15",

 dayOfWeek="Mon,Tue,Fri")

 // <- at 15:11:00 on Mondays, Tuesdays and Fridays

 @Schedule(minute="*/10", hour="*")

 // <- every 10 minutes, every hour

 @Schedule(minute="25/10", hour="1")

 // <- 01:25, 01:35, 01:45 and 01:55

Chapter 7 Modularization with eJBs

201

 @Schedule(hour="*", dayOfMonth="1,2,3")

 // <- every hour at 1st, 2nd, and 3rd each month

 // (minute defaults to 00)

 @Schedule(hour="*/10")

 // <- every 10 hours

 @Schedule(month="Feb,Aug")

 // <- 00:00:00 each February and August

 // (hour defaults to 00)

 @Schedule(dayOfMonth="1", year="2020")

 // <- 00:00:00 each 1st each month during 2020

 @Schedule(dayOfMonth="1-10")

 // <- 00:00:00 each 1st to 10th each month

The @Schedules annotation can be used to apply several @Schedule specifications to

a timer callback, as follows:

 @Schedules({

 @Schedule(hour="*"),

 @Schedule(hour="0", minute="30")

 })

 private void someMethod(Timer tm) {

 ...

 }

which means: every x:00:00 (x = 00 through 23), but also at 00:30:00.

Unless you also give a persistent=false to the @Schedule annotation, a timer

survives an application and a server restart.

Timers can also be defined programmatically. Here it is also possible to define a one-

time shot, like, for example, in the following:

@Singleton

@Startup

public class Timer1 {

 @Resource

 private SessionContext context;

Chapter 7 Modularization with eJBs

202

 @PostConstruct

 public void go() {

 context.getTimerService().

 createSingleActionTimer(5000, new TimerConfig());

 }

 @Timeout

 public void timeout(Timer timer) {

 System.err.println("Hello from " + getClass());

 }

}

Here, the method annotated with @Timeout gets called every time the timer fires.

For this example, this will be 5,000 milliseconds after EJB creation because of the

createSingleActionTimer() invocation. The timer service you get with context.

getTimerService() allows for various scheduling options; please see the API

documentation for details.

Chapter 7 Modularization with eJBs

203
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_8

CHAPTER 8

Dealing with XML Data
One important part of enterprise applications is the capability to produce, emit, receive,

and investigate XML data. This is similar to the JSON data format we talked about in

Chapter 5, but XML allows for a higher complexity compared to JSON. The advantages

and disadvantages of XML over JSON are as follows:

 – Advantages

XML documents introduce schema declarations for structure

validation and element validation. This means it can be precisely

described how an XML document must be structured and which

values elements and attributes are allowed to have.

 – Disadvantages

What can be an advantage can also be a disadvantage. So, while

important for the stability of enterprise applications, schema

validation and element and attribute value constraints may lead

to a performance degradation if processing XML data, and the

comprehensiveness of documents may prominently suffer from

this increased complexity.

If document structure and values validation are an issue or if you have to deal with

legacy systems with components talking to the outside world via XML, Jakarta EE 8

allows for both communication via XML and XML processing.

 SOAP Web Services
The dedicated Jakarta EE 8 technology to let components talk via XML messages and to

translate between XML data and Java objects gets called JAX-WS. The data protocol used

for that is SOAP (simple object access protocol). Services producing and consuming

SOAP messages also sometimes get called web services in the traditional sense.

204

Note To draw a distinction between REST services using JSON as a message
format and SOAP web services using XML messages, we will keep using “REST
services” for the former and “SOAP web services” for the latter.

The idea behind JAX-WS is the following:

 1. On the server side, we declare one or more Java classes and

methods, therein encapsulating functionalities we want to be able

to address via SOAP.

 2. JAX-WS takes these classes and methods and produces a web

service endpoint addressable from inside and outside the

application via SOAP.

 3. JAX-WS also allows us to generate the web service artifacts needed

in order for SOAP web service clients to communicate with the

web service endpoint. This happens only during development.

 4. Import the client artifacts generated by JAX-WS into client

projects. Implement the JAX-WS client and deploy it.

 5. As an alternative to Java clients’ importing JAX-WS artifacts, any

SOAP client using any platform can be used to communicate with

the JAX-WS server.

 6. As another alternative to the former, you can read and process the

raw XML data outside JAX-WS. This is a more low-level approach

for SOAP clients. Expect more work compared to using JAX-WS.

SOAP documents get described by WSDL documents (web service description

language), which tell about their structure. JAX-WS and the Jakarta EE 8 server provide

an HTTP endpoint where clients can directly retrieve the WSDL documents describing a

SOAP web service endpoint. In fact, the WSDL information is all a client needs in order

to learn how to talk with the SOAP web service.

ChAPTER 8 DEALiNg wiTh XML DATA

205

As an example, let us reimplement the REST data and time retriever from Chapter 5,

this time using a SOAP web service instead of a REST controller. To start the example,

create a new Maven project with coordinates, as follows:

 Group-Id: book.jakarta8

 Artifact-Id: wsdate

 Version: 0.0.1-SNAPSHOT

As usual, make sure the project uses and compiles for Java 8. As project facets use the

following:

 Dynamic Web Module 4.0

 Java 1.8

 JavaScript 1.0

As the Maven build file pom.xml, use the following as its content:

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>book.jakarta8</groupId>

 <artifactId>wsdate</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>war</packaging>

 <name>wsdate</name>

 <url>http://maven.apache.org</url>

 <properties>

 <project.build.sourceEncoding>

 UTF-8

 </project.build.sourceEncoding>

 <failOnMissingWebXml>false</failOnMissingWebXml>

 </properties>

ChAPTER 8 DEALiNg wiTh XML DATA

206

 <dependencies>

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-api</artifactId>

 <version>8.0</version>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

Compared to the build files we’ve used up to now, this one has an additional

<failOnMissingWebXml> false </failOnMissingWebXml>. Without this entry, Eclipse

would complain about a missing web.xml file.

Note Although with project facet Dynamic web Module configured and producing
a wAR deployable, the project does not need a WEB-INF/web.xml file. JAX-wS
takes care of correctly exposing the SOAP web service endpoint without a web.xml.

ChAPTER 8 DEALiNg wiTh XML DATA

207

Create a Java class representing the SOAP web service endpoint for the date and time

retrieval, as follows:

package book.jakarta8.wsdate;

import java.time.ZonedDateTime;

import java.time.format.DateTimeFormatter;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

public class WsDate {

 @WebMethod

 public String date(String dateFormat) {

 ZonedDateTime zdt = ZonedDateTime.now();

 String outStr = "";

 String errMsg = "";

 try {

 outStr = ("".equals(dateFormat) ?

 zdt.toString() :

 zdt.format(

 DateTimeFormatter.ofPattern(dateFormat)));

 errMsg = "";

 } catch(Exception e) {

 errMsg = e.getMessage();

 }

 // errMsg currently ignored

 return outStr;

 }

}

Because of the @WebService annotation, JAX-WS knows that this class describes a

SOAP web service. The @WebMethod annotation in front of a method further describes a

sub-activity that a web service client is allowed to invoke. Obviously, there can be more

such methods, and the class may have non-annotated methods not exposed to the SOAP

web service.

ChAPTER 8 DEALiNg wiTh XML DATA

208

Once deployed and running, the Glassfish web administration page lists the new

SOAP web service and tells us about its capabilities. With the browser, go to the admin

page at http://localhost:4848.

By default, the user name is “admin” and there is no password. If you navigate to

Applications ➤ wsdate, there is a “View Endpoint” link you can use to navigate to a page

that lets you see the WSDL information and even provides an online testing tool for the

web service. See Figures 8-1 and 8-2.

Figure 8-1. Web services in the admin page

ChAPTER 8 DEALiNg wiTh XML DATA

209

You can also directly download the WSDL data and the associated XSD file (for the

validation) using your browser: just navigate to one of the following:

 http://localhost:8080/wsdate/WsDateService?wsdl

 http://localhost:8080/wsdate/WsDateService?xsd=1

The SOAP web service tester that the Glassfish web administrator provides is quite

nice. If you use it, it will tell you both the SOAP request message and the response. For

the wsdate sample and some date/time format input as “yyyy,” the messages read as

follows:

Request:

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S=

 "http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:SOAP-ENV=

 "http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <S:Body xmlns:ns2="http://wsdate.jakarta8.book/">

Figure 8-2. Information about a web service

ChAPTER 8 DEALiNg wiTh XML DATA

210

 <ns2:date>

 <arg0>yyyy</arg0>

 </ns2:date>

 </S:Body>

</S:Envelope>

Response:

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S=

 "http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:SOAP-ENV=

 "http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <S:Body xmlns:ns2="http://wsdate.jakarta8.book/">

 <ns2:dateResponse>

 <return>2019</return>

 </ns2:dateResponse>

 </S:Body>

</S:Envelope>

This is a lot of stuff for such a simple method call! Remember the same application

using REST and JSON instead, as follows:

Request:

 GET http://localhost:8080/restdate/webapi/date?

 dateFormat=yyyy

Response:

 {"date":"2019","errMsg":""}

 Exercise 1
Add a new method, date2(), to the SOAP web service class that consumes the same

parameter and returns a string array [outStr, errMsg].

Let’s get back to the SOAP web service. With the SOAP web service running, we develop

a client application to access this service. This could be a JSF application, a single-page

application, or any other Jakarta EE application. As an example, we will build a simple

ChAPTER 8 DEALiNg wiTh XML DATA

211

application that directly implements an HTTP servlet. To start the client coding, create a

new Maven project with the following coordinates:

 <groupId>book.jakarta8</groupId>

 <artifactId>wsdate-client</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>war</packaging>

As project facets, use the following:

 Dynamic Web Module 4.0

 Java 1.8

 JavaScript 1.0

As usual, make sure the project correctly uses Java 8.

To generate the artifacts that a Java client needs to communicate with the SOAP

web service, we add a build configuration to the pom.xml build file. Inside the

<build><plugins> tag add the following:

<plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>jaxws-maven-plugin</artifactId>

 <version>1.12</version>

 <executions>

 <execution>

 <id>wsimport-from-jdk</id>

 <goals>

 <goal>wsimport</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <!-- using wsdl from an url -->

 <wsdlUrls>

 <wsdlUrl>

 http://localhost:8080/wsdate/WsDateService?wsdl

 </wsdlUrl>

 </wsdlUrls>

ChAPTER 8 DEALiNg wiTh XML DATA

212

 <!-- or reading wsdls from file directory -->

 <!-- <wsdlDirectory>src/wsdl</wsdlDirectory> -->

 <!-- wsdl files -->

 <!-- <wsdlFiles> -->

 <!-- <wsdlFile>theWSDL.wsdl</wsdlFile> -->

 <!--</wsdlFiles> -->

 <!-- Keep generated files -->

 <keep>true</keep>

 <!-- Package name -->

 <packageName>book.jakarta8.wsdate.generated</packageName>

 <!-- generated source files destination -->

 <sourceDestDir>src/main/java</sourceDestDir>

 </configuration>

</plugin>

Now run Run As... ➤ Maven build... ➤ goals “jaxws:wsimport.” This generates the

Java files needed to talk to the web service. In Eclipse, update the sources by pressing

F5 on the Sources directory. This generation needs to be done only once during

development, unless you change the SOAP web service, which requires another client

artifacts generation.

Next, we create the servlet. It is a single Java class that reads as follows:

package book.jakarta8.wsdate_client;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.xml.ws.WebServiceRef;

import book.jakarta8.wsdate.generated.WsDate;

import book.jakarta8.wsdate.generated.WsDateService;

ChAPTER 8 DEALiNg wiTh XML DATA

213

@WebServlet(name = "WsDateServlet",

 urlPatterns = { "/WsDateServlet" })

public class WsDateServlet extends HttpServlet {

 private static final long serialVersionUID =

 -1651237748783635642L;

 @WebServiceRef(wsdlLocation =

 "http://localhost:8080/wsdate/WsDateService?wsdl")

 private WsDateService service;

 private

 void processRequest(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 out.println("<html lang=\"en\">");

 out.println("<head>");

 out.println("<title>Servlet WsDateServlet</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Servlet WsDateServlet at " +

 request.getContextPath() + "</h1>");

 out.println("<p>" + date("yyyy-MM-dd HH:mm:ss") +

 "</p>");

 out.println("</body>");

 out.println("</html>");

 }

 }

 @Override

 protected void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

ChAPTER 8 DEALiNg wiTh XML DATA

214

 private String date(String dateFormat) {

 WsDate port = service.getWsDatePort();

 return port.date(dateFormat);

 }

}

You can see it refers to the WSDL URL and to the Java classes we just generated.

You may also notice that you don’t have to deal with XML directly—JAX-WS does all the

SOAP XML creating, parsing, and converting tasks for us. Deploy this on the server, and

in a browser of your choice navigate to the following URL:

 http://localhost:8080/wsdate-client/WsDateServlet

This will call the SOAP web service and print the result on the browser page

generated.

 Exercise 2
Let the client call the date2() web method (results from the previous exercise) instead

and output any error messages on the page.

 Application Startup Activities
Up until now, any activities performed by our Jakarta EE 8 server applications have been

triggered from outside, like from a browser, from some client application also started in

Jakarta EE, or from some client tool like CURL. In the following sections, we are going to

talk about XML handling algorithms, and it would be nice if we had something similar to

the JRE construct public static void main(String[] args) { ... } to run any code

unconditionally.

You will find a lot of ideas on the internet about how this can be done. However,

most of the described ideas are more or less ugly hacks, which stems from the fact that

in older versions of Java enterprise servers there was nothing like a genuine startup hook

method. With EJB version 3.1 and up we are fortunately in a better situation. We know

there is a @Singleton annotation for EJBs for which we need only a single instance,

and, more important at this point, there is also a @Startup class-level annotation that

unconditionally creates the EJB upon application startup. This in turn triggers a method

annotated with @PostConstruct.

ChAPTER 8 DEALiNg wiTh XML DATA

215

So, the Jakarta EE 8 equivalent of a public static void main(String[] args) {

... } reads as follows:

import javax.annotation.PostConstruct;

import javax.ejb.Singleton;

import javax.ejb.Startup;

@Singleton

@Startup

public class App {

 @PostConstruct

 public void postConstruct() {

 System.err.println("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");

 System.err.println("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");

 System.err.println("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");

 ... any startup code ...

 }

}

You can put this anywhere. Also, you can rename the class and its single method

to anything you like—names don’t matter here, because only the annotations are

important.

This code will be executed at server startup and every time the application gets

redeployed, which for an application containing nothing but this startup procedure

won’t take longer than maybe two seconds.

Note To deploy or redeploy an application you can press CTRL+ALT+P on the
server in Eclipse’s “Servers” view.

ChAPTER 8 DEALiNg wiTh XML DATA

216

 XML Processing
If, for whatever reason, you need to process XML data directly, outside JAX-WS, Jakarta

EE 8 also includes several technologies to create and parse XML data:

 – JAXP 1.6

Java API for XML Processing

 – StAX 1.0

Streaming API for XML. Included within JAXP.

 – JAXB 2.2

Java XML Binding

The following paragraphs will describe JAXP, more precisely its parts DOM, SAX,

and StaX, from a use case–centric view. JAXB will require a follow-up book. For detailed

instructions and a more complete API survey, please see the specification manuals you

can find on the internet.

In all examples and unless otherwise noted, we use the following input document:

 <?xml version="1.0" encoding="UTF-8"?>

 <recordings>

 <recording genre="classic">

 <composer>Haydn</composer>

 <composerFirst>Joseph</composerFirst>

 <title>The Creation</title>

 <make>1797</make>

 </recording>

 <recording genre="classic">

 <composer>Haydn</composer>

 <composerFirst>Joseph</composerFirst>

 <title>The Seasons</title>

 <make>1801</make>

 </recording>

 <recording genre="rock">

 <composer>U2</composer>

 <lyrics>Bono</lyrics>

ChAPTER 8 DEALiNg wiTh XML DATA

217

 <performer>U2</performer>

 <title>A Sort of Homecoming</title>

 <make>1984</make>

 </recording>

 </recordings>

 DOM: In-Memory Representation of a Complete XML
Document
If an XML document is not too big you can let JAXP read in the complete document and

produce an in-memory tree representation from that. Such a representation gets called a

document object model or DOM.

Inside the DOM methodology, any leaf or sub-tree root gets called a node. A node is

an instance of the interface org.w3c.dom.Node. The children of a DOM tree node are of

type org.w3c.dom.NodeList. To build a Java 8 stream from that we use a helper class, as

follows:

class DOMIterator {

 private int i = 0;

 private Node n;

 public DOMIterator(Node n) { this.n = n; }

 public Stream<Node> stream() {

 NodeList nl = n.getChildNodes();

 int len = nl.getLength();

 return len == 0 ?

 Stream.empty()

 : Stream.iterate(nl.item(0), n2 -> {

 i++; return nl.item(i); }).limit(len);

 }

 public static Stream<Node> stream(Node n) {

 return new DOMIterator(n).stream();

 }

}

ChAPTER 8 DEALiNg wiTh XML DATA

218

To read in a document and build an in-memory DOM representation, you write the

following:

import java.util.stream.Stream;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.InputSource;

...

 String xml = ...;

 DocumentBuilderFactory dbf =

 DocumentBuilderFactory.newInstance();

 DocumentBuilder db = dbf.newDocumentBuilder();

 InputSource is = new InputSource(

 new ByteArrayInputStream(xml.getBytes()));

 Document doc = db.parse(is);

From there we can navigate through the tree, investigate nodes, retrieve node

attributes and node text content, and add nodes and attributes, as follows:

 Node root = doc.getDocumentElement();

 // Getting a node name

 System.err.println("Name = " + root.getNodeName());

 // -> recordings

 // Iterate through child elements

 DOMIterator.stream(root).

 filter(n -> n.getNodeType() == Node.ELEMENT_NODE).

 forEach(n -> {

 System.err.println("Child Name = " + n.getNodeName());

 // -> recording, recording, ...

 });

ChAPTER 8 DEALiNg wiTh XML DATA

219

 // Navigating and finding

 Node third = DOMIterator.stream(root).

 filter(n -> n.getNodeType() == Node.ELEMENT_NODE).

 skip(2).findFirst().get();

 String thrdComposer = DOMIterator.stream(third).

 filter(n -> n.getNodeName().equals("composer")).

 findFirst().get().getTextContent();

 String thrdGenre = third.getAttributes().

 getNamedItem("genre").getNodeValue();

 System.err.println("3rd Composer = " + thrdComposer);

 System.err.println("3rd Genre = " + thrdGenre);

 // Changing and adding an attribute

 third.getAttributes().getNamedItem("genre").

 setNodeValue("ROCK");

 Attr attr = doc.createAttribute("classification");

 attr.setNodeValue("kx-7");

 third.getAttributes().setNamedItem(attr);

 // Adding a node

 Node newNode = doc.createElement("country");

 newNode.setTextContent("Ireland");

 third.appendChild(newNode);

To output the complete DOM tree, we first condense it, removing white-space texts,

including line breaks, and then use a transformer to output re-indented XML, as follows:

 TransformerFactory transformerFactory =

 TransformerFactory.newInstance();

 Transformer transformer = transformerFactory.

 newTransformer();

 // Remove whitespaces outside tags

 XPathFactory xfact = XPathFactory.newInstance();

 XPath xpath = xfact.newXPath();

 NodeList empty = (NodeList) xpath.

 evaluate(

 "//text()[normalize-space(.) = “]",

ChAPTER 8 DEALiNg wiTh XML DATA

220

 doc, XPathConstants.NODESET);

 for (int i = 0; i < empty.getLength(); i++) {

 Node node = empty.item(i);

 node.getParentNode().removeChild(node);

 }

 // Re-indent

 transformer.setOutputProperty(

 OutputKeys.INDENT, "yes");

 transformer.setOutputProperty(

 "{http://xml.apache.org/xslt}indent-amount", "2");

 DOMSource source = new DOMSource(doc);

 StreamResult result = new StreamResult(System.out);

 transformer.transform(source, result);

 StAX: Streaming Pull Parsing
StAX, in contrast to DOM reading, does not read in the complete XML file and save it

in memory. Instead, the application maintains an iterator or a cursor for consecutively

scanning the whole XML document. So, if you have a really big XML file and need to

fetch certain entries from it, StAX might be your best choice for achieving your aim.

StAX is relatively new compared to the other XML-processing technologies. While

it is easy to understand, you might sometimes read that it is old-fashioned because in

your code you have to add a lot of switch statements to react to cursor or iterator event

types—you have to check for start and end elements, characters, namespace, attributes,

and more.

The truth is, this is not StAX’s fault; it comes from the way you use it. If you use Java

8’s streaming capabilities and a helper class to mediate between StAX and streams, you

can write really elegant code for StAX processing.

ChAPTER 8 DEALiNg wiTh XML DATA

221

First, we add the protonpack library to the project. It contains Java 8 stream utilities

to leverage the power of Java 8 streams even more. In the pom.xml build file, add the

following inside the <dependencies> section:

 <dependency>

 <groupId>com.codepoetics</groupId>

 <artifactId>protonpack</artifactId>

 <version>1.13</version>

 </dependency>

Update the project by clicking on Maven ➤ Update Project.... This ensures Eclipse

knows about this library, but we still need to make sure the Jakarta EE 8 server knows

about it. For simplicity, we add the protonpack1.13.jar file (you can find it inside the

“[USER]/.m2/repository/com/codepoetics/protonpack/1.13” folder on your PC) to the

“[GLASSFISH_INST]/glassfish/domains/domain1/lib/ext” folder.

Restart the Glassfish server now.

Note A more standard way of adding libraries to EJB projects gets described in
the “EJBs with Dependencies” section of Chapter 7.

Next, we create a helper class for mediating between StAX and Java 8 streams,

as follows:

import java.util.stream.Stream;

import com.codepoetics.protonpack.StreamUtils;

public class StaxIterator {

 private XMLStreamReader parser;

 public StaxIterator(XMLStreamReader parser) {

 this.parser = parser;

 }

 public Stream<XMLStreamReader> stream() {

 return StreamUtils.

 takeWhile(Stream.iterate(parser, pa -> {

 try {

 if(!pa.hasNext())

 return null;

ChAPTER 8 DEALiNg wiTh XML DATA

222

 pa.next();

 } catch (XMLStreamException e) {

 e.printStackTrace(System.err);

 }

 return pa;

 }), elem -> elem != null);

 }

 public static Stream<XMLStreamReader>

 stream(XMLStreamReader n) {

 return new StaxIterator(n).stream();

 }

 public static String getElementText(

 XMLStreamReader n) {

 try {

 return n.getElementText();

 } catch (XMLStreamException e) {

 return "";

 }

 }

}

We again use the XML data presented at the beginning of the “XML Processing”

section. Now the code to read in an XML text for StAX parsing reads as follows:

 ByteArrayInputStream bis =

 new ByteArrayInputStream(xml.getBytes());

 XMLInputFactory factory =

 XMLInputFactory.newInstance();

 XMLStreamReader parser =

 factory.createXMLStreamReader(bis);

Instead of the byte array input stream, you can of course use any other input stream,

including reading from a file or even a URL.

ChAPTER 8 DEALiNg wiTh XML DATA

223

From there we can use our stream helper class to create a Java 8 stream, and then use

finders, filters, mappers, injectors, collectors, and whatever else streams provide us with.

Just a few examples are shown here:

// show all elements

StaxIterator.stream(parser).

 filter(elem -> elem.isStartElement()).

 forEach(sr -> {

 System.err.println(sr.getLocalName());

});

// show all composers

bis.reset();

XMLStreamReader parser2 =

 factory.createXMLStreamReader(bis);

System.err.println(

 StaxIterator.stream(parser2).

 filter(elem -> elem.isStartElement()).

 filter(elem -> elem.getLocalName().equals("composer")).

 map(StaxIterator::getElementText).

 distinct().

 collect(Collectors.joining(","))

);

// count records

bis.reset();

XMLStreamReader parser3 =

 factory.createXMLStreamReader(bis);

long recNum = StaxIterator.stream(parser3).

 filter(elem -> elem.isStartElement()).

 filter(elem -> elem.getLocalName().equals("recording")).

 count();

System.err.println(recNum);

Note that we have to create a fresh new parser after each stream operation. This is

because a parser gets used up and cannot be rewound.

ChAPTER 8 DEALiNg wiTh XML DATA

224

 SAX: Event-Based Push Parsing
Reading in an XML document using the SAX technology is different from parsing the

complete document to generate an in-memory DOM tree or using StAX streaming.

With SAX you tell a parser engine to read in the XML document and call a class you

implement as a listener on document parts arriving while the parsing goes on. This

sometimes gets called push type parsing because the parser engine pushes events to

your application.

We first develop a listener class, which for demonstration purposes just outputs

diagnostic information. In a real-world application you would use this class to filter and

transform values. See the following:

import org.xml.sax.Attributes;

import org.xml.sax.InputSource;

import org.xml.sax.SAXException;

import org.xml.sax.helpers.DefaultHandler;

class UserHandler extends DefaultHandler {

 @Override

 public void startElement(

 String uri, String localName, String qName,

 Attributes attributes)

 throws SAXException {

 String attrs = "[";

 for(int i=0; i < attributes.getLength();i++) {

 attrs += attributes.getLocalName(i) + "=" +

 attributes.getValue(i)+ ",";

 }

 attrs = attrs.length() > 1 ?

 attrs.substring(0, attrs.length()-1) : attrs;

 attrs += "]";

 System.err.println("-> " + localName + " - " +

 uri + " - " + qName + " - " + attrs);

 }

ChAPTER 8 DEALiNg wiTh XML DATA

225

 @Override

 public void endElement(String uri,

 String localName, String qName)

 throws SAXException {

 System.err.println("<- " + localName + " - " +

 uri + " - " + qName);

 }

 @Override

 public void characters(char ch[], int start,

 int length) throws SAXException {

 String chars = new String(ch, start, length);

 if(!chars.trim().isEmpty())

 System.err.println("CHARS: " + chars);

 }

}

For the code to read in the XML data, register the handler you tell a parser engine to

read in the (listener), and start the parsing, you need to write the following:

 ByteArrayInputStream bis =

 new ByteArrayInputStream(xml.getBytes());

 InputSource is =

 new InputSource(bis);

 SAXParserFactory factory =

 SAXParserFactory.newInstance();

 SAXParser saxParser = factory.newSAXParser();

 UserHandler userhandler = new UserHandler();

 saxParser.parse(is, userhandler);

ChAPTER 8 DEALiNg wiTh XML DATA

227
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_9

CHAPTER 9

Messaging with JMS
Messaging allows components from one or more applications running on one or more

servers in possibly different network nodes to communicate in a loosely coupled way.

This means that the senders and receivers don’t have to know about each other—there

must just be a common understanding about message format and content. In addition,

the message processing happens asynchronously, which means senders and receivers

don’t have to be available at the same time, and the sender is not forced to wait until a

message reaches its destination.

In Jakarta EE 8, messaging gets handled by the JMS (Java Messaging Service)

technology. In this chapter, we will talk about messaging methodologies, about setting

up the infrastructure needed for JMS to work, and about the ways components can send

and receive JMS messages.

 Messaging Paradigms
We have already pointed out that messaging couples senders and receivers only loosely.

This refers to the message format, which must not depend on classes that only the

sender or receiver knows about. But it also refers to temporal synchronicity, meaning

that a receiver must not necessarily be reachable when the sender transmits a message.

For this to work, messaging requires the collaboration of three types of participants:

message senders, message receivers, and a messaging provider, which mediates

between the senders and receivers. A Jakarta EE 8 server is not required to include

a messaging provider; in a corporate environment you will often have third-party

messaging providers at work. It is, of course, not forbidden that a Jakarta EE 8 server

provides its own messaging provider, and in fact the Glassfish 5.1 server we are using in

this book contains the Oracle Glassfish Server Message Queue or Open Message Queue

(OpenMQ) software. Both names refer to the same thing, apart from maybe some legal

228

issues. We will be using that message provider for our first JMS steps, but you are free to

use any other JMS- compliant messaging provider of your choice.

Messaging usually distinguishes between two messaging domains, which further

limit the multitude of clients that can participate in messaging connections:

 – Point-to-Point Messaging or Queues

Here, the message sender—or several message senders—sends

messages to a dedicated message queue, and at most one

consumer is eligible to receive the message. The message receiver

acknowledges the message, but the message sender is not

required to wait until the message is actually consumed by the

receiver. There is no temporal dependency—the receiver need

not be active at the time the message is sent. It can receive the

message later as well. A messaging provider usually allows for an

unlimited number of queues to exist.

 – Publish/Subscribe Messaging or Topics

Here, one or more message senders send messages to a container-

like structure called a topic. One or more receivers wishing to read

messages that arrive in that topic subscribe to it. Usually, messages

that arrive in the topic while a potential receiver is not active

get lost for that receiver, unless the receiver maintains a durable

subscription, which leads to topic messages “queuing up” for that

receiver. Once such a durable receiver gets active again, it will

receive all messages that arrived in the topic while the receiver

was inactive. A messaging provider usually allows for an unlimited

number of topics to exist.

 Setting Up a Messaging Provider
If you start the Glassfish server 5.1, a messaging provider gets started for you

automatically. By default, it listens on port 7676, and it is secured by a user–password

combination “admin”/“admin.”

Chapter 9 Messaging with JMs

229

Note You can change the JMs user credentials and the port if in the web admin
application http://localhost:4848 you go to Configurations ➤ server-config
➤ Java Message service ➤ JMs hosts ➤ default_JMs_host.

In the web admin application http://localhost:4848 at Resources ➤ JMS

Resources ➤ Connection Factories ➤ jms/__defaultConnectionFactory you can find a

 connection factory that you can use from inside your code to connect to the messaging

provider. This one was created by default for you, and we will use it for this book.

Important is the value “java:comp/DefaultJMSConnectionFactory” at “Logical JNDI

Name” (see Figure 9- 1).

Figure 9-1. JMS Connection Factory

 Creating Queues and Topics
To create a queue or topic within the Glassfish server’s JMS provider, go to Resources ➤

JMS Resources ➤ Destination Resources and click on the “New...” button.

Chapter 9 Messaging with JMs

230

For the examples found in the rest of this chapter, create one queue, “TestQueue,”

and one topic, “TestTopic.” The data for the queue are as follows:

 JNDI Name: jms/TestQueue

 Physical Destination Name: TestQueue

 Resource Type: javax.jms.Queue

 Description: Test Queue

 Status: [x]

And for the topic, enter the following:

 JNDI Name: jms/TestTopic

 Physical Destination Name: TestTopic

 Resource Type: javax.jms.Topic

 Description: Test Topic

 Status: [x]

The web admin page now shows the new queue and topic. But we can also use the

asadmin command-line utility. For the topic, enter the following:

 cd GLASSFISH_INST

 bin/asadmin list-jms-resources

where GLASSFISH_INST stands for your Glassfish installation folder. The output now will

give you the following:

 jms/TestQueue

 jms/TestTopic

 jms/__defaultConnectionFactory

 Submitting and Receiving Messages
To submit a message to a queue or a topic, you can use an injected JMSContext and JMS

resources as follows:

@Singleton

@Startup

public class QueueSender {

 @Resource(lookup = "jms/TestQueue")

 private Queue queue;

Chapter 9 Messaging with JMs

231

 @Inject

 private JMSContext jmsContext;

 @PostConstruct

 public void go() {

 String msg = "My JMS Message";

 jmsContext.createProducer().send(queue, msg);

 }

}

You can use this methodology from every class managed by CDI, like an EJB of any

type, a SOAP web service, a REST service, and so forth. This example uses a singleton EJB

with a startup method (the @Startup and @PostConstruct annotations) to make testing

as easy as possible. The lookup parameter in the resource injected must match the

queue’s JNDI name.

Doing this with a topic as the target instead of a queue looks very similar. We add a

delay to the sending process to make sure any topic listener has registered itself before

we send messages, as follows:

@Singleton

@Startup

public class TopicSender {

 @Resource(lookup = "jms/TestTopic")

 private Topic topic;

 @Inject

 private JMSContext jmsContext;

 @Resource

 private SessionContext context; // needed for the timer

 @PostConstruct

 public void go() {

 // schedule the timer with a 5 secs delay

 context.getTimerService().createSingleActionTimer(

 5000, new TimerConfig());

 }

Chapter 9 Messaging with JMs

232

 @Timeout // called when the timer fires

 public void programmaticTimeout(Timer timer) {

 String msg = "My JMS Message";

 jmsContext.createProducer().send(topic, msg);

 }

}

Similar to the queue example, the lookup parameter of the @Resource annotation

must match the JNDI name of the topic used to handle the message.

For receiving messages there exists a special EJB type we haven’t talked about yet:

message-driven beans. They allow us to implement message receivers in a very concise

way. First, the receiver for the queue is can be written as follows:

@MessageDriven(

 activationConfig = {

 @ActivationConfigProperty(

 propertyName = "destinationType",

 propertyValue = "javax.jms.Queue")

 },

 mappedName = "jms/TestQueue")

public class TestQueueReceiverEJB

 implements MessageListener {

 @Resource

 private MessageDrivenContext mdc;

 @Override

 public void onMessage(Message message) {

 try {

 System.err.println("!#!#!#! QUEUE " +

 ((TextMessage)message).getText());

 } catch (JMSException e) {

 e.printStackTrace(System.err);

 }

 }

}

Chapter 9 Messaging with JMs

233

The whole magic lies in the @MessageDriven annotation. Here, we tell whether we

are listening for messages from a queue or a topic and provide the JNDI name for the

queue or topic. The rest gets done by implementing the MessageListener interface.

The receiver for listening for messages handled by a topic looks very similar, as

follows:

@MessageDriven(

 activationConfig = {

 @ActivationConfigProperty(

 propertyName = "destinationType",

 propertyValue = "javax.jms.Topic")

 },

 mappedName = "jms/TestTopic")

public class TestTopicReceiverEJB

 implements MessageListener {

 @Resource

 private MessageDrivenContext mdc;

 @Override

 public void onMessage(Message message) {

 try {

 System.err.println("!#!#!#! TOPIC " +

 ((TextMessage)message).getText());

 } catch (JMSException e) {

 e.printStackTrace(System.err);

 }

 }

}

Note examples you will find on the web often use the older JnDi lookup method
for messaging-context retrieval and topic or queue acquisition—you can see we
use injection for the same task to write shorter and more elegant code. But, if you
like, the old methods are still valid.

Chapter 9 Messaging with JMs

234

 Exercise 1
Create an EJB project with a queue and a topic sender and a queue and a topic receiver

as described in this section.

 Managing the Messaging Provider
Tools for managing the messaging provider are product specific, so there is no standard

tool chain we can describe here. But since we are using the OpenMQ messaging provider

included within Glassfish, we will take a closer look at the tools this one provides.

With every Glassfish installation, you will find the OpenMQ messaging provider tools

in the “GLASSFISH_INST/mq” folder.

If with the Glassfish server running you start the imqadmin tool from this tools folder,

you will see a window, as shown in Figure 9-2.

Figure 9-2. “imqadmin” tool main window

Chapter 9 Messaging with JMs

235

The JMS provider running inside Glassfish gets called “Broker” in this tool. To see it,

we have to register it: click on “Brokers” and then on the “Add” icon (or Actions ➤ Add

Broker in the menu). In the dialog that appears, enter the following:

 Broker Label: Glassfish

 Host: localhost

 Primary Port: 7676

 Username: admin

 Password: admin

See Figure 9-3.

Figure 9-3. “imqadmin” new broker

Click “OK.” The new broker gets shown, as in Figure 9-4. Click on “Glassfish” and

then go to Actions ➤ Connect to Broker. Click on “Destinations” to see our test queue

and test topic. This gets shown in Figure 9-5. To see some information about each of

them, right-click on each and in the menu select Actions ➤ Properties....

Chapter 9 Messaging with JMs

236

The other tools in the “mq/bin” folder are command-line utilities. All of them

have a help facility included—just enter the command and append an “h” to see it.

