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Preface

We are entering an era of Big Data. Big Data offer both unprec-
edented opportunities and overwhelming challenges. This book is 

intended to provide biologists, biomedical scientists, bioinformaticians, 
computer data analysts, and other interested readers with a pragmatic 
blueprint to the nuts and bolts of Big Data so they more quickly, easily, 
and effectively harness the power of Big Data in their ground-breaking 
biological discoveries, translational medical researches, and personalized 
genomic medicine.

Big Data refers to increasingly larger, more diverse, and more complex 
data sets that challenge the abilities of traditionally or most commonly 
used approaches to access, manage, and analyze data effectively. The monu-
mental completion of human genome sequencing ignited the generation of 
big biomedical data. With the advent of ever-evolving, cutting-edge, high-
throughput omic technologies, we are facing an explosive growth in the 
volume of biological and biomedical data. For example, Gene Expression 
Omnibus (http://www.ncbi.nlm.nih.gov/geo/) holds 3,848 data sets of 
transcriptome repositories derived from 1,423,663 samples, as of June 9, 
2015. Big biomedical data come from government-sponsored projects 
such as the 1000 Genomes Project (http://www.1000genomes.org/), inter-
national consortia such as the ENCODE Project (http://www.genome.gov/
encode/), millions of individual investigator-initiated research projects, 
and vast pharmaceutical R&D projects. Data management can become a 
very complex process, especially when large volumes of data come from 
multiple sources and diverse types, such as images, molecules, phenotypes, 
and electronic medical records. These data need to be linked, connected, 
and correlated, which will enable researchers to grasp the information that 
is supposed to be conveyed by these data. It is evident that these Big Data 
with high-volume, high-velocity, and high-variety information provide us 
both tremendous opportunities and compelling challenges. By leveraging 
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x   ◾   Preface

the diversity of available molecular and clinical Big Data, biomedical sci-
entists can now gain new unifying global biological insights into human 
physiology and the molecular pathogenesis of various human diseases or 
conditions at an unprecedented scale and speed; they can also identify 
new potential candidate molecules that have a high probability of being 
successfully developed into drugs that act on biological targets safely and 
effectively. On the other hand, major challenges in using biomedical Big 
Data are very real, such as how to have a knack for some Big Data analysis 
software tools, how to analyze and interpret various next-generation DNA 
sequencing data, and how to standardize and integrate various big bio-
medical data to make global, novel, objective, and data-driven discoveries. 
Users of Big Data can be easily “lost in the sheer volume of numbers.”

The objective of this book is in part to contribute to the NIH Big Data to 
Knowledge (BD2K) (http://bd2k.nih.gov/) initiative and enable biomedi-
cal scientists to capitalize on the Big Data being generated in the omic 
age; this goal may be accomplished by enhancing the computational and 
quantitative skills of biomedical researchers and by increasing the number 
of computationally and quantitatively skilled biomedical trainees. 

This book covers many important topics of Big Data analyses in bioin-
formatics for biomedical discoveries. Section I introduces commonly used 
tools and software for Big Data analyses, with chapters on Linux for Big 
Data analysis, Python for Big Data analysis, and the R project for Big Data 
computing. Section II focuses on next-generation DNA sequencing data 
analyses, with chapters on whole-genome-seq data analysis, RNA-seq 
data analysis, microbiome-seq data analysis, miRNA-seq data analysis, 
 methylome-seq data analysis, and ChIP-seq data analysis. Section III dis-
cusses comprehensive Big Data analyses of several major areas, with chap-
ters on integrating omics data with Big Data analysis, pharmacogenetics 
and genomics, exploring de-identified electronic health record data with 
i2b2, Big Data and drug discovery, literature-based knowledge discovery, 
and mitigating high dimensionality in Big Data analysis. All chapters in 
this book are organized in a consistent and easily understandable format. 
Each chapter begins with a theoretical introduction to the subject matter 
of the chapter, which is followed by its exemplar applications and data 
analysis principles, followed in turn by a step-by-step tutorial to help read-
ers to obtain a good theoretical understanding and to master related prac-
tical applications. Experts in their respective fields have contributed to this 
book, in common and plain English. Complex mathematical deductions 
and jargon have been avoided or reduced to a minimum. Even a novice, 
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with little knowledge of computers, can learn Big Data analysis from this 
book without difficulty. At the end of each chapter, several original and 
authoritative references have been provided, so that more experienced 
readers may explore the subject in depth. The intended readership of this 
book comprises biologists and biomedical scientists; computer specialists 
may find it helpful as well. 

I hope this book will help readers demystify, humanize, and foster their 
biomedical and biological Big Data analyses. I welcome constructive criti-
cism and suggestions for improvement so that they may be incorporated 
in a subsequent edition.

Shui Qing Ye
University of Missouri at Kansas City

MATLAB® is a registered trademark of The MathWorks, Inc. For product 
information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000 
Fax: 508-647-7001 
E-mail: info@mathworks.com
Web: www.mathworks.com
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Editor

Shui Qing Ye, MD, PhD, is the William R. Brown/Missouri endowed chair 
in medical genetics and molecular medicine and a tenured full professor 
in biomedical and health informatics and pediatrics at the University of 
Missouri–Kansas City, Missouri. He is also the director in the Division of 
Experimental and Translational Genetics, Department of Pediatrics, and 
director in the Core of Omic Research at The Children’s Mercy Hospital. 
Dr. Ye completed his medical education from Wuhan University School 
of Medicine, Wuhan, China, and earned his PhD from the University of 
Chicago Pritzker School of Medicine, Chicago, Illinois. Dr. Ye’s academic 
career has evolved from an assistant professorship at Johns Hopkins 
University, Baltimore, Maryland, followed by an associate professorship at 
the University of Chicago to a tenured full professorship at the University 
of Missouri at Columbia and his current positions.

Dr. Ye has been engaged in biomedical research for more than 30 years; 
he has experience as a principal investigator in the NIH-funded RO1 or 
pharmaceutical company–sponsored research projects as well as a co-
investigator in the NIH-funded RO1, Specialized Centers of Clinically 
Oriented Research (SCCOR),  Program Project Grant (PPG), and private 
foundation fundings. He has served in grant review panels or study sections 
of the National Heart, Lung, Blood Institute (NHLBI)/National Instit-
utes of Health (NIH), Department of Defense, and American Heart 
Association. He is currently a member in the American Association for 
the Advancement of Science, American Heart Association, and American 
Thoracic Society. Dr. Ye has published more than 170 peer-reviewed 
research articles, abstracts, reviews, book chapters, and he has partici-
pated in the peer review activity for a number of scientific journals.

Dr. Ye is keen on applying high-throughput genomic and transcrip-
tomic approaches, or Big Data, in his biomedical research. Using direct 
DNA sequencing to identify single-nucleotide polymorphisms in patient 
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DNA samples, his lab was the first to report a susceptible haplotype and 
a protective haplotype in the human pre-B-cell colony-enhancing factor 
gene promoter to be associated with acute respiratory distress syndrome. 
Through a DNA microarray to detect differentially expressed genes, 
Dr. Ye’s lab discovered that the pre-B-cell colony-enhancing factor gene 
was highly upregulated as a biomarker in acute respiratory distress syn-
drome. Dr. Ye had previously served as the director, Gene Expression 
Profiling Core, at the Center of Translational Respiratory Medicine in 
Johns Hopkins University School of Medicine and the director, Molecular 
Resource Core, in an NIH-funded Program Project Grant on Lung 
Endothelial Pathobiology at the University of Chicago Pritzker School 
of Medicine. He is currently directing the Core of Omic Research at The 
Children’s Mercy Hospital, University of Missouri–Kansas City, which 
has conducted exome-seq, RNA-seq, miRNA-seq, and microbiome-seq 
using state-of-the-art next-generation DNA sequencing technologies. The 
Core is continuously expanding its scope of service on omic research. Dr. 
Ye, as the editor, has published a book entitled Bioinformatics: A Practical 
Approach (CRC Press/Taylor & Francis Group, New York). One of Dr. Ye’s 
current and growing research interests is the application of translational 
bioinformatics to leverage Big Data to make biological discoveries and 
gain new unifying global biological insights, which may lead to the devel-
opment of new diagnostic and therapeutic targets for human diseases.



xvii

Contributors

Chengpeng Bi
Division of Clinical Pharmacology, 

Toxicology, and Therapeutic 
Innovations

The Children’s Mercy Hospital
University of Missouri-Kansas 

City School of Medicine
Kansas City, Missouri

Guang-Liang Bi
Department of Neonatology
Nanfang Hospital, Southern 

Medical University
Guangzhou, China

Larisa H. Cavallari
Department of Pharmacotherapy 

and Translational Research
Center for Pharmacogenomics
University of Florida
Gainesville, Florida

Deendayal Dinakarpandian
Department of Computer 

Science and Electrical 
Engineering

University of Missouri-Kansas 
City School of Computing and 
Engineering

Kansas City, Missouri

Andrea Gaedigk
Division of Clinical Pharmacology, 

Toxicology & Therapeutic 
Innovation

Children’s Mercy Kansas City 
and
Department of Pediatrics
University of Missouri-Kansas 

City School of Medicine
Kansas City, Missouri

Dmitry N. Grigoryev
Laboratory of Translational 

Studies and Personalized 
Medicine

Moscow Institute of Physics and 
Technology

Dolgoprudny, Moscow, Russia

Daniel P. Heruth
Division of Experimental and 

Translational Genetics
Children’s Mercy Hospitals and 

Clinics
and
University of Missouri-Kansas 

City School of Medicine
Kansas City, Missouri



xviii   ◾   Contributors

Mark Hoffman
Department of Biomedical 

and Health Informatics and 
Department of Pediatrics

Center for Health Insights
University of Missouri-Kansas 

City School of Medicine
Kansas City, Missouri

Xun Jiang
Department of Pediatrics, Tangdu 

Hospital
The Fourth Military Medical 

University
Xi’an, Shaanxi, China

Ding-You Li
Division of Gastroenterology
Children’s Mercy Hospitals and 

Clinics
and
University of Missouri-Kansas 

City School of Medicine
Kansas City, Missouri

Hongfang Liu
Biomedical Statistics and 

Informatics
Mayo Clinic
Rochester, Minnesota

Majid Rastegar-Mojarad
Biomedical Statistics and 

Informatics
Mayo Clinic
Rochester, Minnesota

Katrin Sangkuhl
Department of Genetics
Stanford University
Stanford, California

Stephen D. Simon
Department of Biomedical 

and Health Informatics
University of Missouri-

Kansas City School of Medicine
Kansas City, Missouri

D. Andrew Skaff
Division of Molecular Biology and 

Biochemistry
University of Missouri-Kansas 

City  School of Biological 
Sciences

Kansas City, Missouri

Jiancheng Tu
Department of Clinical 

Laboratory Medicine 
Zhongnan Hospital
Wuhan University School of 

Medicine
Wuhan, China

Gerald J. Wyckoff
Division of Molecular Biology 

and Biochemistry
University of Missouri-Kansas 

City School of Biological 
Sciences

Kansas City, Missouri



Contributors    ◾    xix

Min Xiong
Division of Experimental and 

Translational Genetics
Children’s Mercy Hospitals and 

Clinics
and
University of Missouri-Kansas 

City School of Medicine
Kansas City, Missouri

Li Qin Zhang
Division of Experimental and 

Translational Genetics
Children’s Mercy Hospitals and 

Clinics
and
University of Missouri-Kansas 

City School of Medicine
Kansas City, Missouri

www.allitebooks.com

http://www.allitebooks.org


This page intentionally left blankThis page intentionally left blank



1

I
Commonly Used Tools 
for Big Data Analysis



This page intentionally left blankThis page intentionally left blank



3

C h a p t e r  1

Linux for Big 
Data Analysis

Shui Qing Ye and Ding-you Li

CONTENTS
1.1 Introduction 4
1.2 Running Basic Linux Commands 6

1.2.1 Remote Login to Linux Using Secure Shell 6
1.2.2 Basic Linux Commands 6
1.2.3 File Access Permission 8
1.2.4 Linux Text Editors 8
1.2.5 Keyboard Shortcuts 9
1.2.6 Write Shell Scripts 9

1.3 Step-By-Step Tutorial on Next-Generation Sequence Data 
Analysis by Running Basic Linux Commands 11
1.3.1 Step 1: Retrieving a Sequencing File 11

1.3.1.1 Locate the File 12
1.3.1.2 Downloading the Short-Read Sequencing File 

(SRR805877) from NIH GEO Site 12
1.3.1.3 Using the SRA Toolkit to Convert .sra Files 

into .fastq Files 12
1.3.2 Step 2: Quality Control of Sequences 12

1.3.2.1 Make a New Directory “Fastqc” 12
1.3.2.2 Run “Fastqc” 13

1.3.3 Step 3: Mapping Reads to a Reference Genome 13
1.3.3.1 Downloading the Human Genome and 

Annotation from Illumina iGenomes 13
1.3.3.2 Decompressing .tar.gz Files 13



4   ◾   Big Data Analysis for Bioinformatics and Biomedical Discoveries

1.1 INTRODUCTION
As biological data sets have grown larger and biological problems have 
become more complex, the requirements for computing power have also 
grown. Computers that can provide this power generally use the Linux/
Unix operating system. Linux was developed by Linus Benedict Torvalds 
when he was a student in the University of Helsinki, Finland, in early 
1990s. Linux is a modular Unix-like computer operating system assembled 
under the model of free and open-source software development and distri-
bution. It is the leading operating system on servers and other big iron sys-
tems such as  mainframe  computers and  supercomputers. Compared to 
the Windows operating system, Linux has the following advantages: 

 1. Low cost: You don’t need to spend time and money to obtain licenses 
since Linux and much of its software come with the GNU General 
Public License. GNU is a recursive acronym for GNU’s Not Unix!. 
Additionally, there are large software repositories from which you 
can freely download for almost any task you can think of.

 2. Stability: Linux doesn’t need to be rebooted periodically to maintain 
performance levels. It doesn’t freeze up or slow down over time due 
to memory leaks. Continuous uptime of hundreds of days (up to a 
year or more) are not uncommon.

 3. Performance: Linux provides persistent high performance on work-
stations and on networks. It can handle unusually large numbers 
of users simultaneously and can make old computers sufficiently 
responsive to be useful again.

 4. Network friendliness:  Linux has been continuously developed by a 
group of programmers over the Internet and has therefore strong 

1.3.3.3 Link Human Annotation and Bowtie Index 
to the Current Working Directory 13

1.3.3.4 Mapping Reads into Reference Genome 13
1.3.4 Step 4: Visualizing Data in a Genome Browser 14

1.3.4.1 Go to Human (Homo sapiens) Genome 
Browser Gateway 14
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support for network functionality; client and server systems can be 
easily set up on any computer running Linux. It can perform tasks 
such as network backups faster and more reliably than alternative 
systems.

 5. Flexibility: Linux can be used for high-performance server applica-
tions, desktop applications, and embedded systems. You can save 
disk space by only installing the components needed for a particular 
use. You can restrict the use of specific computers by installing, for 
example, only selected office applications instead of the whole suite.

 6. Compatibility: It runs all common Unix software packages and can 
process all common file formats.

 7. Choice: The large number of Linux distributions gives you a choice. 
Each distribution is developed and supported by a different organi-
zation. You can pick the one you like the best; the core functional-
ities are the same and most software runs on most distributions.

 8. Fast and easy installation: Most Linux distributions come with user-
friendly installation and setup programs. Popular Linux distribu-
tions come with tools that make installation of additional software 
very user friendly as well.

 9. Full use of hard disk: Linux continues to work well even when the 
hard disk is almost full.

 10. Multitasking: Linux is designed to do many things at the same time; 
for example, a large printing job in the background won’t slow down 
your other work.

 11. Security: Linux is one of the most secure operating systems. Attributes 
such as fireWalls or flexible file access permission systems prevent 
access by unwanted visitors or viruses. Linux users have options 
to select and safely download software, free of charge, from online 
repositories containing thousands of high-quality packages. No pur-
chase transactions requiring credit card numbers or other sensitive 
personal information are necessary.

 12. Open Source: If you develop a software that requires knowledge or 
modification of the operating system code, Linux’s source code is at 
your fingertips. Most Linux applications are open-source as well.
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1.2 RUNNING BASIC LINUX COMMANDS
There are two modes for users to interact with the computer: command-
line interface (CLI) and graphical user interface (GUI). CLI is a means of 
interacting with a computer program where the user issues commands to 
the program in the form of successive lines of text. GUI allows the use 
of  icons  or other visual indicators to interact with a computer program, 
usually through a mouse and a keyboard. GUI operating systems such as 
Window are much easier to learn and use because commands do not need to 
be memorized. Additionally, users do not need to know any programming 
languages. However, CLI systems such as Linux give the user more control 
and options. CLIs are often preferred by most advanced computer users. 
Programs with CLIs are generally easier to automate via scripting, called 
as pipeline. Thus, Linux is emerging as a powerhouse for Big Data analysis. 
It is advisable to master some basic CLIs necessary to efficiently perform the 
analysis of Big Data such as next-generation DNA sequence data.

1.2.1 Remote Login to Linux Using Secure Shell

Secure shell (SSH) is a cryptographic  network protocol  for secure  data 
communication, remote  command-line  login, remote command execu-
tion, and other secure network services between two networked comput-
ers. It connects, via a secure channel over an insecure network, a server 
and a client running SSH server and SSH client programs, respectively. 
Remote login to Linux compute server needs to use an SSH. Here, we 
use PuTTY as an SSH client example. PuTTY was developed originally 
by Simon Tatham for the Windows platform. PuTTY is an open-source 
software that is available with source code and is developed and supported 
by a group of volunteers. PuTTY can be freely and easily downloaded 
from the site (http://www.putty.org/) and installed by following the online 
instructions. Figure  1.1a displays the starting portal of a PuTTY SSH. 
When you input an IP address under Host Name (or IP address) such as 
10.250.20.231, select Protocol SSH, and then click Open; a login screen 
will appear. After successful login, you are at the input prompt $ as shown 
in Figure 1.1b and the shell is ready to receive proper command or execute 
a script.

1.2.2 Basic Linux Commands

Table 1.1 lists most common basic commands used in Linux operation. 
To learn more about the various commands, one can type man program 

http://www.putty.org/
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(a) (b)

FIGURE 1.1 Screenshots of a PuTTy confirmation (a) and a valid login to Linux (b).

TABLE 1.1 Common Basic Linux Commands

Category Command Description Example

File administration ls List files ls -al, list all file in detail
cp Copy source file to 

target file
cp myfile yourfile

rm Remove files or 
directories (rmdir or 
rm -r)

rm accounts.txt, to remove 
the file “accounts.txt” in the 
current directory

cd Change current 
directory

cd., to move to the parent 
directory of the current 
directory

mkdir Create a new directory mkdir mydir, to create a new 
directory called mydir

gzip/gunzip Compress/uncompress 
the contents of files

gzip .swp, to compress the 
file .swp

Access file contents cat Display the full 
contents of a file

cat Mary.py, to display the 
full content of the file 
“Mary.py”

Less/more Browse the contents of 
the specified file

less huge-log-file.log, to 
browse the content of 
huge-log-file.log 

Tail/head Display the last or the 
first 10 lines of a file 
by default

tail -n N filename.txt, to 
display N number of lines 
from the file named 
filename.txt

find Find files find ~ -size -100M, To find 
files smaller than 100M

(Continued)
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followed by the name of the command, for example, man ls, which will 
show how to list files in various ways.

1.2.3 File Access Permission

On Linux and other Unix-like operating systems, there is a set of rules for 
each file, which defines who can access that file and how they can access it. 
These rules are called file permissions or file modes. The command name 
chmod stands for change mode, and it is used to define the way a file can be 
accessed. For example, if one issues a command line to a file named Mary.py 
like chmod 765 Mary.py, the permission is indicated by  -rwxrw-r-x, which 
allows the user to read (r), write (w), and execute (x), the group to read and 
write, and any other to read and execute the file. The chmod numerical 
format (octal modes) is presented in Table 1.2.

1.2.4 Linux Text Editors

Text editors are needed to write scripts. There are a number of available 
text editors such as Emacs, Eclipse, gEdit, Nano, Pico, and Vim. Here we 
briefly introduce Vim, a very popular Linux text editor. Vim is the editor 
of choice for many developers and power users. It is based on the vi editor 
written by Bill Joy in the 1970s for a version of UNIX. It inherits the key 
bindings of vi, but also adds a great deal of functionality and extensibility 
that are missing from the original vi. You can start Vim editor by typing 
vim followed with a file name. After you finish the text file, you can type 

TABLE 1.1 (CONTINUED) Common Basic Linux Commands

Category Command Description Example

grep Search for a specific 
string in the specified 
file

grep “this” demo_file, to 
search “this” containing 
sentences from the 
“demo_file”

Processes top Provide an ongoing 
look at processor 
activity in real time

top –s, to work in secure 
mode

kill Shut down a process kill -9, to send a KILL signal 
instead of a TERM signal

System information df Display disk space df –H, to show the number 
of occupied blocks in 
human-readable format

free Display information 
about RAM and swap 
space usage

free –k, to display 
information about RAM 
and swap space usage in 
kilobytes
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semicolon (:) plus a lower case letter x to save the file and exit Vim editor. 
Table 1.3 lists the most common basic commands used in the Vim editor.

1.2.5 Keyboard Shortcuts

The command line can be quite powerful, but typing in long commands 
or file paths is a tedious process. Here are some shortcuts that will have 
you running long, tedious, or complex commands with just a few key-
strokes (Table 1.4). If you plan to spend a lot of time at the command line, 
these shortcuts will save you a ton of time by mastering them. One should 
become a computer ninja with these time-saving shortcuts.

1.2.6 Write Shell Scripts

A shell script is a computer program or series of commands written in 
plain text file designed to be run by the Linux/Unix shell, a command-
line interpreter. Shell scripts can automate the execution of repeated tasks 
and save lots of time. Shell scripts are considered to be scripting languages 

TABLE 1.3 Common Basic Vim Commands

Key Description

h Moves the cursor one character to the left
l Moves the cursor one character to the right
j Moves the cursor down one line
k Moves the cursor up one line
o Moves the cursor to the beginning of the line
$ Moves the cursor to the end of the line
w Move forward one word
b Move backward one word
G Move to the end of the file
gg Move to the beginning of the file

TABLE 1.2 The chmod Numerical Format (Octal Modes)

Number Permission rwx

7 Read, write, and execute 111
6 Read and write 110
5 Read and execute 101
4 Read only 100
3 Write and execute 011
2 Write only 010
1 Execute only 001
0 None 000

www.allitebooks.com

http://www.allitebooks.org
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or programming languages. The many advantages of writing shell scripts 
include easy program or file selection, quick start, and interactive debug-
ging. Above all, the biggest advantage of writing a shell script is that the 
commands and syntax are exactly the same as those directly entered at the 
command line. The programmer does not have to switch to a totally differ-
ent syntax, as they would if the script was written in a different language 
or if a compiled language was used. Typical operations performed by shell 
scripts include file manipulation, program execution, and printing text. 
Generally, three steps are required to write a shell script: (1) Use any edi-
tor like Vim or others to write a shell script. Type vim first in the shell 
prompt to give a file name first before entering the vim. Type your first 
script as shown in Figure 1.2a, save the file, and exit Vim. (2) Set execute 

TABLE 1.4 Common Linux Keyboard Shortcut Commands

Key Description

Tab Autocomplete the command if there is only one option
↑ Scroll and edit the command history
Ctrl + d Log out from the current terminal
Ctrl + a Go to the beginning of the line
Ctrl + e Go to the end of the line
Ctrl + f Go to the next character
Ctrl + b Go to the previous character
Ctrl + n Go to the next line
Ctrl + p Go to the previous line
Ctrl + k Delete the line after cursor
Ctrl + u Delete the line before cursor
Ctrl + y Paste

(a)
#
# My first shell script
#
clear
echo “Next generation DNA sequencing increases the speed and reduces the cost of 
DNA sequencing relative to the first generation DNA sequencing.”

(b)
Next generation DNA sequencing increases the speed and reduces the cost of DNA 
sequencing relative to the first generation DNA sequencing

FIGURE 1.2 Example of a shell script using Vim editor (a) and print out of the 
script after execution (b).
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permission for the script as follows: chmod 765 first, which allows the user 
to read (r), write (w), and execute (x), the group to read and write, and any 
other to read and execute the file. (3) Execute the script by typing: ./first. 
The full script will appear as shown in Figure 1.2b.

1.3  STEP-BY-STEP TUTORIAL ON NEXT- GENERATION 
SEQUENCE DATA ANALYSIS BY RUNNING 
BASIC LINUX COMMANDS

By running Linux commands, this tutorial demonstrates a step-by-step 
general procedure for next-generation sequence data analysis by first 
retrieving or downloading a raw sequence file from NCBI/NIH Gene 
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/); second, 
exercising quality control of sequences; third, mapping sequencing reads 
to a reference genome; and fourth, visualizing data in a genome browser. 
This tutorial assumes that a user of a desktop or laptop computer has an 
Internet connection and an SSH such as PuTTY, which can be logged onto 
a Linux-based high-performance computer cluster with needed software 
or programs. All the following involved commands in this tutorial are 
supposed to be available in your current directory, like /home/username. 
It should be mentioned that this tutorial only gives you a feel on next-gen-
eration sequence data analysis by running basic Linux commands and it 
won’t cover complete pipelines for next-generation sequence data analysis, 
which will be detailed in subsequent chapters.

1.3.1 Step 1: Retrieving a Sequencing File

After finishing the sequencing project of your submitted samples (patient 
DNAs or RNAs) in a sequencing core or company service provider, often 
you are given a URL or ftp address where you can download your data. 
Alternatively, you may get sequencing data from public repositories such 
as NCBI/NIH GEO and Short Read Archives (SRA, http://www.ncbi.nlm.
nih.gov/sra). GEO and SRA make biological sequence data available to the 
research community to enhance reproducibility and allow for new discov-
eries by comparing data sets. The SRA store raw sequencing data and align-
ment information from high-throughput sequencing platforms, including 
Roche 454 GS System®, Illumina Genome Analyzer®, Applied Biosystems 
SOLiD System®, Helicos Heliscope®, Complete Genomics®, and Pacific 
Biosciences SMRT®. Here we use a demo to retrieve a short-read sequenc-
ing file (SRR805877) of breast cancer cell lines from the experiment series 
(GSE45732) in NCBI/NIH GEO site.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
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1.3.1.1 Locate the File
Go to the GEO site (http://www.ncbi.nlm.nih.gov/geo/) → select Search 
GEO Datasets from the dropdown menu of Query and Browse → type 
GSE45732 in the Search window → click the hyperlink (Gene expression 
analysis of breast cancer cell lines) of the first choice → scroll down to 
the bottom to locate the SRA file (SRP/SRP020/SRP020493) prepared for 
ftp download → click the hyperlynx(ftp) to pinpoint down the detailed 
ftp address of the source file (SRR805877, ftp://ftp-trace.ncbi.nlm.nih.
gov/sra/sra-instant/reads/ByStudy/sra/SRP%2FSRP020%2FSRP020493/
SRR805877/).

1.3.1.2  Downloading the Short-Read Sequencing File 
(SRR805877) from NIH GEO Site

Type the following command line in the shell prompt: “wget ftp://ftp-trace.
ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP%2FSRP020%
2FSRP020493 /SRR805877/SRR805877.sra.”

1.3.1.3 Using the SRA Toolkit to Convert .sra Files into .fastq Files
FASTQ format is a text-based format for storing both a biological sequence 
(usually  nucleotide sequence) and its corresponding quality scores. It has 
become the de facto standard for storing the output of high-throughput 
sequencing instruments such as the Illumina’s HiSeq 2500 sequencing system. 
Type “fastq-dump SRR805877.sra” in the command line. SRR805877.fastq 
will be produced. If you download paired-end sequence  data, the parameter 
“-I” appends read id after spot id as “accession.spot.readid” on defline and the 
parameter “--split-files” dump each read into a separate file. Files will receive a 
suffix corresponding to its read number. It will produce two fastq files (--split-
files) containing “.1” and “.2” read suffices (-I) for paired-end data.

1.3.2 Step 2: Quality Control of Sequences

Before doing analysis, it is important to ensure that the data are of high 
quality. FASTQC can import data from FASTQ, BAM, and Sequence 
Alignment/Map (SAM) format, and it will produce a quick overview to 
tell you in which areas there may be problems, summary graphs, and 
tables to assess your data.

1.3.2.1 Make a New Directory “Fastqc”
At first, type “mkdir Fastqc” in the command line, which will build Fastqc 
directory. Fastqc directory will contain all Fastqc results.

http://www.ncbi.nlm.nih.gov/geo/
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP%2FSRP020%2FSRP020493/SRR805877/
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP%2FSRP020%2FSRP020493/SRR805877/
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP%2FSRP020%2FSRP020493/SRR805877/
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP%2FSRP020%2FSRP020493/SRR805877/SRR805877.sra
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP%2FSRP020%2FSRP020493/SRR805877/SRR805877.sra
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP%2FSRP020%2FSRP020493/SRR805877/SRR805877.sra
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1.3.2.2 Run “Fastqc”
Type “fastqc -o Fastqc/SRR805877.fastq” in the command line, which will 
run Fastqc to assess SRR805877.fastq quality. Type “Is -l Fastqc/,” you will 
see the results in detail.

1.3.3 Step 3: Mapping Reads to a Reference Genome

At first, you need to prepare genome index and annotation files. Illumina 
has provided a set of freely downloadable packages that contain bow-
tie indexes and annotation files in a general transfer format (GTF) from 
UCSC Genome Browser Home (genome.ucsc.edu).

1.3.3.1  Downloading the Human Genome and 
Annotation from Illumina iGenomes

Type “wget ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/Homo_
sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.gz” and download 
those files.

1.3.3.2 Decompressing .tar.gz Files
Type “tar -zxvf Homo_sapiens_Ensembl_GRCh37.tar.gz” for extracting 
the files from archive.tar.gz.

1.3.3.3  Link Human Annotation and Bowtie Index 
to the Current Working Directory

Type “In -s homo.sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/
genome.fa genome.fa”; type “In -s homo.sapiens/UCSC/hg19/Sequence/
Bowtie2Index/genome.1.bt2 genome.1.bt2”; type “In -s homo.sapiens/
UCSC/hg19/Sequence/Bowtie2Index/genome.2.bt2 genome.2.bt2”; type 
“In -s homo.sapiens/UCSC/hg19/Sequence/Bowtie2Index/genome.3.bt2 
genome.3.bt2”; type “In -s homo.sapiens/UCSC/hg19/Sequence/Bowtie2 
Index/genome.4.bt2 genome.4.bt2”; type “In -s homo.sapiens/UCSC/hg19/
Sequence/Bowtie2Index/genome.rev.1.bt2 genome.rev.1.bt2”; type “In  -s 
homo.sapiens/UCSC/hg19/Sequence/Bowtie2Index/genome.rev.2.bt2 
genome.rev.2.bt2”; and type “In -s homo.sapiens/UCSC/hg19/Annotation/
Genes/genes.gtf genes.gtf.”

1.3.3.4 Mapping Reads into Reference Genome
Type “mkdir tophat” in the command line to create a directory that con-
tains all mapping results. Type “tophat -p 8 -G genes.gtf -o tophat/genome 
SRR805877.fastq” to align those reads to human genome.

ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.gz
ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.gz
http://genome.ucsc.edu
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1.3.4 Step 4: Visualizing Data in a Genome Browser

The primary output of TopHat are the aligned reads BAM file and junc-
tions BED file, which allows read alignments to be visualized in genome 
browser. A BAM file (*.bam) is the compressed binary version of a SAM 
file that is used to represent aligned sequences. BED stands for Browser 
Extensible Data. A BED file format provides a flexible way to define the data 
lines that can be displayed in an annotation track of the UCSC Genome 
Browser. You can choose to build a density graph of your reads across 
the genome by typing the command line: “genomeCoverageBed -ibam 
tophat/accepted_hits.bam -bg -trackline -trackopts ‘name=“SRR805877” 
color=250,0,0’>SRR805877.bedGraph” and run. For convenience, you 
need to transfer these output files to your desktop computer’s hard drive.

1.3.4.1 Go to Human (Homo sapiens) Genome Browser Gateway
You can load bed or bedGraph into the UCSC Genome Browser to visu-
alize your own data. Open the link in your browser: http://genome.ucsc.
edu/cgi-bin/hgGateway?hgsid=409110585_zAC8Aks9YLbq7YGhQiQtw
nOhoRfX&clade=mammal&org=Human&db=hg19.

1.3.4.2 Visualize the File
Click on add custom tracks button → click on Choose File button, and 
select your file → click on Submit button → click on go to genome browser. 
BED files will provide the coordinates of regions in a genome; most basi-
cally chr, start, and end. bedGraph files can give coordinate information 
as in BED files and coverage depth of sequencing over a genome.
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http://genome.ucsc.edu/cgi-bin/hgGateway?hgsid=409110585_zAC8Aks9YLbq7YGhQiQtwnOhoRfX&clade=mammal&org=Human&db=hg19
http://genome.ucsc.edu/cgi-bin/hgGateway?hgsid=409110585_zAC8Aks9YLbq7YGhQiQtwnOhoRfX&clade=mammal&org=Human&db=hg19
http://genome.ucsc.edu/cgi-bin/hgGateway?hgsid=409110585_zAC8Aks9YLbq7YGhQiQtwnOhoRfX&clade=mammal&org=Human&db=hg19
http://linux.about.com/cs/linux101/a/linux_2.htm
http://linux.about.com/cs/linux101/a/linux_2.htm
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C h a p t e r  2

Python for Big 
Data Analysis

Dmitry N. Grigoryev

2.1 INTRODUCTION TO PYTHON
Python is a powerful, flexible, open-source programming language that is 
easy to use and easy to learn. With the help of Python you will be able to 
manipulate large data sets, which is hard to do with common data oper-
ating programs such as Excel. But saying this, you do not have to give 
up your friendly Excel and its familiar environment! After your Big Data 
manipulation with Python is completed, you can convert results back to 
your favorite Excel format. Of course, with the development of technology 
at some point, Excel would accommodate huge data files with all known 
genetic variants, but the functionality and speed of data processing by 
Python would be hard to match. Therefore, the basic knowledge of pro-
gramming in Python is a good investment of your time and effort. Once 
you familiarize yourself with Python, you will not be confused with it or 
intimidated by numerous applications and tools developed for Big Data 
analysis using Python programming language.
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2.2 APPLICATION OF PYTHON
There is no secret that the most powerful Big Data analyzing tools are 
 written in compiled languages like C or java, simply because they run 
faster and are more efficient in managing memory resources, which is cru-
cial for Big Data analysis. Python is usually used as an auxiliary language 
and serves as a pipeline glue. The TopHat tool is a good example of it [1]. 
TopHat  consists of several smaller programs written in C, where Python 
is employed to interpret the user-imported parameters and run small C 
programs in sequence. In the tutorial section, we will demonstrate how to 
glue together a pipeline for an analysis of a FASTQ file.

However, with fast technological advances and constant increases in 
computer power and memory capacity, the advantages of C and java have 
become less and less obvious. Python-based tools have started taking over 
because of their code simplicity. These tools, which are solely based on 
Python, have become more and more popular among researchers. Several 
representative programs are listed in Table 2.1.

As you can see, these tools and programs cover multiple areas of Big 
Data analysis, and number of similar tools keep growing.

2.3 EVOLUTION OF PYTHON
Python’s role in bioinformatics and Big Data analysis continues to grow. 
The constant attempts to further advance the first-developed and most 
popular set of Python tools for biological data manipulation, Biopython 
(Table 2.1), speak volumes. Currently, Biopython has eight actively devel-
oping projects (http://biopython.org/wiki/Active_projects), several of 
which will have potential impact in the field of Big Data analysis.

TABLE 2.1 Python-Based Tools Reported in Biomedical Literature

Tool Description Reference

Biopython Set of freely available tools for biological 
computation

Cock et al. [2]

Galaxy An open, web-based platform for data intensive 
biomedical research

Goecks et al. [3]

msatcommander Locates microsatellite (SSR, VNTR, &c) repeats 
within FASTA-formatted sequence or 
consensus files

Faircloth et al. [4]

RseQC Comprehensively evaluates high-throughput 
sequence data especially RNA-seq data

Wang et al. [5]

Chimerascan Detects chimeric transcripts in high-throughput 
sequencing data

Maher et al. [6]

http://biopython.org/wiki/Active_projects
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The perfect example of such tool is a development of a generic feature 
format (GFF) parser. GFF files represent numerous descriptive features 
and annotations for sequences and are available from many sequenc-
ing and annotation centers. These files are in a TAB delimited format, 
which makes them compatible with Excel worksheet and, therefore, more 
friendly for biologists. Once developed, the GFF parser will allow analysis 
of GFF files by automated processes.

Another example is an expansion of Biopython’s population genetics 
(PopGen) module. The current PopGen tool contains a set of applications 
and algorithms to handle population genetics data. The new extension of 
PopGen will support all classic statistical approaches in analyzing popula-
tion genetics. It will also provide extensible, easy-to-use, and future-proof 
framework, which will lay ground for further enrichment with newly 
developed statistical approaches.

As we can see, Python is a living creature, which is gaining popularity 
and establishing itself in the field of Big Data analysis. To keep abreast 
with the Big Data analysis, researches should familiarize themselves with 
the Python programming language, at least at the basic level. The follow-
ing section will help the reader to do exactly this.

2.4  STEP-BY-STEP TUTORIAL OF PYTHON SCRIPTING 
IN UNIX AND WINDOWS ENVIRONMENTS

Our tutorial will be based on the real data (FASTQ file) obtained with 
Ion Torrent sequencing (www.lifetechnologies.com). In the first part of 
the tutorial, we will be using the UNIX environment (some tools for pro-
cessing FASTQ files are not available in Windows). The second part of the 
tutorial can be executed in both environments. In this part, we will revisit 
the pipeline approach described in the first part, which will be demon-
strated in the Windows environment. The examples of Python utility in 
this tutorial will be simple and well explained for a researcher with bio-
medical background.

2.4.1 Analysis of FASTQ Files

First, let us install Python. This tutorial is based on Python 3.4.2 and 
should work on any version of Python 3.0 and higher. For a Windows 
operation system, download and install Python from https://www.python 
.org/downloads. For a UNIX operating system, you have to check what 
version of Python is installed. Type python -V in the command line, 
if the version is below 3.0 ask your administrator to update Python 

http://www.lifetechnologies.com
https://www.python.org/downloads
https://www.python.org/downloads
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and also ask to have the reference genome and tools listed in Table 2.2 
installed. Once we have everything in place, we can begin our tutorial 
with the introduction to the pipelining ability of Python. To answer the 
potential question of why we need pipelining, let us consider the fol-
lowing list of required commands that have to be executed to analyze a 
FASTQ file. We will use a recent publication, which provides a resource 
of benchmark SNP data sets [7] and a downloadable file bb17523_PSP4_ 
BC20.fastq from ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/ion_ 
exome. To use this file in our tutorial, we will rename it to test.fastq.

In the meantime, you can download the human hg19 genome from 
Illumina iGenomes (ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/
Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.gz). The files 
are zipped, so you need to unpack them.

In Table 2.2, we outline how this FASTQ file should be processed.
Performing the steps presented in Table 2.2 one after the other is a labo-

rious and time-consuming task. Each of the tools involved will take some-
where from 1 to 3 h of computing time, depending on the power of your 
computer. It goes without saying that you have to check on the progress of 
your data analysis from time to time, to be able to start the next step. And, 
of course, the overnight time of possible computing will be lost, unless 
somebody is monitoring the process all night long. The pipelining with 
Python will avoid all these trouble. Once you start your pipeline, you can 
forget about your data until the analysis is done, and now we will show 
you how.

For scripting in Python, we can use any text editor. Microsoft (MS) Word 
will fit well to our task, especially given that we can trace the whitespaces of 

TABLE 2.2 Common Steps for SNP Analysis of Next-Generation Sequencing Data

Step Tool Goal Reference

1 Trimmomatic To trim nucleotides with bad quality from the 
ends of a FASTQ file

Bolger et al. [8]

2 PRINSEQ To evaluate our trimmed file and select reads 
with good quality

Schmieder et al. [9]

3 BWA-MEM To map our good quality sequences to a 
reference genome

Li et al. [10]

4
SAMtools

To generate a BAM file and sort it
Li et al. [11]

5 To generate a MPILEUP file

6 VarScan To generate a VCF file Koboldt et al. [12]

ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/ion_exome
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/ion_exome
ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.gz
ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.gz
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our script by making them visible using the formatting tool of MS Word. 
Open a new MS Word  document and start programming in Python! To 
create a pipeline for analysis of the FASTQ file, we will use the Python col-
lection of functions named subprocess and will import from this collection 
function call.

The first line of our code will be

from subprocess import call

Now we will write our first pipeline command. We create a variable, which 
you can name at will. We will call it step_1 and assign to it the desired 
pipeline command (the pipeline command should be put in quotation 
marks and parenthesis):

step_1 = (“java -jar ~/programs/Trimmomatic-0.32/
trimmomatic-0.32.jar SE -phred33 test.fastq test_trmd.
fastq LEADING:25 TRAILING:25 MINLEN:36”)

Note that a single = sign in programming languages is used for an assign-
ment statement and not as an equal sign. Also note that whitespaces are very 
important in UNIX syntax; therefore, do not leave any spaces in your file 
names. Name your files without spaces or replace spaces with underscores, 
as in test_trimmed.fastq. And finally, our Trimmomatic tool is located in 
the programs folder, yours might have a different location. Consult your 
administrator, where all your tools are located.

Once our first step is assigned, we would like Python to display variable 
step_1 to us. Given that we have multiple steps in our pipeline, we would 
like to know what particular step our pipeline is running at a given time. 
To trace the data flow, we will use print() function, which will display on 
the monitor what step we are about to execute, and then we will use call() 
function to execute this step:

print(step_1)
call(step_1, shell = True)

Inside the function call() we have to take care of the shell parameter. We 
will assign shell parameter to True, which will help to prevent our script 
from tripping over whitespaces, which might be encountered on the path 
to the location of your Trimmomatic program or test.fastq file. Now we 
will build rest of our pipeline in the similar fashion, and our final script 
will look like this:



20   ◾   Big Data Analysis for Bioinformatics and Biomedical Discoveries

from subprocess import call
step_1 = (“java -jar ~/programs/Trimmomatic-0.32/
trimmomatic-0.32.jar SE -phred33 test.fastq test_
trimmed.fastq LEADING:25 TRAILING:25 MINLEN:36”)
print(step_1)
call(step_1, shell = True)
step_2 = (“perl ~/programs/prinseq-lite-0.20.4/
prinseq-lite.pl -fastq test_trimmed.fastq -min_qual_
mean 20 -out_good test_good”)
print(step_2)
call(step_2, shell = True)
step_3 = (“bwa mem -t 20 homo.sapiens/UCSC/hg19/
Sequence/BWAIndex/genome.fa test_good.fastq > test_
good.sam”)
print(step_3)
call(step_3, shell = True)
step_4 = (“samtools view –bS test_good.sam > test_
good.bam”)
print(step_4)
call(step_4, shell = True)
step_5 = (“samtools sort test_good.bam 
test_good_sorted”)
print(step_5)
call(step_5, shell = True)
step_6 = (“samtools mpileup –f homo.sapiens/UCSC/
hg19/Sequence/WholeGenomeFasta/genome.fa test_good_
sorted.bam > test_good.mpileup”)
print(step_6)
call(step_6, shell = True)
step_7 = (“java -jar ~/programs/VarScan.v2.3.6.jar 
mpileup2snp test_good.mpileup --output-vcf 1 > 
test. vcf”)
print(step_7)
call(step_7, shell = True)

Now we are ready to go from MS Word to a Python file. In UNIX, we will 
use vi text editor and name our Python file pipeline.py, where extension 
.py will tell that this is a Python file.

In UNIX command line type: vi pipeline.py
The empty file will be opened. Hit i on your keyboard and you will acti-

vate the INSERT mode of the vi text editor. Now copy our whole script from 
MS Word into pipeline.py file. Inside the vi text editor, click right mouse 
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button and select from the popup menu Paste. While inside the vi text editor, 
turn off the INSERT mode by pressing the Esc key. Then type ZZ, which will 
save and close pipeline.py file. The quick tutorial for the vi text editor can be 
found at http://www.tutorialspoint.com/unix/unix-vi-editor.htm.

Once our pipeline.py file is created, we will run it with the command:

python pipeline.py

This script is universal and should processs any FASTQ file.

2.4.2 Analysis of VCF Files

To be on the same page with those who do not have access to UNIX and 
were not able to generate their own VCF file, we will download the premade 
VCF file TSVC_variants.vcf from the same source (ftp://ftp-trace.ncbi.nih.
gov/giab/ftp/data/NA12878/ion_exome), and will rename it to test.vcf.

From now on we will operate on this test.vcf file, which can be analyzed 
in both UNIX and Windows environments. You can look at this test.vcf 
files using the familiar Excel worksheet. Any Excel version should accom-
modate our test.vcf file; however, if you try to open a bigger file, you might 
encounter a problem. Excel will tell that it cannot open the whole file. If 
you wonder why, the answer is simple. If, for example, you are working 
with MS Excel 2013, the limit of rows for a worksheet in this version will 
be 1,048,576. It sounds like a lot, but wait, to accommodate all SNPs from 
the whole human genome the average size of a VCF file will need to be up 
to 1,400,000 rows [13]. Now you realize that you have to manipulate your 
file by means other than Excel. This is where Python becomes handy. With 
its help you can reduce the file size to manageable row numbers and at 
the same time retain meaningful information by excluding rows without 
variant calls.

First, we will remove the top rows of the VCF file, which contain 
description entries. In the output of our pipeline, these entries occupy 64 
rows. You can examine those entries using a partially opened file in Excel. 
Of course, you can delete them, but after saving this file you will lose rows 
that did not fit the worksheet. To deal with this problem, we will create a 
simple script using Python. There are two ways to script for it. The first 
approach would be to cut out the exact number of rows (in our case 64). 
To do our scripting, we again will use MS Word and will start with tell-
ing Python what file we are going to operate on. We will assign our test.
vcf file to a variable. The assigned variable can be named whatever your 

http://www.tutorialspoint.com/unix/unix-vi-editor.htm
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/ion_exome
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/ion_exome
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fantasy desires. We will keep it simple and name it file. Now we will use 
function open() to open our file. To make sure that this file will not be 
accidently altered in any way, we will use argument of open() function ‘r’, 
which allows Python only to read this file. At the same time, we will cre-
ate an output file and call it newfile. Again, we will use function open() to 
create our new file with name test_no_description_1.vcf. To tell Python 
that it can write to this file, we will use argument of open() function ‘w’:

file = open(“test.vcf”,‘r’)
newfile = open(“test_no_description_1.vcf”,‘w’)

Now we will create all variables that are required for our task. In this 
script, we will need only two of them. One we will call line and the other—
n, where line will contain information about components of each row in 
test.vcf, and n will contain information about the sequential number of a 
row. Given that line is a string variable (contains string of characters), we 
will assign to it any string of characters of your choosing. Here we will 
use “abc.” This kind of variable is called character variable and its content 
should be put in quotation marks. The n variable on the other hand will be 
a numeric variable (contains numbers); therefore, we will assign a number 
to it. We will use it for counting rows, and given that we do not count any 
rows yet, we assign 0 to n without any quotation marks.

line = “abc”
n = 0

Now we are ready for the body of the script. Before we start, we have to 
outline the whole idea of the script function. In our case, the script should 
read the test.vcf file line by line and write all but the first 64 lines to a new 
file. To read the file line by line, we need to build a repetitive structure—in 
programming world this is called loops. There are several loop structures 
in Python, for our purpose we will use the “while” structure. A Python 
while loop behaves quite similarly to common English. Presumably, you 
would count the pages of your grant application. If a page is filled with 
the text from top to bottom, you would count this page and go to the next 
page. As long as your new page is filled up with the text, you would repeat 
your action of turning pages until you reach the empty page. Python has a 
similar syntax: while line != “”:

This line of code says: while the content of a line is not empty (does not 
equal [!=] empty quotation marks) do what you are asked to do in the next 
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block of code (body of the loop). Note that each statement in Python (in 
our case looping statement) should be completed with the colon sign (:). 
Actually, this is the only delimiter that Python has. Python does not use 
delimiters such as curly braces to mark where the function code starts 
and stops as in other programming languages. What Python uses instead 
is indentations. Blocks of code in Python are defined by their indenta-
tion. By block of code, in our case we mean the content of the body of our 
“while” loop. Indenting the starts of a block and unindenting ends it. This 
means that whitespaces in Python are significant and must be consistent. 
In our example, the code of loop body will be indented six spaces. It does 
not need to be exactly six spaces, it has to be at least one, but once you have 
selected your indentation size, it needs to be consistent. Now we are going 
to populate out while loop. As we have decided above, we have to read the 
content of the first row from test.vcf. For this we will use function read-
line(). This function should be attached to a file to be read via a point sign. 
Once evoked, this function reads the first line of provided file into variable 
line and automatically jumps to the next line in the file.

line = file.readline()
n = n + 1

To keep track of numbers for variable line, we started up our counter n. 
Remember, we set n to 0. Now our n is assigned number 1, which corre-
sponds to our row number. With each looping, n will be increasing by 1 
until the loop reaches the empty line, which is located right after the last 
populated line of test.vcf.

Now we have to use another Python structure: if-else statement.

if n <= 64:
 continue
else:
 newfile.write(line)

Again, this block of code is close to English. If your whole program 
project grant application is less than or equal to 64 pages, you are fine; 
otherwise (else), you have to cut the text. In our case, if number of rows 
is below or equal to 64, we will do nothing. This is exactly what the key 
word continue stands for. It tells Python to stop doing anything further 
and come back to the top of the “while” loop and continue to read new 
line from the test.vcf file. Note that the if statement is completed with 
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the colon (:). The block of if statement (in our case continue) is indented, 
which means that it will be executed only when the condition in the if 
statement is true. Once we went over the line number 64, we want the 
rest of the test.vcf file to be written to our new file. Here we used the 
write() function. As with readline() function, we attached write() func-
tion to a file to be written to via a point sign. Inside of the parenthesis 
of a function, we put the argument line to let the function know what 
to write to the newfile. Note that the logical else statement is also com-
pleted with the colon (:). The block of else statement (newfile.write(line) 
in our case) is indented, which means that it will be executed only when 
the original condition, if n <= 64, is false. In an if-else statement, only 
one of two indented blocks can be executed. Once we run our loop and 
generated a file, which does not have 64 descriptive rows in it, we can 
close both original and newly generated files. To do this, we will use 
function close(). Once again, we will attach close() function to a file to 
be closed via a point sign.

newfile.close()
file.close()

Note that there is no indentation for these lines of code and they are 
aligned with the while line != “”: statement. It tells Python that these two 
lines of code are not a part of the while loop; therefore, it will be executed 
in the normal forward flow of statements, after the while statement is com-
pleted. Now we will glue our scripts together. To know whether our code 
was executed from the start to the end, we will use function print(), which 
will display on the computer screen whatever we will put inside the paren-
thesis as an argument. We put “START” and “END” into it, which will 
complete our script. Now we can copy and paste our script into the vi text 
editor as described above. At this point, we also can start using Python 
graphical user interface (GUI) Shell designed for Windows. We assume 
that you have already installed Python on your Windows machine and 
created a shortcut icon on your desktop. Double click the icon. If you do 
not have a shortcut icon, start Python by selecting START → Programs → 
Python 3.4 → IDLE (Python 3.4 GUI). Python shell will be opened. Inside 
the shell, select File → New file or hit Ctrl + N. The new Untitled window 
will appear. This is where we are going to paste our script (Edit → Paste or 
Ctrl + V) and save it (File → Save or Ctrl + S) as step_1a.py (Figure 2.1). 
To run this script, select Run → Run Module or hit F5.
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Make sure that your step_1a.py file and test.vcf file are located in the 
same directory. Once we have familiarized ourselves with Python script-
ing, we will move to a more complex task. As we said above, there are 
two ways to code for removing descriptive rows from a VCF file. One can 
ask: why do we need another approach to perform this file modification? 
The answer is: not all VCF files are created in the same way. Although, 
by convention, all descriptive rows in VCF files begin with double pound 
sign (##), the number of descriptive rows varies from one sequence align-
ing program to another. For instance, VСF files generated by Genome 
Analysis Toolkit for FASTQ files from Illumina platform have 53 descrip-
tive rows [13] and our pipeline described above will generate 23 descrip-
tive rows. Of course, we can change our logical statement if n <= 64: to 
if n <= 53: or if n <= 23:, but why do not make our code universal? We 
already know that each descriptive row in VCF files begin with ## sign; 
therefore, we can identify and remove them. Given that we are planning 
to manipulate on the row content, we have to modify our loop. Our previ-
ous script was taking the empty row at the end of the test.vcf file and was 
writing it to the test_no_description_1.vcf file without looking into the 
row content. Now, when we operate on the content of a row, Python will 
complain about the empty content and will report an error. To avoid this, 
we have to make sure that our script does not operate with the empty row. 
To do this, we will check whether the row is empty beforehand, and if it is, 
we will use break statement to abort our script. Once again, our code will 

FIGURE 2.1 Python GUI (graphical user interface) with step_1a.py script.
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be close to English. Assume you are proofreading your completed grant 
application. If you reach the end of it and see the empty page, you are done 
and deserve a break.

if line == “”:
break

As you might have noticed, we used just part of the if-else statement, which 
is perfectly legal in Python. Once our program reaches the end of the file, 
there is nothing else to do but stop the script with break statement; there-
fore, there is no need for any else. And another new sign double equal (==) 
stands for a regular equal. Note that even the shortened if-else statement 
should be completed with the colon (:). The block of the if statement (in our 
case break) also should be indented, which means that it will be executed 
only when the condition in the if statement is true. Now, when we created 
internal break, we do not need the redundant check point at the beginning 
of our loop. Therefore, we will replace while line != “”: with while 1:. Here 
we have introduced the “infinite” loop. The statement while 1 will run our 
loop forever unless we stop it with a break statement. Next, we will modify 
our existing if-else statement. Given that now we are searching for a ## 
pattern inside the row, rather than simply counting rows, we will replace

if n <= 64:
with
if line[1] == “#”:

With line[1], we introduce the process of counting row content in Python. 
The line variable here represents the whole row of test.vcf file. To visual-
ize content of a line variable, you can simply display it on your computer 
screen with print() function using line as an argument.

file = open(“test.vcf”,‘r’)
line = file.readline()
print(line)

The result will be the first line of the file test.vcf: ##fileformat=VCFv4.1.
Now you can count every single element of line starting with 0. The first 

character (#) will be assigned 0, the second character (#) will be assigned 1, 
the character (f) will be assigned 2, and so on. Using this content counting, 
we can display any element of the line variable by putting its consecutive 
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number into square brackets, for example, command print(line[1]) will 
display the second # sign. This is our mark for the descriptive rows; there-
fore, whenever our script sees line[1] as #, it will skip this row and go to the 
next one. Our complete modified script will look like this now:

print(“START”)
file = open(“test.vcf”,‘r’)
newfile = open(“test_no_description_2.vcf”,‘w’)
line = “abc”
while 1:
 line = file.readline()
 if line == “”:
  break
 if line[1] == “#”:
  continue
 else:
  newfile.write(line)
newfile.close()
file.close()
print(“END”)

Now we can copy and paste our script either into vi text editor (UNIX) or 
into Python GUI Shell (Windows), save it as step_1b.py and run. Once we 
are done with cutting out the descriptive rows, we can further simplify and 
reduce the size of our VCF file. We will use our previous script as template, 
and for the beginning, we will change our input and output files. Given that 
our goal is to make original VCF file the Excel compatible, we will use text 
format for our output file and will add to the file name an extension .txt.

file = open(“test_no_description_2.vcf”,‘r’)
newfile = open(“alleles.txt”,‘w’)

Our alleles.txt will have not only a different extension but also a different 
content. The most efficient way for researchers to operate on the allelic 
distribution data is to know the allelic variant location and variant itself. 
Therefore, our new file will have only three columns: chromosome num-
ber, position of a variant on this chromosome, and allelic distribution of 
the variant. As a reminder of which part of our script was doing what, 
we will use comments inside of our script. Typically, the pound sign (#) 
is used in front of comment. In the programming world, it is called com-
menting out everything that follows the pound sign.
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# Creating columns titles for newfile

line = file.readline()
newfile.write(“Chromosome” + “\t” + “Position” + “\t” + 
“Alleles” + “\n”)

Given that columns in text formatted files are separated by the TAB sign 
(\t), we separated our titles with “\t,” and, as we learned by now, all textual 
entries in Python should have quotation marks. We also have to end the 
title row with the NEWLINE sign (\n), which tells Python that this row 
is completed and any further input should go to the next row. Once we 
are done with formatting our output file, we will restructure our existing 
if-else statement by adding new variable. This variable (we will call it rec) 
will keep record of each column content after we split a row by columns. 
To manipulate the row content on column-by-column bases, we will need 
a package of functions specifically designed to do exactly this. The package 
is called string. In our first pipeline exercise, we already had an experience 
with importing call function; here in the same fashion, we will import 
string using an identical Python statement: import string.

