
www.apress.com

Kem
per

Beginning N
eo4j Beginning

Neo4j
Create relationships and grow
your application with Neo4j

—
Chris Kemper

Beginning Neo4j

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

This book is your introduction in the world of graph databases, and the bene� ts they can
bring to your applications. Neo4j is the most established graph database on the market, and
it’s always improving to bring more of its bene� ts to you. Beginning Neo4j will take you from
the installation of Neo4j through to building a full application with Neo4j at its heart, and
everything in between.

Using this book, you’ll get everything up and running, and then learn how to use Neo4j to
build up recommendations, relationships, and calculate the shortest route between two loca-
tions. With example data models, and an application putting everything together, this book
will give you everything you need to really get started with Neo4j.

Neo4j is being used by social media and ecommerce industry giants. You can take advantage of
Neo4j’s powerful features and bene� ts - add Beginning Neo4j to your library today.

Shelve in:
Web Development/General

User level:
Beginning–Advanced9 781484 212288

ISBN 978-1-4842-1228-8ISBN 978-1-4842-1228-8

www.allitebooks.com

http://www.allitebooks.org

Beginning Neo4j

Chris Kemper

www.allitebooks.com

http://www.allitebooks.org

Beginning Neo4j

Copyright © 2015 by Chris Kemper

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1228-8

ISBN-13 (electronic): 978-1-4842-1227-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Louise Corrigan
Technical Reviewer: Sam Stites
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, Jim DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Lori Cavanaugh
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

To my friends, family, and caffeine.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

 ■Chapter 1: Introduction to Graph Databases ��� 1

 ■Chapter 2: Getting to Know Neo4j ��� 13

 ■Chapter 3: Get Up and Running with Neo4j ��� 25

 ■Chapter 4: Meet Cypher ��� 31

 ■Chapter 5: Managing Your Data in Neo4j ��� 57

 ■Chapter 6: Importing and Exporting Data �� 69

 ■Chapter 7: Querying Data in Neo4j with Cypher �� 83

 ■Chapter 8: Building an Application with Neo4j �� 103

 ■Chapter 9: Hosting a Neo4j Application ��� 131

Index ��� 149

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

 ■Chapter 1: Introduction to Graph Databases ��� 1

What is a database? ��� 1

Database Transactions�� 2

What is a Graph? �� 4

Graph Theory �� 5

Origins �� 5

Graph Databases �� 6

Relational Databases �� 8

Relationships �� 9

Origins �� 9

NoSQL ��� 10

Key Value �� 10

Column ��� 11

Document-orientated�� 11

Graph �� 11

Summary �� 11

 ■Chapter 2: Getting to Know Neo4j ��� 13

Give Me a REST �� 14

Why Choose Neo4j? �� 14

www.allitebooks.com

http://www.allitebooks.org

viii

■ Contents

Cypher �� 15

Browser �� 16

Under the hood ��� 19

Who’s Using it? ��� 20

Indexes ��� 21

Caching �� 21

File Buffer Cache �� 21

Object Cache��� 22

High-performance Cache ��� 22

Extending Neo4j ��� 22

Summary �� 23

 ■Chapter 3: Get Up and Running with Neo4j ��� 25

Downloading from Neo4j.com/download ��� 25

Installing on Windows �� 26

Installing on Mac �� 26

Installing from a Website �� 27

Going with Homebrew for Java �� 27

With Java Installed ��� 28

Installing on Ubuntu ��� 28

Install Neo4j in a Vagrant Box��� 29

Summary �� 30

 ■Chapter 4: Meet Cypher ��� 31

Basic Syntax ��� 31

Nodes�� 32

Properties ��� 32

Relationships �� 33

Querying Cypher ��� 34

Browser �� 35

REST API ��� 35

www.allitebooks.com

http://www.allitebooks.org

ix

■ Contents

How to Build a Cypher Query ��� 39

A Quick note on Comments �� 39

RETURN��� 39

MATCH �� 40

CREATE/CREATE UNIQUE ��� 41

DELETE/REMOVE ��� 42

WHERE �� 43

ORDER BY ��� 45

INDEXES �� 46

CONTRAINTS ��� 46

LIMIT ��� 47

SKIP �� 47

WITH ��� 48

UNWIND �� 49

UNION ��� 50

USING �� 50

MERGE �� 51

SET ��� 52

shortestPath/allShortestPaths �� 52

Key Functions ��� 53

Summary �� 56

 ■Chapter 5: Managing Your Data in Neo4j ��� 57

A quick note about Gists �� 57

Common pitfalls ��� 57

bi-directional relationships ��� 58

Example Data Structures �� 59

e-commerce ��� 59

Social Network ��� 63

Summary �� 67

www.allitebooks.com

http://www.allitebooks.org

x

■ Contents

 ■Chapter 6: Importing and Exporting Data �� 69

Importing Data �� 69

Import from a CSV Using Cypher �� 69

Using a Custom Import Script ��� 76

Exporting Data �� 78
Backing up the Database �� 79

Getting Data from the Neo4j Browser ��� 79

Write Your Own Data Exporter �� 82

Summary �� 82

 ■Chapter 7: Querying Data in Neo4j with Cypher �� 83

Recommendations, Thanks to Pokémon Data �� 83
Getting the Data, the Website Used �� 84

Querying the Data ��� 87

Thank You ��� 99

Location-Based Queries ��� 100

Closest Metro Station ��� 101

Summary �� 101

 ■Chapter 8: Building an Application with Neo4j �� 103

A Quick Note on Code Comments ��� 103

Installing the Spatial Plugin �� 104

What the App is Being Built On ��� 105
How the Data will be Structured ��� 106

Place/BusStop �� 106

Timetable �� 106

Transport��� 106

Building the Application ��� 106
Installing Composer �� 108

Setting Up Silex �� 109

Silex Service Providers ��� 109

Using the Client �� 115

Routes��� 124

www.allitebooks.com

http://www.allitebooks.org

xi

■ Contents

Commands ��� 126

Create Indexes �� 126

Import Bus Stops �� 126

Import Timetables ��� 127

Setting up the Website with Commands �� 128

Technology Used ��� 128

How It Works ��� 128

Summary �� 129

 ■Chapter 9: Hosting a Neo4j Application ��� 131

Hosting Requirements �� 131

Hosting Neo4j ��� 132

Choosing a VPS �� 132

DigitalOcean ��� 132

Features �� 133

Linode ��� 135

Features �� 136

GrapheneDB �� 137

Graphstory �� 140

A Hosting Example ��� 141

Hosting on DigitalOcean ��� 142

Creating a Droplet ��� 142

Install Neo4j �� 143

Some Other Dependencies ��� 144

An Annoying Warning �� 144

Using a Standalone Neo4j Server ��� 145

Optimizing Neo4j �� 147

Summary �� 148

Index ��� 149

www.allitebooks.com

http://www.allitebooks.org

xiii

About the Author

Chris Kemper was born and bred in the North of England. Growing up, he spent his time taking computers
apart and putting them back together. So with such a clever mind, it’s no surprise he got into web
development in his early teens.

Since graduating in 2008, Chris has expanded his knowledge of web development by working for some big
names within the North East, honing his development skills, and keeping up with modern trends.

Chris is always at the cutting-edge of his field, which often means he has lots of big ideas but frustratingly, not
enough time to bring them to fruition.

Already a published author, he loves to share his expertise and relishes in discussing tech problems and
solutions. What’s most impressive is his ability to articulate such a difficult subject into words and more so, do it in
such a way that it’s easy to understand.

You can catch Chris on Twitter at @ChrisDKemper, or check out his personal site
http://chrisdkemper.co.uk.

mailto:@ChrisDKemper
http://chrisdkemper.co.uk

xv

About the Technical Reviewer

Sam Stites is a functional, polyglot engineer coming from a background in statistics and data science.

xvii

Acknowledgments

Throughout this process I’ve had help, support, and encouragement from so many different people, It’d be
a long list to name them all. Whether it was with support, or just telling me to get myself in gear, I couldn’t
have done this without you all.

I owe a special thanks to Mr. Sherry, who as always has kept me on the right path with support and
advice, sprinkled with colorful (scouse) language. I’d also like to take this chance to thank Mr. Sterling, and
Mr. Wardle, because I know without those two, I’d not be in the position I am today.

I have to give a big thanks to my family for putting up with my distance during the project, and giving
me nothing but support for the duration. To try and make it up to people in my own way, you’ll see various
names in code examples throughout the book. I may not have been with my family or friends, but at least
I could include them, even if it’s just in examples.

Whether it was just letting me vent, allowing me to bounce ideas off you, or even giving me advice,
I know many people have helped me in more ways than I can acknowledge, thank you. Finally, I’d like to
thank everybody that helped me with the website I created for the book (see Chapter 7 for that). Whether
you just shared it on Twitter or Facebook, or if you actually submitted your data, I’d like to thank you all for
doing so.

http://dx.doi.org/10.1007/978-1-4842-1227-1_7

xix

Introduction

Whether we like it or not, the world is becoming more connected, and at some point in the very near future,
your toaster may well be able to recommend types of bread. The information could be recommended
products from retailers or suggested friends on Social Networks; whatever it is, you’ll be able to see the
benefits (if you like the recommendations, that is) of using graph databases. This book will take you right
through from knowing nothing about graphs and graph databases or Neo4j, to knowing how to write your
own recommendation system, using language that’s easy to understand.

It aims to cover the theory early on, and get to the practical (in this case, coding) side of Neo4j, in the
form of Cypher, Neo4j’s query language. You’ll learn what Cypher actually is in Chapter 4, and also how to
use it to interact with your data as the book progresses. And Chapter 7 is where things start to get interesting.

Speaking of data, Beginning Neo4j will also contain a number of data examples to help model your
data, or be used as a reference for your own projects. After you’ve installed Neo4j on your system (covered in
Chapter 3) you’ll then be taken through the process of how to host your Neo4j application online.

A big issue with books that reference code is that by their very nature, over time things inevitably
change, and code may not work as it once did in future versions. To avoid this, in certain instances, code will
be hosted online and it’ll be explained as and when it’s needed during the course of the book.

In addition, there will be a micro site available at http://chrisdkemper.co.uk/beginning-neo4j
that will contain links to the items mentioned in the various chapters. I’ll aim to keep this website and
the content it contains as up to date as possible, so check there for updates. If you do happen to notice
something that’s now incorrect, or missing, please try to get in touch with me and I’ll do my best to fulfil your
request.

Contacting Chris Kemper
The easiest way to get in touch will be via e-mail at hey@chrisdkemper.co.uk. If you’d prefer to take the
social media approach, it’s @ChrisDKemper on Twitter. All being well, I’ll try my best to help out and answer
any questions.

http://dx.doi.org/10.1007/978-1-4842-1227-1_4
http://dx.doi.org/10.1007/978-1-4842-1227-1_7
http://dx.doi.org/10.1007/978-1-4842-1227-1_3
http://chrisdkemper.co.uk/beginning-neo4j
mailto:hey@chrisdkemper.co.uk
mailto:@ChrisDKemper

1

Chapter 1

Introduction to Graph Databases

With anything that’s worth learning, there’s always a bit of theory to go along with something more practical,
and this book is no exception. Neo4j is the leading graph database (or at least that’s how they describe
themselves, anyway), but what does that mean? If you’re from a more traditional relational-database
approach, then the concept of a graph database may be a new one, but learning a bit of theory will be worth
it. Graph databases have many advantages, one of which is making some queries that are close to impossible
in traditional SQL based databases, very possible using a graph database. Graph databases make this
possible because their primary function is to relate data. If you understand graph databases already, you
could skip ahead, but my teachers always used to say: “Well it’s a good refresher for you,” so I’ll say the same,
and hopefully there’s a benefit.

In this chapter, I’ll be covering everything database related to show why graph databases are a brilliant
utility, and how they have a lot of potential for modern application development. There’s already a number
of people, from large companies, such as eBay and WalMart, to small research teams taking advantage of
graph databases to solve various data-based problems, and you could be too. Of course there are many
databases out there. Where do graph databases stand? This chapter will also give an overview on the various
types of databases and a few details on each one.

What is a database?
Before going into detail about graph databases, relational-databases, or any database for that matter,
it’s probably a good idea to start at the beginning, and describing what a database actually is. At its most
fundamental, a database is primarily a means of organizing information. Databases come in many forms.
Most are associated with the computer system but some are used for backups.

Since a database is a structured set of information, it doesn’t need to be limited to something electronic.
A hard copy address book and an electronic address book are both structured data and are both considered
databases. However, there may be a time when you want to migrate to a more reliable database system that
isn’t paper based. When you do, you need to know where to start. To manage data in a traditional database
and communicate with your chosen database, you’ll use a Database management system (DBMS). There are
many DBMSs on the market, such as MySQL, PostgreSQL, Microsoft SQL Server, CouchDB, or (Of course)
Neo4j. If you aren’t familiar with any of those, or your particular favorite wasn’t mentioned don’t worry. There
are a lot of different DBMSs on the market, each with its own advantages and disadvantages, depending on
your use case.

Chapter 1 ■ IntroduCtIon to Graph databases

2

A database system allows you to interact with the data stored within it via a predetermined language,
dictated by the type of database. The main job of a DBMS is to provide a way for the user to interact with the
data stored in it. These interactions can be categorized into four primary sections:

•	 Data definition – Any action that modifies the organization of the data within the
database

•	 Update - When an action manipulates the actual data stored within the databases
is classed as an update, which includes creating, updating, and deleting data. In the
case of inserting or deleting data, this is classed as an update to the database itself as
you’re changing the data structure in some way by either adding or removing data.

•	 Retrieval - Data is stored in a database in most cases to be reused. When data is
selected from the database to be used in another application, that’s a retrieval.

•	 Administration – The remaining actions of user management, performance
analysis, security, and all of the higher-level actions are classes as administration.

Database Transactions
Depending on your knowledge of databases the idea of transactions may be a new concept. It’s one of
those things you may know about, but not know the correct words to explain it. A database transaction
is essentially a group of queries that all have to be successful for them to be applied. If one query within
a transaction fails, the whole thing does. Database transactions have two main purposes, both involving
consistency, just in different ways.

The first purpose of a database transaction is to ensure that all queries within a transaction are actually
executed, which can be very important. Say you’re creating a user and inserting a record for it into the
database. There are cases when the ID of an inserted row will be used in queries that follow it. One use is
permissions or roles, where a user’s id would traditionally be used to make the relation. If that initial creation
of the user fails, maybe due to not being unique, the subsequent queries will also fail since they depend on
the result of the failed query. Depending on how the application is set up, if these queries were run without
using the transaction incomplete data may be added to the database (so potentially a set of permissions for
a non-existent user) or for the application to fail unexpectedly. To avoid this, you can run all of the queries
within a transaction, so if any query fails, then any queries that have already run (within the transaction) are
reverted, and the query ends, which means your data is untouched.

The second purpose of a database transaction concerns two actions happening at the same time: if a
database is being queried simultaneously by multiple sources, then there is the potential the data integrity
may be compromised. For example, if you were querying the database, but also performing an update
on some of the data being queried at the same time, what would happen? To make this example more
informative, let’s say we’re querying a list of users by name, but one of the users is online changing their
name. Depending on the timing of the query (without transactions) there’s a chance you could get the data
before or even after the change; there isn’t any guarantee. Using transactions though, the update would
only be committed and then available to query after it and all other queries within said transaction were
successful. So in this case, the updated name wouldn’t be available until all of the needed queries within the
transaction were successful.

Chapter 1 ■ IntroduCtIon to Graph databases

3

When you talk about a database transaction, it should be atomic, consistent, isolated, and durable, or
ACID. If a database transaction is truly ACID, then it works as it’s been explained here, in an all-or-nothing
fashion. The most important time for a transaction to abide by the ACID principles is when money is
involved. For instance, if you had a system in place to pay bills, which transferred money from one account
to another, and then made a payment, you’d want to ensure all of that happened without any errors. If the
bills account was empty, the money transfer from one account to the other would fail, but if the two actions
were run outside of a single transaction, you would still try to make the payment, even though no money
had been transferred. This is an example of when a query is executed, then subsequent queries depend
on the result of the first one, and in this case, you’d want both queries to be in one, ACID-compliant
transaction.

Principles used within ACID are relative to the CAP Theorem, also known as Brewer’s Theorem. Eric
Brewer (the theorem’s creator) stated that it is impossible for a distributed computer system (or database) to
simultaneously guarantee the following three conditions:

•	 Consistency (data is available to all nodes at the same time)

•	 Availability (each request receives a response about whether it was successful or
failed)

•	 Partition tolerance (the system can still operate despite losing contact with other
nodes due to network issues)

If a system of nodes (or databases) wants to be always available, and safe from failures, then it cannot
always have the most up-to-date data. For example, if you have a system of three nodes, each node would
be a copy of the last, so if one failed, you would have access to the other two. If you were to make a change
to one of the nodes, then the other two nodes would be unaware of the change. To combat this problem,
Eventual Consistency is implied, meaning that through some means, eventually, the change would be
mirrored across all three nodes. In relation to ACID, until a transaction has completed, the contents of
that transaction won’t be available to access within a database. Essentially, CAP, is ACID, but applied to a
distributed system.

Many database vendors rave about their software being fully ACID compliant, so this was just a quick
overview to show what that actually is. Although a lot of different systems support ACID, it’s not something
that just happens. In most cases you’ll need to show you want to start a transaction, which can be different
depending on the query language used, but the concept is the same. Once the transaction has been
initialized, the queries running within it are added. Then when it needs to be committed, this is added to the
query in the way the language requires it. There are cases when you simply don’t need transactions, so just
remember when you want to use a transaction, you’ll probably have to indicate it in the query, unless your
chosen database vendor has different rules.

Although transactions are used with the intention of rolling them back if they fail, this isn’t always the
desired outcome. In some cases, such as in MySQL, you need to explicitly say if you want to rollback a failed
transaction, and this can only be done before the transaction is committed. Each database vendor will have
its own rules when it comes to how transactions are handled, so if you want to use them just be sure to check
the official documentation to ensure you’re using them correctly.

Chapter 1 ■ IntroduCtIon to Graph databases

4

What is a Graph?
Trying to define what a graph actually is isn’t the easiest of tasks, as it has a variety of meanings depending
on the context. In a traditional sense, graphs are used to display how two or more systems of data relate
to each other. A basic example could be something as simple as, number of pies eaten over a certain time
period, or pies over time. The graph seen in Figure 1-1 illustrates that very example, and shows a way of
representing pies over time.

If you were grading this graph it would be very a low one, there aren’t any units on the axis and the
origin hasn’t been marked with a value. Although it’s not the most imperative graph, it does still show
(assuming the units would increase from the graph origin) that as time goes on, more pies are eaten, then
after so long, the rate in which pies are eaten goes down. Graphs of this nature are normally called a bell
curve, or an inverted U, depending on the context, where a graph hits a maximum point, and curves on
either side, causing a bell shape.

The example used here was a graph showing pies over time, but there are of course many, many more
graphs and graph types out there. Graphs can range from the serious (Showing important data, company
growth), to the not so serious (I’m sure we’ve all seen some crude ones) but no matter the subject matter,
the graphs all share one common trend, a relationship. In our example the relationship is pies with time, but
you could equally have something like profits and time in a graph showing company growth. Getting this
relationship is the key part of what makes a graph a graph, and applying that to a mathematics-based graph
or to a graph database is the same concept.

When it comes to the mathematical graphs, you can have the different data systems relating using
various different graph types, such as a line graph, bar chart, or even a pie chart. Some very literal examples
of these can be seen in Figure 1-2.

In graph databases, you wouldn’t necessarily see the data shown in any of those formats, although given
that graph nodes are represented by a relationship, they are still graphs. Regardless of the complexity of the
graph, even if it’s just a small, simple one, it can be translated to a graph database, to allow it to be queried
and analyzed.

Figure 1-1. A basic graph showing how pies are eaten over time

Chapter 1 ■ IntroduCtIon to Graph databases

5

Graph Theory
If you were to simplify graph theory, you could say it was just that, the study of graphs, but there is a lot more
to it than that. Developers have been taking the principles of graph theory and applying them to databases.
Thanks to this hard work there are graph databases, that take relating data very seriously.

In a mathematical sense, graph theory is the study of structures used to model the relationship between
objects. In this context, a graph is made up of nodes (or vertices) and potentially edges connecting them. If
you wanted to demonstrate this visually, it can be done with an arrow to indicate that a node is connected
to another node. For example, if we had two nodes, A and B, to which A was connected to B with an edge, it
could be expressed as A ➤ B. The direction is shown here in that A is connected to B, but B is not connected
to A. If the edges that make up a graph don’t have an associated direction (e.g., A ➤ B is the same as B ➤ A),
then the graph is classed as undirected. If however, the orientation of the edge has some meaning, then the
graph is directed.

There are other applications for graph theory outside the world of mathematics. Since graph theory, at
its lowest level, describes how data relates to each other, it can be applied to a number of different industries
and scenarios where relating data is important. It can be used to map out chemical structures, create road
diagrams, even to analyze data from social networks. The applications for graph theory are pretty wide.

Origins
The first known paper on graph theory was written way back in 1736 called “Seven Bridges of Königsberg” by
Leonhard Euler, a brilliant mathematician and physicist, considered to be the pre-eminent mathematician
of the 18th century. He introduced a lot of the notation and terminology used within modern mathematics,
and published extensively within the fields of fluid dynamics, astronomy, and even music theory. Leonhard
Euler was an incredible man and helped further modern mathematics and other fields to where they
are today. If you have a chance to read up on him. Right now though, we will focus on “Seven Bridges of
Königsberg,” from which graph theory originated.

The city of Königsberg, Prussia (now Kaliningrad, Russia) was built on top of the Pregel River, and
included two large islands that were connected to each other and the mainland by seven bridges. The
problem was to see if it were possible to cross each of Königsberg’s seven bridges just once, and be able to
visit all the parts of the city. You can see an abstracted version of the problem in Figure 1-3.

Figure 1-2. A comic from xkcd 688 showing some very literal, self-describing graphs

Chapter 1 ■ IntroduCtIon to Graph databases

6

After abstracting the problem into a graph, Euler noticed a pattern, based on the number of vertices and
edges. In the Königsberg graph, there are 4 vertices and 7 edges. In the literal sense, Euler noticed that if you
were to walk to one of the islands, and exit to another, you would use an entrance bridge, and an exit bridge.
Essentially, to be able to traverse a path across a graph without crossing an edge more than once, you need
an even number of edges.

Euler theorized that to traverse a graph entirely, by using each edge only once, depends on a node’s
degrees. In the context of a node or vertex, degrees refers to the amount of edges touching the node. Euler
argued that if you were to traverse a graph fully (using an edge only once), you can have either 0, or 2 nodes
of odd degrees. This was later proven by Carl Hierholzer, and traversing a graph in this way is known as an
Eulerian path or Euler walk in Euler’s honor.

Graph Databases
Using graph theory as a basis, graph databases store data in the form of nodes (vertices), edges, and
properties. When creating a node, you would give this node properties, then any edges used could also have
properties. This helps build up a graph of data that is related directly to the data, rather than in rows with
join tables as you would in a relational database.

Visually, you could interpret a graph database as a kind of web. Although you can have a graph database
without any edges, more often than not, it will have them, and lots of them. A good example of a graph
database in the physical world would be a crime diagram from a TV show, or of course in real life if you
happen to have seen one.

With the crime diagram, suspects are related to other suspects, or the victim, and various bits of
evidence are related for various reasons. This could be easily replicated in a graph database format, as it’s
just a big graph. The nodes in this case would be your evidence items and suspects, and they could connect
together for various reasons, which would be logged via properties. Those who know of Breaking Bad, may
remember Figure 1-4, but for those that haven’t seen the show, or can’t remember this particular scene, it’s a
crime diagram used in the show, which reminds me, SPOILER ALERT!

Figure 1-3. The 7 bridges of Königsberg, abstracted into a graph format

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to Graph databases

7

Another example of this is one from the TV show Heroes. The show aired in 2006 about ordinary people
with extraordinary abilities (I loved that show) but it had a huge tie to the flow of time. If you haven’t seen the
show, or didn’t care for it that isn’t a problem, there’s one example of a brilliant graph that’s worth sharing
either way.

In the show things start going wrong, so to help control this, one of the characters makes a physical
timeline of events, featuring when events happened, who was involved, and how it was all related to any
other event. This is very much like the previous example in that events would be classed as nodes, and the
string connecting those nodes as edges. In Figure 1-5 you can see a portion of the graph from the show,
where you can see the connections between different pictures and items on various bits of string.

Figure 1-4. A scene from Breaking Bad showing an evidence board, with connected people and evidence

Chapter 1 ■ IntroduCtIon to Graph databases

8

Depending on the graph database system you use, the language may change slightly, but it all comes
down to vertices, nodes, and edges. As you’ll soon learn Neo4j consists of Nodes, Relationships, and
Properties, so here edges are relationships, and nodes are nodes. Titan DB on the other hand (another graph
database) uses nodes and edges to describe its relationships. Although the terminology differs between the
two, the underlying meaning is the same.

Of course in this case, there’s only one graph database of interest, and that is Neo4j. Although the details
of Neo4j will be explained in the next chapter, for now Neo4j uses Nodes, Properties, and Relationships
(edges). As I said, different systems have different ways of wording the different elements, but it comes down
to the same structure.

Relational Databases
Relational databases have been around for a while, and if you’ve ever used Drupal, WordPress, Magento, or
a number of other applications, you’ll have most likely used MySQL, which is a common relational database.
MySQL is an example of a SQL (Structured Query Language) database, which stores its data in the form of
tables, rows, and columns. This method of storing data is based on the relational model of data, as proposed
by Edgar Frank Codd in 1970.

Within a relational database, you’ll create a table for every type of data you want to store. So for example,
a user table could be used to store user information, a movie table to store movies, and so on. Each row in an
SQL table must have a primary_key which is the unique identifier for the row. Typically, this is an ID field that

Figure 1-5. A still from Heroes, showing all of the characters lives and interactions represented with string and
other items

Chapter 1 ■ IntroduCtIon to Graph databases

9

will automatically increment as rows are added. Using this system for storing data does work quite well,
and has for a very long time, but when it comes to adding in relationships, that’s when the problems
potentially start.

If you’ve ever had to spend time in Excel, or another spreadsheet application, then you know how
relational databases work, at least on some level. You’ll set up your columns and then add rows that
correspond to those columns. Although you can do a lot of other things in these applications, such as adding
up all of the values in a column, the concept is the same. Excel at least has multiple sheets, and in the context
of the spreadsheet application, a sheet is like a table, where you’ll have one main document (the database, in
this case) with many sheets, containing main columns and rows, that may or may not be related.

Relationships
When creating a relationship in a relational database (or SQL database), you would create your two data
types, such as person and team, and most likely have a joining table named something like person_team.
In the joining table, the unique identifier used in each table will be added as a row in the joining table. For
example, if a person with the ID of 1, is in the team with an ID of 2, then the row in the person_team table
would be something like that shown in Table 1-1.

This approach works when it comes to relating small amounts of data, but when you start having to
do multiple joins for thousands of rows, it starts to become slow, and eventually, unusable. This is a huge
problem for the amount of data stored these days, and how that data relates to other data. If your website
gets hit with a large spike of traffic, you’ll want to be able to scale your database to keep up. In most cases
this’ll be fine, but if there’s a join-intensive query, then unless it’s been heavily optimized, there are going to
be problems when you compare that to how easily a graph database handles the same issue.

Origins
As I mentioned earlier, the model used was proposed by Edgar Frank Codd in 1970 while he was still working
at IBM. In 1970, while working at IBM, Codd published “A Relational Model of Data for Large Shared Data
Banks” which showed the potential of his data model. Despite his efforts to get IBM to implement his
changes, they were slow to do so, and only started doing so when competitors did.

Table 1-1. An example joining table between a person and a team

person_id team_id

1 1

1 2

2 3

4 3

5 2

6 3

7 1

8 1

Chapter 1 ■ IntroduCtIon to Graph databases

10

Although they were slow in adapting the changes, they eventually did begin to implement them, but
because Codd himself wasn’t involved with the process (and the team weren’t familiar with his ideas),
rather than using his own Alpha query language, the team created their own. The team created SEQUEL
(Later renamed SQL) and because it was so superior to what was already out there, it was copied.

Since the term relational database was so new, a lot of database vendors ended up adding the term to
their name because of its popularity, despite said systems not actually being, relational. To try to prevent this
and reduce the number of incorrect uses of his model, Codd put together a list of 12 rules which would be
true to any relational database.

NoSQL
When you talk about databases at all, you need to mention NoSQL, which can be interpreted as “Not only
SQL” or “Not SQL”, depending on the conext. Just to make things confusing. Some NoSQL databases can
handle SQL based queries, whereas others cannot, so this can differ between different NoSQL databases. If
you’re in doubt, just check the official documentation. The name is also somewhat misleading anyway, as it
should have been called something like, NoREL (No relations) as it goes away from the traditional relational
data model, so technically speaking, Neo4j and graph databases in general, are a type of NoSQL database.
You may notice with some NoSQL databases that the query language used is somewhat similar to SQL in
how it’s written, which can help developers feel at ease with a new query language. You’ll notice this with
Cypher (Neo4js’s query language) a lot if you’re from an SQL background, as there are noticeable similarities
in the syntax of both.

Depending on the database used, the benefits can be slightly different. There are those that focus on
being able to scale well (example) and others that aim for data consistency. When you scale up a database
to meet demand, it’ll create more instances (or copies) of it, so the load is shared between however many
instances exist. An issue with this though, is that the databases won’t communicate with each other, so
if a change is made, it may be made on one database but not the others, making the data inconsistent.
When scaling, NoSQL databases can use the “Eventual Consistency” model to keep their data correct. This
means that if a change is made, eventually, the change will be mirrored to all of the databases, but until this
happens, the data retrieved may be incorrect. This is also known as BASE transactions, or Basic Availability,
Soft-state and Eventual consistency transactions, which essentially says, it’s available (so it scales, and data
can be accessed) and it’ll eventually be fully consistent, but this can’t be guaranteed.

Back in 1998, Carlo Strozzi used the term NoSQL to describe an open source database he was working
on, as it went away from the typical relational-database model by not exposing SQL to the user. Although this
was the first time the term was used (purely because of its lack of SQL) it wasn’t like the NoSQL databases we
know now. Strozzi’s database was still relational, whereas typically, NoSQL databases aren’t.

The term stuck however, and then led to a new breed of databases that decided to go against the
then-standard relational model. It would be a bit broad to have every database that wasn’t relational under
the same umbrella without some categorization, so the main types are key-value, column, document, and
(you guessed it) graph.

Key Value
Given its name, you’d be right to assume that this is in fact, key-basedvalue storage. Essentially, you don’t get
a table, you don’t get columns in the sense of a relational database, instead the database is like one big table,
with many columns, or keys. Values are stored within the database using a key, and are retrieved using that
key. This makes it a lot simpler than a traditional SQL driven database, and for some web applications, this is
more than enough.

Chapter 1 ■ IntroduCtIon to Graph databases

11

This approach does work for a lot of cases when your data isn’t related, or especially structured but
that’s not always the case. This database approach is good if you just want to store a chunk of data you don’t
need to query against. You could, for example, store some JSON within a key-value store, but until it was
retrieved from the database, you wouldn’t be able to query against or use the data in any way.

Column
The column type of NoSQL database holds many similarities to the key-value based NoSQL database, in that
it is still stored and retrieved using a key. The difference is that each column in the database consists of a key,
value, and a timestamp. This is especially useful when scaling, as the timestamp can be used to work out
which content is stale when the database is updated.

Document-orientated
Technically speaking, a document-orientated NoSQL database is actually a key-value based database, just
a little bit more intelligent. The key-value style of the database is still respected, but in this case, the value is
a structured document, rather than just text, or a single value. This means thanks to the increased structure
of the information, the database will be able to perform more optimized queries, as well as making data
retrieval easier in general.

Documents can be technically anything, depending on the database vendor’s preference. One popular
choice is JSON, which isn’t the best for structuring data, but it allows the data to be used by both back- and
front-end applications.

Graph
The graph style of NoSQL database is different still, and stores its content in the format of Nodes, Properties,
and Edges. Throughout the course of the book, there will be a lot of talk on graph databases, as Neo4j is of
course one. For now though, it’s good to note that despite being a graph database, it’s still a type of NoSQL
database.

Summary
In this chapter lots of different database information has been covered, but things will move on from here.
You always need to know the theory about something before you can properly use whatever it is you’re
learning, and that’s what this chapter is all about. It shows that something conceived as early as 1736 by the
brilliant Leonard Euler may still not see the light of day until the technology exists to make it happen.

When you talk about databases, you can never discount relational ones, and of course, this chapter
was no exception. Relational databases have been around for some time now, mainly due to the abundance
of resources to help you, and web applications that utilize them. Although they also relate data, this can
come at a cost when relationships become complex, as you have more and more tables to join. Graph
databases put relationships first, which means complex relationships are possible, without compromising
performance.

There are many alternative databases out there, but each one has a different purpose, including Neo4j.
We’ll be relating a lot of data together in this both, crafting recommendations, and much more. Although
I’ve only just touched on Neo4j, there is a whole chapter on its terminology, internals, and generally how it
works, so don’t worry if it’s something new for you.

13

Chapter 2

Getting to Know Neo4j

Now that we’ve been over the theory of the various types of database, and even had a bit of a history lesson
on the origins of graph theory, it’s time to get into the good stuff, Neo4j. This chapter will give you a full
overview on Neo4j, how it works, who’s using it, and of course, why you should be using it. To kick things off,
let’s get a bit of information about Neo4j, and have a look at why you should be using it.

Neo4j is an open-source project, backed by Neo Technology which started back in 2003, with the
application being publicly available since 2007. You can install Neo4j on Windows, OS X, or Linux so you
can pretty much install it wherever you like, provided the machine meets the minimum requirements. The
minimum requirements are detailed in the “Under the hood” section of this chapter.

The source code and issue tracker are available on GitHub so the community can help with the
development of the product. There is an enterprise option of the application which has additional features,
support, and is essentially a different product. This version is also closed-source, so it’s only available when
you pay for the license. You would only need to use the Enterprise edition if you had a very large Neo4j-backed
application, and would be more comfortable having dedicated support. There is also a free Personal license
which is applicable if you’re in a company that has less than three employees, you are self-funded, and
don’t have more than US$100K in annual bookings. Essentially, if you’re working on some kind of small
application, you’ll be fine with the personal license.

The current release (2.2.5) shows a great improvement over previous versions with speed increases,
reliability increases, an optimized browser, faster Cypher queries, and a fancy new logo which can be seen
in Figure 2-1. This will be the version used throughout the book, so in newer versions there may be some
differences in the user interface and functionality, but wherever possible, I’ll be trying to keep everything
as relevant as possible. Technical books have to deal with this issue a lot, where versions change, and after
the time of printing sometimes the code samples no longer work. To try and keep these instances down to
a minimum I’ll be hosting certain code samples and code online, so that if changes do happen the hosted
code can be updated, to help keep things relevant. In the cases where this is applicable throughout the book,
where the code can found will be made clear as and when it’s needed.

Chapter 2 ■ GettinG to Know neo4j

14

Neo4j has always touted itself as “the World’s Leading Graph Database” (it’s even in the website title)
and based on the releases mentioned on their website, they seem to put out new versions of the site every
month on average. The 2.0 release came out back in 2013 and since then, they’d been maintaining the 1,9.*
version of the application (which now sits as version 1.9.9, and is not recommended for use, but is still
available) as well as the new version. This shows the software is being frequently updated with bug fixes and
optimizations. You can read more about the different releases at http://neo4j.com/release-notes should
you be interested.

Although the release history is good to know, it’s not what’s most important here. We’re here to talk
about the current release (2.2.5) so let’s get on with that, shall we?

Give Me a REST
To communicate with Neo4j, you use its REST API via HTTP. For those unfamiliar with what REST is, then
this is for you. Representational state transfer, or REST is a style used when designing network applications,
and in pretty much all cases, HTTP is used to send the needed data to the application. When an application
implements this protocol, it uses the HTTP verbs: GET, PUT, POST, and DELETE to perform certain actions
within the application. In a nutshell this is how REST works, and it’s what Neo4j uses to manage its data.
This is just a heads up if you see REST later in the book and aren’t sure what it is.

Why Choose Neo4j?
Of course there are a lot of reasons to use Neo4j, some of which I’ll explain in a bit more detail, and a few
others that are just worth mentioning. Neo4j has a huge community built around its 1,000,000+ downloads
(which is mentioned on the website as one off the top 10 reasons to use it), and that figure is growing every
month. They’re also able to boast 500+ Neo4j events a year, 20,000+ meetup members, and a whole lot more.

These organized meetups mean that all over the world there are people who are passionate about Neo4j
and want to talk about it, or so the website claims. Technology-based Meetups (whether it’s about Neo4j, or
any other technology) allow you to get insight into new techniques, use cases, examples, or even ideas that
you had never thought of. When you’re in a room with a lot of like-minded people, everyone is able to help
each other and share ideas, you never know what’ll happen when you go to a meetup.

Since 2000, Neo4j has been growing into its position as the top graph database on the web today, and
there’s a lot of work that’s gone into getting it that far. Now, some 15 years later, Neo4j is a hugely dependable
product offering scaling capabilities, incredible read and write speed, and of course full ACID compliance.

One of the big benefits of Neo4j (which will be seen as we go through the book) is that it’s easy to
pick up and learn. Although it’ll be covered below, the query language, Cypher, has been designed to be
descriptive to make it easier to understand, and also to learn. The Neo4j team has also published a number
of helpful articles on different use cases for Neo4j, with how-to guides included. These can be found on their
website, should you want to take a look.

Figure 2-1. The new logo for Neo4j as of the 2.2.0 release

http://neo4j.com/release-notes

Chapter 2 ■ GettinG to Know neo4j

15

When you’re building an application around a particular technology, you want to have confidence that
you’ll be able to host said technology and that it’ll be able to cope with the large amount of traffic you’re
application will get (we can all dream for that, right?), and Neo4j is no exception. This is reliant on two
factors though, Neo4j itself and where it’s hosted. Hosting options for Neo4j will be covered in Chapter 9, so
you’ll be able to learn more about the hardware side of things there, but as long as you have a solid hosting
platform, Neo4j is designed to deal with large amounts of traffic.

In addition to many other features, Neo4j offers cluster support and high availability (HA) which means
that, thanks to its master/slave design and its ability to propagate changes between the other instances in the
cluster, your application will not only stay up under pressure, it’ll be fast too.

Cypher
When the developers behind Neo4j were working on the query language to power it, they wanted something
easy to use and easy to read. As mentioned above, Cypher was designed to be easy to read, and is described
as “like SQL a declarative, textual query language” on the Neo4j website. The reasoning for developing
Cypher this way comes down to ease of use, but also to help those coming from an SQL background feel
more at ease using a non-SQL-like database. There’s a full chapter dedicated to Cypher and all of its glory,
so there won’t be too much detail here, but you can’t mention the reasons for choosing Neo4j without
mentioning Cypher.

To make things as easy as possible, Cypher queries are descriptively written, and when the syntax finally
clicks it makes it so easy to familiarize yourself with how it all fits together. When I was first using Cypher,
I had to keep referring to the documentation to see where I was going wrong, but eventually it clicked and
all made sense. We’ll be going into a lot more detail about how Cypher works in a later chapter, so more
complex actions will be covered for there. As with everything it’s best to start with the basics. The basic
Cypher syntax is as follows:

() Node
{} Properties
[] Relationships

These can be combined in a number of ways to achieve different queries. When searching through data,
adding a property can filter the result set down, based on the value of that property. The same can be said for
relationships, adding a relationship constraint to a query can give a more relevant and condensed result set,
rather than seeing everything. One basic query that you may use a lot (I know I do) is:

MATCH (n) RETURN n;

This query returns every node in the database, which in the query itself is aliased with `n`. When I
say every node, I do mean that, so it’s advisable that you only run this on local environments, and not in
production. If you ran this on a database with millions of nodes, it would take a long time and could also
block some important transactions from happening. A property constraint could have to be added to the
query to make it return a smaller subset of results, but sometimes, you just like to look at all the nodes in the
graph. Using constraints would be recommended if are querying data on a large database to reduce to load
time and make your result set smaller.

Relationships are one of the things Cypher tried to keep simple. It was also important to make the query
language look descriptive, which you can see in the following query.