For our purposes, what is particularly interesting is the imqusermgr tool. It gets used to

administer users for the messaging provider. The following listing shows some use cases

for that tool:

Figure 9-5. Test queue and topic

Figure 9-4. “imqadmin” with Glassfish

Chapter 9 Messaging with JMs

237

 # ###### List all users ########################

 ./imqusermgr list

 # ->

 # User repository for broker instance: imqbroker

 # --------------------------------------

 # User Name Group Active State

 # --------------------------------------

 # admin admin true

 # guest anonymous true

 # ###### Change user password ##################

 ./imqusermgr update -u admin -p QW34rtz

 # ###### Add new user ##########################

 ./imqusermgr add -u Spongebob -p QW34rt7 -g admin

 # ###### Delete user ###########################

 ./imqusermgr delete -u Spongebob

Chapter 9 Messaging with JMs

239
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_10

CHAPTER 10

Maintaining State
Consistency with JTA
Transactions
Transactions are about units of work, which either succeed in total or produce no result

at all. This sounds easy at first, but consider cases where databases are involved, or

queues and topics inside an associated messaging provider. Needless to say, in cases

where we consider a transaction to have failed, rolling back database changes and

messages in a topic or queue can become a complex matter if many tables and queues or

topics are involved. The story becomes even more complex if the parties involved run on

different network nodes, in which case we are talking about distributed transactions.

The Java Transaction API or JTA is a specification that allows parties involved in

transactions or distributed transactions, together with a transaction manager, to run in

the way desired, with the ability to define units of work that can be committed if they

succeed, or rolled back in total in case important business workflow steps fail.

Transaction managers often follow the two-phase commit protocol. In the first phase,

the transaction manager polls each party of the transaction, and if any of them cannot

commit, rolls back the sub-transactions in question. In the second phase, the transaction

manager checks whether any party reported a negative result and decides then whether

the whole transaction gets committed or rolled back.

240

 Modularization in Time: Transaction Demarcation
Transactions can be considered as modules in the time domain. The responsibility of a

transaction is to take exactly one of two possible decisions:

• The transaction can be committed. Once committed, all participants

of the transaction are considered to have successfully finished their

work. After the commit, the transaction is over and new transactions

can be entered.

• The transaction must be rolled back. All participants of the

transaction must do their own rollback. After a rollback, the

transaction is over and a new transaction (including repeating the

failed transaction) can be entered.

Transactions are said to draw a demarcation line between activities that are

considered part of the transaction and activities that run outside the transaction.

A transaction manager must allow the definition of which activities run inside and which

run outside the demarcation line.

Consider, for example, an ATM with four parties: communicating with the accounts

database, communicating with the money dispenser, communicating with the receipt

printer, and registering performance figures in some database. Surely from a customer’s

point of view the accounts database, the money dispenser, and the receipt printer

are part of the transaction—if any of them fail the whole transaction must be rolled

back. A problem with the performance figures database, on the other hand, is not a

severe problem, and the customer probably doesn’t care about such problems. The

performance figure registration thus lies outside the transaction demarcation, and all the

other activities described lie inside.

 Local and Distributed Transactions
A local transaction requires involved parties to run within one process. Local

transactions are easier to handle for transaction managers, since no interprocess

communication is needed for the transaction handling.

In contrast to that, interprocess communications get handled by XA transactions

(eXtended Architecture). Not all database and JMS products are able to handle XA

transactions—you would have to consult their feature list to check.

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

241

 The ACID Paradigm
If databases are involved in transactions, they follow a set of properties in order to

guarantee data operation validity. This gets described by the acronym ACID:

 – Atomicity

A set of related database operations fulfilling a dedicated business

case must be treated as a unit. The statements composing the

operation set must either succeed in total or fail completely. This

atomicity must be assured in case of software failures, hardware

failures, network breakdowns, power failures, and so on.

 – Consistency

Database consistency is given if database operations during a

transaction cannot possibly leave the database in a corrupted

state. This includes constraints, table relations (cascades), and

triggers.

 – Isolation

During a transaction, different tables and database meta-

information undergo consecutive state transitions. The isolation

level is a configurable property that defines the visibility of

such changes to other database clients. The isolation must be

configured in such a way that the database is in a usable state for

outside users both during and after the transaction.

 – Durability

After the commit, the new state must be able to endure software

and hardware problems, including crashes and power shortages.

The transaction management governed by JTA will ensure that all ACID properties

are guaranteed for databases participating in transactions.

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

242

 Transaction Managers
Normally you don’t have to care about installing or configuring a transaction manager

in a Jakarta EE server—any server compliant with the Jakarta EE specification has a

transaction manager included and properly configured.

What you must do is to decide what types of transactions a component or resource

supports. First, you have to decide whether you use container-managed transactions

or bean-managed transactions. We will talk about this distinction later in this chapter.

The other distinction is between XA transactions for distributed components and

local transactions. This has to be configured for each resource independently. Do you

remember the JDBC connection pool configuration we talked about in Chapter 6? There,

we wrote the following to create a pool:

./asadmin create-jdbc-connection-pool \

 --datasourceclassname \

 org.apache.derby.jdbc.ClientDataSource \

 --restype javax.sql.DataSource \

 --property \

 portNumber=1527:password=pw715:user=user0:

 serverName=localhost:databaseName=calypso:

 securityMechanism=3 \

 Calypso

Actually, because of the -- restype javax.sql.DataSource this created a non-

XA database resource for local transactions only. If we needed XA transactions, we’d

have to use -- restype javax.sql.XADataSource instead. Similarly, there are XA

and non-XA connection factories for JMS resources. You can see it if you enter the

administration web application at http://localhost:4848. There at Resources ➤ JMS

Resources ➤ Connection Factories ➤ (For example) jms/__defaultConnectionFactory

you will see a field called “Transaction Support” with possible values “XATransaction,”

“LocalTransaction,” and “NoTransaction.” See Figure 10-1, in the bottom input field.

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

243

Also, for JPA-enabled projects we had to provide a persistence.xml file inside

the META-INF directory for connecting the JPA project to a data source. An example was

the following:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/persistence

 persistence_1_0.xsd"

 version="1.0">

 <persistence-unit name="default"

 transaction-type="JTA">

 <jta-data-source>jdbc/Calypso</jta-data-source>

 <exclude-unlisted-classes>false

 </exclude-unlisted-classes>

 <properties />

 </persistence-unit>

</persistence>

Because of the transaction-type = "JTA" the JPA project uses JTA transactions.

So, don’t forget to write the attribute this way if you create JPA projects and need to use

transactions.

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

244

Figure 10-1. JMS transactionality

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

245

 Container-Managed Transactions
With container-managed transactions you have the smallest amount of work to be

done for enabling transactionality in your processes. As the name says, the transaction

demarcation gets handled by the container, more precisely by the EJB container, and as

such applies for both session- and message-driven beans.

Consider the example from the JPA chapter, where we talked about the following EJB

for handling the members of a club named “Calypso” we own:

@Singleton

public class MemberDAO {

 @PersistenceContext

 private EntityManager em;

 public List<Member> allMembers() {

 [return list of all memebers from the DB]

 }

 public Member getMember(int id) {

 [return one member from the DB]

 }

 public int newMember(String lastName,

 String firstName, String birthday) {

 Member m = new Member();

 [set member properties]

 em.persist(m);

 em.flush(); // needed to get the ID

 return m.getId();

 }

 public void updateMember(String lastName,

 String firstName, String birthday, int id) {

 Member m = em.find(Member.class, id);

 [set member properties]

 em.persist(m);

 }

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

246

 public void deleteMember(int id) {

 [delete member from the DB]

 }

}

See Chapter 6 for the details.

Now, all we have to do to add basic container-managed transactionality is to

annotate the class as follows:

@Singleton

@TransactionManagement(TransactionManagementType.CONTAINER)

public class MemberDAO {

 ...

}

In fact, we don’t even have to do that, because TransactionManagementType.

CONTAINER is the default, so without knowing it we already used transactions in Chapter 6!

What happened is that if the client—that is, the code that invoked any method of

the EJB—runs itself in a transactional context, the EJB method will participate in that

transaction. If, however, the client doesn’t start a transaction before an EJB method gets

called, the container will start a new transaction before the method body gets executed,

and it finishes the transaction immediately after the method returns. The transaction

is assumed to have succeeded (with a subsequent “commit”), unless the method

setRollbackOnly() of the session context gets called. We first inject the context into the

EJB implementation as follows:

@Singleton

@TransactionManagement(TransactionManagementType.CONTAINER)

public class MemberDAO {

 @Resource private SessionContext ejbContext;

 ...

}

And then, if a rollback for the transaction is needed, we write the following:

 ...

 ejbContext.setRollbackOnly();

 ...

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

247

So far, this kind of transaction control gets applied to all EJB methods, but it is

possible to tune that on a per-method basis. What we must do is add the annotation

 @TransactionAttribute with one parameter from one of the six constants—REQUIRED,

REQUIRES_NEW, MANDATORY, NOT_SUPPORTED, SUPPORTS, or NEVER—from the class

TransactionAttributeType. For example:

...

import javax.ejb.TransactionAttribute;

import static javax.ejb.TransactionAttributeType.*;

@Singleton

public class MemberDAO {

 ...

 @TransactionAttribute(REQUIRED)

 public List<Member> allMembers() {

 ...

 }

 @TransactionAttribute(NEVER)

 public Member getMember(int id) {

 ...

 }

 ...

}

The characteristics of all the possible transaction attribute types are as follows:

 – REQUIRED

This is the default; if the EJB uses container-managed transactions

and you don’t specify an @TransactionAttribute for a method,

REQUIRED is assumed for that method. If the client runs itself in

a transactional context, the EJB method will participate in that

transaction. If the client didn’t start a transaction before the EJB

method was called, the container will start a new transaction

before the method body gets executed, and it finishes the

transaction immediately after the method returns.

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

248

 – REQUIRES_NEW

If the client is not running in a transaction itself, the container will

start a new transaction before the method body gets executed, and

it finishes the transaction immediately after the method returns.

Otherwise, the client’s transaction gets temporarily suspended, a

new transaction gets created for the method execution, and after

the method finishes the client’s transaction gets resumed.

 – MANDATORY

The client must be running inside its own transaction

context, and the EJB method execution participates in that

transaction. If the client does not have a transaction, a

TransactionRequiredException will be thrown.

 – NOT_SUPPORTED

If the client runs inside a transaction, it gets temporarily

suspended. The EJB method then runs outside any transaction

context. After the method returns, the client’s transaction gets

resumed (if applicable). Use this type if transactionality is not

needed and you want improved performance.

 – SUPPORTS

Only if the client is running in its own transaction, it will continue

to use that one while the method gets executed. Otherwise, no

transaction gets used or created.

 – NEVER

The client must not run in its own transaction. Otherwise, throw

a RemoteException exception. The EJB method runs outside any

transaction.

 Bean-Managed Transactions
If you add a transaction type “bean” to an EJB as follows:

@Singleton // or @Stateful / @Stateless

@TransactionManagement(TransactionManagementType.BEAN)

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

249

public class SomeEjb {

 ...

}

the EJB container stops taking care of the transactionality.

Note Usually container-managed transactions are easier to code compared
to bean-managed transactions. however, with container-managed transactions
eJB methods get associated with exactly one transaction or none at all. if
during a method execution you need several consecutive transactions, you must
use bean- managed transactions.

If the EJB container does not help with transaction demarcation, we have to do it

programmatically, and to this aim we need an instance of the UserTransaction interface

(package javax.transaction). We get one via injection, as follows:

@Singleton // or @Stateful / @Stateless

@TransactionManagement(TransactionManagementType.BEAN)

public class SomeEjb {

 @Resource UserTransaction transa;

 ...

}

From there, we are able to define the transaction demarcation inside EJB methods,

as follows:

 ...

 transa.begin(); // -- start the transaction

 ...

 if(everythingOK) {

 transa.commit(); // -- commit the transaction

 }else{

 transa.rollback(); // -- rollback the transaction

 }

 ...

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

250

Note if you use stateful session eJBs, you can leave the transaction open at the
end of the method execution and postpone a commit() or rollback() to a later
point. this is another advantage of bean-managed transactions—they can span
several method invocations for stateful eJBs.

If you use bean-managed transactions, using the methods getRollbackOnly()

and setRollbackOnly() on the session context is not allowed. Those are for

container- managed transactions only.

 Observing Transaction for Stateful EJBs
Only if you use container-managed transactions and only in the case of stateful session

EJBs can you let your EJB implement the SessionSynchronization interface and then

react on transaction boundaries, as follows:

...

import javax.ejb.SessionSynchronization;

...

@Stateful

@TransactionManagement(TransactionManagementType.CONTAINER)

public class SomeEjb implements SessionSynchronization {

 @Override

 public void afterBegin() {

 // A transaction has started

 ...

 }

 @Override

 public void beforeCompletion() {

 // A transaction is about to be finished

 ...

 }

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

251

 @Override

 public void afterCompletion(boolean committed) {

 // A transaction has finished

 ...

 }

}

 Transaction Monitoring
The web administration application has a facility to monitor transactions. To use it, we

first have to enable it: go to the web administration console

 http://localhost:4848

Then, navigate to Configurations ➤ server-config ➤ Monitoring, and switch the

“Transaction Service” level to “HIGH” (see Figure 10-2).

Figure 10-2. Transaction monitoring setting

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

252

Click on the “Save” button to register the changed configuration. The transaction

figures can then be seen in the admin console at “Monitoring Data.” Click on the

“Server” link in the column “Monitoring Data” (see Figure 10-3).

Figure 10-3. Transaction monitoring link

Figure 10-4. Transaction statistics

This will then show the transaction service statistics (see Figure 10-4).

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

253

The same data can then be viewed via the REST administration interface (only after

being configured as described!). Enter the following in a terminal (no line break and no

spaces after server/):

 curl -X GET -H "Accept: application/json" \

 http://localhost:4848/monitoring/domain/server/

 transaction-service | jq .

Remember the backslash is just for escaping the following line break—remove it if

you enter everything in one line. The output should be similar to the following:

{

 "message": "",

 "command": "Monitoring Data",

 "exit_code": "SUCCESS",

 "extraProperties": {

 "entity": {

 "activecount": {

 "unit": "count",

 "lastsampletime": 1556189242353,

 "name": "ActiveCount",

 "count": 0,

 "description": "Provides the number of

 transactions that are currently active.",

 "starttime": 1556189216488

 },

 "activeids": {

 "unit": "List",

 "current": "",

 "lastsampletime": 1556190928188,

 "name": "ActiveIds",

 "description": "Provides the IDs of the

 transactions that are currently active a.k.a.

 in-flight transactions. Every such

 transaction can be rolled back after freezing

 the transaction service.",

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

254

 "starttime": 1556189216488

 },

 "committedcount": {

 "unit": "count",

 "lastsampletime": 1556189242353,

 "name": "CommittedCount",

 "count": 7,

 "description": "Provides the number of transactions

 that have been committed.",

 "starttime": 1556189216484

 },

 "rolledbackcount": {

 "unit": "count",

 "lastsampletime": -1,

 "name": "RolledbackCount",

 "count": 0,

 "description": "Provides the number of transactions

 that have been rolled back.",

 "starttime": 1556189216484

 },

 "state": {

 "unit": "String",

 "current": "False",

 "lastsampletime": 1556190928188,

 "name": "State",

 "description": "Indicates if the transaction

 service has been frozen.",

 "starttime": 1556189216488

 }

 },

 "childResources": {}

 }

}

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

255

As is often the case in Java, times are milliseconds since the epoch

1970-01- 01T00:00:00. To make the date readable, write a short Java program as follows:

 public class Main {

 public static void main(String[] args){

 System.out.println(

 new java.util.Date(1556189216488));

 }

 }

Or if you have Groovy installed, enter the following in a terminal:

 groovy -e "println new java.util.Date(1556189216488)"

Note to freeze or unfreeze the transaction service, enter ./asadmin freeze-
transaction- service or ./asadmin unfreeze-transaction-service in
a terminal inside the “gLaSSFiSh_inSt/bin” folder.

Chapter 10 Maintaining State ConSiStenCy with Jta tranSaCtionS

257
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_11

CHAPTER 11

Securing Jakarta EE
Applications
Security plays an important role in Jakarta EE applications. This stems from the fact that

communication with the outside world is an integral part of a server application, be it

web access for JSF or REST applications, web services, remotely accessible EJBs, an email

interface, and so on.

But it is also important to avoid someone’s breaking into your system because

the administrative interfaces of the Jakarta EE8 server (Glassfish in our case) are not

protected, or the database or the JMS provider is not secured. In this chapter, we will

talk about both security realms—application protection and securing administrative

interfaces.

 Securing Administrative Access
There is no set administrative security specification, so each Jakarta EE 8 application

server product has its own idea of how to ensure administrative interfaces can’t be

hacked from outside. You have to consult the server manual to see how this can be

done. However, in our case we are using the Glassfish server (version 5.1), and so in

the following paragraphs we will spend a few words on administrative security for this

particular Jakarta EE 8 server.

 Securing the ASADMIN Tool
We learned that with the asadmin command from the Glassfish bin directory we can

start and stop the application server and the JavaDB database, change configuration

settings, administer resources, and issue commands that control the server’s internal

258

functions. The same tool can be used to change security settings, to deploy and undeploy

applications, and to change the monitoring and logging settings. It is even possible to

use asadmin to administer Glassfish servers running on remote hosts.

This versatility makes it necessary to secure the server access via asadmin. For a

fresh Glassfish installation as described in this book, there is only a single user named

“admin” with an empty password. This configuration makes asadmin skip authorization

and take that “admin” user by default. So, the first thing we want to do is to give this

admin user a decent password. In a terminal, enter the following (“GLASSFISH_INST” is

your installation folder):

 cd GLASSFISH_INST

 bin/asadmin change-admin-password

You will then be asked for the admin user name. Press Enter to accept the default.

Press Enter again when asked for the password (since it is empty). Then, enter the new

password twice. To see that the new password got registered, enter the following:

 bin/asadmin

 asadmin> login

You will then be asked for the user name and the password. Enter “admin” and the

password you have just set. If successfully logged in using the new password, the output

of the login command will tell you the following:

 Command login executed successfully.

Eclipse uses administrative access to the Glassfish server for deployment and other

purposes, so we have to register the changed administrator password inside Eclipse.

Open the “Servers” view, then double-click on the Glassfish server entry. The “Overview”

page will appear, as shown in Figure 11-1.

Chapter 11 SeCuring Jakarta ee appliCationS

259

Click on the link “Open server properties page...” and on the dialog that then appears

navigate to the “GlassFish” menu item. On the dialog page enter corresponding entries

for “Admin name” and “Admin password.” See Figure 11-2. Click the “Apply and Close”

button.

Figure 11-1. Eclipse server overview

Chapter 11 SeCuring Jakarta ee appliCationS

260

 Securing the Web Administrator Console
Setting the asadmin password as described in the preceding paragraphs automatically

also sets a password for the web administration console at http://localhost:4848.

Entering the console in your browser, you will now be asked for the new password. See

Figure 11-3. Enter “admin” as the user name, and then enter the password.

Figure 11-2. Eclipse server administration

Chapter 11 SeCuring Jakarta ee appliCationS

261

 Securing the Administrative REST Service
Because the REST interface used for administration uses the same HTTP connector

as the web administration console, the same authentication restrictions apply. So, by

adding a password to the “admin” user as described for the asadmin tool, the REST

interface gets secured as well, and we must supply the same credentials to use it as we do

for the asadmin tool and the web administration console.

To use the command-line utility CURL, we have to add user and password as follows:

 curl -uadmin:PASSWORD [rest of the curl command]

The PASSWORD needs to be replaced with the password we assigned to the “admin”

user. If you omit :PASSWORD, the curl command will prompt for the password instead.

Figure 11-3. Web administration with password

Chapter 11 SeCuring Jakarta ee appliCationS

262

Note to avoid having to enter the password every time you use Curl, and to
avoid the password’s showing up in cleartext format, you can write the password
into a file NETRC. First line: “machine localhost,” second line: “user admin,” third
line: “password paSSWorD” (replace paSSWorD with your password). then,
enter chmod 600 NETRC to secure that file. For Curl, you then can use curl
--netrc-file NETRC

 Securing the Database Access
To secure the database access, you have to consult the user manual for the database

product you use. For the JavaDB database (or Derby, which is the older name) we use in

this book, we have already talked about authentication in Chapter 6. Just for repetition:

add a user while creating the database, as follows:

 cd [GLASSFISH_INST]

 cd javadb/bin

 # start the DB client

 ./ij

 ij> connect 'jdbc:derby://localhost:1527/database-name;

 create=true;user=user-name';

(Enter the ij command in one line without spaces in front of create=.) Replace

database-name with the name of the database you want to create, and user-name with

the user name of your choice. The database now is created with an owner named “user-

name” (or whatever your choice for the user name was). To add a password for this user,

enter the following (one line):

 ij> call SYSCS_UTIL.SYSCS_CREATE_USER('user-name', 'pw715');

Chapter 11 SeCuring Jakarta ee appliCationS

263

The pw715 is the password of the user; of course, you should use your own password

and user. To make sure everything works as expected, restart the database for the

authentication to start working, as follows:

 cd [GLASSFISH_INST]

 cd bin

 ./asadmin stop-database

 ./asadmin start-database

The database credentials, for example, have to be entered in the JDBC connection

pools we need for JPA (see Chapter 6).

 Securing the JMS Messaging
The JMS messaging provider included within the Jakarta EE 8 Glassfish server comes

preconfigured with two users: an administrative user admin with password “admin”

and a guest user named guest using password “guest.” The admin user belongs to the

“admin” group and gets used to configure, administer, and manage message brokers.

The guest user belongs to group “anonymous” and is supposed to have limited access

rights.

The first thing we do to improve messaging security is to disable the guest user. To

do so, in a terminal enter the following (replace GLASSFISH_INST with the installation

directory):

 cd GLASSFISH_INST/mq/bin

 ./imqusermgr update -u guest -a false

You can check the new user database by entering ./imqusermgr list. This should

now print something like the following:

User repository for broker instance: imqbroker

User Name Group Active State

admin admin true

guest anonymous false

Chapter 11 SeCuring Jakarta ee appliCationS

264

Next, we change the password for the admin user to prohibit unauthorized access to

the messaging provider, as follows:

 ./imqusermgr update -u admin -p PW3194

Of course, you must choose your own password.

The new admin user password needs to be entered in the “JMS Host” configuration:

open the web administration console at http://localhost:4848, navigate to

 Configurations ➤ server-config ➤ Java Message Service ➤ JMS Hosts ➤ default_JMS_

host. Update the admin password there (see Figure 11-4). Don’t forget to click the “Save”

button.

Figure 11-4. Update JMS host

Next, we create a dedicated user for JMS operations. In a terminal, enter the

following:

 ./imqusermgr add -u user1 -p PW36t3 -g user

Chapter 11 SeCuring Jakarta ee appliCationS

265

Instead of PW36t3, choose your own password. This creates a user named “user1”

belonging to the “user” group. Update your connection factory to use exactly that user:

In the web administration console at http://localhost:4848 navigate to Resources ➤

JMS Resources ➤ Connection Factories ➤ jms/- defaultConnectionFactory (or whatever

connection factory you are using from your JMS application) and add the following as

“Additional Properties”:

 UserName = user1

 Password = PW36t3

(Use your password for that user.) See Figure 11-5. If you like, you can add

appropriate descriptions for these fields. Don’t forget to click the “Save” button after you

enter the properties.

Figure 11-5. New JMS operating user

 Exercise 1
Update the JMS sample application from Chapter 9 to use the “user1” credentials as

described in this section.

 Securing Web Applications

Caution Make sure you are using the newest build of JDk 8. older builds lead to
some issues with security providers.

Securing web applications consists of the following measures:

• Switching to using SSL and https:// URLs.

• Restricting access to the complete web application or some parts of it

in such a way that only users who have authenticated themselves can

access the pages.

Chapter 11 SeCuring Jakarta ee appliCationS

266

For SSL, the Jakarta EE 8 Glassfish server out of the box provides an SSL-enabled

HTTP connector. If for normal applications the standard URL reads http://

localhost:8080/[path], you can just as well use https://localhost:8181/[path]. The

included server certificate is a self-signed certificate, and your browser will complain

about it, but for development purposes it is totally acceptable to use it.

The question is, if we have some web application at http://localhost:8080/

my- web- app and the user can arbitrarily switch back and forth to and from https://

localhost:8181/my-web-app, how can we force the user to use the more secure HTTPS

protocol? One answer would be to remove the non-SSL HTTP listener or disable the

non-SSL network listener from the configuration via the web administration console.

However, there is also a more fine-grained way to configure applications to draw this

distinction based on URL patterns. We will be talking about it shortly.

First, we have to enable security in a server-wide configuration setting. To achieve this,

in the web administration console at http://localhost:4848 go to Configurations ➤

server-config ➤ Security and enable the “Security Manager” checkbox (see Figure 11- 6).

Figure 11-6. Enable security manager

Chapter 11 SeCuring Jakarta ee appliCationS

267

Securing web applications by installing URL-based access restrictions is tightly

coupled to the concepts of users, groups, roles, authentication, and authorization, which

we first want to explain:

 – User

A user is an individual person or an application with an identity. For

any particular user, an authentication mechanism can be defined,

which the user can use to identify himself or herself (no other users!).

 – Group

A group is a set of users. A group has an ID (or group name) itself.

A particular user can belong to zero or more groups.

 – Authentication

An authentication mechanism can be used to prove a user’s

identity. Unless a security breach happens, a user can only

authenticate himself or herself, not other users. A user may have a

password to authenticate himself or herself, but authentication by

other means like certificates is also possible.

 – Authorization

An authorization is a set of activities a user is allowed to perform

once authenticated. Authorizations may also be given to groups,

which means any user of that group is given that authorization

once authenticated.

 – Role

A role is an abstract name for a permission. In your application

you use roles to specify what can be done or not. A mapping

between roles and users or between roles and groups happens

declaratively in some server vendor–specific way.

In the rest of this section, we will revisit the Gregorian calendar to Julian day

converter we talked about earlier in this book. We have a greetings page that asks for

the Gregorian date (our usual calendar system), a “Submit” button for performing the

calculation, and another page showing the result of the calculation. We add a third page,

which should be accessible only for special administrative users who must authenticate

themselves, and we want this admin page to automatically switch to the HTTPS protocol.

Chapter 11 SeCuring Jakarta ee appliCationS

268

We first add a user “AdminUser” to the server’s user database. The user has to be

assigned to the “ApplAdmin” group. Start the web administration console at http://

localhost:4848. Navigate to Configurations ➤ serverconfig ➤ Security ➤ Realms ➤ file.

Click on “Manage Users” button. On the page that then appears, click on “New...,” then

enter the following:

 User ID: AdminUser

 Group List: ApplAdmin

 Password: pW41834

Click “OK.” This new user gets stored in a file inside the server’s file-tree structure—

this is where the name “file” realm comes from.

Contrary to the original Julian project, where we had an extra project just for the

calculation, this time we put everything into a single project. To this aim, create a new

Maven project with the following coordinates:

 Group-Id: book.jakarta8

 Artifact-Id: julian-gui-secure

 Version: 0.0.1-SNAPSHOT

 Packaging: war

And also use book.jakarta8.julianguisecure as a Java base package. As usual,

make sure the project correctly uses Java 8. The complete pom.xml file reads as follows:

<project xmlns=

 "http://maven.apache.org/POM/4.0.0"

 xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>book.jakarta8</groupId>

 <artifactId>julian-gui-secure</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>war</packaging>

Chapter 11 SeCuring Jakarta ee appliCationS

269

 <name>julian-gui-secure</name>

 <url>http://maven.apache.org</url>

 <properties>

 <project.build.sourceEncoding>

 UTF-8

 </project.build.sourceEncoding>

 </properties>

 <dependencies>

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-api</artifactId>

 <version>8.0</version>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

Chapter 11 SeCuring Jakarta ee appliCationS

270

Convert the project to the faceted form (if it is not already). As facets, add the

following:

 Dynamic Web Module 4.0

 Java 1.8

 JavaScript 1.0

 JavaServer Faces 2.3

Add a folder, “src/main/webapp/WEB-INF,” and inside add four files: beans.xml,

faces-config.xml, glassfish-web.xml, and web.xml. The beans.xml file must stay

empty. As the contents of faces-config.xml write the following:

<?xml version="1.0" encoding="UTF-8"?>

<faces-config

 xmlns=

 "http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/

 web-facesconfig_2_3.xsd"

 version="2.3">

 <application>

 <resource-bundle>

 <base-name>

 julian.web.WebMessages</base-name>

 <var>bundle</var>

 </resource-bundle>

 <locale-config>

 <default-locale>en</default-locale>

 <!-- <supported-locale>es</supported-locale> -->

 </locale-config>

 </application>

</faces-config>

Chapter 11 SeCuring Jakarta ee appliCationS

271

(Let there be no line break and no spaces after javaee/). The file glassfish-web.xml

for now should read as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE glassfish-web-app PUBLIC

 "-//GlassFish.org//DTD GlassFish Application Server

 3.1 Servlet 3.0//EN"

 "http://glassfish.org/dtds/glassfish-web-app_3_0-1.dtd">

<glassfish-web-app error-url="">

 <class-loader delegate="true"/>

</glassfish-web-app>

And for the central web application configuration file web.xml, we write the

following:

<?xml version="1.0" encoding="UTF-8"?>

<web-app

 xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xmlns=

 "http://xmlns.jcp.org/xml/ns/javaee"

 xsi:schemaLocation=

 "http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd"

 id="WebApp_ID"

 version="4.0">

 <welcome-file-list>

 <welcome-file>greeting.xhtml</welcome-file>

 </welcome-file-list>

 <servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>

 javax.faces.webapp.FacesServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

Chapter 11 SeCuring Jakarta ee appliCationS

272

 <servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.xhtml</url-pattern>

 </servlet-mapping>

</web-app>

Create a file (including directories) called src/main/resources/julian/web/

WebMessages.properties, and as its contents write the following:

welcome=This is a Gregorian date to Julian day converter.

instructions=Enter a Gregorian UTC date in the form \

 yyyy-mm-dd hh:mm:ss (use 24hr format), then submit.

label_gregorianDate=Gregorian Date:

label_response=The Julian Day Reads:

submit=Submit

back=Back

These are the localized texts we use inside the pages. We need a single Java class as a

front-end controller to be injected as a JSF bean, as follows:

package book.jakarta8.julianguisecure;

import java.io.Serializable;

import java.time.LocalDateTime;

import java.time.ZoneId;

import java.time.format.DateTimeFormatter;

import java.util.Date;

import java.util.function.Function;

import javax.enterprise.context.SessionScoped;

import javax.faces.context.FacesContext;

import javax.inject.Named;

import javax.servlet.http.HttpServletRequest;

@Named

@SessionScoped

public class Julian implements Serializable {

 private static final long serialVersionUID =

 -1110733631543471209L;

Chapter 11 SeCuring Jakarta ee appliCationS

273

 private Date dateIn; // + getter / setter

 private String jd; // + getter / setter

 public String convert() {

 jd = convert(getGd());

 return "/response.xhtml";

 }

 public String getGd() {

 LocalDateTime ldt = LocalDateTime.ofInstant(

 dateIn.toInstant(), ZoneId.of("UTC"));

 return ldt.format(DateTimeFormatter.

 ofPattern("yyyy-MM-dd HH:mm:ss"));

 }

 private String convert(String inDate) {

 Function<Double, Integer> trunc = (d) -> d.intValue();

 // yyyy-MM-dd-HH-mm-ss

 int inYear = Integer.parseInt(

 inDate.substring(0, 4));

 int inMonth = Integer.parseInt(

 inDate.substring(5, 7));

 int inDay = Integer.parseInt(

 inDate.substring(8, 10));

 int inHour = Integer.parseInt(

 inDate.substring(11, 13));

 int inMinute = Integer.parseInt(

 inDate.substring(14, 16));

 double jd = 367 * inYear -

 trunc.apply(7.0 * (inYear +

 trunc.apply((inMonth + 9.0) / 12)) / 4)

 + trunc.apply(275.0 * inMonth / 9)

 + inDay + 1721013.5 + 1.0 *
 (inHour + inMinute / 60.0) / 24

Chapter 11 SeCuring Jakarta ee appliCationS

274

 - 0.5 * Math.signum(100 * inYear

 + inMonth - 190002.5) + 0.5;

 return "" + jd;

 }

}

The greetings page greeting.xhtml and the response page response.xhtml go into

the “src/main/webapp” folder. Let the first one read as follows:

<!DOCTYPE html>

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

<h:head><title>Julian Converter</title></h:head>

<h:body>

 <h:messages globalOnly="true"/>

 <h:form id="form">

 <h2>

 <h:outputText value="#{bundle.welcome}"/>

 </h2>

 <h:outputText value="#{bundle.instructions}"/>

 <p/>

 <h:outputText

 value="#{bundle.label_gregorianDate} "/>

 <h:inputText id="getdate"

 value="#{julian.dateIn}">

 <f:convertDateTime

 pattern="yyyy-MM-dd HH:mm:ss" />

 </h:inputText>

 <h:message for="getdate" style="color:red" />

 <p/>

 <h:commandButton value="#{bundle.submit}"

 action="#{julian.convert}"/>

 <h:outputLink value="admin/admin.xhtml">

 <f:param name="backref" value="#{view.viewId}"/>

 <h:outputText value="#{bundle.adminlink} "/>

Chapter 11 SeCuring Jakarta ee appliCationS

275

 </h:outputLink>

 </h:form>

</h:body>

</html>

This page looks like the original Julian day converter from earlier in this book, but it

contains an additional link to the admin page, as follows:

 <h:outputLink value="admin/admin.xhtml">

 <f:param name="backref" value="#{view.viewId}"/>

 <h:outputText value="#{bundle.adminlink} "/>

 </h:outputLink>

We add a “backref” parameter to the link so we can navigate back from the admin

page via a button placed there.

The response page response.xhtml gets navigated to when the user clicks the

“Submit” button. Its contents are the same as from earlier in this book, as follows:

<!DOCTYPE html>

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

 <h:head>

 <title>Julian Response Page</title>

 </h:head>

 <h:body>

 <h:form>

 <h:outputText value="#{bundle.label_response}"/>

 <p/>

 <h:outputText value="#{julian.gd} -> "/>

 <h:outputText value="#{julian.jd}"/>

 <p/>

 <h:commandButton id="back"

 value="#{bundle.back}"

 action="greeting"/>

 </h:form>

 </h:body>

</html>

Chapter 11 SeCuring Jakarta ee appliCationS

276

The new admin page admin.xhtml goes into the “src/main/webapp/admin” folder.

We use a new folder here so we can later apply a path pattern to secure the access to

exactly this page. Let it read as follows:

<!DOCTYPE html>

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

<h:head><title>Julian Converter</title></h:head>

<h:body>

 <h:messages globalOnly="true"/>

 Admin Page ...<p/>

 <h:outputLink

 value="#{request.contextPath}#{param['backref']}">

 <h:outputText value="#{bundle.back}"/>

 </h:outputLink>

</h:body>

</html>

We did not yet add any security features to the web application, but it should be fully

functional now, and you can deploy and try it. See Figure 11-7.

Figure 11-7. The Julian day converter

Chapter 11 SeCuring Jakarta ee appliCationS

277

We now add the security features to the web application. This mainly happens inside

the src/main/webapp/WEB-INF/web.xml file. Inside this file, directly underneath the

<servlet-mapping> ... </servlet-mapping> element, add the following:

 ...

 </servlet-mapping>

 <security-constraint>

 <display-name>Admin Constraint</display-name>

 <web-resource-collection>

 <web-resource-name>members</web-resource-name>

 <description />

 <url-pattern>/admin/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <description />

 <role-name>admin</role-name>

 </auth-constraint>

 <user-data-constraint>

 <transport-guarantee>

 CONFIDENTIAL

 </transport-guarantee>

 </user-data-constraint>

 </security-constraint>

The <url-pattern> element with text value “/admin/*” specifies that the security

constraint applies to all URLs starting with “/admin.” The <authconstraint> element

specifies that users wishing to use admin pages need to have the role “admin.” The

<transport-guarantee> with contents “CONFIDENTIAL” will force the application to

switch to HTTPS before the admin pages get shown.