Now we are set to operate on the row content. Before we begin, we have 
to check how many columns the file we are going to operate on has. By 
convention, a VCF file has nine mandatory columns, and then starting 
with the tenth column, it will have one sample per column. For simplicity, 
in our tutorial, we have a VCF file with just one sample. We also have to 
know what kind of column separator is used in our data. By convention, a 
VCF file uses tab (\t) as a column separator. Armed with this knowledge, 
we can start scripting. First, we read the whole row from our file, assign it 
to the variable line, and will make sure that this line is not empty. Then, we 
will split the line in pieces according to columns using the string splitting 
function str.split():

line = file.readline()
if line == “”:

break
rec = str.split(line,“\t”)

This function takes two arguments: what to split and by what delimiter to 
split. As you can see, we are splitting variable lines using tab (\t) as a delim-
iter. Now our row is split into 10 smaller rows of data. Any of them we can 
call by its sequential number, but remember in programming world every 
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counting starts with 0. Therefore, the tenth column in our row for Python 
will be column number nine. To display the content of the column 10, 
where our sample sits, we will use print() function: print(rec[9]).

In our exercise, you will see on your computer screen the following row 
of data:

1/1:87:92:91:0:0:91:91:43:48:0:0:43:48:0:0

Before going further, we have to familiarize ourselves with the format of 
VCF file. For the detailed explanation of its format, the reader can use 
Genome 1000 website (http://samtools.github.io/hts-specs/VCFv4.2.pdf). 
For our purpose, we will consider only the genotype part of the VCF file, 
which is exactly what we are seeing on our screens right now.

Genotype of a sample is encoded as allele values separated by slash 
(/). The allele values are 0 for a reference allele (which is provided in the 
REF column—column four or rec[3]) and 1 for the altered allele (which 
is provided in the ALT column—column five or rec[4]). For homozygote 
calls, examples could be either 0/0 or 1/1, and for heterozygotes either 
0/1 or 1/0. If a call cannot be made for a sample at a given locus, each 
missing allele will be specified with a point sign (./.). With this knowl-
edge in hands, the reader can deduce that in order to identify genotype 
of a sample we are going to operate on the first and the third elements of 
rec[9] (row of data above), which are representing codes for alleles iden-
tified by sequencing (in our example 1 and 1 or ALT and ALT alleles, 
respectively). But once again for Python these are not positions 1 and 3, 
but rather 0 and 2; therefore, we tell Python that we would like to work on 
rec[9][0] and rec[9][2]. Now we are set with the values to work with and 
can resume scripting. First, we will get rid of all meaningless allele calls, 
which are coded with points instead of numbers (./.). Using the similar 
construction, which we used above for skipping descriptive rows, we will 
get this statement:

if rec[9][0] == “.” or rec[9][2] == “.”:
continue

In plain English it says: if the first allele or the second allele is not detected 
by a sequencer, we are not interested in this row of data and will continue 
with the next row of data. Script will stop performing downstream com-
mands; therefore, this row will not be written to our output alleles.txt file. 

www.allitebooks.com

http://samtools.github.io/hts-specs/VCFv4.2.pdf
http://www.allitebooks.org
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The script will return to the beginning of while loop and will start analysis 
of the next row in test_no_description_2.vcf file. Now we have to con-
sider a situation when both alleles were identified by a sequencer and were 
assigned corresponding code, either 0 or 1. In this case, the script should 
write a new row to our output file. Therefore, we have to start to build 
this row beginning with the variant location in the genome. In our input 
file, this information is kept in the first two columns “Chromosome” and 
“Position,” which are for Python rec[0] and rec[1].

newfile.write(rec[0] + “\t” + rec[1] + “\t”)

Here we follow the same rule as for a title row and separating future 
 columns by TAB (\t) character. Now we have to populate the third column 
of our output file with allelic information. Analyzing structure of our VCF 
file, we already figured out that reference allele is corresponding to rec[3] 
and altered allele is corresponding to rec[4]. Therefore, our script for writ-
ing first allele will be

# Working with the first allele
if rec[9][0] == “0”:

newfile.write(rec[3])
else:

newfile.write(rec[4])

We comment to ourselves that we are working with the first allele (rec[9] [0]). 
These lines of script tell that if an allele is coded by 0, it will be presented in 
the “Alleles” column as the reference allele (rec[3]), otherwise (else) it will be 
presented as the altered allele (rec[4]). And how do we know that we have 
only two choices? Because we have already got rid of non-called alleles (./.) 
and the rec[9][0] can only be 0 or 1. The second allele (rec[9][2]) will be 
processed in the same fashion (the only difference will be an addition of the 
NEWLINE character /n), and our complete script will be as follows:

print(“START”)
import string
file = open(“test_no_description_2.vcf”,‘r’)
newfile = open(“alleles.txt”,‘w’)
line = “abc”
# Creating columns titles for variable newfile
line = file.readline()
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newfile.write(“Chromosome” + “\t” + “Position” + “\t” + 
“Alleles” + “\n”)
while 1:
 line = file.readline()
 if line == “”:
  break
 rec = str.split(line,“\t”)
 if rec[9][0] == “.” or rec[9][2] == “.”:
  continue
 newfile.write(rec[0] + “\t” + rec[1] + “\t”)
 # Working with the first allele
 if rec[9][0] == “0”:
  newfile.write(rec[3])
 else:
  newfile.write(rec[4])
 # Working with the second allele
 if rec[9][2] == “0”:
  newfile.write(rec[3] + “\n”)
 else:
  newfile.write(rec[4] + “\n”)
newfile.close()
file.close()
print(“END”)

Now we can copy and paste our script either into vi text editor (UNIX) or 
into Python GUI Shell (Windows), save it as step_2.py and run. When our 
VCF file is shortened by descriptive rows and rows that had no allelic calls, 
we will most likely be able to fit it into the Excel worksheet and manipulate 
with it in our familiar environment. Once you write your Python scripts 
for handling VCF files, you can keep reusing them by just substituting 
input and output file names. To make this process even less laborious, 
we can join our two-step approach into one script. There are two ways to 
handle it. The first one will be to pipeline our scripts as we described in the 
beginning of our tutorial.

Let’s create new script both_steps_1.py. We will pipeline our scripts 
step1b.py and step2.py using the approach described in our first exercise.

from subprocess import call
command_1 = (“python step_1b.py”)
print(command_1)
call(command_1, shell = True)
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command_2 = (“python step_2.py”)
print(command_2)
call(command_2, shell = True)

This script can be run in both UNIX and Windows environments. The 
second way to join step_1b.py and step_2.py scripts is simply to put them 
into one common Python script and name it both_steps_2.py. In this way, 
we will save some computing time and disk space, because there will be no 
need for generating intermediate file test_no_description_2.vcf. However, 
the joined script will be more complex in terms of indentation rule. We 
have to make sure that flow of our scripts follows the intended route. To 
do this, we will put allele selection block of step_2.py script under the else 
statement of step_1b.py script:

print(“START”)
import string
file = open(“test.vcf”,‘r’)
newfile = open(“alleles_joined_script.txt”,‘w’)
line = “abc”
#Creating columns titles for newfile
line = file.readline()
newfile.write(“Chromosome” + “\t” + “Position” + “\t” + 
“Alleles” + “\n”)
while 1:
 line = file.readline()
 if line == “”:
  break
 if line[1] == “#”:
  continue
 else:
  rec = str.split(line,“\t”)
  if rec[9][0] == “.” or rec[9][2] == “.”:
   continue
 newfile.write(rec[0] + “\t” + rec[1] + “\t”)
 #working with the first allele
 if rec[9][0] == “0”:
  newfile.write(rec[3])
 else:
  newfile.write(rec[4])
 #working with the second allele
 if rec[9][2] == “0”:
  newfile.write(rec[3] + “\n”)
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 else:
  newfile.write(rec[4] + “\n”)         
newfile.close()
file.close()
print(“END”)

This script can be run in both UNIX and Windows environments.
I hope you have enjoyed our tutorial and got a flavor of Python pro-

gramming. You can continue educating yourselves with general (not 
Big Data related) tutorials of the usage of Python, which are available 
online. A good place to start for real examples is to read about Biopython 
(Table 2.1). You will find tutorials there, which use a number of real-life 
examples. You can come up with small projects for yourself like writing 
a script that analyzes GC content of a FASTA file or a script that parses a 
BLAST output file and filter on various criteria.
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3.1 INTRODUCTION
R is both a programming language and an environment for data analysis 
that has powerful tools for statistical computing and robust set of func-
tions that can produce a broad range of publication quality graphs and 
figures. R is open source and easily extensible with a massive number of 
user-contributed packages available for download at the Comprehensive R 
Archive Network (CRAN).

R has its roots in a package developed by Richard Becker and John 
Chambers at Bell Labs in the 1970s through the 1990s known as S. The 
S language had several features that were revolutionary for the time: the 
storage of data in self-defining objects and the use of methods for those 
objects (Chambers 1999). A commercial version of S, S-plus, was intro-
duced by Statistical Sciences Corporation in the 1990s and became very 
popular. Around the same time, Ross Ihaka and Robert Gentleman devel-
oped R, an open source version of S based on the GNU license. Because 
R was written mostly in C with a few FORTRAN libraries, it was easily 
ported to various Unix systems, the Macintosh, and eventually Microsoft 
Windows.

R grew rapidly in popularity and was even highlighted in a major New York 
Times article about data analytics (Vance 2009). While there is considerable 
debate about the relative popularity of R versus other statistical packages and 
programming languages, there is sufficient empirical data to show that R is 
currently one of the leaders in the field. For example, R is listed as the fifth 
most common programming language in job postings behind Java, statisti-
cal analysis system (SAS), Python, and C/C++/C# (Muenchen 2015). At the 
Kaggle website, it is listed as the favorite tool by more competitors than any 
other and is cited more than twice as often as the next closest favorite tool, 
MATLAB® (Kaggle 2015).

R is currently maintained by the R Foundation for Statistical Com-
puting (www.r-project.org/foundation). It has a robust support network 
with hundreds of R bloggers and an annual international conference 
(UseR).
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3.2 R APPLICATIONS
R has many features that make it ideal for modern data analysis. It has 
flexible storage choices, object-oriented features, easy extensibility, a pow-
erful integrated development environment, strong graphics, and high-
performance computing enhancements.

3.2.1 Flexible Storage Choices

R has all the commonly used data types (e.g., numeric, character, date, 
and logical). Data are assigned using “<-” though more recent versions of 
R allow you also to assign using “=”. So x<-12 assigns the numeric value 
of 12 to x, and y=TRUE assigns the logical value of TRUE to y.

More than one value of the same type can be combined into a vector using 
the c (short for combine) function. So c(1,2,3) would be a numeric vector 
and c(“a”,“b”,“c”) would be a character vector. Sequential  vectors can 
be produced using the operator or the seq function. 1:50 would  produce all 
the numbers between 1 and 50 and seq(2,10,by=2)  would produce 
all the even numbers up to 10.

Vectors of the same length and same type can also be combined in a 
matrix. Vectors of the same length (but possibly of different types) can 
be combined into a data frame, which is the most common format used 
for data analysis in R. A data frame is essentially the same as a table in 
database.

But the power of R comes largely from lists. A list liberates the data 
set from a restrictive rectangular grid. A list is an ordered set of elements 
that can include scalars, vectors of different types and lengths, whole data 
frames or matrices, or even other lists. Consider, for example, a microar-
ray experiment. This experiment would contain genotypic information: 
expression levels for thousands of genes. It would also contain phenotypic 
information, such as demographic information of the patients themselves 
or information about the treatments that these patients are receiving. 
A  third set of information might include parameters under which the 
microarray experiment was run. A list that contains a separate data frame 
for genotypic and phenotypic information and various scalars to docu-
ment the experimental conditions provides a simpler and more manage-
able way to store these data than any flat rectangular grid.

Subsetting is a common need for most data analyses, and you can get 
subsets of a vector, matrix, or data frame using square brackets. So x[2] 
would be the second element of the vector x and y[1,1] would be the 
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upper left entry (first row, first column) in the matrix or data frame y. 
If you want everything except some entries that you would exclude, place a 
negative sign in front. So z[-1,] would produce everything in the matrix z 
except for the very first row.

Subsets for a list are selected the same way except you use a double 
bracket. So u[[3]] would be the third element in the list u. If a list has 
names associated with each element, then the $ operator would select the 
element with that name. So u$min produces the element of the list u that 
has the name min.

3.2.2 Objects and Methods

Statistical analysis in R is conducted using function calls. The lm  function, 
for example, produces a linear regression analysis. An important feature of R, 
however, is that the function call does not produce output in the sense that a 
program like SAS or Statistical Package for the Social Sciences (SPSS) would. 
The function call creates an object of type “lm.” This object is a list with a pre-
specified structure that includes a vector of regression coefficients, a vector of 
residuals, the QR decomposition of the matrix of independent variables, the 
original function call, and other information relevant to the regression analysis.

Just about every object in R has multiple methods associated with it. 
Most objects that store information from a statistical analysis will have 
print, plot, and summary methods associated with them. The plot func-
tion for lm objects, for example, will display a graph of the fitted values 
versus the residuals, a normal probability plot of the residuals, a scale-
location plot to assess heteroscedasticity, and a plot of leverage versus 
residuals. The summary function will produce quartiles of the residu-
als, t-tests for individual coefficients, values for multiple R-squared and 
adjusted R-squared, and an overall F statistic. Objects in R will often uti-
lize inheritance. The “nlm” object, which stores information from a non-
linear regression model, and the “glm” object, which stores information 
from a generalized linear model, both inherit from the “lm” object. In 
other words, they store much of the same information as an “lm” object 
and rely on many of the same methods, but include more information and 
have additional methods specific to those more specialized analyses.

One of the great values in R is that when you store the information from 
a statistical procedure in an object, you can easily manipulate that object to 
extract specific features and then send this information to a different func-
tion. You can take the regression coefficients from an “lm” object, for exam-
ple, and draw a trend line on your scatterplot using the abline function.
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3.2.3 Extensibility

R is easily extensible and has thousands of user-contributed packages, 
available at the CRAN (http://cran.r-project.org/). The R language appears 
to be the mode by which most new methodological research in Statistics is 
disseminated. Of particular interest to genetics researchers is Bioconductor 
(http://www.bioconductor.org/), a set of packages devoted to analysis of 
genetic data.

There are literally thousands of R packages and you may feel that you 
are looking for a needle in a haystack. You should start by reading the vari-
ous task views at CRAN. These task views provide brief explanations of all 
the R packages in a particular area like medical imaging.

While anyone can develop a user-contributed package, there are some 
requirements for documentation standards and software testing. The 
quality of these packages can still be uneven, but you should be able to 
trust packages that are documented in peer-reviewed publications. You 
should also consider the reputation of the programming team that pro-
duced the R package. Finally, the crantastic website (http://crantastic.org/) 
has user-submitted reviews for many R packages.

For those who want or need to use other languages and packages as part 
of their data analysis, R provides the packages that allow interfaces with 
programming languages like C++ (Rcpp) and Python (rPython); Bayesian 
Markov Chain Monte Carlo packages like WinBUGS (R2WinBUGS), jags 
(rjags, runjags), and Stan (RStan); and data mining packages like Weka 
(rWeka).

3.2.4 Graphics

R produces graphics that have intelligent default options. The axes, for 
example, are extended 4% on either end before plotting so that points 
at the extreme are not partially clipped. The axis labels, by default, use 
pretty values that are nice round numbers intelligently scaled to the range 
of the data. The default colors in R are reasonable, and you can select a 
wide range of color gradients for heat maps and geospatial plots using 
the RColorBrewer package. The par function in R allows you to adjust 
the graphical parameters down to the level of the length of your axis tick 
marks.

R is a leader in the use of data visualization based on the Grammar of 
Graphics Language (Wilkinson 2014), a system for creating graphs that 
separates graphs into semantic components. This ggplot2 package allows 
you to create graphs using these components, which offers you the ability 

http://www.bioconductor.org/
http://cran.r-project.org/
http://crantastic.org/
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to customize graphs at a high level of abstraction by changing individual 
components (Wickham 2010).

The CRAN graphics task view (http://cran.r-project.org/web/views/
Graphics.html) shows many other R graphics packages, including a link 
to the lattice graphics system, which is an R implementation of the trellis 
system (Becker et al. 1996).

3.2.5 Integrated Development Environment

You can program in R with a basic text editor (I have used notepad with 
R for more years than I care to admit), but there is a very nice integrated 
development environment, RStudio, that you should give serious consid-
eration to. It offers code completion, syntax highlighting, and an object 
browser. It integrates nicely with version control software and the R 
Markdown language.

R Markdown is worth a special mention. An active area of  interest 
in the Statistics community is the concept of reproducible research. 
Reproducible research makes not just the data associated with a research 
publication available, but also the code so that other people who want to 
do work in this field can easily replicate all of the statistical analyses and 
reproduce all of the tables and graphs included in the article (Peng 2009). 
The R Markdown language combined with the R package knitr allows you 
to produce self-documenting computer output, which greatly enhances 
the reproducibility of your publication.

3.2.6 Size and Speed Issues

R can handle many Big Data problems without a fuss, but it has two well-
known limitations. The first limitation is that loops in R are often very 
inefficient. The inefficiency is often not noticeable for small data sets, 
but loops are commonly a serious bottleneck for Big Data. You can often 
improve the speed of your R code by replacing the loop with a function 
that works equivalently (Ligges and Fox 2008). There are basic functions 
in R for summation (rowSums, colSums) and vector/matrix operators 
like crossprod and outer that will run a lot faster and improve the 
readability of your code. R also has a series of apply functions that can 
avoid an explicit loop. The sapply function, for example, takes a function 
that you specify and applies it to each element in a list.

If you have multiple processors available, you can sometimes split your 
computation into pieces that can be run in parallel. The foreach package 
allows you to set up a loop of independent calculations where different 

http://cran.r-project.org/web/views/Graphics.html
http://cran.r-project.org/web/views/Graphics.html
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iterations in the loop can be run on different processors. The R code 
 amenable to parallelization in R is limited, but this is an active area of 
work in the R community.

A second limitation of R is that it needs to store all available data in 
computer memory. These days computer memory is not trivially small, but 
it still has limits compared to what you can store on your local hard drive 
or your network. If your data are too big to fit in memory, you have to use 
special tools. Sometimes you can sidestep the problems with data too big 
to fit in memory by handling some of the data management through SQL. 
Other times you can reduce the size of your data set through sampling. 
You can also use specialized libraries that replace R functions with equiv-
alent functions that can work with data larger than computer memory. 
The biglm package, for example, allows you to fit a linear regression model 
or a generalized linear regression model to data sets too big to fit in R.

The tools available for improving speed and storage capacity are too numer-
ous to document here. A brief summary of the dozens of R packages that can 
help you is listed in the CRAN Task View on High Performance Computing 
(http://cran.r-project.org/web/views/HighPerformanceComputing.html).

3.2.7 Resources for Learning More About R

Since R is freely available, many of the resources for learning R are also 
free. You should start with the CRAN. CRAN has the official R manuals. 
It also has a very helpful FAQ for the overall package and a specialized 
FAQ for Windows, Macintosh, and Unix implementations of R. CRAN 
also is the repository for most R packages (excluding the packages associ-
ated with Bioconductor), and you can browse the documentation associ-
ated with each package, which is stored in a standardized format in a PDF 
file. Some packages have vignettes that show some worked examples.

R has a built-in help system, and selecting help from the menu will pro-
vide an overview of all the resources within R. If you want help with a par-
ticular function, type a question mark followed by the function name or 
use the help function. So ?plot or help(“plot”) provides information 
about the plot function. If you are not sure what the name of the function 
is, you can run a general search using two question marks followed by the 
search term, or equivalently, you can use the help.search function. 
So ??logistic or help.search(“logistic”) will help you find the 
function that performs logistic regression.

The best way to learn R is to practice with simple data sets. R provides 
a wide range of data sets with the base system and almost every package 

http://cran.r-project.org/web/views/HighPerformanceComputing.html
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includes one or more data sets that can illustrate how the package is used. 
Additional data sets and code in R to analyze these data sets are available at 
the Institute for Digital Research and Education at the University of California 
at Los Angles (http://www.ats.ucla.edu/stat/dae/). This site is ideal for those 
already familiar with another statistics package like SAS or SPSS because you 
can compare the R code with the code from these other packages.

There are hundreds of R bloggers and many of them will repost their blog 
entries at the R-bloggers site (http://www.r-bloggers.com/). The R help mail-
ing list is available at CRAN (http://www.r-project.org/mail.html). It  is a 
very active list with dozens of messages per day. You may find the  nabble 
interface to be more convenient (http://r.789695.n4.nabble.com/). Many 
communities have local R user groups. Revolution Analytics offers a fairly 
current and comprehensive list of these (http://blog. revolutionanalytics.
com/local-r-groups.html).

3.3 DATA ANALYSIS OUTLINE
Every data analysis is different, but there are some common features for 
most analyses. First, you need to import your data. Often, you will need to 
manipulate your data in some way prior to data analysis. Then, you need 
to screen your data with some simple summary statistics and plots. For the 
actual data analysis, it is tempting to start with the largest and most com-
plex model, but you should fit simpler models first, even overly simplistic 
models, so that you aren’t immediately overwhelmed.

3.3.1 Import Your Data

R can easily handle a variety of delimited files with the read.table 
function and you can also use read.csv, which specializes in reading 
the commonly used comma separated value format, and read.delim, 
which specializes in reading tab delimited files. The foreign package allows 
you to import from a variety of other statistical packages (EpiInfo, SPSS, 
SAS, and Systat). The dbi package will connect you with most common 
SQL databases and there are specialized packages for Oracle (ROracle) 
and SQL Server (RSQLServer). You can sometimes find specialized pack-
ages to handle specific formats like MAGE-ML (RMAGEML). There are 
also libraries to import from various social media like Twitter (TwitteR).

3.3.2 Manipulate Your Data

R offers some very useful tools for data manipulation. The merge func-
tion allows you to join two separate data frames using a one-to-one or 

http://www.ats.ucla.edu/stat/dae/
http://www.r-bloggers.com/
http://www.r-project.org/mail.html
http://r.789695.n4.nabble.com/
http://blog.revolutionanalytics.com/local-r-groups.html
http://blog.revolutionanalytics.com/local-r-groups.html
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a many-to-one merge and using either an inner join or an outer join. 
Longitudinal data often require you to convert from a format with one 
record per subject and data at multiple time points strung out across hori-
zontally to a format with multiple records per subject and one line per 
time point within each subject. The reshape2 package makes these conver-
sions easy.

If you need to aggregate your data, you can choose among several dif-
ferent functions (apply, sapply, or tapply) depending on whether 
your data are stored in a matrix, a list, or a data frame. These functions 
are very powerful, but also rather tricky to work with. For more advanced 
aggregation tasks, look at the functions available in the plyr package.

Another common data manipulation is subset selection. There are 
several approaches, but often a simple logical expression inserted as an 
index within a matrix or data frame will work nicely. The grep function, 
which finds matches to strings or regular expressions, is another common 
approach for subset selection.

Many data sets have special numeric codes for categorical data. You 
will often find that the formal analyses will be easier to follow if you des-
ignate categorical variables using the factor function. This function 
also allows you to specify a label for each category value and will simplify 
certain regression models by treating factors as categorical rather than 
continuous.

3.3.3 Screen Your Data

R has a variety of tools for screening your data. The head function shows 
the first few lines of your matrix or data frame, and the tail function 
shows the last few lines. The dim function will tell you how many rows or 
columns your matrix/data frame has.

If your data are stored in a data frame, the summary function is very 
useful. It provides a list of the six most common values for string variables 
and factors. For variables that are numeric, summary produces the mini-
mum, 25th percentile, median, mean, 75th percentile, and the maximum 
plus a count of the number of missing values if there are any. You need 
to watch missing values very carefully throughout the rest of your data 
analysis.

If you know that some of your data have only a limited number of pos-
sible values, then you should use the table function to list those values 
and their frequency counts. Look out for inconsistent coding, especially 
strings. You may find a yes/no variable that has YES, Yes, and yes for 
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possible values and even if the person who entered the data intended for 
them to all mean the same thing, R will treat them as separate values.

3.3.4 Plot Your Data

R has a wide range of plotting methods. For an initial screen, you can 
examine simple bivariate relationships using the plot function. Often, 
a smooth curve using the lowess function can help you discern patterns 
in the plot. The boxplot function helps you to examine the relation-
ship between a categorical variable and a continuous variable. For very 
large data sets, some data reduction technique like principal components 
or some data summary technique like cluster analysis may prove useful.

3.3.5 Analyze Your Data

The data analysis models are virtually unlimited, and it is impossible to 
summarize them here. As a general rule, you should consider the very 
simplest models first and then add layers of complexity slowly until you 
build up to your final model(s). Do this even if the simplest models are 
such oversimplifications that they strain the credulity of the analyses. You 
have to spend some time getting comfortable with the data and familiar 
with the general patterns that exist. The simplest models help you gain this 
comfort and familiarity.

3.4 STEP-BY-STEP TUTORIAL
A gene expression data set freely available on the web gives you the oppor-
tunity to try out some of the features of R. This data set, described in Son 
et  al. (2005), includes gene expression levels for over 40,000 genes across 
158 samples with 19 different organs selected from 30 different patients (not 
every patient contributed samples for all 19 organs). For these data, an anal-
ysis of gender differences in the gene expression levels in the adrenal gland 
is illustrated. The data are already normalized, reducing some of your work. 
The analysis suggested here is somewhat simplistic and you should consider 
more sophistication, both in terms of the hypothesis being addressed and in 
the data analysis methods. If you are unclear on how any of the functions 
used in this example work, review the help file on those functions.

3.4.1 Step 1: Install R, RStudio, and Any R Packages That You Need

If you do not have R already installed on your computer, go to the 
Comprehensive R Archive Network. Download and run the version of R 
appropriate for your computer.
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If you wish to use the integrated development environment RStudio, 
download it at http://www.rstudio.com/. You will only need one R pack-
age in this example, mutoss. You can download it by running R and typ-
ing install.packages(“mutoss”) on the command line. You can 
also install mutoss from the menu system in R (select Packages|Install 
package(s)…).

3.4.2 Step 2: Import the Son et al. Data

The data set that you need to import is found in a tab delimited text file. 
The URL is genome.cshlp.org/content/suppl/2005/02/11/15.3.443.DC1/
Son_etal_158Normal_42k_RatioData.txt. You can read this directly 
from R without having to download the file, or you have the option of 
downloading the file to your local computer. Here is the code for reading 
directly.

file.name.part.1 <- “http://genome.cshlp.org/content/
suppl/2005/02/11/
15.3.443.DC1/”
file.name.part.2 <- “Son_etal_158Normal_42k_
RatioData.txt”
son <- read.delim(paste(file.name.part.1,file.name.
part.2,sep=“”))

I split the filename into two parts to make it easier to modify the code if 
you’ve already downloaded the file. The paste function combines the 
two parts, and the read.delim function produces a data frame, which 
is stored in son. If you have downloaded the file, modify this code by 
changing from the URL address listed in file.name.part.1 to the 
drive and path where the downloaded file is located.

We are fortunate in this example that the file reads in easily with all the 
default parameters. If this did not work, you should read the help file for 
read.delim by typing

?read.delim

The read.delim function will produce a data frame. How big is the data 
frame? Use the dim command.

> dim(son)
[1] 42421 160

http://www.rstudio.com/
http://genome.cshlp.org/content/suppl/2005/02/11/15.3.443.DC1/Son_etal_158Normal_42k_RatioData.txt
genome.cshlp.org/content/suppl/2005/02/11/15.3.443.DC1/Son_etal_158Normal_42k_RatioData.txt
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There are 42,421 rows and 160 columns in this data frame. Normally, 
I would use the head and tail functions to review the top few and bot-
tom few rows. But with a very large number of columns, you may want to 
just print out the upper left and lower right corners of the data set.

> son[1:8,1:4]
PlatePos CloneID NS1_Adrenal NS2_Adrenal
1 CD1A1 73703 1.35 1.56
2 CD1A10 345818 1.90 4.12
3 CD1A11 418147 1.52 1.44
4 CD1A12 428103 16.81 1.48
5 CD1A2 127648 12.46 50.24
6 CD1A3 36470 0.54 0.74
7 CD1A4 37431 0.57 0.51
8 CD1A5 133762 59.26 3.98
> son[42414:42421,157:160]
 NS183_Uterus NS184_Uterus NS185_Uterus NS186_Uterus
42414 0.56 0.74 0.73 0.66
42415 0.95 0.79 1.06 0.91
42416 0.69 0.61 0.50 0.57
42417 1.73 0.92 0.57 0.98
42418 0.97 1.36 1.18 1.18
42419 0.85 1.14 0.92 0.83
42420 6.35 4.64 4.17 3.89
42421 0.64 0.57 0.56 0.52

3.4.3  Step 3: Select Adrenal Gland Tissue and 
Apply a Log Transformation

You should run several simple data manipulations. First, you need to 
select only those columns in the data associated with adrenal gland 
tissue. Then, you need to transform the expression levels using a base 2 
logarithm. Finally, you need to identify which of the tissues belong to 
male and female subjects. The names command produces a character 
vector with the names of the variables in the data frame son. Store 
this in var.names. The grep function returns the column numbers 
which include the string Adrenal. son[,adrenal.columns]selects 
every row of son but only those columns found in adrenal.col-
umns. Because the values of the adrenal columns are all numeric, you 
can convert them from a data frame to a matrix using the as.matrix 
function.
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vnames <- names(son)
adrenal.columns <- grep(“Adrenal”,var.names)
son.a <- as.matrix(son[,adrenal.columns])

You should normally consider a log transformation for your data because 
the data are skewed and span several orders of magnitude.

son.a <- log(son.a,base=2)

There is some supplemental information stored as a PDF file that includes 
demographic information (gender, age, cause of death) about the patients 
who provided the samples. We need this file to identify which of the samples 
come from males and which from females. There is no easy way to directly 
read data from a PDF file into R. In Adobe Acrobat, select all the text, copy 
it to the clipboard, and paste it into a text file. This will look somewhat like a 
delimited file, but there are issues created when the name of the tissue type 
and the listing of the cause of death contain embedded blanks. This is fur-
ther complicated by the lines which are blank or which contain extraneous 
information. So it is easier to avoid splitting each line into separate fields and 
instead just read in full lines of data using the readLines function. You 
can then select those lines that we need with the grep function, first by find-
ing those lines containing the string adrenal and then searching in those 
lines for the string M. Note that the leading and trailing blanks in this string 
helps avoid selecting a letter M that starts, ends, or is in the middle of a word.

> file.name <- “Son_etal_phenotypic_information.txt”
> son.p <- readLines(file.name)
> adrenal.lines <- grep(“adrenal”,son.p)
> son.p <- son.p[adrenal.lines]
> males <- grepl(“ M ”,son.p)
> print(males)
[1] 1 2 4 5

We are relying here on the fact that the order listed in the PDF file is con-
sistent with the order of the columns in the text file.

3.4.4  Step 4: Screen Your Data for Missing Values 
and Check the Range

There are several simple screens that you should consider. First, the is.na 
function will return the value TRUE for any values in the vector or matrix 
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that are missing. If you sum that across the entire matrix, you will get a 
count of missing values, since TRUE converts to 1 and FALSE to 0 when 
you use the sum function.

> sum(is.na(son.a))
[1] 0

A zero here gives us the reassurance that the entire matrix has no missing 
values. The range function provides the minimum and maximum values 
across the entire vector or matrix.

> range(son.a)
[1] -8.587273 10.653669

This is a fairly wide range. Recall that this is a base 2 logarithm and 2 raised 
to the −8 power is about 0.004, while 2 raised to the 10th power is 1,024. Such 
a range is wide, but not unheard of for gene expression data. The summary 
function, when applied to a matrix or data frame, will produce percentiles 
and a mean for numeric data (and a count of missing values if there are any). 
For character data and factors, summary will list the seven most frequently 
occurring values along with their counts. Because of space limitations, I am 
showing summary only for the first two columns and the last column.

> summary(son.a[,c(1,2,9)])
NS1_Adrenal NS2_Adrenal NS9_Adrenal
Min.   :-6.82828 Min.   :-7.96578 Min.   :-5.64386 
1st Qu.:-0.66658 1st Qu.:-0.57777 1st Qu.:-0.57777 
Median :-0.05889 Median : 0.01435 Median :-0.02915 
Mean   :-0.02138 Mean   :-0.01424 Mean   :-0.01223 
3rd Qu.: 0.54597 3rd Qu.: 0.53605 3rd Qu.: 0.47508 
Max.   : 8.23903 Max.   : 8.27617 Max.   : 6.02104

3.4.5 Step 5: Plot Your Data

There are several plots that make sense for an initial screen of these data. You 
can run a simple histogram for each of the nine columns to look for unusual 
patterns like a bimodal distribution or expression levels that remain highly 
skewed even after a log transformation. Alternative patterns may still be okay, 
but they are a cause for further investigation. All of the histograms show a 
nice bell-shaped curve. Here is the histogram for the first column of data.

> hist(son.a[,1])
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Another useful screen is a scatterplot. You can arrange scatterplots among all 
possible pairs of columns using the pairs function. For very large data sets, 
you will often find the overprinting to be a problem, and a quick fix is to change 
the plotting symbol from the default (a circle) to a small single pixel point.

> pairs(son.a,pch=“.”)
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Notice that the first and fifth samples seem to depart somewhat from the over-
all pattern of an elliptical distribution of data, but this is not a serious concern.

3.4.6 Step 6: Analyze Your Data

The data analysis in this example is simply a two-sample t-test compar-
ing males to females for each row in the gene expression matrix with an 
adjustment of the resulting p-values to control the number of tests. Let’s 
remember the advice to wade in from the shallow end of the pool. Start by 
calculating a two-sample t-test for a single row in the data set.

If you’ve never run a t-test in R, you may not know the name of the 
function that does a t-test. Type ??ttest to list the many functions that 
will perform many different types of t-tests. The one that looks the most 
promising is the t.test function. Get details on this by typing ?t.test. 
From reading the help file, it looks like we want one group (the males) 
as the first argument to the t.test function and the other group (the 
females) as the other argument. Recall that a minus sign inverts the selec-
tion, so –males will select everyone except the males.

> first.row <- t.test(son.a[1,males],son.a[1,-males])
> first.row

 Welch Two Sample t-test

data:  son.a[1, males] and son.a[1, -males]
t = 0.8923, df = 9.594, p-value = 0.3941
alternative hypothesis: true difference in means is
 not equal to 0
95 percent confidence interval:
-0.1188546  0.2761207
sample estimates:
mean of x mean of y
0.527884  0.449251

We need to extract the p-value from this object for further manipulation. 
If you check the names of every element in this object, you will see one 
labeled p.value. This is what you want.

> names(first.row)
[1] “statistic”   “parameter”   “p.value”     “conf.int”    
“estimate”    “null.value”  “alternative” “method”      
“data.name”
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> first.row$p.value
[1] 0.3940679

Note that you could have figured this out with a careful reading of the help file 
on t.test. Now you need to create a special function which only extracts the 
p-value. Assign a function to t.test.pvalue using the function command. 
The argument(s) specified in function are arguments used in the state-
ments contained between the two curly braces. The first statement computes a 
t.test using the t.test function we just tested and stores it in results. The 
second statement selects and returns just the p-value from results.

> t.test.pvalue <- function(dat) {
+   results <- t.test(dat[males],dat[-males])
+   return(results$p.value)
+ }
> t.test.pvalue(son.a[1,])
[1] 0.3940679

You can now apply this to each row of the matrix using the apply com-
mand. The first argument in apply is the matrix, the second argument 
specifies whether you want to extract rows (1) or columns (2), and the third 
argument specifies the function you wish to run on each row or column.

> all.rows <- apply(son.a,1,t.test.pvalue)
> head(all.rows)
[1] 0.3940679 0.5616102 0.6953087 0.3064443 0.8942156 
0.8191188
> tail(all.rows)
[1] 0.8631147 0.3911861 0.4482372 0.8286146 0.8603733 
0.2700229

Check how many of these p-values would be significant at a nominal alpha 
level of 10% with no adjustments for multiple comparisons.

> sum(all.rows<0.10)
[1] 1268

How many would be significant after a Bonferroni correction?

> sum(all.rows<0.10/42421)
[1] 0
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Note that I am not recommending the use of a Bonferroni correction, not 
because it produced 0 significant results, but because the Bonferroni cor-
rection is considered by many to be too stringent in a gene expression study.

I ran the Bonferroni correction in spite of not liking it because it is 
fast and easy to understand. Remember that you need to start your analy-
ses from the shallow end of the pool. The mutoss library has a variety of 
adjustments that perform better because they don’t impose the excessively 
stringent requirement of controlling the global Type I error rate, as the 
Bonferroni correction does. Instead, these methods control the false dis-
covery rate (FDR). One of the simplest methods that controls the FDR is 
the Benjamini–Hochberg linear step-up procedure.

First, you need to install the mutoss library. If you didn’t do this already, 
you can type install.packages(“mutoss”). Once this is installed, 
load the package with the library command.

> library(“mutoss”)

Now check the help file. The BH function takes a vector of p-values and 
applies the Benjamini–Hochberg adjustment procedure and controls the 
FDR at a specified value.

> bh.adjustment <- BH(pv.mf,alpha=0.1)
 Benjamini-Hochberg’s (1995) step-up procedure

Number of hyp.:  42421
Number of rej.:  10
rejected pValues adjPValues
1 24229 1.948179e-08 0.0008264369
2 24325 1.342508e-07 0.0028475267
3 23914 4.540339e-07 0.0057640760
4 24010 5.435116e-07 0.0057640760
5 29430 1.302986e-06 0.0110547905
6 32969 2.024393e-06 0.0143127935
7 41695 5.235523e-06 0.0317280175
8 16351 8.543680e-06 0.0453039332
9 6416 1.612319e-05 0.0699810163
10 19656 1.649679e-05 0.0699810163

The analysis listed here is very simplistic. There’s much more that you 
could do here. You should consider screening out some of the genes before 
calculating the t-test. You can investigate the object produced by the BH 
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function and compare how it performs relative to other adjustments. Find 
the names of the 10 genes, investigate their properties, and see if these 
genes have a common Gene Ontology. Look for other packages that ana-
lyze gene expression data. There are, for example, packages that automate 
some of the steps here by combining the t-test with the p-value adjust-
ment. Try to replicate your analysis on a different data set provided with R 
or with one of the R packages.

3.5 CONCLUSION
R is a powerful programming language and environment for data analysis. 
It has publication quality graphics and is easily extensible with a wealth of 
user-contributed packages for specialized data analysis.
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C h a p t e r  4

Genome-Seq 
Data Analysis

Min Xiong, Li Qin Zhang, and Shui Qing Ye

4.1 INTRODUCTION
Genome sequencing (genome-seq, also known as whole-genome sequenc-
ing, full genome sequencing, complete genome sequencing, or entire genome 
sequencing) is a laboratory process that determines the complete DNA 
sequence of an organism’s genome at a single time. This entails sequencing 
all of an organism’s chromosomal DNA as well as DNA contained in the 
mitochondria and, for plants, in the chloroplast. The completion of the first 
human genome project has been a significant milestone in the history of 
medicine and biology by deciphering the order of the three billion units of 
DNA that go into making a human genome, as well as to identify all of the 
genes located in this vast amount of data. The information garnered from 
the human genome project has the potential to forever transform health 
care by fueling the hope of genome-based medicine, frequently called per-
sonalized or precision medicine, which is the future of health care. Although 
it is a great feat, the first $3-billion human genome project has taken more 
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than 13 years for the completion of a reference human genome sequence 
using a DNA technology based on the chain terminator method or Sanger 
method, now considered as a first-generation DNA sequencing. Both the 
cost and speed in the first-generation DNA sequencing are prohibitive to 
sequence everyone’s entire genome, a prerequisite to realize personalized 
or precision medicine. Since 2005, next-generation DNA sequencing tech-
nologies have been taking off, which reduce the costs of DNA sequenc-
ing by several orders of magnitude and dramatically increase the speed of 
sequencing. Next-generation DNA sequencing is emerging and continu-
ously evolving as a tour de force in the genome medicine.

A number of next-generation sequencing (NGS) platforms for genome-seq 
and other applications have been developed. Several major NGS platforms 
are briefed here. Illumina’s platforms (http://www.illumina.com/) represent 
one of the most popularly used sequencing by synthesis chemistry instru-
ments in a massively parallel arrangement. Currently, it markets HiSeq X 
Five and HiSeqTen instrument with a population power; HiSeq 3000, HiSeq 
4000, HiSeq 2500, and HiSeq 1500 with a production power; NextSeq 500 
with a flexible power; and MiSeq with a focused power. The HiSeq X Ten is 
a set of 10 ultra-high-throughput sequencers, purpose-built for large-scale 
human whole-genome sequencing at a cost of $1000 per genome, which 
together can sequence over 18,000 genomes per year. The MiSeq desktop 
sequencer allows you to access more focused applications such as targeted 
gene sequencing, metagenomics, small-genome sequencing, targeted gene 
expression, amplicon sequencing, and HLA typing. New MiSeq reagents enable 
up to 15 GB of output with 25 M sequencing reads and 2 × 300 bp read lengths. 
Life Technologies  (http://www. lifetechnologies.com/) markets sequencing 
by oligonucleotide ligation and detection (SOLiD) 5500 W Series Genetic 
Analyzers, Ion Proton™ System, and the Ion Torrent™ Personal Genome 
Machine® (Ion PGM™) System. The newest 5500 W instrument uses flow 
chips, instead of beads, to amplify templates, thus simplifying the workflow 
and reducing costs. Its sequencing accuracy can be up to 99.99%. Both Ion 
Proton™ System and Ion PGM™ System are ion semiconductor-based plat-
forms. Ion PGM™ System is one of the top selling benchtop NGS solutions. 
Roche markets 454 NGS platforms (http://www.454.com/), the GS FLX+ 
System, and the GS Junior Plus System. They are based on sequencing by 
synthesis chemistry. The GS FLX+ System features the unique combination 
of long reads (up to 1000 bp), exceptional accuracy, and high-throughput, 
making the system well suited for larger genomic projects. The GS Junior 
Plus System is a benchtop NGS platform suitable for individual lab NGS 

http://www.illumina.com/
http://www.lifetechnologies.com/
http://www.454.com/
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needs. Pacific Biosciences (http://www.pacificbiosciences.com/) markets 
the PACBIO RSII platform. It is considered as the third-generation sequenc-
ing platform since it only requires a single molecule and reads the added 
nucleotides in real time. The chemistry has been termed SMRT for single 
molecule real time. The PacBio RS II sequencing provides average read 
lengths in excess of >10 KB with ultra-long reads >40 KB. The long reads 
are characterized by high 99.999% consensus accuracy and are ideal for de 
novo assembly, targeted sequencing applications, scaffolding, and span-
ning structural rearrangements. Oxford Nanopore Technologies (https://
nanoporetech.com/) markets the GridION™ system, The PromethION, and 
The MinION™ devices. Nanopore sequencing is a third-generation single-
molecule technique. The GridION™ system is a benchtop instrument and 
an electronics-based platform. This enables multiple nanopores to be mea-
sured simultaneously and data to be sensed, processed, and analyzed in 
real time. The PromethION is a tablet-sized benchtop instrument designed 
to run a small number of samples. The MinION device is a miniaturized 
 single-molecule analysis system, designed for single use and to work through 
the USB port of a laptop or desktop computer. With continuous improve-
ments and refinements, nanopore-based sequencing technology may gain 
its market share in the distant future.

The genetic blueprints, or genomes, of any two humans are more than 
99% identical at the genetic level. However, it is important to understand the 
small fraction of genetic material that varies among people because it can 
help explain individual differences in susceptibility to disease, response to 
drugs, or reaction to environmental factors. Thus, knowing the full genome 
DNA sequence and cataloguing single-nucleotide variants and structural 
variants of each person are a prerequisite for personalized or precision med-
icine. Genome-seq has proven to be a valuable tool for detecting all genetic 
variants of rare and complex disease ranging from single nucleotides to 
larger structure. However, exome sequencing and targeted resequencing are 
still in use. Many monogenic and rare complex disease variants happen in 
coding regions, which only occupy 1%–2% of human genome. Due to the 
need to be more cost-effective to discover disease cause variants compared 
with whole-genome sequencing, exome sequencing and target resequenc-
ing are employed for a closer examination of these special regions. Exome 
sequencing and target resequencing both belong to targeted capture and 
massively parallel sequencing, and the difference is that exome-seq captures 
protein coding regions and target resequencing captures regions of interest, 
either coding regions or non-coding regions. 

http://www.pacificbiosciences.com/
https://nanoporetech.com/
https://nanoporetech.com/
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Sequencing goes hand in hand with computational analysis. Effective 
translation of the accumulating high-throughput sequence data into 
meaningful biomedical knowledge and application relies in its interpreta-
tion. High-throughput sequence analyses are only made possible via intel-
ligent computational systems designed particularly to decipher meaning 
of the complex world of nucleotides. Most of the data obtained with 
state-of-the-art next-generation sequencers are in the form of short reads. 
Hence, analysis and interpretation of these data encounters several chal-
lenges, including those associated with base calling, sequence alignment 
and assembly, and variant calling. Often the data output per run are beyond 
the common desktop computer’s capacity to handle. High power computer 
cluster becomes the necessity for efficient genome-seq data analysis. These 
challenges have led to the development of innovative computational tools 
and bioinformatics approaches to facilitate data analysis and clinical trans-
lation. Although de novo genome-seq is in its full swing to sequence the 
new genomes of animals, plants, and bacteria, this chapter only covers the 
human genome-seq data analysis by aligning the newly sequenced human 
genome data to the reference human genome. Here, we will highlight some 
genome-seq applications, summarize typical genome-seq data analysis 
procedures, and demonstrate both command-line interface-based- and 
graphical user interface (GUI)-based- genome-seq data analysis pipelines.

4.2 GENOME-SEQ APPLICATIONS
Whole-exome sequencing (WES) can provide coverage of more than 
95% of the exons, which contains 85% of disease-causing mutations in 
Mendelian disorders and many disease-predisposing single-nucleotide 
polymorphisms (SNPs) throughout the genome. The role of more than 
150 genes has been distinguished by means of WES, and this statistics 
is quickly growing. The decreasing cost and potential to provide a more 
comprehensive genetic risk assessment than current targeted methods 
makes whole-genome sequencing an attractive tool for genetic screening 
in patients with a family history of disease. Genome-seq has been pick-
ing up steams for identification of human population structure, evolution 
impact, causative variants, and genetic marker of Mendelian disease and 
complex disease, and cancer driver variations. Both WES and whole-
genome sequencing (WGS) have been explored and evaluated as a fast 
diagnostic tool for clinical diseases. Most of applications focus on discov-
ery of SNP, insertion or deletion of base (Indel), and structure variants 
(SV). Table 4.1 lists part of applications in current researches.
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TABLE 4.1 Genome-Seq Applications

# Usages Descriptions References

1 SNPa Identifying single-nucleotide 
polymorphism

Genomes Project et al. 
(2010)

Genomes Project et al. 
(2012)

2 Indelb Identifying insertion or deletion 
of base

Genomes Project et al. 
(2010)

Genomes Project et al. 
(2012)

3 Inversion Identifying segment of 
intrachromosome reversed to 
end to end

Bansal et al. (2007)

4 Intrachromosomal 
translocation

Discovery of chromosome 
rearrangement in the 
intrachromosome

Chen et al. (2009)

5 Interchromosomal 
translocation

Discovery of chromosome 
rearrangement in the 
interchromosome

Chen et al. (2009)

6 CNVc Identifying DNA copy number 
alteration

Priebe et al. (2012)

Zack et al. (2013)
7 Gene fusion Discovery of fusion gene Chmielecki et al. (2013)
8 Retrotransposon Detecting DNA elements which 

transcribe into RNA and reverse 
transcribe into DNA, and then 
insert into genome

Lee et al. (2012)

9 eQTLd Testing association between gene 
expression and variation

Fairfax et al. (2014)

10 LOHe Discovery of loss of the entire 
gene and surrounding 
chromosomal region

Sathirapongsasuti et al. 
(2011)

11 LOFSf Discovery of loss of function 
variants

MacArthur et al. (2012)

12 Population structure 
and demographic 
inference

Using variation structure to 
understand migration and gene 
flow in population

Genome of the 
Netherlands et al. (2014)

13 Diagnosis of 
neurodevelopmental 
disorders

Using accelerated WGS or WES Soden et al. (2014)

a SNP, single-nucleotide polymorphism.
b Indel, insertion or deletion of base.
c CNV, copy number variation.
d eQTL, expression quantitative trait loci.
e LOH, loss of heterozygosity.
f LOFs, loss of function variants.
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4.3 OVERALL SUMMARY OF GENOME-SEQ DATA ANALYSIS
Many tools are developed for whole-genome-seq data analysis. The basic 
genome-seq data analysis protocol is from sequence quality control to 
variation calling, which shows you the number of variants and the kind 
of variations in your population or samples. In general, genome-seq data 
analysis consists of five steps as displayed in Figure 4.1 and expounded in 
the following texts. 

Step 1: Demultiplex, filter, and trim sequencing read. Sequencing 
instruments generate base call files (*.bcl) made directly from signal 
intensity measurements during each cycle as primary output after 
completing sequencing. bcl2fastq Conversion Software (bcl2fastq) 
combines these per-cycle *.bcl files from a run and translates them 
into FASTQ files. During the process, bcl2fastq can also remove 
indexes you used in the sequence. FASTQ file includes sequencing 
reads and its quality scores which allow you to check base calling 
errors, poor quality, and adaptor. Similar with RNA-seq data analy-
sis, FASTQC and PRINSEQ can also be used to assess data quality 
and trim sequence reads for DNA-seq data.

Step 2: Read alignment into reference genome. The different sequence 
technologies and the resultant different sequencing characters such 
as short read with no gap and long reads with gaps have spurred 
the development of different aligning tools or programs. These 
include Mapping and Assembly with Qualities (MAQ), Efficient 
Large-Scale Alignment of Nucleotide Databases (Eland), Bowtie, 

Demultiplex, filter, and trim sequencing reads
↓

Read alignment into reference genome
↓

Variant discovery (SNP, Indel, CNV, and SV)
↓

Genotype statistics summary and filter, population stratification, and association test 
among samples or treatments

↓
Annotation (public database, function prediction, and conservation score)

↓
Visualization

FIGURE 4.1 Genome-seq analysis pipeline.
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Short Oligonucleotide Analysis Package (SOAP), and Burrows–
Wheeler Aligner (BWA). MAQ is a program that rapidly aligns short 
sequencing reads to reference genomes. It is particularly designed 
for Illumina-Solexa 1G Genetic Analyzer. At the mapping stage, 
MAQ supports ungapped alignment. BWA tool maps low-divergent 
sequences against a large reference genome. It designs for 70 bp to 
1 Mbp reads alignment from Illumina and AB SOLiD sequencing 
machines. It needs building reference genome and index before 
alignment, which allow efficient random access to reference genome, 
and produces alignment in the standard Sequence Alignment/Map 
(SAM) format. SAM is converted into the Binary Version of SAM 
(BAM). WGS and WES studies always need more accurately BAM 
files since raw alignment includes some biased and sequencing 
errors. Like during library preparation, sequencing errors will be 
propagated in duplicates when multiple reads come from the same 
template. Edges of Indels often map with mismatching bases that 
are mapping artifacts. Base quality scores provided by sequencing 
machine are inaccurate and biased. Those will affect variation call-
ing. Removing duplicates, local realignment around Indels, and base 
quality score recalibration are common practices before variation 
calling. SAM tool provides various utilities for manipulating align-
ment including sorting, indexing, and merging. Picard is a set of 
command-line tools for manipulating high-throughput sequencing 
data and format. Genome Analysis Toolkit (GATK) provides many 
tools for sequence data processing and variant discovery, variant 
evaluation, and manipulation. In this chapter, we present the com-
bination of these tools to preprocess the BAM file before variants 
discoveries.

Step 3: Variants discovery. Based on the BAM alignment file, most of 
variants can be called. Tools for discovering whole genome-wide 
and whole exome variants can be grouped into SNP, Indel, CNV, 
and SV identification tools. Among them, SNP and Indel discovery 
are common. SNP and Indel variants discovery can be divided into 
two stages: variant calling and post-variant calling filtering. GATK 
provides a set of tools for the whole pipeline. Unified Genotyper 
and Haplotype Caller both can call variants. The difference is that 
Haplotype Caller is a more sophisticated tool and Unified Genotyper 
can deal with non-diploid organism. Variants filtering also include 
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two methods: Variant Recalibrate and Variant Filtration. Variant 
Recalibrate uses the machine learning method to train known public 
variants for recalibrating variants. Variant Filtration uses the fixed 
thresholds for filtering variants. If you have diploid and enough depth 
of coverage variants like our example below, Haplotype Caller and 
Variant Recalibrate are recommended in your analysis. In addition 
to these, other softwares can also serve the same purpose. FreeBayes 
uses Bayesian genetic variant detector to find SNPs, Indels, and com-
plex events (composite insertion and substitution events) smaller 
than reads length. In the tutorial of this chapter, we also use Galaxy 
freeBayes as an example. When the alignment BAM file is loaded, 
it will report a standard variant VCF file. Another important vari-
ant discovery is to detect genomic copy number variation and struc-
ture variation. VarScan is a software to discover somatic mutation 
and copy number alteration in cancer by exome sequencing. At first, 
samtools mpileup uses disease and normal BAM files to generate a 
pileup file. And then, VarScan copy number will detect copy number 
variations between disease and normal samples. VarScan copy Caller 
will adjust for GC content and make preliminary calls. ExomeCNV 
is a R package software, which uses depth of coverage and B-allele 
for detecting copy number variation and loss of heterozygosity. 
GATK depth of coverage will be used to convert BAM file into cov-
erage file. Afterward, ExomeCNV will use paired coverage files (e.g., 
tumor-normal pair) for copy number variation detections. Copy 
number variations will be called on each exon and large segments 
one chromosome at a time. BreakDancer has been used to predict 
wide-variety of SVs including deletion, insertion, inversion, intra-
chromosomal translocation, and interchromosomal translocation. 
BreakDancer takes alignment BAM files as input, and bam2cfg will 
generate a configure file. Based on configure file, BreakDancerMax 
will detect the five structure variations in the sample.

Step 4: Genotype statistics summary and filter, population stratifica-
tion, and association test among samples or treatments. When you 
get your variants, you need to know how many known and novel 
alleles in your samples and what difference between groups, and 
how many significant variants in your treatment or samples. SNP 
& Variation Suite (SVS) is a GUI-based software, which includes 
SNP analysis, DNA-seq analysis, and RNA-seq analysis. Genotype 
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statistics summary will detect minor and major alleles and compute 
their frequencies in your groups. To avoid SNVs that are triallelic or 
low-frequency variants, filter setting is necessary. Filtering param-
eters include call rate, minor allele frequency, hardy Weinberg equi-
librium, and number of alleles. After you get high-quality variants 
data, principal component analysis and the Q–Q plot may be applied 
to detect and adjust population stratification between normal con-
trol populations or cohorts and diseased or treatment populations or 
cohorts. The final list of those significant different variants may be 
tenable as potential causative variants of interest to predict disease 
susceptibility, severity, and outcome or treatment response.

Step 5: Variant annotations. Most of variant annotations are based on 
various public variant database (e.g., dbSNP, 1000 genome) to iden-
tify known and new variants and on different methods to evaluate 
impacts of different variants on protein function. The polymorphism 
phenotyping (PolyPhen) and sorting intolerant from tolerant (SIFT) 
can predict possible effect of an amino acid substitution on protein 
function based on straightforward physical and amino acid residues 
conservation in sequence. Based on variant positions, those tools will 
give each variant a score which stands for damaging level. ANNOVAR 
is a command-line tool to annotate functional genetic variants, which 
includes gene-based annotation, region-based annotations, filter-
based annotation, and TABLE_ANNOVAR. Gene-based annotation 
uses gene annotation system (e.g., UCSC genes and ENSEMBL genes) 
to identify whether SNPs or CNVs cause protein coding change. 
Region-based annotations use species- conserved regions to iden-
tify variants in specific genomic regions and use tran scription factor 
binding sites, methylation patterns, segmental dupli cation regions, 
and so on to annotate variants on genomic intervals. Filter-based 
annotation uses different public database (dbSNP and 1000 genome) 
to filter common and rare variants and uses non- synonymous SNPs 
damaging score like SIFT score and PolyPhen score to identify func-
tional variants. TABLE_ANNOVAR will generate a table file with 
summary of annotation variants, like gene annotation, amino acid 
change annotation, SIFT scores, and PolyPhen scores.