MATCH (a)-[:CONNECTED]->(b) RETURN a, b;

http://dx.doi.org/10.1007/978-1-4842-1227-1_9

Chapter 2 ■ GettinG to Know neo4j

16

This query illustrates getting all nodes that are related to each other by the `CONNECTED` relationship,
and then returning these nodes for use somewhere else. The main thing about relationships is the direction,
illustrated by the --> in the above. In the example it’s looking for any nodes related to any other nodes by
that relationship, so depending on your dataset, that could be a lot of nodes. In this case though, any node
`a` with an directed relationship `CONNECTED` to another node `b`. There are multiple ways this could be
made more specific, such as searching for nodes with a specific label, or a specific property.

Although this overview is quite basic, it should hopefully give a taste of what Cypher can do, but also
how easy it is to use, even with something like relationships. In the coming chapters, there will be a more
detailed overview on Cypher itself, how to use it, and some of the more complex operations it’s capable of.
It’s still possible to see that thanks to the way it’s written, it makes the learning curve quite low, so you can be
working on complex queries quickly. The use of Cypher also goes hand in hand with Neo4j’s Browser, which
is amazing, and a very powerful tool when it comes to learning the language. With that being said, let’s talk
about the Browser.

Browser
With the release of 2.2.0 came a new version of the Browser bundled with Neo4j (as shown in Figure 2-2).
Before the update it was nice, but the improved design, layout, and speed make it so much better. The
browser gives you the ability to query your database using Cypher, where you’ll be able to view live results.

Figure 2-2. The screen that greets you when you navigate to the Neo4j browser

Working this way offers a number of advantages, including instant feedback, so if you make a mistake,
you know what went wrong. The results returned from these queries can be seen in a graph (if applicable)
or as a list of results. Each of these has their advantages, being able to see the graph allows you to see
relationships, and potentially modify your query to make it more optimized.

Chapter 2 ■ GettinG to Know neo4j

17

When you set up Neo4j, you’ll have a blank database, but to make the process of learning Cypher easier,
a number of sample graphs are included within the browser that you can load in and experiment with. One
of these graphs is the movie graph, which is provided by the lovely people at Neo Technology, and is simple
to install. You can type `:play movie graph` to view the instructions required to load in this data into your
database.

To demonstrate what the different result types look like, I’ll be running `MATCH (n) RETURN n;` against
this database. If you have access to Neo4j (installation instructions are available in Chapter 3) I’d advise
you do the same. Whether you’re performing the query yourself, or just following along (which is of course
perfectly fine) then the results will look similar to Figure 2-3.

Figure 2-3. The graph view of running a MATCH (n) RETURN n; query on the Neo4j movie database

Although you can’t see it from Figure 2-3, the result graph is very interactive. You can click on Nodes to
get their individual properties, relationships, and an overview of your data. You can also see labels attached
to nodes, and different labels can even be color coded to make it easier. If a node has multiple relationships,
the graph will do its best to make these all visible, although some overlapping can occur if there are a lot of
nodes. To make things even easier, you can also change the color or size of a relationship or node to make
things easier to distinguish.

In Figure 2-4 you can see the list view with no display options, just data. The list view allows you to see
all of the properties associated with your nodes, in a more traditional table-style layout. If you have a lot of
data in your database, being able to see queries in this way is better because it allows you to see all of the
properties of your returned nodes at a glance.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1227-1_3
http://www.allitebooks.org

Chapter 2 ■ GettinG to Know neo4j

18

Whenever possible, you’ll be given the chance to view your results in both views; however it’s not
always possible to plot the results on a graph. This can happen when you’re returning specific properties
from a node or relationship. In this case you would only be presented with the table view. Essentially, if your
result set can be viewed as a graph, the option to view it will be available.

Every query performed is still visible on the screen when you perform another (unless you delete it
manually, that is) so you always have a history to refer back to if you aren’t quite sure which results were
returned from a particular query. In addition, you can also stop slow/inefficient queries (that’s a new feature
as of 2.2.0) so that it doesn’t crash the application. You can also export the graph in a number of formats,
including SVG, CSV, JSON, and PNG, if you want to export that set of results, or use it in a presentation. You
can also export the table-based output as a CSV or JSON.

The browser allows you to easily interact with Cypher so you could create your entire data structure
from the browser. Having the browser can be useful when hosting Neo4j, as it allows you to interact with
your data easily, directly from the browser. It also contains a number useful links, the option to read tutorials,
manage user settings, and more. You can also save queries for later if you have certain ones you like to run
more often, or to make running a demo easier.

Thanks to Neo4j’s REST interface (which will be covered in just a moment) you may never need to use
the browser, but it’s a great resource, especially when learning. It’s useful to use when texting queries that
are going to be used in applications, as it gives not only the query results, but also shows any errors, and
provides the execution time, so if a query is running a bit slow, you can tweak it in the browser to get it right,
then put it in your application.

If you run a system with registrations or user-created content, being able to quickly jump into the
browser and run a simple query allows you to see new registrants, new nodes/relationships, and more. You
could even save these queries for later use (using the star icon) to make it even easier. If you want to use the
result for something, then you can just export it into the previously mentioned formats, nice and simple.

Figure 2-4. The rows view of running a MATCH (n) RETURN n; query on the Neo4j movie database

Chapter 2 ■ GettinG to Know neo4j

19

Webadmin
Another interface available through the browser is webadmin, which can be found by clicking the
information icon in the sidebar and then clicking the “Webadmin” link at the bottom of the panel. This is
essentially an administration section for Neo4j, where it’s possible to view rough stats, check configuration
values, and much more. For most beginners, this section won’t really be of much use, but knowing it’s there
and what it can be do is useful.

When you first navigate to webadmin (http://localhost:7474/webadmin/) you’ll be presented with
a presentation about the features available within the section, should you need it. If not though, it can be
closed and you’ll gain access to the first tab, the dashboard. If you close it accidentally, or you’d like to have
another look at the guide, a link to it is available from the top-right corner of the screen.

On the dashboard you’ll be able to see some statistics about your database; however it’s worth noting
these values are approximate because this data is intended to give a status of the system, rather than giving
exact stats. Either way, you can see counts for: nodes, properties, relationships, relationship types, and
approximate values for database disk usage and logical log disk usage.

In addition, you get access to a graph for the counts of the nodes, properties, and relationships,
which can be broken down into various time increments. This allows you to see the growth (or fall, if your
application removes values) of the values within your database, and also a breakdown of when certain spikes
or surges occur. When trying to debug issues, or gain additional insight into your application, being able to
see at a minimum the last 30 minutes’ values, right up to a years’ worth of data is useful.

That’s just the dashboard! The webadmin also allows you to interact with Neo4j in a number of ways,
including easily updating node values, indexes, and more. You can also gain access to the configuration
values being used for Neo4j, the underlying JVM, and more. This section within the browser provides
multiple means of access to your data and easy interfaces for updating values. Although a beginner may not
use this tool much, it has many features, and Neo4j allows you to overview the configuration straight from
the browser, rather than having to access the server directly.

Under the hood
To make an application this universal and powerful, you need to use a quality tool. In this case, Neo
Technology opted for Java, well, Java 7 to be precise. Java has been around for at least 20 years, and the fact
it tries to make it so its developers will write the code once, and (hopefully) run it anywhere, makes Neo4j’s
cross-platform nature a lot easier. I could very easily go into a lot of detail about Java; however for the
purposes on Neo4j, or at least the beginning aspects of it, all that needs to be taken from the use of JVM
(Java Virtual Machine) is that it’s a good choice.

To make the building of the various applications Neo4j is responsible for easier, it also utilizes Apache
Maven. Apache Maven is an open-source project management tool that makes aspects of the managing the
codebase for the project a lot easier.

The browser that comes with Neo4j is built using Node.js which is built on Google Chrome’s Javascript
engine, and is fast, lightweight, and efficient. Using Neo4j’s REST interface allows the browser to interact
with the data within Neo4j really easily. It’s good to see that the browser is built using the same REST
interface that anybody has access to in Neo4j, so if you wanted to, you could build your own browser.

With all of these specs you’d think you’d need a beast of a machine, and if you go off the recommended
specifications, you’d be correct. If you’re going to be processing a huge database, then you’ll need a pretty
powerful machine, the specs of which can be seen in Table 2-1.

Chapter 2 ■ GettinG to Know neo4j

20

The specs themselves aren’t actually too bad, part of the use of Java requires a bit more RAM than
normal for caching and other operations, and the better CPU is for better graph computation, so they’re
reasonable recommendations. The recommended disk is an SSD to increase the speed of reads and writes,
and the filesystem needs to be ext4 or ZFS (Standard in UNIX based filesystems) to ensure it can be fully
ACID compliant, because they take advantage of ext4 and ZFS ACID-compliant writes. Compared to some,
this application isn’t as hungry, and this level of specification is only needed if Neo4j is going to be powering
a large amount of data, and handling a lot of operations.

Who’s Using it?
With Neo4j launching back in 2003, you can imagine that there are a number of people using it by now, and
you’d be correct! With downloads for this graph database now over a million, among all of those downloads
are some high-profile clients, such as Ebay, Walmart, and Cisco. In these cases each of the clients, high
profile or not, happen to have their own use case for Neo4j, be it for recommendations or social aspects, and
Neo4j is the tool for the job. Some of the other companies said to be using Neo4j (according to the Neo4j
website) are as follows:

•	 onefinestay

•	 Zephyr Health

•	 FiftyThree

•	 Gamesys

•	 Lufthansa Systems

•	 Wanderu

•	 Tomtom

•	 Telenor

•	 Infojobs

•	 Zeebox

•	 classmates

•	 spring

•	 HP

•	 National Geographic

Table 2-1. The minimum and recommended specifications for Neo4j

Requirement Minimum Recommended

CPU Intel Core i3 Intel Core i7

Memory 2GB 16—32GB or more

Disk 10GB SATA SSD w/ SATA

Filesystem ext4 (or similar) ext4, ZFS

Chapter 2 ■ GettinG to Know neo4j

21

Social and recommendation aspects aren’t the only reasons to use Neo4j. Clients also boast being
able to use it for Fraud Detection, Identity and Access management, Data management, and more. This is
of course a small subset of actual clients and use cases, and with 200 enterprise subscription customers,
including 50+ of the Global 2000, there is certainly no shortage in companies, big or small, that see Neo4j as
the solution to their various graph database problems. For more information on Neo4j users, go to
http://neo4j.com/customers/.

Indexes
If you’re from the database world at all, then you’ll know about an index. A database index is a copy of
information in the database for the sole purpose of making retrieving said data more efficient. This does
come at the cost of additional storage space and slower writes. With Neo4j, an index can be created for a
particular property on a node, that has a certain label. Applying the index is done using the following query:

CREATE INDEX ON :Person(name)

This query will make an index on all of the name properties for any node with the label `Person` so if
that query is one that is used often in your code, then this will be a lot faster. To save on speed, when Neo4j
adds an index, it is not immediately available, and will be added in the background. When the index is ready,
it’ll be automatically used within your existing queries if it’s possible to do so.

Being able to use indexes in this way means you can monitor your application for potential places for
improvement, and then apply an index to help speed up the operation. The index will also be kept up to
date without any additional maintenance, so if it’s done correctly you’d just apply an index, forget about it,
then reap the sweet optimized rewards. For some reason though, an index may not be working out for you.
If that’s the case, an index can easily be dropped. Again with no change to any existing code, Neo4j will work
out whether an index is applicable to use by itself. There will be a more in-depth look at indexes in Chapter 4,
this was just a brief overview to show that indexes are available within Neo4j, and are easy to use.

Caching
To help Neo4j be as fast as possible, two different caching systems are used: a file buffer cache and an object
cache. These two systems have very different roles. The file buffer cache is intended to speed up queries
by storing a copy of the information retrieved from the graph, whereas the object cache stores optimized
versions of nodes, properties, and relationships to speed up graph traversal.

File Buffer Cache
When data is returned from the database, it’s then stored in the cache in the same format, so if the same data
is asked for again, it can be quickly retrieved. In addition when writing to the cache, each action is written to
the transaction log, so if something does happen, Neo4j’s ACID nature will stop this from being written, and
the data will be available in the logs for recovery. This however is just an edge case as the cache is perfectly
safe to use, and gives a speed increase as a bonus. The cache will also try and optimize things where it can
as well. For example, if lots of small transactions are taking place, these will be combined to have fewer page
rights, and therefore, you guessed it, more speed.

Of course you can’t just cache the whole database, but that would take up a lot of storage, and that just
isn’t a viable option, so to avoid this, you’ll set a cache limit. The more cache you have, the more space it’ll
take up, so essentially the bigger the cache you have, the more disk space you require. This can then have
additional cost constraints if you’re hosting provider is capped by size because increasing the limit usually
results in an increased cost.

http://neo4j.com/customers/
http://dx.doi.org/10.1007/978-1-4842-1227-1_4

Chapter 2 ■ GettinG to Know neo4j

22

Data stored within the cache isn’t always needed. Sometimes an action may be a one-off, whereas other
repeated actions remain uncached. To get around this, Neo4j will keep an eye on the size of the cache, when
it begins to reach capacity, it’ll swap out old, unused items with better ones that will make the system faster.
It’s all very clever.

Depending on your needs, it’s possible to change the amount of space dedicated to this cache. Since
the data in this cache is stored within RAM, it’s not always possible to dedicate large amounts to it; however,
it cannot be disabled, so it’s highly recommended you have at least a few megabytes dedicated to it.
Although it’s a useful cache to have enabled, it’s good to know you can strip its RAM dependency right down,
especially on systems where there isn’t a lot of RAM available.

Object Cache
The other caching system within Neo4j is the object cache, which allows for fast traversal of the graph and
is split into two types: reference caches and high-performance caches. The reference cache system utilizes
the fact it’s built on Java to maximize as much of the JVM heap memory as possible. Now this could be a very
greedy process, but luckily, the cache is the lowest rung in the ladder, and will only maximize its use of the
heap memory if it’s safe to do so. Essentially, any shared applications running on the same JVM aren’t using
it, and Neo4j itself doesn’t need it for anything else, so on that side, it keeps itself clean.

The cache system itself stores nodes and their relationships, so with this cache in place, if you’ve done
a lookup already and the data hasn’t changed, the query will hit the cache and give a response immediately,
just as you’d expect from a cached system.

High-performance Cache
The other variant of the object cache, high-performance, is only available in the Enterprise edition of Neo4j,
and stores nodes, their relationships, and their properties. This on the surface sounds great, if there’s more
stuff in the cache, then that makes everything faster, right? Although this can be the case, it won’t always
be. This caching system relies heavily on Java’s garbage collection to ensure the cache doesn’t get too large.
Although this cache can be very powerful, it’s one that must be monitored to ensure there weren’t any large
pauses or performance losses when the caches were cleared.

Extending Neo4j
It’s possible to add additional functionality to Neo4j with the use of plugins. If there is a particular bit of
functionality you want in Neo4j, there may be well be a plugin for it, or if you’re feeling up to the task, you
could write the plugin yourself. One of the more popular plugins is the Spatial plugin, which extends Neo4j
to allow it to do location-based queries. This gives some very powerful functionality to Neo4j, by exposing a
series of location-based tools and shows the power of plugins and how extendable Neo4j is.

Plugins can be installed in a variety of ways, depending on how they’re built. For example, the Spatial
plugin can be installed using Apache Maven, as well as being placed in the plugins directory (/var/lib/neo4j/
plugins, if you’ve installed in the default location) directly. Although plugins can be installed in a number of
ways, the fact that it’s possible to use them in the first place is the main thing.

Chapter 2 ■ GettinG to Know neo4j

23

Summary
This chapter provided more insight into Neo4j and some of its many features. As the book progresses,
a number of these features will be explained in more detail, especially Cypher since it’s Neo4j’s query
language and will be used to interact with Neo4j throughout the book. Not only is Neo4j currently boasting a
new release, 1,000,000+ downloads, and more than 10 years in production, it has also made a solid place for
itself in the market, that isn’t going to change any time soon.

With its ever-growing time in production, the community, and resources for the community continue to
grow, if you ever have a query, StackOverflow, the Google group, or even the dedicated support staff at Neo
Technologies can help. If you’re having a problem, odds are that someone has had that problem before, so
have a search and you may well find your answer. Failing that, if you create a post on either StackOverflow or
the Google group, somebody will be able to help you.

A very brief look at Cypher has shown the potential power it has as a language, and how easy it is to
use. The descriptive nature of the query language keeps it easy to pick up, and you can try and much as
you like in Neo4j’s browser, using the demo data, or your own. The browser is a brilliant accompaniment to
an equally brilliant platform, and adds a set of tutorial and data-management tools, as well as the console
where you can interact with your Neo4j data live, with the chance to view the results in table or graph format.

We’ve talked enough about why Neo4j is good to use, and have also learned a bit more about it in this
chapter. Now, it’s time to actually get Neo4j up and running on your system, which is covered in the next
chapter.

25

Chapter 3

Get Up and Running with Neo4j

Things are starting to get interesting now. We’ve been over a bit of history, and then got to know Neo4j a little
better as well, now it’s time to get started. To start taking advantage of the awesome things Neo4j has to offer,
we need to install it first. Whether you use Windows, Mac, or Linux, getting started with Neo4j is really easy.
On any of these systems, it’s possible to install Neo4j directly, or potentially by using Vagrant, which is a tool
used to create development environments. If you’re unfamiliar with Vagrant, don’t worry, everything will be
explained soon enough.

 ■ Note Not everybody likes to use virtual environments so to cover all bases whether you use Windows,
a Mac, or a flavor of Linux, all of those installation instructions will be covered. If you’re going with a direct
approach, then regardless of your operating system, you’ll need to download the code from neo4j.com, so to
avoid repetition, let’s get to that. There is also an option to build Neo4j from source, so if you’re interested in
doing that, head to the Neo4j github page (github.com/neo4j/neo4j) and you can follow the helpful instructions in
their README.md file.

Downloading from Neo4j.com/download
You can use the package downloaded from the Neo4j website regardless of your operating system, however
in the case of Ubuntu it’s actually easier to install it using a package. The option to install via the website is
still there, so it’s worth covering.

When you head to the page, you can choose from a number of options, most of which are about which
of the editions to download. The option to go for here is the Community edition, unless you’re willing to
dive into the 30-day free trial for the Enterprise edition, that is. Once you’ve hit the conveniently large green
button, you’ll be taken to a download page and your download will start automatically, with a link if it
doesn’t work.

Windows users actually get a rather easy installation process, as you actually just receive an .exe file
that does all of the hard work for you, but we’ll go through that in a moment. For Mac and Unix, what you’re
downloading is a zipped Neo4j environment, ready to run and essentially all you have to do is start the
server. Before you can do that though, you’ll have to make sure you have either Oracle JDK 7 or Open JDK 7
installed. In this case JDK stands for Java Development Kit, and in this case, it’s for the Standard Edition.

Conveniently enough, there are actually links to both of these on the download page, which makes
things a little easier, although there are alternatives available, which we’ll cover on a per-OS basis.

Once JDK is sorted, you can theoretically run the server, and you’ll be ready to go. Since the steps can be
different per system, those will be covered separately, starting with Windows.

http://neo4j.com/
http://github.com/neo4j

Figure 3-1. The dialog visible when you start Neo4j on Windows 10

ChApTER 3 ■ GET Up AND RUNNING WITh NEo4j

26

Installing on Windows
Installing directly on Windows couldn’t be easier, as the download you receive from the Neo4j website does
everything, including dealing with the JDK dependency. If you’re running Windows Enterprise edition, you
will need to install JDK, but as mentioned above, you can find a link to that from the download page above.
In this case, I’m installing on clean version of Windows 10, but these instructions should also work on other
versions, too. If in doubt, check the Neo4j website. Anyway, back to business, this easy installation results in
you being able to double click the .exe file to install everything, which is brilliant. You’ll be guided through
the installation process and you’ll be prompted to pick an installation location, and after the process is
complete, you’ll get the option to run Neo4j.

When you run Neo4j, you’ll see a dialog similar to that in Figure 3-1. The only difference potentially
being the path of the database.

To start the server, just hit the button, then the dialog will change, and the server will be available at
http://localhost:7474, which will be shown in the dialog. You’re now up and running with Neo4j,
nice and easy!

Installing on Mac
For the sake of keeping things even, this installation will take place on a clean Mac with OS X Yosemite
(Version 10.10.3, to be exact) which comes with Java installed, but in this case, that’s not what’s needed.
Sadly, there aren’t any easy shortcuts to getting installed on a Mac, it pretty much just comes down to
downloading Neo4j, and ensuring your system is able to run it. As I mentioned earlier, you’ll need JDK 7 to
run Neo4j, so the first thing to do is check the version you have installed, which you can do via your favorite
Terminal application, and pressing:

java -version

ChApTER 3 ■ GET Up AND RUNNING WITh NEo4j

27

This will tell you the version you have installed, if any. If your version isn’t 1.7, then you’ll need to
install the correct version in order for Neo4j to run. There are a couple of approaches that can be used here:
installing direct via the one of the links from the Neo4j download page, or by using Homebrew. As both are
perfectly reasonable choices, and I don’t want to force my will on you (I like the Homebrew option) we’ll go
through both, starting with going direct.

Installing from a Website
This approach uses one of the previously mentioned links from the Neo4j download page. It doesn’t
matter which approach you go for, but the easier of the two is the Oracle approach, purely because the link
provided takes you to the correct place on the website. You’ll need to accept the user agreement for Java SE
Development Kit, then download the version for OS X. The file you download is a DMG, so just follow the
steps and you’ll soon have JDK installed. One alternative is to use Homebrew, which we’ll go through now.

Going with Homebrew for Java
If you’re unsure of what Homebrew is, or you’re fan of it and like being reminded how great it is, then let’s
address both, shall we? Homebrew is a package manager for OS X, which makes installing missing packages
from your system easy as pie. One of the first packages I’d always install is the demo one they use, wget.
Homebrew’s tagline is “The missing package manager for OS X.”

Essentially, there are a lot of smaller packages that you may need as a developer, and installing them
manually is a pain (wget being a great example) so Homebrew tries to make that easier. Each package is
stored in its own location on your system, so it can be just as easily removed as it is installed, plus, this means
that if there’s a bug in a package you’ve downloaded, you can update it, brilliant! Of course, Homebrew takes
care of maintaining the packages. You just install or manage them via commands, it’s easy! The good thing is,
you can search Homebrew for different packages as well, so before trying to build something from source or
using an installer, check if Homebrew has a tap for it (tap being what they call their package repositories).

Enough chat, let’s install it, which is nice and easy, so there’s nothing to worry about. To get the code
needed, it’s best to head over to the website and ensure it’s correct (it’s right at the top), then paste the code
into your Terminal window, and it should look something like this:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install")

When you run the command, it’ll give you step by step instructions on how to install it, and soon
enough you’ll be done, and ready to move onto the next step, installing Homebrew Cask.

Homebrew Cask
The concept of having a decent package manager on your Mac is great, but one for your extensions is even
better, and Homebrew Cask, is what you’re looking for. As I briefly mentioned earlier, Homebrew Cask is
an extension of Homebrew, taking the concept and applying it to applications instead. The applications in
question are open source and readily available, so you can’t install Photoshop with it, essentially. You can
also install things like Java with it, which is why I’m bringing it up now. As with Homebrew itself, you can
just search an application (Google Chrome is a common one) and it’ll install it for you, without you having
to download anything from the website. Since the Java SDK can be installed this easily (it’s just called Java,
but it’s actually the SDK) it’s time to install Homebrew Cask and get moving. The code for Homebrew Cask is
actually a cask, so installing it can be done like so:

brew install caskroom/cask/brew-cask

https://raw.githubusercontent.com/Homebrew/install/master/install

ChApTER 3 ■ GET Up AND RUNNING WITh NEo4j

28

It’s around about 50MB in total, so it may take a little time depending on your connection, but soon
enough you’ll have it installed, and now, it’s FINALLY time to install Java. First, the version of Java in Cask
may be wrong, so to fix that, run the following:

brew tap caskroom/versions

This updates the versions repository for Java from the caskroom, it’ll download a tiny a package, then
you can finally run:

brew cask install java7

This will install the missing Java version and allow you to finally run Neo4j, which is brilliant. Plus with
it being managed by Homebrew it can be just as easily removed as it was installed, and it can be updated just
as easily, which is brilliant.

With Java Installed
No matter how you’ve installed Java, it’s now installed, which means Neo4j is finally ready to go. Now, all that
needs to be done is to `cd` into where you have Neo4j on your system, and run the following:

./bin/neo4j console

This will run the Neo4j server, and it’ll be available for you to see at http://localhost:7474
when it’s finished doing its thing and prints `INFO [API] Remote interface ready and available at
[http://localhost:7474/]` to show that it is. You can now have a chance to play with the Browser and get
used to where everything is, which is good because you’ll be in here a lot.

Now Neo4j is installed on your system and ready to use. Now, anytime you want to use Neo4j, just
`cd` into the directory and run `./bin/neo4j console` then you’re up and running. The first time you visit
the Browser, you will be required to authorize the application by logging in, and then by changing your
password. The default details are `username: neo4j` and `password: neo4j` but they’re also shown on
the screen when you need to login, so it’s easy enough to follow along. Be sure to make a note of the new
password, as this will be needed to authenticate any application that needs to access your data, so when
using it in production, be sure it’s a secure password.

Installing on Ubuntu
When it comes to installing on Ubuntu (or any other Debian based Linux distribution), there is actually
a nice and easy way to get Neo4j installed, which is always a good thing. As mentioned earlier, you could
of course use the package downloaded from the Neo4j website, and install Java 1.7, but because Ubuntu
doesn’t official support 1.7, it’s a little awkward, but it is still possible. For ease though, we’ll be running
through the approach that uses Ubuntu’s package manager, which means you can have Neo4j installed in a
few lines. Let’s get started.

The first thing that you’ll need to do is open up a Terminal window, and type `sudo su` which will
prompt you for the administrator password. This process logs you in as the root user on the machine which
means all commands are run as root/admin. The commands that are required all require root access, so
it essentially saves having to put `sudo` in-front of every command. With you now as the root user (there
would have been some change to the prompt, potentially) the first command that needs to be run is:

wget -O - http://debian.neo4j.org/neotechnology.gpg.key | apt-key add -

http://debian.neo4j.org/neotechnology.gpg.key

ChApTER 3 ■ GET Up AND RUNNING WITh NEo4j

29

This command adds the Neo4j repository key to the package manager, so that when we add where to
download Neo4j from, it actually works, by signing the downloads correctly. When the command runs, it’ll
download the key from the Neo4j website, then pipe it into `apt-key` so it can be used. The next command
on the list is adding where to get Neo4j from, which we do so by running:

echo 'deb http://debian.neo4j.org/repo stable/' > /etc/apt/sources.list.d/neo4j.list

Running this command will add the Neo4j repository location to the `apt` sources list, so when we go
to install it, it’ll now look for Neo4j in the correct place. One thing worth noting here is the word `stable`, as
this refers to the build of Neo4j that will be downloaded, and is the recommended version to use. If desired
it’s also possible to use the `oldstable` or `testing` builds of Neo4j, but again, it’s recommended that `stable`
is used.

With the desired build added, there’s only two steps left, update the system, then install Neo4j. Updating
the system is easy, and can be done by:

apt-get update -y

This will install any updates to the system and check all of the repositories in the source list for any
updates. When the command has finished, there’s one more left, installing Neo4j, which is done with:

apt-get install neo4j -y

This will take care of downloading the files, and also installing everything. When everything is finished,
the Neo4j Browser will be available to you at http://localhost:7474 just like the other solutions. The
installation process has installed Neo4j as a service, and it’ll now always run when you start the machine.
You can of course start, stop, or even restart the service as often as you like, depending on preference. If you
run `service neo4j-service` (or with sudo in front if you aren’t still the root user) the following options are
provided: start, stop, status, restart, and force-reload. So if you’d like to restart to the service, just run `service
neo4j-service restart` (Don’t forget about sudo, if you need it) and the service will restart itself.

As with the different build of Neo4j that could be used, there’s also the different versions that can be
installed as well. The version that has just been installed is the community addition, but advanced and
enterprise editions can be installed with `apt-get install neo4j-advanced` and `apt-get install
neo4j-enterprise` respectively.

With all of the steps done, that’s it, Neo4j is installed on the system and is ready to use, and with it being
installed through the package manager, it means that any updates that come through will automatically be
applied, which is always nice.

Install Neo4j in a Vagrant Box
Vagrant is a system for provisioning your application, and allows it to run in a virtual server environment.
This means that you have what would be a server, right on your local environment, which makes
collaboration, debugging and management a lot easier. You also don’t need to have just one Vagrant box
either, multiple different versions can exist on your system. You can even create your own or use others
from the community (I have one for Neo4j, for example) which makes being able to jump on and try a new
technology a lot easier, because if somebody has already built a vagrant box for the software you want to use
then it’s less setup for you, which is great!

I could go on for ages about how good Vagrant is, but it’s time to start getting it installed. There are
a number of solutions you can use for creating virtual operating systems and of course Vagrant doesn’t
reinvent the wheel on this, it just utilizes those packages that exist, well Virtualbox and VMWare, that is.

http://debian.neo4j.org/repo

ChApTER 3 ■ GET Up AND RUNNING WITh NEo4j

30

If you’re unfamiliar with these systems, they allow you to create a virtual environment on your host machine,
so you could install Windows on your Mac, for example. Of all the packages it supports, Virtualbox is the
favorite, as it’s open source and cross platform, which makes it a good system to depend on.

Since we know Virtualbox is needed, it’s time to install. If you head on over to virtualbox.com to
download the latest version for your system. At the time of writing, Vagrant is version 1.7.4 and Virtualbox
is supported for versions 4.0.x, 4.1.x, 4.2.x, 4.3.x, and 5.0.x. This pretty much means you should be good
to go no matter what version you have, but it’s always best to check the officially supported version on the
vagrantup.com website before installing. You can of course install one of the other supported virtualization
platforms, which will cause the configuration of the box to be different (we’ll get to that soon) but it should
function in the same way.

With the emulation stuff out of the way, it’s time to install Vagrant itself, so you can now head over to
vagrantup.com and downloaded the relevant installer for your system, and when it’s all finished, there’s
only a couple more steps until you’re up and running. The command to get everything started in Vagrant
is to use `vagrant up` which will start an essentially empty server in the directory you use. With additional
configuration in the Vagrant file, and the use of something to provision the box, like Puppet or Chef, then
you’d have your ready to use server. Thanks to some Blue Peter style magic “Here’s one I made earlier” as I’ve
already created and configured a Vagrant box to run Neo4j, which you can get from:

https://github.com/chrisdkemper/neo4j-vagrant

Thanks to it being on Github it’ll always get updated, so if any bugs come up, I can get them fixed, or
if any updates come up (feel free to do a pull request) then just do a `git pull` and you’ll be fine. Speaking
of `git pull` you’ll need Git to pull down the repository. If you aren’t familiar with Git, it’s a brilliant source
control system, and you should really familiarize yourself with it, in case you need to use it. If you’re new to
Git, then there’s a number of online resources to get you up to speed, but all you need to pull down from the
repository is:

git clone https://github.com/chrisdkemper/neo4j-vagrant.git my-project

This will pull a copy of the code down to your location machine, and just change `my-project` to
whichever folder name you’d like. Then when you’re inside you can just do `git pull` to get any updates, and
if you make no changes then that’s it. You can of course change the name of the remote, and add a new one
for your project code.

With the code now on your machine, all you have to do is run `vagrant up` and the box will begin
provision, and when it’s done the server is available at http://localhost:7474.

Summary
Depending on your choice of system, your installation process may have been a lengthy or short one, but
either way Neo4j is up and running, and ready to use on your system. Now things are finally starting to get
interesting, in the next chapter, we’ll be taking a look at Cypher, and the commands you’ll need to perform
certain actions, which is just what you need to get up to speed with it and see how it works.

Although installing on your host system is perfectly fine, if you haven’t tried Vagrant, I’d highly
recommend it. I’ve of course given my Vagrant box repository as the example project, however you can use
Vagrant to install anything you’d like. You can either write your own or use one from the community. It’s a
brilliant resource, and the more people use it (or something similar) the sooner we’ll get rid of the whole
“Well, it works on my machine” discussion, which has been going on a little long now.

http://virtualbox.com/
http://vagrantup.com/
http://vagrantup.com/
https://github.com/chrisdkemper/neo4j-vagrant
https://github.com/chrisdkemper/neo4j-vagrant.git

31

Chapter 4

Meet Cypher

With Neo4j finally installed, it’s time to get into the really interesting stuff, and start looking into its query
language, Cypher. When I first heard Cypher, I actually thought of a certain Pokemon with knife hands that
was green, wings, and is pretty cool. For those who aren’t so into Pokemon, I’m referring to Syther. Name
aside, Cypher really is a brilliant language, and when you get the hang of it, it’s really easy to use.

This chapter will serve as a cheatsheet essentially, giving a rundown of the different commands and
actions that can be performed, and the code needed to do them. With that out of the way, the next chapter is
when things will start to get interesting, when we use the knowledge gained from this chapter, and apply it to
actual data, to show the raw power Cypher has to offer.

Basic Syntax
When you perform a Cypher query, what you’re actually doing is giving it pattern, and then Cypher will use
that pattern to find data. With any other pattern, you’d need to use certain patterns and identifiers to find or
match certain data, and of course Cypher is no exception. We’ve already seen the patterns needed to match
Nodes, Relationships, and Properties previously, but it’s time to go into a bit more detail.

In addition to the patterns themselves, one thing worth noting is the casing of the language. Throughout
the book you’ll see certain keywords (or clauses, as they’re known in Cypher) written in uppercase. As
with other languages (such as MySQL) the casing actually isn’t important, but when you start writing more
complex queries, having the clauses in capitals helps distinguish the different parts of the query. In this case,
I’ll be staying with uppercase as it helps to break the query up, and makes it easier to read. Values on the
other hand are case sensitive. With that out of the way, it’s time to cover how to use Nodes, Relationships,
and Properties.

Before we go into the specifics of the different parts of the query, let’s look at an example query, and
break down the components of it to make going through it later easier. Since it was used previously we’ll go
with the following query:

MATCH (n) RETURN n;

The query in this case starts with MATCH which is a clause, and a query must start with one, so other
possible options are CREATE and BLAH. If you didn’t start with a clause, then Cypher wouldn’t know what
to do with the rest of the query, so just think of it as an instruction. We then have the node in its parentheses,
aliased by `n`. Since there aren’t any filters or property filters on this query (we’ll get to those later in the
chapter) then `n` actually represents every node in the database. The RETURN part of the query is what is
actually returned, and since `n` is used again, then every node will be returned, and thanks to the query not
being filtered this also brings back all of the properties and relationships tied to these nodes.

Chapter 4 ■ Meet Cypher

32

Most of the time when you’re working with data, you’ll have different types, and of course Neo4j is no
different here so to distinguish types, Labels are used. A label is represented using a colon, followed by the
name of the label and can only be applied to nodes. For example, if you were to use the previous query but
you wanted to get all of the nodes labeled with `Product` it would be as follows:

MATCH (n:Product) RETURN n;

It’s possible for a node to have multiple labels, and it’s also possible to query against multiple labels, so
if a `Promoted` label were to be introduced to certain products (in addition to the Product label) that could
be represented like so:

MATCH (n:Product:Promoted) RETURN n;

Now only nodes with both labels will be returned. The previous query could well be written without the
use of the `Product` label to only return the promoted products, but it does show how multiple labels can
work together.

These were just a few examples to give an idea on the basic structure of a query to make things a bit
easier going forward. There are still things such as Properties and Relationships to go over, but they’ll be
covered in isolation. With that out of the way let’s take a more in-depth look at nodes.

Nodes
As you may recall, nodes are represented using parentheses (), so if you see them in a query, you know it’s
a node. In most cases you’d see a node with some kind of identifier inside it, but in some instances, if you
don’t care about the name (or alias) of the node(s) you’re querying, it can actually be omitted. Most of the
time, the node, or nodes that you are querying will most likely be used later in the query in some way, so
having an alias makes sense. Of course, if you’re for example, just creating multiple nodes, then you could
leave out the alias if you wanted to, but it’s entirely optional. Generally speaking, it’s easier to keep the aliases
in just to get into the habit of doing it.

There are a few rules when it comes to identifiers. First, they can contain underscores and
alphanumeric characters, but must always start with a letter and are case sensitive. It’s also possible to
put spaces in your identifier, but if you do this, you’ll need to wrap the name in backquotes (or back tics,
depending on your preference) for example (`this has a space`). For simple queries it makes sense to use an
easy identifier so in a lot of cases something as simple as `(n)` will be more than adequate.

With that note about identifiers out of the way it’s time to move on. As mentioned earlier, when you
create nodes, it’s possible to add labels to them to make finding them easier later on. In most cases you may
use one label, but multiple labels can be used if it suits your data.

If you want to use a label in your query, then it can be done like so `(n:Person)`. In this case the label
is `Person`, but still using `n` as the identifier. Now if you had a complex query that returned different types
of nodes, you may want to use a more specific identifier so that it can be reused at a later point. Something
like `(people:Person)` will allow us to use the keyword “`people`”, instead of `n`, later on in our query. If
additional labels are required, you can just add them like so: `(james:Person:Relative)`. In this case, the
identifier for the node is `james` and there are two labels, `Person` and `Relative`.

In terms of just nodes by themselves, that pretty much covers the basic pattern. Of course, the node
pattern can be used with properties, and the pattern is required when querying relationships, but these will
be covered in their respective sections, so we may as well move on to properties.

Properties
A property is useless by itself, as they need to be applied to either a node, or a relationship, which is why
Nodes came first. When it comes to representing properties, this is done using curly braces {} and in most
cases a property will be inside the parentheses of a node. When performing a read-based query (getting

Chapter 4 ■ Meet Cypher

33

data out of the database) then the property will act as a filter, whereas when creating or updating nodes,
the properties will be set onto that node so depending on the context, properties can have multiple
functions.

There are other times when properties are used, but the most common format they’ll be seen in will
be `(n:People {name: “Chris”})` and its function would be altered depending on the context of its use. In
the case of `(n:People {name: “Chris”})` we are looking for all “People” nodes, `n`, with a name property of
`“Chris”`, which we know is a string literal from the double quotes. Many different value types can be used
when saving properties, which can be seen in Table 4-1, but the easiest type is a string, as if it’s not a numeric
value or an array, it’s a string. The names for properties work in the same way the nodes, so they must start
with a letter, be alphanumeric, and are case sensitive. Again like with nodes, if you want to use spaces you
can, but these must be wrapped in backquotes, the “`” character, in order to work.

Table 4-1. Different datatypes available within Neo4j

Property type Explanation

Numerical values Essentially, you can store any numerical value you want. The limits of this come from
the JVM, in particular the Long, Float and Double integer types, so if you have some
bespoke use cases for numerical property values, look in that direction. Otherwise,
Neo4j in most cases will be fine with whatever number you throw at it.

String Strings are fine to use within Neo4j, and will be stored without any craziness.

Boolean Booleans are stored as `true`/`false`, and are stored without any real issue, in lower
case. If you create a node with say TRUE, it’ll lower case the value when stored. You
can however still write cypher queries using uppercase Boolean values, and it will still
work the same way.

Array You can store arrays in Neo4j, but arrays have certain rules. An array must contain
values of the same type. An array of different types (A string, an int, and a Boolean, for
example) isn’t supported. If you tried to store an array of multiple types, cypher will
cast all values in the array to whatever the type of the first item is, so a string, integer,
and a Boolean would save as three strings, e.g., “string”, “100”, “true”.

In addition, you cannot create a node with an empty array, because Neo4j needs to
know the type when storing the array. Once the type has been determined, the array
can then be emptied. If you had an array of strings (such as the example above) you
could then empty that array, but any values added to it, would be cast as strings,
because that’s the array type, and the type doesn’t change.

Multiple properties can be specified when performing queries as needed. Each property identifier and
value pair needs to be separated with a comma, just be sure not to leave a trailing one, or you’ll get a Cypher
query error. This comes in really handy when creating nodes with a lot of properties, or creating when you
want to return a very specific subset of nodes.

It’s not just nodes that can have properties added to them; relationships are also able to have them
assigned, which makes being able to query nodes (or saving information about the relationship) really easy.
Speaking of relationships, let’s discuss them, shall we?

Relationships
Relationships are probably one of the most powerful features within Neo4j and graph databases in general,
and Cypher makes them really easy to use, both in terms of creation and retrieval. For a relationship to
happen, there needs to be things to relate, and what do you relate in Neo4j? Nodes.