Chapter 11 SeCuring Jakarta ee appliCationS

278

The mapping from roles (“admin” in this case) to users or user groups lies outside

the Jakarta EE 8 specification. It is the Glassfish server’s business to provide this

mapping. How Glassfish does this works as follows: inside the src/main/webapp/WEB-

INF/glassfish-web.xml file we exactly specify the following mapping:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE glassfish-web-app PUBLIC

 "-//GlassFish.org//DTD GlassFish Application Server 3.1

 Servlet 3.0//EN"

 "http://glassfish.org/dtds/glassfish-web-app_3_0-1.dtd">

<glassfish-web-app error-url="">

 <!-- <security-role-mapping>

 <role-name>SomeRole</role-name>

 <principal-name>SomeUser</principal-name>

 </security-role-mapping> -->

 <security-role-mapping>

 <role-name>admin</role-name>

 <group-name>ApplAdmin</group-name>

 </security-role-mapping>

 <class-loader delegate="true"/>

</glassfish-web-app>

Here, we can see that the role “admin” gets mapped to the user group “ApplAdmin.”

The commented out part in this file is just for illustration purposes—there, a mapping

from a role to a particular user gets shown.

Those changes in web.xml and glassfish-web.xml already add all that is needed to

secure the admin pages. Deploy and try it in your browser. If you click on the “Admin”

link the browser will first complain that you are trying to use a self-signed certificate.

Allow it by adding an exception. Then, a login dialog gets shown, where you have to

enter “AdminUser” as a user name and the password you chose for that user earlier in

this section (see Figure 11-8).

Chapter 11 SeCuring Jakarta ee appliCationS

279

Only if you enter the password correctly will you be allowed to see the admin page,

and it will have automatically switched to HTTPS.

 Rendering Dependent on Security Conditions
Once in a while, inside JSF template pages, you need a switch controlling whether some

page element gets rendered or not, based on some security condition. This is easy to

achieve, since there is a method isUserInRole() inside the request object that gets injected

by default. You can use this inside a “rendered” attribute of any HTML element, as follows:

 <h:commandButton value="Delete"

 action="#{bean.delete}"

 rendered="#{request.isUserInRole('admin')}" />

Here, the request object refers to the HttpServletRequest instance injected by

default into any JSF page. The preceding code will lead to the button’s only being

rendered if the user has the “admin” role. Similar checks can be performed for any other

tags supporting the “rendered” attribute.

 Importing SSL Certificates for Web Applications
The Glassfish Jakarta EE 8 server (Glassfish 5.1) comes with a pre-installed SSL

certificate. It is not an official certificate, because official certificates get issued on a per-

domain basis. Instead, the pre-installed SSL certificate is a self-signed certificate, which

means you can use it for development and maybe intranet purposes, but the browser

will complain about it, and you have to tell the browser to accept it as an exception case.

Figure 11-8. The Julian day converter login

Chapter 11 SeCuring Jakarta ee appliCationS

280

You apply for an official certificate at a certificate authority (CA), and in many cases

their websites give you detailed instructions on how to install the certificate.

Note official SSl certificates used to be expensive in terms of effort and
sometimes also money. as a campaign, the internet Security research group
(iSrg) allowed everyone to apply for a free certificate and simplified the application
procedure by providing links to many client scripts maintained by people and
organizations on the internet. the website https://letsencrypt.org/ gives
you more information about it.

Without going into too much into detail, for the Glassfish server there are three

central places you need to know about if you install an official certificate you receive

from a CA. First, there are two central files where your private key and the CA certificate

get stored. They are called keystore.jks and cacerts.jks, and you will find them in the

“GLASSFISH_INST/glassfish/domains/domain1/config/” folder.

The third place is the Glassfish configuration, where we assign the certificate to the

SSL HTTP listener.

Once you receive a certificate from a CA, you can import it into the keystore.jks

and cacerts.jks Java keystore files. Usually you will receive instructions from the CA on

how to do that. Showing all possibilities goes beyond the scope of this book—only if you

acquired the certificate from letsencrypt.org does the story go as follows: you received

the following files:

 cert.pem

 chain.pem

 fullchain.pem

 privkey.pem

This is the actual server certificate without the certificate chain (cert.pem), the

intermediates from the certificate chain (chain.pem), the combination of these two

(fullchain.pem), and the private key (privkey.pem). From here, we can generate the

files keystore.jks and cacerts.jks from scratch using the following BASH script:

#!/bin/bash

#Alias of the certificate

NAME=my_alias

Chapter 11 SeCuring Jakarta ee appliCationS

https://letsencrypt.org/
http://letsencrypt.org

281

#The domain registered in letsencrypt

DOMAIN=www.server.com

#The keystore password, default is <changeit>

KEYSTOREPW=changeit

#The full absolute path of the folder where you have put

#the files received from letsencrypt

LIVE=/some/path/on/your/pc/$DOMAIN

mkdir temp-ssh-123

cd temp-ssh-123

start building keystore.jks keystore

Create cert_and_key.p12 from private key and a

certificate from the CA confirming that the private

key belongs to the domain you were using while applying

for the certificate. PKCS12 is a standardized archive

format for cryptographic objects

openssl pkcs12 -export -in $LIVE/fullchain.pem \

 -inkey $LIVE/privkey.pem \

 -out cert_and_key.p12 \

 -name $NAME \

 -CAfile $LIVE/chain.pem -caname root \

 -password pass:$KEYSTOREPW

Create a new keystore file keystore.jks from

cert_and_key.p12

keytool -importkeystore \

 -destkeystore keystore.jks \

 -srckeystore cert_and_key.p12 -srcstoretype PKCS12 \

 -alias $NAME \

 -srcstorepass $KEYSTOREPW \

 -deststorepass $KEYSTOREPW \

 -destkeypass $KEYSTOREPW

Chapter 11 SeCuring Jakarta ee appliCationS

282

Add the certificate chain to keystore.jks

keytool -import -noprompt \

 -trustcacerts \

 -alias root \

 -file $LIVE/chain.pem -keystore keystore.jks \

 -srcstorepass $KEYSTOREPW \

 -deststorepass $KEYSTOREPW \

 -destkeypass $KEYSTOREPW

Create file pkcs.p12 containing the private key again,

this time use name "glassfish-instance." This is one

of the keys Glassfish uses for its normal functioning.

openssl pkcs12 -export \

 -in $LIVE/fullchain.pem -inkey $LIVE/privkey.pem \

 -out pkcs.p12 \

 -name glassfish-instance \

 -password pass:$KEYSTOREPW

... Import exactly this key into keystore.jks

keytool -importkeystore -destkeystore keystore.jks \

 -srckeystore pkcs.p12 -srcstoretype PKCS12 \

 -alias glassfish-instance \

 -srcstorepass $KEYSTOREPW \

 -deststorepass $KEYSTOREPW \

 -destkeypass $KEYSTOREPW

And one more key Glassfish needs as a default key. This

time the name is "s1as."

openssl pkcs12 -export -in $LIVE/fullchain.pem \

 -inkey $LIVE/privkey.pem -out pkcs.p12 -name s1as \

 -password pass:$KEYSTOREPW

... Also import this one into keystore.jks

keytool -importkeystore \

 -destkeystore keystore.jks \

 -srckeystore pkcs.p12 -srcstoretype PKCS12 \

Chapter 11 SeCuring Jakarta ee appliCationS

283

 -alias s1as \

 -srcstorepass $KEYSTOREPW \

 -deststorepass $KEYSTOREPW \

 -destkeypass $KEYSTOREPW

start building cacerts.jks keystore

Create a new keystore file cacerts.jks from

cert_and_key.p12

keytool -importkeystore \

 -destkeystore cacerts.jks \

 -srckeystore cert_and_key.p12 -srcstoretype PKCS12 \

 -alias $NAME \

 -srcstorepass $KEYSTOREPW \

 -deststorepass $KEYSTOREPW \

 -destkeypass $KEYSTOREPW

Imports the chain.pem file into cacerts.jks

keytool -import -noprompt -trustcacerts \

 -alias root -file $LIVE/chain.pem \

 -keystore cacerts.jks \

 -srcstorepass $KEYSTOREPW \

 -deststorepass $KEYSTOREPW \

 -destkeypass $KEYSTOREPW

Imports fullchain.pem into cacerts.jks,

use name glassfish-instance

openssl pkcs12 -export -in $LIVE/fullchain.pem \

 -inkey $LIVE/privkey.pem -out pkcs.p12 \

 -name glassfish-instance -password pass:$KEYSTOREPW

keytool -importkeystore -destkeystore cacerts.jks \

 -srckeystore pkcs.p12 -srcstoretype PKCS12 \

 -alias glassfish-instance \

 -srcstorepass $KEYSTOREPW \

 -deststorepass $KEYSTOREPW \

 -destkeypass $KEYSTOREPW

Chapter 11 SeCuring Jakarta ee appliCationS

284

Imports privkey.pem into cacerts.jks, use name s1as

openssl pkcs12 -export -in $LIVE/fullchain.pem \

 -inkey $LIVE/privkey.pem -out pkcs.p12 -name s1as \

 -password pass:$KEYSTOREPW

keytool -importkeystore -destkeystore cacerts.jks \

 -srckeystore pkcs.p12 -srcstoretype PKCS12 \

 -alias s1as \

 -srcstorepass $KEYSTOREPW \

 -deststorepass $KEYSTOREPW \

 -destkeypass $KEYSTOREPW

==

Download latest list of cacert and import it into the

cacerts.jks

wget https://curl.haxx.se/ca/cacert.pem \

 --no-check-certificate -O cacert.pem

number of certificates in the PEM file

CERTS=$(grep 'END CERTIFICATE' cacert.pem | wc -l)

Extract all certificates from the PEM file and insert \

them into cacerts.jks

for N in $(seq 0 $(($CERTS - 1))); do

 PEM_FILE=cacert.pem

 ALIAS="${PEM_FILE%.*}-$N"

 echo $ALIAS

 cat cacert.pem |

 awk "n==$N { print }; /END CERTIFICATE/ { n++ }" |

 keytool -noprompt -import -trustcacerts \

 -alias $ALIAS -keystore cacerts.jks \

 -storepass $KEYSTOREPW

done

You can now use the files keystore.jks and cacerts.jks and overwrite the files

from “GLASSFISH_INST/glassfish/domains/domain1/config/.” Just make a backup of

the old files first. Restart Glassfish after you replace these two keystores.

Chapter 11 SeCuring Jakarta ee appliCationS

285

Note You could also selectively update the existing entries from the files
keystore.jks and cacerts.jks using a similar script.

The SSL certificate is now ready to use for Glassfish. Which certificate gets used for

HTTPS can be specified in the web administration console at http://localhost:4848.

Navigate to Configurations ➤ server-config ➤ Network Config ➤ Network Listeners ➤

http-listener-2 ➤ Tab “SSL.” Because we updated the preconfigured “s1as” certificate in

the script we just used, you change the settings in the admin console only if you want to

use a different certificate you created in addition to what we did in the script.

 Preparing EJB Security
Securing components does not stop at web applications. We can also secure EJB access.

But before we can examine that for our Julian day converter, we first need to add EJBs to

it. Create an EJB project julian-secure-ejb and add the following EJB class to it:

package book.jakarta8.juliansecureejb.ejb;

import javax.ejb.Local;

import javax.ejb.Remote;

import javax.ejb.Singleton;

import book.jakarta8.juliansecureejb.ejb.interfaces.

 NameEjbLocal;

import book.jakarta8.juliansecureejb.ejb.interfaces.

 NameEjbRemote;

@Singleton

@Local(NameEjbLocal.class)

@Remote(NameEjbRemote.class)

public class NameEjb

 implements NameEjbLocal, NameEjbRemote {

 public String hello(String name) {

 return "Hello " + name + " (admin)";

 }

}

Chapter 11 SeCuring Jakarta ee appliCationS

286

 Exercise 2
Implement the EJB project julian-secure-ejb.

Next, we will create an Enterprise Application Project that gathers the two projects,

julian-gui-secure and julian-secure-ejb.

Note this way we don’t have to export eJB client artifacts in order for the gui
project to be able to use the eJB interfaces. using an enterprise application project
also helps to include libraries. We already talked about enterprise application
projects in Chapter 7.

To do so, inside Eclipse select New ➤ Project.... Select Java EE ➤ Enterprise

Application Project. See Figure 11-9.

Figure 11-9. New Enterprise Application Project

Chapter 11 SeCuring Jakarta ee appliCationS

287

Click on the “Next” button, and in the dialog that appears enter “julian-secure-ear”

as the project name (see Figure 11-10).

Figure 11-10. Enterprise Application Project name

Chapter 11 SeCuring Jakarta ee appliCationS

288

In the following dialog, add the julian-gui-secure and julian-secure-ejb

projects to the member list of the Enterprise Application Project (see Figure 11-11).

Figure 11-11. Enterprise Application Project members

Click on the “Finish” button. The new Enterprise Application Project will now appear

in the Project Explorer view of Eclipse’s main window. One thing is left to do before we

can deploy julian-secure-ear: because from a project view the julian-gui-secure

project does not yet know about the EJB classes it will be using, we must add the julian-

secure- ejb project to the dependencies of the julian-gui-secure project. To do so, in

Chapter 11 SeCuring Jakarta ee appliCationS

289

the “Properties” view of julian-gui-secure, navigate to Java Build Path, “Projects” tab,

and add the julian-secure-ejb project (see Figure 11-12). Click “Apply and Close” to

finish the wizard.

Figure 11-12. Secure Julian cross-reference

To let the GUI project use the EJB, we add a text-output field to the admin page.

Inside admin.xhtml, write the following anywhere inside the <h:body> tag:

 <h:outputText value="#{julian.greetingTxt}"/>

 <p/>

Also add the following inside the Julian class:

 @EJB

 private NameEjbLocal nameEjb;

 ...

 public String getGreetingTxt() {

 return nameEjb.hello("User");

 }

Chapter 11 SeCuring Jakarta ee appliCationS

290

The EJB access is not secured yet; we will catch up on that soon. But it is now

possible to deploy and run the application. Invoke Run As ➤ Run on Server on the

julian- secure- ear project and remove the orphaned julian-guisecure project since

it is now included in the Enterprise Application Project. See Figure 11-13, where the

projects julian-gui-secure and julian-secure-ejb are only shown if you expand the

Enterprise Application Project item.

Figure 11-13. Running the Enterprise Application Project

 Declarative EJB Security
To secure the EJB access, you can add a couple of annotations to the EJB class. Similar to

web applications, EJBs use roles to restrict access to EJB classes and methods. The first

annotation we can use is @DeclareRoles (from package javax.annotation.security),

as follows:

 @DeclareRoles("role1")

 ... more annotations ...

 public class SomeEjb {

 }

Chapter 11 SeCuring Jakarta ee appliCationS

291

Or, if you have more than one, use the following:

 @DeclareRoles({"role1","role2", ...})

 ... more annotations ...

 public class SomeEjb implements ... {

 }

This @DeclareRoles gets used to list all roles that are of any interest for the EJB. This

annotation by itself does not restrict access to the EJB; it is a mere listing of role names that

play a role in the EJB’s security. The information available about @DeclareRoles elsewhere

is a little bit confusing—sometimes it seems that you could omit it altogether, while

sometimes it seems obligatory to add all roles referred to in the EJB. To be on the safe side,

it is better to always list all roles used from inside the EJB in the @DeclareRoles annotation.

For the Julian day converter EJB from the preceding section, we want to restrict the

EJB access to admin users, so we write the following:

import javax.annotation.security.*;

...

@Singleton

@Local(NameEjbLocal.class)

@Remote(NameEjbRemote.class)

@DeclareRoles({"admin"})

public class NameEjb

 implements NameEjbLocal, NameEjbRemote {

 public String hello(String name) {

 return "Hello " + name + " (admin)";

 }

}

As pointed out earlier, this does not yet restrict access to the EJB. To actually install

a restriction you use the @RolesAllowed annotation, either at the class level or via

methods, as follows:

import javax.annotation.security.*;

...

@DeclareRoles({"rx1", "rx2", "ry1", "ry2", ...})

// restricting access to the whole EJB:

@RolesAllowed({"rx1", "rx2", ...})

Chapter 11 SeCuring Jakarta ee appliCationS

292

... more annotations ...

public class SomeEjb implements ... {

 // restricting access to some method

 @RolesAllowed({"ry1", "ry2", ...})

 public void someMethod() {

 ...

 }

 ...

}

If there is just one role, you can also write @RolesAllowed ("role1"). Back to our

Julian day converter, we only have one role, “admin.” To apply it at the method level, we

write the following:

import javax.annotation.security.*;

...

@Singleton

@Local(NameEjbLocal.class)

@Remote(NameEjbRemote.class)

@DeclareRoles({"admin"})

public class NameEjb

 implements NameEjbLocal, NameEjbRemote {

 @RolesAllowed({"admin"})

 public String hello(String name) {

 return "Hello " + name + " (admin)";

 }

}

With these additions to the EJB, only clients (code accessing the EJB) that have

acquired the “admin” role are allowed to use this method of the EJB. If you redeploy the

Enterprise Application Project, the new security roles apply.

 Exercise 3
Implement the access restrictions to the Julian day converter Enterprise Application

Project. If you change the “admin” role declarations inside the Julian day converter EJB

to “adminX,” what do you expect to happen?

Chapter 11 SeCuring Jakarta ee appliCationS

293

 Programmatic EJB Security
In case the granularity declarative EJB security offers does not fit your needs, it is also

possible to perform security checks from inside the EJB code. You need to inject an

instance of SessionContext (from package javax.ejb). From this object, you can check

a role membership via the isCallerInRole() method, as follows:

import javax.ejb.SessionContext;

...

public class SomeEjb implements ... {

 @Resource private SessionContext ctx;

 ...

 public void someMethod() {

 if(ctx.isCallerInRole("SomeRole")) {

 ...

 } else {

 throw new SecurityException(...);

 }

 }

 ...

}

 Role Mimic: Propagating Roles
EJBs can be called from other EJBs. If there needs to be a mapping between role names

from the calling EJB to the called EJB, the @RunAs annotation comes in handy. Consider,

for example, the following:

public class SomeEjb implements ... {

 @EJB private SomeOtherEjb ejb2;

 ...

Chapter 11 SeCuring Jakarta ee appliCationS

294

 @RunAs("member")

 public void someMethod() {

 ejb2.doSomething();

 }

 ...

}

Here, when the someMethod() method gets entered, the current execution thread

gets assigned the role “member” when calling the other EJB.

Because the Glassfish server by default assumes unlimited trust between different

containers, the called EJB assumes the “member” role got authenticated correctly, even

if no authentication actually happens. You must be careful when you use @RunAs to not

open security holes.

Chapter 11 SeCuring Jakarta ee appliCationS

295
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_12

CHAPTER 12

Deployment Artifacts
So far, we have developed Jakarta EE 8 applications using the Eclipse IDE. Eclipse knows

what to do with Java classes, configuration files, and resources like images, scripts, and

language text files by virtue of a special plugin that knows how to talk to a Jakarta EE 8

server like Glassfish. We installed that plugin for Glassfish at the beginning of the book.

This deployment process, including server handling like starting, stopping, and

restarting the server, only partially gets covered by a Jakarta EE 8 specification. In fact, for

the deployment processes inside Eclipse there exist server plugins for all major Jakarta

EE 8 servers and their predecessors. We already used the Glassfish server plugin in this

book. The deployment processes and server-handling procedures for all possible servers

are out of scope, but we will talk in more detail about how all this is implemented for

the Glassfish 5.1 server. Later in this chapter, we will talk about the more standardized

aspects of application deployment, exemplified also for the Glassfish server.

 The Eclipse Plugin’s Deployment Process
If from the Eclipse IDE you deploy a Jakarta EE 8 application, the plugin performs

as follows:

 1. If the Glassfish server is not yet running, the plugin starts the

server.

 2. Given the project files—this is all compiled Java classes, all

configuration files, and all resources—the plugin reorganizes

them according to a standard format required by the Glassfish

server for the “Directory”-style deployment.

 3. The plugin moves the deployment directory to the

“GLASSFISH_INST/glassfish/domains/domain1/eclipseApps”

folder.

296

 4. Similar to what the asadmin command-line utility does, the plugin

sends an HTTP request POST command/deploy with appropriate

POST body data to the administration port (normally 4848) of

Glassfish.

 5. If the deployment succeeds, the deployed application now is

available on the server and ready to do its work.

Note How do we know about the HTTP request used to start a deployment? It
is easy. From the corresponding asadmin sub- command deploy we take the
“deploy” and build the following URL from it:

http://localhost:4848/command/deploy

Enter this URL in a browser, and you will get an information page telling you
about all deployment options. Actually, the returned data format is JSON, but your
browser will appropriately render it. In fact, you can use a REST client and bypass
the asadmin tool for all kinds of administrative work in addition to the dedicated
administrative REST interface we already talked about.

Deploying Jakarta EE 8 applications in the form of directories that contain the

application’s files in a special format is a good method for development purposes.

It is fast, and you can easily look at the files using a file explorer. The more portable

way of handling enterprise applications, however, consists of using ZIP archives in a

standardized format.

In the following paragraphs we will talk about such archives and only later will we

talk about the details of directory deployment. It is easier to understand if we describe

the various alternatives of deployment processes this way because the directory

structure used for the “directory”-style deployment closely follows the structure of the

archives used for the “archive” style.

CHAPTER 12 DEPLOymENT ARTIFACTS

297

 Using Deployment Archives
Packaging Jakarta EE 8 applications in ZIP archives according to some standardized

format specification shows a couple of advantages:

• Handling applications in the form of single archive files simplifies the

deployment process. Give the server a single file, tell it to deploy this

file, and ready you are.

• You can hand around Jakarta EE 8 applications more easily if they

are just single archive files. Using single files, for example, allows for

uploading an application using a web front end.

• If given as archive files, applications show improved coherence.

Adhering to standards for formatting such archives lowers the

probability of later corrupting the application by accidentally

changing or removing archive members.

For Jakarta EE 8 there exist basically four types of deployable application artifacts:

 – Web Applications

Web applications are Jakarta EE applications serving a web

GUI. But also, applications providing a REST interface, a web

service, or any other interface using HTTP or HTTPS as a protocol

are considered to be web applications. A web application archive

is a ZIP archive using the file ending .war. We will talk about the

structure of WARs shortly.

 – Resource Adapters (Connectors)

Resource adapters are Jakarta EE application components that

implement the Jakarta EE connector architecture. Resource

adapters frequently get used to connect to other, possibly non-

Java enterprise systems commonly referred to as EISs (enterprise

information systems). We do not handle resource adapters in this

book, although, strictly speaking, adapters for accessing databases

or messaging via JMS may be considered resource adapters as

well. If given as deployable archives, resource adapters are ZIP

files with the suffix .rar

CHAPTER 12 DEPLOymENT ARTIFACTS

298

 – Application Clients

Application clients are Java components with access to server

components like EJBs. While normal clients access the server

through web interfaces, application clients can directly connect to

the business tier. And they run as server components themselves.

Application clients usually provide a GUI using the Swing

technology, but a CLI (command-line interface) is also possible.

 – Enterprise Applications

Enterprise applications in a narrow sense are applications that

combine web applications, EJBs, and resource adapters. If given

as an archive, it will be a ZIP archive with the ending .ear. We will

talk about the structure of EARs shortly.

 Web Application Archives
Web application archives are ZIP archives with the ending .war (instead of .zip). They

contain all files that are necessary for a web application to do its work. This includes

non-GUI applications with an HTTP or HTTPS interface like web services and RESTful

applications. The standard structure of such a WAR archive is as follows:

 WEB-INF/

 classes/

 [Java classes]

 lib/

 [Libraries / JARs]

 web.xml

 [more configuration]

 [web resources]

For example, if we have a JSF web application, the template file index.xhtml as a

landing page, and furthermore put all JavaScript files into a “js” folder, all CSS files into

“css,” and all images into “images,” the structure would read as follows:

 WEB-INF/

 classes/

 [Java classes]

CHAPTER 12 DEPLOymENT ARTIFACTS

299

 lib/

 [Libraries / JARs]

 beans.xml

 faces-config.xml

 web.xml

 glassfish-web.xml

 [More configuration]

 index.xhtml

 js/

 [JavaScript files]

 css/

 [Style sheets]

 images/

 [Images]

 [more pages]

 [more resources]

Sometimes you will also see a top-level “META-INF” folder that contains some

manifest files, but this is optional and depends on the tools you use and whether you

actually need it.

However, the structure of the web resources is totally up to you. For example, you

could decide to put all JavaScript files and CSS files into the root of the structure, or you

could use “script” and “style” as folder names for the JavaScript and style sheet files, and

so on.

Note The precise specification of the structure of WAR files is part of the servlet
specification to be found, for example, at https://jcp.org.

To deploy a WAR file, like, for example, someWebApp.war, on the Glassfish server, you

have several options, as follows:

• You can use the web administration console. Open http://

localhost:4848 while the Glassfish server is running, then

navigate to the Applications entry in the menu. Click the “Deploy...”

button. On the page that appears make sure “Packaged File to Be

Uploaded to the Server” is checked. In the corresponding field,

CHAPTER 12 DEPLOymENT ARTIFACTS

https://jcp.org

300

select the WAR file to upload. Make sure as “Type” the entry

“Web Application” is selected. Also make sure the checkboxes at

“Status” and “Implicit CDI” are both selected. Fill in the other fields

according to your needs. See Figure 12-1. If the deployment using

the web administration console does not work as expected, see the

following caution note. You can also undeploy applications using the

Applications page in the web administration console.

Figure 12-1. WAR file Installation

CHAPTER 12 DEPLOymENT ARTIFACTS

301

• The asadmin command from GLASSFISH_INST/bin allows for the

deployment and undeployment of WARs via the following:

 ./asadmin deploy /path/to/the/war/someWebApp.war

 ./asadmin list-applications

 # -> someWebApp

 # -> [others]

 ./asadmin undeploy someWebApp

• To use the REST interface and some REST client program, like, for

example, CURL, you can deploy a WAR application via the following:

 curl -X POST \

 -u admin:<PASSWORD> \

 -F 'id=@/path/to/the/war/someWebApp.war' \

 -H 'Accept: application/json' \

 -H 'X-Requested-By: dummy' \

 http://localhost:4848/management/

 domain/applications/application

(keep the http://... URL in one line) where <PASSWORD> is the

password of the admin user. The “@” is a special construct for curl that

allows the passing of files. To undeploy you instead write the following:

 curl -X DELETE \

 -u admin:PASSWORD8 \

 -H 'Accept: application/json' \

 -H 'X-Requested-By: dummy' \

 http://localhost:4848/management/

 domain/applications/application/

 someWebApp

(with the http://... URL in one line). The name used for the

application by default is the name of the WAR file without the .war

suffix. You can override this and use a different name if you add

-F 'name=someName' to the CURL POST. For the last URL path

element in the DELETE command you then use this new name.

CHAPTER 12 DEPLOymENT ARTIFACTS

302

• If you put a WAR file into the “GLASSFISH_INST/glassfish/domains/

domain1/autodeploy” folder it will be deployed immediately. Once

you remove it from there, it gets undeployed in turn.

Caution For Glassfish 5.1, if you try to deploy an application using the web
administration console, you might get an error message “GUI internal error: Archive
Path is NULL.” you should then use one of the other deployment procedures. If you
still want to use the web administration console, a workaround is to use Firefox as
the browser, open the developer tools by pressing F12, and then use the Inspector
to change the form attribute from

enctype = "application/x-www-form-urlencoded"

to

enctype = "multipart/form-data"

before pressing the “OK” button.

 Creating WARs with Maven
There is no requirement to use a special tool to create WAR files. Nobody prevents you

from assembling WAR files manually using some ZIP tool. In this book, we didn’t use

WAR archives so far, because we relied on Eclipse to do the right thing when we deployed

applications, and the Glassfish plugin of Eclipse actually creates directories from the

development files and then deploys these directories instead of WAR files.

But even if we want to create WAR files, Eclipse can help us, and the requirements for

this to work are low. The reason is simple: because all web projects we have described

in this book are Maven projects, and Maven actually is able to create WAR archives via

some plugin, we are already close to being able to create WAR files for all our projects.

Do you remember the <packaging> tag we had to provide in the Maven configuration file

pom.xml? For all our web projects we wrote the following:

 <packaging>war</packaging>

This gives Maven a hint as to which kind of artifact to produce for the project.

CHAPTER 12 DEPLOymENT ARTIFACTS

303

With “war” specified as Maven packaging, there is basically one step left for creating

WAR files from Eclipse. Right-click on the project, then navigate to Run As ➤ Maven

build.... In the dialog that then appears enter “package” in the “Goals” field, then press

the “Run” button. The final WAR file will show up in the “target” folder (maybe you have

to update the folder view in Eclipse by pressing F5 on it).

You can try this for the julian-gui project we developed for Chapter 3. The WAR file

created is named julian-gui-0.0.1-SNAPSHOT.war, but you are free to rename it first

before it gets deployed on the Glassfish server.

The story can become more complex if we need to fulfill project dependencies. Let

us have a look at the julian-gui-secure project we created in Chapter 11.

We first make a small adaptation so the WAR can be deployed separately and so there

is no need to pack everything into an enterprise application archive. This is easy; open

the Julian class from that project and change the private NameEjbLocal nameEjb;

field to private NameEjbRemote nameEjb;

If you now start a Maven build with goals of “clean packaging,” which means the

same thing as first doing a cleanup and then a packaging, we get the following error

message:

[ERROR] Failed to execute goal org.apache.maven.plugins:

 maven-compiler-plugin:3.1:compile (default-compile)

 on project julian-gui-secure: Compilation failure:

 Compilation failure:

[ERROR] /home/peter/Dokumente/GESCHAEFT/Apress/

 JakartaEE8/Eclipse/e/julian-gui-secure/src/main/java/

 book/jakarta8/julianguisecure/Julian.java:[14,52]

 package book.jakarta8.juliansecureejb.ejb.interfaces

 does not exist

[ERROR] /home/peter/Dokumente/GESCHAEFT/Apress/JakartaEE8/

 Eclipse/e/julian-gui-secure/src/main/java/book/

 jakarta8/julianguisecure/Julian.java:[31,17] cannot

 find symbol

[ERROR] symbol: class NameEjbLocal

[ERROR] location: class book.jakarta8.julianguisecure.

 Julian

CHAPTER 12 DEPLOymENT ARTIFACTS

304

The reason for this is that the clean goal removes the compiled classes, and the

package goal tries to recompile the classes. This fails because Maven doesn’t know how

to address the EJB classes that are referred to from the project. This wasn’t a problem

until now, because for the deployment plugin to work properly it was sufficient to let the

Eclipse project depend on the EJB project.

To fix this for the Maven project, we first install the julian-secure-ejb project. To

do so, right-click on the julian-secure-ejb project and navigate to Run As ➤ Maven

install. This adds the EJB project JAR and the client JAR to your local Maven repository.

As a next step, deploy the EJB module on the server. Right-click on the julian-

secure- ejb and select Run As ➤ Maven build.... At “Goals” enter “package” and click on

the “Run” button. Fetch the EJB module JAR julian-secure-ejb-0.0.1-SNAPSHOT.jar

from the “target” folder (maybe you have to press F5 on the “target” folder first to update

the view). Use

 cd GLASSFISH_INST

 bin/asadmin deploy path/to/ejb/jar

to deploy the EJB module. The GLASSFISH_INST as usual is the installation folder of the

Glassfish server.

We can now refer to the EJB client JAR from the WAR project. In the pom.xml file of

the julian-gui-secure project add the following as a dependency:

<dependency>

 <groupId>book.jakarta8</groupId>

 <artifactId>julian-secure-ejb</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <classifier>client</classifier>

</dependency>

We have never used the <classifier> tag before. It just makes sure we will have only

the client classes included within the WAR file.

If you now run the clean package Maven goal, everything should work, and you

will have the finished WAR file placed inside the project’s “target” folder (maybe you

need to press F5 on the “target” folder to update the view). Fetch the WAR file, rename it

according to your needs, and deploy it on the Glassfish server as follows to see it running:

 cd GLASSFISH_INST

 bin/asadmin deploy path/to/the/war

CHAPTER 12 DEPLOymENT ARTIFACTS

305

 Exercise 1
Create a WAR file for the household accounting application from Chapter 4. Deploy it on

the Glassfish server using the asadmin command-line tool. Hint: Specify –name hacc and

–contextroot hacc to simplify handling. Which URL do you have to enter in the browser

to access the web application once deployed?

 Enterprise Application Archives
An Enterprise Application Archive (EAR) is a ZIP file with the ending .ear instead of

.zip. EARs serve as containers for the following types of modules and libraries:

• Zero, one, or more web applications as WAR files (yes, as archive files

inside the EAR archive file).

• Zero, one, or more EJB jars.

• Zero, one, or more resource adapters (.rar) files. We don’t talk about

resource adapters in this beginner’s book.

• Zero, one, or more application clients. These are client components

running in the server environment. They usually provide a GUI, like,

for example, a Java Swing interface or a command-line interface. We

don’t talk about application clients in this beginner’s book.

• Any number of libraries as JAR files. The Jakarta EE server makes

sure only modules within the same EAR see these libraries. This is

important because it means that one EAR may use one particular

version of some library while another EAR uses a different version of

the same library. You will usually also add EJB client interfaces (see

the EJB chapter for details) as library JARs.

As a descriptor file, you may also add an application.xml file inside a top-level

folder, “META-INF.” We will talk about this descriptor file’s contents shortly.

With all possible child elements and a single descriptor file inside “META-INF,” the

overall structure of an EAR file reads as follows:

 webApplication1.war

 webApplication2.war

 ...

CHAPTER 12 DEPLOymENT ARTIFACTS

306

 ejbJar1.jar

 ejbJar2.jar

 ...

 applicationClient1.jar

 applicationClient2.jar

 ...

 resourceAdapter1.rar

 resourceAdapter2.rar

 ...

 lib/

 lib1.jar

 lib2.jar

 ...

 META-INF/

 application.xml

The application.xml file may be used to specify the contents of the EAR file and

define additional application-wide properties. This file is optional, and if you omit it

then sensible defaults apply. The full specification of this file is part of JSR-000366 Java

Platform, Enterprise Edition 8 Specification, downloadable from http://jcp.org, and

the relevant section is EE.8.6. The following example shows a couple of settings you can

specify in this file:

<!DOCTYPE application PUBLIC "-//Sun Microsystems,

 Inc.//DTD J2EE Application 1.2//EN"

 "http://java.sun.com/j2ee/dtds/application_1_2.dtd">

<application

 xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/application_8.xsd"

 version="8">

 <icon>

 <small-icon>small.ico</small-icon>

 <large-icon>large.ico</large-icon>

 </icon>

CHAPTER 12 DEPLOymENT ARTIFACTS

http://jcp.org

307

 <application-name>The Application</application-name>

 <display-name>Application-42</display-name>

 <description>This application ...</description>

 <module>

 <ejb>someEjb.jar</ejb>

 </module>

 <module>

 <java>someApplicationClient.jar</java>

 </module>

 <module>

 <connector>someResourceAdapter.jar</connector>

 </module>

 <module>

 <web>

 <web-uri>someWebApp.jar</web-uri>

 <context-root>web-app</context-root>

 </web>

 </module>

 <library-directory>lib</library-directory>

</application>

The “META-INF” folder may also contain an implementation-dependent or

Glassfish-specific descriptor file, glassfish-application.xml:

 ...

 META-INF/

 application.xml

 glassfish-application.xml

This file gets used for settings that cannot be specified in the application.xml file

but play a role for the Glassfish server’s functioning. You won’t use this very often; for the

details please see the “GlassFish Server Open Source Edition, Application Deployment

Guide” you can find for download on the internet.

CHAPTER 12 DEPLOymENT ARTIFACTS

308

To deploy an EAR file, like, for example, someApp.ear, on the Glassfish server, you

basically have the same options as for WAR applications:

• Use the Applications menu entry of the web administration console

at http://localhost:4848. If the deployment using the web

administration console does not work, see the caution note from the

earlier WAR section.