Step 6: Visualization. The variant visualization step is intended to display 
how many variants occur in each sample, where they locate, what 
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different structures they potentially engender when comparing with 
reference genome or other public variants database. Similar with 
RNA-seq data, Integrative Genomics Viewer (IGV) also can display 
BAM, VCF, SNP, LOH, and SEG  format for location and coverage 
information of variants. IGV can also reveal the relationship between 
variants and annotation (e.g., exon, intron, or intergenic). It can also 
upload GWAS format data that contain p-value of the association to 
display a Manhattan plot. Circos is another command-line tool for 
visualizing variants’ relationship between multiple genome, sequence 
conservation, and synteny. Meantime, it can display SNP, Indel, CNV, 
SV, and gene annotation in the same figure.

4.4  STEP-BY-STEP TUTORIAL OF GENOME-SEQ 
DATA ANALYSIS

Many genome-seq analysis software and pipelines have been developed. 
Here, we pick GATK pipeline as a command-line interface-based example 
and Galaxy platform as a GUI-based example.

4.4.1 Tutorial 1: GATK Pipeline

GATK is a software package developed at the Broad Institute to analyze 
high-throughput sequencing data. The toolkit offers a wide variety of tools, 
with a primary focus on variant discovery and genotyping as well as strong 
emphasis on data quality assurance. Here, we use one individual sequencing 
data (HG01286) from human with 1000 genomes as an example, which was 
obtained by single-end read sequencing using Illumina’s NGS instrument.

Step 1: To download sra data and convert into FASTQ

---------------------------------------------------------------------------------
  # download SRR1607270.sra data from NCBI FTP service
  $wget ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-
instant/reads/ByRun/sra/SRR/SRR160/SRR1607270/
SRR1607270.sra

 # covert sra format into fastq format
 $fastq-dump SRR1607270.sra
 # when it is finished, you can check all files:
 $ ls -l 
 # SRR1607270.fastq will be produced.

---------------------------------------------------------------------------------
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Step 2: To download human genome data and variation annotation files

---------------------------------------------------------------------------------
  # download those data from GATKbundle FTP service
  $wget ftp://gsapubftp-anonymous@ftp.broadinstitute.
org/bundle/2.8/hg19/ucsc.hg19.fasta.gz

  $wget ftp://gsapubftp-anonymous@ftp.broadinstitute.
org/bundle/2.8/hg19/ucsc.hg19.dict.gz

  $wget ftp://gsapubftp-anonymous@ftp.broadinstitute.
org/bundle/2.8/hg19/ucsc.hg19.fasta.fai.gz

  $wget ftp://gsapubftp-anonymous@ftp.broadinstitute.
org/bundle/2.8/hg19/1000G_omni2.5.hg19.sites.vcf.gz

  $wget ftp://gsapubftp-anonymous@ftp.broadinstitute.
org/bundle/2.8/hg19/1000G_phase1.snps.high_
confidence.hg19.sites.vcf.gz

  $wget ftp://gsapubftp-anonymous@ftp.broadinstitute.
org/bundle/2.8/hg19/dbsnp_138.hg19.vcf.gz

  $wget ftp://gsapubftp-anonymous@ftp.broadinstitute.
org/bundle/2.8/hg19/hapmap_3.3.hg19.sites.vcf.gz

  $wget ftp://gsapubftp-anonymous@ftp.broadinstitute.
org/bundle/2.8/hg19/Mills_and_1000G_gold_standard.
indels.hg19.sites.vcf.gz

 # gunzip .gz files
 $gunzip *.gz
 # when it is finished, you can check all files:
 $ ls -l 
  # ucsc.hg19.fasta, ucsc.hg19.dict, ucsc.hg19.fasta.
fai, 1000G_omni2.5.hg19.sites.vcf, 1000G_phase1.snps.
high_confidence.hg19.sites.vcf , dbsnp_138.hg19.vcf, 
hapmap_3.3.hg19.sites.vcfand Mills_and_1000G_gold_
standard.indels.hg19.sites.vcf will be produced.

---------------------------------------------------------------------------------

Step 3: To index human genome

---------------------------------------------------------------------------------

 BWA index will be used to build genome index which allows efficient 
random access to the genome before reads alignment. 

---------------------------------------------------------------------------------
 # generate BWA human index
 $bwa index ucsc.hg19.fasta
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 # when it is finished, you can check all file:
 $ ls -l 
  # ucsc.hg19.fasta.amb, ucsc.hg19.fasta.ann, ucsc.

hg19.fasta.bwt, ucsc.hg19.fasta.pac and ucsc.hg19.
fasta.sa will be produced.

---------------------------------------------------------------------------------

Step 4: To map single-end reads into reference genome

---------------------------------------------------------------------------------

 Burrows–Wheeler Aligner (BWA) maps sequencing reads against 
reference genome. There are three aligning or mapping algorithms 
designed for Illumina sequence reads from 70 bp to 1 Mbp. Here, 
BWA-MEM will align fastq files (SRR1607270.fastq) into human 
UCSC hg19 genome (ucsc.hg19.fasta). The generated SAM file con-
tains aligning reads.

---------------------------------------------------------------------------------
  $bwa mem ucsc.hg19.fasta SRR1607270.fastq >sample.
sam

 # when it is finished, you can check all files:
 $ ls -l 
 # sample.sam will be produced.

---------------------------------------------------------------------------------

Step 5: To sort SAM into BAM

---------------------------------------------------------------------------------

 Picard SortSam is used to convert SAM file (sample.sam) into 
BAM  file (sample.bam), and sort BAM file order by starting 
positions.

---------------------------------------------------------------------------------
  $ java -jar /data/software/picard/SortSam.jar 
INPUT=sample.sam OUTPUT=sample.bam 
SORT_ORDER=coordinate

 # when it is finished, you can check file:
 $ ls -l 
 # sample.bam will be produced.

---------------------------------------------------------------------------------
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Step 6: To mark duplicate reads

---------------------------------------------------------------------------------

 During the sequencing process, the same sequences can be sequenced 
several times. When sequencing error appears, it will be propagated 
in duplicates. Picard MarkDuplicates is used to flag read duplicates. 
Here, input file is sample.bam which was coordinate sorted by picard-
SortSam, output file is sample_dedup.bam file which contains marked 
duplicated reads, duplication metrics will be written in metrics.txt.

---------------------------------------------------------------------------------
  $ java -jar /data/software/picard/MarkDuplicates.jar 
INPUT=sample.bam OUTPUT=sample_dedup.bam METRICS_
FILE=metrics.txt

 # when it is finished, you can check all files:
 $ ls -l 
  # sample_dedup.bam and metrics.txt will be produced.

---------------------------------------------------------------------------------

Step 7: To add read group information

---------------------------------------------------------------------------------

 The read group information is very important for downstream 
GATK functionality. Without a read group information, GATK will 
not work. Picard AddOrReplaceReadGroups replaces all read groups 
in the input file (sample_dedup.bam) with a single new read group 
and assigns all reads to this read group in the output BAM (sample_
AddOrReplaceReadGroups.bam). Read group library (RGLB), read 
group platform (RGPL), read group platform unit (RGPU), and read 
group sample name (RGSM) will be required.

---------------------------------------------------------------------------------
  $ java -jar /data/software/picard/
AddOrReplaceReadGroups.jar RGLB=L001 RGPL=illumina 
RGPU=C2U2AACXX RGSM=Sample I=sample_dedup.bam 
O=sample_AddOrReplaceReadGroups.bam

 # when it is finished, you can check all file:
 $ ls -l 
  # sample_AddOrReplaceReadGroups.bam will be produced.

---------------------------------------------------------------------------------

www.allitebooks.com

http://www.allitebooks.org
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Step 8: To index BAM file

---------------------------------------------------------------------------------

 Samtools index bam file (sample_AddOrReplaceReadGroups.bam)
is for fast random access to reference genome. Index file sample_
AddOrReplaceReadGroups.bai will be created. 

---------------------------------------------------------------------------------
  $ samtools index sample_AddOrReplaceReadGroups.bam
 # when it is finished, you can check all files:
 $ ls -l 
  # sample_AddOrReplaceReadGroups.bai will be produced.

---------------------------------------------------------------------------------

Step 9: To realign locally around Indels

---------------------------------------------------------------------------------

 Alignment artifacts result in many bases mismatching the refer-
ence near the misalignment, which are easily mistaken as SNPs. 
Realignment around Indels helps improve the accuracy. It takes 
two steps: GATK RealignerTargetCreator firstly identifies what 
regions need to be realigned and then GATK IndelRealigner 
performs the actual realignment. Here, Mills_and_1000G_
gold_ standard.indels.hg19.sites.vcf is used as known Indels for 
realignment and UCSC hg19 (ucsc.hg19.fasta) is used as reference 
genome. Output (sample_realigner.intervals) will contain the list 
of intervals identified as needing realignment for IndelRealigner, 
and output (sample_realigned.bam) will contain all reads with 
better local alignments.

---------------------------------------------------------------------------------
  $java -jar /data/software/gatk-3.3/GenomeAnalysisTK.
jar -T RealignerTargetCreator -R ucsc.hg19.fasta -I 
sample_AddOrReplaceReadGroups.bam --known Mills_
and_1000G_gold_standard.indels.hg19.sites.vcf -o 
sample_realigner.intervals

  $java -jar /data/software/gatk-3.3/GenomeAnalysisTK.
jar -I sample_AddOrReplaceReadGroups.bam -R ucsc.
hg19.fasta -T IndelRealigner -targetIntervals 
sample_realigner.intervals -known Mills_and_1000G_ 
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gold_standard.indels.hg19.sites.vcf -o sample_
realigned.bam

 # when it is finished, you can check all files:
 $ ls -l 
  #sample_realigner.intervals and sample_realigned.bam 
will be produced.

---------------------------------------------------------------------------------

Step 10: To recalibrate base quality score

---------------------------------------------------------------------------------

 Due quality scores accessed by sequencing machines are inaccurate 
or biased, recalibration of base quality score is very important for 
downstream analysis. The recalibration process divides into two 
steps: GATK BaseRecalibrator models an empirically accurate error 
model to recalibrate the bases and GATK PrintReads applies recali-
bration to your sequencing data. The known sites (dbsnp_138.hg19.
vcf and Mills_and_1000G_gold_standard.indels.hg19.sites.vcf) are 
used to build the covariation model and estimate empirical base 
qualities. The output file sample_BaseRecalibrator.grp contains the 
covariation data to recalibrate the base qualities of your sequence 
data. Output file sample_PrintReads.bam will list reads with accu-
rate base substitution, insertion and deletion quality scores.

---------------------------------------------------------------------------------
  $ java -jar /data/software/gatk-3.3/
GenomeAnalysisTK.jar -I sample_realigned.bam -R 
ucsc.hg19.fasta -T BaseRecalibrator -known Sites 
dbsnp_138.hg19.vcf -knownSites Mills_and_1000G_gold_
standard.indels.hg19.sites.vcf -o sample_
BaseRecalibrator.grp

  $ java -jar /data/software/gatk-3.3/
GenomeAnalysisTK.jar -R ucsc.hg19.fasta -T 
PrintReads -BQSR sample_BaseRecalibrator.grp -I 
sample_realigned.bam-o sample_PrintReads.bam

 # when it is finished, you can check all files:
 $ ls -l 
  # sample_BaseRecalibrator.grp and sample_PrintReads.
bam will be produced.

---------------------------------------------------------------------------------



72   ◾   Big Data Analysis for Bioinformatics and Biomedical Discoveries

Step 11: To call variant

---------------------------------------------------------------------------------

 HaplotypeCaller can call SNPs and Indels simultaneously via a local 
de-novo assembly. It will convert alignment bam file (sample1_
PrintReads.bam) into variant call format VCF file (raw_sample.vcf).

---------------------------------------------------------------------------------
  $ java -jar /data/software/gatk-3.3/
  GenomeAnalysisTK.jar -T HaplotypeCaller -ERC GVCF 
-variant_index_type LINEAR -variant_index_parameter 
128000 -R ucsc.hg19.

  fasta -I sample_PrintReads.bam -stand_emit_conf 10 
-stand_call_conf 30 -o raw_sample.vcf

 # when it is finished, you can check all files:
 $ ls -l 
 # raw_sample.vcf will be produced.

---------------------------------------------------------------------------------

Step 12: To recalibrate variant quality scores for SNPs

---------------------------------------------------------------------------------

 When you get high sensitivity raw callsets, you need to recalibrate 
variant quality scores to filter raw variations, further reduce parts of 
false positives. Due to different character of SNPs and Indels, you will 
separate SNPs and Indels to recalibrate variant quality scores. GATK 
VariantRecalibrator applies machine learning method which use hap-
map, omin, dbSNP, and 1000 high-confidence variants as known/true 
SNP variants for training model, and then use the model to recalibrate 
our data. GATK ApplyRecalibration applies the recalibration lever to fil-
ter our data. Output file sample_recalibrate_SNP.recal will contain reca-
librated data, output file sample_recalibrate_SNP.tranches will contain 
quality score thresholds, and output file sample_recal.SNPs.vcf will con-
tain all SNPs with recalibrated quality scores and flag PASS or FILTER.

---------------------------------------------------------------------------------
  $ java -jar /data/software/gatk-3.3/
GenomeAnalysisTK.jar -T VariantRecalibrator -R ucsc.
hg19.fasta -input raw_sample.vcf -resource:hapmap,kn
own=false,training=true,truth=true,prior=15.0 
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hapmap_3.3.hg19.sites.vcf -resource:omni,known=
false,training=true,truth=false,prior=12.0 1000G_
omni2.5.hg19.sites.vcf -resource:1000G,known=false,
training=true,truth=false,prior=10.0 1000G_phase1.
snps.high_confidence.hg19.sites.vcf -resource:dbsnp,
known=true,training=false,truth=false,prior=6.0 
dbsnp_138.hg19.vcf -an QD -an MQ -an MQRankSum -an 
ReadPosRankSum -an FS -mode SNP -recalFile sample_
output.recal -tranchesFile sample_recalibrate_SNP.
tranches -rscriptFile sample_recalibrate_SNP_plots.R

  $ java -jar /data/software/gatk-3.3/
GenomeAnalysisTK.jar -T ApplyRecalibration -R ucsc.
hg19.fasta -input raw_sample.vcf -mode SNP 
-recalFile sample_recalibrate_SNP.recal 
-tranchesFile sample_recalibrate_SNP.tranches -o 
sample_recal.SNPs.vcf --ts_filter_level 99.0

 # when it is finished, you can check all files:
 $ ls -l 
  # sample_recalibrate_SNP.recal, sample_recalibrate_
SNP.tranches and sample_recal.SNPs.vcf will be 
produced.

Step 13: To recalibrate variant quality scores for Indels

---------------------------------------------------------------------------------

 Same process with recalibration variant quality scores of SNPs, 
GATK VariantRecalibrator, and ApplyRecalibration will be used 
to recalibrate Indels. Mills_and_1000G_gold_standard.indels.
hg19.sites.vcf will be used to train Indels model. Finally, Output 
file  sample_final_recalibrated_variants.vcf will contain all SNPs 
and Indels with recalibrated quality scores and flag PASS or 
FILTER.

---------------------------------------------------------------------------------
  $ java -jar /data/software/gatk-3.3/
GenomeAnalysisTK.jar -T VariantRecalibrator -R 
ucsc.hg19.fasta -input sample_recal.SNPs.vcf -resou
rce:mills,known=true,training=true,truth=true,pr
ior=12.0 Mills_and_1000G_gold_standard.indels.hg19.
sites.vcf -an DP -an FS -an MQRankSum -an 
ReadPosRankSum -mode INDEL -minNumBad 1000 
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--maxGaussians 4 -recalFile sample_recalibrate_
INDEL.recal -tranchesFile sample_recalibrate_INDEL.
tranches -rscriptFile 
sample_recalibrate_INDEL_plots.R

  $ java -jar /data/software/gatk-3.3/
GenomeAnalysisTK.jar-T ApplyRecalibration -R ucsc.
hg19.fasta -input sample_recal.SNPs.vcf -mode INDEL 
--ts_filter_level 99.0 -recalFile sample_
recalibrate_INDEL.recal -tranchesFile sample_
recalibrate_INDEL.tranches -o 
sample_final_recalibrated_variants.vcf

 # when it is finished, you can check all files:
 $ ls -l 
  # sample_recalibrate_INDEL.recal, sample_
recalibrate_INDEL.tranches and sample_final_
recalibrated_variants.vcf will be produced.

Note: 

 1. $ is a prompt sign for command or command-line input for each step.

 2. # indicates a comment for each step.

---------------------------------------------------------------------------------

More details can be found in https://www.broadinstitute.org/gatk/guide/
tooldocs/

4.4.2 Tutorial 2: Galaxy Pipeline

Galaxy is an open-source, web-based platform for data intensive biomedi-
cal research. Galaxy supplies many tools for variants detection of genome-
seq data such as FreeBayes, GATK, VarScan, ANNOVAR, snpEff. Here, we 
provide an example that shows you how to analyze raw fastq file to obtain 
variation call and annotation in the galaxy.

Step 1: Transfer SRR1607270.fastq data into Galaxy FTP server. If your 
file size is bigger than 2GB, you need to upload your data via FTP. 
At first, download and install FileZilla in your computer. Then open 
FileZilla, set Host “usegalaxy.org,” your Username and Password, 
click Quickconnect. Select your file SRR1607270.fastq from your 

https://www.broadinstitute.org/gatk/guide/tooldocs/
https://www.broadinstitute.org/gatk/guide/tooldocs/
http://usegalaxy.org
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local site and drag your file into blank area in the remote site. The sta-
tus of file transfer process can be followed on the screen. When it is 
finished, you can continue to the next step.

Step 2: Upload SRR1607270.fastq via the Galaxy FTP server. Open 
https://usegalaxy.org/ and login in. Click Get Data ->Upload File 
from your computer, then click Choose FTP file -> click Start.

Step 3: Edit SRR1607270.fastq attributes. Click on pencil icon adja-
cent to SRR1607270.fastq in History windowS, then click Datatype 
and select fastqillumina, click Attributes and select Database/
Build Human Feb.2009 (GRCh37/hg19) (hg19) as reference, and 
click Save.

Step 4: Report quality of SRR1607270.fastq. Click QC and manipu-
lation -> FastQC: Read QC reports using FastQC, then select 
SRR1607270.fastq and click Execute. The process and result will 
appear in History window.

Step 5: Map SRR1607270.fastq into human genome. Click NGS: 
Mapping -> Map with BWA for Illumina, and then chose different 
parameters for alignment. Here, you can select Use a built-in index 
and Human (homo sapiens) (b37): hg19 as reference genome and 
index, Single-end as library type, FASTQ file SRR1607270.fastq, 
and BWA settings Commonly used, and click Execute. When it is 
finished, bam file will appear in History window.

Step 6: Call variants. Click NGS: Variant Analysis -> FreeBayes, 
select hg19 as reference genome, choose 1: Simple diploid calling as 
parameter selection level, and Execute. When it is finished, vcf file 
including all variants will appear in History window. You can click 
the result, it will show all details and you also can download the vcf 
file into your computer.

Step 7: Variant annotation. Click NGS: Variant Analysis -> ANNOVAR 
Annotate VCF, select FreeBayes variants as variants file, choose ref-
Gene as gene annotations, phastConsElements46way as annotation 
regions and 1000g2012apr_all as annotation databases parameters, 
click Execute. The results will appear in History window, which will 
show you protein coding change and amino acids affect.

https://usegalaxy.org/
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C h a p t e r  5

RNA-Seq Data Analysis

Li Qin Zhang, Min Xiong, 

Daniel P. Heruth, and Shui Qing Ye

5.1 INTRODUCTION
RNA-sequencing (RNA-seq) is a technology that uses next-generation 
sequencing (NGS) to determine the identity and abundance of all RNA 
sequences in biological samples. RNA-seq is gradually replacing DNA 
microarrays as a preferred method for transcriptome analysis because 
it has the advantages of profiling a complete transcriptome, not relying 
on any known genomic sequence, achieving digital transcript expression 
analysis with a potentially unlimited dynamic range, revealing sequence 
variations (single-nucleotide polymorphisms [SNPs], fusion genes, and 
isoforms) and providing allele-specific or isoform-specific gene expression 
detections.

RNA is one of the essential macromolecules in life. It carries out a 
broad range of functions, from translating genetic information into the 
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molecular machines and structures of the cell by mRNAs, tRNAs, rRNAs, 
and others to regulating the activity of genes by miRNAs, siRNAs, lin-
cRNAs, and others during development, cellular differentiation, and 
changing environments. The characterization of gene expression in cells 
via measurement of RNA levels with RNA-seq is frequently employed 
to determine how the transcriptional machinery of the cell is affected 
by external signals (e.g., drug treatment) or how cells differ between 
a healthy state and a diseased state. RNA expression levels  often cor-
relate  with functional roles of their cognate genes. Some molecular 
features can only be observed at the RNA level such as alternative iso-
forms, fusion transcripts, RNA editing, and allele-specific  expression. 
Only 1%–3% RNAs are protein coding RNAs, while more than 70% RNAs 
are  non-coding RNAs. Their regulatory roles or  other  potential func-
tions may only be gleaned by analyzing the  presence and abundance of 
their RNA expressions.

A number of NGS platforms for RNA-seq and other applications 
have been developed. Several major NGS platforms are briefed here. 
Illumina’s platform (http://www.illumina.com/) represents one of the 
most popularly used sequencing by synthesis chemistry in a massively 
parallel arrangement. Currently, it markets HiSeq X Five and HiSeq X 
Ten instruments with population power; HiSeq 2500, HiSeq 3000, and 
HiSeq 4000 instruments with production power; Nextseq 500 with flex-
ible power; and MiSeq with focused power. The HiSeq X Ten is a set 
of 10 ultra-high-throughput sequencers, purpose-built for large-scale 
human whole-genome sequencing at a cost of $1000 per genome, which 
together can sequence over 18,000 genomes per year. The MiSeq desktop 
sequencer allows you to access more focused applications such as targeted 
gene sequencing, metagenomics, small-genome sequencing,  targeted 
gene expression, amplicon sequencing, and HLA typing.  New MiSeq 
reagents enable up to 15 GB of output with 25 M sequencing reads and 
2 × 300 bp read lengths. Life Technologies (http://www.lifetechnologies. 
com/) markets sequencing by oligonucleotide ligation and detection 
(SOLID) 5500 W Series Genetic Analyzers, Ion Proton™ System, and the 
Ion Torrent™ Personal Genome Machine® (Ion PGM™) System. The new-
est 5500 W instrument uses flow chips, instead of beads, to amplify tem-
plates, thus simplifying the workflow and reducing costs. Its sequencing 
accuracy can be up to 99.99%. The Ion Proton™ and Ion PGM™ Systems 

http://www.illumina.com/
http://www.lifetechnologies.com/
http://www.lifetechnologies.com/
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are ion semiconductor-based platforms. The Ion PGM™ System is one 
of top selling benchtop NGS solutions. Roche markets 454 NGS plat-
forms (http://www.454.com/), the GS FLX+ System, and the GS Junior 
Plus System. They are based on sequencing by synthesis chemistry. The 
GS FLX+ System features the unique combination of long reads (up to 
1000 bp), exceptional accuracy and high-throughput, making the system 
well suited for larger genomic projects. The GS Junior Plus System is a 
benchtop NGS platform suitable for individual lab NGS needs. Pacific 
Biosciences (http://www.pacificbiosciences.com/) markets the PACBIO 
RSII platform. It is considered as the third-generation sequencing platform 
since it only requires a single molecule and reads the added nucleotides 
in real time. The chemistry has been termed SMRT for single-molecule 
real time. The PacBio RS II sequencing provides average read lengths in 
excess of >10 KB with ultra-long reads >40 KB. The long reads are char-
acterized by high 99.999% consensus accuracy and are ideal for de novo 
assembly, targeted sequencing applications, scaffolding, and spanning 
structural rearrangements. Oxford Nanopore Technologies (https://
nanoporetech.com/) markets the GridION™ system, the PromethION, 
and the MinION™ devices. Nanopore sequencing is a third-generation 
single-molecule technique. The GridION™ system is a benchtop instru-
ment and an electronics-based platform. This enables multiple nano-
pores to be measured simultaneously and data to be sensed, processed, 
and analyzed in real time. The PromethION is a tablet-sized benchtop 
instrument designed to run a small number of samples. The MinION 
device is a miniaturized single-molecule analysis system, designed for 
single use and to work through the USB port of a laptop or desktop 
computer. With continuous improvements and refinements, nanopore-
based sequencing technology may gain its market share in not distant 
future.

5.2 RNA-SEQ APPLICATIONS
RNA-seq is commonly applied to identify the sequence, structure, and 
abundance of RNA molecules in a specific sample. The nature of questions 
one may address using RNA-seq technology is effectively limitless, and 
thus, it is virtually impossible to present an exhaustive list of all current 
and potential RNA-seq applications. Table  5.1 lists some representative 
applications of RNA-seq.

http://www.454.com/
http://www.pacificbiosciences.com/
https://nanoporetech.com/
https://nanoporetech.com/
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5.3 RNA-SEQ DATA ANALYSIS OUTLINE
Data analysis is perhaps the most daunting task of RNA-seq. The  continued 
improvement in sequencing technologies have allowed for the acquisi-
tion of millions of reads per sample. The sheer volume of these data can 
be intimidating. Similar to advances in the sequencing technology, there 
have been continued development and enhancement in software packages 
for RNA-seq analysis, thus providing more accessible and user friendly 

TABLE 5.1 RNA-Seq Applications

# Usages Descriptions References

1 Differential gene 
expression analysis

Comparing the abundance of RNAs 
among different samples

Wang et al. (2009)

2 Transcript annotations Detecting novel transcribed regions, 
splice events, additional promoters, 
exons, or untranscribed regions

Zhou et al. (2010), 
Mortazavi et al. 
(2008)

3 ncRNA profiling Identifying non-coding RNAs 
(IncRNAs, miRNAs, siRNAs, 
piRNAs, etc.)

IIott et al. (2013)

4 eQTLa Correlating gene expression data 
with known SNPs

Majewski et al. 
(2011)

5 Allele-specific expression Detecting allele-specific expression Degner et al. 
(2009)

6 Fusion gene detection Identification of fusion transcripts Edgren et al. (2011)
7 Coding SNP discovery Identification of coding SNPs Quinn et al. (2013)
8 Repeated elements Discovery of transcriptional activity 

in Repeated elements
Cloonan et al. 
(2008)

9 sQTLb Correlating splice site SNPs with 
gene expression levels

Lalonde et al. 
(2011)

10 Single-cell RNA-seq Sequencing all RNAs from a single 
cell

Hashimshony et al. 
(2012)

11 RNA-binding site 
identification

Identifying RNA-binding sites of 
RNA Binding proteins using 
CLIP-seqc, PAR-CLIPd, and iCLIPe

Darnell et al. 
(2010)

Hafner et al. (2010)
Konig et al. (2010)

12 RNA-editing site 
identification

Identifying RNA-editing sites Ramaswami et al. 
(2013)

Danecek et al. 
(2012)

a eQTL, expression quantitative trait loci.
b sQTL, splice site quantitative trait loci.
c CLIP-seq, cross-linking immunoprecipitation sequencing.
d PAR-CLIP, photoactivatable-ribonucleoside-enhanced CLIP.
e iCLIP, individual-nucleotide resolution CLIP.
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bioinformatic tools. Because the list of common and novel RNA-seq appli-
cations is growing daily and there are even more facets to the analysis 
of RNA-seq data than there are to generating the data itself, it would be 
difficult, if not impossible, to cover all developments in approaches to ana-
lyzing RNA-seq data. The objective of this section is to provide general 
outline to commonly encountered steps and questions one faces on the 
path from raw RNA-seq data to biological conclusion. Figure 5.1 provides 
example workflow, which assumes that a reference genome is available.

Step 1: Demultiplex, filter, and trim sequencing reads. Many research-
ers multiplex molecular sequencing libraries derived from several 
samples into a single pool of molecules to save costs because of a high 
sequence output from a powerful next-generation sequencer, such 
as Illumina 2500, more than the coverage need of the RNA-seq of a 
single sample. Multiplexing of samples is made possible by incorpora-
tion of a short (usually at least 6 nt) index or barcode into each DNA 
fragment during the adapter ligation or PCR amplification steps of 
library preparation. After sequencing, each read can be traced back 
to its original sample using the index sequence and binned accord-
ingly. In the case of Illumina sequencing, barcodes that are variable 
across samples at the first few bases are used to ensure adequate clus-
ter discrimination. Many programs have been written to demultiplex 
barcoded library pools. Illumina’s software bcl2fastq2 Conversion 
Software (v2.17) can demultiplex multiplexed samples during the 
step converting *.bcl files into *.fastq.gz files (compressed FASTQ 

Demultiplex, filter, and trim sequencing reads
↓

Map (align) sequencing reads to reference genome
↓

Count mapped reads to estimate transcript abundance
↓

Perform statistical analysis to identify differential expression among samples or 
treatments

↓
Gene set enrichment and pathway analysis

↓
Visualization

FIGURE 5.1 RNA-seq data analysis pipeline. See text for a brief explanation of 
each step.
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files). bcl2fastq2(v2.17) can also align samples to a reference sequence 
using the compressed FASTQ files and call SNPs and indels, and 
perform read counting for RNA sequences. Quality control of raw 
sequencing data by filter and trim is usually carried out before they 
will be subjected to the downstream analysis. Raw sequencing data 
may include low confidence bases, sequencing-specific bias, 3′/5′ posi-
tion bias, PCR artifacts, untrimmed adapters, and sequence contami-
nation. Raw sequence data are filtered by the real-time analysis (RTA) 
software to remove any reads that do not meet the overall quality as 
measured by the Illumina chastity filter, which is based on the ratio 
of the brightest intensity divided by the sum of the brightest and sec-
ond brightest intensities. The default Illumina pipeline quality filter 
threshold of passing filter is set at CHASTITY ≥ 0.6, that is, no more 
than one base call in the first 25 cycles has a chastity of <0.6. A few 
popular filter and trim software are noted here. FastQC (http://www.
bioinformatics.bbsrc.ac.uk/projects/fastqc/) can provide a simple way 
to do some quality control checks on raw sequence data. PRINSEQ 
(http://prinseq.sourceforge.net/) can filter, trim, and reformat NGS 
data. In PRINSEQ, you can combine many trimming and filtering 
options in one command. Trimomatic (http://www.usadellab.org/
cms/?page=trimmomatic) can perform a variety of useful trimming 
tasks for NGS data.

Step 2: Align sequencing reads to reference genome. The goal of this 
step is to find the point of origin for each and every sequence read. 
Both new sequence data and a reference sequence are needed to 
align the former to the latter. Aligning is computationally demand-
ing because there are millions of reads to align and most reference 
genomes are large. The genome sequence is often transformed and 
compressed into an index to speed up aligning. The most common 
one in use is the Burrows–Wheeler transform. The relatively fast and 
memory efficient TopHat (http://ccb.jhu.edu/software/tophat/index.
shtml) is a commonly used spliced alignment program for RNA-seq 
reads. TopHat 2.0.14, its current version as of March 24, 2015, aligns 
RNA-seq reads to mammalian-sized genomes using the ultra-high-
throughput short-read aligner Bowtie (http://bowtie-bio. sourceforge . 
net/index.shtml) and then analyzes the mapping results to identify 
splice junctions between exons. Bowtie indexes the genome with a 
Burrows–Wheeler index to keep its memory footprint small: typically 

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
http://prinseq.sourceforge.net/
http://ccb.jhu.edu/software/tophat/index.shtml
http://ccb.jhu.edu/software/tophat/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
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about 2.2 GB for the human genome (2.9 GB for paired-end). For 
the file format of human reference sequence, TopHat needs the 
annotation file GRCh38.78.gtf, which can be downloaded from the 
Ensembl site (http://uswest.ensembl.org/info/data/ftp/index.html), 
and the Bowtie2 (Version 2.2.5—3/9/2015) genome index to build a 
Bowtie2 transcriptome index which has the basename GRCh38.78.
tr. The chromosome names in the gene and transcript models (GTF)  
file and the genome index must match. Bowtie2 has to be on the path 
because TopHat2 uses it to build the index. TopHat2 accepts both 
FASTQ and FASTA file formats of newly generated sequence files 
as input. The output from this step is an alignment file, which lists 
the mapped reads and their mapping positions in the reference. The 
output is usually in a BAM (.bam) file format, which is the binary 
version of a SAM file. These files contain all of the information for 
downstream analyses such as annotation, transcript abundance 
comparisons, and  polymorphism detection. Another aligner, Spliced 
Transcripts Alignment to Reference (STAR, https://github.com/alex-
dobin/STAR) software, is emerging as an ultrafast universal RNA-seq 
aligner. It was based on a previously undescribed RNA-seq alignment 
algorithm that uses sequential maximum mappable seed search in 
uncompressed suffix arrays followed by seed clustering and stitching 
procedure. STAR can not only increase aligning speed but also improve 
alignment sensitivity and precision. In addition to unbiased de novo 
detection of canonical junctions, STAR can discover non-canonical 
splices and chimeric (fusion) transcripts and is also capable of map-
ping full-length RNA sequences. In the next section, we will present 
tutorials using both TopHat2 and Star to align sample mouse RNA-seq 
data to mouse reference genome or transcriptome.

Steps 3 and 4: Count mapped reads to estimate transcript abundance and 
perform statistical analysis to identify differential expression among 
samples or treatments. A widely adopted software suite, Cufflinks 
(http://cole-trapnell-lab.github.io/cuff links/announcements/ 
cufflinks-github/) (Version 2.2.1 5052014) can perform transcrip-
tome assembly and estimate transcript abundance and differential 
expression analysis for RNA-seq. Cufflinks is the name of a suite of 
tools which include several programs: Cufflinks, Cuffdiff, Cuffnorm, 
Cuffmerge, Cuffcompare, and Cuffquant. Cufflinks and Cuffdiff are 
two most frequently used programs in the Cufflinks suite. Cufflinks 

http://uswest.ensembl.org/info/data/ftp/index.html
https://github.com/alexdobin/STAR
https://github.com/alexdobin/STAR
http://cole-trapnell-lab.github.io/cufflinks/announcements/cufflinks-github/
http://cole-trapnell-lab.github.io/cufflinks/announcements/cufflinks-github/
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assembles transcriptomes from RNA-seq data and quantifies their 
expression. It takes a text file of SAM alignments or a binary SAM 
(BAM) file as input. Cufflinks produces three output files: transcrip-
tome assembly: transcripts.gtf; transcript-level expression: isoforms.
fpkm_tracking; and gene-level expression: genes.fpkm_tracking. 
The values of both transcripts and genes are reported as FPKM (frag-
ment per thousand nucleotide per million mapped reads). Cuffdiff is 
a highly accurate tool for comparing expression levels of genes and 
transcripts in RNA-seq experiments between two or more conditions 
as well as for reporting which genes are differentially spliced or are 
undergoing other types of isoform-level regulation. Cuffdiff takes a 
GTF2/GFF3 file of transcripts as input, along with two or more BAM 
or SAM files containing the  fragment alignments for two or more 
samples. It outputs the tab delimited file which lists the results of dif-
ferential expression testing between samples for spliced transcripts, 
primary transcripts, genes, and coding sequences. The  remain-
ing programs in the Cufflinks suite are optional. Expression lev-
els reported by Cufflinks in FPKM units are usually comparable 
between samples but in certain situations, applying an extra level 
of normalization can remove sources of bias in the data. Cuffnorm 
has two additional normalization method options: the median of the 
geometric means of fragment counts and the ratio of the 75 quartile 
fragment counts to the average 75 quartile value across all libraries. 
It normalizes a set of samples to be on as similar scales as possible, 
which can improve the results you obtain with other downstream 
tools. Cuffmerge merges multiple RNA-seq assemblies into a mas-
ter transcriptome. This step is required for a differential expression 
analysis of the new transcripts. Cuffcompare can compare the new 
transcriptome assembly to known transcripts and assess the quality 
of the new assembly. Cuffquant allows you to compute the gene and 
transcript expression profiles and save these profiles to files that you 
can analyze later with Cuffdiff or Cuffnorm. This can help you dis-
tribute your computational load over a cluster and is recommended 
for analyses involving more than a handful of libraries.

Step 5: Gene set enrichment and pathway analysis. The output list of dif-
ferentially expressed genes or transcripts between two or more groups 
can be shortened by applying different cutoff thresholds, for example, 
twofold difference and/or p-value < .01. One useful way to compare 
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groups of transcripts or genes that are differentially expressed is 
through gene ontology (GO) term analysis (www.geneontology.org). 
The terms belong to one of three basic ontologies: cellular com-
ponent, biological process, and molecular function. This analysis 
can inform the investigator which cellular component, biological 
process, and molecular function are predominantly dysregulated. 
QIAGEN’S ingenuity pathway analysis (http://www.ingenuity.com/
products/ipa) has been broadly adopted by the life science research 
community  to get a better understanding of the isoform-specific 
biology resulting from RNA-seq experiments. It unlocks the insights 
buried in experimental data by quickly identifying relationships, 
mechanisms, functions, and pathways of relevance. The  Database 
for  Annotation,  Visualization and Integrated  Discovery (DAVID) 
is a popular free program (http://david.abcc.ncifcrf.gov/), which 
provides a comprehensive set of functional annotation tools for 
investigators to understand biological meaning behind large list of 
differentially expressed genes or transcripts. DAVID currently covers 
over 40 annotation categories, including GO terms, protein–protein 
interactions, protein functional domains, disease associations, bio-
pathways, sequence general features, homologies, gene functional 
summaries, gene tissue expressions, and literatures. DAVID’s func-
tional classification tool provides a rapid means to organize large 
lists of differentially expressed genes or transcripts into function-
ally related groups to help unravel the biological content captured by 
high-throughput technologies such as RNA-seq.

Step 6: Visualization. It is important to visualize reads and results in a 
genomic context during the different stages of analysis in order to gain 
insights into gene and transcript structure and to obtain a sense of abun-
dance. One example is the Integrative Genomics Viewer (IGV, http://
www.broadinstitute.org/igv/), which allows one to view the RNA-seq 
as well as other genomic data. Another example is the CummeRbund 
(http://compbio.mit.edu/cummeRbund/), which is an R package 
designed to aid and simplify the task of analyzing Cufflinks RNA-seq 
output. CummeRbund takes the various output files from a cuffdiff run 
and creates a SQLite database of the results describing appropriate rela-
tionships between genes, transcripts, transcription start sites, and coding 
sequences (CDS) regions. Once stored and indexed, data for these fea-
tures, even across multiple samples or conditions, can be retrieved very 

http://www.geneontology.org
http://www.ingenuity.com/products/ipa
http://www.ingenuity.com/products/ipa
http://www.broadinstitute.org/igv/
http://www.broadinstitute.org/igv/
http://compbio.mit.edu/cummeRbund/
http://david.abcc.ncifcrf.gov/
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efficiently and allows the user to explore  subfeatures  of individual genes, 
or gene sets as the analysis requires. CummeRbund has implemented 
numerous plotting functions as well for commonly used visualizations.

5.4 STEP-BY-STEP TUTORIAL ON RNA-SEQ DATA ANALYSIS
There are a plethora of both Unix-based command line and graphical user 
interface (GUI) software available for RNA-seq data analysis. The open-
source, command line Tuxedo Suite, comprised of Bowtie, TopHat, and 
Cufflinks, has been a popular software suite for RNA-seq data analysis. Due to 
its  both analytical power and ease of use, Tuxedo Suite has been incorporated 
into several open source and GUI platforms, including Galaxy (galaxypro-
ject.org), Chipster (chipster.csc.fi), GenePattern (http://www.broadinstitute.
org/cancer/software/genepattern/), and BaseSpace® (BaseSpace®.illumina.
com). In this section, we will demonstrate step-by-step tutorial on two dis-
tinct RNA-seq data analysis workflows. First, we will present an Enhanced 
Tuxedo Suite command line pipeline followed by a review of RNA Express, 
a GUI workflow available on Illumina’s BaseSpace®. Due to the space limita-
tion, gene set enrichment and pathway analysis, as well as the visualization 
step of final results, will not be demonstrated in this section.

5.4.1 Tutorial 1: Enhanced Tuxedo Suite Command Line Pipeline

Here, we present the command workflow for in-depth analysis of RNA-seq 
data. Command line-based pipelines typically require a local cluster for both 
the analysis and storage of data, so you must include these considerations 
when you plan your RNA-seq experiments. The command line pipeline com-
bines five different tools to do this. MaSuRCA is used to assemble super-reads, 
TopHat is used to align those reads into genome, StringTie is used to assem-
ble transcripts, Cuffmerge is used to merge two transcriptomes, and Cuffdiff 
identifies differential expression genes and transcripts between groups. 
Here, we use two data samples (SRR1686013.sra from decidual stromal cells 
and SRR1686010.sra from endometrial stromal fibroblasts) of paired-end 
sequencing reads generated on an Illumina Genome Analyzer II instrument.

Step 1: To download the required programs

---------------------------------------------------------------------------------

 a. StringTie (http://ccb.jhu.edu/software/stringtie/)

 b. MaSuRCA(http://www.genome.umd.edu/masurca.html)

http://www.broadinstitute.org/cancer/software/genepattern/
http://www.broadinstitute.org/cancer/software/genepattern/
http://chipster.csc.fi
http://BaseSpace.illumina.com
http://BaseSpace.illumina.com
http://ccb.jhu.edu/software/stringtie/
http://www.genome.umd.edu/masurca.html
http://galaxyproject.org
http://galaxyproject.org
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 c. Cufflinks (http://cole-trapnell-lab.github.io/cufflinks/install/)

 d. superreads.pl script (http://ccb.jhu.edu/software/stringtie/dl/
superreads.pl)

Step 2: To download sra data and convert into FASTQ

---------------------------------------------------------------------------------
 # create directories for SRR1686013
 $ mkdir SRR1686013
 $ cd SRR1686013
  $ wgetftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-

instant/reads/ByRun/sra/SRR/SRR168/SRR1686013/
SRR1686013.sra

 $ fastq-dump --split-files SRR1686013.sra
 
 # create directories for SRR1686010
 $ mkdir ../SRR1686010
 $ cd ../SRR1686010
  $ wget ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-

instant/reads/ByRun/sra/SRR/SRR168/SRR1686010/
SRR1686010.sra

 $ fastq-dump --split-files SRR1686010.sra

Step 3: To download and prepare reference files

---------------------------------------------------------------------------------
 $ cd ../
  # downloading human hg19 genome from Illumina 

iGenomes
  $ wgetftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/

Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.
gz

 
 # decompressing .gz files
 $ tar -zxvf Homo_sapiens_UCSC_hg19.tar.gz

Step 4: To assemble super-reads

---------------------------------------------------------------------------------

 If your RNA-seq data are paired, you could use superreads.pl script to 
reconstruct the RNA-seq fragments from their end sequences, which 
we call super-reads. The superreads.pl script uses MaSuRCA genome 
assembler to identify pairs of reads that belong to the same super-read 

http://cole-trapnell-lab.github.io/cufflinks/install/
http://ccb.jhu.edu/software/stringtie/dl/superreads.pl
http://ccb.jhu.edu/software/stringtie/dl/superreads.pl


90   ◾   Big Data Analysis for Bioinformatics and Biomedical Discoveries

and extract the sequence containing the pair plus the sequence 
between them. Before running super-reads, install MaSuRCA. Input 
files are two paired-end *.fastq files, and output files are one super-
reads *.fastq file (LongReads.fq.gz) and two notAssembled*.fastq files 
(SRR1686010_1.notAssembled.fq.gz and SRR1686010_2.notAssembled 
.fq.gz).

---------------------------------------------------------------------------------
  # create file named sr_config_example.txt that 
contain below contents and put into the 
<masurca_directory>.

 ****************************************************

 DATA
 PE= pe 180 20 R1_001.fastq R2_001.fastq
  JUMP= sh 3600 200 /FULL_PATH/short_1.fastq /FULL_
PATH/short_2.fastq

 OTHER=/FULL_PATH/file.frg
 END
 PARAMETERS
 GRAPH_KMER_SIZE=auto
 
 USE_LINKING_MATES=1
 
 LIMIT_JUMP_COVERAGE = 60
 
  CA_PARAMETERS = ovlMerSize=30 cgwErrorRate=0.25 
ovlMemory=4GB

 
 NUM_THREADS= 64
 
 JF_SIZE=100000000
 
 DO_HOMOPOLYMER_TRIM=0
 END 
 ****************************************************

 

 $ cd SRR1686010
 # copy superreads.pl scripts into SRR1686010
 $ cp ../superreads.pl superreads.pl
 # run superreads.pl to identify superreads
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  $ perl superreads.pl SRR1686010_1.fastq 
SRR1686010_2.fastq <masurca_directory>

 $ cp superreads.pl ../SRR1686013
 $ cd ../SRR1686013
  $ perl superreads.pl SRR1686013_1.fastq 

SRR1686013_2.fastq <masurca_directory>

Step 5: To align assemble and non-assemble reads to the human refer-
ence sequence using TopHat 2

---------------------------------------------------------------------------------

 TopHat will be used to align super-reads and no assembled pair-
end reads into the human genome and reference annotation. 
The GTF, genome index, and FASTQ files  will be used as input 
files. When TopHat completes the analysis, accepted_hits.bam, 
align_summary.txt, deletions.bed, insertions.bed, junctions.bed, 
logs, prep_reads.info, and unmapped.bam files will be produced. 
The align_summary.txt contains summary of alignment. The 
accepted_hits.bam contains list of read alignment which will be 
used to assemble transcripts for each samples.

---------------------------------------------------------------------------------
 $ cd ../SRR1686010
  # align super-reads and not Assembled pair-end 

reads to genome and gene and transcript models
  $ tophat -p 8 -G Homo_sapiens/UCSC/hg19/Annotation/

Genes/genes.gtfHomo_sapiens/UCSC/hg19/Sequence/
Bowtie2Index/genome SRR1686010_1.notAssembled.fq.gz 
SRR1686010_2.notAssembled.fq.gz LongReads.fq.gz 

 
 $ cd ../SRR1686013
  $ tophat -p 8 -G Homo_sapiens/UCSC/hg19/Annotation/

Genes/genes.gtfHomo_sapiens/UCSC/hg19/Sequence/
Bowtie2Index/genome SRR1686013_1.notAssembled.fq.gz 
SRR1686013_2.notAssembled.fq.gz LongReads.fq.gz

Step 6: To assemble transcriptome by StringTie

---------------------------------------------------------------------------------

 StringTie  assembles genes and transcripts (GTF) for each sample 
from read alignment files (BAM). The human gene and transcript 
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models (genes.gtf) can be used as reference annotation to guide 
assembly. The SRR1686010.gtf and SRR1686013.gtf will be pro-
duced as output after finishing StringTie. The GTF files list all 
assembled genes and transcripts for each sample and it will be used 
as input for Cuffmerge.

---------------------------------------------------------------------------------
 $ cd ../SRR1686010
 # runStringTie to assemble transcriptome
  $ stringtietophat_out/accepted_hits.bam -o 

SRR1686010.gtf -p 8 -G Homo_sapiens/UCSC/hg19/
Annotation/Genes/genes.gtf

 

 $ cd ../SRR1686013
  $ stringtietophat_out/accepted_hits.bam -o 

SRR1686013.gtf -p 8 –G Homo_sapiens/UCSC/hg19/
Annotation/Genes/genes.gtf

Step 7: To merge two transcriptomes by Cuffmerge

---------------------------------------------------------------------------------

 When StringTie assembles the two transcriptomes separately, it will 
produce two different gene and transcript model files for each sam-
ple. Based on this, it is hard to compare expression between groups. 
Cuffmerge will assemble those transcript and gene models into a 
single comprehensive transcriptome. At first, you need to create a 
new text file which contains two GTF file addresses. Cuffmerge will 
then merge the two GTF files with the human reference GTF file and 
produce a single merged.gtf, which contains an assembly that merges 
all transcripts and genes in the two samples.

---------------------------------------------------------------------------------
 $ cd ../
  # create a text file named assemble.txt that list 

GTF files for each sample, Like:

 ***************************************************
 SRR1686010/SRR1686010.gtf
 SRR1686013/SRR1686013.gtf
 ***************************************************

 # runcuffmerge to assemble a single GTF
  $ cuffmerge -g Homo_sapiens/UCSC/hg19/Annotation/

Genes/genes.gtf -p 8 assemble.txt



RNA-Seq Data Analysis    ◾    93

Step 8: To identify differentially expressed genes and transcripts between 
decidual stromal cells and endometrial stromal fibroblasts by Cuffdiff

---------------------------------------------------------------------------------

 Cuffdiff will test the statistical significant transcripts and genes 
between groups. Two read alignment files (BAM) and one merged GTF 
will be used as input for cuffdiff. It will produce a number of output 
files that contain FPKM tracking files, count tracking files, read group 
tracking files, differential expression files, and run.info. The FPKM 
and count tracking files will generate FPKM and number of fragments 
of isoform, gene, cds, and primary transcripts in the two samples. The 
read group tracking files count fragments of isoform, gene, cds, and 
primary transcripts in two groups. The differential expression files list 
the statistical significant levels of isoform, gene, cds, primary tran-
script, promoter, and splicing between groups. Significant equal to yes 
depending on p-values after Benjamini–Hochberg correction for mul-
tiple tests is smaller than .05, which means those isoforms, genes, cds, 
promoters, and splicings have significant differential expression. 

---------------------------------------------------------------------------------
  # identifying differentially expression genes and 

transcripts
  $ cuffdiff -o cuffdiff -p 8 merged.gtf SRR1686010/

tophat_out/accepted_hits.bam SRR1686013/tophat_out/
accepted_hits.bam

 Note:

 1. The parameter p means how many threads will be used in those com-
mands. You can adjust the number following your computer resource.

 2. $ means command for each step.

 3. # means explains for each step.

---------------------------------------------------------------------------------
More details follow in http://ccb.jhu.edu/software/tophat/manual.shtml; 
http://ccb.jhu.edu/software/stringtie/; and http://cufflinks.cbcb.umd.edu/
manual.html.

5.4.2 Tutorial 2: BaseSpace® RNA Express Graphical User Interface

Illumina has developed BaseSpace®, a cloud-based genomics analy-
sis  workflow, which is integrated into the MiSeq, NextSeq, and HiSeq 

http://ccb.jhu.edu/software/tophat/manual.shtml
http://ccb.jhu.edu/software/stringtie/
http://cufflinks.cbcb.umd.edu/manual.html
http://cufflinks.cbcb.umd.edu/manual.html
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platforms. The cloud base platform eliminates the need for an on-site clus-
ter and facilitates easy access to and sharing of data. During the sequenc-
ing run on an Illumina machine, the bcl files are automatically transferred 
to the users BaseSpace® account, where they are demultiplexed and con-
verted into fastq files. For those users who require more in-depth com-
mand line base analyses, the bcl files can be simultaneously transferred 
to a local cluster. In addition, fastq files from previous runs and/or non-
Illumina platforms can be imported into BaseSpace® for further analysis.

The graphics of BaseSpace® are modeled after the application icons made 
popular by Android and Apple operating systems. Analysis applications 
(apps) are available from both Illumina and third-party developers. Access 
to and storage in BaseSpace® is free; however, it does require registration. 
The use of the apps is either free or requires a nominal fee. Currently, 
BaseSpace® offers TopHat, Cufflinks, and RNA Express apps for RNA-seq 
analysis. Since we have already described the command lines for TopHat 
and Cufflinks, we will discuss the RNA Express GUI app in this section. 
The BaseSpace® RNA Express app combines the STAR aligner and DE-Seq 
analysis software, two commonly used workflows, into a single pipeline. 

Log in and/or create your free BaseSpace® user account (https://basespace.
illumina.com).

Step 1: To create a project. Click on the Projects icon and then the New 
Projects icon. Enter the name and description of your project and 
click Create. 

Step 2: To import data. You can add samples (*.fastq files) to a project 
directly from an Illumina sequencing run or you can import files 
from a previous run. In our example, you will analyze the 4 *.fastq files 
representing the same RNA-seq data used for the Enhanced Tuxedo 
Suite Tutorial. Launch the SRA Import v0.0.3 app. Enter your proj-
ect and the SRA# for the file to import (e.g., 1686013 and 1686010) 
and click Continue. These files should import within 30–60 min. 
Illumina will send you an e-mail when the files have been imported. 
Basespace will automatically filter and join the paired-end read files. 

Step 3: To launch the RNA Express app. Once you have created your 
project and imported the *.fastq files, you are ready to run the RNA 
Express app. This app is currently limited to analysis of human, 
mouse, and rat reference genomes, but we are using RNA isolated 

https://basespace.illumina.com
https://basespace.illumina.com


RNA-Seq Data Analysis    ◾    95

from human, so we can proceed. While you have your project page 
open, click the Launch app icon. Select the RNA Express app. Under 
sample criteria, select the reference genome: Homo sapiens/hg19. 
Check the box for Stranded and Trim TruSeq Adapters. Under Control 
Group, select the control endometrial stromal fibroblasts files: ES. Click 
Confirm. Under Comparison Group, select the decidual stromal cells 
files: DS. Click Confirm. Select Continue. Your analysis will begin 
automatically. You will receive an e-mail notification when the analysis 
is complete.

Step 4: To view the data analysis results. Open your Projects page and 
select the Analyses link. Select the RNA Express link. A new page 
with the following types of information will be presented: Primary 
Analysis Information, Alignment Information, Read Counts, 
Differential Expression, Sample Correlation Matrix, Control vs. 
Comparison plot, and a Table listing the differentially expressed 
genes. The Control vs. Comparison plot and the Table are interactive, 
so you can select for the desired fold change and significance cutoffs. 
The data can be downloaded in both PDF and Excel formats for fur-
ther analysis and figure presentation.
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C h a p t e r  6

Microbiome-Seq 
Data Analysis

Daniel P. Heruth, Min Xiong, and Xun Jiang

6.1 INTRODUCTION
Microbiome-sequencing (Microbiome-seq) is a technology that uses 
 targeted, gene-specific next-generation sequencing (NGS) to deter-
mine both the diversity and abundance of all microbial cells, termed 
the microbiota, within a biological sample. Microbiome-seq involves 
sample collection and processing, innovative NGS technologies, and 
robust bioinformatics analyses. Microbiome-seq is often confused 
with  metagenomic-seq, as the terms microbiome and metagenome 
are frequently used interchangeably; however, they describe distinct 
approaches to characterizing microbial communities. Microbiome-seq 
provides a profile of the microbial taxonomy within a sample, while 
metagenomic-seq reveals the composition of microbial genes within a 
sample. Although microbiome-seq and metagenomic-seq share common 
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experimental and analytical strategies, in this chapter, we will focus on 
the analysis of microbiome-seq data.

A major advantage for microbiome-seq is that samples do not have 
to be cultured prior to analysis, thus allowing scientists the ability to 
rapidly characterize the phylogeny and taxonomy of microbial commu-
nities that in the past were difficult or impossible to study. For example, 
bacteria, typically the most numerous microorganisms in biological 
samples, are extremely difficult to culture, with estimates that less than 
30% of bacteria collected from environmental samples can actually be 
cultured. Thus, advances in NGS and bioinformatics have facilitated 
a revolution in microbial ecology. The newly discovered diversity and 
variability of microbiota within and between biological samples are 
vast. To advance further the discovery and characterization of the global 
microbiota, several large projects, including the Earth Microbiome 
Project (www.earthmicrobiome.org), MetaHIT (www.metahit.eu), and the 
Human Microbiome Project (www.hmpdacc.org), have been established. 
In   addition to coordinating and advancing efforts to characterize 
microbial communities from a wide array of environmental and ani-
mal samples, these projects have standardized the protocols for sample 
isolation and processing. This is a critical step in microbiome-seq to 
ensure that the diversity and variability between samples is authentic 
and not due to differences in the collection and handling of the samples. 
If a sample is not processed appropriately, the profile of the microbi-
ota may not be representative of the original sample. For instance, if 
a stool sample is left at room temp and exposed to room air for even 
a short period of time, aerobic bacteria may continue to grow, while 
strict anaerobic bacteria will begin to die, thus skewing the taxonomic 
characterization of the sample. Therefore, we strongly encourage you 
to review the guidelines for sample isolation and processing prior to 
initiating a microbiome-seq project.