Chapter 4 ■ Meet Cypher

34

Depending on whether or not you’re querying a relationship, or creating one, the pattern of the
relationship is slightly different. When creating a relationship, you need to at the very least specify a
direction, so at the very basic level, nodes can be related like so:

(a)- ->(b)

This shows that `a` is related to `b`, which can be seen by the use of an arrow, as it’s pointing to the
node it’s related to. This relationship has no type, or properties, or an identifier, though, so it’s a very basic
relationship. A more complex example of creating a relationship would be something like:

(j:Kerbal {name: "Jeb"})-[r:KNOWS]->(b:Kerbal {name: "Bill"})

The important part of the pattern is in the middle, as the first and last parts are just nodes. This
particular pattern could be used to create a relationship between these nodes, or to search the database for
nodes that met the correct criteria. The nodes here have the label of `Kerbal` with the property `name` with
the value of Jeb, and another by the `name` of `Bill`.

In case the reference to `Kerbal` is lost on you never fear, as they’re just the race of people used in the
game Kerbal Space Program which is a brilliant game. The names Bill and Jeb are in the game, however
they’re the favorite characters of my favorite YouTuber, Robbaz. Not relevant to Neo4j, but always nice to
know.

Anyway, that example has a bit more information than the basic one, as it’s not just an arrow this time,
there are also square brackets (or brackets, as they’re actually called) in this one. Names aren’t required
if you don’t need them, that’s why the first example had none. So, with nothing to go in the brackets, they
were removed. Inside the brackets you can give the relationship an identifier if you’d like to use it later in
the query, and also a type. The types are similar to a nodes label, however you can only have one type per
relationships, but you can have many relationships between nodes.

The `-[r:KNOWS]->` part of the query is what we’re interested in. Here `r` is the identifier (which could
be omitted if it’s not needed), the type (all caps and underscores are allowed) and if they were needed,
properties too. The head of the arrow is pointing right in this case, but can be on either side depending on
the relationship, inwards or outwards.

In this example the relationship being created was that Jeb knows Bill, but not that Bill knows Jeb.
Essentially this means, if you were to get every node with that relationship, then only Jeb knowing Bill would
be returned, not the other way around. In cases where relationships work both ways, the relationship was
just created twice, with the direction of the relationship flipped in the second query.

This just means that you’re able to create one-way relationships that can be inward or outward. Another
example would be say, a dog and its owner. If there were Dog nodes and Person nodes, the Person could be
related to the dog with an `OWNER` relationship, but this wouldn’t work the other way around.

Of course, this has just covered a one-to-one relationship, what about a chain of relationships? This is
entirely possible in Neo4j and is known as a Path, although all relationships are paths really, just of different
lengths. Paths are what makes Neo4j exciting, and where a lot of its power lies. Cypher also gives control over
how it queries Paths. This is covered as needed in the next part of the chapter.

Querying Cypher
Knowing the patterns to perform a query is great, but without knowing how to query Cypher in the
first place, you aren’t going to get very far. Depending on your use case, there are a number of ways to
communicate with Cypher, which will be covered in a bit more detail momentarily. By far the most universal
way is to use the REST API via HTTP, which will work regardless of your system. In these examples I’ll be
using `curl` to interact with the API, as it’s the most common way of doing so. Before the `curl` side of
things, let’s go through the easier way using the brilliant Neo4j Browser.

Chapter 4 ■ Meet Cypher

35

Browser
By far the easiest way to query your database with Cypher is by using the browser. Depending on what stage
you’re up to in terms of development, how you use the Browser will be different, however it always has uses.
Whether this is for adding nodes, reviewing data, or performing certain admin actions.

In the early stages, it helps when getting used to the syntax of Cypher, gives useful error messages,
keeps a history of your previous queries, shows you your results, and many more things. Even after the inlaid
stages, the Browser is brilliant for debugging your application, so if you’re getting a strange return from
Neo4j, checking the Cypher query in the Browser can help to work out if it’s the query that’s wrong, or if the
issues lie somewhere else. You can of course get a query working as needed in the Browser and then use in
your application after it works as expected, which makes things a lot easier.

The Browser was created to allow interaction with the data within the database, so of course the prompt
to perform Cypher queries is at the top of the page, with space below for the query history. To the right of the
prompt are the options to save the query for later, create a new query, or execute the query.

The console also allows you to perform keyboard actions that you’d be used to in a proper editor, so
highlighting words for copy/pasting is easy, and as an added bonus, pressing return will run the query, just
like a proper terminal, so the experience of using it is very nice.

For every query performed (even the ones with errors) it adds another item below the prompt, so you
have a full query history available at all times, which is really useful. Each item also comes with options
to either Export the resulting data, delete the item from the history, or make that particular result set full
screen, which can be seen when you hover over an item. The fullscreen view is excellent for navigating a
large result graph, or if you happen to return a large amount of properties and having the additional ROM is
rather beneficial.

Although it’s possible to query data easily in the Browser, it can also be used to update or create nodes,
relationships, and also manage the properties for these. It’s a very nice interface to interact with Cypher, and
thanks to the query history and the instant feedback on errors, it’s a very powerful tool.

If you find yourself performing the same queries often, it may be worth saving the query for later use, as
mentioned earlier. If you save a query, it’ll be available for later use via the ‘Saved queries` button on the
left of the Browser, which happens to be a star to keep things easy. When the save button is pressed, it’ll open
up the saved scripts dialog for you regardless, and if you have a query in the prompt when it is pressed, that
query will be added to the list. The star will also highlight to show the query has been saved.

After you save a query, changes can be made to it quite easily, so if the query changes, you can just
select it from the saved scripts menu, which will load it into the prompt, ready to execute. If any changes are
made, the star will change to an exclamation mark to show changes have been made, so just hit this button
when you’re finished with the modifications, and it’ll be updated. You can of course just run the query and it
won’t be updated.

Using the Browser is the easiest way to interact with your data, but is of course useless in applications,
so when it comes to it being used in an application, it needs to use the REST API (which the Browser uses
under the hood anyway) so let’s move from the Browser to that, shall we?

REST API
You communicate to Neo4j using its REST API, which allows you to manage your database by using certain
endpoints, headers, and sending certain data to these endpoints. Through using these things in different
combination you can do anything we’ve mentioned, creating nodes, and relationships, but without using
Cypher. In previous version of Neo4j, Cypher had its own dedicated endpoint to use, so you would essentially
send your Cypher query to `http://localhost:7474/db/data/cypher` and get a response back. This of
course assumes you have Neo4j set up using the default path and ports. The usage of the REST API directly
to perform Cypher queries may be overkill for most cases, but it’s still good to cover how it’s possible. In the
new version, there is still an endpoint available to run Cypher queries, but it’s now done via the transaction
endpoint.

Chapter 4 ■ Meet Cypher

36

We’ve touched on transactions before, but just in case it’s escaping your mind, a database transaction
is a group of queries bundled together, so that it’s possible to roll back the previous actions if one fails, for
example. For the most part that doesn’t matter though as the queries will be one-offs in the examples, so the
transaction will only have one action inside of it.

To get back on track, as previously mentioned `curl` will be used to interact with Neo4j at these
examples. One thing that needs to be added to the curl command is an authentication header, which is now
required so you’ll need your Neo4j username and password to interact with the database via curl.

In previous versions of Neo4j, the authentication module was disabled, so unless you wanted it to be
secured, Neo4j would be open, so no username and password would be required. Now though, as of
version 2.2 Neo4j requires authentication, which is why you need to login to the Browser on first use. In
addition to logging in, you need to change your password on first use, which is another security measure,
but after all of these processes are complete, there will be a set of credentials that you have, which give you
access to Neo4j. If you tried to communicate with Neo4j without changing the password, you would get an
authentication error, telling you that you need to change your password. The easiest way to get around this
problem is to log in via the browser and change your password when prompted to do so. For the sake of ease,
I’ll use the default values for these, which is a username of `neo4j` and also a password `neo4j` but your
password will be different, as you need to change it on first use, as previously mentioned.

We already know the endpoint we’ll be interacting with, which is the transaction endpoint, as
it’s the only way to perform Cypher queries using the REST API. The endpoint being used is
`http://localhost:7474/db/data/transaction/commit` (again, assuming the defaults are used) which
you would also use if you were to perform a transaction with the API also, but we’re using it for Cypher
queries. This endpoint is a little different, as it’s essentially for transactions that have one action. You’ll use
the `commit` segment in the URL, which is essentially committing this transaction immediately, making it
like a normal query, so we’ll be using this endpoint for our Cypher queries.

To perform the query, the basic version of the curl command is as follows:

curl -i -H "Content-Type: application/json" -X POST -u neo4j:neo4j http://localhost:7474/db/
data/transaction/commit

There are many ways to perform curl queries, whether it’s in a Terminal window (Mac and Linux, that
is, the Windows command prompt doesn’t support curl by default) or by installing one of the many available
chrome extensions, or desktop applications. One popular Chrome extension is called Postman, but there are
many other options.

The query in this case (which will be explained in more detail below) is a POST request, so it can also
be done using any technology capable of sending a POST request. Although the examples will be done in
curl, if you’re more comfortable using another platform to perform these queries, then by all means do so.
A breakdown of the query params can be seen Table 4-2.

Chapter 4 ■ Meet Cypher

37

If this query were to be run now, it wouldn’t do anything, as no data is being sent over, which is why the
`-d` flag is needed, which is where the JSON (including the Cypher query) is sent. Before the full query is
used, let’s have a look at the JSON:

{
 "statements" : [
 { "statement" : "MATCH (n) RETURN n;" }
]
}

A query is described as a statement when submitting to the transaction endpoint, so essentially the
JSON above is an array of ‘statements’, with one ‘statement’ inside it. Although the transactions in this case
are only one statement, if you were to add multiple statements it would look something like the following:

{
 "statements" : [
 { "statement" : "MATCH (n:Person) RETURN n;" },
 { "statement" : "MATCH (n:Pet) RETURN n;" }
]
}

Table 4-2. Query Parameters

Flag Explanation

-i This adds an HTTP header to the response, and in this case is optional. The header can be
useful to help debug issues, but if it’s not supplied, then only the response from the server
is shown and nothing else, which in this case will be JSON.

-H This is the header flag, and allows you to add content headers to the request. In this case,
we’re telling the server that the content we’re sending over is JSON. This is important, as
the server expects JSON, so if it’s not in the correct format, it won’t do anything.

-X Represents the request type, which can be typically POST, DELETE, PUT, and the default
GET. In essence we’re posting to the endpoint and getting a result, so it’s just like a remote
form.

-u Finally the authentication for the request. If you didn’t have this, it would give an
authentication error, and also if these details were wrong.

-d This is the data sent along with the request, if it’s needed. This can be POST variables, or
even a string of JSON, which is what we’ll be using it for.

-v (optional) When you’re debugging (or learning, in this case) it’s generally to get as much information
as possible to help find the solution. With curl requests, this comes in the form of the
verbose flag, which when used essentially gets curl to explain itself, and the steps the
command is taking are output to the screen.

You may not want that additional information to be displayed (which is why I’ve marked it
as optional) as it outputs a lot more information, but depending on the use case it can be
useful. To use the flag, just add it like the other flags, just be sure not put it between the flag
and its argument, such as after -X, because -X expects the type to follow it, for example.

Chapter 4 ■ Meet Cypher

38

You’ll notice `n` is used in both queries which would cause an error if it was in the same query, but
since these queries are performed in isolation from each other (although still grouped within the same
transaction) then using the same alias isn’t an issue.

To make the queries in the chapter easier to read, they’ve been spread over multiple lines, but when
you’re running queries on the command line it’s generally easier to remove the formatting and run
everything on a single line. Below is an example of the curl query from earlier with the JSON required to
perform the query, so pretty much everything is in one command.

curl -i -H “Content-Type: application/json” -X POST -u neo4j:password http://localhost:7474/db/
data/transaction/commit -d ‘{“statements” : [{ “statement” : “MATCH (n) RETURN n;” }]}’

With all components of the query in place, if the query is run now, it’ll return every node with all of the
properties attached to them, which depending on the structure of your nodes, will look something like:

{
 "results": [{
 "columns": ["n"],
 "data": [{
 "row": [{
 "uid": "1",
 "date": "29-03-15",
 "value": "10",
 "stat_id": "3"
 }]
 }, {
 "row": [{
 "uid": "1",
 "date": "24-04-15",
 "value": "1",
 "stat_id": "4"
 }]
 }]
 }],
 "errors": []
}

The JSON returned consists of two arrays, ‘results’ and ‘errors’. In this case, there is only one item in the
result array, because only one statement has been run, but multiple statements would result in multiple
result sets. Within the result set, the columns are whatever you have returned, so in this case it is `n` which
is what I specified in the return statement. Each row with the results is a node, and each item within a row
is the properties of the node being returned. One thing you may notice here is the lack of node ids, which is
because they need to be returned in a certain way, which will be covered a little later on. If you had returned
a relationship instead of a node, then each item within the results would be a relationship.

The JSON returned here can be used within an application however it’s needed, so whether you have
one or many sets of results, they can be iterated over without any real issue, In this instance the errors array
is empty (because there aren’t any, of course) but if there were any errors, then they would be output within
the errors array, so if it’s empty, there have been no errors.

Although this was a read query, write queries work in the same way so using this method of performing
Cypher queries via curl, you can manage all of your Neo4j actions from the command line, if you’d like to.
To make this process a little easier though, developers have created a number of libraries to interact with
Neo4j, so rather than having to write the query yourself you can just use a function, method, or whatever the
developer has deemed appropriate. There are many different options available for multiple programming
languages, so if you’d like to use a library, you’ll most likely find one.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Meet Cypher

39

How to Build a Cypher Query
With the basics covered, it’s time to cover the anatomy of the queries, and show what the different keywords
and functions that can be used are, and also how they work. When covering the syntax, I made a point of
leaving out keywords to ensure the usage in each context could be covered separately, without duplication.
Each item will have an example with it, so seeing how it gets used is as easy as possible. Plus, this has the
added bonus of being a great reference guide when you think to yourself “Ah, I know I can do that, but I can’t
remember how” and with a quick glance it’ll all come flooding back.

A Quick note on Comments
Before we dive into the anatomy of Cypher queries, it’s worth mentioning comments. A comment, is a string
of text that can be used within the query, but isn’t executed. You initiate a comment by starting the string
with `//` which makes the text following it a comment, and because of that, not executed. You can include a
comment on a new line in a query, or at the end of a particular part, an example can be seen below:

MATCH (n) RETURN n; //Return all of the nodes, on one line

The text within the comment isn’t executed. The same goes for between lines, as well, like so:

MATCH (n)
//Time to return some nodes
RETURN n

The only time a comment won’t act like a comment is when it’s within quotes, as it then becomes a
string, for assigning to a property, for example.

Enough on that though, it’s time to get started, starting with a clause you’ll see a lot, RETURN.

RETURN
If you want to use the data you’re referencing in a query, then it’ll need to be returned; otherwise, the query
will just execute and you won’t get anything back. This is fine for creating nodes or relationships as you
don’t always want what you’ve just created to be returned, but when it comes to querying data, you’ll want it
returned, or at least part of it.

There’s been a lot of talk of aliases, and the main use for an alias is when it’s being returned, or of course
if you’re using it later in the query. If you reference a node with `n`, then you can use `RETURN n` to have
access to that node’s data within your code. The same applies to relationships. You won’t always want the
full node, what if you only want the `name` property value from your node? That’s not a problem, in this case
`n.name` would just be used after the return. You can also return multiple properties by comma separating
them, like so: `RETURN n.name, n.age`. This can also be achieved with multiple nodes, so if you’re
referencing a relationship, you may have node `a` and node `b`, you can return properties from a, and b, or
both nodes, or nothing. It all depends on your needs. There is always the option of using `*` as well, which
will return everything.

When it comes to return, essentially just think about what you need to use in your application, if you
realize you only use certain properties, then just return those properties. If you have a lot of complex nodes,
returning single properties will optimize the query and make it faster. There’s also the added bonus of
optional properties, so even if the value is null for that node it won’t error, it’ll just return null. Although the
speed increase is small as Neo4j is already pretty fast, any speed increase is better than nothing, right?

Chapter 4 ■ Meet Cypher

40

If you need a return value to have a certain name to make your code easier, you can just alias the query
by using `AS` so an example would be `RETURN n AS Person` so accessing the returned data in code would
be much easier. You can also return unique results, just in case your query would return multiple ones. You
can do this by adding `DISTINCT` to your query.

There’s also the option to perform last-minute filters on results. If you have a numeric value, or any
other that can be evaluated against, you can use something like `RETURN n.age > 30` which will only return
nodes with an age over 30, easy!

If you’re returning a node, you can also return its relationships if you want to. Since you can use
commas to add an argument to a return clause, if you want the nodes relationships you can just add it to
the clause. To do this, just use `(n)-->()` which assuming your node is aliased with `n`, it’ll add the nodes
relationships to the response.

MATCH
When writing Cypher queries, you’ll no doubt see MATCH a lot, as it’s the main way to query the data
and potentially return results. Using match allows you to get information on nodes, properties, and
relationships, but filtering them using various clauses. Let’s quickly run through some of the basic query
patterns you may see.

MATCH (n)
RETURN n;

This will return any nodes stored within the database.

MATCH (n:Person { name: "Chris" })
RETURN n;

This will match any nodes that have the label `Person`, the property `name`, and the value of said
property is `Chris`.

MATCH (a)--(b)
RETURN a, b;

Here we’re matching nodes that are related, regardless of the direction (notice the lack of an arrow) and
returning the nodes from both sides.

MATCH (a)-[r]-(b)
RETURN a, r, b;

In this case, the relationships have been assigned to the `r` variable, which means they can be returned
from the query, so if you need the relationship (or any of its properties) then it can be returned easily
enough.

MATCH (a)-[:RELATED]->(b)
RETURN a, b;

When you don’t want to wildcard everything, you may want to have a certain type of relationship, which
is added with the `:TYPE` pattern. In this case, the type is RELATED and since the relationship isn’t needed
later the alias has been dropped.

Chapter 4 ■ Meet Cypher

41

Rather than only returning the nodes involved in a path, you may want the path itself, which can also be
done easily enough. Using the previous example, that’ll be made into a named path.

MATCH p=(a)-[:RELATED]->(b)
RETURN p;

It’s possible to use multiple MATCH clauses in a query so if you wanted to return two particular nodes,
you could just use multiple match causes and then return the result, like so:

MATCH (a:Person {name: 'Chris'})
MATCH (b:Person {name: 'Kane'})
RETURN a, b;
The previous query could also be rewritten as follows and would still give the same result,
using one MATCH.
MATCH (a:Person {name: 'Chris'}),(b:Person {name: 'Kane'})
RETURN a, b;

This would return the nodes requested just as you would expect, if the nodes can be found. If the
second MATCH failed, then the first one would also fail, and the query would return 0 results, as it’s looking
for a AND also b, in this case, therefore if it can’t find `b` then the query isn’t valid. You can get around
this though, by using an optional match. This will essentially return the match if it’s there, if not it’ll return
`null`, so the query still works.

MATCH (a:Person {name: 'Chris'})
OPTIONAL MATCH (b:Person {name: 'Kane'})
RETURN a, b;

You can also use the optional flag to return potential relationships for a node. If the node only might
have a relationship, then an optional flag can be used to remedy this, like so:

MATCH (a:Person {name: 'Chris'})
OPTIONAL MATCH (a)-->(x)
RETURN a, x;

For all of the `Person` labeled nodes with the `name` of `Chris` both the nodes that do and don’t have
relationships will be returned.

You may also see uses of `START` in some example queries online. Match now is what start used to
be, but now it’s depreciated and is only used if you want to pick out something from a legacy index. Going
forward though, you shouldn’t see or use start in your queries anyway with it being depreciated, but if you
see `START` anywhere, at least the knowledge on it is there.

CREATE/CREATE UNIQUE
This clause is one you’ll be familiar with, as we’ve covered it briefly before, but CREATE does what it says,
creates things. This can be a node, a relationship, a node with a relationship, a node with properties, or any
combination of these. One good thing about return queries, is that you don’t always have to return anything.

Chapter 4 ■ Meet Cypher

42

If you’re just creating a new node or relationship, then there isn’t anything to return, which will make your
query smaller. Of course the option to return from the query is there, but it’s not required. A create can be as
simple as `CREATE (n)` which would create a node with no label, or properties.

CREATE (n:Person:Developer)
Here we can see an example with multiple labels, but no properties.
CREATE (n:Person { name : 'Chris', job_title : 'Developer' })
This example has multiple properties on a node which also has a label.
MATCH (a:Person),(b:Person)
WHERE a.name = 'Chris' AND b.name = 'Kane'
CREATE (a)-[r:RELATED {relation: "brother"}]->(b)
RETURN r

In this example two previously created nodes are being matched, using MATCH and WHERE, and
then CREATE is used to add the relationship between the previously matched nodes. In this case, there’s a
RELATED relationship being added here, with a property of ‘relation: brother’ to give some context to the
relationship.

You can already create relationships with newly created nodes too, so the following example would
create two nodes, and a relationship:

CREATE (:Person {name: "Bill"})-[:KNOWS]->(:Person {name: "Bob"})

If you ran this query again however, it would create duplicate nodes, which isn’t always ideal.
Duplicates can be reduced with query constraints, but depending on the use case, this isn’t always needed.

Being able to create a unique Node or Relationship can come in very useful, for duplication reduction,
and also updating existing nodes. To achieve this, you can use CREATE UNIQUE, which essentially performs
a MATCH without you having to. Using CREATE UNIQUE means if you’re say, adding a relationship to a
Node, you can safely use a create query without the worry of duplication. An example of that would be:

MATCH (bill:Person {name: "Bill"})
CREATE UNIQUE (bill)-[r:KNOWS]->(bob:Person {name: "Bob"})
RETURN r

In this case, if the `Bob` node didn’t exist, it would be created, with the relationship. If the query was run
again though, then the “Bob” node wouldn’t be duplicated, and neither would the relationship. This means
you can have some control over duplication of data within your applications.

DELETE/REMOVE
There always comes a time when you need to delete data, whether it’s a user that has left, or a comment
that’s been deleted, there’s always a need, and that’s what DELETE does. This clause is very simple to use,
and is used to delete Nodes, and Relationships. When deleting nodes you must remember that if you delete
it, unless you delete its relationships as well, it will remain. A basic usage of DELETE is as easy as:

MATCH (n:RemoveMe)
DELETE n

In the query, DELETE essentially takes the place of RETURN and deletes whatever is matched in the
query, which in this case is any nodes with the label `RemoveMe`. This label could have been added by a
worker and flagged for deletion with the `RemoveMe` label.

Chapter 4 ■ Meet Cypher

43

When it comes to removing the relationships it can be done in one step, just use MATCH to get the
Relationships and delete them, which can be done using:

MATCH (n:RemoveMe)-[r]-()
DELETE n, r

The main change here is the inclusion of `r` which is the alias of the relationships (either direction)
found with MATCH. There comes a time when you may be working on a project and need to clear out your
database frequently. This snippet can be used to remove relatively small amounts of data easily to allow you
to start again. The snippet in question is:

MATCH (n)
OPTIONAL MATCH (n)-[r]-()
DELETE n,r

This isn’t recommended for large datasets, as it will attempt to delete all the nodes and relationships
at once, which will be quite intensive. For deleting larger amounts of data, it’s possible to use DELETE with
LIMIT, allowing for batches to be utilized. LIMIT will be covered in more detail later in the chapter.

You don’t always want to remove the entire node though; just certain Properties or Labels, which can be
achieved using REMOVE. The main concept for REMOVE is the same as DELETE, you use MATCH to get the
nodes you wish to modify, then do so with REMOVE, which looks like this:

MATCH (bill { name: 'Bill' })
REMOVE bill.subscription_start
RETURN bill

This example would be used if Bill had decided he didn’t want the newsletter anymore, so code in the
application needed his `subscription_start` property to be removed. Labels work in the same way, just
MATCH it, then REMOVE it, like so:

MATCH (n { name: 'Sara' })
REMOVE n:Remove
RETURN n

In this scenario it’s assumed that there is only one node with the Property ‘Sara’, and that said node
already has a `Remove` label.

WHERE
The WHERE clause is a powerful one as it allows you to filter your queries, to get more specific results.
Although WHERE is powerful, it’s useless without `MATCH`, `OPTIONAL MATCH`, `START`, or `WITH`, as it needs
something to feed it data to filter.

So WHERE is a filter, but one with a lot of flexibility and power, and if you’re from an SQL background,
you’ll be familiar with this already, as the behavior is essentially the same.

Being able to filter on if a node has a certain relationship, if a property matches a pattern, or as little as a
property equals a value; this is just a taste of WHERE’s power, but enough talk, let’s get into some examples
starting simple then getting more complex.

MATCH (n:Developer)
WHERE n.name = 'Chris'
RETURN n;

Chapter 4 ■ Meet Cypher

44

This example would only return nodes with the label `Developer`, with the property of `name`, and a
value of `Chris`.

You can also use WHERE to filter based on value ranges using `<` and `>` such as `WHERE n.age > 30`
which would mate any nodes with the property `age` with a value of greater than 30.

MATCH (n:Developer)
WHERE n.age > 30
RETURN n;

You can also combine WHERE with AND, OR, and NOT to build up some really specific results. Let’s
have a look at an example:

MATCH (n:Person)
WHERE n.age > 18 AND (n.name = 'Chris' OR n.name = "Kane") AND (n)-[:RELATED {relation:
"brother"}]-()
RETURN n;

This was a big example, but let’s go over it in chunks. The first part of WHERE is the filter on if `n.age`
is greater than 18, followed by AND, which is checking if `name` is `Chris` or `Kane` enclosed in brackets to
ensure the `AND` is used properly. Next up is checking to make sure the node has the `RELATED` relationship,
and the relationship property is equal to `brother`. This is why no direction is specified when checking the
relationship, and that empty parentheses are used rather than a node directly.

This is a very specific way of getting me and my brother, or anybody else who happens to be called Chris
and Kane and are also brothers. Depending on the dataset this would be a bit much, so if you had a smaller
dataset, the extra constraint on the relationship may not have been needed.

If you need to ensure a property exists on the nodes you return, then EXISTS is here to help.

MATCH (n:Developer)
WHERE EXISTS(n.subscription_start)
RETURN n;

In this instance, the nodes in question have started a subscription to something and the date has been
stored, so if they’re sending out a newsletter, those that haven’t subscribed won’t be bothered. The EXISTS
function can also be used for relationships, as well as nodes.

When working with property values, sometimes you may want nodes with a certain value, or even those
that don’t have a property set. When a property isn’t set on a node, it’ll return NULL, so if you’re expecting a
value to not be there, you must address it directly, which looks like this:

MATCH (n)
WHERE n.level = 'beginner' OR n.level IS NULL
RETURN n
ORDER BY n.name

This would get all those that were `n.level` as ‘beginner’ or if the level hadn’t been set, and was NULL.
It’s also possible to utilize Regular expressions, within your queries. You can declare a pattern by

using `=~` followed by the pattern. An example of this would be:

MATCH (n)
WHERE n.name =~ '(?i)^[a-d].*'
RETURN n

Chapter 4 ■ Meet Cypher

45

The use of `(?i)` in the expression makes the whole thing case insensitive, that’s why that’s there. This
particular example gets any names that start with the letters between `a` and `d`. This would only really be
used if you had a huge amount of people in a list, and were batching e-mails to send out, or something of
that nature.

You can also essentially inverse a query to exclude those particular nodes by using `NOT`. One usage
would be:

MATCH (n)
WHERE NOT n.name = 'Chris'
RETURN n

This would give every other node that wasn’t `name` equals `Chris`. Maybe somebody needs to send an
e-mail about planning my birthday party or something, who knows? That silliness aside, `NOT` can be very
useful in complex queries when you have a tricky filter and certain values keep creeping in: “Uck, yes, them,
but not you guys!”.

ORDER BY
This clause pretty much does what it says on the tin, it allows you to order the data by something, more
specifically, properties. This can be useful if you want to alphabetize a list, order people by age, or anything
like that. You can sort a response by the properties on a node or relationship, but not by the nodes or
relationships themselves. A basic example is something like:

MATCH (n)
RETURN n
ORDER BY n.name

You’ll notice that the `ORDER BY` is after the RETURN, which is required, and will result in an error if
it’s not in the correct place. Although ordering by one property is good, it’s also possible to sort by multiple
values, which can be achieved by adding a comma, like so:

MATCH (n)
RETURN n
ORDER BY n.age, n.name

When it comes to sorting null values, these will appear at the end of the list, so most importantly,
it doesn’t break the query if the value isn’t there. By default the sort order is ascending, so if you’d like a
descending order, just add `DESC` at the end of the query, which will reverse the order, this also means that
if you do have null values, they’ll be at the start, rather than the end of the query. The previous example,
reversed, would be:

MATCH (n)
RETURN n
ORDER BY n.age DESC, n.name DESC

In this case I’ve reversed both properties, but it only needs to be added to the applicable property.

Chapter 4 ■ Meet Cypher

46

INDEXES
Using indexes is always recommended, but isn’t always possible. An index is a redundant copy of the
information that’s being indexed, to make looking up said information faster. When they can be used,
indexes make things faster, and that’s always good, but it’s possible to have too much of a good thing. Storing
an index takes up space, and also lowers write speed. This comes from the indexes needing to be updated
when new information is stored in the database, creating a performance cost.

Neo4j allows you to create an index on properties of nodes that share the same label. If there is a
particular property that you happen to query a lot, then it may be worth adding an index for it, if it doesn’t
already have one. In some cases an index can be automatically assigned, such as constraints, which will be
covered in a moment. It’s also possible to have a nodes property sit in multi indexes, which has the potential
to cause problems. In the cases of multiple indexes, then the USING clause can be utilized, allowing you to
specify which index the query will use. Unless USING is specified, Cypher will work out what it believes to be
the most logical index to use if some are there to use, and will do this without any additional input from the
user. We’ll also cover USING a little later.

If you create an index in Neo4j it’ll be automatically updated. This includes any updates to node that
have properties in an index and also when new nodes are created meeting the required criteria. Adding an
index can be as easy as:

CREATE INDEX ON :Person(name)

This creates an index on any nodes with a `Person` Label and a name property, and will also be used
automatically, as soon as it is ready. When the query to create an index is received by Neo4j, it’s not added
immediately, and will be used internally as soon as it is ready. This is for performance reasons, and the index
is created in the background to keep everything fast (adding an index on a huge dataset may take some time,
because creating an index is blocking, and atomic) but once it’s done it’ll be used automatically.

As mentioned earlier, you can sometimes have too many indexes, which can actually hinder
performance. It may also be that you have a particularly large index that doesn’t get used too often, and you
want to save space by removing it. If you decide you don’t want a particular index anymore, that’s fine, it can
be dropped as easily as it was created by using:

DROP INDEX ON :Person(name)

This will drop the index, and the database will act as though it never existed. If you change your mind
you can always create the index again.

CONTRAINTS
Using constraints helps keep your data unique, and its integrity intact. Data integrity can mean different
things to different people, but for a registration-based system, having duplicates would be classified as an
integrity violation. Unique constraints are extremely useful when working with information like e-mail
addresses or usernames that are required to be unique, and can cause issues if they aren’t.

When a constraint is created, it creates an index for the properties that are required to be unique. This
is used to help keep track of the existing values, so if it’s not in the index, then its unique value. When the
constraint is created, the index is also, so no need to manually create the index. Once the index has been
built and all nodes scanned, then it is available, and used on queries thereafter. If you have data within the
database that violates the unique constraint, then said constraint will fail to be created. In the event that a
constraint fails to be applied to your graph, you need to resolve any redundancy issues with your data before

Chapter 4 ■ Meet Cypher

47

attempting to apply the constraint again. For this reason, it’s advisable that you add your constraints sooner
rather than later to avoid this type of clean-up. In most cases though, you’ll just create a constraint, and then
that’ll be it, which can be as easy as:

CREATE CONSTRAINT ON (p:Person) ASSERT p.email IS UNIQUE

As with an index, a constraint is added on nodes with a certain label and property combination. In this
case `Person` and `email` respectively. If you try and create a node that violates the constraint, then the
CREATE will produce an error and the node will not be created.

Just like indexes, constraints can be dropped, which is as easy as creating one in the first place, and
looks like:

DROP CONSTRAINT ON (p:Person) ASSERT p.email IS UNIQUE

This would also remove the index used with the constraint, so if that index was helping with
performance, or something of that nature, then it may be worth adding it back in after dropping the
constraint, but in most cases it can be removed and then forgotten.

LIMIT
This clause simply limits the number of rows that’ll be returned. Without the use of this clause, any
applicable rows will be returned, which isn’t always the desired outcome. There are many use cases for
LIIMIT, from getting the first five registered users, to being able to list the top ten products within a system.
Although both of these things could work well as a full list, sometimes you just want a small subset of data.

Being able to limit results is also useful when it comes to batch deleting items, or if you need to limit a
result set to pass it on to another part of the query.

When using a limit, if the rows returned are greater than the limit when the limit is reached, no
additional rows will be returned. This of course means if there are only 5 applicable rows when a LIMIT of 10
is specified, all 5 rows will be returned. It can be added to a query like so:

MATCH (n)
RETURN n
ORDER BY n.name
LIMIT 3

When using LIMIT, ensure it comes at the end of the query it’s related to, as that’s where it goes. In this
example LIMIT is used to restrict the query to 3, so if there were 5 results, only 3 would be returned, but if
there were only 2, then 2 would be returned.

SKIP
The `SKIP` clause works like an offset, so you essentially tell Cypher to skip the first x results. Using SKIP,
in combination with LIMIT, allows things such as pagination to be created. In that case, your SKIP value
would be the current page (+1 to avoid page 0) multiplied by the limit. Another potential use would be with
promoted items. If there was a featured product on an e-commerce website, then the rest of the products
were in a list, you’d want to SKIP 1 on the list query to avoid the featured product appearing. That is of course
based on a number of assumptions, but the use case is sound.

Chapter 4 ■ Meet Cypher

48

If you wanted to skip the first row returned, then that can be as simple as:

MATCH (n)
RETURN n
ORDER BY n.name
SKIP 1

You can also combine SKIP and LIMIT together, so you can then limit the remaining rows down to a
specified value. To build on the previous example, if we did only want the first 10 applicable rows after the
first skipped one, it would look like so:

MATCH (n)
RETURN n
ORDER BY n.name
SKIP 1
LIMIT 10

WITH
The WITH clause is one that may be familiar to the Terminal savvy, as it’s essentially a unix pipe. Essentially,
WITH passes information to the next part of the query, but it can be used in different ways to achieve
different goals. It can be used to filter down results, and make queries more efficient by stripping out
unneeded data. It can also be used to collect additional data from a query, so it can be quite useful. Let’s
start with a filter, shall we?

MATCH (me { name: "Chris" })--(friend)-->()
WITH friend, count(*) AS foaf
WHERE foaf > 1
RETURN friend

In this example, the query is matching `me` then any connections I have to another node, aliased by
`friend`. The query then looks for an outgoing relationship, so we’re looking for a friend of a friend (hence
foaf) here. The WITH is first of all passing the `friend` value, then is passing through a count of *, aliased
with `foaf`. The `friend` value is required, otherwise the value couldn’t be returned. In this example if you
tried to return `me` the query would fail, as it’s not passed onto the next stage of the query with WITH. The
count is the sum of the friends my friend(s) have, as it’s the last part in the path. The count is then used in the
WHERE to ensure only my friends that know one other person are returned.

A common use of WITH is to order your data before you return it which can be pretty useful, but there’s
a bit more to it than that.

MATCH (me { name: "Chris" })--(f)
WITH f
ORDER BY f.name DESC
LIMIT 1
MATCH (f)--(fof)
RETURN fof.name

Chapter 4 ■ Meet Cypher

49

Since the MATCH has been aggregated with the WITH clause, it allows you to order the data before it’s
returned, and then limit that result, and then use it again straight away. Here the query is getting the related
nodes of the matched one, after they have been sorted by the `name` property, in descending order, and
limiting them to one. This query is essentially working out which of my friends has the name closest to the
end of the alphabet, finding their friends,`fof`, and returning their names.

Next up is being able to aggravate data so that it can be collected, and also returned. So for the times
you’d be looping through rows and collecting certain pieces of data, such as names, then this saves you the
loop.

MATCH (n)
WITH n
ORDER BY n.name DESC LIMIT 3
RETURN collect(n.name)

The WITH aggregates the nodes so they can be ordered, and collected.

UNWIND
There may be times when you’re querying data, where you have a collection, and you want to have rows.
Well, that is just what UNWIND does, it takes collections of nodes, or arrays of data and splits them into
individual rows again. When using UNWIND, the data must be aliased for the query to work. A very simple
example is as follows:

UNWIND ['Chris', 'Kyle', 'Andy', 'Dave', 'Kane'] AS x
RETURN x

This would return all of the names in individual rows, rather than as a collection as they were passed
in. You can also pass in structured data which can be iterated over within a query, and then used in
combination with other clauses to make multiple changes, or you can even create nodes, too.

Using UNWIND in conjunction with MERGE (which we’ll get to soon) can lead to a very efficient query
that can create and/or update nodes and relationships. This situation implied that structured data has been
passed into it, allowing it to be used by Cypher. An example of the data being passed in would be:

{
 "events" : [{
 "year" : 2014,
 "id" : 1
 }, {
 "year" : 2014,
 "id" : 2
 }]
}

This data can then be passed through to UNWIND and then, each item within the array of data can be
passed through to something like MERGE, or even a CREATE statement. This means that rather than doing
many creates, you can pass through data in an array, and make a query to do all of the hard work that only
has to be done once. This doesn’t mean to say you can’t use a transaction and run a lot of queries that way,
it’s just another option.

Chapter 4 ■ Meet Cypher

50

UNION
This clause is used to return multiple queries, as if they were one, uniting them if you will. This can save
you running multiple single queries, or to clean up the return statement of a more complex query. Say you
had Tutor nodes and Pupil nodes, but just wanted names from both, UNION would be great there. If you
were to return these in a normal statement you would need to return these values, probably aliased with
two different things, such as `pupil_name` and `tutor_name` but with UNION, that’s not a problem, and on
using this example, the query would look like so:

MATCH (n:Tutor)
RETURN n.name
UNION ALL MATCH (n:Pupil)
RETURN n.name

This would return the results from both queries in one result set, so in this case it would be an array
of names. In this example both of the property names were the same, but this isn’t always the case, and
doesn’t need to be to take advantage of UNION. As long as the values are returned with the same names,
then it doesn’t matter if the name is the original property name, or an alias. An example of this can be seen
as follows:

MATCH (n:Tutor)
RETURN n.tutor_name AS name
UNION ALL MATCH (n:Pupil)
RETURN n.pupil_name AS name

To use UNION you must first return everything you want from the first query, then add in UNION before
performing the next query. You’ll notice that in this example, `ALL` is present, which essentially returns
the exact result from each query, maintaining duplicates. If you were to remove `ALL` then any duplicates
within the result set would be removed, it’s as easy as that.

It’s worth noting you can also combine multiple `UNION`’s, but whatever they return must have the
same name, so be sure to use an alias (`AS`) to ensure what you’re returning from each query is consistently
named with the others in the `UNION`.

USING
You’ll only really need this clause if you’re using a lot of indexes, because Neo4j takes care of which indexes
to use automatically. There may be cases when Neo4j is using the wrong one and it’s causing problems, so by
using `USING` you specify an index to use for a particular query. An example of that would be as follows:

MATCH (n:Person)
USING INDEX n:Person(name)
WHERE n.name = 'Chris'
RETURN n;

In the example the `WHERE` clause is used to filter down a result set, and since there’s already an index
there, it can be selected with `USING`. Most of the time though, if you use indexes, then Neo4j will take care
of a lot of the hard work for you. It’s worth noting though that you can use multiple indexes in one query, so
it can be manually controlled.

Chapter 4 ■ Meet Cypher

51

MERGE
Although its name suggests that MERGE will merge your data, that’s not technically true. This clause ensures
data exists within the graph, if it does the data will be merged and if not the data will be created. This sounds
similar to how CREATE UNIQUE works, but MERGE is a lot more powerful.