• Use the asadmin command from GLASSFISH_INST/bin as follows:

 ./asadmin deploy /path/to/the/ear/someApp.ear

 ./asadmin list-applications

 # -> someApp

 # -> [others]

 ./asadmin undeploy someApp

• Use the REST interface and some REST client program, like, for

example, CURL:

 curl -X POST \

 -u admin:<PASSWORD> \

 -F 'id=@/path/to/the/ear/someApp.ear' \

 -H 'Accept: application/json' \

 -H 'X-Requested-By: dummy' \

 http://localhost:4848/management/

 domain/applications/application

(with the http://... URL on one line), where <PASSWORD> is the

password of the admin user. To undeploy you instead write the

following:

 curl -X DELETE \

 -u admin:PASSWORD8 \

 -H 'Accept: application/json' \

 -H 'X-Requested-By: dummy' \

 http://localhost:4848/management/

 domain/applications/application/

 someApp

CHAPTER 12 DEPLOymENT ARTIFACTS

309

(with the http://... URL on one line). The name used for the

application by default is the name of the EAR file without the .ear

suffix. You can override this and use a different name if you add

-F 'name=someName' to the CURL POST. For the last URL path

element in the DELETE command, you use this new name.

• You can put an EAR file into the “GLASSFISH_INST/glassfish/domains/

domain1/autodeploy” folder and it will be deployed immediately. Once

you remove it from there, it gets undeployed in turn.

 Creating EARs with Maven
To create EAR files, you can assemble a directory, structure it like just described, zip it,

and then change the ending to .ear. But you can also use Maven to create an EAR file.

We are going to try that with the Enterprise Application Project “MyDateTimeEar”

from Chapter 7. We have already introduced enterprise applications in the narrow sense,

meaning a bundle of an EJB and a library JAR. In that chapter, we relied on Eclipse’s

capability to deploy the project on Glassfish, but we can use the same project to also

create an EAR archive, which we can deploy manually on the Glassfish server.

To do so, we first convert the “MyDateTimeEar” project to a Maven project.

Right- click on the project, then navigate to Configure ➤ Convert to Maven Project. In the

dialog that then appears, enter the following:

 Group Id: book.jakarta8

 Artifact Id: date-time-ear

 Version: 0.0.1-SNAPSHOT

 Packaging: ear

 Name: date-time-ear

 Description: An EAR project for date/time retrieval

Click the “Finish” button. Eclipse now provides us with a pom.xml build file similar to

the following:

<project

 xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

CHAPTER 12 DEPLOymENT ARTIFACTS

310

 <groupId>book.jakarta8</groupId>

 <artifactId>date-time-ear</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>ear</packaging>

 <name>date-time-ear</name>

 <description>

 An EAR project for date/time retrieval

 </description>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-ear-plugin</artifactId>

 <version>3.0.1</version>

 <configuration>

 <earSourceDirectory>

 EarContent

 </earSourceDirectory>

 <version>8</version>

 <defaultLibBundleDir>lib</defaultLibBundleDir>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

We need to add the EJB project dependency to the “MyDateTimeEar” project. For this,

open this project’s pom.xml file again and add the following in front of the <build> tag:

 <dependencies>

 <dependency>

 <groupId>book.jakarta8</groupId>

 <artifactId>MyDateTimeEjb</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <type>ejb</type>

 </dependency>

 </dependencies>

CHAPTER 12 DEPLOymENT ARTIFACTS

311

If you now invoke Run As ➤ Maven build... on the “MyDateTimeEar” project and

enter “package” in the “Goals:” field, Maven will create an EAR file date-time-ear-

0.0.1-SNAPSHOT.ear in the “target” folder (press F5 on the folder to update the view).

You can inspect this file; unzipping it (maybe temporarily change the suffix to “.zip” for

your ZIP program to recognize it) gives us the following structure:

book.jakarta8-MyDateTimeEjb-0.0.1-SNAPSHOT.jar

lib/

 com.sun.mail-javax.mail-1.6.0.jar

 javax-javaee-api-8.0.jar

 javax.activation-activation-1.1.jar

 book.jakarta8-MyDateTime-0.0.1-SNAPSHOT.jar

 MyDateTime-0.0.1-SNAPSHOT.jar

META-INF/

 maven/

 application.xml

 MANIFEST.MF

Note The “maven/” folder inside “mETA-INF” only contains build-related files; the
Glassfish Jakarta EE server will ignore it.

This is almost correct, but you can see the MyDateTime library shows up twice in the

“lib” folder. This happens because in the build file we refer to both the EJB project, which

has MyDateTime as a transitive dependency, and the JAR we copied into the “EarContent/

lib” folder. To avoid this we should remove the latter reference, because the only reason

it exists is that we wanted to be able to let Eclipse deploy the project for us. Because

we added the EJB dependency to the Maven build file, we can now remove the file

MyDateTime-0.0.1-SNAPSHOT.jar from the “lib” folder. Eclipse knows how to handle the

transitive dependency on the library. Remove it, and to then make sure the configuration

is correct, right-click on the project, select “Properties,” navigate to Deployment Assembly,

and remove the lib/MyDateTime-0.0.1-SNAPSHOT.jar file from the list. Add the project

dependency to the assembly by pressing “Add...” in the same dialog, and then add the

MyDateTimeEjb project. See Figure 12-2. Click “Apply and Close.”

CHAPTER 12 DEPLOymENT ARTIFACTS

312

For now, building the EAR file with the updated configuration, it is better to enter

“clean package” in the “Goals:” field of the Maven runner. This avoids having excluded

files be taken into account in the new build.

The cleaned-up structure of the EAR file should now show the library just once,

as follows:

book.jakarta8-MyDateTimeEjb-0.0.1-SNAPSHOT.jar

lib/

 com.sun.mail-javax.mail-1.6.0.jar

 javax-javaee-api-8.0.jar

 javax.activation-activation-1.1.jar

 book.jakarta8-MyDateTime-0.0.1-SNAPSHOT.jar

META-INF/

 maven/

 application.xml

 MANIFEST.MF

You can deploy the EAR file as described earlier.

Figure 12-2. Updating the EAR assembly

CHAPTER 12 DEPLOymENT ARTIFACTS

313

 Deploying Applications from Directories
Jakarta EE 8 applications can also be deployed from directories. This removes the

advantages we assigned to using archive files, but it makes dealing with applications

during development a little easier. You can, for example, change configuration files and

JSF pages in place without having to repackage them. Another disadvantage is that there

is no specification for deploying applications from directories, so each Jakarta EE server

product has its own idea as to whether it can be done and how it needs to be done.

The Glassfish server allows for deployment from directories, and their structure must

be as follows:

• For enterprise applications that normally end up in an EAR

archive, you provide a folder that has the same structure as an EAR

archive, but you extract child containers as well, renaming them

to BASENAME_SUFFIX. This means you, for example, extract an

included web archive (WAR) with name someWebApp.war and rename

the resulting folder to “someWebApp_war.” The structure of the folder

thus reads as follows:

 webApplication1_war/

 [extracted contents]

 webApplication2_war/

 [extracted contents]

 ...

 ejbJar1_jar

 [extracted contents]

 ejbJar2_jar

 [extracted contents]

 ...

 applicationClient1_jar

 [extracted contents]

 applicationClient2_jar

 [extracted contents]

 ...

 resourceAdapter1_rar

 [extracted contents]

 resourceAdapter2_rar

CHAPTER 12 DEPLOymENT ARTIFACTS

314

 [extracted contents]

 ...

 lib/

 lib1.jar

 lib2.jar

 ...

 META-INF/

 application.xml

• For all other types of applications, you use the same folder structure

as for the corresponding archive. So for a web application, for

example, the folder structure reads as follows:

 WEB-INF/

 classes/

 [Java classes]

 lib/

 [Libraries / JARs]

 web.xml

 [more configuration]

 [web resources]

To deploy such directories, you can use the asadmin command-line tool, as follows:

 ./asadmin deploy --name NameOfTheApp \

 /path/to/the/folder

If you omit the --name parameter the name of the folder will be used as the

application’s name.

You can also use the web administration console at http://localhost:4848. Use

the Applications option in the menu and then click the “Deploy...” button. Select the

checkbox for “Local Packaged File or Directory That Is Accessible from GlassFish Server”

and enter the full path to the directory in the field. Do not press the “Browse Folders...”

button, as it does not work on Glassfish 5.1. At “Type” select the type of the application,

and in the fields that then appear enter at least a decent name for the application in the

“Application Name” field. Make sure the checkboxes for “Status” and “Implicit CDI”

are checked. Fill in the other fields according to your needs. See Figure 12-3. Click the

CHAPTER 12 DEPLOymENT ARTIFACTS

315

“OK” button to finish the deployment. The new application should now show up in the

applications listing (see Figure 12-4).

Figure 12-4. New applications list

Figure 12-3. Deploying from directories

CHAPTER 12 DEPLOymENT ARTIFACTS

317
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_13

CHAPTER 13

Logging Jakarta EE
Applications
Logging is a vital part of any application of mid- to high-level complexity. While the

program runs through its execution paths, several logging statements describe what

the program is doing, which parameters get passed to method calls, which values local

variables and class fields have and how they change, which decisions are made, and

so on. This logging information gets collected and sent to a file, a database, a message

queue, or whatever, and the developer and the operations team may investigate program

flows for bug-fixing or auditing purposes.

This chapter is about the various options you have to add logging to your programs

or to investigate existing server logging.

 System Streams
The Java Standard Environment (JSE) on which Jakarta EE builds its server technologies

provides well-known standard output and error output streams, which you address as

follows:

 System.out.println("Some information: ...");

 System.err.println("Some error: ...");

While at first sight it seems easy to generate diagnostic information using these

streams, it is not recommended to use this procedure. The primary reason for this is that

what happens with these stream data is highly operating-system and server-product

dependent. We will very shortly introduce superior methods, but just in case you are

temporarily tempted to use the system streams for diagnostic output, it is important to

know that most Jakarta EE servers fetch the streams and redirect them to some file.

318

Note Until now we have used the output and error output streams for diagnostic
output. We did that just for simplicity. In any serious project, you should not do that,
and the subsequent sections will show you how to avoid it.

The Jakarta EE 8 Glassfish server version 5.1 adds the output and error output stream

to the server.log file you will find at

 GLASSFISH_INST/glassfish/domains/domain1/logs

In this usually verbose listing you will recognize the System.out and System.err

output as the following lines containing a [SEVERE] (for System.err) and [INFO] (for

System.out):

 ...

 [2019-05-20T14:42:03.791+0200] [glassfish 5.1] [SEVERE]

 [] [] [tid: _ThreadID=28 _ThreadName=Thread-9]

 [timeMillis: 1558356123791] [levelValue: 1000] [[

 The System.err message]]

 ...

 [2019-05-20T14:42:03.796+0200] [glassfish 5.1] [INFO]

 [NCLS-CORE-00022] [javax.enterprise.system.core]

 [tid: _ThreadID=28

 _ThreadName=RunLevelControllerThread-1558356114688]

 [timeMillis: 1558356123796] [levelValue: 800] [[

 The System.out message]]

 ...

We will later learn how to change the verbosity level and the format of these

logging lines.

 JDK Logging in Glassfish
The logging API specification JSR 47 is part of Java and can be used by any Java program,

including Jakarta EE server applications. You can download the specification from

https://jcp.org/en/jsr/detail?id=47.

Chapter 13 LoggIng Jakarta ee appLICatIons

https://jcp.org/en/jsr/detail?id=47

319

 Glassfish Log Files
Glassfish uses the platform standard API JSR 47 for its logging. Unless you change the

configuration, you can find the logging file at

 GLASSFISH_INST/glassfish/domains/domain1/logs/server.log

In the same folder, you will also find archived logs with file names server.log_TS,

where TS is a timestamp like 2019-05-08T15-45-58.

The standard logging format is defined as a combination of various information

snippets, of course including the actual logging message, as follows:

 [Timestamp] [Product-ID] [Message-Type]

 [Message-ID] [Logger-Name] [Thread-ID]

 [Raw-Timestamp] [Log-Level]

 [[Message]]

like in the following:

[2019-05-20T14:42:03.796+0200] [glassfish 5.1] [INFO]

 [NCLS-CORE-00022] [javax.enterprise.system.core]

 [tid: _ThreadID=28

 _ThreadName=RunLevelControllerThread-1558356114688]

 [timeMillis: 1558356123796]

 [levelValue: 800]

 [[Loading application xmlProcessing done in 742 ms]]

 Adding Logging Output to the Console
If you want to have the logging output also appear in the terminal where you start the

Glassfish server, use the following:

 cd GLASSFISH_INST

 bin/asadmin start-domain --verbose

This will show the complete logging output. It will also not put the server process

into the background, as an asadmin start-domain without –verbose does, so the server

will be stopped when you close the terminal, and you won’t be able to enter more

Chapter 13 LoggIng Jakarta ee appLICatIons

320

commands into this terminal after the server has started (for new commands you can of

course enter a second terminal). To stop this foreground server process, press CTRL+C.

Note the logging showed in the eclipse console view uses a different format for
the logging lines. an example would be

2019-05-21T09:00:54.333+0200|Info: <the message>

this is because eclipse starts the server directly and is not mediated by asadmin.

 Using the Standard Logging API for Your Own Projects
To add diagnostic output to your own classes and use the JSR 47 methodology, you write

something like the following in your classes:

...

import java.util.logging.Logger;

public class MyClass {

 private final static Logger LOG =

 Logger.getLogger(MyClass.class.toString());

 public void someMethod() {

 LOG.entering(this.getClass().toString(),"someMethod");

 ...

 // different logging levels:

 LOG.finest("Finest: ...");

 LOG.finer("Finer: ...");

 LOG.fine("Fine: ...");

 LOG.info("Some info: ...");

 LOG.warning("Some warning: ...");

 LOG.severe("Severe: ...");

 ...

 LOG.exiting(this.getClass().toString(),"someMethod");

 }

 ...

}

Chapter 13 LoggIng Jakarta ee appLICatIons

321

For LOG.entering() there exists a variant where you can add method parameters to

the logging statement. Likewise, for LOG.exiting() a variant allows us to add a returned

value to the logging statement, as follows:

 ...

 public String someMethod(String p1, int p2) {

 LOG.entering(this.getClass().toString(),"someMethod",

 new Object[]{ p1, p2 });

 ...

 String res = ...;

 LOG.exiting(this.getClass().toString(),"someMethod",

 res);

 return res;

 }

 ...

}

 Exercise 1
Change the App class from Chapter 8 to use INFO-level JSR 47 logging instead of System.

out or System.err print statements.

 Logging Levels
From the preceding samples you can see there are several levels you can use to indicate

the severity of logging output. For standard logging the levels are, in order, severe >

warning > info > fine > finer > finest. This greatly improves the usability of logging. At an

early stage of a project you can set the logging threshold to a low value—for example,

fine—and you will see all “fine”-level logging and all higher levels up to “severe” in the

logging file.

If you lower the threshold (to finest, for example) the logging shows more details,

but the logging file will be larger, of course. This is why you do that for bug-fixing

purposes—more details help you to more easily identify problematic code. Later in

the project, when the maturity rises, you apply a higher threshold (like warning, for

example). This way the logging file does not get too big, but you still see important issues

in the logging.

Chapter 13 LoggIng Jakarta ee appLICatIons

322

The special Logger methods entering() and exiting() belong to the log level

finer. All the other methods we showed here match literally to the equally named level,

so a LOG.severe() belongs to level severe, a LOG.warning() belongs to level warning,

and so on.

 The Logger Hierarchy and Thresholds
If you create a logger like

 Logger.getLogger("com.example.projxyz.domain.Person");

you actually span up a hierarchy com ➤ com.example ➤ com.example.projxyz ➤ com.

example.projxyz.domain ➤ com.example.projxyz.domain.Person.

This plays a role if you assign logging thresholds. This assignment happens in the

configuration, via asadmin, or in the web administration console. We will see shortly how

to do that. It is important to know that the threshold setting follows the logger hierarchy.

If you assign a level LEV1 (severe, warning, info, . . .) to “com” this means the complete

sub-tree at “com” gets threshold LEV1, unless you also specify levels for elements

deeper in the hierarchy. So, if you also assign a level LEV2 to “com.example,” LEV2 has

precedence over LEV1 for “com.example” and all elements deeper in the hierarchy. More

precisely, the rules are as shown in Table 13-1.

Table 13-1. Logging Hierarchy

Hierarchy Level Logger Description

com FIne com.ClassA FIne applies, because com.ClassA is inside the

com hierarchy.

com FIne org.ClassA FIne does not apply, because org.ClassA is not

inside the com hierarchy.

com.ClassA FIner com.ClassA FIner applies, because com.ClassA is inside

the com.ClassA hierarchy.

FIne no longer applies, because the hierarchy

specification com.ClassA is more specific

compared to just com.

(continued)

Chapter 13 LoggIng Jakarta ee appLICatIons

323

 The Logging Configuration
The logging configuration of JSR 47 standard logging relies on a configuration file,

logging.properties. Normally this file resides in the JDK installation directory, but the

Glassfish server overrules the standard logging configuration and uses the following file

instead:

 GLASSFISH_INST/glassfish/domains/domain1/

 config/logging.properties

Here, the various logging properties get specified. We don’t talk about all of

them—the specification for JSR 47 and the Glassfish server documentation will give you

more ideas. The most important settings are the level thresholds, which you will find

underneath the following #All log level details line:

...

#All log level details

com.sun.enterprise.server.logging.GFFileHandler.level=ALL

javax.enterprise.system.tools.admin.level=INFO

org.apache.jasper.level=INFO

javax.enterprise.system.core.level=INFO

javax.enterprise.system.core.classloading.level=INFO

java.util.logging.ConsoleHandler.level=FINEST

Hierarchy Level Logger Description

com.example WarnIng com.ClassA WarnIng does not apply, because com.ClassA

is not inside the com.example hierarchy.

com.example WarnIng com.example.

ClassA

WarnIng applies, because com.example.

ClassA is inside the com.example hierarchy.

the level specified for com no longer applies,

because com.example is more specific

compared to com.

com.example WarnIng org.example.

ClassA

WarnIng does not apply, because org is not

inside the com.example hierarchy.

Table 13-1. (continued)

Chapter 13 LoggIng Jakarta ee appLICatIons

324

javax.enterprise.system.tools.deployment.level=INFO

javax.enterprise.system.core.transaction.level=INFO

org.apache.catalina.level=INFO

org.apache.coyote.level=INFO

javax.level=INFO

...

Here, we have an example for the hierarchic-level assignment: if you change the

level at javax.enterprise.system.core.level to “FINE,” any javax. logger will use

the threshold INFO because of the javax.level = INFO line, but a logger javax.

enterprise.system.core.Main logger will use FINE, because it matches the level we

just entered and is more specific.

A setting of the form .level=INFO later in the logging.properties file makes sure

all loggers not specified in the logging properties will have the threshold INFO applied.

That is why in the standard configuration variant of Glassfish no fine, finer, or finest

messages appear.

Instead of changing the file you can also use the web administration console at

http://localhost:4848. Navigate to Configurations ➤ server-config ➤ Logger Settings.

Changes here will be directly written to the logging.properties file.

As a third possibility to change the logging configuration, the asadmin command-line

utility provides us with various logging-related sub-commands. The following shows

some examples:

 ./asadmin list-log-levels

 # -> A list of all log levels, like

 # javax <INFO>

 # javax.mail <INFO>

 # javax.org.glassfish.persistence <INFO>

 # org.apache.catalina <INFO>

 # org.apache.coyote <INFO>

 # org.apache.jasper <INFO>

 # ...

 ./asadmin delete-log-levels javax.mail

 # -> Deletes a level specification

 ./asadmin set-log-levels javax.mail=WARNING

Chapter 13 LoggIng Jakarta ee appLICatIons

325

 # -> Setting a specific log level

 ./asadmin list-log-attributes

 # -> Shows all log attributes (not the levels)

 ./asadmin set-log-attributes \

 com.sun.enterprise.server.logging.

 GFFileHandler.rotationLimitInBytes=2000000

 # (discard the line break after "logging.")

 # -> Sets an attribute. Attribute names are the same

 # as in the logging.properties file

 ./asadmin rotate-log

 # -> Manually rotates the log file. Takes the current

 # server.log file, archives it, and starts a fresh

 # empty server.log file.

Logging-level changes are dynamic, so you can change logging levels while the

server is running.

 The Logging Format
For JSR 47 standard logging, the logging format is prescribed by the logging handler. So

in order to change the logging format you have to develop a new logging handler. This is

not particularly hard to achieve, but we leave it to your discretion if you need to change

the format and want to stick to Java platform logging.

Otherwise, you can easily switch to using a logging library. Most of the candidates

for such a choice allow for changing the logging format by adjusting a configuration

property. We will shortly talk about the Log4j logging framework and also handle the

logging formatting options Log4js provides.

 Using JDK Standard Logging for Other Servers
Although most developers prefer to use a logging library like Apache Commons Logging,

Log4j, or Logback, you can use the JSR 47 logging for servers other than Glassfish as

well. Just make sure you provide a customized logging.properties file. Do not change

the logging.properties file in the JDK installation folder, though—changing the

configuration there is highly discouraged.

Chapter 13 LoggIng Jakarta ee appLICatIons

326

Instead, provide a new logging.properties file and add (one line, remove the line

break and the spaces after “=”) the following to the server startup parameters:

 -Djava.util.logging.config.file=

 /path/to/logging.properties

Your server documentation will tell you how to do that.

 Adding Log4j Logging to Your Application
Log4j is a logging framework often used for any kind of Java application. Its features

include the following:

• Clear separation of API and implementation. In a server environment

you install the Log4j implementation on the server itself, while on the

clients you only refer to a small-footprint Log4j API library.

• High performance. Log4j has lambda support included, so

message calculations can be avoided if a corresponding log level

will not be logged. For example, in LOG.info("Error", () ->

expensiveOperation()) the method call will not happen if info-level

messages are disabled for the logger.

• Automatic configuration reloading. For Log4j it is easy to enable

automatic configuration reloading. Any change in the logging

configuration will then be applied immediately without a server

restart.

• The logging format and various other logging properties can be set in

the configuration.

• The Log4j configuration files can be formatted in either XML, Java

properties, JSON, or YAML.

• Log4j can easily be extended by plugins.

Log4j can be downloaded from http://logging.apache.org/log4j/2.x/. The still

widely used Log4j version 1.x is deprecated, and we will not talk about Log4j version 1.x

in this book.

Chapter 13 LoggIng Jakarta ee appLICatIons

http://log.info
http://logging.apache.org/log4j/2.x/

327

Log4j needs a couple of additional permissions in order to pass security checks.

Open the following file:

 GLASSFISH_INST/glassfish/domains/domain1/

 config/server.policy

and add the following at the end:

 // Added for Log4j2

 grant {

 permission

 java.lang.reflect.ReflectPermission

 "suppressAccessChecks";

 permission

 javax.management.MBeanServerPermission "*";

 permission

 javax.management.MBeanPermission "*", "*";

 permission

 java.lang.RuntimePermission "getenv.*";

 };

Caution this is a glassfish server–specific requirement. For other servers,
different settings might be necessary.

 Adding Log4j Server-Wide
Adding Log4j server-wide means you put the Log4j implementation into a common

libraries folder, write one Log4j configuration file that serves all Jakarta EE applications

running on that server at once, and let all applications and application modules just use

the Log4j API. Because this is a setting that needs to be configured only once and then

all current and future applications on the server can easily use Log4j for their logging

purposes, this way of including Log4j is probably used most often. Only if you have

important reasons to encapsulate Log4j with the applications—for example, if you are

also running legacy applications that use old Log4j 1.x versions—should you add Log4j

on a per-application basis, as described a little bit later.

Chapter 13 LoggIng Jakarta ee appLICatIons

328

To add Log4j server-wide, you first download the Log4j distribution from https://

logging.apache.org/log4j/2.x/. Then, copy the log4j-core-2.11.2.jar, log4j-api- -

2.11.2.jar, and log4j-appserver-2.11.2 files (or whatever version you downloaded)

to the “GLASSFISH_INST/glassfish/domains/domain1/modules/autostart” folder.

Note the Log4j Jar files are implemented as osgi bundles. this is why we put
them into the “modules” folder. If you don’t know osgi, consider it an advanced
library management framework.

Then, add a new file, log4j2.json, to the “GLASSFISH_INST/glassfish/domains/

domain1/lib/classes” folder. As the basic contents of this file use the following:

{

"configuration": {

 "name": "Default",

 "appenders": {

 "RollingFile": {

 "name":"File",

 "fileName":

 "${sys:com.sun.aas.instanceRoot}/logs/log4j.log",

 "filePattern":

 "${sys:com.sun.aas.instanceRoot}/

 logs/log4j-backup-%d{MM-dd-yy-HH-mm-ss}-%i.gz",

 "PatternLayout": {

 "pattern":

 "%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"

 },

 "Policies": {

 "SizeBasedTriggeringPolicy": {

 "size":"10 MB"

 }

 },

 "DefaultRolloverStrategy": {

 "max":"10"

 }

 }

Chapter 13 LoggIng Jakarta ee appLICatIons

https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/

329

 },

 "loggers": {

 "logger" : [

 {

 "name" : "book.jakarta8",

 "level":"debug",

 "appender-ref": {

 "ref":"File"

 }

 },{

 "name" : "some.other.logger",

 "level":"info",

 "appender-ref": {

 "ref":"File"

 }

 }

],

 "root": {

 "level":"error",

 "appender-ref": {

 "ref":"File"

 }

 }

 }

}

}

This adds a root logger with level “error” and two more loggers, “book.jakarta8”

and “some.other.logger,” with levels “debug” and “info” threshold, respectively. The

logger names inside the “logger” array correspond to logger hierarchy specifications.

They work the same way as we described for the standard JDK logging (JSR 47). So, the

“book.jakarta8” logger applies to logging statements for “book.jakarta8.SomeClass”

and “book.jakarta8.pckg.OtherClass,” but not to “book.jakarta99.FooClass.” The special

“root” logger serves as a default and matches all loggers for which no explicit logger

specification can be found.

Chapter 13 LoggIng Jakarta ee appLICatIons

330

This file gives you a starting point—you can add more appenders and loggers. Please

see the Log4j2 documentation you can find in the internet to learn how to extend the

configuration.

Note Log4j allows for configuration files using different formats. We choose the
Json format because of its conciseness.

If the server is running, restart it. This needs to be done because of the global

nature of adding Log4j this way. You can now start using Log4j in your applications, as

described later at “Using Log4j in the Coding.”

Note add -Dlog4j2.debug as a server startup JVM parameter to get more
output for what Log4j is doing. this meta-diagnostic information gets printed out to
the standard server.log file.

 Changing the Logging Format
In the Log4j configuration file we already specified the following logging pattern:

 ...

 "pattern":

 "%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"

 ...

This prints out a timestamp as specified by %d{yyyy-MM-dd HH:mm:ss}, the logging

level as specified by %p (the −5 adds a padding to the output), the last path element

of the logger name as specified by %c{1}, the line number because of the %L, and the

message because of the %m. The %n finally adds a line break at the end.

You can change this at will. The online Log4j2 manual, “Layouts” section, lists all the

options. Table 13-2 shows the most important options.

Chapter 13 LoggIng Jakarta ee appLICatIons

331

Log4j2 also allows for logging output in CSV format, in GELF format, embedded in a

HTML page, as JSON, XML or YAML. Please see the Log4j2 manual for details.

Table 13-2. Logging Patterns

Pattern Description

m the message.

c the name of the logger.

c[N] only the last N path parts of the logger name. so with a logger org.example.

memory.Main a %c{1} creates “Main” as output, a %{2} creates “memory.

Main,” and so on.

c[-N] remove the first N path parts of the logger name. so with a logger org.

example.memory.Main a %c{-1} creates “example.memory.Main,” and so

on.

c[1.] replaces all but the last part of the logger name with a dot “.”. so with a logger

org.example.memory.Main a %c{1.} creates “o.e.m.Main.”

p the log level.

-5p the log level, right-padded with spaces to five characters.

d outputs a timestamp like “2019-09-23 07:23:45.123.”

d[DEFAULT_

MICROS]

same as plain %d, but adds the microseconds: “2019-09-23 07:23:45.123456.”

d[ISO8601] output like: “2019-09-23t07:23:45.123.”

d[UNIX_

MILLIS]

Milliseconds since 1970-01-01 00:00:00 UtC.

highlight{p} add ansI colors to the enclosed pattern p. For example: highlight{%d %-5p

%c{1.}:%m}%n.

L the line number. this is an expensive operation—use with care.

M the method name. this is an expensive operation—use with care.

n Line break.

t the name of the thread.

T the ID of the thread.

Chapter 13 LoggIng Jakarta ee appLICatIons

332

 Adding Log4j to Jakarta EE Web Applications
If you think you should add Log4j on a per-application basis and leave other applications

running on the server unaffected, you can add the Log4j implementation to your web

application (WAR).

Note running Log4j in such an isolated way might, for example, be necessary if
your server is also running legacy applications that use the old Log4j 1.x.

To add the Log4j implementation we update the dependencies in our Maven build

file. Open the pom.xml file and add the following inside the <dependencies> section:

 <dependency>

 <groupId>org.apache.logging.log4j</groupId>

 <artifactId>log4j-core</artifactId>

 <version>2.11.2</version>

 </dependency>

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-core</artifactId>

 <version>2.7.4</version>

 </dependency>

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-databind</artifactId>

 <version>2.7.4</version>

 </dependency>

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-annotations</artifactId>

 <version>2.7.4</version>

 </dependency>

Here, the central part is the dependency on log4j-core; the dependencies on

jackson are needed because we will be using JSON-formatted configuration files, and

Log4j needs jackson to parse them.

Chapter 13 LoggIng Jakarta ee appLICatIons

333

The configuration file for Log4j needs to have the name log4j2.json and it must

go to the “src/main/resources” folder for web applications (WARs). As a simplistic

configuration, set the contents of log4j2.json to the following:

{

"configuration": {

 "name": "Default",

 "appenders": {

 "RollingFile": {

 "name":"File",

 "fileName":

 "${sys:com.sun.aas.instanceRoot}/logs/log4j.log",

 "filePattern":

 "${sys:com.sun.aas.instanceRoot}/

 logs/log4j-backup-%d{MM-dd-yy-HH-mm-ss}-%i.gz",

 "PatternLayout": {

 "pattern":

 "%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n"

 },

 "Policies": {

 "SizeBasedTriggeringPolicy": {

 "size":"10 MB"

 }

 },

 "DefaultRolloverStrategy": {

 "max":"10"

 }

 }

 },

 "loggers": {

 "logger" : [

 {

 "name" : "book.jakarta8",

 "level":"debug",

Chapter 13 LoggIng Jakarta ee appLICatIons

334

 "appender-ref": {

 "ref":"File"

 }

 },{

 "name" : "some.other.logger",

 "level":"debug",

 "appender-ref": {

 "ref":"File"

 }

 }

],

 "root": {

 "level":"debug",

 "appender-ref": {

 "ref":"File"

 }

 }

 }

}

}

 Adding Log4j to Jakarta EE EAR Applications
Adding Log4j to enterprise applications (EARs) is not as straightforward as you

might think it should be. Upon initialization, Log4j looks in several places for its

configuration file, but it does not automatically look into containers that do not contain

code. EARs contain EJBs, WARs, and libraries in the form of .jar files, but no genuine

code of their own.

What we can do is pack the configuration file into a dummy EJB, which then gets

added to the EAR. For this purpose, create an EJB project in Eclipse via New ➤ EJB

Project. Use something like “TheEarProjectLog4j” as a project name, and make sure

the “EJB module version” reads “3.2.” In the wizard, uncheck the “EJB Client JAR”

feature—we don’t need that. In the project settings, navigate to Java Build Path ➤

Source, remove the “ejbModule” source folder, and add “src/main/java” instead (you

have to create it). Remove the “ejbModule” folder from the Project Explorer view. Click

Chapter 13 LoggIng Jakarta ee appLICatIons

335

Configure ➤ Convert to Maven Project, and in the wizard that then appears enter the

following coordinates:

 Group Id: book.jakarta8

 Artifact Id: TheEarProjectLog4j

 Version: 0.0.1-SNAPSHOT

 Packaging: ejb

What’s important is the “ejb” packaging; the other coordinates can be adapted

according to your needs. Click the “Finish” button. In the pom.xml file that the wizard

generates, remove the <build> ... </build> section and instead enter the following:

 <dependencies>

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-api</artifactId>

 <version>8.0</version>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-ejb-plugin</artifactId>

 <version>3.0.1</version>

 <configuration>

 <generateClient>false</generateClient>

 <ejbVersion>3.2</ejbVersion>

 </configuration>

Chapter 13 LoggIng Jakarta ee appLICatIons

336

 </plugin>

 </plugins>

 </build>

In order to comply with the specifications, we must add at least one EJB class to the

EJB project. We write a dummy EJB as follows:

 @Singleton

 public class MyDateTimeEarLog4j {

 }

The name and package are free for you to choose.

Add a log4j2.json file to the “src/main/resources” folder. As the contents you

can use the same JSON text as we used for the preceding sections, or a more elaborate

version, according to your needs.

Add the new EJB to the EAR by right-clicking on Properties ➤ Deployment

Assembly ➤ Add... ➤ Project ➤ [Name of the dummy EJB project].

What is left for the EAR project is to add the Maven dependencies. Convert the

EAR project to a Maven project if not done already, and insert the following into the

<dependencies> section:

 <dependency>

 <groupId>org.apache.logging.log4j</groupId>

 <artifactId>log4j-core</artifactId>

 <version>2.11.2</version>

 </dependency>

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-core</artifactId>

 <version>2.7.4</version>

 </dependency>

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-databind</artifactId>

 <version>2.7.4</version>

 </dependency>

Chapter 13 LoggIng Jakarta ee appLICatIons

337

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-annotations</artifactId>

 <version>2.7.4</version>

 </dependency>

 Using Log4j in the Coding
To use Log4j in your Jakarta EE 8 application, make sure each project in question has the

following Maven dependency added:

 <dependency>

 <groupId>org.apache.logging.log4j</groupId>

 <artifactId>log4j-api</artifactId>

 <version>2.11.2</version>

 </dependency>

In the classes, you then import Logger and LogManager and use a static logger field

as follows:

import org.apache.logging.log4j.*;

public class SomeClass {

 private final static Logger LOG =

 LogManager.getLogger(SomeClass.class);

 ...

 public void someMethod() {

 ...

 // different logging levels:

 LOG.trace("Trace: ...");

 LOG.debug("Debug: ...");

 LOG.info("Some info: ...");

 LOG.warn("Some warning: ...");

 LOG.error("Some error: ...");

 LOG.fatal("Some fatal error: ...");

 ...

Chapter 13 LoggIng Jakarta ee appLICatIons

338

 // Logging in try-catch clauses

 try {

 ...

 } catch(Exception e) {

 ...

 LOG.error("Some error", e);

 }

 }

}

Inside the log4j2.json configuration file the "level" inside each logger then

declares a logging threshold, as follows:

 "loggers": {

 "logger": [

 {

 "name":"book.jakarta8",

 "level":"debug",

 "appender-ref": {

 "ref":"appenderName"

 }

 }

 ...

]

 ...

 }

This can be any of the following: “trace,” “debug,” “info,” “warn,” “error,” or “fatal.”

 Exercise 2
Add server-wide Log4j logging to your Glassfish server. Choose any of your projects and

add Log4j logging to it.

Chapter 13 LoggIng Jakarta ee appLICatIons

339
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2_14

CHAPTER 14

Monitoring Jakarta EE
Applications
In a project’s development stage, the correct functioning of a Jakarta EE 8 server and the

applications it hosts gets measured by checking whether the functional requirements are

being fulfilled. This gets verified by tests and an investigation of the logs the server and

the applications produce.

In a production environment, correct functioning is, of course, important as well,

but issues like throughput, elapsed time for method invocations, memory usage, and the

general stability of a server gain more importance. This is what monitoring is for—the

server provides a monitoring interface that client programs can use to gain insight into

such non-functional aspects. In this chapter, we will talk about monitoring and cover

both monitoring of the Glassfish server and monitoring that our own applications can

provide.

 Monitoring over the Admin Console
The asadmin command-line utility allows access to various Glassfish server monitoring

modules. The following monitoring modules are available:

 – jvm

This module includes the server uptime, the initial amount of

memory used, the maximum available amount for memory

management, and the current memory usage.

340

 – httplistener

This module includes the number of HTTP requests, the number

of erroneous HTTP requests, the maximum HTTP request

processing time, and the total time spent for all HTTP requests.

 – webmodule

This module provides figures for HTTP sessions: the total number

of sessions that have been created, the number of active sessions,

the total number of session activations, and the number of

rejected sessions. In addition, the current, maximum, and total

number of JSPs get shown, and the module also gives the number

of currently active servlets, the maximum number of activated

servlets, and the total number of servlets that have been loaded.