Microbiome-seq relies on the targeted sequencing of a single phy-
logenetic marker. The most commonly used marker is the ribosomal 
small subunit (SSU), termed 16S ribosomal RNA (rRNA) in archaea and 
bacteria, and 18S rRNA in eukaryotes. Additional phylogenetic mark-
ers are 5S rRNA, 23S rRNA, and the ribosomal internal transcribed 
spacer (ITS). ITS sequences are used for classifying fungal commu-
nities. These highly conserved ribosomal sequences share the same 
function in translation in all organisms, thus, providing an excellent 

http://www.earthmicrobiome.org
http://www.metahit.eu
http://www.hmpdacc.org
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phylogenetic marker. The ~1500  bp 16S rRNA gene contains nine 
 different  hypervariable regions flanked by evolutionarily conserved 
sequences. Universal primers complementary to the conserved regions 
ensure that the polymerase chain reaction (PCR) amplification of the 
DNA isolated from the experimental samples will generate amplicons 
of the desired variable region(s) representative for each type of bacte-
rium present in the specimen. The resulting amplicons will contain 
the variable regions which will provide the genetic fingerprint used for 
taxonomic classification. The hypervariable regions between bacteria 
are frequently diverse enough to identify individual species. Primers 
targeting the variable V3  and V4  regions are most commonly used, 
although no region has been declared the best for phylogenetic analysis. 
We recommend reviewing the literature to determine which hypervari-
able regions are suggested for your specific biological samples.

The NGS platforms used for microbiome-seq are the same as 
those utilized for whole genome-seq and RNA-seq as described in 
Chapters  4  and 5, respectively. Roche 454  pyrosequencing (http://
www.454.com) was the initial workhorse for microbiome-seq, however, 
due to advances in Illumina’s (MiSeq, HiSeq; http://www.illumina.com) 
and Life Technologies’ (Ion Torrent; http://www.lifetechnologies.com) 
platforms and chemistries, they are now commonly used in micro-
biome-seq. The advantage of Illumina’s systems, in addition to lower 
costs and more coverage than 454 sequencing, is the ability to perform 
paired-end reads (MiSeq, 2 × 300; HiSeq 2500, 2 × 250) on PCR ampli-
cons. However, since longer reads lead to more accurate taxonomic 
classifications, PacBio’s RSII platform (http://www.pacificbiosciences.
com/) may soon become the preferred platform for microbiome-seq. 
Dependent upon the NGS platform you use, there are several options 
available for the inclusion of sample identifying barcodes and heteroge-
neity spacers within the PCR amplicons, so review the latest sequencing 
protocols prior to initiating your experiment.

6.2 MICROBIOME-SEQ APPLICATIONS
Microorganisms constitute not only a large portion of the Earth’s 
 biomass, but they have also colonized eukaryotic organisms, including 
the gastrointestinal tract, oral cavity, skin, airway passages, and uro-
genital system. Table 6.1 lists several key representative applications of 
microbiome-seq.

http://www.454.com
http://www.454.com
http://www.illumina.com
http://www.lifetechnologies.com
http://www.pacificbiosciences.com/
http://www.pacificbiosciences.com/
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6.3 DATA ANALYSIS OUTLINE
Microbiome-seq generates an enormous amount of data; a MiSeq (2 × 300) 
paired-end run produces 44–50 million reads passing filter, while a HiSeq 
2500 (2 × 250) can generate more than 1.2 billion reads in a paired-end 
run. Therefore, an assortment of powerful statistical methods and compu-
tational pipelines are needed for the analysis of the microbiome-seq data. 
Several analysis pipelines for targeted-amplicon sequencing have been 
developed, including QIIME (www.qiime.org), QWRAP (https://github.

TABLE 6.1 Microbiome-Seq Applications

# Usages Descriptions References

1 Human gut 
microbiome

Difference in gut microbial 
communities

Yatsunenko et al. (2012)

Nutrition, microbiome, 
immune system axis

Kau et al. (2011)

Impact of diet on gut 
microbiota

De Filippo et al. (2010)

Antibiotic perturbation Dethlefsen & Relman (2011)
2 Human skin 

microbiome
Analysis of microbial 
communities from distinct 
skin sites

Grice et al. (2009)

3 Human nasal and 
oral microbiome

Comparison of microbiome 
between nasal and oral 
cavities in healthy humans

Bassis et al. (2014)

4 Human urinary tract 
microbiome

Urine microbiotas in 
adolescent males

Nelson et al. (2012)

5 Human placenta 
microbiome

Placental microbiome in 
320 subjects

Aagaard et al. (2014)

6 Disease and 
microbiome

Crohn’s disease Eckburg and Relman (2007)
Obesity Turnbaugh et al. (2009)
Colon cancer Dejea et al. (2014)

7 Identification of new 
bacteria

Identification of 
mycobacterium in upper 
respiratory tract in healthy 
humans

Macovei et al. (2015)

8 Environmental 
classification

Deep-ocean thermal vent 
microbial communities

Reed et al. (2015)

Root-associated micriobiome 
in rice

Edwards et al. (2015)

Tallgrass prairie soil 
microbiome

Fierer et al. (2013)

http://www.qiime.org
https://github.com/QWRAP/QWRAP
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com/QWRAP/QWRAP), mothur (https://www.mothur.org), VAMPS 
(https://vamps.mbl.edu/index.php), and CloVR-16S (https://clovr.org/
methods/clovr-16s/). In addition, there are numerous online resources, 
including Biostars (https://www.biostars.org) and Galaxy (https://www.
galaxyproject.org), which provide both bioinformatics tutorials and dis-
cussion boards. The selection of an analysis pipeline will be dictated by 
the user’s comfort with either Unix-based command line or graphical 
user interface platforms. Command line analysis workflows (QIIME and 
mothur) are the norm for microbiome-seq analysis; however, graphical 
user interface (GUI) software packages, such as Illumina’s MiSeq Reporter 
Software and BaseSpace® (https://basespace.illumina.com), are growing 
in popularity. As NGS and microbiome-seq technologies are developed 
further, the rich resource of analysis pipelines will also continue to become 
both more powerful and user-friendly. The next challenge will be the devel-
opment of software capable of performing large meta-analysis projects to 
capitalize fully on the ever increasing and diverse microbiome-seq data 
sets. The objective of this section is to provide a general outline to com-
monly encountered steps one faces on the path from raw  microbiome-seq 
data to biological conclusions. For the ease of discussion, we will focus 
more specifically on Illumina sequencing technologies coupled with the 
QIIME analysis pipeline; however, the basic concepts are applicable to 
most microbiome-seq data analysis pipelines. QIIME is a collection of sev-
eral third-party algorithms, so there are frequently numerous command 
options for each step in the data analysis. Figure 6.1 provides an example 
workflow for microbiome-seq.

Demultiplex, remove primer(s), quality filter
↓

Pick OTUs and representative sequences
↓

Build OTU table and phylogenetic tree
↓

Community characterization
(α-diversity, β-diversity)

↓
Statistics and visualization of data

FIGURE 6.1 QIIME work flow for microbiome-seq data analysis. See text for 
brief description of each step.

https://github.com/QWRAP/QWRAP
https://www.mothur.org
https://clovr.org/methods/clovr-16s/
https://clovr.org/methods/clovr-16s/
https://vamps.mbl.edu/index.php
https://www.biostars.org
https://www.galaxyproject.org
https://www.galaxyproject.org
https://basespace.illumina.com
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Step 1: Demultiplex, remove primer(s), quality filter. High-throughput 
Illumina microbiome-seq allows multiple samples (100s to 1000s) 
to be analyzed in a single run. Samples are distinguished from one 
another by dual-indexing of the PCR amplicons with two unique 
8  nt barcodes by adapter ligation during the PCR amplification 
steps of library preparation. In the case of Illumina sequencing, uti-
lization of distinct barcodes facilitates adequate cluster discrimina-
tion. The addition of a heterogeneity spacer (0–7  nt) immediately 
downstream of the R1 barcode further enhances cluster discrimi-
nation throughout the sequencing run. The first steps in process-
ing Illumina sequencing files are to convert the base call files (*.bcl) 
into *.fastq files and to demultiplex the samples. After paired-end 
sequencing, each read may be linked back to its original sample 
via its unique barcode. Illumina’s bcl2fastq2 Conversion Software 
v2.17.1.14 can demultiplex multiplexed samples during the step 
converting *.bcl files into *.fastq.gz files (compressed FASTQ files). 
The MiSeq Reporter and BaseSpace® software automatically demul-
tiplex and convert *.bcl files to *.fastq files. QIIME (Quantitative 
Insights into Microbial Ecology) analysis starts with the *.fastq files 
and a user-generated mapping file. The mapping file is a tab-delim-
ited text doc containing the sample name, barcodes, and sequenc-
ing primer. Like the bcl2fastq2 Conversion Software, QIIME can 
also demultiplex fastq files. QIIME uses the mapping file to assign 
the *.fastq sequences to their appropriate sample. QIIME removes 
both the barcodes and primer sequences from the *.fastq files, so 
the remaining sequence is specific to the 16S rRNA hypervari-
able region. The final steps in preprocessing of sequence data are 
to determine the quality (filter) of the sequence, convert the *.fastq 
files to fasta formatted files (*.fsn), and generate the reverse comple-
ment of the R2 sequences. Quality filtering removes sequences that 
contain low quality (e.g., Q < 30) and more than one ambiguous call 
(N). QIIME combines the demultiplexing, primer removal, quality 
filtering, reverse complementation, and conversion to fasta (*.fsn) 
files with a single QIIME command (split_libraries_fastq.py). A 
positive of Illumina sequencing is that overlapping paired-end 
sequences can be merged to generate larger sequences for analy-
sis. Several programs, such as PANDAseq (https://github.com/
neufeld/pandaseq) and PEAR (http://www.exelixis-lab.org/web/
software/pear), are available for joining paired end reads. Finally, 

http://www.exelixis-lab.org/web/software/pear
http://www.exelixis-lab.org/web/software/pear
https://github.com/neufeld/pandaseq
https://github.com/neufeld/pandaseq
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chimeric sequences need to be removed. Chimeras are PCR arti-
facts  generated during library amplification which result in an 
overestimation of community diversity. Chimeras can be removed 
during the processing step or following operational taxonomic 
unit (OTU) picking in step 2.

Step 2: Pick OTUs and representative sequences. Once the sequences 
have been processed, the 16S rRNA amplicon sequences are assigned 
into OTUs, which are based upon their similarity to other sequences 
in the sample. This step, called OTU picking, clusters the sequences 
together into identity thresholds, typically 97% sequence homology, 
which is assumed to represent a common species. There are three 
approaches to OTU picking; de novo, closed-reference, and open-
reference. De novo OTU picking (pick_de_novo_otus_py) clusters 
sequences against each other with no comparison to an external ref-
erence database. Closed-reference OTU picking (pick_closed_refer-
ence_otus.py) clusters the sequences to a reference database and any 
non-matching sequences are discarded. Open-reference OTU pick-
ing (pick_open_reference_otus.py) clusters sequences to a reference 
database and any non-matching sequences are then clustered using 
the de novo approach. Open-reference OTU picking is the most 
commonly used method, although we recommend reviewing the 
QIIME OTU tutorial (http://qiime.org/tutorials/otu_picking.html) 
prior to sequence analysis. Each OTU will contain hundreds of clus-
tered sequences, so a representative sequence for each OTU will be 
selected to speed up the downstream analyses.

Step 3: Build OTU table and phylogenetic tree. Each representative 
OTU is now assigned taxonomically to a known organism using a 
reference database, such as GreenGenes (http://greengenes.lbl.gov/), 
Ribosomal Database Project (RDP) (http://rdp.cme.msu.edu/), and 
Silva (http://www.arb-silva.de/). The sequences are then aligned fur-
ther against the reference database and a phylogenetic tree is inferred 
from the multiple sequence alignment. The final step is to build the 
OTU table which presents the taxonomic summary, including rela-
tive abundance of the sequencing results at the kingdom, phylum, 
class, order, family, genus, and species levels. Based upon the hyper-
variable region(s) which were sequenced and the specific character-
istics of individual bacteria, it may not always be possible to identify 
sequences to the genus and/or species levels.

http://www.arb-silva.de/
http://qiime.org/tutorials/otu_picking.html
http://greengenes.lbl.gov/
http://rdp.cme.msu.edu/
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Step 4: Community classification. The OTU table, phylogenetic tree, 
and mapping file are used to classify the diversity of organisms 
within and between the sequenced samples. α-diversity is defined as 
the diversity of organisms within a sample, while β-diversity is the 
differences in diversity between samples.

Step 5: Statistics and visualization of data. To facilitate the dissemi-
nation of a microbiome-seq experiment, QIIME generates statistics 
at each step of the analysis workflow (OTU table, phylogenetic tree, 
α-diversity, and β-diversity), as well as visualization tools.

6.4  STEP-BY-STEP TUTORIAL FOR 
MICROBIOME-SEQ DATA ANALYSIS

In this section, we will demonstrate step-by-step tutorials on two distinct 
microbiome-seq data analysis workflows. First, we will present a QIIME 
command line pipeline utilizing publically available MiSeq data, followed 
by the introduction of 16S Metagenomics v1.0, a GUI workflow available 
on Illumina’s BaseSpace®.

6.4.1 Tutorial 1: QIIME Command Line Pipeline

Here, we present the QIIME workflow for in-depth analysis of RNA-seq 
data. Command line-based pipelines, like QIIME, typically require a local 
cluster for both the analysis and storage of data; however, QIIME also pro-
vides Windows virtual box (http://qiime.org/install/virtual_box.html) and 
MacQIIME (http://www.wernerlab.org/) for your consideration. Here, we 
provide a sample tutorial with MiSeq (V4; 2 × 250) data you can use for 
practice.

Step 1: To download the required programs

---------------------------------------------------------------------------------

 a. QIIME (QIIME.org).

 b. USEARCH (http://www.drive5.com/usearch/). Rename the 
32 bit binary file to usearch61.

 c. PEAR (http://www.exelixis-lab.org/web/software/pear).

 d. Python script (https://github.com/ThachRocky/QIIME_FASTQ_
TO_FASTA). Specialized script coded for this analysis.

 e. BioPython script (http://biopython.org/)

http://www.wernerlab.org/
http://qiime.org/install/virtual_box.html
http://QIIME.org
http://www.drive5.com/usearch/
http://www.exelixis-lab.org/web/software/pear
https://github.com/ThachRocky/QIIME_FASTQ_TO_FASTA
https://github.com/ThachRocky/QIIME_FASTQ_TO_FASTA
http://biopython.org/
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 f. GreenGenes reference sequences. (ftp://greengenes.microbio.me/
greengenes_release/gg_13_5/gg_13_8_otus.tar.gz)

 g. FigTree Viewer (http://tree.bio.ed.ac.uk/software/figtree/)

 h. MiSeq sequence files:
  $wget ftp://ftp-trace.ncbi.nlm.nih.gov/sra/

sra-instant/reads/ByRun/sra/SRR/SRR651/
SRR651334/SRR651334.sra

  $wget ftp://ftp-trace.ncbi.nlm.nih.gov/sra/
sra-instant/reads/ByRun/sra/SRR/SRR104/
SRR1047080/SRR1047080.sra

Step 2: To create fastq files for each sample you downloaded

---------------------------------------------------------------------------------

 We have selected two samples from a larger project (SRP001634) to 
study the metagenome from infant gut. These two datasets represent 
the micriobiome of an individual infant at 2 and 3 weeks of life. You can 
read more about the study at http://www.ncbi.nlm.nih.gov/ bioproject/
PRJNA63661. The first step is to create *.fastq files from the *.sra files 
you downloaded. These are 2 × 175 bp reads.

---------------------------------------------------------------------------------
$fastq-dump --split-3 SRR651334
$fastq-dump --split-3 SRR1047080

Note: Two output *.fastq files will be generated for each command which 
represent the forward and reverse sequencing reads. For example, the files 
for SRR651334 will be: SRR651334_1.fastq and reverse SRR651334_2.fastq

Step 3: To join paired ends

---------------------------------------------------------------------------------

 The next step is to join the two paired-end sequencing *.fastq files 
generated in step 1 using the PEAR software. This step includes qual-
ity filtering and generating the complement of the reverse sequence.

---------------------------------------------------------------------------------
 $pear –f SRR651334_1.fastq –r SRR651334_2.fastq –n 
250 –q 38 –o SRR651334
 $pear –f SRR1047080_1.fastq –r SRR1047080_2.fastq 
–n 250 –q 38 –o SRR1047080

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA63661
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA63661
http://tree.bio.ed.ac.uk/software/figtree/
ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz
ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz
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Note: The anatomy of this command:

–n: Specify the minimum length of assembled sequence. We just want 
to take the successfully joined sequence that is why we set –n = 250 bp.

–q: Specify the quality score threshold for trimming the low quality 
part of the read. In this case, for the maximum size of 350 bp, we rec-
ommend to use the –q = 38

–f: forward reads

–r: reverse reads

Note: The output files will be SRR651334.assembled.fastq and SRR1047080.
assembled.fastq.

Step 4: Clean and convert joined *fastq files to fasta

---------------------------------------------------------------------------------

 Utilize the specialized python script to convert files to *.fasta format, 
which is necessary for downstream QIIME analysis.

---------------------------------------------------------------------------------
 # Executable format:
  #python Clean_Convert_Fastq_to_Fasta.py <fastq_

file> <new_name.fasta>
 
  $python Clean_Convert_Fastq_to_Fasta.py SRR651334.

assembled.fastq SRR651334.fasta
  $python Clean_Convert_Fastq_to_Fasta.py SRR1047080.

assembled.fastq SRR1047080.fasta

Note: The output files will be SRR651334.fasta and SRR1047080.fasta.

Step 5: To create mapping file

---------------------------------------------------------------------------------

 Your must now create a mapping file which contains the following 
information: sample ID, barcode sequence, linker primer sequence, 
input file name, and description. If you are analyzing original data, 
you must create your mapping file when you are demultiplexing 
your sequences. However, since you are analyzing SRA-deposited 
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sequences, this is the step to create the mapping file. Since these 
sequences have already been demultiplexed, you do not need to 
enter the barcode and primer sequences; however, the heading must 
be present in the text file. The sample IDs and input file names are 
mandatory, and the descriptions are recommended. This is a tricky 
part because each heading is required and must be tab-separated. 
If the downstream step does not work, recheck your mapping file 
format.

---------------------------------------------------------------------------------
#SampleID BarcodeSequence LinkerPrimerSequence InputFileName Description 
SRR651334   SRR651334.fasta week2
SRR1047080   SRR1047080.fasta week3

Note: Your format will look like: “SRR651334\t<blank>\t<blank>\
t<SRR651334.fasta>\t<week3>\n” t = tab and n = end of the line. Save 
your mapping file as <mapping_file.txt>.

Step 6: To add QIIME labels

---------------------------------------------------------------------------------

 The first step is to create a new folder containing both SRR651334.
fasta and SRR1047080.fasta files, followed by the QIIME command 
to combine the files and add the information listed in the mapping_
txt file.

---------------------------------------------------------------------------------
 $mkdir merged_reads
 $cp SRR651334.fasta merged_reads/
 $cp SRR1047080.fasta merged_reads/

 Add qiime label

  $add_qiime_labels.py –i merged_reads/ - m mapping_
file.txt –c InputFileName –n 1 –o Combined_fasta/

Note: The output folder will be named combined_fasta. You can check the 
contents with the following command:

 $ls –l Combined_fasta/

 A single fasta file, combined_seqs.fna, will be present.
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Step 7: To check and remove chimeric sequences

---------------------------------------------------------------------------------

 The combined_seqs.fna file should be screened to remove chimeras. 
QIIME currently includes a taxonomy-assignment-based approach, 
blast_fragments, for identifying chimeric sequences. The chimera 
running code requires the rep_set_aligned reference. We use the 
GreenGenes reference library gg_13_8_otus/rep_set_aligned/99_
otus.fasta. We recommend using 99% homology rather than 97%, 
because the fasta files reported with 97% homology will contain 
dashes in place of uncalled nucleotides.

---------------------------------------------------------------------------------
 $identify_chimeric_seqs.py
 -i Combined_fasta/combined_seqs.fna
  -r /data/reference/Qiime_data_files/gg_13_8_otus/
rep_set_aligned/99_otus.fasta

 -m usearch61
 -o Combined_fasta/usearch_checked_chimeras/
 
 $filter_fasta.py
 -f Combined_fasta/combined_seqs.fna
 -o Combined_fasta/seqs_chimeras_filtered.fna
  -s Combined_fasta/usearch_checked_chimeras/chimeras.txt
 -n

Note: Each of the two commands listed above should be entered as a single 
line. There should be a single space between the command and the next 
parameter. When the first command is completed, you may run the sec-
ond command. Check the output with the following command:

 ls –l Combined_fasta/usearch_checked_chimeras/

 The key output file <Combined_fasta/seqs_chimeras_filtered.fna> 
will be used in the next step.

Step 8: Pick OTUs

---------------------------------------------------------------------------------

 Now you are finally ready to begin the taxonomic classification of 
your sequence data by picking the OTUs. From now on, we will 
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follow the format of step 7, where the commands are written in a 
single line.

---------------------------------------------------------------------------------
 # Executable syntax pick_otus.py

 $pick_otus.py
 -m usearch61
 -i Combined_fasta/seqs_chimeras_filtered.fna
 -o Combined_fasta/picked_otus_default/

Note: To check the ouput, use the command:

 $ls –l Combined_fasta/picked_otus_default/

Note: The <Combined_fasta/picked_otus_default/seqs_chimeras_ filtered_
otus.txt> file will be used in both steps 9 and 11.

Step 9: To pick representation set

---------------------------------------------------------------------------------

 This step picks a representative sequence set, one sequence from each 
OTU. This step will generate a de novo fasta (fna) file for each repre-
sentation set of OTUs, named default_rep.fna.

---------------------------------------------------------------------------------
 # Executable syntax pick_rep_set.py
 
 $pick_rep_set.py
  -i Combined_fasta/picked_otus_default/seqs_chimeras_
filtered_otus.txt

 -f Combined_fasta/seqs.fna
 -o Combined_fasta/default_rep.fna

Step 10: Assign Taxonomy

---------------------------------------------------------------------------------

 This step requires that you know the path of the GreenGenes reference 
data set. Given a set of sequences, the command assign_ taxonomy.py 
attempts to assign the taxonomy of each sequence. The output of this 
step is an observation metadata mapping file of input sequence iden-
tifiers (1st column of output file) to taxonomy (2nd  column) and qual-
ity score (3rd column). There may be method-specific information in 



110   ◾   Big Data Analysis for Bioinformatics and Biomedical Discoveries

subsequent columns. The standard practice utilizes the 97%  threshold 
to determine homology.

---------------------------------------------------------------------------------
 Executable syntax assign_taxonomy.py
 
 $assign_taxonomy.py
 -i Combined_fasta/default_rep.fna
 -r gg_13_8_otus/rep_set/97_otus.fasta
 -t gg_13_8_otus/taxonomy/97_otu_taxonomy.txt
 -o Combined_fasta/taxonomy_results/

Note: Check the output files

 $ls -l Combined_fasta/taxonomy_results/

 The < Combined _ fasta/taxonomy _ results/default _
rep _ tax _ assignments.txt > file will be used in step 11.

Step 11: Make OTUS table

---------------------------------------------------------------------------------

 The script make_otu_table.py tabulates the number of times an 
OTU is found in each sample and adds the taxonomic predictions 
for each OTU in the last column if a taxonomy file is supplied. The 
–i text file was generated in step 8 and the –t file was generated in 
step 10.

---------------------------------------------------------------------------------
 Executable syntax make_otu_table.py
 $make_otu_table.py
  -i Combined_fasta/picked_otus_default/seqs_chimeras_
filtered_otus.txt

  -t Combined_fasta/taxonomy_results/default_rep_tax_
assignments.txt

 -o Combined_fasta/otu_table.biom

Step 12: To summarize results

---------------------------------------------------------------------------------

 The summarize_taxa.py script provides summary information 
of the representation of taxonomic groups within each sample. It 
takes an OTU table (Combined_fasta/otu_table.biom) that contains 
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taxonomic information as input. The taxonomic level for which the 
summary information is provided is designated with the –L option. 
The meaning of this level will depend on the format of the taxon 
strings that are returned from the taxonomy assignment step. The 
taxonomy strings that are most useful are those that standardize the 
taxonomic level with the depth in the taxonomic strings. For instance, 
for the RDP classifier taxonomy, Level 1 = Kingdom (e.g., Bacteria), 
2 = Phylum (e.g., Firmicutes), 3 = Class (e.g., Clostridia), 4 = Order 
(e.g., Clostridiales), 5 = Family (e.g., Clostridiaceae), and 6 = Genus 
(e.g., Clostridium).

---------------------------------------------------------------------------------
 Executable syntax summarize_taxa.py
 
 $summarize_taxa.py
 -i Combined_fasta/otu_table.biom
 -o Combined_fasta/taxonomy_summaries/
 
 $ls -l Combined_fasta/taxonomy_summaries/

Step 13: To generate phylogenetic trees

---------------------------------------------------------------------------------

 To test the evolutionary distance between the OTUs, you can build a 
phylogenetic tree. This is a 3-step process that will take about 30 min 
to run. The three steps are to align the sequences to a reference data-
base, quality filter the alignment, and generate the phylogenetic tree. 
There are several phylogentic tree viewing softwares available, and 
we recommend FigTree. It is very easy to install and use. You can 
use the $ls –l command to check the output file. The output file from 
each step will be used in the subsequent step.

---------------------------------------------------------------------------------
 Executable syntax align_seqs.py
 
 $align_seqs.py
 -i Combined_fasta/default_rep.fna
 -t gg_13_8_otus/rep_set_aligned/97_otus.fasta
 -o Combined_fasta/alignment/
 
 Executable syntax filter_alignment.py
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 $filter_alignment.py
  -i Combined_fasta/alignment/default_rep_
aligned.fasta

 -o Combined_fasta/alignment/
 
 Executable syntax make_phylogeny.py
 
 $make_phylogeny.py
  -i Combined_fasta/alignment/default_rep_aligned_
pfiltered.fasta

 -o Combined_fasta/rep_set_tree.tre
 
  Open the rep_set_tree.tre file in FigTree to view 
the phylogenetic tree.

Step 14: To calculate alpha diversity

---------------------------------------------------------------------------------

 The QIIME script for calculating α-diversity in samples is called 
alpha_diversity.py. Remember, α-diversity is defined as the diversity 
of organisms within a sample.

---------------------------------------------------------------------------------
 # 1. Executable syntax multiple_rarefactions.py
 $multiple_rarefactions.py
 -i Combined_fasta/otu_table.biom
 -m 100 -x 1000 -s 20 -n 10
 -o Combined_fasta/rare_1000/

 To check the file: $ls –l Combined_fasta/rare_1000/

 # 2. Perform Calculate Alpha Diversity
 $alpha_diversity.py
 -i Combined_fasta/rare_1000/
 -o Combined_fasta/alpha_rare/
 -t Combined_fasta/rep_set_tree.tre
  -m observed_species, chao1,PD_whole_tree, shannon
 
 # 3. Summarize the Alpha Diversity Data
 $collate_alpha.py
 -i Combined_fasta/alpha_rare/
 -o Combined_fasta/alpha_collated/

 The results in alpha_collated are presented in tab-delimited text files.
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Step 15: To calculate beta diversity

---------------------------------------------------------------------------------

	 β-diversity is the differences in diversity between samples. You can 
perform weighted or unweighted unifrac analysis. We demonstrated 
weighted unifrac in this tutorial.

---------------------------------------------------------------------------------
 # Executable syntax beta_diversity.py
 $beta_diversity.py
 -i Combined_fasta/otu_table.biom
 -m weighted_unifrac
 -o Combined_fasta/beta_div/
 -t Combined_fasta/rep_set_tree.tre

The results in beta_div are presented in tab-delimited text file table.

6.4.2  Tutorial 2: BaseSpace® 16S Metagenomics 
v1.0 Graphical User Interface

As described in Chapter 5, Illumina has developed BaseSpace®, a cloud-
based genomics analysis workflow, which is integrated into the MiSeq, 
NextSeq, and HiSeq platforms. The cloud-based platform eliminates the 
need for an on-site cluster and facilitates easy access to and sharing of 
data. During the sequencing run on an Illumina machine, the *.bcl files 
are automatically transferred to the users BaseSpace® account, where they 
are demultiplexed and converted into *.fastq files. For those users who 
require more in-depth command line base analyses, the *.bcl files can 
be simultaneously transferred to a local cluster. In addition, *.fastq files 
from previous runs and/or non-Illumina platforms can be imported into 
BaseSpace® for further analysis. Currently, BaseSpace® offers the follow-
ing apps for microbiome-seq analysis: 16S Metagenomics v1.0 and Kraken 
Metagenomics. We will discuss the 16S Metagenomics v1.0 GUI app in this 
section. The 16S Metagenomics v1.0 app utilizes the RDP classifier (https://
rdp.cme.msu.edu/classifier/classifier.jsp) and an Illumina-curated version 
of the GreenGenes database to taxonomically classify 16S rRNA ampli-
con reads. The home page or dashboard for your personalized BaseSpace® 
account provides access to important notifications from Illumina, along 
with your runs, projects, and analyses.

Log in and/or create your free BaseSpace® user account (https://basespace.
illumina.com).

https://rdp.cme.msu.edu/classifier/classifier.jsp
https://rdp.cme.msu.edu/classifier/classifier.jsp
https://basespace.illumina.com
https://basespace.illumina.com
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Step 1: To create a project. Click on the Projects icon and then the New 
Project icon. Enter the name and description of your project and 
click Create.

Step 2: To import data. You can add samples (*fastq files) to a project 
directly from an Illumina sequencing run or you can import files 
from a previous run. In our example, you will analyze the same MiSeq 
*fastq files you used above in step 2 in the Qiime tutorial. Import these 
files, one at a time, by launching the SRA Import v0.0.3 app. Enter 
your project and the SRA# (651334 and 1047080), click Continue. 
These files should import within 30 min. Illumina will send you an 
e-mail when the files have been imported. BaseSpace® will automati-
cally filter and join the paired-end read files.

Step 3: To launch the 16S Metagenomics v1.0 app. Once you have cre-
ated your project and imported the sequence files, you are ready to 
run the 16S Metagenomics v1.0 app. While you have your project 
page open, click the Launch app icon. Select the 16S Metagenomics 
v1.0 app. Click Select Samples, select the files you wish to analyze. 
Click Confirm. Click Continue. Your analysis will begin automati-
cally. You will receive an e-mail notification when the analysis is com-
plete. Analysis of these two files will take approximately 30 min.

Step 4: To view the data analysis results. Open your Projects page and 
select the Analyses link. Select the 16S Metagenomics v1.0  link. 
A new page with the following types of information will be presented 
for both samples individually, along with an aggregate summary. 
The types of data presented are Sample Information, Classification 
Statistics, Sunburst Classification Chart, and the Top 20 Classification 
Results by Taxonomic Level. The data can be downloaded in both 
*.pdf and Excel formats for further analysis and figure presentation.
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C h a p t e r  7

miRNA-Seq Data 
Analysis

Daniel P. Heruth, Min Xiong, and Guang-Liang Bi 

7.1 INTRODUCTION
miRNA-sequencing (miRNA-seq) uses next-generation sequencing (NGS) 
technology to determine the identity and abundance of microRNA (miRNA) 
in biological samples. Originally discovered in nematodes, miRNAs are an 
endogeneous class of small, non-coding RNA molecules that regulate 
critical cellular functions, including growth, development, apoptosis, and 
innate and adaptive immune responses. miRNAs negatively regulate gene 
expression by using partial complementary base  pairing to  target sequences 
in the 3′-untranslated region, and recently reported 5′-untranslated region, 
of messenger RNAs (mRNAs) to alter protein  synthesis through either the 
degradation or translational inhibition of target mRNAs. miRNAs are 
synthesized from larger  primary transcripts (pri-miRNAs), which, like 
mRNA, contain a 5′ cap and a 3′ poly-adenosine tail. The pri-miRNAs 
fold into hairpin  structures that are subsequently cleaved in the nucleus 
by Drosha, an RNase III enzyme, into precursor miRNA (pre-miRNA) 
that are approximately 70 nucleotides in length and folded into a hairpin. 
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The pre-miRNA is transported to the cytoplasm where the hairpin struc-
ture is processed further by the RNase III enzyme Dicer to release the 
hairpin loop from the mature,  double-stranded miRNA molecules. 
Mature miRNAs are approximately 22 nucleotide duplexes consisting of 
the mature guide miRNA, termed 5p, and the complementary star  (*), 
termed 3p, miRNA. In  vertebrates, the  single-stranded guide miRNA 
is assembled into the RNA-induced  silencing complex (RISC), which is 
guided to its mRNA target by the miRNA. The imperfect miRNA-mRNA 
base pairing destabilizes the mRNA transcript leading to decreased trans-
lation and/or stability. More than 1800 miRNAs have been identified in 
the human transcriptome (http://www.mirbase.org) with each miRNA 
predicted to regulate 5–10 different mRNAs. In addition, a single mRNA 
may be regulated by multiple  miRNAs. Thus, miRNAs have the potential 
to significantly alter  numerous gene expression networks.

Prior to the technological advances in NGS, microarrays and quantita-
tive real-time polymerase chain reaction (qPCR) were the major  platforms 
for the detection of miRNA in biological samples. Although these 
 platforms remain as powerful tools for determining miRNA expression 
profiles, miRNA-seq is rapidly becoming the methodology of choice to 
simultaneously detect known miRNAs and discover novel miRNAs. 

The NGS platforms used for miRNA-seq are the same as those utilized 
for whole-genome-seq and RNA-seq as described in Chapters 4  and 5, 
respectively. Illumina (MiSeq, HiSeq; http://www.illumina.com) and Life 
Technologies (Ion Torrent; http://www.lifetechnologies.com) continue to 
lead the field in developing the platforms and chemistries required for 
miRNA-seq. To prepare the miRNA for sequencing, 5′ and 3′ adapters are 
ligated onto the single-stranded miRNA in preparation for qPCR ampli-
fication to generate indexed miRNA libraries. The libraries are pooled, 
purified, and then subjected to high-throughput single-read (1 × 50 bp) 
sequencing. In addition to miRNA analyses, these methodologies also 
 provide sequence information for additional small RNA  molecules, 
including short-interfering RNA (siRNA) and piwi-interacting RNA 
(piRNA). 

7.2 miRNA-SEQ APPLICATIONS
Regulation of miRNA expression is controlled at both cell- and tissue- 
specific levels. Thus, elucidating differential miRNA expression  profiles 
could provide critical insights into complex biological processes, includ-
ing global gene regulation and development. Several diseases have been 

http://www.mirbase.org
http://www.illumina.com
http://www.lifetechnologies.com
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associated with abnormal miRNA expression, including arthritis,  cancer, 
heart disease, immunological disorders, and neurological  diseases. As such, 
miRNAs have also been identified as promising biomarkers for  disease. 
Table 7.1 lists several key representative applications of miRNA-seq.

7.3 miRNA-SEQ DATA ANALYSIS OUTLINE
The capacity of high-throughput, parallel sequencing afforded by the short, 
single-reads (1 × 50) utilized in miRNA-seq is a  technological  double-edged 
sword. One edge provides the advantages of highly multi plexed samples cou-
pled with a low number of reads required for significant sequencing depth. 
The other edge presents the challenges of determining miRNA expression 
profiles in 100s of samples simultaneously, including the ability to distin-
guish accurately between short, highly conserved sequences, as well as the 
capability to distinguish mature and primary transcripts from degrada-
tion products. To address these chal lenges, numerous analysis pipelines 
have been developed, including miRDeep2 (www .mdc-berlin.de/8551903/
en/), CAP-miRSeq (http:// bioinformaticstools.mayo.edu/research/ cap- 
mirseq/), miRNAkey (http://ibis.tau.ac.il/miRNAkey/), small RNA work-
bench (http://genboree.org), and miRanalyzer (http://bioinfo5 .ugr.es/
miRanalyzer/ miRanalyzer.php). The list of available miRNA-seq analysis 

TABLE 7.1 miRNA-Seq Applications

# Usages Descriptions References

1 Development Animal development Wienholds and Plasterk (2005)
Lymphopoiesis Kuchen et al. (2010)
Cardiovascular system 
development

Liu and Olson (2010)

Brain development Somel et al. (2011)
2 Disease Huntington’s disease Marti et al. (2010)

Bladder cancer Han et al. (2011)
Kawasaki disease Shimizu et al. (2013)
Lung cancer Ma et al. (2014)

3 Biomarkers Tuberculosis Zhang et al. (2014)
Type 2 diabetes Higuchi et al. (2015)
Epilepsy Wang et al. (2015)

4 Agriculture Regulatory networks in apple Xia et al. (2012)
Leaf senescence in rice Xu et al. (2014)
Postpartum dairy cattle Fatima et al. (2014)

5 Evolution Zebrafish miRNome Desvignes (2014)
Genetic variability across species Zorc et al. (2015)

http://www.mdc-berlin.de/8551903/en/
http://www.mdc-berlin.de/8551903/en/
http://bioinformaticstools.mayo.edu/research/capmirseq/
http://bioinformaticstools.mayo.edu/research/capmirseq/
http://ibis.tau.ac.il/miRNAkey/
http://bioinfo5.ugr.es/miRanalyzer/miRanalyzer.php
http://bioinfo5.ugr.es/miRanalyzer/miRanalyzer.php
http://genboree.org
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software packages is vast and continues to grow rapidly; thus, it is not 
possible to cover all the approaches to  analyzing miRNA-seq data. The 
objective of this section is to provide a general  outline to commonly encoun-
tered steps and questions one faces on the path from raw miRNA-seq data 
to biological conclusions. Figure  7.1 provides an example workflow for 
miRNA-seq. 

Step 1: Quality assessment and pre-processing. High-throughput Illu-
mina and Life Technologies miRNA-seq allow multiple samples (10s 
to 100s) to be analyzed in a single run. Samples are distinguished 
from one another by single-indexing of the PCR amplicons with 
unique barcodes by adapter ligation during the PCR amplification 
steps of library preparation. The first step in processing the sequenc-
ing files is to convert the base call files (*.bcl) into *.fastq files and 
to demultiplex the samples. After single-end sequencing, each read 
may be linked back to its original sample via its unique barcode. 
Illumina’s bcl2fastq2 Conversion Software v2.17.1.14 can demulti-
plex multiplexed samples during the step converting *.bcl files into 
*.fastq.gz files (compressed FASTQ files). Life Technologies’ Torrent 
Suite Software (v3.4) generates unmapped BAM files that can be con-
verted into *.fastq files with the SamToFastq tool that is part of the 
Picard package. The fastq files (sequencing reads) are first  quality- 
checked to remove low-quality bases from the 3′ end and then pro-
cessed further by trimming the PCR amplification adapters. The 
reads are quality filtered one more time to remove sequences that 
are <17 bases.

Step 2: Alignment. To identify both known and novel miRNAs, as 
well as to determine differential gene expression profiles, the reads 

Quality assessment and pre-processing
↓

Alignment
↓

miRNA prediction and quantification
↓

Differential expression

FIGURE 7.1 miRNA-seq data analysis pipeline. See text for a brief description 
of each step.
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must first be aligned to the appropriate reference genome (i.e., 
human, mouse, and rat) and to a miRNA database, such as miRBase 
(http://www.mirbase.org/). The reads which map to multiple posi-
tions within a genome and/or map to known small RNA coordinates 
(e.g., snoRNA rRNA, tRNA), along with any reads that do not map 
to the reference genome, are discarded.

Step 3: miRNA prediction and quantification. The reads are evaluated for 
miRNAs which map to known miRNA gene coordinates and for novel 
sequences which possess characteristics of miRNA (e.g.,  energetic 
stabil ity and secondary structure prediction). In addition, the read dis-
tribution of sequences aligned in step 2 (5′ end, hairpin structure, loop, 
3′ end) is analyzed to distinguish between pre-miRNA and mature 
miRNA. Typically, a confidence score is assigned to each miRNA 
detected to facilitate further evaluation of the sequence data. Finally, 
the number of reads per miRNA is counted and then  normalized to an 
RPKM expression index (reads per kilobase per million mapped reads) 
to allow comparison between samples and across experiments.

Step 4: Differential expression. NGS technologies, including miRNA-seq, 
provide digital gene expression data that can be used to deter mine dif-
ferential expression profiles between two biological conditions. There 
are several software packages, such as edgeR (www. bioconductor 
.org), that use differential signal analyses to statistically predict gene 
expression profiles between samples. These data can be processed 
further for biological interpretation including gene ontology and 
pathway analysis. 

7.4  STEP-BY-STEP TUTORIAL ON miRNA-SEQ DATA ANALYSIS
In this section, we will demonstrate step-by-step tutorials on two distinct 
miRNA-seq data analysis workflows. First, we will present the  miRDeep2 
command line workflow, followed by a tutorial on the small RNA work-
bench, a publically available GUI workflow. We will utilize the same 
 publically available miRNA-seq data for both tutorials. 

7.4.1 Tutorial 1: miRDeep2 Command Line Pipeline

miRDeep2 (www.mdc-berlin.de/8551903/en/) is a proven analysis work-
flow that couples the identification of both known and novel miRNAs 
with the determination of expression profiles across multiple samples. 

http://www.mirbase.org/
http://www.bioconductor.org
http://www.bioconductor.org
http://www.mdc-berlin.de/8551903/en/
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The miRDeep2 algorithm, an enhanced version of miRDeep, utilizes 
a  probabilistic model to analyze the structural features of small RNAs 
which have been mapped to a reference genome and to determine if 
the mapped RNAs are compatible with miRNA biogenesis. miRDeep2 
 consists of three modules: mapper, miRDeep2, and quantifier. The 
 mapper.pl  module preprocesses the sequencing data, the miRDeep2.
pl module  identifies and quantifies the miRNAs, and the quantifier.pl 
 module  performs  quantification and expression profiling. The sample 
data for both  tutorials (SRR326279) represent miRNA-seq data from 
Illumina single-end sequencing of the cytoplasmic fraction from the 
human MCF-7 cell line.

Step 1: To download miRDeep2

---------------------------------------------------------------------------------
# download miRDeep2.0.07 (www.mdc-berlin.de/8551903/en/)

---------------------------------------------------------------------------------

Step 2: To download sra data and convert into FASTQ

---------------------------------------------------------------------------------
# download SRR326279.sra data from NCBI FTP service
$ wget ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-
instant/reads/ByExp/sra/SRX%2FSRX087%2FSRX087921/
SRR326279/SRR326279.sra 
# covert sra format into fastq format
$ fastq-dump SRR326279.sra
# when it is finished, you can check:
$ ls -l 
# SRR326279.fastq will be produced.

---------------------------------------------------------------------------------

Step 3: To download and prepare reference files

---------------------------------------------------------------------------------
# download human hg19 genome from Illumina iGenomes 
(http://support.illumina.com/sequencing/sequencing_
software/igenome.html) 
$ wget ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/ 
Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.gz
# download miRNA precursor and mature sequences from 
miRBase (http://www.mirbase.org/)
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$ wget ftp://mirbase.org/pub/mirbase/CURRENT/
hairpin.fa.gz
$ wget ftp://mirbase.org/pub/mirbase/CURRENT/mature.
fa.gz
# gunzip .gz files
$ gunzip *.gz
# link human genome and bowtie index into current 
working directory
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
WholeGenomeFasta/genome.fa
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
BowtieIndex/genome.1.ebwt
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
BowtieIndex/genome.2.ebwt
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
BowtieIndex/genome.3.ebwt
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
BowtieIndex/genome.4.ebwt
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
BowtieIndex/genome.rev.1.ebwt
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
BowtieIndex/genome.rev.2.ebwt
# use mirDeep2 rna2dna.pl to substitute ‘u’ and ‘U’ 
to ‘T’ from miRNA precursor and mature sequences
$ rna2dna.pl hairpin.fa > hairpin2.fa
$ rna2dna.pl mature.fa > mature2.fa
# when it is finished, you can check:
$ ls -l 
# the following files will be produced: genome.fa, 
genome.1.ebwt, genome.2.ebwt, genome.3.ebwt, 
genome.4.ebwt, genome.rev.1.ebwt, genome.rev.2.ebwt, 
hairpin.fa, mature.fa, hairpin2.fa and mature2.fa

---------------------------------------------------------------------------------

Step 4: To extract human precursor and mature miRNA

---------------------------------------------------------------------------------
# copy perl script below into hsa_edit.pl and put it 
into current directory
****************************************************
#!/usr/bin/perl
use strict;
open IN,“< hairpin2.fa”;
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open OUT,“> hairpin_hsa_dna.fa”;
my $hairpin = 0;
while(my $line = <IN>){

 s/\n|\s+$//;
 if($hairpin==1){
 print OUT “$line”;
 $hairpin = 0;
 }
 if($line =~/(>hsa\S+)/){
 print OUT “$line”;
 $hairpin = 1;
 }
}
close IN;
close OUT;
open IN2,“< mature2.fa”;
open OUT2,“> mature_hsa_dna.fa”;
my $mature = 0;
while(my $line = <IN2>){

 s/\n|\s+$//;
 if($mature==1){
 print OUT2 “$line”;
 $mature = 0;
 }
 if($line =~/(>hsa\S+)/){
 print OUT2 “$line”;
 $mature = 1;
 }
}
close IN2;
close OUT2;
****************************************************
# run the scripts to obtain human precursor and 
mature miRNA sequences.
$ perl hsa_edit.pl
# when it is finished, you can check:
$ ls -l 
# hairpin_hsa_dna.fa and mature_hsa_dna.fa will be 
produced.

---------------------------------------------------------------------------------
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Step 5: To map reads into human genome

---------------------------------------------------------------------------------

 miRDeep2 mapper.pl processes the reads and maps them to the ref-
erence genome. The input file is the fastq file (SRR326279.fastq). The 
parameter -v outputs progress report; -q maps with one mismatch in 
the seed; -n overwrites existing files; -o is number of threads to use 
for bowtie; -u do not remove directory with temporary files; -e means 
input file is fastq format; -h parses to fasta format; -m collapses reads; -k 
clips 3′ adapter sequence AATCTCGTATGCCGTCTTCTGCTTGC; 
-p maps to genome; -s prints processed reads to this file (reads_ 
collapsed.fa); -t prints read mappings to this file (reads_collapsed_
vs_genome.arf).

---------------------------------------------------------------------------------
$ mapper.pl SRR326279.fastq -v -q -n -o 4 -u -e -h -m -k 
AATCTCGTATGCCGTCTTCTGCTTGC  -p genome -s reads_
collapsed.fa -t reads_collapsed_vs_genome.arf
# when it is finished, you can check:
$ ls -l 
# reads_collapsed.fa and reads_collapsed_vs_genome.
arf will be produced.

---------------------------------------------------------------------------------

Step 6: To identify known and novel miRNAs

---------------------------------------------------------------------------------

 miRDeep2.pl performs known and novel micoRNA identification. 
The input files are processed read sequences (reads_collapsed.fa), 
whole-genome sequences (genome.fa), mapping information (reads_ 
collapsed_vs_genome.arf), miRNA sequences (mature_hsa_dna.
fa), none (no mature sequences from other species), and miRNA 
 precursor sequences (hairpin_hsa_dna.fa). The parameter -t is 
 species (e.g., Human or hsa). 2>report.log pipe all progress output to 
report.log. The quantifier.pl module is embedded in the miRDeep2.pl 
module and will measure the reads count for each miRNA. The total 
counts will be presented in both the result.html and expression.
html output files. The output pdf directory shows structure, score 
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breakdowns, and reads signatures of known and novel miRNAs; the 
html  webpage file (result.html) shows annotation and expression of 
known and novel miRNA.

---------------------------------------------------------------------------------
$ miRDeep2.pl reads_collapsed.fa genome.fa reads_
collapsed_vs_genome.arf mature_hsa_dna.fa none 
hairpin_hsa_dna.fa -t hsa 2>report&
# when it is finished, you can check:
$ ls -l 
# result.html, expression.html and pdf directory 
will be produced.

---------------------------------------------------------------------------------

7.4.2 Tutorial 2: Small RNA Workbench Pipeline

Genboree (http://www.genboree.org/site/) offers  a web-based platform 
for high-throughput sequencing data analysis using the latest bioinfor-
matics tools. The exceRpt small RNA-seq pipeline in Genboree work-
bench will be used for miRNA-seq analysis based on GUI. The pipeline 
contains  preprocessing filtering QC, endogenous alignment, and exog-
enous  alignment. Before you start, you need to register and estab-
lish an account. We will use the same miRNA-seq sample data used in 
Tutorial 1. The entry page for this GUI consists of menu headings for 
System Network, Data, Genome, Transcriptome, Cistrome, Epigenome, 
Metagenome, Visualization, and Help. Each of these headings will have 
drop down menus. There are also four main boxes for experimental set 
up and analysis, including Data Selector, Details, Input Data, and Output 
Targets.

Step 1: Create new group in Genboree. At first, drag Data Selector 
genboree.org into Output Targets box, click System/Network -> 
Groups -> Create Group, type in miRNA-seq example as Group 
Name and Genboree miRNA-seq example as Description. Click 
Submit. Job Submission Status will assign a job id. Click OK. Click 
Data Selector Refresh and click Output Targets Remove button to 
inactive genboree.org. Step 1 is necessary to establish a working 
group to analyze miRNA

Step 2: Create new database in Genboree. Drag Data Selector  miRNA-seq 
example into Output Targets, click Data -> Databases -> Create 

http://www.genboree.org/site/
http://genboree.org
http://genboree.org
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Database, set Template: Human (hg19) as Reference Sequence, 
type in miRNA-seq as Database Name, and type in miRNA-seq 
data analysis as Description. Homo sapiens as Species and hg19 as 
Version should be automatically filled. Click Submit. Job Submission 
Status will assign a job id. Click OK. Click Data Selector Refresh 
and click Output Targets Remove button to inactive the miRNA-seq 
example target.

Step 3: Transfer SRR326279.fastq data into Genboree FTP server. Click 
Data Selector miRNA-seq example -> Databases, drag miRNA-
seq into Output Targets. And click Data -> Files -> Transfer 
File, click Choose File button to select SRR326279.fastq and click 
Open. Refer to Step 2 in the miRDeep2 tutorial on how to down-
load the SRR326279.fastq file to your computer. Set Test as Create 
in SubFolder and SRR326279 for miRNA-seq example as File 
Description and click Submit. Job Submission Status will assign 
a job id. Click OK. Click Data Selector Refresh and click Output 
Targets Remove to inactive the miRNA-seq target.

Step 4: Run exceRpt small RNA-seq pipeline. Now that the experimental 
group has been established and the reference genome and sequenc-
ing data have been uploaded, the analysis step can be initiated. Click 
Data Selector miRNA-seq example -> Databases -> miRNA-seq  -> 
Files -> Test, and drag SRR326279.fastq into Input Data and 
database miRNA-seq into Output Targets. Multiple *.fastq sample 
files can be submitted together. To analyze additional *.fastq files 
for the same experiment, proceed with Step 3; it is not necessary 
to repeat Steps 1 and 2. Then click Transcriptome -> Analyze 
Small RNA-Seq Data -> exceRpt small RNA-seq Pipeline. Set 
the parameters for miRNA-seq analysis in Tool Settings. Enter 
AATCTCGTATGCCGTCTTCTGCTTGC as 3′ Adapter Sequence 
and choose Endogenous-only as small RNA Libraries. Defaults 
are used for other parameters. Click Submit. Job Submission Status 
will provide a job id for this analysis. Click OK. This step will take 
 several hours to complete and is dependent upon the number of 
samples  submitted for analysis. Once the files have been submitted 
for  analysis, the program can be closed. 

Step 5: Download analysis results. An e-mail notice will be sent when the 
analysis is completed. Log-in to your account and click Data Selector 
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miRNA-seq example -> Databases -> miRNA-seq -> Files -> small-
RNAseqPipeline -> smallRNA-seq Pipeline ->  processed Results. A 
panel of 15 different results will be reported (e.g.,  mapping summary, 
miRNA count, piRNA count, and tRNA count). If you want to download 
those files, click the file followed by Details Click to Download File. 
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C h a p t e r  8

Methylome-Seq 
Data Analysis

Chengpeng Bi

8.1 INTRODUCTION
Methylation of cytosines across genomes is one of the major epigenetic 
modifications in eukaryotic cells. DNA methylation is a defining feature 
of mammalian cellular identity and is essential for normal development. 
Single-base resolution DNA methylation is now routinely being decoded 
by combining high-throughput sequencing with sodium bisulfite conver-
sion, the gold standard method for the detection of cytosine DNA methyl-
ation. Sodium bisulfite is used to convert unmethylated cytosine to uracil 
and ultimately thymine, and thus, the treatment can be used to detect 
the methylation state of individual cytosine nucleotides. In other words, 
a methylated cytosine will not be impacted by the treatment; however, 
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an unmethylated cytosine is most likely converted to a thymine. DNA 
 methylation occurs predominantly at cytosines within CpG (cytosine 
and guanine separated by only one phosphate) dinucleotides in the mam-
malian genome, and there are over 28 million CpG sites in the human 
genome. High-throughput sequencing of bisulfite-treated DNA molecules 
allows resolution of the methylation state of every cytosine in the target 
sequence, at single-molecule resolution, and is considered the gold stan-
dard for DNA methylation analysis. This bisulfite-sequencing (BS-Seq) 
technology allows scientist to investigate the methylation status of each of 
these CpG sites genome-wide. A methylome for an individual cell type is 
such a gross mapping of each DNA methylation status across a genome.

Coupling bisulfite modification with next-generation sequencing 
(BS-Seq) provides epigenetic information about cytosine methylation at 
single-base resolution across the genome and requires the development of 
bioinformatics pipeline to handle such a massive data analysis. Because 
of the cytosine conversions, we need to develop bioinformatics tools 
specifically suited for the volume of BS-Seq data generated. First of all, 
given the methylation sequencing data, it is necessary to map the derived 
sequences back to the reference genome and then determine their meth-
ylation  status on each cytosine residue. To date, several BS-Seq alignment 
tools have been developed. BS-Seq alignment algorithms are used to esti-
mate  percentage methylation at specific CpG sites (methylation calls), but 
also  provide the ability to call single nucleotide and small indel variants 
as well as copy number and structural variants. In this chapter, we will 
focus on the challenge presented by methylated sequencing alignment 
and methylation status. There are basically two strategies used to perform 
methylation sequencing alignment: (1) wild-card matching approaches, 
such as BSMAP, and (2) three-letter aligning algorithms, such as Bismark.  
Three-letter alignment is one of the most popular approaches described in 
the literature. It involves converting all cytosine to thymine residues on a 
forward stand, and guanine to adenine residues on its reverse stand. Such 
a conversion is applied to both reference genome and short reads, and then 
followed by mapping the converted reads to the converted genome using a 
short-read aligner such as Bowtie. Either gapped or ungapped alignment 
can be used, depending on the underlying short-read alignment tool. 

Bismark is one of the most frequently used methylation mapping 
 pipelines that implement the three-letter approach. It consists of a set of 
tools for the time-efficient analysis of BS-Seq data. Bismark simultane-
ously aligns bisulfite-treated reads to a reference genome and calls cytosine 
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methylation status. Written in Perl and run from the command line, Bismark 
maps bisulfite-treated reads using a short-read aligner, either Bowtie1 or 
Bowtie2. For presentation purposes, we will use Bismark together with 
Bowtie2 to demonstrate the process for analysis of  methylation data.

8.2 APPLICATION
DNA methylation is an epigenetic mark fundamental to developmental 
processes including genomic imprinting, silencing of transposable  elements 
and differentiation. As studies of DNA methylation increase in scope, it has 
become evident that methylation is deeply involved in regulating gene expres-
sion and differentiation of tissue types and plays critical roles in pathological 
processes resulting in various human diseases. DNA methylation patterns 
can be inherited and influenced by the environment, diet, and aging, and 
disregulated in diseases. Although changes in the extent and pattern of DNA 
methylation have been the focus of numerous studies investigating normal 
development and the pathogenesis disease, more recent applications involve 
incorporation of DNA methylation data with other -omic data to better char-
acterize the complexity of interactions at a systems level.

8.3 DATA ANALYSIS OUTLINE
The goal of DNA methylation data analysis is to determine if a site 
 containing C is methylated or not across a genome. One has to perform 
high-throughput sequencing (BS-Seq) of converted short reads and then 
align each such read back onto the reference human genome. This kind of 
alignment is a special case of regular short-read alignment.