When using MERGE, if all the properties in the query don’t match a returned node, then a new node
will be created. A basic example of MERGE works like so:

MERGE (bill { name:'Bill', age: 29 })
RETURN bill

Here, if there is a node with a `name` of `Bill` but there is no `age` set, then a new node would be
created. The basic usage of MERGE is a mix of CREATE and MATCH, but there are some rules attached to
this. The whole MERGE pattern matches, or it is created. This becomes even more important when using
constraints, as this needs to return 1 node, or no nodes. If you were to perform a partial match, (such as
multiple properties on the same node, as the same node would be returned for each property, which isn’t
unique) then the query will fail, so be careful with that. Constraints can be a hugely useful with MERGE, as it
means you can create unique nodes, and if there’s a problem, it’ll error.

MERGE (char:Person { name:'Charlotte' })
RETURN char

If there was a constraint placed on the `name` property being unique (CREATE CONSTRAINT ON
(n:Person) ASSERT n.name IS UNIQUE;) then this query would either match an existing node, or create a
new one. You can also use the same logic on Relationships, using MERGE to create them as needed, to help
once again with reducing duplicates within the code.

There is also a bit more control that can be gained by MERGE, with the use of ON CREATE and ON
MATCH. Being able to use these clauses essentially gives the power to control the outcome of the query
depending on if the query has MATCHed, or CREATEd a node, and you can use both in the same query too,
which can be seen here:

MERGE (dave:Person { name:'Dave' })
ON CREATE SET dave.created = timestamp()
ON MATCH SET dave.last_login = timestamp()
RETURN dave

This example will SET (which will be covered, next actually) a “created” date for Dave if the node doesn’t
exist, otherwise the `last_login` property will be updated with a new value. Although in this example both “ON
CREATE” and “ON MATCH” have been used, this isn’t required and they can be used independently of each
other, as well as together. The only thing to keep in mind is that the query used must be specific enough to
return 1 or 0 nodes, because on a database with many people, the odds of having multiple people called “Dave”
is most definitely a possibility. To improve the example, a unique identifier (such as an e-mail) could be used
which would only ever return a single row (or none) provided the data was always kept unique, that is.

Chapter 4 ■ Meet Cypher

52

SET
The SET clause is used to update Labels on nodes, and also properties on Nodes and Relationships. To use
SET you must first match the node you want to update, then just set the values you want to on said node, or
relationship, depending on the use case. A basic example can be seen like so:

MATCH (n { name: 'Chris' })
SET n.username = 'chrisdkemper'
RETURN n

This would update the `Chris` node with the new username property, so if it didn’t have the property
before it’ll be added, and if it did already exist it’ll be updated. In this example the updated node was
returned, but this isn’t required and if it isn’t needed, the RETURN can be omitted.

It’s also possible to only add, and not update properties on a node, but using `+=` in the following way:

MATCH (n { name: 'Chris' })
SET n += { username: 'chrisdkemper' , level: 'admin'}

If the previous example was run first, then only the level part of this query would be respected, provided
of course that the `level` property didn’t already exist on the node. Multiple values can also be updated at
once, they just need to be separated by a comma for properties, or by chaining multiple labels, like so:

MATCH (n { name: 'Chris' })
SET n.username = 'chrisdkemper' , n.level = 'admin'

This would update/set these properties depending on if they previously existed on the node or not.
When dealing with Labels on Nodes, use the following:

MATCH (n { name: 'Chris' })
SET n :Moderator:Admin
RETURN n

This would set `Moderator` and `Admin` as labels for the matched node. It’s also possible to remove
a property by using SET, by setting a properties value to `NULL` which is essentially saying, you don’t exist.
There is a dedicated REMOVE clause for this, but it’s still nice to know how it’s possible with SET, which is
achieved like so:

MATCH (n { name: 'Chris' })
SET n.level = NULL
RETURN n

By setting the `level` property value to NULL, it removes it from the node and would then need to be
re-added to be used again.

shortestPath/allShortestPaths
After you’ve established a lot of data, or even if you haven’t, you’ll always end up wanting to find paths of
some description, and there are functions in Cypher to achieve just that. If you don’t have any/much data of
your own the movie database is always available to you (which we covered in Chapter 2) from the browser.
Anyway, say you have two people, you may want to how what the shortest path is between them. There could

http://dx.doi.org/10.1007/978-1-4842-1227-1_2

Chapter 4 ■ Meet Cypher

53

be a direct connection via a mutual friend, or one person’s Grandma’s, friend’s, cousin may know the other
person. Although that’s farfetched (and made up) example, one of those paths is a lot shorter than the other.
Using Cypher to work out the path can be achieved like so:

MATCH (bill:Person { name:"Bill" }),(bob:Person { name:"Bob" }),
p = shortestPath((bob)-[*..5]-(bill))
RETURN p

Using `shortestPath` here allows the path to be returned and used in an application. The same concept
can also be applied to physical locations, where you can imagine a path as a route. An example of this would
be train stations, so although the physical location wouldn’t be taken into account (although this is possible,
and will be discussed in Chapter 7), you can still see how far (or hops, as it is here) two stations are apart. In
this case, however, inside the relationship square brackets it’s specified that the relationship must be within
5 hops, so any responses here will be close ones.

If this query wasn’t returning any results, it’d be possible to increase the maximum hops, or even remove
the upper limit entirely, which would return the single shortest path regardless of length. When databases
contain a lot of nodes, if possible it’s advisable to add a limit to the number of hops the path will take.

If you’d then want to look at all the paths, then instead of `shortestPath` being used
`allShortestPaths` is in its place. This works in the same way as `shortestPath` it just returns all paths,
rather than just the shortest.

Key Functions
Neo4j has a lot of functions that can change how a query works, the return values, and many other things.
For example, there are a number of mathematical functions that are used, which may be required if you’re
analyzing complex data, for example. If you’re in a position that requires the use of a specific mathematical
function within your query, than that information can be found easily enough online. There are however a
number of functions that can be quite useful, so rather than detailing every function, a smaller collection of
these useful functions will be mentioned instead.

count
There could be many reasons that values need to be counted in Cypher queries, and Neo4j has your back
with the count function. Its use is easy enough, and essentially has two forms. The first form is just counting
all of the resulting rows from the queries RETURN clause, which on a very basic level can be something like:

RETURN n, count(*)

In this instance, any nodes returned from the MATCH will be counted, and then added to the result
set. The other use case for count is when you know what you want to count, and it has been aliased with
something you can count, like so:

MATCH (n {name: "Chris"})-->(x)
RETURN count(x)

http://dx.doi.org/10.1007/978-1-4842-1227-1_7

Chapter 4 ■ Meet Cypher

54

In this case, any nodes related to `Chris` will be counted, as they’re aliased with `x` and that has been
added to `count`. There is a chance that a query like this could have a lot of duplicates, which you can get
around by using DISTINCT, so adding this to the previous example is as easy as:

MATCH (n { name: 'Chris' })-->(x)
RETURN count(DISTINCT x)

This means the count will only include unique values. Count can also be used to count non-null
property values on nodes too, which is just as simple:

MATCH (n:Person)
RETURN count(n.subscription_start)

This will count how many of the labeled nodes have that property with an actual value, as it skips `null`
values.

length
The length function is essentially like count, but for paths or collection, and returns a number value based
on either the path hops, or the number of items within a collection. The function can take any collection as
an argument (as paths are returned as collections) so just remember that when using it, or you will have a
bad time. Enough chat, an example of `length` is:

MATCH p=(a)-->(b)
WHERE a.name='Chris'
RETURN length(p)

This query will return the length of every path returned (p) where the `Chris` node is related to any
other node, so rather than the nodes themselves, the counts are returned. In more complex queries, length
can be used to ensure paths are long enough, for instance, or just as an additional piece of data in a query.

type
In some queries, the type of a relationship doesn’t matter, you just care that it exists, rather than what its type
is. When the type does matter, and it needs to be explicitly returned, then that’s where the `type` function
comes in. It takes a relationship as an argument, then returns the type of the relationship supplied. An
example of this is as follows:

MATCH (n)-[r]->()
WHERE n.name='Chris'
RETURN type(r)

This query will find any relationships that the `Chris` node has, and then return the type of the
relationship, so the more relationships, the more rows returned.

Chapter 4 ■ Meet Cypher

55

id
This function can be very useful, as it returns the actual id for a node or relationship within the database.
When a node is created it’s assigned a numerical id, which cannot be set by a user. When a node is
created, the previous node id is incremented and assigned to the new node. When a node is deleted, its ID
then becomes available, so the next node created will get the newly available ID, rather than a new one.
Relationships work in the same way, but rather than them both sharing the same set of IDs, nodes and
relationships keep lists for this.

Although most of the querying in Cypher uses properties, sometimes you need the actual id, and the
`id` function makes that easy. As with the other queries of its type, the node or relationship is first MATCH’ed
and then passed into `id` where it is returned, which can look as simple as:

MATCH (n)
RETURN id(n)

This would return every node id in the database, as no query constraints have been added, but this
would work in the same way, regardless of whether a WHERE or property filter was present. Speaking of
WHERE, if you know a particular node’s id and want to be able to query against it, then you need to select
that node via a WHERE clause, like so:

MATCH (n)
WHERE id(n) = 150
RETURN n

For multiple IDs, an IN could also be used, if you knew the IDs of the nodes you wanted to return,
that is.

timestamp
The timestamp function has a very simple task, return the milliseconds between now and January 1, 1970
UTC (Unix/POSIX Time timestamp). This is similar to how various other timestamp functions work in other
programming languages. This can be useful if you want to say, check the servers timezone by running a
simple:

RETURN timestamp()

Which would then return the timestamp in milliseconds for you to see. It can also be used when setting
properly, so adding dynamic signup or creation, last sign in, and a number of other date-based operations
can be simplified by using the `timestamp` function.

Chapter 4 ■ Meet Cypher

56

nodes/relationships
When you see a function called `nodes` or `relationships` you can assume (given the names) its use has
something to do with nodes or relationships (depending on which one is used), and you’d be right. The
`nodes` function is used to return the nodes within a supplied path, with the `relationships` function
being used to return the relationships present in a path. Both functions require a path to be supplied as an
argument in order for them to work. An example of the `node` function would be:

MATCH p=(a)-->(b)-->(c)
WHERE a.name='Chris' AND c.name='Kane'
RETURN nodes(p)

This will return all the nodes present in the path, but if `nodes` were to be replaced with `relationships`
then instead of nodes, all the relationships present in the path would be returned.

labels
Although a lot of the time, nodes can be found using one label, what if you need all of the labels attached to
a particular node? Well, that’s what the `labels` function is for. This function takes a node as an argument,
and returns an array of all the labels that are attached to it. An example of this would be:

MATCH (n)
WHERE n.name='Chris'
RETURN labels(n)

This would also work if more than one node were to be returned. A collection would be generated for
each node being returned.

collect
This powerful little function allows the aggregation of data, so essentially makes many rows into one row,
on a basic level. If you’re getting one particular property from a node, then having to process each row, it
may well be easier to get one row with every value inside it. That’s what collect does, and it’s very easy to use.
A basic example would be:

MATCH (n:Person)
RETURN collect(n.name)

This query would return one row, with an array of the values of the `name` property on every `Person`
node that has a name set. It also ignores null values, so that doesn’t need to be considered either.

Summary
There’s a lot of information in this chapter, but hopefully if it doesn’t all go in on the first read, then this
chapter will remain as a reference guide. We’ve gone from the very basics of building Cypher queries, to then
making some complex and specific queries to ensure the data returned is as specific as possible. Of course
this chapter doesn’t contain everything, and as the book progresses more practical uses for the different
Cypher query constraints will be unearthed, but the basic usage and explanation will be here.

57

Chapter 5

Managing Your Data in Neo4j

Thanks to it being a graph database, Neo4j actually gives you a lot of freedom when it comes to how you
structure your data. When you’re using something like MySQL, if you want to perform relationships, you
have to adhere to certain rules. You’ll need to have some kind of joining table for the data to join the different
tables. Of course the way you structure the data is still similar in some respects, such as relating one node to
another, but you don’t need to use a table to do that; you could use a relationship, or a node and multiple
relationships.

A quick note about Gists
In this chapter, we’ll be covering some common pitfalls that can catch beginners, and then some
example data structures that could be adapted for your own use. There’s one issue with books that
mention code in that sometimes, there are errors in the code, or as updates to the software happen,
the examples just don’t apply anymore. To avoid that, the examples used in this chapter will be hosted
as Gists, in addition to being available to download form apress.com. This concept will be used where
possible and deemed appropriate throughout the book, so look out for the references, but they’ll be
explained as they’re used.

If the concept of a Gist is new to you, then it’s just a code snippet that’s hosted on GitHub, so they’ll
always be available. It also means the snippets can be altered and updated, so the code in the Gist should
always work. If you discover it doesn’t anymore, just leave a comment and then I can update the code so it
functions again. This also means a full revision history will be kept, so if the code is for a different version it
can be referenced in the change to show the version differences and so on. The sample in this book should
be useful well after it’s printed, which is always a bonus. Until the book is published all Gists will be kept
private, but after the publish date they’ll be made public.

Common pitfalls
When a technology exists for long enough, people get very good at using it, which brings wisdom and builds
a list of Dos and Don’ts for the future. Neo4j is no different, and there are certain things that should be
avoided, mainly performance issues. It can also be that the wrong data structure is being used and it needs
to be streamlined. Either way, here are some common pitfalls and how to avoid them.

http://apress.com/

Chapter 5 ■ Managing Your Data in neo4j

58

bi-directional relationships
There are many cases when a relationship goes both ways, and in most cases you don’t care which way
it goes, just as long as it exists. Since this can’t be modelled in Neo4j, it can be avoided by only using one
relationship. In the case of two brothers, you could model this relationship in a number of ways. One
obvious example would be something like this:

(chris)-[:RELATED_TO]->(kane)
(kane)-[:RELATED_TO]->(chris)

Since both are related to each other, it makes sense for the relationship to go both ways, right? Yes,
and there are cases when it’s required. You may well use the relationship to store certain properties (In this
example, it could have been {relation: “bother”}) but in a lot of cases the same data is stored twice, as it’s
assumed that having the context in both directions makes sense. The following structure results in the
same problem:

(chris)-[:KICKED_BUTT {name: "Mario Kart", date: timestamp()}]->(kane)
(kane)-[:GOT_BUTT_KICKED {name: "Mario Kart", date: timestamp()}]->(chris)

This is done to ensure all of the context is kept, but the data in both is again the same. The only thing
that changes is the relationship name. To avoid these problems, you simply need to have the node in one
direction, and that’s it. Thanks to Cypher, the direction of a relationship doesn’t need to matter, as you
don’t need to specify one because the directions can go both ways. This means that instead of having two
relationships, you have one, and then just don’t specify a direction in the query. The first example changed
to work this way would look like so:

(chris)-[:RELATED_TO {relation: "Brother"}]->(kane)

In this case the direction is pointing from `chris` to `kane` but that doesn’t matter (It’s because I’m
older that it’s not the other way around, but again, it doesn’t matter) because as long as the relationship
exists, that’s enough. The property mentioned also got added in this case, so all the context required can be
from a Cypher query, which would be:

MATCH (a:Person)-[r:RELATED_TO]-(b)
WHERE r.relation = "Brother"
RETURN a.name, b.name

The example would return two rows, each with “Chris” and “Kane” alternating as `a` and `b` for each
row. The second example doesn’t really change, as the second relationship simply isn’t needed. You can
imply that somebody got their butt kicked, or kicked butt depending on how the data is returned, so the
other direction isn’t needed.

The only real issue with this approach is that the data structure wouldn’t be even, in the sense that
the relationship would only be from one node, and not both. So, if you like symmetry, you’ll need to resist
the urge here (I’m one of those people, so I do it too) and just remember that Cypher has enough power to
make the direction of the relationship not always required, and that in some cases (or all cases in real-life
applications) one relationship is enough.

Using this method also requires less data, so it keeps your database smaller, and keeps queries cleaner.

Chapter 5 ■ Managing Your Data in neo4j

59

Example Data Structures
With these example data structures, there will also be hints on how these can be used in real applications, so
hopefully they can be tailored to your needs, and also benefit an application they’re used in, while still being
a reference on how to structure data.

e-commerce
One very big area that takes huge advantage of recommendations through relationships is e-commerce,
so we’ll run through a basic structure for that kind of application. Although the chunks of this example will
be broken up, all of the queries can be found in a Gist (ADD_GIST_URL_HERE), so any updates will be
available there. With that out of the way, let’s begin. It’s worth noting that this is a very basic structure, with
just enough information to give an idea of how to structure the data and then expand on it for your own
needs. Table 5-1 contains the different node types that will be used with this example.

Table 5-1. e-commerce example node types and description

Node type (Label) Explanation

Customer These are the customers of the application, so any information needed would be
stored, name, e-mail, that kind of thing.

Product Products will have any properties needed, but at the very least a name.

Category Categories can be used to group products together of similar type.

Order An order will attach to the products it contains and the customer that created it.

Bundle Products that can be sold together as one unit.

Sale A Sale will contain many Products, essentially like a Bundle. In this case though,
it’s a collection of products that all have their own prices, rather than 1 set price.

To get off to a good start, we know at least two things that need to be unique, the e-mail address of the
user, and the uuid of the product. As has been mentioned before, this example only has the bare-bones of
information, but even so, we can still add constraints, first the e-mail of the `Customer` node:

CREATE CONSTRAINT ON (c:Customer) ASSERT c.email IS UNIQUE;

Followed by the uuid constraint on the `Product` nodes

CREATE CONSTRAINT ON (p:Product) ASSERT p.uuid IS UNIQUE;

Although this example won’t have any conflicting nodes, at least if the structure is extended in actual
use, the constraints are already in place. Next up, let’s add in some nodes:

CREATE (product1:Product {name: "Product 1", uuid: "d8d177cc-1542-11e5-b60b-1697f925ec7b", price: 10})
CREATE (product2:Product {name: "Product 2", uuid: "d8d17b28-1542-11e5-b60b-1697f925ec7b", price: 20})
CREATE (product3:Product {name: "Product 3", uuid: "d8d17c72-1542-11e5-b60b-1697f925ec7b", price: 30})
CREATE (product4:Product {name: "Product 4", uuid: "d8d1b958-1542-11e5-b60b-1697f925ec7b", price: 40})
CREATE (product5:Product {name: "Product 5", uuid: "d8d1bade-1542-11e5-b60b-1697f925ec7b", price: 50})

Chapter 5 ■ Managing Your Data in neo4j

60

Here we just have some products being added, with various names, prices, and unique UUIDs, nothing
too crazy here. Next up are the categories:

CREATE (category1:Category {name: "Category 1"})
CREATE (category2:Category {name: "Category 2"})
CREATE (category3:Category {name: "Category 3"})

Here the categories are just given a name, and referenced for later use in the query. There’s a bundle in
this example, so let’s create that:

CREATE (bundle1:Bundle {name: "Bundle 1", price: 35})

The bundle here is created with a name, and also a price so we know how much the bundle sells for.
Nothing can be sold until there are some customers, so let’s add a couple:

CREATE (customer1:Customer {name: "Chris", email: "hey@chrisdkemper.co.uk"})
CREATE (customer2:Customer {name: "Kane", email: "thebrother@chrisdkemper.co.uk"})

The customers are created, with a unique e-mail address to ensure they adhere to the constraint
placed earlier. Of course this data would all be dynamically created and related normally, but for the sake of
example it’s manually added. It’s time to relate the newly created nodes now, starting with the products:

CREATE UNIQUE (product1)-[:BELONGS_TO]->(category1)
CREATE UNIQUE (product2)-[:BELONGS_TO]->(category1)
CREATE UNIQUE (product3)-[:BELONGS_TO]->(category2)
CREATE UNIQUE (product4)-[:BELONGS_TO]->(category3)
CREATE UNIQUE (product5)-[:BELONGS_TO]->(category2)

The incrementing product aliases would still be valid to use if all of the snippets were run together,
which is why they’ll be used in the different parts of the example. Each of the products is assigned to a
category with the `BELONGS_TO` relationship. A product could be part of multiple categories as well, it just
isn’t in this instance. We also have a couple of products in a bundle, so those relationships need to added,
and are like so:

CREATE UNIQUE (product1)-[:PART_OF]->(bundle1)
CREATE UNIQUE (product3)-[:PART_OF]->(bundle1)

`product1` and `product3` are part of this bundle, which is expressed with the `PART_OF` relationship.
The final relationship to add is a sub category, which will be added like so:

CREATE UNIQUE (category3)-[:CHILD_OF]->(category1)

Here `category3` is actually a child of `category1`, which is shown by using the `CHILD_OF`
relationship going in the correct direction. With the relationships now added, it’s now possible to query
the database to have a look at the structure in the Neo4j Browser using `MATCH (n) RETURN n`, the result of
which can be seen in Figure 5-1.

Chapter 5 ■ Managing Your Data in neo4j

61

It’s already possible to see how the data will develop, but for now there aren’t any orders yet, so we
better add one. Since adding an order will be a new query to adding the data, to use the nodes required, they
need to be matched, so let’s do that first:

MATCH (customer:Customer {email: "hey@chrisdkemper.co.uk"})
 ,(product1:Product {uuid: "d8d177cc-1542-11e5-b60b-1697f925ec7b"})
 ,(product2:Product {uuid: "d8d17b28-1542-11e5-b60b-1697f925ec7b"})

This chunk of Cypher will match the products included in the order, and also the customer that made
the order, so here we have `product1`, `product2` and the customer, respectively. Now that the nodes have
been found, the order itself can be created, which is added like so:

CREATE (order:Order {date: "2015-05-15"})

Figure 5-1. An example data structure taking into account categories, products, bundles, and some customers
(with no orders)

Chapter 5 ■ Managing Your Data in neo4j

62

The only real information required for the order is the date it was placed, the rest of the information,
such as cost, can be calculated as needed via queries. With the order created, it’s now time to relate
everything together, which is done by adding three relationships, two for the products, and one relating the
customer to the order, which looks like:

CREATE UNIQUE (product1)-[:IN_ORDER]->(order)
CREATE UNIQUE (product2)-[:IN_ORDER]->(order)
CREATE UNIQUE (customer)-[:CREATED]->(order)

The `IN_ORDER` relationship has been used to relate the products to the order, and the `CREATED`
relationship has been added between the customer and the order. With that data now in place the graph looks
a little different, if we run the same `MATCH (n) RETURN n;` query as before, which can be seen in Figure 5-2.

Figure 5-2. With new data added the graph looks a little different

Chapter 5 ■ Managing Your Data in neo4j

63

Even with one order, we can already see that `Chris` has a preferred category, which means this
information can be used in Cypher queries to generate recommendations on products that may be useful,
potentially because they’re on sale. Speaking of Sales, let’s add one:

CREATE UNIQUE (sale1:Sale {name: "Sale 1", active: TRUE})

The sale here only really needs a name or some kind of identifier, as the information that matters can be
added to the relationship between the `Product` and the `Sale`, which in this case, is the price.

MATCH (product4:Product {uuid: "d8d1b958-1542-11e5-b60b-1697f925ec7b"),(product5:Product
{uuid: "d8d1bade-1542-11e5-b60b-1697f925ec7b"})
CREATE UNIQUE (product4)-[:ON_SALE {price: 36}]->(sale1)
CREATE UNIQUE (product5)-[:ON_SALE {price: 45}]->(sale1)

The products are first matched so the relationships can be added, then they are. In this case, a property
of `price` is being added, with the price the item is on sale for. This could then be recovered when querying
the data, and replace the price returned from the actual product, if the product happens to be on sale.

When more and more orders are added to the database, it becomes easy to detect trends. These trends
can be that a customer buys more items from a certain category at certain times, or always buys a particular
product. With this kind of data in hand, it’s possible to craft very unique and tailored experiences for the
user, based on their own data, so you get recommendations that actual work.

This code will be available in a whole via the GitHub Gist at https://gist.github.com/chrisdkemper/
794416dbae1bb17942b1 so check there for any updates or changes to the example since the book has been
published. Alternatively, all my Gists can be found at https://gist.github.com/chrisdkemper, so if you
don’t fancy typing the URL out, visit there first.

Social Network
Another big area that takes advantage of the power of graph databases is the social network side of things.
Thanks to social networks, especially the giant that is Facebook, you can get in touch with somebody on the
opposite side of the world through a friend, or a friend of a friend. When it comes to social graphs, it’s all
about who you know or who knows you; it’s all about the common connections. Depending on what kind
of social network you’re building, the common connections could be interests, what somebody does for a
living, hobbies, or anything.

In this case, we’ll be using a basic example that will include: people, animals, and companies. As with
the other example, the code for this one will be available as a GitHub gist, so any updates to the code will be
available there, should anything change.

For this example, we’ll be making a mini social network structure, involving people, companies, and
animals. This will give a lot of potential for connections and relationships, and at least it’s a little different from
the usual social network stuff, eh? To start things off, Table 5-2 outlines the different labels that’ll be used for nodes.

Table 5-2. Social network node types and description

Node type (Label) Explanation

Company A company is as it suggests, a company will be owned by a person or persons,
and people can also work there.

Person The main part of the social graph, people.

Animal This label will be applied to any animal node, but in addition a label for the
type, such as ‘Dog’ will also be added to give some extra context.

https://gist.github.com/chrisdkemper/794416dbae1bb17942b1
https://gist.github.com/chrisdkemper/794416dbae1bb17942b1
https://gist.github.com/chrisdkemper

Chapter 5 ■ Managing Your Data in neo4j

64

Although there aren’t as many types in this example, there are a lot of relationships that can exist, and
you don’t always need a lot of node types to create a complex dataset. When the code is present on the Gist, it’ll
be commented as required, with different sections outlined, and instructions to run certain parts in isolation.

It’s always good practice to create constraints, so let’s do this here with the `Person` names to ensure
they’re always unique:

CREATE CONSTRAINT ON (p:Person) ASSERT p.name IS UNIQUE;

Also, in our case we aren’t allowed to use companies with the same name either, so let’s add that
constraint in too:

CREATE CONSTRAINT ON (c:Company) ASSERT c.name IS UNIQUE;

With the constraints in place it’s time to get some data into the database, starting with a number of
`Persons`, six of them to be exact:

CREATE (person1:Person {name: "Chris"})
CREATE (person2:Person {name: "Kane"})
CREATE (person3:Person {name: "Dave"})
CREATE (person4:Person {name: "Claire"})
CREATE (person5:Person {name: "Ruth"})
CREATE (person6:Person {name: "Charlotte"})

This gives us a good number of people to work with. In this case it’s just been kept simple with names,
but you could easily add additional properties, if desired. With the people in place, let’s add some animals to
make things a bit more interesting.

CREATE (animal1:Animal:Dog {name: "Rolo"})
CREATE (animal2:Animal:Fish {name: "Totoro"})
CREATE (animal3:Animal:Fish {name: "Elsa"})
CREATE (animal4:Animal:Dog {name: "Ki"})
CREATE (animal5:Animal:Dog {name: "Rio"})

Here we have a number of animals, five in total, three dogs, and two fish. Each one is still an animal
though, so if you ever wanted to find out the total number of animals, it saves having to add all the individual
label counts together to get the total. You’ll notice the additional labels are chained with `:`s, which creates
the node with both labels. Finally, we need some companies to work with, so let’s add those in:

CREATE (company1:Company {name: "Badass company"})
CREATE (company2:Company {name: "Supercorp"})
CREATE (company3:Company {name: "All of the things"})

Finally we have our companies, but without any relationships, these are just nodes in the database, so
we’ll start with relating people to their animals, with an `OWNS` relationship.

CREATE UNIQUE (person1)-[:OWNS]->(animal4)
CREATE UNIQUE (person1)-[:OWNS]->(animal5)
CREATE UNIQUE (person2)-[:OWNS]->(animal4)
CREATE UNIQUE (person2)-[:OWNS]->(animal5)
CREATE UNIQUE (person4)-[:OWNS]->(animal2)
CREATE UNIQUE (person4)-[:OWNS]->(animal3)
CREATE UNIQUE (person6)-[:OWNS]->(animal1)

Chapter 5 ■ Managing Your Data in neo4j

65

You’ll notice there are some multiples here. In this case, there’s shared ownership of some of the
animals, so the relationships are doubled up, but since they only go one way, it doesn’t hit the bi-directional
issue mentioned earlier. Having pets is great, but sometimes your pet can be more known than you. I know If
I’m ever walking my dog and my brother’s friends see him, they’ll come up to me and say hello, even though
I have no idea who they are, but since they know my dog, they apparently know me. Now let’s add in some
relationships to link together certain people by various means.

CREATE UNIQUE (person1)-[:RELATED_TO]->(person2)
CREATE UNIQUE (person1)-[:FRIENDS_WITH]->(person6)
CREATE UNIQUE (person2)-[:KNOWS]->(person3)
CREATE UNIQUE (person4)-[:FRIENDS_WITH]->(person2)
CREATE UNIQUE (person5)-[:KNOWS]->(animal4)

Here we have a mix of relationships, from `RELATED_TO` to `FRIENDS_WITH` between both `Person` and
`Animal` nodes. I’m sure there are many people that you may know, or know of, but aren’t friends with, and
that’s what is being illustrated here. There’s nothing to say that later down the line, a `KNOWS` relationship
goes to a `FRIENDS_WITH` or even a `DATING` relationship, who knows?!

With our people and animals related, it’s time to sort out the companies. In this case, we have owners,
and employees, and for one company, a mascot. First things first, let’s set up the owners:

CREATE UNIQUE (person1)-[:FOUNDED]->(company3)
CREATE UNIQUE (person3)-[:FOUNDED]->(company2)
CREATE UNIQUE (person6)-[:FOUNDED]->(company1)

The `FOUNDED` relationship has been used here, but there could easily be additional properties for dates,
or any other related information, if it was needed. Now the companies have been founded, employees are
needed, so let’s add those now:

CREATE UNIQUE (person2)-[:WORKS_AT]->(company3)
CREATE UNIQUE (person4)-[:WORKS_AT]->(company2)
CREATE UNIQUE (person5)-[:WORKS_AT]->(company1)

Using the `WORKS_AT relationship here to show which people work at which company. Again, there’s
always the option for additional context, such as hours or pay, if it were needed. Finally, because I can, my
dog is the mascot of my company, so let’s add that relationship:

CREATE UNIQUE (animal4)-[:MASCOT_OF]->(company1)

With all that data in place, it creates a graph that makes extensive use of Relationships (Figure 5-3).

Chapter 5 ■ Managing Your Data in neo4j

66

Even with this small amount of data, it’s possible to see how close some of the `Person` nodes are,
so with some simple queries, it could easily recommend new friends, or even a new place to work. Using
information like this you could see which company your friends and family work for, and whose pet is the
most popular.

With more data, this would increase the potential connections in the database, and with new animals and
companies, it would start to create a social graph that’d make finding new friends and/or opportunities easy.

As mentioned earlier, the code used to create this demo will be available via GitHub on the Gist
(https://gist.github.com/chrisdkemper/8c981b759275ec36d3bf) so any changes or updates will be
made available there, or just check out https://gist.github.com/chrisdkemper for all of my Gists.

Figure 5-3. A preview of the data structure created for the theoretical social network, which has animals,
people, and companies

https://gist.github.com/chrisdkemper/8c981b759275ec36d3bf
https://gist.github.com/chrisdkemper

Chapter 5 ■ Managing Your Data in neo4j

67

Summary
In this chapter we’ve been through some common pitfalls when structuring data in Neo4j, as well as
some example structures. Hopefully these can be used to give an idea on how you can structure your own
application to allow for better connections, less clutter, and therefore a better database experience. There
is a lack of complex Cypher queries in this chapter, but don’t worry, in the Chapter 7, we’ll be taking some
of the lessons learned here a step further, to show how it’s possible to create things like recommendations
based on an existing dataset.

http://dx.doi.org/10.1007/978-1-4842-1227-1_7

69

Chapter 6

Importing and Exporting Data

Unless you’re starting an application from scratch, odds are you’re going to need to import data into Neo4j
to work with. There are a number of ways to do this, so we’ll go through a number of these, and also, how to
get your data out of Neo4j, if you want to do that, anyway.

Since you can’t export data if you don’t have any in the first place, let’s start with importing data, shall we?

Importing Data
As mentioned before, there are a number of ways to import data into Neo4j, the easiest of which is to just
write the needed Cypher code to import the nodes you need. In the last chapter, this technique was used to
create some basic data structures, and it can be used in any other application to do the same. This approach
does has a number of advantages, including instant feedback. If you made an error in your code, you
accidentally type something wrong, or there is some other issue, this can be seen straight away, especially if
you return the created node after the query.

Using the browser to import data also allows you to see how the data is shaping up, as you can import
the data in chunks and relate it as needed. This is the process used in the previous chapter, and provided you
aren’t importing 100s or 1000s of nodes (that’d be a lot of queries) then this method will work just fine.

Import from a CSV Using Cypher
If you have your data in a nice CSV format (Or you can convert your data to CSV) then Neo4j can help you
out. There is a built-in Cypher command that allows data to be imported from a CSV, with a number of
options to tailor the import for your needs. A CSV can be loaded via https, http, ftp, and file:// so whether
your file is remote or local, it can be used.

Before diving right in and importing the CSV, it’s a good idea to ensure the CSV is valid. If there’s a
problem with your CSV, then it may cause issues with the import, so it’s best to rule out issues with the CSV,
by validating it. This is especially important when you aren’t the one who generated the CSV. There are a
number of tools available to validate CSVs, so this process can be easy, if there aren’t any errors to fix, that is.

CSV Lint
This tool, which can be found online at csvlint.io, allows you to validate your CSV to check for errors, from
either a remote or local file. Not only does the site check for validation errors in the CSV, it also gives you
recommendations on how to make it better. For example, if you’re hosting your CSV and it’s being served
with the wrong content header, it’ll mention this, and give a recommendation on how to solve it. An example
of this can be seen in Figure 6-1, which is based on the CSV used in the Neo4j documentation.

Chapter 6 ■ ImportIng and exportIng data

70

The two errors mentioned in Figure 6-1 are both related to how the file is being served from the server.
The first is essentially saying, the file is being served with a vague content header. The one being used here
is “application/octet-stream” which is a binary file, but since there’s a header for CSV “text/csv” then this
should be used, as it’s way more specific. The second error is referencing the header row of the CSV (so all
of the column headings) and whether or not it’s present. Tools that use CSVs will generally have to work out
if there is a header row present within the file or not, but if the correct header is sent, then this check won’t
need to be done. If you know your CSV has a row of column headings, then make sure to use “text/csv;
header=present” when serving the file, and “text/csv; header=absent” if not.

As well as this feedback to help clean up your CSV, there’s also an option to “Download standardized
CSV” which gives an option to download a CSV that has the errors fixed. Of course, it’d be recommended to
again, check the CSV it gives you to ensure the structure of the data is correct, and it’s still in the same format
that was initially desired. Of course, you can keep using the site to check for errors until your CSV is clean
and ready to use.

This tool is currently in alpha (at the time of writing it is, anyway) but it is still very helpful to get some
useful feedback on your CSV file, especially with the service being hosted. If you’re authoring your own CSV
rather than exporting it, then there’s also some good advice on writing CSVs that can be found at
http://csvlint.io/about to help make the process even easier.

Papa Parse
This CSV tool is downloaded rather than hosted, but has a lot of features that make that worth it. You can
find Papa Parse on GitHub at https://github.com/mholt/PapaParse and also at papaparse.com. This tool
is written as JavaScript and can be run in the browser. It has quite comprehensive documentation, and also
an interactive demo page (http://papaparse.com/demo) which can be used to test out the features it has.
Speaking of features, it has a good list of them a section of which can be seen in Table 6-1.

Figure 6-1. Recommendations after using csvlint.io to validate a CSV

http://csvlint.io/about
https://github.com/mholt/PapaParse
http://papaparse.com/
http://papaparse.com/demo

Chapter 6 ■ ImportIng and exportIng data

71

The demo on the website can actually be used to parse data passed to it, but this will only work for small
amounts of data, but for optimal results, it’d be better to run Papa Parse locally which gives more flexibility
on the features used. Using Papa Parse allows you to validate your CSV before using it with Cypher, but it
also means you can use it to convert JSON data to a CSV, which means that the data can then be imported
with Cypher, and used within Neo4j, which is a bonus.

Load a CSV into Cypher
With a valid CSV now in place, it’s time to actually use it with Cypher. To import the CSV, the LOAD CSV
clause will be used in Cypher, which can load a file from either a local filesystem, or a remote endpoint. If
you’re hosting your file, it could be worth testing it before trying to import it, if you haven’t already, that is.
When working with local files, there are a couple of rules that need to be respected. First, if your file is local,
you must declare the file:// protocol directly, and then build the path up from ‘/‘ on the machine. On OSX/
UNIX, you would need to use the following for a local file “file:///path/to/data.csv” whereas the same url on
Windows would be “file:c:/path/to/data.csv”. It can be a bit tricky to get these right sometimes, especially if
you’re using a virtual environment. The way around this (and the easier option for loading CSVs) is to load
the file over HTTP, which can be a remote, or local file.

Table 6-1. Some of the features of Papa Parse

Feature Explanation

CSV→JSON and JSON→CSV You have the ability to convert a CSV to JSON, but also to convert from
JSON to CSV, so there’s a lot of freedom there.

File handling Papa Parse can handle files in a number of ways. You can open a local
file, or even download a remote one. If your file is rather large, it may be
worthwhile to stream it rather than just straight downloading it, and Papa
Parse can handle that too.

Auto-detect delimiter This is very useful when working with CSVs, as the delimiter can differ
from the standard comma and be anything, but Papa Parse can work that
out for you.

Multi-threaded If a file is parsing for a long time, it could make the page non-responsive.
To get around this, it’s possible to use a worker, which will keep the
page active.

Header row support Whether or not your CSV has a header row, Papa parse can work with that.
If you tell it you have a header row, the data will be keyed by it; otherwise
indexes will be used.

Type conversion Unless you state otherwise, everything in the CSV will be parsed as a
string, as this is the safest way to deal with data, because everything can
be a string. If this isn’t good enough, `dynamicTyping` can be turned on
within Papa Parse, and any booleans or integers that are detected will be
parsed as the correct type, and not string.

Graceful error handling If your CSV happens to have errors in the rows, then it’ll try it’s best
to carry on, then returns stats of the failed row when the import is
complete. Rather than just a vague error, Papa Parse will give a reason it
couldn’t parse a row, and also the number, so any errors can be manually
addressed if needed.

Chapter 6 ■ ImportIng and exportIng data

72

To load a CSV locally, some form of web server will be required to run on `localhost` to serve the file.
When the server is running on localhost, just place the file in the root of the directory being used by the
server, which will allow it to be loaded via “http://localhost/data.csv”. Of course, if the file cannot be
in the root, simply adjust the URL as needed, or it’s easier to host the file remotely, just replace the local
address with a remote one, and Cypher will work in the same way.

If you’re unsure whether or not Cypher will be able to run the file, then don’t worry, you can test the
CSV without having to import anything. By using a simple Cypher query, you can read the first few rows from
the CSV, which will either show the rows on success, or give an error on failure. The query in question is as
follows:

LOAD CSV FROM "http://localhost/file.csv" AS row WITH row
RETURN row
LIMIT 5;

You can also just get a count of the rows in the CSV to double-check things, which can be done like so:

LOAD CSV FROM "http://localhost/file.csv" AS line WITH row
RETURN COUNT(*);

If Cypher cannot load the file, you will receive a message telling you the resource cannot be loaded,
with an error code of `Neo.TransientError.Statement.ExternalResourceFailure`, so if you get an error, you’ll
know straight away. Being able to review the first few lines of the CSV is useful for a number of reasons, the
same goes for the row count, too. It allows you to ensure the file is in the expected location first, but then
allows you to see what Cypher classes in are the first few rows, or the total number of rows, depending on
your need. If you see in the preview that there seems to be an error in the rows, or something doesn’t seem
right, it means the CSV can be reviewed, and potentially fixed before it’s imported, which leads to less errors
overall.

One thing that can cause an issue is the use of a non-standard delimiter, which would mean the rows
won’t be interpreted properly by Cypher, as by default it looks for a comma separator. For argument’s sake,
let’s assume this CSV has a non-standard separator, so rather than a comma, a semi-colon is being used.