Note that we don’t use JSPs in this book, so the associated figures

are not of much use for us here.

Do not confuse the term “module” used here with the module notion used

elsewhere—a monitoring module is a set of monitorable objects subject to investigation,

and it applies only to the Glassfish server. You can enter ./asadmin help monitor to

learn more about these monitoring modules (the Glassfish server must be running for

this to work).

You must enable the monitoring for each module in question to actually see the

monitoring data. You either enter the Configurations ➤ serverconfig ➤ Monitoring

section in the web administration console at http://localhost:4848 (see Figure 14-1)

or enter one of the following:

 cd GLASSFISH_INST/bin

 ./asadmin set \

 server.monitoring-service.

 module-monitoring-levels.<key>=<level>

(with no line break and no spaces after service) in a terminal, where the <level> reads

LOW for simple statistics, HIGH for additional method statistics, and OFF for disabling the

monitoring. The GLASSFISH_INST must as usual be substituted with the installation

folder of the Glassfish server. For the possible <key> values, see Table 14-1 at the

“Asadmin Key” column.

Chapter 14 Monitoring Jakarta ee appliCations

341

Figure 14-1. Monitoring administration

Table 14-1. Monitoring Keys

Name Web Admin Key Asadmin Key

jvm Jvm jvm

httplistener http service http-service

webmodule Web Container web-container

Chapter 14 Monitoring Jakarta ee appliCations

342

For the rest of this chapter, we will assume that the JVM monitoring is switched on,

as follows:

 cd GLASSFISH_INST/bin

 ./asadmin set \

 server.monitoring-service.

 module-monitoring-levels.jvm=HIGH

There is also an asadmin command line for showing all monitoring levels, as follows:

 ./asadmin get \

 server.monitoring-service.module-monitoring-levels.*

To actually see the monitoring figures in CSV format and, for example, to have this

reporting repeated each second, enter the following:

 ./asadmin monitor --type jvm --interval 1

You could also put “httplistener” or “webmodule” instead of “jvm” as the type. The

output gets explained if you enter ./asadmin help monitor in the terminal.

 Advanced Monitoring
The monitoring capabilities of the asadmin command-line utility go beyond the jvm,

httplistener, and webmodule monitoring modules. If you enter

 cd GLASSFISH_INST/bin

 ./asadmin list --monitor "*"

you will get a list of monitorable objects like the following:

 server.jvm

 server.jvm.thread-system

 server.jvm.thread-system.thread-64

 ...

 server.jvm.memory

 server.jvm.class-loading-system

 server.jvm.compilation-system

 server.jvm.operating-system

 server.jvm.runtime

Chapter 14 Monitoring Jakarta ee appliCations

343

 server.jvm.garbage-collectors

 server.jvm.garbage-collectors.PS MarkSweep

 server.jvm.garbage-collectors.PS Scavenge

 server.http-service

 ...

The extent of this list depends on which monitoring object categories have been

enabled and whether they were configured with a LOW or HIGH monitoring level. We can

use the get sub-command to see a list of all monitoring object categories, like so:

 ./asadmin get \

 server.monitoring-service.module-monitoring-levels.*

And we can use

 ./asadmin set <key>=<level>

to enable the monitoring for a category from that list, with <level> being one of “HIGH,”

“LOW,” or “OFF.” To, for example, see the class loading statistics, we first have to know

that it is part of the “jvm” category. So, with the “jvm” category monitoring enabled (we

already did that in the preceding section), the preceding list sub-command gives us the

key for the class loading system: server.jvm.class-loading-system. To see the actual

figures, we can now use the get sub-command as follows:

 ./asadmin get --monitor server.jvm.class-loading-system.*

The output will be something like this:

 server.jvm.class-loading-system.dotted-name =

 server.jvm.class-loading-system

 sjc.loadedclass-count-count = 19405

 sjc.loadedclass-count-description =

 Number of classes currently loaded in the

 Java virtual machine

 sjc.loadedclass-count-lastsampletime = 1558858266471

 sjc.loadedclass-count-name = LoadedClassCount

 sjc.loadedclass-count-starttime = 1558856758543

 sjc.loadedclass-count-unit = count

 sjc.totalloadedclass-count-count = 19411

 sjc.totalloadedclass-count-description =

Chapter 14 Monitoring Jakarta ee appliCations

344

 Total number of classes that have been loaded since

 the Java virtual machine has started execution

 sjc.totalloadedclass-count-lastsampletime = 1558858266471

 sjc.totalloadedclass-count-name = TotalLoadedClassCount

 sjc.totalloadedclass-count-starttime = 1558856758543

 sjc.totalloadedclass-count-unit = count

 sjc.unloadedclass-count-count = 6

 sjc.unloadedclass-count-description = Total number of

 classes unloaded since the Java virtual machine has

 started execution

 sjc.unloadedclass-count-lastsampletime = 1558858266471

 sjc.unloadedclass-count-name = UnLoadedClassCount

 sjc.unloadedclass-count-starttime = 1558856758543

 sjc.unloadedclass-count-unit = count

For the sake of brevity I replaced server.jvm.class-loading-system with sjc in the

listing. You can see that the figures come with a description, which is a nice feature and

helps us to understand the numbers.

There is a large number of valuable statistics we can retrieve this way using the

asadmin utility: EJB statistics, HTTP service statistics, Jersey statistics, JMS/connector

service statistics, JVM statistics, network statistics, ORB statistics (connection manager),

resource statistics (connection pool), security statistics, thread pool statistics, transaction

service statistics, and web statistics. The Glassfish Server Administration Guide chapter

on “Viewing Comprehensive Monitoring Data” gives you more information about it.

 Using REST to Access Monitoring Data
We can also use the RESTful administrative interface to see the monitoring data. If we

have a monitorable object like, for example, “server.jvm.class-loading-system,” and

monitoring is enabled for the object (we did that in the preceding sections), a REST

client like CURL can be used to obtain the monitoring figures by adding the object name

to monitoring/domain/ and replacing the dots “.” with slashes “/”, as follows:

Chapter 14 Monitoring Jakarta ee appliCations

345

 curl -u admin:PASSWORD -X GET \

 -H "Accept: application/json" \

 http://localhost:4848/monitoring/domain/

 server/jvm/class-loading-system \

 | jq .

(with no line break and no spaces after domain/), where we also use the jq command to

prettify the output (you have to install jq on your system). For PASSWORD enter the admin

user’s password. This gives us something like the following:

{

 "message": "",

 "command": "Monitoring Data",

 "exit_code": "SUCCESS",

 "extraProperties": {

 "entity": {

 "loadedclass-count": {

 "unit": "count",

 "lastsampletime": 1558862718603,

 "name": "LoadedClassCount",

 "count": 19022,

 "description": "Number of classes currently

 loaded in the Java virtual machine",

 "starttime": 1558856758543

 },

 "totalloadedclass-count": {

 "unit": "count",

 "lastsampletime": 1558862718603,

 "name": "TotalLoadedClassCount",

 "count": 19453,

 "description": "Total number of classes that

 have been loaded since the Java virtual

 machine has started execution",

 "starttime": 1558856758543

 },

Chapter 14 Monitoring Jakarta ee appliCations

346

 "unloadedclass-count": {

 "unit": "count",

 "lastsampletime": 1558862718603,

 "name": "UnLoadedClassCount",

 "count": 431,

 "description": "Total number of classes unloaded

 since the Java virtual machine has started

 execution",

 "starttime": 1558856758543

 }

 },

 "childResources": {}

 }

}

From there, we can dig deeper using the various options the jq command offers. For

example:

 curl -s -u admin:PASSWORD -X GET \

 -H "Accept: application/json" \

 http://localhost:4848/monitoring/domain/server/

 jvm/class-loading-system \

 | jq '.extraProperties.entity["loadedclass-count"].count'

(with no line break and no spaces after server/). This suppresses the progress meter

(because of the -s) and directly gives us the loaded classes count figure.

Note enter man jq to learn all about filters in jq. the dot notation for a jq filter
is self-explanatory. the ["..."] has to be used because of the hyphen “-” inside
the name.

 Exercise 1
Create a similar curl/jq script for reading the used heap space (current memory usage).

Chapter 14 Monitoring Jakarta ee appliCations

347

 JMX Monitoring
So far we have used the asadmin tool and the admin REST interface for monitoring.

These are Glassfish-specific features—obviously for other Jakarta EE servers monitoring

won’t work this way. To learn about the monitoring capabilities for your server product

you will have to read its administration manuals.

There is, however, one technology that is situated halfway between proprietary

monitoring features and an unfortunately non-existent full monitoring standard. It is

called Java Management Extensions (JMX), and it can be used for any Java software,

including all Java servers. Basically, you can use JMX monitoring for any Jakarta EE

server product, although sometimes it is not very straightforward to set up the interface.

Describing such a setup procedure for all possible Jakarta EE 8 servers is out of scope for

this book, but we will describe it for Glassfish 5.1 so you can get an idea of how to use it

and what you can do with it.

 Glassfish’s JMX Interface
If you look into the server logs, at GLASSFISH_INST/glassfish/domains/domain1/

logs/server.log you will find an entry containing something like “JMXStartupService

has started JMXConnector on JMXService URL service:jmx:rmi://talenos:8686/jndi/

rmi://talenos:8686/jmxrmi]]” (talenos is my computer’s name, so if searching inside the

file, don’t use it). This basically says that the JMX interface is already running; in fact,

Glassfish starts it by default.

This JMX interface works for local connections only, though, with JMX clients

running on the same machine as the Glassfish server does. For development this is a

suitable restriction, but obviously this won’t work for integration tests and production

setups. For this reason, we must enable remote JMX connectivity, which happens by

adding a couple of JVM parameters: open the web administration console at http://

localhost:4848. Navigate to Configurations ➤ server-config ➤ JVM Settings ➤ “JVM

Options” tab. See Figure 14-2. Add the following options:

 -Djava.rmi.server.hostname=<yourhost>

 -Dcom.sun.management.jmxremote.port=8686

 -Dcom.sun.management.jmxremote.ssl=false

 -Dcom.sun.management.jmxremote.authenticate=false

Chapter 14 Monitoring Jakarta ee appliCations

348

For <yourhost> you must enter the IP address or DNS name of the network node

with Glassfish running on it. With Glassfish restarted, a remote connection to JMX now

should work.

Caution the access is not secured—use this setup only behind a firewall.

Figure 14-2. JVM parameters

To check whether the remote JMX connectivity works, you can use a simple Groovy

client on any accessible network node. For example, you can connect from your

development PC to a network node with Glassfish running and remote JMX enabled.

The Groovy code reads as follows:

Chapter 14 Monitoring Jakarta ee appliCations

349

import javax.management.remote.JMXConnectorFactory as

 JmxFactory

import javax.management.remote.JMXServiceURL as

 JmxUrl

def glassfishServer = "192.168.1.100"

def serverUrl = "service:jmx:rmi://${glassfishServer}:" +

 "8686/jndi/rmi://${glassfishServer}:8686/jmxrmi"

def server = JmxFactory.connect(new JmxUrl(serverUrl)).

 MBeanServerConnection

def memInfo =

 new GroovyMBean(server, 'java.lang:type=Memory').

 HeapMemoryUsage.contents

println(memInfo)

For glassfishServer you must enter the IP or DNS name of the network node where

Glassfish is running. This must also match the server’s JVM property java.rmi.server.

hostname as described earlier. The output should look like this:

 [

 committed:316669952,

 init:197132288,

 max:477626368,

 used:182012688

]

 A JMX GUI Client
There are several JMX GUI clients you can use to access JMX data. An open source

software I often use for this purpose is VisualVM. You can download it from https://

visualvm.github.io/. After you start it, add a JMX plugin via Tools ➤ Plugins ➤

Available Plugins. Select “VisualVM-MBeans” and install it.

Note JMX objects get called “MBeans” for manageable beans.

Chapter 14 Monitoring Jakarta ee appliCations

https://visualvm.github.io/
https://visualvm.github.io/

350

Create a new remote host by right-clicking on “Remote” ➤ Add Remote Host.... Enter

the IP address or the DNS name of the network node where Glassfish is running. This

must also match the server’s JVM property java.rmi.server.hostname as described

earlier. Right-click on the new entry and click “Add JMX Connection.” Enter

 service:jmx:rmi://<HOST>:8686/jndi/

 rmi://<HOST>:8686/jmxrmi

(one line) at “Connection” and check “Do not require SSL connection.” See Figure 14-3.

Caution VisualVM automatically adds local servers. adding remote connections
only makes sense if VisualVM and the Jakarta ee server are running on different
network nodes.

Figure 14-3. VisualVM: Adding a connection

You can now establish the connection by double-clicking on it (in VisualVM,

details for objects often are available by double-clicking on them). The JMX interface is

available at the “MBeans” tab. See Figure 14-4.

Chapter 14 Monitoring Jakarta ee appliCations

351

To see, for example, the memory consumption figures, open java.lang ➤ Memory

and double-click on the “Value” field of the HeapMemoryUsage row. This will show the

heap memory consumption details (see Figure 14-5).

Figure 14-4. VisualVM: JMX view

Chapter 14 Monitoring Jakarta ee appliCations

352

 Adding Glassfish Monitoring to JMX
Glassfish makes its monitoring available to JMX, though not by default and not

automatically. What we first have to do to make this happen is to enable the monitoring

MBeans. Open the web administration console at http://localhost:4848 and

navigate to Configurations ➤ server-config ➤ Monitoring. Make sure the checkbox at

“Monitoring MBeans” is enabled. See Figure 14-1. You have to restart the server if you

change the value of this checkbox.

With this prerequisite fulfilled, the Glassfish monitoring still needs to be told to

forward its figures to the MBeans. You have to do this manually, and you have to do it

every time you start the server. To switch this on, enter VisualVM as described in the

preceding section and navigate to amx-support ➤ boot-amx. Select the “Operations” tab

and click on the “bootAMX” button. A new entry, “amx,” should appear in the MBeans

list, and it will contain all JMX monitoring that has been enabled for Glassfish. See

Figure 14-6.

Figure 14-5. VisualVM: Java heap memory consumption

Chapter 14 Monitoring Jakarta ee appliCations

353

 Implementing Custom JMX Modules
You can create your own MBeans for monitoring classes of your Jakarta EE 8 application.

It is not complicated. You must define an interface MyMbeanMBean, where the “MBean”

at the end is mandatory, and an implementing class, MyMbean. It is important that

the names match, so if you have an MBean interface DatabaseAccessMBean the

implementing class must have the name DatabaseAccess. You then use the platform’s

Figure 14-6. Glassfish AMX monitoring extension

Chapter 14 Monitoring Jakarta ee appliCations

354

MBean server to register an instance of the MBean. As interface methods for MBean

attributes, you add any number of getSomething() methods; see the following example.

As a simple example, consider an MBean that just returns the timestamp in

milliseconds since the 1070-01-01 epoch. We implement the example as an EJB,

and because we don’t need any library for that we don’t have to pack the EJB into an

EAR. Open Eclipse and press New ➤ Maven Project. In the wizard, select “maven-

archetype- quickstart,” and as Maven coordinates use the following:

 <groupId>book.jakarta8</groupId>

 <artifactId>mbean</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>ejb</packaging>

As the package choose “book.jakarta8.mbean.” For the rest of the necessary

adjustments to the pom.xml build file and the project settings, please see Chapter 7, the

“EJB Projects” section.

For the coding, we add an interface TimeMBean and a class Time returning the

system’s timestamp, as follows:

 package book.jakarta8.mbean;

 public interface TimeMBean {

 long getUtcTime();

 }

and

 package book.jakarta8.mbean;

 import java.time.Clock;

 public class Time implements TimeMBean {

 @Override

 public long getUtcTime() {

 return Clock.systemUTC().millis();

 }

 }

Chapter 14 Monitoring Jakarta ee appliCations

355

The method must be marked as a getter method, and hence must start with a “get.”

We learned in Chapter 7 that we can create an EJB that gets constructed reliably

upon application startup and as a singleton if we add the two annotations @Startup and

@Singleton to the EJB. The Maven project wizard we used created a class App for us. For

simplicity’s sake, we replace it with the EJB code, but in a larger project you can register

the MBean at any suitable other place. Open class App and replace its contents with the

following:

 package book.jakarta8.mbean;

 import java.lang.management.ManagementFactory;

 import javax.annotation.PostConstruct;

 import javax.annotation.PreDestroy;

 import javax.ejb.Singleton;

 import javax.ejb.Startup;

 import javax.management.MBeanServer;

 import javax.management.ObjectName;

 @Singleton

 @Startup

 public class App {

 private final static String OBJECT_NAME =

 "book.jakarta8:type=Time";

 @PostConstruct

 public void postConstruct() {

 System.err.println("!!!!!!!!!!!!!!!!!!!!!!!!!!");

 System.err.println("!!!!!!!!!!!!!!!!!!!!!!!!!!");

 System.err.println("!!!!!!!!!!!!!!!!!!!!!!!!!!");

 try {

 MBeanServer mbs = ManagementFactory.

 getPlatformMBeanServer();

 ObjectName name = new ObjectName(OBJECT_NAME);

 TimeMBean mbean = new Time();

 mbs.registerMBean(mbean, name);

Chapter 14 Monitoring Jakarta ee appliCations

356

 }catch(Exception e) {

 e.printStackTrace(Systm.err);

 }

 }

 @PreDestroy

 public void preDestroy() {

 try {

 MBeanServer mbs = ManagementFactory.

 getPlatformMBeanServer();

 ObjectName name = new ObjectName(OBJECT_NAME);

 mbs.unregisterMBean(name);

 }catch(Exception e) {

 e.printStackTrace(Systm.err);

 }

 }

 }

Because of the @Startup annotation, the method marked with @PostConstruct gets

called whenever the EJB gets deployed, redeployed, or the Jakarta EE 8 server starts. In

preDestroy() we unregister the MBean.

You can now deploy the EJB project. In the console text like the following will appear:

2019-05-29T09:22:41.881+0200|

 Severe: !!!!!!!!!!!!!!!!!!!!!!!!!!

2019-05-29T09:22:41.881+0200|

 Severe: !!!!!!!!!!!!!!!!!!!!!!!!!!

2019-05-29T09:22:41.881+0200|

 Severe: !!!!!!!!!!!!!!!!!!!!!!!!!!

2019-05-29T09:22:41.916+0200|

 Info: Loading application mbean done in 934 ms

If you now open VisualVM again, a new entry, “book.jakarta8,” with sub-item “Time,”

will appear. If you click on it, a new attribute, “UtcTime,” will be shown. The platform

MBean server deduced this attribute from the MBeans method name getUtcTime. See

Figure 14-7.

Chapter 14 Monitoring Jakarta ee appliCations

357

 Exercise 2
Add Log4j logging to the project and replace all System.err.println() statements with

logging statements.

Figure 14-7. Time MBean

Chapter 14 Monitoring Jakarta ee appliCations

359
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2

 Appendix

 Standard HTML RenderKit Tags
 HTML Tag Attribute Classes
The Standard HTML RenderKit Tags, especially the HTML RenderKit tags, usually have a

lot of possible attributes, like in the following:

 <h:outputText id="name"

 rendered="#{person.nameRendered}"

 value="#{person.name}"

 converter="#{person.nameConverter}"

 escape="true"

 lang="en"

 style="color:red"

 styleClass="ot"

 [and more...] />

Fortunately for many tags, there are common attribute sets that mean the same thing.

For this reason, I introduce a number of attribute shortcuts and classes in Table A-1.

https://doi.org/10.1007/978-1-4842-5079-2

360

Table A-1. Tag Attribute Classes

Class Attributes

[0] Basic attributes. These are attributes used by almost all HTML RenderKit tags.

id: An elements ID. Corresponds to an HTML “id” attribute, but the rendered ID on

the target HTML page may look different, so you, for example, cannot use this ID in

JavaScript code without further adaption. However, whenever an ID is requested for

an attribute of a JSF tag, this is the ID meant. To distinguish between this ID and the

rendered ID, the latter often gets called client ID. For this ID attribute a value expression

is not allowed.

rendered: Whether or not this element gets rendered. If you write a value expression

like rendered = #{someClass.prop} you can connect the attribute to a

Boolean-valued getter of an injected Java class, but you can also use the literals

“true” and “false” here.

[H] Typical HTML-related attributes. Same as [0], plus the following:

style: Apply a CSS style declaration. Corresponds directly to the HTML “style”

attribute. For example, <h:outputText value="Hello" style="color:red;

font-weight: bold;" />. You can, of course, also use a value expression like

style = "#{person.style}".

styleClass: Apply a CSS style class. Corresponds directly to the HTML

“class” attribute. For example, <h:outputText value="Hello"

styleClass="myLabel" />. You can also use a value expression here.

title: Advisory title information. Corresponds directly to the HTML “title” attribute.

You can also use a value expression here.

role: Space-separated tokens according to WAI-ARIA. Directly passed through to the

HTML “role” attribute. You can also use a value expression here.

[R] The “required” flag for input elements.

required: Whether or not the element is required. One of: true, false, or a

Boolean value expression. Defaults to false.

requiredMessage: A string or a String value expression indicating the message to

be shown if required was set true and no value was submitted.

[T] Tab index for input elements. Designates the position of the element in the tabbing

order of the whole document. A number between 0 and 32767, as a string, or a

String value expression.

(continued)

APPENDIX

361

Table A-1. (continued)

(continued)

Class Attributes

[RO] Read-only flag for input elements.

readonly: Whether or not the element is a read-only element. One of: true, false,

or a Boolean value expression. Defaults to false.

[V] Value and converter. Many tags have a value and use a converter to translate between

this value’s representation in an injected Java class and the textual representation in

the generated HTML.

value: The current value of the component. Usually you’ll write a value expression like

#{person.name} to connect the value to a property of an injected Java class, but

you can also use literal strings like “John Smith,” “27,” “true,” or “false” if it fits your

needs. If the value is not of type String, the type gets specified in round brackets, as

in [V(Boolean)].

converter: Use a value expression evaluating to javax.faces.convert.

Converter for specifying a converter. Converters are for transforming the value to

a String and vice versa. If you use a converter, a value expression for the value

attribute can have other types than the originally specified one. It is generally not

recommended to use this attribute—some tags even do not allow it, and instead

specify <f:converter> sub-elements from the core tag library.

[V+] Same as [V], but added the following:

converterMessage: A converter message to be shown if the conversion fails. You

can use a String value expression here.

[?] A validator. Validators are for checking if the user’s input complies with some rule.

Validators can also be specified as sub-elements using the <f:validator> tag.

validator: A method expression pointing to a method with signature void

methodName(FacesContext, UIComponent, Object) for validating the input.

validatorMessage: A validator message to be shown if the validation fails. Can be a

value expression.

AppenDIx

362

Class Attributes

[-] A Boolean attribute that allows for shortcutting an element’s lifecycle. See section

“Overview of the JSF chapter.”

immediate: Indicates whether the elements shortcut the normal JSF lifecycle. either

“true” or “false,” but may also be a value expression evaluating to Boolean.

[K] JavaScript keyboard control. Any of the following:

onkeydown: Corresponds directly to the HTML “onkeydown” handler. Here, you specify

any JavaScript code that needs to be executed while a key is pressed. You can use a

value expression here.

onkeyup: Corresponds directly to the HTML “onkeyup” handler. Here, you specify any

JavaScript code that needs to be executed while a key is released. You can use a value

expression here.

onkeypress: Corresponds directly to the HTML “onkeypress” handler. Here, you

specify any JavaScript code that needs to be executed after a key has been pressed

and released. You can use a value expression here.

[C] JavaScript clicking control. Any of the following:

onclick: Corresponds directly to the HTML “onclick” handler. JavaScript code that

needs to be executed when the mouse has clicked on the element. You can use a value

expression here.

ondblclick: Corresponds directly to the HTML “ondblclick” handler. JavaScript code

that needs to be executed when the mouse has double-clicked on the element. You can

use a value expression here.

Table A-1. (continued)

(continued)

APPENDIX

363

Table A-1. (continued)

Class Attributes

[M] JavaScript mouse-handling attributes. Any of the following:

onmousedown: Corresponds directly to the HTML “onmousedown” handler. JavaScript

code that needs to be executed when the mouse has been pressed. You can use a

value expression here.

onmouseup: Corresponds directly to the HTML “onmouseup” handler. JavaScript code

that needs to be executed when the mouse has been released. You can use a value

expression here.

onmousemove: Corresponds directly to the HTML “onmousemove” handler. JavaScript

code that needs to be executed when the mouse has been moved. You can use a value

expression here.

onmouseover: Corresponds directly to the HTML “onmouseover” handler. JavaScript

code that needs to be executed when the mouse has entered the element. You can use

a value expression here.

onmouseout: Corresponds directly to the HTML “onmouseout” handler. JavaScript

code that needs to be executed when the mouse has exited the element. You can use a

value expression here.

[F] JavaScript handling for the input focus that was gained or lost.

onfocus: Corresponds directly to the HTML “onfocus” handler. JavaScript code that

needs to be executed when the element receives the focus. You can use a value

expression here.

onblur: Corresponds directly to the HTML “onblur” handler. JavaScript code

that needs to be executed when the element loses the focus. You can use a value

expression here.

[L] Language specifier.

lang: Corresponds directly to the HTML “lang” attribute. Can also be a value

expression evaluating to String.

(continued)

AppenDIx

364

Class Attributes

[B] A direct binding.

binding: If you specify this and add a binding, like binding = "#{person.

binding1}", the component that handles the tag gets controlled by the getter and

setter corresponding to the value expression. This is for increased control over the

component’s behavior, although it perhaps moves too much presentation logic to the

view. We don’t use it in this book.

[D] Text-direction indication.

dir: One of LTR and RTL for left-to-right and right-to-left. You can use a String value

expression here.

Table A-1. (continued)

 HTML Top-Level Tags
In Table A-2 you can see the top-level tags to be used in template files.

The possible attributes of these elements get shown in Table A-3. Elements in square

brackets denote attributes as shown in Table A-1. If the “Val-Expr” contains a type, you

can use value expressions for this attribute that evaluate to the indicated type.

Table A-2. HTML Top-Level Tags

Tag Translates to Description

<h:doctype> <!DOCTYPE> Renders a <!DOCTYPE>. The implementation seems to be

buggy, so don’t use it. Usually it will be OK to just start your

template files with a line <!DOCTYPE html> (for HTML 5).

<h:head> <head> Use this instead of <head>.

<h:body> <body> Use this instead of <body>.

APPENDIX

365

Table A-3. HTML Top-Level Tags Attributes

Tag Attributes Val-Expr Description

<h:doctype> [0,B] Attribute classes from Table A-1

[V(Object)]

public String The PUBLIC part.

rootElement String (required) The root xML element.

system String The SYSTEM part.

<h:head> [L,B,D] Attribute classes from Table A-1

id - An elements ID. For an explanation, see the

corresponding entry inside the [0] class of

Table A-1.

xmlns String Gets passed through as an xML namespace.

<h:body> [H without

"rendered"]

[L,C,K,M,B,D]

Attribute classes from Table A-1

onload String JavaScript code to be executed when the

document gets loaded.

onunload String JavaScript code to be executed when the

document gets unloaded.

xmlns String Gets passed through as an xML namespace.

 HTML Header Elements
In Table A-4, you can see the tags to be used inside <h:head> elements.

AppenDIx

366

Table A-4. HTML RenderKit Tags

Tag Translates to Description

<h:outputScript> <script> Renders a <script> tag. If the attributes

library = "js" and name = "theName.js"

are specified, it refers to a file named theName.js

inside folder “js” in “src/main/webapp/resources.”

Otherwise, you can also omit the name attribute—

in this case, specify whatever has to go inside

<script> as child elements (for example, a

<h:outputText>).

<h:outputStylesheet> <link> Creates a <link rel="stylesheet"> element.

If the attributes library = "css" and name =

"theName.css" are specified, it refers to a file

named theName.css inside folder “css” in

“src/main/webapp/resources.”

The possible attributes of the header elements are shown in Table A-5. Elements in

square brackets denote attributes as shown in Table A-1. If the “Val-Expr” contains a

type, you can use value expressions for this attribute that evaluate to the indicated type.

Table A-5. HTML Header Tags Attributes

Tag Attributes Val-Expr Description

<h:outputScript> [0,V,B] Attribute classes from Table A-1

library String Gets used as a folder inside “src/main/

webapp/resources” to use for loading a

script file.

name String (required) Gets used as the file name of the

script to load.

target String Where in the HTML to put the script-loading

declaration. One of head, body, or form. If

unspecified, use the current location.

(continued)

APPENDIX

367

Tag Attributes Val-Expr Description

<h:outputStylesheet> [0,V,B] Attribute classes from Table A-1

library String Gets used as a folder inside “src/main/

webapp/resources” to use for loading a

style file.

name String (required) Gets used as the file name of a

style file to load.

media String The media type. For example, “screen.”

Table A-5. (continued)

 HTML Form
Forms get used for transmitting user data from the front end (browser) to the server. As

is usually the case for input elements in the target HTML, for JSF too all input elements

must be placed somewhere inside a <h:form> element. See Table A-6 for the <h:form>

tag itself.

Table A-6. HTML Form Tag

Tag Translates to Description

<h:form> <form> Creates a <form> element that you use to send values to the

server. Contrary to the HTML <form> elements, you don’t specify

a target here—this is left to the “Submit” button or submit link

elements inside the form.

The possible attributes of <h:form> elements are shown in Table A-7. Elements in

square brackets denote attributes, as shown in Table A-1. If the “Val-Expr” contains a

type, you can use value expressions for this attribute that evaluate to the indicated type.

AppenDIx

368

Table A-7. HTML Form Tag Attributes

Tag Attributes Val-Expr Description

<h:form> [H,D,C,K,M,L,B] Attribute classes from Table A-1

prependId Boolean Indicates whether the form ID gets

prepended to the descendants’ IDs for

calculating the client ID. If unspecified,

defaults to true. To avoid confusion, in most

cases you will go with the default behavior

and don’t specify this attribute.

accept String A comma-separated list of content types

the server is able to handle. except for

some corner cases, you don’t have to

specify this attribute.

acceptcharset String A comma-separated list of character

encodings the server is able to handle.

except for some corner cases, you don’t

have to specify this attribute.

enctype String The content type used to submit the form.

If unspecified, “application/x-www-form-

urlencoded” will be used. except for some

corner cases, you don’t have to specify this

attribute.

onreset String Denotes the JavaScript code to be executed

when the form gets reset.

onsubmit String Denotes the JavaScript code to be executed

when the form gets submitted.

target String The name of the frame where the response

is to be sent. Frames don’t get used often

nowadays, so you probably won’t use this

attribute.

APPENDIX

369

 HTML Text Input and Output
Table A-8 shows the tags you can use for text input and output.

Table A-8. HTML Text Input and Output Tags

Tag Translates to Description

<h:outputText> text Outputs some text, specified by the value attribute.

Depending on other attributes like styleClass

the text might be wrapped in a element in

the generated HTML. This is probably the tag used

most often in any JSF page because any static text

passages should be rendered by this tag to allow for

localized texts.

<h:outputFormat> text This is for parameterized text output. Use its value

attribute to specify a format string with {0}, {1},

{2}, ... as placeholders. You then fill the parameters

via <f:param value = "THE_VALUE" /> child

elements.

<h:outputLabel> <label> Creates a <label> element. Use the contents of

the value attribute for the label text, and use the

for attribute to determine the for attribute of

the generated element. Inside for you use the id

attribute’s value of the referred-to element.

<h:inputText> <input> Creates an <input type = "text"> element

that gets used for a text-input field in forms. Use

the value attribute to hold the text (both input and

output).

<h:inputTextarea> <input> Creates an <input type = "textarea">

element that gets used for a multi-line text-

input field in forms. The attributes are similar to

<h:inputText>, but additionally support cols and

rows attributes for the number of columns and rows.

(continued)

AppenDIx

370

Tag Translates to Description

<h:inputHidden> <input> Creates an <input type = "hidden"> element

that you can use to send values to the server that the

front end doesn’t render. Use the value attribute to

hold the text (both input and output).

<h:inputSecret> <input> Creates an <input type = "password">

element for a password-input field. Use the value

attribute to hold the text (both input and output).

<h:message> text or

A FacesContext allows for adding messages

to particular components of a page, or to the

page in general. Messages can, for example, be

error messages the application or a validator

has generated. This tag shows the first message

for a particular component, which you have to

specify using its ID attribute. If you, for example,

have <h:inputText id="lastName"

value="..."/> you can output this component’s

message anywhere in the document via

<h:message for="lastName">

<h:messages> various Same as <h:message>, but allows for the output of

all messages of some component or all messages of

all components of a page.

Table A-8. (continued)

The possible attributes of the text input and output elements are shown in Table A-9.

Elements in square brackets denote attributes as shown in Table A-1. If the “Val-Expr”

contains a type, you can use value expressions for this attribute that evaluate to the

indicated type. Naturally, the value expressions for the input fields denote input and

output attributes.

APPENDIX

371

(continued)

Table A-9. HTML Text Input/Output Tag Attributes

Tag Attributes Val-Expr Description

<h:outputText> [H,V,L,T,B,D] Attribute classes from Table A-1

escape Boolean A Boolean flag indicating whether

characters that are sensitive to

HTML and xML are to be escaped.

Defaults to true.

<h:outputFormat> [H,V,L,B,D] Attribute classes from Table A-1

escape Boolean A Boolean flag indicating whether

characters that are sensitive to

HTML and xML are to be escaped.

Defaults to true.

<h:outputLabel> [H,V,C,K,M,F,L,B,D] Attribute classes from Table A-1

for String evaluates to the ID of the referred-

to element.

escape Boolean A Boolean flag indicating whether

characters that are sensitive to

HTML and xML are to be escaped.

Defaults to true.

accesskey String A key that, once pressed, leads to

the label’s getting the focus.

<h:inputText> [H,R,V+,RO,?,-,C,K,

M,F,L,T,B,D]

Attribute classes from Table A-1

valueChangeListener A method expression pointing to

a method with signature void

methodName(Valuechange

Event) for sending an event when

the value has changed. You can

also use appropriate sub-elements

instead to listen to this event.

AppenDIx

372

Tag Attributes Val-Expr Description

accesskey String A key that, once pressed, leads to

the label’s getting the focus.

alt String The alternate textual description;

passes through to the HTML “alt”

attribute.

autocomplete String Only if it reads “off,” disables the

browser’s autocomplete functionality.

The value “on” means: render

nothing. Defaults to “on.”

disabled Boolean Indicates whether the element must

be disabled.

label String A user-presentable name for this

element. Does not directly influence

the rendered output, but goes to a

property of the component class,

so you can use it for development

purposes, or you can use it indirectly.

maxlength int The maximum number of

characters for this field.

onchange String JavaScript code to be executed

when this element loses focus and

has been changed.

onselect String JavaScript code to be executed

when text inside this element is

selected by the user.

size int number of characters used to

determine the visible length of

the field. This is not the same as

maxlength!

Table A-9. (continued)

(continued)

APPENDIX

373

Tag Attributes Val-Expr Description

<h:inputTextarea> Same as <h:inputText>, but in

addition:

cols int number of columns used to

determine the visible width of the

field.

rows int number of rows used to determine

the visible height of the field.

<h:inputSecret> Same as <h:inputText>, but in

addition:

redisplay Boolean Indicates whether previously

entered values should be

redisplayed. The value is not

actually shown to the user in

cleartext, but it will be sent to the

server on submit.

<h:inputHidden> [0,R,V+,?,-,B] Attribute classes from Table A-1

valueChangeListener A method expression pointing to

a method with signature void

methodName(Valuechange

Event) for sending an event when

the value has changed.

You can also use appropriate

sub-elements instead to listen to

this event.

Table A-9. (continued)

(continued)

AppenDIx

374

Tag Attributes Val-Expr Description

<h:message> [H,L,B,D] Attribute classes from Table A-1

for String (required) evaluating to the ID of the

referred-to element.

showDetail Boolean Indicates whether the detail portion

of the message should be included.