For example, given a set of short reads in a FASTQ file from a next-
generation sequencing platform such as Illumina sequencing machine, the 
first step is to perform quality control of reads by running the FastQC pro-
gram, for detail, refer to the FastQC website (http://www. bioinformatics.
babraham.ac.uk/projects/fastqc/). The QC-passed reads are then subject 
to mapping onto a reference genome. For the human genome, the ref-
erence sequence can be downloaded from the University of California, 
Santa Cruz (UCSC; http://genome.ucsc.edu), or Ensembl. To prepare for 
mapping of short reads, the reference genomic sequence is subject to base 
conversion computationally, and two separate converted genomes must 
be considered: one in which C to T conversion on forward strand, and 
another with G to A conversion on the reverse strand. Similarly, bisulfite-
treated short reads are also subject to two kind of conversions, and each 
converted read is mapped to its associated reference sequence whereby one 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://genome.ucsc.edu
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can determine if a position is methylated or not. After read mapping, a 
potential methylated site from all the aligned short reads can be summa-
rized, each having the same genomic location, that is, summarizing them 
on one row: counting how many methylated and how many unmethylated 
from all reads at the same site. Figure 8.1 exhibits the flowchart of how the 
procedures are performed. 

For the methylation pipeline presented in Figure 8.1, Bismark is applied 
and is used together with Bowtie in this flowchart. The working procedure 
of Bismark begins with read conversion, in which the sequence reads are 
first transformed into completely bisulfite-converted forward (C->T) and 
its cognate reverse read (G->A conversion of the reverse strand) versions, 
before they are aligned to similarly converted versions of the genome 
(also C->T and G->A converted). Bismark aligns all four possible align-
ments for each read and pick the best alignment, that is, sequence reads 
that produce a unique best alignment from the four alignment processes 
against the bisulfite genomes (which are running in parallel) are then 
compared to the normal genomic sequence, and the methylation state of 
all cytosine positions in the read is inferred. For use with Bowtie1, a read 
is considered to align uniquely if a single alignment exists that has with 
fewer mismatches to the genome than any other alternative alignment if 
any. For Bowtie2, a read is considered to align uniquely if an alignment 
has a unique best alignment score. If a read produces several alignments 
with the same number of mismatches or with the same alignment score, 

Aligned reads

Human genome

Bismark

Quality
control

Sequencing
machine

Short reads
FASTQ

Bowtie

Converted genome
(C -> T.G -> A)

SAM

Methylation
calling Output

Downstream analysis

FIGURE 8.1 Flowchart of DNA methylation data analysis.
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a read (or a read-pair) is discarded altogether. Finally, Bismark output its 
calling results in SAM format with several new extended fields added and 
also throw away a few fields from original Bowtie output.

After methylation calling on every sites detected, we need to deter-
mine methylation status based on a population of the same type of cells 
or short reads on each cytosine sites. There will be two alternative statuses 
to appear on each site: either methylated or unmethylated due to random 
errors for various reasons, see a demonstration in Figure 8.2a. Therefore, 
statistical method is needed to determine if a site is really methylated or 
not. Figure 8.2b demonstrates this scenario. Although bisulfite treatment 
is used to check if a base C is methylated or not, there are a lot of reasons 
that may give different outcomes, and we want to statistically test which 
outcome is the dominant one and conclude a true methylation status on 
each site. In Figure 8.2a, there are two CpG sites in the DNA sequence, 
the first C is methylated and not converted after bisulfite treatment as in 
highlighted area, the second C is not methylated and it is converted to T. 
Therefore, after bisulfite treatment, all sites with methylated cytosine are 
most likely not impacted, whereas unmethylated Cs are most probably 
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FIGURE 8.2 Population of short reads in DNA methylation. (a) Bisulphite treat-
ment of a short read. (b) A population of treated short reads.
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converted to Ts. In Figure 8.2b, there is a population of such cells or reads 
with experimental bias, that is, on the same site there may be two methyla-
tion results due to various reasons. This is a typical Bernoulli experiment 
with two possible outcomes: methylated or not. In this demonstration, 
there are 5 reads showing unmethylated at a site, whereas 15 reads display 
methylated on the same site, so the frequency of methylation on the site 
is 3/4, and unmethylated is 1/4. Therefore, the site detected is significantly 
methylated (p < .05).

8.4 STEP-BY-STEP TUTORIAL ON BS-SEQ DATA ANALYSIS
8.4.1 System Requirements

A minimum knowledge of Linux/Unix system is required to a pipeline 
user. The Linux/Unix system has already equipped with Perl language 
with which Bismark is written, and GNU GCC compiler is needed to 
compile the source code of Bowtie2, which is written in C/C++ language. 
Both Perl and GCC are free software and publicly available.

8.4.2 Hardware Requirements

As reported, Bismark holds the reference genome in memory while run-
ning Bowtie, with four parallel instances of the program. The memory 
usage is largely dependent on the size of the reference genome and BS-Seq 
data. For a large eukaryotic genome such as human genome, a typical 
memory usage of around 16 GB is needed. It is thus recommended run-
ning Bismark on a Linux/Unix machine with 5 CPU cores and 16  GB 
RAM. The memory requirements of Bowtie2 are a little larger than Bowtie1 
if allowing gapped alignments. When running Bismark combined with 
Bowtie2,  the system requirements may need to be increased, for example, 
a Linux/Unix machine with at least 5 cores and its memory size of at least 
16 GB of RAM.

8.4.3 Alignment Speed

The alignment speed largely relies on the speed of the Bowtie program, 
which in turn depends on the read length and alignment parameters 
used. If many mismatches are allowed and a short seed length is used, the 
alignment process will be considerably slower. If near-perfect matches 
are required, Bowtie1 can align around 5–25 million sequences per hour. 
Bowtie2 is often much faster than Bowtie1 under similar run conditions. 
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8.4.4 Sequence Input

Bismark is a pipeline specified for the alignment of bisulfite-treated reads. 
The reads may come either from whole-genome shotgun BS-Seq (WGSBS) 
or from reduced-representation BS-Seq (RRBS). The input read sequence 
file can be in the format of either FastQ or FastA. The sequences can be 
single-end or paired-end reads. The input files can be in the format of 
either uncompressed plain text or gzip-compressed text (using the .gz 
file  extension). The short-read length in each sequences can be different. 
The reads can be coming from either directional or non-directional BS-Seq 
libraries. 

8.4.5 Help Information

A full list of alignment modes can be found at http://www.bioinformatics.
babraham.ac.uk/projects/bismark/Bismark_alignment_modes.pdf.

In addition, Bismark retains much of the flexibility of Bowtie1/
Bowtie2.

8.4.6 Tutorial on Using Bismark Pipeline

A detailed tutorial on how to download and install the software used and 
prepare reference genome sequence is provided in the following  sections. 
Examples describing the aligning and mapping procedures are also 
provided.

Step 1: Download of Bismark methylation pipeline as well as Bowtie short-
read aligner. To get the current version of Bismark v0.14.0, you may go 
to the downloading website: http://www.bioinformatics. babraham.
ac.uk/projects/download.html#bismark. The  compressed filename 
downloaded is bismark_v0.14.0.tar.gz. The zipped file should be 
installed on a Linux/Unix machine, for example, in my home direc-
tory: /home/cbi/, and then unpack the zipped file by  executing the 
following Linux/Unix command in the current  directory such as/
home/cbi/:

[cbi@head ~]$ tar zxvf bismark_v0.14.0.tar.gz

 For a full list of options while using Bismark, run the following: 

[cbi@head bismark_v0.14.0]$ ./bismark --help

http://www.bioinformatics.babraham.ac.uk/projects/bismark/Bismark_alignment_modes.pdf
http://www.bioinformatics.babraham.ac.uk/projects/bismark/Bismark_alignment_modes.pdf
http://www.bioinformatics.babraham.ac.uk/projects/download.html#bismark
http://www.bioinformatics.babraham.ac.uk/projects/download.html#bismark
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 Bismark will be automatically installed onto /home/cbi/bismark_
v0.14.0, and you simply go there by typing the command: cd bis-
mark_v0.14.0. There are two important programs found: one is 
bismark_genome_preparation, and another is  bismark. 
We will use these two programs soon.

 Because bismark is a pipeline, which means it relies on another 
core short-read aligning program called bowtie to perform meth-
ylated sequence alignment, we have to download and install Bowtie 
software before running bismark. We are going to download the fast 
and accurate version of Bowtie2 version 2.2.5 from the public web-
site: http://sourceforge.net/projects/bowtie-bio/files/bowtie2/2.2.5/. 
The zipped filename is bowtie2-2.2.5-source.zip, and then, we need 
to unzip the file as follows: 

[cbi@head ~]$ unzip bowtie2-2.2.5-source.zip

 Then, we go to the bowtie2 directory by typing: cd bowtie2-2.2.5 
and then type the command ‘make’ to compile and install the soft-
ware. Note that GCC compiler should be available in your Linux/
Unix machine or server, if not, you need to ask your system admin-
istrator to install it.

Step 2: Download of human genome sequence. We may go to the ENSEMBL 
site to download the human genome: ftp://ftp.ensembl.org/pub/
release-78/fasta/homo_sapiens/dna/. Other sites could be from NCBI 
or UCSC genome browser. After that, you need to transfer the genome 
sequence into the target Linux/Unix machine,  better putting it in a 
common use site to be shared with other users. For example, we put 
the human genome to the reference folder as /data/scratch2/
hg38/. We create the genome folder under the directory /data/
scratch2 as follows:

[cbi@head ~]$mkdir /data/scratch2/hg38

Step 3: Preparation of reference genome and Bowtie indexing libraries. 
The goal of this step is to prepare reference indexing libraries in order 
to perform read alignment for bowtie. This Perl script ( bismark_
genome_preparation) needs to be run only once to prepare the 
genome of your interest for bisulfite-treated short-read alignments. 

http://sourceforge.net/projects/bowtie-bio/files/bowtie2/2.2.5/
ftp://ftp.ensembl.org/pub/release-78/fasta/homo_sapiens/dna/
ftp://ftp.ensembl.org/pub/release-78/fasta/homo_sapiens/dna/
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First, we need to create a directory containing the genome downloaded 
as mentioned above. Note that the Perl script bismark_genome_
preparation currently expects FASTA files in this folder (with 
either .fa or .fasta extension, single combined or multiple chromosome 
sequence files per genome). Bismark will automatically create two indi-
vidual subfolders under the genome directory, one for a C->T converted 
reference genome and the other one for the G->A converted reference 
genome. After creating C->T and G->A versions of the genome, they 
will be indexed in parallel using the bowtie indexer bowtie-build 
(or bowtie2-build). It will take quite a while for Bowtie to finish 
preparing both C->T and G->A genome indices. This preparation is 
done once for all. Please note that Bowtie1 and Bowtie2 indexes are 
very different and not compatible; therefore, you have to create them 
separately. To create a genome index for use with Bowtie2, the option 
-- bowtie2 needs to be included in the  command line as well. 

 For the BS-Seq short-read alignment, we need to prepare indices for 
the reference genome by running the following command in bow-
tie2 mode:

[cbi@head~]$ /home/cbi/bismark0.14.0/bismark_
genome_preparation --bowtie2 --path_to_bowtie /home/
cbi/bowtie2-2.2.5 --verbose /data/scratch2/hg38/

 The above step will create two indexing libraries in order to 
align the methylated short reads by bowtie2. The indexing data 
sets will be put under the reference genome folder auto-created 
as Bisulfite_Genome under which there are two subfolders 
to store the Bowtie2 indexing libraries: CT_conversion and 
GA_conversion. 

Step 4: Running Bismark. This step is the actual bisulfite-treated 
short-read alignment by the bowtie program and methylation call-
ing by Bismark as the post-alignment process. Bismark asks the 
user to provide two key parameters: (1) The directory contains the 
reference genome as shown above. Note that we assume there are 
Bowtie1 or Bowtie2 indices already built under the genome direc-
tory, which means that this folder must contain the original genome 
(a fasta-formatted single or multiple files per genome), and the two 
bisulfite genome subdirectories already generated as above. This is 
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required, otherwise the alignment will not work. (2) A single or 
multiple sequence files consist of all bisulfite-treated short reads in 
either FASTQ or FASTA format. All other information is optional.

 In the current version, it is required that the current working direc-
tory contains the short-read sequence files to be aligned. For each 
short-read sequence file or each set of paired-end sequence files, 
Bismark produces one alignment as well as its methylation calling 
information as output file. Together, a separate report file describing 
alignment and methylation calling statistics also provides for user’s 
information on alignment efficiency and methylation percentages.

 Bismark can run with either Bowtie1 or Bowtie2. It is defaulted to 
Bowtie1. If Bowtie2 is needed, one has to specify as --bowtie2. 
Bowtie1 is run default as --best mode. Bowtie1 uses standard 
alignments allowing up to 2 mismatches in the seed region, which is 
defined as the first 28 bp by default. These parameters can be modi-
fied using the options -n and -l, respectively. We recommend the 
default values for a beginner.

 When Bismark calls Bowtie2, it uses its standard alignment  settings. 
This means the following: (1) It allows a multi-seed length of 20 bp 
with  0 mismatches. These parameters can be modified using the 
options -L and -N, respectively. (2) It reports the best of up to 10 
valid alignments. This can be set using the –M parameter. (3) It 
uses the default minimum alignment score function L,0,-0.2, 
i.e., f(x) = 0 + -0.2 * x, where x is the read length. For 
a read of 75 bp, this would mean that a read can have a lowest align-
ment score of −15 before an alignment would become invalid. This is 
roughly equal to 2 mismatches or ~2 indels of 1–2 bp in the read. 

 Bisulfite treatment of DNA and subsequent polymerase chain reaction 
(PCR) amplification can give rise to four (bisulfite converted) strands 
for a given locus. Depending on the adapters used, BS-Seq libraries 
can be constructed in two different ways: (1) If a library is directional, 
only reads which are (bisulfite converted) versions of the original top 
strand or the original bottom strand will be sequenced. By default, 
Bismark performs only 2 read alignments to the original strands, called 
 directional. (2) Alternatively, BS-Seq libraries can be constructed 
so that all four different strands generated in the BS-PCR can and will 
end up in the sequencing library with roughly the  same likelihood. 
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In  this case, all four strands can produce valid alignments, and the 
library is called non-directional. While choosing --non_
directional, we ask Bismark to use all four alignment outputs, 
and it will double the running time as compared to directional library.

 A methylation data file is often in FASTQ format; for example, we 
download a testing file from NCBI website as follows:

[cbi@head~]$ wget 

“ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/
encodeDCC/wgEncodeYaleChIPseq/
wgEncodeYaleChIPseqRawDataRep1Gm12878NfkbTnfa.
fastq.gz”

 Then, we unzip the fastq file and rename it as test.fastq for simplicity 
as follows:

[cbi@head~]$ gunzip 
wgEncodeYaleChIPseqRawDataRep1Gm12878NfkbTnfa.
fastq.gz
[cbi@head~]$mv 
wgEncodeYaleChIPseqRawDataRep1Gm12878NfkbTnfa.
fastq test.fastq

 Now the sequence file test.fastq is in current working folder, and 
we run Bismark to align all the short reads in the file unto converted 
reference genomes as prepared in step 3. The following command is 
executed:

[cbi@head~]$ /home/cbi/bismark0.14.0/bismark  
--bowtie2 --non_directional --path_to_bowtie /home/
cbi/bowtie2-2.2.5 /data/scratch2/hg38/ test.fastq

 The above command will produce two output files: (a) test.fastq_ 
bismark_bt2.bam, holding information on all short reads aligned, 
plus methylation calling strings and reference and read conversions 
used; (b) test.fastq_bismark_bt2_SE_report.txt, holding informa-
tion on alignment and methylation summary. We use the following 
command to generate full plain text in SAM format from the binary 
formatted BAM file:
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[cbi@head~]$samtools view  -h test.fastq_bismark_
bt2.bam >test.fastq_bismark_bt2.sam

 Note that you have to ask your system administrator to install 
 samtools before you run the above command. If it is pair-ended 
sequencing, for example, a pair of read files given as test1.fastq and 
test2.fastq, we execute the following:

[cbi@head~]$ /home/cbi/bismark0.14.0/bismark  
--bowtie2 --non_directional --path_to_bowtie 
/home/cbi/bowtie2-2.2.5 /data/scratch2/hg38/ -1 
test1.fastq -2 test2.fastq

 By default, the most updated version of Bismark will  generate BAM 
output for all alignment modes. Bismark can generate a comprehen-
sive alignment and methylation calling output file for each input file 
or set of paired-end input files. The sequence base-calling qualities 
of the input FastQ files are also copied into the Bismark output file 
as well to allow filtering on quality thresholds if needed. Note that 
the quality values are encoded in Sanger format (Phred 33 scale). If 
the input format was in Phred64 or the old Solexa format, it will be 
converted to Phred 33 scale.

 The single-end output contains the following important information in 
SAM format: (1) seq-ID, (2) alignment strand, (3) chromosome, (4) start 
position, (5) mapping quality, (6) extended CIGAR string, (7) mate ref-
erence sequence, (8) 1-based mate position, (9) inferred template length, 
(10) original bisulfite read sequence, (11) equivalent genomic sequence 
(+2 extra bp), (12) query quality, (13) methylation call string (XM:Z), 
(14) read conversion (XR:Z), and (15) genome conversion (XG:Z). Here 
is an example from the output file test.fastq_bismark_bt2.sam: 

FC30WN3HM_20090212:3:1:212:1932 16      16      
59533920        42      28M     *       0       0       
GTATTTGTTTTCCACTAGTTCAGCTTTC    [[Z[]Z]Z[]][]]
[[]][]]]]]]][]    NM:i:0  MD:Z:28 XM:Z:H.....H...
.......H....X..... XR:Z:CT XG:Z:GA

 If a methylation call string contains a dot ‘.’, it means not involving 
a cytosine. Otherwise, it contains one of the following letters for the 
three different cytosine methylation contexts:
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z unmethylated C in CpG context (lower case means 
unmethylated)
Z methylated C in CpG context (upper case means 
methylated)
x unmethylated C in CHG context
X methylated C in CHG context
h unmethylated C in CHH context
H methylated C in CHH context
u unmethylated C in Unknown context (CN or CHN)
U methylated C in Unknown context (CN or CHN)

 In fact, the methylation output in SAM format generated from 
 Bismark provides opportunity for those users who can write Perl 
or other scripts to code their own scripts to extract and aggregate 
methylation status across genome for each individual samples. If 
this is the case, you can skip step 5.

Step 5: Methylation calling. The goal of this step is to aggregate meth-
ylation status for each site across genome. Clearly, most investiga-
tors are often interested in methylation sites on CpG context. Besides 
the two programs used as above, Bismark also provides users with 
a supplementary Perl script called bismark_methylation_ 
extractor, which operates on Bismark output results and extracts 
the methylation calling information for every single C, methylated 
or not. After processing by the extractor, the position of every single 
C will be written out to a new output file, together with one of three 
contexts: CpG, CHG, or CHH. The methylated Cs will be labeled 
as forward reads (+) and non-methylated Cs as reverse reads  (−). 
The resulting files can be imported into a genome viewer such as 
SeqMonk (using the generic text import filter) for further analysis. 
The output of the methylation extractor can be also transformed 
into a bedGraph file using the option --bedGraph. This step can 
also be accomplished from the methylation extractor output using 
the stand-alone script bismark2bedGraph. As its default option, 
the bismark_methylation_extractor will produce a 
strand-specific output which will use the following abbreviations 
in the output file name to indicate the strand the alignment came 
from one of four possible situations: OT, original top strand; CTOT, 
 complementary to original top strand; OB, original bottom strand; 
and CTOB, complementary to original bottom strand.
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 A typical command to extract context-dependent (CpG/CHG/CHH) 
methylation could look like this:

[cbi@head~]$/home/cbi/bismark0.14.0/bismark_
methylation_extractor -s --comprehensive test.
fastq_bismark_bt2.sam

 This will produce three output files each having four source strands 
(STR takes either OT, OB, CTOT, or CTOB) given as follows: 

(a) CpG_STR_context_test.fastq_bismark_bt2.txt
(b) CHG_STR_context_test.fastq_bismark_bt2.txt 
(c) CHH_STR_context_test.fastq_bismark_bt2.txt 

 The methylation extractor output has the following items (tab sep-
arated): (1) seq-ID, (2) methylation state (+/−), (3) chromosome 
 number, (4) start position (= end position), and (5) methylation 
 calling. Examples for cytosines in CpG context (Z/z) are

FC30WN3HM_20090212:3:1:214:1947 +       18      
10931943        Z
FC30WN3HM_20090212:3:1:31:1937  +       6       
77318837        Z 

 A typical command including the optional --bedGraph 
--counts output could look like this:

[cbi@head~]$/home/cbi/bismark0.14.0/bismark_
methylation_extractor -s --bedGraph --counts 
--buffer_size 10G test.fastq_bismark_bt2.sam

 The output data are in the current folder named as test.fastq_
bismark_bt2.bedGraph. The content is something like this 
(first column is chromosome number, second is start position, third 
is end position, and last is methylation percentage):

track type=bedGraph
18      267928  267929  0
18      268002  268003  100
18      268005  268006  100
18      268008  268009  100 
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 A typical command including the optional genome-wide cytosine 
methylation report could look like this:

[cbi@head~]$/home/cbi/bismark0.14.0/bismark_
methylation_extractor -s --bedGraph --counts 
--buffer_size 10G --cytosine_report --genome_folder  
/data/scratch2/hg38/ test.fastq_bismark_bt2.sam

 The above output is stored in the file: test.fastq_bismark_
bt2.CpG_report.txt, from where we extract part of data like 
this:

chr#    position     strand  #methyl  #unmethyl 
CG  tri-nucleotide 
5       49657477        -       33      2       
CG      CGA 
2       89829453        +       29      1       
CG      CGT 
10      41860296        -       81      7       
CG      CGG

Step 6: Testing if a site is methylated. The above data with counts of 
methylated and unmethylated for each sites can be uploaded into a 
spreadsheet and perform t-test or other methods available and check 
if a site is significantly methylated. 

ACKNOWLEDGMENT
The author thanks Dr. J. Steve Leeder for his comments and for proofreading 
the manuscript.

BIBLIOGRAPHY

 1. Ziller MJ, Gu H, Muller F et  al. Charting a dynamic DNA methylation 
 landscape of the human genome. Nature 2013; 500:477–481.

 2. Lister R et al. Human DNA methylomes at base resolution show widespread 
epigenomic differences. Nature 2009; 462:315–322.

 3. Pelizzola M and Ecker JR. The DNA methylome. FEBS Lett. 2011; 
585(13):1994–2000.

 4. Langmead B, Trapnell C, Pop M, and Salzberg SL. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome 
Biol. 2009; 10:R25.



146   ◾   Big Data Analysis for Bioinformatics and Biomedical Discoveries

 5. Krueger F and Andrews SR. Bismark: A flexible aligner and methylation 
caller for Bisulfite-Seq applications. Bioinformatics 2011; 27:1571–1572.

 6. Otto C, Stadler PF, and Hoffmann S. Fast and sensitive mapping of 
 bisulfite-treated sequencing data. Bioinformatics 2012; 28(13):1689–1704.

 7. Xi Y and Li W. BSMAP: Whole genome bisulfite sequence MAPping 
 program. BMC Bioinform. 2009; 10:232.

 8. Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies 
and beyond. Nat. Rev. Genet. 2012; 13:484–492.

 9. Li Y and Tollefsbol TO. DNA methylation detection: Bisulfite genomic 
sequencing analysis. Methods Mol. Biol. 2011; 791:11–21.

 10. Stirzaker C, Taberlay PC, Statham AL, and Clark SJ. Mining cancer methy-
lomes: Prospects and challenges. Trends Genet. 2014; 30(2):75–84.



147

C h a p t e r  9

ChIP-Seq Data Analysis

Shui Qing Ye, Li Qin Zhang, and Jiancheng Tu

9.1 INTRODUCTION
Chromatin immunoprecipitation sequencing (ChIP-seq) is a method to 
combine chromatin immunoprecipitation with massively  parallel DNA 
sequencing to identify the binding sites of DNA-associated proteins such 
as transcription factors (TFs), polymerases and transcriptional machin-
ery,  structural proteins, protein modifications, and DNA modifications. 
ChIP-seq can be used to map global binding sites precisely and cost 
 effectively for any protein of interest. TFs and other chromatin-associated 
proteins are essential phenotype-influencing mechanisms. Determining 
how proteins interact with DNA to regulate gene expression is essential 
for fully understanding many biological processes and diseases states. 

CONTENTS
9.1 Introduction 147
9.2 ChIP-Seq Applications 149
9.3 Overview of ChIP-Seq Data Analysis 149

9.3.1 Sequencing Depth 149
9.3.2 Read Mapping and Quality Metrics 150
9.3.3 Peak Calling 151
9.3.4 Assessment of Reproducibility 152
9.3.5 Differential Binding Analysis 152
9.3.6 Peak Annotation 153
9.3.7 Motif Analysis 153
9.3.8 Perspective 154

9.4 Step-By-Step Tutorial 156
Bibliography 159



148   ◾   Big Data Analysis for Bioinformatics and Biomedical Discoveries

This epigenetic information is complementary to  genotypes and expres-
sion analysis.

Traditional methods such as electrophoresis gel mobility shift and 
DNase I footprinting assays have successfully identified TF binding sites 
and specific DNA-associated protein modifications and their roles in 
regulating specific genes, but these experiments are limited in scale and 
resolution. This limited utility has sparked the development of chroma-
tin immunoprecipitation with DNA microarray (ChIP-chip) to identify 
interactions between proteins and DNA in larger scales. However, with 
the advent of lower cost and higher speed next-generation DNA sequenc-
ing technologies, ChIP-seq is gradually replacing ChIP-chip as the tour 
de force for the detection of DNA-binding proteins on a genome-wide 
basis. The ChIP-seq technique usually involves fixing intact cells with 
formaldehyde, a reversible protein–DNA cross-linking agent that serves 
to fix or preserve the  protein–DNA interactions occurring in the cell. 
The cells are then lysed and chromatin fragments are isolated from 
the nuclei by sonication or nuclease digestion. This is followed by the 
 selective immunoprecipitation of protein–DNA complexes by utilizing 
specific protein antibodies and their conjugated beads. The cross-links 
are then reversed, and the immunoprecipitated and released DNA is 
subjected to next-generation DNA sequencing before the specific bind-
ing sites of the probed protein are identified by a computation analysis.

Over ChIP-chip, ChIP-seq has advantages of hundredfold lower 
DNA input requirements, no limitation on content available on arrays, 
more precise position resolution, and higher quality data. Of note is 
that the  ENCyclopedia Of DNA Elements (ENCODE) and the Model 
Organism ENCyclopedia Of DNA Elements (modENCODE) consor-
tia have performed more than a thousand individual ChIP-seq experi-
ments for more than 140 different factors and histone modifications in 
more than 100 cell types in four different organisms (D. melanogaster, C. 
elegans, mouse, and human), using multiple independent data produc-
tion and processing pipelines. ChIP-seq is gaining an increasing traction. 
Standard  experimental and data analysis guidelines of ChIP-seq have 
been proposed and published. Although the antibody quality is a key 
determining factor for a  successful ChIP-seq experiment, the challenge 
of ChIP-seq undertaking lies at its data analysis. It includes sequencing 
depth evaluation, quality control of sequencing reads, read mapping, peak 
calling, peaking annotation, and motif analysis. This chapter focuses on 
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the ChIP-seq data analysis. We will highlight some ChIP-seq applications, 
summarize  typical  ChIP-seq data analysis procedures, and demonstrate a 
practical ChIP-seq data  analysis pipeline.

9.2 CHIP-SEQ APPLICATIONS
Application of ChIP-seq is rapidly revolutionizing different areas of science 
because ChIP-seq is an important experimental technique for studying 
interactions between specific proteins and DNA in the cell and determin-
ing their localization on a specific genomic locus. A variety of phenotypic 
changes important in normal development and in diseases are temporally 
and spatially controlled by chromatin-coordinated gene expression. Due 
to the invaluable ChIP-seq information added to our existing knowledge, 
considerable progress has been made in our understanding of chromatin 
structure, nuclear events involved in transcription, transcription regula-
tory networks, and histone modifications. In  this section, Table  9.1 lists 
several major examples of the important roles that the ChIP-seq approach 
has played in discovering TF binding sites, the study of TF-mediated dif-
ferent gene regulation, the identification of genome-wide histone marks, 
and other applications.

9.3 OVERVIEW OF CHIP-SEQ DATA ANALYSIS
Bailey et al. (2013) have published an article entitled “Practical Guidelines 
for the Comprehensive Analysis of ChIP-seq Data.” Interested readers are 
encouraged to read it in detail. Here we concisely summarize frameworks 
of these guidelines step by step.

9.3.1 Sequencing Depth

Sequencing depth means the sequencing coverage by sequence reads. 
The required optimal sequencing depth depends mainly on the size of 
the genome and the number and size of the binding sites of the protein. 
For mammalian TFs and chromatin modifications such as enhancer- 
associated histone marks, which are typically localized at specific, narrow 
sites and have on the order of thousands of binding sites, 20 million reads 
may be adequate (4 million reads for worm and fly TFs) (Landt et al. 2012). 
Proteins with more binding sites (e.g., RNA Pol II) or broader factors, 
including most histone marks, will require more reads, up to 60 million for 
mammalian ChIP-seq (Chen et al. 2012). 
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9.3.2 Read Mapping and Quality Metrics

Before mapping the reads to the reference genome, they should be  filtered 
by applying a quality cutoff. These include assessing the quality of the raw 
reads by Phred quality scores, trimming the end of reads, and examin-
ing the library complexity. Library complexity is affected by  antibody 

TABLE 9.1 Representative ChIP-Seq Applications

Usages Lists Descriptions References

Discovering 
TF-binding sites

1a The first ChIP-seq experiments to 
identify 41,582 STAT1-binding 
regions in IFNγ-HeLa S3 cells.

Robertson et al. 
(2007)

1b ENCODE and modENCODE have 
performed >1,000 ChIP-seq 
experiments for >140 TFs and 
histone modifications in >100 cell 
types in 4 different organisms.

Landt et al. (2012)

Discovering the 
molecular 
mechanisms of 
TF-mediated gene 
regulation

2a Discovered the differential effects 
of the mutants of lysine 37 and 
218/221 of NF-kB p65 in response 
to IL-1β in HEK 293 cells.

Lu et al. (2013)

2b Showed that SUMOylation of the 
glucocorticoid receptor (GR) 
modulates the chromatin 
occupancy of GR on several loci 
in HEK293 cells.

Paakinaho et al. 
(2014)

Discovering histone 
marks

3a Identified H3K4me3 and 
H3K27me3 reflecting stem cell 
state and lineage potential.

Mikkelsen et al. 
(2007)

3b Found H4K5 acetylation and 
H3S10 phosphorylation associated 
with active gene transcription.

Park et al. (2013), 
Tiwari et al. (2011)

Identifying causal 
regulatory SNPs

4 Detected 4796 enhancer SNPs 
capable of disrupting enhancer 
activity upon allelic change in 
HepG 2 cells.

Huang and 
Ovcharenko 
(2014)

Detect disease-
relevant 
epigenomic 
changes following 
drug treatment

5 Utilized ChIP-Rx in the discovery 
of disease-relevant changes in 
histone modification occupancy.

Orlando et al. 
(2014)

Decoding the 
transcriptional 
regulation of 
lncRNAs and 
miRNAs

6 Developed ChIPBase: a database 
for decoding the transcriptional 
regulation of lncRNAs and 
miRNAs.

Yang et al. (2012)
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quality, over-cross-linking, amount of material, sonication, or over-
amplification by PCR. Galaxy (galaxy.project.org) contains some tool-
boxes for these  applications. The quality reads can then be mapped to 
reference genomes using one of the available mappers such as Bowtie 2 
( bowtie-bio. sourceforge.net/bowtie2/), Burrows–Wheeler Aligner (BWA, 
bio-bwa.sourceforge.net/), Short Oligonucleotide Analysis Package (SOAP, 
soap.genomics.org.cn/), and Mapping and Assembly with Qualities (MAQ, 
maq. sourceforge.net/). ChIP-seq data, above 70% uniquely mapped reads, 
are normal, whereas less than 50% may be cause for concern. A low percent-
age of uniquely mapped reads often is due to either excessive amplification 
in the PCR step, inadequate read length, or problems with the sequencing 
platform. A potential cause of high numbers of multi-mapping reads is 
that the protein binds frequently in regions of repeated DNA. After map-
ping, the signal-to-noise ratio (SNR) of the ChIP-seq experiment should 
be assessed, for example, via quality metrics such as strand cross-corre-
lation (Landt et al. 2012) or IP enrichment estimation using the software 
package CHip-seq ANalytics and Confidence Estimation (CHANCE, 
github.com/songlab/chance). Very successful ChIP experiments gener-
ally have a normalized strand cross-correlation coefficient  (NSC) >1.05 
and relative strand cross-correlation coefficient (RSC) >0.8. The software 
CHANCE assesses IP strength by estimating and comparing the IP reads 
pulled down by the antibody and the background, using a method called 
signal extraction scaling (Diaz et al. 2012). 

9.3.3 Peak Calling

A pivotal analysis for ChIP-seq is to predict the regions of the genome 
where the ChIPed protein is bound by finding regions with significant 
numbers of mapped reads (peaks). A fine balance between sensitivity and 
specificity depends on choosing an appropriate peak-calling algorithm and 
normalization method based on the type of protein ChIPed: point-source 
factors such as most TFs, broadly enriched factors such as histone marks, 
and those with both characteristics such as RNA Pol II. SPP and MACS 
are two peak callers which can analyze all types of ChIPed proteins. SPP 
(Kharchenko et  al. 2008, sites.google.com/a/brown.edu/bioinformatics-
in-biomed/spp-r-from-chip-seq) is an R package especially designed  for 
the analysis of ChIP-seq data from Illummina platform. Model-based 
analysis of ChIP-seq (MACS, liulab.dfci.harvard.edu/MACS/) compares 
favorably to existing ChIP-seq peak-finding algorithms, is a publicly avail-
able open source, and can be used for ChIP-seq with or without control 

http://sites.google.com/a/brown.edu/bioinformatics-in-biomed/spp-r-from-chip-seq
http://sites.google.com/a/brown.edu/bioinformatics-in-biomed/spp-r-from-chip-seq
http://galaxy.project.org
http://bowtie-bio.sourceforge.net/bowtie2/
http://bio-bwa.sourceforge.net/
http://soap.genomics.org.cn/
http://maq.sourceforge.net/
http://github.com/songlab/chance
http://liulab.dfci.harvard.edu/MACS/
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samples. However, it is highly recommended that mapped reads from a 
control sample be used. Whether comparing one ChIP sample against 
input DNA (sonicated DNA), mock ChIP (non-specific antibody, e.g., IgG) 
in peak calling, or comparing a ChIP sample against another in differen-
tial analysis, there are linear and nonlinear normalization methods avail-
able to make the two samples comparable. The former includes sequencing 
depth normalization by a scaling factor, reads per kilobase of sequence 
range per million mapped reads (RPKM). The latter includes locally 
weighted regression (LOESS), MAnorm  (bcb.dfci.harvard.edu/~gcyuan/
MAnorm/). Duplicate reads (same 5′ end) can be removed before peak 
calling to improve specificity. Paired-end sequencing for ChIP-seq is 
advocated to improve sensitivity and specificity. A useful approach is 
to threshold the irreproducible discovery rate (IDR), which, along with 
motif analysis, can also aid in choosing the best peak-calling algorithm 
and parameter settings.

9.3.4 Assessment of Reproducibility

To ensure that experimental results are reproducible, it is recommended 
to perform at least two biological replicates of each ChIP-seq experiment 
and examine the reproducibility of both the reads and identified peaks. 
The reproducibility of the reads can be measured by computing the 
Pearson correlation coefficient (PCC) of the (mapped) read counts at each 
genomic position. The range of PCC is typically from 0.3 to 0.4 (for unre-
lated samples) to >0.9 (for replicate samples in high-quality experiments). 
To measure the reproducibility at the level of peak calling, IDR analysis 
(Li et al. 2011, www.encodeproject.org/software/idr/) can be applied to the 
two sets of peaks identified from a pair of replicates. This analysis assesses 
the rank consistency of identified peaks between replicates and outputs 
the number of peaks that pass a user-specified reproducibility threshold 
(e.g., IDR = 0.05). As mentioned above, IDR analysis can also be used for 
comparing and selecting peak callers and identifying experiments with 
low quality.

9.3.5 Differential Binding Analysis

Comparative ChIP-seq analysis of an increasing number of protein-bound 
regions across conditions or tissues is expected with the steady raise of NGS 
projects. For example, temporal or developmental designs of  ChIP-seq 
experiments can provide different snapshots of a binding  signal for the same 
TF, uncovering stage-specific patterns of gene regulation. Two alternatives 

http://www.encodeproject.org/software/idr/
http://bcb.dfci.harvard.edu/~gcyuan/MAnorm/
http://bcb.dfci.harvard.edu/~gcyuan/MAnorm/
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have been proposed. The first one—qualitative— implements  hypothesis 
testing on multiple overlapping sets of peaks. The second one— quantitative—
proposes the analysis of  differential binding between conditions based on 
the total counts of reads in peak regions or on the read densities, that is, 
counts of reads overlapping at individual genomic positions. One can use 
the qualitative approach to get an initial overview of differential binding. 
However, peaks identified in all conditions will never be declared as dif-
ferentially bound sites by this approach based just on the positions of the 
peaks. The quantitative approach works with read counts (e.g., differen-
tial binding of TF with  ChIP-seq-DBChIP, http://master. bioconductor.org/
packages/release/bioc/html/DBChIP.html) computed over peak regions 
and has higher computational cost, but is recommended as it provides 
precise statistical assessment of differential binding across conditions 
(e.g.,  p-values or  q-values linked to read-enrichment fold changes). It is 
strongly advised to verify that the data fulfill the requirements of the soft-
ware chosen for the analysis.

9.3.6 Peak Annotation

The aim of the annotation is to associate the ChIP-seq peaks with func-
tionally relevant genomic regions, such as gene promoters, transcription 
start sites, and intergenic regions. In the first step, one uploads the peaks 
and reads in an appropriate format (e.g., browser extensible data [BED] 
or general feature format [GFF] for peaks, WIG or bedGraph for normal-
ized read coverage) to a genome browser, where regions can be manually 
examined in search for associations with annotated genomic features. The 
Bioconductor package ChIPpeakAnno  (Zhu et  al. 2010, bioconductor.
org/packages/release/bioc/html/ChIPpeakAnno.html) can perform such 
location analyses, and further correlate them with expression data (e.g., to 
determine if proximity of a gene to a peak is correlated with its expression) 
or subjected to a gene ontology analysis (e.g., to determine if the ChIPed 
protein is involved in particular biological processes). 

9.3.7 Motif Analysis

Motif analysis is useful for much more than just identifying the causal 
DNA-binding motif in TF ChIP-seq peaks. When the motif of the ChIPed 
protein is already known, motif analysis provides validation of the success 
of the experiment. Even when the motif is not known beforehand, iden-
tifying a centrally located motif in a large fraction of the peaks by motif 
analysis is indicative of a successful experiment. Motif analysis can also 

http://master.bioconductor.org/packages/release/bioc/html/DBChIP.html
http://master.bioconductor.org/packages/release/bioc/html/DBChIP.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
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identify the DNA-binding motifs of other proteins that bind in complex 
or in conjunction with the ChIPed protein, illuminating the mechanisms 
of transcriptional regulation. Motif analysis is also useful with histone 
 modification ChIP-seq because it can discover unanticipated sequence 
signals associated with such marks. Table 9.2 lists some publicly available 
tools for motif analysis.

9.3.8 Perspective

The challenges of ChIP-seq require novel experimental, statistical, and 
computational solutions. Ongoing advances will allow ChIP-seq to ana-
lyze samples containing far fewer cells, perhaps even single cells, greatly 
expanding its applicability in areas such as embryology and develop-
ment where large samples are prohibitively expensive or difficult to 
obtain.  No less critical is to trim today’s peaks that are much wider 
than the actual TF binding sites. A promising experimental method 
for localizing narrow peaks is ChIP-exo that uses bacteriophage λ exo-
nuclease to digest the ends of DNA fragments not bound to protein 
(Rhee and Pugh 2011). Improving antibody specificity is a long-term 
endeavor. Another way to eliminate massive amounts of false positive 
peaks is to limit the regulatory binding sites to nucleosome-depleted 
regions, which are accessible for regulator binding.  Perhaps the most 
important novel developments are related to the detection and analyses 
of distal regulatory regions, which are distant in sequence but brought 
close in 3-D space by DNA bending. To reveal such 3-D mechanisms 
of transcriptional regulation, two major techniques have emerged: 
chromatin interaction analysis by paired-end tags (CHIA-PET, Li et al. 
2010) and chromosome  conformation capture assays such as circular 
chromosome conformation capture  (4C, Van de Werken et  al. 2012) 
or chromosome  conformation capture carbon copy (5C, Dostie et  al. 
2006). It is worth noting that many TFs competitively or coopera-
tively bind with other TFs, the transcriptional machinery, or cofactors. 
ChIP-seq will detect indirect DNA binding by the protein (via another 
protein or complex), so predicted sites not containing the motif may 
also be functional. The effects of context-dependent regulatory mecha-
nisms can fundamentally differ from the effects of individual binding 
events. Binding does not necessarily imply function, so it will remain 
 necessary to use additional information (such as expression or chro-
matin  conformation data) to reliably infer the  function of  individual 
 binding events.
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9.4 STEP-BY-STEP TUTORIAL
The ChIP-seq command pipeline includes read mapping, peak calling, 
motif detection, and motif region annotation. Here, we use two ChIP-seq 
data, one from CCCTC-binding factor (CTCF, a zinc finger protein) ChIP-
seq experiment (SRR1002555.sra) as case and another from IgG ChIP-seq 
experiment (SRR1288215.sra) as control in human colon  adenocarcinoma 
cells, which was sequenced using Illumina HiSeq 2000 instrument.

Step 1: To download sra data and convert into FASTQ

--------------------------------------------------------------------------------
# download SRR1002555.sra and SRR1288215.sra data 
from NCBI FTP service
$ wget ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-
instant/reads/ByExp/sra/SRX%2FSRX360%2FSRX360020/
SRR1002555/SRR1002555.sra
$ wget ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-
instant/reads/ByExp/sra/SRX%2FSRX543%2FSRX543697/
SRR1288215/SRR1288215.sra
# covert sra format into fastq format
$ fastq-dump SRR1002555.sra
$ fastq-dump SRR1288215.sra
# when it is finished, you can check all files:
$ ls -l 
# SRR1002555.fastq and SRR1288215.fastq will be 
produced.

--------------------------------------------------------------------------------

Step 2: To prepare human genome data and annotation files

--------------------------------------------------------------------------------
# downloading human hg19 genome from illumina 
iGenomes and gene annotation table with genome 
background annotations from CEAS
$ wget ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/
Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.gz
$ wget http://liulab.dfci.harvard.edu/CEAS/src/hg19.
refGene.gz
# gunzip .gz files
$ gunzip *.gz
# linking human genome and bowtie index into current 
working direction
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$ In -s /homo.sapiens/UCSC/hg19/Sequence/
WholeGenomeFasta/genome.fa
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
BowtieIndex/genome.1.ebwt
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
BowtieIndex/genome.2.ebwt
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
BowtieIndex/genome.3.ebwt
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
BowtieIndex/genome.4.ebwt
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
BowtieIndex/genome.rev.1.ebwt
$ In -s /homo.sapiens/UCSC/hg19/Sequence/
BowtieIndex/genome.rev.2.ebwt
# when it is finished, you can check all files:
$ ls -l 
# genome.fa, genome.1.ebwt, genome.2.ebwt, 
genome.3.ebwt, genome.4.ebwt, genome.rev.1.ebwt, 
genome.rev.2.ebwt and hg19.refGene will be produced.

--------------------------------------------------------------------------------

Step 3: Mapping the reads with Bowtie

--------------------------------------------------------------------------------

 For ChIP-seq data, the currently common programs are BWA 
and Bowtie. Here, we will use Bowtie as example. The parameter 
genome is human hg19 genome index; -q query input files are 
FASTQ; -v 2 will allow two mismatches in the read, when aligning 
the read to the genome sequence; -m 1 will exclude the reads that 
do not map uniquely to the genome; -S  will output the result in 
SAM format.

--------------------------------------------------------------------------------
$ bowtie genome -q SRR1002555.fastq -v 2 -m 1 -S > 
CTCF.sam
$ bowtie genome -q SRR1288215.fastq  -v 2 -m 1 -S > 
lgG.sam 
# when it is finished, you can check all file:
$ ls -l 
# CTCF.sam and lgG.sam will be produced.

--------------------------------------------------------------------------------
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Step 4: Peak calling with MACS

--------------------------------------------------------------------------------

 Macs callpeak is used to call peaks where studied factor is bound from 
alignment results. The output files of bowtie (CTCF.sam and lgG.sam) 
will be the input of macs. The parameters -t and -c are used to define 
the names of case (CTCF.sam) and control (lgG.sam); -f SAM query 
input files are SAM; --gsize ‘hs’ defines human effective genome size; 
--name “CTCF” will be used to generate output file names; --bw 400 
is the band width for picking regions to compute fragment size; --bdg 
will output a file in bedGraph format to visualize the peak profiles in a 
genome browser. The output files CTCF_peaks.xls and CTCF_peaks.
narrowPeak will give us details about peak region.

--------------------------------------------------------------------------------
$ macs callpeak -t CTCF.sam -c lgG.sam -f SAM 
--gsize ‘hs’ --name “CTCF” --bw 400 --bdg
# when it is finished, you can check all file:
$ ls -l 
# CTCF_treat_pileup.bdg, CTCF_summits.bed, CTCF_
peaks.xls, CTCF_peaks.narrowPeak and CTCF_control_
lambda.bdg will be produced.

--------------------------------------------------------------------------------

Step 5: Motif analysis

--------------------------------------------------------------------------------

 Multiple EM for Motif Elicitation-ChIP (MEME-ChIP) will be used to 
discover DNA-binging motifs on a set of DNA sequences from peak 
regions. Before running MEME-ChIP, we use bedtools getfasta to pre-
pare binding region sequences. The output file (peak.fa) will be as input 
of MEME-ChIP. The MEME-ChIP parameter -meme-p defines par-
allel processors in the cluster; -oc defines the output to the specified 
directory, overwriting if the directory exists. The output file index.html 
gives us the significant motifs (E-value ≤ 0.05) found by the programs 
MEME, Discriminative Regular Expression Motif Elicitation (DREME), 
and CentriMo (maximum central enrichment) and running status.

--------------------------------------------------------------------------------
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# preparing sequences corresponding the peaks
$ bedtools getfasta -fi genome.fa -bed CTCF_peaks.
narrowPeak -fo peak.fa
# running meme-chip for CTCF motif
$ meme-chip -meme-p 6 -oc CTCF-meme-out peak.fa
# when it is finished, you can check all file:
$ ls -l 
# CTCF-meme-out directory will be produced, which 
contain all motifs detail.

--------------------------------------------------------------------------------

Step 6: ChIP region annotation

--------------------------------------------------------------------------------

 CEAS (Cis-regulatory Element Annotation System) provides sta-
tistics on ChIP enrichment at important genome features such as 
specific chromosome, promoters, gene bodies, or exons and infers 
genes most likely to be regulated by a binding factor. The input files 
are gene annotation table file (hg19.refGene) and BED file with ChIP 
regions (CTCF.bed). Output file CTCF_ceas.pdf will print genome 
features distribution of ChIP regions; CTCF_ceas.xls will tell the 
details of genome features distribution.

--------------------------------------------------------------------------------
# preparing bed file with ChIP regions
$ cut CTCF_peaks.narrowPeak -f 1,2,3 > CTCF.bed
# running ceas using default mode
$ ceas --name=CTCF_ceas -g hg19.refGene -b CTCF.bed 
# when it is finished, you can check all file:
$ ls -l 
#  CTCF_ceas.pdf, CTCF_ceas.R and CTCF_ceas.xls will 
be produced. 

--------------------------------------------------------------------------------
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C h a p t e r  10

Integrating Omics Data 
in Big Data Analysis

Li Qin Zhang, Daniel P. Heruth, and Shui Qing Ye

10.1 INTRODUCTION
The relatively newly coined word  omics  refers to a field of study in 
 biology ending in -omics, such as genomics, transcriptomics,  proteomics, 
or metabolomics. The related suffix  -ome  is used to address the objects 
of study of such fields, such as the genome, transcriptome, proteome, or 
metabolome,  respectively. Omics aims at the collective characterization 
and quantification of pools of biological molecules that translate into 
the structure, function, and dynamics of an organism or organisms. 
For example, genomics  is  to sequence, assemble, and analyze the struc-
ture and function of the complete set of DNA within an organism. Omics 
becomes a buzz word; it is increasingly added as a suffix to more fields to 
indicate the totality of those fields to be investigated such as connectomics 
to study the totality of neural connections in the brain; interactomics to 
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engage in analyses of all gene–gene, protein–protein, or protein–RNA 
interactions within a system; and lipidomics to study the entire comple-
ment of cellular lipids within a cell or tissue or organism. Now, another 
term panomics has been dubbed to refer to all omics including genom-
ics,  proteomics,  metabolomics,  transcriptomics, and so forth, or the 
 integration of their combined use. 

The advent of next-generation DNA sequencing (NGS) technology has 
fueled the generation of omics data since 2005. Two hallmarks of NGS 
technology that distinguish it from the first-generation DNA sequenc-
ing  technology are faster speed and lower cost. At least three technical 
advances have made the development of NGS technology possible or 
practical to realize. First, general progress in technology across dispa-
rate fields, including microscopy, surface chemistry, nucleotide bio-
chemistry, polymerase engineering, computation, data storage, and 
others, has  provided building blocks or foundations for the production 
of NGS platforms. Second, the availability of whole-genome assemblies 
for Homo  sapiens and other model organisms provides references against 
which short reads,  typical of most NGS platforms, can be mapped or 
aligned. Third, a growing variety of molecular methods has been devel-
oped, whereby a broad range of biological phenomena can be assessed to 
elucidate the role and functions of any gene in health and disease, thus 
increasing demand of gene sequence information by high-throughput 
DNA sequencing (e.g., genetic variation, RNA expression, protein–DNA 
interactions, and chromosome conformation). Over the past 10 years, 
several platforms of NGS technologies, as detained in previous chap-
ters of this book, have emerged as new and more powerful strategies 
for DNA sequencing, replacing the first-generation DNA sequencing tech-
nology based on the Sanger method as a preferred technology for high-
throughput DNA sequencing tasks. Besides directly generating omics data 
such as genomics, epigenomics, microbiomics, and transcriptomics, NGS 
has also fueled or driven the development of other technologies to facili-
tate the generation of other omics data such as interactomics, metabolo-
mics, and proteomics. 

Understanding the genetic basis of complex traits has been an  ongoing 
quest for many researchers. The availability of rich omics data has made 
possible to derive global molecular insights into health and disease. 
Historically and currently, many investigators have ventured to probe 
each type of omics data independently to look for relationships with bio-
logical processes. Using these methods, some of the pieces of the puzzle 
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of complex-trait genetic architecture and basic biological pathways have 
been successfully untangled. However, much of the genetic etiology of 
complex traits and biological networks remains unexplained, which could 
be partly due to the focus on restrictive single-data-type study designs. 
Recognizing this limitation, integrated omics data analyses have been 
used increasingly. This integrated omics approach can achieve a more 
thorough and informative interrogation of genotype–phenotype asso-
ciations than an analysis that uses only a single data type. Combining 
multiple data types can compensate for missing or unreliable informa-
tion in any single data type, and multiple sources of evidence  pointing 
to the same gene or pathway are less likely to lead to false positives. 
Importantly, the complete biological model is only likely to be discov-
ered if the  different levels of omics data are considered in an analysis. In 
this chapter, we will highlight some successful applications of integrated 
omics data analysis, synopsize most important strategies in integrated 
omics data analysis, and demonstrate one special example of such inte-
grated omics data analysis.

10.2  APPLICATIONS OF INTEGRATED 
OMICS DATA ANALYSIS

The realization that performing all analyses from a single source or within 
one data type has limitations has spurred applications of integrated omics 
data analyses. Although these systematic approaches are still in their 
infancy, they have shown promise to perform powerful integrative analy-
ses, some of which may lay solid foundations to become gold standard 
methods of future integrated omics data analyses down the road. Chen 
et al. (2012) reported the first integrative personal omics profile (iPOP), 
an analysis that combines genomic, transcriptomic, proteomic, metabolo-
mic, and autoantibody profiles from a single individual over a 14-month 
period. Their iPOP analysis revealed various medical risks, including type 
2 diabetes. It also uncovered extensive, dynamic changes in diverse molec-
ular components and biological pathways across healthy and diseased 
conditions. The integrated omics data analysis also revealed extensive het-
eroallelic changes during healthy and diseased states and an unexpected 
RNA editing mechanism. This trail blazing study demonstrates that 
 longitudinal iPOP can be used to interpret healthy and diseased states by 
connecting genomic information with additional dynamic omics activity. 
Here Table 10.1 lists some representative integrating omics data analyses 
examples. 
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10.3  OVERVIEW OF INTEGRATING OMICS 
DATA ANALYSIS STRATEGIES

Ritchie et al. (2015) have recently published an elegant review on “Methods 
of integrating data to uncover genotype–phenotype interactions.” Interested 
readers are encouraged to refer to this review for details. When combining 
or integrating omics data, there are unique challenges for individual data 
types, and it is important to consider these before implementing meta-, 
multi-staged, or meta-dimensional analyses; these include data quality, 

TABLE 10.1 Representative Application of Integrated Omics Data Analysis

# Application Software Website References

1 Meta-analysis of 
gene expression 
data

INMEX inmex.ca/INMEX/ Xia et al. 
(2013)

2 eQTL Matrix 
eQTL

www.bios.unc.edu/
research/genomic_
software/Matrix_eQTL/

Shabalin et al. 
(2012)

3 A searchable 
human eQTL 
database

seeQTL http://www.bios.unc.edu/
research/genomic_
software/seeQTL/

Xia et al. 
(2012)

4 Methylation QTL Scan 
database

www.scandb.org/ Zhang et al. 
(2015)

5 Protein QTL pQTL eqtl.uchicago.edu/cgi-bin/
gbrowse/eqtl

Hause et al. 
(2014)

6 Allele-specific 
expression

AlleleSeq alleleseq.gersteinlab.org/ Rozowsky 
et al. (2011)

7 Functional 
annotation of 
SNVs

Annovar
Regulome 
DB

www. openbioinformatics.
org/annovar/

www.regulomedb.org

Wang et al. 
(2010), Boyle 
et al. (2012)

8 Concatenational 
integration

Athena

WinBUGS
Glmpath

ritchielab.psu.edu/
ritchielab/software

www.mrc-bsu.cam.ac.uk/
software/

cran.r-project.org/web/
packages/glmpath/index.
html

Holzinger 
et al. (2014), 
Lunn et al. 
(2000), Park 
et al. (2013)

9 Transformational 
integration

SKmsmo

Gbsll

imagine.enpc.fr/~obozinsg/
SKMsmo.tar

mammoth.bcm.tmc.edu/
papers/lisewski2007.gz

Lanckriet et al. 
(2004), Kim 
et al. (2012)

10 Model-based 
integration

Ipred
Weka3

cran.r-project.org/web/
packages/ipred/index.html

www.cs.waikato.ac.nz/ml/
weka/

Peters et al. 
(2015), 
Akavia et al. 
(2010)

http://inmex.ca/INMEX/
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
http://www.bios.unc.edu/research/genomic_software/seeQTL/
http://www.bios.unc.edu/research/genomic_software/seeQTL/
http://www.bios.unc.edu/research/genomic_software/seeQTL/
http://www.scandb.org/
http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl
http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl
http://www.openbioinformatics.org/annovar/
http://www.openbioinformatics.org/annovar/
http://www.regulomedb.org
http://ritchielab.psu.edu/ritchielab/software
http://ritchielab.psu.edu/ritchielab/software
http://www.mrc-bsu.cam.ac.uk/software/
http://www.mrc-bsu.cam.ac.uk/software/
http://cran.r-project.org/web/packages/glmpath/index.html
http://cran.r-project.org/web/packages/glmpath/index.html
http://cran.r-project.org/web/packages/glmpath/index.html
http://imagine.enpc.fr/~obozinsg/SKMsmo.tar
http://imagine.enpc.fr/~obozinsg/SKMsmo.tar
http://mammoth.bcm.tmc.edu/papers/lisewski2007.gz
http://mammoth.bcm.tmc.edu/papers/lisewski2007.gz
http://cran.r-project.org/web/packages/ipred/index.html
http://cran.r-project.org/web/packages/ipred/index.html
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
alleleseq.gersteinlab.org/
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data scale or dimensionality, and potential confounding of the data (see 
below). If these issues are not dealt with for each individual data type, then 
they could cause problems when the data types are integrated. Due to the 
space limitation, this section won’t cover the quality control, data reduc-
tion, and confounding factor adjust of each individual data type.