If a LOAD CSV query was run without telling Neo4j what the delimiter was, then it’d assume it was a
comma, and therefore would fail, or get some very odd results if it didn’t. In some cases, it’s easier to use
a different delimiter than to escape all of the commas in your file, so if you were importing big chunks of
text, a different delimiter other than a comma would be helpful. Anyway, to tell Cypher you’re using a non-
standard delimiter, just add the FIELDTERMINATOR cause to the query, which looks like so:

LOAD CSV FROM "http://localhost/file.csv" AS line WITH line FIELDTERMINATOR ';'

Now, when the CSV is processed it’ll pick up the correct delimiter and process the file correctly, which
is what we want. With the correct delimiter now specified, the data can be tested to ensure it works correctly,
so the previous query can be reused to test the file again before it’s imported, which is done like so:

LOAD CSV FROM "http://localhost/file.csv" AS line WITH line FIELDTERMINATOR ';'
RETURN line
LIMIT 5;

Chapter 6 ■ ImportIng and exportIng data

73

Process the CSV
At this stage, the CSV being used should be valid, and in the correct location, so it’s finally ready to start
importing the contents into Neo4j. With this example, I’ll be using a locally hosted CSV as that’s the easiest
way to load it, or at least for me, anyway. The CSV in question is a list of people with a number of properties.
Rather than listing them all, the contents of the CSV is as follows:

id,First Name,Middle name(s),Surname,D.O.B,Favourite Animal ,Favourite Colour,friend_id
1,Chris,D.,Kemper,28/11/88,Dog,Red,2
2,Kane,Phil,Scott,2/10/90,Dog,Yellow,
3,Dave,,James,5/5/75,Shark,Pink,1
5,Claire,North,West,20/2/70,Fish,Green,
8,Andy,,Green,19/1/80,Dog,Purple,3
9,Charlotte,Sue,Lee,7/5/88,Giraffe,Orange,12
10,Sterling,Mallory,Archer,5/9/48,Ocelot,Blue,
11,Peter,,Gray,10/7/90,Snake,Red,10
12,Sarah,Jennifer,Mitchell,15/9/80,Cat,Yellow,

The data being specified here is a list of people with various attributes attached, such as a date of birth,
and a favorite animal. For ease, I’ll be hosting the CSV locally, so it can be accessed over localhost. In this
case, this CSV will only require the creation of one label, Person, which means when it comes to importing
the nodes, the query is nice and simple.

Before importing data, it’s always a good idea to create some constraints on the data, to ensure certain
properties are always unique. Adding contrasts also gives another benefit that we know of already, in the
form of creating an index, which helps make getting the data out of Neo4j a lot faster. Let’s create a constraint
on this data for good measure. Since we’re dealing with people, there are chances for duplication on pretty
much every field, as people do have the same name, and also like the same things, so constraints shouldn’t
be added on those, unless your application requires otherwise, of course. There is an Id column in the file
here, which is required to be unique, so a constraint works perfectly here:

CREATE CONSTRAINT ON (p:Person) ASSERT p.id IS UNIQUE;

With the constraint place, the data is now ready to be imported and you can be confident the id of each
person will be unique, which is just what we want for the import.

That data now needs to be imported by using LOAD CSV, but in this case, with the addition of WITH
HEADERS. This allows for the CSVs headers to be referenced by their keys in the query, which makes things
easier than using index. If you were to load a CSV without headers, instead of using the column header you
would just use the index, so the first would be 0, and then moving up from there. To reference the index,
just treat the variable like an array, so you’d index a row by using square brackets. If you’ve aliased the CSV
row with ‘AS row`, to use a value from that row via an index, it would be row[0], rather than row.name, for
example. A full example would look something like the following, depending on your data.

LOAD CSV WITH HEADERS FROM ‘http://localhost/people.csv’ AS row
CREATE (:Person {
 id: row.id,
 first_name: row.`First Name`,
 middle_name: row.`Middle name(s)`,
 surname: row.`Surname`,
 dob: row.`D.O.B`,
 favourite_animal: row.`Favourite Animal`,
 favourite_colour: row.`Favourite Colour`
})

Chapter 6 ■ ImportIng and exportIng data

74

It’s also possible to assign properties using the SET clause, rather than having one big CREATE. The
same result as above can be converted to use SET like so:

CREATE (p:Person {id: row.id})
SET p.first_name: row.`First Name`
 p.middle_name: row.`Middle name(s)`,
 p.surname: row.`Surname`,
 p.dob: row.`D.O.B`,
 p.favourite_animal: row.`Favourite Animal`,
 p.favourite_colour: row.`Favourite Colour`
})

The main difference here (other than the use of SET, of course) is that before the alias for the node was
emitted as it wasn’t needed (so just :Person) whereas here, it’s `p`. This is so that the same node can be
used later in the query to have values assigned to it, using (you guessed it) SET. Using SET can make your
code easier to lay out, and if you need to use any functions on the data (such as TOINT()), this keeps each
property on its own line, making the code easy to read, which is always a bonus.

Running either of these queries will give the same results, and will import all of the nodes using the
values from the CSV, creating a node and then applying properties to it, and even though the data in the CSV
is unique and will import fine, if two nodes had the same id, the second would fail as that id is taken. This
data sample is quite small, but what if you want to import a large amount of rows? Well, if you want to import
large amounts of data, you’ll need to make at least one change, potentially two, depending on how Neo4j is
set up. The first thing is to ensure Neo4j has enough RAM to be able to process the import.

 ■ Note When it comes to importing, the more ram the better, as it’ll make your import faster. You’ll want to
have 3–4gB of ram allocated to neo4j, but if you can assign more then do that. to update the amount neo4j
has at its disposal, the `neo4j-wrapper.conf` must be modified, which is located within the `conf` directory of
neo4j. the properties we’re looking to update are `wrapper.java.initmemory` and `wrapper.java.maxmemory`.

What’s actually being updated here is the amount allocated to Java heap, but there’s also another set
of memory values that need to be updated, which are the memory-mapping values. When you’re doing an
import, data is stored within these two locations so it can be reused within the remaining parts of the import.
This is why more RAM is better, as it means more data can be stored within it, and the data doesn’t need to
be looked up again, which slows things down. Within the `neo4j.properties` file (within config, once again)
the following values should be updated:

Default values for the low-level graph engine
neostore.nodestore.db.mapped_memory=50M
neostore.relationshipstore.db.mapped_memory=500M
neostore.propertystore.db.mapped_memory=100M
neostore.propertystore.db.strings.mapped_memory=100M
neostore.propertystore.db.arrays.mapped_memory=0M

In these two places there is a total of 4.75GB of RAM required, but on a Windows machine, this is
slightly different. On Unix-like systems and OS X, these two values are separate, whereas on Windows,
they’re one combined value. In this case, 750MB allocated to the memory-mapping will come out of the
4GB assigned for the Java heap, so if you’re on Windows, be sure to update this value to be inclusive of both
values. In this example, you’d set the value on Windows 750MB to 1GB higher to account for this.

Chapter 6 ■ ImportIng and exportIng data

75

With these values set and updated, Neo4j can now be restarted so these values can take effect. With the
RAM sorted out it’s time to make the other change, which is an optional one within Cypher. It’s possible to
run an import in batches rather than just in one go, which is achieved by using PERIODIC COMMIT. Using
this clause wraps a transaction around however many rows are specified, which when you’re dealing with a
large amount of rows will be required for the import to be successful.

Using PERIODIC COMMIT is easy, and can be done with the addition of one line before LOAD CSV is
called. If the previous example were to use PERIODIC COMMIT, it would look like so:

USING PERIODIC COMMIT 500
LOAD CSV WITH HEADERS FROM ‘http://localhost/people.csv’ AS row
CREATE (:Person {
 id: row.id,
 first_name: row.`First Name`,
 middle_name: row.`Middle name(s)`,
 surname: row.`Surname`,
 dob: row.`D.O.B`,
 favourite_animal: row.`Favourite Animal`,
 favourite_colour: row.`Favourite Colour`
})

With the addition on PERIODIC COMMIT it now means the query is done in 500 row batches. Now the
CSV will be processed by transactions that will be committed every 500 rows. If you have more RAM at your
disposal this value could be increased to 1000 (or even 10000) if required.

For each transaction, all of data will be stored in RAM, so if you don’t have enough RAM to handle
1000 rows, then the import will fail. You can of course run lots of smaller transactions, but this will take a lot
longer, so how many rows are handled within the transaction is totally dependent on the CSV size, and how
the RAM for Neo4j is allocated.

Importing Relationships
When you’re importing data, you may well also want to import relationships, and that can be achieved using
LOAD CSV. To ensure the import is as efficient as possible, it’s advised that creating nodes and relationships
aren’t done within the same query, so create your nodes first, and then relate them. Depending on how your
data is set it, your relationships could either be in the same CSV as your nodes in the form of joining ids, or
potentially in another file. In this case, our relationships are within the same file, so the first step is to use
LOAD CSV once again, but this time to relate the nodes, rather than create them.

USING PERIODIC COMMIT 500
LOAD CSV WITH HEADERS FROM ‘http://localhost/people.csv’ AS row
MATCH (p:Person {id: row.id})
MATCH (friend:Person {id: row.friend_id})
MERGE (p)-[f:FRIENDS_WITH]->(friend)
WHERE row.friend_id IS NOT NULL;

Since this data has already been imported, reading the same CSV again means the data is all already
there, so we can just use MATCH to bring back the related nodes. To avoid clogging up the database, the
`friend_id` values were never imported, as they’re only needed to relate the nodes. This way, the same CSV
can just be used again, so any reference fields can be left in and not imported, which makes cleaner data.

The query itself is simple enough. We’re matching the person and friend based on their Ids, but only
where `friend_id` isn’t null. This ensures the query is only applied when the values required for it to run are
there, which reduces on errors, and for the sake of large files, saves time as it’ll skip rows that aren’t suitable.

Chapter 6 ■ ImportIng and exportIng data

76

Running an Update from a CSV
Although sometimes imports can be one-offs, this isn’t always the case. It may well be that the client actually
hadn’t finished with the CSV when you imported it, and they’ve now added a bunch of new rows and
updated some of the existing values. It may also be that because of how this system works, giving a client a
CSV of data they can edit works out to be easier than getting it in another format. Regardless of the reason,
there may come a time that you need to update existing Neo4j data via a CSV, and this is very possible.

To ensure we can create and update nodes, the previous query used will need to be modified. Otherwise
Neo4j will attempt to create duplicate nodes, and then fail because of the constraint. The update Cypher
code looks like the following:

LOAD CSV WITH HEADERS FROM ‘http://localhost/people.csv’ AS row
MERGE (p:Person { id: row.id })
ON CREATE SET
 p.first_name: row.`First Name`,
 p.middle_name: row.`Middle name(s)`,
 p.surname: row.`Surname`,
 p.dob: row.`D.O.B`,
 p.favourite_animal: row.`Favourite Animal`,
 p.favourite_colour: row.`Favourite Colour`
ON MATCH SET
 p.first_name: row.`First Name`,
 p.middle_name: row.`Middle name(s)`,
 p.surname: row.`Surname`,
 p.dob: row.`D.O.B`,
 p.favourite_animal: row.`Favourite Animal`,
 p.favourite_colour: row.`Favourite Colour`,
 p.updatedOn = timestamp()

The query looks very different, but that’s for good reason. First, CREATE is no longer used, instead
MERGE is. The MERGE clause is very powerful, and we can use it to create new nodes if needed, but then
also update a node if it matches. In this query, it’ll try to find a person by their id, if that person exists, it’ll
update the properties on that person with those from the CSV and also set an updated date. If the node
doesn’t exist, then it’ll create a node with the specified properties. This is made possible thanks to the ON
CREATE and ON MATCH clauses, which are one of the reasons MERGE is so powerful.

This query can now be used with a new CSV, or an existing one, as it does both updates and creates,
which when you're working on an import, those are the actions you want to be able to accomplish.

Using a Custom Import Script
A CSV isn’t always the best format to export your data and it’s just easier to import the data using your choice
of programming language. If the data being imported is actually an export from another system, it could
be possible to have this in a more structured format, such as JSON. This means you can still iterate over the
data, but it can be processed in whichever way suits the application.

The data being used may also be live, and Neo4j is simply being used to bring some additional
functionality to an application, so frequent imports are required. If this is the case, then this live data may
be available via an API or an HTTP endpoint. This means you could write an importer that checks the URL
every day to see if there is any additional data. The data here would be structured in a way to make the
import easier, so that you can create nodes, but also then create relationships too, as they’re needed.

Chapter 6 ■ ImportIng and exportIng data

77

To allow for flexibility when importing data this way, it’s important to create constraints on the
database. This will ensure no duplicates happen, and keeps the queries fast as a constraint uses an INDEX
under the hood, so it’s a win/win. The constraints would also be needed to make relationships possible. To
ensure the data can be as flexible as possible, you’d need to be confident that you wouldn’t get duplicates, so
that each relationship call worked as expected. A basic example of this would be as follows

[{
 "nodes" : [
 {
 "label" : ["Person"],
 "identifier" : "shortname",
 "properties" : [
 {
 "name" : "name",
 "value" : "Chris Kemper",
 "type" : "string",
 },
 {
 "name" : "shortname",
 "value" : "chrisdkemper",
 "type" : "string",
 }
]
 },
 {
 "label" : ["Person"],
 "identifier" : "shortname",
 "properties" : [
 {
 "name" : "name",
 "value" : "Kane Kemper",
 "type" : "string",
 },
 {
 "name" : "shortname",
 "value" : "kjck",
 "type" : "string",
 }
]
 }
],
 "relationships" : [
 {
 "type" : "RELATED",
 "nodes" : [
 {
 "shortname" : "chrisdkemper"
 },
 {
 "shortname" : "kjck"
 }

Chapter 6 ■ ImportIng and exportIng data

78

],
 "properties" : []
 }
]
}]

In the JSON here there are two arrays, nodes and relationships. In this case, the nodes within the nodes
array would be created or updated, and once this process is finished, the relationships would be processed.
Each node also has an identifier which can be used to look up the node to see if it exists, which in this case
is the `shortname` property. The `shortname` would always be unique thanks to the constraint, so this can
be relied on. If the node did exist, the properties contained within it would be updated, or if the node didn’t
exist it would be created with those properties.

The properties exist in an array format, as well as the type of the value, in this case they’re both strings.
This means if you had a particular field type, it could be parsed to ensure it’s stored within Neo4j correctly.
This isn’t really an issue with strings as this is the default type, but for fields such as integers, the type would
need to be explicitly set.

Within the relationship array, there is one item, which contains a type, nodes, and properties. The type
here is in reference to the relationship type, and would be used in the same way as the `shortname` field to
ensure the relationships are unique. The nodes portion of the JSON object contains information needed to
search for the nodes and then relate them. In this case it’s the `shortname` property and the corresponding
values for the two nodes that will also be created. You’ll notice no direction is specific here, and that’s
because the ordering of the nodes array dictates the direction, so in this case, the first node will be related
to the second with an outward relationship. There is also a properties array here, which will be used to add
properties to the relationship should they need to be added.

The code using this data would use Cypher queries to create the needed nodes and relationships, and
also to query for existing items. How the code would interact with Cypher would be up to you, whether this
is direct with Curl, or potentially using the neo4jphp Neo4j wrapper written in PHP, created by jadell (which
can be found at https://github.com/jadell/neo4jphp) or something similar. With a connection to Neo4j
in place the import would then iterate over the code, taking advantage of Cyphers MERGE and CREATE
UNIQUE clauses to ensure the data is unique.

Having the data structured in this way allows for the importer using it to be used as often as you’d like,
as the process will only create unique nodes, and the constraint will enforce this. Of course the logic for the
importer can be completely custom and you may actually want to create duplicate nodes, in which case the
constraints can be removed. This is the freedom that comes from creating your own importer, it also means
you can reuse this as much as you’d like. It also means any desired changes can be made whenever they’re
required, which gives more flexibility than Cyphers’ CSV import method, should you need it.

If you had a lot of projects that required data to be imported on a regular basis, it could also be useful to
create a standalone application that could be included within your applications as and when it’s needed. If
a standalone application exists, it means it can be pulled down as needed and then removed to save space
in the repository. If you happen to be building an open source application, or one that’ll be shared online,
bundling the importer with the code gives anybody using the project the option to import the data. Be sure
to include documentation on how to use the importer if you do this though, so any unfamiliar users won’t be
caught out.

Exporting Data
At some point or another, there’ll be a time when you want to export data from a Neo4j database. This could
be for a backup, or even to use within another application, but at some point you’ll no doubt want to export
some, or all of the data within a database. There sadly isn’t a way to just export the entirety of the database
using the core Neo4j tools, but there are a couple of options.

https://github.com/jadell/neo4jphp

Chapter 6 ■ ImportIng and exportIng data

79

Backing up the Database
If you’re wanting to backup the data, or clone the database for use in another Neo4j application, then this
is possible without too much hassle. The first step is to locate the database, which is set via the `org.neo4j.
server.database.location` property within the `neo4j-server.properties` file. Unless this value has been
changed, it should be `data/graph.db` which on an Ubuntu machine, means the file is located at /var/lib/
neo4j/data/graph.db. With the file located, the next step is to stop the Neo4j service from running so that the
database won’t change while you’re copying it, which is done using the following command:

service neo4j-service stop

Depending on your setup, the use of `sudo` may be required at the start of the command, to get around
any permission errors. If this is the case for you, some kind of permission error will be returned, such as:

start-stop-daemon: warning: failed to kill 1131: Operation not permitted
rm: cannot remove ‘/var/lib/neo4j/data/neo4j-service.pid’: Permission denied

When the command runs successfully, nothing is returned. To double-check Neo4j definitely isn’t
running, you can use `service neo4j-service status` which will return the state of Neo4j, and what we’re
looking for is `* neo4j is not running`. Now that Neo4j isn’t running, it’s just a case of zipping up the
directory, moving it to where it’s needed, and then finally, starting Neo4j once again.

If you haven’t done so already, cd into the directory containing the Neo4j db, which in my case is `/var/
lib/neo4j/data/`. From within that directory, the graph.db directory needs to be zipped up somehow; one
method is to use the following to turn the directory into a .tar file, and then, to zip that file, which is done
using two commands.

tar -cvf graph.db.tar graph.db

This will create the `graph.db.tar` file for you, the next step is to zip this directory, which can be done using:

gzip graph.db.tar

This creates a `graph.db.tar.gz` file, and now all that’s left is to move it to where it’s needed, or store it
as a backup. To get this file back to normal, the commands just need to be run in reverse. First, unzip the file
using `gunzip graph.db.tar.gz` and then untar the file using `tar -xvf graph.db.tar`, which will leave you with
a ready to use graph.db file.

There may again be a need to use `sudo` here if you don’t have the needed permissions, so if you’re
presented with an error similar to the following, you’ll need `sudo`.

tar: graph.db.tar: Cannot open: Permission denied
tar: Error is not recoverable: exiting now

Getting Data from the Neo4j Browser
When using the Browser that comes with Neo4j, you have the ability to export the results of Cypher queries
to SVG, PNG, JSON, or CSV. This could be potentially used as an export method, however the query run
would be custom depending on which data you wanted returned from the database. For example, say you
wanted to export the entire database, a good start would be to run the following Cypher query, and then
export the result, theoretically.

MATCH (n) RETURN n;

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ ImportIng and exportIng data

80

In the Browser this will return every node and relationship in the database, but if you were to export
this query as JSON, you would be given the same response as if you had queried the database using Curl. An
example of the output can be seen here:

{
 "columns": [
 "n"
],
 "data": [
 {
 "row": [
 {
 "name": "Chris"
 }
],
 "graph": {
 "nodes": [
 {
 "id": "171",
 "labels": [
 "Person"
],
 "properties": {
 "name": "Chris"
 }
 }
],
 "relationships": [

]
 }
 },
 {
 "row": [
 {
 "name": "Kane"
 }
],
 "graph": {
 "nodes": [
 {
 "id": "172",
 "labels": [
 "Person"
],
 "properties": {
 "name": "Kane"
 }
 }
],
 "relationships": [

Chapter 6 ■ ImportIng and exportIng data

81

]
 }
 }
],
 "stats": {
 "contains_updates": false,
 "nodes_created": 0,
 "nodes_deleted": 0,
 "properties_set": 0,
 "relationships_created": 0,
 "relationship_deleted": 0,
 "labels_added": 0,
 "labels_removed": 0,
 "indexes_added": 0,
 "indexes_removed": 0,
 "constraints_added": 0,
 "constraints_removed": 0
 }
}

This data sample is from a database consisting of two nodes with `Person` labels, with the `name`
property values of `Chris` and `Kane`, which are also related together with a `RELATED_TO` relationship.
Each of the returned nodes is added as a result row, with the labels, and properties of that node included.
There aren’t however any relationships mentioned, so if you needed the data and the relationships, they
would need to be explicitly returned. Although you may need everything included in the returned JSON,
odds are you would only want the information on what is actually returned from the query, and in this case
that’s nodes.

If you were to return the data as a CSV rather than JSON, then the data returned would be different. An
example of this can be seen below:

n
"{""name"":""Chris""}"
"{""name"":""Kane""}"

The first row of the CSV is the column heading, which matches the return value of `n` from the `MATCH
(n) RETURN n;` query. The remaining rows of the file are JSON, but since this is a CSV file, the quotes have
been escaped, so if you were to open this in a spreadsheet application, or parse it as a CSV, the JSON would
then be valid. Using the CSV option does remove a lot of the clutter from the JSON response, but a lot of
information is also lost, such as the labels for the nodes, and the actual id of the node.

Although both of these approaches can be used to export data via the Browser, each has their
advantages, and disadvantages. The JSON export contains information that is potentially un-needed but
is badly structured, and the CSV format loses some key information. Of course it is totally possible to then
tailor the query using either export method, to ensure everything that you need to have returned, is returned.

This method of exporting data may not be perfect, but unless the browser has been explicitly disabled,
it means that anytime a quick export is needed, it can be achieved with no additional tools through the
Browser. In addition, if your particular export query ends up being quite complex, it can then be saved and
used later to save on time and effort.

Chapter 6 ■ ImportIng and exportIng data

82

Write Your Own Data Exporter
Although other tools can make things easier for you, it may be easier to export the data yourself, so why
not do that? It may be that the Cypher based export isn’t detailed enough, or the structure the data is given
in requires too much alteration to be useful by using Curl directly. These problems could be solved by
exporting the data yourself, using a small script. Since you’ll know what format you need your data in, it
means it can be queried in the best way to fit the data. For example, if you know you only want nodes that
have a particular label, then these can be targeted especially. The same also goes for the properties on these
nodes, and also the relationships. Any part of the export can be tailored to meet the needs of the application
using it.

This approach does mean additional time, as the export tool will need to be created, but it also means
this tool will be tailored to its particular application, and that the export would be repeatable. This means
there won’t be the hassle of worrying about the process of exporting data from Neo4j anymore, as you’ll
have already built the functionality. When the time comes that a new project requires its data exported, the
knowledge from the first exporter can be used to help with the second. In some cases the exporter could
simply be moved to another project and configured to work with that application with minimal effort.

Although this approach has a big up-front cost in building it in terms of the time taken, the export
process only needs to meet your needs, and that’s it. This means the tool could be completely terminal
driven to save on building a user interface, or if it did have one, it could be very basic in design. All the
process has to do is export data in the write format, the other factors only become important if other people
are going to see the export tool.

Summary
In this chapter we’ve been through how to handle your data within Neo4j via importing and exporting data.
Whether you’re starting a new project and are batch importing some data, or you’re importing data from a
previous project, we’ve been through it. Then after it’s all in, we’ve also covered how to get your data out of
Neo4j as well as how to back up the database.

When you're importing data, the CSV file is really important, and we’ve been over a few ways to ensure
your CSV is valid before importing it, which saves headaches and unexpected errors later and always helps.

Importing data can be a pain, but knowing you can create an update query within Cypher that will
create or update nodes as needed, as well as being able to create relationships makes it easier. If you have to
run an import multiple times, sometimes with new data, sometimes with updated rows, that’s all covered.

Of course you aren’t always importing data, so exporting has also been covered. Sadly, Neo4j isn’t the
most equipped when it comes to exporting data, but you can still get your data exported, and that’s the
important thing. You’ll also always have the option of exporting small datasets via the Browser, so if you ever
need a quick export, don’t forget the Browser is your friend.

Now that data moving in and out of the database has been covered, it’s time to cover how to use data to
create recommendations, calculate distances, and more. That’s exactly what the next chapter is about. Now
it’s time to see the power Neo4j has to offer as we move into Chapter 7, Using data in Neo4j.

http://dx.doi.org/10.1007/978-1-4842-1227-1_7

83

Chapter 7

Querying Data in Neo4j
with Cypher

When you’ve spent the time building up a data structure, planning the best relationships for the different
node types, and of course collecting the data, you want results. Cypher allows us to take all of the hard
work in building up a good dataset, and use that to give a better experience for users, or supply accurate
recommendations. There are a lot of ways to analyze your data to show trends and gain insight into those
that supplied it. Whether that is from a user making orders to generate more accurate recommendations on
an e-commerce website or to a blog user seeing their most popular posts by seeing which of them has the
most comments. There are many uses for data, and we’re going to cover how to use Cypher to get the data
you need for a multitude of situations.

To best showcase the wide range of Cypher’s capabilities, there will be two main examples used.
The first, will be a Pokémon-based example, composed of user-submitted data. The second, will be a
location-based example, composed of generated data based on various locations. These two approaches
demonstrate how Cypher can do both recommendation-based queries and distance-based ones as well.
Both of these examples demonstrate the power of Cypher, and these can be adapted to various situations,
including e-commerce, which will also be covered. The e-commerce application is an obvious choice for
demonstrating recommendations, so aspects of the logic applied in the Pokémon example will also be
applied to e-commerce.

With that out of the way, it’s best to just dive right in to the Pokémon example, to demonstrate how
Cypher be used to generate recommendations, and of course, the e-commerce application.

Recommendations, Thanks to Pokémon Data
I wanted to find an interesting way to generate data for use in the book and decided to get the community
involved in supplying data. To as many people involved as possible, I decided to try and widen my audience,
and make it something that would apply to anybody; anybody that liked Pokémon, that is. I’m a big fan of
Pokémon, and figured I’d try to involve that, plus I know I’m not the only person who likes it. The idea of the
application came from the original Pokémon slogan, Gotta catch em’ all! Why not make that the objective?
With the idea in place, I had to then build a website to make it happen.

Chapter 7 ■ Querying Data in neo4j with Cypher

84

Getting the Data, the Website Used
After seeing the slogan, it seemed a good idea to make a game out of catching them all, so that’s just what
happened. The idea was, you’d get one shot to randomly catch them all, but you could pick four Pokémon
to reserve, so you could make sure you had your favorite. There were a couple of rules when it came to
choosing these reserved Pokémon, but I’ll get to those in a moment. While they were playing the game, it
made sense to try to get some information about the user, which could be used when analyzing the data. The
data recorded was picked for a reason, and all kept optional (most of the time, but we’ll get to that) so it was
all fair. This essentially meant that each user or Trainer (as they were labeled in Neo4j) that submitted data
would get a random sample of Pokémon, ranging between 1 and 200. In addition to that sample, they would
also have four Pokémon they’d reserved, and if they’d submitted it, some other personal information to go
with this sample. As far as the user was concerned though, they’d just pick four Pokémon, fill in a form, then
be presented with a page of Pokémon they’d caught.

The Pokémon that could actually be caught were the first 151, so there’s a chance to catch Mew, as
Mew is the 151st Pokémon, and was added after the initial release, for those that are interested, that is. That
means that there is an actual chance to get all 151, as you get can get over 151 chances, and you already pick
4 to begin with.

Data Being Gathered
Of course I wanted to make sure the website was fun, but I still wanted to gather data that could be analyzed
and was of course above all else, useful. Although supplying the data is entirely optional, each user had the
option to submit the following information, supplied in Table 7-1.

Table 7-1. The personal data recorded for those who submitted on pokemon.chrisdkemper.co.uk for use in the
book and the reasoning for each

Data item Reasoning

Nickname This was the best means of identifying a user if they wanted to be mentioned
in the book.

Email The e-mail address here was only used to contact those who were mentioned, just to let
them know their nickname would be used (or not, as it seems).

Gender There were only four Pokémon selected by the user, but gender is still a good value to
have when it comes to analyzing data.

Age Having an age for the user allows some nice range-based queries depending on the
range of the data available, so again, it is useful to have.

Each item of data recorded had its own benefit, and of course is only used for this chapter. The e-mail
data stored has since been removed, as the only reason it was needed was to contact those who’ve been
featured in the book, and in a couple of cases, when they weren’t, spam is always a problem, even if you use
a reCAPTCHA.

http://pokemon.chrisdkemper.co.uk/

Chapter 7 ■ Querying Data in neo4j with Cypher

85

Keeping the Spam Under Control
To try to keep spam users down to a minimum, I implemented a reCAPTCHA on the website, which is
Google’s offering in the fight against spam. If you’ve never come across one, it’s just a checkbox you need to
check if you’re human, and it may also ask you to identify some similar images. Although technically spam
data would just be anonymous data, I wanted to avoid 100% of the data being spam. If I’d wanted automated
data, I’d have just scripted that.

The other advantage of the reCAPTCHA application means that although there will be anonymous data,
it’s still user-submitted anonymous data. This means, that the Pokémon characters that have been reserved,
have all been picked by an actual person, provided the reCAPTCHA has been keeping the spam bots at bay.

Keeping the spam bots at bay was a priority, but I also didn’t want to use completely anonymous data,
because as I said earlier, I could have generated that. To get around this, I put in a validation check to ensure
there wasn’t more than 50% anonymous submissions already in the database.

If a user posted without a nickname, and 50% of the existing entries were anonymous, then they had to
add a nickname to submit their data. They could still have anything as a username, nothing was unique, just
as long as it was populated. The idea was that having another look at the form may allow for some additional
data to be added, rather than the now required, nickname.

I used Cypher to pull out two figures to help with the calculation, the total submissions, and the number
of anonymous submissions. The query used to achieve this is as follows.

MATCH (t:Trainer)
MATCH (a:Trainer {nickname: 'anonymous'})
RETURN count(DISTINCT t) AS total, count(DISTINCT a) AS anon;

The main thing to note in the above query is the use of DISTINCT, which ensures each node is only
counted once, otherwise you run into a duplication problem. This duplication problem comes from count
using both match statements to do the count, even though it shouldn’t. Thanks to the multiple matches,
this results in the same result for both values. To show this, first will be Figure 7-1, which will be the results
without DISTINCT, and then Figure 7-2 soon after, show the results with DISTINCT.

Figure 7-1. Showing the results of the Cypher query being used without DISTINCT

You can see in Figure 7-2 that the results are the same for both values, which is of course useless to us.
To make this data actually useful, DISTINCT is added as shown in Figure 7-2.

Figure 7-2. Showing the results of the Cypher query with the use of DISTINCT

Chapter 7 ■ Querying Data in neo4j with Cypher

86

You can see here there are now unique values being returned for each, which is much more useful. The
interesting thing here are the values being returned. The first value was 6076 for both `total` and `anon`,
and the actual values were 98 and 82, for `total` and `anon` respectively. The two unique values multiplied
together: 98 * 62 equals the first value, 6076. This gives some reasoning behind the initial value, but also
shows the importance of DISTINCT, in the times it’s needed.

With the Cypher side out of the way, after the values are returned, they’re used to work out a percentage,
and if it’s over 50%, the user cannot submit anonymously. If this user submitted data anonymously, with an
unrounded percentage of 63.2, they’d have to add a nickname to get their shot at catching them all.

How the Data is Structured
To best understand how the queries work, you must first know the data you are querying against. In this
case, all 151 Pokémon were imported into the database, with various different properties. An example of
Bulbasaur, the first Pokémon (in terms of Id number, 1, that is) can be seen in Table 7-2.

Table 7-2. Bulbasaur’s properties within the database

Property Value

Name Bulbasaur

Index 1

Height 7

Weight 69

Type [poison, grass]

The data for each Pokémon was obtained from the Pokeapi, available at http://pokeapi.co. I wrote
a script to import the Pokémon into Neo4j, based on the Id numbers, and then picked these properties to
use. The API has a lot available to use, so it’s worth looking at if you’re doing a Pokémon-related project. The
type(s) I wanted to store as an array, so they could be used as a filter later. The Pokeapi was a bit too verbose
with the information it had regarding the types, at least for my needs, so I had to trim it down to just the
names of the types.

With the Pokémon nodes, it was then just a case of relating a Trainer to the Pokémon as needed. There
are two relationship types used, RESERVED and CAUGHT. The former, are the Pokémon that are picked by
the user, and the latter, are the Pokémon that have been randomly assigned. This helps do some interesting
queries later, including the most reserved Pokémon.

When a user submits their data, a Trainer node is created, with any information they supply attached
as properties to the node. The Trainer is then related to their RESERVED Pokémon, with a RESERVED
relationship, and the website assigns the CAUGHT relationships as needed. This database is one that is
relationship heavy, as one user can have up to a maximum of 204 relationships, provided they get the highest
achievable random value. An example of how a Trainer’s relationships will be displayed can be seen in
Figure 7-3, where a random node has been selected, and its structure can be seen.

http://pokeapi.co/

Chapter 7 ■ Querying Data in neo4j with Cypher

87

As you can see, Figure 7-3 shows that one Trainer has many relationships to Pokémon, in this case 54,
to 48 different Pokémon. The query used to achieve this was as follows:

MATCH (t:Trainer)-[r]-(p:Pokemon)
WHERE id(t) = 919
RETURN t, r, p;

The query is just a normal relationship-based query, with a WHERE clause to filter it down to the trainer
with the node id of 919. This example node shows how the relationships will work within the application, so
when we get to the Cypher queries, the use of Pokémon and Trainer Labels will make a little more sense.

Rules for Choosing Pokémon
To make things a little bit more interesting there was a catch when it came to selecting which Pokémon you
were allowed to pick. The first rule was that you were only allowed one starter Pokémon, or any evolution of
that Pokémon. If you’ve ever played the games, you’ll know that you only get a choice of one of three starter
Pokémon, so this rule was to bring some of those feelings back. To give some extra choice, I allowed the
inclusion of evolutions of the Pokémon, so you could pick Charmander, or Charizard for your starter, if you
even wanted to pick one.

This rule means that it’s possible to see the most popular starter Pokémon, including their evolutions,
which is interesting for analysis. There was a similar rule applied for Fossil-based Pokémon, and also
Legendary Pokémon for their uniqueness. The rules don’t have any real impact on the process, it just allows
for additional analytics points. When the actual Pokémon are picked by the system, these rules don’t apply,
so it’s a 1/151 chance to get any particular Pokémon.

Querying the Data
With all the data collected (at the last point it could be before printing) it’s now possible to use that data
and work out a lot of different things. Although this dataset is mostly random, a lot can be learned from
it, as the concepts used here can be applied to other things where the data won’t be so random, such as

Figure 7-3. The structure of Trainer node in the database, in this case node 919

Chapter 7 ■ Querying Data in neo4j with Cypher

88

e-commerce. A number of different values will be worked out, with the Cypher used to retrieve them, and
of course, the results of the queries on the data. In addition to taking data for analytics, it’s also possible to
make recommendations for individual `Trainers` (as they’re labeled in Neo4j in the database) for different
Pokémon they could catch, based on which type they have the least of, for example.

To make things easier, the queries will be divided into two groups. The first group will be queries based
on the dataset as a whole, so the more analytical aspect. The second group will be recommendation based,
and will be applied to individual trainers. Let’s get right into it, starting with the analytics side of things.

Analyzing the Data as a Whole
Whether your dataset is big or small, being able to analyze it helps provide insight into what you’re actually
collecting, and you can then use the results to help streamline your application. In this case we have a lot of
random sets of Pokémon, based on anonymous, and non-anonymous data. Once again, the queries can be
broken down into two groups, anonymous (so not using, nickname, gender, or age) and non-anonymous
(using the values collected to filter data) respectively. Within each group there will be a number of queries
based upon the group they're in, and the results of those queries. Let’s just dive into the anonymous data
sample, and do some queries on all of the data.

Anonymous Data Queries

These queries are ones that applied to the dataset as a whole, without taking any of the properties of the
Trainer nodes (data submitted, along with their reserved Pokémon) into account. The first query will be
totaling which Pokémon was the most popular overall, so let’s get to it.

Most Popular Pokémon

In terms of trainers there are two kinds of Pokémon in the database, those they caught by means of them
being randomly generated, and those they reserved. For this query, we don’t care, we just want to know
which is the most popular Pokémon between the Trainers, which in Cypher terms, is like this:

MATCH (:Trainer)--(p:Pokemon)
RETURN p.name AS name, count(p.name) AS count
ORDER BY count DESC
LIMIT 10

This query then gives the results seen in Figure 7-4.

Figure 7-4. The first 10 results of the most popular Pokémon query

Chapter 7 ■ Querying Data in neo4j with Cypher

89

We’ll get to the results in a minute, but the query itself isn’t too complicated. First, we need the
Pokémon that a Trainer has caught. We could have achieved this by using ()-[]-(p:Pokemon) which gets any
Trainer to Pokémon, regardless of direction or type. This does work, but being specific in Cypher queries
is always good for performance, and specifying the Trainer label helps speed up the query, even if only
marginally. Since the relationship isn’t considered here, that can also be dropped from the query, resulting
in (:Trainer)--(p:Pokemon) being used.

After returning the data, it’s time to arrange it in descending order, which is achieved with ORDER BY
count DESC. Rather than getting all of the data, it’s better to get a small subset, which in this case, was 15.

The Results

It’s not surprising to see all of the top-level Pokémon in the list. Although these results are random at this
stage, it’s still good to see. That’s enough about those, let’s move on to more specific queries.

Who Caught the Most

Since the website was based around catching them all, finding out if anybody did is a big deal, so let’s get
started on the query. What we essentially need to see here is which trainers got the most relationships, but
only unique relationships, to remove the duplicates. This is achieved with the following Cypher query:

MATCH (t:Trainer)--(p:Pokemon)
RETURN id(t) AS id, t.nickname AS name, count(DISTINCT p.name) AS count
ORDER BY count desc
LIMIT 10

Using this query, the following results were obtained, which can be seen in Figure 7-5.

Figure 7-5. The results of the query showing which users caught the most Pokémon

This query is a little difficult, and the most important part is the use of the id function. The match here
gets the Trainers that have caught Pokémon, regardless of their type, as we want them all. Next the data is just
returned, with DISTINCT p.name being counted. Without the id function in the query, this count would actually
make all of the values of ’t.name` unique, and then sum the corresponding values. This means that rather than
multiple anonymous values, there would be one super anonymous value, with all of the various count totals
added to it. The id function then ensures each node is evaluated individually, in this case keeping the duplicates.

The Results

It was user `KeV` that managed to get the top spot here. Sadly there wasn’t a score of 151, but I'm sure, given
enough shots, somebody would get it eventually. If you invert this query, it reveals that the lowest score was
a tie between CJ, schlocke, and hill79 all had a tie at 5. That’s unlucky, I blame Team Rocket.

Chapter 7 ■ Querying Data in neo4j with Cypher

90

Most Popular CAUGHT and RESERVED Pokémon

We’ve already seen the results for the most popular Pokémon, but we’ve yet to see the values for the specific
types. In this case, we’ll be covering the most popular randomly caught Pokémon. This really provides
insight into how the balance was between the different numbers, so essentially if it was actually fair. The
query isn’t too different from the previous one, it just has a small change. The full query is as follows:

MATCH (:Trainer)-[r:CAUGHT]-(p:Pokemon)
WITH count(p.name) AS total_count
MATCH (:Trainer)-[r:CAUGHT]-(p:Pokemon)
WITH p.index AS id, p.name AS name, count(p.name) AS total, total_count
RETURN id, name, total, total_count AS `Total Caught`
ORDER BY total DESC
LIMIT 10

With this query, you then get the results seen in Figure 7-6.

Figure 7-6. Shows all of the CAUGHT Pokémon, with an included total

The query used to generate these results is a little different from the previous ones, as it has multiple
MATCH statements. The first MATCH statement is to get the total number of CAUGHT Pokémon within the
database, which could be used to work out the percentage of the total each Pokémon has. This value could
have been obtained from its own query of course, but this way it’s included on every result row, so if it’s
needed it’s there.

To ensure both queries work as expected, WITH is utilized, to help only pass the relevant information to
the rest of the query. You can see that the count of `p.name` has been aliased to `count` using AS. In the next
statement, another WITH is used, which essentially just passes these values to the RETURN clause, so they
can be returned. When using WITH, you’ll see that the `count` from the first statement is also included in the
WITH of the second. Without this inclusion, `count` would not be defined for use in the return statement.