Defaults to true.

showSummary Boolean Indicates whether the summary

portion of the message should be

included. Defaults to true.

tooltip Boolean Indicates whether the detail portion

of the message should be shown as

a tooltip.

infoClass String The style class attribute for

“info”-level messages.

infoStyle String The style attribute for “info”-level

messages.

warnClass String The style class attribute for

“warning”-level messages.

warnStyle String The style attribute for “warning”-

level messages.

errorClass String The style class attribute for

“error”-level messages.

errorStyle String The style attribute for “error”-level

messages.

fatalClass String The style class attribute for

“fatal”-level messages.

fatalStyle String The style attribute for “fatal”-level

messages.

Table A-9. (continued)

(continued)

APPENDIX

375

Table A-9. (continued)

Tag Attributes Val-Expr Description

<h:messages> Same as <h:message>, but the

for attribute is not required, and it

has two more attributes:

globalOnly Boolean Indicates whether only messages

not associated with dedicated fields

should be shown. Default is false.

layout String Declares the layout of the

messages. One of: table and

list. Default is list.

 HTML Selectables
Table A-10 shows the tags you can use for selectables style input and output fields. As is

usually the case for input elements in HTML, selectables input elements must be placed

somewhere inside a <h:form> element for JSF too.

Table A-10. HTML Selectables Tags

Tag Translates to Description

<h:selectBoolean

Checkbox>

<input> Creates an <input type = "checkbox">

element that gets used for checkbox input fields in

forms. Use attribute value to specify whether the

checkbox is checked or not. This can be a value

expression like #{TheClass.chk1} pointing to

a Boolean type getter and setter for input and

output value.

(continued)

AppenDIx

376

Tag Translates to Description

<h:selectMany

Checkbox>

<input> Use this to render a set of interrelated checkboxes.

Take its value attribute to connect it to getters

and setters (type String[], or a collection

type holding strings) of a class, like in value =

"#{theClass.chkb}". Inside the tag, specify

child elements, like <f:selectItem itemValue

= "v" itemLabel = "Item x" />, for the

various checkboxes—the itemValue must

then correspond to the string values returned by

#{theClass.chkb}. To use a more dynamic

setup with the checkbox list controlled by a Java

class, use <f:selectItems> as a child element.

<h:selectMany

Listbox>

<select> This is used to generate an HTML option list.

Take its value attribute to connect it to getters

and setters (type String[], or a collection

type holding strings) of a class, like in value =

"#{theClass.opts}". Inside the tag, specify

child elements like <f:selectItem itemValue

= "v" itemLabel = "Item x" /> for the

various options. The itemValue must then

correspond to the string values returned by

#{theClass.opts}. You can also use a single

<f:selectItems> child and let the application

control the option list.

<h:selectMany

Menu>

<select> Same as <h:selectManyListbox> but with the

size attribute set to 1.

<h:selectOne

Listbox>

<select> Same as <h:selectManyListbox> but with at

most one element selected. The value attribute

gets connected to a String type getter and setter.

Table A-10. (continued)

(continued)

APPENDIX

377

Tag Translates to Description

<h:selectOneMenu> <select> Same as <h:selectManyMenu> but with at most

one element selected. The value attribute gets

connected to a String type getter and setter.

<h:selectOneRadio> <input> Renders a set of radio buttons. Take its value

attribute to connect it to getters and setters (type

String, or a collection type holding strings)

of a class, like in value = "#{theClass.

radio}". Inside the tag, specify child elements,

like <f:selectItem itemValue = "v"

itemLabel = "Item x" />, for the various

options. The itemValue must then correspond to

the string value returned by #{theClass.radio}.

You can also use a single <f:selectItems> child

and let the application control the option list.

Table A-10. (continued)

The possible attributes of the selectables elements are shown in Table A-11.

Elements in square brackets denote attributes, as shown in Table A-1. If the “Val-Expr”

contains a type, you can use value expressions for this attribute that evaluate to the

indicated type. Naturally, the value expressions for the input fields denote input and

output attributes.

AppenDIx

378

Ta
bl

e
A

-1
1.

 H
T

M
L

Se
le

ct
ab

le
s

Ta
g

A
tt

ri
bu

te
s

Ta
g

At
tr

ib
ut

es
Va

l-
Ex

pr
De

sc
rip

tio
n

<h
:s
el
ec
tB
oo
le
an

Ch
ec
kb
ox
>

[H
,R
,V
+(
bo
ol
ea
n)
,R
O,
?,
-,

D,
L,
F,
 C
,K
,M
,T
,B
]

At
tri

bu
te

 c
la

ss
es

 fr
om

 T
ab

le
 A

-1

va
lu
eC
ha
ng
eL
is
te
ne
r

A
m

et
ho

d
ex

pr
es

si
on

 p
oi

nt
in

g
to

a
m

et
ho

d
w

ith
 s

ig
na

tu
re

 v
oi
d

me
th
od
Na
me
(V
al
ue
ch

an
ge
Ev
en
t)

 fo
r s

en
di

ng

an
 e

ve
nt

 w
he

n
th

e
va

lu
e

ha
s

ch
an

ge
d.

 Y
ou

 c
an

 a
ls

o

us
e

ap
pr

op
ria

te
 s

ub
-e

le
m

en
ts

 in
st

ea
d

to
 li

st
en

 to

th
is

 e
ve

nt
.

ac
ce
ss
ke
y

St
rin

g
A

ke
y

th
at

, o
nc

e
pr

es
se

d,
 le

ad
s

to
 th

e
la

be
l’s

 g
et

tin
g

th
e

fo
cu

s.

di
sa
bl
ed

Bo
ol

ea
n

In
di

ca
te

s
w

he
th

er
 th

e
el

em
en

t m
us

t b
e

di
sa

bl
ed

.

la
be
l

St
rin

g
A

us
er

-p
re

se
nt

ab
le

 n
am

e
fo

r t
hi

s
el

em
en

t.
Do

es
 n

ot

di
re

ct
ly

 in
flu

en
ce

 th
e

re
nd

er
ed

 o
ut

pu
t,

bu
t g

oe
s

to
 a

pr
op

er
ty

 o
f t

he
 c

om
po

ne
nt

 c
la

ss
, s

o
yo

u
ca

n
us

e
fo

r

de
ve

lo
pm

en
t p

ur
po

se
s,

 o
r y

ou
 c

an
 u

se
 it

 in
di

re
ct

ly.

on
ch
an
ge

St
rin

g
Ja

va
Sc

rip
t c

od
e

to
 b

e
ex

ec
ut

ed
 w

he
n

th
is

 e
le

m
en

t

lo
se

s
fo

cu
s

an
d

w
as

 c
ha

ng
ed

.

on
se
le
ct

St
rin

g
Ja

va
Sc

rip
t c

od
e

to
 b

e
ex

ec
ut

ed
 w

he
n

th
is

 e
le

m
en

t

is
 s

el
ec

te
d

by
 th

e
us

er
.

APPENDIX

379

<h
:s
el
ec
tM
an
y

Ch
ec
kb
ox
>

[H
,R
,V
+(
Ob
je
ct
),
RO
,?
,-
,

D,
L,
F,
 C
,K
,M
,T
,B
]

At
tri

bu
te

 c
la

ss
es

 fr
om

 T
ab

le
 A

-1
. T

he
 v

al
ue

 c
an

 b
e

a

St
ri
ng
[]

 o
r a

 c
ol

le
ct

io
n

of
 s

tri
ng

s.

va
lu
eC
ha
ng
eL
is
te
ne
r

A
m

et
ho

d
ex

pr
es

si
on

 p
oi

nt
in

g
to

a
m

et
ho

d
w

ith
 s

ig
na

tu
re

 v
oi
d

me
th
od
Na
me
(V
al
ue
ch

an
ge
Ev
en
t)

 fo
r s

en
di

ng

an
 e

ve
nt

 w
he

n
th

e
va

lu
e

ha
s

ch
an

ge
d.

 Y
ou

 c
an

 a
ls

o

us
e

ap
pr

op
ria

te
 s

ub
-e

le
m

en
ts

 in
st

ea
d

to
 li

st
en

 to

th
is

 e
ve

nt
.

ac
ce
ss
ke
y

St
rin

g
A

ke
y

th
at

, o
nc

e
pr

es
se

d,
 le

ad
s

to
 th

e
la

be
l’s

 g
et

tin
g

th
e

fo
cu

s.

bo
rd
er

in
t

Bo
rd

er
 w

id
th

 in
 p

ix
el

s.

co
ll
ec
ti
on
Ty
pe

St
rin

g
Th

e
cl

as
s

im
pl

em
en

tin
g
ja
va
.u
ti
l.
Co
ll
ec
ti
on

to
 b

e
us

ed
. T

he
 fu

lly
 q

ua
lif

ie
d

cl
as

s
na

m
e

as
 a

st
rin

g,
 o

r a
 v

al
ue

 e
xp

re
ss

io
n

ev
al

ua
tin

g
to

 th
e

Cl
as
s

ob
je

ct
. O

pt
io

na
l.

di
sa
bl
ed

Bo
ol

ea
n

In
di

ca
te

s
w

he
th

er
 th

e
el

em
en

t m
us

t b
e

di
sa

bl
ed

.

di
sa
bl
ed
Cl
as
s

St
rin

g
St

yl
e

cl
as

s
fo

r d
is

ab
le

d
op

tio
ns

.

en
ab
le
dC
la
ss

St
rin

g
St

yl
e

cl
as

s
fo

r e
na

bl
ed

 o
pt

io
ns

.

se
le
ct
ed
Cl
as
s

St
rin

g
St

yl
e

cl
as

s
fo

r s
el

ec
te

d
op

tio
ns

.

un
se
le
ct
ed
Cl
as
s

St
rin

g
St

yl
e

cl
as

s
fo

r u
ns

el
ec

te
d

op
tio

ns
.

hi
de
No
-S
el
ec
ti
on
Op
ti
on

Bo
ol

ea
n

If
“t

ru
e,

”
th

e
“n

o
se

le
ct

io
n

op
tio

n”
 m

us
t b

e
hi

dd
en

.

(c
on

ti
n

u
ed

)

AppenDIx

380

la
be
l

St
rin

g
A

us
er

-p
re

se
nt

ab
le

 n
am

e
fo

r t
hi

s
el

em
en

t.
Do

es
 n

ot

di
re

ct
ly

 in
flu

en
ce

 th
e

re
nd

er
ed

 o
ut

pu
t,

bu
t g

oe
s

to
 a

pr
op

er
ty

 o
f t

he
 c

om
po

ne
nt

 c
la

ss
, s

o
yo

u
ca

n
us

e
fo

r

de
ve

lo
pm

en
t p

ur
po

se
s,

 o
r y

ou
 c

an
 u

se
 it

 in
di

re
ct

ly.

la
yo
ut

St
rin

g
Th

e
la

yo
ut

. O
ne

 o
f:
pa
ge

Di
re
ct
io
n

(li
st

 is
 la

id

ou
t v

er
tic

al
ly

) o
r l

in
eD
ir
ec
ti
on

 (l
is

t i
s

la
id

 o
ut

ho
riz

on
ta

lly
).

De
fa

ul
t i

s
th

e
la

tte
r.

on
ch
an
ge

St
rin

g
Ja

va
Sc

rip
t c

od
e

to
 b

e
ex

ec
ut

ed
 w

he
n

th
is

 e
le

m
en

t

lo
se

s
fo

cu
s

an
d

ha
s

be
en

 c
ha

ng
ed

.

on
se
le
ct

St
rin

g
Ja

va
Sc

rip
t c

od
e

to
 b

e
ex

ec
ut

ed
 w

he
n

th
is

 e
le

m
en

t

is
 s

el
ec

te
d

by
 th

e
us

er
.

<h
:s
el
ec
tM
an
y

Li
st
bo
x>

[H
,R
,V
+(
Ob
je
ct
),
RO
,

?,
-,
D,
L,
F,
C,
K,
M,
T,
B]

At
tri

bu
te

 c
la

ss
es

 fr
om

 T
ab

le
 A

-1
. T

he
 v

al
ue

 c
an

 b
e

a

St
ri
ng
[]

 o
r a

 c
ol

le
ct

io
n

of
 s

tri
ng

s.

va
lu
eC
ha
ng
eL
is
te
ne
r

A
m

et
ho

d
ex

pr
es

si
on

 p
oi

nt
in

g
to

a
m

et
ho

d
w

ith
 s

ig
na

tu
re

 v
oi
d

me
th
od
Na
me
(V
al
ue
ch
an
ge
Ev
en
t)

 fo
r s

en
di

ng

an
 e

ve
nt

 w
he

n
th

e
va

lu
e

ha
s

ch
an

ge
d.

 Y
ou

 c
an

 a
ls

o

us
e

ap
pr

op
ria

te
 s

ub
-e

le
m

en
ts

 in
st

ea
d

to
 li

st
en

 to

th
is

 e
ve

nt
.

ac
ce
ss
ke
y

St
rin

g
A

ke
y

th
at

, o
nc

e
pr

es
se

d,
 le

ad
s

to
 th

e
la

be
l’s

 g
et

tin
g

th
e

fo
cu

s.

Ta
g

At
tr

ib
ut

es
Va

l-
Ex

pr
De

sc
rip

tio
n

Ta
bl

e
A

-1
1.

 (
co

n
ti

n
u

ed
)

APPENDIX

381

co
ll
ec
ti
on
Ty
pe

St
rin

g
Th

e
cl

as
s

im
pl

em
en

tin
g
ja
va
.u
ti
l.
Co
ll
ec
ti
on

to
 b

e
us

ed
. T

he
 fu

lly
 q

ua
lif

ie
d

cl
as

s
na

m
e

as
 a

st
rin

g,
 o

r a
 v

al
ue

 e
xp

re
ss

io
n

th
at

 e
va

lu
at

es
 to

 th
e

Cl
as
s

ob
je

ct
. O

pt
io

na
l.

di
sa
bl
ed

Bo
ol

ea
n

In
di

ca
te

s
w

he
th

er
 th

e
el

em
en

t m
us

t b
e

di
sa

bl
ed

.

di
sa
bl
ed
Cl
as
s

St
rin

g
St

yl
e

cl
as

s
fo

r d
is

ab
le

d
op

tio
ns

.

en
ab
le
dC
la
ss

St
rin

g
St

yl
e

cl
as

s
fo

r e
na

bl
ed

 o
pt

io
ns

.

hi
de
No
-S
el
ec
ti
on
Op
ti
on

Bo
ol

ea
n

If
“t

ru
e,

”
th

e
“n

o
se

le
ct

io
n

op
tio

n”
 m

us
t b

e
hi

dd
en

.

la
be
l

St
rin

g
A

us
er

-p
re

se
nt

ab
le

 n
am

e
fo

r t
hi

s
el

em
en

t.
Do

es
 n

ot

di
re

ct
ly

 in
flu

en
ce

 th
e

re
nd

er
ed

 o
ut

pu
t,

bu
t g

oe
s

to
 a

pr
op

er
ty

 o
f t

he
 c

om
po

ne
nt

 c
la

ss
, s

o
yo

u
ca

n
us

e
fo

r

de
ve

lo
pm

en
t p

ur
po

se
s,

 o
r y

ou
 c

an
 u

se
 it

 in
di

re
ct

ly.

on
ch
an
ge

St
rin

g
Ja

va
Sc

rip
t c

od
e

to
 b

e
ex

ec
ut

ed
 w

he
n

th
is

 e
le

m
en

t

lo
se

s
fo

cu
s

an
d

ha
s

be
en

 c
ha

ng
ed

.

on
se
le
ct

St
rin

g
Ja

va
Sc

rip
t c

od
e

to
 b

e
ex

ec
ut

ed
 w

he
n

th
is

 e
le

m
en

t

is
 s

el
ec

te
d

by
 th

e
us

er
.

si
ze

in
t

nu
m

be
r o

f a
va

ila
bl

e
op

tio
ns

 to
 b

e
sh

ow
n.

 D
ef

au
lts

to
 n

o
lim

it.

(c
on

ti
n

u
ed

)

AppenDIx

382

<h
:s
el
ec
tO
ne

Li
st
bo
x>

Li
ke

 <
h:
se
le
ct
Ma
ny

Li
st
bo
x>

, b
ut

 w
ith

ou
t t

he

“c
ol

le
ct

io
nT

yp
e”

 a
ttr

ib
ut

e.

<h
:s
el
ec
tM
an
yM
en
u>

Li
ke

 <
h:
se
le
ct
Ma
ny

Li
st
bo
x>

.

<h
:s
el
ec
tO
ne
Me
nu
>

Li
ke

 <
h:
se
le
ct
Ma
ny

Me
nu
>,

 b
ut

 w
ith

ou
t t

he

“c
ol

le
ct

io
nT

yp
e”

 a
ttr

ib
ut

e.

<h
:s
el
ec
tO
ne
Ra
di
o>

Li
ke

 <
h:
se
le
ct
Ma
ny

Ch
ec
kb
ox
>,

 b
ut

 w
ith

ou
t

th
e

“c
ol

le
ct

io
nT

yp
e,

”
“s

el
ec

te
dC

la
ss

,”
 a

nd

“u
ns

el
ec

te
dC

la
ss

”
at

tri
bu

te
s.

Ta
g

At
tr

ib
ut

es
Va

l-
Ex

pr
De

sc
rip

tio
n

Ta
bl

e
A

-1
1.

 (
co

n
ti

n
u

ed
)

APPENDIX

383

 HTML Images
Table A-12 describes the image tag you can use to add images to a page.

Table A-12. HTML Images

Tag Translates to Description

<h:graphicImage> Creates an element, which represents an image.

Image files can go to the folder specified by the library

attribute inside “src/main/webapp/resources.” In addition,

images can be represented by URLs.

The possible attributes of the image element are shown in Table A-13. Elements in

square brackets denote attributes, as shown in Table A-1. If the “Val-Expr” contains a

type, you can use value expressions for this attribute that evaluate to the indicated type.

Table A-13. HTML Image Attributes

Tag Attributes Val-Expr Description

<h:graphic

Image>

[H,D,L,C,K,M,B] Attribute classes from Table A-1

url String The URL pointing to the image.

value Object Same as “url.”

alt String Alternate textual representation of the image.

height String Override the height of the image.

width String Override the width of the image.

ismap Boolean Whether the image represents a server-

side image map. If true, the mage must be

enclosed inside an <a>. Default is false.

usemap String The name of a client-side image map.

library String Gets used as a folder inside “src/main/webapp/

resources” to use for loading the image file.

name String Gets used as the file name of the image file to load.

longdesc String URI to a long description of the image.

AppenDIx

384

 HTML Buttons and Links
Buttons and links are something a user can click on to submit a form or initiate other

actions, like reloading a page or advancing to another page.

Table A-14 describes the button and link tags.

Table A-14. HTML Buttons and Links

Tag Translates to Description

<h:commandButton> <input> Creates a button <input type = "submit>"

for submitting a form. May contain an action

attribute that holds a method expression pointing

to a method of a connected class. The value

attribute holds the button text. Or you can use an

image attribute pointing to the URL of an image

to be used as the button.

<h:commandLink> <a> Creates a link that acts like a

<h:commandButton> inside a form. May

contain an action attribute that holds a method

expression pointing to a method of a connected

class. The value attribute holds the link text.

<h:link> <a> Creates a link. The value attribute specifies the

link text, the outcome attribute designates a

value expression that gets evaluated to produce

the logical link destination (for example, “xyz” if

“xyz.xhtml” is an existing template).

<h:outputLink> <a> Creates a link. The value attribute specifies the

generated link’s href attribute. Use any number

of child elements to define the link’s contents.

(continued)

APPENDIX

385

Tag Translates to Description

<h:button> <button> Creates a <button> element that does not

strictly correspond to a form-submit action.

Instead, the button might be placed outside

a <h:form> tag, and it might perform some

calculation via JavaScript. nevertheless, a click

on the button will lead to reloading the page or

loading a different page via setting window.

location.href. The value attribute specifies

the link text. The outcome attribute designates a

method expression invoked before the page gets

loaded (not when the button gets pressed!), and

points to a new page that gets navigated to when

the button gets pressed.

Table A-14. (continued)

The possible attributes of the buttons and links are shown in Table A-15. Elements

in square brackets denote attributes, as shown in Table A-1. If the “Val-Expr”

contains a type, you can use value expressions for this attribute that evaluate to the

indicated type.

AppenDIx

386

Ta
bl

e
A

-1
5.

 H
T

M
L

B
u

tt
on

s
an

d
Li

n
ks

Ta
g

At
tr

ib
ut

es
Va

l-
Ex

pr
De

sc
rip

tio
n

<h
:c
om
ma
nd

Bu
tt
on
>

[H
,R
O,
D,
L,
-,
C,

K,
M,
F,
T,
B]

At
tri

bu
te

 c
la

ss
es

 fr
om

 T
ab

le
 A

-1

va
lu
e

Ob
je

ct
Th

e
bu

tto
n

te
xt

.

ac
ti
on

-
A

m
et

ho
d

ex
pr

es
si

on
. M

us
t p

oi
nt

 to
 a

 m
et

ho
d

w
ith

ou
t p

ar
am

et
er

s
re

tu
rn

in
g

an

Ob
je
ct

. T
he

 t
oS
tr
in
g(
)

m
et

ho
d

of
 th

is
 o

bj
ec

t r
ep

re
se

nt
s

th
e

na
vi

ga
tio

n
ca

se
. I

f t
he

ob
je

ct
 e

qu
al

s
nu
ll

, t
he

 b
ut

to
n

pr
es

s
w

ill
 le

ad
 to

 re
lo

ad
in

g
th

e
pa

ge
.

ac
ti
on
-L
is
te
ne
r

St
rin

g
A

m
et

ho
d

ex
pr

es
si

on
 o

f s
ig

na
tu

re
 v
oi
d
me
th
od
Na
me
()

 o
r v

oi
d

me
th
od
Na
me
(j
av
ax
.f
ac
es
.e
ve
nt
.A
ct
io
nE
ve
nt
).

 W
ill

 b
e

ca
lle

d
w

he
n

th
is

bu
tto

n
ge

ts
 a

ct
iv

at
ed

 b
y

th
e

us
er

.

ty
pe

St
rin

g
Th

e
ty

pe
. O

ne
 o

f:
su
bm
it

, r
es
et

, b
ut
to
n.

 D
ef

au
lt

is
 s
ub
mi
t.

ac
ce
ss
ke
y

St
rin

g
A

ke
y

th
at

, o
nc

e
pr

es
se

d,
 le

ad
s

to
 th

e
bu

tto
n’

s
ge

tti
ng

 th
e

fo
cu

s.

al
t

St
rin

g
Al

te
rn

at
e

te
xt

ua
l r

ep
re

se
nt

at
io

n
of

 th
e

bu
tto

n.

di
sa
bl
ed

Bo
ol

ea
n

In
di

ca
te

s
w

he
th

er
 th

e
el

em
en

t m
us

t b
e

di
sa

bl
ed

.

im
ag
e

St
rin

g
UR

L
of

 th
e

im
ag

e
to

 b
e

lo
ad

ed
 fo

r t
he

 b
ut

to
n.

la
be
l

St
rin

g
A

us
er

-p
re

se
nt

ab
le

 n
am

e
fo

r t
hi

s
el

em
en

t.
Do

es
 n

ot
 d

ire
ct

ly
 in

flu
en

ce
 th

e

re
nd

er
ed

 o
ut

pu
t,

bu
t g

oe
s

to
 a

 p
ro

pe
rty

 o
f t

he
 c

om
po

ne
nt

 c
la

ss
, s

o
yo

u
ca

n
us

e
fo

r

de
ve

lo
pm

en
t p

ur
po

se
s,

 o
r y

ou
 c

an
 u

se
 it

 in
di

re
ct

ly.

on
ch
an
ge

St
rin

g
Ja

va
Sc

rip
t c

od
e

to
 b

e
ex

ec
ut

ed
 w

he
n

th
is

 e
le

m
en

t l
os

es
 fo

cu
s

an
d

ha
s

be
en

ch
an

ge
d.

on
se
le
ct

St
rin

g
Ja

va
Sc

rip
t c

od
e

to
 b

e
ex

ec
ut

ed
 w

he
n

te
xt

 in
si

de
 th

is
 e

le
m

en
t i

s
se

le
ct

ed
 b

y
th

e
us

er
.

APPENDIX

387

<h
:c
om
ma
nd

Li
nk
>

[H
,D
,L
,-
,C
,K
,

M,
F,
T,
B]

At
tri

bu
te

 c
la

ss
es

 fr
om

 T
ab

le
 A

-1

va
lu
e

Ob
je

ct
Th

e
lin

k
te

xt
.

ac
ti
on

-
A

m
et

ho
d

ex
pr

es
si

on
. M

us
t p

oi
nt

 to
 a

 m
et

ho
d

w
ith

ou
t p

ar
am

et
er

s
re

tu
rn

in
g

an

Ob
je
ct

. T
he

 t
oS
tr
in
g(
)

m
et

ho
d

of
 th

is
 o

bj
ec

t r
ep

re
se

nt
s

th
e

na
vi

ga
tio

n
ca

se
. I

f t
he

ob
je

ct
 e

qu
al

s
nu
ll

, t
he

 b
ut

to
n

pr
es

s
w

ill
 le

ad
 to

 re
lo

ad
in

g
th

e
pa

ge
.

ac
ti
on
-L
is
te
ne
r

St
rin

g
A

m
et

ho
d

ex
pr

es
si

on
 o

f s
ig

na
tu

re
 v
oi
d
me
th
od
Na
me
()

 o
r v

oi
d

me
th
od
Na
me
(j
av
ax
.f
ac
es
.e
ve
nt
.A
ct
io
nE
ve
nt
).

 W
ill

 b
e

ca
lle

d
w

he
n

th
is

bu
tto

n
ge

ts
 a

ct
iv

at
ed

 b
y

th
e

us
er

.

ty
pe

St
rin

g
Th

e
co

nt
en

t t
yp

e
of

 th
e

re
so

ur
ce

 th
e

lin
k

po
in

ts
 to

.

ch
ar
se
t

St
rin

g
Th

e
ch

ar
ac

te
r e

nc
od

in
g

of
 th

e
re

so
ur

ce
 th

e
lin

k
po

in
ts

 to
.

hr
ef
la
ng

St
rin

g
Th

e
la

ng
ua

ge
 o

f t
he

 re
so

ur
ce

 th
e

lin
k

po
in

ts
 to

.

ac
ce
ss
ke
y

St
rin

g
A

ke
y

th
at

, o
nc

e
pr

es
se

d,
 le

ad
s

to
 th

e
lin

k’
s

ge
tti

ng
 th

e
fo

cu
s.

di
sa
bl
ed

Bo
ol

ea
n

In
di

ca
te

s
w

he
th

er
 th

e
el

em
en

t m
us

t b
e

di
sa

bl
ed

.

co
or
ds

St
rin

g
po

si
tio

n
an

d
sh

ap
e

of
 th

e
ho

t s
po

t f
or

 c
lie

nt
-s

id
e

im
ag

e
m

ap
s.

sh
ap
e

St
rin

g
Sh

ap
e

of
 th

e
ho

t s
po

t f
or

 c
lie

nt
-s

id
e

im
ag

e
m

ap
s.

re
l

St
rin

g
pa

ss
es

 th
ro

ug
h

as
 th

e
“r

el
”

at
tri

bu
te

 o
f t

he
 li

nk
.

re
v

St
rin

g
pa

ss
es

 th
ro

ug
h

as
 th

e
“r

ev
”

at
tri

bu
te

 o
f t

he
 li

nk
.

ta
rg
et

St
rin

g
Sa

m
e

as
 th

e
ge

ne
ra

te
d
<a
>

el
em

en
t’s

 t
ar
ge
t

at
tri

bu
te

. O
ne

 o
f:
_b
la
nk

, _
pa
re
nt

,

_s
el
f,

 _
to
p,

 o
r t

he
 n

am
e

of
 th

e
fra

m
e

to
 w

hi
ch

 th
e

re
sp

on
se

 is
 to

 b
e

se
nt

.

(c
on

ti
n

u
ed

)

AppenDIx

388

<h
:l
in
k>

[H
,D
,L
,C
,K
,M
,

F,
T,
B]

At
tri

bu
te

 c
la

ss
es

 fr
om

 T
ab

le
 A

-1

va
lu
e

Ob
je

ct
Th

e
lin

k
te

xt
.

in
cl
ud
eV
ie
w-
Pa
ra
ms

Bo
ol

ea
n

W
he

th
er

 to
 in

cl
ud

e
pa

ge
 p

ar
am

et
er

s
in

 th
e

ta
rg

et
 U

RI
.

ou
tc
om
e

St
rin

g
A

na
vi

ga
tio

n
ta

rg
et

, u
se

d
to

 d
et

er
m

in
e

th
e

UR
L

w
rit

te
n

in
 th

e
HT

M
L

“h
re

f”
 a

ttr
ib

ut
e.

Be
ca

us
e

JS
F

kn
ow

s
w

e
us

e
xH

TM
L

as
 a

 te
m

pl
at

e
pa

ge
 e

nd
in

g,
 a

n
ou
tc
om
e
=

"p
ag
e2
",

 fo
r e

xa
m

pl
e,

 w
ill

 re
so

lv
e

to
 h
re
f
=
"[
CO
NT

EX
T]
/p
ag
e2
.x
ht
ml
".

ty
pe

St
rin

g
Th

e
co

nt
en

t t
yp

e
of

 th
e

re
so

ur
ce

 th
e

lin
k

po
in

ts
 to

.

ch
ar
se
t

St
rin

g
Th

e
ch

ar
ac

te
r e

nc
od

in
g

of
 th

e
re

so
ur

ce
 th

e
lin

k
po

in
ts

 to
.

hr
ef
la
ng

St
rin

g
Th

e
la

ng
ua

ge
 o

f t
he

 re
so

ur
ce

 th
e

lin
k

po
in

ts
 to

.

ac
ce
ss
ke
y

St
rin

g
A

ke
y

th
at

, o
nc

e
pr

es
se

d,
 le

ad
s

to
 th

e
lin

k’
s

ge
tti

ng
 th

e
fo

cu
s.

di
sa
bl
ed

Bo
ol

ea
n

In
di

ca
te

s
w

he
th

er
 th

e
el

em
en

t m
us

t b
e

di
sa

bl
ed

.

co
or
ds

St
rin

g
po

si
tio

n
an

d
sh

ap
e

of
 th

e
ho

t s
po

t f
or

 c
lie

nt
-s

id
e

im
ag

e
m

ap
s.

sh
ap
e

St
rin

g
Sh

ap
e

of
 th

e
ho

t s
po

t f
or

 c
lie

nt
-s

id
e

im
ag

e
m

ap
s.

re
l

St
rin

g
pa

ss
es

 th
ro

ug
h

as
 th

e
“r

el
”

at
tri

bu
te

 o
f t

he
 li

nk
.

re
v

St
rin

g
pa

ss
es

 th
ro

ug
h

as
 th

e
“r

ev
”

at
tri

bu
te

 o
f t

he
 li

nk
.

ta
rg
et

St
rin

g
Sa

m
e

as
 th

e
ge

ne
ra

te
d
<a
>

el
em

en
t’s

 t
ar
ge
t

at
tri

bu
te

. O
ne

 o
f:
_b
la
nk

, _
pa
re
nt

,

_s
el
f,

 _
to
p,

 o
r t

he
 n

am
e

of
 th

e
fra

m
e

to
 w

hi
ch

 th
e

re
sp

on
se

 is
 to

 b
e

se
nt

.

fr
ag
me
nt

St
rin

g
Ad

de
d

as
 a

 U
RL

 fr
ag

m
en

t (
“#

”
+

 fr
ag

m
en

t I
D)

 to
 th

e
lin

k.

Ta
g

At
tr

ib
ut

es
Va

l-
Ex

pr
De

sc
rip

tio
n

Ta
bl

e
A

-1
5.

 (
co

n
ti

n
u

ed
)

APPENDIX

389

<h
:o
ut
pu
t

Li
nk
>

[H
,V
,D
,L
,C
,

K,
M,
F,
T,
B]

At
tri

bu
te

 c
la

ss
es

 fr
om

 T
ab

le
 A

-1

va
lu
e

Ob
je

ct
Th

e
lin

k
UR

L.
 e

nd
s

up
 in

 th
e
hr
ef

 a
ttr

ib
ut

e
of

 th
e

ge
ne

ra
te

d
<a
>

el
em

en
t.

Ca
n

al
so

be
 a

 re
la

tiv
e

UR
L.

ta
rg
et

St
rin

g
Sa

m
e

as
 th

e
ge

ne
ra

te
d
<a
>

el
em

en
t’s

 t
ar
ge
t

at
tri

bu
te

. O
ne

 o
f:
_b
la
nk

, _
pa
re
nt

,

_s
el
f,

 _
to
p,

 o
r t

he
 n

am
e

of
 th

e
fra

m
e

to
 w

hi
ch

 th
e

re
sp

on
se

 is
 to

 b
e

se
nt

.

ty
pe

St
rin

g
Th

e
co

nt
en

t t
yp

e
of

 th
e

re
so

ur
ce

 th
e

lin
k

po
in

ts
 to

.

ch
ar
se
t

St
rin

g
Th

e
ch

ar
ac

te
r e

nc
od

in
g

of
 th

e
re

so
ur

ce
 th

e
lin

k
po

in
ts

 to
.

hr
ef
la
ng

St
rin

g
Th

e
la

ng
ua

ge
 o

f t
he

 re
so

ur
ce

 th
e

lin
k

po
in

ts
 to

.

ac
ce
ss
ke
y

St
rin

g
A

ke
y

th
at

, o
nc

e
pr

es
se

d,
 le

ad
s

to
 th

e
lin

k’
s

ge
tti

ng
 th

e
fo

cu
s.

di
sa
bl
ed

Bo
ol

ea
n

In
di

ca
te

s
w

he
th

er
 th

e
el

em
en

t m
us

t b
e

di
sa

bl
ed

.

co
or
ds

St
rin

g
po

si
tio

n
an

d
sh

ap
e

of
 th

e
ho

t s
po

t f
or

 c
lie

nt
-s

id
e

im
ag

e
m

ap
s.

sh
ap
e

St
rin

g
Sh

ap
e

of
 th

e
ho

t s
po

t f
or

 c
lie

nt
-s

id
e

im
ag

e
m

ap
s.

re
l

St
rin

g
pa

ss
es

 th
ro

ug
h

as
 th

e
re
l

at
tri

bu
te

 o
f t

he
 li

nk
.

re
v

St
rin

g
pa

ss
es

 th
ro

ug
h

as
 th

e
re
v

at
tri

bu
te

 o
f t

he
 li

nk
.

(c
on

ti
n

u
ed

)

AppenDIx

390

<h
:b
ut
to
n>

[H
,V
(n
o

co
nv
er
te
r)
,

D,
L,
C,
K,

M,
F,
T,
B]

At
tri

bu
te

 c
la

ss
es

 fr
om

 T
ab

le
 A

-1

va
lu
e

Ob
je

ct
Th

e
bu

tto
n

te
xt

.

in
cl
ud
eV
ie
w-
Pa
ra
ms

Bo
ol

ea
n

W
he

th
er

 to
 in

cl
ud

e
pa

ge
 p

ar
am

et
er

s
in

 th
e

ta
rg

et
 U

RI
.

ou
tc
om
e

St
rin

g
A

na
vi

ga
tio

n
ta

rg
et

, u
se

d
to

 d
et

er
m

in
e

th
e

UR
L

w
rit

te
n

in
 th

e
HT

M
L
hr
ef

 a
ttr

ib
ut

e.

Be
ca

us
e

JS
F

kn
ow

s
w

e
us

e
xH

TM
L

as
 a

 te
m

pl
at

e
pa

ge
 e

nd
in

g,
 a

n
ou
tc
om
e
=

"p
ag
e2
",

 fo
r e

xa
m

pl
e,

 w
ill

 re
so

lv
e

to
 h
re
f
=
"[
CO
NT

EX
T]
/p
ag
e2
.x
ht
ml
".

ac
ce
ss
ke
y

St
rin

g
A

ke
y

th
at

, o
nc

e
pr

es
se

d,
 le

ad
s

to
 th

e
lin

k’
s

ge
tti

ng
 th

e
fo

cu
s.

al
t

St
rin

g
Al

te
rn

at
e

te
xt

ua
l r

ep
re

se
nt

at
io

n
of

 th
e

bu
tto

n.

fr
ag
me
nt

St
rin

g
Ad

de
d

as
 a

 U
RL

 fr
ag

m
en

t (
“#

”
+

 fr
ag

m
en

t I
D)

 to
 th

e
lin

k.

im
ag
e

St
rin

g
UR

L
of

 th
e

im
ag

e
to

 b
e

lo
ad

ed
 fo

r t
he

 b
ut

to
n.