10.3.1 Meta-Analysis

Gene V. Glass, an  American  statistician,  coined the term meta-analysis 
and illustrated its first use in his presidential address to the American 
Educational Research Association in San Francisco in April 1976. Meta-
analysis  comprises statistical methods for contrasting and combining 
results from different studies in the hope of identifying patterns among 
study results, sources of disagreement among those results, or other inter-
esting relationships that may come to light in the context of multiple stud-
ies. Meta-analysis can be thought of as conducting research about previous 
research or the analysis of analyses. The motivation of a meta-analysis is to 
aggregate information in order to achieve a higher statistical power for the 
measure of interest, as opposed to a less precise measure derived from a 
single study. Usually, five steps are involved in a meta-analysis: (1) formu-
lation of the problem; (2) search for the literature; (3) selection of studies; 
(4) decide which dependent variables or summary measures are allowed; 
and (5) selection and application of relevant statistic methods to analyze 
the metadata.  Xia et al. (2013) introduced the integrative meta-analysis 
of expression data (INMEX), a user-friendly web-based tool (inmex.ca/
INMEX/) designed to support meta-analysis of multiple gene-expression 
data sets, as well as to enable integration of data sets from gene expres-
sion and metabolomics experiments.  INMEX contains three functional 
modules. The data preparation module supports flexible data process-
ing, annotation, and visualization of individual data sets. The statistical 
analysis module allows researchers to combine multiple data sets based 
on p-values, effect sizes, rank orders, and other features. The significant 
genes can be examined in functional analysis module for enriched gene 
ontology terms or Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways, or expression profile visualization. 

10.3.2 Multi-Staged Analysis

Multi-staged analysis, as its name suggests, aims to divide data analysis into 
multiple steps, and signals are enriched with each step of the analysis. The 
main objective of the multi-staged approach is to divide the analysis  into 

http://inmex.ca/INMEX/
http://inmex.ca/INMEX/


168   ◾   Big Data Analysis for Bioinformatics and Biomedical Discoveries

multiple steps to find associations first between the  different data types, 
then subsequently between the data types and the trait or  phenotype of 
interest. Multi-staged analysis is based on the assumption that variation 
is hierarchical, such that variation in DNA leads to variation in RNA and 
so on in a linear manner, resulting in a phenotype. There have been three 
types of analysis methods in this category: genomic variation analysis 
approaches, allele-specific expression approaches, and domain knowledge-
guided approaches.

In genomic variation analysis approaches, the rationale is that genetic 
variations are the foundation of all other molecular variations. This 
approach generally consists of three-stage analyses. Stage 1 is to asso-
ciate SNPs with the phenotype and filter them based on a genome-
wide significance threshold. Stage 2 is to test significant SNPs from 
stage 1 for association with another level of omic data. For example, 
one option is to look for the association of SNPs with gene expression 
levels, that is, expression quantitative trait loci (eQTLs), and alter-
natively, to examine SNPs associated with DNA methylation levels 
(methylationQTL), metabolite levels (metaboliteQTL), protein levels 
(pQTLs), or other molecular traits such as long  non-coding RNA 
and miRNA. Illustrating this approach, Huang et  al. (2007) first 
described an integrative analysis to identify DNA variants and gene 
expressions associated with chemotherapeutic drug (etoposide)-
induced cytotoxicity. One of challenges for this approach arises 
when a relatively arbitrary threshold, generally a p-value, is used 
to identify the significant associations for further analyses. As the 
p-value threshold also needs to be adjusted for the number of tests 
being carried out to combat multiple testing problems, there is likely 
to be a large number of false-negative SNPs, eQTLs, mQTLs, and 
pQTLs being filtered out.

In allele-specific expression (ASE) approaches, the rationale is that 
in diploid organisms, genetic variation occurs at one of the two 
alleles, which alters the regulation of gene expression, leads to 
allele-specific expression in some genes, and hence  contributes to 
phenotypic variation. ASE variants are associated with  cis-element 
variations and epigenetic modifications. The first step of ASE 
approaches is to distinguish the gene product of one parental 
allele from the product of the other parental allele. Step 2 is to 
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associate the allele with gene expression (eQTLs) or methylation 
(mQTLs) or others to compare the two alleles. Step 3 is to test the 
resulting alleles for correlation with a phenotype or an outcome 
of interest. ASE has been applied to identify functional variations 
from hundreds of multi-ethnic individuals from the 1000 Genome 
Project (Lappalainen et  al. 2013), to map allele-specific protein–
DNA interactions in human cells (Maynard et  al. 2008), and to 
explore allele-specific chromatin state (Kasowski et al. 2013) and 
histone modification (McVicker et al. 2013). The analysis of allele-
specific transcription offers the opportunity to define the identity 
and mechanism of action of cis-acting regulatory genetic variants 
that modulate transcription on a given chromosome to shed new 
insights into disease risk.

In domain knowledge-guided approaches, the genomic regions of 
interest are inputs to be used to determine whether the regions are 
within pathways and/or overlapping with functional units, such as 
transcription factor binding, hypermethylated or hypomethylated 
regions, DNase sensitivity, and regulatory motifs. In this approach, 
step 1 is to take a collection of genotyped SNPs and annotate them 
with domain knowledge from multiple public database resources. 
Step 2 is to associate functional annotated SNPs with other omic 
data. Step 3 is to evaluate positive targets selected from step 2 for cor-
relation with a phenotype or an outcome of interest. Many available 
public knowledge databases or resources such as ENCyclopedia Of 
DNA Elements (ENCODE, www.encodeproject.org) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG, www.genome.jp/
kegg/) have made this approach feasible and practical. This approach 
adds information from diverse data sets that can substantially 
increase our knowledge of our data; however, we are also  limited and 
biased by current knowledge.

10.3.3 Meta-Dimensional Analysis

The rationale behind meta-dimensional analysis is that it is the combina-
tion of variation across all possible omic levels in concert that leads to 
phenotype. Meta-dimensional analysis combines multiple data types in 
a simultaneous analysis and is broadly categorized into three approaches: 
concatenation-based integration, transformation-based integration, and 
model-based integration.

http://www.encodeproject.org
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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In concatenation-based integration, multiple data matrices for each 
sample are combined into one large input matrix before a model is 
constructed as shown in Figure 10.1a. The main advantage of this 
approach is that it can factor in interactions between different types 
of genomic data. This approach has been used to integrate SNP and 
gene expression data to predict high-density lipoprotein cholesterol 
levels (Holzinger et al. 2013) and to identify interactions between 
copy number alteration, methylation, miRNA, and gene expres-
sion data associated with cancer clinical outcomes (Kim et al. 2013). 
Another advantage of concatenation-based integration is that, after 
it is determined how to combine the variables into one matrix, it is 
relatively easy to use any statistical method for continuous and cat-
egorical data for analysis. For example, Fridley et al. (2012) modeled 
the joint relationship of mRNA gene expression and SNP genotypes 
using a Bayesian integrative model to predict a quantitative pheno-
type such as drug gemcitabine cytotoxicity. Mankoo et  al. (2011) 
 predicted time to recurrence and survival in ovarian cancer using 
copy number alteration, methylation, miRNA, and gene expression 
data using a multivariate Cox LASSO (least absolute shrinkage and 
selection operator) model. 

The challenge with concatenation-based integration is identifying the 
best approach for combining multiple matrices that include data 
from different scales in a meaningful way without biases driven 
by data type. In addition, this form of data integration can inflate 
high dimensionality for the data, with the number of samples being 
smaller than the number of measurements for each sample (Clarke 
et  al. 2008). Data reduction strategies may be needed to limit the 
number of variables to make this analysis possible.

In transformation-based integration, multiple individual data type is indi-
vidually transformed into its corresponding intermediate form such 
as graph or kernel matrix before they are merged and then modeled 
(Figure  10.1b). A graph is a natural method for analyzing relation-
ships between samples, as the nodes depict individual samples and the 
edges represent their possible relationships. Kernel matrix is a sym-
metrical and positive semi-definite matrix that represents the rela-
tive positions of all samples conducted by valid kernel functions. The 
transformation-based integration approach can preserve data-type-
specific properties when each data type is appropriately transformed 
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into an intermediate representation. It can be used to integrate many 
types of data with different data measurement scales as long as the data 
contain a unifying feature. Kernel-based integration has been used for 
protein function prediction with multiple types of heterogeneous data 
(Lanckriet et al. 2004; Borgwardt et al. 2005). Graph-based integra-
tion has been used to predict protein function with multiple networks 
(Suda et al. 2005; Shin et al. 2007) and to predict cancer clinical out-
comes using copy number alteration, methylation, miRNA, and gene 
expression (Kim et  al. 2012). The disadvantage of transformation-
based integration is that identifying interactions between different 
types of data (such as a SNP and gene expression interaction) can be 
difficult if the separate transformation of the original feature space 
changes the ability to detect the interaction effect.

In model-based integration, multiple models are generated using the 
 different types of data as training sets, and a final model is then 
 generated from the multiple models created during the training phase, 
preserving data-specific properties (Figure 10.1c). This approach can 
combine predictive models from different types of data. Model-based 
integration has been performed with ATHENA to look for associations 
between copy number alterations, methylation, microRNA, and gene 
expression with ovarian cancer survival (Kim et al. 2013). A majority 
voting approach was used to predict drug resistance of HIV protease 
mutants (Drăghici et al. 2003). Ensemble classifiers have been used 
to predict protein-fold recognition (Shen et al. 2006). Network-based 
approaches such as Bayesian network have been employed to con-
struct probabilistic causal networks (Akavia et al. 2010). In each of 
these model-based integration examples, a model is built on each data 
type individually, and the models are then  combined in some mean-
ingful way to detect integrative models.

It should be pointed out that model-based integration requires a specific 
hypothesis and analysis for each data type, and a mechanism to com-
bine the resulting models in a meaningful way. This approach may 
miss some of the interactions between different data types. Therefore, 
model-based integration is particularly suitable if each genomic data 
type is extremely heterogeneous, such that combining the data matrix 
(concatenation-based integration) or performing data transformation 
to a common intermediate format ( transformation-based integration) 
is not possible.
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10.3.4 Caveats for Integrating Omics Data Analysis

It is critical that the assumptions of the model, limitations of the analysis, 
and caution about inference and interpretation be taken into consider-
ation for a successful multi-omic study.

The gold standard in human genetics is to look for replication of results 
using independent data, and seeking replication of multi-omic models is 
one way to identify robust predictive models to avoid or minimize false 
discoveries. Functional validation is a viable alternative to replication. For 
example, basic experimental bench science can be used to provide valida-
tion for statistical models. Another validation approach is the use of text 
mining to find literature that supports or refutes the original findings. In 
silico modeling is an additional approach that can be useful. 

As more data are generated across multiple data types and multiple 
tissues, novel explorations will further our understanding of important 
biological processes and enable more comprehensive systems genomic 
strategies. It is through collaboration among statisticians, mathemati-
cians, computer scientists, bioinformaticians, and biologists that the con-
tinued development of meta-dimensional analysis methods will lead to 
a better understanding of complex-trait architecture and generate new 
knowledge about human disease and biology.

10.4 STEP-BY-STEP TUTORIAL
Here we demonstrate the iClusterPlus program developed by Mo and 
Shen (2013, http://www.bioconductor.org/packages/release/bioc/html/ 
iClusterPlus.html) to perform an integrative clustering analysis of somatic 
mutation, DNA copy number, and gene expression data from a  glioblastoma 
data set in The Cancer Genome Atlas (TCGA). The iClusterPlus is an R pack-
age for integrative clustering of multiple genomic data sets tool using a joint 
latent variable model. It can extract useful information from multiple omic 
data (genome data, transcriptome data, epigenome data, proteome data, and 
phenotype data) to study biological meaning, disease biomarker, and driver 
genes. Before following this tutorial, readers need to make sure that R package 
in the computer cluster is available at his or her disposal. If not, readers can 
follow the instruction from the nearest mirror site (http://cran.r-project.org/
mirrors.html) to download and install it. Also, readers can follow the instruc-
tion (http://www. bioconductor.org/packages/release/bioc/html/iClusterPlus.
html) to install iClusterPlus program. The detailed explanation of the follow-
ing tutorial steps can be found in the manual (http://www.bioconductor.org/
packages/release/bioc/vignettes/iClusterPlus/inst/doc/iManual.pdf).

http://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html
http://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html
http://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html
http://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html
http://cran.r-project.org/mirrors.html
http://cran.r-project.org/mirrors.html
http://www.bioconductor.org/packages/release/bioc/vignettes/iClusterPlus/inst/doc/iManual.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/iClusterPlus/inst/doc/iManual.pdf
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Step 1: Install iClusterPlus and other package

---------------------------------------------------------------------------------
> source(“http://bioconductor.org/biocLite.R”)
> biocLite(“iClusterPlus”)
> biocLite(“GenomicRanges “)
> biocLite(“gplots”)
> biocLite(“lattice”)

---------------------------------------------------------------------------------

Step 2: Load different package

---------------------------------------------------------------------------------
# load iClusterPlus, GenomicRanges, gplots and 
lattice package and gbm data package (TCGA 
glioblastoma data set)
> library(iClusterPlus)
> library(GenomicRanges)
> library(gplots)
> library(lattice)
> data(gbm)

---------------------------------------------------------------------------------

Step 3: Pre-process data 

---------------------------------------------------------------------------------
# prepare mutation data set, pick up mutations of 
which average frequency are bigger than 2%
> mut.rate=apply(gbm.mut,2,mean)
> gbm.mut2 = gbm.mut[,which(mut.rate>0.02)]
# load human genome variants of the NCBI 36 (hg18) 
assembly package
> data(variation.hg18.v10.nov.2010)
# reduce the GBM copy number regions to 5K by 
removing the redundant regions using
function CNregions
> gbm.cn=CNregions(seg=gbm.seg,epsilon=0,adaptive=
FALSE,rmCNV=TRUE, cnv=variation.hg18.v10.nov.2010 
[,3:5],frac.overlap=0.5, 
rmSmallseg=TRUE,nProbes=5)
> gbm.cn=gbm.cn[order(rownames(gbm.cn)),]

---------------------------------------------------------------------------------
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Step 4: Integrative clustering analysis

---------------------------------------------------------------------------------
# use iClusterPlus to integrate GBM mutation data 
(gbm.mut2), copy number variation data (gbm.cn), and 
gene expression data (gbm.exp). The parameters dt1, 
dt2, dt3 require input data matrix; type means 
distribution of your data; lambda means vector of 
lasso penalty terms; K means number of eigen 
features, the number of cluster is K+1; maxiter 
means maximum iteration for the EM algorithm.
>fit.single=iClusterPlus(dt1=gbm.mut2,dt2=gbm.cn, 
dt3=gbm.exp, type=c(“binomial”,“gaussian”, 
 “gaussian”),lambda=c(0.04,0.05,0.05),K=5,maxiter=10)
> fit.single$alpha
# alpha is intercept parameter of each marker, region 
and gene.
> fit.single$beta
# beta is information parameter of each marker, region 
and gene.
> fit.single$clusters
# clusters is sample cluster assignment.
> fit.single$centers
# centers is cluster center.
> fit.single$meanZ
# meanZ is latent variable.
> fit.single$BIC
# BIC is Bayesian information criterion.

---------------------------------------------------------------------------------

Step 5: Generate heatmap

---------------------------------------------------------------------------------
# set maximum and minimum value for copy number 
variation and gene expression
> cn.image=gbm.cn
> cn.image[cn.image>1.5]=1.5
> cn.image[cn.image< -1.5]= -1.5
> exp.image=gbm.exp
> exp.image[exp.image>2.5]=2.5
> exp.image[exp.image< -2.5]= -2.5
# set heatmap color for SNP, copy number variation 
and gene expression data
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> bw.col = colorpanel(2,low=“white”,high=“black”)
> col.scheme = alist()
> col.scheme[[1]] = bw.col
> col.scheme[[2]] = bluered(256)
> col.scheme[[3]] = bluered(256)
# generate heatmap for 6 clusters of 3 different 
data sets
> pdf(“heatmap.pdf”,height=6,width=6)
> plotHeatmap(fit=fit.single,datasets=list(gbm.
mut2,cn.image,exp.image), type=c(“binomial”,“gaussian”, 
“gaussian”), col.scheme = col.scheme,
row.order=c(T,T,T),chr=chr,plot.chr=c(F,F,F),sparse=c
(T,T,T),cap=c(F,F,F))
> dev.off()
# if you follow the tutorial correctly, the plot as 
in Figure 10.2 should appear in your folder. 

---------------------------------------------------------------------------------

1

0

1.5

−1.5
−0.5
0.5

2
0
−2

FIGURE 10.2 Heatmap of mutation (top panel), DNA copy number (middle 
panel), and mRNA expression (bottom panel) for the three-cluster solution. 
Rows are genomic features, and columns are samples.
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Step 6: Feature selection

---------------------------------------------------------------------------------
# select the top features based on lasso coefficient 
estimates for the 6-cluster solution
> features = alist()
> features[[1]] = colnames(gbm.mut2)
> features[[2]] = colnames(gbm.cn)
> features[[3]] = colnames(gbm.exp)
> sigfeatures=alist()
> for(i in 1:3){
rowsum=apply(abs(fit.single$beta[[i]]),1, sum)
upper=quantile(rowsum,prob=0.75)
sigfeatures[[i]]=(features[[i]])
[which(rowsum>upper)]
}
> names(sigfeatures)=c(“mutation”,“copy number”, 
“expression”)
# top mutant feature markers 
> head(sigfeatures[[1]])
If you follow the tutorial correctly, the following 
result should appear:
[1] “A2M”      “ADAMTSL3” “BCL11A”   “BRCA2”    
“CDKN2A”   “CENTG1”

# top copy number variation feature regions
> head(sigfeatures[[3]])
If you follow the tutorial correctly, the following 
result should appear:
[1] “chr1.201577706-201636128” 
“chr1.201636128-202299299”
[3] “chr1.202299299-202358378” 
“chr1.202358378-202399046”
[5] “chr1.202399046-202415607” 
“chr1.202415607-202612588”

# top expression feature genes 
> head(sigfeatures[[2]])
If you follow the tutorial correctly, the following 
result should appear:
[1] “FSTL1”    “BBOX1”    “CXCR4”    “MMP7”     
“ZEB1”     “SERPINF1”

---------------------------------------------------------------------------------



178   ◾   Big Data Analysis for Bioinformatics and Biomedical Discoveries

BIBLIOGRAPHY

 1. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of 
 integrating data to uncover genotype-phenotype interactions. Nat Rev 
Genet. 2015; 16(2):85–97.

 2. Cheranova D, Zhang LQ, Heruth D, Ye SQ. Chapter 6: Application of 
next-generation DNA sequencing in medical discovery. In Bioinformatics: 
Genome Bioinformatics and Computational Biology. 1st ed., pp. 123–136, ed. 
Tuteja R, Nova Science Publishers, Hauppauge, NY, 2012.

 3. Hawkins RD, Hon GC, Ren B. Next-generation genomics: An integrative 
approach. Nat. Rev. Genet. 2010; 11:476–486.

 4. Holzinger ER, Ritchie MD. Integrating heterogeneous high-throughput 
data for meta-dimensional pharmacogenomics and disease-related studies. 
Pharmacogenomics 2012; 13:213–222.

 5. Chen R, Mias GI, Li-Pook-Than J  et  al. Personal omics profiling reveals 
dynamic molecular and medical phenotypes. Cell 2012; 148(6):1293–1307.

 6. Gehlenborg N, O’Donoghue SI, Baliga NS et al. Visualization of omics data 
for systems biology. Nat Methods. 2010; 7(3 Suppl):S56–S68.

 7. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler 
KW. Cancer genome landscapes. Science. 2013; 339(6127):1546–1558.

 8. Kodama K, Tojjar D, Yamada S, Toda K, Patel CJ, Butte AJ. Ethnic  differences 
in the relationship between insulin sensitivity and insulin response: 
A  systematic review and meta-analysis. Diabetes Care. 2013; 36(6):1789–1996.

 9. Chervitz SA, Deutsch EW, Field D et  al. Data standards for omics data: 
The basis of data sharing and reuse. Methods Mol Biol. 2011; 719:31–69.

 10. Huber W, Carey VJ, Gentleman R et  al. Orchestrating high-throughput 
genomic analysis with Bioconductor. Nat Methods. 2015; 12(2):115–121.

 11. Mo Q, Shen R.  iClusterPlus: Integrative clustering of multi-type genomic 
data. R package version 1.4.0. 2013, http://www.bioconductor.org/packages/
release/bioc/html/iClusterPlus.html.

http://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html
http://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html


179

C h a p t e r  11

Pharmacogenetics 
and Genomics

Andrea Gaedigk, Katrin Sangkuhl, 

and Larisa H. Cavallari

11.1 INTRODUCTION
The term pharmacogenetics was first coined in 1959 by Vogel after Motulsky 
published his seminal work describing observations that mutations in drug-
metabolizing enzymes are associated with a toxic response to drugs. Today, this 
term is used to describe genetic variation in genes contributing to interindi-
vidual drug response and adverse drug events. Genes involved in drug absorp-
tion, distribution, metabolism, and elimination, also known as ADME genes 
(http://pharmaadme.org/), include many phase I drug metabolizing enzymes 
of the cytochrome P450 superfamily such as CYP2C9, CYP2C19, and CYP2D6; 
phase II drug metabolizing enzymes such as UDP glucuronosyltransferases, 
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glutathione transferases, and thiopurine S-methyltransferase; and drug trans-
porters of the ATP-binding cassette ABC and solute carrier SLC families. 
Detailed summaries of the most prominent pharmacogenes, clinical perspec-
tives, and applications as well as other topics related to pharmacogenetics and 
genomics have been extensively covered [1,2].

The term pharmacogenomics emerged in the late 1990 and early 2000s 
after technological advances in genome analysis and bioinformatics allowed 
studies to expand from single/few gene approaches to study many genes (the 
genome) and pathways to more systematically explore the role of genetic 
variation on drug response, therapeutic failure, and adverse events. While 
pharmacogenetics and pharmacogenomics are often used interchangeably, 
the latter more accurately reflects recent efforts to integrate the genome, 
epigenome, transcriptome, proteome, and metabolome into a unifying dis-
cipline [3]. Likewise, the term phenotype is typically used within the context 
of pharmacogenetics to describe the capacity of an individual to metabolize 
a drug of interest. For example, the cough suppressant dextromethorphan 
is administered and metabolites measured in the urine (Table 11.1), and the 
urinary ratio of dextromethorphan/ dextrorphan is then employed as a sur-
rogate measure of CYP2D6 activity. It is, however, increasingly appreciated 
that a person’s phenotype is rather complex and likely is the culmination of 
variations residing in all the aforementioned omic levels combined. Hence, 
the term phenome more precisely describes a disease state (cancer, diabetes, 
and autism) or a drug response trait (responder and nonresponder) [3].

As summarized in Section 11.2, pharmacogenetics and genomics, from 
here on referred to as PGx, utilize a plethora of methods and approaches 
to study relationships between genes/genome and phenotype/phenome. 
Among those are genome-wide association studies (GWAS) to explore rela-
tionships between genetic variation and pharmacokinetic and pharmaco-
dynamic effects as well as adverse events [4–6] (examples are provided in 
Section 11.2). Often, sequence variation(s) detected in GWAS studies only 
reveal associations that partially explain the observed variability. Ritchie 
and coauthors review current methods and explore emerging approaches to 
integrate big omics data to reveal relationships between genomic variation 
and phenome. They also argue that there is a need for even more advanced 
analysis strategies to utilize the high-throughput omic data to discover not 
only true associations, but also associations that are currently missed [3]. 
In addition to the host omic-composition, there is a growing body of evi-
dence suggesting that the gut microbiome not only affects host physiology 
and health (see Chapter 9), but is also contributing to interindividual drug 
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TABLE 11.1 Definitions of Terms Central to PGx

# Method/Strategy Description References

1 Phenotype The terms phenotype and 
phenotyping are often used in 
PGx to describe a person’s 
metabolic capacity to 
metabolize drugs of interest.

To that end, drugs and/or 
metabolites are measured in 
urine and metabolic ratios are 
used to describe an enzyme’s 
activity toward the metabolism 
of an administered drug. 

Plasma drug and metabolite 
levels, especially collected over 
time, are more accurate to 
determine phenotype, but are 
also more difficult to obtain, in 
particular in larger population 
samples.

The term reaction phenotyping 
is often used to describe in 
vitro studies investigating 
activity toward a drug of 
interest.

Reviews: PMIDs: 
22226243, 17259951, 
17273835

Examples: PMIDs: 
24218006, 23787463, 
22262920, 19519341, 
14586384

Review: PMID: 25297949,
Examples: PMIDs: 
19795925, 15845858

2 Phenotype–genotype Associations between a 
phenotype and genetic 
variation within a single or 
few genes. Classic phenotype–
genotype correlation studies 
explore the activity between 
the polymorphisms in a gene 
(e.g., CYP2D6) and the urinary 
metabolic ratio of the probe 
drug and its metabolite(s) 
(e.g., dextromethorphan/
dextrorphan). 

Examples: PMIDs: 
25495411, 23394389, 
17971818 

3 GWAS Genome-wide association 
studies (GWAS) aim to 
discover an association 
between common genetic 
variants and a phenotypic trait, 
for example, drug response 
phenotype or adverse drug 
reaction.

See example discussion below.

Reviews: PMIDs: 
25582081 [3], 22923055 
[5], 20300088

Examples: doi:10.1002/
cpt.89, PMIDs: 
25350695, 24528284, 
19483685, 19706858, 
19300499, 18650507

(Continued)
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TABLE 11.1 (Continued ) Definitions of Terms Central to PGx

# Method/Strategy Description References

4 miRNAs microRNAs (miRNAs) are 
small non-coding RNAs 
that have been shown to be 
key players in mRNA 
regulation. This relatively 
new field is rapidly gaining 
traction in PGx research. 
It has been shown that 
miRNAs contribute to the 
regulation of many CYP 
enzymes and drug 
transporters. 

Reviews: PMIDs: 
25488579, 24706275, 
22510765

Examples: PMIDs: 
25802328, 24926315, 
24645868, 23935064, 
23733276, 22232426, 
21457141

5 Epigenetics Epigenetic alterations (DNA 
methylation, histone 
modifications, and 
chromatin remodeling) 
represent functionally 
relevant changes to the 
genome that do not occur at 
the nucleotide level. 
Epigenetic changes have been 
shown to be associated with 
expression levels of 
pharmacogenes. 

Reviews: PMIDs: 
25677519, 25297728, 
24166985, 23935066

Examples: PMIDs: 
25071578, 25138234

6 Proteomics Proteomics is an 
interdisciplinary field 
exploring the intracellular 
protein composition and 
structure, as well as unique 
cell proteome signatures. Its 
application to PGx is just 
emerging.

Examples: PMIDs: 
24830943, 25488931, 
25158075, 25218440, 
23982336

7 Pharmacometabolomics Metabolomics at the omics-
level is utilized to further 
our understanding of the 
mechanisms of drug 
action and drug response. 
The identification of 
metabolic signatures refines 
phenotype by integrating the 
impact of PGx, the 
environment and the 
microbiome. 

http://
pharmacometabolomics.
duhs.duke.edu

Review: PMID: 24193171
Examples: PMIDs: 
25521354, 25029353, 
23945822, 23874572 

(Continued)

http://pharmacometabolomics.duhs.duke.edu
http://pharmacometabolomics.duhs.duke.edu
http://pharmacometabolomics.duhs.duke.edu
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metabolism and response (http:// pharmacomicrobiomics.com). Saad and 
coauthors provide a summary on gut pharmacomicrobiomics and review 
the complex interactions between drugs and microbes (www.gutpathogens.
com/content/4/1/16). While the microbiome response-modifying effect has 
long been appreciated in the fields of nutrition and toxicology, we are only at 
the beginning to understand the intricate balance between the microbiome 
and the other omic layers.

Over the past 30 years, PGx has established itself as a research disci-
pline in its own right. It employs many methodological approaches and 
bioinformatic and biostatistical tools to characterize the contributions of 
the genome, proteome, transcriptome, and metabolome, that is, the host 
(patient) phenome, on drug metabolism and response with the ultimate 
goal to individualize drug therapy.

11.2 METHODS AND STRATEGIES USED IN PGx
This section highlights selected methods and strategies that are utilized 
in PGx research (not including analyses detailed in other chapters in 
Section II). Each is accompanied by a brief summary and references.

Although GWAS has many limitations especially for complex rela-
tionships [3,5], this method is a mainstay in PGx research and has been 
 successfully applied as demonstrated by the following examples.

TABLE 11.1 (Continued ) Definitions of Terms Central to PGx

# Method/Strategy Description References

8 PheWAS Phenome-wide association 
studies (PheWAS) analyze 
many phenotypes compared 
to genetic variants (or other 
attribute). This method was 
originally described using 
electronic medical record 
(EMR) data from EMR-linked 
in the Vanderbilt DNA 
biobank, BioVU, but can also 
be applied to other richly 
phenotyped sets.

Also see the electronic Medical 
Records and Genomics 
(eMERGE) network for 
additional tools. 

http://phewas.
mc.vanderbilt.edu

PMID: 24270849
Examples: PMIDs: 
25074467, 24733291, 
24731735, https://
emerge.mc.vanderbilt.
edu

http://pharmacomicrobiomics.com
http://www.gutpathogens.com/content/4/1/16
http://www.gutpathogens.com/content/4/1/16
http://phewas.mc.vanderbilt.edu
http://phewas.mc.vanderbilt.edu
https://emerge.mc.vanderbilt.edu
https://emerge.mc.vanderbilt.edu
https://emerge.mc.vanderbilt.edu
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11.2.1 Examples of GWAS and Adverse Events

Simvastatin-induced myopathy: Statins are a mainstay therapy to lower 
low-density cholesterol. In rare cases, myopathy occurs especially when 
taken in high doses or when taken with certain other medications. 
This adverse event can lead to rhabdomyolysis, which poses a risk for 
renal failure and death. Link and coworkers (PMID: 18650507) identi-
fied 48  individuals each with definite myopathy and incipient myopa-
thy, respectively, from a large trial of 12,064  participants who had 
received 20 mg (low) or 80 mg (high) doses of simvastatin. For 85 cases, 
genomic DNA was available and was subjected to the Illumina Sentrix 
HumanHap300-Duo BeadChip along 90 controls. Only a single signal 
with a p-value of less than 10−5 was observed. The peak for rs4363657 was 
found in intron 11 of the solute carrier organic anion transporter gene 
SLCO1B1, the gene encoding the organic anion transporting polypep-
tide OATP1B1. This efflux transporter is expressed in the liver and facili-
tates statin uptake (https://www.pharmgkb.org/pathway/PA145011108). 
This intronic SNP is in near-complete linkage with rs4149056, a non-
synonymous SNP in exon 6 causing a Val174Ala change. The association 
between myopathy and rs4149056 was replicated in a cohort of individu-
als (16,643 controls and 21 patients with myopathy) taking a 40 mg dose; 
the p-value was even smaller in this cohort at 3 × 10−28. Homozygous 
carriers of rs4149056  have an almost 20-fold higher risk of myopathy 
compared to non-carriers. Notably, no associations were found with 
SNPs in the CYP3A4 gene, which is a major contributor to simvastatin 
metabolism.

Floxacillin and drug-induced liver injury (DILI): Floxacillin is a beta-
lactam antibiotic agent of the penicillin class known to cause rare, but 
potentially severe DILI. Daly and coworkers (PMID:  19483685) per-
formed GWAS with the Illumina Human 1M BeadChip and identified 
a top hit for rs2395029 with a p-value of 8.7 × 10−33 and estimated odds 
ratio of 45. This SNP, located in the HCP5  gene, is in complete link-
age with HLA-B*5701 in subjects of European decent. Subsequent direct 
genotyping of HLA-B*5701 and a drug-exposed control group affirmed 
a perfect correlation between rs2395029 and HLA-B*5701. Patients with 
this allele were shown to have an 80-fold increased risk of developing 
DILI. It needs to be emphasized that this GWAS was carried out on 
a relatively small number of only 59  patients and 487  controls and a 

https://www.pharmgkb.org/pathway/PA145011108
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replication cohort of 23 cases. Success of this study was possible due to 
a single strong signal, but also carefully selected and well-characterized 
patients. This is a prime example that GWAS study can be performed on 
relatively small cohorts.

11.2.2  Examples of GWAS and Drug Metabolism (Pharmacokinetic) 
and Drug Response (Pharmacodynamic) Effects

Clopidogrel metabolism and response: Clopidogrel is commonly prescribed 
to prevent adverse cardiovascular events after coronary intervention by way 
of inhibiting platelet aggregation (https://www.pharmgkb.org/pathway/
PA154444041). A subset of patients, however, does not respond to clopi-
dogrel therapy. Using ADP-stimulated platelet aggregation in response 
to clopidogrel treatment and cardiovascular events as the main outcome 
measure, Shuldiner and coworkers discovered a highly significant asso-
ciation between non-responsiveness and the CYP2C gene cluster (PMID: 
19706858). An SNP in linkage disequilibrium with the SNP that defines 
the non-functional CYP2C19*2 variant had a p-value of 1.5 × 10−13 and 
accounted for about 12% of the observed variability in ADP platelet aggre-
gation. Furthermore, the authors demonstrated that patients with this 
variant were at a higher risk of experiencing a cardiovascular event 
or even death within one year compared to patients without impaired 
CYP2C19 function. As des cribed in later literature, clopidogrel requires 
CYP2C19-mediated bioactivation into its active metabolite to exert 
platelet aggregation (https://www.pharmgkb.org/pathway/PA154424674), 
corroborating the CYP2C19  GWAS  signal. However, CYP2C19  varia-
tion explains only a fraction of the variability. More recent GWAS work 
identified an SNP in PEAR1, the gene encoding the platelet endothelial 
aggregation receptor 1 as an additional contributor to treatment response 
(rs12041331; p = 7.66 × 10−9). This association was observed in patients 
on aspirin treatment alone or on dual therapy with aspirin and clopido-
grel and accounted for approximately 5% of the phenotypic variation. 
However, Lewis et al. (PMID: 23392654) concluded that it remains to be 
elucidated whether rs12041331  in PEAR1  is indeed the causative SNP. 
Genetic variation in CYP2C19 and PEAR1 still explains less than 20% of 
the variation. As Ritchie et al. discuss [3,5], other associations may exist, 
but will require more sophisticated analysis tools and/or additional data to 
capture genotype–phenotype interactions.

https://www.pharmgkb.org/pathway/PA154444041
https://www.pharmgkb.org/pathway/PA154444041
https://www.pharmgkb.org/pathway/PA154424674
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Warfarin metabolism and response: Warfarin is one of the most widely 
used anticoagulants worldwide. It decreases coagulation by inhibiting 
vitamin K epoxide reductase 1 (VKORC1) and thereby reduces vita-
min K-dependent carboxylation of clotting factors. Since warfarin has 
a narrow therapeutic index, prescribed doses may be too high caus-
ing severe and potentially fatal bleeding or too low risking treatment 
failure. In Europeans, dose requirements vary about 20-fold and about 
20% of that variation could be explained by sequence variations in the 
CYP2C9 gene, can play an important role in the deactivation of warfarin 
(https://www.pharmgkb.org/pathway/PA145011113) and its pharma-
codynamic effect on VKORC1  (https://www.pharmgkb.org/pathway/
PA145011114). To identify additional genetic variation explaining the 
highly variable warfarin dose requirements, Takeuchi and coworkers 
(PMID: 2652833) performed the first GWAS study on 1053  Swedish 
subjects using the Illumina HumanCNV370 BeadChip array. In addition 
to finding strong associations with CYP2C9 (p < 10−78) and VKORC1 
(p < 10−31), only one additional significant association was identified, 
that is, rs2108622, a nonsynonymous SNP in CYP4F2 (p = 8.3 × 10−10). 
While these findings were replicated, this initial GWAS failed to identify 
additional genetic variants explaining variability in warfarin response. 
Subsequent efforts in the quest to identify additional genetic as well as 
non-genetic factors contributing to warfarin response are described in 
detail in Section 11.4.

11.3 DATABASES AND OTHER RESOURCES
This section highlights selected databases and resources central to PGx 
research and clinical applications. Relevant PGx databases and resources 
are described and referenced in Table 11.2.

Note to nomenclature databases: An increasing number of allelic vari-
ants were discovered in the 1990s for genes in the CYP superfamily of drug 
metabolizing enzymes. To keep up with the growing number of variants, a 
unique nomenclature was first proposed for CYP2D6 in 1996, which even-
tually led to the foundation of the Human Cytochrome P450 (CYP) Allele 
Nomenclature Database. Nomenclature for other pharmacogenes and gene 
families have followed suit, although official nomenclature webpages are 
only maintained for some (Table  11.2 # 4  and PharmGKB). Briefly, the so-
called star (*) nomenclature uses the HUGO-assigned gene symbol,  an 

https://www.pharmgkb.org/pathway/PA145011113
https://www.pharmgkb.org/pathway/PA145011114
https://www.pharmgkb.org/pathway/PA145011114
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Arabic number to indicate the family, a letter that designates the subfam-
ily, and an Arabic number to designate the individual gene within the 
subfamily. Examples are CYP2D6 (Cytochrome P450 = superfamily; 2 
= family; D =  subfamily; 6 = isoform), UGT1A1,  and ABCB1B1. Allelic 
variants of a gene are distinguished by adding a *number, examples being 
CYP2D6*1 and *2. In most instances, the *1 allele represents the wild-type, 
or reference, allele; a notable exception is NAT2 for which NAT2*4 repre-
sents the reference allele. Although this nomenclature is widely accepted 
in the field and used in the literature, the current nomenclature databases/
webpages are being outpaced by the growing numbers of novel variants 
discovered by next-generation sequencing. There is a desperate need for 
next- generation-nomenclature systems keeping track of variation in 
pharmacogenes and their functional consequences to aid clinical imple-
mentation of PGx.

11.4  WARFARIN PHARMACOGENOMICS AND ITS 
IMPLEMENTATION INTO CLINICAL PRACTICE

Warfarin is widely prescribed for the treatment and prevention of throm-
boembolic disorders and is usually dosed to achieve an international nor-
malized ratio (INR, a measure of anticoagulant activity) between 2 and 3. 
The risks for bleeding increase significantly with an INR above 4, and the 
risk for thrombosis increases with INR values below 2. The dose that pro-
duces an INR of 2–3  ranges from 0.5 to 10  mg/day or higher. Warfarin 
is often empirically initiated at a dose of 5 mg/day, with dose adjustment 
based on INR results. This may lead to supra-therapeutic anticoagulation 
and bleeding in some patients, while failing to provide adequate anticoagu-
lation in others. While clinical factors such as age, body size, and concom-
itant medications influence response to warfarin, dose prediction based 
on clinical factors alone remains poor, especially for patients requiring 
doses less than 3 mg/day or greater than 7 mg/day (International Warfarin 
Consortium [IWPC], PMID: 2722908).

Hundreds of candidate gene studies have consistently demonstrated 
that the CYP2C9 and VKORC1 genotypes influence warfarin dose require-
ments, making warfarin one of the most well-studied drugs in the PGx 
literature. Genotype also contributes to the risk for major hemorrhage 
with warfarin, especially in the initial 3 months of therapy (Mega et al., 
PMID: 25769357). According to data from the IWPC (PMID: 2722908), 
dosing based on genotype more accurately predicts dose requirements 
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than traditional dosing approaches. There are FDA-cleared platforms for 
warfarin PGx testing, and guidelines from the CPIC are available to assist 
with translating genotype results into actionable prescribing decisions 
(Table 11.2 # 3). For all of these reasons, warfarin is an ideal target for PGx 
implementation.

Of the variants in CYP2C9, the *2 (Arg144Cys, rs1799853) and *3 
(Ile359Leu, rs1057910) alleles are most commonly described and the 
primary alleles associated with decreased enzyme activity, reduced 
S-warfarin clearance, and lower warfarin dose requirements in European 
populations. The CYP2C9*5 (Asp360Glu, rs28371686), *6 (c.817delA, 
rs9332131), *8 (Arg150His, rs7900194), and *11 (Arg335Trp, rs28371685) 
alleles occur predominately in populations of African descent and also 
lead to significant reductions in enzyme activity against S-warfarin and 
decreased dose requirements. The VKORC1  c.-1639G>A (rs9923231) 
polymorphism, located in the gene regulatory region, decreases gene 
expression and further reduces warfarin dose requirements. There are 
significant differences in CYP2C9 and VKORC1 allele frequencies by race, 
as shown in Table 11.3.

The FDA-approved warfarin labeling now contains a table with dosing 
recommendations based on CYP2C9 and VKORC1 genotypes. PGx dos-
ing algorithms that take both genotype and clinical factors into account 
are also freely available and shown to more accurately predict dose than 
the table in the warfarin labeling. Two algorithms derived and validated 
in large populations are described in Table 11.4. A limitation of most dos-
ing algorithms is that they do not include many of the variants that are 

TABLE 11.3 Frequencies of Alleles Associated with Warfarin Dose 
Requirements in Different Ethnic Groups

Allele Europeans African Americans Asians

CYP2C9
*2 0.13 0.02 ND
*3 0.06 0.01 0.02
*5 ND 0.01 ND
*6 ND 0.01 ND
*8 ND 0.06 ND
*11 ND 0.04 ND
VKORC1-1639A 0.38 0.10 0.91

N/D, not detected.
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important in African Americans. As a result, they are significantly less 
effective at predicting dose requirements in African Americans compared 
to Europeans (Schelleman et al., PMID: 2538606).

GWAS by Takeuchi et al. (PMID: 2652833) and Cooper et al. (PMID: 
2515139) in European populations have confirmed the association between 
the CYP2C9  and VKORC1  genotypes and warfarin dose requirements. 
However, with the exception of CYP4F2, they have failed to iden-
tify novel associations with warfarin response. In contrast, a GWAS in 
African Americans, conducted by the IWPC, identified a novel associa-
tion between an SNP in the CYP2C gene locus and lower dose require-
ments (Perera et al., PMID: 23755828). The discovery cohort consisted of 
533 African Americans from 9 IWPC sites who were genotyped with the 
Illumina 610 Quad BeadChip or Human1M-Duo 3.0 array. After condi-
tioning on the VKORC1 locus and CYP2C9*2 and *3 alleles, an association 

TABLE 11.4 Warfarin Pharmacogenetic Dosing Algorithms

IWPC Algorithm Gage Algorithm

Description Developed by the IWPC, a 
collaboration of 21 groups 
from 9 countries and 
4 continents who pooled data 
to create a dosing algorithm 
with global clinical utility

Derived and validated in a U.S. 
population. The on-line version 
includes a dose refinement 
algorithm that can account for 
previous warfarin doses and 
INR response

Derivation cohort n = 4043 (55% White, 30% 
Asian, 9% Black, 6% other)

n = 1015 (83% White, 15% 
Black, 2% other)

Validation cohort n = 1009 (56% White, 30% 
Asian, 10% Black, 5% mixed or 
missing data)

n = 292 (83% White, 15% Black, 
2% other)

Variables included in 
the algorithm

Age (in decades), height, weight, 
VKORC1-1639G>A genotype, 
CYP2C9 genotype (accounting 
for *2 and *3 alleles only), 
Asian race, African-American 
race, enzyme inducer status 
(if taking carbamazepine, 
phenytoin, rifampin, 
rifampicin), amiodarone use

VKORC1-1639G>A, body 
surface area, CYP2C9 (*2 and 
*3 alleles in published 
algorithm; *2, *3, *5, and 
*6 included in the on-line 
algorithm), target INR, 
amiodarone use, smoking 
status, African-American race, 
deep vein thrombosis, or 
pulmonary embolism

Reference PMID: 19228618 PMID: 18305455
Website accessibility http://www.warfarindosing.org http://www.warfarindosing.org

http://www.warfarindosing.org
http://www.warfarindosing.org
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emerged with the rs12777823 SNP on chromosome 10 (p = 1.51 × 10−8), 
which was replicated in an independent cohort of 432 African Americans 
(p  =  5.04  ×  10−5). The rs12777823  A allele has a frequency of approxi-
mately 20% and is associated with reduced S-warfarin clearance in African 
Americans.

Another novel variant, located in the folate homeostasis gene folylpoly-
glutamate synthase (FPGS), was identified through whole exome sequenc-
ing of samples from 103 African Americans requiring warfarin doses of 
≤5  or ≥7  mg/day (Daneshjou et  al., PMID: 25079360). The association 
between the rs7856096  variant and warfarin dose was replicated in an 
independent cohort of 372 African Americans, with a dose reduction of 
nearly 1 mg/day with each minor allele. The risk allele is most prevalent in 
populations of African descent, with a frequency of 0.15–0.20 in African 
Americans, but <0.01 in Europeans.

Two randomized, multicenter, controlled clinical trials have  assessed 
the utility of genotype-guided warfarin dosing. The European Pharma-
cogenetics of Anticoagulant Therapy (EU-PACT) trial compared dosing 
with a PGx algorithm to a traditional dosing approach (5–10 mg on day 1, 
then 5 mg per day with dose adjustment based on INR) in 455 patients 
(Pirmohamed et al., PMID: 24251363). PGx dosing resulted in greater time 
within the therapeutic INR range, fewer instances of over-anticoagulation, 
and shorter time to achieve therapeutic dosing. The Clarification of Optimal 
Anticoagulation through Genetics (COAG) trial randomized 1015 patients 
to dosing with a PGx algorithm or dosing with an algorithm containing 
clinical factors only (e.g., age, race, body size, and concomitant medica-
tions) (Kimmel et al., PMID: 24251361). In contrast to the EU-PACT trial, 
the COAG trial found no difference in time in therapeutic range between 
groups. African Americans, who comprised 27% of study participants, had 
more INR values above the therapeutic range with PGx dosing.

The EU-PACT and COAG trials only studied the CYP2C9*2, *3, and 
VKORC1-1639G>A variants, which were appropriate for the EU-PACT 
trial, in which 98% of participants were European. However, recent data 
suggest that failure of the COAG trial to account for African-specific variants, 
such as CYP2C9*5, *6, *8, *11, and the rs12777823 SNP, may have contrib-
uted to the higher risk for supratherapeutic dosing with the PGx algorithm 
in the African American cohort (Drozda et al., PMID: 25461246). A third 
trial is ongoing and is examining the effect of genotype-guided dosing on 
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risk for venous thromboembolism and major bleeding in patients taking 
warfarin after major orthopedic surgery.

Based on substantial and consistent data that genotype influences warfa-
rin dose requirements, genotype-guided dosing became the standard of care 
for patients newly starting warfarin at the University of Illinois Hospital in 
2012. This serves as one of the earliest examples of clinical implementation 
of warfarin PGx [7]; the process for providing genotype-guided dosing is 
outlined in Figure  11.1. The initial dose, prior to the return of genotype 
results, is calculated with a clinical dosing algorithm embedded in the elec-
tronic health record. Genotype results are targeted to be available prior to 

•  Genotype is automatically ordered via clinical decision support (CDS) in the electronic
    health record.
•  Blood is drawn and sent to the molecular pathology laboratory.

Genotype order

New warfarin order

•  Genotype-guided dose is calculated using a PGx algorithm freely available through
    www.warfarindosing.org and provided to the primary service via consult note in the
    electronic health record.

Pharmacogenetics consult

•  Service continues to provide daily dose recommendations, refined based on INR.

Patient education
•  Patient provided with a copy of genotype results and information on what results mean
    for warfarin dosing.
•  Patient instructed to share results with clinician managing warfarin after discharge.

Genotyping
•  Test includes CYP 2C9 and VKORC1 genotypes.

•  Results are available within 4–6 hours.
•  Test is run at 10 am each day for any samples available.

•  Initial dose recommendation is based on clinical factors provided via electronic CDS.
Initial warfarin dose

FIGURE 11.1 Process for providing genotype-guided dosing at the University of 
Illinois Hospital & Health Sciences System.
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the second warfarin dose, at which time a PGx service provides a genotype-
guided dose recommendation. The service continues to provide daily dose 
recommendations, refined based on INR response to previous doses, until 
the patient reaches a therapeutic INR or is discharged. Outcome data with 
the service are expected, which in addition to data from the ongoing clinical 
trial, should help guide the future of warfarin PGx.

11.5  PHARMACOGENOMICS KNOWLEDGEBASE—
PharmGKB

Overview: The Pharmacogenomics Knowledgebase (PharmGKB, Table 11.2 
# 2) is a web-based, publically available resource (funded by the NIH and 
NIGMS). PharmGKB’s mission is to support the understanding of how genetic 
variation contributes to differences in drug metabolism and response. The knowl-
edge contained in PharmGKB is human-curated from a variety of sources to 
capture the relevant pharmacogenomic relationships among genes, drugs, 
and diseases. Controlled vocabularies are imported from trusted reposito-
ries such as the Human Genome Nomenclature database (gene symbols and 
names; http://www.genenames.org/), Drugbank (drug names and structures; 
Table  11.2  #  12),  MeSH (http://www.nlm.nih.gov/mesh/MBrowser.html), 
and SnoMed (http://www.ihtsdo.org/snomed-ct/) (disease terminology). 
The Pharm GKB re source is free for all, but subject to the usage agreement 
for research purposes only without redistribution.

Curated knowledge: The PharmGKB Knowledge Pyramid (Figure 11.2) 
illustrates the available knowledge and how these diverse types of informa-
tion are integrated in several PharmGKB features. At the foundation of the 

Clinical interpretation

Primary pharmacogenomic literature

Knowledge extraction
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n.

Clinical
implementation

Knowledge
annotation, aggregation, and integration

Data
consortiaCPIC

Implementation projects

Dosing guidelines

Level of evidence

EvaluationGenotype-based
pharmacogenomic

summaries

Associations
between genetic

variants and drugs

Drug-centered
pathways

Very important
pharmacogene

(VIP) summaries

Automated
(NLP) curation

Relations
Manual curation

Knowledge consortia

Entities

FIGURE 11.2 PharmGKB knowledge pyramid. CPIC, Clinical Pharma cogenetics 
Implementation Consortium; NLP, natural language processing.

http://www.genenames.org/
http://www.nlm.nih.gov/mesh/MBrowser.html
http://www.ihtsdo.org/snomed-ct/
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knowledgebase is the pharmacogenetic and pharmacogenomic literature, 
which is annotated, aggregated, and integrated in gene variant annotations, 
drug-centered pathways, and summaries of important pharmacogenes.

The core components of PharmGKB are variant annotations, which 
extract the association between a single variant (polymorphisms or haplo-
type) and a drug phenotype reported in a published article. Accompanying 
study parameters such as study size, population ethnicity, and statistics are 
recorded for each association. Clinical annotations combine multiple vari-
ant annotations for a variant–drug–phenotype association to create a sum-
mary report per applicable variant genotype. As shown in Figure 11.3, the 

FIGURE 11.3 Clinical annotation for rs4244285 and clopidogrel. Screenshot of 
the summaries capturing the association between rs4244285 and clopidogrel by 
rs4244285 genotype based on annotated evidence.
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underlying evidence that supports the clinical annotation is displayed as a list 
of single variant annotations with links to the individual articles. The associa-
tions are reported in a relative fashion as compared to other genotypes.

Each clinical annotation is assigned a level of evidence score. The score 
is a measure of the confidence in the association by a PharmGKB curator. 
It is based on several criteria including replication of the association and 
p-value. The criteria underlying the scoring of the evidence level are pre-
viewed and published [8] and summarized at https://www.pharmgkb.org/
page/clinAnnLevels.

Knowledge about a specific drug or gene might be also condensed 
in drug-centered pathways or in very important pharmacogene (VIP) 
summaries. A pathway consists of a diagram and description highlight-
ing genes involved in the pharmacokinetics or pharmacodynamics of a 
drug or drug class. The relationships illustrated are based on published 
literature and referenced in the description and components tab of the 
pathway page. The pathways are manually constructed as graphic images, 
converted to gpml (GenMapp pathway markup language) and BioPAX 
formats (http://www.biopax.org/) to be stored in the underlying database. 
A VIP summary provides a pharmacogenetic-focused overview based on 
the literature about an important gene involved in drug responses. The 
summary covers background information about variants and  haplotypes, 
if applicable. Currently, 54  VIP summaries (https://www.pharmgkb.org/
search/browseVip.action?browseKey=vipGenes) and 110  pathways 
(https://www.pharmgkb.org/search/browse/pathways.action) are avail-
able on PharmGKB. Many of the pathways and VIP summaries are writ-
ten in collaboration with external experts in the field and published in the 
journal Pharmacogenetics and Genomics.

Clinical implementation of pharmacogenomic knowledge is part of 
PharmGKB’s efforts (Figure  11.2). PharmGKB supports several clini-
cally related projects including data-sharing and implementation proj-
ects (https://www.pharmgkb.org/page/projects). The CPIC (Table 11.2 # 3) 
publishes gene–drug dosing guidelines to enable physicians to incor-
porate knowledge about a patient’s genetics in the drug selection/dos-
ing decision in cases where the patient’s genotype is available (Relling 
et al., PMID: 21270786 and Caudle et al., PMID: 24479687). The guide-
lines are drafted in a standard format according to standard operating 
procedures, published in Clinical Pharmacology and Therapeutics and 
simultaneously posted to PharmGKB (additional details are provided in 
Section 11.6).

https://www.pharmgkb.org/page/clinAnnLevels
https://www.pharmgkb.org/page/clinAnnLevels
http://www.biopax.org/
https://www.pharmgkb.org/search/browseVip.action?browseKey=vipGenes
https://www.pharmgkb.org/search/browseVip.action?browseKey=vipGenes
https://www.pharmgkb.org/search/browse/pathways.action
https://www.pharmgkb.org/page/projects
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Knowledge Organization: PharmGKB serves a broad user base with 
pharmacogenomics relationships for research interests and knowledge 
about clinically applicable gene–drug relationships contributing to the 
vision of personalized medicine. The general drug page layout is shown in 
Figure 11.4. The knowledge is organized under tabs for clinical pharma-
cogenomics, pharmacogenomics research, overview, properties, pathways, 
related genes, drug and diseases, and downloads/link-outs. Gene and dis-
ease pages are similarly organized.

The clinical pharmacogenomics tab is divided into dosing guidelines, 
drug labels, and clinical annotations. The dosing guidelines tab includes 
the posting of genotype-based drug dosing guidelines including those by 
CPIC and the Royal Dutch Association for the Advancement of Pharmacy 
Pharmacogenetics Working group (Figure 11.4a). The extended guideline 
feature allows the user to access available CPIC guideline recommenda-
tions specific to a genotype selected in a dropdown menu (Figure 11.4b).

(a) (b)

FIGURE 11.4 PharmGKB clopidogrel drug page. The clopidogrel drug page 
showing tabs for clinical pharmacogenomics (dosing guidelines, drug labels, and 
clinical annotations), pharmacogenomics research, overview, properties, path-
ways, related genes, drug and diseases, and downloads/link-outs. (a) Part of the 
excerpt from the CPIC guidelines for CYP2C19 genotypes and clopidogrel therapy 
(Scott et al., PMID: 23698643). (b) Recommendations for CYP2C19*2/*2 geno-
type based on Table 2 from the CPIC guidelines for CYP2C19 genotypes and clop-
idogrel therapy. CPIC, Clinical Pharmacogenetics Implementation Consortium; 
CYP2C19, cytochrome P450, family 2, subfamily C, polypeptide 19.
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The drug labels tab provides excerpts from the drug label and a down-
loadable highlighted label PDF file for drug labels containing pharma-
cogenomics relevant information approved by the U.S. Food and Drug 
Administration (FDA), European Medicines Agency, or the Pharmaceuticals 
and Medical Devices Agency, Japan. Clinical annotations (described under 
curated knowledge) for the drug are listed under the clinical pharmacoge-
nomics tab sorted by variants. The pharmacogenomics research tab con-
tains genomic variants or gene haplotypes related to drugs with links to the 
variant annotations (described under curated knowledge) that capture the 
association from individual articles. The overview and properties page have 
basic information about the drug. The pathway tab links to available curated 
pharmacokinetic or pharmacodynamic pathways related to the drug. Related 
genes, drug, and diseases are compiled from different knowledge pieces in 
PharmGKB, which are indicated through different symbols, supporting a 
relationship of the drug with a gene and/or disease. Download/link outs con-
nect to external resources and vocabulary.