Another thing to mention about the first query is the value it returns. If you ran that query by itself, it
would be like so:

MATCH (:Trainer)-[r:CAUGHT]-(p:Pokemon)
RETURN count(p.name) AS `Total Caught`

Since only a count is returned, and nothing node related, then all of the values that would be returned if
the count was specific to the node (just like in the second part of the previous query) are added together, and
returned as one total value. The rest of the query just gets some additional information about the Pokémon
being returned, and also orders the results by the most counted, in descending order.

Chapter 7 ■ Querying Data in neo4j with Cypher

91

Given how the relationships are set up within the database, determining the most popular RESERVED
Pokémon, rather than the most random CAUGHT Pokémon requires one change, the relationship type. The
modified query can be seen below.

MATCH (:Trainer)-[r:RESERVED]-(p:Pokemon)
WITH count(p.name) AS total_count
MATCH (:Trainer)-[r:RESERVED]-(p:Pokemon)
WITH p.name AS name, count(p.name) AS total, total_count
RETURN name, total, total_count AS `Total Reserved`
ORDER BY total DESC
LIMIT 10

Depending on the use case, it may be possible to remove total count from the query as we’re looking
at this data as user-selected data, so whomever is on top is the most popular. That being said, having the
total allows us to work out the percentage of the total each value was, so whether or not this query can be
trimmed down can be decided. The modified query gives the results seen in Figure 7-7.

Figure 7-7. The results of the most popular RESERVED Pokémon query

Most Popular Pokémon Type

Each Pokémon has at least one type within the database; in some cases, two. These values have been stored
in Neo4j as an array of string values, which means they can be used within queries, provided the values are
treated the same as they are stored, so in this case, strings. The query now needs to take the types from all
of the caught Pokémon, and ensure the list is ordered by the most popular type. That’s enough talk, let’s get
straight into it. The Cypher for the query can be seen below.

MATCH (:Trainer)--(p:Pokemon)
WITH p.type AS types
UNWIND types AS type
RETURN type, count(type) AS total
ORDER BY total DESC
LIMIT 10

As we’re only interested in Pokémon data, the Trainer alias can be left off as it’s not used. The
interesting part of the query comes with the use of UNWIND, which allows each individual type to be
counted, rather than treating multiple values as one row. If the above has been run without the UNWIND,
then any time a Pokémon had more than one type, this combination would be counted as one type, rather
than two different types.

Chapter 7 ■ Querying Data in neo4j with Cypher

92

We already know Bulbasaur’s types from previously in the chapter, which are poison and grass. Without
the use of UNWIND, the combination of poison and grass would be counted as one value. Essentially, the
use of UNWIND allows each item in the array to be evaluated as an individual item.

Thanks to the combination of WITH and UNWIND, it means that when the data has to be counted, it’s
already just a huge list of types, so they just need to be counted, ordered, and of course the type itself needs
to be returned, so the numbers make sense. This query gives the result shown in Figure 7-8.

Figure 7-8. The results of the query to determine the most popular types within the database

This query could be modified slightly to give more specific result sets depending on the use case, so if
you wanted to know the most popular type within RESERVED Pokémon, just add a relationship constraint to
the query. It could be also possible to see what is the most popular type among the Pokémon, regardless of
the Trainer input, which would look like so:

MATCH (p:Pokemon) WITH p.type AS types UNWIND types AS type
RETURN type, count(type) AS total
ORDER BY total DESC
LIMIT 10

This allows you to see which are the most and least popular Pokémon types, so if you wanted to catch
specific types to strengthen your team, that could be done using this query. The only real change in this
query is the removal of the Trainer relationship, as we can just query the Pokémon nodes directly to get the
types in this case. Speaking of the results of the Trainer version of the query, let’s go through those.

Non-Anonymous Data Queries

All of the previous queries have been based on completely anonymous results, but the database isn’t all
anonymous, so it’s time to look at what data we have available. As mentioned earlier, the fields recorded
were `nickname`, `gender`, `email`, and `age`. Really, out of these fields, there are only two that can be
of any real use, which are `gender` and `age`. With these fields, it allows the data to be categorized by age
ranges, and of course, gender.

Of course, had I collected more data, such as location, there would have been more granular results, but
with age and gender values, this still gives some values. We’ll be performing a number of queries using these
values to help filter down the results, and give some insight into those that submitted their data to be used.

Chapter 7 ■ Querying Data in neo4j with Cypher

93

Popular Pokémon Filtered by Gender

We’ve already done a query to work out the most popular Pokémon, so with a couple of alterations, it can be
modified to return gender-specific values. The resulting Cypher query can be seen below.

MATCH (t:Trainer)--(p:Pokemon)
WHERE t.gender = 'male'
RETURN p.name AS name, count(p.name) AS count
ORDER BY count DESC
LIMIT 10

In this query, we need to use the values of the Trainer node, so `t` has to be in to supply data for the
filter. In terms of the stored data, the gender property will be either set to `male`, or `female`, or be null, as
it only gets set if there’s a value to set. In the WHERE, it’ll remove null values by default, unless specified
otherwise. Since we don’t want the null values, then the basic WHERE does the job. To get the female results
it’s just a case of swapping out `male` for `female` in the query. You can see the results of this query in
Figure 7-9.

Figure 7-9. The results of most popular Pokémon query, filtered by gender, in this case `male`

Figure 7-10. The results of most popular Pokémon query, filtered by gender, in this case `female`

Switching the results to filter by `female` rather than `male` gives the results, seen in Figure 7-10.

Chapter 7 ■ Querying Data in neo4j with Cypher

94

Popular Pokémon Filtered by Age

Having access to age is a brilliant way to filter data, as it allows you to filter by age ranges, as well as an
individual age. If you want to filter by an age range, you can either have these preset, or decide them based
on what values are available within your data. In this case, we’ll be checking the ages submitted, and using
those values to build up acceptable ranges on which to base the main query. First, we need all the ages that
have been submitted and the counts for these, which in Cypher terms looks like this:

MATCH (t:Trainer)
RETURN t.age AS age, count(t.age) AS count
ORDER BY count DESC

In addition to giving the different range of ages within the data, it also gives the most popular, which
although it’s not particularly useful in this case, being able to identify your key age or age group is always a
good thing. To get this value, the query just needs to be ordered by the `count`, rather than the `age`. The
results of the query can be seen in Figure 7-11.

Figure 7-11. A query to show all of the submitted ages within the database

With a slight modification it could also be possible to use an age range with the query, which would
look like so:

MATCH (t:Trainer)--(p:Pokemon)
WHERE t.age > 18 AND t.age < 21
RETURN p.name AS name, count(p.name) AS count, t.nickname
ORDER BY count DESC

Recommendation-Based Queries
After covering queries that were based on the data as a whole, it’s time to get to a more personal level and
recommend different things to the Trainers. Each Trainer node has at least 4 relationships to different
Pokémon within the system, which means there are still 147 different choices available. Unless you’re like
Ash (the main character in Pokémon) and want to ‘Catch them all’, you may want to apply some strategy to
the Pokémon you catch. This is where the recommendations come in.

Chapter 7 ■ Querying Data in neo4j with Cypher

95

Recommend Pokémon, Based on Type

As a trainer, it would be nice to know what types you have the most of, because this shows you which areas
you may need to build on. Even if that’s of no use to you, knowing which areas you are weakest in could be,
so let’s get to working that out, shall we? A node id used previously was 919, so we’ll use it again here. Trainer
919 needs the types of all of the Pokémon they have caught, and the counts for them.

MATCH (t:Trainer)-[]-(p:Pokemon)
WHERE id(t) = 919
UNWIND p.type AS type
RETURN type, count(type) AS total
ORDER BY total ASC

With the query in place, Trainer 919 gets the results seen in Figure 7-12. In this query, we’re selecting
Trainer 919 using WHERE id(t) = 919 after getting all of the Pokémon related to said Trainer. Since the type is
an array, it needs to be iterated, which is where UNWIND comes in. After that `type`, and the count of `type`
are returned. Thanks to count aggregating the `type` values to count them, it also removes the duplicates
from the rows, which is useful in this case.

Figure 7-12. The types and their counts for the Pokémon Trainer 919 has

The only bad thing about this list is there are no zero values, so what if Trainer 919 doesn’t have a type
at all? Well, there’s an easy way to check, we just need to get all of the different types that the Pokémon have,
look at the total. Using Cypher, that looks like this:

MATCH (p:Pokemon)
UNWIND p.type AS type
RETURN DISTINCT type

This query gives the results seen in Figure 7-13. This query is a slimmed down version of the one used
above. In this case, because the count is being used in the return, duplicate values will be returned, so to get
around that, DISTINCT is used.

Chapter 7 ■ Querying Data in neo4j with Cypher

96

With that query, we find that there are 17 types returned, and Trainer 919 only has 16, so we know
there’s one missing. There should technically be 18 types, there is one missing, which is the `dark` type. It is
not included in the list because it wasn't introduced until the second generation, and therefore none of the
first 151 Pokémon are `dark`.

From Figure 7-12, we know that `steel`, `ghost`, and `fairy` are the top 3 lowest counts, at 1 each.
We can use this information to recommend some Pokémon with those types. To do this, it requires the
combination of the previous query, and some additional Cypher code, which looks like so:

MATCH (t:Trainer)-[]-(p:Pokemon)
WHERE id(t) = 919
UNWIND p.type AS type
WITH type, count(type) AS total, t
ORDER BY total ASC
LIMIT 3

MATCH (p:Pokemon)
WHERE type IN p.type
AND NOT (t)--(p)
RETURN p.name, p.type
LIMIT 5

The first part of the query is the exact one from before, just with a WITH clause in place of RETURN.
The values passed over by WITH have already been evaluated, so type is being iterated over, and counted.
With the use of WITH, each of the types from the previous query can be used in WHERE. Since the types are
stored in an array, they must be filtered using IN, as you cannot compare two arrays. This essentially means
to compare two arrays, you must be first iterating over the first, then use IN to check if the value is in the
second.

In this case, the query is checking to see if one of the top 3 types (`steel`, `ghost`, and `fairy`) are within
a Pokémon’s type array. There’s nothing worse than being recommended something that you already have,
and the same goes here. To get around this, AND is used to add that the Trainer cannot be related to the
Pokémon returned. Gotta catch em’ all, right? To stop too many choices being returned, the results are
limited, after the `name` and `type` are returned. The results of the query can be seen in Figure 7-14.

Figure 7-13. The results of a query to get a unique list of all the Pokémon types

Chapter 7 ■ Querying Data in neo4j with Cypher

97

This data can be incredibly useful for Trainer 919 to help them catch some Pokémon that round
out their types a little better. If this information was fed back into the Pokémon website, it should easily
recommend these Pokémon as good suggestions to catch. The ordering of the query could also be reversed
to show a list of Pokémon that should be caught to add to the more popular types owned, which would help
if you were trying to get all Pokémon of a certain type, for example.

What’s Left to Catch

If you’re attempting any kind of collection, it’s always nice to have an idea of how much is remaining, and a
Pokémon Trailer is no different. It’s always handy to have a list of the renamed Pokémon you had to catch,
and luckily Cypher can help with that using the following simple query.

MATCH (p:Pokemon), (t:Trainer)
WHERE id(t) = 919
AND NOT (t)--(p)
RETURN p.name

Once again we use Trainer 919 as an example by using the combination of WHERE and the id function.
We’re also matching Pokémon (`p`), but without any matches this time. Essentially what’s being done
here is any Pokémon that aren’t related to Trainer 919 are then returned, and we have our list of remaining
Pokémon. The results for this query can be seen in Figure 7-15.

Figure 7-15. The remaining Pokémon Trainer 919 has to catch

Figure 7-14. The top 5 results for Pokémon with the least popular types that Trainer 191 had

Chapter 7 ■ Querying Data in neo4j with Cypher

98

Relating to e-Commerce
Some of the queries used for the Pokémon examples can also be applied to an e-commerce application for
recommending products, instead of Pokémon. We’ll go through a couple of these applications to show how
the same query can be used to achieve a similar result.

Most Popular Product

Knowing which product is the most popular in your store is always going to be a good thing. We’ve already
calculated the most popular Pokémon caught by Trainers, which is essentially customers buying products.
In an e-commerce based structure, products would be somehow related to customers, either directly, or
through orders. This link allows you to query the dataset for any products that have a customer or order
connection, and then count those. This will give stats on the most popular products, which could then be
broken down by category. Assuming that orders were related to products in some way, an example Cypher
query would look like so:

MATCH (p:Product)--(:Order)
RETURN p.name AS name, count(p.name) AS count
ORDER BY count DESC
LIMIT 15

Since a product is related to an order, provided the relationship exists, it has been bought. With this
match in place, it’s just a case of returning the product name, with a count of the products, and finally
ordering by that count, in descending order. This particular query has a limit of 15, but this could easily be
changed to say 1, to only return the top product.

This same logic, applied on a per-customer basis, would allow you to see which products your
customers bought most often. You could then take these products, and promote deals containing them,
or the products themselves to the customer, because you know these are deals they’ll be interested in.
Assuming the same structure as before, but with the addition of a customer being related to an order, an
example Cypher query would be like so:

MATCH (p:Product)--(:Order)--(c:Customer)
WHERE id(c) = 919
RETURN p.name AS name, count(p.name) AS count
ORDER BY count DESC
LIMIT 15

The same query as before now adds another relationship to the match, in the form of a `Customer`
node. When a customer makes an order, their node will be related to an order node, which will be related
to product nodes. This gives the customer a link to the products, which query takes advantage of using a
WHERE to filter the results. This gives the customer the most purchased products, and can be then used to
promote any deals containing those products.

Most Popular Product Category

A customer may buy a whole range of products, but only ever buy each one once. If you were to try to work
out their most popular product, there wouldn’t be much information to go on. The products themselves
though will be part of a category, and it may be that this customer likes a particular category. Depending
on how the categories have been set up, it may be that each product has an array of categories, much like

Chapter 7 ■ Querying Data in neo4j with Cypher

99

our Pokémon nodes and their types. The same query used for getting the most popular type can also be
used here for the most popular category. However, the more likely case will be that products are related to
categories via Category nodes, which would contain many products.

If the categories are related as nodes, then it then means you can access a customer’s favorite category
through the products they’ve bought. This can be achieved building on the query used in the previous
example, and would look something like this:

MATCH (c:Category)--(:Product)--(:Order)--(u:Customer)
WHERE id(u) = 919
RETURN c.name AS name, count(c.name) AS count
ORDER BY count DESC
LIMIT 15

The query adds another relationship to the MATCH clause, including the Category nodes that are
related the purchased products of the customer. In this case, the WHERE and the customer relationship
could be removed, which would give an overall view on the most popular products within the whole store.

Recommended Products

Just as we recommended Pokémon to Trainers earlier, it’s just as easy to recommend products to customers.
Depending on your use case, you may want to recommend a customer’s most popular product to them or
just those in the same category. In the case of the category, there isn’t too much that needs to be added to
the previous query, used to get the top categories. All that’s required is to get the products related to the
linked categories, which would look something like this:

MATCH (p:Product)--(c:Category)--(:Product)--(o:Order)--(u:Customer)
WHERE id(u) = 919
AND NOT (o)--(p)
RETURN p.name AS name

The query gets the products from the related categories, but in the AND, also checks to make sure the
product and order nodes are not related, as this would mean the products have been purchased before. Of
course, this would just return products in the same category, but there may be other values available to make
the query more accurate, and therefore give more targeted results.

Thank You
Before moving on, I have to thank all of those who participated in the Pokémon website, and submitted their
data to be used in the book. I may never meet any of the users who submitted data to the website, but I can
at least thank each and every person for submitting their data and helping make this chapter. As I mentioned
earlier, I wanted to make this chapter a little different, and thanks to the community that has happened.

The project itself will be available on GitHub when the book is published (with the data removed, of
course) so anyone can look at the code. As the url isn’t known yet, if you’re interested in seeing the project,
just check my github account, chrisdkemper and look for it there.

Chapter 7 ■ Querying Data in neo4j with Cypher

100

Location-Based Queries
Out of the box, Neo4j doesn’t handle location-based queries, but with the addition of a plugin, that can
easily be changed. The plugin in question here is the Neo4j Spatial plugin (https://github.com/neo4j-
contrib/spatial) which adds location-based functionality to Neo4j. Although we won’t be detailing all
of the functionality included in the plugin here, if you’d like to find out more then have a look at the github
page.

To do these queries there are a couple of steps you need to take to allow for the data to be used. For now
though, these steps won’t be covered (as they will be in the next chapter) so these queries assume you’ve got
the spatial plugin setup for them to work.

For now we need an example. Where I live, Newcastle, UK, there is a local rail system called the Metro.
I’ve gathered the location data for these rail lines so it can be used in the examples. Within the region there
are 60 stations, so for these examples it’ll be using various random points within the city, and around the
stations in question. This should give an idea on how to perform the queries needed to return nodes based
on location, that can be adapted to your own application.

Figure 7-16 shows how the data looks in the browser if you run MATCH (n) RETURN n on the Metro
station database, with the spatial database set up.

Figure 7-16. The result of running MATCH (n) RETURN n; on a database location data set up on the spatial
plugin

You can see the stations with various relationships linking groups of stations. You’ll have to take my
word for the fact that the areas that have the most relationships are where the stations are the closest
together. This helps give an idea of how the spatial plugin works. With that out of the way, let’s look at some
queries, starting with where the closest Metro station is.

https://github.com/neo4j-contrib/spatial
https://github.com/neo4j-contrib/spatial

Chapter 7 ■ Querying Data in neo4j with Cypher

101

Closest Metro Station
If you’re in a strange place, being able to find the closest mode of transport could always be useful, so we’ll
do that here, just with Metro stations. The cypher needed to achieve this query isn’t too complicated, we just
need a location and a distance. The distance needed is in kilometers, and a location to start from is provided.
When this is queried in Cypher, it’s looked up via the plugin and the results are returned, and can be used as
needed in your application. In this case, the query is where the nearest Metro station is. The query needed to
run this query is as follows:

START n=node:geom("withinDistance:[54.9773781,-1.6123878,10.0]") RETURN n LIMIT 1

The location being used here is one near City Hall. If you run this query the result can be seen in
Figure 7-17. The query itself is using START to initiate a traversal of the graph. It then uses the geom index to
perform the function, which has arguments of latitude, longitude, and distance (in kilometers) respectively.

You’ll just have to take my word on the fact that the query is correct as Haymarket is in fact the closest
Metro station to that location at City Hall. This shows how easy it is to query located data, so with a bit
of setup (which will be covered in the next chapter), you’ll be able to have location awareness in your
applications.

Summary
Through the course of the chapter, a large spectrum of different query types have been shown and
demonstrated, using (hopefully) interesting means. There’s been many different types of recommendation
and analysis queries from the Pokémon website, and the closest location query made possible by the spatial
plugin. These varying uses will hopefully be useful enough to help push you in the right direction when it
comes to your own applications. Now though, it’s time to build an application that takes everything we’ve
done so far in the book and puts it all together.

Figure 7-17. The result of performing the distance query for a given location on Metro station data

103

Chapter 8

Building an Application with Neo4j

It’s time to put Neo4j to use in a proper application, and in this chapter we’ll be doing just that. We’ll be
going from setting up the location plugin, right up to how to use it in location queries. The application will be
in the form of a location app. To cover any location-based copyright issues, we’re going to base ourselves in
Antarctica for this chapter. Although it may not be feasible to have a travel system like one being built here in
Antarctica, it’s a big wide-open space that allows for the locations to be added. To begin with, we’ll be going
with busses (which I’ll get to in a minute) as a transport system and adding some bus stops to the system.

To make things easier I’ve written some commands to take care of importing data into the application,
so when you go through the code (which will be available on github) you’ll be able to add your own sample
data as well. The commands in place (that will be explained individually as needed) are to import Bus Stops
for a small sample location, which will be built on as the chapter progresses.

In the application, Cypher will be used wherever possible when communicating with Neo4j. This means
that if you’d like to apply the same logic in your own application, then the Cypher query used is available for
you to use.

A Quick Note on Code Comments
To ensure the example site always works, changes may need to be done to the example site to keep it up and
running. When performing these changes, code samples used in the chapter may no longer make sense, or
may no longer exist in the new application. Since there’s a chance of this happening, any code sample will
include a PHP comment, an example of which can be seen below:

/**Sample:CodeSample01**/

The comment will always have “Sample:” before it, then an ID after. Using this system, if you’re
referencing a sample in the chapter, search for the sample value and if it changes locations or gets modified,
the comment will also be moved. If this does happen, an explanation of why will be there, so any changes
can be made accordingly. The changes will be available via github (https://github.com/chrisdkemper/
sample-neo4j-php-application) as well, so the commit history will also be available. The code on github
is a Vagrant box, which contains the environment required to run the website, so all you'll need to do is run
`vagrant up` and Vagrant will do all of the hard work for you.

With that out of the way, it’s time to get into setting up the application, which starts with setting up the
location plugin.

https://github.com/chrisdkemper/sample-neo4j-php-application
https://github.com/chrisdkemper/sample-neo4j-php-application

Chapter 8 ■ Building an appliCation with neo4j

104

Installing the Spatial Plugin
Before you can do location-based queries you need to have the spatial plugin installed and ready to use. The
code available from github will install the plugin as part of the provisioning process, but the instructions will
be covered either way. To begin with, you need to get the plugin, which is available at: https://github.com/
neo4j-contrib/spatial. The project offers many ways to install the plugin, but the easiest is to use one of
the pre-built archives. The archive needed is named based on the Neo4j version, so get whichever one you
need, in this case it’s the one for 2.3.0.

The process of installing the plugin will be similar regardless of the system Neo4j runs on (stop the
server, install the plugin, etc.), but in this case the instructions for an Ubuntu server will be used. If you
aren't running Ubuntu, then your plugins directory will be located wherever you've installed Neo4j. With the
archive downloaded, you then need to stop Neo4j from running, which can be done like so:

service neo4j-service stop

Once the service is stopped, the archive needs to be unzipped in the plugins directory (which is /
var/lib/neo4j/plugins on Ubuntu) so that the .jar files sit within the plugins directory. The archive can be
unzipped by using the following command, which may need to be installed (with apt-get if your system
doesn’t have it: apt-get install unzip)

unzip /vagrant/neo4j-spatial-XXXX-server-plugin.zip -d /var/lib/neo4j/plugins

In this example, the path and name would need to be modified to meet your needs, but the basic command
is there. If you’re able to unarchive the directory another way, moving the .jar files can be done like so:

mv /vagrant/neo4j-spatial/*.jar /var/lib/neo4j/plugins

With the plugin files in place, it’s time to start Neo4j again which is done with the following command:

service neo4j-service start

That’s it. With Neo4j running again the Spatial plugin is now running and ready to be used.

Setting up the spatial index

With the plugin installed, the next step is to create a spatial index to utilize it. This needs to be done
for the queries to work, and also for the nodes to be found by Cypher. To create the index, the following
JSON needs to be posted to the endpoint http://localhost:7474/db/data/ext/SpatialPlugin/graphdb/
addSimplePointLayer

{
 "layer":"geom",
 "lat":"lat",
 "lon":"lon"
}

In this JSON, you can see the keys “lat” and “lon” which in this case, have the same as values. The
values to those keys needs to be what you’re calling your latitude and longitude properties on your nodes.
This ensures the correct data is collected from the nodes added to the index. The value for “layer” is “geom”,
which is the name of the layer. This can be replaced with another name if you require, but make sure the
name used is consistent for all steps, or it won’t work. If you were to change the name of the index, in the
following examples just replace “geom” with your choice of name.

https://github.com/neo4j-contrib/spatial
https://github.com/neo4j-contrib/spatial

Chapter 8 ■ Building an appliCation with neo4j

105

The next index that needs to be added is for Cypher, and requires data to be posted to
http://localhost:7474/db/data/index/node/ and also has another requirement. To allow this to work,
the nodes that will be in the index need to have an id field that matches their node id. This can be done by
using a query like the following:

MATCH (n) WHERE id(n) = 0 SET n.id = id(n) RETURN n

You would of course need to change 0 for whichever node id you wanted to update, but this would allow
the node to be given the property. This could also be done with a label if required for mass updates, which
would be achieved using the following code for a Place label:

MATCH (n:Place) WHERE id(n) = 0 SET n.id = id(n) RETURN n

With the nodes given their id property (by whichever means) the index needs to be created, but posting
the following JSON to the previously mentioned URL.

{
 "name":"geom",
 "config":{
 "provider":"spatial",
 "geometry_type":"point",
 "lat":"lat",
 "lon":"lon"
 }
}

This index allows Cypher to be able to communicate with the spatial index, allowing the queries to be
possible. With the indexes in place, that’s pretty much it. The next step is to then add nodes to the index so
they can be queried. This is achieved by sending a POST request to http://localhost:7474/db/data/ext/
SpatialPlugin/graphdb/addNodeToLayer, with the following JSON:

{
 "layer":"geom",
 "node":"http://localhost:7474/db/data/node/0"
}

The layer is kept as “geom” as it has been throughout the example, and the other value needed is the
node. The value here is the url of the node in the database, which (when it isn’t escaped) looks like so
http://localhost:7474/db/data/node/0 with 0 being the id of the node.

Those are all the steps needed to get up and running with the spatial plugin, but as mentioned, the
creation of these has been added into commands so they don’t need to be run on this system.

What the App is Being Built On
The website application itself will be built on PHP, using the Silex micro-framework. Before we go any
further, it's worth mentioning that you don't need to know PHP for these examples, it just happens to
be my language of choice and isn't required for Neo4j. For those who aren't familiar with PHP, you may
notice in that the opening PHP tag (<?php) isn't closed in some cases. For files that contain only PHP, it's
recommended to omit the closing tag for various reasons, so that's why it’s missing. For its comments, // can

Chapter 8 ■ Building an appliCation with neo4j

106

be used for a single line comment, but can equally be started with /* and ended with */. You'll see examples
of both in this chapter, and also in the application itself, so if you weren't aware of what PHP comments were
before, you know now.

With that out of the way, it's time to talk a little about Silex, the framework being used to build the
application. Siliex is a framework inspired by Sinatra (built on Symfony2 and Pimple), so if you are familiar
with Sinatra/Flask/Expressjs/SparkJava/Scalatra/etc. these examples may feel familiar.

There will be some samples of PHP, but this will be explained where required. There are a number of
commands that have been created to add sample data, so these will be run. With the data available to query,
it’ll then be time to start doing some Cypher queries.

How the Data will be Structured
Breaking down how the data is structured is better done by the different labels of the data, so with this in
mind, the headings for the different labels can be found below.

Place/BusStop
Each of the locations in the application are classed as “Place” nodes, which contain the location information.
These places will also have names, so they can be identified by other processes. With any given place, if there
is, for example, a bus stop, then a node of that type (“BusStop” in this case) will be related to it. This means if
a location has many transport options, it’ll keep relationships down.

Timetable
To allow for the journey planning aspect of the application, the timetables will hold a lot of the power.
A timetable will be related to any of the “Place” nodes it has on its route with the STOP_ON_JOURNEY
relationship. On this relationship, there will be a property of time with the value (in minutes) of how far
along the journey that “Place” is. This allows the application to use these values to calculate travel time, but
also keeps the hops been different “Places” small. The data being related in this way means that if different
timetables connect two different places, then the trip can still be planned.

The timetable itself will also have a name, and will store a list of the days, and also the times it runs. This
means that if the same route is used multiple times, it saves on duplication. This also provides the ability to
use the times for journey planning purposes.

Transport
The transport node is the mode of transport being used and has a name and a type. For example, for a bus,
you could use a name of “A1” with the type of “bus”. The transport node then relates to any timetables it uses
with the RUNS_ON relationship.

Building the Application
The application itself will be built using PHP, and hosted on a local web server powered by Nginx. This is
then wrapped in an ubuntu server, which is provided via a Vagrant box. Rather than just all custom PHP a
micro framework called Silex will be used to make some of the base operations easier, such as URL routing
and template management. Silex will essentially be used to glue all of the different aspects of the application
together, which will be discussed a little later in the chapter.

Chapter 8 ■ Building an appliCation with neo4j

107

To give a better overview on the application itself, Figure 8-1 shows how the files within the src directory
are laid out, which is where the majority of the code lives.

Figure 8-1. The src directory of the application

Chapter 8 ■ Building an appliCation with neo4j

108

Each of the folders are named based on what they contain, but those aspects will be covered a little later.
Since this is a book on Neo4j, and not on PHP, I won’t be going into too much detail about how all of the
different aspects of the application work. In these cases, all you need to be aware of is that the code does what
is described and it all works. Some aspects of the application (such as communicating with Neo4j) are quite
important and will be explained more thoroughly, and, any Cypher used will be included and explained.

With that out of the way, it’s time to get started with the application and get Silex installed, which is done
via the use of Composer, a PHP dependency manager. Any packages installed with Composer are bundled
together in an autoloader, which essentially loads the classes to be ready for use after a single file is included.

The dependencies for Composer are managed in a composer.json file located in the route of the
application directory. This then downloads all of the code required to meet the requirements of the file is
downloaded into a directory called vendor. The following example is the file used within this project:

{
 "require" : {
 "silex/silex": "~1.2",
 "symfony/twig-bridge": "~2.6",
 "symfony/console": "~2.6",
 "knplabs/console-service-provider": "dev-master"
 },
 "autoload": {
 "psr-0": {
 "ChrisDKemper": "src/"
 }
 }
}

The “require” portion of the JSON contains the installation of the four different packages needed for the
application. Included in the list are the extended version of Twig (used for templating) and Console, which
is a symfony component that allows for command lines commands to be created with PHP. The “autoload”
component loads in the custom code written for the application, which sits within the “ChrisDKemper”
namespace.

Installing Composer
Since were using Composer to install dependencies, Composer itself will need to be installed on your
system. There are a number of ways to install Composer, but the following command will install Composer
global on your system, which is useful if you happen to use it for a number of projects.

curl -sS https://getcomposer.org/installer | php
mv composer.phar /usr/local/bin/composer

If the above command fails, then it may be down to permission issues, in which case try the mv line
preceded with sudo. There are other ways to install Composer which can be found at https://getcomposer.org,
the Composer website. After Composer has been installed just run the following command to get the
dependencies installed

composer install

Once Composer has finished doing its work you’ll be ready to go.

https://getcomposer.org/installer
https://getcomposer.org/

Chapter 8 ■ Building an appliCation with neo4j

109

Setting Up Silex
A default Silex application would be initiated with the following code, which would be in the index.php file
located in the web directory of your server, or whichever folder your web server uses. It’ll be broken up in the
different lines, then shown as a whole.

require_once __DIR__.'/../vendor/autoload.php';

The first thing to note in this file is the inclusion of autoload.php, which is how the autoloader created
by Composer is made available to the application.

$app = new Silex\Application();

The main Silex application is loaded here, and assigned to the $app variable which allows for its
functionality to be accessed.

$app->get('/', function() use($app) {
 return 'Hello';
});

This is an example of a route within Silex which in this case is a GET route for ‘/‘, that returns the string
‘Hello’ when accessed. The second parameter of the function, after the route (/) is the callback function,
which is followed by use. The use of use allows for the $app variable to be available within the function,
because without the use, $app would be out of scope, so to allow it to be used, it’s passed in with use.
Although this is a GET route (signified by $app->get), you can have different route types to meet your needs,
for this application there will be use of both GET and POST requests.

$app->run();

The application is executed last in the file and any routes or functionality added before this point will be
available when the file is served from the server. This all comes together to form the following file:

<?php
require_once __DIR__.'/../vendor/autoload.php';

$app = new Silex\Application();

$app->get('/', function() use($app) {
 return 'Hello';
});

$app->run();

All of this together in a file called index.php would show ‘Hello’ on the screen.

Silex Service Providers
To make adding features easier to Silex it offers the ability to register Service Providers, which allow for
chunks of functionality to be added at the same time. In the application, these are used to add functionality
required for the different entity types, which are essentially the different node labels that were previously
mentioned. Service Providers are also used to add set features, such as implementing templating.

Chapter 8 ■ Building an appliCation with neo4j

110

Creating the Index.php File
Although a basic example of Silex has been covered, it’s not the one used in this application. The file itself is
quite similar, which can be seen below:

$app = require __DIR__ . '/../app/bootstrap.php';
$app->run();
/**Sample:Index.php**/

To keep the bootstrapping of the application away from running it, the $app variable is now created
from the contents of the bootstrap.php file. This file contains all of the main functionality of the application,
including any routes used, as well anything else required for the website to run. Like the Silex example, the
file will be broken up into sections and explained to give an overview of the functionality offered by the
application.

require_once __DIR__.'/../vendor/autoload.php';

$app = new ChrisDKemper\Application(array('debug' => true));

This segment is the same as the Silex example in the sense that it’s creating the main application, but
in this case an extended version of the application is created instead. This application class sits within the
ChrisDKemper namespace, and allows for the application to be tweaked when it’s created. The extended
application adds the templating functionality to Silex and also adds the ability for service providers to be used.

/*
 * Register the client to communicate with Neo4j
 */
$app->register(new ChrisDKemper\ServiceProvider\ClientServiceProvider(), array(
 'client.username' => 'neo4j',
 'client.password' => 'password',
 'client.transport' => 'localhost',
 'client.port' => 7474,
 'client.https' => false
));

The first service provider is for the Client class, which is how the application communicates with Neo4j.
Details required by the client are supplied here, allowing them to be easily updated, should the environment
the application is hosted on change. The functionality of the Client class will be explained in more detail
a little later, but the ClientServiceProvider added to Silex here simply makes the functionality of the class
available to the rest of the application.

/*
 * Register the console application
 */
$app->register(new Knp\Provider\ConsoleServiceProvider(), array(
 'console.name' => 'App',
 'console.version' => '1.0.0',
 'console.project_directory' => __DIR__.'/..'
));

Chapter 8 ■ Building an appliCation with neo4j

111

The ConsoleServiceProvider is a third party service provider which is used to enable the Symfony
Console component for use within the application. It grants the ability to create terminal commands to be
written with PHP, which is utilized to create various helper commands for the website.

/*
 * Register the Place service provider
 */
$app->register(new ChrisDKemper\ServiceProvider\PlaceServiceProvider());

/*
 * Register the BusStop service provider
 */
$app->register(new ChrisDKemper\ServiceProvider\BusStopServiceProvider());

/*
 * Register the Timetable service provider
 */
$app->register(new ChrisDKemper\ServiceProvider\TimetableServiceProvider());

/*
 * Register the Transport service provider
 */
$app->register(new ChrisDKemper\ServiceProvider\TransportServiceProvider());

Here we have service providers, which add a Repository and a Service for a different node type, sharing
the name of the service provider. Having the different node types separated off makes it easier to get, for
example, all of the Place nodes within the site, as you’d just query the Place service. Each of these different
node types work in the same way, with the exception of the Place service, which has some additional
functionality. How the Services and Repositories work, and how they’re put together will be covered in more
detail later, but these service providers add that functionality to Silex.

/*
 * Since the homepage is static, pointless putting it in a provider
 */
$app->get('/', function () use ($app) {
 return $app['twig']->render('index.twig');
});

/*
 * Journey routes
 */
$app->mount('/journey', new ChrisDKemper\ControllerProvider\JourneyControllerProvider());

return $app;

The final code segment is responsible for registering the routes used within the application. The first of
which is the same as the basic Silex example, but rather than returning ‘Hello’ it returns a Twig template. The
other routes are supplied by the JourneyControllerProvider which is a collection of the different routes. Each
of the routes within the provider are mounted on ‘/journey’ meaning that will proceed any of the specified
routes. For example, a ‘/plan’ route exists within it, and to access that particular route, you would need to
use the URL ‘/journey/plan’. With the controllers added, the application is then returned for use in the index.
php file.

Chapter 8 ■ Building an appliCation with neo4j

112

Communicating with Neo4j
Although there are a lot of different Neo4j clients available to use, for the sake of the book I opted to use curl
commands and Cypher. This gives the code the most re-usability regardless of the platform, as all that needs
to change is how the curl request is done. Rather than using large curl command blocks, a number of different
functions have been created to make certain actions within the site easier, and as with the other examples, will
be broken up into sections and explained. The file in question is located at /src/ChrisDKemper/Client/Client.
php (based on the layout of the code within the repository) and started as follows:

<?php namespace ChrisDKemper\Client;

class Client
{
 protected $curl_headers = array();
 protected $base_url = 'http://localhost:7474';
 protected $cypher_uri = 'db/data/transaction/commit';
 protected $spatial_uri = 'db/data/ext/SpatialPlugin/graphdb/addSimplePointLayer';
 protected $index_uri = 'db/data/index/node/';
 protected $spatial_node_index = 'db/data/ext/SpatialPlugin/graphdb/addNodeToLayer';

First, the namespace of the file is set to help with the autoloading, then the class is declared, and it’s
followed by a number of protected properties for the class. The various properties with the _uri suffix are
URLS needed to perform certain actions on Neo4j, such as creating indexes, or running Cypher queries

public function __construct($username, $password, $transport = 'localhost', $port = 7474,
$https = false)
{
 /**Sample:Clientconstruct**/
 //Set the default headers
 $this->curl_headers = array(
 CURLOPT_CUSTOMREQUEST => "POST",
 CURLOPT_RETURNTRANSFER => true,
 CURLOPT_HTTPHEADER => array(
 'Content-Type: application/json'
)
);

 //Set the base_url
 $this->base_url = sprintf("%s://%s:%s",
 false == $https ? 'http' : 'https',
 $transport,
 $port
);

 //Set auth header
 $this->curl_headers[CURLOPT_USERPWD] = sprintf("%s:%s", $username, $password);
}

This is the _construct function, which allows you to perform actions when the class is created. The data
that has been passed through here was originally supplied in the bootstrap.php file, and is the information
required to communicate with Neo4j. Each of the requests all share certain common headers, so to save on
duplicated code, these are set in here in a way they can be shared throughout the class. One of the headers

Chapter 8 ■ Building an appliCation with neo4j

113

is the authentication header, which is created using the supplied username and password. In the construct
function, the base url needed for the queries is constructed using any information supplied; otherwise it
defaults to http://localhost:7474.

public function cypher($cypher_query)
{
 /**Sample:Cyphermethod**/
 //Set up a statement for the transaction
 $data = array(
 'statements' => array(
 array('statement' => $cypher_query)
)
);

 //Use the preset cypher uri to send the query
 return $this->send($this->cypher_uri, $data);
}

The previous code is the cypher method within the client class, which is used a lot throughout the
application. This method allows for cypher queries to be easily done by only taking the cypher query as an
argument. It then sets up the required code needed to run a Cypher statement, and then passes that to a
base send method, which actually makes the request. The layout for the Cypher transaction is the same as in
previous examples.

public function createSpatialIndex($name = "geom", $lat = "lat", $lon = "lon")
{
 /**Sample:createSpatialIndex**/
 //Set up a statement for the transaction
 $data = array(
 "layer" => $name,
 "lat" => $lat,
 "lon" => $lon
);

 //Use the preset cypher URI to send the query
 return $this->send($this->spatial_uri, $data);
}

There we have a function to help create a spatial index on the Neo4j instance. The method takes three
arguments: layer name, lat, and lon. The layer name is as described, but the lat and lon values are to see
what the longitude and latitude values properties are called on the node. The data is then set up in the
correct format for the query, the URI, and payload of the function as passed to the send method, which
makes the request and returns the response.

public function createCypherIndexForSpatial($name = “geom”, $lat = “lat”, $lon = “lon”)
{
 /**Sample:createCypherIndexForSpatial**/
 $data = array(
 "name" => $name,
 "config" => array(
 "provider" => "spatial",

Chapter 8 ■ Building an appliCation with neo4j

114

 "geometry_type" => "point",
 "lat" => $lat,
 "lon" => $lon
)
);

 return $this->send($this->index_uri, $data);
}

To allow for the spatial index to be queryable by Cypher, another index needs to be created. To make
this easier it’s been made into a method on the client that takes a name, lat and lon as an argument. These
details need to match that of the spatial index that has previously been created, so the defaults here reflect
the same default values as the method used to create the spatial index. Like that method, the data for the
query is formatted correctly, then passed to the share send method to perform the query, then the result is
returned.

public function spatialAddNodeToLayer($name, $node)
{
 /**Sample:spatialAddNodeToLayer**/
 $data = array(
 'layer' => $name,
 'node' => $node,
);

 return $this->send($this->spatial_node_index, $data);
}

When applicable nodes are created (the ones with location information) they must be added to the
spatial index so they can be queried, which requires sending a request to the spatial plugin. Like the other
commands, this command sets up the data required to accomplish this action, then passes it to the send
method with the correct url. The data needed here is the name of the layer that the node is being added to,
and also the Neo4j URL for the node.

public function getBaseUrl()
{
 return $this->base_url;
}

This is a small method to get the base url used for the queries. Although the base url is stored as a
variable, it cannot be accessed outside of the class directly, therefore if it’s needed outside of the class, it
either needs to be public, or have a method to return it. In this case, I’ve opted for the method to return it.

protected function send($uri, $data)
{
 /**Sample:clientSend**/
 $data_string = json_encode($data);

 $url = $this->base_url . "/" . $uri;
 $query = curl_init($url);

Chapter 8 ■ Building an appliCation with neo4j

115

 //Add the post data to the query
 $this->curl_headers[CURLOPT_HTTPHEADER][] = 'Content-Length: ' . strlen($data_string);

 //Add the headers to the query
 foreach($this->curl_headers as $header => $value)
 {
 curl_setopt($query, $header, $value);
 }

 curl_setopt($query, CURLOPT_POSTFIELDS, $data_string);

 $result = curl_exec($query);
 curl_close($query);

 return json_decode($result, true);
 }
}

This is the main method within the client, as it’s the one that actually performs the queries. To avoid
code duplication, a shared method was used which allows for the more specific commands to pass in the
URL they need the request to be sent to, and the data to send. Since the rest of the queries are structured
the same (same headers, authentication, etc.) it makes sense to use a shared function. The first thing that
happens is that the supplied data is then converted to JSON to be sent to Neo4j, as that is the required format
for it. The next few lines of code pull in the default headers to the curl request (that were set when the Client
class was created), as well as setting the necessary headers for posting data via curl. With the headers set up,
the request is then executed, curl is closed, and the decoded JSON output is returned to whichever function
has called it.