Ta
bl

e
A

-1
5.

 (
co

n
ti

n
u

ed
)

Ta
g

At
tr

ib
ut

es
Va

l-
Ex

pr
De

sc
rip

tio
n

APPENDIX

391

 HTML File Upload
The <h:inputFile> tag can be used to let the user upload a file from the browser to the

server. See Table A-16 for more details.

Table A-16. HTML File Upload

Tag Translates to Description

<h:inputFile> <input> Creates an <input type = "file"> element that gets

used to send complete files from the client (browser) to

the server. The value attribute corresponds to a setter

with parameter type javax.servlet.http.Part in a

connected class.

The possible attributes of the file-upload element are shown in Table A-17.

Elements in square brackets denote attributes, as shown in Table A-1. If the

“Val-Expr” contains a type, you can use value expressions for this attribute that

evaluate to the indicated type.

AppenDIx

392

Table A-17. HTML File-Upload Attributes

Tag Attributes Val-Expr Description

<h:input

File>

[H,RO,D,L,C,

K,M,F,T,B]

Attribute classes from Table A-1

value part The file data. The fully qualified class reads javax.

servlet.http.Part. See below for how to read the

file data.

accesskey String A key that, once pressed, leads to the button’s getting

the focus.

alt String Alternate textual representation of the button.

autocomplete String If set to “off,” the autocomplete function of the browser

will be disabled.

disabled Boolean Indicates whether the element must be disabled.

label String A user-presentable name for this element. Does not

directly influence the rendered output, but goes to a

property of the component class, so you can use it for

development purposes, or you can use it indirectly.

maxlength int The maximum number of characters allowed for this field.

size int The number of characters used to calculate the visual

width of the field.

onchange String JavaScript code to be executed when this element

loses focus and is changed.

onselect String JavaScript code to be executed when text inside this

element is selected by the user.

 HTML Grouping
In case you need a component that just draws a bracket around its children, you can use

the <h:panelGroup> tag. This comes in handy if you use a component that allows for just

one child, but you need more-complex contents. A <f:facet> is such a case (will come

in the appendix). Another use case is a grouping you need for styling purposes. See Table

A-18 for more details.

APPENDIX

393

Table A-18. HTML Grouping

Tag Translates to Description

<h:panelGroup> or <div> Gathers its children in its own element serving as a

container. Depending on which “layout” gets chosen

and whether “style” or “styleClass” is specified,

renders a <div> or a HTML element.

Table A-19. HTML Grouping Attributes

Tag Attributes Val-Expr Description

<h:panelGroup> id - A String, not a value expression,

denoting the ID of the element.

rendered Boolean Whether or not the group gets rendered.

Defaults to true.

layout String Which layout to choose. If it evaluates

to block, render a <div>. Otherwise

renders a .

style String passes through as the HTML style

attribute.

styleClass String A space-separated list of CSS style

classes; passes through as the HTML

class attribute.

binding UIComponent A binding, see shortcut [B] in Table A-17

The possible attributes of the grouping element are shown in Table A-19. If the

“Val-Expr” contains a type, you can use value expressions for this attribute that evaluate

to the indicated type.

 HTML Tables
Especially for enterprise web applications, the rendering of data tables given a list of

items is an important task. In addition, tables sometimes get used for the laying out of a

fixed number of elements. Table A-20 lists the corresponding tags.

AppenDIx

394

Table A-20. HTML Tables Tags

Tag Translates to Description

<h:dataTable> <table> Creates a <table> element. A standard usage pattern

is: specify the list or array as a value expression inside

the value attribute: <h:dataTable value =

"#{injectedClass.fieldName}" ... >. As another

attribute, tell the component which formal variable to use for

each row: <h:dataTable ... var = "row" ... >. As

children, specify one <h:column> per table column. For the

contents of each <h:column>, see below.

<h:column> - A column specification inside <h:dataTable>. Inside each

<column>, you write an output statement for an element of

a row, as follows:

 <h:column>

 #{row.something}

 </h:column>

To specify a column header, add a <f:facet>, as follows:

 <h:column>

 <f:facet name="header">

 Header Title

 </f:facet>

 #{row.something}

 </h:column>

<h:panelGrid> <table> An alternative way of specifying a table. Contrary to the

<dataTable> tag, no <h:column> elements get used.

Instead, you tell the tag how many columns you want to

have, and as children you just give all table elements one

after another. This element thus can serve as both a data

table and a mere layout component.

The possible attributes of the table tags are shown in Table A-21. Elements in square

brackets denote attributes, as shown in Table A-1. If the “Val-Expr” contains a type, you

can use value expressions for this attribute that evaluate to the indicated type.

APPENDIX

395

Ta
bl

e
A

-2
1.

 H
T

M
L

Ta
bl

e
Ta

gs
 A

tt
ri

bu
te

s

Ta
g

At
tr

ib
ut

es
Va

l-
Ex

pr
De

sc
rip

tio
n

<h
:d
at
aT
ab

le
>

[H
,D
,L
,C
,K
,M
,B
]

At
tri

bu
te

 c
la

ss
es

 fr
om

 T
ab

le
 A

-1

va
lu
e

co
ll.

 o
r a

rr
ay

Th
e

ta
bl

e
da

ta
.

va
r

-
na

m
e

of
 th

e
fo

rm
al

 v
ar

ia
bl

e
to

 u
se

 fo
r e

ac
h

ro
w

.

ce
ll
pa
dd
in
g

St
rin

g
A

CS
S

st
yl

e
pa

dd
in

g
be

tw
ee

n
ce

lls
. Y

ou
 w

an
t t

o
us

e
th

is
! e

xa
m

pl
e:

 0
.5
em

ce
ll
sp
ac
in
g

St
rin

g
A

CS
S

st
yl

e
sp

ac
in

g
be

tw
ee

n
th

e
le

ft-
m

os
t,

bo
tto

m
-m

os
t,

to
p-

m
os

t,
an

d

rig
ht

-m
os

t c
el

ls
 a

nd
 th

e
ta

bl
e

bo
rd

er
. e

xa
m

pl
e:

 0
.5
em

co
lu
mn
Cl
as
se
s

St
rin

g
A

co
m

m
a-

de
lim

ite
d

lis
t o

f C
SS

 c
la

ss
es

 a
pp

lie
d

to
 th

e
co

lu
m

ns
. Y

ou
 w

an
t

to
 u

se
 th

is
 if

 c
ol

um
ns

 s
ho

ul
d

lo
ok

 d
iff

er
en

t f
ro

m
 e

ac
h

ot
he

r.

ro
wC
la
ss
es

St
rin

g
A

co
m

m
a-

de
lim

ite
d

lis
t o

f C
SS

 c
la

ss
es

 a
pp

lie
d

to
 th

e
ro

w
s

in
 ro

un
d-

ro
bi

n

fa
sh

io
n.

 Y
ou

 w
an

t t
o

us
e

th
is

 if
 ro

w
s

sh
ou

ld
 lo

ok
 d

iff
er

en
t f

ro
m

 e
ac

h
ot

he
r.

ea
ch

 ro
w

 m
ay

 a
ls

o
ha

ve
 a

 s
pa

ce
-s

ep
ar

at
ed

 li
st

 o
f C

SS
 c

la
ss

es
 a

ss
ig

ne
d

to
 it

. e
xa

m
pl

es
: “

ev
en

,o
dd

”
or

 “
ev

en
 o

ne
, o

dd
 tw

o,
 e

ve
n

th
re

e,
 o

dd
 fo

ur
”

bo
rd
er

in
t

W
id

th
 in

 p
ix

el
s

fo
r a

n
ou

te
r t

ab
le

 b
or

de
r.

De
fa

ul
t i

s
0.

ru
le
s

St
rin

g
Sp

ec
ifi

es
 w

hi
ch

 ru
le

s
w

ill
 a

pp
ea

r b
et

w
ee

n
ce

lls
. p

os
si

bl
e

va
lu

es
: n
on
e

(n
o

ru
le

s;
 th

is
 is

 th
e

de
fa

ul
t),

 g
ro
up
s

(b
et

w
ee

n
ro

w
 g

ro
up

s)
, r
ow
s

(b
et

w
ee

n

ro
w

s)
, c
ol
s

(b
et

w
ee

n
co

lu
m

ns
),

an
d
al
l

(a
ll)

.

fi
rs
t

in
t

If
sp

ec
ifi

ed
, t

he
 in

de
x

of
 fi

rs
t e

le
m

en
t u

se
d

fro
m

 th
e

lis
t o

r a
rra

y.
De

fa
ul

t i
s

0.

(c
on

ti
n

u
ed

)

AppenDIx

396

ro
ws

in
t

Th
e

nu
m

be
r o

f r
ow

s
to

 u
se

 fr
om

 th
e

lis
t o

r a
rr

ay
. S

ta
rti

ng
 fr

om
 th

e
in

de
x

gi
ve

n
by

 th
e
fi
rs
t

at
tri

bu
te

, i
f t

hi
s

on
e

is
 s

pe
ci

fie
d.

 A
 v

al
ue

 o
f 0

 m
ea

ns
 to

sh
ow

 a
ll

da
ta

 s
ta

rti
ng

 a
t f
ir
st

.

bg
co
lo
r

St
rin

g
Th

e
ba

ck
gr

ou
nd

 c
ol

or
 to

 u
se

 fo
r t

he
 ta

bl
e.

 U
se

 a
n

HT
M

L
co

lo
r n

am
e

or

#R
RG
GB
B

co
lo

r s
pe

ci
fic

at
io

n.

bo
dy
ro
ws

St
rin

g
W

hi
le

 n
ot

 u
se

d
ve

ry
 o

fte
n,

 ta
bl

es
 c

an
 h

av
e

m
or

e
th

an
 o

ne
 <
tb
od
y>

el
em

en
t.

If
yo

u
us

e
th

is
 a

ttr
ib

ut
e,

 w
rit

e
a

co
m

m
a-

se
pa

ra
te

d
lis

t o
f r

ow

in
di

ce
s

fo
r w

hi
ch

 n
ew

 <
tb
od
y>

 e
le

m
en

ts
 s

ho
ul

d
be

 s
ta

rte
d.

ca
pt
io
nC
la
ss

St
rin

g
Sp

ac
e-

se
pa

ra
te

d
CS

S
st

yl
e

cl
as

se
s

ap
pl

ie
d

to
 th

e
ta

bl
e

ca
pt

io
n.

ca
pt
io
nS
ty
le

St
rin

g
CS

S
st

yl
e

ap
pl

ie
d

to
 th

e
ta

bl
e

ca
pt

io
n.

fo
ot
er
Cl
as
s

St
rin

g
Sp

ac
e-

se
pa

ra
te

d
CS

S
st

yl
e

cl
as

se
s

ap
pl

ie
d

to
 th

e
ta

bl
e

fo
ot

er
.

he
ad
er
Cl
as
s

St
rin

g
Sp

ac
e-

se
pa

ra
te

d
CS

S
st

yl
e

cl
as

se
s

ap
pl

ie
d

to
 th

e
ta

bl
e

he
ad

er
.

fr
am
e

St
rin

g
Sp

ec
ifi

es
 w

hi
ch

 s
id

es
 o

f t
he

 ta
bl

e
bo

rd
er

 s
ho

ul
d

be
 v

is
ib

le
. p

os
si

bl
e

va
lu

es
: n
on
e,

 a
bo
ve

 (t
op

 s
id

e
on

ly
),
be
lo
w

(b
ot

to
m

 s
id

e
on

ly
),
lh
s

(le
ft

si
de

 o
nl

y)
, r
hs

 (r
ig

ht
 s

id
e

on
ly

),
hs
id
es

 (t
op

 a
nd

 b
ot

to
m

),
vs
id
e

(le
ft

an
d

rig
ht

),
bo
x

(a
ll

si
de

s)
, b
or
de
r

(a
ll

si
de

s)

su
mm
ar
y

St
rin

g
A

su
m

m
ar

y
fo

r a
ge

nt
 re

nd
er

in
g

to
 n

on
-v

is
ua

l m
ed

ia
 (s

pe
ec

h,
 B

ra
ill

e)

wi
dt
h

St
rin

g
Ta

bl
e

w
id

th
. F

or
 e

xa
m

pl
e:

 “
80

%
”

or
 “

27
em

.”

Ta
g

At
tr

ib
ut

es
Va

l-
Ex

pr
De

sc
rip

tio
n

Ta
bl

e
A

-2
1.

 (
co

n
ti

n
u

ed
)

APPENDIX

397

<h
:c
ol
um
n>

[0
,B
]

At
tri

bu
te

 c
la

ss
es

 fr
om

 T
ab

le
 A

-1

fo
ot
er
Cl
as
s

St
rin

g
Sp

ac
e-

se
pa

ra
te

d
lis

t o
f C

SS
 s

ty
le

 c
la

ss
es

 a
pp

lie
d

to
 a

ny
 ta

bl
e

fo
ot

er
.

he
ad
er
Cl
as
s

St
rin

g
Sp

ac
e-

se
pa

ra
te

d
lis

t o
f C

SS
 s

ty
le

 c
la

ss
es

 a
pp

lie
d

to
 a

ny
 ta

bl
e

he
ad

er
.

ro
wH
ea
de
r

Bo
ol

ea
n

If
tr
ue

, t
re

at
 th

e
co

lu
m

n
as

 a
 h

ea
de

r-
on

ly
 c

ol
um

n
to

 b
e

re
nd

er
ed

 w
ith

<t
h>

 in
st

ea
d

of
 <
td
>.

 D
ef

au
lt

is
 f
al
se

.

<h
:p
an
el
Gr
id
>

[H
,D
,L
,C
,K
,M
,B
]

At
tri

bu
te

 c
la

ss
es

 fr
om

 T
ab

le
 A

-1

co
lu
mn
s

in
t

Th
e

nu
m

be
r o

f c
ol

um
ns

.

bg
co
lo
r

St
rin

g
Th

e
ba

ck
gr

ou
nd

 c
ol

or
 to

 u
se

 fo
r t

he
 ta

bl
e.

 U
se

 a
n

HT
M

L
co

lo
r n

am
e

or

#R
RG
GB
B

co
lo

r s
pe

ci
fic

at
io

n.

bo
dy
ro
ws

St
rin

g
W

hi
le

 n
ot

 u
se

d
ve

ry
 o

fte
n,

 ta
bl

es
 c

an
 h

av
e

m
or

e
th

an
 o

ne
 <
tb
od
y>

el
em

en
t.

If
yo

u
us

e
th

is
 a

ttr
ib

ut
e,

 w
rit

e
a

co
m

m
a-

se
pa

ra
te

d
lis

t o
f r

ow

in
di

ce
s

fo
r w

hi
ch

 n
ew

 <
tb
od
y>

 e
le

m
en

ts
 s

ho
ul

d
be

 s
ta

rte
d.

bo
rd
er

in
t

W
id

th
 in

 p
ix

el
s

fo
r a

n
ou

te
r t

ab
le

 b
or

de
r.

De
fa

ul
t i

s
0.

ca
pt
io
nC
la
ss

St
rin

g
Sp

ac
e-

se
pa

ra
te

d
CS

S
st

yl
e

cl
as

se
s

ap
pl

ie
d

to
 th

e
ta

bl
e

ca
pt

io
n.

ca
pt
io
nS
ty
le

St
rin

g
CS

S
st

yl
e

ap
pl

ie
d

to
 th

e
ta

bl
e

ca
pt

io
n.

fo
ot
er
Cl
as
s

St
rin

g
Sp

ac
e-

se
pa

ra
te

d
CS

S
st

yl
e

cl
as

se
s

ap
pl

ie
d

to
 th

e
ta

bl
e

fo
ot

er
.

he
ad
er
Cl
as
s

St
rin

g
Sp

ac
e-

se
pa

ra
te

d
CS

S
st

yl
e

cl
as

se
s

ap
pl

ie
d

to
 th

e
ta

bl
e

he
ad

er
.

ce
ll
pa
dd
in
g

St
rin

g
A

CS
S

st
yl

e
pa

dd
in

g
be

tw
ee

n
ce

lls
. Y

ou
 w

an
t t

o
us

e
th

is
! e

xa
m

pl
e:

 0
.5
em

ce
ll
sp
ac
in
g

St
rin

g
A

CS
S

st
yl

e
sp

ac
in

g
be

tw
ee

n
th

e
le

ft-
m

os
t,

bo
tto

m
-m

os
t,

to
p-

m
os

t,
an

d

rig
ht

-m
os

t c
el

ls
 a

nd
 th

e
ta

bl
e

bo
rd

er
. e

xa
m

pl
e:

 0
.5
em

(c
on

ti
n

u
ed

)

AppenDIx

398

co
lu
mn
Cl
as
se
s

St
rin

g
A

co
m

m
a-

de
lim

ite
d

lis
t o

f C
SS

 c
la

ss
es

 a
pp

lie
d

to
 th

e
co

lu
m

ns
. Y

ou
 w

an
t

to
 u

se
 th

is
 if

 c
ol

um
ns

 s
ho

ul
d

lo
ok

 d
iff

er
en

t f
ro

m
 e

ac
h

ot
he

r.

ro
wC
la
ss
es

St
rin

g
A

co
m

m
a-

de
lim

ite
d

lis
t o

f C
SS

 c
la

ss
es

 a
pp

lie
d

to
 th

e
ro

w
s

in
 ro

un
d-

ro
bi

n

fa
sh

io
n.

 Y
ou

 w
an

t t
o

us
e

th
is

 if
 ro

w
s

sh
ou

ld
 lo

ok
 d

iff
er

en
t f

ro
m

 e
ac

h
ot

he
r.

ea
ch

 ro
w

 m
ay

 a
ls

o
ha

ve
 a

 s
pa

ce
-s

ep
ar

at
ed

 li
st

 o
f C

SS
 c

la
ss

es
 a

ss
ig

ne
d

to
 it

. e
xa

m
pl

es
: “

ev
en

,o
dd

”
or

 “
ev

en
 o

ne
, o

dd
 tw

o,
 e

ve
n

th
re

e,
 o

dd
 fo

ur
.”

fr
am
e

St
rin

g
Sp

ec
ifi

es
 w

hi
ch

 s
id

es
 o

f t
he

 ta
bl

e
bo

rd
er

 s
ho

ul
d

be
 v

is
ib

le
. p

os
si

bl
e

va
lu

es
: n
on
e,

 a
bo
ve

 (t
op

 s
id

e
on

ly
),
be
lo
w

(b
ot

to
m

 s
id

e
on

ly
),
lh
s

(le
ft

si
de

 o
nl

y)
, r
hs

 (r
ig

ht
 s

id
e

on
ly

),
hs
id
es

 (t
op

 a
nd

 b
ot

to
m

),
vs
id
e

(le
ft

an
d

rig
ht

),
bo
x

(a
ll

si
de

s)
, b
or
de
r

(a
ll

si
de

s)

ru
le
s

St
rin

g
Sp

ec
ifi

es
 w

hi
ch

 ru
le

s
w

ill
 a

pp
ea

r b
et

w
ee

n
ce

lls
. p

os
si

bl
e

va
lu

es
: n
on
e

(n
o

ru
le

s,
 th

is
 is

 th
e

de
fa

ul
t),

 g
ro
up
s

(b
et

w
ee

n
ro

w
 g

ro
up

s)
, r
ow
s

(b
et

w
ee

n

ro
w

s)
, c
ol
s

(b
et

w
ee

n
co

lu
m

ns
),

an
d
al
l

(a
ll)

.

su
mm
ar
y

St
rin

g
A

su
m

m
ar

y
fo

r a
ge

nt
 re

nd
er

in
g

to
 n

on
-v

is
ua

l m
ed

ia
 (s

pe
ec

h,
 B

ra
ill

e)

wi
dt
h

St
rin

g
Ta

bl
e

w
id

th
. F

or
 e

xa
m

pl
e:

 “
80

%
”

or
 “

27
em

.”

Ta
g

At
tr

ib
ut

es
Va

l-
Ex

pr
De

sc
rip

tio
n

Ta
bl

e
A

-2
1.

 (
co

n
ti

n
u

ed
)

APPENDIX

399

 Solutions to the Exercises
The following are the solutions to the exercises given in the chapters.

 Chapter 1
 – Exercise 1:

(1.) is not true. Jakarta EE 8, while running under the umbrella of

the Eclipse Foundation, gets maintained by a community process.

(2.) is not true. The Java standard edition is an integral part of

Jakarta EE. (3.) is not true, as the predecessor of Jakarta EE 8 was

JEE 7 (4.) is not true; layers are stacked and layers other than the

bottom layer depend on the layer underneath them. (5.) is true.

 – Exercise 2:

Both are not true. Jakarta EE 8 applications could follow

microservices paradigms, but they don’t need to. Jakarta EE 8

might access cloud services, but using cloud technologies is

utterly optional.

 – Exercise 3:

(1.) No. Java as a runtime platform is obligatory. (2.) True. (3.)

True, but the language must be able to generate code that runs on

the Java platform (Kotlin and Scala are able to do so).

 Chapter 4
 – Exercise 1:

The tag reads:

<h:outputText

 value="The list contains #{b.list.size()}

 #{b.list.size() == 1 ?

 'item' : 'items'}"/>

AppenDIx

400

(shown split here; in your template file, don’t use line breaks

inside the value)

 – Exercise 2:

In file src/main/webapp/WEB-INF/faces-config.xml add a new

child element to <locale-config> and let it read as follows:

 <locale-config>

 <default-locale>en</default-locale>

 <supported-locale>es</supported-locale>

 </locale-config>

Add a file src/main/resources/hacc/web/WebMessages_es.

properties and let it read as follows:

 label_enterYourName = Inserte su nombre:

 label_enterTheDate = Inserte el día (yyyy-MM-dd):

 submit = Enviar

 label_noExpenses = No expensas

Note For development purposes you can check the new language in Firefox if
you change the key intl.accept_languages in about:config (enter as URL).
prepend “es” to the list.

 – Exercise 3:

Inside <h:form> in file main.xhtml add the following:

 <p/>

 <h:selectManyListbox

 value="#{accounting.expenseTypes}">

 <f:selectItem itemValue="Food"

 itemLabel="Food" />

 <f:selectItem itemValue="Clothing"

 itemLabel="Clothing" />

APPENDIX

401

 <f:selectItem itemValue="Car"

 itemLabel="Car" />

 <f:selectItem itemValue="Fun"

 itemLabel="Fun" />

 <f:selectItem itemValue="Other"

 itemLabel="Other" />

 </h:selectManyListbox>

Inside class Accounting add the following:

 ...

 public class Accounting {

 ...

 private List<String> expenseTypes =

 new ArrayList<>();

 public List<String> getExpenseTypes() {

 return expenseTypes;

 }

 public void setExpenseTypes(

 List<String> expenseTypes) {

 this.expenseTypes = expenseTypes;

 }

 ...

 }

 – Exercise 4:

The adapted part inside <h:form> reads as follows:

 <h:selectManyListbox

 value="#{accounting.expenseTypes}">

 <f:selectItems

 value="#{accounting.expenseTypeOptions}"/>

 </h:selectManyListbox>

AppenDIx

402

In class Accounting add the following:

 ...

 import javax.faces.model.SelectItem;

 ...

 public class Accounting {

 ...

 private SelectItem[] expenseTypeOptions;

 public Accounting() {

 ...

 setExpenseTypeOptions(new SelectItem[] {

 new SelectItem("Food", "Food"),

 new SelectItem("Clothing", "Clothing"),

 new SelectItem("Car", "Car"),

 new SelectItem("Fun", "Fun"),

 new SelectItem("Other", "Other")

 });

 }

 ...

 public SelectItem[] getExpenseTypeOptions() {

 return expenseTypeOptions;

 }

 public void setExpenseTypeOptions(

 SelectItem[] expenseTypeOptions) {

 this.expenseTypeOptions = expenseTypeOptions;

 }

 ...

 }

 – Exercise 5:

(A) is true.

APPENDIX

403

 – Exercise 6:

In the Accounting class, add the following:

 private double value;

 public double getValue() {

 return value;

 }

 public void setValue(double value) {

 this.value = value;

 }

In file WebMessages.properties add the following:

 label_value = Value (#.##):

In file main.xhtml add the following inside <h:form>:

 <h:outputText value="#{bundle.label_value}"

 style="float:left" />

 <h:inputText value="#{accounting.value}">

 <f:convertNumber type="number"

 minFractionDigits="2"

 maxFractionDigits="2"/>

 <f:validateDoubleRange

 minimum="0.0" />

 </h:inputText>

 <div class="clearfloat" />

Note, the style attribute and the clearfloat are for styling

purposes only.

 – Exercise 7:

On page main.xhtml, write the following as the attribute action of

the “Submit Command” button:

 <h:commandButton value="#{bundle.submit}"

 action="response" />

AppenDIx

404

This is an auto-navigation case. We can do that because the

submit() method of class Accounting does not do interesting

things. Later, we want to add access to a database, so, anticipating

further elaboration, you could just as well leave the command

button unaltered, with action = "#{accounting.register}",

and let the register() method return response instead of null.

Create a file src/main/webapp/response.xhtml and let it read

as follows:

<!DOCTYPE html>

<html xmlns:h="http://xmlns.jcp.org/jsf/html"

 xmlns:f="http://xmlns.jcp.org/jsf/core"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

<h:head>

 <title>Household Accounting</title>

 <h:outputStylesheet library = "css"

 name = "style.css" />

</h:head>

<h:body>

 <h1>

 <h:outputText

 value="#{bundle.response_title}" />

 </h1>

 <h:outputText

 value="#{bundle.response_label_name}

 #{accounting.name}" />

 <div class="clearfloat" />

 <h:outputText

 value="#{bundle.response_label_date}

 #{accounting.date}" />

 <div class="clearfloat" />

 <h:outputText

 value="#{bundle.response_label_types}

 #{accounting.expenseTypes}" />

 <div class="clearfloat" />

APPENDIX

405

 <h:outputText

 value="#{bundle.response_label_value}

 #{accounting.value}" />

 <div class="clearfloat" />

 <h:button

 value="#{bundle.response_btn_back}"

 outcome="main" />

</h:body>

</html>

The formatting/styling is up to you; what’s important is the

access to the properties of the injected Accounting bean via

#{accounting.someThing}. This is possible because the bean is

session scoped and survives the advancing to the response page.

The back button can go without an enclosing <h:form> because

the button’s outcome attribute takes care of properly navigating to

other pages.

Because we are using language resource bundle identifiers, add

the following to src/main/resourceshaccwebWebMessages.

properties:

response_title = You entered

response_label_name = Your name:

response_label_date = The date:

response_label_types = Types:

response_label_value = Value:

response_btn_back = Back

 – Exercise 8:

The listener class reads, for example:

 package book.jakarta8.hacc.jsfgui.listeners;

 import javax.faces.event.PhaseEvent;

 import javax.faces.event.PhaseId;

 import javax.faces.event.PhaseListener;

AppenDIx

406

 public class MyPhaseListener

 implements PhaseListener{

 @Override

 public void

 afterPhase(PhaseEvent event) {

 System.err.println("AFTER PHASE - " +

 event.getPhaseId().getName());

 }

 @Override

 public void

 beforePhase(PhaseEvent event) {

 System.err.println("BEFORE PHASE - " +

 event.getPhaseId().getName());

 }

 @Override

 public PhaseId getPhaseId() {

 return PhaseId.ANY_PHASE;

 }

}

Class name and package are up to you—this is just an example.

On the template page, add the following as a first child to the

<h:body> element:

 <f:phaseListener

 type="book.jakarta8.hacc.jsfgui.

 listeners.MyPhaseListener" />

(remove the line break in the attribute value).

APPENDIX

407

 Chapter 5
 – Exercise 1:

The JSON representation reads as follows:

 {

 "title":"Somewhere over the Rainbow",

 "composers": [

 {

 "firstName":"Harold",

 "lastName":"Arlen"

 },

 {

 "firstName":"E. Y.",

 "lastName":"Harburg"

 }

],

 "performer":"Judy Garland",

 "makeYear":1939

 }

 – Exercise 2:

Say for editing you have downloaded an edit.png icon, and for

deleting a delete.png icon. Create a folder, “src/main/webapp/

static/images,” and put edit.png and delete.png there. Inside the

tableRow() JavaScript function, replace the <button> tags with

the following:

 <button onclick="edit('+id+')">

 </button>

and

 <button onclick="del('+id+')">

 </button>

AppenDIx

408

For sizing or other styling purposes, you can add a class to the

buttons, as in <button class = "delBtn"> ... or <button

class = "edtBtn">, and then add in your styles.css file as

follows or similar:

 button.delBtn img, button.edtButton img {

 height: 32px,

 width: 32px

 }

 Chapter 6
 – Exercise 1:

(1.) No, although DAOs help to improve code quality. (2.) No,

the entity manager will take care of that. (3.) No, this is the

entity classes’ responsibility. (4.) Yes. (5.) No, EJBs help to

improve DAO handling, but you don’t need to use them if it

does not fit your needs.

 – Exercise 2:

(1.) True. (2.) No, you can provide the table name inside the

@Table annotation: @Table(name = "TAB_NAME"). (3.) No, you

can provide the column name inside the @Column annotation:

@Column(name = "COL_NAME"). (4.) True.

 – Exercise 3:

The updated script.js file reads as follows:

function showEntry(entity) {

 $('#lastName').val(entity.lastName);

 $('#firstName').val(entity.firstName);

 $('#birthday').val(entity.birthday);

 $('#status').val(entity.status);

 $('#idView').html(

 (entity.id && entity.id !="")?

 'ID: ' + entity.id : ");

}

APPENDIX

409

function clearEntry() {

 $('#lastName').val("");

 $('#firstName').val("");

 $('#birthday').val("");

 $('#status').val("");

 $('#idView').html("");

}

function makeForm() {

 ...

 $('#memberEntry').html(

 '<table><tbody> \

 ' + formLine("Last name", "lastName") + '\

 ' + formLine("First name", "firstName") + '\

 ' + formLine("Birthday", "birthday") + '\

 ' + formLine("Status", "status") + '\

 </tbody></table>'

)

 .append(

 ...

}

function makeList(data) {

 clearList();

 function tableRow(lastName, firstName,

 birthday, status, id) {

 return '<tr id="tab-'+id+'"> \

 <td>'+lastName+'</td> \

 <td>'+firstName+'</td> \

 <td>'+birthday+'</td> \

 <td>'+status+'</td> \

 <td><button onclick="edit('+id+')"> \

 EDIT</button></td> \

AppenDIx

410

 <td><button onclick="del('+id+')"> \

 DEL</button></td> \

 </tr>';

 }

 var tab = $('<table class="listTable"></table>');

 tab.html('<tbody>');

 $.each(data, function(ind,val) {

 tab.append(tableRow(

 val.lastName, val.firstName,

 val.birthday, val.status, val.id));

 });

 tab.append('</tbody>');

 $('#memberList').append(tab);

}

function submit() {

 var id = $('#idView').html();

 if(id.length > 4) id = id.substring(4);

 var lastName = $('#lastName').val();

 var firstName = $('#firstName').val();

 var birthday = $('#birthday').val();

 var status = $('#status').val();

 var url = (id == "") ?

 "../webapi/member" :

 "../webapi/member/" + id;

 var meth = (id == "") ?

 "POST" : "PUT";

 $.ajax({

 method: meth,

 url: url,

 data: { lastName:lastName,

 firstName:firstName,

 birthday:birthday,

APPENDIX

411

 status:status }

 })

 .done(function(msg) {

 clearErr();

 loadList();

 })

 .fail(function(jqXHR, textStatus, errorThrown) {

 showErr("AJAX: " + errorThrown);

 });

}

$(function() {

 makeForm();

 loadList();

})

(unchanged functions not shown). The Calypso REST interface

class gets updated to the following:

@Path("/member")

public class Calypso {

 @EJB private MemberDAO members;

 @GET

 @Path("/")

 @Produces("application/json")

 public Response list() {

 List<Member> memberList = members.allMembers();

 StringBuilder outStr = new StringBuilder();

 outStr.append("[");

 outStr.append(

 memberList.stream().sorted().

 map((Member itm) ->

 "{\"firstName\":\"" +

 itm.getFirstName() + "\"," +

 "\"lastName\":\"" +

 itm.getLastName() + "\"," +

AppenDIx

412

 "\"birthday\":\"" +

 itm.getBirthday() + "\"," +

 "\"status\":\"" +

 itm.getStatus().stream().

 map(Status::getName).sorted().

 collect(Collectors.joining(", ")) +

 "\", " +

 "\"id\":" + itm.getId() + "}"

).collect(Collectors.joining(","))

);

 outStr.append("]");

 return Response.ok().entity(

 outStr.toString()

).build();

 }

 @GET

 @Path("/{id}")

 @Produces("application/json")

 public Response entity(@PathParam("id") int id) {

 Member m = members.getMember(id);

 return Response.ok().entity(

 "{\"lastName\":\"" +

 m.getLastName() + "\", " +

 "\"firstName\":\"" +

 m.getFirstName() + "\", " +

 "\"birthday\":\"" +

 m.getBirthday() + "\", " +

 "\"status\":\"" +

 m.getStatus().stream().

 map(Status::getName).sorted().

 collect(Collectors.joining(", "))

 + "\", " +

 "\"id\":" + m.getId() + "}"

).build();

 }

APPENDIX

413

 @POST

 @Path("/")

 @Produces("application/json")

 public Response post(

 @FormParam("lastName") String lastName,

 @FormParam("firstName") String firstName,

 @FormParam("birthday") String birthday,

 @FormParam("status") String statusStr) {

 Set<String> statusSet =

 Stream.of(statusStr.split(",")).

 collect(Collectors.toSet());

 int newId = members.newMember(lastName,

 firstName, birthday, statusSet);

 return Response.ok().

 entity("{\"id\":"+ newId +"}").build();

 }

 @PUT

 @Path("/{id}")

 @Produces("application/json")

 public Response put(

 @FormParam("lastName") String lastName,

 @FormParam("firstName") String firstName,

 @FormParam("birthday") String birthday,

 @FormParam("status") String statusStr,

 @PathParam("id") int id) {

 Set<String> statusSet =

 Stream.of(statusStr.split(",")).

 map(String::trim).collect(Collectors.toSet());

 members.updateMember(lastName, firstName,

 birthday, statusSet, id);

 return Response.ok().entity("{}").build();

 }

AppenDIx

414

 @DELETE

 @Path("/{id}")

 @Produces("application/json")

 public Response del(@PathParam("id") int id) {

 members.deleteMember(id);

 return Response.ok().entity("{}").build();

 }

}

Finally, the MemberDAO needs to be rewritten to the following:

@Singleton

public class MemberDAO {

 @PersistenceContext

 private EntityManager em;

 public List<Member> allMembers() {

 TypedQuery<Member> q =

 em.createQuery("SELECT m FROM Member m",

 Member.class);

 List<Member> l = q.getResultList();

 return l;

 }

 public Member getMember(int id) {

 return em.find(Member.class, id);

 }

 public int newMember(String lastName,

 String firstName, String birthday,

 Set<String> status) {

 Member m = new Member();

 m.setFirstName(firstName);

 m.setLastName(lastName);

 m.setBirthday(birthday);

 m.setStatus(status.stream().map(String::trim).

 map(Status::new).

 collect(Collectors.toSet()));

APPENDIX

415

 em.persist(m);

 em.flush();

 return m.getId();

 }

 public void updateMember(String lastName,

 String firstName, String birthday,

 Set<String> status, int id) {

 Member m = em.find(Member.class, id);

 m.setLastName(lastName);

 m.setFirstName(firstName);

 m.setBirthday(birthday);

 // Add new status members that are not

 // already in the STATUS table

 Set<Status> currentStatus = m.getStatus();

 status.stream().forEach(st -> {

 if(! currentStatus.stream().

 anyMatch(

 st2 -> st2.getName().equals(st))) {

 m.getStatus().add(new Status(st));

 }

 });

 // Remove status members that are not part

 // of the parameter

 new ArrayList<Status>(currentStatus).

 stream().forEach(st -> {

 if(!status.contains(st.getName())) {

 m.getStatus().remove(st);

 }

 });

 em.persist(m);

 }

AppenDIx

416

 public void deleteMember(int id) {

 Member m = em.find(Member.class, id);

 em.remove(m);

 }

}

 Chapter 7
 – Exercise 1:

(1.) No, an EJB can have only a local interface, only a remote

interface, or both. (2.) No, a no-interface EJB means it can only be

used for local access. (3.) No, a remote EJB can be accessed from

the same application, a different application on the same Jakarta

EE server, or applications from other servers on the same machine

or anywhere in the network. (4.) No, a stateful EJB can maintain

a state. (5.) No, at least a singleton EJB never gets instantiated

more often than just once. (6.) No, for local EJBs you can also

use injection via the @EJB annotation. (7.) No, only the remote

interfaces must be exported if EJBs get used remotely.