11.6  CLINICAL PHARMACOGENETICS 
IMPLEMENTATION CONSORTIUM

CPIC is part of the mission of the Pharmacogenomics Research Network 
(PGRN) (Table 11.2 # 1) and supported and housed by PharmGKB. The 
incorporation of genomic data into routine clinical practice is the ulti-
mate goal of PGx, and a number of challenges and barriers have, however, 
been identified to hamper efforts. Among the top identified challenges 
were difficulties interpreting genotype tests and how to translate geno-
type information into clinical action. To address these challenges, CPIC 
is devising guidelines that are designed to help clinicians understand how 
available genetic test results may be used to tailor drug therapy for the 
individual patient. The guidelines follow standardized formats (Caudle 
et al., PMID: 24479687), are peer-reviewed, are freely available, and are 
updated approximately every two years. Candidate gene/drug pairs for 
guideline development are selected based on the levels of evidence sup-
porting recommendations in favor of choosing a different drug or alter-
ing dose. Each guideline provides a wealth of information including 
extensive literature reviews and summaries of the supporting literature, 
information of genetic variation, and dosage recommendations based on 
genotype-predicted phenotype. To address a growing interest in infor-
matics aspects of CPIC guidelines and clinical implementation of PGx, 
the CPIC Informatics Working Group is tasked to identify and resolve 
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technical barriers to the implementation of the guidelines within a clini-
cal electronic environment and to create comprehensive translation tables 
from genotype to phenotype to clinical recommendation. Workflow dia-
grams and example clinical decision support alerts and consults are now 
included into the guidelines as resources facilitating the incorporation of 
pharmacogenetics into an electronic health record with clinical decision 
support. Information contained within the guidelines are also increas-
ingly disseminated with other organizations and databases including the 
GTR, PGRN, and eMERGE listed in Table 11.1 # 8, but also www.guide-
lines.gov, the NHGRI Genomic Medicine Working Group, the Institute 
of Medicine Genomic Medicine Roundtable, the American Medical 
Informatics Association, and the FDA.

To date, guidelines have been published for 15 gene/drug pairs. These 
include the SLCO1B1/simvastatin, CYP2D19/clopidogrel, and CYP2C9 and 
VKORC1/warfarin, which have been highlighted as GWAS examples.
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Exploring De-Identified 
Electronic Health 
Record Data with i2b2

Mark Hoffman

12.1 INTRODUCTION
The Precision Medicine Initiative announced by President Obama in his 
2015 State of the Union Address envisions a large cohort of patients whose 
biological and clinical data are utilized to improve the personalization of 
health care [1]. The electronic health record (EHR) is widely recognized 
as the richest source of clinical information about patient phenotype and 
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will be an important source of medical data for the Precision Medicine 
Initiative. The “Meaningful Use” section of the American Reinvestment 
and Recovery Act (ARRA) of 2009 provided funding to support the wide-
spread adoption of EHRs. Meaningful Use also provided a phased set of 
capabilities that are required of EHR systems in order to qualify for federal 
funding. These requirements have promoted the generation of data that is 
optimized for analysis by rewarding the use of discrete data capture fields 
and standardized terminologies such as the Systematized Nomenclature 
of Medicine—Clinical Terms (SNOMED-CT) and Logical Observation 
Identifiers Names and Codes (LOINC).

Discrete codified data representing most aspects of clinical workflow 
can be used to stratify patients at a highly granular level, a necessary 
capability for precision medicine. Research performed using this granu-
lar information can provide useful insights into complex diagnostic and 
prognostic associations. As the adoption of EHRs is extended to include 
genetic information [2], research to examine associations between DNA 
variants and a wide variety of phenotypes will become feasible. Examples 
of phenotypes that can be investigated include individual risk of develop-
ing disease, personal variability in drug response, or markers that are prog-
nostic of cancer progression. Patient outcomes can often be inferred from 
EHR-derived data using both direct and indirect measures. Direct out-
comes can include discharge status, for example, mortality, or readmission 
with a diagnosis that indicates the failure of a previous treatment. Indirect 
measures of patient outcomes can include lab results for biomarkers such 
as hemoglobin A1c or high-density lipoprotein levels.

Before discussing applications that enable research with de-identified 
data generated from EHRs, it is important to review the reasons why such 
research cannot easily be supported directly through the EHR. While 
EHRs are extremely useful for improving the quality of health care, they 
were designed and implemented to support the delivery of patient care, not 
research. As such, key features that would have made research using direct 
access to EHR data feasible are not widely included in EHRs. Privacy require-
ments, including those codified in the Health Information Portability and 
Accountability Act (HIPAA), limit access to protected health information 
(PHI). While EHRs provide all of the capabilities necessary to comply with 
privacy regulations during the delivery of patient care, they generally lack 
features that enable compliance with privacy regulations for research pur-
poses. All EHRs provide the ability to generate  complex reports that are 
utilized to support clinical operations. While many of the fields  associated 
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with PHI can be hidden from these reports using filters, obscuring date of 
service is problematic and requires  additional functionality. Many catego-
ries of research, including health services research, require understanding 
of the time between events. EHRs typically do not include an embedded 
visual query builder that does not require advanced training to be produc-
tive. In the absence of a query builder, the remaining approach is for the 
small group of experts in information technology (IT) group to receive 
requests from researchers specifying the data that they need to be extracted 
from the EHR.

The limited availability of IT personnel trained to write queries against 
data in the EHR is a significant barrier to this approach to research. This 
group focuses on the success of the EHR for patient care and managing 
the daily operations of the EHR. Research queries often have to be worked 
into their queue to perform as their schedule permits. It is not uncom-
mon for the request from a researcher to require clarification and multiple 
iterations before a useful file can be generated. Furthermore, performing 
direct queries against the EHR database can introduce performance risks 
to the patient care setting. For example, a query that interrogates a table 
used for medication orders could slow the responsiveness of computerized 
provider order entry (CPOE). The Informatics for Integrating Biology and 
the Bedside (i2b2) initiative was launched to provide researchers with a 
user-friendly application to enable queries against de-identified informa-
tion derived from the EHR [3].

Many significant national initiatives have recognized the importance of 
linking EHR data with genomic data. For example, the Electronic Medical 
Records and Genomics (eMerge) project includes organizations such as 
Northwestern University, Vanderbilt, the Mayo Clinic, Group Health, 
Boston Children’s Hospital, the Marshfield Clinic, and Geisinger Health 
system. These organizations use EHR systems from multiple vendors to 
address a variety of significant clinical research questions. The eMerge 
initiative has yielded new insights into obesity, juvenile arthritis, and the 
genetic basis of response to chemotherapy drugs. A key challenge with 
eMerge has been extracting information from EHRs. Often participating 
sites work through data warehouses instead of direct connections to the 
EHR systems to accomplish their goals.

At the University of Missouri—Kansas City (UMKC), a recently formed 
group, the Center for Health Insights (CHI) focuses on implementing and 
developing informatics resources to promote  biomedical research. The CHI 
team includes experts in data science, genomics, medical informatics, 
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statistics, Big Data, and bioinformatics. The CHI works closely with UMKC 
clinical affiliates, including Children’s Mercy Hospital and Truman Medical 
Center, to assist their efforts to make effective and  efficient use of i2b2, 
REDCap, and other research informatics platforms. The structure of the 
CHI, in which clinicians, biomedical researchers, and engineers work closely 
together, provides a model for successful research informatics support.

This chapter summarizes representative use-case scenarios in which 
i2b2  can accelerate research. The key elements of the i2b2  informat-
ics architecture will be reviewed and then a brief tutorial describing the 
workflow of a typical analysis will be provided.

12.2 APPLICATION
Biomedical researchers working in healthcare settings frequently com-
ment about frustration at limited access to aggregate clinical data. The 
barriers are often related to resource limitations, especially the staffing of 
the IT team. While organizations differ in their interpretations of HIPAA, 
policies implemented to protect patient privacy are also viewed as a  barrier 
to accessing clinical data for research purposes. By offering an accessible 
user-friendly application that accesses de-identified data, i2b2  offers a 
 resolution to both of these barriers.

Since its inception, i2b2 has been applied to many areas of biomedical 
research. Formal projects aligned with the i2b2 organization are identified 
as disease-based driving biology projects or DBPs. Clinical investigators 
associated with i2b2 DBPs gain prioritized access to informatics experts 
in the i2b2 organization.

There are numerous applications of i2b2, but this chapter will highlight 
four applications:

 1. Feasibility analysis for cohort discovery

 2. Formation of research networks to scale beyond individual institutions

 3. Longitudinal analysis using data extracted from i2b2

 4. Integration with bio-repositories to support biological analysis

12.2.1 Feasibility Analysis

Biomedical researchers face numerous challenges in performing human 
subject’s research. Failure to recruit an adequate number of subjects for a 
research study is identified as one of the most common causes of failure 
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for a clinical research study. A 2011 report from the Tufts Center for the 
Study of Drug Development comments that as many as two-thirds of sites 
in a study fail to meet their recruitment targets. Often clinical researchers 
overestimate the number of patients in their clinic or practice who would 
meet the inclusion criteria for a clinical protocol, introducing delays into 
the completion of the protocol.

One of the most valuable applications of i2b2  is to enable feasibility 
analysis or cohort screening. Using i2b2, a researcher can easily query 
 de-identified data to determine how many patients possess the  attributes 
in the inclusion criteria for their study. Likewise, the logical filters of 
i2b2  can support exclusion logic. For example, a researcher planning a 
study related to drug metabolism may want to exclude patients with a 
documented diagnosis code for cirrhosis.

12.2.2 Formation of Research Networks

Many research studies require more participants than are likely to be 
found within a single institution. The Patient Centered Outcomes Research 
Institute (PCORI) has funded clinical research network development, 
including some that are based on i2b2 [4]. The ability to integrate recruit-
ment efforts across sites is another benefit of i2b2, though complex data 
governance, legal, and financial issues continue to make these  initiatives 
challenging.

Shrine is the official data-sharing network framework for the i2b2 com-
munity [5]. It provides the technical architecture to connect multiple i2b2 
instances and is the basis for a number of emerging research  networks. 
Under Shrine, data remain local but federated querying capabilities are 
implemented to support networked research.

12.2.3 Longitudinal Analysis

EHRs include a variety of information that can inform and improve 
research. One of the most significant opportunities in EHR-based research 
is the opportunity to monitor patient interactions with the healthcare 
 system over time in a longitudinal analysis. While health care claims data 
sets generated by payor data can provide longitudinal data, EHR-derived 
data offer many advantages for longitudinal data.

As with payor data, most EHR systems include patient diagnosis code, 
documented using International Classification of Disease-9 (ICD-9) 
codes. All EHR vendors are preparing for ICD-10 which will offer even 
more granularity. Within i2b2, ICD codes are often used as one of the first 
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filters in defining a query. Unlike claims data, EHR systems also include 
information related to laboratory orders and results, medication orders, 
date and time stamped procedure events, vital sign documentation, and 
often billing data. The availability of these additional categories of data 
over multiple patient encounters is one of the key strengths of EHR-based 
data analysis. I2b2 allows users to define queries that apply inclusion or 
exclusion logic based on any of the categories of data and then can  generate 
a data set for further analysis.

12.2.4 Integration with Bio-Repositories

For genomic research, there is a significant need to query clinical data, 
find patients who meet the inclusion criteria, and then access a biological 
sample (blood or tissue) from those individuals. Those samples can then 
serve as the source of DNA, RNA, or protein analytes for further inquiry. 
Some implementations of i2b2 support this critical workflow by capturing 
a flag in their EHR to document that a patient has provided consent to be 
included in a biobank [6] (Table 12.1).

These i2b2 capabilities will become recognized as an important part of 
fulfilling President Obama’s 2015 State of the Union announcement that 
Precision Medicine is a national priority.

It is important to acknowledge the limitations of i2b2. The database 
schema for i2b2 is optimized to favor a user-friendly interface and  limits 
the ability to perform complex queries directly within i2b2. Formal data 
warehouses using relational database structures or emerging Big Data 
architectures such as Hadoop will continue to play an important role 
in biomedical research. Also, despite the improvements in the use of 
 discrete fields to store information in the EHR, text documents continue 

TABLE 12.1 Representative i2b2 Projects

Project Organization Approach

Rheumatoid arthritis Brigham and Women’s, 
Partners Healthcare

Use i2b2 to identify genes 
and DNA variants 
associated with susceptibility 
to rheumatoid arthritis

Great Plains Research 
Collaborative

University of Kansas (lead) Research network

Airways disease Harvard Longitudinal analysis
Consented biorepository Cincinnati Children’s 

Hospital 
Linkage of EHR-derived 
records to consented 
biobank specimens
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to store a significant portion of clinical information in the EHR. While 
some i2b2 research has been performed utilizing natural  language pro-
cessing (NLP) of textual clinical information [7], there are not yet widely 
reliable methods to fully de-identify text documents which can include 
PHI such as surnames, telephone numbers, or addresses [8]. Therefore, 
research utilizing the extraction of text documents into i2b2  will 
 continue to require institutional review board (IRB) oversight.

12.3 DATA ANALYSIS
Moving data from an EHR into i2b2 requires a general workflow common 
to all EHR vendors and platforms and similar to the extract, transform 
and load (ETL) process common to data warehouse implementations. 
The sequence of these steps may vary slightly across implementations, as 
can the locations in which the data transformations occur (locally or in a 
cloud hosted environment). Decisions about who performs an i2b2 imple-
mentation can have significant impact on the features and flexibility of 
the system in use by any particular organization as well as the support 
 available for troubleshooting.

12.3.1 Extract Data from EHR Database

EHR systems utilize database systems to store a wide variety of informa-
tion, including orders, results, diagnosis codes, and other information 
generated during the delivery of patient care. While Meaningful Use 
has promoted standards that enable interoperability, each EHR vendor 
maintains proprietary backend database systems. The first step in moving 
data into i2b2 is to extract the data from the EHR database. This requires 
 in-depth knowledge of the table or file structure and system architecture 
of the EHR platform.

12.3.2 Account for Privacy Considerations

Most i2b2  implementations utilize de-identified information, requir-
ing that the data extracted from the EHR be processed to remove 
or obfuscate any of the 18  data elements protected by HIPAA. Date 
fields must be removed or shifted using an algorithm that cannot be 
reversed. In order to retain value for research, it is important that dates 
be shifted consistently so that the time between events for a person 
represented in i2b2 can be accurately evaluated even if the exact dates 
of service are unknown. For example, it is highly significant whether 
a patient is readmitted for a complication 1 week or 3 months after a 
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surgery. Likewise, date shifting approaches that can preserve day of the 
week effects are preferable to  random shifting as utilization of many 
healthcare resources changes during weekends. Some i2b2 implemen-
tations can transfer identified information from the EHR into i2b2, and 
these require additional data handling  processes and appropriate IRB 
oversight.

12.3.3 Data Mapping

I2b2 uses a platform-specific ontology to standardize terms. The i2b2 ontol-
ogy uses parent–child relationships to enable hierarchical queries. For 
example, the high-level category of “Microbiology Cultures” would have 
children that include “Blood Cultures” and “Urine Cultures.” A query 
using the “Microbiology Cultures” term would retrieve all cultures 
including blood and urine, while a query in which the user specifies blood 
cultures would only retrieve that specific group of orders. The raw data 
extracted from the EHR must be mapped to this ontology for i2b2 to func-
tion. When standardized terminologies such as LOINC, SNOMED-CT, 
and ICD-9 are utilized, this is a relatively clean process. Data that are not 
associated with one of these terminologies must be mapped through an 
additional batch or curation process.

12.3.4 Data Transformation

Every EHR vendor has a proprietary data schema. I2b2 uses a data schema 
that is optimized to support simple interactive queries. A data transforma-
tion process converts the mapped data from the raw EHR format into the 
i2b2  structure. Software scripts that can be run automatically facilitate 
these transformations. Some institutions pass their data through a data 
warehouse before transforming it into i2b2.

12.3.5 Data Load

Once the data have been de-identified, mapped, and transformed, it is 
loaded into the i2b2 installation. Some organizations use local hardware 
computing platform managed on site to store the data. Other institutions 
use a private, secure, cloud hosted model.

While these steps are common to all i2b2 installations, there are a variety 
of strategies to implement i2b2. Selection of the approach to i2b2 deploy-
ment is often influenced by budget and staffing. The degree to which an 
organization wants independence in managing and modifying the system 
is another key factor. The level of support expected by users and tolerance 
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for system down time are further elements. Three i2b2  implementation 
strategies are prevalent.

 1. Independent implementation: The first approach is an independent 
process that is managed by the research organization and their 
clinical collaborator. They are responsible for each of the five pro-
cesses identified above. This approach can require significant time 
and effort. Support is expected exclusively from the internal staff. 
Organizations taking this approach have complete control over the 
configuration of their i2b2 system.

 2. Consultant driven: The second model is to engage consultants to 
perform the majority of the process, though local stakeholders 
will have decisions and responsibilities at many key milestones. 
The  consultants assist with the technical work and provide guidance 
on data governance and other policies. They also contribute to the 
data mapping and standardization. These implementations often 
include the option to subscribe to expert support. In this model, the 
consultants may not have access to the technical infrastructure host-
ing i2b2, requiring that the research organization provide technical 
troubleshooting support. The consultant-driven approach offers the 
advantage of utilizing best practices but can often have high costs. 
The Recombinant division of Deloitte consulting is one of the most 
widely utilized i2b2 consulting services.

 3. EHR vendor facilitated: The third model, utilized by two of the 
UMKC healthcare partners, Children’s Mercy Hospital and Truman 
Medical Center, is to apply the services of their EHR vendor Cerner® 
Corporation in implementing i2b2. This model also requires involve-
ment of the clinical team at the research organization but utilizes 
standardized extraction, transformation, and loading processes. 
In  this model, the system can be hosted in a private cloud, limit-
ing the hardware investment required. The vendor can provide both 
technical and application support. A limitation of this model is that 
the researchers are generally not able to independently install plug-
ins or make modifications to the backend database.

As an example, two of the healthcare provider organizations that part-
ner with UMKC have utilized the Cerner implementation of i2b2, which 
falls under the third model. Cerner provided professional services to 
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support the five steps of i2b2 implementation. They supply cloud-based 
hosting from their data center and offer continuous support. Data are 
loaded from the EHR into i2b2 on a regular schedule using automated 
processes. The research organizations were actively involved in the data 
mapping work and in validating that the data in i2b2 were an accurate 
representation of the information found in the EHR. Validation includes 
activities such as confirming that the number of cases of patients with a 
particular diagnosis code in i2b2 corresponds with the number of cases 
found with a query run direction against the EHR. Another organiza-
tion in the Kansas City Area, the University of Kansas Medical Center, 
utilizes Epic® as their EHR. They pursued a successful i2b2 implementa-
tion process that was largely independent, with limited use of consulting 
support [9].

Once the data are loaded into i2b2, it can then be accessed for 
research. Most interaction with i2b2 occurs through the user-friendly 
front-end application. This provides the ability to easily select inclu-
sion or exclusion criteria using either a drill-down approach through 
the i2b2 ontology or a search capability. Multiple formats are available 
for the output of a query, including summary reports and a timeline 
view. The ability to export data from i2b2 in delimited format provides 
the ability to perform statistical analysis using standard applications 
such as SAS or R.

While i2b2 is optimized for healthcare data, it has informed initiatives 
that serve as templates for the integration of genomic information with 
the EHR [10]. As an open source application framework, i2b2 has fostered 
a development ecosystem that has generated plug-ins and optional fea-
tures. Figure 12.1 shows a representation of i2b2 Core Cells, optional cells, 
workbench plug-ins, the web client, and a CRC plug-in to support patient 
counts.

The ability to incorporate optional features or develop new capabilities 
is a strong benefit of i2b2.

12.4 TUTORIAL
Using i2b2 is relatively simple compared to many analytical applications. 
Users have a front-end program that uses drag and drop inclusion or 
exclusion criteria and customizable filters. In this tutorial, we will follow 
a researcher who wants to determine whether or not their institution has 
at least 50 patients who will meet the inclusion criteria for a project under 
consideration. Dr. Jones is an expert in pediatric epilepsy and wants to 
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know whether there is a genetic basis for outcomes variability in response 
to tegretol. She wants to focus on children between the ages 6 and 12.

Step 1: Launch i2b2

Dr. Jones launches i2b2 from a web browser. She selects the appropri-
ate environment, enters her username and password, and views the 
opening screen of the application.

Step 2: Select Demographic Criteria

In the i2b2 home screen, Dr. Jones choose the “Navigate Terms” tab. She 
then selects the “Demographics” folder and expands it. After pick-
ing the “Age” folder, two groups that are relevant to her research are 
displayed—“0–9 years old” and “10–17 years old.” She expands both 
of these folders. From the 0–9 folder, she chooses 6, 7, 8, and 9 and 
then drags them to the Query Tool pane and repeats that process for 
the 10, 11, and 12 year olds from the 10–17 group.

Natural
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processing

Correlation
analysis
plug-in

Export
data

plug-in

High
performance
computing

plug-in

Text
analyzer
plug-in

Import
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FIGURE 12.1 i2b2 features (from i2b2.org).

http://i2b2.org
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Step 3: Select Diagnosis Code(s)

Returning to the “Navigate Terms” tab, she now expands the “Diagnoses 
(Billing)” option. Within this group, she finds the “Diseases of the 
Nervous System and Sense Organs.” From there, she chooses the 
“Other Disorders of the Central Nervous System” category and finds 
“Epilepsy and recurrent seizures.” She can either use the entire group 
or narrow her search criteria to only those patients with “Generalized 
convulsive epilepsy,” “Epilepsy unspecified,” or another related 
 category. She chooses “Generalized convulsive epilepsy” and drags it 
to the “Group 2” pane of the Query Tool (Figure 12.2).

Step 4: Medication Filter

In order to identify patients receiving tegretol, Dr. Jones uses the search 
prompt instead of drilling down through the menus. She sees four 
options for tegretol (carbamazepine), chooses all four, and drags 
them to Group 3 in the Query Tool.

At this point, Dr. Jones could establish other filters for each query 
group. For example, she could confine the date parameters. Instead 
she chooses to use all available data.

Step 5: Run Query

Dr. Jones clicks the “Run Query” button at the bottom of the Query 
Tool. She can choose the type of query results from this list of options:

• Patient list

• Event list

• Number of patients

FIGURE 12.2 i2b2 query tool.
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• Gender patient breakdown

• Vital status patient breakdown

• Race patient breakdown

• Age patient breakdown

• Timeline

She chooses the patient list, event list, number of patients, gender 
patient breakdown, and timeline options. Then, she launches her 
query. After a brief wait, her results are returned.

Step 6: Review Results

After running her query, the results are displayed in a summary for-
mat. Only four patients fulfilled her criteria, leading Dr. Jones to 
realize that she needs to modify her criteria, add additional sites 
to her study, or identify an alternative. She could consider using 
Shrine to  collaborate with other sites and develop a research 
network.

This example demonstrates how a researcher can use i2b2 and within 
minutes perform a rapid feasibility analysis. There are factors that 
users must take into consideration when making decisions based 
on i2b2 results. For example, there can be data that are relevant 
to feasibility that is not stored in the EHR. In this example, if 
the medication list is only generated from inpatient prescribing, 
access to outpatient tegretol prescriptions might have changed the 
results.

Querying de-identified clinical data is a powerful technique to 
inform biomedical research. Many of the barriers to performing 
research with clinical data are overcome by i2b2. This applica-
tion enables researchers who are not trained in query languages or 
command line applications to easily access EHR data with a user-
friendly front end. Through simple drag-and-drop interactions 
and easily configurable filters, users can design and run a query 
in minutes. The de-identification of EHR data used in i2b2 miti-
gates barriers related to concern about PHI. By resolving two 
key barriers to performing research with EHR-derived biomedi-
cal data, i2b2 opens up new avenues for inquiry to a much larger 
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community. As an open source application, i2b2  has a  vigorous 
and active development community generating new plug-ins 
and enhancements. I2b2 will play an important role in enabling 
access to clinical and phenotypic data as the Precision Medicine 
Initiative moves forward.
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13.1 INTRODUCTION
The last 30 years have led to a sea change in how drug discovery is 
 performed. Advances in both chemistry and biology have led to rational 
drug design, improvements in medicinal chemistry, and new methods for 
both target selection and lead compound generation. However, in spite of 
all these advances, only five of 40,000 compounds tested in animals reach 
human testing and, shockingly perhaps, only one in five that reach clinical 
trials is approved [1]. Moving these compounds through the early stages of 
development represents an enormous investment of resources: both finan-
cial and human resources, as well as the opportunity costs of the research 
and time investment. While the advancements within both chemistry and 
biology generally demand the most attention, it is changes in computa-
tion that perhaps will yield the most fruit, and the Big Data challenge for 
drug discovery is to move the target and lead identification and valida-
tion phase of drug discovery into a fast and accurate in silico mode, from 
its previous slow and costly chemical screening mode. With the National 
Institutes of Health (NIH) launching discovery  portals for drug discovery 
[2], Google collaborating with Stanford to deliver new networking tech-
nology [3], and Oxford recently launching their own  initiative [4] backed 
by both government and private sources, all centered around Big Data, 
it’s clear that in silico drug discovery is moving into a new phase. In this 
chapter, we’ll discuss what tools exist for in silico work, how you can use 
them, and how big the data can get.

Advances in both combinatorial chemistry and laboratory automation 
have allowed high-throughput screening of compounds to become com-
mon methodologies, and this has led to the wide availability of  libraries 
of molecules for drug discovery [5–7]. A better understanding of the 
chemistry behind small-molecule docking and examples of ligands which 
have binding activity to different targets, in parallel with the explosion 
of available tertiary and quaternary protein structures, has enabled in 
silico  modeling of small molecules to become a standard practice in both 
 academic and commercial laboratories. However, this method has com-
mercial successes that are primarily limited to me too drugs of successfully 
marketed pharmaceuticals. The statin drug family, which lower choles-
terol by targeting the enzyme HMG-CoA reductase, is a primary example 
of this—there are more than 10 marketed statins, all of which share struc-
tural similarity in the HMG moiety. With this mode of thinking, designing 
a successful new drug relies on identifying compounds directed against 
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known targets, not on new human disease gene targets. Docking methods 
attempt to identify the optimal binding position, orientation, and molec-
ular interactions between a ligand and a target macromolecule. Virtual 
screens, using large local computers or cloud-based resources, can screen 
compound structure libraries with millions of entries and yield hit rate of 
several orders of  magnitude greater than that of empirical, bench-based 
screening for a fraction of the cost. Focused target and small molecule 
libraries can be generated, focusing on either specific properties of small 
molecules,  molecules that contain a specific substructure (e.g., a binding 
pocket or active site), or combinations of both. Structural fingerprinting 
can extend this concept by encoding a three-dimensional structure in a 
bitwise representation of the presence or absence of particular substruc-
tures within a molecule. Algorithms can also be used for clustering of 
structures within a chemical library, and other metrics allow determina-
tion of  small-molecule subsets that are filtered by desired properties for 
drug-like, lead-like, or fragment-like compound representations for in 
silico screening.

The primary purpose of small-molecule-based drug discovery is find-
ing new chemical entities targeted against human disease-related proteins 
or targeted to block pathogen activity. Current efforts are greatly assisted 
by a variety of new techniques; large human genome variant databases, 
genome-wide association studies (GWAS), and finer dissection of disease 
haplotypes and haplotype mapping efforts. Finding a disease target, how-
ever, does not assure a viable drug target is in hand; in fact, the descriptors 
that define drug targets are often antithetical to the descriptors that define 
disease genes. In particular, for example, targets of successful drugs are 
often much more conservative than disease genes from an evolutionary 
perspective—likely due to the need for animal trials leading to the Food 
and Drug Administration (FDA) clinical trial process.

Increasing pharmaceutical budgets have not assured that new chemical 
entities will succeed; in fact, FDA approval has been on a steady decline. 
Many new drugs were introduced in the 1990s to treat previously untreated 
or undertreated conditions, but the pace of introduction has declined since 
2000—in most years, back to levels not seen since the 1980s. The  intro-
duction of priority drugs—those that, according to the FDA, provide a 
significant therapeutic or public health advance—has also slowed, from an 
average of more than 13 a year in the 1990s to about 10 a year in the 2000s. 
In the mid-2000s, product patent expiration threatened about $40 billion 
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in U.S. pharmaceutical revenue, or about $80 billion worldwide. If smaller, 
“non-blockbuster” drugs replace this, we’d need between 80 to 100 drugs in 
the U.S. and about double that worldwide, if average revenue was $500 mil-
lion per drug. In tandem with the  (primarily pharmaceutical driven) push 
to discover NMEs, there has been a ( primarily research driven) push to 
discover new disease  targets [1,8].

13.2 IN SILICO SCREENING FOR DRUG DISCOVERY
With these pressures in place, the need for faster, cheaper, and higher-
quality methods for drug discovery and development become apparent. 
Development pipelines, which can take up to 15 years, do not allow for 
the rapidity of development that is necessary. As the approval process 
is  relatively fixed once a molecule is at the stage of being an investiga-
tional new drug, an obvious place to attack with Big Data methods is the 
 hit-to-lead phase of drug discovery.

This is where in silico methods become our most viable means of 
screening. When paired with in vitro high-throughput screening meth-
ods, this greatly shortens screening times for hits, improves the hit-to-lead 
cycle in drug development, and enhances the ability of drugs to success-
fully be brought to market. The drug discovery process is  typically at least 
a decade long governed in part by the FDA’s need for multiple animal tri-
als prior to clinical trials in humans. Safety and efficacy are, of course, the 
watchwords of this process. How, then, does in silico screening enhance 
this process?

13.3  OUTLINE OF IN SILICO RESOURCES 
AND METHODOLOGIES

When discussing in silico methods, it’s necessary to consider the scope of 
methods and resources available for the researcher. This section deals with 
what is available, as of the publication of this book, for helping to both find 
targets and screen for small molecule compounds in the context of the 
average academic research lab.

13.3.1 Target Utilities

Consider that without protein targets, most drug screening cannot pro-
ceed. Therefore, the most likely start to a drug discovery project is with a 
target that is identified as part of a screen already being carried out within 
a lab—indeed, ideally, one would be able to predict efficacy and side effects 
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from such screens [9]. Typically, a researcher is working on one gene or 
pathway—or, alternatively, on a disease and comes across a protein that 
might be considered to be a target for drug development. Selection of 
drug targets is inherently biased, then, by what is already being examined. 
Interestingly, the genes that are identified as being causal for, or associ-
ated with, a disease are often much more rapidly evolving, in terms of the 
nonsynonymous change rate, than those genes coding for proteins of suc-
cessful drug targets [10]. This might have to do with the need to develop 
successful animal models with which to test a drug, or perhaps it is due to 
alternative factors such as the likelihood of having a good protein struc-
ture model. Regardless, the choice of target greatly affects the success of 
drug development efforts and is often overlooked—in theory, any protein 
could be a target—so choosing a target more carefully might be seen as a 
waste of time. However, knowing those resources that might help you vet 
a target more thoroughly is worthwhile.

13.3.1.1 RCSB
Perhaps the most venerable website is that at www.rcsb.org, the Protein 
Data Bank. This repository of protein structure data was established at 
Brookhaven National Laboratory in 1971. Updated weekly with new struc-
tural information, the PDB file format contains exhaustive information not 
only about the structure of a protein, as experimentally determined by a 
researcher, but also about the composition of the protein, how the struc-
ture was generated, resolution, and information on the models. It  is the 
most likely source for an initial protein structure with which a  docking/
modeling experiment will be performed. With over 35,000 distinct protein 
structures—deposited by researchers worldwide— familiarity and use of 
this resource is practically mandatory for drug development researchers.

13.3.1.2 Variant Libraries
Another key issue is variants that may be clinically relevant in protein tar-
gets. For this, three different sources are recommended. The first is another 
respected and long-standing site: OMIM, or Online Mendelian Inheritance 
in Man, at http://www.omim.org/. OMIM started as a book compiled by 
the late Victor McKusick, devoted to cataloging of Mendelian traits and 
variants in diseases. It has become the lead repository of information that 
relates genotype to phenotype for human genes, with  information on over 
12,000 genes. When examining a potential drug target, it’s absolutely 

http://www.rcsb.org
http://www.omim.org/
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worth discovering if a clinically relevant variant exists and is annotated 
within OMIM before proceeding.

The second resource is dbSNP, located at http://www.ncbi.nlm.nih.
gov/SNP/. dbSNP records information on single-nucleotide polymor-
phisms (SNPs), small insertions and deletions (indels), small copy num-
ber  variants (CNVs), short tandem repeats (STRs), and microsatellites. 
As intended, these variants are not only in the coding region of proteins, 
and thus may be related to expression. Considering which variants exist 
in and around the gene that codes for a protein of interest may give insight 
into how broadly applicable a drug designed for that target may be.

Finally, the Gene Expression Omnibus (GEO) at http://www.ncbi.nlm.
nih.gov/geo/ contains gene expression variants catalogued from a large 
number of expression studies, particularly eGWAS data. Knowing where 
and when a drug target is expressed is likely key for successful develop-
ment, dosing, and deployment of potential drugs.

13.3.1.3 HapMap
The International HapMap project, http://hapmap.ncbi.nlm.nih.gov/, is 
another resource to consider.  This project is a compilation of chromo-
somal regions containing shared genetic variations across humans, the 
resource is often used for the discovery of disease genes—some of which 
may be potential drug targets. Similar to dbSNP, it’s worth considering 
what variants are present in a gene region which codes for a target protein 
before proceeding with drug development.

13.3.2 Small Molecule Utilities

Once a target is identified and a structure has been obtained (either 
through modeling or experimentally), in silico drug discovery would 
proceed by having a set of small molecules for screening. The resources 
below are good starting places for gathering compound libraries and, in 
some cases, for ordering compounds for in vitro or in vivo testing of lead 
compounds.

13.3.2.1 National Cancer Institute
A good place to start is at the National Cancer Institute of the National 
Institutes of Health. NCI maintains stocks of compounds that can be used 
for early stage drug screening. These sets are chosen to represent diverse 
compounds (the so-called diversity sets) or for mechanistic screens 
of function (mechanistic sets) or, more broadly, sets of approved drugs 

http://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://hapmap.ncbi.nlm.nih.gov/
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are maintained. In particular, the diversity sets (which as of publication 
 contain about 1600 molecules) are a good place to start screening. These 
sets of diverse compounds with relatively interesting Lipinski “Rule of 
five” characteristics are also available for physical screening. The diver-
sity set is curated from a library of a much larger library (140,000 com-
pounds) and representative compounds from structural subsets of the 
larger screen are selected based on the quantity available for researchers 
looking to  follow up on successful hits. In silico hits within these sets can 
be rapidly followed up at the bench for this reason, and hit expansion can 
proceed from these analyses. For a primer on what NCI has available, go 
to http://dtp.nci.nih.gov/index.html. A similar and larger set of data is also 
available from the Molecular Libraries Program at http://mli.nih.gov/mli/
compound-repository/mlsmr-compounds/.

13.3.2.2 ZINC
Probably the largest set of information on compounds available is 
located at http://zinc.docking.org. ZINC, which stands for “ZINC is not 
 commercial” [11], archives structures and characteristics of well over 
20 million small molecule compounds. While many of these are  similar 
to one another, it is a truly invaluable resource for folks in the drug 
 discovery field. Importantly, subsets of structures of molecules for screen-
ing with certain characteristics can be created and downloaded easily. 
Restrictions include size, charge, number of hydrogens, and compound 
availability, to name just a few. Caveats include that, as of this writing, 
searches might vary as compounds become available (or unavailable) 
from  different vendors, which can lead to frustration if you’re unaware 
of this. Downloading the information you need for a screen and creating 
a control version for internal use in your lab over the course of a drug 
screen might be worthwhile.

13.3.2.3 Commercial Vendors
A variety of commercial vendors have compounds available for screening 
and, in many cases, make basic compound composition/structure infor-
mation available. While there are too many to name, several may be use-
ful and these include Enamine (http://www.enamine.net/), Chembridge 
(http://www.chembridge.com/index.php), and ChemDiv (https:// chemdiv.
emolecules.com/). Vendors may need to manufacture molecules, and 
shipping times differ; plan accordingly if you have a tight time frame for 
your screening.

http://www.enamine.net/
http://www.chembridge.com/index.php
https://chemdiv.emolecules.com/
https://chemdiv.emolecules.com/
http://dtp.nci.nih.gov/index.html
http://mli.nih.gov/mli/compound-repository/mlsmr-compounds/
http://mli.nih.gov/mli/compound-repository/mlsmr-compounds/
http://zinc.docking.org
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13.3.3  Biologics and Utilities 
13.3.3.1 Biologics
Not all drugs, of course, are small molecules. In silico algorithms for the 
development of biologics are becoming available and a number of these allow 
engineering of biologics in silico. Currently, much of the software available 
is process management software meant to monitor or integrate information 
from analytics readouts from, for example, Biacore or other assays.

13.3.3.2 Utilities
If drug screening and development is a primary goal, utilities and resources 
for maintaining databases of chemical libraries, drawing Markush struc-
tures, and other every-day tasks are likely a necessity. While there is too 
much to discuss here, ChemAxon (https://www.chemaxon.com/) is one 
vendor that provides a unified platform for the sorts of activities that 
become incredibly tedious to do using, for example, spreadsheets in a lab 
environment. Notably, the JChem Suite is a good start if you are perform-
ing large numbers of in silico analyses—suitable for a Big Data deploy-
ment. A version of JChem, JChem for Office, allows integration of small 
molecules structures and property calculations into Word and Excel 
 documents—a highly useful product both for managing experiments 
and for writing up publication-quality papers and patentable structures. 
Worth noting is that there are a large variety of scripts available online 
that can assist researchers in automating the process of small molecule 
screening—we discuss several in this article but an excellent source of 
these is often the user groups related to particular docking software.

13.3.4 Docking/Modeling

There are a wealth of docking and modeling programs that are available 
for use. We later extensively detail how to use AutoDock Vina [12] (http://
vina.scripps.edu/) and PyMol [13] (http://www.pymol.org/) for modeling 
and visualization, but the combination of these with AutoDock Tools in 
a Linux environment is a likely combination of screening tools in an aca-
demic setting, and we’ll cover this scenario later. Of course, other highly 
useful and respected programs include CHARMM (Chemistry at Harvard 
Macromolecular Mechanics [14]) (http://www.charmm.org/), AMBER 
(Assisted Model Building with Energy Refinement) (http://ambermd.
org/), and AutoDock 4 (http://autodock.scripps.edu/), all of which imple-
ment force field models [15,16] for performing docking and modeling soft-
ware and are distributed under various licenses that generally allow free 

https://www.chemaxon.com/
http://www.pymol.org/
http://vina.scripps.edu/
http://vina.scripps.edu/
http://www.charmm.org/
http://ambermd.org/
http://ambermd.org/
http://autodock.scripps.edu/
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 academic use (with citation in publications). Following the same mode, 
Glide from Schroedinger is a commercially available and supported pro-
gram. A new implementation from Schroedinger, QM-Polarized Ligand 
Docking, uses quantum mechanical calculations, specifically ones that help 
deal with polarization in molecules, that when married to Glide can theo-
retically achieve higher accuracy, especially for problematic  molecules—
and it is far from the only program to perform these  functions. Many of 
these programs require a local server to use effectively, which means that 
you must be able to build and maintain the server as well as install and 
update all necessary software. While this is certainly not difficult, it is 
not necessarily within the purview of labs looking to do relatively small 
numbers of docking/modeling experiments. Publicly accessible servers 
that implement these methodologies offer an alternative: a good example 
is SwissDock (http://www.swissdock.ch/), which implements the EADock 
DSS software, an algorithm which uses CHARMM energies for docking. 
A commercial server, http://www.dockingserver.com/web (from Virtua 
Drug Ltd), offers both free and pay services for performing  docking on 
their servers, and there are other such services in the market.

While setting up a local server might seem unnecessary for small 
numbers of experiments, being able to rerun and rescore results (using, 
for example, NNScore 2.0 or other software) may make the option seem 
more palatable [17–19]. While the barrier-to-entry for such work may seem 
high, our tutorial in this chapter should enable you to get started  relatively 
 rapidly. From a Big Data perspective, a local implementation might not 
suffice for storage or computational reasons. An alternative might be 
implementation of these algorithms within a cloud-computing environ-
ment, such as sold by Amazon Web Services (AWS), Google, or Microsoft. 
Such implementations have numerous advantages—low initial overhead, 
high potential for scaling, redundancy, and high availability to name a 
few. Settling on an implementation and feature set that works for your 
research is key [20,21]. There are several recent comparisons of features 
of docking and modeling software, and they would serve as good reviews 
before jumping into this work.

13.3.5 Fingerprinting/Structural Comparison

Another function that is likely necessary is structural comparison of 
small molecules, or fingerprinting of ligands and, potentially, protein 
surfaces. Fingerprinting abstracts the shape of small molecules, generally 
into numeric strings that are faster to compare than three-dimensional 

http://www.swissdock.ch/
http://www.dockingserver.com/web
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shapes or molecular force fields [22]. Fingerprinting is implemented in 
some cases to facilitate comparison of ligands, proteins, or interaction 
surfaces using Tanimoto coefficients, which allow for distance matrices of 
interactions to be built and examined. PLIF, or protein–ligand  interaction 
fingerprinting, is implemented in PyPlif (https://code.google.com/p/
pyplif/) and examples can be seen in that work. Fingerprints of pro-
teins, implemented, for example, as PubChem substructure fingerprints 
(https://pubchem.ncbi.nlm.nih.gov/), allow comparison of proteins or 
 substructures—some implementations, such as ChemVassa [23], allow 
direct comparisons of proteins or substructures with ligands or drug-like 
small molecules. Structural comparison can be used as a component of 
hit expansion, or for determining what library of small molecules to use 
for docking experiments.

13.3.6 Visualization

Visualization of results is an important step. Probably the most highly used 
program is PyMol, mentioned above, which is free for non-commercial use. 
However, other programs exist and have strong followings. JMol is one such 
program (http://jmol.sourceforge.net/), another is MarvinSpace (http://
www.chemaxon.com/products/marvin/marvinspace/). RasMol (http:// 
rasmol.org/) is also worth noting for its feature set and relative ease of use. 
Cost and features vary widely. It’s worth noting that visualization is widely 
absent in the Big Data space. Visualization of large sets of  comparative dock-
ing results across a set of different targets, for example, is largely absent—as 
are tools that specialize in visualizing unwanted or off-target effects.

13.3.7 Others

Not all functionality can be neatly fit into a particular bin. OpenBabel is 
one tool that is nearly required to utilize any of the methods mentioned, 
as it allows translation between different structural file formats. However, 
it does more than this and is often the basis for other scripts and tools 
that allow rapid deployment of docking technologies. NNScore (1.0 or 2.0) 
[18,19] is a rescoring algorithm that enables either custom-built neural 
networks for rescoring or a pre-built (but accurate) network designed to 
overcome some of the inherent problems in molecular modeling software. 
There are a variety of other rescoring utilities—it’s worth noting that it is 
also possible to tweak the scoring methods inside many programs (such 
as AutoDock Vina) to weight particular CHARMM forces differentially 
from standard behavior in the program.

http://www.chemaxon.com/products/marvin/marvinspace/
http://www.chemaxon.com/products/marvin/marvinspace/
https://code.google.com/p/pyplif/
https://code.google.com/p/pyplif/
https://pubchem.ncbi.nlm.nih.gov/
http://jmol.sourceforge.net/
http://rasmol.org/
http://rasmol.org/
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13.4  TUTORIAL UTILIZING THE ANDROGEN 
RECEPTOR AS AN EXAMPLE

In order to gain a deeper appreciation for exactly how the above meth-
odologies apply, we’ll work through an example of an in silico docking 
screen for the androgen receptor.

Step 1: The first step is to have a tertiary structure representation for 
the target molecule you wish to screen. We’ll work with the andro-
gen receptor from Homo sapiens for this example. The best source for 
experimentally determined three-dimensional protein structures is, 
of course, RCSB Protein Data Bank (PDB) [24], located on the web at 
http://www.rcsb.org/pdb/home/home.do (all links and protein/ligand 
identities are current as of the date of publication). Using the search 
function for androgen receptor pulls out a list, and this can be sorted 
by species as well as other qualities. Reading through the available 
structures, we can quickly find 4OEA, which is the Human Androgen 
receptor binding domain in complex with dihydrotestosterone. It’s 
worth noting at this point that targets with a bound ligand, especially 
their native substrate, work best for screening—as will be seen later, 
this helps determine the binding box that will be screened. We can 
then download the file in PDB format and prepare the receptor.

Step 2: While it might be tempting to first prepare your receptor, it’s 
worthwhile now to consider the source of the ligands you’ll use for 
screening. If you have a library of small molecules that you wish to 
screen at a later point, you might, for example, want to perform an in 
silico screening at this point to determine what hits you expect to see. 
Alternatively, you might have no compounds that you’ve worked with 
yet, and therefore, you’re using the in silico screen to guide your later 
bench screening. For the purposes of this example, we’ll assume that 
this example in silico screening is your first experimental protocol, 
and we’ll use it to derive a set of small molecules that you need to 
order later for bench testing. If that is the case, consider the source of 
your in silico library. An excellent resource is ZINC (discussed above 
and re-linked here). Located at http://zinc.docking.org/, this website 
houses information on the chemical properties and structures of 
 millions of small molecule compounds. The “subsets” tab at the top 
of the page allows you to find a set of predetermined subsets of ZINC 
that can be downloaded and used for in silico screening. Importantly, 

http://www.rcsb.org/pdb/home/home.do
http://zinc.docking.org/
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all of the subsets have been determined to contain small molecules 
that are purchasable, which means there is some commercial source 
for the compound. A scan of the table shows what criteria were 
used for filtering. For the purposes of this example, the “In Stock,” 
 “Lead-like” compounds, called “Leads now” is likely a good start: it 
has over 3.5M small molecule compounds, filtered to have a narrow 
molecular weight range. Clicking the link allows you to download the 
files for your platform, and we’ll utilize MOL2 format for now as it 
makes later steps simpler. Clicking the link provides a script that per-
forms the download (actually, several downloads in serial), so make 
sure to save and run the script. The MOL2 files downloaded from 
ZINC are 600 mb each with close to 150,000 compounds in the single 
file. Typically, a Perl script is used to break them into individual files 
before running the ligprep script. An example of this script is

perl separe_ligands.pl –f 21_p0.1.mol2

where separe_ligands.pl was a file containing a rather lengthy script 
that can be found at www.biostars.org/p/9011/ as the 4th entry on 
that webpage. This script actually assigns the ZINC identifier as the 
name of the individual MOL2 file as it is being created.

The file 21_p0.01.mol2 was one of the 600 mb files from ZINC.

Step 3: At this point, you should prepare your receptor for screen-
ing. For purposes of this example, we’ll utilize AutoDock Vina on 
an Ubuntu Linux platform for this work. However, it is sometimes 
easier to prepare and visualize the receptor on your local worksta-
tion, which may be Windows based. Regardless, the steps are similar 
(though not identical). Vina is available here: http://vina.scripps.edu/
download.html, and it is recommended to download a pre-compiled 
executable unless you are an expert user or are trying to perform 
specialized functions. You’ll also need MGLTools which can be 
downloaded here: http://mgltools.scripps.edu/downloads, and, once 
again, a pre-compiled binary is recommended. For setting up the 
receptor, you need to download and set up both Vina and MGLTools 
and then launch MGLTools. At this point, you read in the molecule 
(4OEA.pdb) and ensure that only the receptor (NOT the ligand) is 
selected. Remove any other chains besides the one that you want to 
dock against. At this point, select the chain, delete water molecules, 

http://www.biostars.org/p/9011/
http://vina.scripps.edu/download.html
http://vina.scripps.edu/download.html
http://mgltools.scripps.edu/downloads
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and add hydrogens from the EDIT drop down menu (gray bar). 
Then, go to GRID in the submenu window (tan) and Macromolecule, 
Choose… and select your PDB file. You will be able to save as a 
PDBQT file, the proper format for further docking. MOL2 files 
 contain hydrogens and this procedure also sets the Gasteiger charges 
necessary for docking. We’ll discuss setting the grid box later.

Step 4: Preparing your ligands. You need to automate this as much as 
 possible, particularly for a large number of potential ligands. It’s worth-
while to consider if you want to build a subset of your larger library 
for screening, particularly on a local computer. Screening a very large 
number of files without some parallel deployment is not recommended. 
The available script to perform this, prepare_ligand4.py, is a python 
script that requires python to be downloaded onto your local machine. 
Downloading this script shows a number of options and explains why 
MOL2 files are preferred. Ideally, this script is further automated with 
a shell script in Linux that reads all potential ligand files, performs 
the necessary ligand preparation, and writes them. Make sure to add 
hydrogens and compute charges; a sample script and options are 
 provided here (see box, Batchprep script). It is run as:

./batchprep.sh *.mol2

Where batchprep is a file that contains the script in the box at left. Note 
the location of your script may be different depending upon your 
installation. This may take some time to run, depending on your 
processor. The script could theoretically be threaded across a num-
ber of processors, split, for example, by compound name, and this 
would speed up conversion considerably especially on a large com-
puter or deployed cloud cluster. Ideally, your ligands will be named 
according to their ZINC numbers and will thus be ZINC0911876.
pdbqt or similar. Note the name and prefix, as it will be useful later.

Batchprep script
for file in *;
do ~/MGLTools-1.5.6/M0047LToolsPckgs/
AutoDockTools/Utilities24/prepare_ligand.py –l 
$file;
done
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Step 5: Looking at your receptor, you need to determine two additional 
sets of parameters. In short, you need to look at where your /initial/ 
ligand was bound and determine if that location seems reasonable 
for further docking efforts. If so, you draw the target box enclosing 
that ligand area (usually with some additional space around it). You 
can then determine the coordinates of the center of your binding box 
and the size of that box. The center (X, Y, Z) coordinates correspond 
the receptor you’ve already prepared, and the size is in angstroms. 
Note the center and size, and you need to make a configuration file 
for this. In our case, the file, saved as conf.txt, appears in the box 
(titled Configuration File).

Then you need to create a script to perform your screening. This assumes 
that all of your ligands are prepared and in the SAME DIRECTORY 
as your receptor and configuration file—see the box titled Screening 
Script.

Configuration File:
receptor = 4OEA.pdbqt

center_x = 2
center_y = 6
center_z = −7

size_x = 15
size_y = 15
size_z = 15
num_modes = 9

Screening Script:
#! /bin/bash
for f in ZINC_*.pdbqt; do
    b=‘basename $f .pdbqt’
    echo Processing ligand $b
    vina --config conf.txt --ligand $f --out ${b}
out.pdbqt --log ${b}log.txt
done
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This script will process all of your ZINC ligands against the configura-
tion file you set up for your receptor and will put all of the poses and 
logs into the same directory. Ideally, you could then head the log 
file and grep the file for all poses; this would be sorted into a script 
which could be used to find all particular small molecule ligands 
that bind with lower than a specified energy (say, −9.0 or lower). 
Particularly for a large screen, this will likely result in a large num-
ber of compounds that match.

Step 6: Once you have a list of potential small molecule binders, you’ll 
recover the files (perhaps, the 10 best molecules from your screen) 
and look at the poses that performed best. In this case, we’ll look 
only at the top two poses. One of these is shown to be a molecule 
that is known to bind androgen receptor; Tetrahydrogestrinone 
THG, or “the clear,” notable for being used in doping in sports 
and  having been linked to previous investigations. At this point, 
the ideal method would utilize PyMol (available here: http://www.
pymol.org/) to visualize the dock, and hydrogen bonds would be 
examined as well as the fit of the small molecule into the dock-
ing box. ZINC would be queried to determine which vendors sold 
compounds for screening; in this case, only some of the com-
pounds would be available, and these could be ordered for bench 
screening.

Further steps from here likely are determined by your experimental 
interest. If a large number of screens are being performed, a rescor-
ing method that tends to match your ligands to likely binders more 
closely could be used. NNScore 2.0, which was discussed previously, 
is a good rescoring tool—but there are others. Another direction 
would be to utilize a fingerprinting tool to profile the top 10 hits and 
utilize these to find an enriched set of potential binders (e.g., from 
within ZINC) and perform another in silico screen as described 
above on this set of potential binders. Some fingerprinting meth-
ods can potentially screen millions of compounds in a day, even on 
a desktop  computer, and would thus be good companions for a Big 
Data approach.

At the end of this example, you can see several themes emerge: the need, 
ideally, for a large computational deployment—potentially involving 

http://www.pymol.org/
http://www.pymol.org/
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cloud-based resources; the need for new methods of rapid screening 
that generate novel ligand sets for in silico screening; and the need for 
researchers to have facility with scripting and command-line procedures 
to enable rapid screening within the Big Data world of drug discovery.
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C h a p t e r  14

Literature-Based 
Knowledge Discovery

Hongfang Liu and Majid Rastegar-Mojarad

14.1 INTRODUCTION
In the past decade, advances in high-throughput biotechnology have 
shifted biomedical research from individual genes and proteins to entire 
biological systems. To make sense of the large-scale data sets being 
 generated, researchers must increasingly be able to connect with research 
fields outside of their core competence. In addition, researchers must 
interpret massive amounts of existing knowledge while keeping up with 
the  latest developments. One way researchers cope with the rapid growth 
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of scientific knowledge is to specialize which leads to a fragmentation of 
scientific literature. This specialization or fragmentation of literature is a 
growing problem in science, particularly in biomedicine. Researchers tend 
to correspond more within their fragments than with the field’s broader 
community, promoting poor communications among specialties. This is 
evidenced within the citations of such literature as authors tend to heavily 
cite those within their narrow specialties. Interesting and useful connec-
tions may go unnoticed for decades. This situation has created both the 
need and opportunity for developing sophisticated computer-supported 
methodologies to complement classical information processing  techniques 
such as information retrieval. 

One methodology to the above problem is literature-based discovery 
(LBD) which directly addresses the problems of knowledge overspecial-
ization. LBD strives to find connections that are novel and that have not 
been previously explicitly published. In 1986, Don Swanson presented his 
first literature-based hypothesis that fish oil may have beneficial effects 
in patients with Raynaud’s syndrome. Literature search identified 2000 
articles on Raynaud’s syndrome and around 1000 articles on dietary 
fish oil. The two groups of articles appear to be isolated but have signifi-
cant common attributes related to blood viscosity, platelet aggregability, 
and vascular reactivity. The possibility of linking fragmented literature 
through intermediate or shared attributes has commonly been described 
as Swanson’s ABC model (Figure 14.1). The model can be implemented as 
two discovery processes. In the first, open discovery, concepts A, B, and C 
are known and the relationship between A and B and B and C are known, 

Raynaud’s
syndrome

Fish oil

Blood viscosity
Platelet aggregability
Vascular reactivity

A C

B

FIGURE 14.1 Literature-based discovery (LBD) methodology overview. The solid 
links between the concepts are known facts (relations) from the literature. 
The dashed link is a hypothetical new relation (discovery).
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but the relationship between A and C has not been identified. The goal is 
to discover that relationship. Discovery is facilitated by using particular 
B concepts to draw attention to a connection between A and C that has 
not been previously noticed. Starting with concept A, all the B  concepts 
related to A are retrieved and then all C concepts related to B are also 
retrieved. If there are no prior reported relations between A and C, then a 
hypothesis of association between A and C can be formulated which can 
be confirmed or rejected through human judgment, laboratory methods, 
or clinical investigations. The second paradigm, closed discovery, is used 
to explain an observed phenomenon. A relationship between, two entities 
provided by user, A (e.g., flecainide) and C (e.g., heart failure), is assumed 
but undefined. Proving the existence of the relationship is facilitated by 
identifying B (e.g., kcnip2 gene) concepts that provide mechanistic links 
between A and C. 

14.2 TASKS IN LBD
LBD deploys general text mining techniques such as named entity 
 recognition or information extraction and attempts to combine mined 
facts into serendipitous and novel hypotheses. Because many combina-
tions of mined facts are possible, LBD applies various techniques to  filter 
and prioritize possible hypotheses for further investigation. Common 
tasks in LBD are described in the following sections. 

14.2.1 Term Recognition

The first necessary step toward LBD is to recognize terms representing 
concepts or entities in free text. Approaches for the term recognition task 
can be categorized into three main types: (1) rule/pattern-based recog-
nition methods characterized by handcrafted name/context patterns and 
associated rules, (2) dictionary lookup methods requiring a list of terms, 
and (3) machine learning methods utilizing annotated corpora. Among 
them, machine learning methods have achieved promising performance 
given a large annotated corpus. The availability of machine learning soft-
ware packages has boosted the baseline performance of the task. In the 
biomedical domain, multiple annotated corpora have been developed 
and made publicly available over the years for detecting genes/proteins, 
diseases, or chemical entities. The state-of-the-art performance for term 
recognition has been comparable to human experts with accuracy in the 
range from 80% to over 90%.
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14.2.2 Term Normalization

To recognize terms representing the same concept or entity and to facili-
tate the integration of knowledge captured in various knowledge bases or 
databases for knowledge discovery, it is also desired to map terms in text 
to ontologies or entries in databases. The task is usually referred as term 
normalization. The approach for term normalization can be divided into 
several steps: (1) establishing a mapping table which maps terms in text to 
ontology concepts or database entries, (2) handling lexical variations and 
synonyms, and (3) resolving ambiguities when one term can be mapped 
to multiple concepts or entries. The state-of-the-art performance for term 
normalization has also been comparable to human experts with accuracy 
in the range from 60% to 80%.