Using the Client
Now that the client has been explained, it’s time to go into how it’s actually used. The main communication
between the application and Neo4j are done using Repositories and Services. The client is passed into the
repository, to allow the repository to communicate with Neo4j, and then various methods are exposed to
make getting data out of Neo4j easier. The repositories just interact with Neo4j and don’t apply any real
business logic, and this is where the Services come in. A Service will take a repository as an argument, so it
can get the required information from Neo4j, then apply any required changes to make it suitable for use
within the application. This means that when you want to get some data for a particular type of node, such
as BusStop, then you get that data by using the BusStop service, which in turn calls the BusStop repository,
which then asks Neo4j for the data via the Client.

Since the Repositories are the main place that communication between Neo4j and the application take
place, it makes sense to run through them to see how they work. They are all set up using extension, where
there is a base repository that does all of the work, and that repository is extended to customize for the
different types, should this be required. In this case the repositories that extend the base aren’t very complex
at all, and all follow the same pattern, which we will cover in the moment.

Chapter 8 ■ Building an appliCation with neo4j

116

Below we have the Repository file (/src/ChrisDKemper/Repository/Repository.php broken up into
sections and explained as needed.

<?php namespace ChrisDKemper\Repository;

use
 ChrisDKemper\Client\Client
;

/**
* The base repository
*/
class Repository
{
 protected
 $client,
 $label = ''
 ;

 public function __construct(Client $client)
 {
 $this->client = $client;
 {

In this class we first see the namespace declaration, followed by the inclusion of the client class via use.
Using use just means that rather than going ‘new ChrisDKemper\Client\Client’, ‘new Client’ can be used.
The client is already built before the repository is created, so it’s then assigned to the client property within
the class. There is also a label property, which is blank. This is how the extended repositories work, they
simply change this label value which then changes the nodes that will be returned by the repository.

public function create($properties)
{
 /**Sample:repositoryCreate**/
 $query_data = array();

 foreach($properties as $key => $value)
 {
 $value = is_string($value) ? sprintf('"%s"', $value) : $value;

 if(is_array($value)) {
 if(is_numeric($value[0])) {
 $value = sprintf('[%s]', implode(',', $value));
 } else {
 $value = sprintf('["%s"]', implode('", "', $value));
 }
 }

 $query_data[] = sprintf('%s : ', $key) . $value;
 }

 $query_string = implode(", ", $query_data);

Chapter 8 ■ Building an appliCation with neo4j

117

 //Run the create query
 $cypher = sprintf("CREATE (n:%s {%s}) RETURN id(n);", $this->getLabelQuery(),

$query_string);

 $data = $this->client->cypher($cypher);

 $id = $data['results'][0]['data'][0]['row'][0];

 //Update the node to have a self referencing id
 //Run the create query
 $cypher = sprintf("MATCH (n) WHERE id(n) = %s SET n.id = id(n) RETURN n, id(n),

labels(n);", $id);

 $data = $this->client->cypher($cypher);

 $node = $data['results'][0]['data'][0]['row'][0];
 $node['id'] = $data['results'][0]['data'][0]['row'][1];
 $node['label'] = $data['results'][0]['data'][0]['row'][2];

 return $node;
}

One of the main methods within the repository is the create method, which is used for creating nodes.
The labels for the created nodes are taken from the label property within the repository, so if you extend it,
then the nodes created will have that label. For example, the BusStop repository extends the base repository
and has a label value of ‘BusStop’.

An array of properties to be stored on the node are passed into the method. These are then iterated over
and processed to be used within a cypher query. Since you need to supply, for example strings wrapped
in quotes, you cannot handle each property value the same. The code in this method assumes all of the
properties are correctly formatted. With the properties processed, this is then added to the cypher query,
and creates a node with the label.

When the node is created, just the ID is returned. Another query is then run immediately after, to ensure
the node has the `id` field required for the location plugin. The cypher used to set this id is as follows:

MATCH (n) WHERE id(n) = 0 SET n.id = id(n) RETURN n, id(n), labels(n);

In this case the code has been substituted again with an id of 0. In the code though, the ID is returned
from the previous query so it can be used right away without any issue. This query also returns all of the
information about the node so that it can be passed further down the application.

public function one($id)
{
 /**Sample:repositoryOne**/
 $query_string = sprintf("MATCH (n:%s) WHERE id(n) = %s RETURN n, id(n), labels(n);",

$this->getLabelQuery(), $id);

 $data = $this->client->cypher($query_string);

 if(empty($data['results'][0]['data'])) {
 return array();
 }

Chapter 8 ■ Building an appliCation with neo4j

118

 $node = $data['results'][0]['data'][0]['row'][0];
 $node['id'] = $data['results'][0]['data'][0]['row'][1];
 $node['label'] = $data['results'][0]['data'][0]['row'][2];

 return $node;
}

This method is used to retrieve a node based on its Id, so if you just need a particular node, then it can
be retrieved. As with the other queries in the repository, the label is also supplied to the Cypher query, which
gives it that additional bit of filtering when it comes to retrieving the node. If the Id of the node is correct,
but the label doesn’t match then a node won’t be returned. This essentially means that if you want to access
a particular node type, this must be done from the specific repository. Either way, the query is done using
the cypher method once again, and the data is formatted in a way that it will be usable by the rest of the
application, and is then returned.

public function all()
{
 /**Sample:repositoryAll**/
 $query_string = sprintf("MATCH (n:%s) RETURN n, id(n), labels(n);",

$this->getLabelQuery());

 $data = $this->client->cypher($query_string);

 $nodes = array();

 foreach($data['results'][0]['data'] as $row)
 {
 $node = $row['row'][0];
 $node['id'] = $row['row'][1];
 $node['label'] = $row['row'][2];
 $nodes[] = $node;
 }

 return $nodes;
}

The all method is utilized when you'd like all of the nodes with a certain label to be returned. In the
method, a basic MATCH query is performed which matches any nodes with the given label. Of course, in the
base repository this would return all of the nodes, as no label exists, but in the repositories that extend this
one, they’ll have a label set, which allows the filter to work. Any applicable nodes are then processed and
finally returned.

public function find($property, $value)
{
 /**Sample:repositoryFind**/
 if(empty($value)) {
 return array();
 }

Chapter 8 ■ Building an appliCation with neo4j

119

 if(is_array($value)) {
 if(is_numeric($value[0])) {
 $value_string = sprintf('IN [%s]', implode(' ,', $value));
 } else {
 $value_string = sprintf('IN [\'%s\']', implode('\' ,\'',

$value));
 }
 } else {
 if(is_int($value)) {
 $value_string = sprintf(' = %s', $value);
 } else {
 $value_string = sprintf(' = \'%s\'', $value);
 }

 }

 $query_string = sprintf("MATCH (n:%s) WHERE n.%s %s RETURN n, id(n),

labels(n);", $this->getLabelQuery(), $property, $value_string);

 $data = $this->client->cypher($query_string);

 if(empty($data['results'][0]['data'])) {
 return array();
 }

 $node = $data['results'][0]['data'][0]['row'][0];
 $node['id'] = $data['results'][0]['data'][0]['row'][1];
 $node['label'] = $data['results'][0]['data'][0]['row'][2];

 return $node;
}

Sometimes you need to make a node based on a property value, and this method allows that to happen.
It takes a property name and a value as an argument, then does a query accordingly. Since properties
can have many different types, a number of checks are done to ensure the data is formatted correctly. For
example, if the data is an array, then it’s covered for use with Cypher’s IN clause. In addition to setting up the
in, it also checks what the type of the first item in the array is. This is to ensure that if integers are passed in,
they’re supplied without quotes and that strings are supplied with quotes.

All of this processing is to ensure the WHERE clause of the query is formatted correctly. The resulting
node is then built up from the result and returned.

private function getLabelQuery()
 {
 return is_array($this->label) ? implode(":", $this->label) : $this->label;
 }
}

This method is a little helper method to format the labels in the correct way. If the label happens to be
an array, then the label needs to be separated by a colon to work with Cypher, such as Label:Anotherlabel.
To save on doing this check every time, it’s placed into another method, so the change can be made in one
place, rather than in every other method that uses it. If there is just a single label available in the repository,
then this method will just return the label name.

Chapter 8 ■ Building an appliCation with neo4j

120

Whole file here?
As mentioned, this repository does all of the work other than including the labels, so many different

node types can be created without having to duplicate the functionality of the base repository. To show
how little is done when extending the repository, the contents of the BusStopRepository.php (/src/
ChrisDKemper/Repository/BusStopRepository.php) are as follows:

<?php namespace ChrisDKemper\Repository;

/**
* The repository for BusStops
*/
class BusStopRepository extends Repository
{
 protected
 $label = 'BusStop'
 ;
}

The only code in the file, other than the object declaration is the setting of $label to ‘BusStop’. This value
is then used when accessing the methods of the base repository, so whether you’re using the create or find
methods, the value of $this->label will be ‘BusStop’.

As previously mentioned, the repositories are not called directly, but instead are called via the service.
These services call the specified repository under the hood, and then apply certain logic or formatting to
the data before it is returned to the application. The services used to fetch nodes implement four methods:
create, one, all, and find. These methods take the same arguments as the respective functions in the
repository so allow for the same data to be retrieved. Once the data is retrieved via the repository, it’s then
formatted into arrays of entities, depending on the type of data being managed. For example, the BusStop
service file (/src/ChrisDKemper/Service/BusStopService.php) contains the following:

<?php namespace ChrisDKemper\Service;

use
 ChrisDKemper\Entity\BusStop
;

class BusStopService extends Service
{
 public function create($properties = array())
 {
 /**Sample:serviceBusStopCreate**/
 $node = $this->repository->create($properties);

 if($node) {
 return new BusStop($node);
 }

 return false;
 }

Chapter 8 ■ Building an appliCation with neo4j

121

The first method in the class is the create method, which (just like the repository) takes an array of
properties as an argument. You’ll see here that no processing is done of the properties, they’re simply
passed to the repository, where all of the actual work is done. The result is then saved to a variable, and if
that variable isn’t false a new BusStop is returned. This class represents the BusStop entity. The entities in
this case are just empty classes that allow access to the properties that exist on a node. Whenever nodes are
returned, the individual nodes are returned as an entity of the respective type, meaning properties can be
accessed in the same way, no matter what the node type is.

public function one($id)
{
 /**Sample:serviceBusStopOne**/
 $node = $this->repository->one($id);
 if($node) {
 return new BusStop($node);
 }

 return false;
}

Just like with the repository implementation of this method, the only argument is a node id. This is then
used to query the underlying repository and return the result it comes back with (wrapped in a BusStop
class, of course), provided said result isn’t fault.

public function find($property, $value)
{
 /**Sample:serviceBusStopFind**/
 $node = $this->repository->find($property, $value);

 if($node) {
 return new BusStop($node);
 }

 return false;
}

As with the previous methods, all of the work here is done within the repository and the property and
value arguments are passed through to the repository. If there is a resulting node, then this is returned
wrapped in the entity class.

public function all()
{
 /**Sample:serviceBusStopAll**/
 $nodes = $this->repository->all();

 if(empty($nodes)) {
 return array();
 }

 $busstops = array();

Chapter 8 ■ Building an appliCation with neo4j

122

 foreach ($nodes as $node)
 {
 $busstops[] = new BusStop($node);
 }

 return $busstops;
 }
}

The all service is probably the most basic service, as it simply just gets all of the nodes from the
repository and puts them in a list, or returns an empty array if no nodes exist.

Each of the other node services work in the same way, the only difference being the name of the entity
being returned from the methods, which in this case is BusStop. The Place service however does go against
this pattern slightly, as it requires additional information that the other nodes don’t. The reasoning for this
is that Place nodes are very important in the application, as they’re the ones that have all of the location
information. Also, without any additional information, there’d be no way of knowing if a Place was a Bus
Stop, or any other transport type, so some additional processing is required. The ‘one’, ‘find’, and ‘create’
methods are the same as the BusStop example, however the all method is as follows:

public function all()
{
 /**Sample:servicePlaceAll**/
 $nodes = $this->repository->all();

 if(empty($nodes)) {
 return array();
 }

 $places = array();

 foreach ($nodes as $node)
 {
 $place = new Place($node);
 $cypher = sprintf("MATCH (n)-[:LOCATED_AT]-(t) WHERE id(n) = %s RETURN

labels(t)", $place->id);
 $data = $this->client->cypher($cypher);

 foreach($data['results'][0]['data'] as $row)
 {
 $label = $row['row'][0][0];

 if(! in_array($label, $place->label)) {
 $place->label[] = $label;
 }
 }

 $places[] = $place;
 }

 return $places;
}

Chapter 8 ■ Building an appliCation with neo4j

123

The first half of this method functions the same as the others, as it gets all of the nodes from the
repository. Rather than just retuning each node though, this code does some additional processing. The
Cypher query that is performed is getting all of the labels of the related nodes that have the LOCATED_AT
relationship with that particular place. This allows for different styling to be used on the frontend of the
website, and gives some additional context on what different transport types a Place has access to.

There is one additional service that is used within the website which is the Journey service, which isn’t
tied to nodes like the others are. This service is used within the application to perform certain location-
based queries easily, and its methods are as follows:

public function closestPlace($lat, $lon, $km = 5.0)
{
 /**Sample:serviceJourneyClosestPlace**/
 $cypher = sprintf('START n=node:geom("withinDistance:[%s,%s,%s]") RETURN n, id(n),

labels(n)', $lat, $lon, $km);

 $data = $this->client->cypher($cypher);
 $row = $data['results'][0]['data'][0]['row'];

 $node = $row[0];
 $node['id'] = $row[1];
 $node = array_merge($node, $row[2]);
 $node['label'] = $row[3];
 $place = new Place($node);
 return $place;
}

Unlike the other services, this one has the Client passed in when it’s created, allowing it to communicate
with Neo4j directly. It also doesn’t take a repository either. This uses Neo4j spatial to find the closest node
within a given distance. Since only the Place nodes have location data, it can be assumed that any nodes
returned will be places, so they can be returned in the correct entity wrapper.

public function closestTransport($lat, $lon, $km = 10.0, $type = ‘')
{
 /**Sample:serviceJourneyClosestTransport**/
 if(! empty($type)) {
 $type = $type . ":";
 }

 $cypher = sprintf('START place=node:geom("withinDistance:[%s,%s,%s]") WITH place

MATCH (place)-[:LOCATED_AT]-(transport%s) RETURN place, id(place), labels(place),
transport, labels(transport) LIMIT 1', $lat, $lon, number_format($km, 1), $type);

 $data = $this->client->cypher($cypher);
 $row = $data['results'][0]['data'][0]['row'];
 $node = $row[0];

 $node = array_merge($node, $row[3]);
 $node['id'] = $row[1];

Chapter 8 ■ Building an appliCation with neo4j

124

 $node['label'] = $row[4];
 $place = new Place($node);

 return $place;
}

The closestTransport method is an extended version of the closestPlace method, and is a little more
complex. The Cypher query still looks for the closest node using the supplied information, but when this is
found, it then uses WITH to get the nodes related with the LOCATED_AT relationship. The rest of the code
then takes the data from both the returned place and transport nodes, merges them together, then returns
the processed Place.

public function shortestPath($from_nid, $to_nid)
{
 /**Sample:serviceJourneyShortestPath**/
 $cypher = sprintf('MATCH (from:Place),(to:Place), p = shortestPath((from)-[:STOP_ON_

JOURNEY*..15]-(to)) WHERE id(to) = %s AND id(from) = %s RETURN p', $from_nid, $to_nid);

 $result = $this->client->cypher($cypher);
 $data = $result['results'][0]['data'][0]['row'][0];

 return $data;
}

This method is quite important, and actually does the journey planning between two different nodes
within the database. It simply takes two node ids as arguments (from and to, respectively) and then uses
the shortestPath function to calculate the shortest path between the two. Thanks to the way the nodes are
related, they can only ever be connected via a Timetable node, using the STOP_ON_JOURNEY relationship.
This means that the only information needed to work out the path is the respective node ids, and that’s it.
The resulting path between the two nodes is then returned to be used as required by the application.

Routes
This application only has a four different routes, one of which is the homepage (defined in the bootstrap
file). The other three routes are used to help with planning journeys, which are explained below:

Journey/Plan
The main route of the application is the one used for planning journeys, and to achieve this it expects two
sets of co-ordinates, to and from. Each of these represent the location of the where you’d like to start and
end a journey in the form of a longitude and latitude. Rather than going through the full route, the most
important parts will be mentioned, starting with getting the nodes required to use the previously mentioned
shortestPath method on the journey service.

$from_node = $app['journey.service']->closestTransport($from['lat'], $from['lon'], 10.0);
$to_node = $app['journey.service']->closestTransport($to['lat'], $to['lon'], 10.0);
$path = $app['journey.service']->shortestPath($from_node->id, $to_node->id);

Chapter 8 ■ Building an appliCation with neo4j

125

Using the location data from the supplied to and from nodes, the application is able to find the closest
transport node for each location, then with the resulting IDs plan a journey between them. After this stage,
we’re left with the path between the two nodes, but the path itself isn’t too useful so it needs to have some
additional processing done on it. The path that is returned works off the following pattern:

/* Pattern used:
 *
 * Place node (start location)
 * Relationship between start Place and Timetable
 * Timetable node (used to get the time/transport)
 * Relationship between Timetable and end Place
 * Place node (end location)
 *
 */

Provided a successful route can be planned, any stops on the journey will follow this pattern, meaning
that the shortest length of a path is 5. The reason behind this is that there is always a start place and an end
place, with the timetable node and its relationships in between. This means that if there were an additional
Place, the path would be structured as follows:

/* Pattern used:
 *
 * Place node
 * Relationship between start Place and Timetable
 * Timetable node
 * Relationship between Timetable and middle Place
 * Place node
 * Relationship between middle Place and Timetable
 * Timetable node
 * Relationship between Timetable and end Place
 * Place node
 *
 */

This means that the amount of stops on a journey can be worked out by doing the length of the path -1,
divided by four. Knowing this pattern allows for the output to be structured in terms of stopping of the journey,
rather than just the raw path, as this may not be too useful. With the path then covered into stops, it’s then
iterated over once more to get the details of the Timetable node that links the different places together which
allows for additional processing to be done based on the properties of said node. Once everything is formatted
correctly, the resulting journey is then returned as JSON for use on the front-end of the website.

Journey/Closest
This is a simple route, and simply works out what the closest mode of transport is, based on the location
supplied to it. This route then uses the closestTransport method on the Journey service to get the resulting
node, which is then returned to the front end of the website.

Chapter 8 ■ Building an appliCation with neo4j

126

Journey/Points
Unlike the other routes which are POST, this route is GET, and exists only to supply the front end of the
website with all of the different Place nodes, so they can be plotted on a map. To do this, the all method on the
Place service is used, and any nodes returned are then processed and returned to the application as JSON.

Each of these routes can be found in JourneyControllerProvider.php (/src/ChrisDKemper/
ControllerProvider/JourneyControllerProvider.php) if you’d like to have a look at how they work in more detail.
Alternatively, you can search for Sample:JourneyController within the project to find the routes that way.

Commands
To both make things easier and allow for sample data to be loaded into the application, the website has a
couple of command line commands it uses to perform certain tasks. These tasks perform different actions,
and exist to make the process of performing those actions easier. Rather than going over each line of these
files, each command will be explained, and any important functionality or Cypher queries that they do will
be mentioned; otherwise all you need to be aware of is that the commands do what they say they do.

Create Indexes
As mentioned earlier, certain indexes are required to allow for spatial queries to take place on Neo4j,
and to manage these a small command called IndexCreateCommand (/src/ChrisDKemper/Command/
IndexCreateCommand) has been created. This command can be run on the command line by using the
following line in Terminal, within the project directory:

php bin/console index:create

This command takes advantage of some of the methods that were created on the Client, to make
creating the required indexes for the site easier. Below are the two main lines from the command, which call
the required methods on the client to create the intended index.

/**Sample:IndexCreateCommand**/
$spatial_data = $client->createSpatialIndex();
$cypher_index = $client->createCypherIndexForSpatial();

The main action within this command comes from calling the “createSpatialIndex” and
“createCypherIndexForSpatial” methods on the client as mentioned before. This is just a wrapper to save
running these commands manually, but it still exists to allow for the application to be run from an empty
database.

Import Bus Stops
Before the application can be of any use, it needs some data. Since everything is built around places, we
need to get some of those in first. To do this, a command has been written that imports nodes as “Places” if
they don’t already exists, and then creates a BusStop node and relates it back to the place. This takes place
with the BusStopImportCommand, which also can be run on the command line via the following command
which needs to be run in the root directory of the application:

php bin/console busstop:import

Chapter 8 ■ Building an appliCation with neo4j

127

Within the command, the first check that happens is to see whether or not the Place exists within Neo4j
or not. A query is done to see if a Place exists with the same name. This is important as you cannot have a
BusStop without a Place (as the BusStop relates to the Place) so the place either needs to be fetched (by its
name), or created. When the place doesn’t exist, the place node is created (with location information) and is
then added to the spatial index via the spatialAddNodeToLayer method on the previously included client.

With the Place node either created or fetched, a BusStop node is created and then related to the node.
The Cypher code used to relate the two nodes is as follows:

/**Sample:BusStopImportCommand**/
MATCH (a:BusStop),(b:Place)
WHERE id(a) = 0 AND id(b) = 1
CREATE UNIQUE (a)-[r:LOCATED_AT]->(b)
RETURN r

This query is adapted from the code, and the 0, and 1 IDs are substituted in for actual IDs in the code,
but this example would relate the two nodes, provided that `a` (0) is a BusStop and `b` (1) is a place. When
this command runs, it’ll go through this process for every BusStop, ensuring it has a Place node to relate to,
then creating and relating the nodes as required.

Import Timetables
With the sample bus stations in, it’s time to add some timetables. This command works in a similar way to
the previous commands in that it creates the required node (Timetable, in this case) and relates it as needed
and that’s it. The command to import the timetables is called TimetableImportCommand and can be found
at /src/ChrisDKemper/Command/TimetableImportCommand.php.

Although this command works similarly to the others, it has a bit more information, as it has both the
information for the Timetables, but also for the times for these timetables as well. After the data has been
included, the first action to take place is the creation of the Timetable nodes. The timetables have a name,
the days of the week the timetable runs on, and the times that the timetable runs on. The timetable is created
with this information, and is returned to the command, ready to use.

With the timetable node created, it then needs to be related to the different places it calls at, which it
does using the “STOP_ON_JOURNEY” relationship. On this relationship there is also a property of “time”
which indicates the amount of time it’ll take for the journey to get to that particular “Place”. The Cypher used
to achieve this can be seen below.

/**Sample:TimetableImportCommand**/
MATCH (a:Timetable),(b:Place)
WHERE id(a) = 0 AND id(b) = 1
CREATE UNIQUE (a)-[r:STOP_ON_JOURNEY {time : 100}]->(b)
RETURN r;

This code is run for each of the place nodes on the timetable, with the values for the node ids and time
being altered as needed. With the Timetable all linked up to the places it calls it, there now needs to be a
Transport node, which is related to the Timetable. This gives the freedom for a Transport to run multiple
timetables, and the Cypher used to relate the transport to its timetable can be seen below.

MATCH (a:Transport),(b:Timetable)
WHERE id(a) = 0 AND id(b) = 1
CREATE UNIQUE (a)-[r:RUNS_ON]->(b)
RETURN r;

Chapter 8 ■ Building an appliCation with neo4j

128

This code then creates the RUNS_ON relationship between the Transport and the Timetable, allowing
for the service that runs a particular timetable to be retrieved based on this relationship.

Setting up the Website with Commands
When the website is first provisioned after being downloaded from the github repository, the database will
have no nodes in it, so the commands will need to be run in order to seed it with some sample information.
As previously mentioned there have been commands created to make these processes easier, so to fill the
database with test information, run the following commands in order from the root of the project directory:

php bin/console index:create
php bin/console busstop:import
php bin/console timetable:import

These are the commands that have been previously covered, and will get the website ready to run.
What it looks like
After a lot of set up, it’s finally time to see how the website looks, and what it’s made up of. Since the

purpose of this website is to make journeys, the main view is a full screen map. On the map, there will be a
number of different markers on the map, which are the Bus Stops that have been previously imported and
will be red. There will also be a blue marker on the screen, which is the “From” marker.

Technology Used
Since this is a Neo4j book, like the construction of the base application, I won’t go into too much detail on
exactly how everything was put together, but rather will give an overview, and explain any particular bits
that are worth mentioning. The map used by the website is Openstreetmap (OSM), which is available by the
leaflet.js javascript library. This library makes interacting OSM very easy, and (at least in my opinion) it’s
very nice to work with. In addition to leaflet, Jquery is used to make some of the interactions on the site a bit
easier. There are a number of AJAX requests that are sent by the front end of the website, and Jquery makes
that very easy. The only other item worth mentioning is the use of Twitter Bootstrap, which is used for styling
the website. The JavaScript and CSS can be found within the web directory of the project, so feel free to have
a look in there if you’d like some additional insight into how the website was put together.

How It Works
When the website first loads, the javascript will create a new map using Leaflet. With the map created, using
jQuery a GET request will be sent to ‘/journey/points’ to retrieve all of the Places within the system. It then
plots each of these onto the map, as well as storing any of the additional properties for the place, to be shown
when clicked. If you click on one of the location markers, it’ll reveal any information it has about that marker
in a sidebar panel, which will appear if it isn’t already visible.

The “Form” marker (which can also be dragged around) can also be clicked, which presents two options
“Find closest Transport” and “Plan from closest Transport”. The first option pretty much does what it says,
when the button is clicked; it sends a request to the “/journey/closest” endpoint with the longitude and
latitude of the current location. The query is then processed by the controller, and the closest station is
returned, which is displayed in the information panel on the page.

Pressing the “Plan from closest Transport” button adds another (draggable) marker to the page, which
is used to represent the “To” portion of the journey. If the “From” marker is clicked again, the “Plan from
closest Transport” will be replaced with “Set start position to marker” which, when clicked, updates the
“From” position within the website. This means that the marker can be moved around and reset, to allow for
different journeys to be planned really easily.

Chapter 8 ■ Building an appliCation with neo4j

129

Finally, when the “To” marker is clicked, only one option is available, which is “Plan to here”. When this
option is clicked, a request is sent to “/journey/plan” with the longitude and latitude of the start and end
locations of the journey. The resulting journey is then displayed in the information panel of the site.

Using the markers, you can then move them around and plan different journeys very easily.

Summary
This chapter has covered a fair bit of ground, from the installation of the spatial plugin and how to get it
functioning, right through to having a website that returned planned journeys. Although this application
is written in PHP, it shows what’s possible within Neo4j, with very little effort. Since the application code
is available at https://github.com/chrisdkemper/sample-neo4j-php-application, it’s possible to look
through the code and see how everything is wired together, to see what you can potentially re-use for your
own projects. Although the full application code hasn’t been laid out, enough has been shown to illustrate
how the site works, whether you’re familiar with PHP or not. With that in mind, the Client was created using
curl, to give the code as much reusability as possible.

Using the data structure and the Cypher alone, the queries can easily be adapted for your own use. Plus,
the application will grow over time, so any new features will be available on github, and if you’d like to find a
particular code sample, just search the project for the corresponding comment and any changes made since
the book was printed will be explained.

https://github.com/chrisdkemper/sample-neo4j-php-application

131

Chapter 9

Hosting a Neo4j Application

After you’ve put in the effort to build an application, you’ll eventually want to show it to the world, and for
that, the application will need to be hosted. There are a huge amount of ways to host content on the internet
these days, ranging from static website hosting from GitHub, to shared hosting via a company like site5.
Although there are a lot of options out there, that isn’t the case when it comes to hosting Neo4j.

To allow for the installation and customization of Neo4j, it means that you can’t just go with any old
hosting. To get the best results, you either need to go for a dedication Neo4j hosting platform, or install Neo4j
yourself on a virtual private server, or VPS. Each of these options has a number of drawbacks and benefits,
which we’ll go over later, but both are still perfectly viable solutions.

We’ll be going over the different options for both, and will also run through an example of hosting Neo4j
using the hosting provider Digital Ocean. With that out of the way, let’s get straight into it, starting with the
technical requirements for Neo4j.

Hosting Requirements
A big thing to keep in mind when hosting your Neo4j application is why you’re putting it online in the first
place. If you’re simply performing some tests on live hardware, you may not need as powerful of a hosting
solution as you would for a production environment. The same goes if your application is going to be in
production, but isn’t going to get much traffic.

Whichever reason you’re hosting your application, you should aim to have at least 2GB of RAM
dedicated to Neo4j. If you then start performing large amounts of Reads/Writes to the database in too short
a time, then it’ll start to slow down. If you’re just testing, this is manageable, and the usage of the application
will no doubt be spiked depending on the usage.

If you’re hosting Neo4j for a large amount of intended use, then it’s recommended that you have
between 8 and 32GB for your hosted solution. This level of use is for applications doing huge amounts of
reads/writes every second, if that isn’t the case, start out with a 2GB solution and monitor the performance
of the hosting. This way, it could be possible to migrate to a better hosting environment, should you need
more RAM.

Although RAM is the most important factor, as more RAM makes Neo4j faster, disc space is also
important, and should be considered. You need to be sure to try to have at least 10GB of storage available;
ideally, through the use of SSDs (solid state drives), which are faster than the disc-based hard drives.

If you’re doing a lot of complex queries, it may also be worth checking which processor your hosting
provider uses. If possible, it’s recommended to have at least an Intel core i3 processor. The processor
shouldn’t really be an issue, unless you’re hosting Neo4j for a high-traffic website or application, and it’ll get
a lot of use.

Chapter 9 ■ hosting a neo4j appliCation

132

Hosting Neo4j
When it comes to making your choice regarding where to host your instance of Neo4j, it comes down to
whether or not you want dedicated Neo4j hosting, or if you want to host Neo4j yourself. Each of these
solutions has pros and cons associated with it, including sometimes cost. The high-level way to look at it
is, if you host Neo4j yourself, you're in complete control, so you can change it as much as desired. This also
means you can load your own extensions onto Neo4j to extend its functionality, which isn’t always possible
with hosted solutions. With dedicated hosting, you’re still in control, but must rely on the hosting vendor to
have all of the features you need to run your database correctly.

Let’s dig into this a bit more, starting with a VPS based solution and then look at some dedicated hosting
options.

Choosing a VPS
There are a huge amount of hosting solutions out there now for different use cases. We’re going to cover
three different solutions: Digital Ocean, Linone, GrapheneDB, and Graphstory. Each are hosting providers in
their own right, and have their own benefits and drawbacks, which we’ll cover. Enough of that though, let’s
get straight into things, starting with DigitalOcean.

DigitalOcean
DigitalOcean (DO) has the slogan “Simple Cloud Hosting, Built for Developers” and certainly tries to keep
true to that slogan. They’ve put a lot of work into their product, trying to make it as simple as possible, and
you can find them at https://www.digitalocean.com. You can deploy a new SSD cloud server in under
55 seconds according to the website, which is pretty impressive. When you create your cloud server, or
Droplet in DO speak, you get the choice of a location, a range of different specifications, and some additional
options, including whether or you want private networking. There are a lot of different droplet specifications
available, but the more popular configurations can be seen in Figure 9-1.

Figure 9-1. The plans available for DigitalOcean droplets

https://www.digitalocean.com/

Chapter 9 ■ hosting a neo4j appliCation

133

As can be seen by the slider above the prices, rates can also be broken down by hour, rather than a
monthly cost. This means if you only need to have a box up for two weeks, then you can calculate the cost for
this up front, which is always useful.

The $20/month solution would be enough to host the Neo4j instance and the application using it.
This droplet has 2GB of RAM a 2 core processor and 40GB SSD, which is plenty to run Neo4j. Of course, you
could still install Neo4j on any of the other droplets, it just wouldn’t run as efficiently as it would with more
RAM, but since DO has SSDs by default, an increase in speed is gained from that which can offset the RAM
requirement. There are also plans above this level for more high traffic applications, topping out with the
$640/month which boasts 64GB of RAM, 640GB of storage, and a 20 core CPU, but I think it may be a little
excessive for a small Neo4j application.

Features
As you would expect, DO has a decent list of features that help make it what it is. To give a better overview of
DO a few will be detailed below, however for a full list of features, be sure to check out the DO website.

Knowledge Base
Although this technically isn’t a feature, it’s something worth mentioning about DO, as the articles within
its knowledge base are brilliant. If you’re going to deploy something on DO, or you’re having trouble with
something on one of your droplets, odds are there’s a DO article that can help you. Anyone can get paid to
write support articles for DO, so there are a good range of articles, accomplishing a number of different tasks.

High Speed Deployments
We’ve already covered that you can deploy a droplet in under 55 seconds, which is pretty fast. There’s a gif
on the homepage of the website which shows how this process works, and how easy it is. You can also save
an image of a Droplet and then create new droplets from this image, so you can have pre-built boxes that are
ready to go, they just need to be deployed, which is always useful.

Private Networking
Being able to utilize private networking is a big plus, as this allows you to communicate with other droplets
you have, but not with the outside world. This means your applications can use internal requests instead of
external ones, which is a lot quicker, but also more secure, as any connections made internally, are protected
by DOs network.

KVM Virtualization
All of the droplets on DO are virtual, but there’s a reason for this. Using virtualized environments means that
performance and security are big factors, and are taken very seriously. If any security issues are discovered,
they can be addressed a lot easier with virtual environments than physical ones, which is one of the reasons
DO is as fast and secure as it is.

Chapter 9 ■ hosting a neo4j appliCation

134

Simple Control Panel
DO have spent a lot of time to make their product friendly for developers, and it definitely shows, especially
in the control panel. The focus of the control panel is usability, to make it as easy as possible to perform
complex actions, and also making sure this process is fast, and easy to understand.

API
Since DO is made for developers, they’ve also made sure that they not only offer an API, but that it’s also as
fully featured as possible. The API can be used to accomplish most of the tasks that can be done from the
dashboard, including of course, creating Droplets.

99.99% Uptime
When you’re hosting anything, you want a guarantee that it’s going to be online all the time, and DO does
this with a 99.99% uptime SLA. This is achieved by having multiple data centers across the world, and
ensuring the communication between these is as fast as possible; in this case, with the use of 10 gig-E
networking, to ensure capacity, and redundancy. Each of the datacenters used by DO has battery backups,
onsite generators, and physical security, so your droplets not only stay up, they’re also secure.

Highlights
If you use DO, you know that you’ll have a server that will be up when you need it, and will stay there. Thanks
to how easy it is to use, creating new Droplets is easy, and since you only pay for what you use, you can test
something out on a droplet, and then destroy it to keep the costs down.

If you use DO a lot, then the API can come in very useful for deploying and destroying your droplets.
Since you still get charged if your Droplet is suspended, being able to shut down any unused boxes is always
useful. This can of course be achieved in the control panel too, and if you wanted, you could also take an
image of the Droplet before it was destroyed, so it can be provisioned again.

One good positive about DO is its smallest droplet, which is $5 a month. Thanks to how cheap it is
(provided you don’t leave the boxes up after they’re needed) it means many can be created at once to test
things like clustering configurations, without running up a huge bill.

If you realize you’ve made one of your droplets too small, and it needs to be upgraded, then no
problem. If you power off your Droplet, you can then scale it up as you need to. This means you don’t need
to provision huge boxes immediately, but you can start smaller and work up.

There may be a time when you pick a promo code for DO that gives you some free credit, but if you’ve
already signed up, you can’t use it, right? Not the case, with DO. If you get a promo code, you can redeem it
at any time within your profile, which is always a nice to be able to do. Speaking of credit, you can also earn
more by referring friends, which again, is a nice thing to be able to do.

Conclusion
DigitalOcean is a brilliant platform, and is more than capable or serving Neo4j, or any other application
comfortably. With DOs credit system, keeping on top of your spending is easy, and thanks to its uptime SLA,
if you deploy a Droplet, it’ll be available 99.99% (until your credit is used up, that is). Whether you’re looking
to fire up a few servers to test out a cluster, or if you’re hosting your production environment, DO can help.

Chapter 9 ■ hosting a neo4j appliCation

135

Linode
Another offering in the cloud hosting market is Linode, which offers cloud hosting, with all packages using
SSDs. With Linode you get a lot of benefits and features, which we’ll cover in a moment, one of which is the
ability to deploy a Linde within seconds, at least that’s what the website says. Hardware at Linode also runs
on a 40GB network, to ensure that any traffic you get, whether internal or external, isn’t slowed down by the
network. With over 350,000 customers, the people over at https://www.linode.com must be something
right, which is evident in their features and their pricing. When deploying a new server (or Linode) you can
choose a location within a choice of eight datacenters in three different regions, with a number of packages
to choose from, as shown in Figure 9-2.

Figure 9-2. The price of the different Linodes at https://www.linode.com

The prices are broken down into hourly and monthly costs, which gives a good overview of what your
particular Linode will cost, especially if you’re going to have it up for less than a month. Each Linode is
actually billed by the hourly rate, with a cap set to the monthly cost, so you’re never going to be overpaying
here, unless you go over your usage cap, that is.

For hosting Neo4j, the Linode 2GB package would be sufficient to host both Neo4j, and also the
application that’s using it without any real issue. Although having more RAM is always beneficially, the SSD
hosting used helps compensate for this, so with 2GB of RAM and SSDs, a small-scale Neo4j database should
be perfectly fine. You can also go all the way up to a Linode 96GB plan, which sports 96GB of RAM, 20 CPU
cores, 1920GB storage, and a $1.44 / hour ($960 / month) price tag. This is of course an instance for a huge
application, and most likely overkill for a number of applications, but it’s nice to know the option is there
either way.

https://www.linode.com/
https://www.linode.com/

Chapter 9 ■ hosting a neo4j appliCation

136

Features
To compete in the hosting market, your features need to do the talking, and Linode certainly talks a lot with
all of the features it has to offer. We’ll go through a few noteworthy ones in a moment, but for a full list of
features, check out the website.

Intel E5 Processors
Linode doesn’t just have any processors; they have Intel E5 Processors. These are high-end, server-based
CPUs, and they’re pretty fast. This is good to know if your application happens to do any CPU-intensive
actions. Even if this isn’t the case for your application, it’ll still run smoother and faster thanks to these chips,
so it’s definitely a good benefit to Linode.

Nodebalancers
An available feature with Linode is the use of a Nodebalancer, which is a load balancer, but with a bit of a
difference from others. On a base level, what the Nodebalancer does is sit in front of your backend Linodes
and takes large amounts of traffic. Any requests are then passed off to the required backend Linodes, but
there’s a little more to it that than. It’ll also monitor each backend Linode, and if for whatever reason it’s in
an unhealthy state, the request won’t be routed to it.