 – Exercise 2:

The pom.xml file of the library (JSE, plain Java) project reads, for

example, as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>book.jakarta8</groupId>

 <artifactId>MyDateTime</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>jar</packaging>

APPENDIX

417

 <name>MyDateTime</name>

 <url>http://maven.apache.org</url>

 <properties>

 <project.build.sourceEncoding>UTF-8

 </project.build.sourceEncoding>

 </properties>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin

 </artifactId>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

The class reads as follows:

package book.jakarta8.mydatetime;

import java.time.ZonedDateTime;

import java.time.format.DateTimeFormatter;

AppenDIx

418

public class MyDateTime {

 public String date(String format) {

 ZonedDateTime zdt = ZonedDateTime.now();

 String outStr = "";

 try {

 outStr = (format == null || "".equals(format) ?

 zdt.toString() :

 zdt.format(DateTimeFormatter.

 ofPattern(format)));

 } catch(Exception e) {

 e.printStackTrace(System.err);

 }

 return outStr;

 }

}

The pom.xml file of the EJB project reads as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>book.jakarta8</groupId>

 <artifactId>MyDateTimeEjb</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>ejb</packaging>

 <name>MyDateTimeEjb</name>

 <url>http://maven.apache.org</url>

APPENDIX

419

 <properties>

 <project.build.sourceEncoding>UTF-8

 </project.build.sourceEncoding>

 <failOnMissingWebXml>false

 </failOnMissingWebXml>

 </properties>

 <dependencies>

 <dependency>

 <groupId>book.jakarta8</groupId>

 <artifactId>MyDateTime</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-api</artifactId>

 <version>8.0</version>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin

 </artifactId>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

AppenDIx

420

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-ejb-plugin</artifactId>

 <version>3.0.1</version>

 <configuration>

 <generateClient>true</generateClient>

 <ejbVersion>3.2</ejbVersion>

 <clientExcludes>

 <clientExclude>

 book/jakarta8/mydatetimeejb/ejb/∗
 </clientExclude>

 </clientExcludes>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

The classes and interfaces read as follows:

package book.jakarta8.mydatetimeejb.ejb;

import javax.ejb.Local;

import javax.ejb.Remote;

import javax.ejb.Singleton;

import book.jakarta8.mydatetime.MyDateTime;

import book.jakarta8.mydatetimeejb.ejb.

 interfaces.MyDateTimeLocal;

import book.jakarta8.mydatetimeejb.ejb.

 interfaces.MyDateTimeRemote;

@Singleton

@Local(MyDateTimeLocal.class)

@Remote(MyDateTimeRemote.class)

public class MyDateTimeEjb

 implements MyDateTimeLocal,

 MyDateTimeRemote {

APPENDIX

421

 public String date(String format) {

 return new MyDateTime().date(format);

 }

}

-

package book.jakarta8.mydatetimeejb.ejb.

 interfaces;

public interface MyDateTimeLocal {

 String date(String format);

}

-

package book.jakarta8.mydatetimeejb.ejb.

 interfaces;

public interface MyDateTimeRemote {

 String date(String format);

}

For the EAR project, create it via New → Java EE → Enterprise

Application Project. Make sure that it includes the EJB project

as a dependency, and also copy the library JAR [Project-

MyDateTime]/target/MyDateTime-0.0.1-SNAPSHOT.jar to the

EAR project’s “Ear-Content/lib” folder (you have to create that

folder). You can now deploy the EAR project on the server.

The client class reads as follows:

import java.util.Properties;

import javax.naming.InitialContext;

import javax.naming.NameClassPair;

import javax.naming.NamingEnumeration;

import book.jakarta8.mydatetimeejb.ejb.

 interfaces.MyDateTimeRemote;

AppenDIx

422

public class Client {

 public static void main(String[] args) {

 String remoteServerHost = "localhost";

 String remoteServerPort = "3700";

 Properties props = new Properties();

 props.setProperty("java.naming.factory.initial",

 "com.sun.enterprise.naming." +

 "SerialInitContextFactory");

 props.setProperty("java.naming.factory.url.pkgs",

 "com.sun.enterprise.naming");

 props.setProperty("java.naming.factory.state",

 "com.sun.corba.ee.impl.presentation.rmi." +

 "JNDIStateFactoryImpl");

 props.setProperty("org.omg.CORBA.ORBInitialHost",

 remoteServerHost);

 props.setProperty("org.omg.CORBA.ORBInitialPort",

 remoteServerPort);

 try {

 InitialContext ic = new InitialContext(props);

 MyDateTimeRemote testEJB = (MyDateTimeRemote)

 ic.lookup("book.jakarta8.mydatetimeejb.ejb."+

 "interfaces.MyDateTimeRemote");

 System.out.println(testEJB.date(

 "yyyy-MM-dd HH:mm:ss"));

 } catch (Exception e) {

 e.printStackTrace(System.err);

 }

 }

}

Make sure you’ve added the MyDateTimeEjb-0.0.1-SNAPSHOT-

client.jar file from the EJB project and the gf-client.jar file

from Glassfish’s “lib” folder as library dependencies.

APPENDIX

423

 Chapter 8
 – Exercise 1:

JAX-WS web service methods are allowed to return string arrays.

The new method thus reads as follows:

 @WebMethod

 public String[] date2(String dateFormat) {

 ZonedDateTime zdt = ZonedDateTime.now();

 String outStr = "";

 String errMsg = "";

 try {

 outStr = ("".equals(dateFormat) ?

 zdt.toString() :

 zdt.format(DateTimeFormatter.

 ofPattern(dateFormat)));

 errMsg = "";

 } catch(Exception e) {

 errMsg = e.getMessage();

 }

 return new String[] { outStr, errMsg };

 }

 – Exercise 2:

Run the jaxws:wsimport maven goal again to rebuild the interface

artifacts, reflecting the new web method. In the servlet, replace

 out.println("<p>" +

 date("yyyy-MM-dd HH:mm:ss") +

 "</p>");

AppenDIx

424

with

 String[] wsRes = date2("yyyy-MM-dd HH:mm:ss");

 out.println("<p>" +

 wsRes[0] + "</p>");

 out.println("<p style=\"color:red\">" +

 wsRes[1] + "</p>");

Try date("rubbish") to see the error message.

 Chapter 9
 – Exercise 1:

Create a topic and a queue as described in the chapter. Create an

EJB-only Maven project with the following coordinates:

 <groupId>book.jakarta8</groupId>

 <artifactId>jmsexample</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>ejb</packaging>

The whole pom.xml reads as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>book.jakarta8</groupId>

 <artifactId>jmsexample</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>ejb</packaging>

 <name>jmsexample</name>

 <url>http://maven.apache.org</url>

APPENDIX

425

 <properties>

 <project.build.sourceEncoding>UTF-8

 </project.build.sourceEncoding>

 <failOnMissingWebXml>false

 </failOnMissingWebXml>

 </properties>

 <dependencies>

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-api</artifactId>

 <version>8.0</version>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin

 </artifactId>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-ejb-plugin</artifactId>

 <version>3.0.1</version>

AppenDIx

426

 <configuration>

 <generateClient>true</generateClient>

 <ejbVersion>3.2</ejbVersion>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

The project facets are EJB Module 3.2 and Java 1.8. The classes

read as follows:

package book.jakarta8.jmsexample;

import javax.annotation.PostConstruct;

import javax.annotation.Resource;

import javax.ejb.Singleton;

import javax.ejb.Startup;

import javax.inject.Inject;

import javax.jms.JMSContext;

import javax.jms.Queue;

@Singleton

@Startup

public class QueueSender {

 @Resource(lookup = "jms/TestQueue")

 private Queue queue;

 @Inject

 private JMSContext jmsContext;

 @PostConstruct

 public void go() {

 String msg = "My JMS Message";

 jmsContext.createProducer().send(queue, msg);

 }

}

–

package book.jakarta8.jmsexample;

APPENDIX

427

import javax.annotation.PostConstruct;

import javax.annotation.Resource;

import javax.ejb.SessionContext;

import javax.ejb.Singleton;

import javax.ejb.Startup;

import javax.ejb.Timeout;

import javax.ejb.Timer;

import javax.ejb.TimerConfig;

import javax.inject.Inject;

import javax.jms.JMSContext;

import javax.jms.Topic;

@Singleton

@Startup

public class TopicSender {

 @Resource(lookup = "jms/TestTopic")

 private Topic topic;

 @Inject

 private JMSContext jmsContext;

 @Resource

 private SessionContext context;

 @PostConstruct

 public void go() {

 context.getTimerService().

 createSingleActionTimer(5000,

 new TimerConfig());

 }

 @Timeout

 public void programmaticTimeout(Timer timer) {

 String msg = "My JMS Message";

 jmsContext.createProducer().send(topic, msg);

 }

}

–

AppenDIx

428

package book.jakarta8.jmsexample;

import javax.annotation.Resource;

import javax.ejb.ActivationConfigProperty;

import javax.ejb.MessageDriven;

import javax.ejb.MessageDrivenContext;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.MessageListener;

import javax.jms.TextMessage;

/∗∗
 ∗ Message-Driven Bean implementation class
 ∗ for: TestQueueReceiverEJB
 ∗/
@MessageDriven(

 activationConfig = {

 @ActivationConfigProperty(

 propertyName = "destinationType",

 propertyValue = "javax.jms.Queue")

 },

 mappedName = "jms/TestQueue")

public class TestQueueReceiverEJB

 implements MessageListener {

 @Resource

 private MessageDrivenContext mdc;

 public void onMessage(Message message) {

 try {

 System.err.println("!#!#!#! QUEUE " +

 ((TextMessage)message).getText());

 } catch (JMSException e) {

 e.printStackTrace(System.err);

 }

 }

}

–

APPENDIX

429

package book.jakarta8.jmsexample;

import javax.annotation.Resource;

import javax.ejb.ActivationConfigProperty;

import javax.ejb.MessageDriven;

import javax.ejb.MessageDrivenContext;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.MessageListener;

import javax.jms.TextMessage;

/∗∗
 ∗ Message-Driven Bean implementation class for:
 ∗ TestQueueReceiverEJB
 ∗/
@MessageDriven(

 activationConfig = {

 @ActivationConfigProperty(

 propertyName = "destinationType",

 propertyValue = "javax.jms.Topic")

 },

 mappedName = "jms/TestTopic")

public class TestTopicReceiverEJB

 implements MessageListener {

 @Resource

 private MessageDrivenContext mdc;

 public void onMessage(Message message) {

 try {

 System.err.println("!#!#!#! TOPIC " +

 ((TextMessage)message).getText());

 } catch (JMSException e) {

 e.printStackTrace(System.err);

 }

 }

}

AppenDIx

430

 Chapter 11
 – Exercise 1:

Proceed as described in the text: add user “user1” to the

messaging provider and appropriately update the Glassfish

configuration using the web administration console.

 – Exercise 2:

Proceed as described in Chapter 7. Create an EJB-only project

with facets EJB Module 3.2 and Java 1.8. Make sure the Eclipse

project correctly uses Java 8. Use a pom.xml file as described

in Chapter 7 (watch the <failOnMissingWebXml> property, the

<packaging> element, and the client-exclude setting for the

EJB plugin).

 – Exercise 3:

The changed EJB reads as follows:

package book.jakarta8.juliansecureejb.ejb;

import javax.annotation.security.DeclareRoles;

import javax.annotation.security.RolesAllowed;

import javax.ejb.Local;

import javax.ejb.Remote;

import javax.ejb.Singleton;

import book.jakarta8.juliansecureejb.ejb.interfaces.

 NameEjbLocal;

import book.jakarta8.juliansecureejb.ejb.interfaces.

 NameEjbRemote;

@Singleton

@Local(NameEjbLocal.class)

@Remote(NameEjbRemote.class)

@DeclareRoles({"admin"})

public class NameEjb

 implements NameEjbLocal, NameEjbRemote {

 @RolesAllowed({"admin"})

APPENDIX

431

 public String hello(String name) {

 return "Hello " + name + " (admin)";

 }

}

For that “adminX” experiment, change @DeclareRoles({"admin"})

to @DeclareRoles({"adminX"}) and @RolesAllowed({"admin"})

to @RolesAllowed({"adminX"}). If you then redeploy the application,

even after you enter the correct password for the “AdminUser” login,

an error message appears on the screen. Obviously user “AdminUser”

does not map to role “adminX”. See Figure A-1.

 Chapter 12
 – Exercise 1:

In Eclipse, right-click on the hacc-jsf project, then Run As →

Maven build.... Enter “package” at “Goals.” Press the “Run” button.

This will create the WAR file in project folder “target” (press F5

on the folder to update the view). Fetch the WAR file, then in a

terminal enter the following:

Figure A-1. Security breach for the Julian day converter enterprise application
project

AppenDIx

432

 cd GLASSFISH_INST

 bin/asadmin deploy \

 --name hacc \

 --contextroot hacc \

 /path/to/war/hacc-jsfgui-0.0.1-SNAPSHOT.war

As the URL you have to enter http://localhost:8080/hacc/ in

your browser.

 Chapter 13
 – Exercise 1:

The updated class starts with the following:

 import java.util.logging.Logger;

 ...

 @Singleton

 @Startup

 public class App {

 private final static Logger LOG =

 Logger.getLogger(App.class.toString());

 ...

Inside the class, replace each System.err.println(...) with

LOG.info(...). To convert long values to strings, write Long.

toString(...).

 – Exercise 2:

Adapt the server.policy file as described in the text. Add the files

log4j-core-2.11.2.jar, log4j-api-2.11.2.jar, and log4j-

appserver-2.11.2 (or whatever version you downloaded) from

the Log4j2 distribution to folder “GLASSFISH_INST/glassfish/

domains/domain1/modules/autostart.” Add a log4j2.json file

to “GLASSFISH_INST/glassfish/domains/domain1/lib/classes.”

Example configuration files are presented in the text.

APPENDIX

433

To your project, add the following as a dependency:

 <dependency>

 <groupId>org.apache.logging.log4j</groupId>

 <artifactId>log4j-api</artifactId>

 <version>2.11.2</version>

 </dependency>

Add a static logger field to each class and use it as follows:

public class SomeClass {

 private final static Logger LOG =

 LogManager.getLogger(SomeClass.class);

 ...

 public void someMethod() {

 ...

 LOG.trace("Trace: ...");

 LOG.debug("Debug: ...");

 LOG.info("Some info: ...");

 LOG.warn("Some warning: ...");

 LOG.error("Some error: ...");

 LOG.fatal("Some fatal error: ...");

 ...

 try {

 ...

 } catch(Exception e) {

 ...

 LOG.error("Some error", e);

 }

 }

}

AppenDIx

434

 Chapter 14
 – Exercise 1:

Enable JVM monitoring as follows if you haven’t done so already:

 cd GLASSFISH_INST/bin

 ./asadmin set \

 server.monitoring-service.

 module-monitoring-levels.jvm=HIGH

(no line break and no spaces after “service”). Now

 cd GLASSFISH_INST/bin

 ./asadmin list --monitor "∗"

gives us a list containing the monitorable object “server.jvm.

memory.” If we now enter

 BASE_URL=http://localhost:4848/monitoring/domain

 curl -s -u admin:PASSWORD -X GET \

 -H "Accept: application/json" \

 $BASE_URL/server/jvm/memory \

 | jq .

we get a JSON string containing

 "usedheapsize-count": {

 "unit": "bytes",

 "lastsampletime": 1558877537635,

 "name": "UsedHeapSize",

 "count": 170636808,

 "description": "Amount of used memory

 in bytes",

 "starttime": 1558856758609

 }

APPENDIX

435

Adding a filter gives us the used heap space in bytes, as follows:

 BASE_URL=http://localhost:4848/monitoring/domain

 curl -s -u admin:PASSWORD -X GET \

 -H "Accept: application/json" \

 $BASE_URL/server/jvm/memory \

 | jq '.extraProperties.entity

 ["usedheapsize-count"].count'

(no line break and no spaces after the “.entity”).

 – Exercise 2:

Add the following to pom.xml inside the <dependencies> section:

 <dependency>

 <groupId>org.apache.logging.log4j</groupId>

 <artifactId>log4j-api</artifactId>

 <version>2.11.2</version>

 </dependency>

Add a static field as follows to class App:

 ...

 import org.apache.logging.log4j.LogManager;

 import org.apache.logging.log4j.Logger;

 ...

 class App {

 private static Logger LOG =

 LogManager.getLogger(App.class);

 ...

 }

AppenDIx

436

and replace all System.err.println() instructions with LOG.info().

In the exception catch clauses, also add the following exception

objects to the parameters:

 ...

 }catch(Exception e) {

 LOG.error("Cannot register MBean", e);

 }

 ...

 }catch(Exception e) {

 LOG.error("Cannot unregister MBean", e);

 }

APPENDIX

437
© Peter Späth 2019
P. Späth, Beginning Jakarta EE, https://doi.org/10.1007/978-1-4842-5079-2

Index

A
ACID Paradigm, 241
Action listener, 114–116
Advanced monitoring, 342–344
AJAX core tags

attributes, 121, 122
components, 117, 119, 120
Java class, 117
submit() method, 118
template file, 119

Application clients, 298
Application, JSF

development process, 55–58
household accounting

class, 64
expression language, 59
HTML 5 file, 59
JSF template page, 60
method expression, 61
register(), 62
template file, 58
value expression, 61

asadmin command-line, 339, 342
ASADMIN tool, 257, 261, 296, 347

B
Batch processing, 4
Bean-managed transactions, 248–250
Bean validation, 4, 102
Boolean properties, 65

C
clearEntry() function, 154
clearErr() function, 154
clearList() function, 155
ComponentSystemEventListener, 123
Conditional rendering/repetitions, 98, 99
Container-managed transactions, 245–248
Context and Dependency Injection

(CDI), 4
Core tags, JSF

components, 99–101
converter

components, 107
date and times, 109, 110
ID, 107
injected class, 106
numbers, 108

library, 83
listeners, 114–116
selection items, 110–114
validator, 101–106

createSingleActionTimer()
invocation, 202

D
Data access object (DAO)

@EJB annotation, 174
entity class member, 174
package book.jakarta8.calypsojpa.ejb,

174, 175

https://doi.org/10.1007/978-1-4842-5079-2

438

@PersistenceContext
annotation, 175

REST controller class, 171–173
@Singleton class annotation, 176

@DeclareRoles annotation, 290, 291
Deployment process

application artifacts, 297, 298
creating EAR files, Maven,

302–304, 309–312
directories, 313

asadmin command-line
tool, 314

new applications list, 315
structure, 313

EAR, 305–309
Eclipse plugin, 295, 296
format specification, 297
web application archives, 298–302

Distributed transactions, 239, 240
Document object model (DOM)

methodology
changing/adding

attribute, 219
Java 8 stream, 217, 218
node, 217
re-indent, 220
white-space texts, removing, 219

E, F
Eclipse IDE, 32

installation
Glassfish tools, 31
JRE setting, 29
Oracle enterprise, 30
server view, 32

edit() function, 158

EJB security
class, 285
declarative

@DeclareRoles, 290
@RolesAllowed, 291, 292

Preparation, enterprise application
project

class, 285
creation, 286
Julian cross-reference, 289
members, 288
name, 287
running, 290

programmatic, 293
roles, 293

EJB statistics, 344
Enterprise Application Archive (EAR), 196

applications, 308
application.xml file, 306
DELETE command, 309
META-INF folder, 307
modules, 305
structure, 305

Enterprise applications, 298
Enterprise Java Beans (EJBs), 2

adding dependencies to server,
196, 197

asadmin command, 193
asynchronous invocation, 198, 199
defining, 186

EJB configuration, 186
EJB TicTacToe, 187
interface, 187
invoice ID, 186
local access, 187
@Local annotation, 188
@Remote annotation, 188, 189

EAR functionality, 197

Data access object (DAO) (cont.)

INDEX

439

message-driven beans, 185
projects, 194, 198

<clientExclude> tag, 196
component-to-EJB

communication, 194
module version, 195
REST/web-service interfaces, 194

remote instance, 190–192
session, 185

singleton, 185
stateful, 186
stateless, 185

SomeCdiManagedClass, 190
timer, 200–202

EntityManager class, 165, 175
entity() method, 162
Expression language (EL), 66

collections, 77, 78
implicit objects, 73–75
isRenderName() method, 69
lambda functions, 78, 79
literals, 75, 76
method expressions, 67–69
object accessing, 69–72
operators, 76
value expressions, 67

Expressions, 66

G
getSomething() method, 354
Glassfish, 352

administrative front ends, 18
GUI administration, 22
installation, 16, 17
JMX interface, 347–349
REST interface administration, 23–25
Server, 9

shell administration
admin-password, 20, 21
asadmin command, 18
built-in database, 21
domain, 21
inquiring, 20
multi-mode sessions, 19
options, 19

H
HTML pages

input/output/action components, 145
jQuery file, 144
styles.css file, 144

HTML RenderKit Tags
attribute classes, 360–363
button and link, 384–389
file upload, 391, 392
forms, 367
grouping, 393
header elements, 365–367
images, 383
input/output, 369–375
selectables style, 375, 376, 378–382
tables, 394–398
top-level tags, 364, 365
value expressions, 367, 368

HTTP service statistics, 344

I
Implicit objects, 73–75
Interceptors, 4
Internet Security Research Group

(ISRG), 280
isCallerInRole() method, 293
isUserInRole() method, 279

Index

440

J, K
Jakarta EE

applications and cloud, 10, 11
servers and licensing, 8, 9

Java API for XML Processing (JAXP),
5, 216, 217

JavaBean classes, 64–66
Java 8, 13
JavaMail, 4
Java Management Extensions

(JMX), 6, 347, 352
Java Messaging Service (JMS), 3, 227
Java Naming and Directory Interface

(JNDI), 5, 190
Java Persistence API (JPA)

boolean indicators, 165
DAO, 171–176
database access, 165, 166
EclipseLink, 169, 170
entity, add, 176–179
relations, add, 179–182
SQL database, set up, 166, 167

authentication mechanism, 168
Glassfish server configuration, 168
JDBC resource, 168
unique ID generation, 169

JavaScript code, characteristics, 149
JavaScript object notation (JSON), 142
Java Server Faces (JSF), 2

application (see Application, JSF)
core tags (see Core tags, JSF)
EL (see Expression language)
FacesContext class, 129
injected classes, 127, 128
lifecycle, 130
localized resources, 79–82
namespace, 124, 125
navigation case, 125–127

process validations, 129, 131
renderResponse(), 131
and servlets, 53, 54
tag library, 82, 83
view, 129

Java Server Pages (JSP), 2, 4, 340
Java Standard Edition (JSE 8)

configurations, 12
features, 13
language, 12
success, 12

Java Standard Environment (JSE), 317
Java Transaction API (JTA), 3, 239
Java XML Binding (JAXB), 6, 216
JDBC, 5, 242
JDK logging

adding output to
console, 319, 320

Glassfish log files, 319
hierarchy, 322, 323
JSR 47 methodology, 320, 321
levels, 321, 322
thresholds, 322

JMS/connector service
statistics, 344

JMS messaging, secure, 263
JMX GUI clients, 349, 350, 352
JMX monitoring

custom JMX modules,
implementation, 353–357

Glassfish AMX monitoring
extension, 352, 353

Glassfish’s JMX interface, 347–349
JMX GUI clients, 349, 350, 352

JSON Binding (JSON-B), 3
JSON Processing (JSON-P), 3
JSP Standard Tag Library

(JSTL), 5, 98

INDEX

441

Julian calendar
back-end project

curl command, 39
deployment, 39
faceted project, 35
files, 40
Glassfish, 35
mapping URL, 36
Maven build tool, 34
pom.xml file, 33
REST, 36, 38
WebContent, 35

convert() method, 51
front-end files, 52
front-end project

facets, 42
greetings page, 46, 49
JDK version, 42
JSF pages, 44, 45, 47
pom.xml file, 41
response page, 47, 50
template file, 45, 46
WebContent, 42

Glassfish, 51
Jakarta EE 8 server, 50
resource bundle, 51
servlet mapping, 50

JVM parameters, 348
JVM statistics, 344

L
Lambda functions, 78, 79
Language bundles, 79
list() method, 162
loadList() function, 158
Localized resources, 79–82
Local transaction, 240

LOG.entering(), 321
LOG.exiting(), 321
Log4j, logging

adding EARs, 334, 336, 337
adding server-wide, 327–329
features, 326
Maven dependency, 337, 338
open file, 327
pattern, 330, 331
WAR, 332, 333

Logging
configuration, 323–325
format, 325
Log4j (see Log4j, logging)
system streams, 317, 318

M
makeForm() function, 154
Managed beans, 69
Messages

receiving, 232, 233
submitting, 230, 231

Messaging paradigms, 227, 228
Messaging provider

imqadmin tool
broker, 235
Glassfish, 235, 236
queue/topic, 236
window, 234

imqusermgr tool, 236
setup, 228, 229

Microservices, 9, 10
monitorable objects, 342
Monitoring administration, 341
Monitoring data access, REST, 344, 346
Monitoring keys, 341
Monitoring modules, 339, 340

Index

442

Monitor transactions, 251–255
Multi-mode session, 19
Multi-tiered applications

elements, 6
layers, 6
three-tiered model, 7

N
Network statistics, 344

O
ORB statistics, 344

P
@PersistenceContext annotation, 175
Point-to-point messaging/queues, 228
post() method, 162
public String getNameStyle() method, 84
Publish/subscribe messaging/topics, 228

Q
Queues/topics creation, 229, 230

R
Relational data , JPA

book.jakarta8.calypsojpa.jpa, 180, 181
@JoinColumn, 181
many to many entity, 183
@OneToMany annotation, 182
OneToOne entity, 183
STATUS_SEQ, 180
STATUS table, 180
zero to many entity, 182

removeEntry() function, 155

Representational state transfer (REST), 2
communication verbs, 140, 141
HTTP specification, 140, 141

Resource adapters, 297
Resource statistics (connection

pool), 344
REST controller

adding front-end logic, 148
adding input, 146, 147
output, 148

RESTful administrative interface, 344
RESTful Server

faceted project, 135
JRE system, 134
maven-archetype-quickstart, 134
SPA, 133
URL requests, 136

RESTful Web Services (JAX-RS), 2
REST interface methods, 160
@RolesAllowed annotation, 291
@RunAs annotation, 293

S
Security

administrative access
asadmin, 257–259
database access, 262
eclipse server, 260
JMS messaging, 263–265
REST interface, 261
web administration, 260, 261

EJB (see EJB security)
web applications

admin page, 276
Admin user, 268
beans.xml file, 270
configuration file web xml, 271

INDEX

443

enable security manager, 266, 267
glassfish-web.xml, 271, 272
greetings page, 274
Julian day converter, 276, 279
Julian project, 268
measures, 266
response page, 275
servlet mapping, 277, 278
SSL certificate, 279, 280, 282–285

Security statistics, 344
Selectables style, 375
SelectItem class, 113
Servlets, 4, 53, 54
setRollbackOnly() method, 246
showEntry() function, 154
showErr(msg) function, 154
Simple object access protocol (SOAP)

admin page, 208
<build><plugins> tag, 211, 212
date/time retrieval, 207
date2() web method, 214
information, 209
JAX-WS, 203, 204
Maven build file pom.xml, 205, 206
Maven project, creation, 211
new Maven project, 205
request, 209, 210
response, 210
servlet creation, 212–214
@WebService annotation, 207
WSDL documents, 204

Single-page application (SPA)
AJAX calls, 155, 157, 158
book.jakarta8.restdate.

StaticContent, 138
Calypso, 158
data at work, 150
data-centric operations, 150–152, 154

data types, 137
main.html file, 138
member class, 159
REST interface

methods, 139, 160–162
static class field, 159

Singleton EJBs, 185, 186, 231
someMethod() method, 294
Standard HTML RenderKit tags

attributes, 83, 84
buttons and links, 92, 93
data tables, 96, 97
file upload, 94, 95
forms, 86
grouping, 95, 96
header elements, 85, 86
image file, 92
input and output, 86, 87
selectables, 88–91
top-level, 85

Stateful EJBs, 186
Stateless EJBs, 185
Streaming API for XML (StAX), 6
String register() method, 67
submit() function, 158

T
Thread pool statistics, 344
Three-tiered model, 7
Time MBean, 357
Time modularization, 240
Timer EJBs

automatic, 200
javax.ejb.Timer parameter, 200
@Schedule annotation, 200, 201
@Timeout, 202

Top-level tags, 85

Index

444

Transaction
bean-managed, 248–250
characteristics, 247, 248
demarcation, 240
JMS, 242–244
local and distributed, 240
managers, 242–244
monitoring

link, 252
setting, 251
statistics, 252, 254, 255

stateful session EJBs, 250, 251
Transaction service statistics, 344
Two-phase commit protocol, 239

U, V
UIOutput component, 123
UIViewParameter, 124
Unified Expression Language (EL), 2

W
Web application archives

CSS files, 298
META-INF folder, 299

someWebApp.war, 299
structure, 298
WAR file installation, 300, 301

Web applications
(WARs), 197, 297

WebMessages.properties file, 90
webmodule, 340–342
Web sockets, 3
Web statistics, 344

X, Y, Z
XML data

advantages, 203
application startup, 214, 215
disadvantages, 203

XML processing
create/parse data, 216
in-memory DOM

representation, 217–220
SAX, event-based push

parsing, 224, 225
StAX, streaming pull

parsing, 220–223
use case–centric view, 216

XML Web Services (JAX-WS), 6

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Java Development, Enterprise Needs
	Standardized Specifications
	Multi-tiered Applications
	Why Jakarta EE?
	Exercise 1

	Jakarta EE Servers and Licensing
	Excursion to Microservices
	Jakarta EE Applications and the Cloud
	Exercise 2

	The Java Standard Edition JSE 8
	The Java 8 Language
	Exercise 3

	Chapter 2: Getting a Jakarta EE Server to Work
	Getting and Installing Glassfish
	Glassfish Shell Administration
	Multi-mode Sessions
	General Options
	Inquiring After Information
	Setting and Changing the Admin-Password
	Domain Administration

	Administering the Built-In Database

	Glassfish GUI Administration
	Glassfish REST Interface Administration

	Chapter 3: Setting Up an IDE
	Installing Eclipse for Jakarta EE Development
	Using Eclipse
	Your First Jakarta EE Application
	The Julian Calendar Back End
	The Julian Calendar Front End
	Summing Up: The Julian Day Calendar

	Chapter 4: Building Page-Flow Web Applications with JSF
	Servlets and JSF Pages
	A Sample JSF Application
	Preparing the JSF Application
	The Household Accounting JSF Application

	About JavaBean Classes
	Expression Language in JSF Pages
	Value and Method Expressions
	Accessing Objects from JSF Pages
	Implicit Objects
	Literals
	Operators in Expressions
	Using Collections Inside Expressions
	Exercise 1
	Lambda Expressions

	Localized Resources
	Exercise 2

	JSF Tag Libraries
	Standard HTML RenderKit Tags
	HTML Top-Level Tags
	HTML Header Elements
	HTML Forms
	HTML Text Input and Output
	HTML Selectables
	Exercise 3
	Exercise 4
	HTML Images
	HTML Buttons and Links
	Exercise 5
	HTML File Upload
	HTML Grouping
	HTML Tables

	Repetition and Conditional Branching
	JSF Core Tags
	General Purpose Core Tags
	Validator Core Tags
	Converter Core Tags
	Exercise 6
	Selection Items Core Tags
	Listener Core Tags
	AJAX Core Tags
	Other Core Tags

	The Pass-Through Namespace
	Navigation Between Pages
	Exercise 7

	More Injection
	Overview of the JSF Page Flow
	Exercise 8

	Chapter 5: Building Single-Page Web Applications with REST and JSON
	A RESTful Server Inside Jakarta EE
	Single-Page Web Applications
	About REST
	About JSON
	Exercise 1

	Including Page Assets
	Input, Output, and Action Components
	Adding Input to the REST Controller
	Adding Front-end Logic
	Data-centric Operations with SPAs
	Exercise 2

	Chapter 6: Adding a Database with JPA
	Abstracting Away Database Access with JPA
	Setting Up a SQL Database
	Adding EclipseLink as ORM
	Adding Data Access Objects
	Exercise 1

	Adding Entities
	Exercise 2

	Adding Relations
	Exercise 3

	Chapter 7: Modularization with EJBs
	Types of Session EJBs
	Defining EJBs
	Accessing EJBs
	Exercise 1

	EJB Projects
	EJBs with Dependencies
	Adding Dependencies to the Server
	Creating EARs
	Exercise 2

	Asynchronous EJB Invocation
	Timer EJBs

	Chapter 8: Dealing with XML Data
	SOAP Web Services
	Exercise 1
	Exercise 2

	Application Startup Activities
	XML Processing
	DOM: In-Memory Representation of a Complete XML Document
	StAX: Streaming Pull Parsing
	SAX: Event-Based Push Parsing

	Chapter 9: Messaging with JMS
	Messaging Paradigms
	Setting Up a Messaging Provider
	Creating Queues and Topics
	Submitting and Receiving Messages
	Exercise 1

	Managing the Messaging Provider

	Chapter 10: Maintaining State Consistency with JTA Transactions
	Modularization in Time: Transaction Demarcation
	Local and Distributed Transactions
	The ACID Paradigm
	Transaction Managers
	Container-Managed Transactions
	Bean-Managed Transactions
	Observing Transaction for Stateful EJBs
	Transaction Monitoring

	Chapter 11: Securing Jakarta EE Applications
	Securing Administrative Access
	Securing the ASADMIN Tool
	Securing the Web Administrator Console
	Securing the Administrative REST Service
	Securing the Database Access
	Securing the JMS Messaging
	Exercise 1

	Securing Web Applications
	Rendering Dependent on Security Conditions
	Importing SSL Certificates for Web Applications
	Preparing EJB Security
	Exercise 2

	Declarative EJB Security
	Exercise 3

	Programmatic EJB Security
	Role Mimic: Propagating Roles

	Chapter 12: Deployment Artifacts
	The Eclipse Plugin’s Deployment Process
	Using Deployment Archives
	Web Application Archives
	Creating WARs with Maven
	Exercise 1
	Enterprise Application Archives
	Creating EARs with Maven

	Deploying Applications from Directories

	Chapter 13: Logging Jakarta EE Applications
	System Streams
	JDK Logging in Glassfish
	Glassfish Log Files
	Adding Logging Output to the Console
	Using the Standard Logging API for Your Own Projects
	Exercise 1
	Logging Levels
	The Logger Hierarchy and Thresholds

	The Logging Configuration
	The Logging Format

	Using JDK Standard Logging for Other Servers
	Adding Log4j Logging to Your Application
	Adding Log4j Server-Wide
	Changing the Logging Format
	Adding Log4j to Jakarta EE Web Applications
	Adding Log4j to Jakarta EE EAR Applications
	Using Log4j in the Coding
	Exercise 2

	Chapter 14: Monitoring Jakarta EE Applications
	Monitoring over the Admin Console
	Advanced Monitoring
	Using REST to Access Monitoring Data
	Exercise 1

	JMX Monitoring
	Glassfish’s JMX Interface
	A JMX GUI Client
	Adding Glassfish Monitoring to JMX
	Implementing Custom JMX Modules
	Exercise 2

	Appendix
	Standard HTML RenderKit Tags
	HTML Tag Attribute Classes
	HTML Top-Level Tags
	HTML Header Elements
	HTML Form
	HTML Text Input and Output
	HTML Selectables
	HTML Images
	HTML Buttons and Links
	HTML File Upload
	HTML Grouping
	HTML Tables

	Solutions to the Exercises
	Chapter 1
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

	Index