14.2.3 Information Extraction

After term recognition and/or normalization in literature, simple co- 
occurrence-based approaches can be applied by assuming the co-occurrence 
relationship indicates certain associations. To narrow the discovery to certain 
associations among certain concepts or entities, event or relation extraction 
has been incorporated into LBD. Many such information extraction systems 
have been developed ranging from event extraction such as detecting genetic 
mutations or protein posttranslational modifications to relation extraction 
such as gene–gene interactions or gene–disease associations. For example, 
the Chilibot system extracts relationships between genes, chemicals, and 
diseases and visualizes these relationships in a network of nodes with edges 
indicating the type and direction of the relationship. It is possible to look for 
nodes that are not directly connected but have one (or more) intermediate 
node(s) that are connected to the disconnected ones. 

14.2.4 Association Mining and Ranking

To keep meaningful co-occurrence associations, different association 
mining and ranking techniques have been applied (Yetisgen-Yildiz and 
Pratt 2009). Popular association mining metrics include the following:

• Association rules: These rules were originally developed with the 
 purpose of market basket analysis where a market basket is a  collection 
of items purchased by a customer in a single  transaction. An association 
rule can be interpreted as two items tend to be purchased together in a 
single transaction. Let Dx be the collection of documents containing x. 
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The two important measures for  associations between two concepts, 
X and Y, are as follows: support (D DX Y∩ , the number of documents 
containing both X and Y, ∩ is a mathematic symbol denoting the inter-
section of two elements); and confidence ( D D DX Y X∩ , the ratio of 
the number of documents containing both X and Y to the number of 
documents containing X). Thresholds for support and confidence are 
selected to identify interesting and useful association rules. Concepts 
that pass the threshold test are used for LBD.

• Term frequency-inverse document frequency (TF-IDF): This is a statis-
tical measure used to evaluate how important a word is to a document 
in a collection of documents. The importance increases proportion-
ally to the number of times a word appears in the document but is 
offset by the frequency of the word in the collection of documents. 
For two concepts, X and Y, the TF-IDF value can be computed as 
D D N DX Y X∩ × ( )log , where N is the size of the document collec-
tion. A threshold is selected to identify associated concepts.

• Z-score: Z-score mines associations from literature using concept 
probability distributions. Let V be the set of terms appearing in a docu-
ment collection. We define P x y D Dx y x,( ) = ∩ D , where x and y are 
terms. For two concepts, X and Y, the Z-score value can be computed as: 
Z X Y P X Y P x Y Std P x Yx V x V− ( )= ( ) − ( ) ( )   ∈ ∈score Average, , , / , . 
A threshold is then selected to identify associated concepts.

• Mutual information measure (MIM): This is widely used to quan-
tify dependencies. Assume the size of the document collection 
to be N, the MIM of two concepts, X and Y, can be computed as: 
MIM logX Y D D N D DX Y X Y,( ) = × ×( )∩( )2 . If the concepts are 
independent, the MIM score equals to zero. Positive MIM score 
indicates high chance of co-occurrence, while negative MIM score 
 indicates the two concepts are rarely mentioned together. 

  For an LBD task, only novel connections are of interest. After 
pruning pairs known to be correlated, it is desired that the remain-
ing pairs, that is, potential discoveries, are ranked so that research-
ers can  prioritize their explorations. Popular ranking algorithms 
include the following:

• Average minimum weight (AMW): AMW is based on the assump-
tion of inferring a correlation between starting concept A and target 
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concept C that depends upon how strong the association was in the 
two associations (A to B and B to C). The overall strength of the asso-
ciation for the inferred association would be no greater than the one 
associated with the weaker one given by these two associations. The 
strength of the association can be measured using the metrics used 
in mining associations described above. For example, assume V is 
a collection of B concepts and we adopt MIM as the measurement 
of the strength, the weight of discovery pair (A,C) is computed as: 
AMW Average min MIM MIMA C A B B CB V, , , ,( ) = ( ) ( ) { }∈ .

• Linking term count with average minimum weight (LTC-AMW): An 
alternative assumption could be that the number of B concepts that 
connect target concept C to A is the main indication of a strong 
correlation. With this assumption, the association can be ranked 
according to the number of B concepts. LTC-AMW makes this 
assumption and ranks the discovery pairs according to the number 
of B concepts. In case of tie, AMW can then be utilized to prioritize. 

14.2.5 Ontology and Semantic Web Techniques

To facilitate the use of computational techniques, associations between 
domain concepts or entities must be recorded in more subjective ways. 
Ontological representation has provided a means of connecting concepts 
or facts from various specialized domains. Meanwhile, the advance in 
semantic web technologies has produced a set of recommendations for 
standardizing and manipulating information and knowledge includ-
ing the Resource Description Framework (RDF), RDF Schema, the Web 
Ontology Language (OWL), Simple Knowledge Organization System 
(SKOS), and SPARQL (a query language for RDF graphs). In the biomedi-
cal domain, the existence of a variety of software tools such as Protégé 
has accelerated the development and use of ontology. The online tools and 
web portal developed by the National Center for Biomedical Ontology 
(NCBO)  provide additional powerful resources to enable scientists to 
 create,  disseminate, and manage and analyze biomedical data and infor-
mation using ontologies and associated resources. An increasing number 
of biomedical  ontological resources such as gene ontology (GO) are now 
available in OWL format. LBD can be enhanced by the use of  ontologies 
for inferring associations. The Unified Medical Language System (UMLS) 
which gathers concepts and entities from over 160 sources  provides a  single 
standardized format for accessing information across the fragmented 
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biomedical literature. Tools available for detecting UMLS concepts 
(e.g., MetaMap) and establishing associations among the concepts (e.g., 
SemRep) have greatly accelerated the discovery pace in LBD.

14.2.6 Network Analysis and Visualization

Literature networks are an intuitive representation of the associations 
mined from literature. Typically the edges are linked to the underlying 
literature that connects two concepts, whereas the nodes are linked to 
databases with additional information about the concepts. A particular 
useful technology that is used for enrichment of literature network with 
additional scientific data is the semantic web technology. For example, 
OpenPhacts is an initiative focused at accelerating drug discovery by 
 connecting clinical, biological and chemical data to pharmacologi-
cal entities. Literature networks allow mapping of links between two 
 concepts into a space in which multiple links between concepts can be 
visualized. This has the advantage that also indirect links between con-
cepts become apparent, which can give insight into for instance new 
relations. Moreover, network-based techniques can be used to detect 
clusters or network motifs. 

14.3 LBD TOOLS/RESOURCES AND ILLUSTRATION
One significant literature source for LBD in the biomedical domain is 
MEDLINE, the U.S. National Library of Medicine (NLM) premier biblio-
graphic database that contains more than 22 million references to jour-
nal articles in life sciences with a concentration on biomedicine. Each 
 reference is indexed with NLM Medical Subject Headings (MeSH). The 
database can be queried using PubMed, which is a tool providing free 
access to MEDLINE. Table 14.1 shows some of the LBD tools built on the 
top of MEDLINE to support literature discovery. One notable resource is 
Semantic MEDLINE. In the following, we describe Semantic MEDLINE 
in depth as well as multiple studies using Semantic MEDLINE database to 
support knowledge discovery.

Semantic MEDLINE integrates information retrieval, advanced NLP, 
automatic summarization, and visualization into a single web portal. The 
application is intended to help manage the results of PubMed searches 
by condensing core semantic content in the citations retrieved. Output is 
 presented as a connected graph of semantic relations, with links to the orig-
inal MEDLINE citations. The ability to connect salient information across 
documents helps users keep up with the research literature and discover 
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TABLE 14.1 List of Literature-Based Discovery Systems

System Description URL

ArrowSmith 
(Smalheiser and 
Swanson 1998)

Arrowsmith allows users to identify 
biologically meaningful links between any 
two sets of articles A and C in PubMed, even 
when these share no articles or authors in 
common and represent disparate topics or 
disciplines.

http://arrowsmith.
psych.uic.edu/
arrowsmith_uic/

Chilibot (Chen 
and Sharp 2004)

Chilibot distills scientific relationships from 
knowledge available throughout a wide range 
of biological domains and presents these in a 
content-rich graphical format, thus 
integrating general biomedical knowledge 
with the specialized knowledge and interests 
of the user.

http://www.
chilibot.net/

BITOLA 
(Hristovski et al. 
2001)

An interactive literature-based biomedical 
discovery support system. The purpose of the 
system is to help the biomedical researchers 
make new discoveries by discovering 
potentially new relations between biomedical 
concepts. 

http://ibmi3.
mf.uni-lj.si/
bitola/

LAITOR 
(Barbosa-Silva 
et al. 2010)

A text mining system that analyses 
co-occurrences of bioentities, biointeractions, 
and other biological terms in MEDLINE 
abstracts. The method accounts for the 
position of the co-occurring terms within 
sentences or abstracts.

http://sourceforge.
net/projects/
laitor/

LitInspector 
(Frisch et al. 
2009)

LitInspector lets you analyze signal 
transduction pathways, diseases, and tissue 
associations in a snap.

http://www.
litinspector.org/

PubNet (Douglas 
et al. 2005)

A web-based tool that extracts several types of 
relationships returned by PubMed queries 
and maps them into networks, allowing for 
graphical visualization, textual navigation, 
and topological analysis. PubNet supports the 
creation of complex networks derived from 
the contents of individual citations, such as 
genes, proteins, Protein Data Bank (PDB) 
IDs, Medical Subject Headings (MeSH) 
terms, and authors. 

http://pubnet.
gersteinlab.org/

Semantic 
MEDLINE 
(Kilicoglu et al. 
2008; 2012)

Semantic MEDLINE is a Web application that 
summarizes MEDLINE citations returned by 
a PubMed search. Natural language 
processing is used to extract semantic 
predications from titles and abstracts. The 
predications are presented in a graph that has 
links to the MEDLINE text processed.

http://skr3.nlm.
nih.gov/
SemMed/index.
html

http://arrowsmith.psych.uic.edu/arrowsmith_uic/
http://arrowsmith.psych.uic.edu/arrowsmith_uic/
http://arrowsmith.psych.uic.edu/arrowsmith_uic/
http://www.chilibot.net/
http://www.chilibot.net/
http://ibmi3.mf.uni-lj.si/bitola/
http://ibmi3.mf.uni-lj.si/bitola/
http://ibmi3.mf.uni-lj.si/bitola/
http://sourceforge.net/projects/laitor/
http://sourceforge.net/projects/laitor/
http://sourceforge.net/projects/laitor/
http://www.litinspector.org/
http://www.litinspector.org/
http://pubnet.gersteinlab.org/
http://pubnet.gersteinlab.org/
http://skr3.nlm.nih.gov/SemMed/index.html
http://skr3.nlm.nih.gov/SemMed/index.html
http://skr3.nlm.nih.gov/SemMed/index.html
http://skr3.nlm.nih.gov/SemMed/index.html
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connections which might otherwise go unnoticed. Figure 14.2 shows the 
overall system architecture of Semantic MEDLINE and a screenshot of 
Semantic MEDLINE. Multiple studies have demonstrated the ability of 
semantic predication in facilitating literature discovery (Deftereos et al. 
2011). For example, Hristovski et  al. (2013) used semantic predications 

Semantic
predicationsDocuments

(a)
Extraction

Retrieval Summarization

Visualization

Structured
biomedical

data

MEDLINE
ClinicalTrials.gov

Salient semantic
predications

Informative
graph

(b)

FIGURE 14.2 (a) Overview of the system architecture of Semantic MEDLINE. 
(b) Screenshot of Semantic MEDLINE (http://skr3.nlm.nih.gov/SemMed/
SemMedQuickTour/SemMedQuickTour_player.html).

http://skr3.nlm.nih.gov/SemMed/SemMedQuickTour/SemMedQuickTour_player.html
http://skr3.nlm.nih.gov/SemMed/SemMedQuickTour/SemMedQuickTour_player.html
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extracted by two NLP systems to develop a LBD system which produces a 
smaller number of false positive and facilitates user evaluation process of 
potentially new discoveries. 

The backend of Semantic MEDLINE is Semantic MEDLINE Database 
(SemMedDB), a repository of semantic predications (subject–predicate–
object triples) extracted by  an association extraction system, SemRep. 
Comparing to co-occurrence-based LBD, the use of SemMedDB keeps 
only meaningful predications. We review two studies where one uses 
Semantic MEDLINE for discovering drug–drug interactions and the 
other focuses on network analysis formed by semantic predication pairs. 

Using semantic predications to uncover drug–drug interactions in  clinical 
data (Zhang et  al. 2014): Drug–drug interactions (DDIs) are a serious 
 concern in clinical practice, as physicians strive to provide the highest qual-
ity and safety in patient care. DDI alerts are commonly implemented for in 
CPOE (computerized physician order entry) systems. However, some DDIs 
result from combinations or various mechanistic pathways that are not 
widely known. DDIs can be identified through several approaches, including 
in vitro pharmacology experiments, in vivo clinical pharmacology studies, 
and pharmacoepidemiology studies. However, these methods are limited by 
the need to focus on a small set of target proteins and drugs and are, there-
fore, slow to elucidate an exhaustive set of DDIs while new drugs are contin-
ually added into the pharmacopeia. Because they depend on these methods 
of DDI discovery and anecdotal clinical reporting, current DDI databases 
do not include all of the potential DDIs. Zhang et al. proposed an approach 
which utilizes SemMedDB for discovering potential DDIs. 

Specifically, for a given list of drugs, semantic predications of the follow-
ing are retrieved: 

• Predications describing an influence between a drug and a gene—
drug–gene or gene–drug pairs with predicate types as INHIBITS, 
INTERACTS_WITH, and STIMULATES. 

• Predications describing the biological functions of genes—
gene–function pairs with predicate types including AFFECTS, 
AUGMENT, CAUSES, DISRUPTS, INHIBITS, and PREDISPOSES.

• Predications describing the biological functions of drugs—drug–
function pairs having a drug as the subject and a function as the 
object where the function refers to all descendants of the biological 
function semantic type in the UMLS semantic-type hierarchy. 
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Two DDI discovery pathways are proposed. One is drug1-gene-drug2 
(DGD) pathway. Potential DDI candidates are generated by identifying 
(drug1, gene) and (gene, drug2) pairs in the retrieved semantic predica-
tions. The other pathway is drug1-gene1-function-gene2-drug2 (DGFGD) 
pathway. In this scenario, there is no gene commonly shared by the two 
drugs but through a common biological function, the two drugs are asso-
ciated. To ensure the function is not an established effect of either drug, 
the pathway only retains the drug pairs through function if there are no 
predications linking drug1 or drug2 to function directly.

An evaluation demonstrates that the approach found 19 known and 62 
unknown DDIs for 22 patients randomly selected. For example, the inter-
action of Lisinopril, an ACE inhibitor commonly prescribed for hyper-
tension, and the antidepressant sertraline can potentially increase the 
likelihood and possibly the severity of psoriasis.

Network analysis of a drug-disease-gene predication network (Zhang 
et al. 2014): For a given set of predications, a predication network can be 
formed by treating entities as nodes, and predications as edges. However, 
such network can be noisy due to (1) predications extracted may not be 
accurate due to the limitation of the extraction tool and (2) the asso-
ciation may not be scientifically correct. Network-based computational 
approaches can be utilized to analyze the network by decomposing 
them into small subnetworks, called network motifs. Network motifs are 
 statistically significant recurring structural patterns found more often in 
real networks than would be expected in random networks with same 
network topologies. They are the smallest basic functional and evolution-
arily conserved units in biological networks. The hypothesis is that net-
work motifs of a network are the significant sub-patterns that represent 
the backbone of the network, which serves as the focused portion. These 
network motifs could also form large aggregated modules that  perform 
specific functions by forming associations among a large number of 
 network motifs.

The network analysis was performed on a drug-disease-gene prediction 
network formed by two of the three entities, drug, disease, and gene where 
drugs are from a collection of FDA-approved drug entities in DrugBank. 
The network consists of 84,317 associations among 7,234 entities (includ-
ing drugs, diseases, and genes), which is too complex for a direct visualiza-
tion. Through network motif analysis, five significant three-node network 
motifs are identified, which have strong biological meanings and could 
suggest scientists’ future directions in their research field (Figure 14.3).
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Three case studies were performed: 

• Prioritize disease genes: One of the motifs is disease1-gene-disease2-
disease1, which indicates two diseases that are associated with each 
other are also associated with one common disease gene. By limiting 
the network to this motif, we can prioritize disease genes.

• Inference of disease relationships: Another significant motif is 
 disease1-gene-disease2, where two diseases are associated with a 
common gene but the association of disease1 and disease2 is not a 
requirement. Based on the “guilt by association” rule— diseases  similar 
to each other are more likely to be affected by the same genes/ pathways, 
two diseases involved are more likely to be similar/ associated than 
other diseases. 

• Drug repositioning: Limiting the network to disease1-drug-disease2-
disease1, where two diseases associated with each other, can be the 
targets for the same drug. This motif indicates similar diseases can 
be treated by same drugs, allowing us to make hypotheses for drugs 
repositioning purpose. 

14.4  STEP-BY-STEP TUTORIAL ON SIMPLE 
LBD USING SEMANTIC MEDLINE 

All semantic predications for Semantic MEDLINE were stored in a rela-
tional database called SemMedDB. This repository of the predications 
is publically available and can be downloaded from http://skr3.nlm.nih.
gov/SemMedDB/. To use this database, the user should install MySQL 
and then import the repository. Installing MySQL is pretty simple and 
straightforward for different platforms such as Microsoft Windows, Mac OS, 
and Linux. We assume the reader has installed MySQL on his/her sys-
tem and is familiar with SQL commands. After installing MySQL, first we 
need to create a database. In the shell script enter

(a) (b) (c) (d) (e)

FIGURE 14.3 Network motifs detected through motif analysis. Triangle—disease, 
cycle—gene, and square—drug. (a–e) Five significant three-node network motifs 
identified through network motif analysis. 

http://skr3.nlm.nih.gov/SemMedDB/
http://skr3.nlm.nih.gov/SemMedDB/


Literature-Based Knowledge Discovery    ◾    245

mysql -h localhost -u USERNAME –p

and then enter your password. This command enters you to MySQL shell, 
which allows you to run SQL commands. If your username and password 
is correct, MySQL prints a welcome message and it is ready to run your 
commands. To create a database enter this command:

Create database DATABASE_NAME;

If the command was executed correctly, MySQL prints this message Query 
OK, 1 row affected (0.00 sec). Now, you should dump SemMedDB into this 
database. There are two options to download SemMedDB: (1) the whole 
database and (2) each table separately. After downloading the database, 
either way, first exit MySQL shell via typing exit command and then enter 
the following command to import SemMedDB into the new database:

mysql -u USERNAME -p -h localhost DATABASE_NAME < 
DOWNLOADED_FILE.sql

This operation takes time. After importing the database, go back to MySQL 
shell. Enter “use DATABASE_NAME;”. Type “show tables;” to view all the 
tables in the database. The database contains 8 tables. One of the tables 
called PREDICATION_AGGREGATE contains all the data that we need to 
generate LBDs. Some of fields in this table are unique identifier of PubMed 
Citation (PMID), name of subject (s_name), semantic type of subject 
(s_type), name of object (o_name), semantic type of object (o_type), type 
of predicate, and unique identifier to the sentence (SID) that contains the 
predication. This table allows us to generate both open and closed LBD. 

14.4.1 Retrieving Open Discoveries

Assume we want to generate a list of open LBDs between drug (start 
 concept) and disease (target concept), with gene as linking concept. Three 
steps should be taken for this retrieval:

#First retrieving semantic predications between drug 
and gene
SELECT PMID, s_name, o_name, predicate, SID
FROM PREDICATION_AGGREGATE 
WHERE s_type=‘phsu’ AND o_type=‘gngm’  AND predicate 
NOT Like ‘neg_%’
as T1; 
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#Second retrieving semantic predications between gene 
and disease
SELECT PMID, s_name, o_name, predicate, SID
FROM PREDICATION_AGGREGATE 
WHERE s_type=‘gngm’ AND o_type=‘dsyn’ AND predicate 
NOT Like ‘neg_%’
as T2;

#Joining these two tables
SELECT T1.s_ name, T2.o_ name
FROM T1, T2
WHERE T1.o_name=T2.s_name AND T1.PMID <> T2.PMID

which phsu is semantic type for pharmacologic substance, gngm for gene 
or genome, and dsyn for disease or syndrome. The negated predications 
extracted by SemRep are removed by this condition: predicate NOT Like 
‘neg_%’. Here is the whole query:

SELECT T1.s_ name, T2.o_ name
FROM 
(SELECT PMID, s_name, o_name, predicate, SID 
FROM PREDICATION_AGGREGATE 
WHERE s_type =‘phsu’ AND o_type=‘gngm’  AND predicate 
NOT Like ‘neg_%’) as T1 ,

(SELECT PMID, s_name, o_name, predicate, SID 
FROM PREDICATION_AGGREGATE 
WHERE s_type=‘gngm’ AND o_type=‘dsyn’ AND predicate 
NOT Like ‘neg_%’) as T2

WHERE T1.o_name=T2.s_name AND T1.PMID <> T2.PMID

To retrieve the sentences, which the semantic predications are extracted 
from, we should join another table, called SENTENCE, to the query. 
The following steps retrieve the sentences along LBDs:

#Joining SENTENCE and T1 

SELECT * 
FROM T1 and SENTENCE 
WHERE SENTENCE.SID = T1.SID
as T3;
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# Joining SENTENCE and T2 
SELECT * 
FROM T2 and SENTENCE 
WHERE SENTENCE.SID = T2.SID
as T4;

#Joining these two tables
SELECT T3.s_ name, T3.sentence, T4.o_ name, 
T4.sentence
FROM T3, T4
WHERE T3.o_name=T4.s_name   AND   T1.PMID <> T2.PMID

14.4.2 Retrieving Closed Discoveries

With a small modification, the above queries can be used for closed 
 discovery. The following query retrieves all semantic predications between 
Flecainide and Heart Failure:

SELECT  T1.PMID, T1.o_name, T2.PMID
FROM 
(SELECT PMID, s_name, o_name, predicate
FROM  PREDICATION_AGGREGATE 
WHERE s_name= ‘Flecainide’ AND o_type=‘gngm’ AND 
predicate NOT Like ‘neg_%’) as T1 ,
(SELECT PMID, s_name, o_name, predicate, SID 
FROM PREDICATION_AGGREGATE 
WHERE s_type=‘gngm’ AND o_name= ‘Heart Failure’ AND 
predicate NOT Like ‘neg_%’) as T2

WHERE  T1.o_name=T2.s_name AND T1.PMID <> T2.PMID

This query returns 169 rows, which can be used to evaluate the hypothesis 
of existence of a relationship between these two entities.
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C h a p t e r  15

Mitigating High 
Dimensionality in 
Big Data Analysis

Deendayal Dinakarpandian

15.1 INTRODUCTION
The Greeks had a very simple explanation of life. Both mental and physical 
health depended on the proper balance between four humors—sanguine, 
phlegmatic, melancholic, and choleric related to blood, phlegm, black bile, 
and yellow bile, respectively. We now know that this is too simple a model 
to make accurate predictions regarding health. For example, if we assume 
that each of these humors can take on high or low values, there can be 
only 24 or 16 states of health possible. Over a 100 Nobel Prizes later, we 
feel we are in a much better position to measure the state of the body. 
While it once took days of work to isolate a single protein from bovine 
liver, it is becoming increasingly feasible to affordably measure thousands 
of components in minutes. The components may be metabolites, proteins, 
DNA, or RNA. We can also measure the extent of chemical transforma-
tions of these, for example, glycosylation, phosphorylation, acetylation, or 
methylation.
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There has been a concomitant development in computational and 
 statistical methods to deal with the deluge of measured data. Computational 
methods have facilitated scalable storage, querying, and comparison of 
data while statistical methods make it possible to distinguish dependen-
cies from coincidental correlations. This chapter focuses on a few key 
 concepts that have become the sine qua none underlying statistical model-
ing and machine learning. In particular, it helps to understand why being 
data rich doesn’t necessarily translate to reliable knowledge. Rather, we 
now have a poverty of riches that is plagued by false positives.

The tenor of the chapter is empirical rather than theoretical, in line with 
the applied focus of the book. Section 15.2 gives a conceptual explanation 
of the problem posed by having rich data. Section 15.3 presents possible 
strategies in tackling the problem. The chapter ends with a section that 
illustrates how some of these strategies can be used in R.

15.2 POVERTY OF RICHES
This section presents various ways in which the curse of dimensionality 
can undermine drawing reliable conclusions from the analysis of rich data.

Comparing single means: Consider the case of comparing the value of 
a single variable between two groups of subjects. For example, one 
may measure the blood level of a protein that is suspected to be 
elevated in patients with a certain type of cancer. The mean levels 
the protein in the two groups may be compared to determine if they 
are significantly different by employing a t-test. In another case, the 
frequencies of an SNP in two different groups may be compared to 
determine if they are significantly different. Fisher’s exact test or a 
chi-squared test may be used in this case. In both of these exam-
ples, there is a single variable being measured—a real number in 
the first case and a Boolean variable (YES = suspected SNP variant 
is  present; NO = suspected SNP variant is absent) in the second in 
 several observations (number of subjects).

Comparing several means: In contrast to the relatively straightfor-
ward problem of comparing just one mean with another, the situ-
ation becomes more involved when the ratio between the number 
of variables and the number of observations increases. In the above 
examples, this situation arises when a whole metabolic profile is 
measured in the blood instead of a single molecule or when a large 
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number of SNPs are compared between two groups. In effect, the 
p-values  calculated in this case often represent only a lower bound 
for the actual p-value. For example, if the p-value for one of 100 SNPs 
 compared between two groups is found to be 0.01, this could actually 
be much higher (see Bonferroni correction below for explanation). 

Multiple questions: In fact, this problem is not restricted to omic analy-
ses. It arises in a wide range of experiments such as questionnaires 
that include a score for each of several questions. Again, if the p-value 
for the difference in score of one of 10 questions between two groups 
of participants is 0.01, the actual p-value could be much considerably 
higher.

Multiple types of explorations: In addition to the measurement of 
 multiple variables that are of the same type (e.g., bacteria in micro-
biome analysis, RNA in next-generation sequencing), this problem 
also arises when several different types of experiments are per-
formed in search of the answer to a question. For example, if one 
searches for evidence of the presence of a new virus, there may be 
multiple types of serological or cell culture assays carried out. Once 
again, getting a significantly higher titer on one of the assays could 
be just a coincidence.

Regression analysis: Consider the problem of regression analysis where 
the variables that describe the data are the input and the output is a 
numerical value. An example is the prediction of survival time given a 
combination of clinical and molecular data. Irrespective of the actual 
mathematical technique used for regression, the predictive model is 
built based on a subset of data referred to as the training set. The error 
between predicted values and the actual values of the output is com-
monly used as an estimate of the accuracy of the regression equation. 
If the number of variables is greater than the number of observation 
points in the training set, the error will effectively be zero. To under-
stand this, consider the extreme case of trying to deduce a regres-
sion line from a single observation (point). For example, this could 
be the blood level of a suspected marker from a single patient. In this 
case, the number of observations is the same as the number of vari-
ables. We intuitively know that it is impossible to derive any general 
 conclusion from a single observation. The mathematical explanation 
is that an infinite number of lines can pass through a single point. 
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There is no way of knowing which is the correct line that should be 
used for prediction. On the other hand, if there are two observations 
available, then there is only one line that will pass exactly through 
both points. 

  Similarly, consider the case of two observations, but now using 
two variables for prediction. For example, data from two patients 
on the blood levels of two different markers may used to make a 
prediction. In this case, the regression function corresponds to a 
plane because it exists in three-dimensional space—two dimensions 
for the input, and one for the output. However, since the number of 
observations is equal to the number of variables, there is an infinite 
number of  predictive models that have an error of zero. The math-
ematical explanation is that an infinite number of planes can pass 
through a single line. Essentially, if the number of observations is 
not greater than the number of variables used as input, the training 
set ceases to be a useful guide to identify the relationship between 
input and output, and one cannot learn anything from the available 
data. The same concept holds when one may have data from a hun-
dred patients but a thousand SNPs are used to quantify underlying 
relationships. In  this case, an infinite number of hyperplanes can 
map perfectly to the training data, yielding a perfect but spurious 
prediction.

  Further, it is important to note that the problem persists even 
when the number of variables is less than the number of obser-
vations, but is still relatively large compared to the number of 
observations. Though there is no longer an infinite number of pos-
sible regression equations with perfect prediction, and there may a 
unique best model for a given set of training data, the nature of the 
model may vary considerably depending on the subset chosen to be 
the training data. This phenomenon is referred to as model insta-
bility, since the predictive equation changes considerably from one 
training set to the next. For example, completely different sets of 
SNPs may be considered important by different groups of research-
ers who have used different training sets (subjects). In effect, the 
flexibility afforded by the large number of variables or dimensions 
influences the learning process to effectively memorize the training 
data and therefore be unable to distinguish the underlying general 
trend from random (noisy) fluctuations. This phenomenon is com-
monly referred to as overfitting.
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Classification: In classification, we seek to allocate each observation to 
a category, for example, normal, borderline, or disease. In this case, 
predictive error may be quantified by measures like specificity, sensi-
tivity, precision (for two categories), or by weighted average of accu-
racies over multiple categories. Analogous to the potential problems 
with regression, the same issue of spurious prediction caused by rich 
data occurs in classification problems. The line, plane, or hyperplane 
in this case doesn’t in itself represent the output; rather, it divides 
the classification space into the different categories. Other than 
this  difference in interpreting the input–output space, all the con-
siderations are similar. If there are only two observations for two 
variables used as predictors, there are an infinite number of ways to 
perfectly classify the data. And if the number of variables is less than 
the number of observations but still considerable, spurious models 
are likely to be generated. The prediction will appear to be near per-
fect on a given training data set, but will have an intolerable amount 
of error on test sets.

Curse of dimensionality: To summarize, a tempting solution to answer-
ing scientific questions is to acquire expensive instrumentation that 
can give a rich description of organisms or biological conditions by 
measuring large numbers of variables simultaneously. However, it is 
fallacious to assume that this makes prediction easier. 

15.3 DATA ANALYSIS OUTLINE
A variety of representative approaches to tacking the curse of dimension-
ality are summarized in this section. A naïve approach might be simply 
to increase the number of observations. This line of thinking underlies 
power analysis used by statisticians to reduce the probability of false neg-
atives. However, the problem here is the need to reduce false positives. 
Increasing the number of observations as a possible solution is often infea-
sible for economic reasons (cost of recruiting subjects or obtaining biolog-
ical samples) or for scientific reasons (rare conditions). More importantly, 
the number of observations required for reliable prediction rises expo-
nentially as a function of the richness (number of measured predictors or 
variables) of data. This implies that the dimensionality of predictive prob-
lems will dwarf the number of possible observations in the large majority 
of cases; there will never be enough data. The following types of strategies 
are used to mitigate the problem of spurious findings. Broadly speaking, 
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there are two choices—reduce the number of dimensions by judicious 
screening or perform a correction to compensate for the (large) number 
of dimensions used. In practice, a suitable combination of the following 
strategies is  recommended for any given project.

Using prior knowledge to reduce dimensions: A common temptation is 
to carry out statistical analysis or computational prediction by using 
as many variables as possible in a multi-everything approach that is 
apparently comprehensive. The naïve line of thinking is that nothing 
will be missed by using this approach. As discussed in the previous 
section, this attempt to minimize false negatives is more likely to result 
in false positives or erroneous models. Therefore, it is better to use 
scientific knowledge of the problem to eliminate irrelevant variables 
and thus increase the ratio of observations to predictors. Alternatively, 
variables could be grouped into a smaller number of dummy vari-
ables. One example of this is to choose to use a fewer number of gene 
ontology terms instead of individual genes in prediction.

Using properties of data distribution to reduce dimensions: Properties 
of the data like correlation between dimensions and asymmetry of 
how the data are distributed may be exploited to reduce the total 
number of variables. For example, if a subset of the variables exhib-
its correlation with each other, one of the variables may be chosen 
as a  representative or a virtual composite variable may be used. 
Alternatively, a new (smaller) set of variables may be created by using 
a non-redundant (orthogonal) version of the original dimensions. 
Eigenanalysis of the data may be performed to determine which 
directions show the greatest variance—as in principal component 
analysis. The original data may be mapped to a new (smaller) space 
where each variable is a principal component. 

Using exploratory modeling to reduce number of dimensions: Irrespective 
of the prediction method used, it is possible to use systematic 
approaches to find a minimal subset of the original variables that 
represents a good compromise between the spurious nearly perfect 
prediction with everything included and a more reliable prediction 
with apparently higher error. These may be performed by gradu-
ally increasing the number of variables considered (forward subset 
 selection), decreasing the number of variables considered (backward 
subset selection), or a combination (hybrid). The key consideration 
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is to use the smallest number of variables that lowers the prediction 
error to an acceptable amount.

Penalizing schemes for complex models: A model is considered complex 
if it has many parameters or coefficients. While higher complexity 
is desirable for accurate predictions where the underlying mecha-
nisms are complicated, too complex a model can cause higher error 
by overfitting. In addition to the number of coefficients in a model, 
the magnitude of coefficients is also a measure of complexity. Given 
two models that give similar performance, it is better to prefer the 
one with lower complexity. This principle is often referred to as 
Ockham’s razor. One way to find the appropriate level of complex-
ity is to compare solutions by adding a penalty that is proportional 
to the complexity. A couple of methods used in linear regres-
sion are least absolute shrinkage and selection operator (LASSO) 
(Tibshirani 1996) and ridge regression (Hoerl and Kennard 1970). 
LASSO penalizes additive models by the magnitude of the coeffi-
cients. Without going into details of the underlying mathematics, 
LASSO tends to discard irrelevant variables or dimensions. Ridge 
regression penalizes additive models by the squares of the coeffi-
cients. While this does not discard any of the dimensions, it helps 
to reduce the importance of less influential variables in prediction.

Correction for multiple testing: As mentioned before, the availability of 
richly described data can be counter-productive in generating many 
false positive results. The p-values need to be corrected (increased) to 
differentiate between false and true positives. Consider two experi-
ments. In one experiment, the level of expression of a single gene is 
compared between two groups of subjects. The p-value  corresponding 
to the difference is .0001. This implies that the probability that there 
is no difference between the two groups is at most .0001. Contrast 
this with a second experiment, where the levels of expression of a 
one hundred genes are compared between two groups. Even though 
this sounds like a single experiment, in reality this is a set of hundred 
separate experiments that just happen to be performed together. If 
one of the genes shows a difference with a p-value of .0001, this cor-
responds to finding such a result once in 100 attempts. Therefore, 
one way to correct each of the p-values is to multiply them by the 
number of actual experiments, yielding .001 as the corrected 
value for a raw value of .0001. This is referred to as the Bonferroni 
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correction (Bonferroni 1936). Another way of viewing this is to 
adjust the p-value thresholds for statistical significance. For exam-
ple, the equivalent probability of a coincidental finding that occurs 
5% of the time in a single experiment is 0.05/100 if observed among 
100 experiments. While the Bonferroni correction does a good job 
of eliminating coincidental findings, it can also throw the baby out 
with bath water by increasing false negatives. In practice, the num-
ber of experiments is so large (thousands of gene comparisons, for 
example) that the required p-value threshold for significance may be 
unrealistically low. The reason is because the Bonferroni correction 
assumes that variables do not interact with each other. This notion of 
independence is rarely true in biomedical research. By definition, the 
concentrations of protein or RNA molecules are often dependent on 
each other. In other words, if a hundred genes are studied, the num-
ber of independent subgroups within them is usually smaller. This 
implies that the true p-value lies somewhere between the raw values 
and the value obtained by multiplying them with the total number 
of comparisons made.

  An alternative to the aggressive Bonferroni method for multiple 
 testing corrections is to answer a slightly different question. Instead 
of asking the Bonferroni question of “What is the probability that 
there is at least one spurious/coincidental difference in this group 
of experiments?” one tries to answer the question “What propor-
tion of the observed differences is not really a difference but just a 
spurious/ coincidental difference?” For example, one could ask, how 
many genes showing a difference with a p-value of less than or equal 
to 0.05 are in reality not different? This is referred to as the false dis-
covery rate (FDR). In other words, the goal is to find the appropri-
ate threshold that corresponds with a desired FDR. This can be done 
empirically by permutation testing—shuffling the observed values 
and creating a frequency histogram of the resulting coincidental dif-
ferences between two groups. This can then be compared with the 
actual values to estimate the FDR. For example, if there are 40 genes 
that show a difference in expression greater than 2 in the real experi-
ment, and there are 4 genes that show at least a difference of 2 in the 
real experiment, then the corresponding FDR for a threshold of 2 is 
4/40 or 10%. So if one desires a FDR of 5%, then we might slide the 
threshold and find that a cutoff difference value of 3 yields 20 genes in 
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the actual set versus 1 in the spurious set—corresponding to 1/20 or 
the desired FDR of 5%. As an alternative to permutation testing, the 
threshold value for a desired FDR can also be determined by sorting 
the original p-values and following the Benjamini–Hochberg proce-
dure to obtain equivalent results (Benjamini and Hochberg 1995).

Importance of cross-validation: A variety of strategies for dealing with the 
curse of dimensionality has been outlined above. A universal method 
for evaluating performance, irrespective of the actual method used 
to build a predictive model, is cross-validation. A common error is to 
use the entire data available to build a model and then end up using 
the same data to evaluate the performance. This is likely to result in a 
highly optimistic estimate of performance. A slightly better approach 
is to divide the data into two parts, using one for training and the 
other for validation. However, it is possible that the division is fortu-
itous such that the testing data are very  similar to the training data. 
An even better method is 10-fold cross- validation, where the data are 
randomly divided into 10 subsets followed by rounds of evaluation. 
In each round, 9 of the subsets are pooled together for training, with 
a single subset being used to evaluate the performance. If the number 
of observations is limited, leave-one-out validation can be used where 
each subset is essentially a single observation. In either case, every 
observation ends up being used for both training and testing to give 
a realistic average estimate of prediction error on a new test observa-
tion. Cross-validation in itself is not a solution for the curse of dimen-
sionality but it yields an objective measure of predictive performance 
and can be used to rank models.

15.4 STEP-BY-STEP TUTORIAL
In this section, a brief tutorial on how to correct for multiple testing in R 
is presented.

Consider two data sets exp1 and exp2, which represent the expression 
values of a single gene in two groups of 50 subjects each. Assume that the 
normalized mean value in both groups is zero, with a standard deviation 
of 1. The following commands may be used to create the corresponding 
data sets:

> exp1=rnorm(50, mean=0,sd=1)
> exp1
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[1] -0.57068957  0.04736721 -1.24841657 -1.44353435  0.49662178
[6]  2.60968270 -0.96959959 -1.13274380 -0.33420912 -0.55439927
[11] -0.60649030 -0.46635946  0.19279477 -1.29596627  0.45703230
[16] -0.86291438 -1.65985004  0.41464152 -1.30537486 -0.40097109
[21] -0.04646163 -1.36372776 -0.91189955  0.20931483  1.17841029
[26] -1.23847239 -1.23736365 -0.16658649 -0.16345373  0.21434718
[31]  0.97866365  0.30745350 -0.26211568 -0.29154925  0.65174597
[36]  0.87553386  0.88960715  0.04319597  0.98085568 -2.20208429
[41] -0.15386520  0.58222503  0.46074241  0.21359734  0.81942712
[46] -1.64504171  0.81400012  0.56407784  0.94932426  1.08691828
> exp2=rnorm(50, mean=0,sd=1)

Since the values are normally distributed, a t-test may be performed to 
see if the mean values in the two experiments are different. The relevant 
command in R is given below.  Even though the means of the two sets of 
values appear to be different, the high p-value of .4 suggests that there is 
no significant difference in the mean value of this gene between the two 
groups; there is a 40% chance that both sets of values are samples of the 
same distribution.

> t.test(exp1,exp2)
Welch Two Sample t-test

data:  exp1 and exp2
t = -0.7911, df = 97.621, p-value = 0.4308
alternative hypothesis: true difference in means is 
not equal to 0
95 percent confidence interval:
-0.5446399  0.2341746
sample estimates:
 mean of x   mean of y 
-0.12993119  0.02530144 

The above commands may also be carried out by reading in a file contain-
ing a single column of measurements of a single gene under a particular 
condition. A wide variety of formats can be read by R.

Now consider the situation of measuring the expression level of 100 
genes in two groups of 50 subjects each. In this case, a real data set would 
be formatted as 50 rows of 100 values each. For purposes of illustration, 
synthetic data sets are created and used below.

The data for the first group (normal distribution with mean value = 0, 
standard deviation = 1) are created as an array of 50 rows (subjects) and 
100 columns (genes).

> Exp1with50subjects100genes<-array(rnorm(5000,0,1), c(50,100))
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A partial view of the data showing the values of the first 5 genes of the first 
five subjects is shown below.

> Exp1with50subjects100genes[1:5,1:5]
            [,1]       [,2]       [,3]       [,4]       [,5]
[1,]  1.417706924  0.6755287 -1.1890533  1.1397988  0.2501593
[2,]  0.004892736 -1.5852356 -0.8496448  0.9739892 -0.1589698
[3,] -0.997550929  0.3602879 -0.8737415  1.0237264 -0.3268001
[4,]  0.237741476  0.1917299  1.2006769  1.4636745 -0.5755778
[5,] -0.846503962 -0.6692146 -0.6169926 -0.3442893  0.7648831

The values for the first two genes can be deliberately altered to have mean 
values of 2 and 0.6, respectively.

> differentGene1 = array(rnorm(50,2,1))
> differentGene2 = array(rnorm(50,0.6,1))
> Exp1with50subjects100genes[1:5,1:5]
            [,1]       [,2]       [,3]       [,4]       [,5]
[1,]  1.417706924  0.6755287 -1.1890533  1.1397988  0.2501593
[2,]  0.004892736 -1.5852356 -0.8496448  0.9739892 -0.1589698
[3,] -0.997550929  0.3602879 -0.8737415  1.0237264 -0.3268001
[4,]  0.237741476  0.1917299  1.2006769  1.4636745 -0.5755778
[5,] -0.846503962 -0.6692146 -0.6169926 -0.3442893  0.7648831
> Exp1with50subjects100genes[,1] = differentGene1
> Exp1with50subjects100genes[,2] = differentGene2
> Exp1with50subjects100genes[,1:5]
          [,1]        [,2]         [,3]         [,4]        [,5]
[1,] 2.1374105 -1.58119132 -1.189053260  1.139798790  0.25015931
[2,] 2.6269713  1.09021729 -0.849644771  0.973989205 -0.15896984
[3,] 3.0281731  0.52403690 -0.873741509  1.023726449 -0.32680006
[4,] 3.1437150 -0.98168296  1.200676903  1.463674516 -0.57557780
[5,] 1.7539795  0.02055405 -0.616992591 -0.344289303  0.76488312
[6,] 1.2765618 -0.29014811 -0.816515383 -0.445786675  0.73574435
[7,] 4.4226439  0.13519754  0.172053880  2.061859613 -0.59618714
[8,] 2.0093378  1.74462761 -0.089958692 -0.478425045 -2.78549389
[9,] 2.3642556  1.63258480 -0.487598270 -2.732398629  1.22911743
[10,] 1.6724412  0.83969361 -0.502998447  0.065667490 -0.31565348
[11,] 1.2369272  0.30434891  0.920655980  1.055611798 -0.45456017
[12,] 2.3038377 -0.56758687  1.115077162  1.134437803  0.06946009
[13,] 2.1306358  1.28862167 -2.393985146 -0.433934763  0.47876340
[14,] 1.2301407  0.73632915 -0.100082003  0.406445274 -0.01973016
[15,] 1.6220515  0.65160743  1.034377840 -1.763653578  0.68346130
[16,] 1.8190719  0.42323948  0.866958981  0.809686626 -0.47866677
[17,] 2.7460363 -0.01443635 -1.715260186 -0.187892145 -0.61911895
[18,] 1.8095900  1.50900408  0.810839357  1.288867130 -0.37689579
[19,] 2.1988674  0.29528122 -0.086798788  0.983140330 -0.26887477
[20,] 1.3043292  1.69655976  0.093611374  0.452242483  0.14640593
[21,] 1.8725796  0.50599179 -1.074072964 -0.306025566  1.47509530
[22,] 2.7421148  1.81896864  2.093938163 -0.941033776 -1.38505453
[23,] 5.5086279  0.68334959 -0.282948018 -0.442854621  0.93116003
[24,] 2.0330395  0.25910465 -1.391611379  1.702541228 -1.15721324
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[25,] 1.6247933 -0.22164555 -0.260075758 -0.205446006  0.85312450
[26,] 1.2317709  1.21296715 -0.037042265 -0.133936305 -1.39644257
[27,] 2.3996270  1.16273939  0.655105362 -1.446995186 -0.76728085
[28,] 1.2956523  0.68987290 -2.104914939 -1.434816121  0.76627595
[29,] 2.1268622  1.62353243 -0.182621578  0.352729492  0.30991314
[30,] 3.0178016  1.85885646 -0.435628448  2.559880444  0.86493823
[31,] 2.4915555  0.43702543  0.267144603  1.588996864  0.37721399
[32,] 2.4907016  1.83148665  0.005977475  1.024481087  0.03755617
[33,] 1.5534359  1.36063142 -0.964298354 -2.246160891 -1.16830203
[34,] 1.4502630  1.15023216 -0.095982013  0.903945360 -1.78614936
[35,] 2.5028584  0.45545447 -0.852866573  0.153783706 -0.30751374
[36,] 1.1671471  0.16062241  0.347215168  0.007958926  0.01619001
[37,] 0.2705531  1.69753007 -1.268761517 -0.310926359 -2.12551675
[38,] 0.6374114 -0.39832964 -1.711567105  0.224159122  0.22434726
[39,] 2.3548472  1.93852588  0.329526906 -1.429820435 -0.25518701
[40,] 1.8328574  1.77574099 -0.706425569 -0.797979554  0.24350870
[41,] 2.5490908  0.06858288  0.458804390 -0.021129068 -0.20909139
[42,] 2.5149380 -0.26304752  0.127733387  0.446516390 -0.76222503
[43,] 2.3675076  0.23149459 -0.335212884  1.253704434 -0.07246676
[44,] 1.8292905 -0.29737483  2.199146595 -0.673142695  0.56156799
[45,] 1.8252365 -0.01701498  0.806919423  0.896151150  2.53778543
[46,] 3.0843245  2.26915560 -0.911682656 -1.207595664 -0.05926692
[47,] 1.5347754  0.24529655 -0.246986436 -0.827229970 -0.07835391
[48,] 3.1281320  0.59786603 -1.163498286  2.415567289 -0.72253147
[49,] 2.2260141 -0.32585954 -0.155022913  1.841579340  1.82398766

[50,] 1.7593475  1.80584131 -1.229134523  1.306847191 -0.12366554

A view of the data set now shows that the first two columns (see above) have 
higher values than the others. The means estimated from the data are seen 
to be close to the expected values of 2, 0.6, and 0 for the first three columns.

> mean(Exp1with50subjects100genes[,1])
[1] 2.125203
> mean(Exp1with50subjects100genes[,2])
[1] 0.6754891
> mean(Exp1with50subjects100genes[,3])
[1] -0.2325444

A second data set with all genes having a mean of 0 is created for statisti-
cal comparison with the first set. The estimated means for the first two 
columns, like the others, are close to zero.

> Exp2with50subjects100genes<-array(rnorm(5000,0,1), 
c(50,100))
> mean(Exp2with50subjects100genes[,1])
[1] -0.1651355
> mean(Exp2with50subjects100genes[,2])
[1] -0.1475769
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> mean(Exp2with50subjects100genes[,3])
[1] -0.2552059

The two data sets are compared by performing 100 t-tests, one for each 
gene or dimension. 

> pvalues = c(1:100)
> p=numeric(0)
> for (i in 1:100)
+ pvalues[i] = t.test(Exp1with50subjects100genes[,i],
Exp2with50subjects100genes[,i])$p.value
> pvalues

The resulting 100 p-values are shown below. As expected, the first two 
p-values are low. However, we find that there are several spurious 
 p-values—genes 4, 42, 53, 80, 84, 99—that are lower than the traditional 
threshold of 0.05. These indicate false positives.

 [1] 5.415589e-22 4.529549e-05 9.097079e-01 1.486974e-02 9.054391e-01
 [6] 7.098275e-01 4.704718e-01 8.877928e-01 9.196552e-01 9.164268e-01
[11] 1.915345e-01 8.739235e-01 1.242989e-01 9.936854e-01 7.761322e-01
[16] 6.143852e-01 2.527180e-01 4.983262e-01 5.364489e-01 3.473893e-01
[21] 7.880777e-02 3.001068e-01 9.102016e-01 4.904164e-01 3.241277e-01
[26] 6.777727e-02 1.861560e-01 9.631817e-01 8.152621e-01 9.847419e-01
[31] 2.890831e-01 8.359238e-01 5.609066e-01 8.606896e-01 1.648951e-01
[36] 3.132766e-01 1.301822e-01 4.886790e-01 6.948110e-01 9.698405e-01
[41] 5.810904e-01 2.093289e-02 1.919763e-01 5.571031e-01 8.082767e-01
[46] 9.216217e-01 6.961176e-01 5.203076e-01 7.875816e-01 8.305888e-01
[51] 5.076901e-01 4.063713e-01 3.188679e-02 2.902242e-01 1.317194e-01
[56] 4.913088e-01 7.938832e-01 8.648611e-01 7.551058e-02 7.521584e-01
[61] 4.307146e-01 9.643699e-01 7.331071e-01 3.429180e-01 2.573583e-01
[66] 8.496360e-01 8.375907e-02 6.025290e-02 5.072368e-01 7.350203e-01
[71] 6.604462e-01 5.748327e-01 8.384319e-01 6.925151e-01 9.218235e-01
[76] 8.306421e-01 9.028943e-01 5.518729e-01 1.415273e-01 4.175693e-02
[81] 9.692044e-01 6.953160e-01 5.741842e-01 2.355928e-02 6.738139e-01
[86] 6.543856e-01 9.223448e-01 7.987887e-01 7.937079e-01 5.326711e-02
[91] 1.421506e-01 6.581521e-01 9.448746e-01 3.545114e-01 9.906047e-01
[96] 1.141325e-01 1.193105e-01 6.938444e-01 1.790798e-02 5.482133e-01

After the Bonferroni correction is applied, only the first two genes have 
low p-values.

> pvaluesBonferroni = p.adjust(pvalues, method = “bonferroni”, n = 
length(pvalues))
> pvaluesBonferroni
 [1] 5.415589e-20 4.529549e-03 1.000000e+00 1.000000e+00 1.000000e+00
 [6] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[11] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
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[16] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[21] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[26] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[31] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[36] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[41] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[46] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[51] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[61] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[66] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[71] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[76] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[81] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[86] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[91] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[96] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

The data for the third gene are now changed to have a mean value of 0.3 
to make it more difficult to distinguish between random fluctuations and 
a genuine difference.

> differentGene3 = array(rnorm(50,0.3,1))
> Exp1with50subjects100genes[,3] = differentGene3
> mean(Exp2with50subjects100genes[,3])
[1] -0.2552059
> mean(Exp1with50subjects100genes[,3])
[1] 0.4428331
> for (i in 1:100)
+ pvalues[i] = t.test(Exp1with50subjects100genes[,i],Exp2with50subjects
100genes[,i])$p.value
> pvalues
 [1] 5.415589e-22 4.529549e-05 1.294005e-03 1.486974e-02 9.054391e-01
 [6] 7.098275e-01 4.704718e-01 8.877928e-01 9.196552e-01 9.164268e-01
[11] 1.915345e-01 8.739235e-01 1.242989e-01 9.936854e-01 7.761322e-01
[16] 6.143852e-01 2.527180e-01 4.983262e-01 5.364489e-01 3.473893e-01
[21] 7.880777e-02 3.001068e-01 9.102016e-01 4.904164e-01 3.241277e-01
[26] 6.777727e-02 1.861560e-01 9.631817e-01 8.152621e-01 9.847419e-01
[31] 2.890831e-01 8.359238e-01 5.609066e-01 8.606896e-01 1.648951e-01
[36] 3.132766e-01 1.301822e-01 4.886790e-01 6.948110e-01 9.698405e-01
[41] 5.810904e-01 2.093289e-02 1.919763e-01 5.571031e-01 8.082767e-01
[46] 9.216217e-01 6.961176e-01 5.203076e-01 7.875816e-01 8.305888e-01
[51] 5.076901e-01 4.063713e-01 3.188679e-02 2.902242e-01 1.317194e-01
[56] 4.913088e-01 7.938832e-01 8.648611e-01 7.551058e-02 7.521584e-01
[61] 4.307146e-01 9.643699e-01 7.331071e-01 3.429180e-01 2.573583e-01
[66] 8.496360e-01 8.375907e-02 6.025290e-02 5.072368e-01 7.350203e-01
[71] 6.604462e-01 5.748327e-01 8.384319e-01 6.925151e-01 9.218235e-01
[76] 8.306421e-01 9.028943e-01 5.518729e-01 1.415273e-01 4.175693e-02
[81] 9.692044e-01 6.953160e-01 5.741842e-01 2.355928e-02 6.738139e-01
[86] 6.543856e-01 9.223448e-01 7.987887e-01 7.937079e-01 5.326711e-02
[91] 1.421506e-01 6.581521e-01 9.448746e-01 3.545114e-01 9.906047e-01
[96] 1.141325e-01 1.193105e-01 6.938444e-01 1.790798e-02 5.482133e-01
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This time, Bonferroni tends to overcorrect to the extent that the  significant 
difference in the third gene is missed.

> pvaluesBonferroni = p.adjust(pvalues, method = “bonferroni”, n = 
length(pvalues))
> pvaluesBonferroni
 [1] 5.415589e-20 4.529549e-03 1.294005e-01 1.000000e+00 1.000000e+00
 [6] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[11] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[16] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[21] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[26] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[31] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[36] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[41] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[46] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[51] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[61] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[66] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[71] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[76] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[81] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[86] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[91] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[96] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

In contrast, if the Benjamini–Hochberg method is used, the first three 
genes are the only ones left with p-values lower than 0.5.

> pvaluesBH = p.adjust(pvalues, method = “BH”, n = length(pvalues))
> pvaluesBH
 [1] 5.415589e-20 2.264774e-03 4.313350e-02 3.365612e-01 9.936854e-01
 [6] 9.936854e-01 9.936854e-01 9.936854e-01 9.936854e-01 9.936854e-01
[11] 7.383704e-01 9.936854e-01 6.461390e-01 9.936854e-01 9.936854e-01
[16] 9.936854e-01 9.191367e-01 9.936854e-01 9.936854e-01 9.847538e-01
[21] 5.583938e-01 9.680864e-01 9.936854e-01 9.936854e-01 9.822052e-01
[26] 5.583938e-01 7.383704e-01 9.936854e-01 9.936854e-01 9.936854e-01
[31] 9.674139e-01 9.936854e-01 9.936854e-01 9.936854e-01 7.169352e-01
[36] 9.789893e-01 6.461390e-01 9.936854e-01 9.936854e-01 9.936854e-01
[41] 9.936854e-01 3.365612e-01 7.383704e-01 9.936854e-01 9.936854e-01
[46] 9.936854e-01 9.936854e-01 9.936854e-01 9.936854e-01 9.936854e-01
[51] 9.936854e-01 9.936854e-01 3.985849e-01 9.674139e-01 6.461390e-01
[56] 9.936854e-01 9.936854e-01 9.936854e-01 5.583938e-01 9.936854e-01
[61] 9.936854e-01 9.936854e-01 9.936854e-01 9.847538e-01 9.191367e-01
[66] 9.936854e-01 5.583938e-01 5.477536e-01 9.936854e-01 9.936854e-01
[71] 9.936854e-01 9.936854e-01 9.936854e-01 9.936854e-01 9.936854e-01
[76] 9.936854e-01 9.936854e-01 9.936854e-01 6.461390e-01 4.639659e-01
[81] 9.936854e-01 9.936854e-01 9.936854e-01 3.365612e-01 9.936854e-01
[86] 9.936854e-01 9.936854e-01 9.936854e-01 9.936854e-01 5.326711e-01
[91] 6.461390e-01 9.936854e-01 9.936854e-01 9.847538e-01 9.936854e-01
[96] 6.461390e-01 6.461390e-01 9.936854e-01 3.365612e-01 9.936854e-01
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