The best thing about the Nodebalancers is how easy they are to use. They can be added at any time, and
at $20.00/month, adding one Nodebalancer could replace the need for an additional server instance, thanks
to how it shares traffic. Although you may not always need them, it’s always good to know a feature like this is
available, and is easy to use.

Longview
Monitoring your servers is always a good thing, and Longview makes this as easy for you as possible. To
make managing multiple Linodes easier, Longview lets you check the status of all your servers on one page,
rather than having to manage them individually. With the free tier, you get the last 12 hours of data, with
updates every 5 minutes. You can also upgrade to pro for $20.00/month for the 1–3 systems, with larger
packages available for larger setups. With pro, you get all of your historical data and updates every 60
seconds. This essentially means, if you have an outage over the weekend, you can look back on Monday to
see what happened and try to fix the issue.

Managed
Sometimes you just don’t want to spend the time maintaining a server to ensure it’s always running. Linode
knows this, and they also offer a managed package, which means once the application is running, they’ll
keep it running. If you commit to at least 3 months, Linode will even help with the migration from your
existing hosting to a managed Linode. At $100.00/mo, this isn’t a cheap service but if you’re in a position
where downtime isn’t an option for your application, it’s nice to know Linode can have your back.

Chapter 9 ■ hosting a neo4j appliCation

137

StackScripts
One common thing when provisioning servers, is that there can be a lot of repetition, so you’ll end up doing
the same steps a number of times on multiple servers, which can get annoying. Other people have had
these thoughts and written ways to automate these things, and thanks to StackScripts, they can be yours to
use. There are a number of different environments that can be provisioned through answering a couple of
questions required for the installation and then setting it away. Essentially, it’s always worth checking the
StackScripts library to see if what you’re about to do has been added as a StackScript, so it can be run with
minimal effort.

Professional Services
Through its various services, Linode offers a lot of different features, and if you only want a website
migration, Linode can quote for that. If you aren’t sure on the exact server configuration needs, or need
some help streamlining a server, these are things Linode can help with. Each service is done on a quote
basis, so you won’t know how much something will cost beforehand, but it’s an option that’s there, if
required.

Conclusion
Linode is brilliant hosting platform, and can be the home for both small and large applications. Thanks to its
hour-based billing, you know how much you’ll be paying a month, which saves being worried about whether
or not you’ll overpay. Of course, if you use all of your bandwidth and need some more, there will be a charge
for that, but if it’s happening consistently, you can upgrade.

Speaking of upgrading, this process is made as simple as possible in Linode, and if you need to upgrade
an instance, just go to its control panel, make the needed change, and let Linode do the rest. If you realize
you’re spending too much time monitoring your services because they’ve grown above your control, why
not get Linode in to help? With its reasonable prices and free offerings, it can be a stable platform for any
application as it starts with features to support it as it grows.

Linode also has a referral scheme, whereby you can earn additional Linode credit to help your servers
stay up even longer, and also share the love you have for Linode, of course.

 ■ Note of course you can manage the installation of neo4j yourself, but that isn’t the only way to do things.
as with other database systems, there are companies that offer remote neo4j hosting. this means you can
have your database and your application in two separate places. there can be a slight delay thanks to it
being remote, but that sacrifice is worth it, so that you know your database is going to be there, even if your
application isn’t.

GrapheneDB
One of the offerings in the Neo4j hosting market is GrapheneDB, and hosting Neo4j is what they do. It
offers a lot of the features you'd want in Neo4j hosting, as well as still giving you full access to your data.
GrapheneDB hosts your database on one of two systems, AWS (Amazon Web Services) or Microsoft Azure.
Both systems are cloud-based hosting platforms that are more than capable of hosting your database. It’s
also possible to use GrapheneDB as a Heroku extension, which gives even more flexibility to the service.

Chapter 9 ■ hosting a neo4j appliCation

138

GrapheneDB takes the pain of doing the deployment on these services yourself, and instead gives
an easy to use the website, with a number of top-quality features. When your server is provisioned on
GrapheneDB, it is then available to communicate with via REST. To make this even easier, GrapheneDB also
included a number of “Getting started” snippets for many popular programming languages.

There are free plans available on both platforms, but these aren’t intended to be used in production
environments, but rather for hobby use only. The plans for use on AWS can be seen in Figure 9-3, as it
has an additional plan, and with the first package in each being the same price, AWS made sense. On
the GrapheneDB website (http://www.graphenedb.com) you can see a full list of plans and features, but
we’ll just run through a notable few for now, just remember to check the website if you’d like additional
information.

Figure 9-3. The pricing structure for hosting Neo4j on AWS, using GrapheneDB

http://www.graphenedb.com/

Chapter 9 ■ hosting a neo4j appliCation

139

The first thing to note is the price of the first package, which is the one intended for personal use. You
really don’t get a lot with the free package, and it’s capped at 1K nodes and 10K nodes. You can increase this
to 100k nodes and 1M relationships, for $9/mo. Although you don’t get a lot of space for storage, you do get a
hosted Neo4j instance that can be used for testing. That being said, it will be unpredictable on performance
and may not always be available, but for testing that’s just fine.

From $50/month you get into the standard packages, which have a lot more features, including
SSL, backups, access to custom Neo4j settings, and more. The interesting thing about the $50 plan is the
hardware, which is 512MB of RAM and 1G storage. This plan is still classed as Standard, so if you’re running
an average-sized website you should be fine on this plan.

When it comes to hosting a large database, you’ll want the Professional plan, which starts from $400/
mo where you get 3GB of RAM and 40GB of storage. You get dedicated servers here, so you know the
performance you’re getting is going to be consistent, as well as everything else from the previous packages.
You also get a target downtown of less than 1 hour a month.

Features
In the paid packages there are a number of features, so let’s go into them in a bit more detail, shall we?

24/7 Monitoring
If your usage or nodes spike for some reason, you’ll be notified but engineers will ensure your database is
running, 24/7. Of course, depending on your plan, there will be some downtime over the month, but outside
of these scheduled occasions, any malicious or unscheduled outage will be resolved.

Cloud Scaling
Thanks to the databased being hosted on cloud hosting platforms, it allows for great scalability. It’ll be able
to handle the traffic being thrown at it without falling over, and upgrading couldn’t be easier. If you need
more out of your database, you can upgrade just as easily as you signed up, then let the website do the work.

Support
When subscribed to a Standard or Performance plan, you then get access to the expert support team at
GrapheneDB. This isn’t just support with issues or bugs; this is support for you as a developer, and the team
can help with anything from query optimization to driver configuration. With this support, your application
and database will be running as smoothly as it possibly can.

Backups
Having a backup system in place is always important, and here is no exception. Your hosted database will
be backed up on a daily basis. You can also manually initiate snapshots of the database, so you can always
backup before that big migration. The daily backups will be kept a total of 7 days, but can be downloaded at
any time, so if you like, you can download a backup manually each week. You can also restore from a backup
at any time, so if the worst does happen and data is lost, or you need to revert back for whatever reason, the
option is there.

Chapter 9 ■ hosting a neo4j appliCation

140

Operational Dashboard
Being able to see how your database is running is important, so on your dashboard, it’s possible to see
streaming download of Neo4js server logs. This gives the flexibility to quickly get a handle on what’s
happening within the database without manually looking at the logs. So if your website is running slow for
some reason, you can check for issues.

At the Performance tier, you also get access to detailed server metrics for your dedicated database
instance. In addition to knowing how the database is running, you can also make sure the server is running.

Extensible
One of the issues with hosted solutions can be the inability to customize the hosted instance, but that isn’t
the case this time. You enable popular Neo4j extensions, as well as being able to code your own. This allows
you to customize your database to your hearts content, as it should be.

Conclusion
GrapheneDB has a brilliant set of features and is very easy to use. It takes no time at all to sign up and create
a sandbox database, which is ready to be used in your development project, without any mess. The inclusion
of the quick start code samples to communicate over REST is brilliant, and really speeds things up.

When your data is the most important thing, having it looked after and backed up is what you always
want to do, so knowing GrapheneDB takes care of all that is a big relief. In some instances, the price point
may be a factor, but for that price you get access to a lot of features, including access to the expert support
team. As well as knowing your database will be kept online, you also have the ability to still extend and
customize it, so your database can grow with you. Overall it’s a brilliant service, even just for the free tier
alone, and the ability to integrate that into Heroku gives some brilliant development power, which is always
a good thing.

Graphstory
Another space in the Neo4j hosting market is Graphstory. Although there is a free tier available, and a
number of smaller ones too, the main action here is in the production-based bundles. It’s possible to get
signed up for a free account very quickly, and you’re given instant access to a database. This database is
functioning and available via REST, but its storage capabilities or limitations are unknown.

There is a developer plan, which gives you access to 1GB of RAM, 5GB of SDD storage and on-demand
backups for $9.99/mo. Above this plan, there are also Startup (from $49.99/mo) plans, Premium (from
$299.99) plans, and the Enterprise plan, which requires you to contact them for a price. Although the pricing
of these plans seems expensive, you do get a lot for you money, at least with the Premium plan.

The Startup plan is a more equipped version of the developer plan, offering 2GB RAM, 40GB SSD, and
a 2 core CPU machine. If you upgrade your starter plan to the S3 package at $149.99/mo, you then get access
to the main weapon of Graphstory, its clustering. In Figure 9-4, you can see the options that come with the
Premium level cluster services, and the price associated with them. At the standard level tier, the staging
machine is 2GB instead of 4GB, but this can be increased by jumping to the $199.99/month plan.

Chapter 9 ■ hosting a neo4j appliCation

141

As you can see, the options for clusters are crazy, and that’s all taken care of for you, without having
to worry about it. Sure, it’s a lot of money, but you also get a fully maintained cluster that isn’t going to fall
down, no matter what happens. With the highest tier, you also get twice hourly backups that are also offsite,
so when it comes to keeping data safe, they aren’t playing around.

Conclusion
Graphstory looks to be a very powerful provider when it comes to hosting. They even utilize DigitalOcean
for hosting the servers. Although it has a lot of features, it’s really geared towards larger applications, rather
than just a regular developer. The features offered aren’t detailed too heavily on the website, because they
want you to get in touch and ask. This is fine and the platform itself seems very solid, however for developers
building smaller applications, it may not be the best solution.

A Hosting Example
The best way to go through hosting Neo4j, is to host Neo4j. To show this, I’ll be running through the process
used to host the Pokémon app (which was used to gather the data used in Chapter 7) which is a PHP-based
application, backed by Neo4j.

Figure 9-4. The premium plans available to Graphstory customers.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1227-1_7
http://www.allitebooks.org

Chapter 9 ■ hosting a neo4j appliCation

142

Hosting on DigitalOcean
In this case, my choice of hosting provider was DigitalOcean, primarily because I had credit in my account
that I could use. Also, I find DigitalOcean very easy to use so it just made sense to host it there. Other
than having the credit, in terms of cost and features, there could have been other choices used to host the
application (Linode, for one) but this application isn’t going to be hosted long term, so DigitalOcean made
sense.

Since installation instructions are one of the things that have a habit of changing, the commands used
here will be stored in a GitHub gist, so any changes can be documented there because books cannot be
corrected after print. The URL for the gist is GIST_URL_HERE, but if you check my gists (ChrisDKemper) you
should find it there.

Creating a Droplet
To start things off, a droplet needs to be created so I actually have something to deploy Neo4j to. Since I had
the credit available, I decided to go with the $20/month instance which gives me 40GB of storage, and 2GB of
RAM, more than enough to run a small PHP application and Neo4j. I also opted for a London-based droplet,
as this is closer to me, which can been seen along with the rest of the setup in Figure 9-5.

Figure 9-5. The setup used to create the Pokémon droplet

Chapter 9 ■ hosting a neo4j appliCation

143

I added my MacBook’s SSH key to the box to give me access to it, then set things away and within a
minute, I had my running droplet.

Install Neo4j
Using Terminal, it was time to SSH into the droplet and get ready to install Neo4j. Since this droplet is
running Ubuntu, it’s possible to use the information from Chapter 3 to our advantage here, as an Ubuntu
server was used there. It’s worth noting that I’ve SSH’d into the droplet as `root`, so all of the commands are
run as `root` which essentially means every command has a `sudo` infant of it, and `root` saves you from
doing that. First, we first need to add the Neo4j key to `aptitute`, to give it access to the code repositories,
once they’re added. To add the key, the following command is used:

wget -O - http://debian.neo4j.org/neotechnology.gpg.key | apt-key add -

The key will be fetched from the Neo4j website, and added to `apt` and when it’s done, you should see
OK, with your prompt back to normal. With access now granted to the repository, it’s now time to actually
add the Neo4j repository so it can be found, which is done like so:

echo 'deb http://debian.neo4j.org/repo stable/' > /etc/apt/sources.list.d/neo4j.list

There won’t be any interaction from the Terminal here. It’ll just run and you’ll be presented back with
the terminal prompt. The next stage is to perform an update, and by doing so, pull in the new definitions,
which will allow Neo4j to be installed. To run the update, use the following code:

apt-get update -y

With everything up to date, it’s time to actually install Neo4j. Rather than opting to say `Yes` to every
installation, I used the -y flag, so the install just runs, and installs everything. The command looks like so:

apt-get install neo4j -y

After many output lines from the installation, you’ll be prompted saying Neo4j is up and running at
localhost:7474, and you may also see a warning regarding the number of max open files, which will look
something like this:

 ■ Warning Max 1024 open files allowed, minimum of 40,000 recommended. see the neo4j manual.

To solve this problem, we need to increase the max open files. It is possible to do this using the `ulimit`
command, but that’s only for the active session, and this needs to be all the time. The first file that needs
amending is `/etc/security/limits.conf`which needs the following lines added to it:

root soft nofile 40000
root hard nofile 40000

These lines give the root user permission to have this many files open at once. The next step is to
allow this property to be read, by editing another file, `/etc/pam.d/su`, and uncommenting, or adding, the
following line:

session required pam_limits.so

http://dx.doi.org/10.1007/978-1-4842-1227-1_3
http://debian.neo4j.org/neotechnology.gpg.key
http://debian.neo4j.org/repo

Chapter 9 ■ hosting a neo4j appliCation

144

This means that from now on, every session with the user, that user will be allowed to have 40,000 open
files, which is what we want. For this to take effect, the server needs to be restarted, which is done by using
the following command:

sudo shutdown -r now

Using this command will kill any connections you have to the server so don’t worry about that, just wait
a little while for it to reboot and SSH back in. With the code in place, Neo4j will now run without displaying
the error, which is good news. Although Neo4j is running, if you tried to go to IP_address:7474, you wouldn’t
see anything. This is because by default Neo4j only serves to localhost, which isn’t what we want. This is
easily fixed though, and it involves changing a file, which is located at `/etc/neo4j/neo4j-server.properties`

In the file, you’ll want to locate the following line:

org.neo4j.server.webserver.address=0.0.0.0

This will need to be uncommented, and then `0.0.0.0` needs to be changed to the IP address of the
Droplet. With that change made, it’s just a case of restarting Neo4j once again to get everything working.

service neo4j-service restart

The browser is now available at IP:7474, which means an important thing can now happen: setting the
password for your database, as using default values in production is a bad idea. Also, because Neo4j also
thinks this is important you need to change the password before it’ll work, so it’s better to make it something
secure now.

Some Other Dependencies
Before the Pokémon website can run, it needs a few other things, such as PHP, Nginx, Git (for the cloning
of the repository), and a couple of other things. The installation of these things isn’t really relevant to the
hosting of Neo4j, so I won’t go into detail.

An Annoying Warning
When starting the Neo4j service, you may see the following warning:

 ■ Warning not changing user

This warning isn’t something to be worried about, as it’s not actually true anyway. Neo4j needs to be
run as `root`, but does actually switch users, and the process itself, runs as the `neo4j` user. At the time of
writing, I couldn't find a reason or solution for this warning, as Neo4j is actually running just fine. It seems
worth mentioning, as it seems like it could be quite an important warning, but in fact, it just lies.

Of course, things do change, so if a solution or reason has been found since the book was published, it’ll
be inside available on the GitHub gist mentioned earlier, which will contain the full installation instructions
for Neo4j, kept up to date with changes, so if the command in the book doesn’t work, check the Gist.

Chapter 9 ■ hosting a neo4j appliCation

145

Using a Standalone Neo4j Server
From the previous research on hosted Neo4j solutions, it seems you can easily run Neo4j on environments
that have specs which are a lot less than the minimum specs required. With that in mind, it makes sense
to put Neo4j on its own server (or droplet, in this case) which will mean I can dedicate all of the available
resources to Neo4j, and it won’t have to share with the application instance. Both servers in this case would
be the $5/pm droplet, which even though it has two servers, it’s half the running cost of the larger one.

In reality, nothing much needs to change here. The previous installation steps can be followed to install
Neo4j, but instead of installing the rest of the application on the same server, it’s installed on a different
one. In this particular case, private networking is required for both of these boxes, as the application will
communicate with Neo4j via the internal IP address, not the external one. Earlier we set the org.neo4j.server.
webserver.address property in the /etc/neo4j/neo4j-server.properties file, which now needs to be set to the
internal IP of the Neo4j droplet. This ensures that no external traffic can access the Neo4j instance, and it can
only be reached from inside the Digital Ocean network. In terms of private networking, you need to ensure
any droplets you’d like to communicate with each other are in the same datacenter, so with this in mind,
both the droplets I'm using are in the London datacenter.

The final step is to change the main application to use the internal IP address of the Neo4j droplet,
rather than `localhost` like it had done previously, since everything was hosted on the same machine. There
will be a decrease in speed because the database is now on another server, but since Digital Ocean’s internal
network is around 1GB/ps, and the application utilizes a queue system, any reduction in speed won’t be
noticed by the user. This essentially means the hosting costs are halved, and the app remains the same
speed, with Neo4j getting more dedicated resources since it no longer has to share, which is a win/win/win.

Using ansible to Deploy Automatically
Although there isn’t another Neo4j instance needed for the Pokémon application, there will be other times
that one is, and for that reason it’s good to look at automated deployments. Of course, you could easily
manually set up Neo4j on a new server using the previously mentioned commands, and that’d be fine, but
wouldn’t it be nicer to just hit a button and have all that work done for you? I thought that, so I ended up
looking at Ansible.

In Ansible 2.0 (currently in beta, at the time of writing) it has Digital Ocean integration. This is currently
available but the 2.0 version uses V2 of the Digital Ocean API, and since I like Digital Ocean, I figured I’d go
with it. With that out of the way, below is a code sample that includes two Ansible files, the playbook, and the
variables (vars.yml) file.

##vars.yml

#DigitalOcean stuff
digital_ocean_token: TOKEN_HERE
digital_ocean_ssh_name: ocelot.pub
digital_ocean_ssh_pub: "{{ lookup('file', '/vagrant/ansible/ssh/ocelot.pub') }}"
digital_ocean_ssh_key: /vagrant/ansible/ssh/ocelot
digital_ocean_droplet_name: ocelotdroplet
digital_ocean_droplet_size_id: 512mb
digital_ocean_droplet_region_id: lon1
digital_ocean_droplet_image_id: 13089493
digital_ocean_droplet_private_networking: yes
#Neo4j stuff
neo4j_config_file: "{{ lookup('file', '/vagrant/ansible/neo4j/neo4j-server.properties') }}"

Chapter 9 ■ hosting a neo4j appliCation

146

##neo4j.yml

- hosts: 127.0.0.1
 connection: local
 vars_files:
 - vars.yml
 tasks:
 - name: Ensure ocelot key is available
 digital_ocean:
 state=present
 command=ssh
 name="ocelot.pub"
 ssh_pub_key="{{ digital_ocean_ssh_pub }}"
 api_token="{{ digital_ocean_token }}"
 register: ssh_key
 - name: Create a digital ocean droplet
 digital_ocean:
 state=present
 command=droplet
name="{{ digital_ocean_droplet_name }}"
 size_id="{{ digital_ocean_droplet_size_id }}"
 region_id="{{ digital_ocean_droplet_region_id }}"
 image_id="{{ digital_ocean_droplet_image_id }}"
 wait_timeout=500
 private_networking={{ digital_ocean_droplet_private_networking }}
 ssh_key_ids={{ ssh_key.ssh_key.id }}
 api_token="{{ digital_ocean_token }}"
 unique_name=yes
 register: my_droplet
 - name: Register droplet as dynamic host
 add_host:
 name="{{ digital_ocean_droplet_name }}"
 groups=droplets
 ansible_ssh_host="{{ my_droplet.droplet.networks.v4[1].ip_address }}"
 ansible_ssh_user=root
 ansible_ssh_private_key_file="{{ digital_ocean_ssh_key }}"
- hosts: droplets
 tasks:
 - debug: msg="{{ ansible_eth0.ipv4.address }}"
 - debug: msg="{{ ansible_eth1.ipv4.address }}"
 - name: Check if neo4j is installed
 command: dpkg --get-selections | grep neo4j
 register: neo4j_check
 - name: Key1
 shell: wget -O - http://debian.neo4j.org/neotechnology.gpg.key | apt-key add -
 when: neo4j_check.stdout == ""
 - name: Key2
 shell: echo 'deb http://debian.neo4j.org/repo stable/' > /etc/apt/sources.list.d/neo4j.
list
 when: neo4j_check.stdout == ""
 - name: Install Neo4j

http://debian.neo4j.org/neotechnology.gpg.key
http://debian.neo4j.org/repo

Chapter 9 ■ hosting a neo4j appliCation

147

 apt: name=neo4j update_cache=yes state=latest
 when: neo4j_check.stdout == ""
 - name: Set the correct address
 lineinfile: dest=/etc/neo4j/neo4j-server.properties
 regexp=^#org.neo4j.server.webserver.address=
 line=org.neo4j.server.webserver.address={{ ansible_eth1.ipv4.address }}
 when: neo4j_check.stdout == ""
 notify:
 - restart neo4j
 handlers:
 - name: restart neo4j
 service: name=neo4j-service state=restarted
 - name: restart machine
 command: shutdown -r now "Ansible updates triggered"
 async: 0
 poll: 0
 ignore_errors: true
 - name: waiting for server to come back
 local_action: wait_for host={{ inventory_hostname }}
 state=started
 sudo: false

This file would need to be need to be split up, and is adapted from a project called Ocelot which I’m
working on. It’ll work independent of it of course, it’s just the names and paths that are used really, but those
can be easily changed. With a couple of changes, the playbook can be created for different applications
or for droplets with different names for multiple Neo4j instances. Automated deployments always have
some benefit, even if that benefit is ease of use. You may of course still need to do some manual changes to
these environments when they’re created, but it will save time in the long run. The code used here will be
available as a gist (https://gist.github.com/chrisdkemper/7a9fff23309c7cf55963) so any updates will
be available there.

To make this process a little easier, I created a small website to make running these playbooks easier.
The project is currently very young, but can be found at https://github.com/chrisdkemper/ocelot and
will no doubt change and improve, but it’s called Ocelot, and it allows you to run a playbook and watch
the terminal output in the browser. It’s also on Vagrant so it’ll run on any system capable of running it, so
hopefully it’ll be of use to somebody. Anyway, enough about that. If the Playbook will be useful to you then
by all means use it, it’ll be kept up to date on the gist, so even after this book is printed, the gist will always be
correct.

Optimizing Neo4j
When it comes to optimizing Neo4j there are a couple of different approaches. There are small changes
that can help, but could be left as defaults, such as optional extras. The other side is the more complex
side, which includes configuring the server in a certain way, tweaking the JVM settings, and so on. We’ll be
covering the former side of the optimizations, as these changes can make things a little more secure, with a
small amount of effort.

https://gist.github.com/chrisdkemper/7a9fff23309c7cf55963
https://github.com/chrisdkemper/ocelot

Chapter 9 ■ hosting a neo4j appliCation

148

To make things easier each one will be broken down into its command. First, we have a couple of
additions to the neo4j-server.properties file, which is located at /etc/neo4j/neo4j.properties on a default
installation. The following line adds a max timeout to a query, to save on runaway queries that traverse the
graph multiple times. Any queries will be rolled back because they’re in a transaction, so no damage will be
done.

org.neo4j.server.transaction.timeout=60

Next is changing the org.neo4j.server.manage.console_engines property to match the following. This
disables the use of the consoles available in webadmin, so no malicious actions can happen. You should be
safe, but it’s a good failsafe unless you use the shell commands; in which case leave the line as it is. For no
console, mirror the next line.

org.neo4j.server.manage.console_engines=

Each of the following lines need to be done in a neo4j.properties file which will need to be created in the
same directory as the neo4j-server.properties file.

execution_guard_enabled=true

This teamed with the previous line in the neo4j-server.properties stops queries that would otherwise
potentially run forever, which is a good failsafe for production servers.

dbms.pagecache.memory=128m

The final change is setting a pagecache. This doesn’t need to be too much, in this case it’s 128MB, but if
you don’t have much memory available, as long as this value is around 2MB (it can’t be 0) you’ll be fine.

To keep these valid, these config values will be available in a gist () so if there’s any updates, they’ll
be logged there. This gist and the others from the book will be available at https://gist.github.com/
chrisdkemper.

Summary
This chapter has given a lot of information on how to host Neo4j. There are choices for giving it a try, hosting
small instances, right up to automated deployments. Since the instructions are there (and available in a
gist if they change) the instructions to set up Neo4j on any Linux server and you’ll be ready to go. For local
testing a server, it’s also possible to use the vagrant box I set up, which is available at https://github.com/
chrisdkemper/neo4j-vagrant, just in case you need it.

The optimization gist will be kept up to date as time goes on, by anyone that contributes to it, so if you
keep checking back it’ll be a useful resource when it comes to optimizing a server. Then you’ll be ready to
have your own hosted Neo4j application for whatever you need it for, even if it’s just for testing.

If you’re up for automating your deployments, then the Ansible playbook will come in useful to deploy
Neo4j instances even easier. Also if you want it even easier, there’s always the Ocelot project, which can
found at https://github.com/chrisdkemper/ocelot.

Hopefully the book has given you a good journey into Neo4j, showing you enough about Cypher to get
started and even how to do recommendations. It will be enough to start any project (hopefully) with enough
reference to give the extra information needed for those more challenging queries. If you like the book,
please get in touch on Twitter (@chriskemper, drop me an e-mail, or just get in touch some how. I’d love to
hear feedback, good or bad.

https://gist.github.com/chrisdkemper
https://gist.github.com/chrisdkemper
https://github.com/chrisdkemper/neo4j-vagrant
https://github.com/chrisdkemper/neo4j-vagrant
https://github.com/chrisdkemper/ocelot

149

��������� A, B
bi-directional relationships, 58
Brewer’s Theorem, 3

��������� C
Caching systems

file buffer cache, 21
high-performance cache, 22
object cache, 22

CAP Theorem, 3
collect function, 56
Constraints, 46–47
count function, 53
CREATE/CREATE UNIQUE, 41–42
Cypher

browser, 16, 35
collect, 56
comments, 39
CONNECTED relationship, 16
constraints, 46
count function, 53
CREATE/CREATE UNIQUE, 41–42
curl method, 38
datatypes, 33
DELETE/REMOVE, 42–43
functions, 53
graph view, 17
id function, 55
INDEXES, 46
JSON, 37–38
labels, 56
length function, 54
LIMIT, 47
MATCH, 40–41
MERGE, 51
multiple labels, 32
nodes/relationships, 32, 56
ORDER BY, 45
properties, 32–33
query parameters, 31, 37

relationships, 33–34
REST API, 35–36
RETURN, 31, 39
rows view, 17–18
screen displays, 16
SET clause, 52
shortestPath/allShortestPaths, 52
SKIP clause, 47–48
statements, 37
structure of, 38
syntax, 15, 31
timestamp function, 55
type function, 54
UNION, 50
UNWIND, 49
user-created content/registrations, 18
USING, 50
WHERE, 43–45
WITH clause, 48

��������� D
Data structures

e-commerce
constraints, 59–60
data structure, 61
GitHub, 63
graph database, 62
identification, 63
node types and description, 59
unique, 60

social network, 63–66
advantage, 63
bi-directional issue, 65
constraints creation, 64
FOUNDED relationship, 65
node types and description, 63–64
OWNS relationship, 64
theoretical network, 66
WORKS_AT relationship, 65

DELETE/REMOVE, 42–43
DigitalOcean (DO), 132–133

Index

■ index

150

��������� E
e-commerce

constraints, 59–60
data structure, 61
GitHub, 63
graph database, 62
identification, 63
node types and description, 59
unique, 60

Exporting data, 78
database back up, 79
data exporter, 82
Neo4j browser, 79, 81

��������� F
File buffer cache, 21

��������� G
Gists, 57
Graph databases

connections, 7
crime diagram, 6
definition, 1
directed/undirected, 5
Eulerian path, 6
format, 6
graph definition, 4
interactions, 2, 8
mathematical graphs, 4
node properties, 6
nodes/vertices, 5
NoSQL, 10
origins, 5
relational databases, 8–9
screen display, 4
self-describing graphs, 5
structured set, 1
theory, 5
traditional relational-database approach, 1
transactions, 2–3

GrapheneDB
backups, 139
cloud scaling, 139
conclusion, 140
extensible, 140
features, 139
24/7 monitoring, 139
operational dashboard, 140
structure of, 137, 139
support, 139

Graphstory, 140–141

��������� H
High-performance

cache, 22
Hosting application

annoying warning, 144
dependencies, 144
DigitalOcean (DO), 142
droplet, 142
Neo4j, 132

deployment, 145–147
installation, 143–144
optimization, 147–148
server, 145

requirements, 131
virtual private server (VPS)

DigitalOcean (DO), 132–133
features, 133, 136–137
GrapheneDB, 137, 139–140
Graphstory, 140–141
Linode, 135

��������� I
id function, 55
Importing data

CSV format
constraint, 73
csvlint.io, 69
Cypher command, 69
LOAD CSV clause, 71–72
memory-mapping v

alues, 74
papa parse, 70–71
PERIODIC COMMIT, 75
process, 73–75
relationships, 75
SET clause, 74
update, 76

custom import script, 76, 78
Cypher code, 69

Indexes
database query, 21
INDEXES

CREATE INDEX, 46
DROP INDEX, 46

index.php file
bootstrapping file, 110
ClientServiceProvider, 110
ConsoleServiceProvider, 111
final code segment, 111
service providers, 111
template functionality, 110

Intel E5 Processors, 136

■ Index

151

��������� J, K
Java Virtual Machine (JVM), 19

��������� L
labels function, 56
length function, 54
LIMIT, 47
Location-based queries

closest metro station, 101
MATCH (n) RETURN database, 100
Neo4j, 100
result of, 100

��������� M
Mac application

installation, 26
Java

Homebrew Cask, 27
installation, 28
package manager OS X, 27

website, 27
MATCH, 40–41
Meetups technology, 14–15
MERGE, 51

��������� N
Neo4j application

application directory, 108
browser, 16–18
caching see Caching systems
client communication

BusStop method, 122
BusStop repository, 115
BusStopRepository.php, 120
BusStop service file, 120–121
closestPlace method, 124
closestTransport method, 124
cypher method and query, 117–118
entity class, 121
helper method, 119
location-based queries, 123
MATCH query, 118–119
namespace declaration, 116–117
repository file, 116
WHERE clause, 119

code comments, 103
commands

import bus stops, 126–127
indexes creation, 126
timetables, 127

composer installation, 108

Cypher, 15–16
extends, 22
GitHub, 13
indexes, 21
Javascript engine, 19
logo of, 14
Mac application

installation, 26
Java, 27
website, 27

neo4j.com/download, 25
Neo technology, 19
Nginx, 106
open-source project, 13
PHP

place/BusStop, 106
Silex micro-framework, 105
timetable, 106
transport node, 106
website application, 105

Plugins, 22
recommended specifications, 19–20
requirements, 13
REST, 14
routes

journey/closest, 125
journey/plan, 124–125
journey/points, 126
pattern, 125
shortestPath method, 124

Silex see Silex application
spatial plugin installation, 104–105
src directory, 107
technology-based

Meetups, 14–15
Ubuntu, 28–29
use of, 20–21
vagrant box, 29–30
webadmin, 19
website application

data structure, 106
github repository, 128
technology use, 128
working process, 128

Windows installation, 26
Nodebalancer, 136
nodes/relationships function, 56
NoSQL database

column type, 11
differents, 10
document-orientated, 11
eventual consistency model, 10
graph style, 11
key value, 10
overview, 10

■ index

152

��������� O, P
Object cache, 22
Openstreetmap (OSM), 128
ORDER BY, 45

��������� Q
Querying data

analytical data, 88
anonymous data queries, 88
CAUGHT and RESERVED Pokémon, 90–91
Cypher query, 89
filter data, 94
gender-specific values, 93
modification, 94
non-anonymous data queries, 92
Pokémon, 88
RESERVED, 92
results, 89
type provider, 91
WITH and UNWIND, 92

data structure, 83
e-commerce

categories, 99
Pokémon website, 99
products, 98
recommended products, 99

recommendation-based queries
catch query, 97
Cypher, 95
DISTINCT, 95
results of, 97
types, 95
WITH, WHERE and RETURN clause, 96

recommendation (Pokémon data), 83
data structure, 86–87
gathering of data, 84
reCAPTCHA application, 85–86
roles of, 87
spam use, 85
website, 84

��������� R
Relational databases

joining table, 9
MySQL, 8
origins, 9
relationship, 9
SQL table, 8

REST, 14
RETURN, 39

��������� S
SET clause, 52
shortestPath/allShortestPaths, 52
Silex application

communication of Neo4j
applicable nodes, 114
arguments, 113
bootstrap.php file, 112–113
_construct function, 112
curl commands, 112
cypher queries, 112–113
main method, 115
share send method, 114
small method, 114

features, 109
index.php file, 109

bootstrapping file, 110
ClientServiceProvider, 110
ConsoleServiceProvider, 111
final code segment, 111
service providers, 111
template functionality, 110

programming code, 109
service providers, 109

SKIP clause, 47–48
Social network

advantage, 63
bi-directional issue, 65
constraints creation, 64
FOUNDED relationship, 65
node types and description, 63–64
OWNS relationship, 64
theoretical network, 66
WORKS_AT relationship, 65

Spatial plugin, 104–105
StackScripts, 137
Structure data. See Data structure

��������� T
timestamp function, 55
Transactions

ACID, 3
availability, 3
Brewer’s Theorem, 3
CAP Theorem, 3
concepts, 2
consistency, 3
nodes, 3
partition tolerance, 3
queries, 2

type function, 54

■ Index

153

��������� U
Ubuntu, 28–29
UNION, 50
UNWIND, 49
USING, 50

��������� V
Vagrant box, 29–30
Virtual private server (VPS)

API, 134
conclusion, 137
control panel, 134
DigitalOcean (DO), 132–133
features, 133
GrapheneDB

backups, 139
cloud scaling, 139
conclusion, 140
extensible, 140
features, 139
24/7 monitoring, 139

operational dashboard, 140
structure of, 137, 139
support, 139

Graphstory, 140–141
highlights, 134
high speed deployments, 133
Intel E5 Processors, 136
knowledge base, 133
KVM virtualization, 133
Linode, 135
Longview, 136
Nodebalancer, 136
private networking, 133
professional services, 137
StackScripts, 137
time maintaining, 136
99.99% uptime SLA, 134

��������� W, X, Y, Z
Webadmin, 19
WHERE clause, 43–45
WITH clause, 48

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Graph Databases
	 What is a database?
	 Database Transactions

	 What is a Graph?
	 Graph Theory
	 Origins

	 Graph Databases
	 Relational Databases
	 Relationships
	 Origins

	 NoSQL
	 Key Value
	 Column
	 Document-orientated
	 Graph

	 Summary

	Chapter 2: Getting to Know Neo4j
	 Give Me a REST
	 Why Choose Neo4j?
	 Cypher
	 Browser
	Webadmin

	 Under the hood
	 Who’s Using it?
	 Indexes
	 Caching
	 File Buffer Cache
	 Object Cache
	 High-performance Cache

	 Extending Neo4j
	 Summary

	Chapter 3: Get Up and Running with Neo4j
	 Downloading from Neo4j.com/download
	 Installing on Windows
	 Installing on Mac
	 Installing from a Website
	 Going with Homebrew for Java
	Homebrew Cask

	 With Java Installed

	 Installing on Ubuntu
	 Install Neo4j in a Vagrant Box
	 Summary

	Chapter 4: Meet Cypher
	 Basic Syntax
	 Nodes
	 Properties
	 Relationships

	 Querying Cypher
	 Browser
	 REST API

	 How to Build a Cypher Query
	 A Quick note on Comments
	 RETURN
	 MATCH
	 CREATE/CREATE UNIQUE
	 DELETE/REMOVE
	 WHERE
	 ORDER BY
	 INDEXES
	 CONTRAINTS
	 LIMIT
	 SKIP
	 WITH
	 UNWIND
	 UNION
	 USING
	 MERGE
	 SET
	 shortestPath/allShortestPaths
	 Key Functions
	count
	length
	type
	 id
	timestamp
	 nodes/relationships
	 labels
	 collect

	 Summary

	Chapter 5: Managing Your Data in Neo4j
	 A quick note about Gists
	 Common pitfalls
	 bi-directional relationships

	 Example Data Structures
	 e-commerce
	 Social Network

	 Summary

	Chapter 6: Importing and Exporting Data
	 Importing Data
	 Import from a CSV Using Cypher
	CSV Lint
	 Papa Parse
	Load a CSV into Cypher
	 Process the CSV
	Importing Relationships
	Running an Update from a CSV

	 Using a Custom Import Script

	 Exporting Data
	 Backing up the Database
	 Getting Data from the Neo4j Browser
	 Write Your Own Data Exporter

	 Summary

	Chapter 7: Querying Data in Neo4j with Cypher
	 Recommendations, Thanks to Pokémon Data
	 Getting the Data, the Website Used
	Data Being Gathered
	Keeping the Spam Under Control
	How the Data is Structured
	Rules for Choosing Pokémon

	 Querying the Data
	Analyzing the Data as a Whole
	Anonymous Data Queries
	Most Popular Pokémon
	The Results
	Who Caught the Most
	The Results
	Most Popular CAUGHT and RESERVED Pokémon
	Most Popular Pokémon Type
	 Non-Anonymous Data Queries
	Popular Pokémon Filtered by Gender
	Popular Pokémon Filtered by Age

	Recommendation-Based Queries
	Recommend Pokémon, Based on Type
	What’s Left to Catch

	Relating to e-Commerce
	Most Popular Product
	Most Popular Product Category
	 Recommended Products

	 Thank You

	 Location-Based Queries
	 Closest Metro Station

	 Summary

	Chapter 8: Building an Application with Neo4j
	 A Quick Note on Code Comments
	 Installing the Spatial Plugin
	 What the App is Being Built On
	 How the Data will be Structured
	 Place/BusStop
	 Timetable
	 Transport

	 Building the Application
	 Installing Composer
	 Setting Up Silex
	 Silex Service Providers
	Creating the Index.php File
	Communicating with Neo4j

	 Using the Client
	 Routes
	Journey/Plan
	 Journey/Closest
	 Journey/Points

	 Commands
	 Create Indexes
	 Import Bus Stops
	 Import Timetables

	 Setting up the Website with Commands
	 Technology Used
	 How It Works

	 Summary

	Chapter 9: Hosting a Neo4j Application
	 Hosting Requirements
	 Hosting Neo4j
	 Choosing a VPS
	 DigitalOcean
	 Features
	Knowledge Base
	 High Speed Deployments
	 Private Networking
	 KVM Virtualization
	Simple Control Panel
	API
	99.99% Uptime
	 Highlights
	Conclusion

	 Linode
	 Features
	Intel E5 Processors
	Nodebalancers
	 Longview
	Managed
	 StackScripts
	 Professional Services
	 Conclusion

	 GrapheneDB
	Features
	 24/7 Monitoring
	 Cloud Scaling
	 Support
	 Backups
	 Operational Dashboard
	 Extensible
	 Conclusion

	 Graphstory
	Conclusion

	 A Hosting Example
	 Hosting on DigitalOcean
	 Creating a Droplet
	 Install Neo4j
	 Some Other Dependencies
	 An Annoying Warning
	 Using a Standalone Neo4j Server
	Using ansible to Deploy Automatically

	 Optimizing Neo4j
	 Summary

	Index

